
www.allitebooks.com

http://www.allitebooks.org

Mastering Microsoft Forefront
UAG 2010 Customization

Discover the secrets to extending and customizing
Microsoft Forefront Unified Access Gateway

Erez Ben-Ari

Rainier Amara

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Microsoft Forefront UAG 2010 Customization

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1070212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-538-2

www.packtpub.com

Cover Image by David Gimenez (bilbaorocker@yahoo.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Erez Ben-Ari

Rainier Amara

Reviewers
Ran Dolev

Dennis E. Lee

Richard Hicks

Acquisition Editor
Stephanie Moss

Lead Technical Editor
Shreerang Deshpande

Technical Editor
Manasi Poonthottam

Project Coordinator
Vishal Bodwani

Proofreader
Samantha Lyon

Indexer
Monica Ajmera Mehta

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Erez Ben-Ari is a long-time Technologist and Journalist, and has worked in the
Information Technology industry since 1991. During his career, Erez has provided
security consulting and analysis services for some of the leading companies and
organizations in the world, including Intel, IBM, Amdocs, CA, HP, NDS, Sun
Microsystems, Oracle, and many others. His work has gained national fame in
Israel and he has been featured in the press regularly. Having joined Microsoft in
2000, Erez has worked for many years in Microsoft's Development Center in Israel,
where Microsoft's ISA Server was developed. Being a part of the release of ISA 2000,
ISA 2004, and ISA 2006, Erez held several roles, including Operation engineering,
Software testing, Web-based software design, and testing automation design. Now
living in the United States, Erez still works for Microsoft, currently as a senior
support escalation engineer for UAG.

As a journalist, Erez has been writing since 1995, and has written for some of the
leading publications in Israel and in the United States. He has been a member of the
Israeli National Press Office since 2001, and his personal blogs are read by thousands
of visitors per month. Erez has also written, produced, and edited content for TV and
Radio, working for Israel's TV Channel 2, Ana-Ney communications, Radio Haifa,
and other venues.

Erez is also the author of the hugely successful title Microsoft Forefront UAG 2010
Administrator's Handbook, also by Packt Publishing. The administrator's Handbook
has received all five-star reviews on Amazon and is considered to be the most
comprehensive guide to UAG in existence.

www.allitebooks.com

http://www.allitebooks.org

Rainier Amara is a confirmed IT professional with more than 15 years specialist
experience in the field of Internet security and remote access. From a young age,
Rainier was already renowned for his inquisitive nature and attraction to all things
electronic, and by the age of 8 he had already embarked on journey that would feed
his passion for IT.

It was in his early teens that he received his first personal computer, but his
professional career took off at the age of 18, when he served in the French National
Army as a communications engineer. From there Rainier has travelled the world in
various roles and has not looked back since.

Rainier now works in the Microsoft EDGE security team as a support escalation
engineer, where he is responsible for providing customers and partners with the
highest levels of expertise and advisory services on Forefront UAG and DirectAccess.

Outside of work Rainier spends as much time as he can with his wife and three
children doing lots of crazy and wonderful things, and when not being a dad he
enjoys downhill mountain biking in the French alps.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ran Dolev is a veteran of the network security and SSL VPN industries. Ran
has worked with the UAG product for around fourteen years, since the product's
inception at the startup company Whale Communications in 1998, where Ran was
the first full-time developer of the product. After several years in development,
Ran moved to a services position as the EMEA Professional Services Manager for
the team. In this role, Ran has designed and delivered numerous IAG and UAG
training sessions in North America, Europe, Middle East, Asia, and Australia, to
customers, partners, and Microsoft employees. Ran also provided consulting and
deployment services for many of Microsoft's enterprise UAG customers.

In January 2011, Ran, together with Erez Ben Ari, co-authored the Microsoft
Forefront UAG 2010 Administrator's Handbook, also from Packt Publishing.

Nowadays, Ran is as a Senior Program Manager in the UAG Product Team.

Dennis E. Lee is a security, identity, and access management specialist who
dedicates his career to helping organizations improve the way their employees
work. Starting in New York city at Something Digital as an IT consultant, he saw
how technology could help improve people's lives both at work and at home. He
then focused on security issues, gaining expertise in networking and becoming a
Microsoft MVP in Forefront Security. Dennis is now focusing his energies in the
fields of cloud, virtualization, and mobile technologies.

I'd like to thank my family and friends Doc, Ben, and Rainier for
their unconditional support throughout the years.

www.allitebooks.com

http://www.allitebooks.org

Richard Hicks is a network security specialist and Microsoft Most Valuable
Professional (MVP) in Forefront protection technologies. He has been working with
Forefront Threat Management Gateway (TMG) 2010 and its predecessors for more
than 14 years, and has been working with Forefront Unified Access Gateway (UAG)
2010 since it was released several years ago. He has designed and deployed edge
security and remote access solutions using Microsoft Forefront technologies for
small and mid-sized businesses, military, government, and Fortune 500 companies
around the world. Richard is the director of sales engineering for security appliance
vendor Celestix Networks and oversees a talented team of pre-sales technical
support engineers around the world. Richard is currently a Microsoft Certified
Information Technology Professional—Enterprise Administrator (MCITP:EA). He
is also a contributing author for popular technology websites ISAserver.org and
TechRepbulic.com. You can read his blog at http://tmgblog.richardhicks.com/.

I'd like to thank Ben and Rainier for giving me the opportunity to
have a small part in this project by serving as the technical reviewer.
Certainly there are many who are more qualified than I am for this
role, so thanks for choosing me! It has been great reading through
the drafts and learning so much along the way. I hope you found my
thoughts, ideas, and suggestions helpful.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Customization Building Blocks	 13

Introduction to UAG and how it works	 13
The UAG detection, login, and authentication flow	 15

Fetching pages from applications	 18
Single Sign On	 19
Host Address Translation (HAT)	 20

Customization and supportability	 21
The CustomUpdate mechanism	 22
HTML, CSS, JavaScript, ASP, and ASP.NET	 24
Other web technologies	 25
Reading, editing, and debugging ASP code	 25
A word about security	 27
Further reading	 27
Summary	 28

Chapter 2: Customizing UAG's Look and Feel	 29
Honey, I wouldn't change a thing!	 30
The UI pages	 30
Customizing the login and admin pages	 32
Customizing the portal	 34
Portal application icons	 34
Changing texts	 36

Adding a user interface language	 37
Another tip for text changing	 39

Portal selection for clients	 39
Summary	 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Customizing Endpoint Detection and Policies	 43
How does endpoint detection work?	 43
Things you can do with custom detection scripts	 45
Creating and placing a custom detection script	 48

Custom detection script tips	 49
Integrating custom detection with endpoint policies	 49
Troubleshooting and debugging detection scripts	 53
Endpoint detection in the real world	 54
Summary	 55

Chapter 4: The Application Wrapper and SRA	 57
What content alteration can do for you	 58
The Application Wrapper and SRA configuration files	 59
How the AppWrap and SRA engines work	 60
Having your own way	 62
AppWrap syntax	 64

More fun with AppWrap	 67
SRA syntax	 68
Summary	 71

Chapter 5: Creating Custom Application Templates	 73
Building SSL-VPN templates	 73
Creating your own templates	 76
Template customizations and enhancements	 77
More parameters used in the template	 79

WizardDefault	 79
SSL-VPN specific settings and configuration	 85
Tying in to the SSL-VPN template list	 87

Summary	 89
Chapter 6: Custom Certificate Authentication	 91

Certificate authentication concepts and terminologies	 92
UAG and certificate authentication	 95
Understanding the pieces of cert authentication for UAG	 98

Cert.inc	 98
Login.inc	 100
Validate.inc	 100
Repository.inc	 101
Certificate authentication with KCD	 102

Troubleshooting certificate authentication	 103
Summary	 106

Table of Contents

[iii]

Chapter 7: Custom Authentication Repositories	 107
How does custom authentication work?	 107
Verifying usernames	 110
Working with an SQL database	 111
More elaborate code	 112
Testing and debugging your code	 114
Putting it all together	 116
Summary	 117

Chapter 8: Extending the Login Process with Customization	 119
The UAG authentication flow	 119
Creating a Post Post Validate file	 122
Integrating your own code and interacting with UAG's COM object	 123
Putting data into the session	 125
Adding parameters	 127
Sending data to the backend server	 129
More ideas	 131
Summary	 132

Chapter 9: Customizing Endpoint Components	 133
Controlling component deployment	 133
Adding links to the portal for the client installation	 136
Customizing SSTP	 139
Summary	 143

Chapter 10: Additional Customizations	 145
Customizations to the UAG console	 145
Remote management and monitoring of UAG	 147

Remote management software	 149
Monitoring UAG health by SIEM software or a load balancer	 149

Additional files you can customize	 151
Extending File Access with DFS shares	 154
Skipping cookie signing	 156
Custom logouts	 158
Summary	 161

Index	 163

Preface
In the world of enterprise-class software products, software development companies
often find themselves struggling with merely finishing the product and getting
it out to the market before their competitors beat them to the punch. In this type
of situation, more often than not, the developers are happy if the customer is just
able to deploy the product successfully. UAG as well as its predecessors IAG and
e-Gap have always been somewhat unique in this aspect by providing extensive
customization options which are not only possible, but some of which are even fully
supported. Even in Microsoft's impressive selection of software products, there are
very few products which offer as extensive customizability as UAG does, and this
has made UAG a tremendous success in the remote-access space.

In this book, which is the follow-up to the successful Microsoft Forefront UAG 2010
Administrator's Handbook, we will delve deep into the wonderful things you can
achieve with UAG customizations. Our journey will explore the many aspects of
the product that are customizable, suggest ideas for customizations that could
benefit your organization, and offer detailed explanations, as well as code samples
for implementing these ideas. Ready?

Why customize?
UAG was designed to provide multiple mechanisms for remote access. It was
intended to allow organizations to give such access to any corporate resource,
whether it is a simple HTML-based website or a complex, multiplatform dynamic
application. As such, it was written with a complicated user interface, and includes
a large selection of application publishing templates. However, despite the many
years of development that went into it, the number of applications and scenarios
that the product can cover can never meet each and every conceivable scenario,
and that's why major parts of the server were designed to be openly customizable.

Preface

[2]

In fact, the flexibility of the customization mechanisms is so good that it allows
us to publish technologies that were created many years after the customization
framework was designed. The objective of this book is to show you how you can
take advantage of this solution and use it to its full potential.

What can you customize?
Virtually every aspect of UAG's operation can be customized to some degree, but
generally speaking, the customizable framework is spread across the following core
categories:

•	 Look and feel
•	 Clients, endpoint detection, and policies
•	 Application templates
•	 Authentication to UAG
•	 Authentication to backend applications
•	 Application and data flow

Look and feel
Customizing the look and feel refers to anything that has to do with what the user
and/or administrator sees. This includes altering the text and graphics displayed
by the portal, customizing application icons, changing the layout, setting the server
to display additional data to the administrator or the user, and so on.

For example, some companies are perfectly happy with just a simple change from
the default blue UAG color scheme, and at a push maybe even apply some subtle
text changes plus a company logo, but for others you'll see nothing short of a
complete rework, where frontend and portal pages have been entirely customized
into stunning works of creativity.

Other look and feel customizations could be geared towards improving the user
experience itself, such as by including some basic help or even a portal quick FAQ
page, service messages or disclaimers, and of course, extending UAG's language
capabilities to beyond those of the default predefined language set.

Needless to say, this makes for a completely tailored experience where the potential
here is limited only by your imagination.

Preface

[3]

Clients, endpoint detection, and policies
The default endpoint policies included in UAG can be tailored to the organization's
needs using a GUI-based editor and a script-based editor. However, these are
often misunderstood, and we will take the opportunity to elaborate on these here.
Additionally, UAG comes with an elaborate detection script that collects over 300
parameters from endpoints, but this too can be extended to collect additional info.
This provides the organization with the ability to dictate special requirements, thus
providing increased security for endpoint filtering and control.

Additionally, UAG allows you to customize and control which endpoint components
are installed on clients, and this provides for a better user experience, as it can
reduce the number of browser restarts and client reboots that result in incremental
installation of components.

Application templates
While UAG comes with over 30 individual application templates, many
organizations find that their specific application requires certain tweaks to the
templates to work perfectly. Additionally, one can create custom templates to
perform certain automations or tasks, such as manipulation of registry settings
on the client. This section of the book will detail the process of creating custom
applications, and useful changes one could undertake to make life better.

Authentication to UAG
One of UAG's strengths is authentication and this alone makes it one of the
most versatile products available today. Out of the box, it can talk to thousands
of applications, and similarly can also integrate with dozens of directory types,
from simple LDAP implementations and Radius backends through to the more
service-oriented Claims-based architectures. However, enforcing security in the
large heterogeneous environment is easier said than done. Quite often you'll find
that many of these organizations employ multiple systems or custom authentication
schemes (such as elaborate smartcard or certificate-based authentication) to control
and restrict access into the multitude of systems and applications dispersed across
their estates. In most cases, this can often require a bespoke implementation that
has been specifically built around the organization's needs and practices. See the
challenge? Then also consider how you provide remote access into these resources.
If you haven't already guessed, this is where UAG really comes into its own and the
fact that its authentication code is written almost exclusively using ASP means it is
able to offer unparalleled flexibility and diversity when faced with such challenges.
This section of the book will guide you through some of the things you can
accomplish through code customization.

Preface

[4]

Authentication to backend applications
Most organizations that use UAG use it to publish many applications, and
sometimes as many as a few dozen. UAG's ability to perform Single-Sign-On
(SSO) to these applications is a key factor in choosing UAG over other solutions.
UAG's SSO mechanism is exceptionally clever, and is able to handle standard
401 authentication, Kerberos Constrained Delegation (KCD), Active Directory
Federation Services (ADFS), and more. This section of the book will discuss how
to adapt UAG to perform custom SSO to applications it was not designed to handle,
as well as customizing the authentication flow itself.

Application and data flow
As a reverse proxy, it is UAG's primary job to fetch data from backend servers and
present it to clients, as well as receive information from clients and send it back to
the backend. Two major components of this engine are the Application Wrapper
(also known as AppWrap) and SRA, which have the capacity to alter content on the
fly. These components are a critical part of the application publishing process, and
can also be used to enhance applications' functionality, while also optimizing the
user experience by altering content in real time. By customizing these components,
one can achieve better application compatibility, as well as enhanced performance,
functionality, and security that go beyond what UAG provides out of the box. This
section of the book will guide you in customizing the AppWrap and SRA, and
suggests how you can use them to solve problems, boost productivity, and achieve
incredible results.

Why is UAG so unique in this realm?
Two things make UAG an exceptional product from a customization point-of-view.
First, it includes a mechanism that makes it easy to add, change, or remove custom
code with a reduced risk of causing harm to the default core code. This mechanism,
commonly known as CustomUpdate, allows the customizer to populate specially
designated folders with custom files, and UAG's engine automatically detects these
files and incorporates them into its code. For example, if you want to have the portal
display your own icon when showing Citrix applications, all you have to do is create
the graphic file, name it appropriately, and place it in the correct folder. UAG will
recognize it right away, without you needing to configure any settings or edit any
complicated configuration files. Don't like the change? Remove the file, or overwrite
it with another, and your changes are applied right away.

Preface

[5]

Secondly, a significant portion of UAG's code is written using Active Server Pages
(ASP), Microsoft's Web application framework. This means that you can open and
read some of UAG's code directly off your server, without having to plough through
mountains of API documentation. This doesn't mean it's a piece of cake—following
the hundreds of code files and the interlinking between them can be quite challenging,
but almost all of the code is available to anyone, and you don't even have to install
expensive development studio suites.

On the other hand, customizing the code is not going to be a walk in the park, we
can promise you that. Besides having tons of ASP code to melt your brains, you will
find out that the code flow is mostly undocumented, and unless you are a veteran
developer yourself, you may find it hard to understand exactly what does what,
and where you can add stuff without risking stability. Additionally, big parts of
UAG's code go back many years into the past, to the days the first generation of the
product was developed. Some parts of the code have been around for many years,
and some may be completely irrelevant to the product's operation, but were kept
for backwards-compatibility. This may cause some confusion, at least until you get
the hang of things. In addition to all of the preceding info, the code, as far as ASP
is concerned, includes a mix of COM objects, ActiveX, Java, HTML, CSS, and
JavaScript code. For some customizations, you will need to know many or all of
them to be able to follow it through. Are you up to the challenge?

What this book covers
Chapter 1, Customization Building Blocks, discusses some of the operations of UAG
in depth, and introduces the various technologies used as part of the customization
process. It explains some key concepts that are required and lists other topics that
will be required to perform such customizations properly. It also includes references
to additional recommended reading.

Chapter 2, Customizing UAG's Look and Feel, will teach you how to perform various
look and feel customizations, including text, languages, themes, images, JavaScript,
and icons.

Chapter 3, Customizing Endpoint Detection and Policies, will guide you through the
process of creating custom endpoint detection using VBScript and the UAG COM
object model, as well as integrating the detection script with endpoint policies.

Chapter 4, The Application Wrapper and SRA, will explore how to take advantage of
the Application Wrapper and SRA, which enable UAG to alter content on-the-fly.
The chapter will also suggest how to use this mechanism to improve application
compatibility and fix various content-parsing related issues.

Preface

[6]

Chapter 5, Creating Custom Application Templates, will discuss creating, editing, and
customizing the default SSL-VPN templates, as well as creating new ones which can
be used to let UAG run special scripts and commands on clients, and applications
with special properties.

Chapter 6, Custom Certificate Authentication, will teach you how to create a custom
authentication repository that can authenticate a user via a Smartcard or certificate.

Chapter 7, Custom Authentication Repositories, will go through creating custom
authentication repositories that can interact with various types of authentication
mechanisms that are not available with the built-in repositories.

Chapter 8, Extending the Login Process with Customization, will discuss the process of
customizing the login and validation process, including extracting user and session
information and manipulating it.

Chapter 9, Customizing Endpoint Components, will teach you how to configure the
endpoint client components for customized distribution, making deployment easier.

Chapter 10, Additional Customizations, will discuss various other customizations that
do not belong to the other classifications.

What you need for this book
First, you will require a thorough understanding of UAG and its out-of-the-box
configuration. You will need to have a good understanding of key concepts in the
UAG world, such as the following:

•	 Trunks
•	 Applications
•	 Endpoint detection
•	 RuleSet
•	 Public URLs
•	 The UAG Portal
•	 SSL-VPN
•	 Tunneled Applications
•	 Tracing

Preface

[7]

All of the preceding concepts can be learned using UAG's online documentation
(http://technet.microsoft.com/en-us/library/ff358694.aspx), as well as
by referring to the book to which this is a follow-up: Microsoft Forefront UAG 2010
Administrator's Handbook (http://www.packtpub.com/microsoft-forefront-
uag-2010-administrators-handbook/book).

In addition, you will require some level of understanding of the following
underlying technologies:

•	 Windows Server
•	 Windows clients
•	 Networking (TCP/IP, Windows Networking, WAN)
•	 Active Directory
•	 The HTTP and HTTPS protocols
•	 Public Key Infrastructure
•	 The Kerberos authentication protocol
•	 Claims-based access control authorization model
•	 AD FS
•	 ASP
•	 COM programming
•	 ActiveX
•	 Java
•	 HTML
•	 CSS
•	 JavaScript
•	 WMI
•	 VBScript
•	 Windows Shell scripting (Batch files)
•	 XML

The preceding list is in no particular order, and being an expert on these is not
essential. However, it would be of an advantage as customizations will vary
and sometimes require only simple HTML and CSS knowledge, while others may
focus on ASP, XML, and VBScript. Equally, a good grasp of networking, Windows
Servers, and Windows clients is somewhat important and are all areas that require
a good foundation.

Preface

[8]

This is particularly true when working with protocols, such as HTTP and HTTPS.
Most of the others will only require basic understanding. The first chapter will
describe these technologies in more detail.

Who this book is for
Since its release, UAG has evolved to be one of the most popular remote access
solutions in the market. When compared to its predecessors, it has also become
more of a mainstream product which is now widely used across all industries.
The appeal to most is, without a doubt, its reputation for doing exactly as it says
on the box, but then also having this almost boundless ability to satisfy almost
every possible requirement.

In a sense, you could even class UAG as more of a platform for bringing remote
users and their applications together in a single place. However, it goes without
saying that how you deliver, secure, and then present your solution, is only as
good as the person who implements it.

For this reason, most companies choose to either engage a security practice which
offers UAG skills or in quite a lot of cases prefer to put their own consultant through
training, along with a purchase of our very own Microsoft Forefront UAG 2010
Administrator's Handbook as a means of getting up to speed.

Having the right skills is important as many of UAG's advanced features require
careful planning and experience with UAG itself. It can also require experience
with the underlying technologies and products, such as Windows Server, Active
Directory, the HTTP and HTTPS Protocols, Public Key Infrastructure, the Kerberos
authentication protocol, the claims-based access control authorization model (used
in AD FS), and many others. For these reasons, this book will be most useful to such
consultants who are interested in advancing their deployment skills to include custom
UAG scenarios. This book can also be very useful for network and security engineers
who deploy and use the product, and are interested in deploying advanced scenarios
without help from a consultant, or who need to expand on the work of a consultant,
or to support it following the deployment handover. Another target group are
prospective developers who are interested in developing custom solutions or add-ons
to UAG, to be used within their organizations, or to be offered to the public.

Preface

[9]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "First, we execute the function
GetAuthenticatedUserDetails, which would return empty if the user has
already authenticated."

A block of code is set as follows:

<Policies>
 <Policy>
 <Name>Screen Saver Active</Name>
 <ID>Screen_Saver_Running</ID>
 <Type>0</Type>
 <Value>false</Value>
 <Description></Description>
 <Section>Variables\System</Section>
 </Policy>
</Policies>

Any command-line input or output is written as follows:

@echo If WScript.Arguments.length =0 Then >%temp%\SetDns.vbs

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "This
option can be changed in the Web Settings tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[10]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[11]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Customization
Building Blocks

Before we go into discussing the customizations, we need to explore and understand
some basic concepts of customization in general, as well as UAG-specific
customization technologies and operability. Throughout this chapter, we will also
discuss some of the technologies that UAG relies on, such as HTML, JavaScript, ASP,
and ASP.NET, so you can judge if your knowledge of these technologies is sufficient
or requires further reading. In this chapter, we will discuss the following topics:

•	 Introduction to UAG and how it works
•	 The UAG detection, login, and authentication flow
•	 Customization and supportability
•	 The CustomUpdate mechanism
•	 HTML, CSS, JavaScript, ASP, and ASP.NET
•	 Other web technologies
•	 Reading, editing, and debugging ASP code
•	 A word about security
•	 Further reading

Introduction to UAG and how it works
Ah! Don't worry, we have no intention of boring you with a lesson on reverse
proxies—we're sure you've been through that till all your IPs got released.
However, you do need to have a clear understanding of UAG and the actual
flow of information between various components so you can figure out where
best to inject your own stuff.

Customization Building Blocks

[14]

At the heart of UAG is its main component, the WhlFilter.DLL, which is an ISAPI
filter and extension. When you install UAG on a Windows Server, it plugs itself
into IIS, meaning that every UAG-related request that passes through this IIS
server gets handled by our DLL, and that's when the magic happens. The UAG
management console acts as the interface between yourself and the complex backend
configurations that get applied when you hit the activation button. Once committed,
your configurations are what control how the ISAPI filter behaves in terms of
processing requests, headers, content, and the overall security characteristics.

Significant parts of the UAG framework are written using ASP, and these include
the UAG login, logout and authentication dialogs, the error-handling mechanism,
the endpoint detection, the web-monitor, and more. Then we have the management
console itself, which is compiled code. Naturally, UAG has many other components
to it, which are less visible to the naked eye.

So where does UAG store its settings and configurations? This can really depend on
whether this is a standalone server or an array, but in a standalone deployment the
core of the main configurations are stored in two key locations:

•	 In a text-based EGF file (stored in <UAG Path>\common\conf\UAG.egf)
•	 As a binary vendor parameter in TMG storage (AD LDS)

Other data that is equally important is also held in various XML files within the
UAG folder hierarchy, but UAG can be particularly sensitive about it is the two
aforementioned data stores. This arrangement still applies in an array configuration
but the difference to note here is that the Array Management Server (AMS) will
be the one that holds the master configurations for all of the array members. So
although each node will have a local copy of the EGF file, they will all rely on the
AMS to obtain settings that are common to all members. The configuration stored as
part of the array includes custom files that the administrator may create as part of the
customization process. Occasionally you might run into certain flags that are stored
directly in INC or ASP files, such as the InternalSite site trace flag, which tells UAG
to trace the ASP code (more about that at the end of this chapter).

Chapter 1

[15]

The UAG detection, login, and
authentication flow
When a user types in the URL for a UAG portal, the client computer resolves the
URL to an IP address (using DNS or a HOSTS entry, typically, or via his/its defined
proxy) and the request is sent to that IP. Then, on the UAG server, TMG receives
this client request and cross references this against its firewall policies to ascertain
whether the connection should be allowed or denied. If accepted, the request is then
sent over to IIS, and in turn to UAG's ISAPI filter for processing.

The ISAPI filter is responsible for an incredible amount of work, some of which can
be observed from the output of a UAG trace taken during a client session. What
actually goes on during the Client/Server interaction is far too complicated to fully
explain here, but at a higher level, a client connects and the filter checks for cookies,
essentially looking for one that will identify the user against an existing UAG
session. If one is not found then the filter issues a redirect, sending the user to the
standard form-based portal login page.

An exception to this is when the request is coming from
rich client applications, such as Outlook, ActiveSync, or the
various other Office applications, for which authentication
can be performed directly (assuming, of course, that the
portal has been configured for this method of publishing).

This login page (part of the InternalSite site) forms a part of the core authentication
mechanism used by UAG, and to which all trunks rely on for various aspects of
access to the portal, such as the endpoint detection and the authentication flow.
Creating a new trunk in UAG also creates a new virtual website within IIS with the
same name as the trunk. Why would the portal login page be referred to as Internal,
even though it's really external? Well that's because historically, when e-Gap was
created, the solution actually comprised of two distinct physical servers. Back then,
instead of TMG, there was the external server and the internal server. The external
server would transfer session data to the internal server, using a hardware-based
device that interconnected the two devices, while offering the highest level of data
isolation for its generation. The architecture here was clearly of a different nature
when compared with UAG, but certain key components were already being used,
such as IIS. The key differentiator was that you had two separate instances of IIS,
one running on each server. The external one didn't do much work, but the internal
one, on the other hand, was where the clever stuff really happened. A lot of that code
is still with us today; hence the terminology.

Customization Building Blocks

[16]

So, in the case of a session cookie not being detected, the browser would be redirected
to the login page, but beforehand, UAG will run through its install-and-detect phase,
in an attempt to determine whether the client already has the UAG client components
installed. Its failure to detect the components would prompt the user with the option
to install them or to continue with limited functionality. However, the existence of the
components would simply allow UAG's detection routine to initialize and call upon
the default detection script (\von\internalsite\detection.vbs), which collects
endpoint information and sends it back to UAG using the results function (more
about detection is discussed in Chapter 3, Customizing Endpoint Detection and Policies).

At this point, an unauthenticated session can be seen in UAG's Web Monitor,
and by now UAG has already associated this connection with a unique session
ID, represented as a GUID. It's the information that was collected during the
detection process that will determine the level of access that the user is granted for
any particular session, and the results can be viewed within the Parameters tab as
illustrated in the following screenshot:

As you can see in the preceding screenshot, the Lead User and Repository have yet
to be populated as the user has not logged in, and this is also represented by X in the
Authenticated column.

Chapter 1

[17]

It's UAG's advanced policy engine that allows for the creation of extremely granular
policies that can be enforced across several different levels. Since UAG trunks have
their own individual access policies, we have the ability to evaluate a client's request
for access based on what was found during detection. A decision can then be made
to permit access according to whether or not a client was able to satisfy a given set
of configured security policy requirements. One of the collected parameters is the
user-agent, which is what a client's browser will send as part of the initial connection
process. This string alone is what helps UAG acknowledge the type of endpoint that
is connecting, and in turn which of the four core OS policies to apply—Windows,
Mac, Linux, or Other (which would typically be a phone of some type, or an iPad).
Each of these core policies then also have individual subpolicies that are constructed
for a specific operating system, so accurate detection of the type of client is a critical
part of this deterministic process.

