
www.allitebooks.com

http://www.allitebooks.org

Mastering Data Mining with
Python – Find patterns hidden
in your data

Learn how to create more powerful data mining
applications with this comprehensive Python guide
to advance data analytics techniques

Megan Squire

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Data Mining with Python – Find patterns
hidden in your data

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1240816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-995-0

www.packtpub.com

OR05236

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Megan Squire

Reviewers
Sanjeev Jaiswal

Ron Mitsugo Zacharski

Commissioning Editor
Veena Pagare

Acquisition Editor
Lester Frias

Content Development Editor
Mamata Walkar

Technical Editor
Naveenkumar Jain

Copy Editors
Safis Editing

Sneha Singh

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Megan Squire is a professor of computing sciences at Elon University.

Her primary research interest is in collecting, cleaning, and analyzing data
about how free and open source software is made. She is one of the leaders
of the FLOSSmole.org, FLOSSdata.org, and FLOSSpapers.org projects.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sanjeev Jaiswal is a computer graduate with 7 years of industrial experience.
His works involves Perl, Python, and GNU/Linux. He is currently working on
projects involving penetration testing, source code review, and security design
and implementations.

He is very much interested in web and cloud security. He is also learning NodeJS
and cloud security.

Sanjeev loves teaching engineering students and IT professionals. He has been
teaching for the last 8 years in his free time. He founded Alien Coders (http://www.
aliencoders.org), based on the learning through sharing principle for computer
science students and IT professionals in 2010, which became a huge hit in India
among engineering students.

You can follow him on Facebook at http://www.facebook.com/aliencoders,
on Twitter at @aliencoders, and on GitHub at https://github.com/jassics.

Sanjeev wrote Instant PageSpeed Optimization and co-authored Learning Django Web
Development for Packt Publishing. He has reviewed more than 5 books for Packt and
looks forward to more such opportunities.

Ron Mitsugo Zacharski is a computational linguist working in the areas of
information extraction and machine learning (zacharski.org). He has a BFA in
music from the University of Wisconsin at Milwaukee and a PhD in computer
science from the University of Minnesota, and he completed a post doctorate
in linguistics at the University of Edinburgh. He authored the free online book
A Programmer's Guide to Data Mining: The Ancient Art of the Numerati (www.
guidetodatamining.com) and co-edited The Grammar-Pragmatics Interface: Essays
in Honor of Jeanette K. Gundel, published by John Benjamins. For the majority of
his academic life, he has focused on multilingual natural language processing,
particularly with lesser-studied languages. Dr. Zacharski is a Zen monk in the
Sōtō School lineage of Soyu Matsuoka. He lives in New Mexico.

www.allitebooks.com

http://www.aliencoders.org
http://www.aliencoders.org
http://www.facebook.com/aliencoders
https://github.com/jassics
zacharski.org
www.guidetodatamining.com
www.guidetodatamining.com
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Expanding Your Data Mining Toolbox 1

What is data mining? 2
How do we do data mining? 4

The Fayyad et al. KDD process 5
The Han et al. KDD process 5
The CRISP-DM process 6
The Six Steps process 7
Which data mining methodology is the best? 8

What are the techniques used in data mining? 9
What techniques are we going to use in this book? 11

How do we set up our data mining work environment? 11
Summary 18

Chapter 2: Association Rule Mining 19
What are frequent itemsets? 20

The diapers and beer urban legend 20
Frequent itemset mining basics 21

Towards association rules 23
Support 23
Confidence 24
Association rules 24
An example with data 25
Added value – fixing a flaw in the plan 27
Methods for finding frequent itemsets 28

A project – discovering association rules in software project tags 30
Summary 46

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Entity Matching 47
What is entity matching? 48

Merging data 51
Merging datasets vertically 51
Merging datasets horizontally 53

Techniques for matching 54
Attribute-based similarity matching 54

Be careful of pairwise comparisons 54
Leverage rare values 55

Methods for matching attributes 55
Range-based or distance from target 55
String edit distance 55
Hamming distance 56
Levenshtein distance 56
Soundex 57

Leveraging disjoint sets 58
Context-based similarity matching 58
Machine learning-based entity matching 59
Evaluation of entity matching techniques 60

Efficiency – how long does it take to do the matching? 60
Effectiveness – how accurate are the matches that we generate? 61
Usefulness – how practical is the matching procedure to use? 63

Entity matching project 64
Difficulties with matching software projects 65
Two examples 65
Matching on project names 67
Matching on people names 67
Matching on URLs 67
Matching on topics and description keywords 68
The dataset 69
The code 70
The results 75

How many entity matches did we find? 76
How good are the pairs we found? 77

Summary 80
Chapter 4: Network Analysis 81

What is a network? 82
Measuring a network 85

Degree of a network 85
Diameter of a network 86
Walks, paths, and trails in a network 88
Components of a network 88

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Centrality of a network 89
Closeness centrality 89
Degree centrality 90
Betweenness centrality 91
Other measures of centrality 92

Representing graph data 93
Adjacency matrix 93
Edge lists and adjacency lists 95
Differences between graph data structures 95
Importing data into a graph structure 96

Adjacency list format 97
Edge list format 97
GEXF and GraphML 98
GDF 99
Python pickle 100
JSON 100
JSON node and link series 100
JSON trees 101
Pajek format 102

A real project 103
Exploring the data 104
Generating the network files 111
Understanding our data as a network 112

Generating simple network metrics 113
Playing with the parameters of a network 116
Analyzing subgraphs 118
Analyzing cliques and centrality in the subgraphs 121
Looking for change over time 124

Summary 134
Chapter 5: Sentiment Analysis in Text 135

What is sentiment analysis? 136
The basics of sentiment analysis 137

The structure of an opinion 137
Document-level and sentence-level analysis 139
Important features of opinions 140

Sentiment analysis algorithms 141
General-purpose data collections 142

Hu and Liu's sentiment analysis lexicon 142
SentiWordNet 143
Vader sentiment 143

Sentiment mining application 144
Motivating the project 145
Data preparation 145

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Data analysis of chat messages 149
Data analysis of e-mail messages 154

Summary 160
Chapter 6: Named Entity Recognition in Text 161

Why look for named entities? 162
Techniques for named entity recognition 164

Tagging parts of speech 166
Classes of named entities 167

Building and evaluating NER systems 168
NER and partial matches 168
Handling partial matches 169

Named entity recognition project 171
A simple NER tool 172

Apache Board meeting minutes 173
Django IRC chat 175
GnuIRC summaries 179
LKML e-mails 182

Summary 183
Chapter 7: Automatic Text Summarization 185

What is automatic text summarization? 186
Tools for text summarization 187

Naive text summarization using NLTK 187
Text summarization using Gensim 190
Text summarization using Sumy 193

Sumy's Luhn summarizer 194
Sumy's TextRank summarizer 195
Sumy's LSA summarizer 196
Sumy's Edmundson summarizer 197

Summary 199
Chapter 8: Topic Modeling in Text 201

What is topic modeling? 202
Latent Dirichlet Allocation 203
Gensim for topic modeling 204

Understanding Gensim LDA topics 207
Understanding Gensim LDA passes 208
Applying a Gensim LDA model to new documents 210
Serializing Gensim LDA objects 211

Serializing a dictionary 211
Serializing a corpus 212
Serializing a model 213

Gensim LDA for a larger project 213
Summary 216

Table of Contents

[v]

Chapter 9: Mining for Data Anomalies 217
What are data anomalies? 218

Missing data 218
Locating missing data 218
Zero values 220

Fixing missing data 220
Ignore the problem rows 220
Fix the problem manually 221
Use a fabricated value 222
Use a central measure 223
Use Last Observation Carried Forward 223
Use a similar value 224
Use the most likely value 224

Data errors 224
Truncated fields 225
Data type and character set errors 226
Logic or semantic errors 227

Outliers 228
Visual mining for outliers 230
Statistical detection of outliers 231

Summary 238
Index 239

[vii]

Preface
Over the past decade, cheaper data storage, faster hardware, and impressive
advances in algorithms have combined to pave the way for a rapid ascendance
of data science as one of the most important opportunities in computing. While
the term data science can include everything from cleaning data and storing data
to visualizing it in graphs and charts, the area that has made the most significant
gain is the invention of intelligent and sophisticated algorithms for analyzing data.
Using computers to find the interesting patterns buried within massive amounts of
data is called data mining, an area that encompasses elements of database systems,
statistics, and machine learning.

Right now there are dozens of great data mining and machine learning books
available for software developers to get up to date on all these advances in the
field. What most of these books have in common is that they all cover a small set
of tried-and-true methods for finding patterns in data: classification, clustering,
decision trees, and regression. Of course, all of these are critically important methods
for any data miner to know and they are popular because they can be effective.
But these same few techniques are not the whole story. Data mining is a rich field
encompassing many dozens of techniques to uncover patterns and make predictions.
A true master of data mining should have many tools in her toolbox, not just a few.
Thus, the mission of this book, Mastering Data Mining with Python, is to introduce
some of the lesser-known data mining concepts that are typically only covered in
academic textbooks.

This book uses the Python programming language and a project-based approach to
introduce diverse and often overlooked data mining concepts, such as association
rules, entity matching, network analysis, text mining, and anomaly detection. Each
chapter thoroughly illustrates the basics of one particular data mining technique,
provides alternatives for evaluating its effectiveness, and then implements the
technique using real-world data.

Preface

[viii]

Our focus on real-world data is another feature of this book that sets it apart from
many other data mining books. The true test of whether we have mastered a concept
is whether we can apply a method to a new, unknown problem. In our case, this
means applying each data mining method to a new problem area or a new data set.
The emphasis on real data also means that our results may not always be as clean
and tidy as results that come from a canned, example data set. For this reason, each
chapter includes a discussion for how to critically evaluate the method. Do the
results make sense? What do the results mean? How can the results be improved?

So, in many ways, this book picks up where some of the other data mining books
leave off. If you want to round up your growing data mining toolbox with a set of
interesting but often overlooked techniques, then read on to learn the specific topics
we will cover and how they will be applied in each chapter.

What this book covers
Chapter 1, Expanding Your Data Mining Toolbox, gives an introduction to the field of
data mining. In this chapter we pay special attention to how data mining relates
to similar topics, such as machine learning and data science. We also review many
different data mining methodologies, and talk about their various strengths and
weaknesses. This foundational knowledge is important as we transition into the
remaining chapters of the book, which are much more technique-oriented and focus
on the application of specific data mining tools.

Chapter 2, Association Rule Mining, introduces our first data mining tool: mining
for co-occurring sets of items, sometimes called frequent itemsets. We extend our
understanding of frequent itemset mining to include mining for association rules,
and we learn how to evaluate whether the rules we have found are helpful or not.
To put our knowledge into practice, at the end of the chapter we implement a small
project wherein we find association rules in the keywords chosen to describe a large
set of software projects.

Chapter 3, Entity Matching, focuses on finding matching pairs of data elements that
may look slightly different but are actually the same. We learn how to determine
whether two items are actually the same thing by using the attributes of the data. At
the end of the chapter, we implement an entity matching project where we learn to
find the software projects that have moved from one hosting service to another, even
after changing their names and other important attributes.

Preface

[ix]

Chapter 4, Network Analysis, is a tour through the basics of network or graph analysis,
as used to describe the relationships between various interconnected groups of
entities. We investigate the various types of network and learn how to describe and
measure them. Then we put our learning into practice to describe how a network of
software developers has changed over time.

Chapter 5, Sentiment Analysis in Text, is the first of four text mining chapters in this
book. This chapter serves as an introduction to the growing field of sentiment, or
mood, analysis in text. After comparing various approaches to sentiment mining and
learning how to evaluate the results, we practice using a machine learning classifier
to determine the sentiment of a set of software developer chat logs and e-mail logs.

Chapter 6, Named Entity Recognition in Text, is about finding proper nouns and proper
names in text. We spend some time learning why this task is useful, and why finding
named entities can sometimes be more difficult than it sounds. At the end of the
chapter we implement a named entity recognition system on several different types
of real-world text data including e-mail, chat logs, and board meeting minutes.
Along the way we apply different techniques for quantifying the success or failure
of our results.

Chapter 7, Automatic Text Summarization, presents several strategies for automatically
create condensed summaries of text. This chapter emphasizes extractive
summarization tools, which are designed to find the most important sentences in a
text sample. To this end, we experiment with three different tools for accomplishing
this goal, testing the summarization methods, and learning how they differ.
Following the introduction of each tool, we attempt to summarize a common
set of text documents and compare the results.

Chapter 8, Topic Modeling in Text, shows how to use software tools to reveal what
topics or concepts are present in a given text. Can we train a computer program to
infer the themes that are present in large amounts of text? In a series of experiments,
we learn how to use common topic modeling libraries to reveal the topics present in
software developer e-mails, and how those topics change over time.

Chapter 9, Mining for Data Anomalies, is where we learn how to use data mining and
statistical techniques to improve our own data mining process. While all of the other
chapters in this book deal with finding different types of patterns in data, here we
focus on finding data that is anomalous or that does not match a particular pattern.
Whether it is because the data is empty, missing, or just plain weird, this chapter
presents strategies for finding or fixing this type of data so that the rest of your data
can be mined more effectively.

Preface

[x]

What you need for this book
To complete the projects in this book, you will need a version of Python 3.5 or higher.
I recommend using Anaconda Python, but any Python distribution will do as long as
it is updated and contains the following packages: Numpy, Matplotlib, NetworkX,
PyMySQL, Gensim, and NLTK. In Chapter 1, Expanding Your Data Mining Toolbox,
we will walk through an easy installation of Python and all these libraries, and each
time a library is used later in the book, we will install it or upgrade it together.

Because data mining is obviously data-centric, and because the data sets we are
working with are sometimes large or require some type of persistent data storage,
I chose to implement some of the data mining algorithms alongside a relational
database system. I chose MySQL for accomplishing this since it is an established,
easy-to-download and install piece of infrastructure. The chapters where MySQL
comes into play are in working with the memory-intensive algorithms in Chapter 2,
Association Rule Mining, and Chapter 3, Entity Matching. I also use MySQL for some of
the examples in Chapter 9, Mining for Data Anomalies, but it is possible to go through
that chapter without MySQL.

Who this book is for
If you picked up a book on mastering data mining, you are probably familiar with
the basics of data analysis and you have likely experimented with machine learning
techniques such as regression, decision trees, classification, and cluster analysis.
If you have intermediate experience with Python, understand basic relational
database terminology, have some exposure to basic statistics, and can understand the
rudiments of how supervised and unsupervised machine learning techniques work,
then you are ready for this book. Let's build on what you already know to learn some
more exotic, unusual strategies for mining your data!

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[xi]

A block of code is set as follows:

MINSUPPORTPCT = 5
allSingletonTags = []
allDoubletonTags = set()
doubletonSet = set()

Any command-line input or output is written as follows:

conda install pymysql

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xii]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
megansquire/masteringDM. We also have other code bundles from our rich catalog
of books and videos available at https://github.com/PacktPublishing/. Check
them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/megansquire/masteringDM
https://github.com/megansquire/masteringDM
https://github.com/PacktPublishing/

Preface

[xiii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Expanding Your Data
Mining Toolbox

When faced with sensory information, human beings naturally want to find patterns
to explain, differentiate, categorize, and predict. This process of looking for patterns
all around us is a fundamental human activity, and the human brain is quite good at
it. With this skill, our ancient ancestors became better at hunting, gathering, cooking,
and organizing. It is no wonder that pattern recognition and pattern prediction were
some of the first tasks humans set out to computerize, and this desire continues
in earnest today. Depending on the goals of a given project, finding patterns in
data using computers nowadays involves database systems, artificial intelligence,
statistics, information retrieval, computer vision, and any number of other various
subfields of computer science, information systems, mathematics, or business,
just to name a few. No matter what we call this activity – knowledge discovery
in databases, data mining, data science – its primary mission is always to find
interesting patterns.

Despite this humble-sounding mission, data mining has existed for long enough and
has built up enough variation in how it is implemented that it has now become a
large and complicated field to master. We can think of a cooking school, where every
beginner chef is first taught how to boil water and how to use a knife before moving
to more advanced skills, such as making puff pastry or deboning a raw chicken. In
data mining, we also have common techniques that even the newest data miners will
learn: How to build a classifier and how to find clusters in data. The title of this book,
however, is Mastering Data Mining with Python, and so, as a mastering-level book, the
aim is to teach you some of the techniques you may not have seen in earlier data
mining projects.

Expanding Your Data Mining Toolbox

[2]

In this first chapter, we will cover the following topics:

• What is data mining? We will situate data mining in the growing field of
other similar concepts, and we will learn a bit about the history of how this
discipline has grown and changed.

• How do we do data mining? Here, we compare several processes or
methodologies commonly used in data mining projects.

• What are the techniques used in data mining? In this section, we
will summarize each of the data analysis techniques that are typically
included in a definition of data mining, and we will highlight the more
exotic or underappreciated techniques that we will be covering in this
mastering-level book.

• How do we set up a data mining work environment? Finally, we will walk
through setting up a Python-based development environment that we will
use to complete the projects in the rest of this book.

What is data mining?
We explained earlier that the goal of data mining is to find patterns in data, but this
oversimplification falls apart quickly under scrutiny. After all, could we not also
say that finding patterns is the goal of classical statistics, or business analytics, or
machine learning, or even the newer practices of data science or big data? What is
the difference between data mining and all of these other fields, anyway? And while
we are at it, why is it called data mining if what we are really doing is mining for
patterns? Don't we already have the data?

It was apparent from the beginning that the term data mining is indeed fraught
with many problems. The term was originally used as something of a pejorative
by statisticians who cautioned against going on fishing expeditions, where a data
analyst is casting about for patterns in data without forming proper hypotheses
first. Nonetheless, the term rose to prominence in the 1990s, as the popular press
caught wind of exciting research that was marrying the mature field of database
management systems with the best algorithms from machine learning and artificial
intelligence. The inclusion of the word mining inspires visions of a modern-day Gold
Rush, in which the persistent and intrepid miner will discover (and perhaps profit
from) previously hidden gems. The idea that data itself could be a rare and precious
commodity was immediately appealing to the business and technology press,
despite efforts by early pioneers to promote the holistic term knowledge discovery
in databases (KDD).

Chapter 1

[3]

The term data mining persisted, however, and ultimately some definitions of the
field attempted to re-imagine the term data mining to refer to just one of the steps in
a longer, more comprehensive knowledge discovery process. Today, data mining
and KDD are considered very similar, closely related terms.

What about other related terms, such as machine learning, predictive analytics, big
data, and data science? Are these the same as data mining or KDD? Let's draw some
comparisons between each of these terms:

• Machine learning is a very specific subfield of computer science that
focuses on developing algorithms that can learn from data in order to make
predictions. Many data mining solutions will use techniques from machine
learning, but not all data mining is trying to make predictions or learn from
data. Sometimes we just want to find a pattern in the data. In fact, in this
book we will be exploring a few data mining solutions that do use machine
learning techniques, and many more that do not.

• Predictive analytics, sometimes just called analytics, is a general term for
computational solutions that attempt to make predictions from data in a
variety of domains. We can think of the terms business analytics, media
analytics, and so on. Some, but not all, predictive analytics solutions will use
machine learning techniques to perform their predictions. But again, in data
mining, we are not always interested in prediction.

• Big data is a term that refers to the problems and solutions of dealing with
very large sets of data, irrespective of whether we are searching for patterns
in that data, or simply storing it. In terms of comparing big data to data
mining, many data mining problems are made more interesting when the
data sets are large, so solutions discovered for dealing with big data might
come in handy to solve a data mining problem. Nonetheless, these two terms
are merely complementary, not interchangeable.

• Data science is the closest of these terms to being interchangeable with the
KDD process, of which data mining is one step. Because data science is an
extremely popular buzzword at this time, its meaning will continue to evolve
and change as the field continues to mature.

Expanding Your Data Mining Toolbox

[4]

To show the relative search interest for these various terms over time, we can look
at Google Trends. This tool shows how frequently people are searching for various
keywords over time. In the following figure, the newcomer term data science is
currently the hot buzzword, with data mining pulling into second place, followed by
machine learning, data science, and predictive analytics. (I tried to include the search
term knowledge discovery in databases as well, but the results were so close to zero
that the line was invisible.) The y-axis shows the popularity of that particular search
term as a 0-100 indexed value. In addition, I combined the weekly index values that
Google Trends gives into a monthly average for each month in the period 2004-2015.

Google Trends search results for five common data-related terms

How do we do data mining?
Since data mining is traditionally seen as one of the steps in the overall KDD process,
and increasingly in the data science process, in this section we get acquainted with
the steps involved. There are several popular methodologies for doing the work
of data mining. Here we highlight four methodologies: Two that are taken from
textbook introductions to the theory of data mining, one taken from a very practical
process used in industry, and one designed for teaching beginners.

Chapter 1

[5]

The Fayyad et al. KDD process
One early version of the knowledge discovery and data mining process was defined
by Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth in a 1996 article
(The KDD Process for Extracting Useful Knowledge from Volumes of Data). This article
was important at the time for refining the rapidly changing KDD methodology into
a concrete set of steps. The following steps lead from raw data at the beginning to
knowledge at the end:

• Data selection: The input to this step is raw data, and the output of this
selection step is a smaller subset of the data, called the target data.

• Data pre-processing: The target data is cleaned, oddities and outliers are
removed, and missing data is accounted for. The output of this step is
pre-processed data, or cleaned data.

• Data transformation: The cleaned data is organized into a format
appropriate for the mining step, and the number of features or variables
is reduced if need be. The output of this step is transformed data.

• Data mining: The transformed data is mined for patterns using one or more
data mining algorithms appropriate to the problem at hand. The output of
this step is the discovered patterns.

• Data interpretation/evaluation: The discovered patterns are evaluated
for their ability to solve the problem at hand. The output of this step
is knowledge.

Since this process leads from raw data to knowledge, it is appropriate that these
authors were the ones who were really committed to the term knowledge discovery in
databases rather than simply data mining.

The Han et al. KDD process
Another version of the knowledge discovery process is described in the popular
data mining textbook Data Mining: Concepts and Techniques by Jiawei Han, Micheline
Kamber, and Jian Pei as the following steps, which also lead from raw data to
knowledge at the end:

• Data cleaning: The input to this step is raw data, and the output is
cleaned data.

• Data integration: In this step, the cleaned data is integrated (if it came from
multiple sources). The output of this step is integrated data.

• Data selection: The data set is reduced to only the data needed for the
problem at hand. The output of this step is a smaller data set.

Expanding Your Data Mining Toolbox

[6]

• Data transformation: The smaller data set is consolidated into a form
that will work with the upcoming data mining step. This is called
transformed data.

• Data mining: The transformed data is processed by intelligent algorithms
that are designed to discover patterns in that data. The output of this step is
one or more patterns.

• Pattern evaluation: The discovered patterns are evaluated for their
interestingness and their ability to solve the problem at hand. The
output of this step is an interestingness measure applied to each
pattern, representing knowledge.

• Knowledge representation: In this step, the knowledge is communicated to
users through various means, including visualization.

In both the Fayyad and Han methodologies, it is expected that the process will iterate
multiple times over the steps, if such iteration is needed. For example, if, during the
transformation step the person doing the analysis realized that another data cleaning
or pre-processing step, is needed, both of these methodologies specify that the
analyst should double back and complete a second iteration of the incomplete
earlier step.

The CRISP-DM process
A third popular version of the KDD process that is used in many business and
applied domains is called CRISP-DM, which stands for CRoss-Industry Standard
Process for Data Mining. It consists of the following steps:

1. Business understanding: In this step, the analyst spends time understanding
the reasons for the data mining project from a business perspective.

2. Data understanding: In this step, the analyst becomes familiar with the
data and its potential promises and shortcomings, and begins to generate
hypotheses. The analyst is tasked to reassess the business understanding
(step 1) if needed.

3. Data preparation: This step includes all the data selection, integration,
transformation, and pre-processing steps that are enumerated as separate
steps in the other models. The CRISP-DM model has no expectation of what
order these tasks will be done in.

4. Modeling: This is the step in which the algorithms are applied to the data to
discover the patterns. This step is closest to the actual data mining steps in
the other KDD models. The analyst is tasked to reassess the data preparation
step (step 3) if the modeling and mining step requires it.

Chapter 1

[7]

5. Evaluation: The model and discovered patterns are evaluated for their value
in answering the business problem at hand. The analyst is tasked with
revisiting the business understanding (step 1) if necessary.

6. Deployment: The discovered knowledge and models are presented and put
into production to solve the original problem at hand.

One of the strengths of this methodology is that iteration is built in. Between
specific steps, it is expected that the analyst will check that the current step is still in
agreement with certain previous steps. Another strength of this method is that the
analyst is explicitly reminded to keep the business problem front and center in the
project, even down in the evaluation steps.

The Six Steps process
When I teach the introductory data science course at my university, I use a hybrid
methodology of my own creation. This methodology is called the Six Steps, and I
designed it to be especially friendly for teaching. My Six Steps methodology removes
some of the ambiguity that inexperienced students may have with open-ended tasks
from CRISP-DM, such as Business Understanding, or a corporate-focused task such
as Deployment. In addition, the Six Steps method keeps the focus on developing
students' critical thinking skills by requiring them to answer Why are we doing this?
and What does it mean? at the beginning and end of the process. My Six Steps method
looks like this:

1. Problem statement: In this step, the students identify what the problem is
that they are trying to solve. Ideally, they motivate the case for why they are
doing all this work.

2. Data collection and storage: In this step, students locate data and plan their
storage for the data needed for this problem. They also provide information
about where the data that is helping them answer their motivating question
came from, as well as what format it is in and what all the fields mean.

3. Data cleaning: In this phase, students carefully select only the data they
really need, and pre-process the data into the format required for the mining
step.

4. Data mining: In this step, students formalize their chosen data mining
methodology. They describe what algorithms they used and why.
The output of this step is a model and discovered patterns.

5. Representation and visualization: In this step, the students show the results
of their work visually. The outputs of this step can be tables, drawings,
graphs, charts, network diagrams, maps, and so on.

Expanding Your Data Mining Toolbox

[8]

6. Problem resolution: This is an important step for beginner data miners. This
step explicitly encourages the student to evaluate whether the patterns they
showed in step 5 are really an answer to the question or problem they posed
in step 1. Students are asked to state the limitations of their model or results,
and to identify parts of the motivating question that they could not answer
with this method.

Which data mining methodology is the best?
A 2014 survey of the subscribers of Gregory Piatetsky-Shapiro's very popular data
mining email newsletter KDNuggets included the question What main methodology
are you using for your analytics, data mining, or data science projects?

• 43% of the poll respondents indicated that they were using the
CRISP-DM methodology

• 27% of the respondents were using their own methodology or a hybrid
• 7% were using the traditional KDD methodology
• The remaining respondents chose another KDD method

These results are generally similar to the 2007 results from the same newsletter
asking the same question.

My best advice is that it does not matter too much which methodology you use
for a data mining project, as long as you just pick one. If you do not have any
methodology at all, then you run the risk of forgetting important steps. Choose one
of the methods that seems like it might work for your project and your needs, and
then just do your best to follow the steps.

For this book, we will vary our data mining methodology depending on which
technique we are looking at in a given chapter. For example, even though the focus
of the book as a whole is on the data mining step, we still need to motivate each
chapter-length project with a healthy dose of Business Understanding (CRISP-DM) or
Problem Statement (Six Steps) so that we understand why we are doing the tasks and
what the results mean. In addition, in order to learn a particular data mining method,
we may also have to do some pre-processing, whether we call that data cleaning,
integration, or transformation. But in general, we will try to keep these tasks to a
minimum so that our focus on data mining remains clear. One prominent exception
will be in the final chapter, where we will show specific methods for dealing with
missing data and anomalies. Finally, even though data visualization is typically very
important for representing the results of your data mining process to your audience,
we will also keep these tasks to a minimum so that we can remain focused on the
primary job at hand: Data mining.

Chapter 1

[9]

What are the techniques used in data
mining?
Now that we have a sense of where data mining fits in our overall KDD or data
science process, we can start to discuss the details of how to get it done.

Since the early days of attempting to define data mining, several broad classes of
relevant problems consistently show up again and again. Fayyad et al. name six
classes of problems in another important 1996 paper (From Data Mining to Knowledge
Discovery in Databases), which we can summarize as follows:

• Classification problems: Here, we have data that needs to be divided into
predefined classes, based on some features of the data. We need an algorithm
that can use previously classified data to learn how to put unknown data into
the correct class.

• Clustering problems: With these problems, we have data that needs to
be divided into classes based on its features, but we do not know what
the classes are in advance. We need an algorithm that can measure the
similarity between data points and automatically divide the data up
based on these similarities.

• Regression problems: We have data that needs to be mapped onto a
predictor variable, so we need to learn a function that can do this mapping.

• Summarization problems: Suppose we have data that needs to be shortened
or summarized in some way. This could be as simple as calculating basic
statistics from data, or as complex as learning how to summarize text or
finding a topic model for text.

• Dependency modeling problems: For these problems, we have data that
might be connected in some way, and we need to develop an algorithm
that can calculate the probability of connection or describe the structure of
connected data.

• Change and deviation detection problems: In another case, we have data
that has changed significantly or where some subset of the data deviates
from normative values. To solve these problems, we need an algorithm that
can detect these issues automatically.

www.allitebooks.com

http://www.allitebooks.org

Expanding Your Data Mining Toolbox

[10]

In a different paper written that same year, those same authors also included a few
additional categories:

• Link analysis problems: Here we have data points with relationships
between them, and we need to discover and describe these relationships in
terms of how much support they have in the data set and how confident we
are in the relationship.

• Sequence analysis problems: Imagine that we have data points that follow a
sequence, such as a time series or a genome, and we must discover trends or
deviations in the sequence, or discover what is causing the sequence or how
it will evolve.

Han, Kamber, and Pei, in the textbook we discussed earlier, describe four classes
of problems that data mining can help solve, and further, they divide them into
descriptive and predictive categories. Descriptive data mining means we are finding
patterns that help us understand the data we have. Predictive data mining means
we are finding patterns that can help us make predictions about data we do not
yet have.

In the descriptive category, they list the following data mining problems:

• Data characterization and data discrimination problems, including data
summarization or concept characterization or description.

• Frequency mining, including finding frequent patterns, association rules,
and correlations in data.

In the predictive category, they list the following:

• Classification, regression
• Clustering
• Outlier detection and anomaly detection

It is easy to see that there are many similarities between the Fayyad et al. list and
the Han et al. list, but that they have just grouped the items differently. Indeed, the
items that show up on both lists are exactly the types of data mining problems you
are probably already familiar with by now if you have completed earlier data mining
projects. Classification, regression, and clustering are very popular, foundational
data mining techniques, so they are covered in nearly every data mining book
designed for practitioners.

Chapter 1

[11]

What techniques are we going to use in this
book?
Since this book is about mastering data mining, we are going to tackle a few of the
techniques that are not covered quite as often in the standard books. Specifically, we
will address link analysis via association rules in Chapter 2, Association Rule Mining,
and anomaly detection in Chapter 9, Mining for Data Anomalies. We are also going
to apply a few data mining techniques to actually assist in data cleaning and pre-
processing efforts, namely, in taking care of missing values in Chapter 9, Mining for
Data Anomalies, and some data integration via entity matching in Chapter 3, Entity
Matching.

In addition to defining data mining in terms of the techniques, sometimes people
divide up the various data mining problems based on what type of data they are
mining. For example, you may hear people refer to text mining or social network
analysis. These refer to the type of data being mined rather than the specific
technique being used to mine it. For example, text mining refers to any kind of
data mining technique as applied to text documents, and network mining refers
to looking for patterns in network graph data. In this book, we will be doing some
network mining in Chapter 4, Network Analysis, different types of text document
summarization in Chapter 6, Named Entity Recognition in Text, Chapter 7, Automatic
Text Summarization, and Chapter 8, Topic Modeling in Text, and some classification of
text by its sentiment (the emotion in the text) in Chapter 5, Sentiment Analysis in Text.

If you are anything like me, right about now you might be thinking enough of this
background stuff, I want to write some code. I am glad you are getting excited to work on
some actual projects. We are almost ready to start coding, but first we need to get a
good working environment set up.

How do we set up our data mining work
environment?
The previous sections were included to give us a better sense of what we are going to
build and why. Now it is time to begin setting up a development environment that
will support us as we work through all of these projects. Since this book is designed
to teach us how to build the software to mine data for patterns, we will be writing
our programs from scratch using a general purpose programming language. The
Python programming language has a very strong – and still growing – community
dedicated to data mining. This community has contributed some very handy
libraries that we can use for efficient processing, and numerous data types that
we can rely on to make our work go faster.

Expanding Your Data Mining Toolbox

[12]

At the time of writing, there are two versions of Python available for download:
Python 2 (the latest version is 2.7), now considered legacy, and Python 3 (the latest
version is 3.5). We will be using Python 3 in this book. Because we have so many
related packages and libraries we need to use to make our data mining experience
as painless as possible, and because some of them can be a bit difficult to install, I
recommend using a Python distribution designed for scientific and mathematical
computing. Specifically, I recommend the Anaconda distribution of Python 3.5 made
by Continuum Analytics. Their basic distribution of Python is free, and all the pieces
are guaranteed to work together without us having to do the frustrating work of
ensuring compatibility.

To download the Anaconda Python distribution, point your browser to the
Continuum Analytics web site at https://www.continuum.io and follow the
prompts to download the free Anaconda version (currently numbered 3.5 or above)
that will work with your operating system.

Upon launching the software, you will see a splash screen that looks like the
following screenshot:

Continuum Anaconda Navigator

https://www.continuum.io

Chapter 1

[13]

Depending on the version you are using and when you downloaded it, you may
notice a few Update buttons in addition to the Launch button for each application
within Anaconda. You can click each to update the package if your software version
is indicating that you need to do this.

To get started writing Python code, click Spyder to launch the code editor and the
integrated development environment. If you would rather use your own text editor,
such as TextWrangler on MacOS or Sublime editor on Windows, that is perfectly
fine. You can run the Python code from the command line.

Spend a few moments getting Spyder configured to your liking, setting its colors
and general layout, or just keep the defaults. For my own workspace, I moved
around a few of the console windows, set up a working directory, and made a few
customization tweaks that made me feel at home in this new editor. You can do the
same to make your development environment comfortable for you.

Now we are ready to test the editor and get our libraries installed. To test the Spyder
editor and see how it works, click File and select New File. Then type a simple hello
world statement, as follows:

print ('hello world')

Run the program, either by clicking the green arrow, by pressing F5, or by clicking
Run from inside the Run menu. Either way, the program will execute and you will
see your output in the console output window.

At this point, we know Spyder and Python are working, and we are ready to test and
install some libraries.

First, open a new file and save it as packageTest.py. In this test program, we will
determine whether Scikit-learn was installed properly with Anaconda. Scikit-learn
is a very important package that includes many machine learning functions, as well
as canned data sets to test those functions. Many, many books and tutorials use
Scikit-learn examples for teaching data mining, so this is a good package to have
in our toolkit. We will use this package in several chapters in this book.

Running the following small program from the Scikit-learn tutorial on its website
(found at http://scikit-learn.org/stable/tutorial/basic/tutorial.html
#loading-an-example-dataset) will tell us if our environment is set up properly:

from sklearn import datasets
iris = datasets.load_iris()
digits = datasets.load_digits()
print (digits.data)

http://scikit-learn.org/stable/tutorial/basic/tutorial.html #loading-an-example-dataset
http://scikit-learn.org/stable/tutorial/basic/tutorial.html #loading-an-example-dataset

Expanding Your Data Mining Toolbox

[14]

If this program runs properly, it will produce output in the console window showing
a series of numbers in a list-like data structure, like this:

[[0. 0. 5. ..., 0. 0. 0.]
[0. 0. 0. ..., 10. 0. 0.]
[0. 0. 0. ..., 16. 9. 0.]
...,
[0. 0. 1. ..., 6. 0. 0.]
[0. 0. 2. ..., 12. 0. 0.]
[0. 0. 10. ..., 12. 1. 0.]

For our purposes, this output is sufficient to show that Scikit-learn is installed
properly. Next, add a line that will help us learn about the data type of this
digits.data structure, as follows:

print (type(digits.data))

The output is as follows:

<class 'numpy.ndarray'>

From this output, we can confirm that Scikit-learn relies on another important
package called Numpy to handle some of its data structures. Anaconda has also
installed Numpy properly for us, which is exactly what we wanted to confirm.

Next, we will test whether our network analysis libraries are included. We will
use Networkx library later in the network mining we will do in Chapter 4, Network
Analysis to build a graphical social network. The following code sample creates a tiny
network with one node, and prints its type to the screen:

import networkx as nx
G=nx.Graph()
G.add_node(1)
print (type(G))

The output is as follows:

<class 'networkx.classes.graph.Graph'>

This is exactly the output we wanted to see, as it tells us that Networkx is installed
and working properly.

Chapter 1

[15]

Next we will test some of the text mining software we need in later chapters.
Conveniently, the Natural Language Toolkit (NLTK), is also installed with
Anaconda. However, it has its own graphical downloader tool for the various
corpora and word lists that it uses. Anaconda does not come with these installed,
so we will have to do it. To get word lists and dictionaries, we will create a new
Python file, import the NLTK module, then prompt NLTK to start the graphical
Downloader:

import nltk
nltk.download()

A new Downloader window will open in Anaconda that looks like this:

NLTK Downloader dialogue window

Expanding Your Data Mining Toolbox

[16]

Inside this Downloader window, select all from the list of Identifiers, change the
Download Directory location (optional), and press the Download button. The red
progress bar in the bottom-left of the Downloader window will animate as each
collection is installed. This may take several minutes if your connection is slow.
This mid-download step is shown in the following screenshot:

NLTK Downloader in progress

Once the Downloader has finished installing the NLTK corpora, we can test whether
they work properly. Here is a short Python program where we ask NLTK to use the
Brown University corpora and print the first 10 words:

from nltk.corpus import brown
print (brown.words()[0:10])

The output of this program is as follows, a list of the first 10 words in the NLTK
Brown text corpus, which happens to be from a news story:

['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', 'Friday', 'an',
'investigation', 'of']

Chapter 1

[17]

With this output, we can be confident that NLTK is installed and all the necessary
corpora have also been installed.

Next, we will install a text mining module called Gensim that we will need later for
doing topic modeling. Gensim does not come pre-installed as part of Anaconda by
default, but instead it is one of several hundred packages that are easily added by
using Anaconda's built-in conda installer. From the Anaconda Tools menu, choose
Open a Terminal and type conda install gensim. If you are prompted to update
numpy and scipy, type y for yes, and the installation will proceed.

When the installation is finished, start up a new Python program and type this
shortened version of the Gensim test program from its website:

from gensim import corpora, models, similarities
test = [[(0, 1.0), (1, 1.0), (2, 1.0)]]
print (test)

This program does not do much more than test if the module is imported properly
and then print a list to the screen, but that is enough for now.

Finally, since this is a book about data mining, or knowledge discovery in databases,
having some kind of database software to work with is definitely a good idea.
Because it is free software, easy to install, and available for many operating systems,
I chose MySQL to implement the projects in this book.

To get MySQL, head to the download page for the free Community Edition, available
at http://dev.mysql.com/downloads/mysql/ for whatever OS you are using.

To get Anaconda Python to talk to MySQL, we will need to install some MySQL
Python drivers. I like the pymysql drivers since they are fairly robust and lack some
of the bugs that come with the standard drivers. From within Anaconda, start up a
terminal window and run the following command:

conda install pymysql

It looks like all of our modules are installed and ready to be used as we need them
throughout the book. If we decide we need additional modules, or if one of them
goes out of date, we now know how to install it or upgrade it as needed.

http://dev.mysql.com/downloads/mysql/

Expanding Your Data Mining Toolbox

[18]

Summary
In this chapter, we learned what it would take to expand our data mining toolbox to
the master level. First we took a long view of the field as a whole, starting with the
history of data mining as a piece of the knowledge discovery in databases (KDD)
process. We also compared the field of data mining to other similar fields such as
data science, machine learning, and big data.

Next, we outlined the common tools and techniques that most experts consider to
be most important to the KDD process, paying special attention to the techniques
that are used most frequently in the mining and analysis steps. To really master
data mining, it is important that we work on problems that are different than simple
textbook examples. For this reason, we will be working on more exotic data mining
techniques such as generating summaries and finding outliers, and focusing on more
unusual data types, such as text and networks.

Finally, in this chapter we put together a robust data mining system for ourselves.
Our workspace centers around the powerful, general-purpose programming
language, Python, and its many useful data mining packages, such as NLTK,
Gensim, Numpy, Networkx, and Scikit-learn, and it is complemented by an
easy-to-use and free MySQL database.

Now, all this discussion of software packages has got me thinking: Have you ever
wondered what packages are used most frequently together? Is the combination
of NLTK and Networkx a common thing to see, or is this a rather unusual pairing
of libraries? In the next chapter, we will work on solving exactly that type of
problem. In Chapter 2, Association Rule Mining, we will learn how to generate a list of
frequently-found pairs, triples, quadruples, and more, and then we will attempt to
make predictions based on the patterns we found.

[19]

Association Rule Mining
In our data mining toolbox, measuring the frequency of a pattern is a critical task.
In some cases, more frequently occurring patterns may end up being more important
patterns. If we can find frequently occurring pairs of items, or triples of items, those
may be even more interesting.

In this chapter, we begin our exploration of frequent itemsets, and then we extend
those to a type of pattern called association rules. We will cover the following topics:

• What is a frequent itemset? What are the techniques for finding frequent
itemsets? Where are the bottlenecks and how can we speed up the process?

• How can we extend a frequent itemset to become an association rule?
• What makes a good association rule? We will learn to describe the value of

a particular association rule, given its level of support in the database, our
confidence in the rule itself, and the value added by the rule we found.

To do this, we will write a program to find frequent itemsets in an open dataset
of metadata (facts) about a group of software projects. Then we will learn to find
frequent itemsets among the tags used to describe those projects. Next, we will learn
how to extend a frequent itemset into an association rule by calculating its support
in the database and then adding a probabilistic direction (X implies Y) confidence
interval. Finally, we will learn how to interpret an association rule. Specifically, we
want to understand what an association rule shows, and what it does not show.

Association Rule Mining

[20]

What are frequent itemsets?
Finding frequent itemsets is a type of counting activity. But unlike producing a
simple tally of items we observe in a dataset (today we sold 80 carrots and 100 tomatoes),
finding frequent itemsets is slightly different. Specifically, to find frequent itemsets
we look for co-occurring sets of items within some larger group. These larger groups
are sometimes imagined as supermarket transactions or shopping baskets, and
the entire exercise is sometimes called market basket analysis. Staying with the
supermarket analogy, the items co-occurring within those baskets are sometimes
imagined to be combinations of products purchased at the supermarket. For
example, given a set of supermarket transactions or baskets, we might be interested
in whether the itemset of {carrots, tomatoes} occurs more frequently in baskets
than does the {cucumbers, lemons} itemset.

The purpose of frequent itemset mining is to make interesting discoveries of
co-occurring items within a set of transactions. In other words, it may be useful if we
found out that there are some combinations of items that occur together frequently
across multiple baskets. It will be especially interesting if the frequent itemsets we
found are slightly unusual or unexpected in some way. The canonical example of an
interesting, highly desirable rule in frequent itemset mining is usually described by
retelling an urban legend called the diapers and beer story.

The diapers and beer urban legend
I remember first hearing this story in a data mining graduate course I took in
1998. My professor was trying to explain the usefulness of frequent itemsets and
association rules, and he told our class the following story:

"A midwestern grocery store chain mined for frequent itemsets in order to discover what
interesting combinations of groceries were purchased together. Their plan was to optimize the
sales by co-locating these products in the store. To their delight, the grocery store data mining
team learned that on Thursday nights between 5 and 7pm, men would frequently purchase
a combination of diapers and beer. The grocery store placed these items together by moving a
small display of diapers into the beer aisle, and sales of both products soared."

Being a skeptic, I had many questions about this story right away. How did the store
know it was men who were doing the buying? After all, this was well before the
advent of electronic loyalty cards or rewards cards in grocery stores. How could a
store possibly fit a proper selection of diapers in a small display case in the middle
of the beer aisle? After all, diapers come in five different sizes and there are usually
at least three brands, and - as I quickly learned as a new parent - it is not a good
idea to substitute one size or brand for another on a whim, or you may have
disastrous results.

Chapter 2

[21]

It turns out that several other folks were suspicious as well, and some went as far
as to attempt to track down the history of this urban legend. The best-researched
examples include Dan Powers' DSS Resources newsletter, with its November 10,
2002 issue (Volume 3, Number 23) dedicated to finding out the true origin of this
story. This fascinating piece of work is available at http://www.dssresources.
com/newsletters/66.php. Later, in 2006, The Register in the UK also ran a story
about this urban legend. This article is available at http://www.theregister.
co.uk/2006/08/15/beer_diapers.

If you believe the details relayed in both these pieces, the diapers and beer story
started as a working example of what was possible with early attempts at data
mining: Use our database product and you can query for unusual patterns like diapers
and beer! Somehow, that working example extended to a this really happened to me
story, which then morphed into an urban legend as the facts were stretched to
accommodate various details and motives of the storytellers. As told in recent
years, the common variants of this story include:

• It was Walmart that did the data mining
• The retailer used its discovered knowledge to raise the price of beer

on Thursdays
• The motivation for buying the beer was as a reward for taking care of the

children (presumably the children were the reason for buying the diapers)
• The retailer was particularly excited about these patterns because diapers are

a profitable item

The truth of this story is indeed more mundane than the legend, but its popularity as
a motivating case endures. It is very likely that if you do any research into frequent
itemsets or association rule mining, the diapers and beer story, showing how market
basket analysis is used in the real world, will come up as a case-in-point. It is used in
nearly every book, article, and presentation ever given about association rules.

Frequent itemset mining basics
For our purposes, we will use the diapers and beer story as a useful metaphor.
Specifically, we can use the terminology in this story to help define the three
salient pieces in so-called market basket analysis, or frequent itemset mining:

• First, to do market basket analysis, we need a market. In the metaphor,
the market is an actual supermarket.

• Next, we need a basket. In the example, the basket is a single shopping
transaction. Sometimes we will use the word "basket," sometimes you will
hear "transaction" used.

http://www.dssresources.com/newsletters/66.php
http://www.dssresources.com/newsletters/66.php
http://www.theregister.co.uk/2006/08/15/beer_diapers
http://www.theregister.co.uk/2006/08/15/beer_diapers

Association Rule Mining

[22]

• We need items. In the metaphor, the grocery items are placed into the basket,
or transaction, for purchase.

As long as we have the concepts of a market, a basket, and items, and as long as
these things work the way we describe here, we are well on our way to having a
dataset that we can mine for frequent itemsets.

There are a few more assumptions buried in the market basket story though, and
these will affect whether or not we have a minable dataset. So let's be explicit about
those now:

• There should be a many-to-many relationship between items and baskets.
Baskets are made up of many items, and an item can appear in many baskets.

• The quantity of items is not considered. If the person bought six pack
of diapers or one pack of diapers, the relevant fact is that the basket
contains diapers.

• An item may not appear in any basket (I am sure we can all think of an
unpopular grocery item), but every basket will contain at least one item.
Empty baskets are not interesting!

• The order of the items in a basket does not matter. In terms of the metaphor,
it does not matter whether your beer or your package of diapers was placed
in the shopping basket first, nor does it matter which one was placed on the
conveyer belt first, nor does it matter which one was entered into the cash
register first. Instead, we will metaphorically group items together that were
purchased as a single transaction or basket, regardless of their position in
that basket.

At this stage in the analysis of our market baskets, we are most interested in finding
frequent itemsets. These are groups of items that are found frequently together
in baskets. In a grocery store, some combinations of items that people purchase
together can be guessed easily using common sense, but some combinations are rare.
Cake mix and frosting is a predictable set of items that will be purchased together,
but beer and diapers would be a more unusual pair.

Sometimes certain combinations are more expected than others due to the weather,
holidays, or regional preferences. As with any data mining exercise, it is important to
understand the domain you are studying. In the case of shopping baskets, there are
probably wide regional variations due to different food preferences. For example:

• I live in the southern part of the United States, and there are many interesting
combinations that we have in our stores that might seem unusual elsewhere.
For example, vanilla wafer cookies and bananas are often purchased together
in order to make banana pudding, a popular dessert.

