
www.allitebooks.com

http://www.allitebooks.org


Mastering PostCSS  
for Web Design

Explore the power of PostCSS to write highly performing, 
modular, and modern CSS code for your web pages

Alex Libby

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Mastering PostCSS for Web Design

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1240616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-589-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Author
Alex Libby

Reviewer
Michael Ebbage

Commissioning Editor
Wilson D'souza

Acquisition Editor
Larissa Pinto

Content Development Editor
Riddhi Tuljapurkar

Technical Editors
Chinmay Puranik

Jayesh Sonawane

Copy Editor
Safis Editing

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org


About the Author

Alex Libby's background is in IT support—he has been involved in supporting end 
users for almost 20 years in a variety of different environments; a recent change in role 
now sees Alex working as an MVT test developer for a global distributor based in the 
UK. Although Alex gets to play with different technologies in his day job, his first true 
love has always been the open source movement, and in particular, experimenting 
with CSS/CSS3, jQuery, and HTML5. To date, Alex has written 10 books on subjects 
such as jQuery, HTML5 video, SASS, and CSS for Packt and has reviewed several 
more—Mastering PostCSS Web Design is Alex's eleventh book for Packt.

I would like to thank my family and friends for their support 
throughout the process and the reviewers for their valued comments; 
this book wouldn't be what it is without them! I would also 
particularly like to thank Andrey Sitnik for his work in producing 
PostCSS and being really helpful and patient in answering questions 
about some of its more complex parts. My grateful thanks also to 
Ernie Salazar from NPM, who helped with issues with publishing 
the plugins created for this book, and David Clark for his assistance 
with getting me back on track with the postcss-bem-linter plugin, 
also used in the book. Thank you all—I couldn't have finished the 
book without your help!

www.allitebooks.com

http://www.allitebooks.org


About the Reviewer

Michael Ebbage is a software architect who specializes in e-commerce and 
Java technology-based web applications. He created his first web page almost two 
decades ago—since then, he's gone on to develop hundreds of websites for some of 
the UK's biggest companies (many featuring on the FTSE 100 and 250), as the tools 
and techniques used to do so have continually changed and evolved.

He has a background in software development and holds a BSc (Hons) in computing 
and information systems. He is also one of the top contributors to Stack Overflow, 
where you'll regularly find him answering questions on a wide range of web-related 
languages and technologies.

I'd like to thank the author, Alex, for the opportunity to be involved 
with this book. It's been a great learning experience, and I now have 
a renewed admiration for the amount of knowledge and effort that 
goes into it. I would also like to thank my beloved wife and son 
for their patience and support during the time I spent working on 
reviewing it.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org


[ i ]

Table of Contents
Preface	 ix
Chapter 1: Introducing PostCSS	 1

Discovering the art of processing	 2
Introducing PostCSS	 2

Exploring the benefits of using PostCSS	 3
Considering some of the pitfalls	 4
Clearing up some misconceptions	 5
Preparing for exercises in this book	 5

Setting up a development environment	 6
Installing PostCSS	 9

Creating a simple example using PostCSS	 11
Adding source map support	 12
Creating minified style sheets	 14
Altering to compile automatically	 16

Linting code using plugins	 18
Exploring how PostCSS works	 21

Making the move from SASS	 22
Summary	 23

Chapter 2: Creating Variables and Mixins	 25
Introducing variables and mixins	 25

Setting up SASS	 26
Creating a hover effect example	 28

Using Less CSS as an alternative	 31
Transitioning to using PostCSS	 31
Adding variable support to PostCSS	 31
Updating our hover effect demo	 32

Taking it a step further	 35
Setting the order of plugins	 37

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Creating mixins with PostCSS	 38
Updating our hover effect demo	 39
Comparing PostCSS to standard processors	 41

Looping content with PostCSS	 44
Iterating through @each statements	 45
Switching to using PostCSS	 48

Summary	 50
Chapter 3: Nesting Rules	 51

Introducing nesting	 51
Navigating through pages	 53

Preparing our demo	 54
Converting from existing processors	 54

Transitioning to using PostCSS plugins	 55
Converting our demo to PostCSS	 57
Compiling our code	 58

Exploring the pitfalls of nesting	 59
Taking a better approach	 62
Reconsidering our code	 66
Updating our code	 66

Making the switch to BEM	 68
Creating simple message boxes	 70
Compiling and linting our code	 72
Installing BEM support	 72