UAG will evaluate policies using the Boolean logic, so as with the preceding
screenshot, you can expect to see a TRUE or FALSE against many parameters. In
general terms, the majority of the results shown on the Parameters tab are returned
from the default detection script previously mentioned. However, custom policies
will also show in this list, and how UAG perceives the returned response can be
configured in any number of ways. So, you could expect the results of an endpoint
policy evaluation ending concluding with FALSE to then redirect a user to the
access-denied page.

As part of the login flow, a user will be redirected to the validation page
(/InternalSite/Validate.asp), which triggers UAG's authentication mechanism.
Depending on the authentication configuration set on the trunk (repository type and
settings), UAG contacts the authentication target and validates the user. UAG will also
collect additional info, like password expiry and group membership. If the repository
is of the Active Directory type, then directory queries using ports 389, 636, 3268, or
3269 will take place, but the actual method used can also change depending on how
this is configured. Using the option of querying the DCs directly will instruct UAG to
query two explicitly defined domain controllers, whereas using the Forest alternative
will enumerate all DCs using Global Catalog services and ports.

Assuming the user's credentials have been accepted, they are then encrypted and
stored in UAG's allocated address space, and linked to the authentication repository
the user has used, for the duration of that session. If there are applications that have
granular authorization settings based on group membership (as opposed to being
set to Allow all users on the application's Authorization tab), then UAG will cross
check the user's saved domain group membership info against those set for the
application to control access and visibility of the application icon within the portal.

www.allitebooks.com

http://www.allitebooks.org

Customization Building Blocks

[18]

At this point, the endpoint policies now come back into play. As with trunks,
each application also has its own policies, and these can be used to control which
applications will be available to the user. For example, Macintosh and Linux
computers do not have all the required endpoint components to support all
applications types, so UAG will detect that and prevent access to certain types
(RDG-based applications, for example). After the decision process, the user is
then redirected to the original URL he initially typed. If that URL is the UAG's
root URL, then the redirect would go to the initial application defined on the
trunk. This would usually be the Portal itself, or some other application, if so
configured by the administrator.

Fetching pages from applications
Once a user has a valid session, he may stare blankly at the screen for a bit, but at some
point, he would typically want to launch some application. When the user clicks on
an application on the portal, or clicks on a link within an application that is already
launched, his browser creates the request and passes it on to UAG. When the filter
receives the request, it analyzes the request host header, cookies, and other header
information, before trying to determine to which application the request belongs.

UAG may have applications published using the portal hostname method, and
others using the application-specific hostname such as with SharePoint. Using the
host header included in the request, UAG tries to determine if there are application-
specific hostname applications that match that host header, or perhaps the host
header matches the trunk's public hostname itself. This, however, isn't foolproof,
so UAG has other ways of associating a request to an application, such as looking
at the HAT signature itself (more on that later). Another method is to examine the
path of the URL, to try and match that against the paths defined within the various
applications. There are additional methods, such as the possibility to decide based
on the HAT cookie, if such a cookie was received along with the HTTP request, and
the Manual URL Rerouting (MUR) rules, which help UAG decide where to send an
otherwise unrecognized request. If none of these have helped and a match is not
found, then UAG will redirect the user to an error page.

The following screenshots illustrate the differences between these two common
types of applications—one listing a public hostname and the other has certain
paths defined for it:

Chapter 1

[19]

Once UAG has identified the application the request pertains to, it then initiates the
same resource request to the real application server, as defined in the Web Servers
tab of the application configuration. This process may involve some adjustment
of the host header used in the request, if the target application dictates it (this is
common with SharePoint applications).

The request is sent to the backend server anonymously, and if the backend server is
configured to accept anonymous requests, it would send back an HTTP status code of
200 OK, and an HTML page with content. This, however, doesn't always work out.

Single Sign On
If the backend server is configured to require authentication, it will typically respond
with something other than the page requested. Most commonly, it would return an
HTTP status code of 401, also known as unauthorized. This triggers UAG's SSO
mechanism, and it will fetch the user's credentials from its memory, where they were
stored when the user logged in and resend the same request, with the credentials.
Usually, the backend server will accept it, and then reply with the content requested.
Occasionally, it may not like the credential set, and again reply with a 401. This could
happen if the authentication scheme was not set correctly on UAG.

Customization Building Blocks

[20]

For example, if the backend application server was configured for Kerberos
authentication, the application on UAG needs to be configured for that as well
(in addition to other Kerberos Constrained Delegation (KCD)-related trust and
delegation particulars). In such situations, UAG retries the authentication a few
times, and then gives up and redirects the user to an error page.

Another situation is when the backend application is configured for Forms-Based
Authentication (FBA). In this case, the application will deliver back an HTML
page with a login form of some sort. UAG has a forms-processing engine, so if a
configuration exists for it to identify and work with that form, it will process it
and respond with the client's credentials. UAG comes pre-configured to handle
some applications' forms out of the box, such as SharePoint, Citrix, and others. An
administrator can also create a custom configuration for this, and we will discuss
this in Chapter 8, Extending the Login Process with Customization. It's UAG's ability to
recognize a form's structure that allows it to inject a user's credentials, while also
adding the necessary JavaScript into the page to simulate a user clicking on the
Login button. Some forms do not use a generic or conventional way of doing things,
so this is where we can extend UAG's functionality to incorporate additional form
data that it may not currently be aware of.

The one key dependency that UAG SSO relies on is that both parties, UAG and
the target application server, are configured to mutually agree on a common
authentication scheme during the challenge response process. Thus, in most cases,
this is somewhat as simple to set up as configuring the appropriate authorization
type at both ends, and UAG will do the rest. In some scenarios, things can get a little
more challenging. This is where we can really capitalize on UAG's flexibility.

Host Address Translation (HAT)
As mentioned, pairing up a client request to an application is critical to UAG's
functionality, and the HAT mechanism is a big part of that process for applications
that are not using the application-specific mechanism (like SharePoint or Lync
publishing). The way it works is by trying to have requests that come from clients
bearing a unique signature that will help UAG identify to which application it
belongs. To that end, UAG, when it delivers an HTML page to a client, will parse
the entire page contents for links and references, and where possible will try to add
a unique signature to each of them. The unique signature itself is an alphanumerical
hash of the properties of the backend server it pertains to.

Chapter 1

[21]

As part of this process, UAG places the HTML page into a special buffer in memory
and starts parsing it, looking for various HTML and JavaScript elements in the
text. For example, it may identify a link to an image that uses the format <IMG
SRC="angry.gif" ALT="Angry face" />, and insert the unique signature after
SRC, resulting in the tag similar to the following:

<IMG SRCc="/uniquesigf872a75338c81cc6d2bc458e795f24b8/uniquesig0/
angry.gif" ALT="Angry face" />

The real signature has been altered to protect the innocent.

After all the changes, the altered HTML is delivered to the client. If all the links and
references have been identified and signed, subsequent requests pertaining to this
application will all carry the same signature, which in turn allows UAG to easily
intercept and handle requests on a per application basis.

Naturally, the process may not always go smoothly. UAG has been designed
to handle pretty much every possible HTML tag, as well as common JavaScript
structures, but there could always be a miss, and that is something you may need to
handle. We will discuss using a custom SRA or Application Wrapper configuration
file for this sort of situation in Chapter 4, The Application Wrapper and SRA.

Customization and supportability
As we said before, a significant part of UAG's code is simple text files containing
ASP, HTML, JavaScript, and other code. This means that in theory, you can open
any of them with a text editor, and change whatever you want. A brave enough
person might even attempt to decompile the UAG filter and mess around with
that. However, this is not what this book is about, and the intention is not for you
to take drastic measures or rewrite the product yourself. While nothing prevents
you from changing any file on your own server, UAG was designed with a specific
customization framework, which provides a clean mechanism to perform a
supported customization.

What this means is that the team who designed the product intended for you to be
able to customize certain files, but also that you should not touch any other files (and
if that's not clear, most of the ASP pages have a friendly reminder in them too). We
will discuss the technical aspects of this in a minute, but the point here is that whatever
you do, you should consider the long-term repercussions of changes you make.

Customization Building Blocks

[22]

The challenge here is that if you change the files that are unsupported for
customization, you run the risk of creating a problem with the code, and in that case,
Microsoft's support personnel will not be able to decipher your code changes and
work around/through them. Even if you are around to explain, they will most likely
outright refuse to touch the server. Naturally, if you are a consultant implementing
this customization at a customer's site, an issue might creep up weeks or months
later, putting your customer in a tight spot.

Another concern is that UAG's own code may change with a future update,
overwriting the changes you made or conflicting with them in a way that causes
a problem. For example, with the release of SP1 for UAG, one of the default pages
changed in a way that caused many servers who had an improper customization
to that page to start showing a 500 error upon entry, which basically bricked those
servers until the customization was reversed and redone from scratch. If you are an
employee, such a situation could be unpleasant, but if you are an external consultant,
this may even put you in a legal bind.

In other words, we strongly recommend you plan your work carefully, sticking with
supported customizations, and it wouldn't hurt to also develop a detailed test plan. If
the task is a contract, it would be also good to include a support plan as well, in case
your code needs updating.

The CustomUpdate mechanism
The UAG customization framework is based on a well-known concept often referred
to as CustomUpdate. The idea is that some folders within the UAG folder tree
contain special folders with this name, and in them you can place your own custom
code. When the UAG's code runs, it automatically checks these folders for custom
files, and processes them accordingly. For example, here's such a function from the
page logo.inc:

Chapter 1

[23]

As you can see, the command uses the function include Application and defines
a filename pattern for when UAG performs its CustomUpdate file check. If the file is
found, the function will read its content and process it as if it was a part of the original
code (the include function itself is in /InternalSite/Inc/include.inc). The actual
filename (logo.inc) is populated into LOGO_INC as part of the file /InternalSite/
Inc/IncludeFiles.inc. The following screenshots show these two files:

It's important to keep in mind though, that this processing is sometimes a cumulative
processing, and sometimes replaceable processing. Depending on the design of the
specific component, UAG might use your file instead of the original file (for example,
if you customize the Login page), or in addition to the original file (such as when
customizing the endpoint detection script).

The process of customizing a file is simple: you create your file, drop it in the
relevant folder, and name it appropriately. The file naming convention used by
UAG is:

<trunk Name><Secure><name>.<extension>

The trunk name is obvious. The Secure flag is either 0 or 1, depending if the trunk is
HTTP or HTTPS. The name is the original filename, and the extension needs to match.

For example, let's say you want to create a certificate-authentication configuration.
We will discuss this more in Chapter 6, Custom Certificate Authentication, but this
is also considered to be a customization, as this will almost always require some
editing of the ASP code itself to match the organization's certificate scheme. The
name of the certificate authentication file is cert.inc, so if your trunk is named
Remote, and the trunk is an HTTPS trunk, the file you will need to put in the target
folder needs to be named remote1cert.inc.

Customization Building Blocks

[24]

Letter case is not important in this naming convention.

For the most part, that's about it, and the next user who logs in will reap the benefit of
the new custom file (or the error it may generate, if you messed it up!). Adding new
files does not impact existing sessions, so if you are testing this yourself, you would
need to log out and log in again, and we also recommend clearing your browser cache
and cookies as well. Some files will require you to perform a configuration activation
to take effect, and some take effect immediately. However, it is important to perform
an activation regardless, otherwise, the custom file will not be pushed into the TMG
storage and may later miraculously disappear from your server.

Another point worth mentioning is that when customizations are done to a UAG
array, they should only be applied to the Array Master Server (AMS). During
activation, the custom files will propagate across all array members.

HTML, CSS, JavaScript, ASP, and
ASP.NET
So how much do you REALLY need to know? Probably not a lot, if you're lucky.
Most visual changes only need basic understanding of HTML, and any modern
HTML editor should be able to recognize any existing ASP elements and work
around them as you change the layout. A lot of benefits can come from adding
JavaScript, such as a script to toggle some text on-and-off if a user clicks on Help,
or a nice floater to reveal info for your users about how to feed in their domain
credentials. ASP, however, is probably the most important thing here.

The ASP web-scripting interface and the VB language it uses are quite old, and
a lot of people know them well, so we will not attempt to teach it here. Another
key concept is Server-Side Include (SSI), which is also used a lot. Normally, you
wouldn't have to change these, but if you need to add your own files, this can
become tricky, because inclusions are very sensitive to folder hierarchy. Some parts
of UAG were written using ASP.NET, which means you won't be able to edit them,
and even reading the code will be quite limited. Cascading Style Sheets (CSS) is also
important, as a lot of the look-and-feel of UAG is controlled this way. At the end
of the chapter, we have included a list of books that may be a good start towards
brushing up on these technologies.

Chapter 1

[25]

Other web technologies
A sensitive topic with UAG is the inclusion of other web technologies, such as Java,
Silverlight, and Flash. These are all great technologies which can benefit your code
in many ways, but they may not be suitable everywhere. For example, including an
Adobe Flash or Microsoft Silverlight animation on the UAG login page may be a
terrific visual add-on, but one must keep in mind that UAG's parsing engine won't
be able to parse the content, so it may be a bad fit for integration with other parts of
the code. You may be able to compensate by hardcoding HAT URLs into your code,
but that's a pretty bad practice.

Reading, editing, and debugging
ASP code
While ASP is not difficult, you may find that the UAG code files may still be a
bit challenging to read because every script links to several other files, most of
which link to others as well. This means you may often have to hunt through a
handful of files to find a certain function and what it does. Some people prefer
the use of advanced tools such as Visual Studio, and others are just fine with
Notepad, but keep in mind that installing additional software on UAG is not
supported. Some stuff is more benign, but be careful not to jeopardize server
stability, and if you really feel you MUST install additional stuff, try to at least
limit it to non-production servers.

Out of the box, UAG is not set up for easy debugging, but there are a few things
you can do to make things work your way. The first step is to enable verbose
output of ASP errors, which can be done by executing the following command
from an elevated command prompt on a UAG server:

cscript %systemdrive%\inetpub\adminiscripts\adsutil.vbs set w3svc/
AspScriptErrorSentToBrowser true

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.
com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Customization Building Blocks

[26]

You will then also need to set up the browser on the client to not Show friendly
HTTP error messages, so make sure that this box is not selected, as shown in the
following screenshot:

If you are debugging a production server, keep in mind that the errors may reveal
sensitive info to the end user, so be sure to turn the verbosity back off when finished
by running the same script with the keyword FALSE.

Naturally, you can add more output to the ASP code with the response.write
method and that's probably the easiest way to know what the server is doing and
to isolate issues. In cases where the processing is in the background, or too fast to
read, you might be able to use a tool such as HTTPWatch or FIDDLER to record the
client-side activity, and then go over the source to find your messages. In case where
even this is not suitable or to debug production servers, another tool at your disposal
is the TRACE functions that are part of UAG's code.

UAG has a code file named trace.inc, which has several functions that integrate
with the ASP code to collect data. To use them, all you have to do is add a line of
code into your customization using the following format:

light_trace "what I gotta say"

You will see no visible output, but if you turn on a server trace, the resulting trace
will show the text. Naturally, to make it helpful, be sure to put the right data in the
trace text. For example:

light_trace "Custom PostPostValidate.inc: Entering function 'Read
Lips' at " & now & " for user " & username

Once you have implemented such trace instructions, turn on UAG tracing, with
InternalSite tracing, and you should see your messages in the decoded trace data.

Chapter 1

[27]

For more information, see the following blog post:

http://blogs.technet.com/b/ben/archive/2011/08/08/enhanced-tracing-
for-asp-debugging.aspx.

A word about security
When working with UAG, and especially when customizing it, one must keep in mind
that a UAG server will typically sit on the public Internet, listening for incoming HTTP
and HTTPS connections. The product has gone through several development cycles,
rigorous testing, and deployments, and is considered to be extremely secure out of
the box. However, a single line of bad code could jeopardize the entire server, while
potentially leaving your gateway open to risk and compromise.

Talking about writing secure code is beyond the scope of this book, of course, but we
strongly recommend that even if you are a seasoned web developer, you should go
through secure-coding training, or at least a refresher course. In today's marketplace,
your company or customers are usually constantly scanned by one of many hackers
and hacking groups, and the risks of customer data exposure or public humiliation
are enormous. This means not only being careful about what you create, but also
thinking about having a third-party analyze your work, or even perform pen-testing
on it. We all want to sleep better at night, don't we?

Further reading
We have briefly discussed the technologies used in customizing UAG, and you
should strive to understand them to as high a level as possible. The following is
a list of recommended books to provide you with a deeper understanding of the
topics of ASP, HTML, CSS, JavaScript, Windows Server, Information Security, ISAPI,
and COM. None of these are absolutely mandatory, but strongly recommended.

•	 Sams Teach Yourself Active Server Pages 3.0 in 21 Days by Scott Mitchell
and James Atkinson, ISBN 978-0672318634

•	 Head First HTML with CSS & XHTML by Eric T Freeman and Elisabeth
Freeman, ISBN 978-0596101978

•	 JavaScript: The Definitive Guide by David Flanagan, ISBN 978-0596101992
•	 XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means,

ISBN 978-0596007645

Customization Building Blocks

[28]

•	 Windows Server 2008 R2 Unleashed by Rand Morimoto, Michael Noel, Omar
Droubi, Ross Mistry, ISBN 978-0672330926

•	 Hacking Exposed, Web Applications by Joel Scambray, ISBN 978-0071740647
•	 Writing Secure Code by Michael Howard and David LeBlanc,

ISBN 978-0735617223
•	 Essential WinInet: Developing Applications Using the Windows Internet API

with RAS, ISAPI, ASP, and COM by Aaron Skonnard, ISBN 978-0201379365

Summary
In this chapter, we briefly discussed some of the basic concepts in the world of UAG
customization, and reviewed some of the operational principles behind how UAG
works as a reverse proxy. We also discussed some additional technologies that come
into play when customizing UAG, and suggested some things you might consider
studying up on to make the journey easier. In the next chapter, we will deep-dive
into the most popular type of customization—the look and feel.

Customizing UAG's
Look and Feel

UAG customizations can be very intense and deeply technical, but what everyone
wants is for everything to look its best, right? The fact is, a large portion of UAG
customers perform at least some adjustments to the appearance, even if it is just
changing the title of the portal page. Look and feel customizations are considered to
be rather well documented, as opposed to some of the more advanced stuff you will
see later on in the book, but the purpose of this chapter is not to repeat that official
documentation. We will be guiding you through the actual process, of course, but
also suggesting some creative thoughts to get the message across in ways that you
may have never thought of. The topics covered ahead include the following:

•	 Visual customization overview
•	 Customizing the login and admin pages
•	 Customizing the portal
•	 Portal application icons
•	 Changing texts
•	 Adding a user-interface language
•	 Portal selection for clients

Customizing UAG's Look and Feel

[30]

Honey, I wouldn't change a thing!
We'll save the flattery for our spouses, and start by examining some key areas
of interest that you might want to be able to change on a UAG implementation.
Typically, the end user interface is comprised of the following:

•	 The Endpoint Components Installation page
•	 The Endpoint Detection page
•	 The Login page
•	 The Portal Frame
•	 The Portal page
•	 The Credentials Management page
•	 The Error pages

There is also the Web Monitor, but it is typically only used by the administrator,
so we won't delve into that. The UAG management console itself and the SSL-VPN
/SSTP client-component user interface are also visual, but they are compiled code,
so there's not much that can be done there.

The elements of these pages that you might want to adjust are the graphics, layout,
and text strings. Altering a piece of HTML or editing a GIF in Photoshop to make
it look different may sound trivial, but there's actually more to it than that, and the
supportability of your changes should definitely be questioned on every count. You
wouldn't want your changes to disappear upon the next update to UAG, would you?
Nor would you want the page to suddenly become all crooked because someone
decided that he wants the RDP icon to have an animation from the Smurfs.

The UI pages
Anyone familiar with UAG will know of its folder structure and the many files
that make up the code and the logic that is applied throughout. For those less
acquainted, however, we'll start with the two most important folders you need
to know—InternalSite and PortalHomePage. InternalSite contains pages that
are displayed to the user as part of the login and logout process, as well as various
error pages. PortalHomePage contains the files that are a part of the portal itself,
shown to the user after logging in.

Chapter 2

[31]

The portal layout comes in three different flavors, depending on the client that
is accessing it. The most common one is the Regular portal, which happens to be
the more polished version of the three, shown to all computers. The second is the
Premium portal, which is a scaled-down version designed for phones that have
advanced graphic capabilities, such as Windows Mobile phones. The third is the
Limited portal, which is a text-based version of the portal, shown to phones that
have limited or no graphic capabilities, such as the Nokia S60 and N95 handsets.

Regardless of the type, the majority of devices connecting to UAG will present a
user-agent string in their request and it is this string that determines the type of
layout that UAG will use to render its pages and content. UAG takes advantage of
this by allowing the administrator to choose between the various formats that are
made available, on a per application basis. The results are pretty cool, and being
able to cater for most known platforms and form factors provides users with the
best possible experience. The following screenshot illustrates an application that
is enabled for the Premium portal, and how the portal and login pages would look
on both a premium device and on a limited device:

Customizing UAG's Look and Feel

[32]

Customizing the login and admin pages
The login and admin pages themselves are simple ASP pages, which contain a lot of
code as well as some text and visual elements. The main files in InternalSite that may
be of interest to you are the following:

•	 Login.asp

•	 LogoffMsg.asp

•	 InstallAndDetect.asp

•	 Validate.asp

•	 PostValidate.asp

•	 InternalError.asp

In addition, UAG keeps another version of some of the preceding files for ADFS,
OTP, and OWA under similarly named folders. This means that if you have enabled
the OWA theme on your portal, and you wish to customize it, you should work with
the files under the /InternalSite/OWA folder. Of course, there are many other files
that partake in the flow of each process, but the fact is there is little need to touch
either the above or the others, as most of the appearance is controlled by a CSS
template and text strings stored elsewhere. Certain requirements may even involve
making significant changes to the layout of the pages, and leave you with no other
option but to edit core ASP files themselves, but be careful as this introduces risk
and as mentioned in the previous chapter, is not technically supported. It's likely
that these pages change with future updates to UAG, and that may cause a conflict
with the older code that is in your files. The result of mixing old and new code is
unpredictable, to say the least.

The general appearance of the various admin pages is controlled by the file
/InternalSite/CSS/template.css. This file contains about 80 different style
elements including some of the 50 or so images displayed in the portal pages, such
as the gradient background, the footer, and command buttons to name a few. The
images themselves are stored in /InternalSite/Images. Both these folders have
an OWA folder, which contains the CSS and images for the OWA theme.

When editing the CSS, most of the style names will make sense, but if you are not
sure, then why not copy the relevant ASP file and the CSS to your computer, so
you can take a closer look with a visual editor, to better understand the structure.
If you are doing this be careful not to make any changes that may alter the code in
a damaging way, as this is easily done and can waste a lot of valuable time.

Chapter 2

[33]

A very useful piece of advice for checking tweaked code is to consider the use of
Internet Explorer's integrated developer tool. In case you haven't noticed, it's a
simple press of F12 on the keyboard and you'll find everything you need to get
debugging. IE 9 and higher versions even pack a nifty trace module that allows
you to perform low-level inspection on client-server interaction, without the need
for additional third-party tools.

We don't intend to devote this book to CSS, but one useful CSS element to be familiar
with is the display: none; element, which can be used to hide any element it's
put in. For example, if you add this to the .button element, it will hide the Login
button completely. A common task is altering the part of the page where you see
the Application and Network Access Portal text displayed. The text string itself
can be edited using the master language files, which we will discuss shortly. The
background of that part of the page, however, is built with the files headertopl.
gif, headertopm.gif, and headertopr.gif. The original page design is classic
HTML—it places headertopl on the left, headertopr on the right, and repeats
headertopm in between to fill the space. If you need to change it, you could simply
design a similar layout and put the replacement image files in /InternalSite/
Images/CustomUpdate. Alternatively, you might choose to customize the logo only
by copying the /InternalSite/Samples/logo.inc file into the /InternalSite/
Inc/CustomUpdate folder, as this is where the HTML code that pertains to that area
is located.

Another thing that's worth noting is that if you create a custom CSS file, it takes effect
immediately and there's no need to do an activation. Well at least for the purposes
of testing, anyway. The same applies for image file changes too, but as a general rule
you should always remember to activate when finished, as any new configurations
or files will need to be pushed into the TMG storage. Arrays are no exception to
this rule either and you should know that custom files are only propagated to array
members during an activation, so in this scenario, you do need to activate after each
change. During development, you may copy the custom files to each member node
manually to save time between activations, or better still, simply stop NLB on all
array members so that all client traffic is directed to the one you are working on.

An equally important point is that when you test changes to the code, the browser's
cache or IIS itself may still retain files from the previous test or config, so if changes
you've made do not appear first time around, then start by clearing your browser's
cache and even reset IIS, before assuming you messed up the code.

Customizing UAG's Look and Feel

[34]

Customizing the portal
As we said earlier, the pages that make up a portal and its various flavors are
under the PortalHomePage folder. These are all ASP.NET files (.ASPX), and the
scope for making any alterations here is very limited. However, the appearance is
mostly controlled via the file /InternalSite/PortalHomePage/Standard.Master,
which contains many visual parameters that you can change. For example, the
DIV with ID content has a section pertaining to the side bar application list. You
might customize the midTopSideBarCell width setting to make the bar wider or
thinner. You can even hide it completely by adding style="display: none;" to
the contentLeftSideBarCell table cell. As always, make sure you copy the master
file to CustomUpdate, and not touch the original file, and as with the CSS files, any
changes you make take effect immediately.

Additional things that you can do with the portal are removing or adding buttons
to the portal toolbar. For example, you might add a button to point to a help page
that describes your applications, or a procedure to contact your internal technical
support in case of a problem with the site. These sort of changes are discussed in the
official customization guide on TechNet: http://technet.microsoft.com/en-us/
library/ff607389.aspx.

Portal application icons
Besides the graphics used by the various ASP pages, another common need is to
have custom icons for applications. As you probably know, you can specify the icon
name as part of any application's configuration, in the Portal Link tab.

However, keep in mind that you need to create four icons, not just one: one file for
the primary home-screen icon, a smaller version for the navigation bar, and another
set of both for disabled applications. The disabled icons are used when UAG blocks
access to the application, such as when a portal has RemoteApps published and is
being accessed from Firefox. You can go ahead and inspect the /PortalHomePage/
Images/AppIcons folder to see these existing default icons.

The following screenshot shows the setting that defines the application's icon URL,
and the four types of icons that are used:

Chapter 2

[35]

When creating your icons, you can use GIF, JPG or PNG formats, and while you can
use any image size, it's best to use the native size, rather than letting the browser
stretch the image files on screen.

Stretching images often leads to ugly results, so we recommend
that you create the home-screen icons at 88 X 50 pixels, and the
Nav-Bar icons at 16 X 16 pixels.

While the default home screen's background is white, the Nav-Bar is not, so make sure
that your images have a background color that is similar to the Nav-Bar's background,
or have a transparent one (JPG files can't do that, but GIF and PNG can).

Even though you specify only one icon filename in the Icon URL setting, UAG will
automatically look for and use the following naming conventions for the other icons:

•	 Normal icon: <file name>.gif
•	 Normal disabled icon: <file name>_dis.gif
•	 Nav-Bar icon: <file name>_icon.gif
•	 Nav-Bar disabled icon: <file name>_icon_dis.gif

One thing to keep in mind is that if you would like to create a custom icon that
pertains to a group of applications (for example, for all of your Generic web
applications), you don't have to edit the Icon URL for all of them—simply create
substitute icons using the same names as the default application icon uses, and put
them in /PortalHomePage/Images/AppIcons/CustomUpdate. This is also suitable
for certain applications that do not allow you to specify a custom icon, such as the
Remote Desktop applications.

Customizing UAG's Look and Feel

[36]

One exception to the preceding scenario is when publishing RemoteApp
applications. UAG only has one generic icon for all RemoteApp applications, but
you would typically prefer to have separate icons for each. To do this, you have to
use a slightly different naming convention. UAG will automatically recognize any
one of the four conventions:

•	 <trunk-name>.<UAG-application-name>.<remoteapp-name>.png

•	 <trunk-name>.<remoteapp-name>.png

•	 <UAG-application-name>.<remoteapp-name>.png

•	 <remoteapp-name>.png

Customizing RemoteApp icons can be slightly more involved and an important step
in this process is that you remove and re-add the RemoteApp application each time
you change icons, followed by activation. Otherwise, UAG will fail to acknowledge
the change and the default icons will remain.

