
www.allitebooks.com

http://www.allitebooks.org

Mastering Natural Language
Processing with Python

Maximize your NLP capabilities while creating amazing
NLP projects in Python

Deepti Chopra
Nisheeth Joshi
Iti Mathur

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Natural Language Processing with Python

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1030616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-904-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Deepti Chopra

Nisheeth Joshi

Iti Mathur

Reviewer
Arturo Argueta

Commissioning Editor
Pramila Balan

Acquisition Editor
Tushar Gupta

Content Development Editor
Merwyn D'souza

Technical Editor
Gebin George

Copy Editor
Akshata Lobo

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Deepti Chopra is an Assistant Professor at Banasthali University. Her primary
area of research is computational linguistics, Natural Language Processing, and
artificial intelligence. She is also involved in the development of MT engines for
English to Indian languages. She has several publications in various journals and
conferences and also serves on the program committees of several conferences
and journals.

Nisheeth Joshi works as an Associate Professor at Banasthali University. His
areas of interest include computational linguistics, Natural Language Processing,
and artificial intelligence. Besides this, he is also very actively involved in the
development of MT engines for English to Indian languages. He is one of the experts
empaneled with the TDIL program, Department of Information Technology, Govt.
of India, a premier organization that oversees Language Technology Funding and
Research in India. He has several publications in various journals and conferences
and also serves on the program committees and editorial boards of several
conferences and journals.

Iti Mathur is an Assistant Professor at Banasthali University. Her areas of interest
are computational semantics and ontological engineering. Besides this, she is also
involved in the development of MT engines for English to Indian languages. She is
one of the experts empaneled with TDIL program, Department of Electronics and
Information Technology (DeitY), Govt. of India, a premier organization that oversees
Language Technology Funding and Research in India. She has several publications
in various journals and conferences and also serves on the program committees and
editorial boards of several conferences and journals.

We acknowledge with gratitude and sincerely thank all our friends
and relatives for the blessings conveyed to us to achieve the goal to
publishing this Natural Language Processing-based book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Arturo Argueta is currently a PhD student who conducts High Performance
Computing and NLP research. Arturo has performed some research on clustering
algorithms, machine learning algorithms for NLP, and machine translation. He is
also fluent in English, German, and Spanish.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Working with Strings	 1

Tokenization	 1
Tokenization of text into sentences	 2
Tokenization of text in other languages	 2
Tokenization of sentences into words	 3
Tokenization using TreebankWordTokenizer	 4
Tokenization using regular expressions	 5

Normalization	 8
Eliminating punctuation	 8
Dealing with stop words	 9

Calculate stopwords in English	 10
Substituting and correcting tokens	 10

Replacing words using regular expressions	 11
Example of the replacement of a text with another text	 12

Performing substitution before tokenization	 12
Dealing with repeating characters	 12

Example of deleting repeating characters	 13
Replacing a word with its synonym	 14

Example of substituting word a with its synonym	 14
Applying Zipf's law to text	 15
Similarity measures	 16

Applying similarity measures using Ethe edit distance algorithm	 16
Applying similarity measures using Jaccard's Coefficient	 18
Applying similarity measures using the Smith Waterman distance	 19
Other string similarity metrics	 19

Summary	 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Statistical Language Modeling	 23
Understanding word frequency	 23

Develop MLE for a given text	 27
Hidden Markov Model estimation	 35

Applying smoothing on the MLE model	 36
Add-one smoothing	 36
Good Turing	 37
Kneser Ney estimation	 43
Witten Bell estimation	 43

Develop a back-off mechanism for MLE	 44
Applying interpolation on data to get mix and match	 44
Evaluate a language model through perplexity	 45
Applying metropolis hastings in modeling languages	 45
Applying Gibbs sampling in language processing	 45
Summary	 48

Chapter 3: Morphology – Getting Our Feet Wet	 49
Introducing morphology	 49
Understanding stemmer	 50
Understanding lemmatization	 53
Developing a stemmer for non-English language	 54
Morphological analyzer	 56
Morphological generator	 58
Search engine	 59
Summary	 63

Chapter 4: Parts-of-Speech Tagging – Identifying Words	 65
Introducing parts-of-speech tagging	 65

Default tagging	 70
Creating POS-tagged corpora	 71
Selecting a machine learning algorithm	 73
Statistical modeling involving the n-gram approach	 75
Developing a chunker using pos-tagged corpora	 81
Summary	 84

Chapter 5: Parsing – Analyzing Training Data	 85
Introducing parsing	 85
Treebank construction	 86
Extracting Context Free Grammar (CFG) rules from Treebank	 91
Creating a probabilistic Context Free Grammar from CFG	 97
CYK chart parsing algorithm	 98
Earley chart parsing algorithm	 100
Summary	 106

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 6: Semantic Analysis – Meaning Matters	 107
Introducing semantic analysis	 108

Introducing NER	 111
A NER system using Hidden Markov Model	 115
Training NER using Machine Learning Toolkits	 121
NER using POS tagging	 122

Generation of the synset id from Wordnet	 124
Disambiguating senses using Wordnet	 127
Summary	 131

Chapter 7: Sentiment Analysis – I Am Happy	 133
Introducing sentiment analysis	 134

Sentiment analysis using NER	 139
Sentiment analysis using machine learning	 140
Evaluation of the NER system	 146

Summary	 164
Chapter 8: Information Retrieval – Accessing Information	 165

Introducing information retrieval	 165
Stop word removal	 166
Information retrieval using a vector space model	 168

Vector space scoring and query operator interaction	 176
Developing an IR system using latent semantic indexing	 178
Text summarization	 179
Question-answering system	 181
Summary	 182

Chapter 9: Discourse Analysis – Knowing Is Believing	 183
Introducing discourse analysis	 183

Discourse analysis using Centering Theory	 190
Anaphora resolution	 191

Summary	 198
Chapter 10: Evaluation of NLP Systems – Analyzing
Performance	 199

The need for evaluation of NLP systems	 199
Evaluation of NLP tools (POS taggers, stemmers,
and morphological analyzers)	 200
Parser evaluation using gold data	 211

Evaluation of IR system	 211
Metrics for error identification	 212
Metrics based on lexical matching	 213
Metrics based on syntactic matching	 217

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Metrics using shallow semantic matching	 218
Summary	 218

Index	 219

Preface

[v]

Preface
In this book, we will learn how to implement various tasks of NLP in Python and
gain insight to the current and budding research topics of NLP. This book is a
comprehensive step-by-step guide to help students and researchers to create their
own projects based on real-life applications.

What this book covers
Chapter 1, Working with Strings, explains how to perform preprocessing tasks on
text, such as tokenization and normalization, and also explains various string
matching measures.

Chapter 2, Statistical Language Modeling, covers how to calculate word frequencies
and perform various language modeling techniques.

Chapter 3, Morphology – Getting Our Feet Wet, talks about how to develop a stemmer,
morphological analyzer, and morphological generator.

Chapter 4, Parts-of-Speech Tagging – Identifying Words, explains Parts-of-Speech tagging
and statistical modeling involving the n-gram approach.

Chapter 5, Parsing – Analyzing Training Data, provides information on the concepts
of Tree bank construction, CFG construction, the CYK algorithm, the Chart Parsing
algorithm, and transliteration.

Chapter 6, Semantic Analysis – Meaning Matters, talks about the concept and application
of Shallow Semantic Analysis (that is, NER) and WSD using Wordnet.

Chapter 7, Sentiment Analysis – I Am Happy, provides information to help you
understand and apply the concepts of sentiment analysis.

Chapter 8, Information Retrieval – Accessing Information, will help you understand and
apply the concepts of information retrieval and text summarization.

Preface

[vi]

Chapter 9, Discourse Analysis – Knowing Is Believing, develops a discourse analysis
system and anaphora resolution-based system.

Chapter 10, Evaluation of NLP Systems – Analyzing Performance, talks about
understanding and applying the concepts of evaluating NLP systems.

What you need for this book
For all the chapters, Python 2.7 or 3.2+ is used. NLTK 3.0 must be installed either on a
32-bit machine or 64-bit machine. The operating system that is required is Windows/
Mac/Unix.

Who this book is for
This book is for intermediate level developers in NLP with a reasonable knowledge
level and understanding of Python.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For tokenization of French text, we will use the french.pickle file."

A block of code is set as follows:

>>> import nltk
>>> text=" Welcome readers. I hope you find it interesting. Please do
reply."
>>> from nltk.tokenize import sent_tokenize

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[vii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on
the book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged
in to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[viii]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/ Mastering-Natural-Language-Processing-with-Python.
We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://github.com/PacktPublishing/%20Mastering-Natural-Language-Processing-with-Python
https://github.com/PacktPublishing/%20Mastering-Natural-Language-Processing-with-Python

[1]

Working with Strings
Natural Language Processing (NLP) is concerned with the interaction between
natural language and the computer. It is one of the major components of Artificial
Intelligence (AI) and computational linguistics. It provides a seamless interaction
between computers and human beings and gives computers the ability to understand
human speech with the help of machine learning. The fundamental data type used to
represent the contents of a file or a document in programming languages (for example,
C, C++, JAVA, Python, and so on) is known as string. In this chapter, we will explore
various operations that can be performed on strings that will be useful to accomplish
various NLP tasks.

This chapter will include the following topics:

•	 Tokenization of text
•	 Normalization of text
•	 Substituting and correcting tokens
•	 Applying Zipf's law to text
•	 Applying similarity measures using the Edit Distance Algorithm
•	 Applying similarity measures using Jaccard's Coefficient
•	 Applying similarity measures using Smith Waterman

Tokenization
Tokenization may be defined as the process of splitting the text into smaller parts
called tokens, and is considered a crucial step in NLP.

Working with Strings

[2]

When NLTK is installed and Python IDLE is running, we can perform the tokenization
of text or paragraphs into individual sentences. To perform tokenization, we can
import the sentence tokenization function. The argument of this function will be text
that needs to be tokenized. The sent_tokenize function uses an instance of NLTK
known as PunktSentenceTokenizer. This instance of NLTK has already been trained
to perform tokenization on different European languages on the basis of letters or
punctuation that mark the beginning and end of sentences.

Tokenization of text into sentences
Now, let's see how a given text is tokenized into individual sentences:

>>> import nltk
>>> text=" Welcome readers. I hope you find it interesting. Please do
reply."
>>> from nltk.tokenize import sent_tokenize
>>> sent_tokenize(text)
[' Welcome readers.', 'I hope you find it interesting.', 'Please do
reply.']

So, a given text is split into individual sentences. Further, we can perform processing
on the individual sentences.

To tokenize a large number of sentences, we can load PunktSentenceTokenizer
and use the tokenize() function to perform tokenization. This can be seen in the
following code:

>>> import nltk
>>> tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
>>> text=" Hello everyone. Hope all are fine and doing well. Hope you
find the book interesting"
>>> tokenizer.tokenize(text)
[' Hello everyone.', 'Hope all are fine and doing well.', 'Hope you
find the book interesting']

Tokenization of text in other languages
For performing tokenization in languages other than English, we can load the
respective language pickle file found in tokenizers/punkt and then tokenize
the text in another language, which is an argument of the tokenize() function.
For the tokenization of French text, we will use the french.pickle file as follows:

>> import nltk
>>> french_tokenizer=nltk.data.load('tokenizers/punkt/french.pickle')

Chapter 1

[3]

>>> french_tokenizer.tokenize('Deux agressions en quelques jours,
voilà ce qui a motivé hier matin le débrayage collège franco-
britanniquedeLevallois-Perret. Deux agressions en quelques jours,
voilà ce qui a motivé hier matin le débrayage Levallois. L'équipe
pédagogique de ce collège de 750 élèves avait déjà été choquée
par l'agression, janvier , d'un professeur d'histoire. L'équipe
pédagogique de ce collège de 750 élèves avait déjà été choquée par
l'agression, mercredi , d'un professeur d'histoire')
['Deux agressions en quelques jours, voilà ce qui a motivé hier
matin le débrayage collège franco-britanniquedeLevallois-Perret.',
'Deux agressions en quelques jours, voilà ce qui a motivé hier matin
le débrayage Levallois.', 'L'équipe pédagogique de ce collège de
750 élèves avait déjà été choquée par l'agression, janvier , d'un
professeur d'histoire.', 'L'équipe pédagogique de ce collège de
750 élèves avait déjà été choquée par l'agression, mercredi , d'un
professeur d'histoire']

Tokenization of sentences into words
Now, we'll perform processing on individual sentences. Individual sentences are
tokenized into words. Word tokenization is performed using a word_tokenize()
function. The word_tokenize function uses an instance of NLTK known as
TreebankWordTokenizer to perform word tokenization.

The tokenization of English text using word_tokenize is shown here:

>>> import nltk
>>> text=nltk.word_tokenize("PierreVinken , 59 years old , will join
as a nonexecutive director on Nov. 29 .»)
>>> print(text)
[' PierreVinken', ',', '59', ' years', ' old', ',', 'will', 'join',
'as', 'a', 'nonexecutive', 'director' , 'on', 'Nov.', '29', '.']

Tokenization of words can also be done by loading TreebankWordTokenizer and
then calling the tokenize() function, whose argument is a sentence that needs to be
tokenized into words. This instance of NLTK has already been trained to perform the
tokenization of sentence into words on the basis of spaces and punctuation.

The following code will help us obtain user input, tokenize it, and evaluate its length:

>>> import nltk
>>> from nltk import word_tokenize
>>> r=input("Please write a text")
Please write a textToday is a pleasant day
>>> print("The length of text is",len(word_tokenize(r)),"words")
The length of text is 5 words

Working with Strings

[4]

Tokenization using TreebankWordTokenizer
Let's have a look at the code that performs tokenization using
TreebankWordTokenizer:

>>> import nltk
>>> from nltk.tokenize import TreebankWordTokenizer
>>> tokenizer = TreebankWordTokenizer()
>>> tokenizer.tokenize("Have a nice day. I hope you find the book
interesting")
['Have', 'a', 'nice', 'day.', 'I', 'hope', 'you', 'find', 'the',
'book', 'interesting']

TreebankWordTokenizer uses conventions according to Penn Treebank Corpus. It
works by separating contractions. This is shown here:

>>> import nltk
>>> text=nltk.word_tokenize(" Don't hesitate to ask questions")
>>> print(text)
['Do', "n't", 'hesitate', 'to', 'ask', 'questions']

Another word tokenizer is PunktWordTokenizer. It works by splitting punctuation;
each word is kept instead of creating an entirely new token. Another word tokenizer
is WordPunctTokenizer. It provides splitting by making punctuation an entirely
new token. This type of splitting is usually desirable:

>>> from nltk.tokenize import WordPunctTokenizer
>>> tokenizer=WordPunctTokenizer()
>>> tokenizer.tokenize(" Don't hesitate to ask questions")
['Don', "'", 't', 'hesitate', 'to', 'ask', 'questions']

The inheritance tree for tokenizers is given here:

Chapter 1

[5]

Tokenization using regular expressions
The tokenization of words can be performed by constructing regular expressions in
these two ways:

•	 By matching with words
•	 By matching spaces or gaps

We can import RegexpTokenizer from NLTK. We can create a Regular Expression
that can match the tokens present in the text:

>>> import nltk
>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer=RegexpTokenizer([\w]+")
>>> tokenizer.tokenize("Don't hesitate to ask questions")
["Don't", 'hesitate', 'to', 'ask', 'questions']

Instead of instantiating class, an alternative way of tokenization would be to use
this function:

>>> import nltk
>>> from nltk.tokenize import regexp_tokenize
>>> sent="Don't hesitate to ask questions"
>>> print(regexp_tokenize(sent, pattern='\w+|\$[\d\.]+|\S+'))
['Don', "'t", 'hesitate', 'to', 'ask', 'questions']

RegularexpTokenizer uses the re.findall()function to perform tokenization
by matching tokens. It uses the re.split() function to perform tokenization by
matching gaps or spaces.

Let's have a look at an example of how to tokenize using whitespaces:

>>> import nltk
>>> from nltk.tokenize import RegexpTokenizer
>>> tokenizer=RegexpTokenizer('\s+',gaps=True)
>>> tokenizer.tokenize("Don't hesitate to ask questions")
["Don't", 'hesitate', 'to', 'ask', 'questions']

To select the words starting with a capital letter, the following code is used:

>>> import nltk
>>> from nltk.tokenize import RegexpTokenizer
>>> sent=" She secured 90.56 % in class X . She is a meritorious
student"
>>> capt = RegexpTokenizer('[A-Z]\w+')
>>> capt.tokenize(sent)
['She', 'She']

Working with Strings

[6]

The following code shows how a predefined Regular Expression is used by a
subclass of RegexpTokenizer:

>>> import nltk
>>> sent=" She secured 90.56 % in class X . She is a meritorious
student"
>>> from nltk.tokenize import BlanklineTokenizer
>>> BlanklineTokenizer().tokenize(sent)
[' She secured 90.56 % in class X \n. She is a meritorious student\n']

The tokenization of strings can be done using whitespace—tab, space, or newline:

>>> import nltk
>>> sent=" She secured 90.56 % in class X . She is a meritorious
student"
>>> from nltk.tokenize import WhitespaceTokenizer
>>> WhitespaceTokenizer().tokenize(sent)
['She', 'secured', '90.56', '%', 'in', 'class', 'X', '.', 'She', 'is',
'a', 'meritorious', 'student']

WordPunctTokenizer makes use of the regular expression \w+|[^\w\s]+ to perform
the tokenization of text into alphabetic and non-alphabetic characters.

Tokenization using the split() method is depicted in the following code:

>>>import nltk
>>>sent= She secured 90.56 % in class X. She is a meritorious student"
>>> sent.split()
['She', 'secured', '90.56', '%', 'in', 'class', 'X', '.', 'She', 'is',
'a', 'meritorious', 'student']
>>> sent.split('')
['', 'She', 'secured', '90.56', '%', 'in', 'class', 'X', '.', 'She',
'is', 'a', 'meritorious', 'student']
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> sent.split('\n')
[' She secured 90.56 % in class X ', '. She is a meritorious student',
'']

Similar to sent.split('\n'), LineTokenizer works by tokenizing text into lines:

>>> import nltk
>>> from nltk.tokenize import BlanklineTokenizer
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> BlanklineTokenizer().tokenize(sent)
[' She secured 90.56 % in class X \n. She is a meritorious student\n']

Chapter 1

[7]

>>> from nltk.tokenize import LineTokenizer
>>> LineTokenizer(blanklines='keep').tokenize(sent)
[' She secured 90.56 % in class X ', '. She is a meritorious student']
>>> LineTokenizer(blanklines='discard').tokenize(sent)
[' She secured 90.56 % in class X ', '. She is a meritorious student']

SpaceTokenizer works similar to sent.split(''):

>>> import nltk
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> from nltk.tokenize import SpaceTokenizer
>>> SpaceTokenizer().tokenize(sent)
['', 'She', 'secured', '90.56', '%', 'in', 'class', 'X', '\n.', 'She',
'is', 'a', 'meritorious', 'student\n']

nltk.tokenize.util module works by returning the sequence of tuples that are
offsets of the tokens in a sentence:

>>> import nltk
>>> from nltk.tokenize import WhitespaceTokenizer
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> list(WhitespaceTokenizer().span_tokenize(sent))
[(1, 4), (5, 12), (13, 18), (19, 20), (21, 23), (24, 29), (30, 31),
(33, 34), (35, 38), (39, 41), (42, 43), (44, 55), (56, 63)]

Given a sequence of spans, the sequence of relative spans can be returned:

>>> import nltk
>>> from nltk.tokenize import WhitespaceTokenizer
>>> from nltk.tokenize.util import spans_to_relative
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>>list(spans_to_relative(WhitespaceTokenizer().span_tokenize(sent)))
[(1, 3), (1, 7), (1, 5), (1, 1), (1, 2), (1, 5), (1, 1), (2, 1), (1,
3), (1, 2), (1, 1), (1, 11), (1, 7)]

nltk.tokenize.util.string_span_tokenize(sent,separator) will return the
offsets of tokens in sent by splitting at each incidence of the separator:

>>> import nltk
>>> from nltk.tokenize.util import string_span_tokenize
>>> sent=" She secured 90.56 % in class X \n. She is a meritorious
student\n"
>>> list(string_span_tokenize(sent, ""))
[(1, 4), (5, 12), (13, 18), (19, 20), (21, 23), (24, 29), (30, 31),
(32, 34), (35, 38), (39, 41), (42, 43), (44, 55), (56, 64)]

Working with Strings

[8]

Normalization
In order to carry out processing on natural language text, we need to perform
normalization that mainly involves eliminating punctuation, converting the entire
text into lowercase or uppercase, converting numbers into words, expanding
abbreviations, canonicalization of text, and so on.

Eliminating punctuation
Sometimes, while tokenizing, it is desirable to remove punctuation. Removal of
punctuation is considered one of the primary tasks while doing normalization
in NLTK.

Consider the following example:

>>> text=[" It is a pleasant evening.","Guests, who came from US
arrived at the venue","Food was tasty."]
>>> from nltk.tokenize import word_tokenize
>>> tokenized_docs=[word_tokenize(doc) for doc in text]
>>> print(tokenized_docs)
[['It', 'is', 'a', 'pleasant', 'evening', '.'], ['Guests', ',', 'who',
'came', 'from', 'US', 'arrived', 'at', 'the', 'venue'], ['Food',
'was', 'tasty', '.']]

The preceding code obtains the tokenized text. The following code will remove
punctuation from tokenized text:

>>> import re
>>> import string
>>> text=[" It is a pleasant evening.","Guests, who came from US
arrived at the venue","Food was tasty."]
>>> from nltk.tokenize import word_tokenize
>>> tokenized_docs=[word_tokenize(doc) for doc in text]
>>> x=re.compile('[%s]' % re.escape(string.punctuation))
>>> tokenized_docs_no_punctuation = []
>>> for review in tokenized_docs:
 new_review = []
 for token in review:
 new_token = x.sub(u'', token)
 if not new_token == u'':
 new_review.append(new_token)
 tokenized_docs_no_punctuation.append(new_review)	
>>> print(tokenized_docs_no_punctuation)
[['It', 'is', 'a', 'pleasant', 'evening'], ['Guests', 'who', 'came',
'from', 'US', 'arrived', 'at', 'the', 'venue'], ['Food', 'was',
'tasty']]

Chapter 1

[9]

Conversion into lowercase and uppercase
A given text can be converted into lowercase or uppercase text entirely using the
functions lower() and upper(). The task of converting text into uppercase or
lowercase falls under the category of normalization.

Consider the following example of case conversion:

>>> text='HARdWork IS KEy to SUCCESS'
>>> print(text.lower())
hardwork is key to success
>>> print(text.upper())
HARDWORK IS KEY TO SUCCESS

Dealing with stop words
Stop words are words that need to be filtered out during the task of information
retrieval or other natural language tasks, as these words do not contribute much to
the overall meaning of the sentence. There are many search engines that work by
deleting stop words so as to reduce the search space. Elimination of stopwords is
considered one of the normalization tasks that is crucial in NLP.

NLTK has a list of stop words for many languages. We need to unzip datafile so
that the list of stop words can be accessed from nltk_data/corpora/stopwords/:

>>> import nltk
>>> from nltk.corpus import stopwords
>>> stops=set(stopwords.words('english'))
>>> words=["Don't", 'hesitate','to','ask','questions']
>>> [word for word in words if word not in stops]
["Don't", 'hesitate', 'ask', 'questions']

The instance of nltk.corpus.reader.WordListCorpusReader is a stopwords
corpus. It has the words() function, whose argument is fileid. Here, it is English;
this refers to all the stop words present in the English file. If the words() function
has no argument, then it will refer to all the stop words of all the languages.

Other languages in which stop word removal can be done, or the number of
languages whose file of stop words is present in NLTK can be found using the
fileids() function:

>>> stopwords.fileids()
['danish', 'dutch', 'english', 'finnish', 'french', 'german',
'hungarian', 'italian', 'norwegian', 'portuguese', 'russian',
'spanish', 'swedish', 'turkish']

Working with Strings

[10]

Any of these previously listed languages can be used as an argument to the words()
function so as to get the stop words in that language.

Calculate stopwords in English
Let's see an example of how to calculate stopwords:

>>> import nltk
>>> from nltk.corpus import stopwords
>>> stopwords.words('english')
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',
'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his',
'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself',
'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which',
'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having',
'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if',
'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for',
'with', 'about', 'against', 'between', 'into', 'through', 'during',
'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in',
'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then',
'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any',
'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no',
'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's',
't', 'can', 'will', 'just', 'don', 'should', 'now']
>>> def para_fraction(text):
stopwords = nltk.corpus.stopwords.words('english')
para = [w for w in text if w.lower() not in stopwords]
return len(para) / len(text)

>>> para_fraction(nltk.corpus.reuters.words())
0.7364374824583169

>>> para_fraction(nltk.corpus.inaugural.words())
0.5229560503653893

Normalization may also involve converting numbers into words (for example, 1
can be replaced by one) and expanding abbreviations (for instance, can't can be
replaced by cannot). This can be achieved by representing them in replacement
patterns. This is discussed in the next section.

Substituting and correcting tokens
In this section, we will discuss the replacement of tokens with other tokens. We will
also about how we can correct the spelling of tokens by replacing incorrectly spelled
tokens with correctly spelled tokens.

Chapter 1

[11]

Replacing words using regular expressions
In order to remove errors or perform text normalization, word replacement is
done. One way by which text replacement is done is by using regular expressions.
Previously, we faced problems while performing tokenization for contractions. Using
text replacement, we can replace contractions with their expanded versions. For
example, doesn't can be replaced by does not.

We will begin by writing the following code, naming this program replacers.py,
and saving it in the nltkdata folder:

import re
replacement_patterns = [
(r'won\'t', 'will not'),
(r'can\'t', 'cannot'),
(r'i\'m', 'i am'),
(r'ain\'t', 'is not'),
(r'(\w+)\'ll', '\g<1> will'),
(r'(\w+)n\'t', '\g<1> not'),
(r'(\w+)\'ve', '\g<1> have'),
(r'(\w+)\'s', '\g<1> is'),
(r'(\w+)\'re', '\g<1> are'),
(r'(\w+)\'d', '\g<1> would')
]
class RegexpReplacer(object):
 def __init__(self, patterns=replacement_patterns):
 self.patterns = [(re.compile(regex), repl) for (regex, repl)
in
 patterns]
 def replace(self, text):
 s = text
 for (pattern, repl) in self.patterns:
 (s, count) = re.subn(pattern, repl, s)
 return s

Here, replacement patterns are defined in which the first term denotes the pattern
to be matched and the second term is its corresponding replacement pattern. The
RegexpReplacer class has been defined to perform the task of compiling pattern
pairs and it provides a method called replace(), whose function is to perform the
replacement of a pattern with another pattern.

Working with Strings

[12]

Example of the replacement of a text with another
text
Let's see an example of how we can substitute a text with another text:

>>> import nltk
>>> from replacers import RegexpReplacer
>>> replacer= RegexpReplacer()
>>> replacer.replace("Don't hesitate to ask questions")
'Do not hesitate to ask questions'
>>> replacer.replace("She must've gone to the market but she didn't
go")
'She must have gone to the market but she did not go'

The function of RegexpReplacer.replace() is substituting every instance of a
replacement pattern with its corresponding substitution pattern. Here, must've is
replaced by must have and didn't is replaced by did not, since the replacement
pattern in replacers.py has already been defined by tuple pairs, that is,(r'(\
w+)\'ve', '\g<1> have') and (r'(\w+)n\'t', '\g<1> not').

We can not only perform the replacement of contractions; we can also substitute a
token with any other token.

Performing substitution before tokenization
Tokens substitution can be performed prior to tokenization so as to avoid the
problem that occurs during tokenization for contractions:

>>> import nltk
>>> from nltk.tokenize import word_tokenize
>>> from replacers import RegexpReplacer
>>> replacer=RegexpReplacer()
>>> word_tokenize("Don't hesitate to ask questions")
['Do', "n't", 'hesitate', 'to', 'ask', 'questions']
>>> word_tokenize(replacer.replace("Don't hesitate to ask questions"))
['Do', 'not', 'hesitate', 'to', 'ask', 'questions']

Dealing with repeating characters
Sometimes, people write words involving repeating characters that cause grammatical
errors. For instance consider a sentence, I like it lotttttt. Here, lotttttt refers
to lot. So now, we'll eliminate these repeating characters using the backreference
approach, in which a character refers to the previous characters in a group in a regular
expression. This is also considered one of the normalization tasks.

Chapter 1

[13]

Firstly, append the following code to the previously created replacers.py:

class RepeatReplacer(object):
 def __init__(self):
 self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
 self.repl = r'\1\2\3'
 def replace(self, word):
 repl_word = self.repeat_regexp.sub(self.repl, word)
 if repl_word != word:
 return self.replace(repl_word)
 else:
 return repl_word

Example of deleting repeating characters
Let's see an example of how we can delete repeating characters from a token:

>>> import nltk
>>> from replacers import RepeatReplacer
>>> replacer=RepeatReplacer()
>>> replacer.replace('lotttt')
'lot'
>>> replacer.replace('ohhhhh')
'oh'
>>> replacer.replace('ooohhhhh')
'oh'

The RepeatReplacer class works by compiling regular expressions and replacement
strings and is defined using backreference.Repeat_regexp, which is present in
replacers.py. It matches the starting characters that can be zero or many (\w*),
ending characters that can be zero or many (\w*), or a character (\w)that is
followed by same character.

For example, lotttt is split into (lo)(t)t(tt). Here, one t is reduced and the
string becomes lottt. The process of splitting continues, and finally, the resultant
string obtained is lot.

The problem with RepeatReplacer is that it will convert happy to hapy, which is
inappropriate. To avoid this problem, we can embed wordnet along with it.

In the replacers.py program created previously, add the following lines to
include wordnet:

import re
from nltk.corpus import wordnet

Working with Strings

[14]

class RepeatReplacer(object):
 def __init__(self):
 self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
 self.repl = r'\1\2\3'
 def replace(self, word):
 if wordnet.synsets(word):
 return word
 repl_word = self.repeat_regexp.sub(self.repl, word)
 if repl_word != word:
 return self.replace(repl_word)
 else:
 return repl_word

Now, let's take a look at how the previously mentioned problem can be overcome:

>>> import nltk
>>> from replacers import RepeatReplacer
>>> replacer=RepeatReplacer()
>>> replacer.replace('happy')
'happy'

Replacing a word with its synonym
Now we will see how we can substitute a given word by its synonym. To the already
existing replacers.py, we can add a class called WordReplacer that provides
mapping between a word and its synonym:

class WordReplacer(object):
 def __init__(self, word_map):
 self.word_map = word_map
 def replace(self, word):
 return self.word_map.get(word, word)

Example of substituting word a with its synonym
Let's have a look at an example of substituting a word with its synonym:

>>> import nltk
>>> from replacers import WordReplacer
>>> replacer=WordReplacer({'congrats':'congratulations'})
>>> replacer.replace('congrats')
'congratulations'
>>> replacer.replace('maths')
'maths'

Chapter 1

[15]

In this code, the replace() function looks for the corresponding synonym for a
word in word_map. If the synonym is present for a given word, then the word will
be replaced by its synonym. If the synonym for a given word is not present, then no
replacement will be performed; the same word will be returned.

Applying Zipf's law to text
Zipf's law states that the frequency of a token in a text is directly proportional to
its rank or position in the sorted list. This law describes how tokens are distributed
in languages: some tokens occur very frequently, some occur with intermediate
frequency, and some tokens rarely occur.

Let's see the code for obtaining the log-log plot in NLTK that is based on
Zipf's law:

>>> import nltk
>>> from nltk.corpus import gutenberg
>>> from nltk.probability import FreqDist
>>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> matplotlib.use('TkAgg')
>>> fd = FreqDist()
>>> for text in gutenberg.fileids():
. . . for word in gutenberg.words(text):
. . . fd.inc(word)
>>> ranks = []
>>> freqs = []
>>> for rank, word in enumerate(fd):
. . . ranks.append(rank+1)
. . . freqs.append(fd[word])
. . .
>>> plt.loglog(ranks, freqs)
>>> plt.xlabel('frequency(f)', fontsize=14, fontweight='bold')
>>> plt.ylabel('rank(r)', fontsize=14, fontweight='bold')
>>> plt.grid(True)
>>> plt.show()

The preceding code will obtain a plot of rank versus the frequency of words in a
document. So, we can check whether Zipf's law holds for all the documents or not by
seeing the proportionality relationship between rank and the frequency of words.

www.allitebooks.com

http://www.allitebooks.org

Working with Strings

[16]

Similarity measures
There are many similarity measures that can be used for performing NLP tasks. The
nltk.metrics package in NLTK is used to provide various evaluation or similarity
measures, which is conducive to perform various NLP tasks.

In order to test the performance of taggers, chunkers, and so on, in NLP, the standard
scores retrieved from information retrieval can be used.

Let's have a look at how the output of named entity recognizer can be analyzed using
the standard scores obtained from a training file:

>>> from __future__ import print_function
>>> from nltk.metrics import *
>>> training='PERSON OTHER PERSON OTHER OTHER ORGANIZATION'.split()
>>> testing='PERSON OTHER OTHER OTHER OTHER OTHER'.split()
>>> print(accuracy(training,testing))
0.6666666666666666
>>> trainset=set(training)
>>> testset=set(testing)
>>> precision(trainset,testset)
1.0
>>> print(recall(trainset,testset))
0.6666666666666666
>>> print(f_measure(trainset,testset))
0.8

Applying similarity measures using Ethe edit
distance algorithm
Edit distance or the Levenshtein edit distance between two strings is used to
compute the number of characters that can be inserted, substituted, or deleted in
order to make two strings equal.

The operations performed in Edit Distance include the following:

•	 Copying letters from the first string to the second string (cost 0) and
substituting a letter with another (cost 1):
D(i-1,j-1) + d(si,tj)(Substitution / copy)

•	 Deleting a letter in the first string (cost 1)
D(i,j-1)+1 (deletion)

Chapter 1

[17]

•	 Inserting a letter in the second string (cost 1):
D(i,j) = min D(i-1,j)+1 (insertion)

The Python code for Edit Distance that is included in the nltk.metrics package is
as follows:

from __future__ import print_function
def _edit_dist_init(len1, len2):
 lev = []
 for i in range(len1):
 lev.append([0] * len2) # initialize 2D array to zero
 for i in range(len1):
 lev[i][0] = i # column 0: 0,1,2,3,4,...
 for j in range(len2):
 lev[0][j] = j # row 0: 0,1,2,3,4,...
 return lev

def_edit_dist_step(lev,i,j,s1,s2,transpositions=False):
c1 =s1[i-1]
c2 =s2[j-1]

skipping a character in s1
a =lev[i-1][j] +1
skipping a character in s2
b =lev[i][j -1]+1
substitution
c =lev[i-1][j-1]+(c1!=c2)
transposition
d =c+1 # never picked by default
if transpositions and i>1 and j>1:
if s1[i -2]==c2 and s2[j -2]==c1:
d =lev[i-2][j-2]+1
pick the cheapest
lev[i][j] =min(a,b,c,d)

def edit_distance(s1, s2, transpositions=False):
 # set up a 2-D array
 len1 = len(s1)
 len2 = len(s2)
 lev = _edit_dist_init(len1 + 1, len2 + 1)

 # iterate over the array
 for i in range(len1):

Working with Strings

[18]

 for j in range(len2):
 _edit_dist_step(lev, i + 1, j + 1, s1, s2,
transpositions=transpositions)
 return lev[len1][len2]

Let's have a look at the Edit Distance calculated in NLTK using the nltk.metrics
package:

>>> import nltk
>>> from nltk.metrics import *
>>> edit_distance("relate","relation")
3
>>> edit_distance("suggestion","calculation")
7

Here, when we calculate the edit distance between relate and relation, three
operations (one substitution and two insertions) are performed. While calculating
the edit distance between suggestion and calculation, seven operations (six
substitutions and one insertion) are performed.

Applying similarity measures using Jaccard's
Coefficient
Jaccard's coefficient, or Tanimoto coefficient, may be defined as a measure of the
overlap of two sets, X and Y.

It may be defined as follows:

•	 Jaccard(X,Y)=|X∩Y|/|XUY|
•	 Jaccard(X,X)=1
•	 Jaccard(X,Y)=0 if X∩Y=0

The code for Jaccard's similarity may be given as follows:

def jacc_similarity(query, document):
first=set(query).intersection(set(document))
second=set(query).union(set(document))
return len(first)/len(second)

Let's have a look at the implementation of Jaccard's similarity coefficient using NLTK:

>>> import nltk
>>> from nltk.metrics import *

Chapter 1

[19]

>>> X=set([10,20,30,40])
>>> Y=set([20,30,60])
>>> print(jaccard_distance(X,Y))
0.6

Applying similarity measures using the Smith
Waterman distance
The Smith Waterman distance is similar to edit distance. This similarity metric
was developed in order to detect the optical alignments between related protein
sequences and DNA. It consists of costs to be assigned to and functions for alphabet
mapping to cost values (substitution); cost is also assigned to gap G (insertion or
deletion):

1.	 0 //start over
2.	 D(i-1,j-1) -d(si,tj) //subst/copy
3.	 D(i,j) = max D(i-1,j)-G //insert
1.	 D(i,j-1)-G //delete

Distance is maximum over all i,j in table of D(i,j)

4.	 G = 1 //example value for gap
5.	 d(c,c) = -2 //context dependent substitution cost
6.	 d(c,d) = +1 //context dependent substitution cost

Similar to Edit distance, the Python code for Smith Waterman can be embedded with
the nltk.metrics package to perform string similarity using Smith Waterman in
NLTK.

Other string similarity metrics
Binary distance is a string similarity metric. It returns the value 0.0 if two labels are
identical; otherwise, it returns the value 1.0.

The Python code for Binary distance metrics is:

def binary_distance(label1, label2):
 return 0.0 if label1 == label2 else 1.0

Working with Strings

[20]

Let's see how Binary distance metrics is implemented in NLTK:

>>> import nltk
>>> from nltk.metrics import *
>>> X = set([10,20,30,40])
>>> Y= set([30,50,70])
>>> binary_distance(X, Y)
1.0

Masi distance is based on partial agreement when multiple labels are present.

The Python code included in nltk.metrics for masi distance is as follows:

def masi_distance(label1, label2):
 len_intersection = len(label1.intersection(label2))
 len_union = len(label1.union(label2))
 len_label1 = len(label1)
 len_label2 = len(label2)
 if len_label1 == len_label2 and len_label1 == len_intersection:
 m = 1
 elif len_intersection == min(len_label1, len_label2):
 m = 0.67
 elif len_intersection > 0:
 m = 0.33
 else:
 m = 0

 return 1 - (len_intersection / float(len_union)) * m

Let's see the implementation of masi distance in NLTK:

>>> import nltk
>>> from __future__ import print_function
>>> from nltk.metrics import *
>>> X = set([10,20,30,40])
>>> Y= set([30,50,70])
>>> print(masi_distance(X,Y))
0.945

Chapter 1

[21]

Summary
In this chapter, you have learned various operations that can be performed on a
text that is a collection of strings. You have understood the concept of tokenization,
substitution, and normalization, and applied various similarity measures to strings
using NLTK. We have also discussed Zipf's law, which may be applicable to some of
the existing documents.

In the next chapter, we'll discuss various language modeling techniques and
different NLP tasks.

[23]

Statistical Language
Modeling

Computational linguistics is an emerging field that is widely used in analytics,
software applications, and contexts where people communicate with machines.
Computational linguistics may be defined as a subfield of artificial intelligence.
Applications of computational linguistics include machine translation, speech
recognition, intelligent Web searching, information retrieval, and intelligent spelling
checkers. It is important to understand the preprocessing tasks or the computations
that can be performed on natural language text. In the following chapter, we will
discuss ways to calculate word frequencies, the Maximum Likelihood Estimation
(MLE) model, interpolation on data, and so on. But first, let's go through the various
topics that we will cover in this chapter. They are as follows:

•	 Calculating word frequencies (1-gram, 2-gram, 3-gram)
•	 Developing MLE for a given text
•	 Applying smoothing on the MLE model
•	 Developing a back-off mechanism for MLE
•	 Applying interpolation on data to get a mix and match
•	 Evaluating a language model through perplexity
•	 Applying Metropolis-Hastings in modeling languages
•	 Applying Gibbs sampling in language processing

Understanding word frequency
Collocations may be defined as the collection of two or more tokens that tend to
exist together. For example, the United States, the United Kingdom, Union of Soviet
Socialist Republics, and so on.