Exploring our changes in more detail	 76
Fixing our errors	 77

Summary	 79
Chapter 4: Building Media Queries	 81

Revisiting media queries	 81
Exploring custom media queries in PostCSS	 82

Beginning with plain CSS	 84
Altering our demo to use PostCSS	 85

Making images responsive	 87
Making an image responsive with PostCSS	 88
Implementing responsive capabilities to images	 88
Adding support for retina images	 91
Taking the next steps	 92
Exploring other media possibilities	 95

Adding responsive text support	 96
Optimizing media queries	 99
Retrofitting support for older browsers	 100

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Moving away from responsive design	 101
Taking things further with CSS4	 102
Summary	 103

Chapter 5: Managing Colors, Images, and Fonts	 105
Adding color, fonts, and media to sites	 106

Maintaining asset links	 106
Automating links to assets	 106

Managing fonts with PostCSS	 109
Creating image sprites	 111

Demo – creating a credit card icon bar	 112
Working with SVG in PostCSS	 115

Altering icon images using PostCSS	 115
Exploring the results in more detail	 116
Considering alternative options	 118

Adding support for WebP images	 119
Switching WebP images in and out	 119
Viewing the differences in file sizes	 120

Manipulating colors and color palettes	 123
Displaying and mixing colors using palettes	 124
Dissecting our demo in more detail	 126

Creating color functions with PostCSS	 127
Adjusting colors using functions	 128
Dissecting our demo	 129
Creating colors with PostCSS filters	 130

Exploring our demo in more detail	 132
Comparing with CSS3 filters	 133

Adding Instagram effects to your images	 134
Summary	 136

Chapter 6: Creating Grids	 139
Introducing grid design	 139

Automating the compilation process	 142
Adding support for Bourbon Neat	 144

Creating an example with Bourbon Neat	 145
Exploring our demo in more detail	 147

Exploring the grid plugins in PostCSS	 149
Transitioning to using PostCSS-Neat	 150

Refining our task list	 152
Testing our configuration	 153

Creating a site using Neat and PostCSS	 155
Making the change to PostCSS	 157

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iv ]

Adding responsive capabilities	 159
Correcting the design	 160

Summary	 163
Chapter 7: Animating Elements	 165

Revisiting basic animations	 165
Moving away from jQuery	 167

Animating content with Transit.js	 168
Animating with plain JavaScript	 170
Switching classes using jQuery	 172

Making use of pre-built libraries	 173
Dissecting the code for our demo	 175

Switching to using SASS	 176
Creating an animated gallery	 178
Adding the finishing touches	 181

Making the switch to PostCSS	 184
Exploring plugin options within PostCSS	 184
Updating code to use PostCSS	 185

Testing our altered code	 187
Creating a demo in PostCSS	 188

Updating the plugin	 189
Building our demo	 190
Dissecting our demo in more detail	 191

Optimizing our animations	 192
Using our own animation plugin	 193

Exploring the plugin in more detail	 195
Summary	 196

Chapter 8: Creating PostCSS Plugins	 197
Extending PostCSS with plugins	 198
Dissecting the architecture of a standard plugin	 198

Exploring index.js	 199
Discovering package.json	 200
Exploring test.js	 201
The Vendor module	 202
The List module	 202
Classes available in the API	 203
Nodes available in the API	 204
Methods available in the API	 204

Creating an transition plugin	 206
Creating a test for our plugin	 209
Correcting the errors	 211



Table of Contents

[ v ]

Clearing the final error	 212
Performing a test using the plugin	 213
Dissecting our plugin in detail	 214

Building a custom font plugin	 215
Dissecting the functionality of our plugin	 218
Exploring the dangers of publishing this plugin	 221

Simplifying the development process	 222
Guidelines for plugin building	 223
Making the plugin available for use	 225
Summary	 226

Chapter 9: Working with Shortcuts, Fallbacks, and Packs	 227
Using shortcut plugins in PostCSS	 228
Exploring plugin packs for PostCSS	 228

Writing styles in shorthand	 230
Adding shortcuts with Rucksack	 231

Introducing our demo	 232
Installing Rucksack as a plugin	 233
Easing into using Rucksack	 233
Animating content using the plugin	 235

Dissecting our demo in more detail	 236
Converting our slider to use Rucksack	 238
Dissecting our code	 241

Linting and optimizing your code	 243
Exploring the use of cssnano	 244
Configuring Stylelint as our linter	 246

Providing fallback support	 247
Detecting support for features	 247
Providing support for oldie	 248
Removing style hacks from code	 250

Summary	 252
Chapter 10: Building a Custom Processor	 255

Creating your processor	 255
Exploring our processor	 256

Dissecting the package.json file	 256
Exploring the Gulp task file	 257

Dissecting issues with our processor	 260
Fixing our Gulp task file	 261
Understanding the changes made	 264