Changing texts
The most popular look-and-feel customization going is customizing the text on
the various pages. Almost all organizations need to change the generic This site
is intended for authorized users only disclaimer with something more specific,
and many also want to add custom info or instructions to that page. The various
error messages that UAG spits out are also frequently changed too. Again there's
nothing to prevent you from editing some of the ASP files directly to change the
text shown, but as already mentioned it's a much safer bet to stick to the road and
avoid supportability headaches.

The text we see is generated by ASP, but this text is actually called from a central
XML file, which makes customizing the various verbiages seen throughout a very
easy task. Texts that pertain to the admin pages are stored in <UAG Path>/Von/
InternalSite/Languages/en-US.xml, and texts that pertain to the portal itself
are under <UAG Path>/Von/PortalHomePage/Data/Languages/en-US.xml. The
folders actually contain other files for other languages, such as German, Spanish,
French, and more. When accessed from a system that is configured for another
language (in the browser's language settings), UAG detects the settings and applies
the appropriate language, if it has the corresponding files for it. If it doesn't, it will
default to English, but you can add as many other languages as you like.

Chapter 2

[37]

Adding a user interface language
Adding languages to the portal pages or in the drop-down list at login is another
common requirement in making the look and feel much more personal. To add a
language, clone one of the built-in files into the languages CustomUpdate folder,
and edit the strings in it with Notepad, or any other text editor of your choice.
Once done, rename it to reflect the language ID (for example, for Hebrew, you
would use he-IL). Lastly, copy the file languages.xml into CustomUpdate, and
add the language setting to it as you can see in the following screenshot. As a best
practice, we would also suggest you only include lines that include changes to the
language-specific file and remove everything else as this duplicates UAG's efforts
when language data is being parsed.

One thing you may notice from the preceding screenshot is the Character Data
(CDATA) section in some of the strings. CDATA is a special format that is used to
insert non-text data into the strings. Since the ASP code pulls the strings directly into
an HTML page, this means you can use this format to inject HTML code directly via
the language file, and this is fantastic...do you see why?

The reason why this is so cool is because, other than simple HTML tags, you can also
inject JavaScript in there. For example, you can add a very long terms of use text into
a DIV with the style set to hidden (Style="display:none;"), and put in a script to
unhide it when the user clicks on a button. Another creative idea would be to check
the formatting of the username before the user submits the form, to make sure it
matches your requirements (UPN versus domain\user),but you could even save the
user's username or repository selection in a cookie, to make the future logins easier.
The formatting for CDATA is as follows:

<![CDATA[<any HTML code you desire!>]]>

www.allitebooks.com

http://www.allitebooks.org

Customizing UAG's Look and Feel

[38]

This is just one of the many examples, but the fact is you would always put security
first, and way before usability or aesthetics. Having so much flexibility is great, but
we certainly wouldn't recommend using careless techniques to reduce the time and
effort it takes a user to login and authenticate.

This same principle can be used for any text string, anywhere. Keep in mind that
modern HTML supports things, such as the position:absolute style, which
allows you to place your elements almost anywhere on screen. For example, you
can customize string number 105 as follows:

<String id="105" _locID="105">User name:<![CDATA[<p style="posit
ion:absolute;top:215px;left:560px;">Please feed in&nbs
p;your username using the format user@domain</
p>]]></String>

The preceding code would result in the text appearing on the right, as shown in the
following screenshot:

This is not perfect because positioning is measured from the edge of the screen, so
people using IE with a different display-resolution or with the IE window floating
may see the text floating somewhere else, unless your CSS code is designed to
address this. It's also important to check a user's browser and add compatibility
code if required. These techniques require advanced knowledge of HTML, CSS,
and JavaScript, and are beyond the scope of this book.

Chapter 2

[39]

Naturally, you don't have to limit yourself to HTML and JavaScript. You can also
incorporate animated GIFs, or even Java, Flash, and Silverlight elements in your
custom pages. Keep in mind that UAG does not support the latter two, because it
cannot parse and HAT links in them. However, if they are used for visual effects
only, it should be perfectly fine. If properly designed, Java, Flash, and Silverlight
can be made to work seamlessly with UAG. For example, you can embed the UAG
HAT signatures in links that are inside such files, or use relative URLs with paths
that UAG will be able to recognize even without the HAT signature.

One thing to keep in mind is that if you put new files onto UAG to use as part of
your customization (such as Silverlight files), the default URL Set may not accept
them, and may throw a You have attempted to access a restricted URL error. To
work that out, simply add the appropriate URL Set rules to the Advanced Trunk
Configuration.

Hardcoding signatures into files can be a bad idea, as the HAT
signature may change if the backend server properties changes,
causing your files to be out of sync with UAG. This should be
taken into consideration, to avoid breaking things unexpectedly,
and as a result of some network engineer being too independent.

Another tip for text changing
An oft-missed option with UAG is Prompt users before retrieving information
from endpoint, which is available under the Endpoint Access Settings tab in the
Advanced Trunk Configuration screen. This page shows a notification for the user
to allow or disallow the endpoint components to collect information about his/her
computer. This option in itself is of less interest to us here, but it is one more page
that could be customized if absolutely necessary(/InternalSite/Inc/Install.
inc). And although we wouldn't encourage changing this file, a good example of its
use could be to add a disclaimer, forcing the user to consciously acknowledge the
company's terms of use before proceeding into the site.

Portal selection for clients
As we noted earlier, UAG comes with three types of portals. UAG has logic to detect
client and browser types based on the user agent string that each browser sends.
According to this, UAG decides which portal to send to the user, but it may get it
wrong. For example, UAG may not recognize a certain phone or tablet's agent, and
direct it to the wrong portal (a mobile portal on a 10-inch tablet would look weird,
and a PC portal on a phone would be quite impossible to use). If you run into this
sort of situation, you can customize UAG to recognize your devices differently.

Customizing UAG's Look and Feel

[40]

Before continuing, please bear in mind that changes in this area
do not extend UAG's supportability boundaries, which limits the
types of client platforms that are officially supported by Microsoft.
Technically speaking, you can access the UAG portal with almost
any browser in the world, even HyperLink (http://www.armory.
com/~spectre/cwi/hl/), but the results may be unpredictable,
and many application types may not work if connecting from a client
that UAG isn't geared up for.

Another thing to keep in mind is that these files are unique in the fact that they don't
support UAG's standard CustomUpdate scheme, which means you will have to edit
the original files. This also means that when installing updates to UAG, your additions
may get overwritten, so be sure to back up your edited files once you have stabilized
the server. After an update, you may be able to simply restore your version of the files,
but we would recommend you redo the customization (that is, open the new files and
insert the custom lines into them). This is, of course, because the updated files may
contain new and enhanced code that may be integral to its functionality.

To edit the detection, open the files <UAG Path>\von\PortalHomePage\Web.config
and <UAG Path>\von\InternalSite\Web.config (you should modify both), and
look for the section DetectionExpression. The syntax is pretty self-explanatory—the
list contains multiple Detection Expressions, which all relate to different client
platforms that UAG has awareness of. Then, the four portal types have their own
expressions, which refer to the other expressions.

We said earlier that there are three, but there are actually four
portals, with the fourth type being LimitedPC, which is shown
on non-Windows/IE computers.

For example, let's say you want to configure UAG to detect the Samsung Galaxy tablet,
and treat it as a phone, rather than a PC. The user-agent string for the galaxy is:

Mozilla/5.0 (Linux; U; Android 2.2; en-us; SGH-I987 Build/
FROYO) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile
Safari/533.1

Chapter 2

[41]

There are actually several variations of the Galaxy, so
your user agent string may be slightly different than
the one listed above.

All you have to do is edit the expression PremiumMobile and add a command to
accept the Galaxy, based on its model number of SGH-I987, which is listed in the
user-agent string. The built-in expression for the premium mobile portal looks
for various strings already, such as iPhone and Android, so just append OR
UserAgent Contains "SGH-I987" at the end of the expression as shown in the
following screenshot:

There is more than one way to change or add to UAG's detection mechanism—you
can also create a new expression to detect a certain device, and give it an ID. Then
change one of the other expressions to accept the new ID. It may not be easy, so
the best advice we can give here is to analyze the user agent carefully, as well as
the detection expressions, so you can know for sure how exactly UAG arrives at its
decision when distinguishing device types.

Summary
In this chapter, we discovered the world of visual customizations, and the various
ways they can be applied. We also discussed creative ways to get UAG to look the
way you need it to, and explored which are the best ways to achieve it. In the next
chapter, we will dive into endpoint detection, and how to customize it to provide
the best security for your organization.

Customizing Endpoint
Detection and Policies

Endpoint detection has always been one of UAG's key differentiators against
competing products. The ability to check the parameters and configuration of
the endpoint is very powerful, and when done correctly, can provide a high level
of protection.

Although the default detection mechanism collects over 300 parameters from
the endoint, its true strength lies in its customizability. By writing your own
VBScript-based detection routines, you can achieve even more powerful and
secure detection. This chapter will discuss these techniques.

How does endpoint detection work?
First and foremost, endpoint detection relies on the endpoint client components.
Some companies disable these, not realizing what they are missing, but you haven't,
right? The detection process itself is initiated by the ASP page InstallAndDetect.
asp, which fires up the detection module on the client and sends over the core
detection logic (<UAG Path>\von\InternalSite\Detection.vbs) via a special
JavaScript (<UAG Path>\von\InternalSite\scripts\detection.js). The
detection VBScript is executed on the client itself, collects the various parameters,
and then sends them back to the server as value sets.

Customizing Endpoint Detection and Policies

[44]

As you can see in the following screenshot, this is the function that checks if
Norton 360 (an Antivirus product) is installed. It checks this by using the function
Whale. FileSystem.Exist, which checks for the existence of a file on the endpoint's
hard drive.

If the file is found, the result value AV_Norton360_Installed is set to true, a
Boolean value. This is all done before the trunk's login page is called, so by the time
the user needs to log in, his endpoint's parameters are already known, and access
controls can be enforced. If the trunk's access policy was configured so that the
parameters delivered from this endpoint aren't a match, the user will be redirected
to the Access denied error page instead of the login page. The endpoint policies can
be applied to applications as well, though it's important to keep in mind that the
endpoint parameters are not re-evaluated—just the policy.

The preceding function is one of hundreds that are run as part of the default
detection script, which is over 9,000 lines long. In reality, this function is rarely
used anymore, because modern operating systems (Windows XP SP2, Vista, and
Windows 7) have a built-in mechanism that already monitors the status of local
security software. This mechanism is called Security Center in XP and Vista, and
Action Center in Windows 7. It persistently checks a system's health for various
things, such as antivirus, firewall, spyware protection, Windows updates, and
more, and populates two particular WMI (Windows Management Infrastructure)
namespaces with the results. UAG's detection script uses a COM object called
Whale.SecurityCenter, which can retrieve the Security Center/Action Center
status directly from WMI, and the detection results include these, as shown in the
following screenshots:

Chapter 3

[45]

The default detection script is a great source of information, and a fantastic way
to observe and learn how UAG detects the various parameters. The object model
used is undocumented, so sometimes observation is the only way to learn it. One
important note, though, is that the default script is digitally signed (you can see
the signature in the last few hundred lines of the script) to prevent it from being
maliciously changed. This means that you cannot edit the script yourself, and any
additional detection has to be done with a custom script.

Things you can do with custom
detection scripts
The detection script is just a regular VBScript which can do almost everything
a regular VBScript can do, including the regular If/Then, Do/Loop, For/Next,
Subroutines, functions, and so on. It can only do almost everything because it
still runs in the context of the browser, so this poses some limitations. For security
purposes, the browser limits access to some local resources, so you won't be able to
use objects, such as FileSystemObject. We can't list all the allowed or disallowed
objects here, but when in doubt, simply experiment and see for yourself.

The detection script uses the Whale COM object, named after the original company
that developed e-Gap, a product that preceded UAG by a few generations. This
object has multiple methods, and yields an incredible amount of power. The full list
of methods and collections is long, so we will focus on the more useful items. You
can learn about the other items by reading the default detection script.

•	 Check the version of the Endpoint Session Cleanup component with the
Whale.AttachmentWiperVersion method.

•	 Check the version of the client component detection component with the
Whale.DetectorVersion method.

Customizing Endpoint Detection and Policies

[46]

•	 Check the value of the UAG hostname (the URL of the portal) with the
Whale.ExternalHost method. The method Whale.ExternalHostname
is similar, but returns the full URL including the protocol as well (HTTP
or HTTPS).

•	 Check a file's modification date with the Whale.FileSystem.
DateLastModified method.

•	 Check for the existence of a file on an endpoint drive with the Whale.
FileSystem.Exist method.

•	 Check the version of a file on an endpoint drive with the Whale.
FileSystem.ProductVersion method.

•	 Check the current running process list for an executable with the Whale.
Processes.Filter method.

•	 Read a registry key with the Whale.Registry.RegRead method.
•	 Enumerate objects tracked by the Windows Security Center (Action Center

in Windows 7) with the Whale.SecurityCenter collection.
•	 Enable or disable sending debugging information to a client trace using

the Whale.ShowDebugMessages method.
•	 Check the version of the SSL-VPN Tunneling component with the Whale.

SSLVPNVersion method.
•	 Retrieve environment variables using the Whale.System.

ExpandEnvironmentStr method.
•	 Check if a DLL is loaded on the client using the Whale.System.

IsModuleLoaded method.
•	 Check the local user's access level (guest, user, power user, or administrator)

with the Whale.System.LoggedOnUserPrivileges method.
•	 Check the computer's DNS Suffix using the Whale.System.

MachineDNSSuffix method.
•	 Check the computer's domain membership with the Whale.System.

MachineDomain method
•	 Check the computer's Service Pack level with the Whale.

WindowsServicePackVersion method.

Chapter 3

[47]

•	 Check for Windows components, such as Terminal Services with the Whale.
WindowsSoftware method.

•	 Check the version of the operating system with the Whale.WindowsVersion
method.

Some of these methods are pretty straightforward. For example, Whale.
AttachmentWiperVersion simply returns a text string with the version of the
component, such as "4, 0, 1752, 10025" (meaning that this endpoint has the version
that ships with UAG SP1 Rollup 2).

The component version number in the preceding
paragraph is mentioned in quotes, so as to avoid the
confusion that they are four separate output strings.

Other methods are more complicated. For example, Whale.Processes.Filter
requires a process name, and returns a collection, because a certain process may
be running more than once. You would typically check the number of items in the
collection and if it is more than 0, conclude that the process is running. The following
is a code sample:

Set colProcessesRunning = Whale.Processes.Filter("explorer.exe")
If colProcessesRunning.Count > 1 then
 Msgbox "Please close all other browser windows"
End if

The methods Whale.WindowsServicePackVersion and Whale.WindowsSoftware
are probably the most complicated, because they return a decimal number which
means nothing to the naked eye. When the proper Boolean operation is performed
on the number, the results can provide us what we need to know. For example:

intWinVer = Whale.WindowsVersion
If CBool(intWinVer And wv64BitPlatform) = true then
 Msgbox "The remote access portal has some limitations when used
with your version of Windows"

End if

Customizing Endpoint Detection and Policies

[48]

The preceding code uses the predefined constant wv64BitPlatform to determine
if the OS is 64 bit. There are many additional constants, which you can see in the
default detection script, starting at line 8987, as shown in the following screenshot:

Creating and placing a custom
detection script
Like the other customizations, creating a custom detection script requires that you
place the script in the CustomUpdate folder under <UAG Path>/Von/InternalSite.
However, there are additional steps to make it work which are explained as follows:

1.	 Create your custom script file, and place it in <UAG Path>/Von/
InternalSite/CustomUpdate.

2.	 Create a new text file, using the following format:
<%g_scriptList("/InternalSite/CustomUpdate/<YourDetectionScript.
vbs>") = true%>

3.	 Save the text file in <UAG Path>\von\InternalSite\inc\CustomUpdate
using the following naming convention:

<TrunkName><https:1/http:0>Detect.inc

This follows the standard naming convention for custom files. If your trunk
is named RemoteAccess, and it is an HTTPS trunk, the file would be named
RemoteAccess1Detect.inc.

Chapter 3

[49]

The configuration takes effect immediately, even if you do not perform configuration
activation, but it is recommended to activate. Without activation, the file is not pushed
into the TMG Storage, and could disappear down the road. If you are using an array,
activation is critical, as it triggers a replication of the file to the other array members.

Custom detection script tips
When writing your own script, you can use any standard VBScript command and
syntax, including calling subroutines and functions. Programming best practices,
such as properly naming variables and inserting comments are practices that are
always recommended. Do keep in mind that you are limited in your ability to use
certain COM objects and access certain locations on the client computer, due to
security limitations. When creating your own results, do not forget that those will
need to be used with UAG's policy editor, so the names cannot contain spaces, and
you should avoid special characters as well, except the underscore character. Be sure
to study the list of results produced by the default script, so as not to create a conflict
in values (or, of course, if you do want to overwrite the default values with yours).

Another thing that is pertinent is that UAG will process both the default detection
script and your own, so your script does not need to duplicate anything. Finally,
remember that with future UAG updates, the default script may change, so be sure
to test your script after each update, and also inspect the default script after the
update for changes.

Integrating custom detection with
endpoint policies
Naturally, just having a custom script is not going to accomplish anything.
It's the endpoint policy integration that's the point of all of this. However, one
must understand how endpoint policies work to take full advantage of this. We
recommend you read Chapter 8, Endpoint Policies, from Packt Publishing's Microsoft
Forefront UAG 2010 Administrator's Handbook, which discusses endpoint policies, to
get the basics of creating and assigning policies.

As we illustrated earlier, the way the detection script sends information to UAG is
with the results function. Each detection function makes a decision, and runs a
command similar to the following:

Results("Screen_Saver_Running") = True

Customizing Endpoint Detection and Policies

[50]

So, throughout running the entire script, several hundreds of these are run. Some
return Boolean values of true or false, and other deliver strings. All of these are
collected by UAG for that session, and so the endpoint policy evaluation engine
has access to them. This is not enough, though. In addition to creating the results in
the detection script, UAG also requires that you define your new value in a custom
Policy Template file. UAG comes with a built-in Policy Template file located under
\von\conf\PolicyTemplate.xml, and you need to create a custom file (\von\conf
\CustomUpdate\PolicyTemplate.xml) with XML data matching the result value or
values you want to use. The following is the syntax for such a file:

<Policies>
 <Policy>
 <Name>Screen Saver Active</Name>
 <ID>Screen_Saver_Running</ID>
 <Type>0</Type>
 <Value>false</Value>
 <Description></Description>
 <Section>Variables\System</Section>
 </Policy>
</Policies>

The important items here are ID and Value. The ID is the name of the results item
you are creating, so it needs to match whatever value you create in the detection
script, as the ID here matches the Screen_Saver_Running results in the preceding
example. The Value item is the default value that needs to match the type of value
your script will generate, and referenced to in the policy itself. If the script returns a
Boolean true or false result, then the value in the policy template should be set to
true or false, as in our example. A numeric could be set to 0, and a textual value
could be set to unknown:

<Policies>
 <Policy>
 <Name>Computer Name</Name>
 <ID>Computer_Name</ID>
 <Type>0</Type>
 <Value>unknown</Value>
 <Description></Description>
 <Section>Variables\Network\Domains</Section>
 </Policy>
</Policies>

If you have a policy that references a value that's incorrectly set in the policy template
(for example, your policy is Screen_Saver_Running=true and the policy element's
default value is the text Running), UAG will throw out an error during activation,
saying Syntax error in policy expression: source line could not be located.

Chapter 3

[51]

When you create an endpoint policy on UAG, the easiest way is to use the GUI-
based editor, which allows you to select your items visually. However, if your
custom detection script creates your own result values, then the GUI-based editor
won't provide you with an option to select them, and you will have to edit the policy
manually using the Create as script option.

The procedure for this is simple and is as follows:

1.	 Go into the UAG endpoint policy editor, either from the Endpoint Policy
page of an application, or from the Trunk Policy page of the advanced
trunk configuration.

2.	 Click on Add Policy.
3.	 Give a name to your new policy, and optionally, an explanation (which will

be shown to users who fail to meet it, so better make it really easy to read).
4.	 Click on Manage Windows Policies.
5.	 Click on Add Policy, and give your policy a name.
6.	 Click Create as script, and confirm the warning message.
7.	 In the blank space on the right, clear the contents and type in your custom

policy response value(s).
8.	 Click OK and Close.
9.	 If necessary, repeat steps 4 to 8 for Mac and Linux policies. Alternatively,

select a predefined policy to assign against each respective platform.
10.	 Select a policy for the other container (which applies to non-PC platforms,

such as mobile phones).
11.	 Click OK and Close.
12.	 Configure your applications and/or trunks to use the new policy from

the appropriate policy selection drop-down.

It is possible to add your new policy elements to UAG so
they become available in the GUI policy editor. This requires
creating a custom PolicyDefinitions.xml file, but we
will not cover this procedure here. A sample of such an action
is given here, if you'd like to explore this on your own:
http://support.microsoft.com/kb/955107

Customizing Endpoint Detection and Policies

[52]

When typing your custom policy, keep in mind that the policy logic is Boolean,
and that the entire statement is evaluated to conclude a result of either true or
false. If your policy is only looking for one thing, then it could be really simple,
just type the name of your custom results value. If that value is true, the policy
will evaluate to true as well, and allow access to the application or trunk. If your
policy needs to handle more parameters, you can use standard Boolean AND, OR, NOT,
and parenthesis to achieve your results. Naturally, this can be hard to design even
for seasoned programmers, but a good way to experiment without having to do
countless activations and logins/logouts is to create a standalone VBS with the same
formatting, and run it manually. When doing that, simply create similar variables to
the results, and populate them with the values you expect. Then, populate another
variable with the policy text, and output that variable with the MSGBOX command.
For example:

'Setting Detected Params
ScreenSaveActive = 1
ScreenSaverIsSecure = 1
ScreenSaveTimeOut = 30
IsCorpMachine = 0

TestResult = (IsCorpMachine =1 or (ScreenSaverActive=1 _
and ScreenSaverIsSecure=1 and ScreenSaverTimeOut>0 and _
ScreenSaverTimeOut<5)

wscript.echo TestResult

Can you spot the bug in the preceding expression? If not, writing such a VBS file is
exactly what you need!

Processing of access policies is different than upload and download
policies. If this difference is unfamiliar to you, we suggest reading
the topic in Chapter 8, Endpoint Policies, from Packt Publishing's
Microsoft Forefront UAG 2010 Administrator's Handbook.

One question regarding custom policies that comes up a lot is how to check if a
certain registry value exists, or if it is a string or a number. The method UAG uses
to read the registry does not have a way to check this, so to do so, you will need
to use VBScript's error handling. UAG's default detection script even has two
built-in functions for this (in lines 118 to 156). The concept is based on setting the
script process to On Error Resume Next so that if the registry key doesn't exist,
the script won't error-out. Then, the script performs various operations on the
result to analyze it and return a result that we can use.

Chapter 3

[53]

Troubleshooting and debugging
detection scripts
Even though you can test changes you make to the detection script as you develop
it even without an activation (except with array configurations, as noted earlier), you
do need to close the browser on the client and re-open it to test again. This type of
trial-and-error can be frustrating, but there are other things you can do. The easiest
way to keep an eye on things during development is by the use of the MSGBOX
command to output harvested data. Simply embedding these into your code will
allow you to observe the response of each function as you step through the script, plus
the information that was collected. For example, consider the following screenshot:

Using so many of those may seem like over-kill, but it's exactly the kind of methodology
that will help you isolate those little annoying typos that could take hours to find
otherwise. Did you notice the bug above? Line 4 names the variable incorrectly
(stsVuzepath instead of strVuzepath), and line 6 would have exposed it.

Naturally, you cannot go into production with the message boxes in place, but
when you do remove them and go into production, you may run into issues you
didn't anticipate. For example, your detection script may work great on most
platforms, but what if users report a problem with a specific platform you didn't
test? For this sort of situation, we have DebugEcho.

The DebugEcho statement is simple:

Whale.DebugEcho "Detection script: Started doing this at " & now

Customizing Endpoint Detection and Policies

[54]

This tells the script to send this information into the client trace. These are not shown
to the client in any way, and to see them, you will need to run a client trace. You will
also need to add the following line of code to the script:

whale.ShowDebugMessages = true

Running a client trace is similar to how we run a server trace. The trace tool is located
at c:\Program Files\Microsoft Forefront UAG\Endpoint Components\3.1.0\,
and you need to launch trace.hta. If the person launching the trace is not a local
administrator, open an administrator command prompt, navigate to the trace folder
mentioned just now, and run the file from it.

Once the trace is done, decode it using the TMF files that are publicly
available at http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=15651 and inspect it for your messages. In the preceding
example, we added the keyword Detection Script:, which makes it easier to
locate your messages in the big pile of data that you would find in a typical trace.

Endpoint detection in the real world
The purpose of endpoint detection is to allow us to control access, and ultimately
deny computers that don't meet our security policy criteria. If the requirements
are simply to check for the existence of antivirus software, or a specific version of
Windows, then there's really no need for customization. A custom detection script
comes in handy when we want to validate something beyond that. The requirement
that comes up most often is the need to verify that the computer is a corporate asset,
as opposed to some random computer the user happens to be using.

The default endpoint detection allows us to check the computer's domain, and
match it against the one we specify. However, this is clearly not very secure, as the
comparison is textual and anyone can spoof this rather easily.

With a custom detection, you could implement other ways. For example, you could
plant a specific file somewhere on the hard drive of every corporate computer,
and then use the custom detection to look for it, and validate its properties (file
version, date last modified, and so on). You could also inspect another domain-
related variable, such as LogonServer, or configure the computer with a specific
environment variable that's unique to your domain. You could also place a specific
program that is unique to your organization on every computer, and check if that
process is running as a condition. A little more secure way would be to validate
that the domain SID in the registry of the client (it's used throughout the registry),
matches that of the computer object in directory services.

Chapter 3

[55]

Ultimately, though, one must keep in mind that one of the basic concepts of security
is that once a computer is out of your hands, physically it's fair game. A user who
is savvy enough can configure a client with virtually any setting that matches a real
corporate computer (not to mention other parameters that the default endpoint
detection script checks). You can make it harder by checking multiple values, but none
can be really hack-proof. An attacker who is clever enough could probably decompile
the client components and hack his own version that does whatever he wants.

Is there a real solution? The answer is yes—certificates. UAG's certified endpoints
functionality is the ultimate security mechanism. This entails issuing certificates to
users, and configuring UAG to trust the Certificate Authority (CA) that issued them.
A certificate is much harder to spoof, of course, but do make sure you configure
them not to be exportable. Otherwise, a user could export the certificate, and put it
on another computer that you never intended to have access.

Summary
In this chapter, we looked at how endpoint detection works, and how you can take
advantage of it to provide better security for a corporate environment. We went
through the various methods that you can use as part of a custom detection script,
and explored some ideas for making it work to your advantage.

In the next chapter, we will learn how to use UAG's Application Wrapper and SRA
engine to manipulate content on-the-fly, to make applications behave differently
while also solving problems.

The Application
Wrapper and SRA

One of UAG's key functionalities is its ability to perform on-the-fly manipulation of
data that it relays between a client and backend applications servers. So consider this
as something along the lines of a big search-and-replace engine. However, what does
this mean in practice? Well, technically speaking, this could serve many different
purposes and some of those we'll touch on in this chapter, but in general publishing
terms, this functionality actually plays a core role in UAG's operation. The bottom
line is that if UAG can parse it, then there's a very good chance of changing it. And
to put that into context, this is fundamentally what provides the application-specific
awareness that is required to make UAG's entire concept possible. Customizing
this process can then help extend this further by allowing you to apply your own
optimizations and functionality to individual applications, and in some circumstances,
even help solve challengingly complex application publishing issues. In this chapter,
we will explore the two content manipulation engines that UAG offers, and how you
can take advantage of them. The topics covered here are as follows:

•	 What content alteration can do for you
•	 The Application Wrapper and SRA configuration files
•	 How the AppWrap and SRA engines work
•	 Having your own way
•	 AppWrap syntax
•	 More fun with AppWrap
•	 SRA syntax

The Application Wrapper and SRA

[58]

What content alteration can do for you
Altering content is critical for the HAT process that we discussed in the Chapter 1,
Customization Building Blocks, and for a lot of applications, it is equally important
to maintain basic functionality alone. For example, when UAG publishes Citrix,
altering some of the page content is necessary because Citrix was never designed to
be published in this scenario. Without the specific alterations, the user would not
even be able to launch the Citrix web page, and instead, the browser would go into
an error loop.