Statistical Language Modeling

[24]

Unigram represents a single token. The following code will be used for generate
unigrams for Alpino Corpus:

>>> import nltk
>>> from nltk.util import ngrams
>>> from nltk.corpus import alpino
>>> alpino.words()
['De', 'verzekeringsmaatschappijen', 'verhelen', ...]>>>
unigrams=ngrams(alpino.words(),1)
>>> for i in unigrams:
print(i)

Consider another example for generating quadgrams or fourgrams from
alpinocorpus:

>>> import nltk
>>> from nltk.util import ngrams
>>> from nltk.corpus import alpino
>>> alpino.words()
['De', 'verzekeringsmaatschappijen', 'verhelen', ...]
>>> quadgrams=ngrams(alpino.words(),4)
>>> for i in quadgrams:
print(i)

bigram refers to a pair of tokens. To find bigrams in the text, firstly, lowercased
words are searched, a list of lowercased words in the text is created, and
BigramCollocationFinder is produced. The BigramAssocMeasures found in the
nltk.metrics package can be used to find bigrams in the text:

>>> import nltk
>>> from nltk.collocations import BigramCollocationFinder
>>> from nltk.corpus import webtext
>>> from nltk.metrics import BigramAssocMeasures
>>> tokens=[t.lower() for t in webtext.words('grail.txt')]
>>> words=BigramCollocationFinder.from_words(tokens)
>>> words.nbest(BigramAssocMeasures.likelihood_ratio, 10)
[("'", 's'), ('arthur', ':'), ('#', '1'), ("'", 't'), ('villager',
'#'), ('#', '2'), (']', '['), ('1', ':'), ('oh', ','), ('black',
'knight')]

In the preceding code, we can add a word filter that can be used to eliminate
stopwords and punctuation:

>>> from nltk.corpus import stopwords
>>> from nltk.corpus import webtext
>>> from nltk.collocations import BigramCollocationFinder
>>> from nltk.metrics import BigramAssocMeasures

Chapter 2

[25]

>>> set = set(stopwords.words('english'))
>>> stops_filter = lambda w: len(w) < 3 or w in set
>>> tokens=[t.lower() for t in webtext.words('grail.txt')]
>>> words=BigramCollocationFinder.from_words(tokens)
>>> words.apply_word_filter(stops_filter)
>>> words.nbest(BigramAssocMeasures.likelihood_ratio, 10)
[('black', 'knight'), ('clop', 'clop'), ('head', 'knight'), ('mumble',
'mumble'), ('squeak', 'squeak'), ('saw', 'saw'), ('holy', 'grail'),
('run', 'away'), ('french', 'guard'), ('cartoon', 'character')]

Here, we can change the frequency of bigrams from 10 to any other number.

Another way of generating bigrams from a text is using collocation finders. This is
given in the following code:

>>> import nltk
>>> from nltk.collocation import *
>>> text1="Hardwork is the key to success. Never give up!"
>>> word = nltk.wordpunct_tokenize(text1)
>>> finder = BigramCollocationFinder.from_words(word)
>>> bigram_measures = nltk.collocations.BigramAssocMeasures()
>>> value = finder.score_ngrams(bigram_measures.raw_freq)
>>> sorted(bigram for bigram, score in value)
[('.', 'Never'), ('Hardwork', 'is'), ('Never', 'give'), ('give',
'up'), ('is', 'the'), ('key', 'to'), ('success', '.'), ('the', 'key'),
('to', 'success'), ('up', '!')]

We will now see another code for generating bigrams from alpino corpus:

>>> import nltk
>>> from nltk.util import ngrams
>>> from nltk.corpus import alpino
>>> alpino.words()
['De', 'verzekeringsmaatschappijen', 'verhelen', ...]
>>> bigrams_tokens=ngrams(alpino.words(),2)
>>> for i in bigrams_tokens:
print(i)

This code will generate bigrams from alpino corpus.

We will now see the code for generating trigrams:

>>> import nltk
>>> from nltk.util import ngrams
>>> from nltk.corpus import alpino
>>> alpino.words()

Statistical Language Modeling

[26]

['De', 'verzekeringsmaatschappijen', 'verhelen', ...]>>> trigrams_
tokens=ngrams(alpino.words(),3)
>>> for i in trigrams_tokens:
print(i)

For generating fourgrams and generating the frequency of fourgrams, the following
code is used:

>>> import nltk
>>> import nltk
>>> from nltk.collocations import *
>>> text="Hello how are you doing ? I hope you find the book
interesting"
>>> tokens=nltk.wordpunct_tokenize(text)
>>> fourgrams=nltk.collocations.QuadgramCollocationFinder.from_
words(tokens)
>>> for fourgram, freq in fourgrams.ngram_fd.items():
print(fourgram,freq)

('hope', 'you', 'find', 'the') 1
('Hello', 'how', 'are', 'you') 1
('you', 'doing', '?', 'I') 1
('are', 'you', 'doing', '?') 1
('how', 'are', 'you', 'doing') 1
('?', 'I', 'hope', 'you') 1
('doing', '?', 'I', 'hope') 1
('find', 'the', 'book', 'interesting') 1
('you', 'find', 'the', 'book') 1
('I', 'hope', 'you', 'find') 1

We will now see the code for generating ngrams for a given sentence:

>>> import nltk
>>> sent=" Hello , please read the book thoroughly . If you have any
queries , then don't hesitate to ask . There is no shortcut to success
."
>>> n=5
>>> fivegrams=ngrams(sent.split(),n)
>>> for grams in fivegrams:
	 print(grams)

('Hello', ',', 'please', 'read', 'the')
(',', 'please', 'read', 'the', 'book')
('please', 'read', 'the', 'book', 'thoroughly')
('read', 'the', 'book', 'thoroughly', '.')

Chapter 2

[27]

('the', 'book', 'thoroughly', '.', 'If')
('book', 'thoroughly', '.', 'If', 'you')
('thoroughly', '.', 'If', 'you', 'have')
('.', 'If', 'you', 'have', 'any')
('If', 'you', 'have', 'any', 'queries')
('you', 'have', 'any', 'queries', ',')
('have', 'any', 'queries', ',', 'then')
('any', 'queries', ',', 'then', "don't")
('queries', ',', 'then', "don't", 'hesitate')
(',', 'then', "don't", 'hesitate', 'to')
('then', "don't", 'hesitate', 'to', 'ask')
("don't", 'hesitate', 'to', 'ask', '.')
('hesitate', 'to', 'ask', '.', 'There')
('to', 'ask', '.', 'There', 'is')
('ask', '.', 'There', 'is', 'no')
('.', 'There', 'is', 'no', 'shortcut')
('There', 'is', 'no', 'shortcut', 'to')
('is', 'no', 'shortcut', 'to', 'success')
('no', 'shortcut', 'to', 'success', '.')

Develop MLE for a given text
MLE, also referred to as multinomial logistic regression or a conditional exponential
classifier, is an essential task in the field of NLP. It was first introduced in 1996
by Berger and Della Pietra. Maximum Entropy is defined in NLTK in the nltk.
classify.maxent module. In this module, all the probability distributions are
considered that are in accordance with the training data. This model is used to refer
to two features, namely input-feature and joint feature. An input feature may be
called the feature of unlabeled words. A joined feature may be called the feature
of labeled words. MLE is used to generate freqdist that contains the probability
distribution for a given occurrence in a text. param freqdist consists
of frequency distribution on which probability distribution is based.

We'll now see the code for the Maximum Entropy Model in NLTK:

from__future__import print_function,unicode_literals
__docformat__='epytext en'

try:
import numpy
except ImportError:
 pass

Statistical Language Modeling

[28]

import tempfile
import os
from collections import defaultdict
from nltk import compat
from nltk.data import gzip_open_unicode
from nltk.util import OrderedDict
from nltk.probability import DictionaryProbDist
from nltk.classify.api import ClassifierI
from nltk.classify.util import CutoffChecker,accuracy,log_likelihood
from nltk.classify.megam import (call_megam,
write_megam_file,parse_megam_weights)
from nltk.classify.tadm import call_tadm,write_tadm_file,parse_tadm_
weights

In the preceding code, nltk.probability consists of the FreqDist class that can be
used to determine the frequency of the occurrence of individual tokens in a text.

The ProbDistI is used to determine the probability distribution of individual
occurrences in a text. There are basically two kinds of probability distributions:
Derived Probability Distribution and Analytic Probability Distribution. Distributed
Probability Distributions are obtained from frequency distribution. Analytic
Probability Distributions are obtained from parameters, such as variance.

In order to obtain the frequency distribution, the maximum likelihood estimate is
used. It computes the probability of every occurrence on the basis of its frequency in
the frequency distribution:

class MLEProbDist(ProbDistI):

 def __init__(self, freqdist, bins=None):
 self._freqdist = freqdist

 def freqdist(self):
"""

It will find the frequency distribution on the basis of probability distribution:

"""
 return self._freqdist

 def prob(self, sample):
 return self._freqdist.freq(sample)

 def max(self):
 return self._freqdist.max()

Chapter 2

[29]

 def samples(self):
 return self._freqdist.keys()

 def __repr__(self):
"""
 It will return string representation of ProbDist
"""
 return '<MLEProbDist based on %d samples>' % self._
freqdist.N()

class LidstoneProbDist(ProbDistI):
"""

It is used to obtain frequency distribution. It is represented by a real number,
Gamma, whose range lies between 0 and 1. The LidstoneProbDist calculates the
probability of a given observation with count c, outcomes N, and bins B as follows:
(c+Gamma)/(N+B*Gamma).

It also means that Gamma is added to the count of each bin and MLE is computed
from the given frequency distribution:

"""
SUM_TO_ONE = False
 def __init__(self, freqdist, gamma, bins=None):
"""

Lidstone is used to compute the probability distribution in order to obtain freqdist.

paramfreqdist may be defined as the frequency distribution on which probability
estimates are based.

param bins may be defined as sample values that can be obtained from the
probability distribution. The sum of probabilities is equal to one:

"""
 if (bins == 0) or (bins is None and freqdist.N() == 0):
 name = self.__class__.__name__[:-8]
 raise ValueError('A %s probability distribution ' % name +
'must have at least one bin.')
 if (bins is not None) and (bins < freqdist.B()):
 name = self.__class__.__name__[:-8]
 raise ValueError('\nThe number of bins in a %s
distribution ' % name +

Statistical Language Modeling

[30]

'(%d) must be greater than or equal to\n' % bins +
'the number of bins in the FreqDist used ' +
'to create it (%d).' % freqdist.B())

 self._freqdist = freqdist
 self._gamma = float(gamma)
 self._N = self._freqdist.N()

 if bins is None:
 bins = freqdist.B()
 self._bins = bins

 self._divisor = self._N + bins * gamma
 if self._divisor == 0.0:
 # In extreme cases we force the probability to be 0,
 # which it will be, since the count will be 0:
 self._gamma = 0
 self._divisor = 1

def freqdist(self):
"""

It obtains frequency distribution, which is based upon the probability distribution:

 """
 return self._freqdist

def prob(self, sample):
c = self._freqdist[sample]
 return (c + self._gamma) / self._divisor

 def max(self):
 # To obtain most probable sample, choose the one
that occurs very frequently.
 return self._freqdist.max()

def samples(self):
 return self._freqdist.keys()

def discount(self):
 gb = self._gamma * self._bins
 return gb / (self._N + gb)

 def __repr__(self):
"""

Chapter 2

[31]

 String representation of ProbDist is obtained.

"""
 return '<LidstoneProbDist based on %d samples>' % self._
freqdist.N()

class LaplaceProbDist(LidstoneProbDist):
"""

It is used to obtain frequency distribution. It calculates the probability of a sample
with count c, outcomes N, and bins B as follows:

(c+1)/(N+B)

It also means that 1 is added to the count of every bin, and the maximum likelihood
is estimated for the resultant frequency distribution:

"""
 def __init__(self, freqdist, bins=None):
"""

LaplaceProbDist is used to obtain the probability distribution for generating
freqdist.

param freqdist is used to obtain the frequency distribution, which is based on
probability estimates.

Param bins may be defined as the frequency of sample values that can be generated.
The sum of probabilities must be 1:

"""
 LidstoneProbDist.__init__(self, freqdist, 1, bins)

 def __repr__(self):
"""
 String representation of ProbDist is obtained.
"""
 return '<LaplaceProbDist based on %d samples>' % self._
freqdist.N()

class ELEProbDist(LidstoneProbDist):
"""

Statistical Language Modeling

[32]

It is used to obtain frequency distribution. It calculates the probability of a sample
with count c, outcomes N, and bins B as follows:

(c+0.5)/(N+B/2)

It also means that 0.5 is added to the count of every bin and the maximum
likelihood is estimated for the resultant frequency distribution:

"""
 def __init__(self, freqdist, bins=None):
"""

The expected likelihood estimation is used to obtain the probability distribution for
generating freqdist.param.freqdist is used to obtain the frequency distribution,
which is based on probability estimates.

param bins may be defined as the frequency of sample values that can be generated.
The sum of probabilities must be 1:

"""
LidstoneProbDist.__init__(self, freqdist, 0.5, bins)

 def __repr__(self):
"""
 String representation of ProbDist is obtained.
 """
 return '<ELEProbDist based on %d samples>' % self._
freqdist.N()

class WittenBellProbDist(ProbDistI):
"""

The WittenBellProbDist is used to obtain the probability distribution. It is used to
obtain the uniform probability mass on the basis of the frequency of the sample seen
before. The probability mass for the sample is given as follows:

T / (N + T)

Here, T is the number of samples observed and N is total number of events observed.
It is equal to the maximum likelihood estimate of a new sample that is occurring. The
sum of all the probabilities is equal to 1:

 Here,
 p = T / Z (N + T), if count = 0
 p = c / (N + T), otherwise

Chapter 2

[33]

"""

 def __init__(self, freqdist, bins=None):
"""

It obtains the probability distribution. This probability is used to provide the uniform
probability mass to an unseen sample. The probability mass for the sample is given
as follows:

T / (N + T)

Here, T is the number of samples observed and N is the total number of events
observed. It is equal to the maximum likelihood estimate of a new sample that is
occurring. The sum of all the probabilities is equal to 1:

 Here,
 p = T / Z (N + T), if count = 0
 p = c / (N + T), otherwise

Z is the normalizing factor that is calculated using these values and a bin value.

Param freqdist is used to estimate the frequency counts from which the probability
distribution is obtained.

Param bins may be defined as the number of possible types of samples:

"""
 assert bins is None or bins >= freqdist.B(),\
'bins parameter must not be less than %d=freqdist.B()' % freqdist.B()
 if bins is None:
 bins = freqdist.B()
 self._freqdist = freqdist
 self._T = self._freqdist.B()
 self._Z = bins - self._freqdist.B()
 self._N = self._freqdist.N()
 # self._P0 is P(0), precalculated for efficiency:
 if self._N==0:
 # if freqdist is empty, we approximate P(0) by a
UniformProbDist:
 self._P0 = 1.0 / self._Z
 else:
 self._P0 = self._T / float(self._Z * (self._N + self._T))

 def prob(self, sample):
 # inherit docs from ProbDistI
 c = self._freqdist[sample]

Statistical Language Modeling

[34]

 return (c / float(self._N + self._T) if c != 0 else self._P0)

 def max(self):
 return self._freqdist.max()

 def samples(self):
 return self._freqdist.keys()

 def freqdist(self):
 return self._freqdist

 def discount(self):
 raise NotImplementedError()

 def __repr__(self):
"""
 String representation of ProbDist is obtained.

"""
 return '<WittenBellProbDist based on %d samples>' % self._
freqdist.N()

We can perform testing using maximum likelihood estimation. Let's consider the
following code for MLE in NLTK:

>>> import nltk
>>> from nltk.probability import *
>>> train_and_test(mle)
28.76%
>>> train_and_test(LaplaceProbDist)
69.16%
>>> train_and_test(ELEProbDist)
76.38%
>>> def lidstone(gamma):
 return lambda fd, bins: LidstoneProbDist(fd, gamma, bins)

>>> train_and_test(lidstone(0.1))
86.17%
>>> train_and_test(lidstone(0.5))
76.38%
>>> train_and_test(lidstone(1.0))
69.16%

Chapter 2

[35]

Hidden Markov Model estimation
Hidden Markov Model (HMM) comprises of observed states and the latent states
that help in determining them. Consider the diagrammatic description of HMM.
Here, x represents the latent state and y represents the observed state.

We can perform testing using HMM estimation. Let's consider the Brown Corpus
and the code given here:

>>> import nltk
>>> corpus = nltk.corpus.brown.tagged_sents(categories='adventure')
[:700]
>>> print(len(corpus))
700
>>> from nltk.util import unique_list
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in
sent)
>>> print(len(tag_set))
104
>>> symbols = unique_list(word for sent in corpus for (word,tag) in
sent)
>>> print(len(symbols))
1908
>>> print(len(tag_set))
104
>>> symbols = unique_list(word for sent in corpus for (word,tag) in
sent)
>>> print(len(symbols))
1908
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
>>> train_corpus = []
>>> test_corpus = []
>>> for i in range(len(corpus)):
if i % 10:

www.allitebooks.com

http://www.allitebooks.org

Statistical Language Modeling

[36]

train_corpus += [corpus[i]]
else:
test_corpus += [corpus[i]]

>>> print(len(train_corpus))
630
>>> print(len(test_corpus))
70
>>> def train_and_test(est):
hmm = trainer.train_supervised(train_corpus, estimator=est)
print('%.2f%%' % (100 * hmm.evaluate(test_corpus)))

In the preceding code, we have created a 90% training and 10% testing file and we
have tested the estimator.

Applying smoothing on the MLE model
Smoothing is used to handle the words that have not occurred previously. So, the
probability of unknown words is 0. To solve this problem, smoothing is used.

Add-one smoothing
In the 18th century, Laplace invented add-one smoothing. In add-one smoothing, 1
is added to the count of each word. Instead of 1, any other value can also be added
to the count of unknown words so that unknown words can be handled and their
probability is non-zero. Pseudo count is the value (that is, either 1 or nonzero) that is
added to the counts of unknown words to make their probability nonzero.

Let's consider the following code for add-one smoothing in NLTK:

>>> import nltk
>>> corpus=u"<s> hello how are you doing ? Hope you find the book
interesting. </s>".split()
>>> sentence=u"<s>how are you doing</s>".split()
>>> vocabulary=set(corpus)
>>> len(vocabulary)
13
>>> cfd = nltk.ConditionalFreqDist(nltk.bigrams(corpus))
>>> # The corpus counts of each bigram in the sentence:
>>> [cfd[a][b] for (a,b) in nltk.bigrams(sentence)]
[0, 1, 0]
>>> # The counts for each word in the sentence:
>>> [cfd[a].N() for (a,b) in nltk.bigrams(sentence)]

Chapter 2

[37]

[0, 1, 2]
>>> # There is already a FreqDist method for MLE probability:
>>> [cfd[a].freq(b) for (a,b) in nltk.bigrams(sentence)]
[0, 1.0, 0.0]
>>> # Laplace smoothing of each bigram count:
>>> [1 + cfd[a][b] for (a,b) in nltk.bigrams(sentence)]
[1, 2, 1]
>>> # We need to normalise the counts for each word:
>>> [len(vocabulary) + cfd[a].N() for (a,b) in nltk.bigrams(sentence)]
[13, 14, 15]
>>> # The smoothed Laplace probability for each bigram:
>>> [1.0 * (1+cfd[a][b]) / (len(vocabulary)+cfd[a].N()) for (a,b) in
nltk.bigrams(sentence)]
[0.07692307692307693, 0.14285714285714285, 0.06666666666666667]

Consider another way of performing Add-one smoothing or generating a Laplace
probability distribution:

>>> # MLEProbDist is the unsmoothed probability distribution:
>>> cpd_mle = nltk.ConditionalProbDist(cfd, nltk.MLEProbDist,
bins=len(vocabulary))
>>> # Now we can get the MLE probabilities by using the .prob method:
>>> [cpd_mle[a].prob(b) for (a,b) in nltk.bigrams(sentence)]
[0, 1.0, 0.0]
>>> # LaplaceProbDist is the add-one smoothed ProbDist:
>>> cpd_laplace = nltk.ConditionalProbDist(cfd, nltk.LaplaceProbDist,
bins=len(vocabulary))
>>> # Getting the Laplace probabilities is the same as for MLE:
>>> [cpd_laplace[a].prob(b) for (a,b) in nltk.bigrams(sentence)]
[0.07692307692307693, 0.14285714285714285, 0.06666666666666667]

Good Turing
Good Turing was introduced by Alan Turing along with his statistical assistant I.J.
Good. It is an efficient smoothing method that increases the performance of statistical
techniques performed for linguistic tasks, such as word sense disambiguation
(WSD), named entity recognition (NER), spelling correction, machine translation,
and so on. This method helps to predict the probability of unseen objects. In this
method, binomial distribution is exhibited by our objects of interest. This method is
used to compute the mass probability for zero or low count samples on the basis of
higher count samples . Simple Good Turing performs approximation from frequency
to frequency by linear regression into a linear line in log space. If c\ is the adjusted
count, it will compute the following:

c\ = (c + 1) N(c + 1) / N(c) for c >= 1

Statistical Language Modeling

[38]

The samples with zero frequency in training = N(1) for c == 0.

Here, c is the original count and N(i) is the number of event types observed with
count i.

Bill Gale and Geoffrey Sampson have presented Simple Good Turing:

class SimpleGoodTuringProbDist(ProbDistI):
"""

 Given a pair (pi, qi), where pi refers to the frequency and
 qi refers to the frequency of frequency, our aim is to minimize
the
 square variation. E(p) and E(q) is the mean of pi and qi.

 - slope, b = sigma ((pi-E(p)(qi-E(q))) / sigma ((pi-E(p))(pi-
E(p)))
 - intercept: a = E(q) - b.E(p)
"""
 SUM_TO_ONE = False
 def __init__(self, freqdist, bins=None):
"""
 param freqdist refers to the count of frequency from which
probability
 distribution is estimated.
 Param bins is used to estimate the possible number of samples.
"""
 assert bins is None or bins > freqdist.B(),\
'bins parameter must not be less than %d=freqdist.B()+1' %
(freqdist.B()+1)
 if bins is None:
 bins = freqdist.B() + 1
 self._freqdist = freqdist
 self._bins = bins
 r, nr = self._r_Nr()
 self.find_best_fit(r, nr)
 self._switch(r, nr)
 self._renormalize(r, nr)

 def _r_Nr_non_zero(self):
 r_Nr = self._freqdist.r_Nr()
 del r_Nr[0]
 return r_Nr

Chapter 2

[39]

 def _r_Nr(self):
"""
Split the frequency distribution in two list (r, Nr), where Nr(r) > 0
"""
 nonzero = self._r_Nr_non_zero()

 if not nonzero:
 return [], []
 return zip(*sorted(nonzero.items()))

 def find_best_fit(self, r, nr):
"""
 Use simple linear regression to tune parameters self._slope
and
 self._intercept in the log-log space based on count and
Nr(count)
 (Work in log space to avoid floating point underflow.)
"""
 # For higher sample frequencies the data points becomes
horizontal
 # along line Nr=1. To create a more evident linear model in
log-log
 # space, we average positive Nr values with the surrounding
zero
 # values. (Church and Gale, 1991)

 if not r or not nr:
 # Empty r or nr?
 return

 zr = []
 for j in range(len(r)):
 i = (r[j-1] if j > 0 else 0)
 k = (2 * r[j] - i if j == len(r) - 1 else r[j+1])
 zr_ = 2.0 * nr[j] / (k - i)
 zr.append(zr_)

 log_r = [math.log(i) for i in r]
 log_zr = [math.log(i) for i in zr]

 xy_cov = x_var = 0.0
 x_mean = 1.0 * sum(log_r) / len(log_r)
 y_mean = 1.0 * sum(log_zr) / len(log_zr)
 for (x, y) in zip(log_r, log_zr):

Statistical Language Modeling

[40]

 xy_cov += (x - x_mean) * (y - y_mean)
 x_var += (x - x_mean)**2
 self._slope = (xy_cov / x_var if x_var != 0 else 0.0)
 if self._slope >= -1:
 warnings.warn('SimpleGoodTuring did not find a proper best
fit '
'line for smoothing probabilities of occurrences. '
'The probability estimates are likely to be '
'unreliable.')
 self._intercept = y_mean - self._slope * x_mean

 def _switch(self, r, nr):
"""
 Calculate the r frontier where we must switch from Nr to Sr
 when estimating E[Nr].
"""
 for i, r_ in enumerate(r):
 if len(r) == i + 1 or r[i+1] != r_ + 1:
 # We are at the end of r, or there is a gap in r
 self._switch_at = r_
 break

 Sr = self.smoothedNr
 smooth_r_star = (r_ + 1) * Sr(r_+1) / Sr(r_)
 unsmooth_r_star = 1.0 * (r_ + 1) * nr[i+1] / nr[i]

 std = math.sqrt(self._variance(r_, nr[i], nr[i+1]))
 if abs(unsmooth_r_star-smooth_r_star) <= 1.96 * std:
 self._switch_at = r_
 break

 def _variance(self, r, nr, nr_1):
 r = float(r)
 nr = float(nr)
 nr_1 = float(nr_1)
 return (r + 1.0)**2 * (nr_1 / nr**2) * (1.0 + nr_1 / nr)

 def _renormalize(self, r, nr):
"""

Renormalization is very crucial to ensure that the proper distribution of probability
is obtained. It can be obtained by making the probability estimate of an unseen
sample N(1)/N and then, renormalizing all the previously seen sample probabilities:

Chapter 2

[41]

"""
 prob_cov = 0.0
 for r_, nr_ in zip(r, nr):
 prob_cov += nr_ * self._prob_measure(r_)
 if prob_cov:
 self._renormal = (1 - self._prob_measure(0)) / prob_cov

 def smoothedNr(self, r):
"""
 Return the number of samples with count r.

"""

 # Nr = a*r^b (with b < -1 to give the appropriate hyperbolic
 # relationship)
 # Estimate a and b by simple linear regression technique on
 # the logarithmic form of the equation: log Nr = a + b*log(r)

 return math.exp(self._intercept + self._slope * math.log(r))

 def prob(self, sample):
"""
 Return the sample's probability.

"""
 count = self._freqdist[sample]
 p = self._prob_measure(count)
 if count == 0:
 if self._bins == self._freqdist.B():
 p = 0.0
 else:
 p = p / (1.0 * self._bins - self._freqdist.B())
 else:
 p = p * self._renormal
 return p

 def _prob_measure(self, count):
 if count == 0 and self._freqdist.N() == 0 :
 return 1.0
 elif count == 0 and self._freqdist.N() != 0:
 return 1.0 * self._freqdist.Nr(1) / self._freqdist.N()

Statistical Language Modeling

[42]

 if self._switch_at > count:
 Er_1 = 1.0 * self._freqdist.Nr(count+1)
 Er = 1.0 * self._freqdist.Nr(count)
 else:
 Er_1 = self.smoothedNr(count+1)
 Er = self.smoothedNr(count)

 r_star = (count + 1) * Er_1 / Er
 return r_star / self._freqdist.N()

 def check(self):
 prob_sum = 0.0
 for i in range(0, len(self._Nr)):
 prob_sum += self._Nr[i] * self._prob_measure(i) / self._
renormal
 print("Probability Sum:", prob_sum)
 #assert prob_sum != 1.0, "probability sum should be one!"

 def discount(self):
"""
 It is used to provide the total probability transfers from the
 seen events to the unseen events.
"""
 return 1.0 * self.smoothedNr(1) / self._freqdist.N()

 def max(self):
 return self._freqdist.max()

 def samples(self):
 return self._freqdist.keys()

 def freqdist(self):
 return self._freqdist

 def __repr__(self):
"""
 It obtains the string representation of ProbDist.
"""
 return '<SimpleGoodTuringProbDist based on %d samples>'\
 % self._freqdist.N()

Let's see the code for Simple Good Turing in NLTK:

>>> gt = lambda fd, bins: SimpleGoodTuringProbDist(fd, bins=1e5)
>>> train_and_test(gt)
5.17%

Chapter 2

[43]

Kneser Ney estimation
Kneser Ney is used with trigrams. Let's see the following code in NLTK for the
Kneser Ney estimation:

>>> import nltk
>>> corpus = [[((x[0],y[0],z[0]),(x[1],y[1],z[1]))
 for x, y, z in nltk.trigrams(sent)]
 for sent in corpus[:100]]
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in
sent)
>>> len(tag_set)
906
>>> symbols = unique_list(word for sent in corpus for (word,tag) in
sent)
>>> len(symbols)
1341
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
>>> train_corpus = []
>>> test_corpus = []
>>> for i in range(len(corpus)):
if i % 10:
train_corpus += [corpus[i]]
else:
test_corpus += [corpus[i]]

>>> len(train_corpus)
90
>>> len(test_corpus)
10
>>> kn = lambda fd, bins: KneserNeyProbDist(fd)
>>> train_and_test(kn)
0.86%

Witten Bell estimation
Witten Bell is the smoothing algorithm that was designed to deal with unknown
words having zero probability. Let's consider the following code for Witten Bell
estimation in NLTK:

>>> train_and_test(WittenBellProbDist)
6.90%

Statistical Language Modeling

[44]

Develop a back-off mechanism for MLE
Katz back-off may be defined as a generative n gram language model that computes
the conditional probability of a given token given its previous information in n gram.
According to this model, in training, if n gram is seen more than n times, then the
conditional probability of a token, given its previous information, is proportional to
the MLE of that n gram. Else, the conditional probability is equivalent to the back-off
conditional probability of (n-1) gram.

The following is the code for Katz's back-off model in NLTK:

def prob(self, word, context):
"""
Evaluate the probability of this word in this context using Katz
Backoff.
: param word: the word to get the probability of
: type word: str
:param context: the context the word is in
:type context: list(str)
"""
context = tuple(context)
if(context+(word,) in self._ngrams) or (self._n == 1):
return self[context].prob(word)
else:
return self._alpha(context) * self._backoff.prob(word,context[1:])

Applying interpolation on data to get mix
and match
The limitation of using an additive smoothed bigram is that we back off to a state
of ignorance when we deal with rare text. For example, the word captivating occurs
five times in a training data: thrice followed by by and twice followed by the. With
additive smoothing, the occurrence of a and new before captivating is the same.
Both the occurrences are plausible, but the former is more probable as compared to
latter. This problem can be rectified using unigram probabilities. We can develop
an interpolation model in which both the unigram and bigram probabilities can be
combined.

In SRILM, we perform interpolation by first training a unigram model with -order
1 and –order 2 used for the bigram model:

ngram - count - text / home / linux / ieng6 / ln165w / public / data
/ engand hintrain . txt \ - vocab / home / linux / ieng6 / ln165w /
public / data / engandhinlexicon . txt \ - order 1 - addsmooth 0.0001
- lm wsj1 . lm

Chapter 2

[45]

Evaluate a language model through
perplexity
The nltk.model.ngram module in NLTK has a submodule, perplexity(text).
This submodule evaluates the perplexity of a given text. Perplexity is defined
as 2**Cross Entropy for the text. Perplexity defines how a probability model or
probability distribution can be useful to predict a text.

The code for evaluating the perplexity of text as present in the nltk.model.ngram
module is as follows:

def perplexity(self, text):
"""
 Calculates the perplexity of the given text.
 This is simply 2 ** cross-entropy for the text.

 :param text: words to calculate perplexity of
 :type text: list(str)
"""

 return pow(2.0, self.entropy(text))

Applying metropolis hastings in
modeling languages
There are various ways to perform processing on posterior distribution in Markov Chain
Monte Carlo (MCMC). One way is using the Metropolis-Hastings sampler. In order to
implement the Metropolis-Hastings algorithm, we require standard uniform distribution,
proposal distribution, and target distribution that is proportional to posterior probability.
An example of Metropolis-Hastings is discussed in the following topic.

Applying Gibbs sampling in language
processing
With the help of Gibbs sampling, Markov chain is built by sampling from the
conditional probability. When the iteration over all the parameters is completed, then
one cycle of the Gibbs sampler is completed. When it is not possible to sample from
conditional distribution, then Metropolis-Hastings can be used. This is referred to
as Metropolis within Gibbs. Gibbs sampling may be defined as Metropolis-hastings
with special proposal distribution. On each iteration, we draw a proposal for a new
value of a specific parameter.

Statistical Language Modeling

[46]

Consider an example of throwing two coins that is characterized by the number of
heads and the number of tosses of a coin:

def bern(theta,z,N):
"""Bernoulli likelihood with N trials and z successes."""
return np.clip(theta**z*(1-theta)**(N-z),0,1)
def bern2(theta1,theta2,z1,z2,N1,N2):
"""Bernoulli likelihood with N trials and z successes."""
return bern(theta1,z1,N1)*bern(theta2,z2,N2)
def make_thetas(xmin,xmax,n):
xs=np.linspace(xmin,xmax,n)
widths=(xs[1:]-xs[:-1])/2.0
thetas=xs[:-1]+widths
returnt hetas
def make_plots(X,Y,prior,likelihood,posterior,projection=None):
fig,ax=plt.subplots(1,3,subplot_kw=dict(projection=projection,aspect='
equal'),figsize=(12,3))
ifprojection=='3d':
ax[0].plot_surface(X,Y,prior,alpha=0.3,cmap=plt.cm.jet)
ax[1].plot_surface(X,Y,likelihood,alpha=0.3,cmap=plt.cm.jet)
ax[2].plot_surface(X,Y,posterior,alpha=0.3,cmap=plt.cm.jet)
else:
ax[0].contour(X,Y,prior)
ax[1].contour(X,Y,likelihood)
ax[2].contour(X,Y,posterior)
ax[0].set_title('Prior')
ax[1].set_title('Likelihood')
ax[2].set_title('Posteior')
plt.tight_layout()
thetas1=make_thetas(0,1,101)
thetas2=make_thetas(0,1,101)
X,Y=np.meshgrid(thetas1,thetas2)

For Metropolis, the following values are considered:

a=2
b=3

z1=11
N1=14
z2=7
N2=14

prior=lambdatheta1,theta2:stats.beta(a,b).pdf(theta1)*stats.beta(a,b).
pdf(theta2)

Chapter 2

[47]

lik=partial(bern2,z1=z1,z2=z2,N1=N1,N2=N2)
target=lambdatheta1,theta2:prior(theta1,theta2)*lik(theta1,theta2)

theta=np.array([0.5,0.5])
niters=10000
burnin=500
sigma=np.diag([0.2,0.2])

thetas=np.zeros((niters-burnin,2),np.float)
foriinrange(niters):
new_theta=stats.multivariate_normal(theta,sigma).rvs()
p=min(target(*new_theta)/target(*theta),1)
ifnp.random.rand()<p:
theta=new_theta
ifi>=burnin:
thetas[i-burnin]=theta
kde=stats.gaussian_kde(thetas.T)
XY=np.vstack([X.ravel(),Y.ravel()])
posterior_metroplis=kde(XY).reshape(X.shape)
make_plots(X,Y,prior(X,Y),lik(X,Y),posterior_metroplis)
make_plots(X,Y,prior(X,Y),lik(X,Y),posterior_
metroplis,projection='3d')

For Gibbs, the following values are considered:

a=2
b=3

z1=11
N1=14
z2=7
N2=14

prior=lambda theta1,theta2:stats.beta(a,b).pdf(theta1)*stats.
beta(a,b).pdf(theta2)
lik=partial(bern2,z1=z1,z2=z2,N1=N1,N2=N2)
target=lambdatheta1,theta2:prior(theta1,theta2)*lik(theta1,theta2)

theta=np.array([0.5,0.5])
niters=10000
burnin=500
sigma=np.diag([0.2,0.2])

thetas=np.zeros((niters-burnin,2),np.float)
foriinrange(niters):

Statistical Language Modeling

[48]

theta=[stats.beta(a+z1,b+N1-z1).rvs(),theta[1]]
theta=[theta[0],stats.beta(a+z2,b+N2-z2).rvs()]

ifi>=burnin:
thetas[i-burnin]=theta
kde=stats.gaussian_kde(thetas.T)
XY=np.vstack([X.ravel(),Y.ravel()])
posterior_gibbs=kde(XY).reshape(X.shape)
make_plots(X,Y,prior(X,Y),lik(X,Y),posterior_gibbs)
make_plots(X,Y,prior(X,Y),lik(X,Y),posterior_gibbs,projection='3d')

In the preceding codes of Metropolis and Gibbs, 2D and 3D plots of prior, likelihood,
and posterior would be obtained.

Summary
In this chapter, we have discussed about word frequencies (unigram, bigram, and
trigram). You have studied Maximum Likelihood Estimation and its implementation
in NLTK. We have discussed about the interpolation method, the backoff method,
Gibbs sampling, and Metropolis-hastings. We have also discussed how we can
perform language modeling through perplexity.

In the next chapter, we will discuss about Stemmer and Lemmatizer, and creating the
Morphological generator using machine learning tools.

[49]

Morphology – Getting Our
Feet Wet

Morphology may be defined as the study of the composition of words using
morphemes. A morpheme is the smallest unit of language that has meaning. In this
chapter, we will discuss stemming and lemmatizing, stemmer and lemmatizer for
non-English languages, developing a morphological analyzer and morphological
generator using machine learning tools, search engines, and many such concepts.

In brief, this chapter will include the following topics:

•	 Introducing morphology
•	 Understanding stemmer
•	 Understanding lemmatization
•	 Developing a stemmer for non-English languages
•	 Morphological analyzer
•	 Morphological generator
•	 Search engine

Introducing morphology
Morphology may be defined as the study of the production of tokens with the
help of morphemes. A morpheme is the basic unit of language carrying meaning.
There are two types of morpheme: stems and affixes (suffixes, prefixes, infixes,
and circumfixes).

Morphology – Getting Our Feet Wet

[50]

Stems are also referred to as free morphemes, since they can even exist without
adding affixes. Affixes are referred to as bound morphemes, since they cannot exist
in a free form and they always exist along with free morphemes. Consider the word
unbelievable. Here, believe is a stem or a free morpheme. It can exist on its own.
The morphemes un and able are affixes or bound morphemes. They cannot exist
in a free form, but they exist together with stem. There are three kinds of language,
namely isolating languages, agglutinative languages, and inflecting languages.
Morphology has a different meaning in all these languages. Isolating languages are
those languages in which words are merely free morphemes and they do not carry
any tense (past, present, and future) and number (singular or plural) information.
Mandarin Chinese is an example of an isolating language. Agglutinative languages
are those in which small words combine together to convey compound information.
Turkish is an example of an agglutinative language. Inflecting languages are
those in which words are broken down into simpler units, but all these simpler
units exhibit different meanings. Latin is an example of an inflecting language.
Morphological processes are of the following types: inflection, derivation, semiaffixes
and combining forms, and cliticization. Inflection means transforming the word into
a form so that it represents person, number, tense, gender, case, aspect, and mood.
Here, the syntactic category of a token remains the same. In derivation, the syntactic
category of a word is also changed. Semiaffixes are bound morphemes that exhibit
words, such as quality, for example, noteworthy, antisocial, anticlockwise, and so on.

Understanding stemmer
Stemming may be defined as the process of obtaining a stem from a word by
eliminating the affixes from a word. For example, in the case of the word raining,
stemmer would return the root word or stem word rain by removing the affix from
raining. In order to increase the accuracy of information retrieval, search engines
mostly use stemming to get the stems and store them as indexed words. Search
engines call words with the same meaning synonyms, which may be a kind of query
expansion known as conflation. Martin Porter has designed a well-known stemming
algorithm known as the Porter stemming algorithm. This algorithm is basically
designed to replace and eliminate some well-known suffices present in English
words. To perform stemming in NLTK, we can simply do an instantiation of the
PorterStemmer class and then perform stemming by calling the stem method.

Let's see the code for stemming using the PorterStemmer class in NLTK:

>>> import nltk
>>> from nltk.stem import PorterStemmer
>>> stemmerporter = PorterStemmer()
>>> stemmerporter.stem('working')

Chapter 3

[51]

'work'
>>> stemmerporter.stem('happiness')
'happi'

The PorterStemmer class has been trained and has knowledge of the many stems
and word forms of English. The process of stemming takes place in a series of steps
and transforms the word into a shorter word or a word that has a similar meaning
to the root word. The Stemmer I interface defines the stem() method, and all the
stemmers are inherited from the Stemmer I interface. The inheritance diagram is
depicted here:

Another stemming algorithm known as the Lancaster stemming algorithm was
introduced at Lancaster University. Similar to the PorterStemmer class, the
LancasterStemmer class is used in NLTK to implement Lancaster stemming.
However, one of the major differences between the two algorithms is that Lancaster
stemming involves the use of more words of different sentiments as compared to
Porter Stemming.