Optimizing the output	 265
Altering our source map support	 266



Table of Contents

[ vi ]

Taking care of prefixes	 267
Adding support for pseudo-selectors	 268
Updating our code	 270
Dealing with images	 272

Exploring the process	 273
Adding reload capabilities	 274
Extending our processor further	 276
Testing the final pre-processor	 280

Digesting the results of our exercise	 281
Getting started with some hints and tips	 282
Introducing the CSStyle library	 284

Exploring the benefits of using CSStyle	 285
Dissecting our demo	 287

Summary	 288
Chapter 11: Manipulating Custom Syntaxes	 289

Introducing custom syntaxes	 290
Preparing our environment	 290
Implementing custom syntax plugins	 292

Parsing content and fixing errors	 293
Parsing SCSS content	 295
Exploring what happened	 298

Parsing CSS	 298
Replacing RGBA colors	 301
Exploring how it all works	 302

Formatting the output with the API	 303
Dissecting our example code	 306
Adding source maps	 307

Highlighting our syntax code	 308
Installing themes	 308
Creating a HTML display theme	 309

Summary	 311
Chapter 12: Mixing Preprocessors	 313

Taking the first steps	 314
Exploring the conversion process	 314

Choosing our plugins	 316
Introducing the Pleeease library	 317

Installing and configuring the Pleeease library	 318
Compiling code manually	 318
Compiling using a task runner	 320
Building an example using Pleeease	 321



Table of Contents

[ vii ]

Compiling with other preprocessors	 322
Using the PreCSS library	 323
Converting a WordPress installation	 323
Setting up our environment	 324
Considering the conversion process	 325
Making changes to our code	 326

Splitting our style sheet	 327
Adding support for vendor prefixes	 328
Checking our code for consistency	 330
Minifying our code	 331
Creating variables	 332
Adding support for rem units	 334
Nesting rules in our style sheet	 336
Looping through styles	 337
Considering future possible ideas	 338

Compiling and testing the changes	 339
Summary	 341

Chapter 13: Troubleshooting PostCSS Issues	 343
Fixing some common issues	 344
Exploring some common issues	 344

Not compatible with your operating system…	 345
Task '<name of task>' is not in your gulpfile	 345
Cannot find module '<name of plugin>'	 347
ReferenceError: <name of task> is not defined	 348
Please provide array of postcss processors!	 349
Entries failing to appear in the package.json file	 350
Output of compiling results is not as expected	 351

Getting help from others	 353
Logging issues at Stack Overflow	 353
Finding a bug with PostCSS	 354

Summary	 356
Chapter 14: Preparing for the Future	 357

Supporting CSS4 styles today	 357
Converting CSS4 styles for use	 358

Validating e-mail addresses	 360
Supporting the new range input	 362

Supporting future syntax with cssnext	 364
Creating a site template with cssnext	 365
Setting up our demo	 365



Table of Contents

[ viii ]

Creating plugins to provide extra CSS4 support	 369
Adding future color support to CSS	 370
Going back in time	 374
Creating our own plugin	 377

Summary	 379
Index	 381



[ ix ]

Preface
As a developer, I'll bet you have a perfect workflow—you either write styles using 
plain vanilla CSS or use one of the current processors, such as SASS or Less, to create 
them. You'll add vendor prefixes using the likes of Autoprefixer—either manually or 
using a tool, such as Grunt or Gulp.

Sounds familiar? Why would you want to disturb something if it works for you, right?

Trouble is, a friend or colleague has started talking about a new processor by the 
name of PostCSS—they've piqued your interest sufficiently to want to find out  
more about what it is and how it works.

Well, welcome to the fast-growing ecosystem that is PostCSS! By itself, the tool 
doesn't do anything, but when paired with the right plugins (and there are hundreds 
available for use), it has the potential to become a really powerful processor for you. 
Gone are the days when we have to depend on a monolithic library such as SASS 
or less. Instead, we can pick and choose exactly which plugins to use based on our 
project requirements. PostCSS is an immensely quick processor to use; the question 
is, are you ready for the ride?

Here's hoping the answer is yes; if so, let's make a start.

What this book covers
Chapter 1, Introducing PostCSS, kicks off our journey with an introduction to the 
world of PostCSS, exploring its features and how we can use this ecosystem to 
transform basic code into valid CSS styles that we can use within our projects.  
You will discover the benefits of using this ecosystem and how its architecture  
and modular approach allows us to put together a processor that is tailored 
specifically for our needs.