In other circumstances, the content alteration makes the user experience more
savory. For example, when OWA is published through UAG, the Sign out button
that OWA usually displays is removed by UAG, with the intention that the user
would instead be forced to use the portal frame's Log Off button, located on the
UAG toolbar as shown in the following screenshot:

UAG has two mechanisms for manipulating content. One is called The Application
Wrapper (AppWrap for short) and the other is Secure Remote Access (SRA). As
with most customizations, these can both be configured through their respective
files, but UAG comes preconfigured out of the box with default alteration code that
gets applied automatically in certain circumstances and scenarios.

Chapter 4

[59]

HAT is probably the best example of this default logic in action, and in this scenario
the engines know of all the HTML tags that UAG should look for. With this, it has the
ability to intercept HTML elements containing links, so that it can sign the URLs found
in the response back to the client. For instance, UAG is configured to look for the IMG
HTML tag, which is used to embed images in HTML pages, and inside that tag, look
for the SRC attribute, which is where the link to the image file would be. When that link
is found, UAG will rewrite it to include the HAT signature.

For example, before HAT is applied the code may look similar to the following line
of code:

Whereas after HAT is applied, it will look more as shown in the following code:

<img src="https://remote.createhive.com/uniquesig932814f7f3e
1197dbf8e3105690523eaedf4b8fa30977329b63b23e65d8cbc8868fb5af9e91
fd3a1c405dc86ecaed7a1/uniquesig0/CreateHiveLogo.gif" alt="
CreateHive Logo" />

In addition, the default configuration includes a list of application-specific
changes. We already mentioned Citrix, which requires special cookie-handling
to work properly when published via UAG. SharePoint is another challenging
application, and it too requires some special changes, along with many other
types of applications. Quite often, you'll discover that a published application
isn't functioning as expected, and sometimes, applying custom configurations
of this sort can be the most appropriate solution.

The Application Wrapper and SRA
configuration files
The master Application Wrapper configuration file is located at <UAG Path>\von\
conf\WizardDefaults\AppWrapTemplates, and this folder has two files:

•	 HTTP_WhlFiltAppWrap_ForPortal.xml

•	 HTTPS_WhlFiltAppWrap_ForPortal.xml

When you create and activate a trunk, UAG builds its configuration with the
contents of either of these two files, depending on the trunk type, and the resulting
file is then placed in the trunk's configuration folder:

<UAG Path>\von\conf\websites\<Trunk name>\conf

The Application Wrapper and SRA

[60]

As part of this, the file is then also renamed to be either WhlFiltAppWrap_HTTP.xml,
or...you guessed it...WhlFiltAppWrap_HTTPS.xml.

The master SRA configuration file is located at <UAG Path>\von\conf\SRATemplates,
and this folder contains two files:

•	 WhlFiltSecureRemote_HTTP.xml

•	 WhlFiltSecureRemote_HTTPS.xml

As with the AppWrap, UAG will again populate a new trunk's configurations
with either of these two, depending on the trunk type. Only this time, the
per-trunk file retains its original name of WhlFiltSecureRemote_HTTP.xml or
WhlFiltSecureRemote_HTTPS.xml. The propagation process happens during
activation, which also means that if you attempt to edit the per-trunk file directly,
your changes will be overwritten upon the next activation.

Within those files, you will find many configuration groups pertaining to different
applications types. In the following screenshot, you can see a piece of the master
AppWrap file on the left, and SRA on the right:

How the AppWrap and SRA engines work
It's a good exercise to explore these files and to understand what they do; not only
as a way of learning and getting better acquainted with the formatting, but also as a
way of being able to explain behavior that you didn't understand, or were not aware
of. For example, at the beginning of the chapter, we mentioned OWA and how UAG
removes the default Sign out button from it so that the user will use UAG's Log Off
button. This is achieved with the following function:

Chapter 4

[61]

This may not make much sense in its current form, because the text is encoded using
Base64, but in principal you should able to see how this function is used to search for
some text, and replace it with another. The thing to watch out for here is that XML
files are text-based and some of the special characters used to make up the structure
of these files, are also commonly found in HTML and Java. This means that whatever
you define inside your tags as values, will be treated literally. So in other words,
certain characters are XML control characters and cannot be used as values within
tags, as they are then reserved or also known as illegal characters. Base64 encoding
is used extensively in XML files and mainly to work around the characteristics
of the XML structure by converting any text string to one that is represented by
alphanumeric characters only. This way, placing a < character inside an element
will not cause the XML parser to interpret this as the start of a new element. A non-
encoded example would look similar to the following:

<SAR>
 <SEARCH><body><SEARCH>
 <REPLACE><body><div id="container"><REPLACE>
</SAR>

So as you'll probably agree, it makes complete sense to encode our search and
replace strings accordingly:

<SAR>
 <SEARCH encoding="base64">PGJvZHk+<SEARCH>
 <REPLACE encoding="base64">PGJvZHk+PGRpdiBpZD2UY29udGFpbmVylD4=<REP
LACE>
</SAR>

The Application Wrapper and SRA

[62]

It's very important that you don't overlook this area as the use of so-called illegal
characters will have serious implications on the portal's functionality and could cause
the portal to stop working until any discrepancies are resolved. Converting the actual
content is possible by using any of the many utilities that encode and decode Base64
strings. UAG itself comes with its very own, in the form of a text editor that has To
64 and From 64 buttons. You can find it in <UAG Path>\Common\Bin\editor.exe.
Another option is to use an online tool, such as http://base64-encoder-online.
waraxe.us. The following screenshot shows the same function which is decoded:

We have highlighted the stinger for you. The function instructs UAG to look for
the text <div id="divLogOff", which is a part of the page where the Log Off
button is, and adds the string "style="display:none" to it, making it invisible.
The code actually contains two similar functions, one for OWA Basic, and one
for OWA Premium, which have slightly different HTML and thus require
separate fixes. You might also have noticed the line that says conditional_
variable="UsePortalFrame". This instructs UAG to perform search-and-replace
only if the application is displayed within the UAG portal frame. If, on the other
hand, the application is opened in a new window, UAG will not hide the Sign
out button because without the portal frame we still need to log off using OWAs
original button.

Having your own way
The point of this chapter, of course, is to have your own way with AppWrap and
SRA. This could be handy in several circumstances. One is when the default SRA
or AppWrap does something you want it to stop doing. Another is when you want
to add functionality, such as changing an application's appearance or fixing some
problem with an application. To this end, you can create your own SRA or AppWrap
files, and as soon as you put them in the right place, UAG will do the rest to make
sure all parsed data is processed and handled by each instruction.

http://base64-encoder-online.waraxe.us

Chapter 4

[63]

Two versions of the SRA file exist, one for HTTP trunks and the other for HTTPS—
WhlFiltSecureRemote_HTTP.xml and WhlFiltSecureRemote_HTTPS.xml—
depending on whether the trunk is an HTTP trunk or an HTTPS trunk. This is
the configuration file for SRA and can be located in the <UAG Path>\von\conf\
SRATemplates folder.

You will need to copy the file(s) into your trunk's custom update folder as follows:

<UAG Path>\von\conf\websites\<your trunk>\conf\CustomUpdate

This folder may need to be created manually, if it does not already exist but once
done you can go ahead and make your changes.

Then, the configuration files for AppWrap have purpose-specific names and can be
found in the location: <UAG Path>\von\conf\WizardDefaults\AppWrapTemplates.

Again, you will need to copy either of these files depending on the trunk type into
the same custom update folder as done previously, and then rename the file to
WhlFiltAppWrap_HTTP.xml or WhlFiltAppWrap_HTTP.xml, respectively.

<UAG Path>\von\conf\websites\<your trunk>\conf\CustomUpdate

Do not be tempted to edit these files directly. These files are built from another
source, so they may get overwritten and any changes you make may be lost. The
server won't explode if you edit the default files, but such an edit will be overwritten
on your next configuration-activation. Also, such changes are unsupported.

Keep in mind though, that UAG processes both the default files plus your custom
files, so you need to make sure you don't create a conflict. In some circumstances,
however, you might want to do the opposite, and actually create a conflict. For
example, if you would like to remove the functionality that hides the Sign out button
in OWA, you need to create a file to conflict with the default behavior. In such a
situation, the functions in your custom file will take priority over the default ones,
and if you adjust them properly, will do your bidding.

One more thing to keep in mind is that the UAG product team may change the
default files through future updates to the product. This means that after an update,
a conflict with your file might arise, so it's important to examine the default SRA and
AppWrap files after each update. Also, be sure to test all of your own applications,
along with any other customizations, to verify that the functionality you added
hasn't been damaged.

The Application Wrapper and SRA

[64]

AppWrap syntax
The syntax of the SRA and AppWrap configuration files is based on standard
XML formatting, where tags are enclosed in triangular brackets. Each element
has an opening and closing tag, and within the tags, there could be configuration
information. Some tags have internal syntax that includes additional tag structures.

The most commonly used function in AppWrap is the DATA_CHANGE function,
which is typically keyed to a specific application type, a specific URL, and has
search and replace strings. If a request for a page matches the URL pattern defined
in a function, and that URL matches the application type, UAG will know to
perform a search-and-replace on the content of the page. The following screenshot
is an example of such a function:

The function is enclosed in the full XML tags of an AppWrap file.
You would use this structure when creating your own custom file,
but if the file needs to contain multiple functions, you won't need
to repeat the entire structure—we will discuss this shortly.

The preceding sample application is of the type SharePoint14AAM, which is
the built-in application type for the SharePoint 2010 publishing template. Some
application templates have a preconfigured and fixed application type. Others,
such as the Other Web Application, allow you to type in a custom type. If you
typed your own, then you would already know it (and it also appears on the list
of applications on the trunk's main configuration page). If you need to know the
type for one of the built-in apps, you will need to find the ID manually.

Chapter 4

[65]

To do this, open the application's properties from the trunk's application list and
note the Applications name. Now, open the application template configuration file
<UAG Path>\von\Conf\WizardDefaults\WizardDefaultParam.ini with a text
editor of your choice, and use the FIND function to locate the application name. Be
extra careful when doing this, as any changes to this core file can very easily break
UAG's application publishing wizard. When you have found it, look above it for the
application type in square brackets:

The URL in the example is SignOut\.aspx. The backslash is not an error—it is
standard RegEx slashing, which tells UAG's engine to treat the dot as a literal. If
you are not familiar with RegEx, we suggest you review the RegEx Appendix in
the Packt Publishing's Microsoft Forefront UAG 2010 Administrator's Handbook, or
read the following blog post:

http://blogs.technet.com/b/ben/archive/2011/09/07/ain-t-nuthin-
regular-about-regular-expression.aspx.

When creating your own AppWrap, keep in mind that the URL string that UAG sees
includes the URL parameters, as well as the path, so defining the URL can be tricky.
You can use various RegEx nonliterals to define a URL pattern that will modify all
the URLs you wanted to modify, but you should also strive to specify the URL as
accurately as possible. If your pattern is too broad, you may accidentally modify the
files you didn't intend to, so be sure to carefully study your application's URL patterns.

A common mistake is trying to take the easy way out by specifying
.* as the URL. The problem with this is that it may conflict with
finer-grained URL definitions that the default AppWrap file may
have, and the cause default functionality to stop working. This is
especially hazardous for applications that are highly dependent on
AppWrap, such as SharePoint.

The Application Wrapper and SRA

[66]

The search-and-replace strings shown in the preceding example are in regular text,
but as you may remember from earlier in the chapter, we often encode the text
within these tags as Base64 so as to avoid XML syntax violations. This example
is very simplistic and does not require encoding, but any text that is not strictly
alphanumeric should be encoded, unless you are confident that all the characters
used won't cause a parser exception. As a precautionary measure, you should
always follow up XML file changes by confirming that the file successfully opens
in a browser. When text in a search-and-replace string is encoded, an additional
attribute needs to be added into the XML tag:

<Search encoding="base64">VEVYVA==</Search>

Note that the <replace> tag may be empty, which will simply remove the text
that you specified in the <search> tag.

It is very important to remember that the search-and-replace function is a
double-edged sword. When applied, this process will perform the replace
operation blindly, as long as the string or RegEx pattern configured in the
SEARCH tag is matched against the HTTP data. This may inadvertently make
changes to another section of the page or even to another page altogether,
causing undesired behavior. In certain cases, it may even corrupt data, if the
change applies to code that is being sent back to the server (such as SQL update
queries). One must plan a change very carefully, and make sure it will be applied
only to what is relevant by limiting it to the appropriate application and URL,
and if possible, using detailed SEARCH parameters. Extensive testing of the change
is also highly recommended, so that you don't find out a week after rollout into
production that it causes some other page to mess up.

If you do want to include multiple functions, then the basic rules are as follows:

•	 A Manipulation section can include one or more data change functions
•	 A Data Change function can include one or more URL functions
•	 A SAR section can include one or more sets of search-and-replace sets

In other words, if you want to perform multiple search and replaces within a single
URL, you can just add more <search> and <replace> sets into the same function,
but if you want a separate search and replace for a separate URL, you need to create
more than one data change structure inside a Manipulation section.

Chapter 4

[67]

More fun with AppWrap
AppWrap has several other options that are useful. For example, it can do a Header
Change, which includes editing an existing header, deleting a header, or even
adding one. A good example of a header change is to remove or change the value
of a cookie to something else, or another is to alter the original value of the referrer
header sent by a client. The available options are extensive, so if you want to learn
about this in more detail, have a look at the Advanced User Guide for IAG. While this
was written for IAG, the syntax for UAG is almost identical in most cases. The guide
can be found at the following URL:

http://download.microsoft.com/download/2/F/9/2F9D9113-B84B-4838-98A0-
A3AEFA6608E2/IAG_AdvancedUserGuide.pdf.

Another thing AppWrap can do is change content based on dynamic variables.
These are special variables that UAG updates automatically, and when included in
the AppWrap code, they are replaced with relevant strings. UAG comes with the
following variables:

•	 WhlSessionTimeout

•	 WhlLogoffURL

•	 WhlScheduledLogoffTimer

•	 WhlSiteName

•	 WhlSecure

WhlSecure, for example, is populated with 0 or 1, based on the type of trunk in use
(HTTP or HTTPS, respectively). Then we have WhlLogoffURL, which gets populated
with the URL to UAG's standard Logoff page. This is useful because you can use
AppWrap to plant that link into a button on the page of your own application.
Another example is the WhlOwnURL variable, that can be used to add UAG's site
prefix, such as /InternalSite to sign any potentially missed links. The following is
a code sample:

http://download.microsoft.com/download/2/F/9/2F9D9113-B84B-4838-98A0-A3AEFA6608E2/IAG_AdvancedUserGuide.pdf
http://download.microsoft.com/download/2/F/9/2F9D9113-B84B-4838-98A0-A3AEFA6608E2/IAG_AdvancedUserGuide.pdf
http://download.microsoft.com/download/2/F/9/2F9D9113-B84B-4838-98A0-A3AEFA6608E2/IAG_AdvancedUserGuide.pdf

The Application Wrapper and SRA

[68]

The preceding screenshot is a part of the default AppWrap for OWA, which inserts
a call to UAG's cache cleanup JavaScript file.

WhlOwnURLis inserted as is, with no special tags. When
the AppWrap is parsed, UAG will do search and replace,
and put its own URL before the string scripts.

SRA syntax
The SRA engine is very similar to AppWrap, but it does offer a few additional
strengths. The primary difference is that SRA is the engine that performs the HAT
signing of URLs for every piece of content UAG goes through. It can do regular
search and replace just like AppWrap, but its real power is in our ability to teach
UAG to recognize and sign HTML code that it wasn't initially designed to.

The need for this sort of situation would arise if some application generates
HTML code that UAG cannot recognize, leading to HAT signing failure. There are
additional mechanisms that help UAG deal with that, but if all fails, you may need to
address this manually. Dealing with missed links can be done by locating the missed
links, and adding a custom AppWrap or SRA file that will perform the necessary
search and sign of these rogue links A better way would be to configure UAG to
correctly recognize the code for the link so that it can sign it automatically, rather
than by us having to fix the links one-by-one. So far so good? Then let's look at the
following sections that dig a little deeper into how the SRA engine actually works.

The way the SRA engine works is by parsing the code of a page it has to deliver,
and looking for various key tags and attributes. For example, when looking at the
following code, SRA identifies this as an input tag, and is configured to look for the
SRC attribute and sign it:

<input type="hidden" name="hrweb" src="/formtool/listitems.asp" />

However, if the data is formatted in the following way, then SRA will fail because it
is not configured to sign the value attribute in the input tag:

<input type="hidden" name="hrweb" value="/formtool/listitems.asp" />

This configuration, of what to look for and where, is part of the default SRA
configuration file, and you can customize this as well.

Chapter 4

[69]

The default SRA configuration file includes a list of the various HTML tags (img,
iframe, frame, form, and so on), with each tag having a list of attributes that SRA
is to look for.

The preceding screenshot is a piece of the default SRA configuration, which
addresses the head, iframe, and img tags. You can see the list of attributes that
SRA is configured to look for, for each of them. By creating your own custom
SRA file, you can use the same formatting to enhance or change the behavior.
For example, the value attribute of the input tag we mentioned previously
is actually covered in the default SRA configuration, but as shown in the
following screenshot:

The Application Wrapper and SRA

[70]

As you can see, the value attribute is listed, but the sign_abs_path option
tells UAG not to sign absolute paths. If the URL was a full URL (such as
http://www.createhive.com), then UAG would sign it; if our path is relative,
UAG ignores it. By creating a custom file with this option removed, we can set
UAG to sign URLs in value attributes whether they are relative or absolute.
Naturally, we still need to have the custom SRA file fully formatted, which
would be as shown in the following screenshot:

Using the same format, you can also introduce completely new tags or attributes
that UAG is not aware of.

However, remember to always start by checking if UAG already has definitions for
them, to make sure you do not create a conflict. If this is a new tag, things are simple,
but if these are new or different attributes of an existing tag, you need to clone the
existing tag configuration from the default file, and add or edit those. For example,
let's say that your application has a link as follows:

<iframe src="A.html" name="window" align=center action="/save.
aspx">FrameMain</iframe>

By default, the iFrame tag is configured for the attributes longdesc, src,
refreshURL, and expandLink, but not for the Action attribute. To add it, clone the
SRA section that deals with iFrame, and add the new attribute to the others.

Another thing that is important to know is that the SRA has multiple parsers. The
default SRA talks mostly about the HTML parser, but also about parsers for CSS,
JavaScript, and VBScript. There is even a <PARSER_EXCEPTION> configuration, which
allows you to configure attributes that should be skipped altogether. The need for
separate parsers comes from the fact that the structure of code with each is somewhat
different. For example, HTML structure uses triangular brackets, while JavaScript
uses curly brackets for most things.

Chapter 4

[71]

For JavaScript, specifically, there is also a list of EVENT_HANDLERS which define
JavaScript commands that UAG should examine for URLs. For example, some apps
use the OnClick JavaScript method to define an action for a button or link, instead
of the regular HREF. The SRA has a special configuration for this action, and others,
which you might also need to modify or expand to correct links that are missed in
JavaScript code. Here is an example for both options with SRA:

As with AppWrap, URLs can be specified with RegEx, and search-and-replace
strings should be encoded with Base64, if containing characters that jeopardize
XML formatting.

Summary
The things you can do with AppWrap and SRA are incredible. With clever enough
search and replace, almost anything could be achieved, from the simple changing of
the background color of an application, to introduce full scripts that can enhance an
application's functionality. One customer, for example, wrote an AppWrap that inserts
a clever red-acting JavaScript to their e-mail application. Another added a functionality
to block access to certain file types in SharePoint by having a script-disable links to
these documents on-the-fly. The possibilities are endless. In this chapter, we covered
the most useful functionality of both SRA and AppWrap, but there are additional
things they can do. The following links can provide you with more information:

http://technet.microsoft.com/en-us/library/ff607339.aspx.

http://technet.microsoft.com/en-us/library/ff607388.aspx.

http://technet.microsoft.com/en-us/library/ff607339.aspx
http://technet.microsoft.com/en-us/library/ff607339.aspx
http://technet.microsoft.com/en-us/library/ff607388.aspx
http://technet.microsoft.com/en-us/library/ff607388.aspx

The Application Wrapper and SRA

[72]

In addition to this, the original IAG Advanced User Guide has about 50 pages of text
describing the various functions, so it makes for an interesting read and a good
reference to keep around. The file can be downloaded from the following URL:

http://download.microsoft.com/download/2/F/9/2F9D9113-B84B-4838-98A0-
A3AEFA6608E2/IAG_AdvancedUserGuide.pdf.

In this PDF, pages 289 to 313 and pages 219 to 254 describe AppWrap and SRA,
respectively, and are a full reference of all available commands and structures that
AppWrap and SRA support, including those that are more esoteric and rare. Even
though it was written for IAG (UAG's predecessor), most of the content applies to
UAG, with the exception of some minor changes described here:

http://blogs.technet.com/b/edgeaccessblog/archive/2009/11/17/
appwrap-in-uag-what-s-new.aspx.

In the next chapter, we will learn how the UAG's application templates are built,
and how to create custom ones for our own needs.

http://download.microsoft.com/download/2/F/9/2F9D9113-B84B-4838-98A0-A3AEFA6608E2/IAG_AdvancedUserGuide.pdf
http://download.microsoft.com/download/2/F/9/2F9D9113-B84B-4838-98A0-A3AEFA6608E2/IAG_AdvancedUserGuide.pdf
http://download.microsoft.com/download/2/F/9/2F9D9113-B84B-4838-98A0-A3AEFA6608E2/IAG_AdvancedUserGuide.pdf
http://blogs.technet.com/b/edgeaccessblog/archive/2009/11/17/appwrap-in-uag-what-s-new.aspx
http://blogs.technet.com/b/edgeaccessblog/archive/2009/11/17/appwrap-in-uag-what-s-new.aspx
http://blogs.technet.com/b/edgeaccessblog/archive/2009/11/17/appwrap-in-uag-what-s-new.aspx

Creating Custom
Application Templates

While UAG comes prepopulated with a wide selection of application templates,
you might find yourself yearning for something that is a little different. Perhaps
you don't like the prompt that says Ready to launch application, which shows
up when you launch an SSL-VPN application, or perhaps you would like your
application to perform certain functions when launched. This and much more is
possible by customizing the default application templates, and even adding your
own. In this chapter, we will learn the following:

•	 Building SSL-VPN templates
•	 Creating your own templates
•	 Template customizations and enhancements
•	 More parameters used in the template
•	 SSL-VPN-specific settings and configuration
•	 Tying in to the SSL-VPN template list

Building SSL-VPN templates
The SSL-VPN application templates are stored in two master files on the UAG server.
The first file is <UAG Path>\von\conf\wizarddefaults\WizardDefaultParam.
Ini, and the second is <UAG Path>\von\conf\SSLVPNTemplates.xml. Collectively,
both these files provide the necessary data and application-specific information that
allows UAG to build and publish resources to a trunk. The WizardDefaultParam file
contains a list of predefined application templates (not just SSL-VPN ones), and their
associated parameter definitions.

Creating Custom Application Templates

[74]

The following screenshots are just two extracts from this file:

As you can see, each application has somewhat different parameters, some
of which are rather self-explanatory. For example, the MaxHTTPBodySize and
ActivateSmugglingProtection parameters will appear on the Web Server
Security tab of the application properties window, while the Image parameter
is populated in the Portal Link tab. On a UAG server running SP1 Update 1, you
will find a total of 55 applications in the default wizard file, but by customizing
this file, you can easily add more. We will discuss this shortly.

Some of the templates in the default Wizard Parameter file (WizardDefaultParam)
are for regular applications, such as Exchange and SharePoint, but within this file also
exists an area of special importance: the SSL-VPN templates. Any template can be
customized, but it is these SSL-VPN templates and their features that are of particular
interest to us, as they are what provide us with some of UAG's unique advantages.

The great qualities of SSL-VPN have been discussed in detail elsewhere, but to put it
briefly, the big advantage is that it provides a connection directly into the corporate
network. This way, any client-side application can communicate with its server
directly, no matter what TCP/IP port is in use, and there is no dependency on the
UAG filter's ability to understand the content. Essentially, virtually any application
can be published this way, with only a few exceptions, and in some cases this can be
the only option.

Chapter 5

[75]

An important difference between SSL-VPN tunneled applications
and full SSL-VPN tunneling, as offered by SSTP or classic SSL-VPN
Tunneling(also known as The Network Connector) is that SSL-VPN
tunneled applications are limited to tunneling applications that use
TCP/IP, while full SSL-VPN tunneling also supports applications
that use the UDP protocol.

On top of that, the thing that makes these application templates even cooler is the
fact that they have a built-in ability to run custom code on the client computer. The
following screenshot is an example:

The preceding screenshot shows a template contained within the second of our master
files discussed earlier, the SSLVpnTemplates.xml, and used for the Drive Mapping
application. As you can see, it has a number of parameters, followed by a series of
DOS-Shell commands, encapsulated within a CDATA structure. These actually get
saved into a temporary batch file on the client (defined in the config-file tag), and
executed according to the parameters defined in the exec tag that comes a bit later.
Doesn't that already entice your imagination? How awesome!!!

Creating Custom Application Templates

[76]

Creating your own templates
Like any customization process with UAG, creating your own templates requires
creating your own file and placing it in the CustomUpdate folder of the relevant
folder. The following are the steps that you need to take:

1.	 If the UAG configuration console is open, close it.
2.	 Create your own SSL-VPN template, based on the same structure of the

SSLVPNTemplates.xml file. The file needs to start with <config><templates
version="3" use-lsp="1">, and end with </templates></config>, and
in between, you can have one or more templates that start and end with
the template tags (<template name="… and </template>). Consider the
following screenshot, for example:

3.	 Place your file in the folder <UAG Path>\von\conf\CustomUpdate and make
sure you name it SSLVPNTemplates.xml.

4.	 Create a custom WizardDefaultParams file, based on the structure of
WizardDefaultParams.ini. The file needs to start with the application
list tag, which lists the number of custom applications you are defining,
and their names. Then, it has to have a section for each custom app, which
includes the application's name, as well as a reference to the SSL-VPN
template that you have defined in step 2 (MyTemplate in our example).
Your file would look approximately as shown in the following screenshot:

Chapter 5

[77]

5.	 Save the file in <UAG Path>\von\conf\wizarddefaults\CustomUpdate
and make sure you name it WizardDefaultParam.Ini.

6.	 Reopening the UAG console should be enough to see your custom changes
take place by seeing your new application template or templates at the
bottom of the list under Client/Server and legacy applications, with
the name you have defined (Launch Custom Script).

Before you start laying down your evil plans, though, let us examine the structure
some more.

Template customizations and
enhancements
As noted previously, the ability to create your own script is what makes creating
custom templates so powerful. The Drive Mapping application uses this ability to
run a NET USE command, which maps a network drive over a TCP/IP tunnel using
the RPC/SMB protocols. You can create a similar template that runs any command
you want. In fact, you may want to use this to simply manipulate some of the client's
configurations without even needing the tunnel at all.

Creating Custom Application Templates

[78]

Essentially, you can put any CMD-Shell commands within the CDATA section.
They will be running in a visible shell window, so it may be good practice to use
the echo off statement and the @ symbol to conceal the commands and their
outputs from the end user.

What if you want to do something even more powerful? The SSL-VPN tunnel can
also run a .VBS file, although that involves a slightly trickier approach. The engine
cannot run a VBS file directly, but you can use the CMD-Shell echo command to
generate the file dynamically and execute it as follows:

@echo Dim aDNS(1) >%temp%\SetDns.vbs

@echo aDNS(0) = "4.2.2.2" >>%temp%\SetDns.vbs

@echo aDNS(1) = "4.2.2.1" >>%temp%\SetDns.vbs

@echo set objWMIService = GetObject("winmgmts:\\.\root\cimv2") >>%temp%\
SetDns.vbs

@echo Set colItems = objWMIService.ExecQuery("Select * From Win32_
NetworkAdapterConfiguration Where IPEnabled = 1") >>%temp%\SetDns.vbs

@echo For Each objItem in colItems >>%temp%\SetDns.vbs

@echo errDNS = objItem.SetDNSServerSearchOrder() >>%temp%\SetDns.vbs

@echo wscript.sleep 500 >>%temp%\SetDns.vbs

@echo errDNS = objItem.SetDNSServerSearchOrder(aDNS) >>%temp%\SetDns.vbs

@echo next >>%temp%\SetDns.vbs

@cscript %temp%\SetDns.vbs

The preceding script uses the echo command with the > and >> symbols to create the
file SetDns.vbs in the system's temporary folder (%temp%), and finally, to launch
that file with the VBScript scripting host CSCRIPT. Each echo command is preceded
with a @ symbol so that it does not show up on screen.