Let's consider the following code that depicts Lancaster stemming in NLTK:

>>> import nltk
>>> from nltk.stem import LancasterStemmer
>>> stemmerlan=LancasterStemmer()
>>> stemmerlan.stem('working')
'work'
>>> stemmerlan.stem('happiness')
'happy'

We can also build our own stemmer in NLTK using RegexpStemmer. It works by
accepting a string and eliminating the string from the prefix or suffix of a word
when a match is found.

Morphology – Getting Our Feet Wet

[52]

Let's consider an example of stemming using RegexpStemmer in NLTK:

>>> import nltk
>>> from nltk.stem import RegexpStemmer
>>> stemmerregexp=RegexpStemmer('ing')
>>> stemmerregexp.stem('working')
'work'
>>> stemmerregexp.stem('happiness')
'happiness'
>>> stemmerregexp.stem('pairing')
'pair'

We can use RegexpStemmer in the cases in which stemming cannot be performed
using PorterStemmer and LancasterStemmer.

SnowballStemmer is used to perform stemming in 13 languages other than English.
In order to perform stemming using SnowballStemmer, firstly, an instance is created
in the language in which stemming needs to be performed. Then, using the stem()
method, stemming is performed.

Consider the following example of performing stemming in Spanish and French in
NLTK using SnowballStemmer:

>>> import nltk
>>> from nltk.stem import SnowballStemmer
>>> SnowballStemmer.languages
('danish', 'dutch', 'english', 'finnish', 'french', 'german',
'hungarian', 'italian', 'norwegian', 'porter', 'portuguese',
'romanian', 'russian', 'spanish', 'swedish')
>>> spanishstemmer=SnowballStemmer('spanish')
>>> spanishstemmer.stem('comiendo')
'com'
>>> frenchstemmer=SnowballStemmer('french')
>>> frenchstemmer.stem('manger')
'mang'

Nltk.stem.api consists of the Stemmer I class in which the stem function
is performed.

Consider the following code present in NLTK that enables us to perform stemming:

Class StemmerI(object):
"""
It is an interface that helps to eliminate morphological affixes from
the tokens and the process is known as stemming.
"""

Chapter 3

[53]

def stem(self, token):
"""
Eliminate affixes from token and stem is returned.
"""
raise NotImplementedError()

Let's see the code used to perform stemming using multiple stemmers:

>>> import nltk
>>> from nltk.stem.porter import PorterStemmer
>>> from nltk.stem.lancaster import LancasterStemmer
>>> from nltk.stem import SnowballStemmer
>>> def obtain_tokens():
With open('/home/p/NLTK/sample1.txt') as stem: tok = nltk.word_
tokenize(stem.read())
return tokens
>>> def stemming(filtered):
stem=[]
for x in filtered:
stem.append(PorterStemmer().stem(x))
return stem
>>> if_name_=="_main_":
tok= obtain_tokens()
>>>print("tokens is %s")%(tok)
>>>stem_tokens= stemming(tok)
>>>print("After stemming is %s")%stem_tokens
>>>res=dict(zip(tok,stem_tokens))
>>>print("{tok:stemmed}=%s")%(result)

Understanding lemmatization
Lemmatization is the process in which we transform the word into a form with a
different word category. The word formed after lemmatization is entirely different.
The built-in morphy() function is used for lemmatization in WordNetLemmatizer.
The inputted word is left unchanged if it is not found in WordNet. In the argument,
pos refers to the part of speech category of the inputted word.

Consider an example of lemmatization in NLTK:

>>> import nltk
>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer_output=WordNetLemmatizer()
>>> lemmatizer_output.lemmatize('working')
'working'

Morphology – Getting Our Feet Wet

[54]

>>> lemmatizer_output.lemmatize('working',pos='v')
'work'
>>> lemmatizer_output.lemmatize('works')
'work'

The WordNetLemmatizer library may be defined as a wrapper around the so-
called WordNet corpus, and it makes use of the morphy()function present in
WordNetCorpusReader to extract a lemma. If no lemma is extracted, then the word is
only returned in its original form. For example, for works, the lemma returned is the
singular form, work.

Let's consider the following code that illustrates the difference between stemming
and lemmatization :

>>> import nltk
>>> from nltk.stem import PorterStemmer
>>> stemmer_output=PorterStemmer()
>>> stemmer_output.stem('happiness')
'happi'
>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer_output=WordNetLemmatizer()
>>> lemmatizer_output.lemmatize('happiness')
'happiness'

In the preceding code, happiness is converted to happi by stemming.
Lemmatization doesn't find the root word for happiness, so it returns the word
happiness.

Developing a stemmer for non-English
language
Polyglot is a software that is used to provide models called morfessor models that
are used to obtain morphemes from tokens. The Morpho project's goal is to create
unsupervised data-driven processes. The main aim of the Morpho project is to focus
on the creation of morphemes, which is the smallest unit of syntax. Morphemes
play an important role in natural language processing. Morphemes are useful in
automatic recognition and the creation of language. With the help of the vocabulary
dictionaries of Polyglot, morfessor models on the 50,000 tokens of different
languages were used.

Let's see the code for obtaining the language table using polyglot:

from polyglot.downloader import downloader
print(downloader.supported_languages_table("morph2"))

Chapter 3

[55]

The output obtained from preceding code is the languages listed here:

1. Piedmontese language 2. Lombard language 3. Gan Chinese

4. Sicilian 5. Scots 6. Kirghiz, Kyrgyz

7. Pashto, Pushto 8. Kurdish 9. Portuguese

10. Kannada 11. Korean 12. Khmer

13. Kazakh 14. Ilokano 15. Polish

16. Panjabi, Punjabi 17. Georgian 18. Chuvash

19. Alemannic 20. Czech 21. Welsh

22. Chechen 23. Catalan; Valencian 24. Northern Sami

25. Sanskrit (Sa?sk?ta) 26. Slovene 27. Javanese

28. Slovak 29. Bosnian-Croatian-Serbian 30. Bavarian

31. Swedish 32. Swahili 33. Sundanese

34. Serbian 35. Albanian 36. Japanese

37. Western Frisian 38. French 39. Finnish

40. Upper Sorbian 41. Faroese 42. Persian

43. Sinhala, Sinhalese 44. Italian 45. Amharic

46. Aragonese 47. Volapük 48. Icelandic

49. Sakha 50. Afrikaans 51. Indonesian

52. Interlingua 53. Azerbaijani 54. Ido

55. Arabic 56. Assamese 57. Yoruba

58. Yiddish 59. Waray-Waray 60. Croatian

61. Hungarian 62. Haitian; Haitian Creole 63. Quechua

64. Armenian 65. Hebrew (modern) 66. Silesian

67. Hindi 68. Divehi; Dhivehi; Mald... 69. German

70. Danish 71. Occitan 72. Tagalog

73. Turkmen 74. Thai 75. Tajik

76. Greek, Modern 77. Telugu 78. Tamil

79. Oriya 80. Ossetian, Ossetic 81. Tatar

82. Turkish 83. Kapampangan 84. Venetian

85. Manx 86. Gujarati 87. Galician

88. Irish 89. Scottish Gaelic; Gaelic 90. Nepali

91. Cebuano 92. Zazaki 93. Walloon

94. Dutch 95. Norwegian 96. Norwegian Nynorsk

97. West Flemish 98. Chinese 99. Bosnian

100. Breton 101. Belarusian 102. Bulgarian

103. Bashkir 104. Egyptian Arabic 105. Tibetan Standard, Tib...

106. Bengali 107. Burmese 108. Romansh

109. Marathi (Mara?hi) 110. Malay 111. Maltese

112. Russian 113. Macedonian 114. Malayalam

115. Mongolian 116. Malagasy 117. Vietnamese

118. Spanish; Castilian 119. Estonian 120. Basque

121. Bishnupriya Manipuri 122. Asturian 123. English

124. Esperanto 125. Luxembourgish, Letzeb... 126. Latin

127. Uighur, Uyghur 128. Ukrainian 129. Limburgish, Limburgan...

130. Latvian 131. Urdu 132. Lithuanian

133. Fiji Hindi 134. Uzbek 135. Romanian, Moldavian, ...

Morphology – Getting Our Feet Wet

[56]

The necessary models can be downloaded using the following code:

%%bash
polyglot download morph2.en morph2.ar

[polyglot_data] Downloading package morph2.en to
[polyglot_data] /home/rmyeid/polyglot_data...
[polyglot_data] Package morph2.en is already up-to-date!
[polyglot_data] Downloading package morph2.ar to
[polyglot_data] /home/rmyeid/polyglot_data...
[polyglot_data] Package morph2.ar is already up-to-date!

Consider an example that is used to obtain an output from polyglot:

from polyglot.text import Text, Word
tokens =["unconditional" ,"precooked", "impossible", "painful",
"entered"]
for s in tokens:
s=Word(s, language="en")
print("{:<20}{}".format(s,s.morphemes))

unconditional['un','conditional']
precooked['pre','cook','ed']
impossible['im','possible']
painful['pain','ful']
entered['enter','ed']

If tokenization is not performed properly, then we can perform morphological
analysis for the process of splitting the text into the original constituents:

sent="Ihopeyoufindthebookinteresting"
para=Text(sent)
para.language="en"
para.morphemes
WordList(['I','hope','you','find','the','book','interesting'])

Morphological analyzer
Morphological analysis may be defined as the process of obtaining grammatical
information from tokens, given their suffix information. Morphological analysis can be
performed in three ways: morpheme-based morphology (or anitem and arrangement
approach), lexeme-based morphology (or an item and process approach), and word-
based morphology (or a word and paradigm approach). A morphological analyzer
may be defined as a program that is responsible for the analysis of the morphology of a
given input token. It analyzes a given token and generates morphological information,
such as gender, number, class, and so on, as an output.

Chapter 3

[57]

In order to perform morphological analysis on a given non-whitespace token,
the pyEnchant dictionary is used.

Let's consider the following code that performs morphological analysis:

>>> import enchant
>>> s = enchant.Dict("en_US")
>>> tok=[]
>>> def tokenize(st1):
if not st1:return
for j in xrange(len(st1),-1,-1):
if s.check(st1[0:j]):
tok.append(st1[0:i])
st1=st[j:]
tokenize(st1)
break
>>> tokenize("itismyfavouritebook")
>>> tok
['it', 'is', 'my','favourite','book']
>>> tok=[]
>>> tokenize("ihopeyoufindthebookinteresting")
>>> tok
['i','hope','you','find','the','book','interesting']

We can determine the category of the word with the help of the following points:

•	 Morphological hints: The suffix's information helps us detect the category
of a word. For example, the -ness and –ment suffixes exist with nouns.

•	 Syntactic hints: Contextual information is conducive to determine the
category of a word. For example, if we have found the word that has the
noun category, then syntactic hints will be useful for determining whether
an adjective would appear before the noun or after the noun category.

•	 Semantic hints: A semantic hint is also useful for determining the word's
category. For example, if we already know that a word represents the name
of a location, then it will fall under the noun category.

•	 Open class: This is class of words that are not fixed, and their number keeps
on increasing every day, whenever a new word is added to their list. Words
in the open class are usually nouns. Prepositions are mostly in a closed class.
For example, there can be an unlimited number of words in the of Persons
list. So, it is an open class.

•	 Morphology captured by the Part of Speech tagset: The Part of Speech
tagset captures information that helps us perform morphology. For example,
the word plays would appear with the third person and a singular noun.

Morphology – Getting Our Feet Wet

[58]

•	 Omorfi:Omorfi (Open morphology of Finnish) is a package that has
been licensed by GNU GPL version 3. It is used for performing numerous
tasks, such as language modeling, morphological analysis, rule-based
machine translation, information retrieval, statistical machine translation,
morphological segmentation, ontologies, and spell checking and correction.

Morphological generator
A morphological generator is a program that performs the task of morphological
generation. Morphological generation may be considered an opposite task of
morphological analysis. Here, given the description of a word in terms of number,
category, stem, and so on, the original word is retrieved. For example, if root = go,
part of speech = verb, tense= present, and if it occurs along with a third person and
singular subject, then a morphological generator would generate its surface
form, goes.

There is a lot of Python-based software that performs morphological analysis and
generation. Some of them are as follows:

•	 ParaMorfo: It is used to perform morphological generation and analysis of
Spanish and Guarani nouns, adjectives, and verbs.

•	 HornMorpho: It is used for the morphological generation and analysis of
Oromo and Amharic nouns and verbs, as well as Tigrinya verbs.

•	 AntiMorfo: It is used for the morphological generation and analysis of
Quechua adjectives, verbs, and nouns, as well as Spanish verbs.

•	 MorfoMelayu: It is used for the morphological analysis of Malay words.

Other examples of software that is used to perform morphological analysis and
generation are as follows:

•	 Morph is a morphological generator and analyzer for English for the RASP
system

•	 Morphy is a morphological generator, analyzer, and POS tagger for German
•	 Morphisto is a morphological generator and analyzer for German
•	 Morfette performs supervised learning (inflectional morphology) for Spanish

and French

Chapter 3

[59]

Search engine
PyStemmer 1.0.1 consists of Snowball stemming algorithms that are used for
performing information retrieval tasks and for constructing a search engine. It
consists of the Porter stemming algorithm and many other stemming algorithms
that are useful for performing stemming and information retrieval tasks in many
languages, including many European languages.

We can construct a vector space search engine by converting the texts into vectors.

The following are the steps involved in constructing a vector space search engine:

1.	 Consider the following code for the removal of stopwords and tokenization:
A stemmer is a program that accepts words and converts them into stems.
Tokens that have the same stem have nearly the same meanings. Stopwords
are also eliminated from a text.
def eliminatestopwords(self,list):
"""
Eliminate words which occur often and have not much significance
from context point of view.
"""
return[word for word in list if word not in self.stopwords]

def tokenize(self,string):
"""
Perform the task of splitting text into stop words and tokens
"""
Str=self.clean(str)
Words=str.split("")
return [self.stemmer.stem(word,0,len(word)-1) for word in words]

2.	 Consider the following code for mapping keywords into vector dimensions:
def obtainvectorkeywordindex(self, documentList):
"""
In the document vectors, generate the keyword for the given
position of element
"""

#Perform mapping of text into strings
vocabstring = "".join(documentList)

vocablist = self.parser.tokenise(vocabstring)

Morphology – Getting Our Feet Wet

[60]

#Eliminate common words that have no search significance
vocablist = self.parser.eliminatestopwords(vocablist)
uniqueVocablist = util.removeDuplicates(vocablist)

vectorIndex={}
 offset=0
#Attach a position to keywords that performs mapping with
dimension that is used to depict this token
 for word in uniqueVocablist:
vectorIndex[word]=offset
offset+=1
 return vectorIndex #(keyword:position)

3.	 Here, a simple term count model is used. Consider the following code for the
conversion of text strings into vectors:
def constructVector(self, wordString):

 # Initialise the vector with 0's
 Vector_val = [0] * len(self.vectorKeywordIndex)
 tokList = self.parser.tokenize(tokString)
 tokList = self.parser.eliminatestopwords(tokList)
 for word in toklist:
 vector[self.vectorKeywordIndex[word]] += 1;
simple Term Count Model is used
 return vector

4.	 Searching similar documents by finding the cosine of an angle between the
vectors of a document, we can prove whether two given documents are
similar or not. If the cosine value is 1, then the angle's value is 0 degrees and
the vectors are said to be parallel (this means that the documents are said to
be related). If the cosine value is 0 and value of the angle is 90 degrees, then
the vectors are said to be perpendicular (this means that the documents are
not said to be related). Let's see the code for computing the cosine between
the text vectors using SciPy:
def cosine(vec1, vec2):
"""
 cosine = (X * Y) / ||X|| x ||Y||
"""
return float(dot(vec1,vec2) / (norm(vec1) * norm(vec2)))

5.	 We perform the mapping of keywords to vector space. We construct a
temporary text that represents the items to be searched and then compare
it with document vectors with the help of cosine measurement. Let's see
the following code for searching the vector space:

Chapter 3

[61]

def searching(self,searchinglist):
""" search for text that are matched on the basis oflist of
items """
 askVector = self.buildQueryVector(searchinglist)

ratings = [util.cosine(askVector, textVector) for textVector in
self.documentVectors]
 ratings.sort(reverse=True)
 return ratings

6.	 We will now consider the following code that can be used for detecting
languages from the source text:
>>> import nltk
>>> import sys
>>> try:
from nltk import wordpunct_tokenize
from nltk.corpus import stopwords
except ImportError:
print('Error has occured')

#---

>>> def _calculate_languages_ratios(text):
"""
Compute probability of given document that can be written in
different languages and give a dictionary that appears like
{'german': 2, 'french': 4, 'english': 1}
"""
 languages_ratios = {}
'''
nltk.wordpunct_tokenize() splits all punctuations into separate
tokens
 wordpunct_tokenize("I hope you like the book interesting .")
[' I',' hope ','you ','like ','the ','book' ,'interesting ','.']
'''

tok = wordpunct_tokenize(text)
wor = [word.lower() for word in tok]

 # Compute occurence of unique stopwords in a text
for language in stopwords.fileids():
stopwords_set = set(stopwords.words(language))

Morphology – Getting Our Feet Wet

[62]

words_set = set(words)
common_elements = words_set.intersection(stopwords_set)
languages_ratios[language] = len(common_elements)
language "score"
return languages_ratios

#--

>>> def detect_language(text):
"""
Compute the probability of given text that is written in different
languages and obtain the one that is highest scored. It makes
use of stopwords calculation approach, finds out unique stopwords
present in a analyzed text.
"""
ratios = _calculate_languages_ratios(text)
most_rated_language = max(ratios, key=ratios.get)
return most_rated_language

if __name__=='__main__':

 text = '''
All over this cosmos, most of the people believe that there is
an invisible supreme power that is the creator and the runner of
this world. Human being is supposed to be the most intelligent and
loved creation by that power and that is being searched by human
beings in different ways into different things. As a result people
reveal His assumed form as per their own perceptions and beliefs.
It has given birth to different religions and people are divided
on the name of religion viz. Hindu, Muslim, Sikhs, Christian etc.
People do not stop at this. They debate the superiority of one
over the other and fight to establish their views. Shrewd people
like politicians oppose and support them at their own convenience
to divide them and control them. It has intensified to the extent
that even parents of a
new born baby teach it about religious differences and recommend
their own religion superior to that of others and let the child
learn to hate other people just because of religion. Jonathan
Swift, an eighteenth century novelist, observes that we have just
enough religion to make us hate, but not enough to make us love
one another.
The word 'religion' does not have a derogatory meaning - A literal
meaning of religion is 'A
personal or institutionalized system grounded in belief in a God
or Gods and the activities connected

Chapter 3

[63]

with this'. At its basic level, 'religion is just a set of
teachings that tells people how to lead a good
life'. It has never been the purpose of religion to divide people
into groups of isolated followers that
cannot live in harmony together. No religion claims to teach
intolerance or even instructs its believers to segregate a
certain religious group or even take the fundamental rights of
an individual solely based on their religious choices. It is also
said that 'Majhab nhi sikhata aaps mai bair krna'.But this very
majhab or religion takes a very heinous form when it is misused
by the shrewd politicians and the fanatics e.g. in Ayodhya on 6th
December, 1992 some right wing political parties
and communal organizations incited the Hindus to demolish the 16th
century Babri Masjid in the
name of religion to polarize Hindus votes. Muslim fanatics in
Bangladesh retaliated and destroyed a
number of temples, assassinated innocent Hindus and raped Hindu
girls who had nothing to do with
the demolition of Babri Masjid. This very inhuman act has been
presented by Taslima Nasrin, a Bangladeshi Doctor-cum-Writer
in her controversial novel 'Lajja' (1993) in which, she seems
to utilizes fiction's mass emotional appeal, rather than its
potential for nuance and universality.
'''

>>> language = detect_language(text)

>>> print(language)

The preceding code will search for stopwords and detect the language of the text,
that is, English.

Summary
The field of computational linguistics has numerous applications. We need to
perform preprocessing on our original text in order to implement or build an
application. In this chapter, we have discussed stemming, lemmatization, and
morphological analysis and generation, and their implementation in NLTK.
We have also discussed search engines and their implementation.

In the next chapter, we will discuss parts of speech, tagging, and chunking.

[65]

Parts-of-Speech Tagging –
Identifying Words

Parts-of-speech (POS) tagging is one of the many tasks in NLP. It is defined as
the process of assigning a particular parts-of-speech tag to individual words in a
sentence. The parts-of-speech tag identifies whether a word is a noun, verb, adjective,
and so on. There are numerous applications of parts-of-speech tagging, such as
information retrieval, machine translation, NER, language analysis, and so on.

This chapter will include the following topics:

•	 Creating POS tagged corpora
•	 Selecting a machine learning algorithm
•	 Statistical modeling involving the n-gram approach
•	 Developing a chunker using POS tagged data

Introducing parts-of-speech tagging
Parts-of-speech tagging is the process of assigning a category (for example, noun,
verb, adjective, and so on) tag to individual tokens in a sentence. In NLTK, taggers
are present in the nltk.tag package and it is inherited by the TaggerIbase class.

Consider an example to implement POS tagging for a given sentence in NLTK:

>>> import nltk
>>> text1=nltk.word_tokenize("It is a pleasant day today")
>>> nltk.pos_tag(text1)
[('It', 'PRP'), ('is', 'VBZ'), ('a', 'DT'), ('pleasant', 'JJ'),
('day', 'NN'), ('today', 'NN')]

Parts-of-Speech Tagging – Identifying words

[66]

We can implement the tag() method in all the subclasses of TaggerI. In order to
evaluate tagger, TaggerI has provided the evaluate() method. A combination of
taggers can be used to form a back-off chain so that the next tagger can be used for
tagging if one tagger is not tagging.

Let's see the list of available tags provided by Penn Treebank (https://www.ling.
upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html):

CC - Coordinating conjunction
CD - Cardinal number
DT - Determiner
EX - Existential there
FW - Foreign word
IN - Preposition or subordinating conjunction
JJ - Adjective
JJR - Adjective, comparative
JJS - Adjective, superlative
LS - List item marker
MD - Modal
NN - Noun, singular or mass
NNS - Noun, plural
NNP - Proper noun, singular
NNPS - Proper noun, plural
PDT - Predeterminer
POS - Possessive ending
PRP - Personal pronoun
PRP$ - Possessive pronoun (prolog version PRP-S)
RB - Adverb
RBR - Adverb, comparative
RBS - Adverb, superlative
RP - Particle
SYM - Symbol
TO - to
UH - Interjection
VB - Verb, base form
VBD - Verb, past tense
VBG - Verb, gerund or present participle
VBN - Verb, past participle
VBP - Verb, non-3rd person singular present
VBZ - Verb, 3rd person singular present
WDT - Wh-determiner
WP - Wh-pronoun
WP$ - Possessive wh-pronoun (prolog version WP-S)
WRB - Wh-adverb

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Chapter 4

[67]

NLTK may provide the information of tags. Consider the following code, which
provides information about the NNS tag:

>>> nltk.help.upenn_tagset('NNS')
NNS: noun, common, plural
 undergraduates scotches bric-a-brac products bodyguards facets
coasts
 divestitures storehouses designs clubs fragrances averages
 subjectivists apprehensions muses factory-jobs ...

Let's see another example in which a regular expression may also be queried:

>>> nltk.help.upenn_tagset('VB.*')
VB: verb, base form
 ask assemble assess assign assume atone attention avoid bake
balkanize
 bank begin behold believe bend benefit bevel beware bless boil
bomb
 boost brace break bring broil brush build ...
VBD: verb, past tense
 dipped pleaded swiped regummed soaked tidied convened halted
registered
 cushioned exacted snubbed strode aimed adopted belied figgered
 speculated wore appreciated contemplated ...
VBG: verb, present participle or gerund
 telegraphing stirring focusing angering judging stalling lactating
 hankerin' alleging veering capping approaching traveling besieging
 encrypting interrupting erasing wincing ...
VBN: verb, past participle
 multihulled dilapidated aerosolized chaired languished panelized
used
 experimented flourished imitated reunifed factored condensed sheared
 unsettled primed dubbed desired ...
VBP: verb, present tense, not 3rd person singular
 predominate wrap resort sue twist spill cure lengthen brush
terminate
 appear tend stray glisten obtain comprise detest tease attract
 emphasize mold postpone sever return wag ...
VBZ: verb, present tense, 3rd person singular
 bases reconstructs marks mixes displeases seals carps weaves
snatches
 slumps stretches authorizes smolders pictures emerges stockpiles
 seduces fizzes uses bolsters slaps speaks pleads ...R

The preceding code gives information regarding all the tags of verb phrases.

Parts-of-Speech Tagging – Identifying words

[68]

Let's look at an example that depicts words' sense disambiguation achieved through
POS tagging:

>>> import nltk
>>> text=nltk.word_tokenize("I cannot bear the pain of bear")
>>> nltk.pos_tag(text)
[('I', 'PRP'), ('can', 'MD'), ('not', 'RB'), ('bear', 'VB'), ('the',
'DT'), ('pain', 'NN'), ('of', 'IN'), ('bear', 'NN')]

Here, in the previous sentence, bear is a verb, which means to tolerate, and it also is
an animal, which means that it is a noun.

In NLTK, a tagged token is represented as a tuple consisting of a token and its tag.
We can create this tuple in NLTK using the str2tuple() function:

>>> import nltk
>>> taggedword=nltk.tag.str2tuple('bear/NN')
>>> taggedword
('bear', 'NN')
>>> taggedword[0]
'bear'
>>> taggedword[1]
'NN'

Let's consider an example in which sequences of tuples can be generated from the
given text:

>>> import nltk
>>> sentence='''The/DT sacred/VBN Ganga/NNP flows/VBZ in/IN this/DT
region/NN ./. This/DT is/VBZ a/DT pilgrimage/NN ./. People/NNP from/IN
all/DT over/IN the/DT country/NN visit/NN this/DT place/NN ./. '''
>>> [nltk.tag.str2tuple(t) for t in sentence.split()]
[('The', 'DT'), ('sacred', 'VBN'), ('Ganga', 'NNP'), ('flows', 'VBZ'),
('in', 'IN'), ('this', 'DT'), ('region', 'NN'), ('.', '.'), ('This',
'DT'), ('is', 'VBZ'), ('a', 'DT'), ('pilgrimage', 'NN'), ('.', '.'),
('People', 'NNP'), ('from', 'IN'), ('all', 'DT'), ('over', 'IN'),
('the', 'DT'), ('country', 'NN'), ('visit', 'NN'), ('this', 'DT'),
('place', 'NN'), ('.', '.')]

Now, consider the following code that converts the tuple (word and pos tag) into a
word and a tag:

>>> import nltk
>>> taggedtok = ('bear', 'NN')
>>> from nltk.tag.util import tuple2str
>>> tuple2str(taggedtok)
'bear/NN'

Chapter 4

[69]

Let's see the occurrence of some common tags in the Treebank corpus:

>>> import nltk
>>> from nltk.corpus import treebank
>>> treebank_tagged = treebank.tagged_words(tagset='universal')
>>> tag = nltk.FreqDist(tag for (word, tag) in treebank_tagged)
>>> tag.most_common()
[('NOUN', 28867), ('VERB', 13564), ('.', 11715), ('ADP', 9857),
('DET', 8725), ('X', 6613), ('ADJ', 6397), ('NUM', 3546), ('PRT',
3219), ('ADV', 3171), ('PRON', 2737), ('CONJ', 2265)]

Consider the following code, which calculates the number of tags occurring before
a noun tag:

>>> import nltk
>>> from nltk.corpus import treebank
>>> treebank_tagged = treebank.tagged_words(tagset='universal')
>>> tagpairs = nltk.bigrams(treebank_tagged)
>>> preceders_noun = [x[1] for (x, y) in tagpairs if y[1] == 'NOUN']
>>> freqdist = nltk.FreqDist(preceders_noun)
>>> [tag for (tag, _) in freqdist.most_common()]
['NOUN', 'DET', 'ADJ', 'ADP', '.', 'VERB', 'NUM', 'PRT', 'CONJ',
'PRON', 'X', 'ADV']

We can also provide POS tags to tokens using dictionaries in Python. Let's see
the following code that illustrates the creation of a tuple (word:pos tag) using
dictionaries in Python:

>>> import nltk
>>> tag={}
>>> tag
{}
>>> tag['beautiful']='ADJ'
>>> tag
{'beautiful': 'ADJ'}
>>> tag['boy']='N'
>>> tag['read']='V'
>>> tag['generously']='ADV'
>>> tag
{'boy': 'N', 'beautiful': 'ADJ', 'generously': 'ADV', 'read': 'V'}

Parts-of-Speech Tagging – Identifying words

[70]

Default tagging
Default tagging is a kind of tagging that assigns identical parts-of-speech tags to
all the tokens. The subclass of SequentialBackoffTagger is DefaultTagger. The
choose_tag() method must be implemented by SequentialBackoffTagger. This
method includes the following arguments:

•	 A collection of tokens
•	 The index of the token that should be tagged
•	 The previous tags list

The hierarchy of tagger is depicted as follows:

Let's now see the following code, which depicts the working of DefaultTagger:

>>> import nltk
>>> from nltk.tag import DefaultTagger
>>> tag = DefaultTagger('NN')
>>> tag.tag(['Beautiful', 'morning'])
[('Beautiful', 'NN'), ('morning', 'NN')]

We can convert a tagged sentence into an untagged sentence with the help of nltk.
tag.untag(). After calling this function, the tags on individual tokens will be
eliminated.

Chapter 4

[71]

Let's see the code for untagging a sentence:

>>> from nltk.tag import untag
>>> untag([('beautiful', 'NN'), ('morning', 'NN')])
['beautiful', 'morning']

Creating POS-tagged corpora
A corpus may be known as a collection of documents. A corpora is the collection
of multiple corpus.

Let's see the following code, which will generate a data directory inside the
home directory:

>>> import nltk
>>> import os,os.path
>>> create = os.path.expanduser('~/nltkdoc')
>>> if not os.path.exists(create):
 os.mkdir(create)

>>> os.path.exists(create)
True
>>> import nltk.data
>>> create in nltk.data.path
True

This code will create a data directory named ~/nltkdoc inside the home directory.
The last line of this code will return True and will ensure that the data directory has
been created. If the last line of the code returns False, then it means that the data
directory has not been created and we need to create it manually. After creating the
data directory manually, we can test the last line and it will then return True. Within
this directory, we can create another directory named nltkcorpora that will hold
the whole corpus. The path will be ~/nltkdoc/nltkcorpora. Also, we can create a
subdirectory named important that will hold all the necessary files.

The path will be ~/nltkdoc/nltkcorpora/important.

Let's see the following code to load a text file into the subdirectory:

>>> import nltk.data
>>> nltk.data.load('nltkcorpora/important/firstdoc.txt',format='raw')
'nltk\n'

Parts-of-Speech Tagging – Identifying words

[72]

Here, in the previous code, we have mentioned format='raw', since nltk.data.
load() cannot interpret .txt files.

There is a word list corpus in NLTK known as the Names corpus. It consists of two
files, namely, male.txt and female.txt.

Let's see the code to generate the length of male.txt and female.txt:

>>> import nltk
>>> from nltk.corpus import names
>>> names.fileids()
['female.txt', 'male.txt']
>>> len(names.words('male.txt'))
2943
>>> len(names.words('female.txt'))
5001

NLTK also consists of a large collection of English words. Let's see the code that
describes the number of words present in the English word file:

>>> import nltk
>>> from nltk.corpus import words
>>> words.fileids()
['en', 'en-basic']
>>> len(words.words('en'))
235886
>>> len(words.words('en-basic'))
850

Consider the following code used in NLTK for defining the Maxent Treebank
POS tagger:

def pos_tag(tok):
 """

We can use POS tagger given by NLTK to tag a list of tokens:

>>> from nltk.tag import pos_tag
>>> from nltk.tokenize import word_tokenize
>>> pos_tag(word_tokenize("Papa's favourite hobby is reading."))
 [('Papa', 'NNP'), ("'s", 'POS'), ('favourite', 'JJ'),
('hobby', 'NN'), ('is',
 'VBZ'), ('reading', 'VB'), ('.', '.')]

 :param tokens: list of tokens that need to be tagged
 :type tok: list(str)
 :return: The tagged tokens

Chapter 4

[73]

 :rtype: list(tuple(str, str))
 """
 tagger = load(_POS_TAGGER)
 return tagger.tag(tok)

def batch_pos_tag(sent):
 """
 We can use part of speech tagger given by NLTK to perform tagging
of list of tokens.
 """
 tagger = load(_POS_TAGGER)
 return tagger.batch_tag(sent)

Selecting a machine learning algorithm
POS tagging is also referred to as word category disambiguation or grammatical
tagging. POS tagging may be of two types: rule-based or stochastic/probabilistic.
E. Brill's tagger is based on the rule-based tagging algorithm.

A POS classifier takes a document as input and obtains word features. It trains itself
with the help of these word features combined with the already available training
labels. This type of classifier is referred to as a second order classifier, and it makes
use of the bootstrap classifier in order to generate the tags for words.

A backoff classifier is one in which backoff procedure is performed. The output
is obtained in such a manner that the trigram POS tagger relies on the bigram POS
tagger, which in turn relies on the unigram POS tagger.

While training a POS classifier, a feature set is generated. This feature set may
comprise the following:

•	 Information about the current word
•	 Information about the previous word or prefix
•	 Information about the next word or successor

In NLTK, FastBrillTagger is based on unigram. It makes use of a dictionary of
words that are already known and the pos tag information.

Let's see the code for FastBrillTagger used in NLTK:

from nltk.tag import UnigramTagger
from nltk.tag import FastBrillTaggerTrainer

from nltk.tag.brill import SymmetricProximateTokensTemplate

Parts-of-Speech Tagging – Identifying words

[74]

from nltk.tag.brill import ProximateTokensTemplate
from nltk.tag.brill import ProximateTagsRule
from nltk.tag.brill import ProximateWordsRule

ctx = [# Context = surrounding words and tags.
 SymmetricProximateTokensTemplate(ProximateTagsRule, (1, 1)),
 SymmetricProximateTokensTemplate(ProximateTagsRule, (1, 2)),
 SymmetricProximateTokensTemplate(ProximateTagsRule, (1, 3)),
 SymmetricProximateTokensTemplate(ProximateTagsRule, (2, 2)),
 SymmetricProximateTokensTemplate(ProximateWordsRule, (0, 0)),
 SymmetricProximateTokensTemplate(ProximateWordsRule, (1, 1)),
 SymmetricProximateTokensTemplate(ProximateWordsRule, (1, 2)),
 ProximateTokensTemplate(ProximateTagsRule, (-1, -1), (1, 1)),
]

tagger = UnigramTagger(sentences)
tagger = FastBrillTaggerTrainer(tagger, ctx, trace=0)
tagger = tagger.train(sentences, max_rules=100)

Classification may be defined as the process of deciding a POS tag for a given input.

In supervised classification, a training corpus is used that comprises a word and its
correct tag. In unsupervised classification, any pair of words and a correct tag list
does not exist:

Chapter 4

[75]

In supervised classification, during training, a feature extractor accepts the input
and labels and generates a set of features. These features set along with the label
act as input to machine learning algorithms. During the testing or prediction phase,
a feature extractor is used that generates features from unknown inputs, and the
output is sent to a classifier model that generates an output in the form of label or
pos tag information with the help of machine learning algorithms.

The maximum entropy classifier is one in that searches the parameter set in order to
maximize the total likelihood of the corpus used for training.

It may be defined as follows:

Statistical modeling involving the n-gram
approach
Unigram means a single word. In a unigram tagger, a single token is used to find the
particular parts-of-speech tag.

Training of UnigramTagger can be performed by providing it with a list of sentences
at the time of initialization.

Let's see the following code in NLTK, which performs UnigramTagger training:

>>> import nltk
>>> from nltk.tag import UnigramTagger
>>> from nltk.corpus import treebank
>>> training= treebank.tagged_sents()[:7000]
>>> unitagger=UnigramTagger(training)
>>> treebank.sents()[0]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join',
'the', 'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29',
'.']
>>> unitagger.tag(treebank.sents()[0])
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'),
('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'), ('join',
'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'),
('nonexecutive', 'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29',
'CD'), ('.', '.')]

Parts-of-Speech Tagging – Identifying words

[76]

In the preceding code, we have performed training using the first 7000 sentences of
the Treebank corpus.

The hierarchy followed by UnigramTagger is depicted in the following inheritance
diagram:

To evaluate UnigramTagger, let's see the following code, which calculates the
accuracy:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from nltk.tag import UnigramTagger
>>> training= treebank.tagged_sents()[:7000]
>>> unitagger=UnigramTagger(training)
>>> testing = treebank.tagged_sents()[2000:]
>>> unitagger.evaluate(testing)
0.963400866227395

So, it is 96% accurate in correctly performing pos tagging.

Since UnigramTagger inherits from ContextTagger, we can map the context key
with a specific tag.

Chapter 4

[77]

Consider the following example of tagging using UnigramTagger:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from nltk.tag import UnigramTagger
>>> unitag = UnigramTagger(model={'Vinken': 'NN'})
>>> unitag.tag(treebank.sents()[0])
[('Pierre', None), ('Vinken', 'NN'), (',', None), ('61', None),
('years', None), ('old', None), (',', None), ('will', None), ('join',
None), ('the', None), ('board', None), ('as', None), ('a', None),
('nonexecutive', None), ('director', None), ('Nov.', None), ('29',
None), ('.', None)]

Here, in the preceding code, UnigramTagger only tags 'Vinken' with the 'NN'
tag and the rest are tagged with the 'None' tag since we have provided the tag for
the word 'Vinken' in the context model and no other words are included in the
context model.

In a given context, ContextTagger uses the frequency of a given tag to decide the
occurrence of the most probable tag. In order to use minimum threshold frequency,
we can pass a specific value to the cutoff value. Let's see the code that evaluates
UnigramTagger:

>>> unitagger = UnigramTagger(training, cutoff=5)
>>> unitagger.evaluate(testing)
0.7974218445306567

Backoff tagging may be defined as a feature of SequentialBackoffTagger. All the
taggers are chained together so that if one of the taggers is unable to tag a token, then
the token may be passed to the next tagger.

Let's see the following code, which uses back-off tagging. Here, DefaultTagger and
UnigramTagger are used to tag a token. If any tagger of them is unable to tag a word,
then the next tagger may be used to tag it:

>>> import nltk
>>> from nltk.tag import UnigramTagger
>>> from nltk.tag import DefaultTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> tag1=DefaultTagger('NN')
>>> tag2=UnigramTagger(training,backoff=tag1)
>>> tag2.evaluate(testing)
0.963400866227395

Parts-of-Speech Tagging – Identifying words

[78]

The subclasses of NgramTagger areUnigramTagger, BigramTagger, and
TrigramTagger. BigramTagger makes use of the previous tag as contextual
information. TrigramTagger uses the previous two tags as contextual information.

Consider the following code, which illustrates the implementation of BigramTagger:

>>> import nltk
>>> from nltk.tag import BigramTagger
>>> from nltk.corpus import treebank
>>> training_1= treebank.tagged_sents()[:7000]
>>> bigramtagger=BigramTagger(training_1)
>>> treebank.sents()[0]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join',
'the', 'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29',
'.']
>>> bigramtagger.tag(treebank.sents()[0])
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'),
('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'), ('join',
'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'),
('nonexecutive', 'JJ'), ('director', 'NN'), ('Nov.', 'NNP'), ('29',
'CD'), ('.', '.')]
>>> testing_1 = treebank.tagged_sents()[2000:]
>>> bigramtagger.evaluate(testing_1)
0.922942709936983

Let's see another code for BigramTagger and TrigramTagger:

>>> import nltk
>>> from nltk.tag import BigramTagger, TrigramTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> bigramtag = BigramTagger(training)
>>> bigramtag.evaluate(testing)
0.9190426339881356
>>> trigramtag = TrigramTagger(training)
>>> trigramtag.evaluate(testing)
0.9101956195989079

NgramTagger can be used to generate a tagger for n greater than three as well. Let's
see the following code in NLTK, which develops QuadgramTagger:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from nltk import NgramTagger
>>> testing = treebank.tagged_sents()[2000:]

Chapter 4

[79]

>>> training= treebank.tagged_sents()[:7000]
>>> quadgramtag = NgramTagger(4, training)
>>> quadgramtag.evaluate(testing)
0.9429767842847466

The AffixTagger is also a ContextTagger in that makes use of a prefix or suffix as
the contextual information.