Preface

[ x ]

Chapter 2, Creating Variables and Mixins, takes a look at some of the basic concepts that 
are familiar to users of existing processor technologies, such as variables and mixins. 
You will learn how to transition them to PostCSS and discover how the benefits of 
using these techniques can transition through to using PostCSS.

Chapter 3, Nesting Rules, explores how existing processors, such as SASS or less, take 
advantage of concepts such as nesting to reduce the amount of code we need to write 
and how we can replicate the same functionality within our PostCSS processor.

Chapter 4, Building Media Queries, walks us through the basics of adding responsive 
support to websites using PostCSS and media queries. You'll learn how to retrofit 
support for older websites and browsers, and explore how we can take things further 
with the advent of CSS4 media queries and provide support today within PostCSS.

Chapter 5, Managing Colors, Images, and Fonts, examines the plugins available for 
handling and manipulating images, colors, and fonts within PostCSS. We will  
work through a number of examples to illustrate how both images and colors can  
be manipulated within PostCSS, such as creating image sprites or altering colors 
using palettes within the system.

Chapter 6, Creating Grids, takes us on a journey through constructing the skeleton 
of a website using grids—we will explore the basic concept behind using grids and 
discover some of the plugin options available for creating them within PostCSS. 
We will work through some examples using the Bourbon Neat grid system, before 
replicating the examples with PostCSS-equivalent plugins and adding responsive 
capabilities to the resulting code.

Chapter 7, Animating Elements, begins with a quick recap of using JavaScript to 
animate content, before switching to using CSS for animation, and how you can 
transition through to using PostCSS. We will explore using some of the more  
well-known libraries, such as Animate.css, before creating a quick demo using 
PostCSS and learning how to optimize our animations using PostCSS.

Chapter 8, Creating PostCSS Plugins, teaches us how plugins can be used to extend 
PostCSS, and takes us through a journey of exploring the typical architecture of such 
a plugin. You will then take a look at some example plugins before working through 
creating your own plugins using the boilerplate code available and before testing 
and making the plugins available for download by users from the Internet.

Chapter 9, Working with Shortcuts, Fallbacks, and Packs, starts by examining some of  
the shortcut plugins and packs available before exploring how we can supplement 
them with creating our own shortcut plugins. You will also discover how you can 
lint and optimize your code using one of the plugin packs available for PostCSS  
and learn how to provide fall-backs to PostCSS code to help maintain support for 
older browsers.



Preface

[ xi ]

Chapter 10, Building a Custom Processor, pulls together some of the techniques we've 
covered thus far in the book to produce a custom processor that we can use as a basis 
for transforming code in our projects. You will explore how to optimize the output 
before adding source map and vendor prefix support and then testing it on a website. 
You will then round off the chapter with a look at extending the processor to use the 
CSStyle framework to allow you to write code that works for both SASS or PostCSS.

Chapter 11, Manipulating Custom Syntaxes, introduces us to writing custom syntaxes 
using the API and explores some of the options available for parsing code written 
using syntaxes such as SASS or less. We work though some examples of parsing code 
using PostCSS before converting the output into something that can be displayed on 
screen or saved to a file. We will also add in support for highlighting our code using 
the midas library.

Chapter 12, Mixing Preprocessors, shows us how we can begin to mix processors as 
an aid to make the transition to using PostCSS. We will take a look at the Pleeease 
library before installing it and using some of its features. We will then set up a 
compilation process before using it to make changes to a standard WordPress theme.

Chapter 13, Troubleshooting PostCSS Issues, takes a look at some of the more common 
issues we might experience when using PostCSS, such as the "taskname not in our 
gulpfile" error. We will also take a look at what to do next if all else fails. We will 
cover the methods for getting help with an issue or logging details of a bug within 
either the core PostCSS system or one of its plugins.

Chapter 14, Preparing for the Future, covers some of the possible options for supporting 
future style standards from what people know as CSS4. You will also explore some 
of the risks involved and how you can replicate support using existing plugins 
available today or extend them to increase support for new CSS4 selectors.

What you need for this book
All you need to work through most of the examples in this book is a simple text  
or code editor, a copy of NodeJS (for your platform), Internet access, and a browser.  
I recommend installing Sublime Text 3; it works well with Node and Gulp, which  
we will use throughout the book.

Some of the examples make use of additional plugins; most (if not all) can be 
installed directly from within NodeJS. Details are included within the appropriate 
chapter along with links to view the plugin source code and documentation.