Chapter 2

[23]

• A common meal to serve on New Year's Day in my state contains black-eyed
peas (a legume) and collard greens (a leafy vegetable), so baskets containing
these items may increase around the end of the year.

• I also live in a place where snow events are fairly rare. Each time the weather
forecast calls for snow for our area, everyone panics and buys up all the milk
and bread in the store. Even though milk and bread are both very common
items to purchase on any day, regardless of the weather, on these snow event
days, we may find that the combination of milk and bread is a more common
frequent itemset.

We can express these itemsets using a set notation like this:

itemset1 = {vanilla wafers, bananas, whipped cream}
itemset2 = {black eyed peas, collard greens}
itemset3 = {milk, bread}

Itemsets with two items in them are called 2-itemsets, or pairs, and itemsets with
three items in them are called 3-itemsets, or triples, and so on. Sometimes pairs and
triples are called doubletons and tripletons, respectively.

Towards association rules
All of this frequent itemset stuff is fine, but we are ultimately on the hunt for
association rules, which are much more exciting. Association rules are formed from
frequent itemsets, with a few small twists. We are interested in making a statement
about the frequent itemsets like this: people who buy vanilla wafers also buy bananas
60% of the time. In order to do so, we need to learn how to calculate a few additional
metrics, starting with two we call support and confidence.

Support
If we are looking for frequent itemsets, then we also need a way to express how
often we see these sets occurring in baskets, and whether that number qualifies as
frequent. If I see {vanilla wafers, bananas} in 90% of baskets, is that considered
frequent? What about 50% of baskets? What about 5%? We call this number the
support of the itemset. The support is just the number of times we saw that itemset
over all the baskets.

To make support more meaningful, and to begin talking about "interestingness," we
need to set a minimum support threshold. The minimum support threshold is any
percentage between 0-100 that makes sense to our problem domain. If we set the
minimum support threshold to 5%, this means that itemsets will only be considered
frequent if they are found in at least 5% of all our baskets.

Association Rule Mining

[24]

Support for a 2-itemset is typically written using a probability notation, like this:

support(X->Y) = P(XuY)

In other words, we can read this equation as The support of X->Y equals the percentage
of baskets that contain both X and Y. Item X could be vanilla wafers and item Y could
be bananas in this example. To calculate support of an itemset, we count how many
baskets contain both these items, and divide by the total number of baskets. If the
support of an itemset exceeds the minimum support threshold, then we can consider
the itemset to be potentially interesting.

Confidence
Once we have discovered the frequent itemsets, we can start to consider whether
one or more items in the set are directing the purchase of other items. For example, it
would be interesting to know that 75% of customers who have vanilla wafers in their
basket will also have bananas in that same basket. But, on the other hand, maybe
only 1% of customers with bananas in their basket will also buy vanilla wafers. Why?
This is because many, many more people buy bananas than buy vanilla wafers.
Bananas are common and vanilla wafers are rare. So the direction of the purchasing
relationship here is not necessarily symmetrical.

This brings us to a critical concept called confidence. The confidence of a directional
relationship is written like this:

confidence(X->Y) = P(Y|X)

We can read this as the confidence of X leading to Y is the probability of Y given X.
Or written differently:

confidence(X->Y) = support(XuY) / support(X)

The confidence of X->Y is just the percentage of baskets that contain both X and Y
divided by the percentage of baskets that contain just X.

Once we have both support and confidence, we can begin to extend frequent
itemsets into association rules.

Association rules
Now that we know how to determine if an itemset is frequent, and how to set up
support and confidence levels, we can make a possible association rule from that
frequent itemset.

Chapter 2

[25]

An example of an association rule might look like this:

vanilla wafers -> bananas, whipped cream
[support=1%, confidence=40%]

We read this rule as follows, 1% of all baskets have the combination of vanilla wafers,
bananas, and whipped cream; 40% of customers who purchased vanilla wafers also purchased
bananas and whipped cream.

The left-hand side of that rule is the determining item, called the antecedent. The
right-hand side is the resulting item(s), called the consequent. If we switch around
the items on the left-hand and right-hand sides, we need to calculate a different
association rule, which, due to the high popularity of bananas, might look something
like this:

bananas -> vanilla wafers, whipped cream
[support = .001%, confidence=10%]

An example with data
Imagine we have a store, and we have 10 baskets of goods, as shown in the following
table. Right away you can see that this is clearly a contrived case, as all the baskets in
this store have exactly three items in them and that is highly unlikely in a real store:

Basket Item1 Item2 Item3

1 vanilla wafers bananas dog food

2 bananas bread yogurt

3 bananas apples yogurt

4 vanilla wafers bananas whipped cream

5 bread vanilla wafers yogurt

6 milk bread bananas

7 vanilla wafers apples bananas

8 yogurt apples vanilla wafers

9 vanilla wafers bananas milk

10 bananas bread peanut butter

Association Rule Mining

[26]

First, we need to calculate the support of all the individual items in this store.
We have nine items across those 10 baskets:

Item Support

apples 3

bananas 8

bread 4

dog food 1

milk 2

peanut butter 1

vanilla wafers 6

yogurt 4

whipped cream 1

To make the example easy, let's consider only one frequent itemset, {vanilla
wafers, bananas}, at this point. The support of the itemset, {vanilla wafers,
bananas}, is the percentage of baskets that contain both vanilla wafers and bananas.
There are four baskets (numbers 1, 4, 7, and 9) that contain both of these items. Thus
the support for either rule vanilla wafers -> bananas or bananas -> vanilla
wafers is 40%, because 4/10 baskets contain both of these items.

Now we can use these support values to calculate the confidence for two proposed
association rules:

vanilla wafers -> bananas

bananas -> vanilla wafers

confidence(vanilla wafers -> bananas) = support(vanilla wafers U
bananas) / support(vanilla wafers) = 4/6 = 67%

confidence(bananas -> vanilla wafers) = support (vanilla wafers U
bananas) / support(bananas) = 4/8 = 50%

Written as association rules, we have:

vanilla wafers -> bananas [support=40%, confidence=67%]
bananas -> vanilla wafers [support=40%, confidence=50%]

The rule, vanilla wafers -> bananas, is stronger (same support, higher
confidence) than the rule, bananas -> vanilla wafers.

Chapter 2

[27]

Added value – fixing a flaw in the plan
It is very appealing to look at a rule like vanilla wafers->bananas[s=40%,c=67%]
and feel satisfied. However, this is a very small dataset and was contrived just for
this example. In some cases, association rules can be very misleading, and we should
proceed with caution. Consider the following example.

Imagine in a different store, where the support numbers for vanilla wafers and
bananas look more like this:

Item Support

{vanilla wafers} 50%

{bananas} 80%

{vanilla wafers, bananas} 30%

In this case, the support for the items individually is quite high, but the support for
the items together is lower.

The confidence of vanilla wafers -> bananas in this scenario is .3/.8 = 37.5%

So what is the problem? Well, it turns out that some items might do better on their own
than as the consequence of an association rule. Even if the rule meets some minimum
support threshold of support, we need to consider how the items behaved outside of
the rule. To do this, we calculate a measure called added value of a given association
rule. The added value of the rule vanilla wafers -> bananas is calculated by
subtracting the support of bananas from the confidence of the rule. If the added
value number is large and positive, then the rule is good and interesting. If the added
value number is close to zero, then the rule may be true, but boring. If the added
value number is large and negative, then the items in the rule are actually negatively
associated and would do better on their own.

We calculate added value like this:

added value = confidence of rule - support of right-hand side

Using the preceding table, here are some calculations:

confidence of rule = .375
support of right-hand side (bananas) = .8

added value = .375 - .8 = -0.425

Association Rule Mining

[28]

This number tells us that bananas actually would have done better by themselves.
Furthermore, our proposed move of the display case of bananas next to the vanilla
wafers in this store might be a mistake since there is nothing gained from attempting
to exploit a relationship between bananas and wafers.

We can change the data slightly to contrive a positive, interesting rule:

Item Support

{vanilla wafers} 50%

{bananas} 30%

{vanilla wafers, bananas} 30%

The confidence of vanilla wafers -> bananas in this scenario is .3/.3 = 100%

confidence of rule = 1.0
support of bananas = .3
added value = 1 - .3 = .7

In this case, bananas really should be placed with the vanilla wafers in the store,
because apparently no one is buying bananas as their only product!

There are many more ways to measure the interestingness of association rules, but
these are beyond the scope of this book. I would encourage interested readers to
search Google Scholar for current academic papers covering this topic. Multiple good
sources can be found by using a search phrase such as interestingness measures for
association rules. In these papers, there are many good "interestingness" measures
for different types of data and problems.

Methods for finding frequent itemsets
So far we have learned that finding association rules is based on first finding frequent
itemsets. After that, we are simply calculating based on previously found counts.
An important principle that will help us find frequent itemsets faster is called the
upward closure property. Upward closure states that an itemset can only be frequent
if all the items in it are also frequent. In other words, there is no sense in calculating
the support for any itemset if all the itemsets contained in it are not also frequent.

Chapter 2

[29]

Why is it important to know about closure? Because knowing this rule will save us
a lot of time in calculating the possible itemsets. Calculating the support for every
possible itemset in a store that has hundreds of thousands of items is clearly not
practical! It is definitely to our advantage to reduce the number of itemsets as much
as possible. One strategy to reduce the number of itemsets is to take advantage of
upward closure to construct an algorithm that works as follows:

1. First, we will set a support threshold.
2. Construct a list of 1-itemsets, or singletons:

 ° To do this, start with a list of every possible item. This list is called
CandidateSingletonList.

 ° Calculate the support for every individual item in
CandidateSingletonList.

 ° Keep only the singletons that meet the support threshold, and add
them to a list called SingletonList.

3. Construct a list of 2-itemsets, or doubletons:
 ° To do this, start with SingletonList.
 ° Make a list of every possible pairing of the items from

SingletonList. This is called CandidateDoubletonList.
 ° Keep only the candidate doubletons that meet the support threshold,

and add them to a list called DoubletonList.

4. Construct a list of 3-itemsets, or tripletons:
 ° To do this, start with DoubletonList.
 ° Make a list of every possible single item that appears in

DoubletonList, and match them to each item in DoubletonList,
making triples. This is called CandidateTripletonList.

 ° Keep only the candidate tripletons that meet the support
threshold, and add them to a list called TripletonList.

5. Repeat step 4, growing the n-itemsets by one, using the single items from the
previously constructed list, until you run out of frequent itemsets.

www.allitebooks.com

http://www.allitebooks.org

Association Rule Mining

[30]

This algorithm is called Apriori, and it was first outlined in a 1994 paper written by
Agarwal and Srikant called Fast algorithms for mining association rules in large databases.
Since that time, numerous other algorithms have been proposed that attempt to
optimize Apriori, including those that exploit parallelism and more interesting data
structures, such as trees. There are also separate algorithms for some special types
of basket data; for example, if we had baskets with sequential items, or baskets with
categorical or hierarchical data. Still, for doing basic frequent itemset generation,
Apriori is a classic choice.

Before we implement Apriori, we will draw special attention to a few important
guidelines for generating candidate itemsets. While it is definitely time consuming
to count the 2-itemsets, this is by far the most intensive work of the entire process.
Due to closure property mentioned earlier, each successive pass over the data will
construct fewer potential itemsets. As such, it is definitely to our advantage to reduce
the number of items that have to be compared at the doubleton phase. To do this, we
will set a minimum support threshold, but this threshold can be adjusted depending
on the needs of the project you are working on.

In the next section, we will implement the Apriori algorithm in Python and use it to
find association rules in a real-world database.

A project – discovering association rules
in software project tags
In 1997, the website, Freshmeat, was created as a directory that tracked free, libre,
and open source software (FLOSS) projects. In 2011, the site was renamed Freecode.
After sales and acquisitions and several site redesigns, in 2014 all updates to the
Freecode site were discontinued. The site remains online, but it is no longer being
updated and no new projects are being added to the directory. Freecode now
serves as a snapshot of facts about FLOSS projects during the late 1990s and 2000s.
These facts about each software project include its name, its description, the URL to
download the software, tags that describe its features, a numeric representation of its
popularity, and so on.

Chapter 2

[31]

As part of my FLOSSmole project, I have catalogued data from Freshmeat/Freecode
since 2005. Freshmeat/Freecode provided periodic RDF downloads describing each
project on the site. I downloaded these, parsed out the project data, organized it
into database tables, and provided basic visualizations of the data. For our purposes
here, we can use this data to answer a question about which project tags are most
frequently found together on FLOSS projects. To do this, we will find frequent
itemsets from the project tags and generate subsequent association rules. A sample
frequent itemset will take the form {GPL, Linux, C}. A sample association rule
might be GPL, Linux -> C [s=.60, c=.90, av=.15].

To get started, log in to your MySQL server, and select a database to use for this
project (mine is called test) and create a database table to hold the master list of
projects and their tags:

CREATE TABLE IF NOT EXISTS fc_project_tags (
 project_id int(11) NOT NULL DEFAULT '0',
 tag_name varchar(50) NOT NULL DEFAULT '0',
 PRIMARY KEY (`project_id`,`tag_name`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

In this dataset, each project will be identified a number, given by the Freecode site
itself, and a list of tags, given by the person who added the project to the directory.
For example, project number 8 has been given the tags GPL, multimedia, and
Sound/Audio.

To populate this table, use the data file available on the GitHub site for this book,
which is https://github.com/megansquire/masteringDM. This specific file
is located in the chapter 2 directory at https://github.com/megansquire/
masteringDM/blob/master/ch2/fc_project_tags.sql.gz.

To load this into your MySQL database from the command line, unzip the file into
your working directory, then login to your MySQL server, use the correct database,
and then issue a source command to run all the INSERT statements into that file. The
process is as follows:

mysql> use test;
Database changed
mysql> source fc_project_tags.sql;

https://github.com/megansquire/masteringDM
https://github.com/megansquire/masteringDM/blob/master/ch2/fc_project_tags.sql.gz
https://github.com/megansquire/masteringDM/blob/master/ch2/fc_project_tags.sql.gz

Association Rule Mining

[32]

Each project is only identified by its number in this chapter project.
However, if you want to find out more detail about the individual projects,
or use this data for another project, all the Freshmeat/Freecode data is
freely available on the FLOSSmole website in the following directory:
http://flossdata.syr.edu/data/fc/. The data dump that we are
using for this chapter is from March 2014, and in the FLOSSmole system
that dataset has been given the number 8079. To keep things simple, you
will not see that number in the examples for this chapter.

To get started in answering our question (Which tags are most frequently found
together?), we first need to explore the data a little bit. First, we can discover the
total number of project-tag combinations, keeping in mind that a project can have
multiple tags:

SELECT COUNT(*)
FROM fc_project_tags;

353400

Next, we can calculate the total number of projects. In terms of association
rule terminology, we can think of a Freecode project as a shopping basket or a
transaction, and each project tag is equivalent to an item in a shopping basket:

SELECT count(DISTINCT project_id)
FROM fc_project_tags;
46510

How many unique items are in our dataset?

SELECT count(DISTINCT tag_name)
FROM fc_project_tags;
11006

So there are 46,510 baskets, and 11,006 items. To reduce the number of possible
association rules, we can count how many projects have each tag (how many
baskets include each product), and prune the tags that are very rare. The following
table shows the required number of projects required to reach each possible
support threshold:

http://flossdata.syr.edu/data/fc/

Chapter 2

[33]

Support rate for tag Number of projects needed
50% 23,255
40% 18,604
30% 13,953
10% 4,651
5% 2,325

For example, by using a 5% threshold, we are able to reduce the possible set of items
to 29, down from 11,006. This reduced set of tags will become our singletons. All the
frequent doubletons will be based on these singletons, and the tripletons will in turn
be built from those doubletons. Here is the SQL to generate the list of singletons,
keeping a 5% minimum support threshold:

SELECT tag_name, COUNT(project_id)
FROM fc_project_tags
GROUP BY 1
HAVING COUNT(project_id) >= 2325
ORDER BY 2 DESC;

The first few results are shown in the following table:

Tag name Number of projects
GPL 21,182
POSIX 16,875
Linux 16,288
C 10,292
OS Independent 10,180

Our program, the code for which can be found in the GitHub repository for this book
at https://github.com/megansquire/masteringDM/tree/master/ch2, calculates
the number of baskets and then uses the minimum support threshold percentage to
find the singletons, as shown in the following code. MINSUPPORTPCT is a constant that
you can set to whatever you like. It is set to 5 at the beginning:

import itertools
import pymysql

set threshold as a percent
(for example, 5% of Freecode baskets is about 2325)
MINSUPPORTPCT = 5

https://github.com/megansquire/masteringDM/tree/master/ch2

Association Rule Mining

[34]

allSingletonTags = []
allDoubletonTags = set()
doubletonSet = set()

Open local database connection
db = pymysql.connect(host='localhost',
 db='test',
 user='megan',
 passwd='',
 port=3306,
 charset='utf8mb4')
cursor = db.cursor()

Next we calculate the number of baskets as the number of projects in the
database table:

queryBaskets = "SELECT count(DISTINCT project_id) FROM fc_project_
tags;"
cursor.execute(queryBaskets)
baskets = cursor.fetchone()[0]

Using that number of baskets and our minimum support threshold set earlier,
we can calculate the minimum number of baskets:

minsupport = baskets*(MINSUPPORTPCT/100)
print("Minimum support count:",minsupport,"(",MINSUPPORTPCT,"%
of",baskets,")")

Now we can get a set of tags that meets our minimum support threshold:

cursor.execute("SELECT DISTINCT tag_name \
 FROM fc_project_tags \
 GROUP BY 1 \
 HAVING COUNT(project_id) >= %s ORDER BY tag_
name",(minsupport))
singletons = cursor.fetchall()

for(singleton) in singletons:
 allSingletonTags.append(singleton[0])

Chapter 2

[35]

Next we use these frequent singletons to create our candidate doubletons. We
encapsulate this task into a function called findDoubletons(). We will discuss the
findDoubletons(), findTripletons(), and generateRules() functions later. The
final line of our program closes the database connection when we are done with it:

findDoubletons()
findTripletons()
generateRules()
db.close()

As we discussed, when outlining the Apriori strategy earlier, it is not practical
to pre-populate the database with all possible candidate doubletons and then
count them there, since there are so many possible pairs. Instead, we will generate
candidate doubletons in memory, count their support threshold, and only keep
the ones that pass our support threshold. Just as with the preceding singleton
counting, the support threshold remains at 5% (2,325 projects) for both doubletons
and tripletons. We use a constant, called MINSUPPORT, to hold this support value.
Additionally, we rely on the itertools.combinations() function to generate all
possible combinations of size=2 from our allSingletonTags list. Finally, we add
these frequent tags to a new list called allDoubletonTags, which we will use in our
findTripletons() function, shown here:

def findDoubletons():
 print("======")
 print("Frequent doubletons found:")
 print("======")
 # use the list of allSingletonTags to make the doubleton
candidates
 doubletonCandidates = list(itertools.
combinations(allSingletonTags, 2))
 for (index, candidate) in enumerate(doubletonCandidates):
 # figure out if this doubleton candidate is frequent
 tag1 = candidate[0]
 tag2 = candidate[1]
 cursor.execute("SELECT count(fpt1.project_id)
 FROM fc_project_tags fpt1
 INNER JOIN fc_project_tags fpt2
 ON fpt1.project_id = fpt2.project_id
 WHERE fpt1.tag_name = %s
 AND fpt2.tag_name = %s", (tag1, tag2))
 count = cursor.fetchone()[0]

Association Rule Mining

[36]

 # add frequent doubleton to database
 if count > minsupport:
 print (tag1,tag2,"[",count,"]")

 cursor.execute("INSERT INTO fc_project_tag_pairs
 (tag1, tag2, num_projs)
 VALUES (%s,%s,%s)",(tag1, tag2, count))

 # save the frequent doubleton to our final list
 doubletonSet.add(candidate)
 # add terms to a set of all doubleton terms (no
duplicates)
 allDoubletonTags.add(tag1)
 allDoubletonTags.add(tag2)

Our program writes the doubletons (and later, the tripletons) to two new database
tables, but if you do not want to do this, you can remove the INSERT statements. The
CREATE statements for these two tables are shown in the following code. These SQL
statements can be found in the additionalQueries.sql file, downloadable from the
GitHub site for this book, as referenced earlier:

CREATE TABLE IF NOT EXISTS fc_project_tag_pairs (
 tag1 varchar(255) NOT NULL,
 tag2 varchar(255) NOT NULL,
 num_projs int(11) NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

CREATE TABLE IF NOT EXISTS fc_project_tag_triples (
 tag1 varchar(255) NOT NULL,
 tag2 varchar(255) NOT NULL,
 tag3 varchar(255) NOT NULL,
 num_projs int(11) NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Once we have the list of doubletons, the program uses those to find the candidate
tripletons. The findTripletons() function is similar to findDoubletons(), except
that we must take into account the closure property. By this I mean that we cannot
generate any candidate tripletons that have doubletons inside that are not frequent.
Just before we ended the findDoubletons() function, we created a list of all the
doubletons (called doubletonList). Now we use the enumerate() function to
get a list of all possible doubletons inside the candidate tripleton, and if all those
doubletons were not already on our list of frequent doubletons, we can reject
the tripleton.

Chapter 2

[37]

This may seem a little bit confusing, so an example is in order. Suppose we have
generated frequent doubletons as follows:

foo, bar
bar, baz

If we simply used all the items inside and created a candidate tripleton of foo, bar,
baz, that tripleton would be invalid, since it contains a doubleton of {foo, baz},
which is not a frequent doubleton. Therefore, we need to only generate tripletons for
which every possible doubleton inside is also frequent. The code to find tripletons is
shown here:

def findTripletons():
 print("======")
 print("Frequent tripletons found:")
 print("======")
 # use the list of allDoubletonTags to make the tripleton
candidates
 tripletonCandidates = list(itertools.combinations(allDoubletonTa
gs,3))

 # sort each candidate tuple and add these to a new sorted
candidate list
 tripletonCandidatesSorted = []
 for tc in tripletonCandidates:
 tripletonCandidatesSorted.append(sorted(tc))

 # figure out if this tripleton candidate is frequent
 for (index, candidate) in enumerate(tripletonCandidatesSorted):
 # all doubletons inside this
 # tripleton candidate MUST also be frequent
 doubletonsInsideTripleton = list(itertools.
combinations(candidate,2))
 tripletonCandidateRejected = 0
 for (index, doubleton) in enumerate(doubletonsInsideTriplet
on):
 if doubleton not in doubletonSet:
 tripletonCandidateRejected = 1
 break
 # add frequent tripleton to database
 if tripletonCandidateRejected == 0:
 cursor.execute("SELECT count(fpt1.project_id)
 FROM fc_project_tags fpt1
 INNER JOIN fc_project_tags fpt2
 ON fpt1.project_id = fpt2.project_id

Association Rule Mining

[38]

 INNER JOIN fc_project_tags fpt3
 ON fpt2.project_id = fpt3.project_id
 WHERE (fpt1.tag_name = %s
 AND fpt2.tag_name = %s
 AND fpt3.tag_name = %s)", (candidate[0],
 candidate[1],
 candidate[2]))
 count = cursor.fetchone()[0]
 if count > minsupport:
 print (candidate[0],",",
 candidate[1],",",
 candidate[2],
 "[",count,"]")
 cursor.execute("INSERT INTO fc_project_tag_triples
 (tag1, tag2, tag3, num_projs)
 VALUES (%s,%s,%s,%s)",
 (candidate[0],
 candidate[1],
 candidate[2],
 count))

When run against the Freecode dataset, our program produces 37 doubletons,
which are shown in the following table in order from the highest support to the
lowest support:

tag1 tag2 num_projs
C GPL 5543
C Linux 5653
C POSIX 6956
C++ GPL 2914
C++ Linux 3428
C++ POSIX 3502
Communications GPL 2578
Dynamic Content Internet 3173
Dynamic Content Web 3171
English Linux 2662
GPL Internet 4038
GPL Linux 8038
GPL Multimedia 2883
GPL OS independent 4405

Chapter 2

[39]

tag1 tag2 num_projs
GPL PHP 2376
GPL POSIX 10069
GPL Software development 3319
GPL Web 2901
GPL Windows 2605
Internet OS 3007
Internet POSIX 2832
Internet Web 5978
Java OS independent 3436
Java Software development 2360
Libraries Software development 5638
Linux Mac OS X 2974
Linux POSIX 11903
Linux Software development 2336
Linux Unix 2494
Linux Windows 5281
Mac OS X Windows 3131
Multimedia POSIX 2539
OS independent Software development 3566
OS independent Web 2605
POSIX Software development 3503
POSIX Unix 2326
POSIX Windows 4467

The program also produces four tripletons, as shown in the following table, in
highest-to-lowest support order:

Tag1 Tag2 Tag3 Num_projs
Internet OS independent Web 2519
GPL Linux POSIX 7384
C GPL Linux 3299
C GPL POSIX 4364
GPL Internet Web 2878
Dynamic Content Internet Web 3166
Linux POSIX Windows 3315

Association Rule Mining

[40]

Tag1 Tag2 Tag3 Num_projs
C++ Linux POSIX 2622
C Linux POSIX 4629

Once we have the frequent itemsets, we can begin to design association rules from
these, assigning support and confidence to each. Here is code for a rule generation
routine that generates rules from tripletons. We start with generating rules with
a single item on the right-hand side, due to the same closure properties as with
generating frequent itemsets. In other words, if a rule like this {vanilla wafers,
bananas -> marshmallows} is not interesting, then there is no sense in measuring
the other options that have marshmallows on the right side such as {vanilla
wafers -> bananas, marshmallows}.

Finally, this code also prints the added value score for each rule, calculated by
subtracting the support of the right-hand side from the confidence of the whole rule:

def generateRules():
 print("======")
 print("Association Rules:")
 print("======")

 # pull final list of tripletons to make the rules
 cursor.execute("SELECT tag1, tag2, tag3, num_projs \
 FROM fc_project_tag_triples")
 triples = cursor.fetchall()
 for(triple) in triples:
 tag1 = triple[0]
 tag2 = triple[1]
 tag3 = triple[2]
 ruleSupport = triple[3]

 calcSCAV(tag1, tag2, tag3, ruleSupport)
 calcSCAV(tag1, tag3, tag2, ruleSupport)
 calcSCAV(tag2, tag3, tag1, ruleSupport)
 print("*")

def calcSCAV(tagA, tagB, tagC, ruleSupport):
 # Support
 ruleSupportPct = round((ruleSupport/baskets),2)

 # Confidence
 query1 = "SELECT num_projs \
 FROM fc_project_tag_pairs \
 WHERE (tag1 = %s AND tag2 = %s) \

Chapter 2

[41]

 or (tag2 = %s AND tag1 = %s)"
 cursor.execute(query1, (tagA, tagB, tagB, tagA))
 pairSupport = cursor.fetchone()[0]
 confidence = round((ruleSupport / pairSupport),2)

 # Added Value
 query2 = "SELECT count(*) \
 FROM fc_project_tags \
 WHERE tag_name= %s"
 cursor.execute(query2, tagC)
 supportTagC = cursor.fetchone()[0]
 supportTagCPct = supportTagC/baskets
 addedValue = round((confidence - supportTagCPct),2)

 # Result
 print(tagA,",",tagB,"->",tagC,
 "[S=",ruleSupportPct,
 ", C=",confidence,
 ", AV=",addedValue,
 "]")

The Freecode rules that are generated from this code are shown next. Since each
tripleton can generate three rules, each having a single item on the right-hand side,
we have divided these into groups of three lines each for display purposes:

C++ , Linux -> POSIX [S= 0.06 , C= 0.76 , AV= 0.4]
C++ , POSIX -> Linux [S= 0.06 , C= 0.75 , AV= 0.4]
Linux , POSIX -> C++ [S= 0.06 , C= 0.22 , AV= 0.09]

C , Linux -> POSIX [S= 0.1 , C= 0.82 , AV= 0.46]
C , POSIX -> Linux [S= 0.1 , C= 0.67 , AV= 0.32]
Linux , POSIX -> C [S= 0.1 , C= 0.39 , AV= 0.17]

GPL , Linux -> POSIX [S= 0.16 , C= 0.92 , AV= 0.56]
GPL , POSIX -> Linux [S= 0.16 , C= 0.73 , AV= 0.38]
Linux , POSIX -> GPL [S= 0.16 , C= 0.62 , AV= 0.16]

Linux , POSIX -> Windows [S= 0.07 , C= 0.28 , AV= 0.12]
Linux , Windows -> POSIX [S= 0.07 , C= 0.63 , AV= 0.27]
POSIX , Windows -> Linux [S= 0.07 , C= 0.74 , AV= 0.39]

C , GPL -> POSIX [S= 0.09 , C= 0.79 , AV= 0.43]
C , POSIX -> GPL [S= 0.09 , C= 0.63 , AV= 0.17]
GPL , POSIX -> C [S= 0.09 , C= 0.43 , AV= 0.21]

Association Rule Mining

[42]

Dynamic Content , Internet -> Web [S= 0.07 , C= 1.0 , AV= 0.87]
Dynamic Content , Web -> Internet [S= 0.07 , C= 1.0 , AV= 0.83]
Internet , Web -> Dynamic Content [S= 0.07 , C= 0.53 , AV= 0.46]

Internet , OS Independent -> Web [S= 0.05 , C= 0.84 , AV= 0.71]
Internet , Web -> OS Independent [S= 0.05 , C= 0.42 , AV= 0.2]
OS Independent , Web -> Internet [S= 0.05 , C= 0.97 , AV= 0.8]

GPL , Internet -> Web [S= 0.06 , C= 0.71 , AV= 0.58]
GPL , Web -> Internet [S= 0.06 , C= 0.99 , AV= 0.82]
Internet , Web -> GPL [S= 0.06 , C= 0.48 , AV= 0.02]

C , GPL -> Linux [S= 0.07 , C= 0.6 , AV= 0.25]
C , Linux -> GPL [S= 0.07 , C= 0.58 , AV= 0.12]
GPL , Linux -> C [S= 0.07 , C= 0.41 , AV= 0.19]

Based on these results, how do we know which rules are interesting? Just looking at
the support does not yield particularly interesting clues, since we specified that every
rule had to have a 5% support in order to even be considered.

Confidence, combined with support, could be an interesting measure. For example,
the rule {GPL , Linux -> POSIX} has the highest support (16%) and a confidence
over 90%. On the other side, the rule {Linux , POSIX -> C++} has a support barely
above the threshold (6%) and the lowest confidence in the list (22%).

Added value tells us how much better the association rule predicts the right-hand
side of the equation as opposed to simply looking at the right-hand side by itself.
This collection of rules does not have any outright negatively-correlated items, but
it does have several rules that are extremely close to zero, indicating that the right-
hand side might do just as well on its own as part of the shown rules. Examples of
very low added value scores are, {Internet , Web -> GPL}, indicating that GPL
would probably do just as well on its own, as it is a very high-scoring item even as a
singleton. The rule {Linux , POSIX -> C++} also falls into this category of having
a very low added value score, the second lowest in the list. This, along with the
very low support and confidence scores, makes it one of the least valuable rules
on the list.

Rules with high added value scores include {Dynamic Content , Internet ->
Web} and {Dynamic Content , Web -> Internet}. These two rules are especially
interesting because the third rule in the group, {Internet, Web -> Dynamic
Content}, has an unremarkable added value score (.53). Next we notice that all of
the highest scoring added value rules in this list have either Web or Internet on the
right-hand side, with the other term appearing somewhere on the left. This shows
that Web and Internet are very tightly coupled as terms in this dataset, but are not
themselves as predictive of other terms as they are predictive of each other.

Chapter 2

[43]

Finding this relationship means that we can probe more deeply into the relationship
between Web and Internet. Specifically, we should look at the rules Web -> Internet
and Internet -> Web. Since we helpfully stored the support counts in the database,
we can use a query in SQL to figure out the support, confidence, and added value for
these two rules as well:

SELECT

round(num_projs / (SELECT count(DISTINCT project_id) FROM fc_project_
tags),2) as 'support',

round((num_projs / (SELECT count(DISTINCT project_id) FROM fc_
project_tags)) / ((SELECT count(*) FROM fc_project_tags WHERE tag_
name='Internet') / (SELECT count(DISTINCT project_id) FROM fc_project_
tags)),2) as 'conf I-> W',

round((num_projs / (SELECT count(DISTINCT project_id) FROM fc_project_
tags)) / ((SELECT count(*) FROM fc_project_tags WHERE tag_name='Web')
/ (SELECT count(DISTINCT project_id) FROM fc_project_tags)),2) as
'conf W-> I',

round(((num_projs/(SELECT count(DISTINCT project_id) FROM fc_
project_tags)) / ((SELECT count(*) FROM fc_project_tags WHERE
tag_name='Internet')/(SELECT count(DISTINCT project_id) FROM fc_
project_tags))) - ((SELECT count(*) from fc_project_tags where
tag_name='Web')/(SELECT count(DISTINCT project_id) FROM fc_project_
tags)),2) as 'AV I->W',

round(((num_projs / (SELECT count(DISTINCT project_id) FROM fc_
project_tags)) / ((SELECT count(*) FROM fc_project_tags where
tag_name='Web') / (SELECT count(DISTINCT project_id) FROM fc_
project_tags))) - ((SELECT count(*) from fc_project_tags where tag_
name='Internet') / (SELECT count(DISTINCT project_id) FROM fc_project_
tags)),2) as 'AV W->I'

FROM fc_project_tag_pairs where tag1='Internet' and tag2='Web'

This yields the following result from SQL:

support conf I-> W conf W-> I AV I->W AV W->I
0.13 0.74 0.95 0.77 0.60

Association Rule Mining

[44]

That SQL code is pretty hairy, so here is a little Python script to run each individual
query against the database, and use those numbers to calculate support, confidence,
and added value. As before, fill in your database connection details, and fill in the
constants X and Y with the two terms you are interested in comparing:

import pymysql

X = 'Internet'
Y = 'Web'

Open local database connection
db = pymysql.connect(host='',
 db='',
 user='',
 passwd='',
 port=3306,
 charset='utf8mb4')
cursor = db.cursor()

grab basic counts from the database that we need
numBasketsQuery = "SELECT count(DISTINCT project_id) \
 FROM fc_project_tags"
cursor.execute(numBasketsQuery)
numBaskets = cursor.fetchone()[0]

supportForXQuery = "SELECT count(*) \
 FROM fc_project_tags \
 WHERE tag_name=%s"
cursor.execute(supportForXQuery, (X))
supportForX = cursor.fetchone()[0]

supportForYQuery = "SELECT count(*) \
 FROM fc_project_tags \
 WHERE tag_name=%s"
cursor.execute(supportForYQuery, (Y))
supportForY = cursor.fetchone()[0]

pairSupportQuery = "SELECT num_projs \
 FROM fc_project_tag_pairs \
 WHERE tag1=%s AND tag2=%s"
cursor.execute(pairSupportQuery,(X,Y))
pairSupport = cursor.fetchone()[0]

Chapter 2

[45]

calculate support : support of pair, divided by num baskets
pairSupportAsPct = pairSupport / numBaskets

calculate confidence of X->Y
supportForXAsPct = supportForX / numBaskets
confidenceXY = pairSupportAsPct / supportForXAsPct

calculate confidence of Y->X
supportForYAsPct = supportForY / numBaskets
confidenceYX = pairSupportAsPct/ supportForYAsPct

calculate added value X->Y
AVXY = confidenceXY - supportForYAsPct
AVYX = confidenceYX - supportForXAsPct

print("Support for ",X,"U",Y,":", round(pairSupportAsPct, 2))
print("Conf.",X,"->",Y,":", round(confidenceXY, 2))
print("Conf.",Y,"->",X,":", round(confidenceYX, 2))
print("AV",X,"->",Y,":", round(AVXY, 2))
print("AV",Y,"->",X,":", round(AVYX, 2))

db.close()

The results are the same for the pair of terms Internet and Web as they were for the
longer SQL query, as shown here:

Support for Internet U Web : 0.13
Conf. Internet -> Web : 0.74
Conf. Web -> Internet : 0.95
AV Internet -> Web : 0.6
AV Web -> Internet : 0.78

Even if these results seem somewhat underwhelming - after all, it is not particularly
shocking that Internet and Web are such closely related terms - there are a few
important lessons we can learn from this process. First, the results can be used to
make suggestions. If a person tags their project Web, maybe we would also like to
suggest Internet as a related tag. Alternatively, perhaps we want to cross-promote
Web projects to people looking at Internet projects, and vice versa. Unlike in a store
where we have to physically co-locate items next to each other, the costs of making
recommendations or suggestions in a digital environment is not as high. In any
case, finding frequent itemsets and generating association rules are useful tasks
that can either confirm what we already suspect about our data, or that can help us
understand underlying patterns in the data that we would not necessarily know
about otherwise.

Association Rule Mining

[46]

Summary
In this chapter, we learned how to generate frequent itemsets from a dataset using
the Apriori algorithm. We then proposed association rules from these itemsets by
describing their support and confidence. We used one additional check, an added
value measure, to ensure that the proposed rules were interesting. We implemented
all these concepts using a freely available dataset of Freecode open source projects
and their tags. We calculated support for single tags, then generated doubletons
and tripletons that met a minimum support threshold. For rules with one item on
the right-hand side, we calculated confidence and added value for each. Finally, we
looked closely at the rules that were generated and tried to figure out which ones
were interesting, using the metrics we had calculated.

In the next chapter, we will continue our quest to make connections between items
in a data set. However, unlike in this chapter where we were trying to find groups
of two or three items that are already connected in some way, in the next chapter we
will be trying to connect items that we are not sure are connected at all!

[47]

Entity Matching
In my set of outdoor tools, I have a large hand axe that I have always called a
mattock. But my friend from the western United States calls it a Pulaski. When he
asks me to hand him the Pulaski, it always gives me a moment of pause. Sometimes,
we might know a thing by more than one name, or two things might share the same
name, which can lead to confusion. This happens with people all the time. Have
you ever been mistaken for someone else who shares your same first and last name?
Have you ever used a nickname or an alias? In a children's playground, 10 women
might turn around when they hear a child call out Mom! A man who always goes by
the name Bob would be immediately suspicious when an unfamiliar telephone caller
asks to speak with Robert. A pharmacy technician gives John T. Smith the medicine
intended for John M. Smith, leading to disastrous results.

In this chapter, we are concerned with the accurate identification of entities, or
things, and the correct assignment of matching entities. Are these two things really
the same, or are they different? Can we determine that two similar-looking things
really are the same, based on their other characteristics? To extend the market basket
example from Chapter 2, Association Rule Mining, suppose we are a grocery store, and
we have our own database full of information about our shoppers and items they
have purchased from our store. Now, imagine our store merges with another grocery
store chain, and we are now the caretakers of all of their shopping data as well. We
would like to see if any of our shoppers also shopped at this other store. But how do
we connect the first dataset to the second? Typically, we will look for some unique
identifier that is in common between the two datasets. But what if that identifier does
not exist? Or what if there is an attribute that both datasets have in common, but its
values are not unique?

Entity Matching

[48]

How can we solve this challenge of entity matching where there is no clear,
unambiguous connection between two datasets? In this chapter we will learn:

• Common strategies for entity matching, including attribute matching,
disjoint sets, contextual matching, and profiling a typical match

• How to evaluate efficacy of the chosen methods, including calculating the
precision, recall, and F-measure for a result set

• How to apply entity matching methods to a real-world problem using data
from two separate collections of data about free, libre, and open source
software (FLOSS) projects

Before we get started, you may be wondering where in the data mining workflow
entity matching fits. Is it data cleaning, or data integration, or data analysis, or what?
Typically, entity matching would be considered primarily a data cleaning and data
integration step, since its main purpose is to produce a dataset that is as accurate as
possible, and one that is ready to be mined for other patterns. However, because we
will use pattern-finding techniques in order to accomplish the matching, you will
probably notice that it does have some of the flavor of a data analysis step as well.

What is entity matching?
Finding matching items is one of the oldest tasks in database processing, and
as databases get larger and more distributed, this task becomes more and more
important. Each time two datasets are merged, questions arise about how to identify
duplicates, how to connect items from the first dataset to the similar items in the
second data set. When we find ourselves asking Are these two things different even
though they have the same name? or Are these other two things the same, even though they
have different names? we can apply entity matching techniques to find out the answer.

In light of all this concern with the names for an item, it is perhaps appropriate
that this task itself has many names: entity matching, entity disambiguation, object
consolidation, duplicate identification, merge/purge, and record linkage, to name a
few. We will use the term entity matching in this chapter to generically describe this
class of activities.

Consider the following examples where entity matching might be helpful. How
many different people are likely to be represented in this dataset? Which of these
are the same person?

Name
John Smith
John R. Smith

Chapter 3

[49]

Name
John R. Smith, Jr.
Jon Smith
JON R SMITH, JR

It is very difficult to tell whether these are five different individuals or all variations
of the same person, or some number in between. There could be missing middle
initials, missing suffixes, spelling problems, and mistakes. We have no idea of the
data quality, and no strong clues about how to match these individuals. Suppose we
add an Address attribute to the data. Now which of these are the same person?

Name Address
John Smith 123 Main St.
John R. Smith 46 Pine Way
John R. Smith, Jr. 46 Pine Way
Jon Smith 12587 34th St.
JON R SMITH, JR 46 Pine Way

With the addition of the Address field, it now appears that there might be three
distinct individuals in this dataset: one that lives on Main St, one that lives on Pine
Way, and one that lives on 34th St. Of course, we also still have the possibility of an
error; for example, John Smith at 123 Main St. might be showing an old address, or
the Name value may be spelled wrong.

What if we add an Age attribute? Now which of these are the same person?

Name Address Age
John Smith 123 Main St. 55
John R. Smith 46 Pine Way 48
John R. Smith, Jr. 46 Pine Way 16
Jon Smith 12587 34th St. 34
JON R SMITH, JR 46 Pine Way 16

By adding additional details, such as Address and Age, we gain information that
helps us determine that it is likely that there are actually four distinct people
represented here. Two of the 46 Pine Way rows are much younger than the other
row. Both of those younger individuals have a Jr. suffix, perhaps indicating that a
father and son both live at that address.

Entity Matching

[50]

To keep the rows separate, we can now add unique identifiers, as shown with the
Id attribute:

Name Address Age Id
John Smith 123 Main St. 55 1
John R. Smith 46 Pine Way 48 2
John R. Smith, Jr. 46 Pine Way 16 3
Jon Smith 12587 34th St. 34 4
JON R SMITH, JR 46 Pine Way 16 3

In an ideal world, we would start with a unique identifier for every entity in our
database. But unfortunately, this is not the reality of many data projects. Not only
will the unique identifiers be missing or non-existent, but these clear-cut attributes
like Age and Address will also be missing, dirty, or non-existent. We might have
attribute A for half the data and attribute B for the other half. Consider this dataset:

Name Address Age State issuing driver's license
John Smith 123 Main St. 55 NC
John R. Smith 46 Pine Way 48 VA
John R. Smith, Jr. 46 Pine Way 16
Jon Smith 12587 34th St. 34
JON R SMITH, JR 46 Pine Way FL

In this example, one of the ages is missing, and two of the driver's license issuing
states are missing. Are these two Jr. people really the same in this dataset? Why do
they have the same street address as the father but a different driver's license state?
Did the son just get his Florida driver's license when he turned 16 but the father forgot
to renew his license when they moved from Virginia to Florida? There is a lot of
domain knowledge required here to make sense of the potential matches. We must
make many complicated assumptions in order to properly assign a match, and yet
this is just a simple example with five rows and four columns! Imagine the logic we
would have to employ if we really were merging the grocery store shopping data, or
data from two banks, or data from two different university record-keeping systems.

Chapter 3

[51]

Merging data
In the previous examples, we were looking at five records stored in the same simple
dataset. Unfortunately, with many data mining projects, we do not begin with
entities that are already stored in the same dataset. In such a case, we must merge
the data from multiple datasets together into one. Merging data means that we will
need to combine multiple datasets, either physically or logically. Physically moving
data from one dataset into another may mean moving it into the same tables or
files, for example. Creating logical connections between two or more datasets may
mean creating views or queries that join multiple disparate tables using a column
in common. Either way, we must keep a few data quality principles in mind before
merging data:

• Generally, we want to keep as much data as possible. Throwing away data
is anathema and we want to avoid it if at all possible. Create a new column,
create a new table, or otherwise move the data rather than deleting it. You
never know when you will need that column again.

• Clean data is better. Merged data should be as uniform as possible, with
standardized character sets, formatting, and so forth. I admit I am a bit fussy
about having clean data (I did write a book on it, after all), but as you can
see from the previous example with John Smith, our job of matching entities
will be hard enough without introducing additional cleaning issues on top of
everything else!

• Data should be atomic. This means it needs to be broken down into the
smallest parts possible, without losing meaning. Separate address, city, state,
and postal code fields will probably be more useful than one giant field with
all parts of the address in it.

Merging datasets vertically
Merging two data sets vertically is sometimes called a data append. Usually when
a vertical merge works best is when we have two datasets with the same columns,
in the same order, and we just stack one dataset on top of the other. The resulting
dataset may require duplication identification and purging of the duplicate data.
Traditionally, for example in a relational database environment, vertical merging
requires that both datasets have the same columns, or else there will be null values.
Here is an example of a vertical merge between Dataset 1 and Dataset 2.

Entity Matching

[52]

Dataset 1:

Name Address Age State issuing driver's
license

Frank Edwards 123 Main St. 55 NY
Kathryn White 460 Pine Cr. 54 NC
Laura Hartley 460 Pine Cr. 20 NC

Dataset 2:

Name Address Age State issuing driver's
license

Kathleen
Richard

990 Michigan
Ave.

23 FL

Susie Murphy 22 Butterfield Cir. 60 MO
Laura Hartley 460 Pine Cr. 18 NC

The vertically merged dataset is shown here:

Name Address Age State issuing driver's
license

Frank Edwards 123 Main St. 55 NY
Kathryn White 460 Pine Cr. 54 NC
Laura Hartley 460 Pine Cr. 20 NC
Kathleen
Richard

990 Michigan
Ave.

23 FL

Susie Murphy 22 Butterfield Cir. 60 MO
Laura Hartley 460 Pine Cr. 18 NC

The task following a vertical merge is to identify whether Laura Hartley on row 3 is
the same Laura Hartley on row 6. If these two people are the same, we may wish to
remove one of the rows so that we do not have a duplicate. However, it may not be
obvious at first which row is the correct one to keep, since these two entities show
different ages, but the same street address. Is Laura 18 or is she 20? Depending on our
goals, we may want to merge the data first and remove duplicates second, or we may
want to identify duplicates before creating the merged dataset. Or, we may wish to
leave both records in, and somehow identify or tag them as being possible duplicates.
Different strategies will work for different datasets and different problem domains.

Chapter 3

[53]

Merging datasets horizontally
A horizontal merge is used when we have datasets that represent the same type of
entity, but we have different attributes that describe each one. In this case, a vertical
merge will not work because there are too many attributes in one dataset that are not
in the other one. Here is an example. Notice that there are some attributes in Dataset
1 that do not appear in Dataset 2.

Dataset 1:

Name Address Age State issuing driver's license
Kathleen
Richard

990 Michigan
Ave.

23 FL

Susie Murphy 22 Butterfield Cir. 60 MO
Laura Hartley 460 Pine Cr. 18 NC

Dataset 2:

Name Year of first subscription Favorite color Home state
Kathleen
Richard

1999 blue FL

Susie Murphy 1998 purple MO
Laura Hartley 2012 green NC

This problem definitely requires entity matching and consolidation. Ideally, we will
end up with a dataset that has the attributes from both datasets, and one row for
each entity, like the following horizontally merged dataset:

Name Year of first
subscription

Favorite
color

Home
state

Address Age State issuing
driver's license

Kathleen
Richard

1999 blue FL 990 Michigan
Ave.

23 FL

Susie
Murphy

1998 purple MO 22 Butterfield
Cir.

60 MO

Laura
Hartley

2012 green NC 460 Pine Cr. 18 NC

Entity Matching

[54]

Horizontal merging does not require that both datasets have all the same columns,
but there should be something to match on, in order to ensure that we have only
one row per entity. In this example case, the Name column is unique and serves as
the column in common between the two sets. However, in a real entity matching
scenario, we may not be so lucky. Columns may have to be split, transformed,
combined, adjusted, or otherwise tweaked in order to find a match.