Let's see the following code, which uses AffixTagger:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from nltk.tag import AffixTagger
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> affixtag = AffixTagger(training)
>>> affixtag.evaluate(testing)
0.29043249789601167

Let's see the following code, which learns the use of four character prefixes:

>>> import nltk
>>> from nltk.tag import AffixTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> prefixtag = AffixTagger(training, affix_length=4)
>>> prefixtag.evaluate(testing)
0.21103516226368618

Consider the following code, which learns the use of three character suffixes:

>>> import nltk
>>> from nltk.tag import AffixTagger
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> suffixtag = AffixTagger(training, affix_length=-3)
>>> suffixtag.evaluate(testing)
0.29043249789601167

Consider the following code in NLTK, which that combines many affix taggers in the
back-off chain:

>>> import nltk
>>> from nltk.tag import AffixTagger
>>> from nltk.corpus import treebank

Parts-of-Speech Tagging – Identifying words

[80]

>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> prefixtagger=AffixTagger(training,affix_length=4)
>>> prefixtagger.evaluate(testing)
0.21103516226368618
>>> prefixtagger3=AffixTagger(training,affix_
length=3,backoff=prefixtagger)
>>> prefixtagger3.evaluate(testing)
0.25906767658107027
>>> suffixtagger3=AffixTagger(training,affix_length=-
3,backoff=prefixtagger3)
>>> suffixtagger3.evaluate(testing)
0.2939630929654946
>>> suffixtagger4=AffixTagger(training,affix_length=-
4,backoff=suffixtagger3)
>>> suffixtagger4.evaluate(testing)
0.3316090892296324

The TnT is Trigrams n Tags. TnT is a statistical-based tagger that is based on the
second order Markov models.

Let's see the code in NLTK for TnT:

>>> import nltk
>>> from nltk.tag import tnt
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]
>>> tnt_tagger=tnt.TnT()
>>> tnt_tagger.train(training)
>>> tnt_tagger.evaluate(testing)
0.9882176652913768

TnT computes ConditionalFreqDist and internalFreqDist from the training text.
These instances are used to compute unigrams, bigrams, and trigrams. In order to
choose the best tag, TnT uses the ngram model.

Consider the following code of a DefaultTagger in which, if the value of the
unknown tagger is provided explicitly, then TRAINED will be set to TRUE:

>>> import nltk
>>> from nltk.tag import DefaultTagger
>>> from nltk.tag import tnt
>>> from nltk.corpus import treebank
>>> testing = treebank.tagged_sents()[2000:]
>>> training= treebank.tagged_sents()[:7000]

Chapter 4

[81]

>>> tnt_tagger=tnt.TnT()
>>> unknown=DefaultTagger('NN')
>>> tagger_tnt=tnt.TnT(unk=unknown,Trained=True)
>>> tnt_tagger.train(training)
>>> tnt_tagger.evaluate(testing)
0.988238192006897

Developing a chunker using pos-tagged
corpora
Chunking is the process used to perform entity detection. It is used for the
segmentation and labeling of multiple sequences of tokens in a sentence.

To design a chunker, a chunk grammar should be defined. A chunk grammar
holds the rules of how chunking should be done.

Let's consider the example that performs Noun Phrase Chunking by forming the
chunk rules:

>>> import nltk
>>> sent=[("A","DT"),("wise", "JJ"), ("small", "JJ"),("girl", "NN"),
("of", "IN"), ("village", "N"), ("became", "VBD"), ("leader", "NN")]
>>> sent=[("A","DT"),("wise", "JJ"), ("small", "JJ"),("girl", "NN"),
("of", "IN"), ("village", "NN"), ("became", "VBD"), ("leader", "NN")]
>>> grammar = "NP: {<DT>?<JJ>*<NN><IN>?<NN>*}"
>>> find = nltk.RegexpParser(grammar)
>>> res = find.parse(sent)
>>> print(res)
(S
 (NP A/DT wise/JJ small/JJ girl/NN of/IN village/NN)
 became/VBD
 (NP leader/NN))
>>> res.draw()

The following parse tree is generated:

Parts-of-Speech Tagging – Identifying words

[82]

Here, the chunk rule for Noun Phrase is defined by keeping DT as optional,
any number of JJ, followed by NN, optional IN, and any number of NN.

Consider another example in which the Noun Phrase chunk rule is created with any
number of nouns:

>>> import nltk
>>> noun1=[("financial","NN"),("year","NN"),("account","NN"),("summar
y","NN")]
>>> gram="NP:{<NN>+}"
>>> find = nltk.RegexpParser(gram)
>>> print(find.parse(noun1))
(S (NP financial/NN year/NN account/NN summary/NN))
>>> x=find.parse(noun1)
>>> x.draw()

The output in the form of the parse tree is given here:

Chunking is the process in which some of the parts of a chunk are eliminated. Either
an entire chunk may be used, a part of the chunk may be used from the middle and
the remaining parts are eliminated, or a part of chunk may be used either from the
beginning of the chunk or from the end of the chunk and the remaining part of the
chunk is removed.

Consider the code for UnigramChunker in NLTK, which has been developed to
perform chunking and parsing:

class UnigramChunker(nltk.ChunkParserI):
 def _init_(self,training):
 training_data=[[(x,y) for p,x,y in nltk.chunk.treeconlltags(sent)]
 for sent in training]
 self.tagger=nltk.UnigramTagger(training_data)

Chapter 4

[83]

 def parsing(self,sent):
 postags=[pos1 for (word1,pos1) in sent]
 tagged_postags=self.tagger.tag(postags)
 chunk_tags=[chunking for (pos1,chunktag) in tagged_postags]
 conll_tags=[(word,pos1,chunktag) for ((word,pos1),chunktag)
 in zip(sent, chunk_tags)]
 return nltk.chunk.conlltaags2tree(conlltags)

Consider the following code, which can be used to estimate the accuracy of the
chunker after it is trained:

import nltk.corpus, nltk.tag

def ubt_conll_chunk_accuracy(train_sents, test_sents):
 chunks_train =conll_tag_chunks(training)
 chunks_test =conll_tag_chunks(testing)

 chunker1 =nltk.tag.UnigramTagger(chunks_train)
 print 'u:', nltk.tag.accuracy(chunker1, chunks_test)

 chunker2 =nltk.tag.BigramTagger(chunks_train, backoff=chunker1)
 print 'ub:', nltk.tag.accuracy(chunker2, chunks_test)

 chunker3 =nltk.tag.TrigramTagger(chunks_train, backoff=chunker2)
 print 'ubt:', nltk.tag.accuracy(chunker3, chunks_test)

 chunker4 =nltk.tag.TrigramTagger(chunks_train, backoff=chunker1)
 print 'ut:', nltk.tag.accuracy(chunker4, chunks_test)

 chunker5 =nltk.tag.BigramTagger(chunks_train, backoff=chunker4)
 print 'utb:', nltk.tag.accuracy(chunker5, chunks_test)

accuracy test for conll chunking
conll_train =nltk.corpus.conll2000.chunked_sents('train.txt')
conll_test =nltk.corpus.conll2000.chunked_sents('test.txt')
ubt_conll_chunk_accuracy(conll_train, conll_test)

accuracy test for treebank chunking
treebank_sents =nltk.corpus.treebank_chunk.chunked_sents()
ubt_conll_chunk_accuracy(treebank_sents[:2000], treebank_sents[2000:])

Parts-of-Speech Tagging – Identifying words

[84]

Summary
In this chapter, we have discussed POS tagging, different POS taggers, and the
approaches used for POS tagging. You have also learned about statistical modeling
involving the n-gram approach, and have developed a chunker using POS tags
information.

In the following chapter, we will discuss Treebank construction, CFG construction,
different parsing algorithms, and so on.

[85]

Parsing – Analyzing
Training Data

Parsing, also referred to as syntactic analysis, is one of the tasks in NLP. It is defined as
the process of finding whether a character sequence, written in natural language, is in
accordance with the rules defined in formal grammar. It is the process of breaking the
sentences into words or phrase sequences and providing them a particular component
category (noun, verb, preposition, and so on).

This chapter will include the following topics:

•	 Treebank construction
•	 Extracting Context-free Grammar (CFG) rules from Treebank
•	 Creating a probabilistic Context-free Grammar from CFG
•	 CYK chart parsing algorithm
•	 Earley chart parsing algorithm

Introducing parsing
Parsing is one of the steps involved in NLP. It is defined as the process of determining
the part-of-speech category for an individual component in a sentence and analyzing
whether a given sentence is in accordance with grammar rules or not. The term parsing
has been derived from the Latin word pars (oration is) which means part-of-speech.

www.allitebooks.com

http://www.allitebooks.org

Parsing – Analyzing Training Data

[86]

Consider an example—Ram bought a book. This sentence is grammatically correct.
But, instead of this sentence, if we have a sentence Book bought a Ram, then by
adding the semantic information to the parse tree so constructed, we can conclude
that although the sentence is grammatically correct, it is not semantically correct.
So, the generation of a parse tree is followed by adding meaning to it as well. A
parser is a software that accepts an input text and constructs a parse tree or a syntax
tree. Parsing may be divided into two categories Top-down Parsing and Bottom-up
Parsing. In Top-down Parsing, we begin from the start symbol and continue till we
reach individual components. Some of the Top-down Parsers include the Recursive
Descent Parser, LL Parser, and Earley Parser. In Bottom-up Parsing, we start from
individual components and continue till we reach the start symbol. Some Bottom-
up Parsers include the Operator-precedence parser, Simple precedence parser,
Simple LR Parser, LALR Parser, Canonical LR (LR(1)) Parser, GLR Parser, CYK or
(alternatively CKY) Parser, Recursive ascent parser, and Shift-reduce parser.

The nltk.parse.api.ParserI class is defined in NLTK. This class is used to obtain
parses or syntactic structures for a given sentence. Parsers can be used to obtain
syntactic structures, discourse structures, and morphological trees.

Chart parsing follows the dynamic programming approach. In this, once some
results are obtained, these may be treated as the intermediate results and may be
reused to obtain future results. Unlike in Top-down parsing, the same task is not
performed again and again.

Treebank construction
The nltk.corpus.package consists of a number of corpus readerclasses that can
be used to obtain the contents of various corpora.

Treebank corpus can also be accessed from nltk.corpus. Identifiers for files can be
obtained using fileids():

>>> import nltk
>>> import nltk.corpus
>>> print(str(nltk.corpus.treebank).replace('\\\\','/'))
<BracketParseCorpusReader in 'C:/nltk_data/corpora/treebank/combined'>
>>> nltk.corpus.treebank.fileids()
['wsj_0001.mrg', 'wsj_0002.mrg', 'wsj_0003.mrg', 'wsj_0004.
mrg', 'wsj_0005.mrg', 'wsj_0006.mrg', 'wsj_0007.mrg', 'wsj_0008.
mrg', 'wsj_0009.mrg', 'wsj_0010.mrg', 'wsj_0011.mrg', 'wsj_0012.
mrg', 'wsj_0013.mrg', 'wsj_0014.mrg', 'wsj_0015.mrg', 'wsj_0016.
mrg', 'wsj_0017.mrg', 'wsj_0018.mrg', 'wsj_0019.mrg', 'wsj_0020.
mrg', 'wsj_0021.mrg', 'wsj_0022.mrg', 'wsj_0023.mrg', 'wsj_0024.
mrg', 'wsj_0025.mrg', 'wsj_0026.mrg', 'wsj_0027.mrg', 'wsj_0028.mrg',
'wsj_0029.mrg', 'wsj_0030.mrg', 'wsj_0031.mrg', 'wsj_0032.

Chapter 5

[87]

mrg', 'wsj_0033.mrg', 'wsj_0034.mrg', 'wsj_0035.mrg', 'wsj_0036.
mrg', 'wsj_0037.mrg', 'wsj_0038.mrg', 'wsj_0039.mrg', 'wsj_0040.
mrg', 'wsj_0041.mrg', 'wsj_0042.mrg', 'wsj_0043.mrg', 'wsj_0044.
mrg', 'wsj_0045.mrg', 'wsj_0046.mrg', 'wsj_0047.mrg', 'wsj_0048.
mrg', 'wsj_0049.mrg', 'wsj_0050.mrg', 'wsj_0051.mrg', 'wsj_0052.
mrg', 'wsj_0053.mrg', 'wsj_0054.mrg', 'wsj_0055.mrg', 'wsj_0056.
mrg', 'wsj_0057.mrg', 'wsj_0058.mrg', 'wsj_0059.mrg', 'wsj_0060.
mrg', 'wsj_0061.mrg', 'wsj_0062.mrg', 'wsj_0063.mrg', 'wsj_0064.
mrg', 'wsj_0065.mrg', 'wsj_0066.mrg', 'wsj_0067.mrg', 'wsj_0068.
mrg', 'wsj_0069.mrg', 'wsj_0070.mrg', 'wsj_0071.mrg', 'wsj_0072.
mrg', 'wsj_0073.mrg', 'wsj_0074.mrg', 'wsj_0075.mrg', 'wsj_0076.
mrg', 'wsj_0077.mrg', 'wsj_0078.mrg', 'wsj_0079.mrg', 'wsj_0080.
mrg', 'wsj_0081.mrg', 'wsj_0082.mrg', 'wsj_0083.mrg', 'wsj_0084.
mrg', 'wsj_0085.mrg', 'wsj_0086.mrg', 'wsj_0087.mrg', 'wsj_0088.
mrg', 'wsj_0089.mrg', 'wsj_0090.mrg', 'wsj_0091.mrg', 'wsj_0092.
mrg', 'wsj_0093.mrg', 'wsj_0094.mrg', 'wsj_0095.mrg', 'wsj_0096.
mrg', 'wsj_0097.mrg', 'wsj_0098.mrg', 'wsj_0099.mrg', 'wsj_0100.
mrg', 'wsj_0101.mrg', 'wsj_0102.mrg', 'wsj_0103.mrg', 'wsj_0104.
mrg', 'wsj_0105.mrg', 'wsj_0106.mrg', 'wsj_0107.mrg', 'wsj_0108.
mrg', 'wsj_0109.mrg', 'wsj_0110.mrg', 'wsj_0111.mrg', 'wsj_0112.
mrg', 'wsj_0113.mrg', 'wsj_0114.mrg', 'wsj_0115.mrg', 'wsj_0116.
mrg', 'wsj_0117.mrg', 'wsj_0118.mrg', 'wsj_0119.mrg', 'wsj_0120.
mrg', 'wsj_0121.mrg', 'wsj_0122.mrg', 'wsj_0123.mrg', 'wsj_0124.
mrg', 'wsj_0125.mrg', 'wsj_0126.mrg', 'wsj_0127.mrg', 'wsj_0128.
mrg', 'wsj_0129.mrg', 'wsj_0130.mrg', 'wsj_0131.mrg', 'wsj_0132.
mrg', 'wsj_0133.mrg', 'wsj_0134.mrg', 'wsj_0135.mrg', 'wsj_0136.
mrg', 'wsj_0137.mrg', 'wsj_0138.mrg', 'wsj_0139.mrg', 'wsj_0140.
mrg', 'wsj_0141.mrg', 'wsj_0142.mrg', 'wsj_0143.mrg', 'wsj_0144.
mrg', 'wsj_0145.mrg', 'wsj_0146.mrg', 'wsj_0147.mrg', 'wsj_0148.
mrg', 'wsj_0149.mrg', 'wsj_0150.mrg', 'wsj_0151.mrg', 'wsj_0152.
mrg', 'wsj_0153.mrg', 'wsj_0154.mrg', 'wsj_0155.mrg', 'wsj_0156.
mrg', 'wsj_0157.mrg', 'wsj_0158.mrg', 'wsj_0159.mrg', 'wsj_0160.
mrg', 'wsj_0161.mrg', 'wsj_0162.mrg', 'wsj_0163.mrg', 'wsj_0164.
mrg', 'wsj_0165.mrg', 'wsj_0166.mrg', 'wsj_0167.mrg', 'wsj_0168.
mrg', 'wsj_0169.mrg', 'wsj_0170.mrg', 'wsj_0171.mrg', 'wsj_0172.
mrg', 'wsj_0173.mrg', 'wsj_0174.mrg', 'wsj_0175.mrg', 'wsj_0176.
mrg', 'wsj_0177.mrg', 'wsj_0178.mrg', 'wsj_0179.mrg', 'wsj_0180.
mrg', 'wsj_0181.mrg', 'wsj_0182.mrg', 'wsj_0183.mrg', 'wsj_0184.
mrg', 'wsj_0185.mrg', 'wsj_0186.mrg', 'wsj_0187.mrg', 'wsj_0188.
mrg', 'wsj_0189.mrg', 'wsj_0190.mrg', 'wsj_0191.mrg', 'wsj_0192.
mrg', 'wsj_0193.mrg', 'wsj_0194.mrg', 'wsj_0195.mrg', 'wsj_0196.mrg',
'wsj_0197.mrg', 'wsj_0198.mrg', 'wsj_0199.mrg']
>>> from nltk.corpus import treebank
>>> print(treebank.words('wsj_0007.mrg'))
['McDermott', 'International', 'Inc.', 'said', '0', ...]
>>> print(treebank.tagged_words('wsj_0007.mrg'))
[('McDermott', 'NNP'), ('International', 'NNP'), ...]

Parsing – Analyzing Training Data

[88]

Let's see the code in NLTK for accessing the Penn Treebank Corpus, which uses the
Treebank Corpus Reader contained in the corpus module:

>>> import nltk
>>> from nltk.corpus import treebank
>>> print(treebank.parsed_sents('wsj_0007.mrg')[2])
(S
 (NP-SBJ
 (NP (NNP Bailey) (NNP Controls))
 (, ,)
 (VP
 (VBN based)
 (NP (-NONE- *))
 (PP-LOC-CLR
 (IN in)
 (NP (NP (NNP Wickliffe)) (, ,) (NP (NNP Ohio)))))
 (, ,))
 (VP
 (VBZ makes)
 (NP
 (JJ computerized)
 (JJ industrial)
 (NNS controls)
 (NNS systems)))
 (. .))

>>> import nltk
>>> from nltk.corpus import treebank_chunk
>>> treebank_chunk.chunked_sents()[1]
Tree('S', [Tree('NP', [('Mr.', 'NNP'), ('Vinken', 'NNP')]), ('is',
'VBZ'), Tree('NP', [('chairman', 'NN')]), ('of', 'IN'), Tree('NP',
[('Elsevier', 'NNP'), ('N.V.', 'NNP')]), (',', ','), Tree('NP',
[('the', 'DT'), ('Dutch', 'NNP'), ('publishing', 'VBG'), ('group',
'NN')]), ('.', '.')])
>>> treebank_chunk.chunked_sents()[1].draw()

The preceding code obtains the following parse tree:

Chapter 5

[89]

>>> import nltk
>>> from nltk.corpus import treebank_chunk
>>> treebank_chunk.chunked_sents()[1].leaves()
[('Mr.', 'NNP'), ('Vinken', 'NNP'), ('is', 'VBZ'), ('chairman',
'NN'), ('of', 'IN'), ('Elsevier', 'NNP'), ('N.V.', 'NNP'), (',', ','),
('the', 'DT'), ('Dutch', 'NNP'), ('publishing', 'VBG'), ('group',
'NN'), ('.', '.')]
>>> treebank_chunk.chunked_sents()[1].pos()
[(('Mr.', 'NNP'), 'NP'), (('Vinken', 'NNP'), 'NP'), (('is', 'VBZ'),
'S'), (('chairman', 'NN'), 'NP'), (('of', 'IN'), 'S'), (('Elsevier',
'NNP'), 'NP'), (('N.V.', 'NNP'), 'NP'), ((',', ','), 'S'), (('the',
'DT'), 'NP'), (('Dutch', 'NNP'), 'NP'), (('publishing', 'VBG'), 'NP'),
(('group', 'NN'), 'NP'), (('.', '.'), 'S')]
>>> treebank_chunk.chunked_sents()[1].productions()
[S -> NP ('is', 'VBZ') NP ('of', 'IN') NP (',', ',') NP ('.', '.'),
NP -> ('Mr.', 'NNP') ('Vinken', 'NNP'), NP -> ('chairman', 'NN'), NP
-> ('Elsevier', 'NNP') ('N.V.', 'NNP'), NP -> ('the', 'DT') ('Dutch',
'NNP') ('publishing', 'VBG') ('group', 'NN')]

Part of speech annotations are included in the tagged_words() method:

>>> nltk.corpus.treebank.tagged_words()
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ...]

The type of tags and the count of these tags used in the Penn Treebank Corpus are
shown here:

16
$ 724
''
, 4,886
-LRB- 120
-NONE- 6,592
-RRB- 126
. 384
: 563
`` 712
CC 2,265
CD 3,546
DT 8,165
EX 88
FW 4

Parsing – Analyzing Training Data

[90]

IN 9,857
JJ 5,834
JJR 381
JJS 182
LS 13
MD 927
NN 13,166
NNP 9,410
NNPS 244
NNS 6,047
PDT 27
POS 824
PRP 1,716
PRP$ 766
RB 2,822
RBR 136
RBS 35
RP 216
SYM 1
TO 2,179
UH 3
VB 2,554
VBD 3,043
VBG 1,460
VBN 2,134
VBP 1,321
VBZ 2,125
WDT 445
WP 241
WP$ 14

The tags and frequency can be obtained from the following code:

>>> import nltk
>>> from nltk.probability import FreqDist
>>> from nltk.corpus import treebank
>>> fd = FreqDist()

Chapter 5

[91]

>>> fd.items()
dict_items([])

The preceding code obtains a list of tags and the frequency of each tag in the
Treebank corpus.

Let's see the code in NLTK for accessing the Sinica Treebank Corpus:

>>> import nltk
>>> from nltk.corpus import sinica_treebank
>>> print(sinica_treebank.sents())
[['一'], ['友情'], ['嘉珍', '和', '我', '住在', '同一條', '巷子'], ...]
>>> sinica_treebank.parsed_sents()[27]
Tree('S', [Tree('NP', [Tree('NP', [Tree('N‧的', [Tree('Nhaa', ['我']),
Tree('DE', ['的'])]), Tree('Ncb', ['腦海'])]), Tree('Ncda', ['中'])]),
Tree('Dd', ['頓時']), Tree('DM', ['一片']), Tree('VH11', ['空白'])])

Extracting Context Free Grammar (CFG)
rules from Treebank
CFG was defined for natural languages in 1957 by Noam Chomsky. A CFG consists
of the following components:

•	 A set of non terminal nodes (N)
•	 A set of terminal nodes (T)
•	 Start symbol (S)
•	 A set of production rules (P) of the form:

A→a

CFG rules are of two types—Phrase structure rules and Sentence structure rules.

A Phrase Structure Rule can be defined as follows—A→a, where A Î N and a consists
of Terminals and Non terminals.

In Sentence level Construction of CFG, there are four structures:

•	 Declarative structure: Deals with declarative sentences (the subject is
followed by a predicate).

•	 Imperative structure: Deals with imperative sentences, commands,
or suggestions (sentences begin with a verb phrase and do not include
a subject).

Parsing – Analyzing Training Data

[92]

•	 Yes-No structure: Deals with question-answering sentences. The answers to
these questions are either yes or no.

•	 Wh-question structure: Deals with question-answering sentences. Questions
that begin following Wh words (Who, What, How, When, Where, Why, and
Which).

General CFG rules are summarized here:

•	 S→NP VP
•	 S→VP
•	 S→Aux NP VP
•	 S→Wh-NP VP
•	 S→Wh-NP Aux NP VP
•	 NP→(Det) (AP) Nom (PP)
•	 VP→Verb (NP) (NP) (PP)*
•	 VP→Verb S
•	 PP→Prep (NP)
•	 AP→(Adv) Adj (PP)

Consider an example that depicts the use of Context-free Grammar rules in NLTK:

>>> import nltk
>>> from nltk import Nonterminal, nonterminals, Production, CFG
>>> nonterminal1 = Nonterminal('NP')
>>> nonterminal2 = Nonterminal('VP')
>>> nonterminal3 = Nonterminal('PP')
>>> nonterminal1.symbol()
'NP'
>>> nonterminal2.symbol()
'VP'
>>> nonterminal3.symbol()
'PP'
>>> nonterminal1==nonterminal2
False
>>> nonterminal2==nonterminal3
False
>>> nonterminal1==nonterminal3
False
>>> S, NP, VP, PP = nonterminals('S, NP, VP, PP')
>>> N, V, P, DT = nonterminals('N, V, P, DT')
>>> production1 = Production(S, [NP, VP])

Chapter 5

[93]

>>> production2 = Production(NP, [DT, NP])
>>> production3 = Production(VP, [V, NP,NP,PP])
>>> production1.lhs()
S
>>> production1.rhs()
(NP, VP)
>>> production3.lhs()
VP
>>> production3.rhs()
(V, NP, NP, PP)
>>> production3 == Production(VP, [V,NP,NP,PP])
True
>>> production2 == production3
False

An example for accessing ATIS grammar in NLTK is as follows:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> gram1
<Grammar with 5517 productions>

Extract the testing sentences from ATIS as follows:

>>> import nltk
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> len(sent)
98
>>> testingsent=sent[25]
>>> testingsent[1]
11
>>> testingsent[0]
['list', 'those', 'flights', 'that', 'stop', 'over', 'in', 'salt',
'lake', 'city', '.']
>>> sent=testingsent[0]

Bottom-up parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]

Parsing – Analyzing Training Data

[94]

>>> sent=testingsent[0]
>>> parser1 = nltk.parse.BottomUpChartParser(gram1)
>>> chart1 = parser1.chart_parse(sent)
>>> print((chart1.num_edges()))
13454
>>> print((len(list(chart1.parses(gram1.start())))))
11

Bottom-up, Left Corner parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser2 = nltk.parse.BottomUpLeftCornerChartParser(gram1)
>>> chart2 = parser2.chart_parse(sent)
>>> print((chart2.num_edges()))
8781
>>> print((len(list(chart2.parses(gram1.start())))))
11

Left Corner parsing with a Bottom-up filter:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser3 = nltk.parse.LeftCornerChartParser(gram1)
>>> chart3 = parser3.chart_parse(sent)
>>> print((chart3.num_edges()))
1280
>>> print((len(list(chart3.parses(gram1.start())))))
11

Top-down parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')

Chapter 5

[95]

>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>>parser4 = nltk.parse.TopDownChartParser(gram1)
>>> chart4 = parser4.chart_parse(sent)
>>> print((chart4.num_edges()))
37763
>>> print((len(list(chart4.parses(gram1.start())))))
11

Incremental Bottom-up parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser5 = nltk.parse.IncrementalBottomUpChartParser(gram1)
>>> chart5 = parser5.chart_parse(sent)
>>> print((chart5.num_edges()))
13454
>>> print((len(list(chart5.parses(gram1.start())))))
11

Incremental Bottom-up, Left Corner parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser6 = nltk.parse.IncrementalBottomUpLeftCornerChartParser(gr
am1)
>>> chart6 = parser6.chart_parse(sent)
>>> print((chart6.num_edges()))
8781
>>> print((len(list(chart6.parses(gram1.start())))))
11

Parsing – Analyzing Training Data

[96]

Incremental Left Corner parsing with a Bottom-up filter:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser7 = nltk.parse.IncrementalLeftCornerChartParser(gram1)
>>> chart7 = parser7.chart_parse(sent)
>>> print((chart7.num_edges()))
1280
>>> print((len(list(chart7.parses(gram1.start())))))
11

Incremental Top-down parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser8 = nltk.parse.IncrementalTopDownChartParser(gram1)
>>> chart8 = parser8.chart_parse(sent)
>>> print((chart8.num_edges()))
37763
>>> print((len(list(chart8.parses(gram1.start())))))
11

Earley parsing:

>>> import nltk
>>> gram1 = nltk.data.load('grammars/large_grammars/atis.cfg')
>>> sent = nltk.data.load('grammars/large_grammars/atis_sentences.
txt')
>>> sent = nltk.parse.util.extract_test_sentences(sent)
>>> testingsent=sent[25]
>>> sent=testingsent[0]
>>> parser9 = nltk.parse.EarleyChartParser(gram1)
>>> chart9 = parser9.chart_parse(sent)
>>> print((chart9.num_edges()))
37763
>>> print((len(list(chart9.parses(gram1.start())))))
11

Chapter 5

[97]

Creating a probabilistic Context Free
Grammar from CFG
In Probabilistic Context-free Grammar (PCFG), probabilities are attached to all the
production rules present in CFG. The sum of these probabilities is 1. It generates the
same parse structures as CFG, but it also assigns a probability to each parse tree. The
probability of a parsed tree is obtained by taking the product of probabilities of all
the production rules used in building the tree.

Let's see the following code in NLTK, that illustrates the formation of rules in PCFG:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from itertools import islice
>>> from nltk.grammar import PCFG, induce_pcfg, toy_pcfg1, toy_pcfg2
>>> gram2 = PCFG.from string("""
A -> B B [.3] | C B C [.7]
B -> B D [.5] | C [.5]
C -> 'a' [.1] | 'b' [0.9]
D -> 'b' [1.0]
""")
>>> prod1 = gram2.productions()[0]
>>> prod1
A -> B B [0.3]
>>> prod2 = gram2.productions()[1]
>>> prod2
A -> C B C [0.7]
>>> prod2.lhs()
A
>>> prod2.rhs()
(C, B, C)
>>> print((prod2.prob()))
0.7
>>> gram2.start()
A
>>> gram2.productions()
[A -> B B [0.3], A -> C B C [0.7], B -> B D [0.5], B -> C [0.5], C ->
'a' [0.1], C -> 'b' [0.9], D -> 'b' [1.0]]

Parsing – Analyzing Training Data

[98]

Let's see the code in NLTK that illustrates Probabilistic Chart Parsing:

>>> import nltk
>>> from nltk.corpus import treebank
>>> from itertools import islice
>>> from nltk.grammar import PCFG, induce_pcfg, toy_pcfg1, toy_pcfg2
>>> tokens = "Jack told Bob to bring my cookie".split()
>>> grammar = toy_pcfg2
>>> print(grammar)
Grammar with 23 productions (start state = S)
 S -> NP VP [1.0]
 VP -> V NP [0.59]
 VP -> V [0.4]
 VP -> VP PP [0.01]
 NP -> Det N [0.41]
 NP -> Name [0.28]
 NP -> NP PP [0.31]
 PP -> P NP [1.0]
 V -> 'saw' [0.21]
 V -> 'ate' [0.51]
 V -> 'ran' [0.28]
 N -> 'boy' [0.11]
 N -> 'cookie' [0.12]
 N -> 'table' [0.13]
 N -> 'telescope' [0.14]
 N -> 'hill' [0.5]
 Name -> 'Jack' [0.52]
 Name -> 'Bob' [0.48]
 P -> 'with' [0.61]
 P -> 'under' [0.39]
 Det -> 'the' [0.41]
 Det -> 'a' [0.31]
 Det -> 'my' [0.28]

CYK chart parsing algorithm
The drawback of Recursive Descent Parsing is that it causes the Left Recursion
Problem and is very complex. So, CYK chart parsing was introduced. It uses
the Dynamic Programming approach. CYK is one of the simplest chart parsing
algorithms. The CYK algorithm is capable of constructing a chart in O(n3) time. Both
CYK and Earley are Bottom-up chart parsing algorithms. But, the Earley algorithm
also makes use of Top-down predictions when invalid parses are constructed.

Chapter 5

[99]

Consider the following example of CYK parsing:

tok = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]
gram = nltk.parse_cfg("""
S -> NP VP
NP -> Det N | NP PP
VP -> V NP | VP PP
PP -> P NP
Det -> 'the'
N -> 'kids' | 'box' | 'floor'
V -> 'opened' P -> 'on'
 """)

Consider the following code to construct the initializing table:

def init_nfst(tok, gram):
numtokens1 = len(tok)
 # fill w/ dots
nfst = [["." for i in range(numtokens1+1)] !!!!!!! for j in
range(numtokens1+1)]
fill in diagonal
for i in range(numtokens1):
prod= gram.productions(rhs=tok[i])
nfst[i][i+1] = prod[0].lhs()
return nfst

Consider the following code to fill in the table:

def complete_nfst(nfst, tok, trace=False):
index1 = {} for prod in gram.productions():
#make lookup reverse
index1[prod.rhs()] = prod.lhs()
numtokens1 = len(tok) for span in range(2, numtokens1+1):
for start in range(numtokens1+1-span):
#go down towards diagonal
end1 = start1 + span for mid in range(start1+1, end1):
nt1, nt2 = nfst[start1][mid1], nfst[mid1][end1]
if (nt1,nt2) in index1:
if trace:
print "[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]" % \ (start, nt1,
mid1, nt2, end1, start1, index[(nt1,nt2)], end) nfst[start1][end1] =
index[(nt1,nt2)]
return nfst

Parsing – Analyzing Training Data

[100]

Following is the code in Python for constructing the display table:

def display(wfst, tok):
print '\nWFST ' + ' '.join([("%-4d" % i) for i in range(1,
len(wfst))])
for i in range(len(wfst)-1):
print "%d " % i,
for j in range(1, len(wfst)):
print "%-4s" % wfst[i][j],
print

The result can be obtained from the following code:

tok = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]
res1 = init_wfst(tok, gram)
display(res1, tok)
res2 = complete_wfst(res1,tok)
display(res2, tok)

Earley chart parsing algorithm
Earley algorithm was given by Earley in 1970. This algorithm is similar to Top-down
parsing. It can handle left-recursion, and it doesn't need CNF. It fills in a chart in the
left to right manner.

Consider an example that illustrates parsing using the Earley chart parser:

>>> import nltk
>>> nltk.parse.earleychart.demo(print_times=False, trace=1,sent='I saw
a dog', numparses=2)
* Sentence:
I saw a dog
['I', 'saw', 'a', 'dog']

|. I . saw . a . dog .|
|[---------] . . .| [0:1] 'I'
|. [---------] . .| [1:2] 'saw'
|. . [---------] .| [2:3] 'a'
|. . . [---------]| [3:4] 'dog'
|> | [0:0] S -> * NP VP
|> | [0:0] NP -> * NP PP
|> | [0:0] NP -> * Det Noun
|> | [0:0] NP -> * 'I'
|[---------] . . .| [0:1] NP -> 'I' *
|[---------> . . .| [0:1] S -> NP * VP

Chapter 5

[101]

|[---------> . . .| [0:1] NP -> NP * PP
|. > . . .| [1:1] VP -> * VP PP
|. > . . .| [1:1] VP -> * Verb NP
|. > . . .| [1:1] VP -> * Verb
|. > . . .| [1:1] Verb -> * 'saw'
|. [---------] . .| [1:2] Verb -> 'saw' *
|. [---------> . .| [1:2] VP -> Verb * NP
|. [---------] . .| [1:2] VP -> Verb *
|[-------------------] . .| [0:2] S -> NP VP *
|. [---------> . .| [1:2] VP -> VP * PP
|. . > . .| [2:2] NP -> * NP PP
|. . > . .| [2:2] NP -> * Det Noun
|. . > . .| [2:2] Det -> * 'a'
|. . [---------] .| [2:3] Det -> 'a' *
|. . [---------> .| [2:3] NP -> Det * Noun
|. . . > .| [3:3] Noun -> * 'dog'
|. . . [---------]| [3:4] Noun -> 'dog' *
|. . [-------------------]| [2:4] NP -> Det Noun *
|. [-----------------------------]| [1:4] VP -> Verb NP *
|. . [------------------->| [2:4] NP -> NP * PP
|[=======================================]| [0:4] S -> NP VP *
|. [----------------------------->| [1:4] VP -> VP * PP

Consider an example that illustrates parsing using the Chart parser in NLTK:

>>> import nltk
>>> nltk.parse.chart.demo(2, print_times=False, trace=1,sent='John saw
a dog', numparses=1)
* Sentence:
John saw a dog
['John', 'saw', 'a', 'dog']

* Strategy: Bottom-up

|. John . saw . a . dog .|
|[---------] . . .| [0:1] 'John'
|. [---------] . .| [1:2] 'saw'
|. . [---------] .| [2:3] 'a'
|. . . [---------]| [3:4] 'dog'
|> | [0:0] NP -> * 'John'
|[---------] . . .| [0:1] NP -> 'John' *
|> | [0:0] S -> * NP VP
|> | [0:0] NP -> * NP PP
|[---------> . . .| [0:1] S -> NP * VP

Parsing – Analyzing Training Data

[102]

|[---------> . . .| [0:1] NP -> NP * PP
|. > . . .| [1:1] Verb -> * 'saw'
|. [---------] . .| [1:2] Verb -> 'saw' *
|. > . . .| [1:1] VP -> * Verb NP
|. > . . .| [1:1] VP -> * Verb
|. [---------> . .| [1:2] VP -> Verb * NP
|. [---------] . .| [1:2] VP -> Verb *
|. > . . .| [1:1] VP -> * VP PP
|[-------------------] . .| [0:2] S -> NP VP *
|. [---------> . .| [1:2] VP -> VP * PP
|. . > . .| [2:2] Det -> * 'a'
|. . [---------] .| [2:3] Det -> 'a' *
|. . > . .| [2:2] NP -> * Det Noun
|. . [---------> .| [2:3] NP -> Det * Noun
|. . . > .| [3:3] Noun -> * 'dog'
|. . . [---------]| [3:4] Noun -> 'dog' *
|. . [-------------------]| [2:4] NP -> Det Noun *
|. . > . .| [2:2] S -> * NP VP
|. . > . .| [2:2] NP -> * NP PP
|. [-----------------------------]| [1:4] VP -> Verb NP *
|. . [------------------->| [2:4] S -> NP * VP
|. . [------------------->| [2:4] NP -> NP * PP
|[=======================================]| [0:4] S -> NP VP *
|. [----------------------------->| [1:4] VP -> VP * PP
Nr edges in chart: 33
(S (NP John) (VP (Verb saw) (NP (Det a) (Noun dog))))

Consider an example that illustrates parsing using the Stepping Chart parser in NLTK:

>>> import nltk
>>> nltk.parse.chart.demo(5, print_times=False, trace=1,sent='John saw
a dog', numparses=2)
* Sentence:
John saw a dog
['John', 'saw', 'a', 'dog']

* Strategy: Stepping (top-down vs bottom-up)

*** SWITCH TO TOP DOWN
|[---------] . . .| [0:1] 'John'
|. [---------] . .| [1:2] 'saw'
|. . [---------] .| [2:3] 'a'
|. . . [---------]| [3:4] 'dog'
|> | [0:0] S -> * NP VP

Chapter 5

[103]

|> | [0:0] NP -> * NP PP
|> | [0:0] NP -> * Det Noun
|> | [0:0] NP -> * 'John'
|[---------] . . .| [0:1] NP -> 'John' *
|[---------> . . .| [0:1] S -> NP * VP
|[---------> . . .| [0:1] NP -> NP * PP
|. > . . .| [1:1] VP -> * VP PP
|. > . . .| [1:1] VP -> * Verb NP
|. > . . .| [1:1] VP -> * Verb
|. > . . .| [1:1] Verb -> * 'saw'
|. [---------] . .| [1:2] Verb -> 'saw' *
|. [---------> . .| [1:2] VP -> Verb * NP
|. [---------] . .| [1:2] VP -> Verb *
|[-------------------] . .| [0:2] S -> NP VP *
|. [---------> . .| [1:2] VP -> VP * PP
|. . > . .| [2:2] NP -> * NP PP
|. . > . .| [2:2] NP -> * Det Noun
*** SWITCH TO BOTTOM UP
|. . > . .| [2:2] Det -> * 'a'
|. . . > .| [3:3] Noun -> * 'dog'
|. . [---------] .| [2:3] Det -> 'a' *
|. . . [---------]| [3:4] Noun -> 'dog' *
|. . [---------> .| [2:3] NP -> Det * Noun
|. . [-------------------]| [2:4] NP -> Det Noun *
|. [-----------------------------]| [1:4] VP -> Verb NP *
|. . [------------------->| [2:4] NP -> NP * PP
|[=======================================]| [0:4] S -> NP VP *
|. [----------------------------->| [1:4] VP -> VP * PP
|. . > . .| [2:2] S -> * NP VP
|. . [------------------->| [2:4] S -> NP * VP
*** SWITCH TO TOP DOWN
|. . . . >| [4:4] VP -> * VP PP
|. . . . >| [4:4] VP -> * Verb NP
|. . . . >| [4:4] VP -> * Verb
*** SWITCH TO BOTTOM UP
*** SWITCH TO TOP DOWN
*** SWITCH TO BOTTOM UP
*** SWITCH TO TOP DOWN
*** SWITCH TO BOTTOM UP
*** SWITCH TO TOP DOWN
*** SWITCH TO BOTTOM UP
Nr edges in chart: 37

Parsing – Analyzing Training Data

[104]

Let's see the code for Feature chart parsing in NLTK:

>>> import nltk
>>>nltk.parse.featurechart.demo(print_times=False,print_
grammar=True,parser=nltk.parse.featurechart.FeatureChartParser,sent='I
saw a dog')

Grammar with 18 productions (start state = S[])
 S[] -> NP[] VP[]
 PP[] -> Prep[] NP[]
 NP[] -> NP[] PP[]
 VP[] -> VP[] PP[]
 VP[] -> Verb[] NP[]
 VP[] -> Verb[]
 NP[] -> Det[pl=?x] Noun[pl=?x]
 NP[] -> 'John'
 NP[] -> 'I'
 Det[] -> 'the'
 Det[] -> 'my'
 Det[-pl] -> 'a'
 Noun[-pl] -> 'dog'
 Noun[-pl] -> 'cookie'
 Verb[] -> 'ate'
 Verb[] -> 'saw'
 Prep[] -> 'with'
 Prep[] -> 'under'

* FeatureChartParser
Sentence: I saw a dog
|. I .saw. a .dog.|
|[---] . . .| [0:1] 'I'
|. [---] . .| [1:2] 'saw'
|. . [---] .| [2:3] 'a'
|. . . [---]| [3:4] 'dog'
|[---] . . .| [0:1] NP[] -> 'I' *
|[---> . . .| [0:1] S[] -> NP[] * VP[] {}
|[---> . . .| [0:1] NP[] -> NP[] * PP[] {}
|. [---] . .| [1:2] Verb[] -> 'saw' *
|. [---> . .| [1:2] VP[] -> Verb[] * NP[] {}
|. [---] . .| [1:2] VP[] -> Verb[] *
|. [---> . .| [1:2] VP[] -> VP[] * PP[] {}
|[-------] . .| [0:2] S[] -> NP[] VP[] *
|. . [---] .| [2:3] Det[-pl] -> 'a' *
|. . [---> .| [2:3] NP[] -> Det[pl=?x] * Noun[pl=?x] {?x: False}

Chapter 5

[105]

|. . . [---]| [3:4] Noun[-pl] -> 'dog' *
|. . [-------]| [2:4] NP[] -> Det[-pl] Noun[-pl] *
|. . [------->| [2:4] S[] -> NP[] * VP[] {}
|. . [------->| [2:4] NP[] -> NP[] * PP[] {}
|. [-----------]| [1:4] VP[] -> Verb[] NP[] *
|. [----------->| [1:4] VP[] -> VP[] * PP[] {}
|[===============]| [0:4] S[] -> NP[] VP[] *
(S[]
 (NP[] I)
 (VP[] (Verb[] saw) (NP[] (Det[-pl] a) (Noun[-pl] dog))))

The following code is found in NLTK for the implementation of the Earley algorithm:

def demo(print_times=True, print_grammar=False,
 print_trees=True, trace=2,
 sent='I saw John with a dog with my cookie', numparses=5):
 """
 A demonstration of the Earley parsers.
 """
 import sys, time
 from nltk.parse.chart import demo_grammar

 # The grammar for ChartParser and SteppingChartParser:
 grammar = demo_grammar()
 if print_grammar:
 print("* Grammar")
 print(grammar)

 # Tokenize the sample sentence.
 print("* Sentence:")
 print(sent)
 tokens = sent.split()
 print(tokens)
 print()

 # Do the parsing.
 earley = EarleyChartParser(grammar, trace=trace)
 t = time.clock()
 chart = earley.chart_parse(tokens)
 parses = list(chart.parses(grammar.start()))
 t = time.clock()-t

 # Print results.
 if numparses:
 assert len(parses)==numparses, 'Not all parses found'
 if print_trees:

Parsing – Analyzing Training Data

[106]

 for tree in parses: print(tree)
 else:
 print("Nr trees:", len(parses))
 if print_times:
 print("Time:", t)

if __name__ == '__main__': demo()

Summary
In this chapter, we discussed Parsing, accessing the Treebank Corpus, and the
implementation of Context-free Grammar, Probabilistic Context-free Grammar,
the CYK algorithm, and the Earley algorithm. Hence, in this chapter, we discussed
about the syntactic analysis phase of NLP.