Preface

[ xii ]

Who this book is for
The book is for frontend developers who are familiar with HTML5 and CSS3,  
but want to master PostCSS as part of simplifying their development workflow  
or remove the dependency on existing processors, such as SASS or Stylus. To get  
the most out of this book, you should have a good knowledge of HTML, CSS3, and 
JavaScript, and ideally, have some experience of using preprocessors such as SASS, 
Less, or Stylus.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We'll start by installing the relevant plugins required for this demo: we'll need the 
postcss-nested, autocomplete, and postcss-scss plugins."

A block of code is set as follows:

gulp.task('rename', ['styles'], function () {
  return gulp.src('dest/example.css')
    .pipe(postcss([ cssnano ]))
    .pipe(rename('example.min.css'))
    .pipe(gulp.dest("dest/"));
});

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

var sourcemaps = require('gulp-sourcemaps');
var rename = require('gulp-rename');
var cssnano = require('cssnano')

Any command-line input or output is written as follows:

npm install -–save-dev cssnano

npm install -–save-dev gulp-rename



Preface

[ xiii ]

New terms and important words are shown in bold. Words that you see on the screen, 
for example, in menus or dialog boxes, appear in the text like this: "When we view the 
page and select the Images tab, after a short delay we should see six new images."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support


Preface

[ xiv ]

4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on  
the book's webpage at the Packt Publishing website. This page can be accessed by 
entering the book's name in the Search box. Please note that you need to be logged  
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-PostCSS-for-Web-Design. We also have other code 
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from http://www.packtpub.
com/sites/default/files/downloads/MasteringPostCSSForWebDesign_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

https://github.com/PacktPublishing/Mastering-PostCSS-for-Web-Design
https://github.com/PacktPublishing/Mastering-PostCSS-for-Web-Design
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/MasteringPostCSSForWebDesign_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostCSSForWebDesign_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringPostCSSForWebDesign_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata


Preface

[ xv ]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across  
all media. At Packt, we take the protection of our copyright and licenses very 
seriously. If you come across any illegal copies of our works in any form on the 
Internet, please provide us with the location address or website name immediately 
so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support




[ 1 ]

Introducing PostCSS
A key part of any website is styling—it doesn't matter if this is for a simple element 
tag or a complex animation; a website is not a website without color and action. 
Building styles for any online presence takes time and effort—we can reduce 
development time by using a preprocessor to automate the creation of styles, 
automatically apply vendor prefixes and the like, but the extra dependency of a 
library can be like using a sledgehammer to crack a nut!

Enter PostCSS—its unique modular style allows us to create a leaner, faster CSS 
processor, with no external dependencies. In this chapter, we look at installing 
PostCSS, understanding its architecture, and learn how to use its speed and power 
to compile code into valid CSS. We will cover a number of topics throughout this 
chapter, which will include the following:

•	 Considering the benefits of creating our own preprocessor
•	 Introducing PostCSS and exploring its features
•	 Setting up a development environment using PostCSS
•	 Creating a simple example using PostCSS
•	 Exploring how PostCSS works and its architecture

Let's make a start…!

All of the exercises in this book are written for the Windows platform; 
please adjust accordingly if you use a different operating system.



Introducing PostCSS

[ 2 ]

Discovering the art of processing
A question: what do SASS, Stylus, Haml, and Less all have in common?

The answer is, they are all compilers, source to source compiling, or transpilers  
(to give them their official name), that have been around since the 1980s. They have 
appeared in many different formats, with Digital Research's XLT86 being one of the 
earliest versions, dating from 1981.

More recently, the well-known SASS processor arrived in 2006; this was followed 
by Less, created by Alexis Sellier in 2009. Both work in a similar fashion: they take 
a set of rules and compile it into valid CSS. We can extend CSS with all manner 
of features, such as variables, mixins, functions, and more. Although processors 
may not help cut down the physical number of lines we have to write, they help us 
reorganize code into more manageable blocks that we can reuse in future projects, 
which helps make CSS easier to maintain.

But, as is nearly always the case, there are some drawbacks to using processors:

•	 There is nearly always a dependency involved, in some form or other—with 
SASS, it's Ruby; if you're using Less, it's a library, even though it is written  
in JavaScript

•	 Our project may only use a small amount of preprocessed code, yet we are 
forced to rely on what can be a large library, such as SASS

•	 Processing style sheets using a preprocessor is slow; it may only be a few 
seconds, but this builds up over time to become a significant amount of time 
spent waiting for processes to complete

Hmm, this doesn't make processing so attractive! But what if there were a way to 
alleviate all of these issues, and remove the need for dependencies at the same time?