Techniques for matching
No matter whether we are working with horizontally or vertically merged data, we
will need some way of matching entities. If we are vertically merging, we will use
entity matching to find duplicates, and if we are horizontally merging, we will use
entity matching to identify a minimum set of rows. What are the common techniques
for finding entity matches? What kind of technique works best in various situations,
and what are the pros and cons of each?

It turns out that there is no one single best entity matching algorithm, just as there is
no one best string similarity algorithm. But we will outline a few of the options in the
following sections so that we can choose from among them later in this chapter when
we are working on a real project.

Attribute-based similarity matching
Similarity matching on attributes is one of the oldest techniques for matching
entities. To do this, we set up a similarity function on the different attributes of each
entity, and score each pairwise combination between 0 and 1 as to how similar they
are on that attribute. For example, given the datasets of people that we presented
earlier, we could use the name and street address columns, along with a string
matching function. Each pair of records would be scored 0 to 1 on their similarity to
each other. This method is not limited to string values, but categorical and numeric
values can also be mapped to an agree/disagree result on a scale of 0 to 1.

Be careful of pairwise comparisons
This method has some strengths in that it is quite flexible and can be used on many
different types of data. However, as we learned in Chapter 2, Association Rule Mining,
any time we need to perform pairwise comparisons, we are looking at a very large
number of possible combinations. This means we need to take pains to reduce the
set of possible matches, and we may need to use persistent storage (as we did in
Chapter 2, Association Rule Mining) to remember the comparisons we have already
made in the past.

Chapter 3

[55]

Leverage rare values
Another interesting feature of attribute-based similarity matching is that very rare
values can be leveraged to increase accuracy of the match. In other words, it is
easier to find a match between two entities with very rare values, than it is to match
entities with common values. We can use this knowledge to adjust the probability
of matching entities based on the rarity or commonness of the attribute values. A
common illustration of this idea given by geneticist Howard Newcombe in a 1959
Science paper (Automatic Linkage of Vital Records), and expanded in later highly-cited
papers (such as Winkler's The State of Record Linkage and Current Research Problems) is
to compare the ease of matching entities where there is a rare first and last name with
the difficulty of matching a common name. For example, it will be easier to match
two entities with the name Finklestein McGlockenspiel, which is a very rare name in
English-speaking countries. It will be relatively difficult to match people who have a
common name, for example John Smith.

Methods for matching attributes
Attribute matching strategies requires that the analyst define what qualifies as
a match. Equality of values seems like an obvious matching goal: Smith equals
Smith, 43 equals 43. However, in the absence of precisely equal values, we may need
to be a little more creative about performing a match. What values are close enough
to count as a match?

Range-based or distance from target
When working with numeric values or dates, close enough could be indicated by
setting a range or a distance from the target. For example, in some domain dealing
with age, we may declare any value in the low 40s is good enough to match the age
43. In another domain, we may decide that the eye colors green and hazel are close
enough to be counted as matching. The rules governing this type of rule-based
proximity matching will often depend on the domain and the goals of the problem.

String edit distance
Measuring the approximate equality of two strings is a very interesting exercise.
How close are the names Jones and James?

There are a number of basic string metrics that can quantify the amount of edit distance
between two strings. The edit distance is the number of edits that would transform
one string into another. Two commonly-used methods for measuring the edit distance
between two strings are the Hamming distance and the Levenshtein distance.

Entity Matching

[56]

Hamming distance
For strings of equal length, the Hamming distance is a measure of the number of
character substitutions needed to turn one string into the other. The Hamming
distance between blue and glue is 1, since there is only a single edit needed to change
the b character to a g. The Hamming distance is not designed for strings of different
lengths, so we can pad the shorter word with dummy characters to account for this
problem. To get the Hamming distance between cat and catch, we can turn cat into
cat**, which has a Hamming distance of 2 from catch.

Levenshtein distance
For any two strings, the Levenshtein distance is a measure of the minimum number
of substitutions, deletions, or insertions required to change one string into another.
The Levenshtein distance between blue and glue is also 1. And the Levenshtein
distance between cat and catch is 2, since there are two additions, zero deletions, and
zero changes. The Levenshtein distance between catch and cap is 3, since there are
two deletions and one substitution. The Hamming distance between catch and cap is
also 3, using the padding method described previously.

Do Hamming and Levenshtein always return the same value? No. Since the
Hamming distance does not allow for insertions or deletions, sometimes it requires
more actions than Levenshtein. Consider the strings scat and cats. The Hamming
distance is 4 since this transformation requires the following substitutions: s changes
to c, c changes to a, a changes to t, and t changes to s. The Levenshtein distance
between scat and cats is only 2: delete s from the first position, insert s at the final
position. So while the Hamming distance has the potential to be greater than the
Levenshtein distance, the Hamming distance is less complicated, and easier to
estimate than Levenshtein.

There are many other variations on edit distance calculation, and different
techniques will work in different scenarios. Does your data only have strings of the
same length? Do you need to handle fuzzy (approximate) string matches, or are you
more interested in exact string matches? No matter what technique we choose, we
must remember that for this chapter, our overarching goal is matching entities, and
the purpose of the string metrics is to determine how similar the string attributes
are between some pair of entities. Knowing how similar these string attributes are
is just one additional clue as to how similar the entities are. Are there other ways of
measuring the similarity of strings?

Chapter 3

[57]

Soundex
Invented in 1918, Soundex is another rudimentary technique for measuring how
similar two strings are to each other. But, just as its name suggests, Soundex is a
measure of how phonetically similar the strings are. Soundex only works with
English pronunciations. With Soundex, each word can be encoded into a character
sequence, for example a traditional four-character Soundex algorithm encodes the
name Peters as P362. The encoding rules are fairly simple. The first letter of a word
is retained as the first letter of the new code. Subsequent vowels are ignored, along
with the letters W, Y, and H. Consonants are assigned numbers in groups, chosen
from a list as follows:

Letter Becomes
B, F, P, V 1
C, G, J, K, Q, S, X, Z 2
D, T 3
L 4
M, N 5
R 6

Smith thus becomes S530. The first letter S is retained, the M becomes a 5, the I is
dropped, the T becomes a 3, and the H is dropped. A 0 character is added to pad
the code to four characters. Smythe also becomes S530. The first letter S is retained,
the M becomes a 5, the Y is dropped, the T becomes a 3, the H is dropped, and the
E is dropped.

James becomes J520. The first letter J is retained, the M becomes a 5, the S becomes a
2, and the vowels A and E are dropped. Since M and N are both in the same group,
the code for James and Jones are exactly the same.

Consider a longer word, such as Ellington. Its code will be E452. Here we retain the
E as the starting letter, substitute 4 for the letter L, drop the second 4 representing
the second letter L, drop the I, substitute 5 for N, substitute 2 for G, substitute 3 for T,
drop the O, and substitute 5 for the final N. Drop any digits that follow the first four
characters. The result for Ellington is E452.

For our purposes, calculating the Soundex of strings is just another way to prepare
data so that we can compare values. We are seeking entity matches, and, depending
on the data we have, a Soundex comparison between two strings may be a very
useful determinant of similarity. Another good application for Soundex is to use it to
narrow down which strings should be compared. Rather than performing pairwise
comparisons on every pair of strings in a database, we may find efficiency gains by
only comparing pairs of strings that have similar Soundex codes.

Entity Matching

[58]

Both edit distances and Soundex can be used in an entity matching scenario where
we are trying to use the attributes of each entity as the matching criteria. But what
happens when we do not have enough attributes, or where the attributes are
different across our different sets of entities?

Leveraging disjoint sets
An alternate formulation of the attribute matching similarity solution can be used
when we have disjoint attribute sets. Disjoint sets are those where the attributes
in one dataset overlap with, but are not identical to, the attributes in another set.
Consider the example earlier in this chapter where we attempted to horizontally
merge two sets {name, address, age, drivers_license_state} and {name,
year_of_first_subscription, favorite_color, home_state}. These two
sets overlap on the name attribute, but nothing else.

We could proceed with attribute-based similarity matching using the common
attribute, name in this case, but to ensure accuracy in those matched entities, we
could also add a sanity check by way of a profile. We do this by setting up a concept
of a typical profile that a matched record will have. Each profile is set up based on
the disjoint attributes of the resulting record. For example, we can mandate that a
typical user will have a drivers_license_state attribute that matches the home_state
attribute. Additionally, we may mandate that if drivers_license_state is not null, then
the age will be greater than 16 (or whatever age is considered a typical driving age
in this domain). By doing this, we ensure that even though we only have a single
matching attribute, which is name, we are still able to use the values present in the
disjoint attributes to assist the overall matching process.

Disjoint set attribute matching is useful, but still requires that we have entities with
some attributes in common, and that the attributes we have are trustworthy enough
to serve as the match criteria. What happens if we do not have good attributes, or if
the values are unreliable in some way?

Context-based similarity matching
An alternative to attribute-based matching is to take into account the way each entity
relates to others within some sort of contextual space. To do this, imagine setting
up a hierarchy or a graph structure for each dataset, and match entities based on
their similar positions in the graph. For example, suppose we have one dataset that
includes a roster of family members listed by name and connected by relationships:

• Richard is the father of Margaret
• Margaret is the mother of Steven

Chapter 3

[59]

Next, we have a separate list of nicknames and relationships, such as:

• Grandpa is the father of Mom
• Mom is the mother of Bob
• Peg is the mother of Bob

Our task is to match the nicknames to the real names and find the matching identities.
Because we have the same hierarchy between the entities in both datasets, we can
more easily match the nicknames to real names, learning that Richard is known as
Grandpa, Margaret is known as Mom and Peg, and Steven is known as Bob. Making
the inference that Peg and Margaret are the same person assumes that in this particular
family context, we have decided that each entity can have only one mother.

Context-based similarity matching works especially well with entities that have
hierarchical or membership relationships to one another. Depending on how many
entities and relationships there are in the sets, and how complicated the relationships
are, it is also possible to put a likelihood score on a pairwise match. For example,
if there are entities that appear in one list but not in the other list, we may have to
assign a score of zero, whereas if the relationships are not exactly equivalent between
two entities, we can assign a score to the match that is positive, but closer to zero.
This kind of matching can work well when there are limited attributes, or unreliable
or sparse attribute values.

Machine learning-based entity matching
If you have read any of the current literature on machine learning and data mining,
you may be thinking that it would be clever to use something like a Bayesian
classifier, support vector machine, or a decision tree to perform entity matching.
After all, entity matching could be considered a binary classification problem
(match/no match), so a trained classifier might work here. In such a case, the analyst
would design training sets of accurate and inaccurate pairwise matches. Then the
machine learning algorithm can use these training sets to learn which attributes
contribute to true and false matches. Many of these systems have been developed in
academic literature, using both theoretical and real-world data.

At this early stage, the researchers are finding that the effectiveness of the training-
based entity matchers is good, but that their efficiency scales negatively with the
size of the dataset. A large dataset simply takes too long to train on, especially with
a wide set of attributes. So the construction of the training set takes time above and
beyond the actual discovery of the matches, which takes even more time. If we
attempt to reduce the dataset size by way of additional training activity, we find
that this also is difficult and time-consuming.

Entity Matching

[60]

A number of solutions have been proposed for these issues, including using parallel
processing. Building machine learning-based matchers is an open research area with
a lot of exciting developments and experimentation going on. Interested readers
should look into the current academic comparisons of training-based, non-training-
based, and hybrid entity matching solutions, for example the Köpcke et. al. 2010
article (Evaluation of entity resolution approaches on real-world match problems) or the
2011 Kolb et al. paper (Learning-based Entity Resolution with MapReduce).

There are many more variations on entity matching presented in the academic
literature, but in this chapter we have focused on gaining a broad understanding
of the most common matching strategies in use today. Improvements to the basic
techniques will include greater concern for two things: speed and accuracy. In the
next section, we will learn how to evaluate the speed and accuracy of whatever
entity matching strategy we choose.

Evaluation of entity matching techniques
No matter what strategy we choose for entity matching, we will likely be concerned
with how efficiently we can generate the matches, and how accurate those matches
are. We mentioned previously that any time we can reduce the number of pairwise
matches, we can improve the speed of the matching activity. Also, we mentioned
that we can improve the accuracy of the matches by taking into account different
types of data, and by leveraging other aspects of domain-specific knowledge such
as hierarchies, relationships between attributes, and profiles of a typical result. In
this section we will learn how to communicate in more detail about the different
measures of success for any entity matching strategy we choose.

Efficiency – how long does it take to do the
matching?
How long it takes to execute the entity matching exercise, called its execution time
or runtime, is a critically important factor in choosing and evaluating an entity
matching strategy. Without taking specific precautions to reduce the size of the sets
being compared, the bulk of the execution time will likely be spent doing pairwise
comparisons. This is a similar situation to where we found ourselves in Chapter 2,
Association Rule Mining when finding frequent itemsets. Just like with the frequent
itemset generation, we need to put some concerted effort into finding ways to limit
the number of comparisons we have to make. Herman Wells is not likely the same
person as Edward White, so we should not waste time comparing them, but Herman
Wells and Harmon Walls might be the same person after all.

Chapter 3

[61]

The good news is that we have many strategies for reducing the size of the lists of
pairs that have to be compared. Numeric ranges, date ranges, string edit distances,
and Soundex were mentioned earlier as very simple ways of reducing the number
of comparisons. In the research literature, these techniques - and many, many more
- are called blocking methods. A good blocking method will reduce the number of
possible comparisons just enough to impact efficiency in a positive way, but will not
reduce the comparisons to the point that it is impossible to find a match.

Aside from blocking to reduce the number of entities to be compared, we also want
to reduce the number of attributes that need to be compared, as well as the number
and complexity of the comparisons in the procedure overall. A matching task that
relies on a single, simple numeric test will be more efficient than a matcher that relies
on a half-dozen blockers and complicated string matches.

Effectiveness – how accurate are the matches that
we generate?
Assuming that our procedure manages to propose some candidate matches, how do
we know they are correct? We would like entities that are the same to be correctly
matched (true positives), entities that are not the same to remain unmatched (true
negatives), and we would like to minimize both types of incorrectly matched entities
(false positives and false negatives).

We can measure the effectiveness of our procedure with classical information
retrieval terms: accuracy, precision, recall, and specificity. Precision is the number of
correct guesses (true positives) divided by the number of guesses that we proposed.
Our proposals are comprised of both true positives and false positives.

Recall is the number of correct guesses (true positives) divided by the total number
of actual matches. The total number of actual matches is comprised of both true
positives and false negatives.

Accuracy is simply the number of correct guesses divided by the total number of
all guesses. Specificity is the actual negatives divided by the sum of the guessed
negatives and the actual negatives.

Entity Matching

[62]

To clarify these important concepts, an example is probably in order. Consider the
following table showing various proposed entity matches and the result given by our
(fictitious) matching procedure. The right-most column shows whether the proposed
match was a true positive, true negative, false positive, or false negative:

Proposed entity match Our Guess Correct Answer Verdict
Richard Lewis matches Rick Lewis YES YES TP
Richard Lewis matches Rich L. Lewis NO YES FN
Ricky Lewis matches Rich Lewis NO YES FN
lupin84 matches rlupin84 YES YES TP
R. J. Louis matches R. J. Lewis YES YES TP
RLU matches RLIU YES NO FP
Richard Liu matches Richard Lu NO NO TN
Richard Lou matches Richard Lu YES YES TP
R. J. Lupin matches R. J. Lewpin NO NO TN

In this example, we got six guesses correct out of 10 possible, for an overall accuracy
of 6/10 or .60. The specificity of our method is calculated as two true negatives
divided by four total negatives, which yields 2/4 or .50.

We can calculate precision as follows:

precision = tp/(tp+fp)
precision = 4/(4+1)
precision = 4/5 = .80

A perfect precision score of 1.0 means that there were no false positives, which is
good, but precision does not take into account false negatives.

Recall, on the other hand, does take into account false negatives. We can calculate
recall as follows:

recall = tp/(tp+fn)
recall = 4/(4+2)
recall = 4/6 = 2/3 = .66

Chapter 3

[63]

A perfect recall score of 1.0 means that there were no false negatives, which is also
good, although it does not take into account false positives like precision did.

The F-measure, abbreviated as F1, takes both precision and recall into account,
producing the harmonic mean of the two:

f1 = 2((precision * recall) / (precision + recall))
f1 = 2((.8*.66) / (.8 + .66))
f1 = .72

These measures, accuracy, precision, recall, specificity, and F-measure, can be used
to compare two classification procedures, such as entity match procedures, to each
other. With these, we are able to determine which procedure produces results with
the highest values.

It is worth remembering at this point that in order to calculate these values, we have
to know whether the class we chose (is a match, is not a match) is actually correct.
This means one of two things will need to happen: if we have a small enough set of
matched entities, we will need to be able to check them by hand to see whether they
are correct, or if we have a large set of matches, we will need to practice by using a
test set in which we have pre-coded the correct results.

Usefulness – how practical is the matching
procedure to use?
Ideally, a matching procedure will be efficient, effective, and practical. What do we
mean by practical? A practical procedure will be both generalizable and composed
of minimal manual steps. Generalizable means that the entity matching procedure
is broadly applicable to many situations. These various situations could include
different domains, different times, or different systems. For example, if we design
a procedure that matches person entities based on names, but we use a dataset
comprised of book characters from Victorian fiction, it might work well for a
particular academic project, but probably will not be of much use to a global social
media platform in 2016. Similarly, a procedure designed for a niche test scenario may
not be easily applied to real-world data. It is not always required that a procedure
be generalizable to every possible situation, but we need to at least acknowledge in
advance the likely boundaries of the thing we are designing.

Entity Matching

[64]

Additionally, if the procedure we design has a lot of manual steps, it may not be
practical to expect that using the procedure is sustainable into the future, as it will
be very time-consuming and tedious. While manual procedures may promise higher
accuracy, the time it takes to do the manual work does threaten overall the efficiency
of a matching procedure. Even in a machine learning scenario, we should take into
account whether or not the training sets are being constructed manually, and how
long this takes. To increase efficiency, it is tempting to try to automate manual
procedures. However, automation of a manual process can result in higher errors,
which will defeat any gains made in accuracy. Correcting those errors then leads to
less efficiency. As with many things in life, it seems like there is always a tradeoff!

At this point, we have considered different strategies for finding matching entities,
and we have learned how to evaluate the matches we found. It is time to put our
learning into practice with a real-world application.

Entity matching project
As with the application example in Chapter 2, Association Rule Mining, where we
found frequently occurring sets of tags from Freecode projects, this project will also
use data from the free, libre, and open source software (FLOSS) realm. Our task
here is to find software projects that are being hosted on different code repositories,
but actually represent the same entity. Specifically, we are interested in finding
projects that were formerly hosted on the now defunct RubyForge.org site, but have
subsequently migrated to its successor, the https://rubygems.org/ site. RubyForge
and RubyGems are both code repositories for software written in the Ruby language,
but they are slightly different in what they offer. RubyForge was a hosting site for
software projects, and it included file downloads, source code control, mailing lists,
discussion forums, and so on. On RubyForge, each project could be comprised of
many files, including libraries, documentation, and the like. RubyGems.org does
away with many of those project hosting features and simply hosts the gems, or
library files, individually.

However, there is some thread of continuity between the two sites. RubyGems was
created as a successor to RubyForge and many of the projects migrated to it. If we
can connect projects as they move between these two sites, we will be able to create a
longer history for each project. For those of us who study software evolution, having
a longer record of project activity is a worthy goal. We can easily imagine the same
goal being applied to other domains. For example, it may be important to match
customers after an acquisition of one company by another, or matching graduates of
a university as they move from the academic world into the working world.

https://rubygems.org/

Chapter 3

[65]

Difficulties with matching software projects
Matching projects as they move around between hosting facilities is complicated by
problems such as:

• Different projects on different sites using the same project name
• The same project using different names on different sites
• The same projects using slightly different variations for their URLs on

different sites
• Projects gaining or losing team members across sites
• Different metadata attributes on one site versus the other
• No guarantee of whether a project on one site ever was actually hosted on

the other site

Two examples
First, consider the project called Rmagick on RubyForge. Is this the same thing as the
project called Rmagick on RubyGems? Let's compare the values for similar attributes
for each project:

RubyForge Attribute Value
System name rmagick
URL http://rmagick.rubyforge.org

Topic Editors
Topic Graphic Conversion
Topic Viewers
Description RMagick is moving to GitHub! See our new repository at:

http://github.com/rmagick/rmagick. RMagick is an
interface to the ImageMagick and GraphicsMagick image
processing libraries. See http://rmagick.rubyforge.org/
for prereqs, install FAQ, and more.

Developer username mmaiza
Developer real name Moncef Maiza

RubyGems Attribute Value
System name rmagick
URL https://github.com/rmagick/rmagick

Description RMagick is an interface between Ruby and ImageMagick.

http://rmagick.rubyforge.org
http://github.com/rmagick/rmagick
http://rmagick.rubyforge.org/ for prereqs
http://rmagick.rubyforge.org/ for prereqs
https://github.com/rmagick/rmagick

Entity Matching

[66]

RubyGems Attribute Value
Owner username baror
Owner username bentomas
Owner username bf4
Owner username vasilesky
Owner username mmaiza
Author name Tim Hunter, Omer Bar-or, Benjamin Thomas, Moncef Maiza

(this is listed as one long string)

Next, consider the project called Vapor on both RubyForge and RubyGems.

RubyForge Attribute Value
System name Vapor
URL http://vapor.rubyforge.org

Topic Database
Description A persistent Object-Repository for Ruby, providing transparent

persistence of interrelated Ruby application objects to a
PostgreSQL database.

Developer username oliver
Developer real name Oliver M. Bolzer

RubyGems Attribute Value
System name Vapor
URL http://helabs.com.br/opensource

Description Retrieve user information from Steam.
Owner username guilleiguaran
Owner username lunks
Owner username maurogeorge
Author name Pedro Nascimento

Are these Rmagick projects the same? Are the Vapor projects the same? Which
attributes are most helpful in making this determination? Let's investigate the
different possibilities.

http://vapor.rubyforge.org
http://helabs.com.br/opensource

Chapter 3

[67]

Matching on project names
Matching on the name of project is problematic, especially for projects that have
dictionary words (such as vapor) as the name. Just as we discussed earlier, it is easier
to confirm a match between people who have unusual names than it is to confirm
or reject a match between people with common names. The same holds true for
software projects. Rmagick is a much less common word than is vapor. In fact, it
turns out that currently there are four projects on RubyGems with the word vapor
somewhere in their names.

Matching on people names
Matching on developer or owner names is also problematic, but not so much because
of the risk of false positives with overly common names. After all, with such a
small developer pool, the risk of having the same name as another developer or
project owner is small, especially when similar project names are taken into account.
However, there are real risks of false negatives with matching people names, due
to variations in name spelling, including nicknames and usernames. In the RMagick
example, the developer username mmaiza does appear in both lists, which is a strong
indication that these projects are the same.

Matching on URLs
Matching projects using their home page or URL is easy in some ways and problematic
in others. First, the risk of false positives is low. Since URLs are unique, we can be
fairly confident that if a RubyForge project and a RubyGems project both state that
they are using the same URL, that they are the same project. There are two exceptions
to this rule that will help us find false positives. First, a rare exception might be if
one project was using the expired or lapsed domain of another project, but this is
so unlikely as to be impractical to plan around. Second, a more common exception
would be if two projects listed the same generic URL, such as http://rubyforge.org,
perhaps as a placeholder. This might unintentionally connect projects.

There are also small differences in URLs that might yield false negatives if we are not
careful. Common differences include a trailing / at the end of a URL, the presence
or absence of www at the front of a domain, http versus https in the protocol, and so
on. String manipulation and edit distance metrics may be able to help with some of
these differences. As with unusual names, a homepage URL is useful for confirming
a positive match, but less useful for ruling out a match.

http://rubyforge.org

Entity Matching

[68]

Matching on topics and description keywords
Matching on the topic and keywords found in the textual description of a project
is an interesting option. In the Vapor example, it is obvious that these projects are
quite different when we read their descriptions: one is a database storage software
package, the other is related to gaming. However, in the Rmagick example, even
though the RubyGems description of the software package is very generic, and the
RubyForge topic seems to be serving as a notification that the project has moved to
GitHhub, we do find words in common between the two. The keyword ImageMagick
appears in both, as does the word interface.

So given these attributes and what we know about minimizing risks of both false
positives and false negatives, how do we move forward with a matching strategy?

1. Consider matching by URLs. We will start by identifying matches using
the technique for which the risk of false positives is lowest. We stated that
it would be highly unlikely for two unrelated projects to use the same URL,
therefore a very low (ideally, zero) Levenshtein edit distance between URLs
is a good indicator that these projects are a match. In addition, as a blocking
strategy, any 100% matches we find at this stage can be removed from the
candidate sets, thus reducing the number of comparisons in later rounds.

2. Consider matching by project names. Matching project names is the
next-easiest step, but it has a low risk of false positives for rare names,
and a moderate risk of false positives for projects with common names or
dictionary word names. As a blocking step, we will only consider RF projects
at this stage if they have not already been found in Step 1.

Recall, however, the case of the two Vapor projects that turned out to be completely
different, despite sharing the same name. Are there additional clues we can look for
that will indicate whether the matching pair we have found is actually a match?
Here are some things we can look for.

Is the RubyForge project name found anywhere in the RubyGems URL? If so,
this match candidate might really be a match. An example of this is the
Abstractstack project:

RF_project_name: abstractstack
RF_url: http://github.com/kachick/abstractstack

RG_project_name: abstractstack
RG_url: http://kachick.github.com/abstractstack

Chapter 3

[69]

Are any of the RubyForge project developer names found in the RubyGems project
list of owners or authors? If so, this might indicate that these projects really do
match. An example of this is the aerial project:

RF_project_name: aerial
RF_url: http://aerial.rubyforge.org
RF_dev_username: mattsears
RF_dev_realname: Matt Sears

RG_project_name: aerial
RG_url: http://github.com/mattsears/aerial
RG_person_name: mattsears
RG_person_name: Matt Sears

The dataset
To get started on finding these matches, first we will need a database of projects
from both RubyForge and RubyGems. The FLOSSmole project (http://flossmole.
org) has been collecting data from both of these sites for several years. For this book,
we have excerpted the relevant attributes from the FLOSSmole data and created the
following five database tables (primary key columns are shown with (PK)):

• Rf_entities: The attributes are project_name (PK), long_name,
url, description

• Rf_entity_people: The attributes are project_name (PK), dev_username
(PK), dev_realname

• Rf_entity_topics: The attributes are project_name (PK), topic (PK)
• Rg_entities: The attributes are project_name (PK), url, description
• Rg_entity_people: The attributes are project_name (PK), person_name (PK)

These tables are available for loading into a MySQL database by downloading the
gzipped file containing the CREATE and INSERT statements from the GitHub site for
this book: https://github.com/megansquire/masteringDM/blob/master/ch3/
RFRGdata.sql.gz.

Once the file has been downloaded, gunzip it and load the data into your MySQL
environment. A fast way to do this is by using the command line MySQL client
and the command line gunzip program. Note that in this example we have already
created a database called rfrg to hold this data:

$ gunzip RFRGdata.sql.gz

$ mysql –h localhost –u username –p password

mysql> use rfrg;

mysql> source RFRGdata.sql;

http://flossmole.org
http://flossmole.org
https://github.com/megansquire/masteringDM/blob/master/ch3/RFRGdata.sql.gz
https://github.com/megansquire/masteringDM/blob/master/ch3/RFRGdata.sql.gz

Entity Matching

[70]

The source command will load the CREATEs and INSERTs needed to populate the five
data tables. When you are done, you can use show tables to see five tables loaded,
as follows:

mysql> show tables;

+-------------------------+

| Tables_in_test |

+-------------------------+

| book_rf_entities |

| book_rf_entity_people |

| book_rf_entity_topics |

| book_rg_entities |

| book_rg_entity_people |

+-------------------------+

Now we need to create a table to hold the candidate matches. I have called this table
book_entity_matches and we can CREATE it as follows:

CREATE TABLE IF NOT EXISTS book_entity_matches (
 rf_project_name varchar(100) NOT NULL,
 rg_project_name varchar(100) NOT NULL,
 url_levenshtein int(11) DEFAULT NULL,
 rf_name_soundex varchar(5) DEFAULT NULL,
 rg_name_soundex varchar(5) DEFAULT NULL,
 name_levenshtein int(11) DEFAULT NULL,
 rf_name_in_rg_name tinyint(1) DEFAULT NULL,
 rf_name_in_rg_url tinyint(1) DEFAULT NULL,
 rf_dev_in_rg_dev tinyint(1) DEFAULT NULL,
 PRIMARY KEY (rf_project_name,rg_project_name)
) ENGINE=MyISAM;

The table is created and empty, and is ready to hold our candidate entity matches.
The next section will show the code needed to find candidates and populate this
book_entity_matches table.

The code
To implement our proposed strategy for finding candidate matched pairs, we are
going to write a short procedure that does the following:

1. Run a simple SQL select to find project pairs with matching URLs. Add these
to the candidate list.

2. Run a simple SQL select to find project pairs with matching names.
Add these to the candidate list.

Chapter 3

[71]

3. For each candidate pair:
 ° Calculate the Levenshtein distance on URLs
 ° Calculate the Levenshtein distance on names
 ° Set Boolean: is the RubyForge name found in the RubyGems name?
 ° Set Boolean: is the RubyForge name found in the RubyGems URL?
 ° Set Boolean: is any RubyForge developer found on the list of

RubyGems developers?

Once we have done these things, we can evaluate how good our matches are and
decide how to refine the procedure or how to change it. The following code for
this procedure is divided into chunks for easier understanding. As with previous
chapters, the entire code base can be found on the GitHub repository for this book
at https://github.com/megansquire/masteringDM.

Let's start off with some import statements for the three libraries we will need.
These should already be in your Anaconda installation if you followed along in
the previous chapters:

import pymysql
import sys
from nltk.metrics import *

Next we will set up our database connection. You should fill in the connection details
with your own. We also need two database cursors. Our first two SQL statements
will simply find projects with matching URLs and populate those as candidates,
and then find projects with matching names, and populate those as candidates:

db = pymysql.connect(host='localhost',
 db='rfrg',
 user='',
 passwd='',
 port=3306,
 charset='utf8mb4')
cursor = db.cursor()

get all projects with matching URLs
cursor.execute("INSERT INTO book_entity_matches (\
 rf_project_name, \
 rg_project_name) \
 SELECT rf.project_name, rg.project_name \
 FROM book_rf_entities rf \
 INNER JOIN book_rg_entities rg \

https://github.com/megansquire/masteringDM

Entity Matching

[72]

 ON rf.url = rg.url")

get projects that have matching project names
cursor.execute("INSERT INTO book_entity_matches(rf_project_name, \
 rg_project_name) \
 SELECT rf.project_name, rg.project_name \
 FROM book_rf_entities rf \
 INNER JOIN book_rg_entities rg \
 ON rf.project_name = rg.project_name \
 WHERE rf.project_name NOT IN (\
 SELECT bem.rf_project_name \
 FROM book_entity_matches bem)")

Our next step is to calculate the string metrics for each pair. First we will select out
these pairs, then we will set up a loop to process each pair individually:

cursor.execute("SELECT bem.rf_project_name, \
 bem.rg_project_name, \
 rfe.url, \
 rge.url \
 FROM book_entity_matches bem \
 INNER JOIN book_rg_entities rge \
 ON bem.rg_project_name = rge.project_name \
 INNER JOIN book_rf_entities rfe \
 ON bem.rf_project_name = rfe.project_name \
 ORDER BY bem.rf_project_name")
projectPairs = cursor.fetchall()

The for loop operates on lowercase versions of the names and URLs because the
two systems, RubyForge and RubyGems, are not consistent in their requirement
for casing of names and URLs. RubyGems allows case-sensitive project names,
but RubyForge does not, and both sites allow capital letters in their URLs:

for(projectPair) in projectPairs:
 RFname = projectPair[0]
 RGname = projectPair[1]
 RFurl = projectPair[2]
 RGurl = projectPair[3]

 # lowercase everything
 RFnameLC = RFname.lower()
 RGnameLC = RGname.lower()
 RFurlLC = RFurl.lower()
 RGurlLC = RGurl.lower()

Chapter 3

[73]

The next section relies on two string metric functions, one of which, edit_distance(),
is loaded with the nltk package, and one of which is a public domain function
called soundex() written by Gregory Jorgensen and reproduced here. The code
and explanation for soundex() is shown at the end of this section:

 levNames = edit_distance(RFnameLC, RGnameLC)
 levURLs = edit_distance(RFurlLC, RGurlLC)
 soundexRFname = soundex(RFnameLC)
 soundexRGname = soundex(RGnameLC)

In the next few lines, we test whether the RubyForge name is found inside the
RubyGems project name, and whether the RubyForge name is found inside the
RubyGems URL string. If so, this is a good indication that the projects are a
match, even if their names or URLs do not match exactly. We use Boolean
variables rf_in_rg and rf_in_rgurl to hold the answers:

 # is the RF project name inside the RG project name?
 if RFnameLC in RGnameLC:
 rf_in_rg = 1
 else:
 rf_in_rg = 0

 # is the RF project name inside the RG project URL?
 if RFnameLC in RGurl:
 rf_in_rgurl = 1
 else:
 rf_in_rgurl = 0

Next we test whether the developers listed on the RubyForge list are found
anywhere in the RubyGems list. We only need one developer match in common,
so we let the SQL do the heavy lifting here for creating the matches. We fetchone()
and set our Boolean rfdev_in_rgdev:

 # do RF devs match the RG devs?
 cursor.execute("SELECT rf.dev_username, rf.dev_realname \
 FROM book_rf_entity_people rf \
 WHERE rf.project_name = %s \
 AND (rf.dev_username IN (\
 SELECT rg.person_name \
 FROM book_rg_entity_people rg \
 WHERE rg.project_name = %s) \
 OR \
 rf.dev_realname IN (\
 SELECT rg.person_name \
 FROM book_rg_entity_people rg \

Entity Matching

[74]

 WHERE rg.project_name = %s))",
 (RFname, RGname, RGname))
 result = cursor.fetchone()
 if result is not None:
 rfdev_in_rgdev = 1
 else:
 rfdev_in_rgdev = 0

Now we have a bunch of string metrics and Booleans and we are ready to write all
these to the database table. For each match candidate pair, we will UPDATE the row
indicating what these values are:

 cursor.execute("UPDATE book_entity_matches \
 SET rf_name_soundex = %s, \
 rg_name_soundex = %s, \
 url_levenshtein = %s, \
 name_levenshtein = %s, \
 rf_name_in_rg_name = %s, \
 rf_name_in_rg_url = %s, \
 rf_dev_in_rg_dev = %s \
 WHERE rf_project_name = %s \
 AND rg_project_name = %s",
 (soundexRFname,
 soundexRGname,
 levURLs,
 levNames,
 rf_in_rg,
 rf_in_rgurl,
 rfdev_in_rgdev,
 RFname,
 RGname))
db.close()

We close the database connection and we are all set. Before we discuss evaluating the
results, here is the soundex() function written by Gregory Jorgenson and described
earlier. This function takes two parameters. The first is the word for which you are
generating the Soundex code. The second parameter is the length of the Soundex
code you want to generate. The initial Soundex algorithm called for a 4-character
code, which is also the default in this program. However, this length is configurable.
If you find that you are dealing in a domain with very long and consonant-heavy
words, you should increase the length. Remember that Soundex is designed for
English pronunciations, so proceed with caution in non-English settings:

def soundex(name, len=4):
 """
 soundex module conforming to Knuth's algorithm

Chapter 3

[75]

 implementation 2000-12-24 by Gregory Jorgensen
 public domain
 available at: http://code.activestate.com/recipes/52213-soundex-
algorithm/
 """
 # digits holds the soundex values for the alphabet
 digits = '01230120022455012623010202'
 sndx = ''
 fc = ''

 # translate alpha chars in name to soundex digits
 for c in name.upper():
 if c.isalpha():
 if not fc: fc = c # remember first letter
 d = digits[ord(c)-ord('A')]
 # duplicate consecutive soundex digits are skipped
 if not sndx or (d != sndx[-1]):
 sndx += d

 # replace first digit with first alpha character
 sndx = fc + sndx[1:]

 # remove all 0s from the soundex code
 sndx = sndx.replace('0','')

 # return soundex code padded to len characters
 return (sndx + (len * '0'))[:len]

At this point we have a fully populated match table, and it is time to look at our results.

The results
A typical result in our result set now looks like the following:

rf_project_name: aafc
rg_project_name: acts_as_flux_capacitor
url_levenshtein: 0
rf_name_soundex: A120
rg_name_soundex: A232
name_levenshtein: 18
rf_name_in_rg_name: 0
rf_name_in_rg_url: 1
rf_dev_in_rg_dev: 1

Entity Matching

[76]

What this means is that the RubyForge project aafc has been matched to the
RubyGems project acts_as_flux_capacitor based on their URL, and that they also
share a relationship between the RubyForge developer lists. Their names are quite
different, as demonstrated by the different Soundex scores and the high name
Levenshtein value. Still, just with the URL matches and the shared developer list,
we have pretty good evidence that these are the same project.

At this point, it is time to evaluate our overall candidate match list and decide
whether our procedure works well enough or not. Overall, did we find good
matches? Here are some ways to consider this question.

How many entity matches did we find?
Our procedure produced around 5,800 matches. Is this a good number? Consider
that we started with just over 9,600 RubyForge projects, and our ideal goal would
be to find a match on RubyGems for as many of those projects as we can. The total
5,800 might seem like a really high number, but remember that RubyForge is a
project hosting facility, whereas RubyGems is a gem, or library, hosting facility. On
RubyForge, one project could be made up of many files and libraries, but they all
lived under a single name. On RubyGems, each gem is listed separately. Therefore,
many gems could share the same URL. As evidence of this, consider that there are
72 gems that listed their URL as some form of http://rubyonrails.org/. Rails is
a huge project with many, many gems in it. On RubyForge those lived under one
umbrella project, but on RubyGems they are all listed separately.

So, a single RubyForge project might be listed alongside several RubyGems projects.
Therefore, we need a query that will tell us how many actual RubyForge projects we
were able to find matches for in RubyGems:

SELECT count(DISTINCT rf_project_name)
FROM book_entity_matches;
+---------------------------------+
| count(DISTINCT rf_project_name) |
+---------------------------------+
| 4252 |
+---------------------------------+
1 row in set (0.01 sec)

That query yields 4,252 distinct RubyForge projects that were matched to RubyGems
projects. That means that our simple URL and name matching procedure was able to
find at least one match for 44% of the projects in our set. While we might want these
numbers to be higher, let's take a moment for a reality check.

http://rubyonrails.org/

Chapter 3

[77]

First, remember why we are looking for matches to begin with. We stated that we
wanted to find matches so we could build complete project histories for software
projects. A total of 4,252 project histories is a lot of material to work with, and that is
certainly more matches than we would have been able to build in a reasonable time
by hand.

Second, RubyForge was begun in 2003, and finally shut down in 2014. RubyGems
started in 2009 and was named the official gem host in 2010. It is a distinct possibility
that many of the RubyForge projects simply did not want to move to RubyGems.
Maybe the projects became defunct or had lost their team leaders. Or, if they did
move they may have changed URLs, names, and project teams so significantly that
we will not be able to find them without a lot of additional manual procedures and
domain knowledge about the project anyway.

When we think about it this way, finding possible matches for 4,252 projects is
not bad!

How good are the pairs we found?
This is also a good question. Let's consider it in terms of false positives first. To
attempt to ferret out false positives, we would look for two main categories of
incorrect matches.

First, we want to identify pairs that had matching URLs but nothing else was good,
for example, no shared developers, no RubyForge word stems in the RubyGems
name or URL, high distance Levenshtein values on names, or nonmatching Soundex
on names. We will call these Type 1 False Positives, or FP1 for short. To find these
FP1 errors, we can run the following query against our match table:

SELECT rf.url, bme.*
FROM book_entity_matches bme
INNER JOIN book_rf_entities rf
 ON bme.rf_project_name = rf.project_name
WHERE url_levenshtein = 0
AND rf_name_soundex <> rg_name_soundex
AND name_levenshtein > 0
AND rf_name_in_rg_name = 0
AND rf_name_in_rg_url = 0
AND rf_dev_in_rg_dev = 0;

Entity Matching

[78]

This query yields 123 projects, 42 of which have to do with the rails project alone.
We can confirm this by adding the clause and rf.url like %rubyonrails% to the
end of the query. Another handful are RubyGems libraries that are part of either
the will-paginate or muravey projects, both of which had dozens of subprojects,
but which all shared a common project name on RubyForge, and the same common
parent URL. They were flagged as false positives because the name segment was
either punctuated differently or had changed names over time, or because a patched
library on RubyGems was given the prefix of a developer, but it still used the generic
URL to the main project.

Another set of potential false positives are the pairs that share a common name but
the URLs are different; they do not share a common developer, and the RubyForge
project name is not found inside the URL either. We can call these Type 2 False
Positives (or FP2). Here is a query we can use to identify these possible FP2 errors:

SELECT rf.url, rg.url, bme . *
FROM book_entity_matches bme
INNER JOIN book_rf_entities rf
 ON bme.rf_project_name = rf.project_name
INNER JOIN book_rg_entities rg
 ON bme.rg_project_name = rg.project_name
WHERE name_levenshtein =0
AND url_levenshtein > 0
AND rf_name_in_rg_url =0
AND rf_dev_in_rg_dev =0;

This query yields 121 results. These are potentially more problematic than the FP1
errors we found previously because in order to determine whether they are truly
false positives, we will need to read the textual description of the projects, or if that
does not yield any results, we will have to go manually to each project page and
determine whether these are the same. It seems likely that projects with very unusual
names are probably the same (two projects named hatenagraphup for example) but
what about the projects named helloworld and index?

True positives (TP) are an easier story: 100% matches are easily found with this
query, which looks for projects that have a matching name, matching URL, and
three matching Booleans, including at least one developer in common:

SELECT rf.url, rg.url, bme . *
FROM book_entity_matches bme
INNER JOIN book_rf_entities rf
 ON bme.rf_project_name = rf.project_name
INNER JOIN book_rg_entities rg
 ON bme.rg_project_name = rg.project_name

Chapter 3

[79]

WHERE name_levenshtein =0
AND url_levenshtein =0
AND rf_name_in_rg_url =1
AND rf_dev_in_rg_dev =1
AND rf_name_in_rg_name =1;

This yields 1,082 matches, dwarfing the FP1 and FP2 errors combined. The remaining
matches are those somewhere between suspicious and certain. These are ones that
are probably matches, but one or more of the Booleans was set to zero. To summarize
we have:

• 5,796 total matches
• 4,252 distinct RubyForge projects that have been matched
• 1,082 positive matches
• 4,470 probably positive matches
• 123 possibly false FP1 matches
• 121 possibly false FP2 matches

Even if we declare the FP1 and FP2 categories to be entirely false, this still yields a
precision value of 96%:

precision = 5552/(5796)
96%

But let's not get too excited with a 96% precision value just yet. There are plenty of
reasons to be less than thrilled with our results. First, remember that we still have
3,807 RubyForge projects that we did not find any matches for at all. Second, and
more important, we have no counts for negatives, either false or true. The reason
for this is that since the beginning our matching procedure was loaded with only
projects that either matched on URL or name, and no other projects were included.
We also have no master list or pre-labeled training set for showing true negatives.
Not having negatives means we cannot easily calculate recall or F-measure.

Still, if our goal is to find matching projects for further study of software evolution
over time, I think we have succeeded in this. We now have a list of between 1,082
and 5,552 projects that we can connect, with some confidence. We can track these
projects as they jumped from one hosting facility to another. Finding matches by
URL was fairly successful, but by adding in some more complex matching by names,
URLs, and developers allowed us to increase the number of matches we found, and
differentiate between them based on how accurate the matches were.

www.allitebooks.com

http://www.allitebooks.org

Entity Matching

[80]

Summary
In this chapter, we learned how to connect entities even when there is no common
identifier for them. This task, called entity matching, is broadly applicable to many
domains, and is one of the oldest tasks in data processing. Once we have matched
entities, we are able to perform data mining on sets that were previously unconnected.

To do so, we tackled common strategies for entity matching, attribute-based,
disjoint sets, and context-based. We learned several techniques for estimating
whether strings are similar, including edit distances like Hamming and Levenshtein,
and phonetic encodings such as Soundex, and we learned how to use blocking
techniques to reduce or eliminate pairwise testing. Since it is important to evaluate
the effectiveness of our entity matching methods, we learned how to calculate false
positive and false negative rates. Finally, we tested our knowledge by designing an
entity matching procedure for a real-world problem using data from two separate
collections of data about free, libre, and open source software (FLOSS) projects.
Using attributes they had in common and some simple string metrics, we were able
to construct a list of several thousand projects that had moved from one hosting site
to the other.

In the next chapter, we will continue to work with the RubyForge project data,
dipping our toes into the deep water of social network analysis. Rather than focusing
on the projects as entities, we will turn our attention to the software developers
themselves. How did they self-organize to work on the different projects, and
how did the developer network change over time?

[81]

Network Analysis
Humans are very social creatures, and our ability to find connections – with each
other and with other things in our lives – is one of our strongest impulses. We
naturally love to connect with others, we distinguish our connections with different
names or levels (friend, spouse, acquaintance, lover, enemy, BFF, frenemy, boss,
employee, stranger, co-worker, neighbor), and we sometimes keep these connections
for years or decades. We are fascinated by seeing people from our network
appearing in other, seemingly unconnected networks. We love the notion that there
might be only six (or four, or three) degrees of separation between any two people on
Earth. The small world phenomenon reminds us that we are more closely connected
to each other than it may appear.

So far in this book, we have experimented a lot with finding connections between
things, first by finding items that are commonly associated, and then by finding
entities that appear different but are really the same. In this chapter, we will
continue to explore how things are connected, but we will focus on data that
can be represented as a network. We will learn:

• The basics of network theory, including how to measure a network
• Why the different shapes that we find in a network are interesting
• How to organize some real-world data into a structure that will let us

analyze it as a network
• How to find and interpret patterns in this real-world data using Python

and NetworkX
• How to compare multiple versions of a network to see how the network has

changed over time

Network Analysis

[82]

What is a network?
Networks are all around us. We use the word network to refer to many different
types of connected things: multiple computers hooked together, a system of cities
connected by small roads and large highways, a group of people who all work
in the same industry, a series of television stations that broadcast common
programming. In common usage, the word network can refer to almost any
set of interconnected entities.

From a data mining perspective, however, our use of the word network is more
precise. We use the word network to refer to a system that can be represented by
a graph made up of nodes and links. In our specialized vocabulary, nodes are the
things being connected, and the links are the relationships between the nodes. The
collection of all the nodes and links is called a graph. Note that we are using the
word graph in its mathematical sense, not in the sense of a visualization, like a bar
graph or a line graph. In graph theory vocabulary, nodes are also called vertices,
and links are also called edges. Figure 1 shows some of these terms we use for a
graph or network:

Figure 1. The parts of a network

Many times we describe the network in terms of the direction of the edges.
A network can be either directed or undirected. An undirected network is one in
which all the links are symmetrical, and the relationship between nodes goes in both
directions. A common example of an undirected social network is Facebook. Both
nodes in a Facebook friend relationship must confirm the link. Directed networks
are when the links are not symmetrical. An example of a directed social network is
Twitter. You can follow someone on Twitter but not have that person follow you
back. Figure 2 shows the difference between an undirected and directed graph:

Chapter 4

[83]

Figure 2. Directed and undirected graphs

In network mining, we may sometimes be interested in the attributes of the
nodes. For instance, in the cities-and-roads network, we might keep track of how
many people live in each city, or who the current mayor of the city is. But unlike
in traditional entity-oriented data mining, in network mining we are also very
interested in the attributes of the edges. How many people drove from Smallville to
Anytown using Highway 1? How many people went the other way, from Anytown
to Smallville? What is the minimum number of roads we would need to take to get
from Anytown to Big City?