In the next chapter, we will discuss about semantic analysis, which is another phase
of NLP. We will discuss about NER using different approaches and obtain ways for
performing disambiguation tasks.

Semantic Analysis – Meaning
Matters

Semantic analysis, or meaning generation is one of the tasks in NLP. It is defined as
the process of determining the meaning of character sequences or word sequences.
It may be used for performing the task of disambiguation.

This chapter will include the following topics:

•	 NER
•	 NER system using the HMM
•	 Training NER using machine learning toolkits
•	 NER using POS tagging
•	 Generation of the synset id from Wordnet
•	 Disambiguating senses using Wordnet

Semantic Analysis – Meaning Matters

[108]

Introducing semantic analysis
NLP means performing computations on natural language. One of the steps
performed while processing a natural language is semantic analysis. While
analyzing an input sentence, if the syntactic structure of a sentence is built, then
the semantic analysis of a sentence will be done. Semantic interpretation means
mapping a meaning to a sentence. Contextual interpretation is mapping the logical
form to the knowledge representation. The primitive or the basic unit of semantic
analysis is referred to as meaning or sense. One of the tools dealing with senses is
ELIZA. ELIZA was developed in the sixties by Joseph Weizenbaum. It made use of
substitution and pattern matching techniques to analyze the sentence and provide
an output to the given input. MARGIE was developed by Robert Schank in the
seventies. It could represent all the English verbs using 11 primitives. MARGIE
could interpret the sense of a sentence and represent it with the help of primitives.
It further gave way to the concept of scripts. From MARGIE, Script Applier
Mechanism (SAM) was developed. It could translate a sentence from different
languages, such as English, Chinese, Russian, Dutch, and Spanish. In order to
perform processing on textual data, a Python library or TextBlob is used. TextBlob
provides APIs for performing NLP tasks, such as Part-of-Speech tagging, extraction
of Noun Phrases, classification, machine translation, sentiment analysis.

Semantic analysis can be used to query a database and retrieve information. Another
Python library, Gensim, can be used to perform document indexing, topic modeling,
and similarity retrieval. Polyglot is an NLP tool that supports various multilingual
applications. It provides NER for 40 different languages, tokenization for 165 different
languages, language detection for 196 different languages, sentiment analysis for 136
different languages, POS tagging for 16 different languages, Morphological Analysis
for 135 different languages, word embedding for 137 different languages, and
transliteration for 69 different languages. MontyLingua is an NLP tool that is used to
perform the semantic interpretation of English text. From English sentences, it extracts
semantic information, such as verbs, nouns, adjectives, dates, phrases, and so on.

Sentences can be formally represented using logics. The basic expressions or sentences
in propositional logic are represented using propositional symbols, such as P,Q, R, and
so on. Complex expressions in propositional logic can be represented using Boolean
operators. For example, to represent the sentence If it is raining, I'll wear a raincoat using
propositional logic:

•	 P: It is raining.
•	 Q: I'll wear raincoat.
•	 P→Q: If it is raining, I'll wear a raincoat.

Chapter 6

[109]

Consider the following code to represent operators used in NLTK:

>>> import nltk
>>> nltk.boolean_ops()
negation	 -
conjunction	 &
disjunction	 |
implication	 ->
equivalence	 <->

Well-formed Formulas (WFF) are formed using propositional symbols or using
a combination of propositional symbols and Boolean operators.

Let's see the following code in NLTK, that categorizes logical expressions into
different subclasses:

>>> import nltk
>>> input_expr = nltk.sem.Expression.from string
>>> input_expr('X | (Y -> Z)')
<OrExpression (X | (Y -> Z))>
>>> input_expr('-(X & Y)')
<NegatedExpression -(X & Y)>
>>> input_expr('X & Y')
<AndExpression (X & Y)>
>>> input_expr('X <-> -- X')
<IffExpression (X <-> --X)>

For mapping True or False values to logical expressions, the Valuation function is
used in NLTK:

>>> import nltk
>>> value = nltk.Valuation([('X', True), ('Y', False), ('Z', True)])
>>> value['Z']
True
>>> domain = set()
>>> v = nltk.Assignment(domain)
>>> u = nltk.Model(domain, value)
>>> print(u.evaluate('(X & Y)', v))
False
>>> print(u.evaluate('-(X & Y)', v))
True
>>> print(u.evaluate('(X & Z)', v))
True
>>> print(u.evaluate('(X | Y)', v))
True

Semantic Analysis – Meaning Matters

[110]

First order predicate logic involving constants and predicates in NLTK are depicted
in the following code:

>>> import nltk
>>> input_expr = nltk.sem.Expression.from string
>>> expression = input_expr('run(marcus)', type_check=True)
>>> expression.argument
<ConstantExpressionmarcus>
>>> expression.argument.type
e
>>> expression.function
<ConstantExpression run>
>>> expression.function.type
<e,?>
>>> sign = {'run': '<e, t>'}
>>> expression = input_expr('run(marcus)', signature=sign)
>>> expression.function.type
e

The signature is used in NLTK to map associated types and non-logical constants.
Consider the following code in NLTK that helps to generate a query and retrieve
data from the database:

>>> import nltk
>>> nltk.data.show_cfg('grammars/book_grammars/sql1.fcfg')
% start S
S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
VP[SEM=(?v + ?np)] -> TV[SEM=?v] NP[SEM=?np]
VP[SEM=(?vp1 + ?c + ?vp2)] -> VP[SEM=?vp1] Conj[SEM=?c] VP[SEM=?vp2]
NP[SEM=(?det + ?n)] ->Det[SEM=?det] N[SEM=?n]
NP[SEM=(?n + ?pp)] -> N[SEM=?n] PP[SEM=?pp]
NP[SEM=?n] -> N[SEM=?n] | CardN[SEM=?n]
CardN[SEM='1000'] -> '1,000,000'
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
Conj[SEM='AND'] -> 'and'
N[SEM='City FROM city_table'] -> 'cities'
N[SEM='Population'] -> 'populations'
IV[SEM=''] -> 'are'

Chapter 6

[111]

TV[SEM=''] -> 'have'
A -> 'located'
P[SEM=''] -> 'in'
P[SEM='>'] -> 'above'
>>> from nltk import load_parser
>>> test = load_parser('grammars/book_grammars/sql1.fcfg')
>>> q=" What cities are in Greece"
>>> t = list(test.parse(q.split()))
>>> ans = t[0].label()['SEM']
>>> ans = [s for s in ans if s]
>>> q = ' '.join(ans)
>>> print(q)
SELECT City FROM city_table WHERE Country="greece"
>>> from nltk.sem import chat80
>>> r = chat80.sql_query('corpora/city_database/city.db', q)
>>> for p in r:
print(p[0], end=" ")

athens

Introducing NER
Named entity recognition (NER) is the process in which proper nouns or named
entities are located in a document. Then, these Named Entities are classified into
different categories, such as Name of Person, Location, Organization, and so on.

There are 12 NER tagsets defined by IIIT-Hyderabad IJCNLP 2008. These are
described here:

SNO. Named entity tag Meaning

1 NEP Name of Person

2 NED Name of Designation

3 NEO Name of Organization

4 NEA Name of Abbreviation

5 NEB Name of Brand

6 NETP Title of Person

7 NETO Title of Object

8 NEL Name of Location

Semantic Analysis – Meaning Matters

[112]

SNO. Named entity tag Meaning

9 NETI Time

10 NEN Number

11 NEM Measure

12 NETE Terms

One of the applications of NER is information extraction. In NLTK, we can perform
the task of information extraction by storing the tuple (entity, relation, entity), and
then, the entity value can be retrieved.

Consider an example in NLTK that shows how information extraction is performed:

>>> import nltk
>>> locations=[('Jaipur', 'IN', 'Rajasthan'),('Ajmer', 'IN',
'Rajasthan'),('Udaipur', 'IN', 'Rajasthan'),('Mumbai', 'IN',
'Maharashtra'),('Ahmedabad', 'IN', 'Gujrat')]
>>> q = [x1 for (x1, relation, x2) in locations if x2=='Rajasthan']
>>> print(q)
['Jaipur', 'Ajmer', 'Udaipur']

The nltk.tag.stanford module is used that makes use of stanford taggers to
perform NER. We can download tagger models from http://nlp.stanford.edu/
software.

Let's see the following example in NLTK that can be used to perform NER using the
Stanford tagger:

>>> from nltk.tag import StanfordNERTagger
>>> sentence = StanfordNERTagger('english.all.3class.distsim.crf.ser.
gz')
>>> sentence.tag('John goes to NY'.split())
[('John', 'PERSON'), ('goes', 'O'), ('to', 'O'),('NY', 'LOCATION')]

A classifier has been trained in NLTK to detect Named Entities. Using the function
nltk.ne.chunk(), named entities can be identified from a text. If the parameter
binary is set to true, then the named entities are detected and tagged with the NE
tag; otherwise the named entities are tagged with tags such as PERSON, GPE, and
ORGANIZATION.

http://nlp.stanford.edu/software
http://nlp.stanford.edu/software

Chapter 6

[113]

Let's see the following code, that detects Named Entities, if they exist, and tags them
with the NE tag:

>>> import nltk
>>> sentences1 = nltk.corpus.treebank.tagged_sents()[17]
>>> print(nltk.ne_chunk(sentences1, binary=True))
(S
 The/DT
total/NN
of/IN
 18/CD
deaths/NNS
from/IN
malignant/JJ
mesothelioma/NN
 ,/,
lung/NN
cancer/NN
and/CC
asbestosis/NN
was/VBD
far/RB
higher/JJR
than/IN
 */-NONE-
expected/VBN
 ?/-NONE-
 ,/,
the/DT
researchers/NNS
said/VBD
 0/-NONE-
 T-1/-NONE-
 ./.)
>>> sentences2 = nltk.corpus.treebank.tagged_sents()[7]
>>> print(nltk.ne_chunk(sentences2, binary=True))
(S
 A/DT
 (NE Lorillard/NNP)
spokewoman/NN
said/VBD
 ,/,
 ``/``
 This/DT

Semantic Analysis – Meaning Matters

[114]

is/VBZ
an/DT
old/JJ
story/NN
 ./.)
>>> print(nltk.ne_chunk(sentences2))
(S
 A/DT
 (ORGANIZATION Lorillard/NNP)
spokewoman/NN
said/VBD
 ,/,
 ``/``
 This/DT
is/VBZ
an/DT
old/JJ
story/NN
 ./.)

Consider another example in NLTK that can be used to detect named entities:

>>> import nltk
>>> from nltk.corpus import conll2002
>>> for documents in conll2002.chunked_sents('ned.train')[25]:
print(documents)

(PER Vandenbussche/Adj)
('zelf', 'Pron')
('besloot', 'V')
('dat', 'Conj')
('het', 'Art')
('hof', 'N')
('"', 'Punc')
('de', 'Art')
('politieke', 'Adj')
('zeden', 'N')
('uit', 'Prep')
('het', 'Art')
('verleden', 'N')
('"', 'Punc')
('heeft', 'V')
('willen', 'V')
('veroordelen', 'V')
('.', 'Punc')

Chapter 6

[115]

A chunker is a program that is used to partition plain text into a sequence of
semantically related words. To perform NER in NLTK, default chunkers are used.
Default chunkers are chunkers based on classifiers that have been trained on the
ACE corpus. Other chunkers have been trained on parsed or chunked NLTK
corpora. The languages covered by these NLTK chunkers are as follows:

•	 Dutch
•	 Spanish
•	 Portuguese
•	 English

Consider another example in NLTK that identifies named entities and categorizes
into different named entity classes:

>>> import nltk
>>> sentence = "I went to Greece to meet John";
>>> tok=nltk.word_tokenize(sentence)
>>> pos_tag=nltk.pos_tag(tok)
>>> print(nltk.ne_chunk(pos_tag))
(S
 I/PRP
went/VBD
to/TO
 (GPE Greece/NNP)
to/TO
meet/VB
 (PERSON John/NNP))

A NER system using Hidden Markov Model
HMM is one of the popular statistical approaches of NER. An HMM is defined as
a Stochastic Finite State Automaton (SFSA) consisting of a finite set of states that
are associated with the definite probability distribution. States are unobserved or
hidden. HMM generates optimal state sequences as an output. HMM is based on the
Markov Chain property. According to the Markov Chain property, the probability
of the occurrence of the next state is dependent on the previous tag. It is the simplest
approach to implement. The drawback of HMM is that it requires a large amount of
training and it cannot be used for large dependencies. HMM consists of the following:

•	 Set of states, S, where |S|=N. Here, N is the total number of states.
•	 Start state, S0.

Semantic Analysis – Meaning Matters

[116]

•	 Output alphabet, O;|O|=k. k is the total number of output alphabets.
•	 Transition probability, A.
•	 Emission probability, B.
•	 Initial state probabilities, π.

HMM is represented by the following tuple—λ= (A, B, π).

Start probability or initial state probability may be defined as the probability that a
particular tag occurs first in a sentence.

Transition probability (A=aij) may be defined as the probability of the occurrence of
the next tag j in a sentence given the occurrence of the particular tag i at present.

A=aij= the number of transitions from state si to sj /the number of transitions from
state si

Emission probability (B=bj(O)) may be defined as the probability of the occurrence
of an output sequence given a state j.

B=bj(k)= the number of times in state j and observing the symbol k /the expected
number of times in state j.

The Baum Welch algorithm is used to find the maximum likelihood and the
posterior mode estimates for HMM parameters. The forward-backward algorithm
is used to find the posterior marginals of all the hidden state variables given a
sequence of emissions or observations.

There are three steps involved in performing NER using HMM—Annotation, HMM
train, and HMM test. The Annotation module converts raw text into annotated or
trainable data. During HMM train, we compute HMM parameters—start probability,
transition probability, and emission probability. During HMM test, the Viterbi
algorithm is used. that finds out the optimal tag sequence.

Consider an example of chunking using the HMM in NLTK. Using chunking, the
NP and VP chunks can be obtained. NP chunks can further be processed to obtain
proper nouns or named entities:

>>> import nltk
>>> nltk.tag.hmm.demo_pos()

HMM POS tagging demo

Training HMM...
Testing...

Chapter 6

[117]

Test: the/AT fulton/NP county/NN grand/JJ jury/NN said/VBD friday/
NR an/AT investigation/NN of/IN atlanta's/NP$ recent/JJ primary/NN
election/NN produced/VBD ``/`` no/AT evidence/NN ''/'' that/CS any/DTI
irregularities/NNS took/VBD place/NN ./.

Untagged: the fulton county grand jury said friday an investigation of
atlanta's recent primary election produced `` no evidence '' that any
irregularities took place .

HMM-tagged: the/AT fulton/NP county/NN grand/JJ jury/NN said/
VBD friday/NR an/AT investigation/NN of/IN atlanta's/NP$ recent/
JJ primary/NN election/NN produced/VBD ``/`` no/AT evidence/NN ''/''
that/CS any/DTI irregularities/NNS took/VBD place/NN ./.

Entropy: 18.7331739705

--
Test: the/AT jury/NN further/RBR said/VBD in/IN term-end/NN
presentments/NNS that/CS the/AT city/NN executive/JJ committee/NN ,/,
which/WDT had/HVD over-all/JJ charge/NN of/IN the/AT election/NN ,/,
``/`` deserves/VBZ the/AT praise/NN and/CC thanks/NNS of/IN the/AT
city/NN of/IN atlanta/NP ''/'' for/IN the/AT manner/NN in/IN which/WDT
the/AT election/NN was/BEDZ conducted/VBN ./.

Untagged: the jury further said in term-end presentments that the
city executive committee , which had over-all charge of the election
, `` deserves the praise and thanks of the city of atlanta '' for the
manner in which the election was conducted .

HMM-tagged: the/AT jury/NN further/RBR said/VBD in/IN term-end/AT
presentments/NN that/CS the/AT city/NN executive/NN committee/NN ,/,
which/WDT had/HVD over-all/VBN charge/NN of/IN the/AT election/NN ,/,
``/`` deserves/VBZ the/AT praise/NN and/CC thanks/NNS of/IN the/AT
city/NN of/IN atlanta/NP ''/'' for/IN the/AT manner/NN in/IN which/WDT
the/AT election/NN was/BEDZ conducted/VBN ./.

Entropy: 27.0708725519

--
Test: the/AT september-october/NP term/NN jury/NN had/HVD been/BEN
charged/VBN by/IN fulton/NP superior/JJ court/NN judge/NN durwood/
NP pye/NP to/TO investigate/VB reports/NNS of/IN possible/JJ ``/``
irregularities/NNS ''/'' in/IN the/AT hard-fought/JJ primary/NN which/
WDT was/BEDZ won/VBN by/IN mayor-nominate/NN ivan/NP allen/NP jr./NP
./.

Semantic Analysis – Meaning Matters

[118]

Untagged: the september-october term jury had been charged by fulton
superior court judge durwoodpye to investigate reports of possible ``
irregularities '' in the hard-fought primary which was won by mayor-
nominate ivanallenjr. .

HMM-tagged: the/AT september-october/JJ term/NN jury/NN had/HVD been/
BEN charged/VBN by/IN fulton/NP superior/JJ court/NN judge/NN durwood/
TO pye/VB to/TO investigate/VB reports/NNS of/IN possible/JJ ``/``
irregularities/NNS ''/'' in/IN the/AT hard-fought/JJ primary/NN which/
WDT was/BEDZ won/VBN by/IN mayor-nominate/NP ivan/NP allen/NP jr./NP
./.

Entropy: 33.8281874237

--
Test: ``/`` only/RB a/AT relative/JJ handful/NN of/IN such/JJ reports/
NNS was/BEDZ received/VBN ''/'' ,/, the/AT jury/NN said/VBD ,/, ``/``
considering/IN the/AT widespread/JJ interest/NN in/IN the/AT election/
NN ,/, the/AT number/NN of/IN voters/NNS and/CC the/AT size/NN of/IN
this/DT city/NN ''/'' ./.

Untagged: `` only a relative handful of such reports was received '' ,
the jury said , `` considering the widespread interest in the election
, the number of voters and the size of this city '' .

HMM-tagged: ``/`` only/RB a/AT relative/JJ handful/NN of/IN such/JJ
reports/NNS was/BEDZ received/VBN ''/'' ,/, the/AT jury/NN said/VBD
,/, ``/`` considering/IN the/AT widespread/JJ interest/NN in/IN the/AT
election/NN ,/, the/AT number/NN of/IN voters/NNS and/CC the/AT size/
NN of/IN this/DT city/NN ''/'' ./.

Entropy: 11.4378198596

--
Test: the/AT jury/NN said/VBD it/PPS did/DOD find/VB that/CS many/AP
of/IN georgia's/NP$ registration/NN and/CC election/NN laws/NNS ``/``
are/BER outmoded/JJ or/CC inadequate/JJ and/CC often/RB ambiguous/JJ
''/'' ./.

Untagged: the jury said it did find that many of georgia's
registration and election laws `` are outmoded or inadequate and often
ambiguous '' .

HMM-tagged: the/AT jury/NN said/VBD it/PPS did/DOD find/VB that/CS
many/AP of/IN georgia's/NP$ registration/NN and/CC election/NN laws/
NNS ``/`` are/BER outmoded/VBG or/CC inadequate/JJ and/CC often/RB
ambiguous/VB ''/'' ./.

Chapter 6

[119]

Entropy: 20.8163623192

--
Test: it/PPS recommended/VBD that/CS fulton/NP legislators/NNS act/VB
``/`` to/TO have/HV these/DTS laws/NNS studied/VBN and/CC revised/VBN
to/IN the/AT end/NN of/IN modernizing/VBG and/CC improving/VBG them/
PPO ''/'' ./.

Untagged: it recommended that fulton legislators act `` to have these
laws studied and revised to the end of modernizing and improving them
'' .

HMM-tagged: it/PPS recommended/VBD that/CS fulton/NP legislators/
NNS act/VB ``/`` to/TO have/HV these/DTS laws/NNS studied/VBD and/CC
revised/VBD to/IN the/AT end/NN of/IN modernizing/NP and/CC improving/
VBG them/PPO ''/'' ./.

Entropy: 20.3244921203

--
Test: the/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/NN of/
IN other/AP topics/NNS ,/, among/IN them/PPO the/AT atlanta/NP and/
CC fulton/NP county/NN purchasing/VBG departments/NNS which/WDT it/
PPS said/VBD ``/`` are/BER well/QL operated/VBN and/CC follow/VB
generally/RB accepted/VBN practices/NNS which/WDT inure/VB to/IN the/
AT best/JJT interest/NN of/IN both/ABX governments/NNS ''/'' ./.

Untagged: the grand jury commented on a number of other topics ,
among them the atlanta and fulton county purchasing departments which
it said `` are well operated and follow generally accepted practices
which inure to the best interest of both governments '' .

HMM-tagged: the/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/
NN of/IN other/AP topics/NNS ,/, among/IN them/PPO the/AT atlanta/
NP and/CC fulton/NP county/NN purchasing/NN departments/NNS which/WDT
it/PPS said/VBD ``/`` are/BER well/RB operated/VBN and/CC follow/VB
generally/RB accepted/VBN practices/NNS which/WDT inure/VBZ to/IN the/
AT best/JJT interest/NN of/IN both/ABX governments/NNS ''/'' ./.

Entropy: 31.3834231469

--
Test: merger/NN proposed/VBN

Untagged: merger proposed

Semantic Analysis – Meaning Matters

[120]

HMM-tagged: merger/PPS proposed/VBD

Entropy: 5.6718203946

--
Test: however/WRB ,/, the/AT jury/NN said/VBD it/PPS believes/VBZ
``/`` these/DTS two/CD offices/NNS should/MD be/BE combined/VBN to/TO
achieve/VB greater/JJR efficiency/NN and/CC reduce/VB the/AT cost/NN
of/IN administration/NN ''/'' ./.

Untagged: however , the jury said it believes `` these two offices
should be combined to achieve greater efficiency and reduce the cost
of administration '' .

HMM-tagged: however/WRB ,/, the/AT jury/NN said/VBD it/PPS believes/
VBZ ``/`` these/DTS two/CD offices/NNS should/MD be/BE combined/VBN
to/TO achieve/VB greater/JJR efficiency/NN and/CC reduce/VB the/AT
cost/NN of/IN administration/NN ''/'' ./.

Entropy: 8.27545943909

--
Test: the/AT city/NN purchasing/VBG department/NN ,/, the/AT jury/NN
said/VBD ,/, ``/`` is/BEZ lacking/VBG in/IN experienced/VBN clerical/
JJ personnel/NNS as/CS a/AT result/NN of/IN city/NN personnel/NNS
policies/NNS ''/'' ./.

Untagged: the city purchasing department , the jury said , `` is
lacking in experienced clerical personnel as a result of city
personnel policies '' .

HMM-tagged: the/AT city/NN purchasing/NN department/NN ,/, the/
AT jury/NN said/VBD ,/, ``/`` is/BEZ lacking/VBG in/IN experienced/
AT clerical/JJ personnel/NNS as/CS a/AT result/NN of/IN city/NN
personnel/NNS policies/NNS ''/'' ./.

Entropy: 16.7622537278

--
accuracy over 284 tokens: 92.96

Chapter 6

[121]

The outcome of an NER tagger may be defined as a response and an interpretation of
human beings as answer key. So, we provide the following definitions:

•	 Correct: If the response is exactly the same as answer key
•	 Incorrect: If the response is not same as answer key
•	 Missing: If answer key is found tagged, but response is not tagged
•	 Spurious: If response is found tagged, but answer key is not tagged

Performance of an NER-based system can be judged by using the following
parameters:

•	 Precision (P): It is defined as follows:
P=Correct/ (Correct+Incorrect+Missing)

•	 Recall (R): It is defined as follows:
R=Correct/ (Correct+Incorrect+Spurious)

•	 F-Measure: It is defined as follows:
F-Measure = (2*PREC*REC)/(PRE+REC)

Training NER using Machine Learning Toolkits
NER can be performed using the following approaches:

•	 Rule-based or Handcrafted approach:
°° List Lookup approach
°° Linguistic approach

•	 Machine Learning-based approach or Automated approach:
°° Hidden Markov Model
°° Maximum Entropy Markov Model
°° Conditional Random Fields
°° Support Vector Machine
°° Decision Trees

It has been proved experimentally that Machine learning-based approaches
outperform Rule-based approaches. Also, if a combination of Rule-based
approaches and Machine Learning-based approaches is used, then the
performance of NER will increase.

Semantic Analysis – Meaning Matters

[122]

NER using POS tagging
Using POS tagging, NER can be performed. The POS tags that can be used are as
follows (they are available at https://www.ling.upenn.edu/courses/Fall_2003/
ling001/penn_treebank_pos.html):

Tag Description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO To
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Chapter 6

[123]

Tag Description
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

If POS tagging is performed, then using POS information, named entities can
be identified. The tokens tagged with the NNP tag are Named Entities.

Consider the following example in NLTK in which POS tagging is used to
perform NER:

>>> import nltk
>>> from nltk import pos_tag, word_tokenize
>>> pos_tag(word_tokenize("John and Smith are going to NY and
Germany"))
[('John', 'NNP'), ('and', 'CC'), ('Smith', 'NNP'), ('are', 'VBP'),
('going', 'VBG'), ('to', 'TO'), ('NY', 'NNP'), ('and', 'CC'),
('Germany', 'NNP')]

Here, the named entities are—John, Smith, NY, and Germany since they are tagged
with the NNP tag.

Let's see another example in which POS tagging is performed in NLTK and the POS
tag information is used to detect Named Entities:

>>> import nltk
>>> from nltk.corpus import brown
>>> from nltk.tag import UnigramTagger
>>> tagger = UnigramTagger(brown.tagged_sents(categories='news')
[:700])
>>> sentence = ['John','and','Smith','went','to','NY','and','Germany']
>>> for word, tag in tagger.tag(sentence):
print(word,'->',tag)

	
John -> NP
and -> CC
Smith -> None
went -> VBD
to -> TO

Semantic Analysis – Meaning Matters

[124]

NY -> None
and -> CC
Germany -> None

Here, John has been tagged with the NP tag, so it is identified as a named entity.
Some of the tokens here are tagged with the None tag because these tokens have
not been trained.

Generation of the synset id from Wordnet
Wordnet may be defined as an English lexical database. The conceptual dependency
between words, such as hypernym, synonym, antonym, and hyponym, can be found
using synsets.

Consider the following code in NLTK for the generation of synsets:

def all_synsets(self, pos=None):
 """Iterate over all synsets with a given part of speech tag.
 If no pos is specified, all synsets for all parts of speech
 will be loaded.
 """
 if pos is None:
 pos_tags = self._FILEMAP.keys()
 else:
 pos_tags = [pos]

 cache = self._synset_offset_cache
 from_pos_and_line = self._synset_from_pos_and_line

 # generate all synsets for each part of speech
 for pos_tag in pos_tags:
 # Open the file for reading. Note that we can not re-use
 # the file poitners from self._data_file_map here, because
 # we're defining an iterator, and those file pointers
might
 # be moved while we're not looking.
 if pos_tag == ADJ_SAT:
 pos_tag = ADJ
 fileid = 'data.%s' % self._FILEMAP[pos_tag]
 data_file = self.open(fileid)

 try:
 # generate synsets for each line in the POS file
 offset = data_file.tell()

Chapter 6

[125]

 line = data_file.readline()
 while line:
 if not line[0].isspace():
 if offset in cache[pos_tag]:
 # See if the synset is cached
 synset = cache[pos_tag][offset]
 else:
 # Otherwise, parse the line
 synset = from_pos_and_line(pos_tag, line)
 cache[pos_tag][offset] = synset

 # adjective satellites are in the same file as
 # adjectives so only yield the synset if it's
actually
 # a satellite
 if synset._pos == ADJ_SAT:
 yield synset

 # for all other POS tags, yield all synsets
(this means
 # that adjectives also include adjective
satellites)
 else:
 yield synset
 offset = data_file.tell()
 line = data_file.readline()

 # close the extra file handle we opened
 except:
 data_file.close()
 raise
 else:
 data_file.close()

Let's see the following code in NLTK, that is used to look up a word using synsets:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> wn.synsets('cat')
[Synset('cat.n.01'), Synset('guy.n.01'), Synset('cat.n.03'),
Synset('kat.n.01'), Synset('cat-o'-nine-tails.n.01'),
Synset('caterpillar.n.02'), Synset('big_cat.n.01'),
Synset('computerized_tomography.n.01'), Synset('cat.v.01'),
Synset('vomit.v.01')]

Semantic Analysis – Meaning Matters

[126]

>>> wn.synsets('cat', pos=wn.VERB)
[Synset('cat.v.01'), Synset('vomit.v.01')]
>>> wn.synset('cat.n.01')
Synset('cat.n.01')

Here, cat.n.01 means that cat is of the noun category and only one meaning of
cat exists:

>>> print(wn.synset('cat.n.01').definition())
feline mammal usually having thick soft fur and no ability to roar:
domestic cats; wildcats
>>> len(wn.synset('cat.n.01').examples())
0
>>> wn.synset('cat.n.01').lemmas()
[Lemma('cat.n.01.cat'), Lemma('cat.n.01.true_cat')]
>>> [str(lemma.name()) for lemma in wn.synset('cat.n.01').lemmas()]
['cat', 'true_cat']
>>> wn.lemma('cat.n.01.cat').synset()
Synset('cat.n.01')

Let's see the following example in NLTK, that depicts the use of Synsets and Open
Multilingual Wordnet using ISO 639 language codes:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> sorted(wn.langs())
['als', 'arb', 'cat', 'cmn', 'dan', 'eng', 'eus', 'fas', 'fin', 'fra',
'fre', 'glg', 'heb', 'ind', 'ita', 'jpn', 'nno', 'nob', 'pol', 'por',
'spa', 'tha', 'zsm']
>>> wn.synset('cat.n.01').lemma_names('ita')
['gatto']
>>> sorted(wn.synset('cat.n.01').lemmas('dan'))
[Lemma('cat.n.01.kat'), Lemma('cat.n.01.mis'), Lemma('cat.n.01.
missekat')]
>>> sorted(wn.synset('cat.n.01').lemmas('por'))
[Lemma('cat.n.01.Gato-doméstico'), Lemma('cat.n.01.Gato_doméstico'),
Lemma('cat.n.01.gato'), Lemma('cat.n.01.gato')]
>>> len(wordnet.all_lemma_names(pos='n', lang='jpn'))
66027
>>> cat = wn.synset('cat.n.01')
>>> cat.hypernyms()
[Synset('feline.n.01')]
>>> cat.hyponyms()
[Synset('domestic_cat.n.01'), Synset('wildcat.n.03')]

Chapter 6

[127]

>>> cat.member_holonyms()
[]
>>> cat.root_hypernyms()
[Synset('entity.n.01')]
>>> wn.synset('cat.n.01').lowest_common_hypernyms(wn.
synset('dog.n.01'))
[Synset('carnivore.n.01')]

Disambiguating senses using Wordnet
Disambiguation is the task of distinguishing two or more of the same spellings or
the same sounding words on the basis of their sense or meaning.

Following are the implementations of disambiguation or the WSD task using Python
technologies:

•	 Lesk algorithms:
°° Original Lesk
°° Cosine Lesk (use cosines to calculate overlaps instead of using

raw counts)
°° Simple Lesk (with definitions, example(s), and hyper+hyponyms)
°° Adapted/extended Lesk
°° Enhanced Lesk

•	 Maximizing similarity:
°° Information content
°° Path similarity

•	 Supervised WSD:
°° It Makes Sense (IMS)
°° SVM WSD

•	 Vector Space models:
°° Topic Models, LDA
°° LSI/LSA
°° NMF

•	 Graph-based models:
°° Babelfly
°° UKB

Semantic Analysis – Meaning Matters

[128]

•	 Baselines:
°° Random sense
°° Highest lemma counts
°° First NLTK sense

Wordnet sense similarity in NLTK involves the following algorithms:

•	 Resnik Score: On comparing two tokens, a score (Least Common Subsumer)
is returned that decides the similarity of two tokens

•	 Wu-Palmer Similarity: Defines the similarity between two tokens on the
basis of the depth of two senses and Least Common Subsumer

•	 Path Distance Similarity: The similarity of two tokens is determined on the
basis of the shortest distance that is computed in the is-a taxonomy

•	 Leacock Chodorow Similarity: A similarity score is returned on the basis of
the shortest path and the depth (maximum) in which the senses exist in the
taxonomy

•	 Lin Similarity: A similarity score is returned on the basis of the information
content of the Least Common Subsumer and two input Synsets

•	 Jiang-Conrath Similarity: A similarity score is returned on the basis of the
content information of Least Common Subsumer and two input Synsets

Consider the following example in NLTK, which depicts path similarity:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> lion = wn.synset('lion.n.01')
>>> cat = wn.synset('cat.n.01')
>>> lion.path_similarity(cat)
0.25

Consider the following example in NLTK that depicts Leacock Chodorow Similarity:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> lion = wn.synset('lion.n.01')
>>> cat = wn.synset('cat.n.01')
>>> lion.lch_similarity(cat)
2.2512917986064953

Chapter 6

[129]

Consider the following example in NLTK that depicts Wu-Palmer Similarity:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> lion = wn.synset('lion.n.01')
>>> cat = wn.synset('cat.n.01')
>>> lion.wup_similarity(cat)
0.896551724137931

Consider the following example in NLTK that depicts Resnik Similarity, Lin
Similarity, and Jiang-Conrath Similarity:

>>> import nltk
>>> from nltk.corpus import wordnet
>>> from nltk.corpus import wordnet as wn
>>> from nltk.corpus import wordnet_ic
>>> brown_ic = wordnet_ic.ic('ic-brown.dat')
>>> semcor_ic = wordnet_ic.ic('ic-semcor.dat')
>>> from nltk.corpus import genesis
>>> genesis_ic = wn.ic(genesis, False, 0.0)
>>> lion = wn.synset('lion.n.01')
>>> cat = wn.synset('cat.n.01')
>>> lion.res_similarity(cat, brown_ic)
8.663481537685325
>>> lion.res_similarity(cat, genesis_ic)
7.339696591781995
>>> lion.jcn_similarity(cat, brown_ic)
0.36425897775957294
>>> lion.jcn_similarity(cat, genesis_ic)
0.3057800856788946
>>> lion.lin_similarity(cat, semcor_ic)
0.8560734335071154

Let's see the following code in NLTK based on Wu-Palmer Similarity and Path
Distance Similarity:

from nltk.corpus import wordnet as wn
def getSenseSimilarity(worda,wordb):

"""

find similarity betwwn word senses of two words

"""

Semantic Analysis – Meaning Matters

[130]

wordasynsets = wn.synsets(worda)

wordbsynsets = wn.synsets(wordb)

synsetnamea = [wn.synset(str(syns.name)) for syns in wordasynsets]

	 synsetnameb = [wn.synset(str(syns.name)) for syns in wordbsynsets]

for sseta, ssetb in [(sseta,ssetb) for sseta in synsetnamea\

for ssetb in synsetnameb]:

pathsim = sseta.path_similarity(ssetb)

wupsim = sseta.wup_similarity(ssetb)

if pathsim != None:

print "Path Sim Score: ",pathsim," WUP Sim Score: ",wupsim,\

"\t",sseta.definition, "\t", ssetb.definition

if __name__ == "__main__":

#getSenseSimilarity('walk','dog')

getSenseSimilarity('cricket','ball')

Consider the following code of a Lesk algorithm in NLTK , which is used to perform
the disambiguation task:

from nltk.corpus import wordnet

def lesk(context_sentence, ambiguous_word, pos=None, synsets=None):
 """Return a synset for an ambiguous word in a context.

 :param iter context_sentence: The context sentence where the
ambiguous word
 occurs, passed as an iterable of words.
 :param str ambiguous_word: The ambiguous word that requires WSD.
 :param str pos: A specified Part-of-Speech (POS).

Chapter 6

[131]

 :param iter synsets: Possible synsets of the ambiguous word.
 :return: ``lesk_sense`` The Synset() object with the highest
signature overlaps.

// This function is an implementation of the original Lesk
algorithm (1986) [1].