Well, there is: let's build our own processor! Okay, this might sound a little crazy, 
but as someone once said, there is method in this madness, so bear with me while I 
explain why this may be a better option.

Introducing PostCSS
At the beginning of this chapter, I mentioned that we would focus on creating our 
own preprocessor, right? Well, I have a little confession to make: we're not. Hold on, 
what gives?



Chapter 1

[ 3 ]

Well, we will create a preprocessor…but we will also create a postprocessor too. Let 
me explain why—our alternative "option" allows us to create both at the same time. 
Our alternative option is PostCSS, which can be downloaded from https://github.
com/postcss/postcss. PostCSS is used by some major companies, such as Twitter, 
Google, Bootstrap and CodePen, and even WordPress (in a limited capacity).

PostCSS was built as a Node.js module, so will work with any number of the existing 
plugins already available for Node.js—we will be using a number of these plugins 
throughout the book. Let's take a moment to explore some of the benefits of this tool.

Exploring the benefits of using PostCSS
What do we mean by PostCSS? In a nutshell, it can be used to refer to one of two 
things—the PostCSS core tool or the plugin ecosystem that is powered by the tool. 
On its own, it doesn't actually do a lot; once we start adding plugins, we can achieve 
a great deal. Let's explore what this means in practice:

•	 Its modular architecture means we can pick and choose what we use; this 
allows us to keep the size of the library very small and responsive.

•	 Existing processors tend to fall into one of two camps—pre- or  
post-processing—which is a limiting factor when choosing which to use. 
PostCSS allows us to perform both operations within the same process, 
meaning we get the benefits of both worlds of processing!

•	 PostCSS comes with seamless support for all of the common task runners 
such as Gulp, Grunt, or Broccoli; we can combine it with a number of other 
tasks that can be automated.

•	 There are no dependencies for compiling, PostCSS is written entirely in 
JavaScript, so no need for Ruby, or libraries such as libsass, in order to 
compile code. The only dependency (as such) is Node.js—many developers 
will likely already have this installed.

•	 There is no need to learn any new languages; every developer will be familiar 
with JavaScript, and use it in their development process.

•	 We can change any plugin in use for something else when needed; we do not 
get this choice when using a larger library.

•	 Its relatively low barrier of entry means we can create any plugins we need 
very easily, or potentially modify existing ones to better suit our needs.

https://github.com/postcss/postcss
https://github.com/postcss/postcss


Introducing PostCSS

[ 4 ]

•	 PostCSS is quick—in a test using the postcss-benchmark plugin (available 
from https://github.com/postcss/benchmark), which contained parsed 
code, nested rules, mixins, variables, and math, PostCSS came out a clear 
winner:

•	 Perfect—no need to continually update SASS, or have to download a new 
version of the libsass library, right?

Considering some of the pitfalls
Well, there are some considerations to using a custom processor; the key thing to 
remember is that PostCSS is neither a pre- nor post-processor, but more of a Swiss 
Army Knife of a toolbox that we can use to process our CSS code. Let's take a look  
at some of these drawbacks:

•	 Although we don't need to learn a new language in order to use PostCSS, 
creating a custom processor will add a layer of complexity to our 
development process.

•	 Its flexible approach means some may treat PostCSS as either a preprocessor 
or a postprocessor; this short-sighted approach means that you will miss 
opportunities, so it is crucial to keep an open mind in terms of what PostCSS 
can offer your development process.

•	 Converting code from an existing preprocessor to using PostCSS can  
be painful; this process only works if we don't try to convert explicitly,  
but use it as a basis for progressively moving to using PostCSS.

•	 PostCSS requires syntactically correct CSS from the start; although we could 
use any syntax (as PostCSS files are just plain text), compilation can easily 
fail, even through use of a single line comment!

•	 The real benefit of using PostCSS, though, is in its seamless integration into 
tools such as Gulp—imagine this scenario if you will:

You already develop sites using a preprocessor such as SASS. You can compile code 
using a standalone processor, but normally prefer to use Node.js and Gulp to complete 
the task. Sound about right? What about making the move to using PostCSS?

https://github.com/postcss/benchmark


Chapter 1

[ 5 ]

No problem, we can include a section for processing CSS files using PostCSS. The 
key here is to not use PostCSS to perform the initial compilation, but to perform the 
post-processing, such as adding vendor prefixes or minifying the results. Once this 
is established, we can start to incorporate some of the plugins available for PostCSS 
that allow us to replicate functionality, such as from within SASS. Once we've 
adjusted existing code to use the format required by the plugins, we can then switch 
to using PostCSS, and begin to remove our dependency on using SASS.