A weighted network is where one of the attributes of the links is expressed as a
number. For example, in a network of airports, where the links are direct flights
between airports, one weight could be how many flights there are per day. Another
weight for this network could be number of passengers that fly between those
airports per day. An unweighted network simply shows the relationship or link
between the nodes, with no additional information about how heavy that link is.
Figure 3 shows different combinations of weighted, unweighted, directed, and
undirected graphs:

Figure 3. Graph (A) is directed, weighted. (B) is directed, unweighted. (C) is undirected,
weighted. (D) is undirected, unweighted.

Network Analysis

[84]

Here are some ways of expressing real-world networks as graphs:

• An e-mail network: The nodes could be people, and the links could represent
sent an e-mail to. This would be a directed graph, since there is no rule that if
Person A e-mails Person B, that e-mail will be answered. This graph could be
weighted with the number of e-mails sent in that direction.

• The Web: The vertices could be web pages, and the edges could represent
includes a URL to. This would be a directed graph. It could be weighted, if we
were interested in how many links Page A included for Page B. If we did not
include this information, it would be an unweighted, directed graph.

• Facebook likes: The nodes could be people, and the edges could be clicked like
on something posted by. This could be a directed, weighted graph.

• Facebook friends: The nodes could be people, and the edges could be are
friends with. Since Facebook friendship is a two-way street, this could be an
undirected, unweighted graph. If we wanted to weight it, we could add a
value to the link, such as number of friends in common.

• Shopping basket items: The nodes could be the items, and the edges could
be shared a shopping basket with. This could be an undirected graph and the
number of times these items appeared in the basket together could be
the weight.

You might think that the last example of shopping baskets sounds
awfully familiar to what we did with frequent itemsets and association
rules in Chapter 2, Association Rule Mining. Should we go back and revise
that chapter now that we have another way to find frequent itemsets?
Maybe, but we still have a lot to learn first. First, we would need to
express the entire set of items and transactions as a weighted graph. Then
we will need to learn how to find the frequent subgraphs, which would
be the equivalent of our frequent itemset mining.. Doing this requires that
we learn how to measure the network and traverse, or walk, the graph. So
let's learn those things next.

Chapter 4

[85]

Measuring a network
Much of the analysis of a network is actually just measuring its various parts and
pieces. How many nodes does it have? How are those nodes connected to each
other? How many links does it have and how many ways can we traverse those
edges? In this section, we will learn many of the common ways to measure
a network.

Degree of a network
One way to describe a network is through its degree distribution. The degree of a
node is the number of its connected edges. In an undirected graph, the degree of a
node is the count of all the edges coming out of it. The degree distribution tells us
how many nodes had a degree of 0, how many had a degree of 1, then 2, and so on.
Figure 4 shows a histogram of the degree distribution for a simple undirected graph.
Two of the nodes have a degree of three, two of the nodes have a degree of two, and
one node has a degree of one:

Figure 4. Simple undirected graph and its degree distribution

Network Analysis

[86]

Figure 5 shows some alternative shapes for degree distributions that you might
encounter in the wild. If every node in an undirected network had the same degree,
its degree distribution histogram would look like a single bar with a very high count.
Other common degree distributions include the normal bell curve shape and the
long tail distribution:

Figure 5. Common degree distributions: uniform, normal, and long tail

These examples were appropriate for undirected graphs, but how do we measure
the degree of a directed graph? In a directed graph, we must use two numbers to
describe the count of edges: one for the count of inbound edges to a node, and
one for the count of outbound edges. These counts are called the in-degree and
out-degree, and to show the graph distribution, we will have to make both an
in-degree distribution and an out-degree distribution. If we add the in-degree
and out-degree for nodes on a directed graph, we get the overall node degree.

Diameter of a network
Another way to measure or describe a network is in terms of its diameter. The
diameter of a network is the maximum distance between any two nodes in the
network. How do we measure the distance between any two nodes? Well, the
distance between two points is the minimum number of hops needed to connect
them. Since the distance is the shortest path between two points, but the diameter
is the longest path between any two points on the graph, sometimes the diameter is
called the longest shortest path.

Chapter 4

[87]

Consider the undirected, unweighted graph shown in Figure 6. The distance
between most of the nodes in this graph is either 1 or 2. For example, the distance
between A and B is 1, and the distance between C and E is 2. However to get from
node D to node E (or vice versa) will take a minimum of 3 hops. There are no other
distances longer than the one from D to E, therefore, the graph diameter is 3:

Figure 6. A simple graph for learning to measure diameter

If the graph has weights or direction, the diameter and distances might change. For
instance, suppose the weight of an edge were equivalent to a monetary or physical
cost to traverse that edge. This would be the case, for example, in a highway system
where some of the roads between towns include tolls. Or, consider a runner who
is trying to complete a five kilometer route by avoiding certain roads that have big
hills. In a weighted network, the weights of the traversed edges must be taken into
account in calculating the distance between every two nodes, and subsequently,
these weights should affect the diameter.

Similarly, the direction of a graph will also change the way its distances are
measured. Sometimes when we are calculating the diameter of a directed graph, a
connection between every two points may not exist! Consider Figure 7, where there
is no path from A to D (or vice versa):

Figure 7. A directed graph diameter is affected by unreachable nodes

Network Analysis

[88]

Walks, paths, and trails in a network
One of the handy things we sometimes want to do with networks is measure how
long it takes to get from one node to another, and we might want to place restrictions
on how many times a node or edge can be used to accomplish that.

A graph walk is when we just traverse links between nodes. In a walk, we might use
all the nodes or only some, and we might traverse the same nodes or links multiple
times. We can specify the length of a walk by counting the number of links that we
have traversed, and if we traverse a link more than once, we count it accordingly.
These assumptions hold true for any simple graph in which there is only one line
between nodes going in a particular direction.

A graph trail is when we traverse a graph using its links at most one time each, but
nodes can be used multiple times. A path through a graph is when neither the nodes
nor the links are reused in the traversal. As with a walk, the length of a trail or path
is just the number of links that were traversed.

There are many other specific types of walks, trails, and paths, for example those that
declare which nodes to start or end with, or those that declare that every link must
be visited exactly once (a Eulerian path). A closed path is one in which the start and
end node is the same.

Walks, trails, and paths are interesting and important because they help us describe
the features of the graph, including the number of links that we need to get from one
place to another.

Components of a network
If every node is able to be reached from every other node, the graph is considered
connected. A graph that has multiple unconnected subgraphs, where we cannot
trace a path from one node to some other node, is said to be made up of multiple
components. These component subgraphs are part of the overall supergraph, but
they are missing edges that would connect them to the other components in the
supergraph. In Figure 8, we can see a single graph that has three different subgraph
components. We can tell that these are subgraphs because there is no path between
the nodes labeled A, B, and C:

Chapter 4

[89]

Figure 8. This graph has three component subgraphs

Components that consist of only a single node are called isolates. These nodes have
a degree of 0. Depending on the purpose of your graph, you may be more or less
interested in isolates. For example, if you are interested in tracking disconnected
community members, perhaps to take corrective action, locating isolates will be
important. However, if you want to reduce the size of a network to focus only on
the most highly connected subgraphs, then you may wish to prune isolates from an
otherwise very busy graph.

Centrality of a network
Whether we have a bunch of subgraph components or just one giant, connected
supergraph, we will often want to find the nodes that serve as the most important
players. Many times these are nodes that seem to be in the center of things, rather
than hanging out on the periphery. In this section, we discuss various ways to
measure the center of a network.

Closeness centrality
One way to find the center of a network would be to locate the nodes that are
conveniently close to a bunch of other nodes. To find these nodes, we use a measure
called closeness centrality. Closeness centrality is calculated by figuring out three
things. First, figure out the shortest path distances between every pair of nodes in
the network. Next, for each node, take the sum of those distances to all other nodes.
Finally, divide that number into the minimum possible distance of the network, or
the number of nodes minus one.

Network Analysis

[90]

To make this clearer, let's look at an example. Figure 9 shows a network in which
node A is only one or two hops from every other node on the network, except
for node C, which is three hops from A. Node B, on the other hand, is also very
well connected, with only three hops from node D. Which node is considered
more central?

Figure 9. Does node A or node B measure higher on closeness centrality?

The total lowest number of hops from node A to every other node is 15. The
minimum possible nearness for this graph is 9. The closeness centrality of node A is
9/15, or 0.60. The total lowest number of hops from node B to every other node is 14.
Therefore the closeness centrality of node B is 9/14, or 0.64. Node B scores higher on
closeness centrality (0.60 for node A, versus 0.64 for node B).

Degree centrality
It is important to see that closeness centrality is distinct from simple degree
centrality. Degree centrality just measures how many nodes a given node connects
to, taking into account the overall size of the network. To measure degree centrality
for a node we calculate its degree, or number of edges, divided by the overall
number of nodes in the network. In Figure 9, node A has a degree of four and
a degree centrality of 0.40 (4/10), and node B has a degree of five and a degree
centrality of 0.50 (5/10).

Chapter 4

[91]

Betweenness centrality
In addition to degree centrality and closeness centrality, we might also want to know
whether there are nodes that are indispensable to the network, in that their removal
would result in a disconnected graph. Sometimes these important nodes are called
bridges, bottlenecks, gatekeepers, boundary spanners, or brokers, depending on
the metaphor being used by the speaker and the purpose of the network they
are describing.

Figure 10 shows an example where the removal of the node marked A would result
in two disconnected graphs:

Figure 10. The removal of node A in the top graph results in two disconnected subgraphs

To find this type of important node, we use a measure called betweenness centrality.
Nodes that exhibit higher betweenness centrality are more critical to the smooth
functioning of the graph. If a node with high betweenness centrality is removed
or compromised, then the traffic that used that node to get to other nodes will be
stopped or slowed.

To calculate betweenness for the nodes in a network, first calculate the shortest path
between every pair of nodes on the network. Then, calculate for each node, how
many of the network's shortest paths include that node, but do not start or end with
that node. Finally, divide that number by the sum of the number of pairs, or:

((number of nodes-1)*(number of nodes -2))/2

Network Analysis

[92]

Figure 11 shows a small network with five nodes. We can see right away that nodes
A, D, and E will not appear on any shortest path list without also being one of the
end points. Removing any of these nodes A, D, or E will not break the rest of the
graph at all. So we can state that their betweenness will be zero. Nodes B and C are
more interesting. Which one has a higher betweenness score?

Figure 11. A small network with five nodes. Which node has the highest betweenness measure?

Node B is found inside the following shortest paths: A-B-C, A-B-C-D, and A-B-C-E.
Node C is found inside the following shortest paths: A-B-C-D, A-B-C-E, B-C-D,
B-C-E:

Node B betweenness centrality is: 3/(((5-1)(5-2))/2) = 3/6 = .5
Node C betweenness centrality is: 4/(((5-1)(5-2))/2) = 4/6 = .67

Therefore, in terms of betweenness centrality, node C is considered more important
to this network than node B. If we think about it, this makes perfect sense. If we
removed B from the network, there is only one node that becomes unreachable.
However, if we removed C from the network, then there are two nodes on each
subgraph that are affected.

Other measures of centrality
There are many other ways of measuring the centrality of a node on a network. For
example, another way to measure centrality is to give more weight to those nodes
that are connected to more central nodes. In other words, what if we calculated
every node's centrality, then calculated the eigenvector centrality as the sum of the
centralities of each node. This is like giving extra credit to any node that had really
popular neighbors. A variant of this type of centrality measure is the famous Google
PageRank algorithm. If we view web pages as nodes, then they can be conceptually
linked together in a graph structure where the importance of a web page is based in
part on the popularity of its inbound links.

Chapter 4

[93]

When we do our full project at the end of this chapter, we will learn how NetworkX
can easily calculate the various types of centrality for hundreds of nodes in a
very complex network, thus allowing us to rank the nodes and find the most
interesting ones.

But first, in order to start figuring out how to find and analyze graphs of real
data, we need to understand how to represent our graph as a data structure.
The next section will get us started in organizing our data so we can later analyze
it in NetworkX.

Representing graph data
The theoretical aspects of networks are important, but in order to be able to apply
these ideas to a real-world problem, we have to first transform our data into a format
that a network analysis program can understand. In this section, we will discover the
common formats for representing data in a network-friendly way.

Adjacency matrix
An adjacency matrix is a convenient way to represent graph data. To construct an
adjacency matrix for an undirected, unweighted graph, we can create a grid that
has all the nodes listed across the top as columns, and also down the side of the grid
as rows. Then we use a 1 or 0 to indicate whether there is a link between those two
nodes. Consider the unweighted, undirected graph shown in Figure 12:

Figure 12. A simple unweighted, undirected graph

Network Analysis

[94]

The adjacency matrix for the Figure 12 graph can be written like this:

 A B C D E F
A 0 1 1 1 0 0
B 1 0 1 1 0 0
C 1 1 0 0 1 1
D 1 1 0 0 0 0
E 0 0 1 0 0 0
F 0 0 1 0 0 0

A few things jump out right away about this adjacency matrix. First, all the A-A and
B-B links are zero. Second, the value for an A-B link is the same as the value for the
B-A link. This means that if we draw a diagonal line down the middle of the matrix,
the bottom is exactly the same as the top.

Another important feature of the adjacency matrix as shown is that it has more
0 values than 1 values. The ratio of actual links to non-existent links is called
the density of the graph. We can calculate density like this for any undirected
simple graph:

(2*NumEdges)/(NumNodes*(NumNodes-1))

For the Figure 12 graph, this resolves as follows:

(2*7)/(6*(6-1)) = 14/30 = 0.46666667

Another version of this formula is sometimes shown as:

numEdges/((NumNodes*(NumNodes-1))/2)

Again, for Figure 12, this works out to:

7/((6*(6-1))/2) = 7/(30/2) = 7/15 = 0.46666667

A graph in which every node is connected to every other node will have a perfect
density of 100%. A very disconnected graph where there are a lot of nodes and very
few connections between them will have a density closer to 0.

At a programming level, an adjacency matrix can be represented as a
multi-dimensional array. However, a very low graph density means that the
array will have a lot of zero values. If we have a large, sparse network to analyze,
an adjacency matrix stored as an array could be too large to be practical.

Chapter 4

[95]

Edge lists and adjacency lists
Because of the potential for very sparse graphs to create too-large adjacency matrices,
we can consider an edge list instead. Representing the same graph in Figure 12 as an
edge list will look like this:

A,B
A,C
A,D
B,A
B,C
B,D
C,A
C,B
C,E
C,F
D,A
D,B
E,C
F,C

Another option would be to encapsulate the values into a structure called
an adjacency list. An adjacency list shows that relationship X is connected to
Y and Z as X:(Y,Z):

A:(B,C,D)
B:(A,C,D)
C:(A,B,E,F)
D:(A,B)
E:(C)
F:(C)

In this structure, we only need to keep track of the node and the other nodes it
connects to. This can be implemented as a hashmap, or in Python as a dictionary
structure, or in JSON as a set of key-value pairs.

Differences between graph data structures
We mentioned that the adjacency matrix is inefficient when the network graph is
extremely sparse. If the adjacency matrix is stored as an array of arrays, that is an
awful lot of zero values to keep track of. Are there other choices we should take into
account when considering the implementation of the network as a data structure?

Network Analysis

[96]

For all these choices – adjacency matrix, edge list, and adjacency list – simple
operations such as finding the degree of a node will be constant. No matter which
data structure is chosen, to count the nodes connected to node D, for example, will
be straightforward. In an adjacency matrix or adjacency list, we would find the item
with the key of D in our data structure, and count the elements of its value. In an
edge list, we would just count all the items with D on the left.

Asking the question of whether, in Figure 12, graph node C is connected to node
B is a little harder with an unsorted adjacency list. For example, in our adjacency
list above, we find the row for C as: C->(A,B,E,F). If this were represented as a
hashmap, we would begin searching through the C item to see if B is there. If the
value portion of the hashmap is unsorted, it will take longer.

As we will see later when we begin to implement our real-world project, some of
this concern is simply academic. The reason for that is that we will be working with
the Python NetworkX package to perform our network analyses in this chapter. The
NetworkX package allows us to create graphs using lists of nodes and edges, and no
matter whether we want to express that graph as an adjacency matrix, edge list, or
adjacency list, there are built-in functions for doing those things. Internally though,
NetworkX does store its graph as an adjacency list, using the Python dictionary data
structure to do so.

Importing data into a graph structure
Of course, if we ever expect to work on real-world data, we should acknowledge
that it is very likely that this data is probably not stored in a native graph format
such as an adjacency list. Rather, our data could be stored in a relational database or
in flat files. So no matter what kind of project we are working on, we will definitely
need to save time with a pre-processing step where we will transform our data into a
format that can be read by a network analysis software package, such as NetworkX.
The network analysis software will then transform that data into its own internal
representation of a graph structure.

To do this pre-processing step, we need to know what the different possibilities
are for storing graph data as text files. The package we will be using, NetworkX,
supports nearly a dozen different file formats, so we can be sure to find at least one
that we can use for our data.

Chapter 4

[97]

Adjacency list format
We discussed the idea of an adjacency list earlier, but now we consider it as a file
format. NetworkX can read adjacency list files in two main flavors: a single-line
version and a multi-line version. To create a file in the single-line version, we need to
put each node combination on one line, starting with the source node. To express the
graph from Figure 12 as a single-line adjacency list, we would need to create a file
with lines as follows:

A B C D
B A C D
C A B E F
D A B
E C
F C

A multi-line adjacency list format should show the source node first, followed by the
degree of that node, then each attached node on a subsequent line. For example, for
nodes A and B in Figure 12, we would write:

A 3
B
C
D
B 3
A
C
D

For space reasons, we only showed two nodes in the multi-line adjacency file format.

Edge list format
NetworkX can also read an edge list directly from a file. The Figure 12 network in
edge list format will look familiar. Notice that in an undirected graph, each pair only
has to be entered once:

A B
A C
A D
B C
B D
C E
C F

Network Analysis

[98]

To add weights to the edge list, we simply add a weight number at the end of the list
as shown here:

A B 3
A C 5
A D 2
B C 1
B D 8
C E 2
C F 1

Since Figure 12 did not actually have any weights on it, the weights shown in this
edge list are for demonstration purposes only. Later in our real-world project for
this chapter, we will use the simple edge list format for some weighted data.

GEXF and GraphML
These are both XML-based formats that NetworkX can read. Because they are
similar, we will only show an example in GraphML. To express our Figure 12
graph in GraphML format, we would create a file like this:

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/1.0/
graphml.xsd">
 <graph id="G" edgedefault="undirected">
 <node id="A"/>
 <node id="B"/>
 <node id="C"/>
 <node id="D"/>
 <node id="E"/>
 <node id="F"/>
 <edge id="e1" source="A" target="B"/>
 <edge id="e2" source="A" target="C"/>
 <edge id="e3" source="A" target="D"/>
 <edge id="e4" source="B" target="C"/>
 <edge id="e5" source="B" target="D"/>
 <edge id="e6" source="C" target="E"/>
 <edge id="e7" source="C" target="F"/>
 </graph>
</graphml>

Chapter 4

[99]

The format above is for an undirected graph, like the one in Figure 12. To make
a directed type, change the value of edgedefault to directed. In GEXF, the
layout is similar but some of the attributes are different, for example edgedefault
becomes defaultedgetype. It is always a good idea to check the latest NetworkX
documentation on all the various formats to ensure that nothing has changed since
this was written.

GDF
GDF, or Graph Data Format, is a format that separates the file into two sections:
nodes and edges. Figure 12 would be defined in GDF format like this:

nodedef>name VARCHAR,label VARCHAR
A,node A
B,node B
C,node C
D,node D
E,node E
F,node F
edgedef>node1 VARCHAR,node2 VARCHAR
A,B
A,C
A,D
B,C
B,D
C,E
C,F

The label for the nodes (node A) is optional. Notice how there are data types for each
of the node names and labels; for example, both our nodes and edges are set to be
VARCHAR data. You can also add weights to the network and other types of labels.
These can be of the standard data types: Boolean, Decimal, Double, and so on.

GDF is a fairly common graph file format and you might see it in various
online tutorials for analyzing social networks in visual tools such as
Gephi or D3. There is more information on the GDF format on the Gephi
website: https://gephi.org/users/supported-graph-formats/
gdf-format/.

https://gephi.org/users/supported-graph-formats/gdf-format/
https://gephi.org/users/supported-graph-formats/gdf-format/

Network Analysis

[100]

Python pickle
A pickle is a Python object that has been serialized, or written to disk. With the
pickling technique, we could write any Python object or series of objects to disk, and
then ask NetworkX to read it in as a node or series of nodes. This would be useful if
we did not want to make nodes in our graphs out of simple text or integers, or we
if we did not want to put the nodes in a file. When would that happen? Perhaps we
have a situation where we are creating a graph in real time, or where the values of
nodes can change based on streaming information. In a case like this, we could pickle
each Python object and read it in as a node. Also, we can pickle an entire graph in
Python and read it back into NetworkX later. Be aware that the pickled version of a
Python object creates quite a large file, as it includes everything Python would need
to get the object back exactly as it was. So, make sure you have sufficient disk space if
you are working with networks with hundreds of millions of nodes and you want to
pickle them.

The NetworkX pickle documentation says in no uncertain terms that
pickles themselves can be read in as nodes in a graph. So now I am
wondering if we can create a graph of graphs where each node in the
new graph is itself a graph. Is this really interesting or terrifying? If
any readers have tried this out, I would love to hear about it.

JSON
Speaking of serialized objects that can be read into a graph, NetworkX also
supports the JavaScript Serialized Object Notation (JSON) format both as a list
of nodes and links, and as a tree structure. We will go through both of these JSON
formats separately.

JSON node and link series
We can express our Figure 12 network in JSON as a series of nodes and links
like this:

{
 "nodes":[
 {"name":"A"},
 {"name":"B"},
 {"name":"C"},
 {"name":"D"},
 {"name":"E"},
 {"name":"F"}
],

Chapter 4

[101]

 "links":[
 {"source":0,"target":1},
 {"source":0,"target":2},
 {"source":0,"target":3},
 {"source":1,"target":2},
 {"source":1,"target":3},
 {"source":2,"target":4},
 {"source":2,"target":5}
]
}

In this layout, the links (edges) are defined using the numeric index of the node in
the node list. Node A becomes 0, node B becomes 1, and so on. Since the Figure 12
graph is undirected, we only need to show the node and edge combination once.
Directed graph options are available in NetworkX as well.

JSON trees
NetworkX will also read JSON-formatted graphs that have a tree structure. A tree is
a type of graph where each pair of nodes is connected by only one path. Our example
in Figure 12 is not one of these, but you can see an example of a tree in Figure 13:

Figure 13. A graph that has a tree structure

In this graph, A is the parent of B, C, and D, and C is the parent of E and F. We can
express a tree-style network in JSON like this:

{
 "name": "A",
 "children":
 [
 {
 "name": "B",
 "children": []
 },
 {

Network Analysis

[102]

 "name": "C",
 "children":
 [
 {
 "name": "E",
 "children": []
 },
 {
 "name": "F",
 "children": []
 }
]
 },
 {
 "name": "D",
 "children": []
 }
]
}

This format can support many nested levels in the tree, and NetworkX can read in
this file type easily.

Pajek format
The final NetworkX-friendly format we want to discuss is called the Pajek format.
Pajek means spider in Slovenian, which makes much more sense when you know that
the Pajek format was invented at the University of Ljubljana in Slovenia. The basic
Pajek format describes the six nodes and links from our Figure 12 graph as follows:

*Vertices 6
1 "A"
2 "B"
3 "C"
4 "D"
5 "E"
6 "F"
*arcs
1 2
1 3
1 4
2 3
2 4
3 5
3 6

Chapter 4

[103]

In this version of the Pajek notation, nodes are called vertices and links are called
arcs. There is also another version of Pajek, which they call the edgeslist version.
It looks like this:

*Vertices 6
1 "A"
2 "B"
3 "C"
4 "D"
5 "E"
6 "F"
*edgeslist
1 2 3 4
2 3 4
3 5 6

If the nodes have no labels, it is not necessary to list them individually in the
Vertices section. This stands to reason because it would just be a list of numbers!
In a case like that, simply use the start line *Vertices 6, and that is sufficient.

We now have a great selection of file formats for our network data. NetworkX also
supports some formats that were not shown in this list. The latest documentation
for the full selection of NetworkX file formats is available at https://networkx.
github.io/documentation/latest/reference/readwrite.html. At this time,
they support 13 different file formats, and here we have described nine of the most
important ones that we are most likely to run into during a project.

We are now ready build upon these theoretical concepts about graphs and networks
by actually completing a project to answer an authentic network analysis question
using real-world data.

A real project
To put our new knowledge about graphs and social networks to use, we will use
data about the software developers working on free, libre, and open source (FLOSS)
projects developed using the Ruby programming language. As we learned in
Chapter 3, Entity Matching when we tackled entity matching between projects,
many Ruby programmers used the website RubyForge.org between 2003 and 2013
to create projects and collaborate. In this chapter, we are going to use this same data
to learn how the social structure of this community changed over those ten years.

https://networkx.github.io/documentation/latest/reference/readwrite.html
https://networkx.github.io/documentation/latest/reference/readwrite.html

Network Analysis

[104]

RubyForge developers can be placed into a social network where the developers
themselves are the nodes or vertices, and the fact that they worked on a project
together represents the edge or link between the nodes. We could also count how
many projects they worked on together to create a weight for the link. If two
developers only worked together once, the link is weaker than if the two developers
worked together on dozens of projects. This network will be undirected, since we can
assume the relationship between the developers working on a project is symmetrical.

Exploring the data
The data we will need for this project includes a listing of projects and developers,
as well as the timestamp of when that relationship was observed. To get these data
points, we will use the FLOSSmole.org collection of RubyForge data. FLOSSmole is a
collaborative project that provides data about how open source software is made. All
of the raw data is available for anyone to download at http://flossmole.org, but
to make our job easier here, I have created some data files just for this book chapter
that have a lot of the unnecessary information stripped out. Those cleaned files are
available on the GitHub site for this project at https://github.com/megansquire/
masteringDM/tree/master/ch4/data.

It is certainly possible to complete this project without installing this data into a
database. To do so, simply skip ahead to the next section called Generating the network
files and just download the text files in edgelist format. But for those who are more
interested in exploring the underlying data, I have provided a range of database
queries here.

First, Figure 14 shows the entity relationship diagram for the data we will be
working with in this section:

Figure 14. The two tables of data for the RubyForge project in this chapter

http://flossmole.org
https://github.com/megansquire/masteringDM/tree/master/ch4/data
https://github.com/megansquire/masteringDM/tree/master/ch4/data

Chapter 4

[105]

The following table summarizes the purpose of each column in the datasources
table:

Datasources table
Datasource_id This column is a unique number given to every data set donated to

the FLOSSmole project. This number is different for each time we
collect the data.

Date_donated This column holds the date and time that the data was donated to
the FLOSSmole project. In the case of RubyForge data, this happens
to be the same date that the collection was begun. For most of the
RubyForge collections, the data was collected within one day,
sometimes two days.

Comments A short textual description of the data collection, for example
RubyForge collection from May, 2011.

Figure 15 shows the first few sample rows from the datasources table for RubyForge:

Figure 15. A few sample rows from the datasources table, showing the various collections of RubyForge data

Network Analysis

[106]

The following table summarizes the purpose of each column in the rf_developer_
projects table:

Rf_developer_projects table
Datasource_id This is a foreign key back to the datasources table. This is the

unique collection number. Since multiple collections can go in
a single table, this column helps make up the primary key for
the table.

Dev_loginname This is the login name for the developer working on a given
project during the collection window represented by the
datasource_id. Since a developer can be in this table more
than once in a given timestamp window, this helps make up
part of the composite primary key, along with the project
name and datasource timestamp.

Proj_unixname This is the short name for a given project. Since a project can
be in this table more than once in a given timestamp window,
this helps make up part of the composite primary key, along
with the developer name and datasource timestamp.

Figure 16 shows the first few sample rows from the rf_developer_projects table:

Figure 16. First few rows from the rf_developer_projects table, showing which developer worked
on which project during which time window

At this point, we have a giant database table of developers and projects and who
worked on what project at what time. Now we can construct a few queries that
tell us about the data we have, so that we can make an accurate and interesting
network later.

Chapter 4

[107]

First, how many data collection attempts do we have for RubyForge?

SELECT COUNT(DISTINCT (datasource_id))
FROM rf_developer_projects;

The results of this query indicate that we have data from 57 different collections of
RubyForge data, ranging from 2006-2013. Next, how many unique developers and
unique projects do we have for each of those collections?

SELECT datasource_id, COUNT(DISTINCT dev_loginname), COUNT(DISTINCT
proj_unixname)
FROM rf_developer_projects
GROUP BY 1
ORDER BY 1;

To see the growth of RubyForge as a whole over time, we can take the results of that
query and graph them:

Figure 17. Count of developers and projects hosted on RubyForge over time

The figure shows that there was continual growth in both the number of developers
and number of projects for many years, but eventually that growth tapered off as
competing services such as RubyGems and GitHub began to flourish around 2009.

Network Analysis

[108]

Now, given a particular timestamp, can we list the projects and all the developer
pairs on it? The following query selects out the project name, and every developer
pair working on that project at that time. As a sample, we used randomly selected
collection number 266 (which happens to be the collection from May 2011), which is
shown on line 5 of the following SQL:

SELECT a.proj_unixname, a.dev_loginname, b.dev_loginname
FROM rf_developer_projects a
INNER JOIN rf_developer_projects b
 ON a.proj_unixname=b.proj_unixname
WHERE a.datasource_id = 266 AND b.datasource_id = 266
AND a.dev_loginname != b.dev_loginname
AND a.dev_loginname < b.dev_loginname;

The first few results of this query are shown in Figure 18. Note that projects with
only a single developer are excluded here:

Figure 18. For each project, there are one or more developer pairs

If we want to find out the degree for each node, or how many other nodes were
connected to it, we can run a query like this:

SELECT a.dev_loginname, COUNT(b.dev_loginname)
FROM rf_developer_projects a
INNER JOIN rf_developer_projects b
 ON a.proj_unixname = b.proj_unixname
WHERE a.datasource_id = 266

Chapter 4

[109]

AND b.datasource_id = 266
AND a.dev_loginname != b.dev_loginname
AND a.dev_loginname < b.dev_loginname
GROUP BY 1
ORDER BY 2 DESC;

This yields the result set shown in Figure 19. We show only the first few results,
and these are sorted by the highest count first:

Figure 19. Developers and how many other developers they worked with in a given timeframe.

From these query results, we can see that, for example, during collection 266, user
btakita worked with 72 other people on various projects. To find out who those
people are, we can run the following query to just pull out the people that btakita
worked with:

SELECT a.proj_unixname, a.dev_loginname, b.dev_loginname
FROM rf_developer_projects a
INNER JOIN rf_developer_projects b
 ON a.proj_unixname=b.proj_unixname
WHERE a.datasource_id = 266 AND b.datasource_id = 266
AND a.dev_loginname != b.dev_loginname
AND a.dev_loginname < b.dev_loginname
and a.dev_loginname = 'btakita';

Network Analysis

[110]

The first few results from btakita's 72 rows are shown in Figure 20. To read the
first row of these results, we can say that user btakita worked with joemoore on
the project called desert:

Figure 20. Projects and developer pairs for a specific developer

To construct a social network though from this data, we really just need a list of
nodes and the links between them. The following query gets rid of the project
name, since we do not need it, and instead we simply count how many times
that collaboration occurs during data collection 266 (during May of 2011):

SELECT a.dev_loginname, b.dev_loginname, count(a.proj_unixname)
FROM rf_developer_projects a
INNER JOIN rf_developer_projects b ON a.proj_unixname=b.proj_unixname
WHERE a.datasource_id = 266 AND b.datasource_id = 266
AND a.dev_loginname != b.dev_loginname
AND a.dev_loginname < b.dev_loginname
GROUP BY 1,2
ORDER BY 3 DESC;

Chapter 4

[111]

Figure 21 shows a sample of the result set from running this query:

Figure 21. How many times did each developer pair work together in a given time frame?

Keep in mind that because the number of developers and projects grew over the life
of the RubyForge site, the lower collection numbers will have fewer results, and the
high collection numbers will have more results. For example, collection number 24
yields only 1519 developer pairs, but collection 266 yields 8600 pairs. Already we can
see that our network of developer collaborations becomes much more complicated
and dense over time.

Generating the network files
Since the RubyForge data we have is so simple, just a list of nodes and a weight for
the link between them, we can easily export delimited edge lists to represent each of
our networks.

Network Analysis

[112]

How many networks do we need to generate? Unfortunately, we do not have
collections from the site for every single month during the 10-year period that it was
in existence, but starting with the first collection in July 2006, we can set up a roughly
once a year schedule like this:

datasource_id (collection number) Month and Year

24 July 2006
(first collection)

64 May 2007

125 May 2008

169 May 2009

219 May 2010

266 May 2011

307 May 2012

382 June 2013

12987 May 2014
(final collection)

We will run the last query shown above, once for each of the nine collections,
generating nine different edge lists. This work has been done for you, and the
datafiles are available on the GitHub link for this book at https://github.com/
megansquire/masteringDM/tree/master/ch4/data.

Now that we have our edgelist files, we can read them into NetworkX and begin to
understand the structure of each version of the network, and compare the evolution
of the network over time.

Understanding our data as a network
We have transformed what was once just a list of developers and projects into
network edge lists that can be understood as an evolving social network. In
this section, we will learn as much as we can about this social network of Ruby
developers, and we will use the NetworkX library to help us out.

https://github.com/megansquire/masteringDM/tree/master/ch4/data
https://github.com/megansquire/masteringDM/tree/master/ch4/data

Chapter 4

[113]

If you remember, in Chapter 1, Expanding Your Data Mining Toolbox we installed the
NetworkX library into our Anaconda Python environment, so these libraries should
already be ready and available for you at this point. However, if you have not done
that step, take a moment and revisit that section so you can be ready to go with
NetworkX. Or, if you installed NetworkX but it has been a while since you checked
to see whether your version is current, you can always open a console in Anaconda
and type:

pip install networkx --upgrade

This command will ensure that you have the latest version of NetworkX. To get
comfortable with the features of NetworkX, we will use the first and smallest of our
network data sets, the one which we named edgelist24.csv and which holds data
from July 2006. After we get a sense of what we can do with the program, we will
work on evaluating the larger, newer networks.

Generating simple network metrics
As we saw in the preceding section, when I am working with a brand new database,
the first thing I like to do is run a few simple queries, such as counts, so I can get
a sense of the database and what is in it. Similarly, when faced with a brand new
social network, the first thing we are going to want to do with it is calculate a few
simple metrics, such as finding out how big the network is, what it looks like, what
its structure is, and which nodes are most important or interesting. The code for
this section is available on the GitHub site for this book, at https://github.com/
megansquire/masteringDM/tree/master/ch4.

In Anaconda, open a new file and import the NetworkX package and one other
library that will allow us to generate these basic metrics, as follows:

import networkx as nx
import operator

Then, we will read in our smallest edgelist file, and store it as a graph variable.
My edgelists were stored in a data | directory inside my working directory,
as shown here:

g = nx.read_weighted_edgelist('data/edgelist24.csv')

Next, we can generate a Python dictionary where the element is a node and
its degree:

degree = nx.degree(g)

https://github.com/megansquire/masteringDM/tree/master/ch4
https://github.com/megansquire/masteringDM/tree/master/ch4

Network Analysis

[114]

Now we can calculate some basic facts about the network, such as the number of
nodes, number of edges in the network, the smallest degree, and largest degree:

numNodes = nx.number_of_nodes(g)
numEdges = nx.number_of_edges(g)
minDegree = min(degree.values())
maxDegree = max(degree.values())

print('numNodes:', numNodes)
print('numEdges:', numEdges)
print('minDegree:', minDegree)
print('maxDegree:', maxDegree)

The output for this step looks like this:

numNodes: 719
numEdges: 1519
minDegree: 1
maxDegree: 30

To interpret these results, we can say that we have 719 nodes in the network,
and 1519 edges or links between those nodes. The smallest degree is 1 and the
largest degree is 30. To learn more about these high-degree nodes, we can sort
the degree dictionary by highest degrees and print out the top ten nodes with the
highest degrees:

degreeSorted = sorted(degree.items(), key=operator.itemgetter(1),
reverse=True)
print(degreeSorted[0:9])

The result is a sorted list, as follows:

[('rich', 30), ('curthibbs', 28), ('chadfowler', 21), ('kapheine',
20), ('mneumann', 19), ('lrz', 19), ('zenspider', 18), ('karlinfox',
18), ('cmcmahon', 17)]

This tells us that the user called rich is the highest degree individual in this network.
Indeed, that makes a lot of sense, especially if we know that Rich Kilmer was the
founder of RubyForge, and this is his profile!

If we are curious what the network looks like, we can print it out with this
simple code:

nx.draw(g)

Chapter 4

[115]

This yields a picture of the network, shown in Figure 22:

Figure 22. Basic network drawing for collection #24 (July 2006)

The most obvious thing about this network diagram is that it is very crowded and
hard to read. The edges are nearly impossible to see, but nonetheless some structure
is apparent in that there are many unconnected clusters of users. Some of the clusters
are large, and some are small.

In the next few pages, we will take various steps to make the network diagram more
meaningful and more readable, but in the meantime, my version of Anaconda has a
few controls that will let us zoom in to inspect portions of the drawing more closely.
To do this, use your mouse to select the Zoom tool (as shown in Figure 23), and then
draw a rectangle around the portion of the diagram to inspect:

Figure 23. The zoom tool can help us see parts of the network more clearly

Network Analysis

[116]

I chose to zoom in on a few of the uppermost nodes in the outer ring, and Figure 24
shows what I see now:

Figure 24. A zoomed-in view of some of the smaller pieces of our network

Playing with the parameters of a network
The network we drew previously is accurate, but it is not very readable. How can we
make the network easier to understand and more effective, visually?

One way we can do this is to make the network more readable by reducing its size.
To do so, we can remove nodes that only have one connection, which are called
pendant nodes. This will shrink the size of the drawing. If we do not like the results,
we can always bring the pendant nodes back.

First, make a copy of our graph variable, and for each node, if the degree is one or
less, remove that node from the network. The code for this routine is shown below,
or you can download it from https://github.com/megansquire/masteringDM/
blob/master/ch4/basicNetworkMetrics2.py:

g = nx.read_weighted_edgelist('data/edgelist24.csv')
degree = nx.degree(g)
g2 = g.copy()
d2 = nx.degree(g2)
for n in g2.nodes():
 if d2[n] <= 1:
 g2.remove_node(n)

https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics2.py
https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics2.py

Chapter 4

[117]

How has that action affected the number of nodes and edges in our network? We can
print out the sizes of both and see that they are smaller:

g2numNodes = nx.number_of_nodes(g2)
g2numEdges = nx.number_of_edges(g2)
print('g2numNodes:', g2numNodes)
print('g2numEdges:', g2numEdges)

In fact, the results indicate that the network is about half as big now, in terms
of nodes:

g2numNodes: 476
g2numEdges: 1370

Another way we can add meaning to the drawing and make it more effective is to
fiddle with the nodes themselves. Can we make the less important ones smaller?
Here we add some parameters to the draw() function to scale the size of the node
to its degree. In this scheme, high-degree nodes will be drawn bigger on screen:

nx.draw(g2, node_size=[v * 10 for v in d2.values()])

The result is shown in Figure 25:

Figure 25. This version of the network shows only high degree nodes with no pendants,
and the size of the node is scaled to its degree

Network Analysis

[118]

Once again we can use the Zoom tool if we want to inspect areas more closely.
When I do that, I see a few subgraphs that are large and highly connected, and
I also see many graphs that are small and disconnected from the main network.

Analyzing subgraphs
What if, instead of trying to reduce the size of the network as shown previously,
we wanted to investigate subgraphs? Here we show how to find out if the network
is fully connected, and how to find the biggest subgraphs to look at. This code is
available at https://github.com/megansquire/masteringDM/blob/master/ch4/
basicNetworkMetrics3.py.

To find out whether our original graph (called g) is fully connected, we can run:

print(nx.is_connected(g))

This yields False as the answer, which we already suspected from using our Zoom
tool on the network. We saw many small subgraphs of two or three nodes, so we
knew that it was definitely not fully connected. To see how many subgraphs are
actually in this network, we can run:

print(nx.number_connected_components(g))

Here we see that there are 154 separate graphs. Which are the most interesting ones
to study? We can pull out each of these connected component subgraphs and sort
them by the number of nodes in them. The largest component subgraphs might be
interesting to study, so here we print the number of nodes in the five largest:

graphs = list(nx.connected_component_subgraphs(g))
graphsSorted = sorted(graphs, key=len, reverse=True)
for graph in graphsSorted[0:5]:
 print("num nodes:",nx.number_of_nodes(graph))

This yields the following result:

num nodes: 235
num nodes: 21
num nodes: 21
num nodes: 18
num nodes: 15

We now see that there is one giant connected network of 235 nodes, and then
several smaller ones. If we are interested in smaller subgraphs, we can adjust the
number of connected component subgraphs that we show by changing the n in the
graphSorted[0:n] line.

https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics3.py
https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics3.py

Chapter 4

[119]

At this point, we can also print out the degree for each component subgraph inside
the for loop if we are interested in its members and how well connected they are.
This code below will do the trick; however, be aware that it does print out a lot of
information, which we will show more effectively in a moment:

 graphDegree = nx.degree(graph)
 print("degree:",graphDegree)

For the 18-node subgraph, the results look like this:

num nodes: 18
degree: {'hisnice': 3, 'shen': 3, 'erikdoe': 8, 'demetriusnunes':
2, 'christkv': 3, 'objo': 11, 'obie': 10, 'tirsen': 11, 'bjanakir':
8, 'mlee': 3, 'cowboyd': 8, 'stillflame': 1, 'duelin_markers': 3,
'sl4mmy': 8, 'asong': 3, 'stellsmi': 8, 'cvillela': 2, 'ged': 9}

What we might like to do is print out a drawing of each of these subgraphs
separately, and since many of these graphs are a more manageable size, we can
add text labels for the nodes. To do this, we will add a line to include the plotting
package matplotlib at the top of our program:

import matplotlib.pyplot as plt

Then we will modify our for loop as shown below. We will add a simple loop
counter, which we will use to create two new files saved to disk each time we go
through the loop. One file will be for a subgraph drawing without name labels,
and one will be for a subgraph drawing with name labels:

i = 0;
for graph in graphsSorted[0:5]:
 i += 1
 print("num nodes in graph",i,":",nx.number_of_nodes(graph))
 graphDegree = nx.degree(graph)

 # draw one set with name labels
 f1 = plt.figure()
 nx.draw(graph,
 node_size=[v * 10 for v in graphDegree.values()],
 with_labels=True,
 font_size=8)
 filename1 = 'graphLabels'+ str(i) + '.png'
 f1.savefig(filename1)

Network Analysis

[120]

 # draw one set without name labels
 f2 = plt.figure()
 nx.draw(graph,
 node_size=[v * 10 for v in graphDegree.values()])
 filename2 = 'graph'+ str(i) + '.png'
 f2.savefig(filename2)

One of the labeled subgraph component networks is shown in Figure 26. This is
network #4, the 18-node network:

Figure 26. Subgraph #4 with labels

Remember that you can always use your Zoom tool to explore particular interesting
pieces of the subgraphs. Also, since you now have copies of the network with and
without labels, you can look at whichever one gives you more information or is
easier to read.

Chapter 4

[121]

Analyzing cliques and centrality in the subgraphs
In this section, we tackle the problem of how to find the most interesting nodes in
a subgraph. If we remember our earlier discussion of centrality and cliques, we
know that some nodes are positioned such that they serve as hubs for the flow of
information through a network. Or in the case of a RubyForge network, these highly
central nodes may serve as important bridges between otherwise disconnected work
groups. The code for this section is available at https://github.com/megansquire/
masteringDM/blob/master/ch4/basicNetworkMetrics4.py, and here we walk
through step by step how we identify the cliques in a subgraph and the bridge
nodes between them.

Inside the same for loop as we used in the previous section, we can use the
find_cliques() function to find nodes that are tightly tied to each other. We can
also use the eigenvector_centrality_numpy() functions to locate the most central
nodes, as defined by the eigenvector closeness metric that we studied earlier.

The new for loop looks like this:

i = 0
for graph in graphsSorted[0:5]:
 i += 1
 print(nx.number_of_nodes(graph))
 graphDegree = nx.degree(graph)

 # find cliques
 cliques = list(nx.find_cliques(graph))
 print('cliques for graph' + str(i))
 print(cliques)

 # calculate eigenvector centrality
 ev = nx.eigenvector_centrality_numpy(graph)
 evSorted = sorted(ev.items(), key=operator.itemgetter(1),
reverse=True)
 for key,val in evSorted:
 print(key,str(round(val,2)))

https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics4.py
https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics4.py

Network Analysis

[122]

This prints the results for all five of the biggest subgraphs. Here we will look more
closely at the results for subgraph #4, our 18-node component. The cliques and
eigenvector centralities are shown as follows:

cliques for graph4
[['shen', 'tirsen', 'mlee', 'asong'], ['demetriusnunes', 'obie',
'cvillela'], ['objo', 'hisnice', 'duelin_markers', 'christkv'],
['objo', 'erikdoe', 'bjanakir', 'tirsen', 'cowboyd', 'stellsmi',
'obie', 'ged', 'sl4mmy'], ['stillflame', 'ged']]
obie 0.36
ged 0.35
tirsen 0.34
objo 0.33
erikdoe 0.31
stellsmi 0.31
bjanakir 0.31
cowboyd 0.31
sl4mmy 0.31
shen 0.1
mlee 0.06
asong 0.06
christkv 0.05
hisnice 0.05
duelin_markers 0.05
demetriusnunes 0.05
cvillela 0.05
stillflame 0.04

How do we interpret these numbers? To show how the cliques overlay on top of
the network, I have taken the original diagram for subgraph #4 and superimposed
circles for each clique on it in Figure 27:

Chapter 4

[123]

Figure 27. Subgraph #4 shown with its five cliques circled

To help describe the eigenvector centralities, the same subgraph component diagram
is shown in Figure 28 with the five most central players labeled in rank order:

Figure 28. Subgraph #4 shown with top five eigenvector closeness nodes in rank order

Network Analysis

[124]

The nodes ranked 1-4 are the most central because they all link to each other, and
to the other items in the main cluster. Nodes in the box labeled 5 are all tied with
each other. The nodes in the box all have eigenvalue centrality values of .31.
These five nodes are all equally linked to the important nodes 1-4, so there are
no big surprises there.

Looking for change over time
To find change over time, suppose we completed the previous procedures on all the
other collections of RubyForge data, drawing networks for each of them. We might
expect to find that some subgraphs (or cliques within a subgraph) have grown to
include both the original members and new members, and that each subgraph just
gets larger and larger. In fact, in this particular data set, we do find evidence of that
sort of growth, but we also find a lot of shrinkage as community members leave. In
some cases, the community members that leave are the most central nodes!

One useful way that we can arrange to see some of the evolution of our network over
time is to concentrate on one particular interesting subgraph, and watch that piece
grow and shift over time. In other words, in talking about centrality, we focused
on subgraph #4, so perhaps we are curious about what happens to that component
network after 2006. We want to show whether this subgraph #4 ended up joining
onto any other component graph to create a larger one, whether any new nodes
joined it, or whether any nodes left the subgraph.

First let's identify nodes that were in the 2006 subgraph and show where they are
in the 2007 graph. Are these people still connected to the same collaborators as they
were in 2006?

Recall that there were 18 nodes in the Figure 26-28 graphs. By 2007 (collection
number 64), six of those nodes have dropped out of the network entirely. The
following code redraws the new network, with the remaining 12 nodes shown in
green. For visibility's sake, we also show these 12 nodes with a larger diameter.
This code is available at https://github.com/megansquire/masteringDM/blob/
master/ch4/basicNetworkMetrics5.py:

import networkx as nx
g = nx.read_weighted_edgelist('data/edgelist64.csv')
graphDegree = nx.degree(g)
pos=nx.spring_layout(g)
nx.draw(g,
 pos,
 node_size=[v * 10 for v in graphDegree.values()],
 with_labels=False,
 font_size=8)

https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics5.py
https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics5.py

Chapter 4

[125]

nx.draw_networkx_nodes(g,
 pos,
 nodelist=['tirsen',
 'shen',
 'mlee',
 'ged',
 'objo',
 'stellsmi',
 'cowboyd',
 'asong',
 'christkv',
 'hisnice',
 'duelin_markers',
 'stillflame'],
 node_size=300,
 node_color='g')

The result of running this code is shown in Figure 29:

Figure 29. The 12 remaining nodes from subgraph #4 in July 2006 shown
as they appear in the May 2007 network

Network Analysis

[126]

Right away we can see that our formerly connected subgraph is no longer connected
at all. It is split across two component subgraphs, and even though there appear
to be three cliques still attached in the main component in the middle, they do not
appear to be closely connected to each other anymore either!