 Usage example::

>>> lesk(['I', 'went', 'to', 'the', 'bank', 'to', 'deposit', 'money',
'.'], 'bank', 'n')
 Synset('savings_bank.n.02')

 context = set(context_sentence)
 if synsets is None:
 synsets = wordnet.synsets(ambiguous_word)

 if pos:
 synsets = [ss for ss in synsets if str(ss.pos()) == pos]

 if not synsets:
 return None

 _, sense = max(
 (len(context.intersection(ss.definition().split())), ss) for
ss in synsets
)

 return sense

Summary
In this chapter, we have discussed Semantic Analysis, which is also one of the phase
of Natural Language Processing. We have discussed NER, NER using HMM, NER
using Machine Learning Toolkits, Performance Metrics of NER, NER using POS
tagging, and WSD using Wordnet and the Generation of Synsets.

In the next chapter, we will discuss sentiment analysis using NER and machine
learning approaches. We will also discuss the evaluation of the NER system.

Sentiment Analysis – I Am
Happy

Sentiment analysis or sentiment generation is one of the tasks in NLP. It is defined
as the process of determining the sentiments behind a character sequence. It may be
used to determine whether the speaker or the person expressing the textual thoughts
is in a happy or sad mood, or it represents a neutral expression.

This chapter will include the following topics:

•	 Introducing sentiment analysis
•	 Sentiment analysis using NER
•	 Sentiment analysis using machine learning
•	 Evaluation of the NER system

Sentiment Analysis – I Am Happy

[134]

Introducing sentiment analysis
Sentiment analysis may be defined as a task performed on natural languages.
Here, computations are performed on the sentences or words expressed in natural
language to determine whether they express a positive, negative, or a neutral
sentiment. Sentiment analysis is a subjective task, since it provides the information
about the text being expressed. Sentiment analysis may be defined as a classification
problem in which classification may be of two types—binary categorization
(positive or negative) and multi-class categorization (positive, negative, or neutral).
Sentiment analysis is also referred to as text sentiment analysis. It is a text mining
approach in which we determine the sentiments or the emotions behind the text.
When we combine sentiment analysis with topic mining, then it is referred to as
topic-sentiment analysis. Sentiment analysis can be performed using a lexicon.
The lexicon could be domain-specific or of a general purpose nature. Lexicon may
contain a list of positive expressions, negative expressions, neutral expressions, and
stop words. When a testing sentence appears, then a simple look up operation can be
performed through this lexicon.

One example of the word list is—Affective Norms for English Words (ANEW).
It is an English word list found at the University of Florida. It consists of 1034
words for dominance, valence, and arousal. It was formed by Bradley and Lang.
This word list was constructed for academic purposes and not for research purposes.
Other variants are DANEW (Dutch ANEW) and SPANEW (Spanish ANEW).

AFINN consists of 2477 words (earlier 1468 words). This word list was formed by
Finn Arup Nielson. The main purpose for creating this word list was to perform
sentiment analysis for Twitter texts. A valence value ranging from -5 to +5 is
allotted to each word.

The Balance Affective word list consists of 277 English words. The valence code
ranges from 1 to 4. 1 means positive, 2 means negative, 3 means anxious, and
4 means neutral.

Berlin Affective Word List (BAWL) consists of 2,200 words in German. Another
version of BAWL is Berlin Affective Word List Reloaded (BAWL-R) that comprises
of additional arousal for words.

Bilingual Finnish Affective Norms comprises 210 British English as well as Finnish
nouns. It also comprises taboo words.

Compass DeRose Guide to Emotion Words consists of emotional words in English.
This was formed by Steve J. DeRose. Words were classified, but there was no valence
and arousal.

Chapter 7

[135]

Dictionary of Affect in Language (DAL) comprises emotional words that can be
used for sentiment analysis. It was formed by Cynthia M. Whissell. So, it is also
referred to as Whissell's Dictionary of Affect in Language (WDAL).

General Inquirer consists of many dictionaries. In this, the positive list comprises
1915 words and the negative list comprises 2291 words.

Hu-Liu opinion Lexicon (HL) comprises a list of 6800 words (positive and negative).

Leipzig Affective Norms for German (LANG) is a list that consists of 1000 nouns in
German, and the rating has been done based on valence, concreteness, and arousal.

Loughran and McDonald Financial Sentiment Dictionaries were created by
Tim Loughran and Bill McDonald. These dictionaries consist of words for
financial documents, which are positive, negative, or modal words.

Moors consist of a list of words in Dutch related to dominance, arousal, and valence.

NRC Emotion Lexicon comprises of a list of words developed through Amazon
Mechanical Turk by Saif M. Mohammad.

OpinionFinder's Subjectivity Lexicon comprises a list of 8221 words (positive
or negative).

SentiSense comprises 2,190 synsets and 5,496 words based on 14 emotional categories.

Warringer comprises 13,915 words in English collected from Amazon Mechanical
Turk that are related to dominance, arousal, and valence.

labMT is a word list consisting of 10,000 words.

Let's consider the following example in NLTK, which performs sentiment analysis
for movie reviews:

import nltk
import random
from nltk.corpus import movie_reviews
docs = [(list(movie_reviews.words(fid)), cat)
 for cat in movie_reviews.categories()
 for fid in movie_reviews.fileids(cat)]
random.shuffle(docs)

all_tokens = nltk.FreqDist(x.lower() for x in movie_reviews.words())
token_features = all_tokens.keys()[:2000]
print token_features[:100]

Sentiment Analysis – I Am Happy

[136]

 [',', 'the', '.', 'a', 'and', 'of', 'to', "'", 'is', 'in', 's',
'"', 'it', 'that', '-', ')', '(', 'as', 'with', 'for', 'his', 'this',
'film', 'i', 'he', 'but', 'on', 'are', 't', 'by', 'be', 'one',
'movie', 'an', 'who', 'not', 'you', 'from', 'at', 'was', 'have',
'they', 'has', 'her', 'all', '?', 'there', 'like', 'so', 'out',
'about', 'up', 'more', 'what', 'when', 'which', 'or', 'she', 'their',
':', 'some', 'just', 'can', 'if', 'we', 'him', 'into', 'even', 'only',
'than', 'no', 'good', 'time', 'most', 'its', 'will', 'story', 'would',
'been', 'much', 'character', 'also', 'get', 'other', 'do', 'two',
'well', 'them', 'very', 'characters', ';', 'first', '--', 'after',
'see', '!', 'way', 'because', 'make', 'life']

def doc_features(doc):
 doc_words = set(doc)
 features = {}
 for word in token_features:
 features['contains(%s)' % word] = (word in doc_words)
 return features

print doc_features(movie_reviews.words('pos/cv957_8737.txt
feature_sets = [(doc_features(d), c) for (d,c) in doc]
train_sets, test_sets = feature_sets[100:], feature_sets[:100]
classifiers = nltk.NaiveBayesClassifier.train(train_sets)
print nltk.classify.accuracy(classifiers, test_sets)

 0.86

classifier.show_most_informative_features(5)

 Most Informative Features
contains(damon) = True pos : neg = 11.2 : 1.0
contains(outstanding) = True pos : neg = 10.6 : 1.0
contains(mulan) = True pos : neg = 8.8 : 1.0
contains(seagal) = True neg : pos = 8.4 : 1.0
contains(wonderfully) = True pos : neg = 7.4 : 1.0

Here, it is checked whether the informative features are present in the document
or not.

Consider another example of semantic analysis. First, the preprocessing of text is
performed. In this, individual sentences are identified in a given text. Then, tokens
are identified in the sentences. Each token further comprises three entities, namely,
word, lemma, and tag.

Chapter 7

[137]

Let's see the following code in NLTK for the preprocessing of text:

importnltk

class Splitter(object):
def __init__(self):
self.nltk_splitter = nltk.data.load('tokenizers/punkt/english.pickle')
self.nltk_tokenizer = nltk.tokenize.TreebankWordTokenizer()

def split(self, text):
sentences = self.nltk_splitter.tokenize(text)
tokenized_sentences = [self.nltk_tokenizer.tokenize(sent) for sent in
sentences]
return tokenized_sentences
classPOSTagger(object):
def __init__(self):
pass

def pos_tag(self, sentences):

pos = [nltk.pos_tag(sentence) for sentence in sentences]
pos = [[(word, word, [postag]) for (word, postag) in sentence] for
sentence in pos]
returnpos

The lemmas generated will be same as the word forms. Tags are the POS tags.
Consider the following code, which generates three tuples for each token, that is,
word, lemma, and the POS tag:

text = """Why are you looking disappointed. We will go to restaurant
for dinner."""
splitter = Splitter()
postagger = POSTagger()
splitted_sentences = splitter.split(text)
print splitted_sentences
[['Why','are','you','looking','disappointed','.'], ['We','will','go','
to','restaurant','for','dinner','.']]

pos_tagged_sentences = postagger.pos_tag(splitted_sentences)

print pos_tagged_sentences
[[('Why','Why',['WP']),('are','are',['VBZ']),('you','you',['PRP']
),('looking','looking',['VB']),('disappointed','disappointed',['
VB']),('.','.',['.'])],[('We','We',['PRP']),('will','will',['VBZ']),('
go','go',['VB']),('to','to',['TO']),('restaurant','restaurant',['NN'])
,('for','for',['IN']),('dinner','dinner',['NN']),('.','.',['.'])]]

We can construct two kinds of dictionary consisting of positive and negative
expressions. We can then perform tagging on our processed text using dictionaries.

Sentiment Analysis – I Am Happy

[138]

Let's consider the following NLTK code for tagging using dictionaries:

classDictionaryTagger(object):
def __init__(self, dictionary_paths):
files = [open(path, 'r') for path in dictionary_paths]
dictionaries = [yaml.load(dict_file) for dict_file in files]
map(lambda x: x.close(), files)
self.dictionary = {}
self.max_key_size = 0
forcurr_dict in dictionaries:
for key in curr_dict:
if key in self.dictionary:
self.dictionary[key].extend(curr_dict[key])
else:
self.dictionary[key] = curr_dict[key]
self.max_key_size = max(self.max_key_size, len(key))

def tag(self, postagged_sentences):
return [self.tag_sentence(sentence) for sentence in postagged_
sentences]

def tag_sentence(self, sentence, tag_with_lemmas=False):
tag_sentence = []
 N = len(sentence)
ifself.max_key_size == 0:
self.max_key_size = N
i = 0
while (i< N):
j = min(i + self.max_key_size, N) #avoid overflow
tagged = False
while (j >i):
expression_form = ' '.join([word[0] for word in sentence[i:j]]).
lower()
expression_lemma = ' '.join([word[1] for word in sentence[i:j]]).
lower()
iftag_with_lemmas:
literal = expression_lemma
else:
literal = expression_form
if literal in self.dictionary:
 is_single_token = j - i == 1
original_position = i
i = j
taggings = [tag for tag in self.dictionary[literal]]

Chapter 7

[139]

tagged_expression = (expression_form, expression_lemma, taggings)
ifis_single_token: #if the tagged literal is a single token, conserve
its previous taggings:
original_token_tagging = sentence[original_position][2]
tagged_expression[2].extend(original_token_tagging)
tag_sentence.append(tagged_expression)
tagged = True
else:
 j = j - 1
if not tagged:
tag_sentence.append(sentence[i])
i += 1
return tag_sentence

Here, words in the preprocessed text are tagged as positive or negative with the help
of dictionaries.

Let's see the following code in NLTK, which can be used to compute the number of
positive expressions and negative expressions:

def value_of(sentiment):
if sentiment == 'positive': return 1
if sentiment == 'negative': return -1
return 0
def sentiment_score(review):
return sum ([value_of(tag) for sentence in dict_tagged_sentences for
token in sentence for tag in token[2]])

The nltk.sentiment.util module is used in NLTK to perform sentiment analysis
using Hu-Liu lexicon. This module counts the number of positive, negative, and
neutral expressions, with the help of the lexicon, and then decides on the basis of
majority counts whether the text consist of a positive, negative, or neutral sentiment.
The words which are not available in the lexicon are considered neutral.

Sentiment analysis using NER
NER is the process of finding named entities and then categorizing named
entities into different named entity classes. NER can be performed using different
techniques, such as the Rule-based approach, List look up approach, and Statistical
approaches (Hidden Markov Model, Maximum Entropy Markov Model, Support
Vector Machine, Conditional Random Fields, and Decision Trees).

Sentiment Analysis – I Am Happy

[140]

If named entities are identified in the list, then they may be removed or filtered out
from the sentences. Similarly, stop words may also be removed. Now, sentiment
analysis may be performed on the remaining words, since named entities are words
that do not contribute to sentiment analysis.

Sentiment analysis using machine learning
The nltk.sentiment.sentiment_analyzer module in NLTK is used to perform
sentiment analysis. It is based on machine learning techniques.

Let's see the following code of the nltk.sentiment.sentiment_analyzer module
in NLTK:

from __future__ import print_function
from collections import defaultdict

from nltk.classify.util import apply_features, accuracy as eval_
accuracy
from nltk.collocations import BigramCollocationFinder
from nltk.metrics import (BigramAssocMeasures, precision as eval_
precision,
 recall as eval_recall, f_measure as eval_f_measure)

from nltk.probability import FreqDist

from nltk.sentiment.util import save_file, timer
class SentimentAnalyzer(object):
 """
 A tool for Sentiment Analysis which is based on machine learning
techniques.
 """
 def __init__(self, classifier=None):
 self.feat_extractors = defaultdict(list)
 self.classifier = classifier

Consider the following code, which will return all the words (duplicates) from a text:

 def all_words(self, documents, labeled=None):
 all_words = []
 if labeled is None:
 labeled = documents and isinstance(documents[0], tuple)
 if labeled == True:
 for words, sentiment in documents:
 all_words.extend(words)
 elif labeled == False:

Chapter 7

[141]

 for words in documents:
 all_words.extend(words)
 return all_words

Consider the following code, which will apply the feature extraction function to
the text:

def apply_features(self, documents, labeled=None):

 return apply_features(self.extract_features, documents,
labeled)

Consider the following code, which will return the word's features:

def unigram_word_feats(self, words, top_n=None, min_freq=0):
 unigram_feats_freqs = FreqDist(word for word in words)
 return [w for w, f in unigram_feats_freqs.most_common(top_n)
 if unigram_feats_freqs[w] > min_freq]

The following code returns the bigram features:

def bigram_collocation_feats(self, documents, top_n=None, min_freq=3,
 assoc_measure=BigramAssocMeasures.
pmi):
 finder = BigramCollocationFinder.from_documents(documents)
 finder.apply_freq_filter(min_freq)
 return finder.nbest(assoc_measure, top_n)

Let's see the following code, which can be used to classify a given instance using the
available feature set:

def classify(self, instance):
 instance_feats = self.apply_features([instance],
labeled=False)
 return self.classifier.classify(instance_feats[0])

Let's see the following code, which can be used for the extraction of features from
the text:

def add_feat_extractor(self, function, **kwargs):
 self.feat_extractors[function].append(kwargs)

def extract_features(self, document):
 all_features = {}
 for extractor in self.feat_extractors:
 for param_set in self.feat_extractors[extractor]:
 feats = extractor(document, **param_set)
 all_features.update(feats)
 return all_features

Sentiment Analysis – I Am Happy

[142]

Let's see the following code that can be used to perform training on the training file.
Save_classifier is used to save the output in a file:

def train(self, trainer, training_set, save_classifier=None,
**kwargs):
 print("Training classifier")
 self.classifier = trainer(training_set, **kwargs)
 if save_classifier:
 save_file(self.classifier, save_classifier)

 return self.classifier

Let's see the following code that can be used to perform testing and performance
evaluation of our classifier using test data:

def evaluate(self, test_set, classifier=None, accuracy=True, f_
measure=True,
 precision=True, recall=True, verbose=False):
 if classifier is None:
 classifier = self.classifier
 print("Evaluating {0} results...".format(type(classifier).__
name__))
 metrics_results = {}
 if accuracy == True:
 accuracy_score = eval_accuracy(classifier, test_set)
 metrics_results['Accuracy'] = accuracy_score

 gold_results = defaultdict(set)
 test_results = defaultdict(set)
 labels = set()
 for i, (feats, label) in enumerate(test_set):
 labels.add(label)
 gold_results[label].add(i)
 observed = classifier.classify(feats)
 test_results[observed].add(i)

 for label in labels:
 if precision == True:
 precision_score = eval_precision(gold_results[label],
 test_results[label])
 metrics_results['Precision [{0}]'.format(label)] =
precision_score
 if recall == True:
 recall_score = eval_recall(gold_results[label],
 test_results[label])

Chapter 7

[143]

 metrics_results['Recall [{0}]'.format(label)] =
recall_score
 if f_measure == True:
 f_measure_score = eval_f_measure(gold_results[label],
 test_results[label])
 metrics_results['F-measure [{0}]'.format(label)] = f_
measure_score

 if verbose == True:
 for result in sorted(metrics_results):
 print('{0}: {1}'.format(result, metrics_
results[result]))

 return metrics_results

Twitter can be considered as one of the most popular blogging services that is used
to create messages referred to as tweets. These tweets comprise words that are either
related to positive, negative, or neutral sentiments.

For performing sentiment analysis, we can use machine learning classifiers,
statistical classifiers, or automated classifiers, such as the Naive Bayes Classifier,
Maximum Entropy Classifier, Support Vector Machine Classifier, and so on.

These machine learning classifiers or automated classifiers are used to perform
supervised classification, since they require training data for classification.

Let's see the following code in NLTK for feature extraction:

stopWords = []

#If there is occurrence of two or more same character, then replace it
with the character itself.
def replaceTwoOrMore(s):
 pattern = re.compile(r"(.)\1{1,}", re.DOTALL)
 return pattern.sub(r"\1\1", s)
def getStopWordList(stopWordListFileName):
 # This function will read the stopwords from a file and builds a
list.
 stopWords = []
 stopWords.append('AT_USER')
 stopWords.append('URL')

 fp = open(stopWordListFileName, 'r')
 line = fp.readline()
 while line:

Sentiment Analysis – I Am Happy

[144]

 word = line.strip()
 stopWords.append(word)
 line = fp.readline()
 fp.close()
 return stopWords

def getFeatureVector(tweet):
 featureVector = []
 #Tweets are firstly split into words
 words = tweet.split()
 for w in words:
 #replace two or more with two occurrences
 w = replaceTwoOrMore(w)
 #strip punctuation
 w = w.strip('\'"?,.')
 #Words begin with alphabet is checked.
 val = re.search(r"^[a-zA-Z][a-zA-Z0-9]*$", w)
 #If there is a stop word, then it is ignored.
 if(w in stopWords or val is None):
 continue
 else:
 featureVector.append(w.lower())
 return featureVector
#end

#Tweets are read one by one and then processed.
fp = open('data/sampleTweets.txt', 'r')
line = fp.readline()

st = open('data/feature_list/stopwords.txt', 'r')
stopWords = getStopWordList('data/feature_list/stopwords.txt')

while line:
 processedTweet = processTweet(line)
 featureVector = getFeatureVector(processedTweet)
 print featureVector
 line = fp.readline()
#end loop
fp.close()

#Tweets are read one by one and then processed.
inpTweets = csv.reader(open('data/sampleTweets.csv', 'rb'),
delimiter=',', quotechar='|')
tweets = []

Chapter 7

[145]

for row in inpTweets:
 sentiment = row[0]
 tweet = row[1]
 processedTweet = processTweet(tweet)
 featureVector = getFeatureVector(processedTweet, stopWords)
 tweets.append((featureVector, sentiment));

#Features Extraction takes place using following method
def extract_features(tweet):
 tweet_words = set(tweet)
 features = {}
 for word in featureList:
 features['contains(%s)' % word] = (word in tweet_words)
 return features

During the training of a classifier, the input to the machine learning algorithm is a
label and features. Features are obtained from the feature extractor when the input
is given to the feature extractor. During prediction, a label is provided as an output
of a classifier model and the input of the classifier model is the features that are
obtained using the feature extractor. Let's have a look at a diagram explaining the
same process:

TRAINING

Machine
Learning

Algorithms

LabelClassifier
Model

Feature
Extractor

PREDICTION

Input

Feature
Extractor Features

Features

Label

Input

Sentiment Analysis – I Am Happy

[146]

Now, let's see the following code that can be used to perform sentiment analysis
using the Naive Bayes Classifier:

NaiveBClassifier = nltk.NaiveBayesClassifier.train(training_set)
Testing the classifiertestTweet = 'I liked this book on Sentiment
Analysis a lot.'
processedTestTweet = processTweet(testTweet)
print NaiveBClassifier.classify(extract_features(getFeatureVector(proc
essedTestTweet)))
testTweet = 'I am so badly hurt'
processedTestTweet = processTweet(testTweet)
print NBClassifier.classify(extract_features(getFeatureVector(process
edTestTweet)))

Let's see the following code on sentiment analysis using maximum entropy:

MaxEntClassifier = nltk.classify.maxent.MaxentClassifier.
train(training_set, 'GIS', trace=3, \
 encoding=None, labels=None, sparse=True, gaussian_
prior_sigma=0, max_iter = 10)
testTweet = 'I liked the book on sentiment analysis a lot'
processedTestTweet = processTweet(testTweet)
print MaxEntClassifier.classify(extract_features(getFeatureVector(proc
essedTestTweet)))
print MaxEntClassifier.show_most_informative_features(10)

Evaluation of the NER system
Performance metrics or evaluation helps to show the performance of an NER system.
The outcome of an NER tagger may be defined as the response and the interpretation
of human beings as the answer key. So, we will provide
the following definitions:

•	 Correct: If the response is exactly the same as the answer key
•	 Incorrect: If the response is not the same as the answer key
•	 Missing: If the answer key is found tagged, but the response is not tagged
•	 Spurious: If the response is found tagged, but the answer key is not tagged

The performance of an NER-based system can be judged by using the following
parameters:

•	 Precision (P): P=Correct/(Correct+Incorrect+Missing)
•	 Recall (R): R=Correct/(Correct+Incorrect+Spurious)
•	 F-Measure: F-Measure = (2*P*R)/(P+R)

Chapter 7

[147]

Let's see the code for NER using the HMM:

#******* Function to find all tags in corpus **********

def find_tag_set(tra_lines):
global tag_set

tag_set = []

for line in tra_lines:
tok = line.split()
for t in tok:
wd = t.split("/")
if not wd[1] in tag_set:
tag_set.append(wd[1])

return

#******* Function to find frequency of each tag in tagged corpus

defcnt_tag(tr_ln):
global start_li
global li
global tag_set
global c
global line_cnt
global lines

lines = tr_ln

start_li = [] # list of starting tags

find_tag_set(tr_ln)

line_cnt = 0
for line in lines:
tok = line.split()
x = tok[0].split("/")
if not x[1] in start_li:
start_li.append(x[1])
line_cnt = line_cnt + 1

Sentiment Analysis – I Am Happy

[148]

find_freq_tag()

find_freq_srttag()

return

def find_freq_tag():
global tag_cnt
global tag_set
tag_cnt={}
i = 0
for w in tag_set:
cal_freq_tag(tag_set[i])
i = i + 1
tag_cnt.update({w:freq_tg})
return

defcal_freq_tag(tg):
global freq_tg
global lines
freq_tg = 0

for line in lines:
freq_tg = freq_tg + line.count(tg)

return

#******* Function to find frequency of each starting tag in tagged
corpus **********

def find_freq_srttag():
global lst
lst = {} # start probability

i = 0
for w in start_li:
 cc = freq_srt_tag(start_li[i])
prob = cc / line_cnt

lst.update({start_li[i]:prob})
i = i + 1
return

Chapter 7

[149]

def freq_srt_tag(stg):
global lines
freq_srt_tg = 0

for line in lines:
tok = line.split()
ifstg in tok[0]:
freq_srt_tg = freq_srt_tg + 1

return(freq_srt_tg)

import tkinter as tk
import vit
import random
import cal_start_p
import calle_prob
import trans_mat
import time
import trans
import dict5
from tkinter import *
from tkinter import ttk
from tkinter.filedialog import askopenfilename
from tkinter.messagebox import showerror
import languagedetect1
import languagedetect3
e_dict = dict()
t_dict = dict()

def calculate1(*args):
import listbox1
def calculate2(*args):
import listbox2
def calculate3(*args):
import listbox3

def dispdlg():
global file_name
root = tk.Tk()
root.withdraw()
file_name = askopenfilename()
return

Sentiment Analysis – I Am Happy

[150]

def tranhmm():
ttk.Style().configure("TButton", padding=6, relief="flat",background="
Pink",foreground="Red")
ttk.Button(mainframe, text="BROWSE", command=find_train_corpus).
grid(column=7, row=5, sticky=W)

The following code will be used to display or accept the testing
corpus from the user.
def testhmm():
ttk.Button(mainframe, text="Develop a new testing Corpus",
command=calculate3).grid(column=9, row=5, sticky=E)

ttk.Button(mainframe, text="BROWSE", command=find_obs).grid(column=9,
row=7, sticky=E)

#In HMM, We require parameters such as Start Probability, Transition
Probability and Emission Probability. The following code is used to
calculate emission probability matrix

def cal_emit_mat():
global emission_probability
global corpus
global tlines

calle_prob.m_prg(e_dict,corpus,tlines)

emission_probability = e_dict

return

to calculate states

def cal_states():
global states
global tlines

cal_start_p.cnt_tag(tlines)

states = cal_start_p.tag_set

return

Chapter 7

[151]

to take observations

def find_obs():
global observations
global test_lines
global tra
global w4
global co
global tra
global wo1
global wo2
global testl
global wo3
global te
global definitionText
global definitionScroll
global dt2
global ds2
global dt11
global ds11

wo3=[]
woo=[]
wo1=[]
wo2=[]
 co=0
w4=[]
if(flag2!=0):
definitionText11.pack_forget()
definitionScroll11.pack_forget()
dt1.pack_forget()
ds1.pack_forget()
dispdlg()
f = open(file_name,"r+",encoding = 'utf-8')
test_lines = f.readlines()
f.close()
fname="C:/Python32/file_name1"

for x in states:
if not x in start_probability:

Sentiment Analysis – I Am Happy

[152]

start_probability.update({x:0.0})
for line in test_lines:
ob = line.split()
observations = (ob)

fe=open("C:\Python32\output3_file","w+",encoding = 'utf-8')
fe.write("")
fe.close()
ff=open("C:\Python32\output4_file","w+",encoding = 'utf-8')

ff.write("")
ff.close()
ff7=open("C:\Python32\output5_file","w+",encoding = 'utf-8')
ff7.write("")
ff7.close()
ff8=open("C:\Python32\output6_file","w+",encoding = 'utf-8')
ff8.write("")
ff8.close()
ff81=open("C:\Python32\output7_file","w+",encoding = 'utf-8')
ff81.write("")
ff81.close()
dict5.search_obs_train_corpus(file1,fname,tlines,test_
lines,observations, states, start_probability, transition_probability,
emission_probability)

f20 = open("C:\Python32\output5_file","r+",encoding = 'utf-8')
te = f20.readlines()
tee=f20.read()
f = open(fname,"r+",encoding = 'utf-8')
train_llines = f.readlines()

ds11 = Scrollbar(root)
dt11 = Text(root, width=10, height=20,fg='black',bg='pink',yscrollcom
mand=ds11.set)
ds11.config(command=dt11.yview)
dt11.insert("1.0",train_llines)
dt11.insert("1.0","\n")
dt11.insert("1.0","\n")

Chapter 7

[153]

dt11.insert("1.0","******TRAINING SENTENCES******")

 # an example of how to add new text to the text area
dt11.pack(padx=10,pady=150)
ds11.pack(padx=10,pady=150)

ds11.pack(side=LEFT, fill=BOTH)
dt11.pack(side=LEFT, fill=BOTH, expand=True)

ds2 = Scrollbar(root)
dt2 = Text(root, width=10, height=10,fg='black',bg='pink',yscrollcomm
and=ds2.set)
ds2.config(command=dt2.yview)
dt2.insert("1.0",test_lines)
dt2.insert("1.0","\n")
dt2.insert("1.0","\n")
dt2.insert("1.0","*********TESTING SENTENCES*********")

 # an example of how to add new text to the text area
dt2.pack(padx=10,pady=150)
ds2.pack(padx=10,pady=150)

ds2.pack(side=LEFT, fill=BOTH)
dt2.pack(side=LEFT, fill=BOTH, expand=True)

definitionScroll = Scrollbar(root)
definitionText = Text(root, width=10, height=10,fg='black',bg='pink',y
scrollcommand=definitionScroll.set)
definitionScroll.config(command=definitionText.yview)
definitionText.insert("1.0",te)
definitionText.insert("1.0","\n")
definitionText.insert("1.0","\n")
definitionText.insert("1.0","*********OUTPUT*********")

 # an example of how to add new text to the text area
definitionText.pack(padx=10,pady=150)
definitionScroll.pack(padx=10,pady=150)

Sentiment Analysis – I Am Happy

[154]

definitionScroll.pack(side=LEFT, fill=BOTH)
definitionText.pack(side=LEFT, fill=BOTH, expand=True)

l = tk.Label(root, text="NOTE:*****The Entities which are not tagged
in Output are not Named Entities*****" , fg='black', bg='pink')
l.place(x = 500, y = 650, width=500, height=25)

 #ttk.Button(mainframe, text="View Parameters", command=parame).
grid(column=11, row=10, sticky=E)
 #definitionText.place(x= 19, y = 200,height=25)

f20.close()

f14 = open("C:\Python32\output2_file","r+",encoding = 'utf-8')
testl = f14.readlines()
for lines in testl:
toke = lines.split()
for t in toke:
w4.append(t)
f14.close()
f12 = open("C:\Python32\output_file","w+",encoding = 'utf-8')
f12.write("")
f12.close()

ttk.Button(mainframe, text="SAVE OUTPUT", command=save_output).
grid(column=11, row=7, sticky=E)
ttk.Button(mainframe, text="NER EVALUATION", command=evaluate).
grid(column=13, row=7, sticky=E)
ttk.Button(mainframe, text="REFRESH", command=ref).grid(column=15,
row=7, sticky=E)

return
def ref():
root.destroy()
import new1
return

Let's see the following code in Python, which will be used to evaluate the output
produced by NER using HMM:

def evaluate():
global wDict

Chapter 7

[155]

global woe
global woe1
global woe2
woe1=[]
woe=[]
woe2=[]
ws=[]
wDict = {}
i=0
 j=0
 k=0
sp=0
f141 = open("C:\Python32\output1_file","r+",encoding = 'utf-8')
tesl = f141.readlines()
for lines in tesl:
toke = lines.split()
for t in toke:
ws.append(t)
if t in wDict: wDict[t] += 1
else: wDict[t] = 1
for line in tlines:
tok = line.split()

for t in tok:
wd = t.split("/")
if(wd[1]!='OTHER'):
if t in wDict: wDict[t] += 1
else: wDict[t] = 1
print ("words in train corpus ",wDict)
for key in wDict:
i=i+1
print("total words in Dictionary are:",i)
for line in train_lines:
toe=line.split()
for t1 in toe:
if '/' not in t1:
sp=sp+1
woe2.append(t1)
print("Spurious words are")
for w in woe2:
print(w)
print("Total spurious words are:",sp)
for l in te:
to=l.split()

Sentiment Analysis – I Am Happy

[156]

for t1 in to:
if '/' in t1:
 #print(t1)
if t1 in ws or t1 in wDict:
woe.append(t1)
 j=j+1
if t1 not in wDict:
wdd=t1.split("/")
ifwdd[0] not in woe2:
woe1.append(t1)
 k=k+1
print("Word found in Dict are:")
for w in woe:
print(w)
print("Word not found in Dict are:")
for w in woe1:
print(w)
print("Total correctly tagged words are:",j)
print("Total incorrectly tagged words are:",k)
pr=(j)/(j+k)
re=(j)/(j+k+sp)
f141.close()
root=Tk()
root.title("NER EVALUATION")
root.geometry("1000x1000")

ds21 = Scrollbar(root)
dt21 = Text(root, width=10, height=10,fg='black',bg='pink',yscrollcom
mand=ds21.set)
ds21.config(command=dt21.yview)
dt21.insert("1.0",(2*pr*re)/(pr+re))
dt21.insert("1.0","\n")
dt21.insert("1.0","F-MEASURE=")
dt21.insert("1.0","\n")
dt21.insert("1.0","F-MEASURE=(2*PRECISION*RECALL)/(PRECISION+RECALL)")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",re)
dt21.insert("1.0","RECALL=")
dt21.insert("1.0","\n")
dt21.insert("1.0","RECALL= CORRECT/(CORRECT +INCORRECT +SPURIOUS)")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",pr)

Chapter 7

[157]

dt21.insert("1.0","PRECISION=")
dt21.insert("1.0","\n")
dt21.insert("1.0","PRECISION= CORRECT/(CORRECT +INCORRECT +MISSING)")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0","Total No. of Missing words are: 0")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",sp)
dt21.insert("1.0","Total No. of Spurious Words are:")
dt21.insert("1.0","\n")
for w in woe2:
dt21.insert("1.0",w)
dt21.insert("1.0"," ")
dt21.insert("1.0","Total Spurious Words are:")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",k)
dt21.insert("1.0","Total No. of Incorrectly tagged words are:")
dt21.insert("1.0","\n")
for w in woe1:
dt21.insert("1.0",w)
dt21.insert("1.0"," ")
dt21.insert("1.0","Total Incorrectly tagged words are:")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0",j)
dt21.insert("1.0","Total No. of Correctly tagged words are:")
dt21.insert("1.0","\n")
for w in woe:
dt21.insert("1.0",w)
dt21.insert("1.0"," ")
dt21.insert("1.0","Total Correctly tagged words are:")
dt21.insert("1.0","\n")
dt21.insert("1.0","\n")
dt21.insert("1.0","***************PERFORMANCE EVALUATION OF
NERHMM***************")

 # an example of how to add new text to the text area
dt21.pack(padx=5,pady=5)
ds21.pack(padx=5,pady=5)

Sentiment Analysis – I Am Happy

[158]

ds21.pack(side=LEFT, fill=BOTH)
dt21.pack(side=LEFT, fill=BOTH, expand=True)
root.mainloop()
return
def save_output():
 #dispdlg()
f = open("C:\Python32\save","w+",encoding = 'utf-8')
f20 = open("C:\Python32\output5_file","r+",encoding = 'utf-8')
te = f20.readlines()
for t in te:
f.write(t)
f.close()
f20.close()

to calculate start probability matrix

def cal_srt_prob():
global start_probability

start_probability = cal_start_p.lst

return

to print vitarbi parameter if required

def pr_param():
l1 = tk.Label(root, text="HMM Training is going on.....Don't Click any
Button!!",fg='black',bg='pink')
l1.place(x = 300, y = 150,height=25)

print("states")
print(states)
print(" ")
print(" ")
print("start probability")
print(start_probability)
print(" ")
print(" ")
print("transition probability")
print(transition_probability)
print(" ")
print(" ")
print("emission probability")
print(emission_probability)

Chapter 7

[159]

l1 = tk.Label(root, text="
")
l1.place(x = 300, y = 150,height=25)
global flag1
 flag1=0
global flag2
 flag2=0
ttk.Button(mainframe, text="View Parameters", command=parame).
grid(column=7, row=5, sticky=W)
return

def parame():
global flag2
 flag2=flag1+1
global definitionText11
global definitionScroll11
definitionScroll11 = Scrollbar(root)
definitionText11 = Text(root, width=10, height=10,fg='black',bg='pink'
,yscrollcommand=definitionScroll11.set)

 #definitionText.place(x= 19, y = 200,height=25)
definitionScroll11.config(command=definitionText11.yview)

definitionText11.delete("1.0", END) # an example of how to delete
all current text
definitionText11.insert("1.0",emission_probability)
definitionText11.insert("1.0","\n")
definitionText11.insert("1.0","Emission Probability")
definitionText11.insert("1.0","\n")
definitionText11.insert("1.0",transition_probability)
definitionText11.insert("1.0","Transition Probability")
definitionText11.insert("1.0","\n")
definitionText11.insert("1.0",start_probability)
definitionText11.insert("1.0","Start Probability")

 # an example of how to add new text to the text area
definitionText11.pack(padx=10,pady=175)
definitionScroll11.pack(padx=10,pady=175)

definitionScroll11.pack(side=LEFT, fill=BOTH)
definitionText11.pack(side=LEFT, fill=BOTH, expand=True)

return

Sentiment Analysis – I Am Happy

[160]

to calculate transition probability matrix

def cat_trans_prob():
global transition_probability
global corpus
global tlines

trans_mat.main_prg(t_dict,corpus,tlines)

transition_probability = t_dict
return

def find_train_corpus():
global train_lines
global tlines
global c
global corpus
global words1
global w1
global train1
global fname
global file1
global ds1
global dt1
global w21
words1=[]
 c=0
w1=[]
w21=[]
f11 = open("C:\Python32\output1_file","w+",encoding='utf-8')
f11.write("")
f11.close()
fr = open("C:\Python32\output_file","w+",encoding='utf-8')
fr.write("")
fr.close()
fgl=open("C:\Python32\ladetect1","w+",encoding = 'utf-8')
fgl.write("")
fgl.close()

fgl=open("C:\Python32\ladetect","w+",encoding = 'utf-8')
fgl.write("")
fgl.close()
dispdlg()

Chapter 7

[161]

f = open(file_name,"r+",encoding = 'utf-8')
train_lines = f.readlines()

ds1 = Scrollbar(root)
dt1 = Text(root, width=10, height=10,fg='black',bg='pink',yscrollcomm
and=ds1.set)
ds1.config(command=dt1.yview)
dt1.insert("1.0",train_lines)
dt1.insert("1.0","\n")
dt1.insert("1.0","\n")
dt1.insert("1.0","*********TRAINING SENTENCES*********")

 # an example of how to add new text to the text area
dt1.pack(padx=10,pady=175)
ds1.pack(padx=10,pady=175)

ds1.pack(side=LEFT, fill=BOTH)
dt1.pack(side=LEFT, fill=BOTH, expand=True)
fname="C:/Python32/file_name1"
f = open(file_name,"r+",encoding = 'utf-8')
 file1=file_name
p = open(fname,"w+",encoding = 'utf-8')

corpus = f.read()
for line in train_lines:
tok = line.split()
for t in tok:
n=t.split()

le=len(t)
i=0
 j=0
for n1 in n:
while(j<le):

if(n1[j]!='/'):
i=i+1
 j=j+1
else:
 j=j+1
if(i==le):
p.write(t)
p.write("/OTHER ") #Handling Spurious words

Sentiment Analysis – I Am Happy

[162]

else:
p.write(t)
p.write(" ")

p.write("\n")

p.close()
fname="C:/Python32/file_name1"
f00 = open(fname,"r+",encoding = 'utf-8')
tlines = f00.readlines()
for line in tlines:
tok = line.split()
for t in tok:
wd = t.split("/")
if(wd[1]!='OTHER'):
if not wd[0] in words1:
words1.append(wd[0])
w1.append(wd[1])
f00.close()

f157 = open("C:\Python32\input_file","w+",encoding='utf-8')
f157.write("")
f157.close()
f1 = open("C:\Python32\input_file","w+",encoding='utf-8') #input_
file has list of Named Entities of training file
for w in words1:
f1.write(w)
f1.write("\n")
f1.close()
fr=open("C:\Python32\detect","w+",encoding = 'utf-8')
fr.write("")
fr.close()

f.close()
f.close()

cal_states()
cal_emit_mat()
cal_srt_prob()
cat_trans_prob()

Chapter 7

[163]

pr_param()

return

root=Tk()
root.title("NAMED ENTITY RECOGNITION IN NATURAL LANGUAGES USING HIDDEN
MARKOV MODEL")
root.geometry("1000x1000")

mainframe = ttk.Frame(root, padding="20 20 12 12")
mainframe.grid(column=0, row=0, sticky=(N, W, E, S))

b=StringVar()
a=StringVar()

ttk.Style().configure("TButton", padding=6, relief="flat",background="
Pink", foreground="Red")
ttk.Button(mainframe, text="ANNOTATION", command=calculate1).
grid(column=5, row=3, sticky=W)

ttk.Button(mainframe, text="TRAIN HMM", command=tranhmm).
grid(column=7, row=3, sticky=E)

ttk.Button(mainframe, text="TEST HMM", command=testhmm).grid(column=9,
row=3, sticky=E)

ttk.Button(mainframe, text="HELP", command=hmmhelp).grid(column=11,
row=3, sticky=E)

To call viterbi for particular observations find in find_obs

def call_vitar():
global test_lines
global train_lines
global corpus
global observations
global states
global start_probability
global transition_probability
global emission_probability

find_train_corpus()

Sentiment Analysis – I Am Happy

[164]

cal_states()
find_obs()
cal_emit_mat()
cal_srt_prob()
cat_trans_prob()

 # print("Vitarbi Parameters are for selected corpus")
 # pr_param()

 # -----------------To add all states not in start probability ---

for x in states:
if not x in start_probability:
start_probability.update({x:0.0})

for line in test_lines:

ob = line.split()
observations = (ob)
print(" ")
print(" ")
print(line)
print("**************************")
print(vit.viterbi(observations, states, start_probability, transition_
probability, emission_probability),bg='Pink',fg='Red')
return

root.mainloop()

The preceding code in Python shows how NER is performed using the HMM, and
how an NER system is evaluated using performance metrics (Precision, Recall and
F-Measure).