Clearing up some misconceptions
At this point, it is worth spending a few minutes to help clear up some common 
misconceptions about PostCSS, although many associate it as being a preprocessor, 
or even a postprocessor, this isn't what was intended:

•	 Classing PostCSS as a postprocessor, as opposed to a preprocessor (such 
as Less or SASS) is misguided; PostCSS is capable of compiling in a variety 
of different use-case scenarios, working on code compiled using any 
preprocessor, or just plain CSS.

•	 PostCSS should not be classed as a tool that should be tied in to any one 
process (such as writing SASS-based loops or conditionals). There are plugins 
available to do both, but this is just a small part of the role that PostCSS can 
play in your development workflow.

•	 If you find yourself in a position where "PostCSS" doesn't appear to perform 
as expected, it is unlikely to be PostCSS itself, but more likely to be a plugin 
being used that is causing the issue. Although PostCSS is still relatively 
young, there are plenty of plugins available, so it is worth trying alternatives 
if you can as a first port of call.

Okay, let's move on, I think it's time for less chat and more action, right? Let's get 
stuck in to producing something; there's no better time than now to get PostCSS 
installed and ready for use.

Preparing for exercises in this book
Before we do so, we just need to cover a couple of requirements. First, we need to 
set up a local web server. It's not critical, but gives a better effect. I personally use 
WAMP Server (for PC, from http://www.wampserver.com/en), otherwise, Mac 
users can try MAMP (http://www.mamp.info/en), or the cross-platform Apache 
web server (from http://www.apachefriends.org). In each case, default settings 
should be sufficient.

http://www.wampserver.com/en
http://www.mamp.info/en
http://www.apachefriends.org


Introducing PostCSS

[ 6 ]

The second requirement is to set up a project area; assuming you have set up  
a WAMP as a local web server, go ahead and set up a folder called postcss in  
c:\wamp\www, as shown in this screenshot:

Right, with that out of the way, let's make a start on getting PostCSS installed!

Setting up a development environment
The first step on our journey is to get PostCSS installed—this runs from Node.js;  
we can use any one of several task runner plugins to install it. For the purpose of the 
exercises throughout this book, we will use Gulp; if you prefer, alternatives such as 
Grunt or Broccoli can be used.

When using Node.js, make sure you use the Node.js command prompt, 
and not node.exe; the exercises will not work when using the latter!

Let's make a start with installing Node and Gulp:

1.	 We first need to install Node.js; this is available at http://nodejs.org. 
Make sure you select the right version that is appropriate for your platform:

http://nodejs.org


Chapter 1

[ 7 ]

When installing, accept all defaults; this will be sufficient for the exercises 
throughout this book.

2.	 Next, bring up a Node.js command prompt, enter the following command, 
and press Enter:
node –v

The output shown is the version of Node that is installed; this is a quick 
check to ensure Node.js has indeed been installed correctly:

3.	 Now that Node is installed, we need to create a package.json file to store 
our dependencies for projects. Run this command at the command prompt, 
and press Enter:
npm init

www.allitebooks.com

http://www.allitebooks.org


Introducing PostCSS

[ 8 ]

4.	 Node will prompt for information when creating the package.json file; 
enter the details as shown in the screenshot, or press Enter to accept the given 
default (shown in brackets, after each question):

We now have Node configured and an empty package.json file in place, so let's add 
our dependencies. We will start by adding Gulp first:

1.	 Revert back to the Node.js command prompt (or bring up a new one if you 
closed off the previous session).

2.	 Go ahead and change the working directory to c:\wamp\www\postcss.



Chapter 1

[ 9 ]

3.	 At the command prompt, enter the following command, then press Enter. 
This installs Gulp globally and makes it available for use:
npm install --global gulp

4.	 Once done, we need to install Gulp for use in our project area—go ahead and 
run this command, which will add an entry to the package.json file we 
created earlier in step 3 and step 4:
npm install --save-dev gulp

Once completed, Gulp is now ready for use; we can go ahead and install PostCSS.

A small point on the use of --save-dev: this installs any dependencies 
required to develop using a specific plugin; if we simply need the 
dependencies for running the plugin (in a production environment), 
then we can simply use --save instead.

Installing PostCSS
We're at the interesting stage now—installing PostCSS. PostCSS is available from 
https://github.com/postcss/postcss, and can be installed into Node using a 
Gulp plugin. Let's do that now:

1.	 We'll start by reverting back to the Node.js command prompt session we've 
just used (or a new one, if the previous one is closed).