In case you are wondering, the > symbol tells the CMD-Shell to
send the output of the preceding command into a text file, and the
>> symbol does the same, but appends the text to an existing file.
This is why the preceding first line uses >, and the other lines use
>>. Another limitation that the CMD-Shell interpreter imposes on
us is the use of the " symbol, which cannot be used easily, so we
have substituted it with the chr(34) command. Naturally, if you
plan on using the preceding script, be sure to download it from the
Packt website, as the line breaks that the book format imposes may
cause the script to fail.

Chapter 5

[79]

The purpose of the preceding script is to alter the settings for the DNS server
configuration on the client to use the public servers residing at 4.2.2.2 and 4.2.2.1.
This may be useful in cases where a user's ISP is manipulating the functionality of
their own DNS servers. This is done by some ISPs, and could cause various issues
with SSL-VPN based application tunneling. One challenge with this is that the
modern operating systems, such as Windows Vista and Windows 7 restrict our
ability to change the deep-level system settings such as this. If you attempt to use the
preceding script on such a system, it will fail. The solution is to use another function
that invokes the User Access Controls (UAC) dialog, offering the user the choice of
approving or denying the operation. The following is the structure:

@echo If WScript.Arguments.length =0 Then >%temp%\SetDns.vbs

@echo Set objShell = CreateObject("Shell.Application") >>%temp%\SetDns.
vbs

@echo objShell.ShellExecute "wscript.exe", Chr(34) + WScript.
ScriptFullName + Chr(34) + " uac", "", "runas", 1 >>%temp%\SetDns.vbs

@echo Else >>%temp%\SetDns.vbs

.....Do whatever we want....

@echo End If >>%temp%\SetDns.vbs

To use this, all you have to do is place the actual script echoing commands, such as
the ones we saw earlier, between the preceding else and end if lines. Naturally, this
structure is not required for everything—just for actions that would be considered a
security threat, and limited by UAC. For more details about UAC and what it limits,
refer to the following URL:

http://technet.microsoft.com/en-us/library/cc731416(WS.10).aspx.

More parameters used in the template
As we saw earlier, the templates also contain many parameters, and you can use
these to do additional things. The WizardDefaultParams file contains over 50
templates, but only some of them (about half) are SSL-VPN based and depend
on a template in the SSLVPNTemplates file. Let's review the structure of these files
in more detail.

WizardDefault
In terms of publishing, the WizardDefaultParams.ini file is UAG's starting point,
and this file's contents are split into two key sections: the application templates' list,
followed by application definitions.

Creating Custom Application Templates

[80]

The [Application_List] is an enumeration of all of the applications that exist in
UAG, listed by number and name in the format App<x>=<name>. The second line
in this section also has the parameter NumOfApps, which basically specifies the total
number of listed templates that UAG should account for. The following is a list of
the default applications on a UAG server:

All items found on this list then have a corresponding definition set that is located
in the second section of this file. It is this data that defines an application's specifics
when publishing. The definitions themselves are split into individual application
blocks which are easily referenced by their respective name in brackets, [].

Any duplicate names found will cause UAG to display the application as many
times as it is referenced in the [Application_List], regardless of whether it has
an associated set of definitions or not. Duplicate definition sets, on the other hand,
are not supported, and will generate a UAG initialization error when you attempt
to add a new application. The following is a section of one of the default application
templates used to publish Lync:

Chapter 5

[81]

The first parameter of each application template is its name, encapsulated by square
brackets, followed by the display name formatted as Name=<display name>.

It should be noted that the application name used in
both sections should match exactly as they are case
sensitive, and if this is overlooked, will prevent your
custom app from being picked up.

Creating Custom Application Templates

[82]

The next parameters determine which group the application belongs to. If AppType
is set to 0 and InternalApp to 1 or 2, the app will show up in the first group of
applications (Built In Services). If InternalApp is set to 0 however, it will appear
in the Web group.

If the AppType is 1, this indicates an SSL-VPN app, which will appear in the
Client/Server and Legacy application groups. An AppType of 2 puts it in the third
group—Browser Embedded Applications. This arrangement changes somewhat
for the RDS applications, and in this case UAG will look at the application's name
to determine its placement. An application whose name begins with MSTC_ will
automatically be put into the Terminal Services (TS)/Remote Desktop Services
(RDS) category.

Chapter 5

[83]

The next group of parameters controls the application name and parameters:

•	 LegalCharsSet

•	 DangerousCharsSet

•	 DangerousCharsIncludeNull

•	 ParamNameCaseSensitive

•	 ParamValCaseSensitive

•	 UrlCaseSensitive

This is pretty much self-explanatory. The parameter AllowWebdav will allow the
application to use the WebDav methods, which are relevant for Exchange, Forefront
Identity Manager (FIM), and SharePoint. The PassLogoffToRWS parameter controls
whether UAG sends a logoff to the backend server, which is relevant if the backend
server has a session management mechanism, such as Exchange.

Creating Custom Application Templates

[84]

The parameter ReplyToAuth sets the template default for performing Single Sign
On (SSO), which is a part of step 7 of the add application wizard (naturally, when
using the add application wizard to create the application, one can still choose
another setting). The FormLogin parameter indicates whether UAG will attempt
to perform automatic form login if the backend server replies with one.

Some application templates have the settings for Download URLs, Upload URLs,
and Ignored URLs:

When these are set, UAG will configure the appropriate parameters in the Advanced
Trunk Configuration. These parameters, in case you don't remember, define patterns
that indicate a special URL. For example, the preceding screenshot is from the
Outlook Web Access 2010 template, and allows UAG to recognize when the user
downloads or uploads an e-mail attachment. This allows UAG to block these URLs
based on the defined endpoint policy. IgnoreURLs are used to detect background
traffic which some applications generate, so UAG can know to ignore it for the
idle-timeout calculations.

More useful parameters include:

•	 Path: This setting specifies the default paths for the application, which can
be edited as part of the Web Servers configuration step. Multiple paths are
separated by a pipe (|).

•	 ManualURL: This is a group of settings that add manual URL replacement.
This is done as part of the SharePoint 2003 apps, and some Exchange apps
as well.

Chapter 5

[85]

•	 Image: This path specifies the default image icon for the application.
•	 ShortDesc: The default short description that is shown on the portal.

This text also appears in the application's settings on the Portal link tab.
•	 LongDesc: The default long description.
•	 OpenNewPage: The default setting for having the application open in a new

browser window or tab.
•	 CanBeInitialApp: When set to 1, this will set the application created based

on this template to allow the administrator to configure the application to
be the initial app on the trunk. This defaults to yes, so set it to 0 to disallow.

•	 AllowPostWithoutContentType: Set the app to allow a POST without
a content type HTTP header (this option can be changed in the Web
Settings tab).

•	 DefaultSchema: Set the app to default to a backend server that uses HTTPS
rather than HTTP.

SSL-VPN specific settings and configuration
When a template in WizardDefaultParams.ini is intended to be an SSL-VPN
based application, it has to include the SSLVpnTemplate parameter, which specifies
the name of the SSL-VPN template to be used from the SSLVPNTemplates.xml file.
When using this mode, you also have the option of specifying additional parameters,
which can later be used with the template itself. These are specified using the
following format:

•	 SSLVPNNumOfElements=<Number>

•	 SSLVPNElement<Number>ID=<ID>

•	 <ID>Name=<Name>

Creating Custom Application Templates

[86]

•	 <ID>Type=<type>

•	 <ID>GuiType=<GUI Type>

•	 <ID>Value=<Value>

•	 <ID>Validation=<Validation Parameter>

The element name is simple text. The types available are:

•	 0: Textual server names
•	 1: Number
•	 2: Free text

The GuiType can be:

•	 0: Multiple lines for server names
•	 1: Single line for server name
•	 2: Multiple lines for server names
•	 3: Drop-down

When using the drop-down option, the possible values are specified with the
<ID>ListValue parameter, separated by semicolons. The <ID>GuiWidth parameter
specifies the size of the drop-down element.

The Validation element can be NotEmpty, IP/DNS, Port, Pattern, or a combination
of the various elements. As you can guess, IP/DNS tells UAG to verify that the server
specification can be resolved, and Port needs to be a numerical value between 1 and
65535 (although TCP/IP allows for port 0, it's actually reserved, so cannot be used
here). The pattern element specifies a RegEx pattern as follows:

<ID>Validation=Pattern(Exclude /:*?"<>|)

When creating a template, one can have any number of elements, and each element
can have some or all of the parameters. Typically, the server and port parameters are
pretty important, although not for every scenario. For instance, creating an app to
run a script, such as the one discussed earlier, does not actually require any specific
elements or parameters.

Chapter 5

[87]

Tying in to the SSL-VPN template list
The structure of the templates in SSLVPNTemplates.xml is very diverse, and can
do a lot of things. The most basic structure is as follows:

<template name="MyStuff" userrights="0" use-with-lsp="yes"
default="yes" >
<port id="0" remoteport="0" flags="514"/>
</template>

This specifies the name of the template (which the Wizard Default file refers to),
and the TCP/IP ports used. In addition, the Template tag can also specify the use
of the socket forwarder (use-with-lsp) and the default="yes" tag specifies that
the application can be used with all platforms, as opposed to using win="yes",
which limits it to Windows-based clients.

It's probably worth mentioning that a flag value of 514 actually
places the tunnel component into Simple Relay mode, which in
short opens a port on the client and tunnels the TCP traffic to the
target application server. The actual listener port is created on the
client and the SSL wrapper component takes care of making the
necessary changes, such as changes to the application settings,
registry or hosts file, in order for the application to communicate
through this tunnel.

Several other modes exist and the flags you'll see defined in these elements have
been calculated by the UAG product group using a special tool, which for security
reasons is not available to the public.

You can also specify a config-file tag, and an exec tag, which define parameters to
be retrieved from the application and used in creating and executing an executable.
For example:

<template name="RunBatch" userrights="562" use-with-lsp="yes"
win="yes">
<port id="0" remoteport="139" flags="10" use-with-lsp="yes"/>
<config-file flags="1" path="%Temp%\CleanTemp.bat" use-with-lsp="yes">
<![CDATA[
del %temp%*.*
]]>
</config-file>
<exec exe='%Temp%\CleanTemp.bat flags="4" param=""/>
</template>

www.allitebooks.com

http://www.allitebooks.org

Creating Custom Application Templates

[88]

The preceding code creates a batch file named CleanTemp.bat in the system's
temporary folder and populates it with the command del %temp%*.*. When that
application is launched, it deletes the content of the system's temp folder, of course.

The template can also modify the registry, and display a message to the users:

<template name="MyApp" userrights="116" use-with-lsp="yes" win="yes">
<port id="0" flags="1" ip2relay="169.1.1.1" remoteport="111"/>
<config-file flags="32" path="" use-with-lsp="yes"><![CDATA[
[1\ Control Panel\Desktop]
ScreenSaveActive =1
]]>
</config-file>
<exec exe="\nScreen Saver Enabled" param="" flags="256"/>
</template>

The preceding application template, when launched, will set the registry value for
HKEY_CURRENT_USER\Control Panel\Desktop\ScreenSaveActive to 1, enabling
the screen saver on the client. The text specified in exec will be shown to the user.

Consider another example:

<exec exe="%CommandLine%" param="%CommandLineArguments%" flags="1032"
default="yes"/>

This tag will expect the application to deliver the parameters CommandLine and
CommandLineArguments, and will execute them. The preceding code is taken from
the Enhanced Generic Client Application template, which lets you specify these as
part of the application configuration. Naturally, the exe attribute can also specify an
executable to be run as follows:

<exec exe="mstsc.exe -v:%localip%:%localport% -w:%HRes% -h:%VRes%"
flags="4" param="" use-with-lsp="no"/>

The preceding code is part of the Remote Desktop group of applications, and
instructs the client to launch the Remote Desktop Client MSTSC.EXE, with the
parameters sent by the app for the hostname, port, and display resolution.

Chapter 5

[89]

Summary
Is that all? Far from it! Both the WizardDefaultParams and SSLVPNTemplates files
have hundreds of additional parameters and options, but unfortunately, we cannot
document all of them here. With careful observation and analysis of the default files,
though, we are sure you can decipher what else they can do. The things you can do
with these applications are endless, and almost unlimited. Go and explore! In the
next chapter, we will learn how to configure UAG to use certificate authentication
and smartcards.

Custom Certificate
Authentication

As we know, one of UAG's greatest features is its extensive support for such a wide
range of authentication providers and schemes, probably making it one of the most
agnostic SSL-VPN solutions in the market in terms of its integration capabilities.
The options here are pretty comprehensive right out of the box, and UAG's intrinsic
flexibility really takes things a step further, but one type of scheme that continues
to become very popular in terms of offering a more secure and seamless user
experience is certificate authentication.

This method has been around for many years now in IIS. There may be slight
variations in the way this scheme is implemented, depending on circumstances
and third-party vendor integrations, but you'll be pleased to know that UAG works
on the same core principals in this scenario, which is simply to authenticate users
through standard X.509 certificates.

Unfortunately, enabling certificate authentication is not possible directly in UAG's
graphic user interface and, if required, involves some degree of customization.

In this chapter, we will explore this type of authentication and, in turn, learn how
to configure it. This chapter will cover the following topics:

•	 Certificate authentication concepts and terminology
•	 Understanding the building blocks of certificate authentication for UAG
•	 The certificate authentication custom files
•	 Certificate authentication with KCD
•	 Troubleshooting certificate authentication

Custom Certificate Authentication

[92]

Before going into detail however, it's important to understand what UAG can and
cannot do with certificates, as this topic is the source of much confusion out there.
Let's look at the three main types of certificate-based configurations that can be used
for authentication or securing access into UAG:

•	 Client certificate authentication: The topic covered in this chapter.
•	 UAG certified endpoints: This is an optional feature used to enhance

security by enabling having UAG perform a certificate check, in addition to
the normal form-based authentication. When enabled, users log in as usual
but also get prompted by the browser to select a user certificate. To be clear,
this is certificate validation, not authentication and you can read more about
this at the following URL:
http://blogs.technet.com/b/ben/archive/2011/09/28/uag-and-
certificates.aspx

•	 Endpoint certificate policies: In short, this option uses a combination of
custom detection code and policies to further secure access into UAG's
web portal and applications. In this scenario, UAG relies on the endpoint
components to query a client's user or machine store for a certificate that
complies with the criteria set out in your custom code. The actual certificate
integrity check is performed on client side and UAG uses the response to
control access, or if preferred to also raise a client's status from default to
Privileged Access. As with Certified Endpoints, this option is for certificate
validation only and not authentication.

So although UAG can do certificate authentication, you should be aware that it does
not provide any support for authenticating the backend application servers using
client certificates, either directly or by delegation.

Certificate authentication concepts and
terminologies
Conceptually, certificates are something that can be used to encrypt information
or prove identity, whether of a client device, a service, or an actual person, but
ultimately allowing one entity to trust another. In the context of UAG certificate
authentication, we are focused more on the purpose of identity, as opposed to
encryption itself.

It's very likely that you've already seen the many certificate types that exist for
different purposes. So we'll not delve too much into the intricacies of PKI itself,
but knowing how to differentiate between them is a fundamental part of being
a UAG administrator.

Chapter 6

[93]

For example, when you browse to your bank's website to manage your account,
the bank's site will present a certificate to prove to you (via your browser) that it is
indeed who you think it is, and not a spoof run by cyber criminals. In this website
scenario, the type of certificate used is typically referred to as a Web Server type for
server authentication purposes, and would usually comprise of several key usage
attributes, such as digital signature, key encipherment, and data encipherment. It
is the digital signature attribute on the certificate that allows a site's identity to be
verified, as it will have been digitally signed by the issuing Certificate Authority
(CA), using the authority's private key.

A UAG portal configured for SSL would use the same type of Server Authentication
certificate and clients would validate the site's identity when connecting to it.
Whatever the site or address, users will immediately be warned if a site's integrity
cannot be certified, but all being well this then forms the basis for creating a secure and
encrypted connection between two entities, otherwise known as a secure channel.

On the other hand, certificates used for user authentication still follow the same
concept of being digitally signed by a trusted authority, but they are of a different
type and better known as Smartcard Logon and Smartcard User, and with a purpose
of client authentication.

One advantage that makes using certificates for authentication more secure is that it
removes the need for having to provide credentials, and thereby negates the risk of
someone or something obtaining your username and password. As with most things,
there are still risks to be considered, with the most obvious being the loss of a device,
such as a laptop that contains your user certificates, but these concerns can then
be mitigated by introducing additional protection, such as the integrated Bitlocker
functionality, to restrict access into the device's OS.

Choosing to store user certificates on smartcards instead of on machines can add an
even greater layer of security, as their self-containment makes them more resistant
to compromise and they are less dependent on potentially vulnerable resources. In
fact, smartcards should be de-facto for any organization considering this type of
authentication because in this scenario, one factor authentication, which is something
you know as your password, is replaced with two-factor authentication (2FA). In the
world of security, this is generally known as strong authentication or multifactor
authentication, on the basis that it is something you have (Smartcard), together
with something you know (PIN). Some of the more advanced smartcard derivatives
also include One Time Code (OTC) functionality to protect against the standard
alphanumeric PIN from being compromised.

Custom Certificate Authentication

[94]

You'll find many organizations already using certificates in one shape or another,
and issuing digital certificates to users and corporate devices has become a standard
practice. Provisioning of certificates is an area we will not cover in this book, but at
a high level this will typically consist of automating certificate distribution through
group policy or some other mechanism, such as the Microsoft Forefront Identity
Management 2010 (FIM) solution.

Issued certificates are usually stored somewhere accessible to the OS and to
applications, and this would normally be in either one of two places—a computer's
cryptographic store or the microchip on a Smartcard as previously mentioned.
Regardless of location, all certificates can be viewed and managed through the
Windows MMC certificate snap-in, or from the command line using PowerShell or
Certutil depending on the OS version. Certain browsers, such as Internet Explorer
and Firefox, also allow for some simple management tasks, such as importing and
exporting of certificates. Other non-Windows systems, such as Mac OS X have their
own equivalents of these utilities, such as keychain, which we will not cover here,
but you can read more about this at the following URL:

http://docs.info.apple.com/article.html?path=Mac/10.6/en/9082.html.

On a Windows system, the cryptographic store (Crypto Store for short) is split
between three distinct areas and these are represented in the certificate MMC as
separate containers:

•	 The current user store: All certificates stored here are personal and for
individual users. This is a profile-centric container and each user account on
a system will have its own user certificates. It is this container that holds the
user certificates used for UAG certificate authentication.

•	 The computer store: This is where all system-level certificates are stored
including machine/computer certificates, and contents of this store are
visible to all users with read permissions. This container typically holds
certificates, such as IPSEC certificates used for VPNs' or DirectAccess, but
also those that can be checked by UAG's detection policies.

•	 The services store: This container holds certificates that are bound to
individual services and is not used for UAG-related activities.

A question that tends to come up frequently is how Smartcard certificates are
managed and whether there are any special requirements or considerations when
used with UAG. Physically, the choice of the card itself and the hardware used to
read it is endless, but the bottom line is that they all do pretty much the same thing.
You'll now find that many newer laptops ship with a card slot directly incorporated
into the body. For machines that don't have this, a more modern and common
alternative to the basic USB reader is the key FOB, which is similar to a USB drive,
but holds a micro smart card with the size of a SIM.

Chapter 6

[95]

All modern versions of Windows from 2000 and onwards have a built-in application
programming interface (API) for use with smartcards, and this is referred to as a
Cryptographic Service Provider (CSP). The CSP API will handle access to the reader
and card so middleware is usually not necessary for anything other than resetting a
lost PIN or adding additional certificates.

Viewing a smartcard's certificates is as easy as launching the normal certificate MMC,
selecting the Current User container, and plugging in your card. All user certificates
found on the smartcard will be enumerated and shown in the list, as if stored on the
machine itself. At this point, there are no restrictions to see the certificates and their
properties, but any attempt to access a certificate's private key will cause the CSP to
prompt for a PIN. Submitting the PIN successfully unlocks the certificate and it is
then accessible to whatever program that is requesting it.

UAG and certificate authentication
Getting to grips with Public Key Infrastructure (PKI) can be a challenging task to
say the least and it's certainly a subject we would encourage you to understand, but
for now we'll assume you know your way around a Microsoft Enterprise Certificate
Authority implementation.

It's from this server, whether a root CA or intermediate CA, that certificates will
be issued and the two primary types that you're likely to see when working with
UAG publishing and certificate authentication, are user certificates and machine
certificates (also known as computer certificates). At a glance, they're not much
different structurally, but in PKI terms, they serve different purposes. Their exact
properties and usage scenarios can be observed through their respective source
templates that reside on their issuing CA. Of the two, it is the user certificates that
are required for this authentication scheme and the type of certificate template used
to create these certificates on the CA is either Smartcard User or Smartcard Logon
specifically. Both can be used for authentication, but the Smartcard User certificate
can also be used for e-mail encryption, if required.

Custom Certificate Authentication

[96]

When a UAG server is configured for certificate authentication, users are forced to
present a user certificate to UAG instead of submitting their credentials through
UAG's login form. During this interaction, UAG will step through a sequence
comprising of the following three key functions:

•	 UAG will verify that the client certificate integrity is valid
•	 UAG will perform a mapping of the certificate to the user account in

Directory Services or any other defined LDAP server
•	 UAG will authenticate the user

At the core, UAG relies on the existing IIS 7.0 certificate authentication mechanism
to facilitate this process, so key principals still remain. For instance, a prerequisite
for this scheme to function is that the trunk that is configured for this is HTTPS and
not HTTP.

To implement certificate authentication, you will need to configure UAG with a set
of custom files, which basically forces it to request a user certificate, and to use the
data from it to authenticate the user against the repository configured on the trunk.
These files are as follows:

•	 Cert.inc

•	 Login.inc

•	 Validate.inc

•	 Repository.inc

The following link is Microsoft's official documentation for client certificate
authentication with UAG and describes the procedure to implement this
customization:

http://technet.microsoft.com/en-us/library/ee861163.aspx.

Basically, it involves copying four files from one of the code sample folders on
UAG into another folder, and renaming them according to the standard file naming
convention for UAG customizations. Then certain parameters need to be edited in
the files to allow them to do their job. Documentations or guides, however, may be
unclear, as they cover both the use of a soft certificate (one that is installed on the
computer itself) and a Smartcard certificate. To add to the confusion, the instructions
also attempt to cover three common certificate configurations, but do not explain the
difference between them or how exactly they affect the content of the file.

Chapter 6

[97]

We mentioned earlier that UAG retrieves certain values from the certificate and
uses those values for authentication. The code you define within these files is what
will depict which properties we query on the certificate explicitly, and in turn
which Active Directory (AD) attributes are also queried when cross referencing the
certificate data. For example, some organizations set their certificates to include the
user's e-mail address (john.doe@createhive.com), while others are happy with the
User Principle Name (UPN), such as jdoe@createhive.local, or Distinguished
Name (DN), such as CN=John Doe,CN=Users,DC=createhive,DC=local.

It's imperative that you fully understand the differences between these naming
conventions so as to provide the very best authentication and authorization solution
design for any future projects.

If the identity is a username or e-mail, then it is typically stored in the Subject field
of a certificate. However, if it is a UPN, then it will usually be stored in the Subject
Alternative Name (SAN) field instead, or in addition to the subject if it already
exists. Technically, there could be infinite variations to the preceding, and many
organizations use custom certificate templates that could be drastically different. In
other words, be prepared to deal with any situation, and keep an open mind.

Things can get even more complicated, as the retrieved values are verified against
a directory, which may also have certain variations. Organizations using Active
Directory would often store the user's username in the SAM-Account-Name
(sAMAccountName) attribute, and would need to compare the username value
retrieved from the certificate to that attribute. If the organization has selected to
use a UPN or e-mail name as the key identity value, then it would probably
compare it to the UPN or mail attributes in the directory. Some organizations use a
different type of directory, such as Novell, SUN, or perhaps even a totally different
mechanism to store user info. For example, the directory may be a custom SQL
database, or even a flat text file. We will discuss custom repositories in the next
chapter, but the important thing to bear in mind here is that every environment is
different, and successfully configuring UAG for Certificate Authentication can be
diverse and somewhat challenging.

Custom Certificate Authentication

[98]

Understanding the pieces of cert
authentication for UAG
As already mentioned, the required customizations are based on four key files found
in the following location:

<UAG Path>/von/conf/InternalSite/samples

The instructions ask you to perform the following steps:

1.	 Copy the file site_secure_smartcard_cert.inc from the samples folder
to the <UAG Path>/von/conf/InternalSite/inc/CustomUpdate. You are
then required to rename the file to <trunk>1cert.inc.

2.	 Copy the file site_secure_login_for_cert.inc from the samples folder
to the CustomUpdate folder. You are then required to rename the file to
<trunk>1login.inc.

3.	 Copy the file site_secure_validate_for_cert.inc from the samples
folder to the CustomUpdate folder. You are then required to rename the file
to <trunk>1validate.inc.

4.	 Copy the file repository_for_cert.inc from the samples folder to
the CustomUpdate folder. You are then required to rename the file to
<repository>.inc. Where <repository> is the name of your authentication
repository as defined exactly in UAG's Authentication and Authorization
Servers interface followed by a 1 for an HTTPS trunk, and then by the file
name and extension. For example, when copying the site_secure_cert.
inc file for an HTTPS trunk named RemoteAccess, the resulting file would
be named RemoteAccess1cert.inc.

Note that the 1 in the filename indicates this is an HTTPS trunk. Normally, custom
files are named with either 0 or 1 to indicate the type of trunk, but in this case, a
trunk has to be HTTPS, so it will always be 1.

In addition to copying them, some of the files require certain changes to work. Here
are some more details about the files and what they do, so let's see how they are built
and what their functions are.

Chapter 6

[99]

Cert.inc
The cert.inc file actually comes as two separate files, with the first being
site_secure_cert which can be used for both soft certs stored locally on
machines and also for those stored on smartcards. The other file, site_secure_
smartcard_cert.inc, contains the same code that defines the parameter that
will be checked, but with one addition—it also checks that the certificate is of
the Smartcard User or Smartcard Logon type before authenticating the user.

It does this by simply looking for the certificate Enhanced Key Usage (EKU)
attribute, and when found, then continues to look for the smartcard Object Identifier
(OID), which is 1.3.6.1.4.1.311.20.2.2. Once the user selects or confirms a
certificate, its data is sent to the UAG server, where it will attempt to parse its
properties. In the case of a smartcard certificate, the custom cert.inc will have
been used to obtain the required certificate data for UAG to begin authenticating the
user. The sample file site_secure_smartcard_cert.inc contains various variable
constants that pertain to certain standard fields that most certificates have. For
example, field code 7 represents the subject name field.

The actual code uses the COM object Microsoft.UAG.CertificateComHelper to
query the certificate data and parse it. For this file to work, you need to specify the
name of the Certificate field that is to be used and as illustrated previously, this is
determined in line 64 which reads as follows:

upn = objCert.GetInfo(INFO_SUBJECT_UPN)

Custom Certificate Authentication

[100]

In addition, you need to edit the subject array settings at the bottom of the file (lines
91 to 98), which define the field selection for the next stages of the authentication.
The default sample file is set for SubjectEMAIL, which is appropriate if you choose
to use the e-mail attribute on certificates when authenticating users, but if you prefer
the user's Canonical Name (CN) instead, then comment out line 92, and uncomment
line 98 as shown in the following screenshot:

Please note that the line numbers referred to in this chapter may change in future
updates to UAG, so should be used as examples only.

Login.inc
The file <trunk>1login.inc is designed to carry out two primary functions. The
first is to redirect users to the mobile portal, if the client is detected as a mobile
platform and cannot be authenticated by certificates. The second is to initiate the
certificate authentication mechanism by forcing the client to redirect to the cert.asp
file, instead of the default login page. Fortunately, it requires no changes other than
naming it properly.

Validate.inc
The file <trunk><1>validate.inc is designed to tell UAG the name of the
repository to be used for the certificate authentication. The only change required
for it is to edit line 6 in the file, and type the name of the repository that is assigned
to the trunk there as shown in the following screenshot:

Chapter 6

[101]

Repository.inc
One of the primary roles of this file <repository>.inc is to create the COM object
required to return the results of the AuthenticateRepositoryUser function to the
calling code in <UAG Path>/von/conf/InternalSite/Validate.asp.