We can zoom in to look at close-ups of these portions of the network to confirm this,
as Figure 30 shows:

Figure 30. The user called tirsen still has a clique, but in 2007 it is no longer connected
in the same way that it was in 2006

Chapter 4

[127]

The clique headed by the user tirsen in 2006 still exists, but it is no longer connected
in the same way. Highly-connected users obie and bjanakir have left, and tirsen's
relationship with objo has also broken off. The tirsen clique is now connected to the
main subgraph via a new connection to a user called aslak_hellesoy. That user was in
the largest 2006 component subgraph (subgraph #1).

The 2006 clique headed by objo still exists, and still contains duellin_markers, hisnice,
and christkv; however, it is no longer connected to any other nodes, and actually has
become its own component subgraph of just those four nodes, as Figure 31 shows:

Figure 31. User objo still heads a clique, but it is no longer connected in the same way

Network Analysis

[128]

The relationship between users stillflame and ged still exists; however, ged is no longer
connected to the same people as in 2006, as Figure 32 shows:

Figure 32. User ged is still connected to stillflame, but not to the rest of the subgraph from 2006

A similar thing happened to the remaining members of the ['objo', 'erikdoe',
'bjanakir', 'tirsen', 'cowboyd', 'stellsmi', 'obie', 'ged', 'sl4mmy']
clique. With four members of this clique dropped, and ties to tirsen and ged severed,
only cowboyd and stellsmi are still connected from this clique.

The 2006 clique containing ['demetriusnunes', 'obie', 'cvillela'] has been
completely removed from the 2007 network; none of these people exist any more.

Showing social network change over time can be challenging if there is a risk
that nodes will disappear entirely, especially if those nodes are very central to
the network.

Chapter 4

[129]

For a different perspective, we will now learn how to center our study on a single
node from the 2006 subgraph, creating a structure called an ego network. We will
use this ego network as a way of reducing the number of nodes, so we can focus on
the change in one particular part of the network.

We might surmise that building an ego network out of the most well-connected node
in a component subgraph would be a smart move. This strategy would ensure that
we see as many connected nodes as possible. However, recall that in the 2006 version
of the network, in subgraph #4 the most central node (using eigenvector centrality)
was obie, with a .36 score, and in 2007 obie is no longer in the network at all. Users
ged, tirsen, and objo are still in the network though. The following code builds a graph
using the 2007 data (edgelist64.csv) but with the focus on user tirsen. We set a
range limit of showing any node that is connected up to three hops away from tirsen.
This code is available at https://github.com/megansquire/masteringDM/blob/
master/ch4/basicNetworkMetrics6.py:

import networkx as nx
g = nx.read_weighted_edgelist('data/edgelist64.csv')
graphs = list(nx.connected_component_subgraphs(g))
conncomp = graphs[0]
ego = nx.Graph(nx.ego_graph(conncomp, 'tirsen', radius=3))
graphDegree = nx.degree(ego)
pos=nx.spring_layout(ego)
nx.draw(ego,
 pos,
 node_size=[v * 10 for v in graphDegree.values()],
 with_labels=True,
 font_size=8)
nx.draw_networkx_nodes(ego,
 pos,
 nodelist=['tirsen'],
 node_size=300,
 node_color='g')

https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics6.py
https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics6.py

Network Analysis

[130]

Figure 33 shows the ego network that is generated, showing tirsen in green,
along with all nodes connected by three or fewer edges:

Figure 33. The ego network for user tirsen in May 2007

What has happened to tirsen and the associated clique by 2013? By 2013, the network
has grown a lot. There are now dozens of subgraphs that have hundreds if not
thousands of nodes in each. We can modify our code a bit to find the component
subgraph that has tirsen in it. To do so, we simply loop through the component
subgraphs until we find the one with that user in it, then print out that graph. This
code is available at https://github.com/megansquire/masteringDM/blob/
master/ch4/basicNetworkMetrics7.py:

import networkx as nx
g = nx.read_weighted_edgelist('data/edgelist12987.csv')
graphs = list(nx.connected_component_subgraphs(g))
for graph in graphs:

https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics7.py
https://github.com/megansquire/masteringDM/blob/master/ch4/basicNetworkMetrics7.py

Chapter 4

[131]

 if graph.has_node('tirsen'):
 graphDegree = nx.degree(graph)
 pos=nx.spring_layout(graph)
 nx.draw(graph,
 pos,
 node_size=[v * 10 for v in graphDegree.values()],
 with_labels=False,
 font_size=8)
 nx.draw_networkx_nodes(graph,
 pos,
 nodelist=['tirsen'],
 node_size=300,
 node_color='g')

The resulting network is quite dense, as shown in Figure 34, but we have colored our
node of interest (tirsen) in green and the rest of the component nodes in red:

Figure 34. The user tirsen is one of thousands of nodes in a dense subgraph component

Network Analysis

[132]

If we decide to draw just tirsen's ego network with a radius of 1 or 2, we just modify
that if statement a little as follows:

if graph.has_node('tirsen'):
 ego = nx.Graph(nx.ego_graph(graph, 'tirsen', radius=2))
 graphDegree = nx.degree(ego)

Then we can point to the ego variable instead of graph in the rest of the code.
The 1-radius and 2-radius ego networks are shown in Figures 35 and 36:

Figure 35. The user tirsen shown with a 1-radius ego graph in the 2013 collection

Chapter 4

[133]

Figure 35. The user tirsen shown with a 2-radius ego graph in the 2013 collection

We knew the RubyForge developer network had grown and changed a lot, but to see
it visually in terms of a single developer can be quite instructive. If we construct a
1-radius ego network once for each data collection 2006-2013, we can take snapshots
of how that piece of the network grows and changes:

Figure 37. 2006, 2007, and 2009 examples of tirsen's ego network (1-radius)

Network Analysis

[134]

Figure 37 shows three snapshots of the tirsen ego network over time. Even though
we have nine snapshots, I decided to omit some of the later snapshot drawings
because after a while, tirsen's network did not really change its appearance much,
only the degree of the connected nodes got bigger. Between 2006 and 2007, the ego
network got smaller, as some key players dropped out of the system altogether. By
the following year, however, the network shows that this developer had rejoined a
group that was very highly connected. Throughout this process, the original clique
with users shen, mlee, and asong stays intact.

Summary
In this chapter, we learned the basics of network analysis and graph theory,
including how to measure a network and describe its properties. We learned why
the degree, distance, and centrality of a network are important. We also investigated
the various graph data formats that are used in network analysis, and considered
which ones are most effective for which types of graphs. Finally, we implemented a
real-world project where we build networks of software developers that had worked
together in the RubyForge ecosystem. We learned various techniques for exploring
the networks, including how to build smaller and more detailed networks, and how
to explore component subgraphs. We discovered a few techniques for focusing on a
single node and building out ego networks, and eventually we implemented those
ego networks into a view of a component and its change over time.

In the next few chapters, we will turn our attention to text mining. Specifically, in
Chapter 5, Sentiment Analysis in Text, we will learn how to perform sentiment analysis
on text. Sentiment analysis attempts to identify the mood or feeling found in a text
or a collection of texts. Now that we understand the social structure of a group of
developers, can we learn how they talk and how they feel?

[135]

Sentiment Analysis in Text
One of the most powerful skills we can master in data mining is learning how to
deal with large amounts of unstructured or semi-structured textual data. Textual
data, sometimes just called text, is important because it is everywhere, and because
it conveys so much detail about the human experience in so many formats: books,
news media, journals, government reports, case law, e-mail messages, chat logs,
product reviews, and so on. We also find text data in places we might not expect.
For example, when the spoken word is written down it also becomes text, as do song
lyrics and video transcripts. When we look at the code that makes up web pages
and computer programs, we find text. When we need a computer to leave a record
of what activities have transpired, we have it create a text log file. When we need a
common, universally interoperable medium for communicating between devices,
we often use plain text to do so.

Over the next few chapters, we will be exploring some of the ways that we can
find patterns in text data, and in particular, we will look for patterns in natural
human language text. First, in this chapter, we will learn how to detect the opinions
or sentiments expressed in a text. This task, called sentiment analysis, helps us
understand texts better by discerning the mood or tone of the human who wrote
the text. We will learn:

• What sentiment analysis is, and why we might care about it
• How to understand some of the most common techniques for finding the

sentiment in a text, and what software tools are available to implement
these techniques

• How to apply sentiment analysis to two real-world collections of text

Sentiment Analysis in Text

[136]

What is sentiment analysis?
Many texts contain language that can be described as emotional. Whether to
express the feelings of the writer, or to inspire a particular feeling in the reader,
human language can convey anger, disappointment, disgust, joy, happiness,
amusement, and so on. Discovering this type of emotional content can tell us a great
deal about the writer, including what the writer's intention was and the expected
response of the reader. Even noticing the absence of emotional content in a text
can be interesting. Once we understand how to discern the emotional content of
a text, or lack thereof, we can compare texts and writers to each other in terms of
the emotional content, we can compare emotional content over time, and we can
sometimes even predict how a reader will respond to a particular text.

Analyzing a text for its emotional content can take many forms. In this chapter,
we will be primarily concerned with sentiment analysis, sometimes called opinion
mining. Sentiment analysis looks for the subjective feelings presented in text by the
writer, and attempts to label a text accordingly.

Common application areas for sentiment mining are product reviews (how do
shoppers feel about this product?), and political pulse-taking (how do the voters feel
about this candidate's position on an issue?). We can extract these feelings from texts of
different lengths, for example from news articles, movie reviews, product reviews,
tweets, e-mails, and text messages. Many sentiment analysis applications attempt
to create a summary, or tally, of feelings, described in terms of polarity, such as
positive/negative or like/dislike. Examples of summarized sentiment described in
terms of polarity are:

• 60% of tweets are positive about the candidate's speech on Issue X
• 9 out of 10 reviews of this movie are negative
• The users of chat room A used more negative language than the users of chat

room B when discussing Issue X

Some of the difficulties we have with sentiment analysis are the same ones that
humans have in communicating with each other. People use words differently, and
often in unexpected ways. The meaning of words can change in subtle ways, which
is both a blessing and a curse for communication. Words, sentences, and entire
documents can certainly express multiple complex feelings, sometimes contradicting
each other or negating and confirming each other in the same sentence. Training a
computer program to detect the subtleties of language is a tricky task indeed.

Chapter 5

[137]

There is a growing body of work describing the research and theory of sentiment
analysis, but much of it is found in the academic literature and is quite dense.
However, if you need more information on any of the concepts in this chapter,
two of the classic references that I would recommend are Bo Pang and Lillian Lee's
2008 paper called Opinion mining and sentiment analysis (available on the second
author's website at http://www.cs.cornell.edu/home/llee/omsa/omsa.pdf) and
Bing Liu's 2012 paper called Sentiment analysis and opinion mining (available at the
author's site at https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-
OpinionMining.pdf). Both of these papers are considered classics in the field, and
have been cited hundreds of times each. As survey papers, they both provide many
links to other papers upon which this research field is based.

The basics of sentiment analysis
To begin a sentiment mining project, we first need to understand how opinions are
structured in text so we can find the best way to train the computer to deal with
them. Opinion mining and sentiment analysis are considered sub-problems of the
much larger field of natural language processing (NLP), and as such, are subject to
many of the same unsolved issues in trying to account for all the quirks of human
communication. However, sentiment mining is restricted in an important way,
namely that its goal is not to understand the statements made by people, but rather
to just figure out their tone. As we will see later, any one strategy for finding the
sentiment of any given text may not be perfect, but this may not matter much if the
amount of data is high and the stakes are comparatively low.

The structure of an opinion
Each opinion typically has a target. If we read the sentence, "This was the worst movie
I ever saw," the target of that opinion is the movie. In the sentiment analysis literature,
the opinion target is sometimes called an entity. Each entity present in an opinion
can also have components, or sub-parts, and attributes, or descriptors for the entity
or component. If we see an opinion like "The amateurish ending of the plot was the worst
part of the movie," the overall target of the opinion is still the movie, but we notice that
there are additional components: the movie has a plot, which itself had an ending,
which was described as being amateurish. These components and attributes are
generically called aspects of the opinion.

http://www.cs.cornell.edu/home/llee/omsa/omsa.pdf
https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf
https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf

Sentiment Analysis in Text

[138]

The writer may express an opinion about entities, components, and aspects either
implicitly or explicitly. The following sentences demonstrate the difference in an
explicit and implicit expression of an opinion about the entity, movie:

• Case 1: "That was the worst movie I ever saw"
• Case 2: "Well that movie was a total waste of $10"

In the first case, we identified an entity, movie, and the sentence clearly describes that
entity as the worst. In the second case, a negative opinion can be inferred from the
statement that the movie was a waste of money. Understanding that this is a negative
opinion requires understanding that movies cost $10, and that this person views
wasting money as a bad thing. Teaching a computer to understand implicit opinions
can be difficult. As we will find later, supervised machine learning techniques based
on pre-classified training samples can come in handy here.

Sarcastic, idiomatic, and conditional statements are also challenges in automatically
discerning the sentiment in an opinion. Consider statements like the following:

• "You should go see The Little Mermaid if you have nothing better to do
on a Saturday night, but you might be better off washing your hair or re-
organizing your sock drawer"

• "Has anyone else used the The Little Mermaid script to line a bird cage?"

These statements make sense if you know that washing your hair or re-organizing
your sock drawer are considered boring activities, and lining a bird cage is what you
do with worthless papers. The conditional statement "you should go" sounds positive,
but is immediately offset by the "but" in the next clause. Sometimes questions are
assumed to be neutral, in that they are designed to elicit information, but in this case,
the second question is definitely meant to be negative.

Another wrinkle we must account for in sentiment analysis is when opinions are
comparative in nature. A comparative opinion is one that tries to distinguish two
or more items based on their shared characteristics. Consider the following
comparative opinions:

• Statement 1: "The songs in Beauty and the Beast were better than
The Little Mermaid"

• Statement 2: "Beauty and the Beast and The Little Mermaid both had
some good music"

• Statement 3: "The Little Mermaid has the best soundtrack of any
animated film"

• Statement 4: "Beauty and the Beast was funnier, but The Little Mermaid had
better music"

Chapter 5

[139]

Statement 1 is a direct comparison of the two movies in terms of the songs present
in each, and one movie is considered superior to the other. Notice that the reviewer
stops short of saying that the songs were good or bad, rather the two sets of songs
are simply compared to each other and one came out on top.

Statement 2 compares the two movies to each other on the same "music" aspect,
and finds that they are equally good.

Statement 3 finds that one movie is better than all other movies on the
"soundtrack" aspect.

Statement 4 compares the two entities on two different aspects.

Both comparisons and implicit opinions are difficult to account for in sentiment
analysis work. If we read a sentence like "The ugly fact is that Beauty and the Beast is
nothing like the festering boil that was The Little Mermaid and I would really like to
see it again three or four times," we quickly determine that many of the words in the
sentence are negative; however the comparison and implicit opinion both indicate
that this person really liked the movie, Beauty and the Beast. Therefore, comparisons,
implicit language, and idioms are very important for us to consider because they
are common, and if we find ways to handle them, our sentiment mining will be
more accurate.

Document-level and sentence-level analysis
We can analyze opinions either at a document level or at a sentence level. At the
document level, for example in a movie review or a chat log, the sentiment analysis
task is to summarize an overall feeling about the item in question. This could include
aggregating sentiment values, for example aggregating the feelings of multiple
people or multiple sentences by the same person. Is this chat room a positive, happy
place or is it a negative, toxic environment? Is this speaker in the chat room generally
positive or mostly negative? In this movie review, did this writer generally like the
movie or is the review mostly negative?

Some sentiment analysis research focuses on first identifying and removing
non-subjective sentences, since those may not be relevant to the overall sentiment
determination. This task of determining whether a sentence has enough subjective
material in it to be considered an opinion is called subjectivity classification,
and this is a whole subfield of research. In this chapter, we will focus mostly on
document-level sentiment analysis.

Sentiment Analysis in Text

[140]

Important features of opinions
To perform a sentiment analysis on a text, we will need to consider the various
features of the text that imply its sentiment. Typically, the most important feature
will be the terms used in the text. Terms include words and phrases, but could
also include punctuation, emojis, and emoticons as those can also imply mood or
feeling. Words that we determine indicate positive or negative sentiment are called
sentiment words, or opinion words. Examples of sentiment words are good, bad, hate,
gross, garbage, love, adore, and so on. Lately, in social media text, emojis are becoming
an important term type in their own right. Whether a term – and especially a
sentiment word – is used in the text, and how much it is used, is the most important
feature we can use to determine sentiment.

We should keep in mind that not every domain will treat the same words in the same
way, and words that imply strong sentiment in one domain may have no meaning in
another domain. A common example in the literature is the word unpredictable which,
when used in a movie review could be a positive descriptor (unpredictable plot), but
when used in a car review could be a negative comment (unpredictable steering).

Aside from sentiment words, other features of a text that can indicate
sentiment include:

• The rarity of a word used. Some research has shown that a rare word, or
Hapax legomenon, abbreviated hapax, could be an indicator of sentiment
if it is used for emphasis or as a marker for subjectivity.

• The position of a word in the text. Typically the words in a text are treated
as a bag of words, with no regard to their positions. However, some studies
have shown that whether a word appears with other words (as a two- or
three-word phrase, for example) or in certain positions in a sentence could
change its sentiment.

• The presence of negation words and other so-called opinion shifters. The
impact of the simple addition of not can be significant and obvious, as we
see in the difference between I do like this movie and I do not like this movie.
There are many other more subtle words and phrases that are used to shift
an opinion, for example, This movie could have a better plot and the dialogue is
hardly intelligent. The addition of could have and hardly change the sentiment
in important ways.

• The parts of speech present in a text. Some studies have found that the
presence of adjectives and adverbs is indicative of subjectivity in text, and
thus might be relevant for finding text that is particularly opinionated.

Chapter 5

[141]

Sentiment analysis algorithms
Supposing we wanted to broadly classify the sentiment of a text as positive or
negative, we may choose to model the opinion mining task as a classification problem,
such as could be solved with supervised machine learning techniques like a Naïve
Bayes classifier (NBC). Given a set of positive text features and negative text features,
an NBC strategy will allow us to take a new text and classify it as being more positive
or more negative given the observations about other similar texts we have made
in the past. The machine learning literature is replete with examples of supervised
classification, and it is a very reliable approach for certain types of problems.

The trick of course with this type of classification scheme is being able to count
on the observations we have made in the past as reliable indicators of future
observations. These training examples are critically important and are the basis for
the success of the entire scheme. After all, if we choose training examples that are too
generic or irrelevant to our domain, the system will not be able to correctly classify
future cases. On the other hand, if we train a system too closely, we risk overfitting,
or generating a classifier that only works with one specific set of data.

In the case of sentiment analysis of movie reviews for example, suppose the training
examples are 1,000 old movie reviews that have been pre-divided roughly equal
groups of positive and negative reviews. An NBC approach would learn which
features were most important about these original reviews and look for these same
features in the new reviews, giving each new review a percentage chance of being
positive or negative. Some feature engineering is usually expected as well with a
supervised classification scheme, for example, directing the classifier to take into
account the particular language of the domain in question, or to pay more attention
to parts of speech or word positions or frequency of certain words or phrases.
Earlier we mentioned that the word unpredictable might be a positive word in
movie reviews, so we could explicitly engineer that feature accordingly.

Some of the general-purpose tools available for sentiment mining already have the
classification scheme baked in, so they are ready for us to feed in sentences. In our
example at the end of this chapter, we use some of the built-in sentiment classifiers
that have been pre-trained with positive and negative words. In the next section, we
will take a look at some of these pre-collected and pre-classified sentiment collections.

Sentiment Analysis in Text

[142]

General-purpose data collections
The sentiment classification systems described previously rely on training examples
in order to learn what kind of text is positive or negative. These training examples
can be manually classified (a task sometimes called coding) by humans into positive
and negative, or whatever the intended classes are. Once coded, the training set
can be reused over and over again to train other classifiers. Therefore, this training
process and the resulting classified word lists are very important to the overall
sentiment analysis process as they save a lot of time and also let us compare results
to each other. But where do the training examples come from? There are many lists
of sentiment-classified words online, and even some canned datasets that we can
use to test a classifier. Three of the more commonly used word lists, or lexicons,
are described here.

Hu and Liu's sentiment analysis lexicon
Minqing Hu and Bing Liu's list of 6,800 words is one of the first sentiment lexicons
that was made available for public use. The lexicon is still available on Liu's
university website at https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.
html#lexicon. This site also has a handful of datasets of product reviews that can
be used to test your classifier. When uncompressed from RAR format, the word list
is divided into two text files, positive.txt and negative.txt. Each file contains
a simple list of words. There are about 4,800 negative words provided and the
remaining 2,000 words appear in the positive list. The first 10 positive words are
shown in the following example:

a+
abound
abounds
abundance
abundant
accessable
accessible
acclaim
acclaimed
acclamation

The authors point out that they have included many words that are commonly
misspelled on social media, for example the misspelling accessable appears in the
preceding list for this reason. In contrast to the next two lexicon samples, there is no
scale or ranking for the sentiment of each word. The words are stated to be either
positive or negative, without gradients or comparisons to each other.

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon

Chapter 5

[143]

SentiWordNet
SentiWordNet is another list of words that have been coded as positive or negative.
The file is available for download, and as of writing this is a gzipped file of about 13
MB. It is available at: http://sentiwordnet.isti.cnr.it. There are approximately
117,000 words, scores, and definitions (called glosses) in the file.

The header row and first two entries look like this:

POS ID PosScore NegScore SynsetTerms Gloss

a 00001740 0.125 0 able#1 (usually followed by `to') having the
necessary means or skill or know-how or authority to do something;
"able to swim"; "she was able to program her computer"; "we were at
last able to buy a car"; "able to get a grant for the project"

a 00002098 0 0.75 unable#1 (usually followed by `to') not having
the necessary means or skill or know-how; "unable to get to town
without a car"; "unable to obtain funds"

The first word in the file shown previously is able. This word is given a unique
number, 00001740, and is marked a for its POS, or part of speech, which is an
adjective. This word has a positive score of .125 and a negative score of 0. The
second word is unable, hich has a positive score of 0 and a negative score of .75.
The SentiWordNet documentation also explains how to calculate a score for each
the objectivity of each word. The objectivity score is the sum of the positive and
negative scores for a word, subtracted from 1. This score measures how neutral the
word is. Words that have low scores for both positivity and negativity will end up
scoring high on objectivity.

Vader sentiment
The Vader sentiment tool, created by C.J. Hutto and Eric Gilbert at Georgia Tech,
includes a lexicon and many test files. Vader is especially tuned for social media
data, and in particular microblogging data such as tweets. As such, it includes many
emoticons, such as :-), and acronyms, such as lol and wtf. The project is available
on GitHub at https://github.com/cjhutto/vaderSentiment and the specific
lexicon is available inside that project at the following URL: https://github.com/
cjhutto/vaderSentiment/blob/master/vaderSentiment/vader_sentiment_
lexicon.txt.

http://sentiwordnet.isti.cnr.it
https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment/blob/master/vaderSentiment/vader_sentiment_lexicon.txt
https://github.com/cjhutto/vaderSentiment/blob/master/vaderSentiment/vader_sentiment_lexicon.txt
https://github.com/cjhutto/vaderSentiment/blob/master/vaderSentiment/vader_sentiment_lexicon.txt

Sentiment Analysis in Text

[144]

Vader is also one of the built-in classifiers that comes with the Python Natural
Language ToolKit (NLTK) and is therefore found in many sample projects online.
When we look inside the vader_sentiment_lexicon.txt file, we see that a typical
set of lines looks like this:

burdens -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -1, -2, -2]
burdensome -1.8 0.9798 [-1, -1, -3, -2, -1, -2, -2, -1, -4, -1]
bwahaha 0.4 1.0198 [0, 1, 0, 1, 0, 2, -1, -1, 2, 0]
bwahahah 2.5 0.92195 [3, 4, 2, 2, 2, 3, 1, 2, 2, 4]
calm 1.3 0.78102 [1, 1, 0, 1, 2, 3, 2, 1, 1, 1]
calmative 1.1 0.9434 [3, 2, -1, 1, 1, 1, 1, 1, 1, 1]

The word appears first, followed by its mean rating or score, the population standard
deviation (calculated as stdevp), and a bracketed list of the individual ratings of 10
independent scorers. The Vader sentiment documentation explains the scoring:

"Features were rated on a scale from "[–4] Extremely Negative" to "[4] Extremely
Positive", with allowance for "[0] Neutral (or Neither, N/A)".... We kept every
lexical feature that had a non-zero mean rating, and whose standard deviation was
less than 2.5 as determined by the aggregate of ten independent raters."

The result is a list of about 7,500 words, each of which is scored both on polarity,
or whether it is a positive or negative word, along with the sentiment intensity,
or how positive or how negative the word is.

In the next section, we will begin to construct a sentiment analysis application. We
will learn how to use the NLTK Python package and the Vader tool to sentiment
analyze a set of texts. We will walk through a typical sentiment analysis project,
comparing results and various options for improving it.

Sentiment mining application
In this section, we will look at building an application to do sentiment analysis on
text using the NLTK tools. There are several different options for how to direct
NLTK to do sentiment analysis on text, so our experiments with these various
methods will teach us a bit about what is going on inside NLTK and also about
how sentiment analysis works.

You might recall that we installed and tested NLTK in Chapter 1, Expanding Your
Data Mining Toolbox, and we used NLTK for entity matching back in Chapter 3,
Entity Matching, so if you skipped those chapters, you may need to install or upgrade
NLTK now. To do this from within Anaconda, open the Tools menu, select Open a
terminal, and type:

conda upgrade nltk

Chapter 5

[145]

This will fetch all the relevant NLTK packages and upgrade your Anaconda
installation.

Motivating the project
With this housekeeping task finished, we are ready to start thinking about what kind
of sentiment analysis we want to experiment with. Throughout this book, we have
been using data from free, libre, and open source software (FLOSS) development
teams. Here, we will analyze some of their chat archives and e-mails for sentiment.

One nice thing about FLOSS development teams is that most, if not all, of their work
is done in public. That includes posting source code and reporting bugs, but also
most project chat and decision-making communication is done publicly as well.
The reason is that the discussion and decision making that goes into writing and
fixing the software is critical to understanding how the software works, and for
getting new team members up to speed quickly. So, traditionally the communication
channels in FLOSS development have been transparent, just like the code. This
means that e-mail mailing lists are archived and posted publicly, Internet Relay Chat
(IRC) discussion channels are archived and the logs made public, and so on. In fact,
using Twitter or other so-called walled garden social media channels for conducting
important discussions has been discouraged in some projects, as it tends to make
archiving more difficult.

If we are able to collect and analyze the archived communications from some of these
projects, we might be able to answer simple sentiment-oriented questions. Examples
of sentiment-oriented questions would include whether the mood or tone of the
developer-oriented chats differs from the tone observed in the user-oriented chats,
whether some of the team members have a particular positive or negative speech
style, or whether certain days, times, or topics elicit more emotional language. Are
there any differences in the emotional level of developer and user IRC chat?

Data preparation
Our first step in completing such a project will be to construct two giant lists of
sentences, one from a developer chat and one from an associated user chat. For the
sake of running a coherent and manageable test, we will collect these chats from
the same project, and we will limit ourselves to comparing chats from just one
single day, at least for the time being. We will only use chat data from a project
with publicly posted archives of the chat logs.

Sentiment Analysis in Text

[146]

In the Ubuntu project, IRC chat dialogue is archived and available at http://irclogs.
ubuntu.com. From that site, we chose Monday, April 4, 2016 as our target date. On
this day, the #ubuntu-devel developers channel shows 516 lines in the archive file,
including both 503 dialogue messages and 13 system status messages. For comparison,
the channel for general users, known simply as #ubuntu, contains 1,717 lines, of which
84 are system messages and 1,633 are dialogue. The following table summarizes the
differences between these two channels:

Developer Channel General User Channel
URL for text archive http://irclogs.

ubuntu.com/
2016/04/04/%23ubuntu-
devel.txt

http://irclogs.
ubuntu.com/
2016/04/04/%23ubuntu.
txt

Lines in file (2016-04-04) 516 1717
Number of system
messages

13 84

Number of dialogue
messages

503 1633

To begin to analyze the sentiment of these two groups of messages, we first have to
do some rudimentary data cleaning. To see why, consider this snippet of a few lines
from the #ubuntu-devel archive file:

[06:27] <dholbach> good morning
[07:18] <mwhudson> yay https://launchpad.net/ubuntu/+source/docker.
io/1.10.3-0ubuntu4
=== seb128_ is now known as seb128
[09:38] <mardy> Mirv: hi! ping ping :-)
[09:52] <Mirv> mardy: pong pong
[09:52] <mardy> Mirv: red alert :-) Do you think we can get this fixed
by 16.04? bug 1564767

The line that is preceded with === is a system message. These include no real
valuable information for this project, and so we will remove these from the final data
collection. Next, the timestamps are not relevant for our purposes here, and so these
can also be removed. Likewise, the usernames that appear between <> indicate the
speaker of the line, and so these can also be removed.

http://irclogs.ubuntu.com
http://irclogs.ubuntu.com
http://irclogs.ubuntu.com/ 2016/04/04/%23ubuntu-devel.txt
http://irclogs.ubuntu.com/ 2016/04/04/%23ubuntu-devel.txt
http://irclogs.ubuntu.com/ 2016/04/04/%23ubuntu-devel.txt
http://irclogs.ubuntu.com/ 2016/04/04/%23ubuntu-devel.txt
http://irclogs.ubuntu.com/ 2016/04/04/%23ubuntu.txt
http://irclogs.ubuntu.com/ 2016/04/04/%23ubuntu.txt
http://irclogs.ubuntu.com/ 2016/04/04/%23ubuntu.txt
http://irclogs.ubuntu.com/ 2016/04/04/%23ubuntu.txt

Chapter 5

[147]

One convention on IRC is to direct your comments to a particular user by using their
name and a colon, like this line in which the user Mirv is addressing another user
mardy by name:

[09:52] <Mirv> mardy: pong pong

If we were worried that a person had a username like Happy, or Joy, or Ecstasy, we
may give some thought to removing all usernames so as not to unintentionally bias
the sentiment analyzer. However, in analyzing this particular set of IRC logs, I do not
see enough of these types of names to worry. The vast, vast majority of usernames
in the Ubuntu IRC channels are not even words, much less happy or sad words.
One user is called infinity on the #ubuntu-devel channel and another user is called
exalt on the #ubuntu channel. Other than these, the rest of the usernames are not
dictionary words at all.

We can quickly and easily clean these files in a simple text editor or programmer's
editor such as Text Wrangler. In Text Wrangler, the Find | Replace dialogue can
be used with a grep expression to replace all timestamps and name prefixes. For
example, we will want to remove beginnings of lines like this:

[09:52] <Mirv>

By leaving the Replace box empty, matching strings will be replaced with nothing.
The grep string can be entered into Text Wrangler as shown in Figure 1. This regular
expression finds lines that start with the [character and removes everything from
there to the first space following the > character.

Figure 1. Text Wrangler regular expression to remove line prefixes

Sentiment Analysis in Text

[148]

Following the removal of the line prefixes, we also need to remove the system
messages. This can also be accomplished with the grep box in Text Wrangler
as shown in Figure 2. This regular expression finds lines that start with three =
characters and removes everything to the end of the line, plus any subsequent
whitespace character.

Figure 2. Text Wrangler regular expression to remove system messages

We should also remove the names that are found at the start of some of the lines.
These are used to direct a message toward a particular reader, but these names do
not really help us here since they are not part of the text that conveys sentiment.
Figure 3 shows a regular expression to remove non-whitespace starting at the front
of a line, followed by a colon and a space:

Figure 3. Text Wrangler regular expression to remove names and colon at front of line

Chapter 5

[149]

We can also accomplish these same cleaning tasks in Anaconda Spyder if you are
more comfortable working in that editor. First, read in the log file as a .txt file using
the File | Open dialog, and then use the Search | Replace Text dialogue with the
same regular expressions, as follows:

Figure 4. Spyder regular expression dialog box

To ensure that you are working in regular expression mode in the Replace dialogue
box, make sure that you click the wheel icon to the right of the text box on the top
line, shown in Figure 4.

Once you have completed these cleaning steps, you will have two files, consisting
of dialogue from two different chat channels on the same day. Just in case you did
not want to clean the data yourself, I have uploaded these files to the GitHub site for
this book, available at https://github.com/megansquire/masteringDM/tree/
master/ch5/data.

Data analysis of chat messages
One thing to keep in mind before we get started in earnest with this project is that in
sentiment analysis, the text is usually analyzed at the sentence level. However, most
chat dialogue is not very well-punctuated, and may contain many partial sentences
and many run-on sentences. Also, text tokenizers will split paragraphs into sentences
based on the period character ('.'), but chat dialogue is replete with periods used in
other ways, and many sentences do not even end in periods at all. This all means that
dealing with chat text can be challenging.

For example, consider the following lines from the #ubuntu-devel chat:

maybe look through http://code.qt.io/cgit/qt/qtbase.git/ log/src/
plugins/platforms/xcb/qxcbwindow.cpp too if there's something to
backport instead of your patch
but are they still interested in Qt 5.5?
no, they'd be interested in 5.6 though if it's affected by the same
bug
and most likely 5.6 branch is the best place to offer a fix too in,
they merge from there to 5.7 and dev.
I'll now test 5.6, but looking at their code, I believe they've
already fixed it

https://github.com/megansquire/masteringDM/tree/master/ch5/data
https://github.com/megansquire/masteringDM/tree/master/ch5/data

Sentiment Analysis in Text

[150]

the problem is, it's not just one patch to backport, but many
ok, to me it'd look like the line of code in question is still
unchanged, just a variable name changed. but maybe it was fixed
elsewhere?
we actually have a lot of XCB fixes already in, in order to try to fix
multi-monitor issues that plagued 5.5 still (and maybe even 5.6 still
too).
but at this point I'd tend to agree that if it's yet another multiple
patches, it would be better to take your two-liner patch instead
yes, that function is still there in Qt 5.6, but
handleConfigureNotifyEvent() doesn't call that method anymore :-)

Some of the challenging parts of this text are:

• Only one of the lines is punctuated by a period, and one by a question mark
• Capitalization does not necessarily indicate a start of a sentence
• There is a URL, which contains many periods, and several version numbers,

which also contain periods
• There is a function name that uses parentheses, but also a parenthetical

expression, and an emoticon smiley that uses a right parenthesis

The best sentiment techniques available now will try to take parts of speech and
sentence placement into account, as well as punctuation. For example, the Vader
tool discussed earlier gives the following examples in its documentation:

VADER is smart, handsome, and funny.
compound: 0.8316, neg: 0.0, neu: 0.254, pos: 0.746,
VADER is smart, handsome, and funny!
compound: 0.8439, neg: 0.0, neu: 0.248, pos: 0.752,

Positive, negative, and neutral scores are given as percentages that add up to 1.
The first sentence is scored as 74.6% positive and 25.4% neutral, but the second one,
with the addition of an exclamation point, is scored slightly higher, at 75.2% positive.
The compound score is the normalized sum of the positive and negative scores after
punctuation emphasis points have been added and scores amplified accordingly.
In the Vader source code, the compound is calculated on these scores as:

compound = score/math.sqrt((score*score) + alpha)

The alpha value is set to 15 in the Vader code. Alpha is described as a value that
approximates the max expected value.

Chapter 5

[151]

So, if we are considering using an off-the-shelf, pre-trained sentiment analyzer such
as Vader, we will need to make the executive decision about how to handle our
lines with weird punctuation and incomplete sentences. We can treat each line as
a separate sentence, but we need to know that the shortcoming of this is that the
sentences might not be grammatically correct and still may contain many URLs and
strange words, acronyms, usernames, function names, code snippets, and so forth.
Remember that most pre-trained sentiment analyzers, such as Vader, have been
trained on tweets, or on English sentences such as in movie or product reviews.
These pre-trained sentiment analyzers also use part-of-speech information and
punctuation to help decide whether a string is positive or negative. Depending on
how similar our dialogue lines are to the training dialogue, Vader may interpret our
sentences differently from what we are expecting.

There is only one way to find out whether Vader will work with our data. It is time
to run some experiments with NLTK and Vader a bit and see what it does with our
chat data.

Let's write a short program to read in one of our files of chat text, and for the first
few lines, determine the sentiment score (positive, negative, and neutral), as well as
what the compound value is for that line. The code for this program is available on
the GitHub site for this book at https://github.com/megansquire/masteringDM/
blob/master/ch5/scoreSentences.py:

from nltk.sentiment.vader import SentimentIntensityAnalyzer

with open('ubuntu.txt', encoding='utf-8') as ubuntu:
 ubuntuLines = [line.strip() for line in ubuntu.readlines()]
ubuntu.close()

sid = SentimentIntensityAnalyzer()
finalScore = 0

just print the first 20 lines of the chat log & scores
for line in ubuntuLines[0:20]:
 print(line)
 ss = sid.polarity_scores(line)
 for k in sorted(ss):
 print(' {0}: {1}\n'.format(k,ss[k]), end='')
 print()

https://github.com/megansquire/masteringDM/blob/master/ch5/scoreSentences.py
https://github.com/megansquire/masteringDM/blob/master/ch5/scoreSentences.py

Sentiment Analysis in Text

[152]

From this set of lines, we can see that the majority of sentences are scored as 100%
neutral. Some examples of neutral scoring lines that occur near the beginning of the
file are:

which ubuntu release?
compound: 0.0
neg: 0.0
neu: 1.0
pos: 0.0

Hi! Is there any software on Ubuntu that can replace Itunes for
syncing files on the Ipod?
compound: 0.0
neg: 0.0
neu: 1.0
pos: 0.0

Not nearly as many lines are scored on the negative side, for example these:

no its not
compound: -0.296
neg: 0.524
neu: 0.476
pos: 0.0

this is so ridiculous
compound: -0.5009
neg: 0.519
neu: 0.481
pos: 0.0

There are a few clearly positive comments, which are scored accordingly:

that would be awesome, really
compound: 0.6249
neg: 0.0
neu: 0.494
pos: 0.506

different people like different support media
compound: 0.6369
neg: 0.0
neu: 0.435
pos: 0.565

ok thanks

Chapter 5

[153]

compound: 0.6249
neg: 0.0
neu: 0.0
pos: 1.0

We should remember that the compound score is normalized using only the sum
of the positive and negative scores, so the compound score can occasionally be
calculated as higher than a positive score, or lower than a negative score. In the case
of the sentence different people like different support media, the compound score
ended up being .6369 while the positive score was only .5650.

If we wanted to test whether the general #ubuntu chat channel was more negative
or positive on that day than the #ubuntu-devel chat channel, we could calculate
sentiment for all the lines in each, sum the compound scores, and divide by the
number of messages. The code for the following example is available at https://
github.com/megansquire/masteringDM/blob/master/ch5/sumCompounds.py:

from nltk.sentiment.vader import SentimentIntensityAnalyzer

with open('ubuntu.txt', encoding='utf-8') as ubuntu:
 ubuntuLines = [line.strip() for line in ubuntu.readlines()]
ubuntu.close()

with open('ubuntu-devel.txt', encoding='utf-8') as ubuntuDevel:
 ubuntuDevelLines = [line.strip() for line in \ ubuntuDevel.
readlines()]
ubuntuDevel.close()

listOfChannels = [ubuntuLines,ubuntuDevelLines]
sid = SentimentIntensityAnalyzer()
for channel in listOfChannels:
 finalScore = 0
 for line in channel:
 ss = sid.polarity_scores(line)
 score = ss['compound']
 finalScore = finalScore + score
 roundedFinalScore = round(finalScore/len(channel),4)
 print("Score", roundedFinalScore)

The results print a score for the #ubuntu and #ubuntu-devel channels in turn:

Score 0.0774
Score 0.1012

https://github.com/megansquire/masteringDM/blob/master/ch5/sumCompounds.py
https://github.com/megansquire/masteringDM/blob/master/ch5/sumCompounds.py

Sentiment Analysis in Text

[154]

We should be cautious about trying to read too much into these results or any
results of sentiment analysis, actually since we already determined that our
pre-trained examples are from a different domain. At the very least, we should be
straightforward about the limitations of this approach. From these results, it appears
that the #ubuntu-devel channel reached a slightly higher score, or a marginally more
positive score, than the general chat channel did.

Data analysis of e-mail messages
Another interesting test for sentiment analysis would be to see how it handles
e-mail messages. E-mails tend to be longer and have more text in them than IRC
chat messages. Another difference with e-mail messages is that they typically tend to
include punctuation, whereas IRC messages may not, and the punctuation in e-mails is
used in a more predictable way. Since systems like Vader do use punctuation to infer
emphasis, we may find that it performs differently on e-mails than it does on chat.

To test our sentiment analysis technique on e-mails, we decided to look at a single
e-mail user who is known for his very emotionally charged speech style: Linus
Torvalds, the eponymous leader of the Linux project. Torvalds started Linux as a
free (and later, open source) operating system in the early 1990s, and has been its
leader since. The development of this project has been conducted entirely on an
e-mail mailing list called the Linux Kernel Mailing List (LKML). In its 20-plus-year
history, the LKML has amassed millions of messages from tens of thousands of users
and developers. Torvalds himself writes and responds to thousands of messages
per year, and his brash writing style in these messages has been the subject of many
news articles. The website, Reddit even has an entire section devoted to his rants,
called linusrants, available at https://www.reddit.com/r/linusrants.

Since Torvalds' e-mails are longer than chat text, highly emotive, and usually
properly punctuated, it will be an interesting test for the sentiment analyzer to see
if it can score these e-mails more easily than the chat messages. Can the sentiment
analyzer help us find the most brash, forceful, or strident e-mails that Torvalds
wrote? To do this, we will first need a text collection of Torvalds' public e-mails sent
to the LKML. Luckily for us, one of my former students, Daniel Schneider, built a
very large collection of LKML e-mails which he donated to the FLOSSmole project
for research purposes. One particular advantage of this e-mail collection is that all
the messages have been cleaned thoroughly to support text mining. Specifically, he
removed as many reply texts, signature lines, and source code lines from the e-mails
as possible, leaving us with a collection that includes only the words written by the
e-mail sender.

https://www.reddit.com/r/linusrants

Chapter 5

[155]

For our purposes in this chapter, I have extracted a small selection of e-mails from
the collection, namely the e-mails from Linus Torvalds that were sent to the LKML
during the month of January 2016. There are 78 e-mails in this subset. The following
code will CREATE a simple MySQL table to hold the e-mails, and both the CREATE
and INSERT statements are available at https://github.com/megansquire/
masteringDM/tree/master/ch5/data/lkmlLT2016-01:

CREATE TABLE IF NOT EXISTS `lkml_ch5` (
`url` varchar(200) COLLATE utf8_unicode_ci NOT NULL DEFAULT '',
`sender` varchar(100) COLLATE utf8_unicode_ci NOT NULL,
`datesent` datetime NOT NULL,
`body` text COLLATE utf8_unicode_ci NOT NULL,
`sentiment_score` decimal(6,4) DEFAULT NULL,
`max_pos_score` decimal(6,4) DEFAULT NULL,
`max_neg_score` decimal(6,4) DEFAULT NULL,
PRIMARY KEY (`url`))
 ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

The url column is the primary key for this table, and points to the original link to
that e-mail message at the Indiana University LKML archive. In this small collection
of 78 e-mails, the sender column will only ever include one person, Linus Torvalds.
The datesent column holds the original date and time from the e-mail message.
The body of the e-mail holds the remaining text after the reply text, source code, and
signatures have been removed. We also stripped out carriage returns and newlines
from this text, as well as any HTML artifacts that were left in the message from when
we downloaded it from the Indiana University web archive.

The remaining three columns are calculated fields whose values will come from
our sentiment analysis process. Recall that Vader calculates a percent positive,
percent negative, and percent neutral sentiment score for each sentence, as well as
a compound, adjusted score for each sentence. Since these e-mails are made up of
many sentences, we elected to calculate and store three values at the e-mail level:

• We calculate an average compound score for each e-mail
• We store the highest positive score for any sentence in the e-mail
• We store the highest negative score for any sentence in the e-mail

Storing all of these values ensures that an e-mail with one highly negative sentence
can still be detected and evaluated, even if the average compound scores for the
e-mail were unremarkable.

https://github.com/megansquire/ masteringDM/tree/master/ch5/data/lkmlLT2016-01
https://github.com/megansquire/ masteringDM/tree/master/ch5/data/lkmlLT2016-01

Sentiment Analysis in Text

[156]

The following is the code to sentiment analyze the Torvalds e-mails. We begin by
importing our required libraries and connecting to the database.

from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk import tokenize
import pymysql
import sys

password = sys.argv[1]
db = pymysql.connect(host='localhost',
 db='test',
 user='megan',
 passwd=password,
 port=3306,
 charset='utf8mb4')
selectCursor = db.cursor()
updateCursor = db.cursor()

We then set up our SELECT and UPDATE queries. We run the SELECT query and fetch
all the records:

selectEmailQuery = "SELECT url, body FROM lkml_ch5"

updateScoreQuery = "UPDATE lkml_ch5 \
 SET sentiment_score = %s, \
 max_pos_score = %s, \
 max_neg_score = %s \
 WHERE url = %s"
selectCursor.execute(selectEmailQuery)
emails = selectCursor.fetchall()

Next we start a loop through each of the e-mails returned from the SELECT:

for email in emails:
 url = email[0]
 body = email[1]

 # variables to hold overall average compound score for message
 finalScore = 0
 roundedFinalScore = 0

 # variables to hold the highest positive score in the message
 # and highest negative score in the message
 maxPosScore = 0
 maxNegScore = 0

Chapter 5

[157]

The next bit of code sets up the Vader sentiment analyzer, tokenizes each e-mail into
sentences, and for each sentence, figures out the polarity of that sentence. The code
then builds a final score comprised of the compound sentence scores, and keeps track
of the highest positive and negative score for any sentence in the e-mail:

 print("===")
 sid = SentimentIntensityAnalyzer()
 emailLines = tokenize.sent_tokenize(body)
 for line in emailLines:
 ss = sid.polarity_scores(line)
 line = line.replace('\n', ' ').replace('\r', '')
 print(line)
 for k in sorted(ss):
 print(' {0}: {1}\n'.format(k,ss[k]), end='')
 lineCompoundScore = ss['compound']
 finalScore += lineCompoundScore

 if ss['pos'] > maxPosScore:
 maxPosScore = ss['pos']
 elif ss['neg'] > maxNegScore:
 maxNegScore = ss['neg']

The final portion of the code just calculates the average compound score by dividing
the sum of all the compounds by how many sentences were in the e-mail. We print
the scores, update the database, and close our database connection:

 # calculate avg compound score for the entire message
 roundedFinalScore = round(finalScore/len(emailLines),4)
 print("***Final Email Score", roundedFinalScore)
 print("Most Positive Sentence Score:", maxPosScore)
 print("Most Negative Sentence Score:", maxNegScore)

 # update table with calculated fields
 try:
 updateCursor.execute(updateScoreQuery,(roundedFinalScore,
 maxPosScore, maxNegScore, url))
 db.commit()
 except:
 db.rollback()
db.close()

When this code runs, it updates the database table with the three values we are most
interested in: the overall average sentiment compound score for each e-mail, as well
as the highest negative score and highest positive score for every e-mail.

Sentiment Analysis in Text

[158]

From the 78 e-mails and their scores then, how do we determine the most interesting
e-mails to look at, from a sentiment point of view? For instance, what if we wanted
to find the messages that were the most negative? If we sort by the sentiment score
alone, we might miss some messages that have one or two really negative sentences,
but on the whole appear to have a mediocre negativity score. Alternatively, if we sort
only by the max_neg_score column, we will see a lot of messages that have the word
No. in them, but all the remaining text could be fairly innocuous.