Summary
In this chapter, we have discussed sentiment analysis using NER and machine
learning techniques. We have also discussed the evaluation of an NER-based system..

In the next chapter, we'll discuss information retrieval, text summarization, stop word
removal, question-answering system, and more.

[165]

Information Retrieval –
Accessing Information

Information retrieval is one of the many applications of natural language processing.
Information retrieval may be defined as the process of retrieving information (for
example, the number of times the word Ganga has appeared in the document)
corresponding to a query that has been made by the user.

This chapter will include the following topics:

•	 Introducing information retrieval
•	 Stop word removal
•	 Information retrieval using a vector space model
•	 Vector space scoring and query operator interactions
•	 Developing an IR system using latent semantic indexing
•	 Text summarization
•	 Question-answering system

Introducing information retrieval
Information retrieval may be defined as the process of retrieving the most suitable
information as a response to the query being made by the user. In information
retrieval, the search is performed based on metadata or context-based indexing. One
example of information retrieval is Google Search in which, corresponding to each
user query, a response is provided on the basis of the information retrieval algorithm
being used. An indexing mechanism is used by the information retrieval algorithm.
The indexing mechanism used is known as an inverted index. An IR system builds
an index postlist to perform the information retrieval task.

Information Retrieval – Accessing Information

[166]

Boolean retrieval is an information retrieval task in which a Boolean operation is
applied to the postlist in order to retrieve relevant information.

The accuracy of an information retrieval task is measured in terms of precision
and recall.

Suppose that a given IR system returns X documents when a query is fired. But the
actual or gold set of documents that needs to be returned is Y.

Recall may be defined as the fraction of gold documents that a system finds. It may
be defined as the ratio of true positives to the combination of true positives and false
negatives.

Recall (R) = (X ∩ Y) / Y

Precision may be defined as the fraction of documents that an IR system detects and
are correct.

Precision (P) = (X ∩ Y) / X

F-Measure may be defined as the harmonic mean of precision and recall.

F-Measure = 2 * (X ∩ Y) / (X + Y)

Stop word removal
While performing information retrieval , it is important to detect the stop words in
a document and eliminate them.

Let's see the following code that can be used to provide the collection of stop words
that can be detected in the English text in NLTK:

>>> import nltk
>>> fromnltk.corpus import stopwords
>>> stopwords.words('english')
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',
'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his',
'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself',
'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which',
'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having',
'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if',
'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for',
'with', 'about', 'against', 'between', 'into', 'through', 'during',
'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in',
'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then',
'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any',

Chapter 8

[167]

'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no',
'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's',
't', 'can', 'will', 'just', 'don', 'should', 'now']

NLTK consists of stop word corpus that comprises of 2,400 stop words from 11
different languages.

Let's see the following code in NLTK that can be used to find the fraction of words in
a text that are not stop words:

>>> def not_stopwords(text):
 stopwords = nltk.corpus.stopwords.words('english')
 content = [w for w in text if w.lower() not in stopwords]
 return len(content) / len(text)

>>> not_stopwords(nltk.corpus.reuters.words())
0.7364374824583169

Let's see the following code in NLTK that can be used to remove the stop words
from a given text. Here, the lower() function is used prior to the elimination of
stop words so that the stop words in capital letters, such as A, are first converted
into lower case letters and then eliminated:

import nltk
from collections import Counter
import string
fromnltk.corpus import stopwords

def get_tokens():
 with open('/home/d/TRY/NLTK/STOP.txt') as stopl:
 tokens = nltk.word_tokenize(stopl.read().lower().
translate(None, string.punctuation))
 return tokens

if __name__ == "__main__":

 tokens = get_tokens()
 print("tokens[:20]=%s") %(tokens[:20])

 count1 = Counter(tokens)
 print("before: len(count1) = %s") %(len(count1))

 filtered1 = [w for w in tokens if not w in stopwords.
words('english')]

Information Retrieval – Accessing Information

[168]

 print("filtered1 tokens[:20]=%s") %(filtered1[:20])

 count1 = Counter(filtered1)
 print("after: len(count1) = %s") %(len(count1))

 print("most_common = %s") %(count.most_common(10))

 tagged1 = nltk.pos_tag(filtered1)
 print("tagged1[:20]=%s") %(tagged1[:20])

Information retrieval using a vector space
model
In a vector space model, documents are represented as vectors. One of the methods
of representing documents as vectors is using TF-IDF (Term Frequency-Inverse
Document Frequency).

Term frequency may be defined as the total number of times a given token exists
in a document divided by the total number of tokens. It may also be defined as the
frequency of the occurrence of certain terms in a given document.

The formula for term frequency (TF) is given as follows:

TF(t,d) = 0.5 + (0.5 * f(t,d)) / max {f(w,d) : wϵd}

IDF may be defined as the inverse of document frequency. It is also defined as the
document count that lies in the corpus in which a given term coexists.

IDF can be computed by finding the logarithm of the total number of documents
present in a given corpus divided by the number of documents in which a particular
token exists.

The formula for IDF(t,d) may be stated as follows:

IDF(t,D)= log(N/{dϵD :tϵd})

The TF-IDF score can be obtained by multiplying both scores. This is written
as follows:

TF-IDF(t, d, D) = TF(t,d) * IDF(t,D)

TF-IDF provides the estimate of the frequency of a term as present in the given
document and how much it is being spread across the corpus.

Chapter 8

[169]

In order to compute TF-IDF for a given document, the following steps are required:

•	 Tokenization of documents
•	 Computation of vector space model
•	 Computation of TF-IDF for each document

The process of tokenization involves tokenizing the text into sentences first.
The individual sentences are then tokenized into words. The words, which
are of no significance during information retrieval, also known as stop words,
can then be removed.

Let's see the following code that can be used for performing tokenization on each
document in a corpus:

authen = OAuthHandler(CLIENT_ID, CLIENT_SECRET, CALLBACK)
authen.set_access_token(ACCESS_TOKEN)
ap = API(authen)

venue = ap.venues(id='4bd47eeb5631c9b69672a230')
stopwords = nltk.corpus.stopwords.words('english')
tokenizer = RegexpTokenizer("[\w']+", flags=re.UNICODE)

def freq(word, tokens):
return tokens.count(word)

#Compute the frequency for each term.
vocabulary = []
docs = {}
all_tips = []
for tip in (venue.tips()):
tokens = tokenizer.tokenize(tip.text)

bitokens = bigrams(tokens)
tritokens = trigrams(tokens)
tokens = [token.lower() for token in tokens if len(token) > 2]
tokens = [token for token in tokens if token not in stopwords]

bitokens = [' '.join(token).lower() for token in bitokens]
bitokens = [token for token in bitokens if token not in stopwords]

tritokens = [' '.join(token).lower() for token in tritokens]

Information Retrieval – Accessing Information

[170]

tritokens = [token for token in tritokens if token not in stopwords]

ftokens = []
ftokens.extend(tokens)
ftokens.extend(bitokens)
ftokens.extend(tritokens)
docs[tip.text] = {'freq': {}}

for token in ftokens:
docs[tip.text]['freq'][token] = freq(token, ftokens)

print docs

The next step performed after tokenization is the normalization of the tf vector.
Let's see the following code that performs the normalization of the tf vector:

authen = OAuthHandler(CLIENT_ID, CLIENT_SECRET, CALLBACK)
authen.set_access_token(ACCESS_TOKEN)
ap = API(auth)

venue = ap.venues(id='4bd47eeb5631c9b69672a230')
stopwords = nltk.corpus.stopwords.words('english')
tokenizer = RegexpTokenizer("[\w']+", flags=re.UNICODE)

def freq(word, tokens):
return tokens.count(word)

def word_count(tokens):
return len(tokens)

def tf(word, tokens):
return (freq(word, tokens) / float(word_count(tokens)))

#Compute the frequency for each term.
vocabulary = []
docs = {}
all_tips = []
for tip in (venue.tips()):
tokens = tokenizer.tokenize(tip.text)

bitokens = bigrams(tokens)

Chapter 8

[171]

tritokens = trigrams(tokens)
tokens = [token.lower() for token in tokens if len(token) > 2]
tokens = [token for token in tokens if token not in stopwords]

bitokens = [' '.join(token).lower() for token in bitokens]
bitokens = [token for token in bitokens if token not in stopwords]

tritokens = [' '.join(token).lower() for token in tritokens]
tritokens = [token for token in tritokens if token not in stopwords]

ftokens = []
ftokens.extend(tokens)
ftokens.extend(bitokens)
ftokens.extend(tritokens)
docs[tip.text] = {'freq': {}, 'tf': {}}

for token in ftokens:
 #The Computed Frequency
docs[tip.text]['freq'][token] = freq(token, ftokens)
 # Normalized Frequency
docs[tip.text]['tf'][token] = tf(token, ftokens)

print docs

Let's see the following code for computing the TF-IDF:

authen = OAuthHandler(CLIENT_ID, CLIENT_SECRET, CALLBACK)
authen.set_access_token(ACCESS_TOKEN)
ap = API(authen)

venue = ap.venues(id='4bd47eeb5631c9b69672a230')
stopwords = nltk.corpus.stopwords.words('english')
tokenizer = RegexpTokenizer("[\w']+", flags=re.UNICODE)

def freq(word, doc):
return doc.count(word)

def word_count(doc):
return len(doc)

def tf(word, doc):

Information Retrieval – Accessing Information

[172]

return (freq(word, doc) / float(word_count(doc)))

def num_docs_containing(word, list_of_docs):
count = 0
for document in list_of_docs:
if freq(word, document) > 0:
count += 1
return 1 + count

def idf(word, list_of_docs):
return math.log(len(list_of_docs) /
float(num_docs_containing(word, list_of_docs)))

#Compute the frequency for each term.
vocabulary = []
docs = {}
all_tips = []
for tip in (venue.tips()):
tokens = tokenizer.tokenize(tip.text)

bitokens = bigrams(tokens)
tritokens = trigrams(tokens)
tokens = [token.lower() for token in tokens if len(token) > 2]
tokens = [token for token in tokens if token not in stopwords]

bitokens = [' '.join(token).lower() for token in bitokens]
bitokens = [token for token in bitokens if token not in stopwords]

tritokens = [' '.join(token).lower() for token in tritokens]
tritokens = [token for token in tritokens if token not in stopwords]

ftokens = []
ftokens.extend(tokens)
ftokens.extend(bitokens)
ftokens.extend(tritokens)
docs[tip.text] = {'freq': {}, 'tf': {}, 'idf': {}}

for token in ftokens:
 #The frequency computed for each tip
docs[tip.text]['freq'][token] = freq(token, ftokens)
 #The term-frequency (Normalized Frequency)

Chapter 8

[173]

docs[tip.text]['tf'][token] = tf(token, ftokens)

vocabulary.append(ftokens)

for doc in docs:
for token in docs[doc]['tf']:
 #The Inverse-Document-Frequency
docs[doc]['idf'][token] = idf(token, vocabulary)

print docs

TF-IDF is computed by finding the product of TF and IDF. The large value of TF-IDF
is computed when there is an occurrence of high term frequency and low document
frequency.

Let's see the following code for computing the TF-IDF for each term in a document:

authen = OAuthHandler(CLIENT_ID, CLIENT_SECRET, CALLBACK)
authen.set_access_token(ACCESS_TOKEN)
ap = API(authen)

venue = ap.venues(id='4bd47eeb5631c9b69672a230')
stopwords = nltk.corpus.stopwords.words('english')
tokenizer = RegexpTokenizer("[\w']+", flags=re.UNICODE)

def freq(word, doc):
return doc.count(word)

def word_count(doc):
return len(doc)

def tf(word, doc):
return (freq(word, doc) / float(word_count(doc)))

def num_docs_containing(word, list_of_docs):
count = 0
for document in list_of_docs:
if freq(word, document) > 0:
count += 1

Information Retrieval – Accessing Information

[174]

return 1 + count

def idf(word, list_of_docs):
return math.log(len(list_of_docs) /
float(num_docs_containing(word, list_of_docs)))

def tf_idf(word, doc, list_of_docs):
return (tf(word, doc) * idf(word, list_of_docs))

#Compute the frequency for each term.
vocabulary = []
docs = {}
all_tips = []
for tip in (venue.tips()):
tokens = tokenizer.tokenize(tip.text)

bitokens = bigrams(tokens)
tritokens = trigrams(tokens)
tokens = [token.lower() for token in tokens if len(token) > 2]
tokens = [token for token in tokens if token not in stopwords]

bitokens = [' '.join(token).lower() for token in bitokens]
bitokens = [token for token in bitokens if token not in stopwords]

tritokens = [' '.join(token).lower() for token in tritokens]
tritokens = [token for token in tritokens if token not in stopwords]

ftokens = []
ftokens.extend(tokens)
ftokens.extend(bitokens)
ftokens.extend(tritokens)
docs[tip.text] = {'freq': {}, 'tf': {}, 'idf': {},
 'tf-idf': {}, 'tokens': []}

for token in ftokens:
 #The frequency computed for each tip
docs[tip.text]['freq'][token] = freq(token, ftokens)
 #The term-frequency (Normalized Frequency)
docs[tip.text]['tf'][token] = tf(token, ftokens)
docs[tip.text]['tokens'] = ftokens

Chapter 8

[175]

vocabulary.append(ftokens)

for doc in docs:
for token in docs[doc]['tf']:
 #The Inverse-Document-Frequency
docs[doc]['idf'][token] = idf(token, vocabulary)
 #The tf-idf
docs[doc]['tf-idf'][token] = tf_idf(token, docs[doc]['tokens'],
vocabulary)

#Now let's find out the most relevant words by tf-idf.
words = {}
for doc in docs:
for token in docs[doc]['tf-idf']:
if token not in words:
words[token] = docs[doc]['tf-idf'][token]
else:
if docs[doc]['tf-idf'][token] > words[token]:
words[token] = docs[doc]['tf-idf'][token]

for item in sorted(words.items(), key=lambda x: x[1], reverse=True):
print "%f <= %s" % (item[1], item[0])

Let's see the following code for mapping keywords to the vector's dimension:

>>> def getVectkeyIndex(self,documentList):
 vocabString=" ".join(documentList)
 vocabList=self.parser.tokenise(vocabString)
 vocabList=self.parser.removeStopWords(vocabList)
 uniquevocabList=util.removeDuplicates(vocabList)
 vectorIndex={}
 offset=0

for word in uniquevocabList:
 vectorIndex[word]=offset
 offset+=1
return vectorIndex

Let's see the following code for mapping document strings to vectors:

>>> def makeVect(self,wordString):
 vector=[0]*len(self.vectorkeywordIndex)
 wordList=self.parser.tokenise(wordString)
 wordList=self.parser.removeStopWords(wordList)
 for word in wordList:
 vector[self.vectorkeywordIndex[word]]+=1;
 return vector

Information Retrieval – Accessing Information

[176]

Vector space scoring and query operator
interaction
Vector space model is used for the representation of meanings in the form of vectors
of lexical items. A vector space model can easily be modeled using linear algebra.
So the similarity between vectors can be computed easily.

Vector size is used to represent the size of the vector being used that represents
a particular context. The window-based method and dependency-based method
are used for the modeling context. In the window-based method, the context is
determined using the occurrence of words within the window of a particular size. In
a dependency-based method, the context is determined when there is an occurrence
of a word in a particular syntactic relation with the corresponding target word.
Features or contextual words are stemmed and lemmatized. Similarity metrics can be
used to compute the similarity between the two vectors.

Let's see the following list of similarity metrics:

Euclidean

Cityblock

Chebyshev

Cosine

Correlation

Dice

Jaccard

Jaccard2

Lin

Tanimoto

Jensen-Shannon Div

Measure Definition

-skewα

Chapter 8

[177]

Euclidean

Cityblock

Chebyshev

Cosine

Correlation

Dice

Jaccard

Jaccard2

Lin

Tanimoto

Jensen-Shannon Div

Measure Definition

-skewα

Weighting scheme is another term that is very important as it provides information
that the given context is more related to the target word.

Let's see the list of weighting schemes that can be considered:

Scheme Definition

None

TF-IDF

TF-ICF

Okapi BM25

ATC

LTU

MI

PosMI

T-Test

χ
2

Lin98a

Lin98b

Gref94

0.5
log

0.5
0.5 1.5

ij j

ij
j ij

ij
j

f N n
w

f f
f

f

j

� �

�

�
� � �

Information Retrieval – Accessing Information

[178]

Scheme Definition

None

TF-IDF

TF-ICF

Okapi BM25

ATC

LTU

MI

PosMI

T-Test

χ
2

Lin98a

Lin98b

Gref94

0.5
log

0.5
0.5 1.5

ij j

ij
j ij

ij
j

f N n
w

f f
f

f

j

� �

�

�
� � �

Developing an IR system using latent
semantic indexing
Latent semantic indexing can be used for performing categorization with the help of
minimum training.

Latent semantic indexing is a technique that can be used for processing text. It can
perform the following:

•	 Automatic categorization of text
•	 Conceptual information retrieval
•	 Cross-lingual information retrieval

Latent semantic method may be defined as an information retrieval and indexing
method. It makes use of a mathematical technique known as Singular Value
Decomposition (SVD). SVD is used for the detection of patterns having a certain
relation with the concepts contained in a given unstructured text.

Some of the applications of latent semantic indexing include the following:

•	 Information discovery
•	 Automated document classification text summarization[20]

(eDiscovery, Publishing)
•	 Relationship discovery
•	 Automatic generation of the link charts of individuals and organizations

Chapter 8

[179]

•	 Matching technical papers and grants with reviewers
•	 Online customer support
•	 Determining document authorship
•	 Automatic keyword annotation of images
•	 Understanding software source code
•	 Filtering spam
•	 Information visualization
•	 Essay scoring
•	 Literature-based discovery

Text summarization
Text summarization is the process of generating summaries from a given long text.
Based on the Luhn work, The Automatic Creation of Literature Abstracts (1958), a naïve
summarization approach known as NaiveSumm is developed. It makes use of a
word's frequencies for the computation and extraction of sentences that consist of the
most frequent words. Using this approach, text summarization can be performed by
extracting a few specific sentences.

Let's see the following code in NLTK that can be used for performing text
summarization:

from nltk.tokenize import sent_tokenize,word_tokenize
from nltk.corpus import stopwords
from collections import defaultdict
from string import punctuation
from heapq import nlargest

class Summarize_Frequency:
 def __init__(self, cut_min=0.2, cut_max=0.8):
 """
 Initilize the text summarizer.
 Words that have a frequency term lower than cut_min
 or higer than cut_max will be ignored.
 """
 self._cut_min = cut_min
 self._cut_max = cut_max
 self._stopwords = set(stopwords.words('english') +
list(punctuation))

 def _compute_frequencies(self, word_sent):

Information Retrieval – Accessing Information

[180]

 """
 Compute the frequency of each of word.
 Input:
 word_sent, a list of sentences already tokenized.
 Output:
 freq, a dictionary where freq[w] is the frequency of w.
 """
 freq = defaultdict(int)
 for s in word_sent:
 for word in s:
 if word not in self._stopwords:
 freq[word] += 1
 # frequencies normalization and fitering
 m = float(max(freq.values()))
 for w in freq.keys():
 freq[w] = freq[w]/m
 if freq[w] >= self._cut_max or freq[w] <= self._cut_min:
 del freq[w]
 return freq

 def summarize(self, text, n):
 """
list of (n) sentences are returned.
summary of text is returned.
 """
 sents = sent_tokenize(text)
 assert n <= len(sents)
 word_sent = [word_tokenize(s.lower()) for s in sents]
 self._freq = self._compute_frequencies(word_sent)
 ranking = defaultdict(int)
 for i,sent in enumerate(word_sent):
 for w in sent:
 if w in self._freq:
 ranking[i] += self._freq[w]
 sents_idx = self._rank(ranking, n)
 return [sents[j] for j in sents_idx]

 def _rank(self, ranking, n):
 """ return the first n sentences with highest ranking """
 return nlargest(n, ranking, key=ranking.get)

The preceding code computes the term frequency for each word and then the most
frequent words, such as determiners, may be eliminated as they are not of much use
while performing information retrieval tasks.

Chapter 8

[181]

Question-answering system
Question-answering systems are referred to as intelligent systems that can be used to
provide responses for the questions being asked by the user based on certain facts or
rules stored in the knowledge base. So the accuracy of a question-answering system
to provide a correct response depends on the rules or facts stored in the knowledge
base.

One of the many issues involved in a question-answering system is how the
responses and questions would be represented in the system. Responses may be
retrieved and then represented using text summarization or parsing. Another
issue involved in the question-answering system is how the questions and the
corresponding answers are represented in a knowledge base.

To build a question-answering system, various approaches, such as the named entity
recognition, information retrieval, information extraction, and so on, can be applied.

A question-answering system involves three phases:

•	 Extraction of facts
•	 Understanding of questions
•	 Generation of answers

Extraction of facts is performed in order to understand domain-specific data and
generate a response for a given query.

Extraction of facts can be performed in two ways using: extraction of entity and
extraction of relation. The process of extraction of entity or extraction of proper
nouns is referred to as NER. The process of extraction of relation is based on the
extraction of semantic information from the text.

Understanding of questions involves the generation of a parse tree from a given text.

The generation of answers involves obtaining the most likely response for a given
query that can be understood by the user.

Let's see the following code in NLTK that can be used to accept a query from a
user user. This query can be processed by removing stop words from it so that
information retrieval can be performed post processing:

import nltk
from nltk import *
import string
print "Enter your question"
ques=raw input()

Information Retrieval – Accessing Information

[182]

ques=ques.lower()
stopwords=nltk.corpus.stopwords.words('english')
cont=nltk.word_tokenize(question)
analysis_keywords=list(set(cont) -set(stopwords))

Summary
In this chapter, we have discussed information retrieval. We have mainly learned
about stop words removal. Stop words are eliminated so that information retrieval and
text summarization tasks become faster. We have also discussed the implementation of
text summarization, question-answering systems, and vector space models.

In the next chapter, we'll study the concepts of discourse analysis and anaphora
resolution.

[183]

Discourse Analysis –
Knowing Is Believing

Discourse analysis is another one of the applications of Natural Language
Processing. Discourse analysis may be defined as the process of determining
contextual information that is useful for performing other tasks, such as anaphora
resolution (AR) (we will cover this section later in this chapter), NER, and so on.

This chapter will include the following topics:

•	 Introducing discourse analysis
•	 Discourse analysis using Centering Theory
•	 Anaphora resolution

Introducing discourse analysis
The word discourse in linguistic terms means language in use. Discourse analysis may
be defined as the process of performing text or language analysis, which involves text
interpretation and knowing the social interactions. Discourse analysis may involve
dealing with morphemes, n-grams, tenses, verbal aspects, page layouts, and so on.
Discourse may be defined as the sequential set of sentences.

In most cases, we can interpret the meaning of the sentence on the basis of the
preceding sentences.

Consider a discourse John went to the club on Saturday. He met Sam." Here, He refers
to John.

Discourse Analysis – Knowing Is Believing

[184]

Discourse Representation Theory (DRT) has been developed to provide a means for
performing AR. A Discourse Representation Structure (DRS) has been developed
that provides the meaning of discourse with the help of discourse referents and
conditions. Discourse referents refer to variables used in first-order logic and things
under consideration in a discourse. A discourse representation structure's conditions
refer to the atomic formulas used in first-order predicate logic.

First Order Predicate Logic (FOPL) was developed to extend the idea of
propositional logic. FOPL involves the use of functions, arguments, and quantifiers.
Two types of quantifiers are used to represent the general sentences, namely,
universal quantifiers and existential quantifiers. In FOPL, connectives, constants,
and variables are also used. For instance, Robin is a bird can be represented in
FOPL as bird (robin).

Let's see an example of the discourse representation structure:

John(x)

Went(x)

X

X, Y

John(x)

Went(x)

U=X

Sam(Y)

Meet(U,Y)

Chapter 9

[185]

The preceding diagram is a representation of the following sentences:

1.	 John went to a club
2.	 John went to a club. He met Sam.

Here, the discourse consists of two sentences. Discourse Structure Representation
may represent the entire text. For computationally processing DRS, it needs to be
converted into a linear format.

The NLTK module that can be used to provide first order predicate logic
implementation is nltk.sem.logic. Its UML diagram is shown here:

AbstractVariableExpression
variable

simplify()
free(indvar_only)
visit(function,combinator,default)
replace(variable, expression, replace_bound)

VariableBinderExpression
variable
term

free(indvar_only)
visit(function,combinator,default)
replace(variable, expression, replace_bound)
variables()
alpha_convert (newvar)

ApplicationExpression
function
argument

simplify()
free(indvar_only)
visit(function,combinator,default)

BinaryExpression
first
second

visit(function,combinator,default)

NegatedExpression

visit(function,combinator,default)

term

IndividualVariableExpression

EventVariableExpression

FunctionVariableExpression

free(indvar_only)

ConstantExpression

free(indvar_only)

QuantifiedExpression

ExistsExpression

AllExpression

LambdaExpression

BooleanExpression

AndExpression

OrExpression

ImpExpression

IffExpression

EqualityExpression

substitute_bindings(bindings)
simplify()
free(indvar_only)
visit(function,combinator,default)
replace(variable, expression, replace_bound)
variables()
normalize()

Expression

SubstituteBindingsI

substitute_bindings(bindings)
variables()

Discourse Analysis – Knowing Is Believing

[186]

The nltk.sem.logic module is used to define the expressions of first order
predicate logic. Its UML diagram is comprised of various classes that are required
for the representation of objects in first order predicate logic as well as their methods.
The methods that are included are as follows:

•	 substitute_bindings(bindings): Here, binding represents variable-to-
expression mapping. It replaces variables present in the expression with a
specific value.

•	 Variables(): This comprises a set of all the variables that need to be
replaced. It consists of constants as well as free variables.

•	 replace(variable, expression, replace_bound): This is used for
substituting the expression for a variable instance; replace_bound is used to
specify whether we need to replace bound variables or not.

•	 Normalize(): This is used to rename the autogenerated unique variables.
•	 Visit(self,function,combinatory,default): This is used to visit

subexpression calling functions; results are passed to the combinator that
begins with a default value. Results of the combination are returned.

•	 free(indvar_only): This is used to return the set of all the free variables of
the object. Individual variables are returned if indvar_only is set to True.

•	 Simplify(): This is used to simplify the expression that represents an object.

The NLTK module that provides a base for the discourse representation theory
is nltk.sem.drt. It is built on top of nltk.sem.logic. Its UML class diagram
comprises classes that are inherited from the nltk.sem.logic module. The
following are the methods described in this module:

•	 The get_refs(recursive): This method obtains the referents for the
current discourse.

•	 The fol(): This method is used for the conversion of DRS into first order
predicate logic.

•	 The draw(): This method is used for drawing DRS with the help of the
Tkinter graphics library.

Chapter 9

[187]

Let's see the UML class diagram of the nltk.sem.drt module:

AbstractDrs

get_refs(recursive)
draw()

DrtEqualityExpression
get_refs(recursive)
fol()

DrtAbstractVariableExpression
get_refs(recursive)
fol()

DrtApplicationExpression
get_refs(recursive)
fol()

DrtLambdaExpression
alpha_convert(newvar)
fol()

DrtBooleanExpression
get_refs(recursive)

DrtNegatedExpression
get_refs(recursive)
fol()

DRS
get_refs(recursive)
fol()
simplify
free(indvar_only)
visit(function, combinator, default)
replace (variable, expression, replace_bound)
variables()

ConcatenationDRS
get_refs(recursive)
fol()
simplify
replace (variable, expression,
replace_bound)

DrtIffExpression
fol()

DrtImpExpression
fol()

DrtOrExpression
fol()

DrtConstantExpression

DrtFunctionVariableExpression

DrtEventVariableExpression

DrtIndividualVariableExpression

Discourse Analysis – Knowing Is Believing

[188]

The NLTK module that provides access to WordNet 3.0 is
nltk.corpus.reader.wordnet.

Linear format comprises discourse referents and DRS conditions, for example:

([x], [John(x), Went(x)])

Let's see the following code in NLTK, which can be used for the implementation
of DRS:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr1 = expr_read('([x], [John(x), Went(x)])')
>>> print(expr1)
([x],[John(x), Went(x)])
>>> expr1.draw()
>>> print(expr1.fol())
exists x.(John(x) & Went(x))

The preceding code of NLTK will draw the following image:

Here, the expression is converted into FOPL using the fol() method.

Let's see the following code in NLTK for the other expression:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr2 = expr_read('([x,y], [John(x), Went(x),Sam(y),Meet(x,y)])')
>>> print(expr2)
([x,y],[John(x), Went(x), Sam(y), Meet(x,y)])
>>> expr2.draw()
>>> print(expr2.fol())
exists x y.(John(x) & Went(x) & Sam(y) & Meet(x,y))

Chapter 9

[189]

The fol() function is used to obtain the first order predicate logic equivalent of the
expression. The preceding code displays the following image:

We can perform the concatenation of two DRS using the DRS concatenation
operator (+). Let's see the following code in NLTK that can be used to perform
the concatenation of two DRS:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr3 = expr_read('([x], [John(x), eats(x)])+
([y],[Sam(y),eats(y)])')
>>> print(expr3)
(([x],[John(x), eats(x)]) + ([y],[Sam(y), eats(y)]))
>>> print(expr3.simplify())
([x,y],[John(x), eats(x), Sam(y), eats(y)])
>>> expr3.draw()

The preceding code draws the following image:

Here, simplify() is used to simplify the expression.

Discourse Analysis – Knowing Is Believing

[190]

Let's see the following code in NLTK, which can be used to embed one DRS
into another:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr4 = expr_read('([],[(([x],[student(x)])-
>([y],[book(y),read(x,y)]))])')
>>> print(expr4.fol())
all x.(student(x) -> exists y.(book(y) & read(x,y)))

Let's see another example that can be used to combine two sentences. Here, PRO has
been used and resolve_anaphora() is used to perform AR:

>>> import nltk
>>> expr_read = nltk.sem.DrtExpression.from string
>>> expr5 = expr_read('([x,y],[ram(x),food(y),eats(x,y)])')
>>> expr6 = expr_read('([u,z],[PRO(u),coffee(z),drinks(u,z)])')
>>> expr7=expr5+expr6
>>> print(expr7.simplify())
([u,x,y,z],[ram(x), food(y), eats(x,y), PRO(u), coffee(z),
drinks(u,z)])
>>> print(expr7.simplify().resolve_anaphora())
([u,x,y,z],[ram(x), food(y), eats(x,y), (u = [x,y,z]), coffee(z),
drinks(u,z)])

Discourse analysis using Centering Theory
Discourse analysis using Centering Theory is the first step toward corpus annotation.
It also involves the task of AR. In Centering Theory, we perform the task of
segmenting discourse into various units for analysis.

Centering Theory involves the following:

•	 Interaction between purposes or intentions of discourse participants and
discourse

•	 Attention of participants
•	 Discourse structure

Centering is related to participants attention and how the local as well as global
structures affect expressions and the coherence of discourse.

Chapter 9

[191]

Anaphora resolution
AR may be defined as the process by which a pronoun or a noun phrase used in
the sentence is resolved and refers to a specific entity on the basis of discourse
knowledge.

For example:

John helped Sara. He was kind.

Here, He refers to John.

AR is of three types, namely:

•	 Pronominal: Here, the referent is referred to by a pronoun. For example, Sam
found the love of his life. Here, 'his' refers to 'Sam'.

•	 Definite noun phrase: Here, the antecedent may be referred to by the phrase
of the form, <the><noun phrase>. For example, The relationship could
not last long. Here, The relationship refers to the love in the previous
sentence.

•	 Quantifier/ordinal: The quantifier, such as one, and the ordinal, such as first,
are also examples of AR. For example, He began a new one.
Here, one refers to the relationship.

In cataphora, the referent precedes the antecedent. For example, After his class,
Sam will go home. Here, his refers to Sam.

For integrating some extensions in a NLTK architecture, a new module is developed
on top of the existing modules, nltk.sem.logic and nltk.sem.drt. The new
module acts like a replacement for the nltk.sem.drt module. There is a replacement
of all the classes with the enhanced classes.

A method called resolve() can be called indirectly and directly from a class called
AbstractDRS(). It then provides a list consisting of resolved copies of a particular
object. An object that needs to be resolved must override the readings() method.
The resolve() method is used to generate readings using the traverse() function.
The traverse() function is used to perform sorting on the list of operations.
A priority order list includes the following:

•	 Binding operations
•	 Local accommodation operations
•	 Intermediate accommodation operations
•	 Global accommodation operations

Discourse Analysis – Knowing Is Believing

[192]

Let's see the flow diagram of the traverse() function:

sort
operations

by type
Start

loop
operations

store the
reading

create
reading

get
operation
list for the
reading

do
inference
check?

is
operation

list
empty?

run
inference

check

run
traverse()

on the
operation

list

is
admissible?

is
operation

a
binding?

store the
readingreturn false

fetch operation
end

no

yes

yes

no

yes

no

true

false

no

return true

yes

Chapter 9

[193]

After the priority order of operations is generated, the following takes place:

•	 Readings are generated from the operation with the help of the deepcopy()
method. The current operation is taken as an argument.

•	 When the readings() method runs, a list of operations are performed.
•	 Till the list of operations is not empty, run is performed on those operations.
•	 If there are no operations left to be performed, admissibility check will be run

on the final reading; if the check is successful, it will be stored.

In AbstractDRS(), the resolve() method is defined. It is defined as follows:

def resolve(self, verbose=False)

The PresuppositionDRS class includes the following methods:

•	 find_bindings(drs_list, collect_event_data): Bindings are found
from the list of DRS instances using the is_possible_binding method.
Collection of participation information is done if collect_event_data is set
to True.

•	 is_possible_binding(cond): This finds out whether the condition is a
binding candidate and makes sure that it is an unary predicate with the
features that match the trigger conditions.

•	 is_presupposition.cond(cond): This is used to identify a trigger condition
among all the conditions.

•	 presupposition_readings(trail): This is like readings in the subclasses
of PresuppositionDRS.

Discourse Analysis – Knowing Is Believing

[194]

Let's see the classes that are inherited from AbstractDRS:

AbstractDrs

reslove(verbose:bool)
readings(trail:list)
deepcopy(operations:list)

DRS

readings(trail:list)
deepcopy(operations:list)

DrtAbstractVariableExpression

readings(trail:list)
deepcopy(operations:list)

DrtNegatedExpression

readings(trail:list)
deepcopy(operations:list)

DrtLambdaExpression

readings(trail:list)
deepcopy(operations:list)

DrtEqualityExpression

readings(trail:list)
deepcopy(operations:list)

DrtApplicationExpression

readings(trail:list)
deepcopy(operations:list)

DrtBooleanExpression

readings(trail:list)
deepcopy(operations:list)

Chapter 9

[195]

Let's see the classes that are inherited in DRTAbstractVariableExpression:

DrtAbstractVariableExpression

readings(trail:list)
deepcopy(operations:list)

DrtFunctionVariableExpression

DrtIndividualVariableExpression

DrtEventVariableExpression

DrtStateVariableExpression

DrtTimeVariableExpression

DrtUtterVariableExpression

DrtConstantExpression

DrtFeatureExpression

DrtFeatureConstantExpression
features:list
deepcopy(operations:list)

DrtProperNameExpression

Discourse Analysis – Knowing Is Believing

[196]

Let's see the classes inherited from DrtBooleanExpression:

DrtBooleanExpression

readings(trail:list)
deepcopy(operations:list)

DrtOrExpression

DrtImpExpression

readings(trail:list)

DrtIffExpression

ConcatenationDRS

Let's see the classes inherited from DrtApplicationExpression:

DrtApplicationExpression

readings(trail:list)
deepcopy(operations:list)

DrtEventualityApplicationExpression

DrtFindEventualityExpression

readings(trail:list)

DrtFindUtterTimeExpression

DrtTimeApplicationExpression

DrtLocationTimeApplicationExpression

readings(trail:list)

Chapter 9

[197]

Let's see the classes inherited from DRS:

DRS

readings(trail:list)
deepcopy(operations:list)

NewInfoDRS

PresuppositionDRS

filter_drs(expr_list:list)
is_possible_binding(cond)
find_bindings(drs_list:list, collect_event_data:bool)
is_presupposition_cond(cond)
readings(trail:list)

PronounDRS

is_presupposition_cond(cond)
presupposition_readings(trail:list)

ProperNameDRS

is_presupposition_cond(cond)
presupposition_readings(trail:list)

DefiniteDescriptionDRS

is_presupposition_cond(cond)
presupposition_readings(trail:list)

Discourse Analysis – Knowing Is Believing

[198]

Summary
In this chapter, we have discussed discourse analysis, discourse analysis using
Centering Theory, and anaphora resolution. We have discussed the discourse
representation structure that is built using first order predicate logic. We have also
discussed how NLTK can be used to implement first order predicate logic using
UML diagrams.

In the next chapter, we will discuss the evaluation of NLP Tools. We will also discuss
various metrics for error identification, lexical matching, syntactic matching, and
shallow semantic matching.

[199]

Evaluation of NLP Systems –
Analyzing Performance

The evaluation of NLP systems is performed so that we can analyze whether a
given NLP system produces the desired result or not and the desired performance
is achieved or not. Evaluation may be performed automatically using predefined
metrics, or it may be performed manually by comparing human output with the
output obtained by an NLP system.

This chapter will include the following topics:

•	 The need for the evaluation of NLP systems
•	 Evaluation of NLP tools (POS Taggers, Stemmers, and Morphological

Analyzers)
•	 Parser evaluation using gold data
•	 The evaluation of an IR system
•	 Metrics for error identification
•	 Metrics based on lexical matching
•	 Metrics based on syntactic matching
•	 Metrics using shallow semantic matching

The need for evaluation of NLP systems
Evaluation of NLP systems is done so as to analyze whether the output given by the
NLP systems is similar to the one expected from the human output. If errors in the
module are identified at an early stage, then the cost of correcting the NLP system is
reduced to quite an extent.

Evaluation of NLP Systems – Analyzing Performance

[200]

Suppose we want to evaluate a tagger. We can do this by comparing the output
of the tagger with the human output. Many a times, we do not have access to an
impartial or expert human. So we can construct a gold standard test data to perform
the evaluation of our tagger. This is a corpus, which has been tagged manually and
is considered as a standard corpus that can be used for the evaluation of our tagger.
The tagger is considered as correct if the output in the form of a tag given by the
tagger is the same as that provided by the gold standard test data.

Creation of a gold standard annotated corpus is a major task and is also very
expensive. It is performed by manually tagging a given test data. The tags chosen
in this manner are taken as standard tags that can be used to represent a wide range
of information.