This file is the most important part of the process and may require some changes.
By default, the file is configured to retrieve the value of the SubjectEMAIL field
from the certificate, and compare it against the email attribute in the repository.
Depending on your own requirements and configuration, you may need to change
this. However, the default file is not very well annotated, so we have prepared
another version of the same file, but with some more notes for you to read.

We realize that even with the notes, the file is still high-level ASP code and may be
challenging to fully understand, of course. To make things simpler, here are some of
the things you might need to change.

If the field in the certificate that you need to retrieve is other than SubjectEmail,
then you need to edit line 30 in the original file (line 64 in our version). This line
reads as follows:

param_email.Name = "SubjectEMAIL"

Custom Certificate Authentication

[102]

If the attribute in the repository that you wish to compare against is not email,
you need to edit line 61 in the original file (line 121 in our version). This line reads
as follows:

param_email.Name = "mail"

Certificate authentication with KCD
It's not uncommon for the Kerberos Constrained Delegation (KCD) authentication to
be required in this scenario, which is why the custom repository.inc file contains
specific code for this. The reason being, the users will no doubt want Single Sign
On (SSO) access into applications that are being launched from the UAG portal
or directly, but the fact is that logging in using certificates means that users never
actually submit their username and password. So consequently, UAG does not have
a cached set of user credentials to perform standard 401 or form-based authentication
into applications. Instead, it must rely on obtaining a Kerberos token on behalf of the
user, by means of delegation. Naturally, this requires that applications are configured
for integrated Windows authentication, and at the same time that each published
application in UAG is correctly configured with an Service Principal Name (SPN).
Applications that are not configured for Kerberos authentication can be left to Basic or
forms, and SSO for these applications can be disabled in UAG. The result is that the
users will be challenged for authentication upon launching the application. However,
if KCD is to be used, you will need to change line 3 in the repository.inc file, which
reads KCDAuthentication_on = false, to read KCDAuthentication_on = true.

For doing this, you may also need to change how Kerberos performs authentication
to application servers and the following registry change:

Chapter 6

[103]

1.	 On the Forefront UAG server, run Regedit.
2.	 Navigate to HKEY_LOCAL_MACHINE\SOFTWARE\WhaleCom\e-Gap\von\

UrlFilter.
3.	 Modify or create the DWORD value KCDUseUPN as follows:

°° To perform authentication using UPN, set the DWORD
value to 1.

°° To perform authentication using the format domain\username,
set the DWORD value to 0. If no value is set, domain\username
will be used.

4.	 Exit the registry editor and activate your configuration to have the new
setting saved (and applied to other array members, if relevant)

The following are the prerequisites for a KCD SSO configuration:

•	 The UAG server must be a domain member
•	 Domain controllers must all be Windows Server 2003 or later
•	 Only one authentication repository can be configured for the trunk

to which the application belongs
•	 Users, UAG servers, and application servers must be part of the

same domain

If all of these are met then you are good to go ahead and set things up. This involves
creating SPN records that need to be added to computer accounts in Directory
Services. More information on setting up SPN records and delegation, specifically
for UAG, can be found at the following URL:

http://technet.microsoft.com/en-us/library/ee690462.aspx.

Also, extended info can be found at the following URL:

http://msdn.microsoft.com/en-us/library/aa480585.aspx.

Beyond that, the default code should do the trick, but if you made changes for other
values and attributes, as we discussed earlier, you may need to adjust the functions
some more.

Troubleshooting certificate authentication
As noted earlier, many real-world certificate authentication deployments are far
from trivial, and it's always possible that the code changes that you have applied
to achieve a more customized implementation do not work as expected.

Custom Certificate Authentication

[104]

Of all the issues we've seen and heard of while working on this subject, there is one
that system admins are always guaranteed to fall upon. This is probably more of a
gotcha than an issue and you'll encounter this when testing through a browser that
is configured not to show the certificate selection pop-up, if only a single certificate is
found. In this case, you may need to disable the "Don't prompt for client certificates"
selection setting in IE's zone settings. Configure this as follows:

1.	 Open the settings for Internet Explorer.
2.	 Go to the Security tab.
3.	 Double-click the zone you wish to edit.
4.	 Scroll down to Security, and set the option as shown in the

following screenshot:

We'd then suggest using UAG's good old tracing to drill right down into where
things might be failing, and as you may have noticed, the code already includes
quite a few function calls (LIGHT_TRACE and HEAVY_TRACE), which will
prove invaluable.

In Chapter 1, Customization Building Blocks, we discussed the topic of performing
enhanced tracing (also known as InternalSite tracing), which includes the output
of these tracing functions. When troubleshooting certificate authentication, this type
of tracing would be your friend. Run such a trace while reproducing your failed
authentication or other issue, and in the resulting trace file, look for the output of the
trace functions. For example, line 108 in the original repository.inc will log the
following error, if it failed to match the retrieved user ID to the repository:

The session param [UPN] value [JohnDoe] is different from the user
param [JaneDoe]

Chapter 6

[105]

We wish we could promise you things are going to be simple but they might not. If
things don't make a lot of sense, another useful tool is LDP, which comes with the
Windows Server 2003 support tools, but is also preinstalled on any system running
UAG, TMG, or as a domain controller. This tool can query Active Directory and
retrieve the various attributes a user may have, so you can fully understand what
data exists in there, and what to expect the certificate authentication code in UAG
to get from it. Another alternative is to use the integrated attribute editor, which is
part of the user management console in Windows 2008 R2:

If everything is configured correctly for SSO using KCD, then you should expect to
see the following sequence and exchanges between UAG, domain controllers, and
the backend application server when tracing with Netmon or Wireshark:

1.	 UAG makes request to the target application server.
2.	 The Application server responds with authentication using negotiation.
3.	 A Kerberos token is requested from UAG to Ticket Granting Service (TGS)

for the website (SPN) and on behalf of user.
4.	 The DC issues a Kerberos token to UAG server.
5.	 UAG presents the Kerberos token to the site.
6.	 The website authenticates the user.

Custom Certificate Authentication

[106]

Although seemingly straightforward, Kerberos can be pretty complex, so we would
suggest keeping things as simple as possible when trying to troubleshoot, as this
will increase your chances of quickly isolating any discrepancies. A good tip when
doing this would be to test SSO against a simple IIS website that is configured for
integrated authentication, but by using the host's FQDN instead of an alternative
host header. The advantage of doing this is that an SPN configuration will already
exist for a host's FDQN, so proving KCD actually works in the first instance can be
quick and easy.

UAG's web monitor also provides some useful output by reporting whether or not
it has been able to retrieve a token for the user by displaying a message similar to
the following one:

"The S4U2Self Kerberos token for user johndoe with source IP address
80.195.11.110 was retrieved successfully"

If you struggle to identify an issue then a suggestion would be to try the IIS-based
DelegConfig tool, which is very effective for troubleshooting and provides
comprehensive output of findings. More information on this can be found at the
following URL:

http://www.iis.net/community/default.aspx?tabid=34&g=6&i=1887.

Finally, for those who prefer something from a more familiar source is Jim Harrison's
more basic version, which does an equally good job and can be found at the
following URL:

http://isatools.org/tools/AuthTest.asp.txt.

Summary
This chapter explored the process of configuring UAG for certificate authentication
by using the sample files included with UAG, and adapting them to your needs.
This serves as the basis for the topic covered in the next chapter—Creating your
own custom repository, which is a lot more challenging, but also provides incredible
benefits by allowing you to authenticate your users against virtually any directory.

Custom Authentication
Repositories

One of the strongest points of UAG is its ability to authenticate users against many
types of authentication providers. While most customers use Active Directory and
Active Directory only, many require other or additional providers, such as RSA
SecureID or LDAP. However, with some customizations you can also define your
own custom authentication. This could be almost anything—an SQL database,
for example, is one popular customization, but other options are available. In this
chapter, we will discuss the following topics:

•	 How does custom authentication work?
•	 Verifying usernames
•	 Working with an SQL database
•	 More elaborate code
•	 Testing and debugging your code
•	 Putting it all together

How does custom authentication work?
The process of authentication with UAG includes three key pieces:

•	 UAG presents the login form to the user and collects the credentials
•	 UAG verifies the credentials against the defined authentication repository

or repositories, defined on the trunk
•	 UAG stores the credentials and reuses them when single sign on (SSO) is

required, such as when launching a published application

Custom Authentication Repositories

[108]

To do this, the login form (login.asp) contains the fields that are to be collected.
Once the form is submitted, the validation page (validate.asp) is called, and it
verifies the credentials against the selected repository or repositories. The following
diagram illustrates the authentication flow and the various functions that UAG will
step through when authenticating users against a repository:

The processes that go on afterwards are less relevant here, but will be discussed in
the next chapter.

Chapter 7

[109]

The actual validation is handled by a single file, often referred to as repository.
inc, although your own filename will be different. This file needs to contain a single
function, which compares the data provided by the user to whatever data source you
want to use, and outputs either a success or failure object. It can contain supporting
functions as well, of course, but the core functionality is the authentication function,
detailed as follows.

The following screenshot is a sample of a very simple authentication function:

This sample, of course, is not going to go very far, if you notice what's going on in
line 12 (if user_name="John" and password="doe" then). Basically, this will allow
access only to a user named John, with the password doe. However, this illustrates
the concept. The primary function AuthenticateRepositoryUser gets called from
line 74 in the page /InternalSite/validate.asp and the caller will provide the
credentials that the user typed in on the logon page.

First, we execute the function GetAuthenticatedUserDetails, which would return
empty if the user has already authenticated.

Custom Authentication Repositories

[110]

If the user has not authenticated yet, we use the UserMgrComLayer object to
create the AuthenticateUserOut object, and do some checking of the provided
username and password. If the checking is successful, we set some properties of
the object, most notably authenticate_user_out.Success with the constant
AUTHENTICATE_SUCCESS, and set the function's return with the content of that
object (lines 18 or 22 above).

The structure is pretty simple, and the important bit is the If/Then statement that's
in the lower half of the preceding sample. This is where the magic happens and you
can put in any ASP code that you want to use as your verification process.

Verifying usernames
The process of user and password verification is where the real power of ASP
comes into play. You can compare a user's submitted credentials to literally any
information store that offers a query interface, and that you know how to interact
with. The Windows Operating System comes prepopulated with a huge selection of
COM objects, which you can utilize to interact with your data source. The simplest
example is the FileSystemObject, which allows you to read files directly from the
server's hard drive.

For example, consider the following screenshot:

Chapter 7

[111]

The preceding sample is not UAG-specific, but rather just simple ASP code to read a
file off the hard drive and parse its contents to look for the username and password.
In the preceding code, we read the flat text file users.txt, which is a semicolon-
separated list of user+password combinations formatted as user%password. We read
the content of the file into a variable, and then use the split command to convert
that list into an array. We then go through the array, member by member, and
compare the values to get a successful authentication. If none of the users match, we
leave the function with the fail code, similar to what we used earlier.

Alternatively, one can use the ReadLine method, and go through a user list file
where each line contains a username and password set. Whatever code you write
or use depends mostly on your creativity, and your comfort level with writing and
testing ASP code.

Working with an SQL database
One of the more popular custom repositories uses SQL as its database, and this is
also pretty easy, as SQL has built-in functions for effective searching, even if the
database contains a huge number of users. To interact with SQL, Windows offers the
built-in ADODB object. All you have to do is initialize it, and create an SQL Select
query to poll the user's name and password from SQL.

The following screenshot shows the sample code:

The code defines the name of the SQL server, DB name, and the SQL user which has
access to the user's list table. It then creates an SQL query to select the table rows that
match the user's username and password, and executes the query. After this, if the
resulting collection is not empty, it means that at least one record matches both the
username and password, and that's what we want. Otherwise, there is no match and
the authentication fails.

Custom Authentication Repositories

[112]

The preceding example is far from programming best practices as it is not very secure,
due to the database's user being hardcoded into the code, and listed in plain text. For
our example this is good enough, though in real-world deployments, a better approach
would be to use the ODBC administrative tool to create the DB connection (also
known as a DSN), and then just call it from the code. This way, the user credentials are
not shown, and if you change the username or password, you can simply edit the DSN
settings, instead of the code itself as shown in the following screenshot:

There are countless guides and articles out there which discuss using ASP code to
interact with a database. One of the nice things about the ADODB object is that it
can just as easily interact with an Oracle DB, a local access (MDB) file, or even an
Excel file. The following article lists connection strings for popular data sources:

http://support.microsoft.com/kb/300382.

More elaborate code
Other than SQL and other databases, you can create a custom repository to interact
with pretty much anything. We already mentioned that you can interact with any
COM API that is built into Windows, and another such example is ServerXMLHTTP,
which allows your ASP code to interact directly with web servers. You can use it to
send GET and POST requests, and retrieve the response body or headers.

http://support.microsoft.com/kb/300382
http://support.microsoft.com/kb/300382

Chapter 7

[113]

In fact, you are not limited to just built-in objects. This is one of the wonderful things
about COM objects—any system that has a COM API can be used. This may entail
installing some client software on the UAG server, or simply registering a DLL file.
Most authentication providers in the world are LDAP-compliant (such as Sun iPlanet
or Novell NDS). However, if you have another, as long as it has an ASP-compatible
COM object, it's mostly a matter of learning how to interact with it.

One aspect of processing a user's credentials is the fact that username formatting can
vary. Some organizations prefer that their users use the common domain\username
format when logging in, while others may prefer the username@domain format (also
referred to as UPN). Many systems, such as Exchange, are designed to support either
of those automatically, but your custom repository will not do so automatically.
Before writing your code, it's vital that you understand what users prefer to use as a
format, as it's not always obvious, and at the same time habits can change, so make
sure your code is as agnostic as possible. Ideally, it would be able to handle any
possible option.

Consider the following screenshot for example:

The preceding code accommodates all options—it starts by looking for either a
forward or backslash (domain\user or domain/user), and if it doesn't find this
format, looks for the @ sign. If this comes up empty as well, it will deduce the user
simply fed in a username with no domain at all, and will populate the sDomain
variable with the organization's default domain name.

Custom Authentication Repositories

[114]

Testing and debugging your code
One of the challenges of doing this kind of work is testing and debugging. We
haven't discussed how to actually integrate the code with the UAG portal, but we
will go through that soon. At some point you will have to create the custom files and
do a real test with a browser connecting to the UAG trunk. However, before getting
there, you better start with simple testing. If you were to do the testing with a real
client, you will probably waste a lot of time, as the effort of reconnecting to the portal
on each fix-and-retry, not to mention the time it takes for the activation to complete
are a real hassle.

To out help comes CSCRIPT, the VBScript interpreter that is built into Windows.
All you have to do is write your credential verification code as a standalone file,
and save it somewhere with a .VBS extension. Then, configure Windows to execute
the script using the CSCRIPT engine by running the following command in an
administrative command prompt:

Cscript //h:cscript

Now, run your script, and if there's anything wrong, you will receive an error
indicating what's up. If it's not an error, but some bug, you can also use the wscript.
echo command to provide you with visual feedback about the progress of the script.
Here are additional things you need to keep in mind:

•	 With VBS files, you don't need to start and end your code with <% and %>
•	 With VBS files, you initialize an object with CreateObject and not Server.

CreateObject

•	 If you are referring to local files on the system, you cannot use the Server.
MapPath method, but need to define the path fully

For example, this is how the SQL sample code from earlier would look when written
as a VBS with debug output:

Chapter 7

[115]

Once this passes successfully without any bugs, you can continue to the next step
of creating an actual repository from this code, but keep in mind that when the
code is deployed, you may need to do additional debugging. For this, you might
want to implement some tracing. As you may recall from the previous chapters,
this involves adding lines such as the following to the code:

HEAVY_TRACE "Error processing user name " & user_name

You can add as many of those as you want, and they have no effect on server
performance, so tracing as much info as possible is a good idea. If your code is
misbehaving, you can enable tracing using the UAG Trace tool, and the trace
will show the info that was collected during the session.

Custom Authentication Repositories

[116]

Putting it all together
Once your code is ready, the next step is putting it all together. This is actually a
rather simple process. Make sure your code is formatted correctly:

•	 Get rid of the wscript.echo commands or replace them with trace
commands

•	 Make sure the file starts and ends with <% and %>
•	 Make sure objects are initialized with server.createobject
•	 Make sure the code is within one of the UAG-specific repository functions,

such as AuthenticateRepositoryUser
•	 Verify if the code handles the credentials received as parameters of the

function, unlike in the VBScript
•	 Potentially, the code may need to use some other UAG specifics, such as

UAG session variables, which would not be available in a test VBS
•	 Save the file under /InternalSite/inc/CustomUpdate with a name of

your choice, and the extension .INC

Note that the name you will choose for the file will be the name you define as the
repository's name in the UAG user interface, so it would be a good idea to have
one that makes sense.

Once the file is there, follow these steps:

1.	 Launch UAG's management console and from the Admin menu head into
Authentication and Authorization Servers.

2.	 Click on Add Authentication Server to create a new repository.
3.	 From the drop-down of the repository type, select Other.
4.	 Type a name for the repository that matches the name you gave your INC

file (just the filename, without the extension!).
5.	 Click on OK.
6.	 Configure your trunk and applications with the new repository.
7.	 Activate the UAG configuration.
8.	 Test everything!

Chapter 7

[117]

Summary
As always, this is just the beginning, as the things you can do with a custom
repository are amazing. By integrating a custom repository with other repositories,
you can do even more advanced things, such as working with OTP authentication
or Certificates. The only limit is your imagination. To help facilitate more ideas,
we recommend looking at the five sample files that are in <UAG Folder>\Von\
InternalSite\Samples, which contains several other interesting functions that
can allow UAG to interact with various information sources. In the next chapter,
we will look into things you can do post authentication, and that's when things
really become crazy....crazily awesome, that is!

Extending the Login
Process with Customization

For the end user, everything starts with logging in to the UAG portal, but that
doesn't mean it ends there. Like most of UAG's functionalities, the login process
code is open and accessible to the administrator, and that allows you to integrate
a special kind of magic into it. In this chapter, we will discuss the following topics:

•	 The UAG authentication flow
•	 Creating a Post Post Validate file
•	 Integrating your own code and interacting with UAG's COM object
•	 Putting data into the session
•	 Adding parameters
•	 Sending data to the backend server
•	 More ideas

The UAG authentication flow
The UAG authentication flow actually starts before the logon page is seen by the
user. As the browser calls the initial trunk URL, UAG automatically directs the user
to a page that initializes the session parameters (Initparams.aspx) in case the user
does not yet have an existing session. Once a session is initiated, UAG attempts to
detect the presence of its endpoint components on the client, and if they do not yet
exist, they are offered to the user through the normal Active-X installation dialogs.
Only then is the user sent to the login page, following their decision to allow
component installation, or decline and continue with limited functionality (web
application publishing only and also no socket forwarding, no SSTP or network
connector, no endpoint detection, and no endpoint-cleanup).

Extending the Login Process with Customization

[120]

While the preceding info is not directly related to authentication, it's important to
know that information collected during this phase can be vital to what then follows,
and ultimately to how UAG then applies its access controls and security policies. For
example, UAG may have been configured to block access to all Windows platforms,
such as Macintosh computers, and so users connecting from a Mac OS will be sent an
access-denied page instead of the regular login page. So in terms of customizations,
it's all very well adding code here and there to achieve whatever, but as a general
rule, you should always fully evaluate your approach and plan carefully. Particularly
when your work involves authentication! Of course there are other examples, but the
point we're making is that it's important to understand UAG's flow and mechanisms
as each component can have a great influence over another. As you can see from the
flow diagram in the previous chapter, there are many files and hooks that make up
the authentication process and those are really the ones you need to know, but for
anyone more curious and interested in mapping things out a little, the following is
the complete list:

Hook file Calling file
Login.inc Login.asp

LoginForm.inc Login.asp

PreValidate.inc Validate.asp

ValidateSuccess.inc Validate.asp

ValidateFailed.inc Validate.asp

PostValidate.inc Validate.asp

LoginChangePassword.inc LoginChangePassword.asp

LoginChangePasswordForm.inc LoginChangePassword.asp

PreValidateChangePassword.inc ValidateChangePassword.asp

ValidateChangePassword.inc ValidateChangePassword.asp

ValidateChangePasswordSuccess.inc ValidateChangePassword.asp

ValidateChangePasswordFailed.inc ValidateChangePassword.asp

PostValidateChangePassword.inc ValidateChangePassword.asp

LoginContinue.inc LoginContinue.asp

LoginContinueForm.inc LoginContinue.asp

PreValidateContinue.inc ValidateContinue.asp

ValidateContinueSuccess.inc ValidateContinue.asp

ValidateContinueFailed.inc ValidateContinue.asp

Chapter 8

[121]

Hook file Calling file
PostValidateContinue.inc ValidateContinue.asp

PrePostValidate.inc PostValidate.asp

PostPostValidate.inc PostValidate.asp

LoginChooseUser.inc LoginChooseUser.asp

LoginChooseUserForm.inc LoginChooseUser.asp

Notes.inc Notes.asp

As far as users are concerned, they are completely oblivious to what goes on during
the login sequence, as UAG obfuscates most of this and even hides the real filenames
from being shown in the browser's address bar, to only show PortalHomePage.

Once the user has reached the login page and submitted their credentials, UAG calls
the validation page (validate.asp), which then calls several other INC files such
as repository.inc, which we discussed in the previous two chapters. Then once
validation has completed successfully, the RedirectToOrigUrl.asp page takes care
of sending the user back to the URL they originally typed in.

As part of the validation process, UAG has a built-in hook for a process known as
Post Post Validate. This is a call to a file which does not exist by default, but you can
add it, and within it, run your own code, smack in the middle of the login process.
In actual fact, UAG also has another customizable hook that gets called even earlier
in the process and this is referred to as Pre Validate. Most of your time will be spent
focusing on the later of these two but there are situations where you'll need to consider
this instead. For instance, a simple use of Pre Validate might be to change the way in
which a user's credentials are formatted before UAG tries to validate them. Or maybe
just nice to have, such as adding some sort of CAPTCHA mechanism to the login page
to mitigate against bot attacks. As you can see, there are definitely some good uses for
this but it's the Post Post Validate that'll really keep you busy.

So at a high level this is how things flow, but now you know that UAG is actually
doing a lot more in the background. Go ahead and take a look and you'll see that
the validation process is not just a single page—it actually does call for multiple
INC files as part of its routine, and that's where things get interesting.

Extending the Login Process with Customization

[122]

When planning, the first few questions that you should be asking yourself are
the following:

•	 What are you trying to achieve?
•	 How can you achieve this and where is the place to inject your code?
•	 Is it covered by Microsoft's supportability statement on UAG?
•	 How are you going to test this before going into production?

Once you have these worked out, you can then begin looking at the code itself.
Essentially that's it and there's not much required other than creating an INC
file in the right location, and within it you place the ASP code that runs after the
authentication process is completed, and before the user is sent to the URL he
wanted to go-to. The results are very effective and a simple post-validate hook
could be used to send the user to a disclaimer page that stipulates the requirements
or conditions to using your site and the applications it contains. However, it doesn't
stop there. You can probably think of other uses, such as a portal FAQ or the like.
The nice thing at this point is that the user already has an active session, and that
session has the user's information, including any data collected during the endpoint
detection process. This means that your code can take advantage of this for various
purposes. For instance, just some of the many things you'll see before the user
has logged in are their source IP address, computer name, computer's domain
membership, and much more. If you so desire, you could even make decisions
based on that information, such as redirecting the user to a certain application, or
even a different UAG server altogether. The things you can do with this integration
are amazing, so let's start exploring!

Creating a Post Post Validate file
To create a custom Post Post Validate file, follow these steps:

1.	 Navigate to <UAG Path>\Von\InternalSite\Inc\CustomUpdate.
2.	 Create a new text file in that folder.
3.	 Name the file according to your trunk name, type, and with the suffix of

postpostvalidate.inc. As with most custom INC files, if you have named
your trunk UAGPortal, and it is an HTTPS trunk, the resulting filename
would be UAGPortal1postpostvalidate.inc. For an HTTP trunk, use 0
instead of 1.

4.	 Create ASP code inside that file, enclosed in the standard <% %> structure.

Chapter 8

[123]

Activating UAG is not required for this new file to be acknowledged and testing can
be performed immediately, but whatever happens, be sure to activate at some point
as the change will need to be pushed into the TMG storage and ultimately received
by other members if you run an array.

Naturally, keeping the code bug-free is important, because if your code errors out, no
one will be able to log in to the portal until you fix it, so always be careful. Standard
debugging techniques we discussed in earlier chapters, such as enabling full error
messages on the server and adding debug code (using the built-in HEAVY_TRACE
functions) apply here as well.

Integrating your own code and
interacting with UAG's COM object
Now that you have a file in place, let's see what you can do with it. The following is
a simple example:

The preceding file does something rather simple, but amazingly powerful. It invokes
the function GetSessionParams (which is located in \von\InternalSite\inc\
SessionMgr.inc) to populate the cPolicies collection with the various parameters
that were collected as part of the session. Then, the script uses a for-each loop to go
through that collection, to print out the name of each parameter and its returned value.
Since this piece of code runs right after a user has logged in, in the context of the user's
session, this will simply print out a list of all parameters for that specific session.

Just consider the wealth of information these parameters contain and you'll soon
realize the possibilities they offer and the fact that you can use them for some many
different purposes. For example, you could use the response.redirect method to
launch one of the portal applications if the computer is running a required service
pack for your operating system of choice, or send them to a download page for that
service pack if not.

Extending the Login Process with Customization

[124]

Another thing that many users want to do is keep a log of the collected parameters,
or at least some of them. UAG does keep a log of all sessions, but not of the session
parameters. Using the SystemFileObject COM object, you could dump the entire
list of values into a text file on the local hard drive, or maybe even run a SQL
query to push this data straight into a database. The following is a code sample for
dumping the parameters to a flat file on the UAG server:

The preceding code goes through the entire parameters collection (cPolicies.
ParamVec) and for each of them builds an HTML table row containing the parameter
name and value. It also looks for the parameter named Nonce, which stores the
client's unique session ID. Once the loop is finished, the entire table is dumped into
a text file that is named using the session ID and the system's current time and date.
Simple huh? Doing this with SQL instead of a file would involve initializing the
ADODB object, and building an INSERT INTO command with the value sets, followed
by simply executing that command to store the session data into the table. One
thing that's important to keep in mind is that the parameter list is pretty long and
you should expect to be using-up about 15 KB per session. This doesn't sound like
very much and particularly for today's hard drives or SQL databases that provide
an abundance of storage space, but it does add up and if your server is very busy,
it could accumulate to a significant amount of data. Also, if the server is heavily
used, the additional effort in processing these transactions per login could have
some impact on performance. A way to optimize this would be to collect just the
parameters you actually need. For example, the list of parameters relating to AV
products alone is somewhere around the 200 mark. It may be sufficient to collect
only those relating to the AV products you permit, or maybe collecting just the
Installed value and disregarding the Running and UpToDate values.

Chapter 8

[125]

Putting data into the session
We just saw how you can retrieve session data, but in a similar fashion, you can also
put your own data into the session. The following is a function that does that:

AddSessionUser g_cookie,"User","Password","Repository"

The function AddSessionUser resides in \Von\InternalSite\Inc\SessionMgr.
inc, and as you've probably guessed, is used to add a user's submitted credentials
into the session, so as to use them later for single sign on. By invoking this function
ourselves in PostPostValidate.inc, we can also take advantage of this to add extra
credentials into the session for any chosen repository. What would that be good for,
do you ask? Well, one good example is when users are required to authenticate to an
application that does not use the same repository that a trunk is configured with for
initial login. In this scenario, the application would need credentials that it can expect
to validate and authenticate against whatever directory or scheme it is configured
with, and so those entered by the user at login would fail during SSO. To explain
this further, users will typically have a primary set of credentials to log in to their
domain, but might then also possess a different set altogether to access a restricted or
isolated application that may not be domain integrated. Or another close situation is
where an application expects the user's login ID to be in a different format to how it
was entered by the user, and in turn stored in UAG's session cache for SSO.

Extending the Login Process with Customization

[126]

This is a perfect example of where you could incorporate the necessary code to
perform some rudimentary manipulation. In such a situation, you might have
a database to store these specific credentials, and would use a simple SQL query
with the ADODB object to handle the translation. For example, consider the
following screenshot:

A much better solution would be to have your code encrypt the credentials in the
database. However for the preceding example, we've kept it simple, and jump
straight into retrieving the lead user associated with the session by using a for-each
loop to extract the user ID from the collected session info. Then we issue an SQL
query to see whether any rows in the table UserTable match that user ID. If found,
we collect the credentials from the corresponding rows and add them to the session
using the AddSessionUser function, or send a trace error if there were no matches.