One approach would be to find messages that scored low (negative) on an average
compound e-mail score, and which also have one or more highly negative sentences.
To do this, first we need to create a set of e-mails with the lowest (most negative)
sentiment score. Then, we need a set of e-mails which have at least one very negative
sentence. The intersection of these two sets represents a group of messages that
should be very interesting in their negativity. If we limit our search to the top 20 in
both sets, which messages appear in both lists?

Since MySQL does not have the INTERSECT keyword, but does support a UNION ALL
with a subquery, we can construct a clunky-but-functional SQL command to return
the intersection of the top 20 messages in both sets as follows:

SELECT a.url, a.body, a.sentiment_score, a.max_neg_score, COUNT(*)
FROM(
 (SELECT b.url, b.body, b.sentiment_score, b.max_neg_score
 FROM `lkml_stripped_torvalds_2016_01` AS b
 ORDER BY b.sentiment_score ASC
 LIMIT 20)

 UNION ALL

 (SELECT c.url, c.body, c.sentiment_score, c.max_neg_score
 FROM `lkml_stripped_torvalds_2016_01` AS c
 ORDER BY c.max_neg_score DESC
 LIMIT 20)) AS a
GROUP BY 1,2,3,4
HAVING COUNT(*) > 1;

This query finds the top 20 in one set and the top 20 from the other set, and shows
that there are 10 messages that appear in both sets. Figure 5 shows a screen capture
of the results from this query, as displayed in the PhpMyAdmin query tool. For
space reasons, I truncated the URL column to only show the rightmost 10 characters:

Chapter 5

[159]

Figure 5. The 10 records in both the top 20 sentiment_score and the top 20 max_neg_score

When these 10 messages are sorted by the overall sentiment score, the most negative
message is 934.html, which has a sentiment_score of -0.2402 and a max_neg_score
of 0.4250 (or one sentence that scored 42.5% negative). Here is the text of the message:

This seems sad for two reasons: - it adds unnecessary overhead on
non-pcid setups (32-bit being an example of that) - on pcid setups,
wouldn't invpcid_flush_single_context() be better? So on the whole I
hate it.Why isn't this something like And yes, that means that we'd
require X86_FEATURE_INVPCID in order to use X86_FEATURE_PCID, but that
seems fine. Or is there some reason you wanted the odd flags version?
If so, that should be documented.

The sentence that scored the 42.5% negative was So on the whole I hate it. One sentence
appears to be incomplete due to removing source code (Why isn't this something
like…) It is interesting that the most negative sentence in that e-mail only scores
a 42.5% and this is still high enough to make the top 20 list. When we look at the
second-highest scoring message, sorted by the sentiment score, we see that this one
happened to score a perfect 100% for max_neg_score. Why? The text of that message
is as follows:

No. This is much too late for this kind of hackery. That second patch
in particular is both subtle and ugly, and is messing with lockdep.
No way will I take something like this the last fay [sic] before a
release. It's not even a regression, nor did you send me anything at
all for this release. Trying to sneak something in just before 4.4 is
not ok.

This one had a sentiment_score of -0.1588. The max_neg_score of 100% was for the
sentence No.

Sentiment Analysis in Text

[160]

At this point we have the ability to analyze the sentiment of various types of
text, including short bursts of chat text and longer e-mail messages. We have a
good understanding of what the scores mean, how to compare them, and how to
figure out what the interesting messages are. So far we have only used the Vader
sentiment intensity analyzer that came with NLTK, but if we wanted to continue this
experiment with other sentiment tools, I would recommend looking at the NLTK
documentation to see what other options are available and how to use them. The
documentation page about sentiment is a great place to start: http://www.nltk.
org/api/nltk.sentiment.html.

Summary
After finishing this chapter, we now have a functional understanding of how
sentiment analysis works, and we have compared many different strategies that the
mainstream sentiment analysis tools use to accomplish this goal. We paid special
attention to the Vader tool which comes as standard with the Python NLTK, since it
is well-tested and straightforward to use. To learn how to use its sentiment intensity
scoring system, we calculated the sentiment for a few different real-world datasets,
both messy chat data and somewhat more structured e-mail data.

In the next chapter, we will continue to hone our skills in text mining, but instead of
looking at the emotion conveyed by an entire sentence, we will focus our attention
on locating entities within sentences. This task, called named entity recognition, is
slightly related to the entity matching task we looked at in Chapter 3, Entity Matching,
in that in both cases we are working with entities such as people or organizations.
However, in our next chapter we add a text mining twist: how can we identify the
entities in a text without knowing what we are looking for in advance?

http://www.nltk.org/api/nltk.sentiment.html
http://www.nltk.org/api/nltk.sentiment.html

[161]

Named Entity
Recognition in Text

The next text mining tool we are going to add to our toolbox is actually from the
domain of information extraction. When we talk about information extraction, we
typically mean text mining techniques that use natural language processing to pull
out key pieces of desired information from a large amount of unstructured text. I like
to think of information extraction as being like a gold miner's sifting pan. Using these
tools, we extract only the good stuff - the gold nuggets - and let the rest of the dirt
fall away. In this chapter, the gold nuggets we will be sifting for are called named
entities. Given a semi-structured or unstructured body of text, can we locate and
extract all the named entities, such as people, places, or organizations, and leave
the rest of the text behind?

In this chapter, we will learn:

• What named entities are and why they are useful to search for
• What the different techniques are for finding named entities, and what the

benefits are of each
• How to find the named entities in text, including how to differentiate them

from other tagged parts of speech
• How to apply these named entity recognition techniques using real data
• How to determine whether our named entity recognition was successful

or not

Named Entity Recognition in Text

[162]

Why look for named entities?
Named Entity Recognition (NER) is the act of locating certain people, places, and
things in a larger body of text. Finding the specific entities that are being discussed
in a text is a critical task for creating better chatbots, for creating better Question
Answering (QA) systems, or for helping speech recognition systems do a better job.
When I am preparing dinner in my kitchen, if I ask Amazon Echo to tell me about
meatloaf, will I get a description of the food, or of Meatloaf the musician? (For those
who are wondering, I tried this at home and Echo responded with a description of
the musician!)

Named entity recognition should not be confused with the tasks we
performed in Chapter 3, Entity Matching, earlier in this book. The two
tasks are similar in that they both deal with nouns, called entities, but the
comparison ends there. While NER tries to locate the entities in text, EM
tries to figure out whether two entities are the same thing.

Named entity recognition can also be used to identify nouns that are particularly
interesting or which we want to highlight in some way. For example, on a website
we could choose to automatically link to corporate home pages each time a particular
company is mentioned. Or, we could automatically add stock ticker symbols for
company names we recognize. Other uses for NER are to add links to the Wikipedia
pages for famous people, or to provide a Google Maps link when we detect a
place name.

Figure 1 shows an example from a Wall Street Journal online news article that has
highlighted Apple and Tim Cook as named entities. Since the WSJ has their own
descriptive pages on its site for both people and corporations, these links provide the
user with the additional information they need on these particular entities without
requiring them to leave the site to conduct those searches:

Figure 1. The Wall St. Journal recognizing and providing links for two named entities: Apple and Tim Cook

Chapter 6

[163]

However, in the WSJ example, the task of highlighting those two named entities
is very simplistic, and could probably be more accurately achieved with simple
pattern matching rather than true NER. The most obvious reason for this is that they
could simply just scour each article for mentions of companies or people with pages
already created in their system. True NER should attempt to find named entities that
we are not already looking for.

The news article also includes the named entities Watch, iPhone, and iPad, and
although those are not highlighted in the WSJ example, we can easily imagine a
different type of website where we would indeed want these words highlighted,
such as an affiliate shopping site with product links. Additionally, if we were
developing an e-mail-to-calendar application, we would want to identify the word
Sunday and perhaps also the event called first anniversary that appears in the text just
before it.

Named entity recognition is definitely driven by the purpose of the application. If the
number and type of entities you need to display are very small, you may be able to
get away with simple pattern matching where you compare capitalized words to a
constrained vocabulary, or list of words, representing the entities in your system. On
the other hand, more ambitious NER applications will attempt to extract the named
entities without only relying on a preset list of known entities.

Sometimes these pre-constructed lists of words are called gazettes,
or gazetteers. Traditionally, a gazetteer is a list of places and other
facts used to build a map or atlas. In NER, it refers to a constrained
vocabulary of proper nouns.

Another challenge for NER is in extracting named entities without necessarily
knowing the boundaries of the entity. For example, can multi-word entities exist?
Can entities exist inside of other entities? Consider a sentence like:

Pirates of the Caribbean thrilled audiences worldwide.

Without the italicized clue that this is the title of a movie, the sentence is somewhat
ambiguous. Is the NER smart enough to know that Pirates of the Caribbean is a named
entity, or will it assume the word Pirates is just a plural noun, capitalized because
it is at the start of a sentence? If so, our named entity recognizer might decide that
Caribbean is a named place entity rather than part of a movie title.

Named Entity Recognition in Text

[164]

For this reason, extracting named entities requires leveraging codified knowledge of
some particular domain. For example, the NER could use the code word audience
from the sentence Pirates of the Caribbean thrilled audiences worldwide to deduce that
this sentence is about a movie. Or, the NER could be given lists of movies as a sort
of gazetteer approach. Or, the NER could be trained to know about the particular
spelling or capitalization rules of a domain that indicate named entities. The movie
title above is italicized, which is a big clue that the words go together. Similarly,
in biology, species names are often written in Latin and italicized, for example
Homo sapiens.

In the technology domain, with products or company names we find frequent use
of acronyms, numbers inside words, plays on words, nonsense words, punctuation,
and medial capitalization. Medial capitals are where there are capital letters inside
the word, sometimes called InterCaps or CamelCase. Examples of products or
business names that use some of these unconventional spellings include OSX, C++,
Yahoo!, Eat24, Xbox, Apple][c, and enTourage eDGe. An ambitious NER designed to
learn technology product names will need to understand these variations and more.

Thus, it seems clear that developing a named entity recognition system is going to
be a little more complicated than simply looking for capitalized nouns. In the next
section, we will get more specific about the techniques that we can use to accurately
recognize and extract named entities from text.

Techniques for named entity recognition
Before we tackle the strategies for named entity recognition, we should differentiate
between some similar terms that we will come across when doing this work. Usually,
when English-speakers first begin to think about named entities, they assume named
entities are just proper nouns. What is a proper noun? Proper nouns are typically
capitalized in English, and refer to a specific named person, place, or thing. Proper
names can include proper nouns as well as noun phrases. Alaska, Barack Obama,
January, and The Grateful Dead are all proper names. Are all proper nouns and
names capitalized? Not necessarily, as we saw with iPhone and iPad, and also
eBay, and the author bell hooks. Are all capitalized nouns proper? No. For example,
we write the Englishman came around for tea, where Englishman is capitalized, yet
Englishman is a common noun in English.

Chapter 6

[165]

NER is considerably more interesting than just recognizing nouns, or proper nouns.
In a linguistic sense, named entities are sometimes defined more strictly to only
include those for which there must be no ambiguity about what noun is being
discussed. For example, Barack Obama is an unambiguous name for a specific person,
so we call this name a rigid designator, and it would qualify as a named entity (and
a proper name). On the other hand, the phrase The President of the United States is
called a flaccid designator because, even though it is a proper name and refers to
an actual person – who happens to be named Barack Obama at the moment – the
actual physical entity that this name refers to will change. Other examples of rigid
and flaccid designators would be the difference between Wednesday and tomorrow, or
Mastering Data Mining with Python and the best book ever written. Some proper nouns
are rigid designators and others are not, and some named entities are proper nouns
and some are not.

Even though a flaccid designator may be capitalized or may refer to the same thing
as a rigid designator in popular usage, the job of NER is to filter out the true named
entities from the impostors. So the presence of capital letters on a word that has
been also identified as a noun can be a good clue that the thing is a named entity.
However, that logic would dictate that The President of the United States is necessarily
a named entity, yet a strict definition of named entities as rigid designators would
suggest that it should not be a named entity. Consider also the following sentences:

• I am starting my new project on Monday.
Here, Monday is a proper noun and a rigid designator, since it refers to one
particular Monday in time.

• Monday is the best day to start any new project.
In this sentence, Monday is also a proper noun, but it is being used
generically, so it is a flaccid designator.

• The new Watch by Apple is very expensive, but it plays my iTunes.
Here, the brand name Watch is a named entity, as is Apple and iTunes.
All three are also proper nouns, but only the first two follow traditional
capitalization rules.

• Watch me buy this EDM song on the iTunes store.

In this example, Watch is the first word of the sentence, so it is capitalized,
but not a named entity. It is being used as a verb rather than a noun. EDM is
an acronym for Electronic Dance Music, so it is capitalized.

Named Entity Recognition in Text

[166]

From all these examples, we can see that while imperfect, both capitalization and
parts of speech are pretty good indicators of which word or phrases could be
considered named entities in a text. Capitalization is easy enough to spot by just
observing the case of the characters in a word. Even medial caps can be included if
we want to recognize words such as iPhone and iTunes. However, as we have shown,
capitalization alone is not sufficient to indicate whether a word or phrase is a named
entity or not. The next critical step will be to find nouns and noun phrases, which are
great indicators of named entities.

Tagging parts of speech
To find the Part of Speech (POS) for each word in a sentence, we can use a type
of software called a POS tagger. A POS tagger first splits texts into sentences, then
assigns each word, or token, in the sentence a part of speech. The combination of a
token and its part of speech is called a tuple. A tuple looks like this:

('dog', NN)

Sometimes the assigned part of speech is easy to guess, such as NN for noun, but
other times the POS tagger will recognize the word as a more exotic part of speech;
for example, the NLTK tagger finds the word dogs is a plural noun and dog's is a
possessive noun:

('dogs', NNP)
("dog's", NN$)

The second word, dog's, is surrounded by double quotes since it has a single
quotation mark inside of itself.

How does the POS tagger know the part of speech for every word, especially
considering that some words will change their part of speech depending on how the
word is used in a sentence? To answer this question, we must first understand the
concept of a corpus. A corpus is a collection of texts, and an annotated corpus is one
that has been tagged, for example with the correct POS for each word. Once we have
a POS tagged corpus that we are confident is correct, we can use that to determine
the parts of speech for all the tokens in new documents that we have not yet seen.

There are many well-known corpora that are used over and over again to tag
new documents. One of the most famous is called the Brown Corpus, after
Brown University. This corpus was created in 1961. It consists of 500 documents,
each approximately 2000 words, for a total of about a million tagged tokens.
The documents are all from native speakers of American English. The original
documentation for this corpus can be found at http://www.hit.uib.no/icame/
brown/bcm.html.

http://www.hit.uib.no/icame/brown/bcm.html
http://www.hit.uib.no/icame/brown/bcm.html

Chapter 6

[167]

Today, the Brown Corpus is just one of many, many corpora available to be used as
a model by a POS tagger. Some, like Brown, consist of a variety of text types, such
as fiction, news articles, and religious books. Other corpora focus on specific text
types, such as news. Still other corpora are tagged for different languages or different
dialects, or have been updated with newer words that did not exist in 1961 when the
Brown Corpus was created.

As we will see in our project later in the chapter, an off-the-shelf POS tagger, such
as the one that comes with NLTK, can be directed to use different corpora. The
default corpus that is used by NLTK is called the Penn Treebank tagger. The Penn
Treebank list of abbreviations for parts of speech is quite extensive, and can be found
at https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_
pos.html.

For example, the different noun abbreviations in Penn are:

• NN: Noun, singular or mass (I see a dog.)
• NNS: Noun, plural (I see many dogs.)
• NNP: Proper noun, singular (My dog is named Fido.)
• NNPS: Proper noun, plural (There are many Fidos in the park.)

There are many other abbreviations for parts of speech but since we are focused on
named entity recognition in this chapter, we will mostly be working with nouns.

Classes of named entities
If NER were as simple as just identifying proper nouns, it would not be nearly as
much fun. In addition to POS tagging, we can also use a tagger to attempt to deduce
what kind of named entity we have found. Common classes for the named entities
include: PERSON, ORGANIZATION, GPE (for geopolitical entity, or place), and
so on. It is true that these are very large, general classes for the nouns, but they
still do serve as one additional layer of granularity. With these classes, Fido may
be classified as a canine PERSON, Pirates of the Caribbean should be classified as an
ORGANIZATION, and the partial match Caribbean would likely be classified as a
place or GPE.

Now that we know more about the NER goals of identifying each named entity and
specifying its class, it is time to start looking at techniques that can help us achieve
these goals with real data.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Named Entity Recognition in Text

[168]

Building and evaluating NER systems
Based on our discussion so far in this chapter, we know that building an NER system
will start with the following steps:

1. Separate our document into sentences.
2. Separate our sentences into tokens.
3. Tag each token with a part of speech.
4. Identify named entities from this tagged token set.
5. Identify the class of each named entity.

To help us correctly find tokens at step 2, separate the real named entities from the
impostors at step 4, and to ensure that the entities are placed into the correct class at
step 5, it is common to leverage a machine learning approach, similar to what NLTK
and its sentiment mining functions did for us in Chapter 5, Sentiment Analysis in Text.
Relying on a large set of pre-classified examples will help us work out some of the
more complicated issues we introduced above for recognizing named entities, for
example, choosing the correct boundary in multi-word noun phrases, or recognizing
novel approaches to capitalization, or knowing what kind of named entity it is.

But even with a flexible machine learning approach, the vagaries and oddities of
written language remind us to be careful; some legitimate named entities may slip
through the cracks, while other tokens may be called named entities when they really
are not. With so many exceptions to the rules for how to find named entities, the risk
of generating false positives or false negatives is high. Therefore, just as with earlier
chapters, we will need an evaluation plan for whatever machine learning-based NER
system we end up choosing.

NER and partial matches
Because of the potential for NER systems to over- or under-classify words as named
entities, we will need to use the kind of false positive and false negative calculations
that we first saw in Chapter 3, Entity Matching. However, the calculations will be
slightly different with NER due to partial matches. Partial matches happen when our
NER system catches, for example, Caribbean but not Pirates of the Caribbean. These are
sometimes called boundary errors, since the NER system found some of the token,
but messed up its boundaries by being too short or too long. An NER system may
also misidentify the entity into the wrong class. For example, it may recognize Fido
but call it a GPE rather than a PERSON.

Chapter 6

[169]

With these kinds of partial matches, we have three choices for how to handle them:

• Strict Scoring: We can score the partial match as both a false positive (because
Caribbean is not a correct guess) and a false negative (because Pirates of the
Caribbean was also missing).

• Lenient Scoring: We can score the partial match as a true positive. No
penalties are given for false negatives or false positives, and we just assume
that Caribbean is good enough.

• Partial Scoring: We can come up with rules that give some credit for matches
that are partially correct, for example, finding Caribbean instead of Pirates of
the Caribbean.

Strict and lenient scoring are straightforward to understand, but partial credit
scoring needs a bit more explanation. How does it work?

Handling partial matches
One system for handling partial matches came out of the Message Understanding
Conference (MUC) series. This seven-conference series was held by the US
Government agency DARPA in the late 1980s and 1990s to encourage researchers to
devise new techniques for information extraction. One of the outcomes of the sixth
iteration of this conference was to begin to piece together a scoring system for named
entities that would handle partial matches on either the phrase itself or the assigned
class. With a comprehensive rule scoring system, it is possible to evaluate proposed
NER matchers to determine whether they are as good as human NER systems. So
how does MUC scoring work?

The MUC scoring system works by computing two scores: one for finding the correct
entity terms, and another score for classifying them correctly into their category of
PERSON, GPE, and so on. The class is scored as correct, as long as some part of the
entity term was also found. These two scores are then fed into a precision and recall
calculation, similar to what we saw earlier in Chapter 3, Entity Matching.

Named Entity Recognition in Text

[170]

To show how this works, the table below shows the expected and guessed results
from a sample NER system. PERSON, ORGANIZATION, and GPE have been
abbreviated as PER, ORG, and GPE, respectively:

Item Expected named entity Guessed named entity Boundaries
correct?

Class
correct?

1 Pirates of the Caribbean /
ORG

Caribbean / GPE No No

2 Fido / PER Fido / GPE Yes No
3 Microsoft Windows / ORG Microsoft / ORG No Yes
4 Captain America / PER Captain America/ PER Yes Yes
5 Great Bend / GPE - - -
6 - Marvel / ORG No No
7 Shaker Heights / GPE Shaker Heights / GPE Yes Yes

Note that on line 3, the correct class was guessed even though only the text boundary
was only partially correct. On line 5, there was an expected named entity that
was skipped by the system. On line 6, the system found an entity where none
was expected.

To figure out the precision and recall, we keep track of the following:

• CORRECT: Number of correct guesses for both the boundaries and the class
• GUESSED: Number of actual answers for both boundaries and class
• POSSIBLE: Number of possible answers for both boundaries and class

We can use the example above to calculate each of these measures:

• CORRECT: The NER system guessed three correct boundaries and three
correct classes, so CORRECT = 6.

• GUESSED: The NER system guessed a total of six boundaries (it missed
one on line 5), and a total of six classes (again, missing the one on line 5),
so GUESSED = 12.

• POSSIBLE: The number of possible guesses for text boundaries should be
six (lines 1-5, and 7), and the number of possible class guesses is also six,
so POSSIBLE = 12.

Chapter 6

[171]

To calculate the MUC precision and recall for a NER system we apply these
measures as follows:

MUC_Precision = CORRECT / GUESSED
 = 6/12
 = 50%
MUC_Recall = CORRECT / POSSIBLE
 = 6/12
 = 50%

We can also calculate the F1-measure as the harmonic mean of precision and recall
as follows:

F1 = 2*((MUC_Precision * MUC_Recall) / (MUC_Precision + MUC_Recall))
 = 2*(.5 * .5) / (.5 + .5))
 = 50%

If we were operating under a strict scoring protocol, there are only two named
entities that were guessed totally correctly in that system example: the ones on lines
4 and 7. However, there were six guesses by the NER system, and six total possible
guesses. This yields:

Strict_Precision = CORRECT / GUESSED = 2/6 (30%)
Srict_Recall = CORRECT / POSSIBLE = 2/6 (30%)

Whether a partial or strict scoring protocol is used depends on the objectives of
the work. How important are precise boundaries and classes in that domain? Your
answer may vary depending on what you are working on. For example, if you
are more interested in counting the named entities that appear in a text, it may be
sufficient just to account for partial matches.

In the next section, we will devise a named entity recognition system and calculate
the associated accuracy scores for a project using real data.

Named entity recognition project
In this set of small projects, we will try our NER techniques on a variety of different
types of text that we have seen already in prior chapters, as well as some new text.
For variety, will look for named entities in e-mail texts, board meeting minutes,
IRC chat dialogue, and human-created summaries of IRC chat dialogue. With these
different types of data sources, we will be able to see how writing style and content
both affect the accuracy of the NER system.

Named Entity Recognition in Text

[172]

A simple NER tool
Our first step is to write a simple named entity recognition program that will allow
us to find and extract named entities from a text sample. We will take this program
and point it at several different text samples in turn. The code and text files for this
project are all available on the GitHub site for this book, at https://github.com/
megansquire/masteringDM/tree/master/ch6.

The code we will write is a short Python program that uses the same NLTK library
we introduced in Chapter 3, Entity Matching, and Chapter 5, Sentiment Analysis in Text.
We will also import a pretty printer library so that the output of this program will be
easier to understand:

import nltk
import pprint

Next we will set up five different files, and just comment out the ones we are not
working with at the moment. After we describe the rest of the code, we will describe
each of these files in turn, where they came from, and what the NER results were:

sample files that we use in this chapter
filename = 'apacheMeetingMinutes.txt'
#filename = 'djangoIRCchat.txt'
#filename = 'gnueIRCsummary.txt'
#filename = 'lkmlEmails.txt'
#filename = 'lkmlEmailsReduced.txt'

The next section of code describes our simple NER routine. First, we open each file
and read it into the text object:

with open(filename, 'r', encoding='utf8') as sampleFile:
 text=sampleFile.read()

Next, we load a tokenizer that will read through each line in the text and look
for sentences. It is important to look at sentences instead of just looking at lines
because, depending on the type of text we are working with, there could be multiple
sentences per line. For example, most IRC chat will be one sentence per line, but
most e-mail will have multiple sentences per line:

en = {}
try:
 sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')
 sentences = sent_detector.tokenize(text.strip())

https://github.com/megansquire/masteringDM/tree/master/ch6
https://github.com/megansquire/masteringDM/tree/master/ch6

Chapter 6

[173]

For each sentence we find, we are going to figure out the part of speech for every
word in the sentence. The ne_chunk() function takes the collection of words and
tags, and finds the most likely candidates for named entities, storing these in the
variable chunked:

 for sentence in sentences:
 tokenized = nltk.word_tokenize(sentence)
 tagged = nltk.pos_tag(tokenized)
 chunked = nltk.ne_chunk(tagged)

Next we will examine each item in chunked and build a dictionary entry for it
and its label. Recall from our earlier discussion that a label, or class, can be one of
ORGANIZATION, PERSON, GPE for location, and so on:

 for tree in chunked:
 if hasattr(tree, 'label'):
 ne = ' '.join(c[0] for c in tree.leaves())
 en[ne] = [tree.label(), ' '.join(c[1] for c in tree.
leaves())]
except Exception as e:
 print(str(e))

pp = pprint.PrettyPrinter(indent=4)
pp.pprint(en)

Finally, we print the dictionary of named entities and their classes. In the next
section, we describe what happens when we run this code against each of the
different files shown in the beginning of the program. We also describe where
we got the data for these files, and what kind of text they include.

Apache Board meeting minutes
The first text source we will use is taken from the publicly available collection of
meeting minutes from the Board of Directors for the Apache project. Since 2010 the
Apache Board of Directors has posted the minutes from its meetings on its website,
available here: http://www.apache.org/foundation/board/calendar.html.

The text file I created for this project is taken from the February 17, 2016 minutes,
specifically the President's section B. The original link for this February minutes
file is https://www.apache.org/foundation/records/minutes/2016/board_
minutes_2016_02_17.txt.

http://www.apache.org/foundation/board/calendar.html
https://www.apache.org/foundation/records/minutes/2016/board_minutes_2016_02_17.txt
https://www.apache.org/foundation/records/minutes/2016/board_minutes_2016_02_17.txt

Named Entity Recognition in Text

[174]

The final file is 33 lines long. A sample of the file is as follows:

I believe our Membership felt fully involved and as a result is almost
unanimous in their approval of the new design.
Well done Sally (and thanks to LucidWorks and HotWax Systems for
donating creative services).
Sally has confirmed a return of her media/analyst trainings at
ApacheCon.

Our NER program will be looking for words such as LucidWorks, HotWax Systems,
Sally, and ApacheCon.

When we run the program against this Apache meeting minutes file, we get the
results, which are as follows:

{'ApacheCon': ['ORGANIZATION', 'NNP'],
'Appveyor CI': ['PERSON', 'NNP NNP'],
'CFP': ['ORGANIZATION', 'NNP'],
'David': ['PERSON', 'NNP'],
'GitHub': ['ORGANIZATION', 'NNP'],
'HotWax Systems': ['ORGANIZATION', 'NNP NNP'],
'Huge': ['GPE', 'JJ'],
'Infra': ['ORGANIZATION', 'NNP'],
'LucidWorks': ['ORGANIZATION', 'NNP'],
'Mark Thomas': ['PERSON', 'NNP NNP'],
'Melissa': ['GPE', 'NNP'],
'New': ['GPE', 'NNP'],
'Remediation': ['GPE', 'NN'],
'Sally': ['PERSON', 'NNP'],
'TAC': ['ORGANIZATION', 'NNP'],
'TLPs': ['ORGANIZATION', 'NNP'],
'VP Infra': ['ORGANIZATION', 'NNP NNP'],
'Virtual': ['PERSON', 'NNP'],
'iTunes': ['ORGANIZATION', 'NNS']}

The program correctly found most items, but incorrectly found the words CFP,
Huge, New, and Remediation. These words were capitalized because they were
the first word in the sentence, and this undoubtedly led to them being accidentally
declared as named entities by NLTK when they were actually not. The word Virtual
may seem at first like it is a mistake, but in reading the text it turns out that this is
the name of a company. Unfortunately, the NER tool declared it to be a PERSON.
Additionally, Melissa should have been a PERSON, not GPE, and Appveyor CI
should have been labeled ORGANIZATION rather than PERSON.

Chapter 6

[175]

We did not find any false negatives with this text sample. Using the formulas from
the last section, we can calculate the accuracy of our program as follows:

• CORRECT: The NER system guessed 15 correct boundaries and 12 correct
classes, so CORRECT = 27

• GUESSED: The NER system guessed a total of 19 boundaries, and a total of
19 classes, so GUESSED = 38

• POSSIBLE: The number of possible guesses for text boundaries should be 15,
and the number of possible class guesses is also 15, so POSSIBLE = 30

To calculate the MUC precision, recall, and F1 harmonic mean for our NER system,
we apply these measures to our data like this:

MUC_Precision = CORRECT / GUESSED
 = 27/38
 = 71%
MUC_Recall = CORRECT / POSSIBLE
 = 27/30
 = 90%
F1 = 2*((MUC_Precision * MUC_Recall) / (MUC_Precision + MUC_Recall))
 = 2*(.71 * .90) / (.71 + .90))
 = 79%

In this case, the NER program seemed to err on the side of false positives. It made
several incorrect guesses, but did not miss any named entities in the text. Next we
will see how the program does with highly unstructured chat text.

Django IRC chat
The Django project has an IRC channel where the community can discuss various
aspects of the project including how it works, bug fixing, and so on. The IRC logs are
provided for anyone to read at http://django-irc-logs.com. From this collection
of log files, we chose a random date, March 23, 2014, and extracted all of the IRC log
messages sent on that date. We did not collect the system messages, such as users
logging in or logging out. There are 677 lines of text in this sample.

http://django-irc-logs.com

Named Entity Recognition in Text

[176]

One thing we notice right away about IRC chat is because of the casual nature of this
communication format, most lines of text are not written with proper capitalization
or punctuation. To clean the data so that it would be able to be used by the sentence
tokenizer, we added a period at the end of each line to simulate a sentence structure,
and we removed URLs. A few sample lines from the data set look like this:

is it not possible though?.
it's possible, if you write a pile of JS to do it.
to dah pls no JS.
i just want native django queryset filter things.
Maybe he wouldn't have to. Maybe you could just use AdminActions.

We can see that any line that already ended in a question mark now has an
additional period at the end, but this will not affect our NER program. We see
various differences in capitalization, for example the person typing last does use it,
but the rest of the lines are more loosely capitalized.

The NER program identified 105 named entities, shown below. Examples of false
positives would be generic, capitalized nouns such as the Boolean variable value
False, the generic acronym API for application programming interface, and the
generic acronym CA for certificate authority. True positives include FTP for the
File Transfer Protocol program and South as the name of a system.

Here, the NER program is even more generous than it was with the Apache meeting
minutes, with 52 false positives. The remaining 53 entities we will declare as
correct, and we will give them 2 points each: 1 point for a correct boundary and 1
point for a correct class. For entities that have correct boundaries but an incorrect
class, we assign 1 point. For example, marking Allauth as a PERSON rather than
ORGANIZATION yields 1 point. Entities that are incorrect in boundary are given 0
points. Only the first few entries are shown, for space reasons:

{0 'API': ['ORGANIZATION', 'NNP'],
0 'APIs': ['ORGANIZATION', 'NNP'],
0 'Admin': ['PERSON', 'NNP'],
2 'AdminActions': ['ORGANIZATION', 'NNS'],
0 'Ahh': ['GPE', 'NNP'],
2 'Aldryn': ['PERSON', 'NNP'],
2 'Aleksander': ['PERSON', 'NN'],
1 'Allauth': ['PERSON', 'NNP'],
0 'Anyone': ['GPE', 'NN'],
2 'Australian': ['GPE', 'JJ'],
…}

Chapter 6

[177]

To identify false negatives, we read through the chat log, and constructed the
following list of 21 named entities that should have been caught but were not. Most
of these are usernames, which are rarely capitalized. Non-username false negatives
include html5 and softlayer, which also should have been capitalized but were not:

m1chael
html5
softlayer
tuxskar
comcast
gunicorn
tjsimmons
nginx
zlio
theslowl
frog3r
HowardwLo
dodobas
spoutnik16
moldy
carlfk
benwilber
erik`
apollo13
frege
dpaste

We can apply the same formulas:

• CORRECT: The NER system guessed 53 correct boundary and class pairs
and 32 partially correct classes, so CORRECT = 85

• GUESSED: The NER system guessed a total of 105 boundaries, and a total of
105 classes, so GUESSED = 210

• POSSIBLE: The number of possible guesses for text boundaries should be 74
(53 found entities plus 21 false negatives), and the number of possible class
guesses would also be 74, so POSSIBLE = 148

Named Entity Recognition in Text

[178]

To calculate the MUC precision, recall, and F1 harmonic mean for our NER system,
we apply these measures as follows:

MUC_Precision = CORRECT / GUESSED
 = 85/210
 = 40%
MUC_Recall = CORRECT / POSSIBLE
 = 85/148
 = 57%
F1 = 2*((MUC_Precision * MUC_Recall) / (MUC_Precision + MUC_Recall))
 = 2*(.40 * .57) / (.40 + .57))
 = 47%

We can see from these dismal numbers that the accuracy of the NER program
is vastly reduced in an IRC chat context, when compared to the board meeting
minutes context. To improve accuracy, we will need to address both false positives
and false negatives.

The main issue with false negatives seems to be missing the names of the chat
participants, so one way to improve those recall numbers would be to provide a
better way of detecting usernames. We could find a list of chatters on the system
and capitalize their names to make it more likely that the NER tool would find them.
Another approach would be to teach the system what a common username protocol
looks like in IRC. For example, on IRC it is common to begin a chat line by directing
it towards the person you are talking to, like this:

tjsimmons: don't forget that people typically use nginx to serve /
static.

Here the person who is being addressed is called tjsimmons. The system could be
taught that any single word at the beginning of a line followed by a colon character
is probably a user's name and should be included as a named entity.

False positives seem to mostly stem from over-sensitivity to capitalized generic
words such as acronyms, function names, and the like. This is a harder problem to
solve, but one approach could be to provide a domain-specific context for the NER to
work from. For instance, we could provide a pre-constructed vocabulary of known
words to ignore or we could train the system to recognize common features of
uninteresting words from this domain. An example of the latter would be the rule if
any capitalized word is followed by (), it is a function, so ignore it. Depending on the data
you have, you may need to add additional layers to your NER system so that it can
become more accurate.

Chapter 6

[179]

GnuIRC summaries
As a contrast to the Django IRC chat, which was very casual and very loosely
punctuated and capitalized, we will also analyze also a formal summary of an IRC
chat, written in clear prose by a human being. The GNUe project IRC channel had a
human summary written each week for several years in the early 2000s. Two lines of
the sample of the summary for the GNUe project are shown here:

Michael Dean (mdean) said that a new release (feature wise) is
probably about 3 or 4 weeks away, since the database upgrade was going
to be huge. As of this writing, he may make an interim bug fix/small
feature release to get some of the email support down.
Daniel Baumann (chillywilly) pointed out that this abstraction thingy
GComm could be confused with the GNU Comm project. But as far as Jason
Cater (jcater) was concerned, GComm is our internal package name... to
the external world, it's GNUe Common, but said that was a good point.

By 2015, the GNUe IRC summaries were no longer available online, but I rebuilt the
data set using XML files from Archive.org, and posted it on my FLOSSmole site at
the following URL: http://flossdata.syr.edu/data/irc/GNUe/.

The data set for this project is called gnueIRCsummary.txt and it is available on the
GitHub site for this chapter at https://github.com/megansquire/masteringDM/
tree/master/ch6.

This file consists of the first 10 paragraphs of the 23-27 October 2001 GNUe
summary, which is a sample of about 55 lines of text.

When we run the NER program against this data set, we see many cases of partial
boundaries. This data set will be a great way to test our partial MUC-style scoring
protocol. The system accurately caught Andrew Mitchell, but seemed to split Jeff
Bailey into two separate words. How do we score these? The system scored Bailey
incorrectly as an ORGANIZATION but Jeff correctly as a PERSON, we need to score
one correct and one incorrect. Here, next to each line, I have added numbers to
indicate whether the item was given 0, 1, or 2 points:

• 2 points means that both the boundaries and the class are correct
• 1 point means that the class was correct but the boundary was only partial
• An incorrect boundary and incorrect class is worth 0 points

http://flossdata.syr.edu/data/irc/GNUe/
https://github.com/megansquire/masteringDM/tree/master/ch6
https://github.com/megansquire/masteringDM/tree/master/ch6

Named Entity Recognition in Text

[180]

Note that no partial points were given if that entity was already found in full. So
there are no points given for Jason when Jason Cater was already found. The exception
to this rule is that sometimes the first name is mentioned in the text without the last
name. This is the case with Derek and Derek Neighbors, both of which are used in the
text. Therefore, we can score both Derek and Derek Neighbors as a 2. Only the first five
rows of this result set are shown, for space reasons:

{2 'Andrew Mitchell': ['PERSON', 'NNP NNP'],
0 'Bailey': ['ORGANIZATION', 'NNP'],
0 'Baumann': ['ORGANIZATION', 'NNP'],
1 'Bayonne': ['PERSON', 'NNP'],
1 'Cater': ['PERSON', 'NNP'],
...}

False negatives for this data set include:

pyro
pygmy
windows
orbit
omniORB

It is questionable whether the missing usernames should also be considered false
negatives. For instance, in this data set, the first instance of a first and last name
combination is followed by a username, as in Derek Neighbors (dneighbo). In the
future, we may wish to train this system to find these usernames in addition to the
full names. In this example, however, we elect to ignore the usernames and not
penalize the system for not finding them, since it did attempt to find the full names,
and those represent the same entity as the usernames.

We can apply the same formulas:

• CORRECT: The NER system earned a total of 41 boundaries and
location points

• GUESSED: The NER system guessed a total of 33 boundaries, and a total of
33 classes, so GUESSED = 66

• POSSIBLE: The number of possible guesses for text boundaries should be
21 (all the 2 point answers plus the five false negatives), and the number of
possible class guesses is also 21, so POSSIBLE = 42

Chapter 6

[181]

To calculate the MUC precision, recall, and F1 harmonic mean for our NER system,
we apply these measures as follows:

MUC_Precision = CORRECT / GUESSED
 = 41/66
 = 62%
MUC_Recall = CORRECT / POSSIBLE
 = 41/42
 = 98%
F1 = 2*((MUC_Precision * MUC_Recall) / (MUC_Precision + MUC_Recall))
 = 2*(.62 * .98) / (.62 + .98))
 = 76%

Here we see that the inclusion of partial scores for boundaries almost entirely makes
up for the five false positives. If we had scored these strictly, with no partial matches
allowed, there would be only 16 totally correct guesses, so the numbers would look
like this:

MUC_Precision = CORRECT / GUESSED
 = 32/66
 = 48%
MUC_Recall = CORRECT / POSSIBLE
 = 32/42
 = 76%
F1 = 2*((MUC_Precision * MUC_Recall) / (MUC_Precision + MUC_Recall))
 = 2*(.48 * .76) / (.48 + .76))
 = 59%

This example shows that whether we choose a loose or strict scoring protocol will
affect the presumed accuracy of our NER system. When you are presented with NER
accuracy results from someone else, it is important to ask about the scoring protocol
that they used.

Next we will experiment with some e-mails. These will be similar to the proper
English of the GNUe IRC summaries and the Apache Board meeting minutes,
but will have the same high technical content as the Django IRC chats.

Named Entity Recognition in Text

[182]

LKML e-mails
In Chapter 5, Sentiment Analysis in Text, we used a tiny sample of the e-mail messages
sent to the Linux Kernel Mailing List. Here we start with the same 77 e-mails sent
by Linus Torvalds to the LKML, but for this project, I made two changes to that data
set. First, I removed a few portions of a few of the lines that had boilerplate text, such
as On Fri, Jan 8, 2016 at 4:13 PM Linus Torvalds wrote:, since these lines
have nothing to do with the concepts in the text, and I did not want to risk the NER
program accidentally finding words such as On, Fri, or Jan in the text. Second, in
order to reduce the result set of named entities to a more manageable size, I decided
to also remove three of the e-mails. These three e-mails were summaries of patches
that had been added into the kernel that week, so each message included dozens of
names in them.

On the GitHub site for this book, you will find both files,
lkmlEmails.txt and lkmlEmailsReduced.txt. The
second of these is the one we will use for the remainder of this
chapter, although you should feel free to test with the first file
too if you like. Experimenting with the first file will produce
many, many more named entities than the second one.

Running our NER program against the lkmlEmailsReduced.txt file yields the
following named entities . Once again, I have scored each as either a 0, 1, or 2
following the example in the previous sections. Again, only the first five lines are
shown for space reasons:

{2 'AIO': ['ORGANIZATION', 'NNP'],
0 'Actually': ['PERSON', 'NNP'],
1 'Al': ['GPE', 'NNP'],
1 'Alpha': ['GPE', 'NNP'],
2 'Andrew': ['GPE', 'NNP'],
...}

Once again, the NER program does find a lot of first names; however, here the last
names are rarely used. (The case with the lkmlEmails.txt file is different. The
inclusion of those three extra e-mails does mean a lot more duplicate first names.)
Our program did seem to miss three named entities (perhaps more if we decided
that function names or libraries were important to catch as well):

valgrind
mmap
github

Chapter 6

[183]

To calculate precision and recall, we need to figure out the following:

• CORRECT: The NER system earned a total of 72 boundaries and
location points

• GUESSED: The NER system guessed a total of 72 boundaries, and a total of
72 classes, so GUESSED =144

• POSSIBLE: The number of possible guesses for text boundaries should be 42
(all 39 of the correct and partially correct answers plus the 3 false negatives),
and the number of possible class guesses is also 42, so POSSIBLE = 84

To calculate the MUC precision, recall, and harmonic mean F1 for this NER system,
we fit our data into the formulas as follows:

MUC_Precision = CORRECT / GUESSED
 = 72/144
 = 50%
MUC_Recall = CORRECT / POSSIBLE
 = 72/84
 = 86%
F1 = 2*((MUC_Precision * MUC_Recall) / (MUC_Precision + MUC_Recall))
 = 2*(.5 * .86) / (.5 + .86))
 = 63%

Here the low number of false negatives drives up the recall rates, but precision is still
fairly low due to a lot of false positives.

Having four very different types of text samples allows us to compare the
strengths and weaknesses of this simple NER program against text with different
characteristics. False negatives seem to result from words missing capitalization,
and false positives seem to result from over-sensitivity to capitalized words at the
beginning of sentences, acronyms, and boundary issues with multi-word phrases.

Summary
In this chapter, we learned about the task of Named Entity Recognition (NER)
and how that works in practice. We reviewed the characteristics of a named entity,
and compared many strategies for finding named entities in text and classifying
found entities into their correct type. We implemented a simple NER program
using NLTK and used it to detect named entities in four different types of technical
communication: chat, chat summaries, e-mails, and meeting minutes. We calculated
the accuracy of our NER program using precision, recall, and the F1-measure against
each of these text samples, and learned how the characteristics of the text sample will
affect the accuracy of the program.

Named Entity Recognition in Text

[184]

One of the outcomes of this chapter was to demonstrate that text that is written in
plain language with fewer technical terms will be easier to mine for named entities
than very technical language with a lot of code snippets, function names, acronyms,
and the like. We noticed that we got the best results from the Apache board meeting
minutes and the GNUe IRC chat summaries, both of which were written in complete
English sentences and had relatively little technical language compared to the IRC
chat and e-mail samples.

Next, we will build on the ideas introduced with the GNUe chat summaries. Those
chat summaries were written by a person, but is it possible to write a program that
can summarize text? How would this program work, and how would we know if it
had summarized the text correctly? Would a computer program possibly do as good
a job as a human at summarizing text? In the next chapter, we will explore this idea
of text summarization.

[185]

Automatic Text
Summarization

In an era of information overload, the objective of text summarization is to write a
program that can reduce the size of a text, while preserving the main points of its
meaning. The task is somewhat similar to the way an architect might create a scale
model of a building. The scale model gives the viewer a sense of the important parts
about the structure, but does so with a smaller size footprint, fewer details, and
without the same expense in time or materials.

Consider Reddit, a news-oriented social media site, with its thousands of news
articles posted daily by users. Is it possible to generate a short summary of a news
article that preserves the key facts and general meaning of the original story? A few
Reddit users created summary bots to do exactly this. These so-called TLDR bots (too
long; didn't read) post summaries of user-submitted news stories, usually including
a link to the original story and statistics to show by what percentage they reduced
the text. One of these bots is named autotldr, which has its own Reddit user page at
https://www.reddit.com/user/autotldr/. Created in 2011, autotldr follows links
to news stories and summarizes them in a comment posting. It always announces
itself before its summary like this, This is the best tl;dr I could make, original reduced
by 73%. (I'm a bot). Users seem to enjoy the autotldr bot, and its machine-generated
news summaries have been up-voted 190,000 times.

So how does this kind of text summarization actually work?

In this chapter, we will learn:

• What is automatic text summarization and why is it important?
• How can we build a naive text summarization system from scratch?
• How can we implement more sophisticated text summarizers and compare

their effectiveness?

https://www.reddit.com/user/autotldr/

Automatic Text Summarization

[186]

What is automatic text summarization?
In the academic literature, text summarization is often proposed as a solution to
information overload, and we in the 21st century like to think that we are uniquely
positioned in history in having to deal with this problem. However, even in the 1950s
when automatic text summarization techniques were in their infancy, the stated
goal was similar. H.P. Luhn's 1958 paper The automatic creation of literature abstracts,
available in a number of places online, including at http://altaplana.com/ibm-
luhn58-LiteratureAbstracts.pdf, describes a text summarization method that
will save a prospective reader time and effort in finding useful information in a given
article or report and that the problem of finding information is being aggravated by
the ever-increasing output of technical literature.

Luhn proposed a text summarization method where the computer would read
each sentence in a paper, extract the frequently occurring words, which he calls
significant words, and then look for the sentences that had the most examples of
those significant words. This is an early example of an extractive method of text
summarization. In an extractive summarization method, the summary is composed
of words, phrases, or sentences that are drawn directly from the original text. Ideally,
every text will have one or more main ideas or topic sentences that can serve as
summaries of some portion of the text. The extractive summarization algorithm
looks for these important sentences. As long as the amount of text that is extracted
is a subset of the original text, this type of summarization achieves the goal of
compressing the original text into a shorter size.

Alternatively, an abstractive summarization attempts to distill the key ideas in a
text and repackage them into a human-readable synthesis. This task is similar to
paraphrasing. However, since the goal is to create a summary, abstractive methods
must also reduce the length of the text and not just be a restatement of it.

For this chapter, we will focus on summarization techniques for text documents.
Other researchers are also working on summarization algorithms designed for
video, images, sound, and more. Some of these data types lend themselves better
to extractive summarization rather than abstractive summarization; for example a
video summary should probably consist of clips taken from the videos themselves.
We will focus on single-document summaries in this chapter, but there are also
summarization techniques that are designed to work with collections of documents.
The idea with multi-document summarization is that we can scan across a number
of related documents, picking out the main ideas correctly, while ensuring that the
resulting summary is free of duplicates and is human-readable.

In the next section, we will review some of the currently available single-document
text summarization libraries and applications.

http://altaplana.com/ibm-luhn58-LiteratureAbstracts.pdf
http://altaplana.com/ibm-luhn58-LiteratureAbstracts.pdf

Chapter 7

[187]

Tools for text summarization
Since our focus in this book is data mining with Python, we will focus on
understanding some of the tools, libraries, and applications designed for text
summarization in a Python environment. However, if you ever find yourself in a
non-Python environment, or if you have a special case where you want to use an off-
the-shelf or non-Python solution, you will be glad to know that there are dozens of
other text summarization tools for other programming environments, many of which
require no programming at all. In fact, the autotldr bot we discussed at the beginning
of this chapter uses a package called SUMMRY, which has an API that is accessible
via REST and returns JSON. You can read more about SUMMRY at http://smmry.
com/api.

Here we will discuss three Python solutions: a simple NLTK-based method, a
Gensim-based method, and a Python summarization package called Sumy.