Evaluation of NLP tools (POS taggers,
stemmers, and morphological analyzers)
We can perform the evaluation of NLP systems, such as POS taggers, stemmers,
morphological analyzers, NER-based systems, machine translators, and so on.
Consider the following code in NLTK that can be used to train a unigram tagger.
Sentence tagging is performed and then an evaluation is done to check whether
the output given by the tagger is the same as the gold standard test data:

>>> import nltk
>>>from nltk.corpus import brown
>>> sentences=brown.tagged_sents(categories='news')
>>> sent=brown.sents(categories='news')
>>> unigram_sent=nltk.UnigramTagger(sentences)
>>> unigram_sent.tag(sent[2008])
[('Others', 'NNS'), (',', ','), ('which', 'WDT'), ('are', 'BER'),
('reached', 'VBN'), ('by', 'IN'), ('walking', 'VBG'), ('up', 'RP'),
('a', 'AT'), ('single', 'AP'), ('flight', 'NN'), ('of', 'IN'),
('stairs', 'NNS'), (',', ','), ('have', 'HV'), ('balconies', 'NNS'),
('.', '.')]
>>> unigram_sent.evaluate(sentences)
0.9349006503968017

Consider the following code in NLTK in which the training and testing of Unigram
tagger is performed on separate data. A given data is split into 80% training data and
20% testing data:

>>> import nltk
>>> from nltk.corpus import brown
>>> sentences=brown.tagged_sents(categories='news')
>>> sz=int(len(sentences)*0.8)

Chapter 10

[201]

>>> sz
3698
>>> training_sents = sentences[:sz]
>>> testing_sents=sentences[sz:]
>>> unigram_tagger=nltk.UnigramTagger(training_sents)
>>> unigram_tagger.evaluate(testing_sents)
0.8028325063827737

Consider the following code in NLTK that demonstrates the use of N-Gram tagger.
Here, Training corpus consists of tagged data. Also, in the following example, we
have used a special case of n-gram tagger, that is, bigram tagger:

>>> import nltk
>>> from nltk.corpus import brown
>>> sentences=brown.tagged_sents(categories='news')
>>> sz=int(len(sentences)*0.8)
>>> training_sents = sentences[:sz]
>>> testing_sents=sentences[sz:]
>>> bigram_tagger=nltk.UnigramTagger(training_sents)
>>> bigram_tagger=nltk.BigramTagger(training_sents)
>>> bigram_tagger.tag(sentences[2008])
[(('Others', 'NNS'), None), ((',', ','), None), (('which', 'WDT'),
None), (('are', 'BER'), None), (('reached', 'VBN'), None), (('by',
'IN'), None), (('walking', 'VBG'), None), (('up', 'IN'), None), (('a',
'AT'), None), (('single', 'AP'), None), (('flight', 'NN'), None),
(('of', 'IN'), None), (('stairs', 'NNS'), None), ((',', ','), None),
(('have', 'HV'), None), (('balconies', 'NNS'), None), (('.', '.'),
None)]
>>> un_sent=sentences[4203]
>>> bigram_tagger.tag(un_sent)
[(('The', 'AT'), None), (('population', 'NN'), None), (('of', 'IN'),
None), (('the', 'AT'), None), (('Congo', 'NP'), None), (('is', 'BEZ'),
None), (('13.5', 'CD'), None), (('million', 'CD'), None), ((',',
','), None), (('divided', 'VBN'), None), (('into', 'IN'), None),
(('at', 'IN'), None), (('least', 'AP'), None), (('seven', 'CD'),
None), (('major', 'JJ'), None), (('``', '``'), None), (('culture',
'NN'), None), (('clusters', 'NNS'), None), (("''", "''"), None),
(('and', 'CC'), None), (('innumerable', 'JJ'), None), (('tribes',
'NNS'), None), (('speaking', 'VBG'), None), (('400', 'CD'), None),
(('separate', 'JJ'), None), (('dialects', 'NNS'), None), (('.', '.'),
None)]
>>> bigram_tagger.evaluate(testing_sents)
0.09181559805385615

Evaluation of NLP Systems – Analyzing Performance

[202]

Another way of tagging can be performed by means of bootstrapping different
methods. In this approach, tagging can be performed using a bigram Tagger. If
the tag is not found using the bigram Tagger, then a back-off method involving a
unigram Tagger can be used. Also, if a tag is not found using a unigram Tagger,
then a back-off method involving a default tagger can be used.

Let's see the following code in NLTK that implements combined Tagger:

>>> import nltk
>>> from nltk.corpus import brown
>>> sentences=brown.tagged_sents(categories='news')
>>> sz=int(len(sentences)*0.8)
>>> training_sents = sentences[:sz]
>>> testing_sents=sentences[sz:]
>>> s0=nltk.DefaultTagger('NNP')
>>> s1=nltk.UnigramTagger(training_sents,backoff=s0)
>>> s2=nltk.BigramTagger(training_sents,backoff=s1)
>>> s2.evaluate(testing_sents)
0.8122260224480948

The linguists use the following clues to determine the category of a word:

•	 Morphological clues
•	 Syntactic clues
•	 Semantic clues

Morphological clues are those in which prefix, suffix, infix, and affix information
are used to determine the category of a word. For example, ment is a suffix that
combines with a verb to form a noun, such as establish + ment = establishment and
achieve + ment = achievement.

Syntactic clues can be useful in determining the category of a word. For example,
let's assume that nouns are already known. Now, adjectives can be determined.
Adjectives can occur either after a noun or after a word, such as very, in a sentence.

Semantic information can also be used to determine the category of a word. If the
meaning of a word is known, then its category can easily be known.

Let's see the following code in NLTK that can be used for the evaluation of a
chunk parser:

>>> import nltk
>>> chunkparser = nltk.RegexpParser("")
>>> print(nltk.chunk.accuracy(chunkparser, nltk.corpus.conll2000.
chunked_sents('train.txt', chunk_types=('NP',))))
0.44084599507856814

Chapter 10

[203]

Let's see another code in NLTK that is based on the evaluation of a naïve chunk
parser that looks for tags, such as CD, JJ, and so on:

>>> import nltk
>>> grammar = r"NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print(nltk.chunk.accuracy(cp, nltk.corpus.conll2000.chunked_
sents('train.txt', chunk_types=('NP',))))
0.8744798726662164

The following code in NLTK is used to compute the conditional frequency
distribution for chunked data:

def chunk_tags(train):
 """Generate a following tags list that appears inside chunks"""
 cfreqdist = nltk.ConditionalFreqDist()
 for t in train:
 for word, tag, chunktag in nltk.chunk.tree2conlltags(t):
 if chtag == "O":
 cfreqdist[tag].inc(False)
 else:
 cfreqdist[tag].inc(True)
 return [tag for tag in cfreqdist.conditions() if cfreqdist[tag].
max() == True]
>>> training_sents = nltk.corpus.conll2000.chunked_sents('train.txt',
chunk_types=('NP',))
>>> print chunked_tags(train_sents)
['PRP$', 'WDT', 'JJ', 'WP', 'DT', '#', '$', 'NN', 'FW', 'POS',
'PRP', 'NNS', 'NNP', 'PDT', 'RBS', 'EX', 'WP$', 'CD', 'NNPS', 'JJS',
'JJR']

Let's see the following code for performing the evaluation of chunker in NLTK.
Here, two entities, namely guessed and correct, are used. Guessed entities are
those that are returned by a chunk parser. Correct entities are those set of chunks
that are defined in the test corpus:

>>> import nltk
>>> correct = nltk.chunk.tagstr2tree(
"[the/DT little/JJ cat/NN] sat/VBD on/IN [the/DT mat/NN]")
>>> print(correct.flatten())
(S the/DT little/JJ cat/NN sat/VBD on/IN the/DT mat/NN)
>>> grammar = r"NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> grammar = r"NP: {<PRP|DT|POS|JJ|CD|N.*>+}"

Evaluation of NLP Systems – Analyzing Performance

[204]

>>> chunk_parser = nltk.RegexpParser(grammar)
>>> tagged_tok = [("the", "DT"), ("little", "JJ"), ("cat",
"NN"),("sat", "VBD"), ("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> chunkscore = nltk.chunk.ChunkScore()
>>> guessed = cp.parse(correct.flatten())
>>> chunkscore.score(correct, guessed)
>>> print(chunkscore)
ChunkParse score:
 IOB Accuracy: 100.0%
 Precision: 100.0%
 Recall: 100.0%
 F-Measure: 100.0%

Let's see the following code in NLTK that can be used for the evaluation of unigram
chunker and bigram chunker:

>>>chunker_data = [[(t,c) for w,t,c in nltk.chunk.
tree2conlltags(chtree)]
>>> for chtree in nltk.corpus.conll2000.chunked_
sents('train.txt')]
>>> unigram_chunk = nltk.UnigramTagger(chunker_data)
>>> print nltk.tag.accuracy(unigram_chunk, chunker_data)
0.781378851068
>>> bigram_chunk = nltk.BigramTagger(chunker_data, backoff=unigram_
chunker)
>>> print nltk.tag.accuracy(bigram_chunk, chunker_data)
0.893220987404

Consider the following code in which the suffix of a word is used to determine the
part of a speech tag. A classifier is trained to provide a list of informative suffixes.
A feature extractor function has been used that checks the suffixes that are present
in a given word:

>>> from nltk.corpus import brown
>>> suffix_freqdist = nltk.FreqDist()
>>> for wrd in brown.words():
... wrd = wrd.lower()
... suffix_freqdist[wrd[-1:]] += 1
... suffix_fdist[wrd[-2:]] += 1
... suffix_fdist[wrd[-3:]] += 1
>>> common_suffixes = [suffix for (suffix, count) in suffix_freqdist.
most_common(100)]
>>> print(common_suffixes)
['e', ',', '.', 's', 'd', 't', 'he', 'n', 'a', 'of', 'the',
 'y', 'r', 'to', 'in', 'f', 'o', 'ed', 'nd', 'is', 'on', 'l',

Chapter 10

[205]

 'g', 'and', 'ng', 'er', 'as', 'ing', 'h', 'at', 'es', 'or',
 're', 'it', '``', 'an', "''", 'm', ';', 'i', 'ly', 'ion', ...]

>>> def pos_feature(wrd):
... feature = {}
... for suffix in common_suffixes:
... feature['endswith({})'.format(suffix)] = wrd.lower().
endswith(suffix)
... return feature
>>> tagged_wrds = brown.tagged_wrds(categories='news')
>>> featureset = [(pos_feature(n), g) for (n,g) in tagged_wrds]
>>> size = int(len(featureset) * 0.1)
>>> train_set, test_set = featureset[size:], featureset[:size]
>>> classifier1 = nltk.DecisionTreeClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier1, test_set)
0.62705121829935351

>>> classifier.classify(pos_features('cats'))
'NNS'

>>> print(classifier.pseudocode(depth=4))
if endswith(,) == True: return ','
if endswith(,) == False:
 if endswith(the) == True: return 'AT'
 if endswith(the) == False:
 if endswith(s) == True:
 if endswith(is) == True: return 'BEZ'
 if endswith(is) == False: return 'VBZ'
 if endswith(s) == False:
 if endswith(.) == True: return '.'
 if endswith(.) == False: return 'NN'

Consider the following code in NLTK for building a regular expression tagger. Here,
tags are assigned on the basis of matching patterns:

>>> import nltk
>>> from nltk.corpus import brown
>>> sentences = brown.tagged_sents(categories='news')
>>> sent = brown.sents(categories='news')
>>> pattern = [
(r'.*ing$', 'VBG'), # for gerunds
(r'.*ed$', 'VBD'), # for simple past

Evaluation of NLP Systems – Analyzing Performance

[206]

(r'.*es$', 'VBZ'), # for 3rd singular present
(r'.*ould$', 'MD'), # for modals
(r'.*\'s$', 'NN$'), # for possessive nouns
(r'.*s$', 'NNS'), # for plural nouns
(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # for cardinal numbers
 (r'.*', 'NN') # for nouns (default)
]
>>> regexpr_tagger = nltk.RegexpTagger(pattern)
>>> regexpr_tagger.tag(sent[3])
 [('``', 'NN'), ('Only', 'NN'), ('a', 'NN'), ('relative', 'NN'),
('handful', 'NN'), ('of', 'NN'), ('such', 'NN'), ('reports', 'NNS'),
('was', 'NNS'), ('received', 'VBD'), ("''", 'NN'), (',', 'NN'),
('the', 'NN'), ('jury', 'NN'), ('said', 'NN'), (',', 'NN'), ('``',
'NN'), ('considering', 'VBG'), ('the', 'NN'), ('widespread', 'NN'),
('interest', 'NN'), ('in', 'NN'), ('the', 'NN'), ('election', 'NN'),
(',', 'NN'), ('the', 'NN'), ('number', 'NN'), ('of', 'NN'), ('voters',
'NNS'), ('and', 'NN'), ('the', 'NN'), ('size', 'NN'), ('of', 'NN'),
('this', 'NNS'), ('city', 'NN'), ("''", 'NN'), ('.', 'NN')]
>>> regexp_tagger.evaluate(sentences)
0.20326391789486245

Consider the following code to build a lookup tagger. In building up a lookup tagger,
a list of frequently used words is maintained along with their tag information. Some of
the words have been assigned the None tag because they do not exist among the list of
the most frequently occurring words:

>>> import nltk
>>> from nltk.corpus import brown
>>> freqd = nltk.FreqDist(brown.words(categories='news'))
>>> cfreqd = nltk.ConditionalFreqDist(brown.tagged_
words(categories='news'))
>>> mostfreq_words = freqd.most_common(100)
>>> likelytags = dict((word, cfreqd[word].max()) for (word, _) in
mostfreq_words)
>>> baselinetagger = nltk.UnigramTagger(model=likelytags)
>>> baselinetagger.evaluate(brown_tagged_sents)
0.45578495136941344
>>> sent = brown.sents(categories='news')[3]
>>> baselinetagger.tag(sent)
[('``', '``'), ('Only', None), ('a', 'AT'), ('relative', None),
('handful', None), ('of', 'IN'), ('such', None), ('reports', None),
('was', 'BEDZ'), ('received', None), ("''", "''"), (',', ','),
('the', 'AT'), ('jury', None), ('said', 'VBD'), (',', ','),

Chapter 10

[207]

('``', '``'), ('considering', None), ('the', 'AT'), ('widespread',
None),
('interest', None), ('in', 'IN'), ('the', 'AT'), ('election', None),
(',', ','), ('the', 'AT'), ('number', None), ('of', 'IN'),
('voters', None), ('and', 'CC'), ('the', 'AT'), ('size', None),
('of', 'IN'), ('this', 'DT'), ('city', None), ("''", "''"), ('.',
'.')]
>>> baselinetagger = nltk.UnigramTagger(model=likely_tags,
... backoff=nltk.
DefaultTagger('NN'))
def performance(cfreqd, wordlist):
 lt = dict((word, cfreqd[word].max()) for word in wordlist)
 baseline_tagger = nltk.UnigramTagger(model=lt, backoff=nltk.
DefaultTagger('NN'))
 return baseline_tagger.evaluate(brown.tagged_
sents(categories='news'))

def display():
 import pylab
 word_freqs = nltk.FreqDist(brown.words(categories='news')).most_
common()
 words_by_freq = [w for (w, _) in word_freqs]
 cfd = nltk.ConditionalFreqDist(brown.tagged_
words(categories='news'))
 sizes = 2 ** pylab.arange(15)
 perfs = [performance(cfd, words_by_freq[:size]) for size in sizes]
 pylab.plot(sizes, perfs, '-bo')
 pylab.title('Lookup Tagger Performance with Varying Model Size')
 pylab.xlabel('Model Size')
 pylab.ylabel('Performance')
 pylab.show()
display()

Let's see the following stemming code in NLTK using lancasterstemmer.
The evaluation of such a stemmer can be done using gold test data:

>>> import nltk
>>> from nltk.stem.lancaster import LancasterStemmer
>>> stri=LancasterStemmer()
>>> stri.stem('achievement')
'achiev'

Evaluation of NLP Systems – Analyzing Performance

[208]

Consider the following code in NLTK that can be used for designing a
classifier-based chunker. It makes use of the Maximum Entropy classifier:

class ConseNPChunkTagger(nltk.TaggerI):

 def __init__(self, train_sents):
 train_set = []
 for tagsent in train_sents:
 untagsent = nltk.tag.untag(tagsent)
 history = []
 for i, (word, tag) in enumerate(tagsent):
 featureset = npchunk_features(untagsent, i, history)
 train_set.append((featureset, tag))
 history.append(tag)
 self.classifier = nltk.MaxentClassifier.train(
 train_set, algorithm='megam', trace=0)

 def tag(self, sentence):
 history = []
 for i, word in enumerate(sentence):
 featureset = npchunk_features(sentence, i, history)
 tag = self.classifier.classify(featureset)
 history.append(tag)
 return zip(sentence, history)

class ConseNPChunker(nltk.ChunkParserI): [4]
 def __init__(self, train_sents):
 tagsent = [[((w,t),c) for (w,t,c) in
 nltk.chunk.tree2conlltags(sent)]
 for sent in train_sents]
 self.tagger = ConseNPChunkTagger(tagsent)

 def parse(self, sentence):
 tagsent = self.tagger.tag(sentence)
 conlltags = [(w,t,c) for ((w,t),c) in tagsent]
 return nltk.chunk.conlltags2tree(conlltags)

In the following code, the evaluation of chunker is performed with the use of a
feature extractor. The resultant chunker is similar to the unigram chunker:

>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... return {"pos": pos}
>>> chunker = ConseNPChunker(train_sents)

Chapter 10

[209]

>>> print(chunker.evaluate(test_sents))
ChunkParse score:
 IOB Accuracy: 92.9%
 Precision: 79.9%
 Recall: 86.7%
 F-Measure: 83.2%

In the following code, the features of the previous part of the speech tag are also
added. This involves the interaction between tags. So the resultant chunker is
similar to the bigram chunker:

>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... previword, previpos = "<START>", "<START>"
... else:
... previword, previpos = sentence[i-1]
... return {"pos": pos, "previpos": previpos}
>>> chunker = ConseNPChunker(train_sents)
>>> print(chunker.evaluate(test_sents))
ChunkParse score:
 IOB Accuracy: 93.6%
 Precision: 81.9%
 Recall: 87.2%
 F-Measure: 84.5%

Consider the following code for chunker in which features for the current word are
added to improve the performance of a chunker:

>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... previword, previpos = "<START>", "<START>"
... else:
... previword, previpos = sentence[i-1]
... return {"pos": pos, "word": word, "previpos": previpos}
>>> chunker = ConseNPChunker(train_sents)
>>> print(chunker.evaluate(test_sents))
ChunkParse score:
 IOB Accuracy: 94.5%
 Precision: 84.2%
 Recall: 89.4%
 F-Measure: 86.7%

Evaluation of NLP Systems – Analyzing Performance

[210]

Let's consider the code in NLTK in which the collection of features, such as paired
features, lookahead features, complex contextual features, and so on, are added to
enhance the performance of a chunker:

>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... previword, previpos = "<START>", "<START>"
... else:
... previword, previpos = sentence[i-1]
... if i == len(sentence)-1:
... nextword, nextpos = "<END>", "<END>"
... else:
... nextword, nextpos = sentence[i+1]
... return {"pos": pos,
... "word": word,
... "previpos": previpos,
... "nextpos": nextpos,
... "previpos+pos": "%s+%s" % (previpos, pos),
... "pos+nextpos": "%s+%s" % (pos, nextpos),
... "tags-since-dt": tags_since_dt(sentence, i)}
>>> def tags_since_dt(sentence, i):
... tags = set()
... for word, pos in sentence[:i]:
... if pos == 'DT':
... tags = set()
... else:
... tags.add(pos)
... return '+'.join(sorted(tags))

>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print(chunker.evaluate(test_sents))
ChunkParse score:
 IOB Accuracy: 96.0%
 Precision: 88.6%
 Recall: 91.0%
 F-Measure: 89.8%

The evaluation of Morphological Analyzer can also be performed using gold data.
The human expected output is already stored to form a gold set and then the output
of the morphological analyzer is compared with the gold data.

Chapter 10

[211]

Parser evaluation using gold data
Parser evaluation can be done using the gold data or the standard data against which
the output of the parser is matched.

Firstly, training of parser model is performed on the training data. Then parsing is
done on the unseen data or testing data.

The following two measures can be used to evaluate the performance of a parser:

•	 Labelled Attachment Score (LAS)
•	 Labelled Exact Match (LEM)

In both cases, parser's output is compared with testing data. A good parsing
algorithm is one that gives the highest LAS and LEM scores. The training and
testing data that we use for parsing may consist of parts of speech tags that are gold
standard tags, since they have been assigned manually. Parser evaluation can be
done using metrics, such as Recall, Precision, and F-Measure.

Here, precision may be defined as the number of correct entities produced by parser
divided by the total number of entities produced by parser.

Recall may be defined as the number of correct entities produced by parser divided
by the total number of entities in the gold standard parse trees.

F-Score may be defined as the harmonic mean of recall and precision.

Evaluation of IR system
IR is also one of the applications of Natural Language Processing.

Following are the aspects that can be considered while performing the evaluation of
the IR system:

•	 Resources required
•	 Presentation of documents
•	 Market evaluation or appealing to the user
•	 Retrieval speed
•	 Assistance in constituting queries
•	 Ability to find required documents

Evaluation is usually done by comparing one system with another.

Evaluation of NLP Systems – Analyzing Performance

[212]

IR systems can be compared on the basis of a set of documents, set of queries,
techniques used, and so on. Metrics used for performance evaluation are Precision,
Recall, and F-Measure. Let's learn a bit more about them:

•	 Precision: It is defined as the proportion of a retrieved set that is relevant.
Precision = |relevant ∩ retrieved| ÷ |retrieved| = P(relevant | retrieved)

•	 Recall: It is defined as the proportion of all the relevant documents in the
collection included in the retrieved set.
Recall = |relevant ∩ retrieved| ÷ |relevant| = P(retrieved | relevant)

•	 F-Measure: It can be obtained using Precision and Recall as follows:
F-Measure = (2*Precision*Recall) / (Precision + Recall)

Metrics for error identification
Error identification is a very important aspect that affects the performance of an NLP
system. Searching tasks may involve the following terminologies:

•	 True Positive (TP): This may be defined as the set of relevant documents that
is correctly identified as the relevant document.

•	 True Negative (TN): This may be defined as the set of irrelevant documents
that is correctly identified as the irrelevant document.

•	 False Positive (FP): This is also referred to as Type I error and is the set of
irrelevant documents that is incorrectly identified as the relevant document.

•	 False Negative (FN): This is also referred to as Type II error and is the set of
relevant documents that is incorrectly identified as the irrelevant document.

On the basis of the previously mentioned terminologies, we have the following metrics:

•	 Precision (P) - TP/(TP+FP)
•	 Recall (R) - TP/(TP+FN)
•	 F-Measure – 2*P*R/(P+R)

Chapter 10

[213]

Metrics based on lexical matching
We can also perform the analysis of performance at word level or lexical level.

Consider the following code in NLTK in which movie reviews have been taken and
marked as either positive or negative. A feature extractor is constructed that checks
whether a given word is present in a document or not:

>>> from nltk.corpus import movie_reviews
>>> docs = [(list(movie_reviews.words(fileid)), category)
... for category in movie_reviews.categories()
... for fileid in movie_reviews.fileids(category)]
>>> random.shuffle(docs)
all_wrds = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = list(all_wrds)[:2000]

def doc_features(doc):
 doc_words = set(doc)
 features = {}
 for word in word_features:
 features['contains({})'.format(word)] = (word in doc_words)
 return features
>>> print(doc_features(movie_reviews.words('pos/cv957_8737.txt')))
{'contains(waste)': False, 'contains(lot)': False, ...}
featuresets = [(doc_features(d), c) for (d,c) in docs]
train_set, test_set = featuresets[100:], featuresets[:100]
classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print(nltk.classify.accuracy(classifier, test_set))
0.81
>>> classifier.show_most_informative_features(5)
Most Informative Features
 contains(outstanding) = True pos : neg = 11.1 :
1.0
 contains(seagal) = True neg : pos = 7.7 :
1.0
 contains(wonderfully) = True pos : neg = 6.8 :
1.0
 contains(damon) = True pos : neg = 5.9 :
1.0
 contains(wasted) = True neg : pos = 5.8 :
1.0

Evaluation of NLP Systems – Analyzing Performance

[214]

Consider the following code in NLTK that describes nltk.metrics.distance,
which provides metrics to determine whether a given output is the same as the
expected output:

from __future__ import print_function
from __future__ import division
def _edit_dist_init(len1, len2):
 lev = []
 for i in range(len1):
 lev.append([0] * len2) # initialization of 2D array to zero
 for i in range(len1):
 lev[i][0] = i # column 0: 0,1,2,3,4,...
 for j in range(len2):
 lev[0][j] = j # row 0: 0,1,2,3,4,...
 return lev

def _edit_dist_step(lev, i, j, s1, s2, transpositions=False):
 c1 = s1[i - 1]
 c2 = s2[j - 1]

 # skipping a character in s1
 a = lev[i - 1][j] + 1
 # skipping a character in s2
 b = lev[i][j - 1] + 1
 # substitution
 c = lev[i - 1][j - 1] + (c1 != c2)

 # transposition
 d = c + 1 # never picked by default
 if transpositions and i > 1 and j > 1:
 if s1[i - 2] == c2 and s2[j - 2] == c1:
 d = lev[i - 2][j - 2] + 1

 # pick the cheapest
 lev[i][j] = min(a, b, c, d)

def edit_distance(s1, s2, transpositions=False):

 # set up a 2-D array
 len1 = len(s1)
 len2 = len(s2)
 lev = _edit_dist_init(len1 + 1, len2 + 1)

Chapter 10

[215]

 # iterate over the array
 for i in range(len1):
 for j in range(len2):
 _edit_dist_step(lev, i + 1, j + 1, s1, s2,
transpositions=transpositions)
 return lev[len1][len2]

def binary_distance(label1, label2):
 """Simple equality test.

 0.0 if the labels are identical, 1.0 if they are different.

>>> from nltk.metrics import binary_distance
>>> binary_distance(1,1)
 0.0

>>> binary_distance(1,3)
 1.0
 """

 return 0.0 if label1 == label2 else 1.0

def jaccard_distance(label1, label2):
 """Distance metric comparing set-similarity.
 """
 return (len(label1.union(label2)) - len(label1.
intersection(label2)))/len(label1.union(label2))

def masi_distance(label1, label2)

 len_intersection = len(label1.intersection(label2))
 len_union = len(label1.union(label2))
 len_label1 = len(label1)
 len_label2 = len(label2)
 if len_label1 == len_label2 and len_label1 == len_intersection:
 m = 1
 elif len_intersection == min(len_label1, len_label2):
 m = 0.67
 elif len_intersection > 0:
 m = 0.33
 else:
 m = 0

Evaluation of NLP Systems – Analyzing Performance

[216]

 return 1 - (len_intersection / len_union) * m

def interval_distance(label1,label2):

 try:
 return pow(label1 - label2, 2)
return pow(list(label1)[0]-list(label2)[0],2)
 except:
 print("non-numeric labels not supported with interval
distance")

def presence(label):

 return lambda x, y: 1.0 * ((label in x) == (label in y))

def fractional_presence(label):
 return lambda x, y:\
 abs(((1.0 / len(x)) - (1.0 / len(y)))) * (label in x and label
in y) \
 or 0.0 * (label not in x and label not in y) \
 or abs((1.0 / len(x))) * (label in x and label not in y) \
 or ((1.0 / len(y))) * (label not in x and label in y)

def custom_distance(file):
 data = {}
 with open(file, 'r') as infile:
 for l in infile:
 labelA, labelB, dist = l.strip().split("\t")
 labelA = frozenset([labelA])
 labelB = frozenset([labelB])
 data[frozenset([labelA,labelB])] = float(dist)
 return lambda x,y:data[frozenset([x,y])]

def demo():
 edit_distance_examples = [
 ("rain", "shine"), ("abcdef", "acbdef"), ("language",
"lnaguaeg"),
 ("language", "lnaugage"), ("language", "lngauage")]
 for s1, s2 in edit_distance_examples:

Chapter 10

[217]

 print("Edit distance between '%s' and '%s':" % (s1, s2), edit_
distance(s1, s2))
 for s1, s2 in edit_distance_examples:
 print("Edit distance with transpositions between '%s' and
'%s':" % (s1, s2), edit_distance(s1, s2, transpositions=True))

 s1 = set([1, 2, 3, 4])
 s2 = set([3, 4, 5])
 print("s1:", s1)
 print("s2:", s2)
 print("Binary distance:", binary_distance(s1, s2))
 print("Jaccard distance:", jaccard_distance(s1, s2))
 print("MASI distance:", masi_distance(s1, s2))

if __name__ == '__main__':
 demo()

Metrics based on syntactic matching
Syntactic matching can be done by performing the task of chunking. In NLTK,
a module called nltk.chunk.api is provided that helps to identify chunks and
returns a parse tree for a given chunk sequence.

The module called nltk.chunk.named_entity is used to identify a list of named
entities and also to generate a parse structure. Consider the following code in NLTK
based on syntactic matching:

>>> import nltk
>>> from nltk.tree import Tree
>>> print(Tree(1,[2,Tree(3,[4]),5]))
(1 2 (3 4) 5)
>>> ct=Tree('VP',[Tree('V',['gave']),Tree('NP',['her'])])
>>> sent=Tree('S',[Tree('NP',['I']),ct])
>>> print(sent)
(S (NP I) (VP (V gave) (NP her)))
>>> print(sent[1])
(VP (V gave) (NP her))
>>> print(sent[1,1])
(NP her)
>>> t1=Tree.from string("(S(NP I) (VP (V gave) (NP her)))")
>>> sent==t1
True
>>> t1[1][1].set_label('X')
>>> t1[1][1].label()

Evaluation of NLP Systems – Analyzing Performance

[218]

'X'
>>> print(t1)
(S (NP I) (VP (V gave) (X her)))
>>> t1[0],t1[1,1]=t1[1,1],t1[0]
>>> print(t1)
(S (X her) (VP (V gave) (NP I)))
>>> len(t1)
2

Metrics using shallow semantic matching
WordNet Similarity is used to perform semantic matching. In this, a similarity
of a given text is computed against the hypothesis. The Natural Language Toolkit
can be used to compute: path distance, Leacock-Chodorow Similarity,
Wu-Palmer Similarity, Resnik Similarity, Jiang-Conrath Similarity, and Lin Similarity
between words present in the text and the hypothesis. In these metrics, we compare
the similarity between word senses rather than words.

During Shallow Semantic analysis, NER and coreference resolution are also performed.

Consider the following code in NLTK that computes wordnet similarity:

>>> wordnet.N['dog'][0].path_similarity(wordnet.N['cat'][0])
0.20000000000000001
>>> wordnet.V['run'][0].path_similarity(wordnet.V['walk'][0])
0.25

Summary
In this chapter, we discussed the evaluation of NLP systems (POS tagger, stemmer,
and morphological analyzer). You learned about various metrics used for performing
the evaluation of NLP systems based on error identification, lexical matching, syntactic
matching, and shallow semantic matching. We also discussed parser evaluation
performed using gold data. Evaluation can be done using three metrics, namely
Precision, Recall, and F-Measure. You also learned about the evaluation of IR system.

[219]

Index
A
add-one smoothing 36
Affective Norms for English Words

(ANEW) 134
agglutinative languages 50
anaphora resolution (AR)

about 191-197
definite noun phrase 191
pronominal 191
quantifier/ordinal 191

AntiMorfo 58
Artificial Intelligence (AI) 1

B
backoff classifier 73
back-off mechanism

developing, for MLE 44
Berlin Affective Word List (BAWL) 134
Berlin Affective Word List Reloaded

(BAWL-R) 134

C
chunker

developing, POS-tagged
corpora used 81-83

chunking process 81
Context Free Grammar (CFG) rules

extracting, from Treebank 91-96
Phrase structure rules 91
Sentence structure rules 91

corpora 71
corpus 71
CYK chart parsing algorithm 98-100

D
DANEW (Dutch ANEW) 134
Dictionary of Affect in Language (DAL) 135
Discourse analysis

about 183-190
discourse representation structure 184, 185

Discourse Representation Structure
(DRS) 184

Discourse Representation Theory
(DRT) 184

E
Earley chart parsing algorithm 100-105
error identification

about 212
metrics 212

F
FastBrillTagger 73
First Order Predicate Logic (FOPL) 184
F-Measure 212

G
Gibbs sampling

applying, in language processing 45-48
Good Turing 37

H
Hidden Markov Model (HMM)

about 35, 115
estimation 35
using 35, 36

[220]

HornMorpho 58
Hu-Liu opinion Lexicon (HL) 135

I
inflecting languages 50
information retrieval

about 165, 166
stop word removal 166, 167
vector space model, using 168-175

interpolation
applying, on data 44

IR system
developing, with latent semantic

indexing 178
evaluation, performing 211, 212

isolating languages 50

J
Jiang-Conrath Similarity 128

K
Kneser Ney estimation 43

L
Labelled Exact Match(LEM) 211
language model

evaluating, through perplexity 45
latent semantic indexing

about 178
applications 178

Leacock Chodorow Similarity 128
Leipzig Affective Norms for German

(LANG) 135
lemmatization 53, 54
Lin Similarity 128

M
machine learning

used, for sentiment analysis 140-146
machine learning algorithm

selecting 73-75
Markov Chain Monte Carlo (MCMC) 45
maximum entropy classifier 75
metrics, based on lexical matching 213-217

metrics, based on shallow semantic
matching 218

metrics, based on syntactic matching 217
metrics, for error identification

False Negative (FN) 212
False Positive (FP) 212
True Negative (TN) 212
True Positive(TP) 212

metropolis hastings
applying, in modeling languages 45

MLE model
add-one smoothing 36, 37
back-off mechanism, developing 44
Good Turing 37-42
Kneser Ney estimation 43
smoothing, applying 36
Witten Bell estimation 43

MorfoMelayu 58
morphemes 49
morphological analyzer

about 56, 57
morphological hints 57
morphology captured by Part of

Speech tagset 57
Omorfi 58
open class 57
semantic hints 57
syntactic hints 57

morphology 49, 50

N
Named Entity Recognition (NER)

about 111-115
used, for sentiment analysis 139

Natural Language Processing (NLP) 1
Natural Language Toolkit (NLTK) 51
NER system

evaluating 146-164
NLP systems

evaluation, need for 199, 200
evaluation, performing 199

NLP tools
evaluation, performing 200-210
Morphological Analyzers 200
POS taggers 200
stemmers 200

[221]

nltk.sem.logic module
draw() method 186
fol() method 186
free(indvar_only) method 186
get_refs(recursive) method 186
Normalize() method 186
replace(variable, expression,

replace_bound) method 186
Simplify() method 186
substitute_bindings(bindings) method 186
Visit(self,function,combinatory,default)

method 186
normalization

about 8
conversion, into lowercase and uppercase 9
punctuations, eliminating 8
stop words, calculating 10
stop words, dealing with 9, 10

Noun Phrase chunk rule 82

P
ParaMorfo 58
parser evaluation

about 211
performing, gold data used 211

parsing
about 85, 86
Treebank construction 86-91

parts-of-speech tagging
about 65-69
default tagging 70

Path Distance Similarity 128
Polyglot 54
POS-tagged corpora

creating 71, 72
used, for developing chunker 81-83

POS tagging. See parts-of-speech tagging
Precision 212
PresuppositionDRS class

find_bindings(drs_list, collect_event_data)
method 193

is_possible_binding(cond) method 193
is_presupposition.cond(cond) method 193
presupposition_readings(trail) method 193

Probabilistic Context-free Grammar (PCFG)
creating, from CFG 97, 98

Q
question-answering system

about 181
building 181
issues 181

R
Recall 212
regular expressions

used, for tokenization 5-7
Resnik Score 128

S
Script Applier Mechanism(SAM) 108
semantic analysis

about 108-110
Named Entity Recognition (NER) 111-115
NER system, using Hidden Markov

Model 115-121
NER, training with Machine Learning

toolkits 121
NER, using POS tagging 122-124

senses
disambiguating, Wordnet used 127-130

Sentence level Construction, CFG
declarative structure 91
imperative structure 91
Wh-question structure 92
Yes-No structure 92

sentiment analysis
about 134-139
machine learning, used 140-146
NER system, evaluation 146-164
NER, used 139
text sentiment analysis 134
topic-sentiment analysis 134

similarity measures
about 16
applying, Edit Distance algorithm

used 16-18
applying, Smith Waterman distance

used 19
string similarity metrics 19, 20

Singular Value Decomposition (SVD) 178

[222]

smoothing
about 36
applying, on MLE model 36

SPANEW (Spanish ANEW) 134
statistical modeling

with n-gram approach 75-80
stemmer

about 50-52
developing, for non-english language 54-56

Stemmer I interface
inheritance diagram 51

Stochastic Finite State Automaton
(SFSA) 115

supervised classification 74
synset id

generation, from Wordnet 124-126
syntactic matching 217

T
text sentiment analysis 134
Text summarization 179, 180
TF-IDF (Term Frequency-Inverse

Document Frequency) 168
TnT (Trigrams n Tags) 80
tokenization

about 1, 2
regular expressions, used 5-7
sentences, into words 3
text, in other languages 2
text, into sentences 2
TreebankWordTokenizer, used 4

tokens, replacement
repeating characters, dealing with 12, 13
repeating characters, deleting 13, 14
substitution, performing before

tokenization 12
text, replacing with another text 12
word, replacing with synonym 14, 15
words, replacing with regular

expressions 11
topic-sentiment analysis 134
traverse() function

flow diagram 192, 193
Treebank construction 86-90
TreebankWordTokenizer

using 4

U
unsupervised classification 74

V
vector space model 168
vector space scoring

about 176
and query operator interaction 176, 177

vector space search engine
constructing 59-63

W
Well-formed Formulas (WFF) 109
Whissell's Dictionary of Affect in Language

(WDAL) 135
Witten Bell estimation 43
word frequency

about 23-26
Hidden Markov Model estimation 35, 36
MLE, developing for text 27-34

Wordnet
about 124
synset id, generating from 124-126
used, for disambiguating senses 127- 130

Word Sense Disambiguation (WSD)
task 127

Wu-Palmer Similarity 128

Z
Zipf's law

applying on text 15

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Working with Strings
	Tokenization
	Tokenization of text into sentences
	Tokenization of text in other languages
	Tokenization of sentences into words
	Tokenization using TreebankWordTokenizer
	Tokenization using regular expressions

	Normalization
	Eliminating punctuation
	Dealing with stop words
	Calculate stopwords in English

	Substituting and correcting tokens
	Replacing words using regular expressions
	Example of the replacement of a text with another text

	Performing substitution before tokenization
	Dealing with repeating characters
	Example of deleting repeating characters

	Replacing a word with its synonym
	Example of substituting word a with its synonym

	Applying Zipf's law to text
	Similarity measures
	Applying similarity measures using Ethe edit distance algorithm
	Applying similarity measures using Jaccard's Coefficient
	Applying similarity measures using the Smith Waterman distance
	Other string similarity metrics

	Summary

	Chapter 2: Statistical Language Modeling
	Understanding word frequency
	Develop MLE for a given text
	Hidden Markov Model estimation

	Applying smoothing on the MLE model
	Add-one smoothing
	Good Turing
	Kneser Ney estimation
	Witten Bell estimation

	Develop a back-off mechanism for MLE
	Applying interpolation on data to get mix and match
	Evaluate a language model through perplexity
	Applying metropolis hastings in modeling languages
	Applying Gibbs sampling in language processing
	Summary

	Chapter 3: Morphology – Getting Our Feet Wet
	Introducing morphology
	Understanding stemmer
	Understanding lemmatization
	Developing a stemmer for non-english language
	Morphological analyzer
	Morphological generator
	Search engine
	Summary

	Chapter 4: Parts-of-Speech Tagging – Identifying words
	Introducing parts-of-speech tagging
	Default tagging

	Creating POS-tagged corpora
	Selecting a machine learning algorithm
	Statistical modeling involving the n-gram approach
	Developing a chunker using pos-tagged corpora
	Summary

	Chapter 5: Parsing – Analyzing
Training Data
	Introducing parsing
	Treebank construction
	Extracting Context Free Grammar (CFG) rules from Treebank
	Creating a probabilistic Context Free Grammar from CFG
	CYK chart parsing algorithm
	Earley chart parsing algorithm
	Summary

	Chapter 6: Semantic Analysis – Meaning Matters
	Introducing semantic analysis
	Introducing Named Entity Recognition (NER)
	A NER system using Hidden Markov Model
	Training NER using Machine Learning Toolkits
	NER using POS tagging

	Generation of the synset id from Wordnet
	Disambiguating senses using Wordnet
	Summary

	Chapter 7: Sentiment Analysis – I Am Happy
	Introducing sentiment analysis
	Sentiment analysis using NER
	Sentiment analysis using machine learning
	Evaluation of the NER system

	Summary

	Chapter 8: Information Retrieval – Accessing Information
	Introducing information retrieval
	Stop word removal
	Information retrieval using a vector space model

	Vector space scoring and query operator interaction
	Developing an IR system using latent semantic indexing
	Text summarization
	Question answering system
	Summary

	Chapter 9: Discourse Analysis – Knowing Is Believing
	Introducing Discourse analysis
	Discourse analysis using Centering Theory
	Anaphora resolution

	Summary

	Chapter 10: Evaluation of NLP Systems – Analyzing Performance
	The need for evaluation of NLP Systems
	Evaluation of NLP tools (POS Taggers, Stemmers, and Morphological Analyzers)
	Parser evaluation using gold data

	Evaluation of IR System
	Metrics for error identification
	Metrics based on lexical matching
	Metrics based on Syntactic matching
	Metrics using shallow semantic matching
	Summary

	Index