It's important to remember that UAG will already do this by default for every user
that authenticates to a trunk, where their credentials are added to the session and
associated with the repository that was used to authenticate them. There are no
limits on the amount of credentials that can be added to a client session, and equally
on how many sets of credentials UAG can be associated with any repository, but you
should be aware that associating more than one set of credentials to a repository will
leave UAG prompting the user for which they would like to use for SSO.

Chapter 8

[127]

This is a standard behavior and the LoginChooser.asp file is responsible for
controlling this. A suggestion for getting round this would be to create a new
Other repository that would be used to hold our second set of credentials for
and ultimately to perform SSO by adding it to the application's Authentication
tab. As far as your INC file is concerned, you would just need to make sure
AddSessionUser referenced the new repository.

This type of configuration is often referred to as using a dummy repository and
you'll find that a similar configuration can also be applied to control access of
applications through the Authorization tab. Nice and simple, wouldn't you agree?

Adding parameters
Another thing you can do with PostPostValidate is injecting your own information
into the session parameters table. Normally, these are collected using the endpoint
detection mechanism (we spoke about customizing that in Chapter 3, Customizing
Endpoint Detection and Policies), but you can add more right here using the function
SetSessionParamWithType. This function has the following syntax:

SetSessionParamWithType g_cookie, <Parameter Name>, <Parameter value>,
<type of parameter>

This function also resides in \Von\InternalSite\Inc\SessionMgr.inc and is used
extensively by other code pieces.

Extending the Login Process with Customization

[128]

This structure can be used to perform operations on data collected as part of the
endpoint policy, or by the server itself, and then inject the results into the session
itself. For instance, you can check the current time and convert the result to some
flag or value. Once you put that flag back into the session, you can have the session
policy allow or deny access to an application based on it. The following is the code
for the same:

<%
intLoginTime = timer
if intLoginTime > 0 and intLoginTime< 32400 then
 bolNightSession = true
else
 bolNightSession = false
end if
SetSessionParamWithType g_cookie, "Night_Session", bolNightSession,
"Policy"
%>

This is useful if you want to control access to the server based on the time of day.
The timer system variable returns an integer representing the server time in
seconds, between 0 (midnight) and 86399 (one second before the next midnight).
The preceding sample uses 32400, which is 9 AM. Naturally, you can perform other,
more advanced calculations and gain unprecedented control over the policy, or
collect very accurate data about server usage.

One specific trick many people are trying to work out is getting the user's IP. This
parameter is actually collected by the endpoint detection script, but you cannot use
it as part of an endpoint policy. This is with good reason, as the client's IP address is
far too easy to spoof to serve for any serious security filtering. If, however, you need
it for a more academic or less serious use, you can use PostPostValidate to convert
the parameter into one you can use. The following code explains the same:

<%
strIP = GetSessionParam (g_cookie, "SourceIP")
SetSessionParamWithType g_cookie, "SourceIP_Policy", strIP, "Policy"
%>

Chapter 8

[129]

The preceding code fetches the parameter SourceIP, which is normally an internal
parameter, which is as such inaccessible to the endpoint policy, and injects it back with
a different name and type. Now, you can refer to this as part of the endpoint policy!

Sending data to the backend server
Another nice trick you can pull with PostPostValidate is pushing data directly to
a backend server in the HTTP Headers or the URL parameters. This could be useful,
for example, if you want your backend server to be able to recognize that a request
is coming from UAG, as opposed to a regular user that is accessing it. Another use
could be if you want the app to be aware of the user even if there's no single-sign-on
happening. For this, the following function is used:

SetSessionResourceParam g_cookie, <Application ID>, <Authorization
Key>, <Value>

For this to work, you also need to configure the relevant application. Let's say you
are publishing your organization's ERP application and you want to give it the user's
username in the request header. To do this, follow these steps:

1.	 Create the application and test it normally.

Extending the Login Process with Customization

[130]

2.	 Open the Application Properties window, and obtain the Application ID
from the General tab, as shown in the following screenshot:

3.	 Choose a header value that is unique, and type it in the Authorization key
in the application's Web Settings tab:

Chapter 8

[131]

4.	 Create the following code in PostPostValidate:

<%
set colUserVec = getsessionuservec(g_cookie)
for each strUser in colUserVec.uservec
 strUserName = strUser.User
Next
SetSessionResourceParam g_cookie,
"5353F5EFB81E437F89B33D726F5417BF", "ERPUSERNAME, strUserName
%>

Now, when a user accesses the application, the logged on username will be sent
as the value of the header ERPUSERNAME.

More ideas
The preceding info is just the tip of the iceberg, of course, as the things you can
achieve by manipulating the session info are endless. The flexibility that ASP code
provides you in pulling and pushing data from and to various resources, and the
ability to manipulate the data using any VB command that ASP supports are a
very powerful combination. If you really want to hone your knife, open the file
SessionMgr.inc that we mentioned earlier, and inspect the various functions it
offers to see if there are additional things that pick your interest. The file has about
50 functions, mostly related to the session info. In addition, the following are a few
articles with further ideas:

•	 The following article suggests a way to customize the Remote Desktop
application in order to have a user connect automatically to his own desktop,
as well as other related ideas:
http://technet.microsoft.com/en-us/library/ff607330.aspx

•	 The following article discusses redirecting users to alternative servers based
on their information. The article was written for IAG, but the same code and
principle applies to UAG as well:
http://technet.microsoft.com/en-us/library/dd278156.aspx

•	 The following blog post discusses the topic of Source IP address binding,
and how to use it:
http://blogs.technet.com/b/edgeaccessblog/archive/2010/03/
18/what-is-the-bind-the-source-ip-address-to-the-session-
option.aspx

Extending the Login Process with Customization

[132]

•	 The following post describes configuring UAG to send request headers
to published web applications using AppWrap:

http://blogs.technet.com/b/edgeaccessblog/archive/2010/05/09/
how-to-configure-uag-to-send-request-headers-to-published-web-
applications.aspx

In addition to the preceding list, the topic is also frequently discussed in various
UAG-related forums, and many of them include interesting ideas and informative
code samples. Be sure to check these out!

Summary
In this chapter, we have discovered the power that manipulating the session data
gives you, and discussed a few ideas of how to take advantage of that in making
your UAG server and applications go above and beyond. In the next chapter, we
will see how you can customize the client components to your advantage.

Customizing Endpoint
Components

The endpoint components deployed by UAG to its clients (despite being almost
invisible to the end user), pack quite a punch. They control the SSL Tunnel that the
client uses for application tunneling; they wipe sensitive data off the client computer
at the end of a session and can even reconfigure a computer's routing table to create
the VPN connection of the network connector. Customizing these components is
rare, but can help you provide a fantastic user experience.

In this chapter, we will explore the following topics:

•	 Adjusting the list of components pushed to clients by default
•	 Adding links to the portal for the client installation
•	 Customizing SSTP

Controlling component deployment
As you already know, as soon as a user types in the URL of a UAG application or
portal, the first step is for UAG to detect if the user has the client components, and
if not, install them. By default, UAG is configured to install only the basic set of
components, which include the Client Component Manager, the Endpoint Session
Cleanup component (also known as the Attachment Wiper), and the endpoint
detection component. This means that if the portal hosts the SSL-VPN tunneling
application (also known as the network connector), or some other application
that requires SSL-VPN tunneling, launching these applications will require the
installation of these additional components. This experience is somewhat unsavory,
as the additional installation requires a browser restart. The solution is to customize
the list of components installed by the portal automatically.

Customizing Endpoint Components

[134]

The list of components is controlled by the file \von\InternalSite\InstallXml.
asp, which would be called in the following two situations:

•	 Upon entry to the portal, if the client components do not exist and need to
be installed or upgraded

•	 When an application is launched from the portal

Upon portal entry, InstallAndDetect.asp calls InstallXml.asp in a stage 1
mode, which instructs the component manager to install, by default, only the
following components:

•	 Client Trace Utility
•	 Endpoint Detection
•	 Endpoint Session Cleanup
•	 Endpoint Session Cleanup Configuration
•	 Socket Forwarding Helper
•	 Endpoint Quarantine Enforcement Client
•	 SSL Network Tunneling_64

SSL Network Tunneling_64 is not the actual tunneling component—it is just a
helper component for it.

When an application is launched, the file \Von\InternalSite\StartApp.asp
is called, and depending on the type of application, it may include the stage=2
or stage=4 parameter in the URL, which triggers an installation of additional
components. Stage 2 mandates installation of SSL Application Tunneling. Stage 4
includes installation of Socket Forwarding.

InstallXml.asp is an ASP file that generates XML code that includes certain client
components using the response.write command. For example, the Stage 2 piece
looks similar to the following screenshot:

Chapter 9

[135]

If we want to have UAG automatically install additional components, all we have
to do is to add the ASP/XML code using a custom file. To do so, follow these steps:

1.	 In the \Von\InternalSite\inc\CustomUpdate folder, create a new file.
2.	 Name the file InstallXml.inc.
3.	 Within the file add the following code:

4.	 Save the file and activate the UAG configuration.

As you can probably guess, the second line instructs UAG to install the SSL
Application Tunneling component (also known as the SSL Wrapper), and the
third line installs the SSL Network Tunneling (also known as network connector).
Lines 5 to 10 install the Socket Forwarding component, and also enable the three
possible activation modes for the socket forwarder.

The socket forwarding activation modes are defined on the Client
Settings tab of the applications you add to the UAG portal. In the
Basic mode, the socket forwarder performs the forwarding only
for interactive applications, and not for non-interactive ones (such
as Windows services). In the Extended mode, traffic is forwarded
for all applications, interactive or not. In the VPN mode, the socket
forwarder component is always active, even before the SSL VPN
tunnel is established.

Note that if you add the file this way, it will apply to all trunks configured on
the server. You can set it, though, to apply to only a specific trunk by naming
it using the standard UAG naming convention, where the file is named <Trunk
Name><1/0>InstallXml.inc. For example, if your trunk is named UAGPortal, and
it is an HTTP trunk, the target file should be named UAGPortal0InstallXml.inc.

Customizing Endpoint Components

[136]

Adding links to the portal for the client
installation
As you probably know, in addition to the automatic installation of client components,
UAG also comes with the client components as an installable Microsoft Installer
(MSI) package. This allows a pre-emptive installation of the components on corporate
computers, and can also sometimes help in case the online installation fails for some
reason. When there is a need to provide the installation package to a user, a useful
thing would be to provide a link to it so it could be downloaded directly from the UAG
server, rather than having to use an e-mail attachment or some other mechanism.

UAG actually does part of that already. The installable packages are all located, in
the PortalHomePage folder, by default:

In fact, if you type in the URL for one of them in your browser, you would be
able to download it directly. However, this requires that the client already has
an authenticated UAG session, which may not be possible if he is having problems
with the client components or if you want them installed before portal access.

The answer is to put the components in a place that is accessible without an
authenticated session—in the InternalSite folder. This brings about the following
three challenges:

•	 Access to URLs under InternalSite is restricted by default, so you need
to place the files in a subfolder that is less restricted, or alternatively, create
a URL-Set rule to allow access to it

Chapter 9

[137]

•	 You need to make sure you place the file in a location that will not be
removed with future UAG updates or service pack

•	 If you have an array, then you need to place the file in a place that is
automatically synchronized between array members, or make sure you
place it there manually on all members

Ultimately, the location itself is not that critical and where you put them will come
down to personal choice. An obvious location, however, would be to create a folder
named On-DemandAgent under InternalSite, as that folder already has a URL-Set
rule permitting access to anything under it. The OTP folder under InternalSite is
another location that is already accounted for by a predefined URL set. Alternatively,
you could place it directly in CustomUpdate under InternalSite, and then simply
create a URL-Set rule to allow it. Something along these lines:

Note that we named the rule as number 99 intentionally. The rule set for UAG at this
point in time has 60 rules for InternalSite, but future updates to UAG may add
more, so we want to leave a decent amount of space to reduce the risk of our rule
being overwritten in such a case.

With this in place, you could simply type the following URL into any browser:

https://<your_trunk>/internalsite/customupdate/whlclientsetup-all.msi

Customizing Endpoint Components

[138]

It should recognize the content type and offer to open or save the file. However, you
probably want to take it to the next level, and place a link to it on the UAG portal
itself. One place to do so would be the logon page itself. For this, you can customize
the language file for the trunk, similar to what we discussed in Chapter 2, Customizing
UAG's Look and Feel, and having one of the strings that are used in that page. Simply
add the <A> HTML tag with the proper link within a CDATA element. Naturally, if
the trunk's policy requires the endpoint components to have already been installed
in order to access the login page, you might also put that link into the error page that
would be displayed if the user does not have the components (that would be string
ID 342 from /InternalSite/Languages/en-US.xml). For example, consider the
following screenshot:

In addition to this, you can also customize the portal itself to display a link to
the installer. Instructions for this are provided as part of the UAG technical
documentation on TechNet at the following URL:

http://technet.microsoft.com/en-us/library/ee861162.aspx.

Chapter 9

[139]

Customizing SSTP
SSTP is one of the strongest features UAG offers, making it a fully-fledged VPN
solution that does not require any preconfiguration of client computers. The
configuration options for SSTP, though, are somewhat limited. For example, SSTP does
not allow for split tunneling, nor does it allow for the client to register itself in DNS,
which is very useful if you need to establish connections to non-managed clients.

However with a simple customization, these two can be achieved, as well as
additional fine-grained control of UAG's SSTP. The secret to achieving this is in
the fact that UAG uses a Phone Book (PBK) file to hold the settings used by the
client. With other VPN servers, the user creates a VPN connection entry, which is
saved inside the user's PBK file, rasphone.pbk, typically located at %AppData%\
Microsoft\network\connections\Pbk. When UAG is in use, it creates a custom
SSTP.pbk file, which is extracted from the file WhlClntProxy.cab, itself a part of
the client components. This file is saved on the client, and when the user clicks on
the Remote Network Access icon on the portal, it is launched in the background
to establish the VPN connection.

If you were able to edit the default SSTP.pbk, you could control many settings
yourself, but unfortunately, the CAB file used by the client components is digitally
signed to prevent harmful tampering. However, the PBK file itself is a simple text
file, which enables us to modify its content, if you know how!

We should note that the following technique is strongly related to the topics
discussed in Chapter 5, Creating Custom Application Templates, but we decided
it was more appropriate to discuss it here, as it is more pertinent to client-side
customizations. If you have skipped Chapter 5, Creating Custom Application Templates,
you should go back and read it through, as it lays the background.

The process we need to use here is based on customizing the VPN template used for
the remote network access, and populating it with a VBScript that will modify the
content of the SSTP.pbk file dynamically on the client before it is launched. We are
actually creating a secondary application, which modifies the client components on
the client, as opposed to changing the default SSTP application template. Once this
application is in place, you will have to configure it as a prerequisite application for
the SSTP application. The following is the code snippet:

<template name="SRScript" userrights="562" use-with-lsp="yes"
win="yes"><!--Windows-->
<port id="0" flags="1" ip2relay="169.1.1.169" remoteport="222"/>
<config-file flags="1" path="%Temp%\SSTPFix-%InternalAppID%.vbs"
use-with-lsp="yes"><![CDATA[

Customizing Endpoint Components

[140]

Const ForReading = 1
Const ForWriting = 2
strFileName = "%CommandLine%"
strOldText = "%CommandLineArguments%"
strNewText = "%CommandLineArguments2%"
Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.OpenTextFile(strFileName, ForReading)
strText = objFile.ReadAll
objFile.Close
strNewText = Replace(strText, strOldText, strNewText)
Set objFile = objFSO.OpenTextFile(strFileName, ForWriting)
objFile.WriteLine strNewText
objFile.Close
]]>
</config-file>
<exec exe="cscript %temp%\SSTPFix-%InternalAppID%.vbs" flags="4"
param=""/><!--Windows-->
</template>

You can find the preceding code in the book's code folder, along with the
accompanying custom WizardDefaultParam.ini code. The preceding code is a
simple VBS function that takes three inputs—a source file, a search string, and a
replace string. When it is integrated into the SSL VPN template this way, it will execute
against the file named C:\Program Files\Microsoft Forefront UAG\Endpoint
Components\3.1.0\sstp.pbk, and look for the text IpPrioritizeRemote=1, and
replace it with IpPrioritizeRemote=0. This is comparable to editing the PBK file
directly in the connection GUI and disabling the option Use default gateway on
remote network, as shown in the following screenshot:

Chapter 9

[141]

The option itself forces the VPN connection to not use the default gateway configured
on the client computer, which enables forced-tunneling for the connection (also
known as non-split tunneling). Using the same method, you could also change the
text IpDnsFlags=0 to IpDnsFlags=1, which would enable the option Register this
connection's addresses in DNS, similar to checking this option in the GUI:

To make things clear, the preceding code needs to be implemented through a
custom SSLVPNTemplates.xml file and must be structured within the standard
<config><templates version="3" use-lsp="1">..... </templates> </
config> format. This custom file then needs to be saved in \von\Conf\CustomUpdate,
and corresponding WizardDefaultParam.ini file will need to be saved to the \von\
Conf\WizardDefaults\CustomUpdate folder. Once added, you should close and
reopen the management console for UAG to acknowledge the new application. Then
head into the applications list and select our custom SSTP application.

Customizing Endpoint Components

[142]

Step through the wizard until you get to the preceding dialog, which will allow
you to specify the location of the pbk file and also the options you wish to search
for and replace.

As noted earlier, this new application will have to be launched with or before the
actual SSTP application, so configure it as a prerequisite application. You may
also configure it to automatically launch with the login to the portal by enabling
the option Start the application automatically at user logon. Naturally, the
configuration will need to be activated afterwards and doing this will affect all
clients. The UAG PBK file contains many other settings which are worth looking into,
as you might find other things you might want to change. To extract the file and
inspect it, simply go to \von\InternalSite\Win32\ActiveX and double-click the
file WhlClntProxy.cab. In it, find SSTP.pbk and copy it somewhere, and then open
it with a text editor of your choice, such as notepad:

Chapter 9

[143]

Summary
In this chapter, we discussed some of the things you can do to enhance the experience
on UAG clients with customizations. As you can see, there are not that many options
there, but those that do exist could be vital to many organizations. In the next chapter,
we will discuss a few remaining tidbits, as well as some more general customization
thoughts and ideas. Don't go away, we're not done yet!

Additional Customizations
We have covered many types and variants of customizations in this book, but some
do not really fit into a particular category, and this is what this chapter is about. Some
of these may not even seem like a customization, but they are extremely important
nonetheless. In this chapter, we will look at the following topics:

•	 Customizations to the UAG console
•	 Remote management and monitoring of UAG
•	 Additional files you can customize
•	 Extending file access with DFS shares
•	 Skipping cookie signing
•	 Custom logouts

Customizations to the UAG console
You probably noticed this already in your endeavors with UAG—the activation
process completes and the console notifies you with the pop-up, but the changes you
made don't appear to have taken effect. In fact, they always do take effect, but only a
few minutes after the pop-up is shown. What actually happens is that the activation
itself finishes, but the TMG side of the house remains busy synchronizing data with
TMG storage, and that can take an additional 2 to 3 minutes. The more intricate the
configuration the longer this takes, and if you don't wait those extra minutes, you'll
probably notice that changes have not taken effect, but at the same time you will
not be able to reactivate until the sync has completed. Those making the odd change
from time to time can simply activate and wait a few minutes, but when faced with
countless activations, a much better option is to enable informational messages.

Additional Customizations

[146]

This configures UAG to display more detailed information about what it is doing
during this process and the output is shown at the bottom part of the UI. To turn
that on, follow these steps:

1.	 Open the UAG console.
2.	 Open the Messages menu and click Filter Messages.
3.	 Check the left informational messages option.
4.	 Click OK.

From now on, when you activate the configuration, you will see a lot of info
displayed, and it will eventually reach Waiting for TMG storage to synchronize,
and finally activation completed successfully. Only then will your activation be
truly complete.

Chapter 10

[147]

A final note on this is that if you are running an array of UAG servers, don't expect
the message bar to show you what's going on with other array members. For that,
you will have to use the Activation Monitor, which you can find in the UAG folder
on your start menu.

Remote management and monitoring
of UAG
Most administrators use remote desktop to take control of their UAG server rather
than working on the server locally. However, unless you installed your server using
remote desktop, you may find that you are unable to connect to it. This is not a
bug, but an out-of-the-box security mechanism that's intentionally there to protect
UAG from unauthorized access. Remote access to UAG is then only permitted from
sources that have been explicitly listed in TMG. So as an administrator, you would
need to add your required sources to the predefined remote management object. To
do so, the following steps are to be carried out:

1.	 Open the TMG console.
2.	 Click on Firewall Policy.
3.	 On the right-hand side of the screen, go to Toolbox.
4.	 Expand Network Objects.
5.	 Expand Computer Sets.
6.	 Double-click on Remote Management Computers.

It's probably worth mentioning that modifying the TMG configuration directly is
normally not supported, but the preceding procedure is one rare exception to the don't
touch TMG rule where remote access is a must. The reality is that most administrators
are tempted to use TMG to its full potential, and with all of its features it's difficult
not to. Just keep in mind that not only is this not supported, but adding user-defined
TMG rules may invariably conflict with the configurations that UAG is responsible
for managing.

Additional Customizations

[148]

Add to that group any computer, address range, or subnet you wish to grant access
from, as shown in the following screenshot:

As with the Remote Access rule, other configurations may go unnoticed, but in some
cases it can also introduce enough of a conflict to prevent UAG from successfully
activating. Another thing that's worth bearing in mind is that it's also tempting to
add the entire subnet for your corporate network, but this does nothing for security
and presents unnecessary risk. A potential hacker would still need to be a domain
admin (or local admin) to cause real damage to UAG, but we're sure that this is
something you wouldn't want to encourage, given that your UAG links your internal
network to the public Internet…right?

Chapter 10

[149]

Remote management software
Many organizations prefer to use third-party solutions to manage their servers,
and a common requirement in almost every case is that the management server
remains in dialog with an agent running on the managed device. With this, you
might run into issues as TMG will block such requests. As before, adjusting the
TMG configuration manually is not supported, but don't despair, as there is a way.
What you want is to convince TMG to allow data through, and a supported way
of doing this is simple—use a Client/Server application template. These templates
include a configuration for a server or servers, and port or ports, and as part of
that, UAG will configure TMG to allow that traffic. To do so, follow these steps:

1.	 Open the UAG console and add a new application.
2.	 From the Client/Server and legacy application template group, select

Generic Client Application if the communication used is with one target
server and using one TCP/IP port. Select Generic Client Application
(Multiple Servers) if you want to allow access to many servers, or to one
server using multiple ports.

3.	 Give the application a name to your liking.
4.	 In the Server Settings page, specify the details. If you need to specify

multiple ports in the Generic Client Application (Multiple Servers)
application, do so with a comma between numbers. You can also use
a range like 20-40.

5.	 In the Portal Link page, disable the option Add a portal and toolbar link,
as your users will not be using this application.

6.	 Finish the wizard and activate the configuration.

Monitoring UAG health by SIEM software or a
load balancer
Infrastructures are becoming more complex by the day and the requirements for high
availability and Disaster Recovery (DR) are forcing corporations into moving their
systems into secure data facilities which most of the time are completely unmanned.
In this scenario, we're often left not knowing if things are running smoothly until it's
too late, so a fairly common approach to avoid high impact is to remotely keep an
eye on the server's, and ultimately UAG's, health.

Additional Customizations

[150]

Health monitoring could also be required if you have an array of UAG servers that
were front ended by an external load balancer. In this arrangement, a load balancer
would need to persistently monitor the status and availability of its UAG targets in
order to validate their availability and whether all of them are accepting connections
or not responding. Another common scenario is if your organization uses a Security
Information Event Monitoring (SIEM, also known as SIM or SEM) to keep track of
servers and key devices and in turn notifying the operations teams, if one goes down.

Most of these solutions offer some kind of connectivity-checking capabilities, and
you may have instinctively already set it to monitor UAG. However, there's a
very good chance that you have done so incorrectly. If so, it's likely that UAG will
perceive the monitoring software's connections as user sessions, and will try to keep
track of them. This isn't ideal, as the frequent checks waste valuable UAG server
resources, and worse case may even trip a flood-mitigation alert in TMG, which will
cause it to block connections from the monitoring component completely. Naturally,
this will also cause the UAG activity log to inflate, which will in turn make it hard or
impossible for you to query the logs for usage data. They will either return a huge
number of irrelevant events, or the log will be so large that it will cause a memory
exception in the log parser.

TMG, being an enterprise-class firewall, monitors incoming traffic,
and a repeating pattern may be considered a flood attack. When
TMG interprets traffic as such, it may block the traffic, causing
your monitoring device to think the server is not responding. This,
of course, is not very desirable. For more information on flood
mitigation in TMG, visit the following URL:
http://technet.microsoft.com/en-us/library/
dd441028.aspx.

The right way to do it is to set the monitoring component to check UAG's pulse in a
way that will not appear as a connecting user. For this, the following steps are to be
carried out:

1.	 Create a text file named test.vbs.sig.
2.	 Put some unique string in the file, which would not exist in another UAG

page (the name of your favorite character from Star Trek, perhaps?).
3.	 Place the file in \von\internalsite\CustomUpdate\.
4.	 Configure your load balancer to make a request for https://<Your

portal>/internalsite/customupdate/test.vbs.sig to perform
its monitoring.

Chapter 10

[151]

5.	 Activate the configuration.
6.	 Set the load balancer to see the result as positive or alive, if the content of

the request matches the string you have used in step 2.

The reason for using a file with this extension (.vbs.sig) is that UAG's default URL
Set will allow access to that file without requiring you to manually edit the URL Set.

In addition, carefully consider the frequency of the polling, as a setting that is too
frequent could still trigger the flood mitigation in TMG. Please review the article
listed previously, and configure the polling frequency accordingly.

Additional files you can customize
In the various chapters, we have referred to many files you can or cannot customize,
while also having discussed the special CustomUpdate folders. You may have
already noticed that there are close to 50 different folders out there, but that doesn't
mean you can just drop any file in there and it will be eaten up by UAG. In fact, only
certain files of the default file sets are supported for customization. This doesn't mean
that Microsoft Customer Support will support anything you change to those files
that are supported, just that UAG has the existing code to be able to parse those files.
You might find yourself wondering, then, which files are actually customizable and
which aren't. The answer to this is that the files that are supported get called by a
special function named include Application. You can see that function in several
files. For example, here it is in \Von\InternalSite\Login.inc:

Additional Customizations

[152]

This format tells UAG to look for a file named after the trunk (g_site_name), and the
secure flag of 0 or 1, and then the suffix, set in the constant LOGIN_INC. That constant
is set in another file, \Von\InternalSite\inc\IncludeFiles.inc, alongside the
constant files names for many other such files. For example:

As you can see in the preceding screenshot, this refers to files we dealt with before,
such as Logo.inc and PostPostValidate.inc. This is also where you can find the
answer regarding which files you can customize—if a filename is referred to here, it
means UAG has the Include Application function somewhere to call it, meaning
that if you put it in CustomUpdate, it will be included and used. This doesn't mean
that the customization will be simple. Take logo.inc, for example—the original file
has the following code in it:

Chapter 10

[153]

If you try to copy the file and change the HTML alone, it would cause UAG to
produce a 500 error because the code is recursive. For such a trick to work properly,
you will need to remove the if/then/else/end if structure and leave only the
HTML. You should be able to put your own ASP code in there, if needed, of course,
but make sure that the include application function is removed so as to not cause
a conflict.

When going through UAG's code, you might find yourself in
need of finding where a certain function or command appears. A
useful command for this is the FINDSTR, which you can use in
a command prompt. Typically, you would use it with the /I and
/S options to tell the search to not be case-sensitive and search
subfolders. For example:
Findstr /I /S /c:"include application" *.asp
This will show each of the 19 files that have this function in them.

In addition to these files, some other files can also be customized. For example, we
have already discussed in Chapter 2, Customizing UAG's Look and Feel, how you can
drop icon images files into CustomUpdate and UAG will use them automatically.
You can do the same with many other files, but unfortunately, there's no list of these
or any concrete way of telling which would work and which wouldn't other than by
trial-and-error.