Naive text summarization using NLTK
So far in this book, we have used NLTK for a variety of tasks including sentiment
mining in Chapter 5, Sentiment Analysis in Text and named entity recognition in
Chapter 6, Named Entity Recognition in Text. For our purposes in this chapter, we can
also use the tokenizers from NLTK to build a simple text summarizer that is based on
Luhn's method that he wrote about in The automatic creation of literature abstracts. This
basic, extractive program will first tokenize each sentence in the text sample, then
choose which words occur most frequently while excluding unimportant words,
called stopwords, and finally it will find the sentence or sentences that include the
important words.

Our program will include one other subtle effect. We will construct a score for each
sentence based on the aggregated scores of the words inside it. For example, suppose
the word cat appears in a text 10 times, and the word hat appears three times. The
sentence The cat wears a hat will score a 13, or the score for cat plus the score for hat.
The sentence His hat is different than her hat will only score 3, since the score for hat is
counted only once. This scoring system has the advantage of privileging sentences
that have a variety of important words in them, while minimizing the effect of
sentences that have fewer important words, even if those words are repeated
multiple times. The rationale for this scoring system is that sentences with a variety
of important words are more likely to be topic sentences or main ideas, and topic
sentences are more relevant for building a summary.

The code for this program, simpleTextSummaryNLTK.py, is available on the GitHub
site for this book, at https://github.com/megansquire/masteringDM/tree/
master/ch7. This GitHub site also contains the code samples for the other two
summarizers used later in the chapter as well.

http://smmry.com/api
http://smmry.com/api
https://github.com/megansquire/masteringDM/tree/master/ch7
https://github.com/megansquire/masteringDM/tree/master/ch7

Automatic Text Summarization

[188]

First we need to include a few libraries. We have used all of these in previous
chapters, but if you skipped those, you can install libraries in Anaconda with
conda install <packagename>:

from nltk.tokenize import word_tokenize
from nltk.tokenize import sent_tokenize
from nltk.probability import FreqDist
from nltk.corpus import stopwords
from collections import OrderedDict
import pprint

Next, we need a sample of text to summarize. For the example, I decided to use the
text from the first portion of this chapter. You can get the text from the GitHub site
or paste in some other text sample of your choosing. Following the text variable
creation, we instantiate several data structures to hold the various data structures
for sentences and counts:

text = '' # put text here
summary_sentences = []
candidate_sentences = {}
candidate_sentence_counts = {}

Now we should strip any carriage returns out of the text, for easier reading when the
sentences are displayed. This code replaces carriage returns in the text sample with
space characters:

striptext = text.replace('\n\n', ' ')
striptext = striptext.replace('\n', ' ')

Next we will get the list of the top 20 most frequent words in this text sample.
We will tokenize the text sample into words, lowercase them, making sure we
throw out any stopwords and punctuation:

words = word_tokenize(striptext)
lowercase_words = [word.lower() for word in words
 if word not in stopwords.words() and word.isalpha()]

We can use the FreqDist package to find the frequency distribution of the remaining
words, and the most_common() function to pull out the top 20 words from this list.
This list is fairly informative, so we can print it to the screen to look at it:

word_frequencies = FreqDist(lowercase_words)
most_frequent_words = FreqDist(lowercase_words).most_common(20)
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(most_frequent_words)

Chapter 7

[189]

Here, we will take the stripped text sample and tokenize it into a list of sentences.
For each sentence, we will create a dictionary with the sentence itself as the key and
its lowercase equivalent as the value:

sentences = sent_tokenize(striptext)
for sentence in sentences:
 candidate_sentences[sentence] = sentence.lower()

Now it is time to determine which of these sentences has the most important
words in it. We iterate through the dictionary of candidate sentences, searching the
lowercase version of the sentence for the important words. If we find an important
word, we increment the score for that sentence by the value of the word we found.
We save the original mixed-case version of the sentence, and its score, to the
candidate_sentence_counts dictionary:

for long, short in candidate_sentences.items():
 count = 0
 for freq_word, frequency_score in most_frequent_words:
 if freq_word in short:
 count += frequency_score
 candidate_sentence_counts[long] = count

Finally we sort the sentences, placing the most important sentences first. We retain
the top four most important sentences, and print them to the screen, along with
their scores:

sorted_sentences = OrderedDict(sorted(
 candidate_sentence_counts.items(),
 key = lambda x: x[1],
 reverse = True)[:4])
pp.pprint(sorted_sentences)

This program chooses the following words as the most significant from this chapter:

[('summarization', 15),
 ('text', 15),
 ('in', 4),
 ('extractive', 4),
 ('method', 4),
 ('summary', 4),
 ('words', 4),
 ('sentences', 4),
 ('original', 3),
 ('information', 3),
 ('documents', 3),
 ('ideas', 3),

Automatic Text Summarization

[190]

 ('goal', 3),
 ('similar', 3),
 ('techniques', 3),
 ('literature', 3),
 ('early', 2),
 ('main', 2),
 ('this', 2),
 ('video', 2)]

Then, the program produces the following four-sentence summary:

In an extractive summarization method, the summary is comprised of
words, phrases, or sentences that are drawn directly from the original
text. With this early work, Luhn proposed a text summarization method
where the computer would read each sentence in a paper, extract the
frequently occurring words, which he calls significant words, and
then look for the sentences that had the most examples of those
significant words. In the academic literature, text summarization is
often proposed as a solution to information overload, and we in the
21st century like to think that we are uniquely positioned in history
in having to deal with this problem. Luhn's 1958 paper "The automatic
creation of literature abstracts," describes a text summarization
method that will "save a prospective reader time and effort in finding
useful information in a given article or report" and that the problem
of finding information "is being aggravated by the ever-increasing
output of technical literature."

If we tried to treat this as a standalone summary, like a literature abstract, it is not
very effective. The summary lacks the cohesion that a human would bring to the
summarization task. The sentences seem disjointed and lack a proper flow from
one to the next. This method also seems to be biased towards longer sentences. This
makes sense if we consider that longer sentences will end up having higher scores,
if only due to the aggregation of the word counts within them. Finally, this method
does not take into account the placement of the sentence within the paragraph. Some
academic research has shown that the main ideas, or topic sentences, in a text are
likely to appear either first or last in a paragraph. If we wanted to add any of these
additional features to our program, we would need to decide how to adjust our
scoring system accordingly.

Text summarization using Gensim
A slightly more sophisticated approach to text summarization is included in the
Gensim topic modeling package. Chapter 8, Topic Modeling in Text of this book
has topic modeling as its entire focus, so we will not duplicate those tasks here.
However, perhaps we can peek ahead just a little bit and use one tiny part of the
Gensim library for our text summarization needs.

Chapter 7

[191]

The Gensim approach to text summarization is quite different than the naive Luhn
approach we used in the last section. To understand it, we need to recall some of the
concepts from Chapter 4, Network Analysis, about graph theory and network analysis.
The Gensim approach to finding important sentences in a text begins with building
a weighted, undirected graph, where the nodes are the sentences and the links
between them are a measure of how similar the sentences are to each other. This
method is called TextRank, after the similar PageRank algorithm designed finding
relevant web page search results. In TextRank, similarity is defined by how many
common lexical tokens are shared between the two sentences. To avoid inadvertently
privileging long sentences – which was one of the weaknesses of the naive Luhn
approach we experimented with earlier – TextRank normalizes the similarity
score by taking into account how long the sentence is. After the graph is built, the
sentences with the highest weights are extracted as representative summaries of the
text as a whole.

This approach was first described in the 2004 paper TextRank: Bringing Order into
Texts by Rada Mihalcea and Paul Tarau, available at https://web.eecs.umich.
edu/~mihalcea/papers/mihalcea.emnlp04.pdf. This work was updated by
Federico Barrios, Federico Lopez, Luis Argerich, and Rosita Wachenchauzer in
2015, with the results of their experiments in calculating better similarity scores, or
weights, in the graph. The latter group has contributed to the Gensim code base,
according to the Changelog at https://github.com/RaRe-Technologies/gensim/
blob/develop/CHANGELOG.txt.

To get started with text summarization in Gensim, we will first import the library:

import gensim.summarization

If you get an error from Anaconda about not having Gensim installed, remember to
use conda install gensim to get that library loaded into your system.

Next we will set up a text string that we want to summarize. I used the same text
sample as in our naive Luhn summarizer. By using the same text string, we will
more easily be able to compare the results of the two text summarizers to each other.
We can also strip off end-of-line carriage returns since this text sample has sentences
that extend over multiple lines:

text = '' # put text here
striptext = text.replace('\n\n', ' ')
striptext = striptext.replace('\n', ' ')

Next, we summarize and print the results:

summary = gensim.summarization.summarize(striptext, word_count=50)
print(summary)

https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf
https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf
https://github.com/RaRe-Technologies/gensim/blob/develop/CHANGELOG.txt
https://github.com/RaRe-Technologies/gensim/blob/develop/CHANGELOG.txt

Automatic Text Summarization

[192]

With the word_count parameter, we asked for a summary of no more than 50 words.
The resulting summary is:

Luhn's 1958 paper "The automatic creation of literature abstracts,"
describes a text summarization method that will "save a prospective
reader time and effort in finding useful information in a given
article or report" and that the problem of finding information
"is being aggravated by the ever-increasing output of technical
literature." With this early work, Luhn proposed a text summarization
method where the computer would read each sentence in a paper, extract
the frequently-occurring words, which he calls significant words,
and then look for the sentences that had the most examples of those
significant words.

This is actually a pretty good pairing of sentences, and reads fairly well. To see how
Gensim chose those sentences, we can ask Gensim to pick out the keywords from the
text sample and print them:

keywords = gensim.summarization.keywords(striptext)
print(keywords)

Gensim returns a list of the following 22 words:

documents
document
literature text summarization
abstracts
abstractive
ideas
idea
shorter
words
summary
summaries
information
reader
type
types
luhn
important
sentence
sentences
extract
extractive
extracted

Chapter 7

[193]

Notice that the Gensim keywords() function does not naturally combine
words that have the same stem. In other words, the keywords extract,
extractive, and extracted could be combined into a single concept but
keywords() does not do this.

Additionally, with Gensim summarizer, not all the keywords have to be a single
word; multi-word phrases are supported. The result literature text summarization is an
example of such a phrase. How did this rather awkward phrase get chosen? My first
hypothesis was that perhaps Gensim was getting confused by the comma in the first
sentence of the text sample. But I removed the comma, and it still found literature text
summarization was a keyword. I tested the summarizer by rewording the beginning
of the sentence as follows: Text summarization is often proposed... After doing this,
the keywords() function returned a new list of 23 words. The lists are very similar,
except that text summarization is now the first result, the word size was added, and
the order of some of the words was slightly altered.

The Gensim keyword list has a few things in common with the Luhn-style list
created earlier, namely the words text and summarization are in both sets, as are
extractive, words, literature, ideas, information, summary, and documents. Between the
two summarizers, that does seem to be a good list of words.

Text summarization using Sumy
There are many more methods for text summarization than just our naive Luhn-style
approach and Gensim's TextRank approach. If we are not sure which one to try,
or perhaps we want to try even more exotic methods, we can turn to a full-fledged
text summarization library that has multiple algorithms built in. Sumy is just such a
library, and it is available at https://github.com/miso-belica/sumy. Because it is
not part of the Anaconda distribution, we will have to install it manually by running
the following command inside a terminal:

pip install sumy

Once we have Sumy installed, we can set up a simple text summarizer and try out
the different algorithms that are built in. The following code shows four different
text summarization algorithms implemented in Sumy. We will walk through
each of them in turn. Before doing so, we must first import a number of Sumy's
summarizers, as well as its utility library. This code is available on the Github site for
this book at https://github.com/megansquire/masteringDM/blob/master/ch7/
sumySummarize.py:

from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer

https://github.com/miso-belica/sumy
https://github.com/megansquire/masteringDM/blob/master/ch7/sumySummarize.py
https://github.com/megansquire/masteringDM/blob/master/ch7/sumySummarize.py

Automatic Text Summarization

[194]

from sumy.summarizers.luhn import LuhnSummarizer
from sumy.summarizers.text_rank import TextRankSummarizer
from sumy.summarizers.lsa import LsaSummarizer
from sumy.summarizers.edmundson import EdmundsonSummarizer
from sumy.nlp.stemmers import Stemmer
from sumy.utils import get_stop_words

Then we set up our language to be english, and our number of summary sentences to
be four:

LANGUAGE = "english"
SENTENCES_COUNT = 4

In addition to English, Sumy has stopword lists available for
Czech, French, German, Portuguese, Slovak, and Spanish.

Next, we read in our sample file. Here Sumy will be directed to read sampleText.
txt, a file that consists of the exact same text as we used in our earlier two examples:

parser = PlaintextParser.from_file("sampleText.txt",
Tokenizer(LANGUAGE))
stemmer = Stemmer(LANGUAGE)

Here the last line directs Sumy to use the built in stemmer to take care of word stems.
Recall that stemming was one of the features we did not have in our previous two
algorithms, but when we looked at the keyword lists and how repetitive they were,
stemming seemed like a good idea.

Sumy's Luhn summarizer
Now we are ready to call four different summarization methods so that we can
compare them. We separate each of the following four print statements with a
line so that we can compare the results. Sumy's Luhn-based method is first:

print("\n====== Luhn ======")
summarizerLuhn = LuhnSummarizer(stemmer)
summarizerLuhn.stop_words = get_stop_words(LANGUAGE)
for sentenceLuhn in summarizerLuhn(parser.document, SENTENCES_COUNT):
 print(sentenceLuhn, "\n")

The LuhnSummarizer() function creates a summarizer based on the stemmed text.
It requires a list of stopwords too, so we use Sumy's get_stop_words() function
for an English-language list of these words.

Chapter 7

[195]

The four sentences chosen by the Luhn summarizer are shown here. I added letters
(A, B, C, and so on) before each sentence so that we can compare them across
summarizers and figure out which sentences are chosen more frequently:

====== Luhn ======
A. However, even in the 1950s when automatic text summarization
techniques were in their infancy, the stated goal was similar.
B. Luhn's 1958 paper "The automatic creation of literature abstracts,"
describes a text summarization method that will "save a prospective
reader time and effort in finding useful information in a given
article or report" and that the problem of finding information
"is being aggravated by the ever-increasing output of technical
literature."
C. With this early work, Luhn proposed a text summarization method
where the computer would read each sentence in a paper, extract the
frequently-occurring words, which he calls significant words, and then
look for the sentences that had the most examples of those significant
words.
D. As long as the amount of text that is extracted is a subset of
the original text, this type of summarization achieves the goal of
compressing the original text into a shorter size.

Sumy's TextRank summarizer
Next, we set up a summarizer using TextRank. TextRank also requires a list
of stopwords:

print("====== TextRank ======")
summarizerTR = TextRankSummarizer(stemmer)
summarizerTR.stop_words = get_stop_words(LANGUAGE)
for sentenceTR in summarizerTR(parser.document, SENTENCES_COUNT):
 print(sentenceTR, "\n")

The four sentences chosen by Sumy's implementation of TextRank are shown next.
One sentence, labeled D, was also found in the Luhn summary. The other three
sentences labeled E, F, and G are new:

====== TextRank ======
E. With this early work, Luhn proposed a text summarization method
where the computer would read each sentence in a paper, extract the
frequently-occurring words, which he calls significant words, and then
look for the sentences that had the most examples of those significant
words.

Automatic Text Summarization

[196]

F. In an extractive summarization method, the summary is comprised of
words, phrases, or sentences that are drawn directly from the original
text.
D. As long as the amount of text that is extracted is a subset of
the original text, this type of summarization achieves the goal of
compressing the original text into a shorter size.
G. In this chapter we will focus on summarization techniques for
text documents, but researchers are also working on summarization
algorithms designed for video, images, sound, and more.

Sumy's LSA summarizer
The next algorithm is based on Latent Semantic Analysis, or LSA. This approach was
first introduced for text summarization by Yihong Gong and Xin Liu in a 2001 paper
Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis,
available at http://www.cs.bham.ac.uk/~pxt/IDA/text_summary.pdf. This work
was enhanced in the 2004 paper Using Latent Semantic Analysis in Text Summarization
and Summary Evaluation by Josef Steinberger and Karel Ježek, available at http://
www.kiv.zcu.cz/~jstein/publikace/isim2004.pdf. We will tackle more of the
details behind latent semantic analysis in Chapter 8, Topic Modeling in Text, when we
learn about topic modeling, but for now, the basic idea is that the LSA technique
forms a matrix of terms on the rows and sentences on the columns. The value at
the intersection of row and column is how many times each term appears in each
sentence. Similarity is determined by first reducing the matrix mathematically, and
then the cosines of the angles of the vectors in the reduced matrix are compared to
find rows that are similar. In text summarization, the most important sentences will
be those that are the most similar to others:

print("====== LSA ======")
summarizerLSA = LsaSummarizer(stemmer)
summarizerLSA.stop_words = get_stop_words(LANGUAGE)
for sentenceLSA in summarizerLSA(parser.document, SENTENCES_COUNT):
 print(sentenceLSA, "\n")

The following results indicate that item B was previously found in Luhn, and item F
was found in TextRank. Items H and I are unique to LSA:

====== LSA ======
B. Luhn's 1958 paper "The automatic creation of literature abstracts,"
describes a text summarization method that will "save a prospective
reader time and effort in finding useful information in a given
article or report" and that the problem of finding information
"is being aggravated by the ever-increasing output of technical
literature."

http://www.cs.bham.ac.uk/~pxt/IDA/text_summary.pdf
http://www.kiv.zcu.cz/~jstein/publikace/isim2004.pdf
http://www.kiv.zcu.cz/~jstein/publikace/isim2004.pdf

Chapter 7

[197]

F. In an extractive summarization method, the summary is comprised of
words, phrases, or sentences that are drawn directly from the original
text.
H. Alternatively, an abstractive summarization attempts to distill
the key ideas in a text and repackage them into a human-readable, and
usually shorter, synthesis.
I. However, since the goal is to create a summary, abstractive
methods must also reduce the length of the text while focusing on only
retaining the most important concepts in it.

Sumy's Edmundson summarizer
Finally, we implement another more complex algorithm, named after H.P.
Edmundson's 1969 paper New Methods in Automatic Extracting, which is available at
http://courses.ischool.berkeley.edu/i256/f06/papers/edmonson69.pdf.
The main difference with the Edmundson approach over, for example, the Luhn
approach, is that he allows the analyst to inject certain words as cues that are highly
correlated to the importance of a sentence. This cue method is based on the hypothesis
that the probable relevance of a sentence is affected by the presence of pragmatic words.
Examples of words that point to an important sentence are called bonus words.
The opposite of these are stigma words, or those that negatively affect whether a
sentence is important. Finally, he allows for null words, which are words that are
neutral, or irrelevant, to the importance of a sentence.

In the Sumy implementation of Edmundson, the user is required to configure lists of
bonus, stigma, and null words. Edmundson advocates for using statistical analyses
of similar documents to come up with these words. In the following example, we
will initialize each of these lists with the throwaway token foo just to get the program
running, and then we will investigate what happens when we alter the bonus,
stigma, and null words:

print("====== Edmonson ======")
summarizerEd = EdmundsonSummarizer(stemmer)
summarizerEd.bonus_words = ('foo')
summarizerEd.stigma_words = ('foo')
summarizerEd.null_words = ('foo')
for sentenceEd in summarizerEd(parser.document, SENTENCES_COUNT):
 print(sentenceEd, "\n")

The Edmundson results with foo as the cue words are shown here. Items A and B
were found previously in the Luhn summarizer, but items J and K are new:

J. In the academic literature, text summarization is often proposed
as a solution to information overload, and we in the 21st century like
to think that we are uniquely positioned in history in having to deal
with this problem.

http://courses.ischool.berkeley.edu/i256/f06/papers/edmonson69.pdf

Automatic Text Summarization

[198]

A. However, even in the 1950s when automatic text summarization
techniques were in their infancy, the stated goal was similar.
B. Luhn's 1958 paper "The automatic creation of literature abstracts,"
describes a text summarization method that will "save a prospective
reader time and effort in finding useful information in a given
article or report" and that the problem of finding information
"is being aggravated by the ever-increasing output of technical
literature."
K. In the next section we will review some of the currently available
text summarization libraries and applications.

What happens to the Edmundson summarizer when we adjust the cue words? To
perform this experiment, we will first read through the text sample and find words
that seem to positively correlate to what we think the topic sentences are, then do the
same thing for negative, or stigma, words and null words. We can adjust the code
as follows:

print("====== Edmonson ======")
summarizerEd = EdmundsonSummarizer(stemmer)
summarizerEd.bonus_words = ('focus', 'proposed', 'method',
'describes')
summarizerEd.stigma_words = ('example')
summarizerEd.null_words = ('literature', 'however')
for sentenceEd in summarizerEd(parser.document, SENTENCES_COUNT):
 print(sentenceEd, "\n")

The results are shown here. Items J and K are still in the output, just like before,
but now the results show item I (also found by LSA) and item G (also found by
TextRank):

J. In the academic literature, text summarization is often proposed
as a solution to information overload, and we in the 21st century like
to think that we are uniquely positioned in history in having to deal
with this problem.
I. However, since the goal is to create a summary, abstractive
methods must also reduce the length of the text while focusing on only
retaining the most important concepts in it.
G. In this chapter we will focus on summarization techniques for
text documents, but researchers are also working on summarization
algorithms designed for video, images, sound, and more.
K. In the next section we will review some of the currently available
text summarization libraries and applications.

The Edmundson technique is obviously very configurable, which could be a good
thing if we had a list of cue words we felt confident about. However, if we are
not really sure what to use as cue words, that same flexibility and configurability
becomes a weakness.

Chapter 7

[199]

Scanning across the four implementations, the sentences that were chosen the
most are B, D, F, I, and G. Each of these sentences was chosen at least twice.
We can manually organize these sentences into a single paragraph, and we
get the following summary:

Luhn's 1958 paper "The automatic creation of literature abstracts,"
describes a text summarization method that will "save a prospective
reader time and effort in finding useful information in a given
article or report" and that the problem of finding information
"is being aggravated by the ever-increasing output of technical
literature." In an extractive summarization method, the summary is
comprised of words, phrases, or sentences that are drawn directly from
the original text. As long as the amount of text that is extracted is
a subset of the original text, this type of summarization achieves the
goal of compressing the original text into a shorter size. However,
since the goal is to create a summary, abstractive methods must
also reduce the length of the text while focusing on only retaining
the most important concepts in it. In this chapter we will focus on
summarization techniques for text documents, but researchers are also
working on summarization algorithms designed for video, images, sound,
and more.

This summary is a bit awkward in its style, but it does convey some of the main
points of the introduction to this chapter. It is all the more impressive when we
consider that it was automatically generated, based on very little domain knowledge
or human intervention.

Summary
Automatic text summarization is a field that is growing in importance as the
volume of data in the world increases. There are numerous approaches to
text summarization, but all of them rely on the construction of mathematical
representations of the words and sentences in a document, then, through extractive
or abstractive methods, building a program that can reduce a document to its most
important parts. We reviewed three of the common extractive summarization
libraries that can be integrated into our Python code: an NLTK-based summarizer,
a Gensim-based approach, and a new package called Sumy with its numerous
embedded summarizers. We then compared the different approaches to text
summarization by using the same text sample and passing it through different
summarization algorithms to see how they differed.

Automatic Text Summarization

[200]

It is good that in this chapter, we have begun thinking about what makes an
important sentence or a key word. In the next chapter, we will be learning about topic
modeling, which means discovering what important topics are being discussed in
a text. Many of the same high-level concepts apply to both topic modeling and text
summarization, so we should feel quite prepared as we move forward into Chapter 8,
Topic Modeling in Text.

[201]

Topic Modeling in Text
Topic modeling in text is loosely related to the summarization techniques we
explored in Chapter 7, Automatic Text Summarization. However, topic modeling
involves a more complex mathematical foundation and it produces a different type
of result. The goal of text summarization is to produce a version of a text that is
reduced but still expresses common themes or concepts in a text, whereas the
goal of topic modeling is to expose the underlying concepts themselves.

To extend our Chapter 7, Automatic Text Summarization metaphor, in which text
summarization was compared to building a scale model of a house, topic modeling
is like trying to describe the purpose of a set of houses based on multiple sample
dwellings. For example, the topic model of one neighborhood of houses might be
busy family, storage space, and low maintenance and another neighborhood could
have houses described with the words social, entertaining, luxury, and showplace.
These two models clearly represent two different types of houses, designed and built
with two different purposes.

How does topic modeling work? Is it more sophisticated than simply counting how
many times each word occurs? In this chapter, we will learn:

• What is topic modeling? What are some of the common techniques we can
use to accomplish this task?

• What are the currently available libraries and tools for applying topic
modeling in Python, and how do they work?

• How can we compare the effectiveness of a topic modeling approach,
in terms of the results it generates?

• How do you apply topic modeling to a real-world problem?

Topic Modeling in Text

[202]

What is topic modeling?
Just like with the keyword-based text summarization techniques we looked at in
Chapter 7, Automatic Text Summarization, topic modeling also takes into account what
words are used in a text. However, the focus of topic modeling is more about themes
and concepts, and not solely about summarizing text. Topic models can be used for
summarization, but they can also be used for many other goals:

• Topic models can assist with organization of documents, for example, to
group news articles together into a cohesive section

• Topic models can help us make recommendations about what to read next by
finding materials that have a topic list in common

• Topic models can improve search results by revealing documents that may
use a mix of different keywords but are about the same idea

One critical component of the type topic modeling we will investigate in this
chapter is that the analyst does not need to know what the topics or keywords are
in advance. Instead, the model is created in an unsupervised way. In unsupervised
topic modeling, the list of topics is built by the computer using probabilities to
determine what the topics should be and what documents and words reference
those topics.

Researchers for the social media site Facebook published an article in 2013 about
how that company uses one type of topic modeling to understand the topics users
post about, and more importantly, to understand how audiences respond to those
postings. The article is available for download on the Facebook Research blog here:
https://research.facebook.com/publications/gender-topic-and-audience-
response-an-analysis-of-user-generated-content-on-facebook/. In the
paper, the authors explain their purpose:

"... We examine whether male and female [social network service] users talk about
different topics, and how their audience of friends and followers respond."

They provide a list of 25 topics that they discovered are common in Facebook
postings, and they list the corresponding keywords that support those topics. For
example, they list the topic Sleep and the associated keywords last night, wake up, bed,
nap, asleep. The topic Food includes keywords such as lunch, coffee, chicken, ice cream.

https://research.facebook.com/publications/gender-topic-and-audience-response-an-analysis-of-user-generated-content-on-facebook/
https://research.facebook.com/publications/gender-topic-and-audience-response-an-analysis-of-user-generated-content-on-facebook/

Chapter 8

[203]

Again, the critical component of unsupervised topic modeling is that we do not need
to construct a list of keywords and topics in advance. The Facebook researchers did
not need to know in advance that they had a number of posts about Sleep using the
keywords bed, nap, and awake. Rather, the topic lists are generated and grouped by
the topic modeling program, at which point the human analysts can suggest the
umbrella terms, such as Sleep and Food, which encapsulate the ideas in each topic list.
In the next section, we will take a closer look at how one of these unsupervised topic
modeling programs works.

You might be curious to know what the Facebook researchers found out
about the differences in topics and responses between male and female
users of their service. At the end of their paper they explain:
"Using topic modeling, we find that women are more likely to broadcast
personal issues, while men are more likely to post philosophical topics.
Although men get fewer comments than women, masculine topics receive
more comments."
For more about the Facebook study, you can download the original paper
and read related work in the machine learning area of their research blog,
available at: https://research.facebook.com/publications/
machinelearningarea/.

Latent Dirichlet Allocation
The most common technique currently in use for topic modeling of text, and the one
that the Facebook researchers used in their 2013 paper, is called Latent Dirichlet
Allocation (LDA).

Many people wonder how to pronounce Dirichlet in English. The most
common pronunciation I have heard is DEER-uh-shlay, and I have also
heard DEER-uh-klay a few times.

LDA was first proposed for text topic extraction by David Blei, Andrew Ng, and
Michael Jordan in a 2003 paper entitled simply Latent Direchlet Allocation, available
from the Journal of Machine Learning Research at http://www.jmlr.org/papers/
volume3/blei03a/blei03a.pdf. Blei also wrote a good follow-up article in
2012 for the Communications of the ACM about LDA and some new variants and
improvements for it. This later article is written in very accessible language and
is available for download at https://www.cs.princeton.edu/~blei/papers/
Blei2012.pdf.

https://research.facebook.com/publications/machinelearningarea/
https://research.facebook.com/publications/machinelearningarea/
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://www.cs.princeton.edu/~blei/papers/Blei2012.pdf
https://www.cs.princeton.edu/~blei/papers/Blei2012.pdf

Topic Modeling in Text

[204]

The first thing we should know about LDA is that it is a probabilistic topic modeling
technique. In topic modeling, we assume that in any collection of related documents,
each document includes some combination of topics. A collection of documents
could be academic papers, e-mails, Facebook posts, and so on. With topic modeling,
our main goal is to find the hidden topic structure for this collection of documents. A
topic structure includes three things: the topics themselves, the statistical distribution
of these topics among the documents, and the words within a document that
comprise the topic.

Probabilistic topic modeling techniques such as LDA are able to work in an
unsupervised way because they use conditional probabilities to derive this hidden
topic structure for a given document collection. To do this, LDA assumes that
each document in a collection is about some set of topics, but that these topics are
distributed unevenly throughout the documents. The topic structure itself is the
hidden variable that needs to be derived based on the observed variables, which
are the words in the document.

The computational challenge for LDA is to calculate the probability of each possible
topic structure given the words, or observations. The reason why this is challenging
is that it involves calculating the probability of every observed word under
every possible topic. If the number of topics and words are both large, we have a
computationally intractable problem. To solve this problem for large data sets, topic
modeling algorithms will attempt to reduce the number of possibilities for topics or
words, similarly to how we attempted to reduce the number of candidates in our
association rule mining back in Chapter 2, Association Rule Mining.

The implementation of LDA that we will be using in this book, Gensim LDA, uses a
reduction technique based on the work of Matthew Hoffman, David Blei, and Francis
Bach, first described in their 2010 paper Online Learning for Latent Dirichlet Allocation
which you can download from https://www.cs.princeton.edu/~blei/papers/
HoffmanBleiBach2010b.pdf. In the next section, we will practice using Gensim to
infer a topic model from text.

Gensim for topic modeling
We used the Gensim library already in Chapter 7, Automatic Text Summarization for
extracting keywords and summaries of text. Here we will use it for building a topic
model of a collection of texts. Just as we did in earlier chapters, we will practice with
a few different types of document collections and see how the results vary.

https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf

Chapter 8

[205]

First, we will build a small test program to make sure that Gensim and LDA are
installed correctly and able to generate a topic model from a collection of documents.
If Gensim is not loaded into your version of Anaconda, simply run conda install
gensim in your terminal.

We begin with importing the Gensim libraries and a PrettyPrinter for formatting:

from gensim import corpora
from gensim.models.ldamodel import LdaModel
from gensim.parsing.preprocessing import STOPWORDS
import pprint

We will need some variables to serve as ways of adjusting the model. As we learn
how topic modeling works, we will tweak these values to see how the results change.
The num_topics variable holds how many topics we would like the model to find.
The num_words variable tells how many words we would like to view from each
topic, if different from the default of 10. The passes variable indicates how many
times we would like to go over the data. Generally, for a large corpus this could be
set to 1, but for a small corpus might need to be set higher in order to ensure that
the model does not choose weird values randomly, and that the results begin to
converge on some truly representative topics:

num_topics = 5
num_words = 5
passes = 20

Next, we set up several sample files for testing. To see how the LDA model works
with different types of text, we can use the same text samples we used in previous
chapters, as well as several new ones, all made available for download at https://
github.com/megansquire/masteringDM/tree/master/ch8.

In terms of our LDA vocabulary, each text file is considered a collection of
documents, with one document per line inside the file. We can comment out
any text file we are not working with at the moment:

filename = 'data/introSectionsToChapters.txt'
filename = 'data/sampleTextFromCh7.txt'
filename = 'data/gnueIRCsummary.txt'
filename = 'data/apacheMeetingMinutes.txt'
filename = 'data/lkmlLinusJan2016.txt'
filename = 'data/lkmlLinusJan2006.txt'
filename = 'data/lkmlLinusAll.txt'

https://github.com/megansquire/masteringDM/tree/master/ch8
https://github.com/megansquire/masteringDM/tree/master/ch8

Topic Modeling in Text

[206]

These files are of different lengths, have different numbers of documents in them,
and different purposes and tones:

• The introSectionsToChapters.txt file is an expanded version of the
introductory text file we used in Chapter 7, Automatic Text Summarization.
This new file contains the introductory paragraphs of each of the first eight
chapters of this book, one chapter per line.

• The sampleTextFromCh7.txt file was the small introductory text file that we
used in Chapter 7, Automatic Text Summarization.

• The gnueIRCsummary.txt and apacheMeetingMinutes.txt files were all used
in Chapter 6, Named Entity Recognition in Text.

• The lkmlJan2016.txt, lkmlJan2006.txt, and lkmlLinusall.txt files are
collections of e-mails sent by Linus Torvalds to the Linux Kernel Mailing list.

We can read the lines in the file into a list that we call documents:

with open(filename, encoding='utf-8') as f:
 documents = f.readlines()

Next, each document is turned into a list of words. Each word in the list is
lowercased, then stopwords and contractions (such as don't and it's) are ignored:

texts = [[word for word in document.lower().split()
 if word not in STOPWORDS and word.isalnum()]
 for document in documents]

Next we create a Dictionary and a corpus from the lists of words:

dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]

The Dictionary object has a function called doc2bow(), where bow stands for bag
of words. A bow just means that each word in the list is thrown in a bag where it
is counted and stored. In a bag of words, the words are considered independently
of their order in the original list. Each item in the annotated corpus is a tuple of the
form (word, frequency).

Now we are ready to create the LDA model:

lda = LdaModel(corpus,
 id2word=dictionary,
 num_topics=num_topics,
 passes=passes)

Chapter 8

[207]

From here, we can simply print out the topics that the LDA procedure found:

pp = pprint.PrettyPrinter(indent=4)
pp.pprint(lda.print_topics(num_words=num_words))

The resulting topic list is shown below for the introSectionsToChapters.txt file
with num_topics=5, num_words=5, and passes=20:

[
 (0, '0.050*topic + 0.036*modeling + 0.026*text + 0.026*chapter +
0.016*different'),
 (1, '0.034*text + 0.024*news + 0.020*summarization + 0.015*bots +
0.015*original'),
 (2, '0.052*data + 0.015*mining + 0.013*techniques + 0.013*frequent +
0.013*information'),
 (3, '0.019*data + 0.019*network + 0.016*finding + 0.016*text +
0.016*sentiment'),
 (4, '0.002*data + 0.002*text + 0.002*named + 0.002*information +
0.002*entity')
]

At first these lines seem hard to understand. We can interpret each line by saying, for
topic 3, the word data is the most contributing word, the word network is the second
most contributing word, and so on.

Understanding Gensim LDA topics
Gensim will build a topic list as shown previously, with the caveat that this list is
user-configurable as to how many topics it includes and how many words are shown
for each topic. I strongly encourage experimentation with different numbers of topics
and displayed words, in order to understand how the output changes depending on
how these values change.

Once we have a topic list we like, we can consider labeling the topics. In other words,
if the topics Gensim reveals seem particularly coherent in terms of the words that are
included, we could consider assigning them some human-friendly umbrella terms.
For the example with the introSectionsToChapters.txt file, we might rename
topics 0-4 as follows:

• Topic modeling: topic, modeling, text, chapter, different
• Text summarization: text, news, summarization, bots, original
• General data mining: data, mining, techniques, frequent, information

Topic Modeling in Text

[208]

• Network analysis and sentiment mining: data, network, finding,
text, sentiment

• Named entity recognition, entity matching: data, text, named,
information, entity

The initial descriptors for each topic were created by me, but the list of words
comprising each topic was discovered by our program.

As we play around with the number of topics and number of words, we can see that
the model starts to shift and change. If we ask for num_topics=2 and num_words=10,
we see the following:

[
 (0,'0.030*topic + 0.021*modeling + 0.016*text + 0.016*chapter +
0.010*different + 0.010*model + 0.010*summarization + 0.010*techniques
+ 0.007*produce + 0.007*common'),
 (1,'0.034*data + 0.015*text + 0.010*mining + 0.009*information +
0.009*named + 0.009*techniques + 0.008*entity + 0.008*patterns +
0.008*association + 0.008*finding')
]

These topics are much more generic and do not seem to capture the distinct concepts
of the book chapters as well as the earlier example did. As it turns out, we had
better results asking for more topics and fewer words for each. Now we can see why
we had configured the number of topics and words as variables in our program.
Experimentation with this part of the procedure is critical.

Understanding Gensim LDA passes
Now, we will run a few new tests with a new data set to learn about how the LDA
uses randomness, and thus how the number of passes affects the data.

First, we will model the set of topics returned from lkmlLinusJan2016.txt, using
num_topics=4, num_words=5 and passes=20. This is the same dataset that we
first used in Chapter 5, Sentiment Analysis in Text, albeit with a new filename. It is
a collection of 78 e-mails sent by Linus Torvalds to the Linux Kernel Mailing List
during January 2016. We see the following topics emerge:

[
 (0, '0.015*think + 0.011*v + 0.010*read + 0.010*u + 0.008*data'),
 (1, '0.014*gpu + 0.013*think + 0.010*use + 0.010*cpu +
0.010*things'),
 (2, '0.024*think + 0.012*use + 0.012*want + 0.011*aio +
0.009*things'),
 (3, '0.016*memory + 0.014*pull + 0.011*maybe + 0.010*ordering +
0.010*gpu')
]

Chapter 8

[209]

After observing the topics discovered, we can apply some general descriptions
as follows:

• Reading and writing data: think, v, read, u, data
• GPU and CPU: gpu, think, use, cpu, things
• Asynchronous IO (aio): think, use, want, aio, things
• Memory ordering on GPU: memory, pull, maybe, ordering, gpu

If we run the same program again, with the same variable values for number of
topics, number of words, and passes, we see a slightly different set of topics emerge,
but with some similarities to the first set:

[
 (0, '0.013*memory + 0.011*use + 0.011*think + 0.010*actually +
0.008*ordering'),
 (1, '0.017*think + 0.012*cpu + 0.011*gpu + 0.008*read + 0.008*v'),
 (2, '0.013*think + 0.012*patch + 0.012*like + 0.011*want +
0.010*actually'),
 (3, '0.023*think + 0.016*use + 0.013*things + 0.012*actually +
0.011*sector')
]

In this second set of topics, think is still an important word, as are
cpu, gpu, and use. Actually also emerges as an important word.

It may seem odd at first to consider that LDA returns different results each time
we run it, until we remember our earlier discussion about how probabilistic topic
models must employ some kind of strategy to minimize the number of calculations
between words and topics. LDA employs randomness at a few places in its code
to achieve this. At the time of writing this, the Gensim developers are working
on a new feature to allow users to set the random number's seed, to produce the
same values each time. This will help with testing and will allow for smoother
reproduction of results. I look forward to this new code making it into a future
release of Gensim.

Topic Modeling in Text

[210]

In the meantime, we can experiment with increasing the number of passes over
the data. By passing over the data more times, we hope to reduce the effect of that
randomness for our small data set, allowing the results to converge around the
most important topics. This offsets the chance of one or two less important words
accidentally getting too much emphasis in a single-pass operation. Setting our
passes variable to 100, we see the following topics emerge for the LKML data set:

[
 (0, '0.016*actually + 0.013*use + 0.013*memory + 0.012*people +
0.010*like'),
 (1, '0.017*think + 0.009*end + 0.009*v + 0.008*read + 0.008*use'),
 (2, '0.018*gpu + 0.015*think + 0.014*cpu + 0.013*actually +
0.010*want'),
 (3, '0.024*think + 0.013*things + 0.011*sector + 0.009*interface +
0.009*like')
]

With 100 passes over the data, many of the same concepts show up, and the
contribution of words such as gpu and actually increases for those topics.

Applying a Gensim LDA model to new
documents
Once an LDA topic model has been built, we can feed new documents into it and the
model will tell us which topic best describes this new document. The next few lines
of code build on top of the code we wrote in the previous section. Picking up where
we left off, after just creating the LDA model and printing the topics out, we can
read in a new text file consisting of a single, new e-mail. Since our original e-mail
set was from January 2016, I have chosen to compare an e-mail sent on February 1.
My hope is that this e-mail will closely resemble at least one of the topics we have
already built:

unseenText = 'data/lkmlSingleNewEmail.txt'
with open(unseenText, encoding='utf-8') as fnew:
 newdoc = fnew.read()

Next we convert that new e-mail document into a bag of words. We need to remove
stopwords and check for alphanumeric characters, same as before. We send our
lowercase words into the doc2bow() function, and it returns a corpus:

newcorpus = dictionary.doc2bow(newword for newword in newdoc.lower().
split() if newword not in STOPWORDS and newword.isalnum())

Chapter 8

[211]

We pass the new corpus into the existing LDA model, stored in the lda variable,
and print the whole thing:

pp.pprint(lda[newcorpus])

The results will look something like this for a list of four topics:

[
(0, 0.79236847616482542),
(1, 0.087326122043685422),
(2, 0.016795592901994647),
(3, 0.10350980888949456)
]

Each item in the list is a tuple consisting of the topic number and a probability of our
new document fitting into that topic. In this case, our new, unseen e-mail has a 79.2%
chance of fitting best into the topic 0.

Serializing Gensim LDA objects
One weakness of our procedure so far is that each time we run our code, even with
the same variable values and same data set, we get a slightly different topic model.
This could be frustrating if we have a situation where we have built a model, but
then want to run a new document through it some time later. We might want to
save the LDA model that we built for longer-term use. To do this, we can serialize
the model to disk and read it back any time we want. We had briefly discussed
this serialization idea back in Chapter 4, Network Analysis, when we wanted to
save a Networkx object as a pickle for later reuse. Here, we will apply Gensim's
serialization options at different points in the code.

Serializing a dictionary
Within the LDA procedures we have set up so far, there are several places in the
code where we might want to save to disk. One is after the creation of the dictionary.
To do this, following the dictionary creation we can simply run the save() function
on the dictionary object, and pass in a filename to indicate where we would like the
dictionary saved:

dictionary = corpora.Dictionary(texts)
dictionary.save('lkml.dict')

To read the serialized dictionary object back into any program, use the load()
method as follows:

dictionary = corpora.Dictionary.load('lkml.dict')

Topic Modeling in Text

[212]

At this point you can test to see whether the dictionary was written and
read correctly by simply printing it out. Printing my lkml dictionary with
print(dictionary) shows the first few words of the output:

Dictionary(980 unique tokens: ['writes', 'day', 'implement',
'performance', 'segment']...)

Serializing a corpus
Next, we might want to save our corpus that we have created from the bag of words
text. There are four methods built into Gensim for serializing our corpus. The first is
called Matrix Market (MM) format.

While I was reading about Matrix Market (MM) format, I noticed that
sometimes people inadvertently call it MM format on the Gensim
mailing list, Stack Overflow, and other online documentation. This can
be confusing and can make searches for the correct term, Matrix Market,
more difficult.
But what is a matrix market anyway? The U.S. Government's National
Institute of Standards and Technology (NIST) documentation for the
format is available at http://math.nist.gov/MatrixMarket/
formats.html, and the original 1996 paper The Matrix Market Exchange
Formats: Initial Design, written by Ronald F. Boisvert, Roldan Pozo, and
Karin A. Remington, describes an exchange format for matrices, and the
associated marketplace to exchange the matrices, which they called a
Matrix Market.
Since both words are about the same length, and saying them is a bit of a
tongue twister, I would recommend just calling it MM format!

To serialize a corpus in the MM format, we can run the following:

corpus = [dictionary.doc2bow(text) for text in texts]
corpora.MmCorpus.serialize('lkml.mm', corpus)

To read the corpus back out of the file later, we can run:

corpus = corpora.MmCorpus('lkml.mm')

In addition to the MM format, there are three other formats for serializing the corpus,
which are detailed in the Gensim documentation at https://radimrehurek.com/
gensim/tut1.html, and which you may find useful for your purposes. It is also
possible to start the LDA process using a serialized corpus that someone else has
given you in one of these various formats, and you can read in one format and write
out to another format.

http://math.nist.gov/MatrixMarket/formats.html
http://math.nist.gov/MatrixMarket/formats.html
https://radimrehurek.com/gensim/tut1.html
https://radimrehurek.com/gensim/tut1.html

Chapter 8

[213]

Serializing a model
Once we have the LDA model built, we can save it to disk as well. Suppose we have
used the following code to create an LDA model:

lda = LdaModel(corpus, id2word=dictionary, num_topics=4, passes=20)

To save the resulting model to disk, use its save() function, like this:

lda.save('lkml.gensim')

You can call the file anything you like, but the save() function will create two files:
the one you specified and a .state file.

The short code snippet below creates a model, saves it, loads the previously saved
model into a new object, then prints it out to show that it is the same as the original:

lda = LdaModel(corpus, id2word=dictionary, num_topics=4, passes=20)
pp.pprint(lda.print_topics(num_words=5))
lda.save('lkml.gensim')
newlda = LdaModel.load('lkml.gensim', mmap='r')
pp.pprint(lda.print_topics(num_words=5))

The useful thing about the LDA model serialization is that after we spend time
creating a model that we feel is most accurate and representative of the data, we can
save it, and then access it later without having to rebuild it. With a small data set like
the one we have been working with, the advantages of model serialization may seem
minor in terms of their time savings. However, you may find that with a project of
significant size, with more documents and more words, that the serialization process
becomes necessary.

Gensim LDA for a larger project
Let's learn how the LDA topic modeling process changes when we have a larger set
of documents and words to work with. Suppose we extend the LKML data set to
include not just the 78 e-mails from January 2016, but instead, what if we use all the
e-mails Linus Torvalds has ever sent to the LKML? After cleaning the data to remove
missing messages, source code, attachments, Linus' own name used as a signature,
and end-of-line characters, we have a single text file containing 22,546 e-mails. This
e-mail text file, called lkmlLinusAll.txt, is provided on the GitHub site for this
chapter at https://github.com/megansquire/masteringDM/tree/master/ch8.

https://github.com/megansquire/masteringDM/tree/master/ch8

Topic Modeling in Text

[214]

After reading these into a dictionary, our program reports that there are 26,709
unique tokens. Asking for the same four topics, five words, but asking for only
one pass over this large data set yields the following topic list:

[
(0,'0.014*people + 0.013*think + 0.011*merge + 0.010*actually +
0.010*like'),
(1,'0.011*fix + 0.008*code + 0.008*error + 0.007*actually +
0.007*think'),
(2,'0.022*fix + 0.012*like + 0.012*think + 0.010*actually +
0.009*use'),
(3,'0.045*fix + 0.013*updates + 0.012*add + 0.012*use + 0.008*like')
]

The prevalence of the topic fix is very different than in the previous January
2016 e-mail set. In fact, the highest contribution of any word is fix with a 0.045
contribution to topic 3. Compare this to the earlier January-only data set, where the
highest contributing word was think with a contribution figure of around 0.024.

When we ask for ten topics instead of four in the lkmlLinusAll.txt file, we observe
the following result:

[
(0,'0.016*lock + 0.015*fix + 0.015*actually + 0.012*case +
0.011*commit'),
(1,'0.013*want + 0.012*use + 0.012*think + 0.011*memory +
0.011*actually'),
(2,'0.025*page + 0.011*memory + 0.010*like + 0.009*actually +
0.009*think'),
(3,'0.023*think + 0.017*like + 0.014*actually + 0.012*people +
0.010*things'),
(4,'0.044*fix + 0.012*patch + 0.012*like + 0.012*use + 0.012*kernel'),
(5,'0.023*pull + 0.019*torvalds + 0.017*people + 0.009*request +
0.009*actually'),
(6,'0.072*fix + 0.024*add + 0.013*error + 0.009*remove +
0.009*check'),
(7,'0.048*updates + 0.011*fix + 0.010*git + 0.009*fixes +
0.008*changes'),
(8,'0.023*code + 0.012*like + 0.011*use + 0.009*warning +
0.009*helper'),
(9,'0.017*device + 0.017*driver + 0.017*fix + 0.013*use +
0.012*module')
]

Chapter 8

[215]

Fix stays an important word. Updates gets its own topic. Overall, we get slightly more
variety, but some of the same concepts keep appearing over and over: fix, memory,
like, think, use. Also, the contribution of each word to its topic is much smaller than
when we have fewer topics.