Additional Customizations

[154]

It's very important to keep in mind, though, that customizing UAG's code files
is tricky and risky. While many of them will be called and processed if put into
CustomUpdate, their code is not always designed to work correctly in this situation,
which could result in an error such as the 500 error we mentioned previously.
Furthermore, these files often change as part of UAG updates and service packs,
and so a newer file may refer to functions or variables your custom file does not
have, also leading to various possible issues. In other words, we recommend you
focus your attention on customizing the supported INC files, and look into others
only if no other choice exists. If you do have no choice, experiment to see if the file
you want to touch can be customized or not (copying it into CustomUpdate and
adding some line of text or output-generating command would be a reasonable
way to check) and if so, tread carefully and perform a lot of testing.

Extending File Access with DFS shares
The File Access application built into UAG has fantastic capabilities, but also some
limitations. One of these is lack of support for DFS shares. By this we mean that you
will not even see DFS shares as they just do not appear. Technically, the application
can connect to DFS shares, but the admin tool is unable to enumerate them, so you
cannot add them. There is, however, a custom way of forcing File Access to use
them. This entails editing the XML file which contains the list of servers and shares
you selected with the admin tool.

All changes made in the File Access UI are written to this file in real time, so don't be
alarmed if you see the contents change when the file is opened in an editor.

The process of editing the file is as follows:

1.	 Navigate to your UAG install directory, under \von\fileaccess.
2.	 Open the UAG management console.
3.	 Backup the ShareAccesscfg.xml file and then using a text editing tool, open

the original.
4.	 Within the <Servers> section, add an item for your domain using the

following format:
<server name="<Your Domain>\<Your DFS namespace>" marked="1"
provider="MS" />

5.	 Within the <Shares> section, add an item for each DFS share using the
following format:
<share name="<Your Domain>\<Your DFS Namespace>\<DFS Share Name>"
marked="1" provider="MS" />

Chapter 10

[155]

6.	 Save the file.
7.	 Activate the UAG configuration.

One thing you might consider doing before saving and activating is to validate the
XML syntax. Other than using your own eyes for this, a tool such as the one found
at the URL http://validator.w3.org/ can help make things a little easier.

You should be aware that changes made to this file can be overwritten by UAG, as
the TMG storage has a copy of the previous configuration (even if it is blank). In this
case, you would still be able to make your required changes, but they will not remain
permanent as any of the following four actions will simply overwrite the contents of
the file with whatever UAG finds in the TMG storage for File Access:

•	 Activating or closing and reopening the management UI
•	 Clicking Reload Configuration from the File menu in the UAG

management UI
•	 Restarting the UAG Configuration Manager service
•	 Restarting the UAG server

The reason for this is that UAG holds its running configuration in several locations,
such as the server's memory and the TMG storage, in addition to its file-level
structure, so the trick to work around this and make your changes permanent is to
do the following:

1.	 Close the UAG management console.
2.	 Set the IgnoreTMGStore registry to entry to 1 as per the following KB article:

http://technet.microsoft.com/en-us/library/ee809087.aspx.
3.	 Make your changes to the ShareAccesscfg.xml file.
4.	 Restart the Microsoft Forefront UAG Configuration Manager service.
5.	 Launch the UAG management console.
6.	 Restore the IgnoreTMGStore registry entry to 0.
7.	 Activate the UAG configuration.

The preceding sequence should force a purge of all UAG configuration data while
allowing your changes to be written back to TMG storage. Once complete, you
must avoid ever making any further changes in the UAG File Access UI, as this
will overwrite all of your good work.

Additional Customizations

[156]

In the following screenshot we have added line breaks and formatting to the XML.
Your own file would be one continuous line. You may format it for convenience,
though it is not required:

Another thing to note about this is that the same technique can be used to configure
UAG to provide access to shares manually, in case the share enumeration that the
admin tool performs cannot be used. This may be the case, for example, if the domain
or network are not configured to allow the share enumeration process, or if the
amount of servers and shares is very large and takes the tool too long to complete.

Skipping cookie signing
As you probably know, in addition to signing URLs in the contents of pages
delivered to the client, UAG also performs a similar process with cookies sent by
the server. The reason is the same—to be able to match the cookies to the application
the user is using and forwarding them to the correct backend server, and only
it. However, occasionally you might find yourself needing to avoid that process.
Typically, this would be required for applications that have client-side handling
code, which would not be able to see these cookies, as their name is different from
what the application would be expecting.

Chapter 10

[157]

One specific example of this is PeopleSoft, which uses multiple cookies, and quite
a lot of client-side code to handle them. When publishing this application with the
standard template, UAG will sign all the cookies, and that will cause the client-side
code to think the user's session with the PeopleSoft server has expired, and send
him/her to an error page:

This type of situation is not always simple to resolve, as it would typically require
some level of reverse-engineering of the application's code, to find out what it is
expecting and why it is falsely thinking the session has expired. In this case, this is
triggered by a JavaScript function similar to the above, on the right (the preceding
code is not PeopleSoft's copyright-protected code, of course). The function looks for
a cookie by name, and when it fails to find it, redirects to the error page. In such a
case, the solution is to craft a custom SRA file (see Chapter 4, The Application Wrapper
and SRA, if you need to refresh your memory on those) which will instruct UAG
to not sign the cookie. There is no specific command to avoid the signing, but
configuring UAG to remove the cookie's path and domain will trigger this behavior.

The following is a sample SRA file to handle two of the PeopleSoft cookies:

Additional Customizations

[158]

The preceding sample shows the two common schemes—find the cookies by
application type and URL, and find the cookies by server name. We should point
out that the preceding code is not a complete solution to problem you may face with
publishing PeopleSoft. Different versions of it require different changes, in addition
to using the correct server name or application URLs.

Custom logouts
Customizing the logout pages is a confusing case of mixed simplicity and complexity.
On one hand, it's really simple to adjust the path in the UAG's user interface:

However, on the other hand this simplicity also hides a few dangerous curve balls.
The problem is in the fact that the login and logout code is extremely important,
and a code bug in there may lead to horrible results that can be hard to predict or
trace. For example, during logout, UAG clears some important cookies. If you have
customized the logout page in a way that circumvents the cookie clearing code, the
cookies left behind may confuse UAG's user- and session-tracking mechanisms and
lead to various errors and strange behavior.

Chapter 10

[159]

Another thing that handles cookies is the Endpoint Cleanup
component, which is a part of UAG's endpoint components. Some
customers choose to disable the endpoint components without
realizing that this could leave the client computer with cookies that
may contain sensitive data. This is not only a security risk, but also
a session management risk. In such a situation, if the user connects
to a published app with old cookies in place, it could confuse the
application as it tries to figure out if the user does already have a
session or not.

An additional pain point comes from the fact that Microsoft does change UAG's
code as part of updates and service packs of the product, and these changes may
include changes to the Login or Logoff pages, and changes to other code that depend
on it. In such a situation, UAG will not be able to update your custom file, and that
could lead to a problem. For example, when UAG SP1 came out in early 2011, many
customers with custom Login pages discovered their customization was no longer
compatible with other code, causing various errors. This is typically not very hard
to fix—you just need to apply whatever customizations were added to the original
login.asp file, to the new login.asp file. However, some companies had their
customization done by a third-party consultant, and were not even aware of it and
unsure how to resolve the situation.

To customize these pages, the following regular process applies:

1.	 Copy the original file into \Von\InternalSite\CustomUpdate.
2.	 Edit the file, and make changes to it as needed.
3.	 Adjust the path in Advanced Trunk Configuration to match the new file

(note that the login page path should not start with a slash).

In case you are wondering there's no need to adjust the rule set, as the default rules
are already prepared for a custom Login and Logoff (InternalSite rules 1 and 12):

Additional Customizations

[160]

If you do need to customize these pages, this is not much different than customizing
any ASP page, but the following are some things to keep in mind:

•	 Prefer to adjust the contents by changing the strings in the language files, as
described in Chapter 2, Customizing UAG's look and feel.

•	 If customizing, Login.asp is needed. See if you can achieve your goal
by using a custom login.inc instead of touching the ASP itself (\von\
InternalSite\inc\CustomUpdate\login.inc).

•	 Base your custom files on the default files, rather than create them from
scratch, and make every possible effort to avoid removing any of the original
UAG code from your custom file, unless you know very well what it does
and have a good reason to believe it will do no harm.

•	 Perform thorough testing of your code, deeper than any other testing you
regularly do. If you can employ a tester to help, even better!

If you are customizing Logoffmsg.asp, pay close attention to the multiple include
file commands. The file has seven of those, and they refer to a specific file location
which becomes invalid if you run the file from another folder. To get around this,
change the command from Include File to Include Virtual, and the path from
inc/ to InternalSite/inc/.

Chapter 10

[161]

Another important thing to know about customizing the logoff process is the
difference between Logoff URL and Logoff Message. The latter is the file that
UAG will call when the user clicks on the Logoff button (the file you would be
customizing!), but the former is a URL pattern that will trigger UAG's logoff process.
This is useful for situations where you are publishing an application that has its own
Logoff button. In such a situation, you might prefer that the application's button will
trigger a logoff from the UAG portal rather than logoff just the application while
leaving the UAG session active. UAG actually does this for you when publishing
certain applications, such as SharePoint or OWA. This is somewhat related to stuff
we discussed briefly in Chapter 4, The Application Wrapper and SRA. Back then, we
saw how UAG hides OWA's Logoff button so that the user will use the UAG Logoff
button instead of OWA's.

However, UAG has another piece of AppWrap which, when OWA is used without
the portal frame replaces the regular OWA logoff code with code to trigger the
UAG's logoff page (there are several of these, for the various OWA versions and
variations—one such example is in lines 504 to 511 in the default AppWrap file).

For example, let's say you are publishing a PeopleSoft server. It would have a Sign
Out button, which triggers a URL similar to /psp/EMPLOYEE/HR/?cmd=logout,
as we can see in the following source code. If you want UAG to logoff the session
when the user clicks on that button, configure the Logoff URL in UAG to the string
cmd=logout URL, and that's it!

Naturally, this needs to be well researched by analyzing the application, as it could
be a double-edged sword. If, for example, PeopleSoft has some other URL that is part
of the normal operation of the app, but contains that string, it will be an epic fail, as
executing that operation will log the user off unintentionally. Tread carefully!

Summary
This is it! Having read through this entire book, you should have a solid
understanding of UAG's customization framework, and you may be able to fully
grasp the immense power customization gives you. You may also be seeing how
flexible UAG is with its ability to take your own code and configuration to a much
more extensive degree than most other software products out there.

Additional Customizations

[162]

Forty years ago, when the market for personal computers boomed, tweaking and
customizing was what drew some of the most amazing innovators into this field.
With UAG, this is exactly the kind of fun you can have, developing your own
creative solutions and new ways to accomplish your goals. It may be tricky walking
the path that is supported, but once having gotten used to that, we are sure you will
achieve great things!

Before signing off, we would like to acknowledge some people whose great work
and research with UAG has contributed to some of the creative thoughts and ideas
expressed in this book, or to the world of UAG customization:

•	 Alexandre Giraud
•	 Assaf Ronen
•	 Billy Price
•	 Bryan Goldstein
•	 Chris Cooper
•	 Dan Herzog
•	 Dan Watson
•	 Dennis Lee
•	 Doc Miller
•	 Dominik Zemp
•	 Dror Melovany
•	 Dror Zelber
•	 Eli Tovbeyn
•	 Eyal Peri
•	 Faisal Hussain
•	 Frederic Esnouf
•	 Ian Parramore
•	 Idan Plotnik
•	 Jan Tietze
•	 Jason Jones
•	 Jeff Lilleskare
•	 John Neystadt
•	 John Redding

•	 Masoud Hoghooghi
•	 Meir Mendelovich
•	 Michel Biton
•	 Mike Havens
•	 Mohit Saxena
•	 Ophir Polotsky
•	 Ori Yosefi
•	 Phil Bevan
•	 Pradeep Bethi
•	 Ran Dolev
•	 Renan Gutman
•	 Renato Menezes
•	 Richard Barker
•	 Richard Hicks
•	 Ron Gilad
•	 Tarun Sachdeva
•	 Thomas Detzner
•	 Tom Shinder
•	 Tom Sullivan
•	 Uri Arjitecter
•	 Uri Lichtenfeld
•	 Yan Mintz
•	 Yassine Khelifi

Index
Symbols
<ID>GuiWidth parameter 86
<PARSER_EXCEPTION> configuration 70
<replace> tag 66
@ symbol 78

A
Action attribute 70
ActivateSmugglingProtection parameter 74
Active Directory. See AD
Active Directory type 17
AD 97
AddSessionUser function 125
admin page

customizing 32, 33
ADODB object 111, 112
Advanced User Guide for IAG

URL 67
AllowPostWithoutContentTyp setting 85
AllowWebdav parameter 83
AMS 14
API 95
application icons, portal

about 34, 35
Nav-Bar icons 35

application programming interface. See API
application-specific hostname 18
AppWrap

about 58, 67, 68
and SRA configuration files 59
and SRA engine, working 60-62
syntax 64, 66

Array Management Server. See AMS

ASP code
debugging 25, 26
editing 25, 26
reading 25, 26

ASP.NET 24
ASP web-scripting interface 24
Attachment Wiper 133
AuthenticateRepositoryUser function 109
AuthenticateUserOut object 110
Authentication tab 127
Authorization tab 17

B
backend server

data, sending to 129-131
Base64 61
Basic mode 135

C
CA 55, 93
calling file 120, 121
CanBeInitialApp setting 85
canonical name. See CN
CAPTCHA mechanism 121
Cascading Style Sheets. See CSS
CDATA

about 37
formatting 37

CDATA element 138
cert authentication

about 98
cert.inc file 99, 100
Login.inc file 100
repository.inc file 101
Validate.inc file 100

[164]

certificate authentication
about 91
advantages 93
concepts 92
troubleshooting 103-106

Certificate Authority. See CA
cert.inc file 99
Certutil 94
Character Data. See CDATA
client installation

links, adding to portal 136, 137
clients

portal, selecting 39-41
CMD-Shell commands 78
CN 100
code

debugging 114, 115
testing 114, 115

COM object 44, 113
computer certificates 95
content alteration 58
cookie signing

skipping 156-158
Create as script option 51
Cryptographic Service Provider. See CSP-

API
cryptographic store

about 94
computer store 94
current user store 94
services store 94

crypto store. See cryptographic store
CSCRIPT 114
CSP API 95
CSS 24
Current User container 95
CustomUpdate 22, 23, 153
CustomUpdate scheme 40

D
data

putting, into session 125-127
sending, to backend server 129-131

Data Change function 66
DATA_CHANGE function 64
DB connection 112

DebugEcho
statement 53

DefaultSchema setting 85
detection

editing 40
expression 40

detection script
about 45
client component detection component ,

version checking 45
custom detection script, creating 48
custom detection script, placing 48
custom detection script, tips 49
custom detection script, with endpoint poli-

cies 49-52
debugging 53, 54
DNS Suffix, checking 46
domain membership, checking 46
Endpoint Session Cleanup component, ver-

sion checking 45
environment variables, retrieving 46
file existence, checking 46
local user's access level, checking 46
modification date, checking 46
operating system version, checking for 47
registry key, reading 46
Service Pack level, checking 46
SSL-VPN Tunneling component, version

checking 46
troubleshooting 53, 54
UAG hostname. value checking 46
Whale.AttachmentWiperVersion method

45
Whale COM object 45
Whale.DetectorVersion method 45
Whale.ExternalHost method 46
Whale.FileSystem.DateLastModified

method 46
Whale.FileSystem.Exist method 46
Whale.FileSystem.ProductVersion method

46
Whale.Processes.Filter method 46
Whale.Registry.RegRead method 46
Whale.ShowDebugMessages method 46
Whale.SSLVPNVersion method 46
Whale.System.ExpandEnvironmentStr

method 46

[165]

Whale.System.IsModuleLoaded method 46
Whale.System.LoggedOnUserPrivileges

method 46
Whale.System.MachineDNSSuffix method

46
Whale.System.MachineDomain method 46
Whale.WindowsServicePackVersion

method 46
Whale.WindowsSoftware method 47
Windows components, checking for 47

DFS shares
adding, to file access 154-156

disabled icons 34
Disaster Recovery. See DR
Distinguished Name. See DN
DLL 46
DN 97
DNS Suffix 46
domain membership 46
DOS-Shell command 75
DR 149
DSN. See DB connection

E
echo off statement 78
e-Gap 15
EGF file 14
EKU 99
endpoint certificate policies 92
Endpoint Cleanup component 159
endpoint detection

about 43
in real world 54
working 43-45

endpoint policies
custom detection script with 49-52

end user interface
Credentials Management page 30
Endpoint Components Installation page 30
Endpoint Detection page 30
Error pages 30
Login page 30
portal frame 30
Portal page 30
Web Monitor 30

Enhanced Generic Client Application
template 88

Enhanced Key Usage. See EKU
Extended mode 135

F
FBA 20
FDQN 106
FIDDLER tool 26
file access

DFS shares, adding 154-156
files

for customization 151-154
FIM solution 94
FINDSTR 153
FOB 94
forced-tunneling 141
for-each loop 126
Forefront Identity Manager (FIM) 83
Forms-Based Authentication. See FBA
From 64 button 62

G
GetAuthenticatedUserDetails function 109

H
HAT

about 20, 59
hook file 120, 121
Host Address Translation. See HAT
HTML 24
HTTPS trunk 63
HTTP trunk 63
HTTPWatch tool 26
HyperLink

URL 40

I
Icon URL 35
iFrame tag 70
illegal characters 61, 62
image path 85
IMG HTML tag 59

[166]

input tag 68
InstallAndDetect.asp 134
InstallXml.asp 134
InternalSite folder 30
InternalSite site trace flag 14
InternalSite tracing 104
ISAPI filter 15

K
KCD 102
KCD SSO

configuration, prerequisites 103
Kerberos Constrained Delegation. See KCD
keychain 94

L
limited portal 31
Login button 20
Login.inc file 100
login page

customizing 32, 33
Logoff button 161
Log Off button 58-62
logout pages

customizing 158-161
LongDesc 85

M
machine certificates. See

computer certificates
manipulation section 66
ManualURL setting 84
MaxHTTPBodySize parameter 74
Microsoft Forefront Identity Management

2010. See FIM solution
Microsoft Installer. See MSI
MSI 136
multifactor authentication. See

strong authentication

N
Nav-Bar icons 35
network connector 133
non-split tunneling 141

O
ODBC administrative tool 112
OpenNewPage setting 85
OTP folder 137
OWA 58

P
parameters

adding 127, 128
Parameters tab 17
PassLogoffToRWS parameter 83
path setting 84
PBK 139
Phone Book. See PBK
PKI 95
portal

application icons 34, 35
customizing 34
disabled icons 34
limited portal 31
links, adding for client installation 136, 137
premium portal 31
regular portal 31
selecting, for clients 39-41

PortalHomePage folder 30
portal hostname method 18
portal pages

user interface language, adding 37-39
Post Post Validate 121
Post Post Validate file

creating, steps 122
PowerShell 94
pre-emptive installation 136
premium portal 31
Pre Validate 121
Public Key Infrastructure. See PKI

R
regular portal 31
Remote Desktop Services (RDS) 82
remote management

about 147, 148
software 149

repository.inc file 101
response.redirect method 123

[167]

response.write command 134
Running value 124

S
sAMAccountName 97
SAM-Account-Name. See

sAMAccountName
SAN 97
SAR section 66
sDomain variable 113
SEARCH tag 66
secure channel 93
Secure Remote Access. See SRA
security center 44
Security Information Event Monitoring.

See SIEM
SEM. See SIEM
Server-Side Include. See SSI
Service Pack level 46
Service Principal Name. See SPN
SetSessionParamWithType function 127
ShortDesc 85
SIEM 150
sign_abs_path option 70
Sign out button 58, 60, 63
SIM. See SIEM
Simple Relay mode 87
Single Sign On. See SSO
Smartcard Logon 93-95
Smartcard User 93-95
Smartcard User certificate 95
Socket Forwarding component 135
soft certificate 96
SPN 102
SQL database 111, 112
SQL Select query 111
SRA

about 58
configuration file 69
syntax 68

SRA configuration files
and AppWrap 59

SRA engine
and AppWrap, working 60-62

SSI 24

SSL Application Tunneling component. See
SSL Wrapper

SSL Network Tunneling_64 134
SSLVpnTemplate parameter 85
SSL-VPN templates

about 74, 75
configuration 85, 86
settings 85, 86
SSLVPNTemplates.xml template, structure

87
storage 73

SSL-VPN tunneling application 133
SSL Wrapper 135
SSO 84, 102
SSTP

customizing 139, 140
strong authentication 93
Subject Alternative Name. See SAN
SubjectEMAIL field 101
SystemFileObject COM object 124

T
TechNet

URL 34, 138
templates

creating 76
creating, steps 76, 77
customizing 77, 78
parameters 79
WizardDefault file 79-82

Terminal Services (TS) 47, 82
text

changing 36
TGS 105
The Application Wrapper. See AppWrap
Ticket Granting Service. See TGS
TMG 105, 150
TMG Storage 49
TRACE function 26
trace.inc, code file 26

U
UA COM object

code, integrating 123

[168]

UAG
about 14, 96, 133
application-specific hostname 18
authentication 107, 108
authentication flow 16
certified endpoints 55
client components 16
configurations, storing 14
customization 21, 22
CustomUpdate 22, 23
CustomUpdate scheme 40
detecting 15
e-Gap 15
endpoint detection 43
GUID 16
HAT 20
login 15
management console 14
pages, fetching from applications 18
portal hostname method 18
portal, selecting for clients 39-41
security 27
settings, storing 14
Single Sign On 19
support boundaries 21, 22
trace.inc, code file 26
user-agent 17

UAG, authentication
about 107, 108
AuthenticateRepositoryUser function 109
AuthenticateUserOut object 110
flow 119, 120
function 109
GetAuthenticatedUserDetails function 109
UserMgrComLayer object 110

UAG certified endpoints 92
UAG console

customizations 145, 146
health monitoring, load balancer used 149,

151
health monitoring, SIEM software used

149, 151
monitoring 147, 148
remote management 147, 148

UAG customization
about 29
admin page, customizing 32, 33
login page, customizing 32, 33
portal application icons 34, 35
portal, customizing 34
text, changing 36
text changing, tips 39
UI pages 30, 31
user interface language, adding to portal

pages 37-39
UI pages

about 30
portal layout 31

unauthorized 19
UPN 97, 113
UpToDate value 124
User Access Controls (UAC) 79
user-agent 17
user certificates. See computer certificates
user interface language

adding, to portal pages 37-39
UserMgrComLayer object 110
username@domain format (UPN) 113
usernames

verifying 110, 111
User Principle Name. See UPN

V
Validate.inc file 100
Validation element 86
value attribute 69
VPN mode 135

W
Web Server type 93
Whale.AttachmentWiperVersion method 45
Whale COM object 45
Whale.DetectorVersion method 45
Whale.ExternalHost method 46
Whale.FileSystem.DateLastModified

method 46
Whale.FileSystem.Exist method 46

[169]

Whale.FileSystem.ProductVersion
method 46

Whale.Processes.Filter method 46
Whale.Registry.RegRead method 46
Whale.SecurityCenter, COM object 44
Whale.ShowDebugMessages method 46
Whale.SSLVPNVersion method 46
Whale.System.ExpandEnvironmentStr

method 46
Whale.System.IsModuleLoaded method 46
Whale.System.LoggedOnUserPrivileges

method 46

Whale.System.MachineDNSSuffix
method 46

Whale.System.MachineDomain method 46
Whale.WindowsServicePackVersion

method 46, 47
Whale.WindowsSoftware method 47
WhlFilter.DLL 14
Windows Management Infrastructure. See

WMI
WMI 44
wscript.echo command 114

Thank you for buying
Mastering Microsoft Forefront

UAG 2010 Customization

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Forefront UAG 2010
Administrator's Handbook
ISBN: 978-1-84968-162-9 Paperback: 484 pages

Take full command of Microsoft ForeFront
Unified Access Gateway to secure your business
application and provide dynamic remote access
with DirectAccess

1.	 Maximize your business results by fully
understanding how to plan your UAG
integration

2.	 Consistently be ahead of the game by taking
control of your server with backup and
advanced monitoring

3.	 An essential tutorial for new users and a great
resource for veterans

Microsoft Dynamics CRM
2011 Reporting and Business
Intelligence
ISBN: 978-1-84968-230-5 Paperback: 300 pages

Create better, smarter, professional reports in
Dynamics CRM 2011

1.	 Create easily understood, professional, and
powerful reports from disordered, scattered
data

2.	 Covers exciting new reporting features in
Dynamics CRM 2011 such as inline data
visualization and presentation, charts,
dashboards, fetchxml query based reports, BIDS
extension for SQL SRS based reports, and more

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics CRM 2011:
Dashboards Cookbook
ISBN: 978-1-84968-440-8 Paperback: 266 pages

Over 50 simple but incredibly effective recipes
for creating, customizing and interacting with rich
dashboards and charts to make the most of your
Microsoft Dynamics CRM data with this book
and ebook

1.	 Take advantage of all of the latest Dynamics
CRM dashboard features for visualizing your
most important data at a glance.

2.	 Understand how iFrames, chart customizations,
advanced WebResources and more can improve
your dashboards in Dynamics CRM by using
this book and eBook.

Microsoft SharePoint 2010
development cookbook
ISBN: 978-1-84968-150-6 Paperback: 276 pages

Over 45 recipes to take you from beginner to
professional in SharePoint Development

1.	 Learn the most important SharePoint 2010
development skills quickly

2.	 Progress through a carefully thought out
selection of topics that build upon each other as
you move through the book.

3.	 Build “schema” for SharePoint data and
leverage that schema appropriately in your
application.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Customization Building Blocks
	Introduction to UAG and how it works
	The UAG detection, login, and authentication flow
	Fetching pages from applications
	Single Sign On
	Host Address Translation (HAT)

	Customization and supportability
	The CustomUpdate mechanism
	HTML, CSS, JavaScript, ASP, and
ASP.NET
	Other web technologies
	Reading, editing, and debugging
ASP code
	A word about security
	Further reading
	Summary

	Chapter 2: Customizing UAG's
Look and Feel
	Honey, I wouldn't change a thing!
	The UI pages
	Customizing the login and admin pages
	Customizing the portal
	Portal application icons
	Changing texts
	Adding a user interface language
	Another tip for text changing

	Portal selection for clients
	Summary

	Chapter 3: Customizing Endpoint Detection and Policies
	How does endpoint detection work?
	Things you can do with custom
detection scripts
	Creating and placing a custom
detection script
	Custom detection script tips

	Integrating custom detection with endpoint policies
	Troubleshooting and debugging detection scripts
	Endpoint detection in the real world
	Summary

	Chapter 4: The Application Wrapper and SRA
	What content alteration can do for you
	The Application Wrapper and SRA configuration files
	How the AppWrap and SRA engines work
	Having your own way
	AppWrap syntax
	More fun with AppWrap

	SRA syntax
	Summary

	Chapter 5: Creating Custom Application Templates
	Building SSL-VPN templates
	Creating your own templates
	Template customizations and enhancements
	More parameters used in the template
	WizardDefault
	SSL-VPN specific settings and configuration
	Tying in to the SSL-VPN template list

	Summary

	Chapter 6: Custom Certificate Authentication
	Certificate authentication concepts and terminologies
	UAG and certificate authentication
	Understanding the pieces of cert authentication for UAG
	Login.inc
	Validate.inc
	Repository.inc
	Certificate authentication with KCD

	Troubleshooting certificate authentication
	Summary

	Chapter 7: Custom Authentication Repositories
	How does custom authentication work?
	Verifying usernames
	Working with an SQL database
	More elaborate code
	Testing and debugging your code
	Putting it all together
	Summary

	Chapter 8: Extending the Login Process with Customization
	The UAG authentication flow
	Creating a Post Post Validate file
	Integrating your own code and interacting with UAG's COM object
	Putting data into the session
	Adding parameters
	Sending data to the backend server
	More ideas
	Summary

	Chapter 9: Customizing Endpoint Components
	Controlling component deployment
	Adding links to the portal for the client installation
	Customizing SSTP
	Summary

	Chapter 10: Additional Customizations
	Customizations to the UAG console
	Remote management and monitoring
of UAG
	Remote management software
	Monitoring UAG health by SIEM software or a load balancer

	Additional files you can customize
	Extending File Access with DFS shares
	Skipping cookie signing
	Custom logouts
	Summary

	Index