Another thing to notice about the January-only data set compared to this one is the
absence of cpu and gpu, words which were present in nearly every instantiation of
the topic model we built earlier. This is because in a long-term software project such
as the Linux kernel, different technical topics are important at different times. The all
data set will show general issues that have always been important (fix, memory) but
the single-month data set will reveal issues that were important for that particular
moment in time (gpu, cpu).

What if we compared the January 2016 data set to an earlier single-month data set
that was also about the same size? Would we be able to confirm the emergence of
different technical topics over time?

To test this, let's construct a data set of e-mails from ten years earlier: January 2006.
I have made this file available on the GitHub chapter page as well. When we run a
four-topic, five-word, 100-pass analysis, we see the following result:

[
 (0, '0.010*git + 0.010*actually + 0.009*think + 0.009*kernel +
0.008*license'),
 (1,'0.016*license + 0.011*gplv2 + 0.011*linux + 0.010*thing +
0.010*kernel'),
 (2,'0.024*branch + 0.019*merge + 0.012*development + 0.011*actually +
0.010*tree'),
 (3, '0.018*code + 0.008*kernel + 0.007*user + 0.007*memory +
0.006*things')
]

This topic list shows that in January 2006, concerns included software licenses
(license, gplv2), and growing discussions about Git as the new version control system
(git, branch, merge, tree). By January 2006, Git would have been in use for about eight
months on the LKML, and its presence in the topic list confirms Linus' participation
in ongoing discussions about its use and how it works. An interesting point for
further research would be to locate the point in time when Git disappeared as a topic
of discussion for Linus, because by January 2016 it was certainly no longer appearing
on the topic list. Other topics will certainly come and go over time. Topic modeling
can be a great way to give an overall high-level view of what is happening in a group
of texts over time.

Topic Modeling in Text

[216]

Summary
We now have a basic understanding of how probabilistic topic modeling works and
we have worked to implement one of the most popular tools for performing this
analysis on text: the Gensim implementation of Latent Dirichlet Allocation, or LDA.
We learned how to write a simple program to implement LDA modeling on a variety
of text samples, some with greater success than others. We learned about how the
model can be manipulated by changing the input variables, such as the number of
topics and the number of passes over the data. We also discovered that topic lists can
change over time, and while more data tends to produce a stronger model, it also
tends to obscure niche topics that might have been very important for only a moment
in time.

In this topic modeling chapter – perhaps even more than in some of the other
chapters – our unsupervised learning approach meant that we experienced how
our results are truly dependent on the volume, quality, and uniformity of the data
we started with. Producing coherent topics from text is possible, but results will
vary wildly depending on the initial documents in the collection. It is appropriate
then that in the next chapter we will turn our attention towards using data mining
techniques to address issues with data itself. We will use data mining techniques
to identify data quality problems, including finding and fixing missing values and
identifying anomalous data.

[217]

Mining for Data Anomalies
In the previous eight chapters, we have used data mining techniques to identify
a wide variety of patterns in data. We have mined social networks, associations,
matching pairs, and all sorts of interesting text patterns. Now we are going to turn
the tables and use our skills to look for anomalies, or data items that do not match
an expected pattern. Data anomalies happen for various reasons, but because they
deviate from expectations or stand out in some important way, we can use our data
mining knowledge to seek them out. In my toolbox of mining techniques, I like to
think of data mining for anomalies as using the claw part of a hammer. Most of the
time I am using a hammer to pound nails, but every once in a while, I need to turn
the hammer over and use the claw to pull out a nail. Data mining is always about
finding interesting patterns, but sometimes the pattern we are seeking is the one
nail that is sticking out at a weird angle and needs to be pulled.

In this chapter, we will learn to answer the following questions:

• What are some of the different types of data anomalies, and why do
they occur?

• How can we use visual mining, statistical methods, and machine learning to
locate data anomalies?

• How can we implement these various anomaly detection methods using
real-world data?

Mining for Data Anomalies

[218]

What are data anomalies?
An anomaly refers to something that is unexpected or a deviation from the norm.
The classic example of an anomaly in data is an outlier, which is a data point that
is distant in some way from the other data points in the collection. In addition to
outliers, other types of anomalies could include data that is unexpectedly missing,
or data that exhibits errors. In the grand scheme of the data mining process that we
outlined in Chapter 1, Expanding Your Data Mining Toolbox, detecting data anomalies
could be considered part of the data cleaning step, although in this chapter we
will find that sometimes using data analysis techniques actually helps us with this
cleaning task. In the next few pages, we will take a tour through these different types
of anomalies, show what they might look like with real data examples, discuss why
they happen, and outline a few simple ways to detect them.

Missing data
Even though missing data is not always the first thing people think of as a data
anomaly, it can certainly be unexpected. In fact, how we handle missing data can
definitely impact the rest of the analyses we perform on the data. So what do we
mean by missing data? In a typical record-oriented data set, for example the kind of
data a spreadsheet or relational database would contain, missing data will usually
refer to blank or null data values. For example, if we have a record describing a
person, and the birth date or first name for the person is missing, that could be an
unexpected condition. On the other hand, the term missing data usually does not
refer to rows or records that are absent entirely.

Now that we know what missing data is and is not, the question is how do we find
these missing values and what do we do to fix them?

Locating missing data
A very common type of missing data is unexpected or undesired empty or blank
values, zero values, and null values. In a data set expressed as a delimited file,
such as a comma-delimited or tab-delimited file, an empty value may look like this:

Mary Smith,123 Main St.,,Anytown,CA,99123

In that example, the third data value is empty. Note the difference between the
empty space in that record and the following, which is actually not empty at all.
The record following has a space as the data value:

Mary Smith,123 Main St., ,Anytown,CA,99123

Whitespace in the form of a carriage return, new line, tab key, space key, and so on,
is not the same as empty or null values.

Chapter 9

[219]

In a relational database, columns may be set to be nullable, indicating that null
values are allowed. In some relational database management systems (RDBMS),
a blank string can be passed as a valid data value into a non-nullable column.
This action actually overrides the not-nullable setting. The difference between a
null column and a blank value is a little tricky to see, but the following screenshot
displays a snippet from PhpMyAdmin showing a small MySQL table called apache_
twitter. In this table, there is one column that is nullable, called details, and the
rest of the columns are set as not-nullable. The columns svn_id and real_name are
not-nullable, but have no default value either:

Figure 1. Database table structure showing nullable and not-nullable columns in a table

The following screenshot shows what the table structure looks like when it is filled
in with two of the sample rows. The first row is filled in with a blank svn_id and a
blank real_name. These are not nullable, but they can be empty. The second row in
the screenshot shows that the details column is set to NULL:

Figure 2. Two sample records showing empty and null field values

The procedure for finding null or empty values will be different depending on what
type of data storage system we are using. For an RDBMS such as MySQL, we can
search for nulls with a SQL query like this:

SELECT *
FROM apache_twitter
WHERE details IS NULL;

Mining for Data Anomalies

[220]

Or, for columns where NULL values are not allowed but blank values are allowed,
we could use:

SELECT *
FROM apach_twitter
WHERE real_name = '';

The quotation marks next to each other indicate that we are seeking an empty string.

Zero values
For numeric columns that are not-nullable, many times a default value will be set;
usually a default of zero (0) is most common. However, this is quite problematic if
zero is also an acceptable value for the column. For example, consider a column to
hold quiz grades for students. A value of 0 should indicate that the student received
no points on the quiz, either by getting every question wrong or by skipping the
quiz entirely. If the student has an extension on taking the test, for instance he or she
plans to take it another day but has not yet done so, perhaps a non-zero null value
would be more appropriate and accurate. We need to be careful of setting zero as a
default value when no data is entered into a numeric column.

Fixing missing data
Once the missing data values have been identified, we have to decide whether to fix
them, and if so, how to do that. Over the next few pages, we will outline some of the
choices for fixing this kind of missing data.

Ignore the problem rows
Our first choice could be to ignore the rows with the missing data. We could also
ignore the columns that have a lot of missing values in them. Success with this
strategy depends entirely on the application you are working with. If you have
empty or null birth dates, that might not be a problem unless you are writing a
program that depends on an accurate age calculation. A missing quiz grade may not
be a problem until the end of the semester when it is time to submit the student's
final course grade. Another option – and much more drastic than simply ignoring the
problematic data – would be to delete the rows with missing data. Tread carefully,
though, as this action is final and deletion may be too extreme for most cases. After
all, by simply ignoring the problematic records, we give ourselves the option to
locate the missing data later.

Chapter 9

[221]

Fix the problem manually
If there are only one or two missing values in a data set, and if it seems likely that
you could find the correct values by yourself, you could fill in the missing values
manually. This approach obviously does not scale well to large data sets unless you
have a very high tolerance for tedium. To determine whether a manual approach
is even practical, we should first use a query to figure out how many rows
are problematic.

We may get lucky and manage to find a way to update the rows automatically, for
example by joining a complete data set to ours, or by updating groups of rows. For
instance, if we have the postal code for every row, but many rows are missing a city
column, we could use a JOIN in SQL or write a quick program to replace empty
values from one data set with correct values from the other set. However, whether
this option is available or practical is entirely dependent on what our data set looks
like and what values are missing.

Sometimes we will have missing values that can be corrected after viewing the data
presented as a sequence or a timeline. Consider an example like the one presented in
the following screenshot:

Figure 3. Data sorted by date, so that NULL values can be guessed based on previous patterns

Mining for Data Anomalies

[222]

This screenshot shows some log entries with NULL values for end_date. Can you
guess what an appropriate end_date would be for these values, based on the other
records? Based on the data we have, it looks like each end_date that is filled in is one
day later than the start_date. These NULL values can therefore be replaced with a
very good estimated end_date.

Use a fabricated value
Another option that some people use to handle missing values is to replace them
with a fabricated phrase such as N/A (for not applicable), or the word unknown, or
with a hyphen, or with a space. However, in most cases, I strongly caution against
this approach for a few reasons:

• We gain little from it. It is usually very easy to find and avoid the blank or
null columns by using a query, so what do we really gain from replacing
these values with a new, fabricated value? That said, if there is a mix of null
and blank values (or very problematic whitespace values) it might be helpful
to standardize one representation of these, but there is little advantage to
changing a null or blank value to a word like unknown or N/A.

• We have to manage the change. Since the new, fabricated value is
constructed by a person, its meaning and existence in the system will need
to be tracked and documented. As such, the meaning of this special value
becomes one more piece of data knowledge that has to be retained
and managed.

• We risk diluting the value of subsequent data mining activities. Suppose we
are doing text mining and we have replaced a null or blank comments field
with the words not applicable or unknown. In order to prevent our text mining
program from targeting this phrase as important, we now need to program
around it, perhaps by adding these fabricated words to our stopword list,
or by ignoring all rows with the word unknown in a given column. This is a
silly solution, first because we could have just ignored the column to begin
with (see the Ignorance is bliss section). So we have simply made more work
for ourselves. Second, now if the words not applicable or unknown truly are
important to our program, we have jeopardized our ability to leverage this
fact to learn something.

Chapter 9

[223]

Use a central measure
If the blanks, nulls, and zeroes are causing a problem, one approach that works
especially well with numeric values is to take impute a measure of centrality in
the data, then replace the missing value with that. For instance, suppose we are
calculating projected student final grades, but we have a few students who are
missing a quiz here or there. If we absolutely had to impute, or substitute, a grade
for these missing quizzes, we could take the class average for each particular quiz
and replace the missing value with this new value. This solution may produce a
more accurate projection of the grade than leaving an empty or zero value.

However, this replacement method is harder to use with some string data, after
all, what is the central value of a first name? What is the central value of a favorite
movie? Another risk of this solution is that it introduces data that is more than likely
going to be incorrect. It is unlikely that our fictional student, once he or she takes
the quiz, will actually achieve a score exactly equal to the mean score of the class
as a whole.

Use Last Observation Carried Forward
In some data sets, we could choose to assume that if the data is missing, nothing
has changed. For these cases, perhaps it would be easiest just to use the last known
observation as the current value. This method, called Last Observation Carried
Forward (LOCF), works well for data values that do not represent frequent changes,
or where the changes are likely to happen gradually. For instance, many people use
fitness trackers such as Fitbit or Jawbone to calculate calorie burn based on weight
and amount of daily activity. The following shows an example of a Fitbit calorie and
step tracking log:

Figure 4. Fitbit tracking log showing a calculated calorie burn based on last known weight value

Mining for Data Anomalies

[224]

The tracker software asks the user to enter a weight and stride length when they set
up the device, and even if the user never updates the weight again, the last known
weight will be assumed in order to track the daily calories expended. If the user
updates the weight (or, less likely, the stride length), the new value will be saved and
used for subsequent calculations. However, all the weight values are saved in order
to draw a weight chart over time.

Use a similar value
Another approach to handling missing data would be to impute a value by choosing
the replacement from a group of similar records. For example, suppose we are trying
to fill in a missing value for how Sally Student would rate the movie Fight Club. We
know Sally is female, born on January 15, 1996, goes to college in North Carolina,
and plays volleyball. But for some reason we do not know what her score was for
this movie. With hot deck imputation, we would find a list of students with similar
attributes and randomly choose one of their scores to stand in for Sally's score.
This method is based on an assumption that similarities between records on other
attributes may have bearing on the missing attribute.

Use the most likely value
If we have data that supports it, another interesting idea would be to impute the
most likely value. Suppose we have three or four columns that would allow us to
predict the most likely value for some data we are currently missing. In our quiz
example, if we have scores for the first four quizzes for a few hundred students, we
may be able to use regression or another statistical technique to predict a few missing
scores on the final quiz based on how other students with the same pattern of scores
seemed to perform. As with the fabricated scores based on measures of centrality,
the risk with this approach is that we could impute a value that ends up being
totally incorrect. Probability tells us that the risk of being totally incorrect is low, but
our tolerance for incorrect answers could change depending on the domain we are
working with at the time.

Data errors
Data errors such as truncated fields, data type and character set errors, and logical
errors such as nonsensical dates or garbage values, can also negatively affect our
analysis if left untreated. Data errors such as these are somewhat more difficult to
find than missing data, but for accurate data mining we must develop methods for
locating them.

Chapter 9

[225]

Truncated fields
A problem with data storage systems such as an RDBMS is that they have a fixed
model designed in advance. This seems like a harmless idea until we realize
that sometimes the data going into the system changes faster than the model, or
sometimes the modeler cannot anticipate every possible type of data that the model
must hold.

This happens to me a lot in my work when I am storing text data over a long time
span – 10 or more years in some cases. I will design a model that I think will certainly
have fields that are big enough to store every possible text artifact I could think of,
but then someone sends an email message or an IRC chat line that is extremely long
and I get a truncation error.

In one of my IRC chat databases from the community that is working to build the
popular Puppet configuration management tool, I ran some tests and found that
the longest chat messages were coming in at about 500 characters each. So when I
decided to store this data for the long term, I created a table with a 2000-variable
character line limit, thinking that surely 2000 characters would be large enough. Yet,
after a few months, I noticed a few truncation errors, so I ran the following query to
determine what was going on. The query shows each chat line and the length of the
message, and puts them in order with the longest messages at the top:

SELECT line_number, LENGTH(line_message)
FROM puppet_irc
ORDER BY 2 DESC , 1 ASC;

The results were as follows:

Figure 5. Database table holding chat messages that were truncated at 2000 characters

Mining for Data Anomalies

[226]

When I query the text from line number 52, I see that this particular system message
was the IRC channel itself issuing a listing of all the user nicknames on the channel;
there were 973 nicknames in that list. Thus, the data was truncated upon being
inserted into the table, cutting off the list of names at the letter D. Like with many
data anomalies, there is no magical fix for this problem other than to expand the
column length and re-enter the data. If we expand the column length, the future
entries into this table will not be truncated, but all the previously truncated entries
will need to either be ignored or re-entered.

Data type and character set errors
Data type errors manifest as mismatches between an expected data type and the
actual values entered. Typically type errors happen because of a misunderstanding
of the type of data that will be passed into the column or because the data changes
after the table is designed. Examples of data type errors include:

• Storing a month-day-year style of date as a date_time column, which results
in 00:00:00 being entered for the time portion.

• Storing decimals in an integer column, or using a column with too short
a range or precision for a decimal number. The database will force the
number to be truncated or rounded, sometimes silently, and sometimes in
unexpected ways.

• Storing Unicode values in a Latin or ASCII character set column. Even
though multi-byte character sets have been around for a while, the
popularity of emojis and the integrated support for multi-byte characters in
programming languages and browsers means that everyone working with
data must consider Unicode for text nowadays. Many older tables were not
designed to do this.

If you are looking at a data set in a relational database and want to know
if it has multi-byte characters in it, we can compare the length of the text
value to the number of characters in the text. For example, I have a table
of Internet Relay Chat channel topics from Freenode. The MySQL query
to find the multi-byte channel topics is as follows:

SELECT channel_name, topic

FROM fn_irc_channels
WHERE LENGTH(topic) != CHAR_LENGTH(topic);

This query can also be handy for finding relevant multi-byte data to use
for tests.

Chapter 9

[227]

As with truncation problems, the fix for data type and character set issues is to alter
the table to fix the storage mismatch if it is a database issue, or update the code if the
problem is in the processing of the data, and then re-enter the problematic data.

Logic or semantic errors
Just like when we are writing code, logic errors, or semantic errors, are often harder
to find and fix than simple syntactic errors. A semantic data error might meet all the
criteria for the database system, but simply does not make sense or does not mean
what it was intended to mean. Semantic errors are often introduced to data sets
unintentionally during the data collection phase, for example:

• Swapping the data that is supposed to go in a column with another column.
First names and last names can be switched, phone numbers for work, home,
and mobile could be confused, or there could just be simple off-by-one errors
where several columns of data are entered incorrectly, one after the other.

• Entering dates in the wrong format. Different cultures express dates
differently, some placing the month first and some placing the day first. This
can cause data entry problems with day and month combinations where both
day and month are numbered 12 or lower.

• Entering dates that are too early to be real, for example a system showing an
email that was sent very far in the past or in the future, or where many dates
are set to January 1, 1970.

The following are some examples of weird dates taken from a list of software
package releases from the RubyGems web site. If we sort the gems by date, several
gems show dates that precede the invention of gems or the Ruby language itself:

Figure 6. Nonsensical dates set too far in the past are syntactically correct for
the database structure, but represent a logic error

Mining for Data Anomalies

[228]

A few more gems show creation dates that have not happened yet:

Figure 7. Dates set too far in the future also represent a semantic data problem

It is clear that these dates are errors, even though they were formatted properly for
the database.

At first it might seem like a good way to fix problems like these weird dates would
be to add a logic check to our data collection program that disallows dates that fall
outside some range. Another solution, if the RDBMS supports it, would be to add
a check constraint to the database. This would generate an error when dates are
entered that fall outside of the expected range. This is a straightforward solution, and
much easier to implement than fixing the month/day switches or off-by-one column
errors mentioned earlier.

Outliers
When we talk about data anomalies, we may also be looking for data points that
represent very rare events. If 99 students scored 80% or above on a quiz, and one
student scored 10%, this low score becomes very interesting. We call this rare event
an outlier or a novelty. Depending on the type of data, outliers can be rare data
points, or outliers could be represented as unexpected peaks or valleys in the
data. The following graph shows a count of new projects being registered to the
now-defunct Google Code project hosting site per month between 2011 and 2015:

Chapter 9

[229]

Figure 8. Graph of new project registrations to Google Code web site shows one outlier month

The large jump in projects registered in May of 2014 represents a huge increase; this
is double the number of registrations of the months around it, and much higher than
any other month in the data set.

If you are curious about why Google Code shows this huge spike in
project registrations during May of 2014, I was too! From what I can tell
from looking at the data, this large increase was caused by a huge influx
of fake projects being added to the system all at once during the latter
part of the month, with over 4,000 projects being created on May 25 and
26 alone. The vast majority of these projects have gibberish names like
01s4he49es8m and mnzghlhe and they were created approximately
once every minute for several days.

Mining for Data Anomalies

[230]

The following scatter plot shows a group of projects organized by their number of
source lines of code (SLOC), shown on the X-axis, and their number of Boolean
expressions, shown on the Y-axis. While all the projects exhibit a positive correlation
between the number of lines of code and the number of Boolean expressions in that
code, a few projects really stand out for having very high numbers of both:

Figure 9. Scatter plot showing software projects organized by their source lines of code (SLOC)
and number of Boolean expressions

In this section, we will learn about the different types of outliers and some ways to
detect them using data mining techniques.

Visual mining for outliers
The human eye and brain comprise a powerful pattern recognition machine. It is no
accident that our previous two examples used graphics to explain the concept of an
outlier by encouraging our eyes to find discontinuity in a pattern. If we have the kind
of data that will easily fit on a graph, visual mining for outliers is a viable option.
Bar graphs, line graphs, and scatter plots are all great options for getting a quick
sense of the shape of the data and for spotting wayward points or strange peaks and
valleys. The following bar graph shows the impact of a sudden, prolonged service
disruption on a software hosting site:

Chapter 9

[231]

Figure 10. Monthly activity on software hosting site, showing the impact of a service outage

Even though the site was still technically available during the outage, the number
of active connections during the low period was pronounced, and the site never
really recovered to its pre-outage levels. Visual mining reveals that before the outage
the site was experiencing a slight activity decrease, but that the outage may have
exacerbated the problem and accelerated an already-downward trend.

Visual mining is best for univariate or bivariate data that can be viewed easily in two
dimensions. The more complicated the data, the more unlikely it will be able to be
mined effectively using visual mining.

Statistical detection of outliers
When we need a more robust solution, perhaps because we have too many variables
or too much data to visually examine in a chart, we could try a statistical solution.
What statistical method we use depends on how many variables we are measuring
and how the data is distributed. Detecting outliers in univariate data sets, or those
made up of a single variable, is simpler than detecting outliers in multivariate data
sets. Detecting outliers in data that has a normal distribution is more straightforward
than detecting outliers in data where we do not know the distribution, or where the
distribution is skewed.

Mining for Data Anomalies

[232]

Detecting outliers with modified z-scores
If we have a normally distributed, univariate data set, the simplest method for
detecting outliers will be first to estimate the center of the data set or the mean, then
calculate the standard deviation of the data set. The standard deviation tells us how
spread out the observations in the set are from one another. Outliers will be those
that are farther from the center, measured in standard deviations from the mean. The
number of standardized deviations from the mean where a data point is located is
called its z-score. A simple outlier detection method is to find the data point with the
biggest z-score, call that an outlier, mark it as such, remove it from the data set, and
iterate through the test again. This procedure is called Grubbs' Test or the maximum
normalized residual test. Grubbs' Test does not work well on data that has a lot of
outliers, or on very small data sets.

The following is a Python program for detecting outliers based on a z-score for the
SLOC count data set shown earlier. This univariate data set shows just the SLOC
counts for 542 software projects. This program does not iterate through the data, but
it does show the first outlier, and any points higher than this number are assumed
to also be outliers. This code and the data file are both available on the Github site
for this book, available at https://github.com/megansquire/masteringDM/blob/
master/ch9/zscore.py.

The first thing we do in this code is that we import the Numpy library, which is
installed with the default Anaconda Python distribution. Numpy is a frequently-used
library that uses a powerful n-dimensional array as its primary data structure. After
importing Numpy, we read in our data list and store it as a Numpy array:

import numpy as np
with open('sloc.txt', encoding='utf-8') as f:
 data = f.readlines()
data = np.array(data,dtype=int)

Next we will use built-in Numpy functions to get the maximum, minimum, mean,
and median of the data and print the results so we can learn a bit more about
the distribution:

amax = np.amax(data, axis=0)
print("max:", amax)
amin = np.amin(data, axis=0)
print("amin:", amin)
mean = np.mean(data)
print("mean: ", mean)
median = np.median(data)
print("median:",median)

https://github.com/megansquire/masteringDM/blob/master/ch9/zscore.py
https://github.com/megansquire/masteringDM/blob/master/ch9/zscore.py

Chapter 9

[233]

Next, we take the difference between each data point and the median value, and
square those and sum them all together. The median of the square root of that value
is called the median absolute deviation:

sumsqdiff = np.sum(pow((data - median),2))
print("sumsqdiff:", sumsqdiff)
sqrtdiff = np.sqrt(sumsqdiff)
print("sqrtdiff:",sqrtdiff)
mad = np.median(sqrtdiff)
print("mad:",mad)

The program then creates a modified z-score, which is calculated from the median
absolute deviation. The number 0.6745 represents about two-thirds of the standard
deviation, representing a threshold at about half the distance between the first and
third quartiles:

modzscore = (0.6745 * sumsqdiff) / mad
print ("Any value higher than",modzscore, "is an outlier.")

Any data point above this modzscore value can be considered an outlier. At this
point, we can choose to prune these from the data set, or print them out, or take
some corrective action.

Detecting outliers by combining statistics and visual
mining
A traditional recommendation for finding outliers is to combine the concepts of the
statistical test with visual mining to produce a box-and-whisker plot, or simply
boxplot. A boxplot is a succinct way of showing a data distribution including the
means, medians, quartiles, and outliers on a single chart.

The following is some simple Python code to generate a boxplot for the count of the
SLOC for those same 542 different software projects. This code and the data file are
both available on the GitHub site for this book, available at https://github.com/
megansquire/masteringDM/blob/master/ch9/boxplot.py.

First we should import the Matplotlib library, which does come pre-installed with
the Anaconda Python distribution. Next, we will open a file containing the data for
this experiment:

import matplotlib.pyplot as plt
with open('sloc.txt', encoding='utf-8') as f:
 data = f.readlines()

https://github.com/megansquire/masteringDM/blob/master/ch9/boxplot.py
https://github.com/megansquire/masteringDM/blob/master/ch9/boxplot.py

Mining for Data Anomalies

[234]

We need to make sure that the data is stored as a list of integers and not as a list of
strings, so we can use map() to convert them, and then store the result of map() as a
Python list:

newdata = list(map(int, data))

Next we will set up a variable to hold the characteristics for our outliers, called fliers
in boxplot parlance. This example shows the outliers as green o-shaped markers.
More options for the flier markers are described in the Matplotlib documentation at
http://matplotlib.org/api/pyplot_api.html:

flierprops = dict(marker='o',
 markerfacecolor='green',
 markersize=8,
 linestyle='none')

Now we will use the boxplot() function of our Matplotlib object to process the data
list, and the show() function to create the diagram:

plt.boxplot(newdata,
 showmeans=True,
 flierprops=flierprops)
plt.show()

In the generated diagram, the Y axis shows the number of lines of code, and each
program is one observation in the sample:

Figure 11. Boxplot showing the SLOC data, along with outliers, mean, median, and whiskers

http://matplotlib.org/api/pyplot_api.html

Chapter 9

[235]

I added a legend to indicate that green dots represent the outliers, the red line is the
data median, the red square is the data mean, and the blue box shows the size of
the first through third quartiles of the data. The black lines are the whiskers, or the
maximum value of the 1.5 quartile.

In the boxplot example, outliers are shown visually, and are also defined
quantitatively as any observation appearing above the highest whisker in this data.

Detecting outliers with machine learning
In this final section, we show how to use machine learning methods on data to find
outliers. Looking once again at our SLOC data, suppose we want to compare SLOC
count to the count of Boolean expressions in the code. As we saw earlier in the scatter
plot, we should expect that as the lines of code increase, so would the number of
Boolean expressions. However, we also know that there are outlier points in the data,
indicating programs that have an exceptionally high number of Boolean expressions
without a corresponding SLOC count, or vice versa. There are also data points
that are high on both attributes, and which are therefore located farther from the
rest of the data. An unsupervised machine learning approach could be directed
to find clusters of data points that belong together, and call the rest of the data
points outliers.

Before delving into how the clustering-based code works, let's quickly review the
data on a scatterplot again:

Figure 12. Scatter plot showing software projects organized by their source lines of code (SLOC)
and number of Boolean expressions

Mining for Data Anomalies

[236]

We may be able to visually spot a few obvious outliers, but it gets trickier as we
move closer to the main cluster at the lower-left of the diagram. Are all of those
points considered one cluster? The rest of this section will be devoted to writing
a program to help us automatically discern which of these points are outliers
and which are part of the main cluster. The code for the clustering-based outlier
detection, as well as the data file used in this example, are available on the GitHub
site for this book at https://github.com/megansquire/masteringDM/blob/
master/ch9/clusters.py.

This code is loosely based on the example code that comes in the Scikit-
Learn documentation, albeit much more simplified and streamlined. If
you wish to view the original examples and additional documentation,
the outlier detection examples are shown on their site at http://
scikit-learn.org/stable/modules/outlier_detection.html.

Our first step is to import Numpy again and also a machine learning package
called Scikit-Learn, abbreviated sklearn. From sklearn, we wish to use the
EllipticEnvelope library, which will allow us to draw an elliptical curve around
the points that are close enough together to be considered a cluster. We will also
be plotting this data and the ellipse, so we need to use the pyplot portion of
Matplotlib as well:

import numpy as np
from sklearn.covariance import EllipticEnvelope
import matplotlib.pyplot as plt

Numpy has a loadtxt() function, which comes in handy with multidimensional
arrays:

X1 = np.loadtxt('slocbool.txt')

Next we set up an EllipticEnvelope object. The contamination argument is set
to 0.02, which indicates that we want no more than 2% of our data to be considered
outliers. The higher this number is, the smaller the ellipse will be, and the higher
portion of the data will be considered outliers:

ee = EllipticEnvelope(support_fraction=1., contamination=0.02)

Next we set up the size of the grid, by plugging in the start and end points for the
x-axis and y-axis, as well as the total number of observations for both X and Y:

xx, yy = np.meshgrid(np.linspace(0, 1500000, 542), np.linspace(0,
15000, 542))

https://github.com/megansquire/masteringDM/blob/master/ch9/clusters.py
https://github.com/megansquire/masteringDM/blob/master/ch9/clusters.py
http://scikit-learn.org/stable/modules/outlier_detection.html
http://scikit-learn.org/stable/modules/outlier_detection.html

Chapter 9

[237]

We can fit the EllipticEnvelope object to our data, and tell its decision function to
calculate a decision for each of the points in the observation set:

ee.fit(X1)
Z = ee.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

Now we are ready to draw the figure showing our scatter plot and the magenta-
colored ellipse that has been learned for this data set. Remember that everything
outside the ellipse can be considered to be an outlier. This code also shows how to
add some simple labels to the chart axes and a title:

plt.figure(1)
plt.title("Outlier detection: SLOC vs BOOL")
plt.scatter(X1[:, 0], X1[:, 1], color='black')
plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='m')
plt.ylabel("count of boolean expressions")
plt.xlabel("count of source lines of code")
plt.show()

Figure 13. Ellipse showing the main cluster, with outliers shown outside the ellipse

Mining for Data Anomalies

[238]

After looking at the results, if you think the ellipse is too large or too small, it is easy
to adjust the values for contamination and support_fraction when you create the
EllipticEnvelope object.

We should remember that there are many more methods for outlier detection using
clustering and machine learning. The EllipticEnvelope is just one technique. Scikit-
Learn, and other machine learning toolkits, include many more options that could
be better suited to different data distributions. This SLOC/BOOL data set is uniform
and has just one main cluster in it. The attributes are for the most part positively
correlated, and it is not a bimodal distribution. For these reasons, the Elliptic
Envelope works well. However, if you are working with data that has a different
shape, it will be necessary to find a technique that is better equipped to handle the
particulars of that data set.

Summary
In this last chapter, we looked at a variety of different types of data anomalies,
including missing data, data errors, and outliers in data. We found many real-
world examples of each of these errors, and determined that locating anomalies is
important, no matter how we choose to do that. Some of the data anomalies must be
located and fixed by hand using queries and domain knowledge, while others invite
more sophisticated data mining approaches such as statistical methods and machine
learning techniques.

The interesting thing about detecting outliers with machine learning is that we have
decided to use data mining techniques in order to do better data mining. The author
Douglas Adams once said that a computer nerd is someone who uses a computer in
order to use a computer. I draw the line at calling us nerds when we use data mining in
order to improve our data mining, but perhaps – as befits the title of the book – we
can say with pride that we are getting better at Mastering Data Mining with Python!

[239]

Index
Symbols
2-itemsets 23
3-itemsets 23

A
abstractive summarization 186
accuracy 61
adjacency list

about 95
format 97

adjacency matrix 93, 94
Anaconda Python distribution

download link 12
annotated corpus 166
anomaly 218
Apache Board

meeting minutes 173-175
references 173

apache_twitter 219
Apriori 30
association rules

about 19, 23-25
antecedent 25
confidence 24
consequent 25
data, example 25, 26
discovering, in software project tags 30-45
frequent itemsets, finding 28-30
metrics 23
support 23, 24
added value, calculating 27

attribute-based similarity matching
about 54
pairwise comparisons 54
rare values, leveraging 55

attributes 137
attributes matching, methods

about 55
distance, from target 55
Hamming distance 56
Levenshtein distance 56
range-based, from target 55
Soundex 57
string edit distance 55

automatic text summarization
about 186
reference link 186

B
bag of words (bow) 140, 206
betweenness centrality 91
big data 2
blank data values 218
blocking methods 61
bonus words 197
boundary errors 168
boxplot

about 233
reference link 233

Brown Corpus
about 166
reference link 166

[240]

C
CamelCase 164
centrality, of network

betweenness centrality, 11, 12
closeness centrality, 10
degree centrality, 11
measuring, 10
other ways of measuring, 13

change detection problems 9
check constraint 228
classification problems 9
closed path 88
closeness centrality 89
clustering-based outlier

reference link 236
clustering problems 9
coding 142
context-based similarity matching 58, 59
corpus 166
CRoss-Industry Standard Process for Data

Mining (CRISP-DM process)
about 6, 7
business understanding 6
data preparation 6
data understanding 6
deployment 7
evaluation 7
modeling 6

D
data

datasets, merging horizontally 53, 54
datasets, merging vertically 51, 52
exploring 104
merging 51

data anomalies
about 218
data errors 224
missing data 218
missing data, fixing 220
outliers 228-230

data append 51
data errors

about 224
character set errors 226

data type errors 226
logic errors 227, 228
semantic errors 227, 228
truncated fields 225, 226

data, exploring
datasources table 105
rf_developer_projects table 106

data file
URL 31

data, importing into graph structure
about 96
adjacency list format 97
edge list format 97
GEXF format 98
graph data format (GDF) 99
GraphML format 98
JavaScript Serialized Object

Notation (JSON) 100
JSON link series 100, 101
JSON node series 100, 101
JSON trees 101, 102
Pajek format 102, 103
Python pickle 100

data mining
about 2, 3
big data 3
CRISP-DM process 6, 7
data science 3
development environment,

setting up 11-17
Fayyad et al. KDD process 5
Han et al. KDD process 5, 6
machine learning 3
methodology 8
performing 4
predictive analytics 3
Six Steps process 7
techniques 9-11

data quality 51
data science 2
data, social network

centrality in subgraphs, analyzing 121-124
change over time, finding 124-134
cliques, analyzing 121-124
network parameters 116-118
simple network metrics, generating 113-116
subgraphs, analyzing 118-120

[241]

datasources table
comments 105
datasource_id 105
date_donated 105

data type errors
example 226

degree centrality 90
density, graph 14
dependency modeling problems 9
deviation detection problems 9
directed network 82
disjoint sets

about 58
leveraging 58

distance 86
Django IRC chat

about 175-178
reference link 175

doc2bow() 206
document level analysis 139
doubletons 23

E
edge list

about 95
format 97

edges 82
ego network 51
entity 137
entity matching

about 48-50
attribute-based similarity matching 54
attributes matching, methods 55
context-based similarity matching 58, 59
data, merging 51
disjoint sets, leveraging 58
effectiveness 61-63
efficiency 60, 61
evaluating 15
machine learning based entity

matching 59, 60
techniques 54
usefulness 63

entity matching project
about 64
code 70-75

dataset 69, 70
difficulties, with matching

software projects 65
people names, matching 67
project names, matching 67
results 75
topics and description keywords,

matching 68
URLs, matching 67

extractive method 186

F
Fayyad et al. KDD process

data evaluation 5
data interpretation 5
data mining 5
data pre-processing 5
data selection 5
data transformation 5

feature engineering 141
flaccid designator 165
fliers

about 234
reference link 234

FLOSSmole project
about 69
URL 69

frequent itemsets
about 20
diapers and beer urban

legend example 20, 21
mining 21-23

G
gazetteer 163
GDF format

reference link 99
generalizable 63
general-purpose data collections

Hu and Liu's sentiment
analysis lexicon 142

SentiWordNet 143
Vader sentiment 143, 144

[242]

Gensim
about 17
reference link 212
used, for text summarization 190-193
used, for topic modeling 204-207

Gensim LDA
download link 204
larger project 213-215
model, applying to documents 210
passes 208, 209
topics 207, 208

Gensim LDA objects
corpus, serializing 212
dictionary, serializing 211
model, serializing 213
serializing 211

GEXF format 98
glosses 143
gnueIRCsummary.txt

reference link 179
GnuIRC summaries 179-181
graph data format (GDF)

about 99
reference link 20

graph data, representing
adjacency list 95
adjacency matrix 93, 94
data, importing into graph structure 96
edge list 95
graph data structures, differences 95, 96

GraphML format 98
graph trail 88
graph walk 88
Grubbs' Test 232

H
Hamming distance 56
Han et al. KDD process

data cleaning 5
data integration 5
data mining 6
data selection 5
data transformation 6
knowledge representation 6
pattern evaluation 6

hapax 140
horizontal merge

example 53
hot deck imputation 224

I
implicit 138
impute 223
in-degree 86
information extraction 161
InterCaps 164
isolates 89

J
JavaScript Serialized Object

Notation (JSON) 100
JSON link series 100, 101
JSON node series 100, 101
JSON trees 101, 102

K
knowledge discovery

in databases (KDD) 2
knowledge discovery process 3

L
Last Observation

Carried Forward (LOCF) 223
Latent Dirichlet Allocation (LDA)

about 203, 204
download link 203
reference link 203

Latent Semantic Analysis (LSA)
reference link 196

Levenshtein distance 56
lexicon

URL 142
link analysis problems 10
links 82
linusrants

about 154
URL 154

[243]

Linux Kernel Mailing List (LKML) 154
LKML e-mails 182, 183
logic errors 227, 228

M
machine learning

outliers, detecting with 235-238
reference link 203

machine learning based
entity matching 59, 60

market basket analysis
about 20
basket 21
items 22
market 21

Matrix Market (MM) format
about 212
reference link 212

maximum normalized residual test 232
Message Understanding

Conference (MUC) 169
minimum support threshold 23
missing data

about 218
locating 218-220
zero values 220

missing data, fixing
about 220
central measure used 223
fabricated value used 222
Last Observation Carried

Forward (LOCF) used 223
manually, fixing 221
most likely value used 224
rows, ignoring 220
similar value used 224

modified z-score
about 233
outliers, detecting with 232, 233

multi-document summarization 186
multiple components 88
multivariate data sets 231
MySQL

URL 17

N
named entities 161
named entity recognition (NER)

about 162-164
part of speech (POS), tagging 166, 167
techniques 164-166

named entity recognition (NER) project
about 171
NER tool 172, 173

named entity recognition (NER) systems
building 168
evaluating 168
partial matches 168
partial matches handling 169-171

named entity recognition (NER) tool
about 172, 173
Apache Board, meeting minutes 173-175
Django IRC chat 175-178
GnuIRC summaries 179-181
LKML e-mails 182, 183

natural language processing (NLP) 137
Natural Language Toolkit (NLTK)

about 15
used, for naive text summarization 187-190

negation words 140
network

about 82-84
measuring 85

network, measuring
betweenness centrality 91
centrality 89
centrality, measures 92, 93
components 88
degree 85, 86
degree centrality 90
diameter 86, 87
graph trail 88
graph walk 88
path 88

NetworkX
installing 113
URL, for file formats 103

neutral word 143

[244]

nodes 82
novelty 228
nullable 219
null data values 218
null words 197

O
objectivity score 143
opinion mining

about 136
reference link 137

opinion shifters 140
opinion words 140
out-degree 86
outlier

about 218, 228
statistical detection 231
visual mining 230, 231

outlier, statistical detection
outliers, detecting by combining

statistics 233-235
outliers, detecting by combining visual

mining 233-235
outliers, detecting with machine

learning 235-238
outliers, detecting with modified z

-score 232, 233
overfitting 141

P
Pajek format 102, 103
partial matches

about 168
lenient scoring 169
partial scoring 169
reference link 167
strict scoring 169

part of speech (POS)
about 166
named entities, classes 167
tagging 166, 167

path 88
pendant nodes 116
Penn Treebank tagger 167

position of word 140
POS tagger 166
precision 61
profile 58
Python pickle 100

Q
Question Answering (QA) systems 162

R
real-world project, network

about 103, 104
data, exploring 104-111
network data 112
network files, generating 111, 112

recall 61
Reddit user page

URL 185
regression problems 9
relational database management

systems (RDBMS) 219
results, entity matching project

about 76
entity matches 76
pairs, identifying 77-79

rf_developer_projects table
datasource_id 106
dev_loginname 106
proj_unixname 106

rigid designator 165
Rmagick on RubyForge

about 65
references 65

Rmagick on RubyGems
about 65
references 65

RubyForge
URL 67

Ruby on Rails
URL 76

[245]

S
Scikit-learn tutorial

URL 13
semantic errors

about 227, 228
example 227

sentiment analysis
about 136
algorithms 141
general-purpose data collections 142
reference link 137

sentiment analysis
about 137
document-level analysis 139
opinion, features 140
opinion, structure 137-139
sentence-level analysis 139

sentiment intensity 144
sentiment mining application

about 144
chat messages, analyzing 149-154
data preparation 145-149
e-mail messages, analyzing 154-160
project, motivating 145

sentiment words 140
SentiWordNet

URL 143
sequence analysis problems 10
set notation 23
significant words 186
simpleTextSummaryNLTK.py

reference link 187
single-document summaries 186
Six Steps process

data cleaning 7
data collection 7
data mining 7
data storage 7
problem resolution 8
problem statement 7
representation 7
visualization 7

software project tags
association rules, discovering 30-45

Soundex 57
source lines of code (SLOC) 230
specificity 61
stigma words 197
stopwords 187
string edit distance 55
subgraphs

reference link 118
subjectivity classification 139
summarization problems 9
SUMMRY

about 187
URL 187

Sumy
references 193
used, for text summarization 193, 194

Sumy's Edmundson summarizer
about 197-199
reference link 197

Sumy's LSA summarizer 196
Sumy's Luhn summarizer 194
Sumy's TextRank summarizer 195

T
target data 5
text summarization

about 185
naive text summarization,

NLTK used 187-190
Sumy used 193, 194
tools 187
using Gensim 190-193

text summarization, methods
Sumy's Edmundson summarizer 197-199
Sumy's LSA summarizer 196
Sumy's Luhn summarizer 194
Sumy's TextRank summarizer 195

TLDR bots 185
topic modeling

about 202, 203
Gensim LDA model, applying to

documents 210

[246]

Gensim LDA objects, serializing 211
Gensim LDA passes 208, 209
Gensim LDA topics 207, 208
Gensim used 204-207

training examples 141
tree structure 101
tripletons 23
true positives (TP) 78
type errors 226

U
Ubuntu

URL 146
undirected network 82
univariate data sets 231
unsupervised 202
upward closure property 28

V
Vader sentiment

URL, for specific lexicon 143
Vapor on RubyForge

about 66
references 66

Vapor on RubyGems
about 66
references 66

vertical merge
example 51

vertices 82
visual mining 230

W
weighted network 83

Z
z-score

about 232
reference link 232

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Expanding Your Data
Mining Toolbox
	What is data mining?
	How do we do data mining?
	The Fayyad et al. KDD process
	The Han et al. KDD process
	The CRISP-DM process
	The Six Steps process
	Which data mining methodology is the best?

	What are the techniques used in data mining?
	What techniques are we going to use in THIS book?

	How do we set up our data mining work environment?
	Summary

	Association Rule Mining
	What are frequent itemsets?
	The diapers and beer urban legend
	Frequent itemset mining basics

	Towards association rules
	Support
	Confidence
	Association rules
	An example with data
	Added value - fixing a flaw in the plan
	Methods for finding frequent itemsets

	A project – discovering association rules in software project tags
	Summary

	Entity Matching
	What is entity matching?
	Merging data
	Merging datasets vertically
	Merging datasets horizontally

	Techniques for matching
	Attribute-based similarity matching
	Be careful of pairwise comparisons
	Leverage rare values

	Methods for matching attributes
	Range-based or distance from target
	String edit distance
	Hamming distance
	Levenshtein distance
	Soundex

	Leveraging disjoint sets
	Context-based similarity matching
	Machine learning-based entity matching
	Evaluation of entity matching techniques
	Efficiency - how long does it take to do the matching?
	Effectiveness – how accurate are the matches that we generate?
	Usefulness - how practical is the matching procedure to use?

	Entity matching project
	Difficulties with matching software projects
	Two examples
	Matching on project names
	Matching on people names
	Matching on URLs
	Matching on topics and description keywords
	The dataset
	The code
	The results
	How many entity matches did we find?
	How good are the pairs we found?

	Summary

	Network Analysis
	What is a network?
	Measuring a network
	Degree of a network
	Diameter of a network
	Walks, paths, and trails in a network
	Components of a network
	Centrality of a network
	Closeness centrality
	Degree centrality
	Betweenness centrality
	Other measures of centrality

	Representing graph data
	Adjacency matrix
	Edge lists and adjacency lists
	Differences between graph data structures
	Importing data into a graph structure
	Adjacency list format
	Edge list format
	GEXF and GraphML
	GDF
	Python pickle
	JSON
	JSON node and link series
	JSON trees
	Pajek format

	A real project
	Exploring the data
	Generating the network files
	Understanding our data as a network
	Generating simple network metrics
	Playing with the parameters of a network
	Analyzing subgraphs
	Analyzing cliques and centrality in the subgraphs
	Looking for change over time

	Summary

	Sentiment Analysis
	What is sentiment analysis?
	The basics of sentiment analysis
	The structure of an opinion
	Document-level and sentence-level analysis
	Important features of opinions

	Sentiment analysis algorithms
	General-purpose data collections
	Hu and Liu's sentiment analysis lexicon
	SentiWordNet
	Vader sentiment

	Sentiment mining application
	Motivating the project
	Data preparation
	Data analysis of chat messages
	Data analysis of e-mail messages

	Summary

	Named Entity
Recognition in Text
	Why look for named entities?
	Techniques for named entity recognition
	Tagging parts of speech
	Classes of named entities

	Building and evaluating NER systems
	NER and partial matches
	Handling partial matches

	Named entity recognition project
	A simple NER tool
	Apache Board meeting minutes
	Django IRC chat
	GnuIRC summaries
	LKML e-mails

	Summary

	Automatic Text Summarization
	What is automatic text summarization?
	Tools for text summarization
	Naive text summarization using NLTK
	Text summarization using Gensim
	Text summarization using Sumy
	Sumy's Luhn summarizer
	Sumy's TextRank summarizer
	Sumy's LSA summarizer
	Sumy's Edmundson summarizer

	Summary

	Topic Modeling
	What is topic modeling?
	Latent Dirichlet Allocation
	Gensim for topic modeling
	Understanding Gensim LDA topics
	Understanding Gensim LDA passes
	Applying a Gensim LDA model to new documents
	Serializing Gensim LDA objects
	Serializing a dictionary
	Serializing a corpus
	Serializing a model

	Gensim LDA for a larger project
	Summary

	Mining for Data Anomalies
	What are data anomalies?
	Missing data
	Locating missing data
	Zero values

	Fixing missing data
	Ignore the problem rows
	Fix the problem manually
	Use a fabricated value
	Use a central measure
	Use Last Observation Carried Forward
	Use a similar value
	Use the most likely value

	Data errors
	Truncated fields
	Data type and character set errors
	Logic or semantic errors

	Outliers
	Visual mining for outliers
	Statistical detection of outliers

	Summary

	Index