2.	 At the prompt, go ahead and enter this command, then press Enter:

npm install --save-dev gulp-postcss

If all is well, we should see something akin to this screenshot:

https://github.com/postcss/postcss


Introducing PostCSS

[ 10 ]

On its own, PostCSS doesn't do anything; to make it more useful, we are going to 
install three plugins. We will explore using plugins in greater detail later in the book, 
but for now, don't worry too much about what is happening:

1.	 Enter these commands one by one on the Node.js command prompt, pressing 
Enter after each one:
npm install --save-dev autoprefixer

2.	 Let's check our package.json file; if all is well, we should see something 
akin to this screenshot:

To make it easier to view JSON files in Sublime Text, try installing 
and activating a custom theme, such as MonokaiJSON Plus, 
available to install from https://github.com/ColibriApps/
MonokaiJsonPlus.

PostCSS is now installed for use, but if we try to use it, we probably won't get  
very far, as it needs to be configured for use! Let's take a look at doing that now,  
by creating a simple example that will add vendor prefixes to some sample CSS 
rules, and automatically minify the results.

https://github.com/ColibriApps/MonokaiJsonPlus
https://github.com/ColibriApps/MonokaiJsonPlus


Chapter 1

[ 11 ]

Creating a simple example using 
PostCSS
PostCSS is a fascinating tool; its modular architecture leaves it wide open to being 
used in a variety of different use-case scenarios, or even a mix of several! Throughout 
this book, we'll touch on different uses, before bringing them all together to create a 
processor that can both pre- and post-process files within the same workflow.

To give you a taste of how well it works, we're going to build a simple processor 
now; this will automatically add vendor prefixes and spit out minified versions 
during compilation.

Let's make a start, we've installed the relevant plugins, so let's go create our Gulp 
task file:

1.	 In a new file, add the following code, saving it as gulpfile.js at the root of 
our project area:

2.	 In the project area, create a folder called dest; other folders will be created, 
but these will be done automatically during compilation.

3.	 In a new file, add the following code, saving it as example.css in the src 
folder of our project area:
body {
  display: flex;
  background: green;
}



Introducing PostCSS

[ 12 ]

4.	 Revert back to the Node.js command prompt, then at the command prompt, 
enter the following command and press Enter:
gulp styles

Gulp will now process the instructions in gulpfile.js:

5.	 Within a matter of seconds (almost instantaneously), we should see a 
compiled example.css appear in the dest folder of our project area.

6.	 We can prove PostCSS has done its job properly; go ahead and open up 
example.css in a text editor: if all is well, we should see this:

Perfect, we now have a working PostCSS installation; any time we need to add 
vendor prefixes, we can just fire up our compilation process, and away we go…

Adding source map support
Or do we? Ah, there is much more to PostCSS than simply adding vendor prefixes! 
Remember how I mentioned that PostCSS is often (incorrectly) labelled as a pre- or 
post-processor?



Chapter 1

[ 13 ]

Well, there is much more we can do; one of the key benefits of PostCSS is being 
selective about how we process our code. We're not forced to rely on dependencies 
(such as Ruby for SASS); we can instead produce something that is very light and 
quick. In our previous example, we created a task called styles; we'll change this 
to use the task name default, which will allow us to run multiple tasks from one 
command. This means we can simply call gulp, instead of needing to supply the  
task name.

All of our examples from this point onwards will use this convention 
by default.

Let's put this to the test and start to expand on our compilation process by adding 
source map support—we'll use the source map plugin for Gulp by Florian Reiterer, 
available from https://github.com/floridoo/gulp-sourcemaps:

1.	 We'll start, as always, by installing the plugin using Node—fire up a Node.js 
command prompt, then change to our project area.

2.	 Next, enter this at the command line and press Enter:
npm install --save-dev gulp-sourcemaps

3.	 Open up the gulp file we created back in the Creating a simple example using 
PostCSS section, then add a reference to gulp-sourcemaps as a variable:
var autoprefixer = require('autoprefixer');
var sourcemaps = require('gulp-sourcemaps');

4.	 We then need to add the commands to create the source maps—in the same 
file, alter the code as shown:
.pipe(postcss([ autoprefixer ]))
.pipe(sourcemaps.init())
.pipe(sourcemaps.write('maps/'))
.pipe(gulp.dest('dest/'));

5.	 Save the results, then from the Node.js command prompt, run this command, 
and press Enter:
gulp styles

6.	 If all is well, we should see a new source map appear in the dest folder, 
under a subfolder called maps.
We're a step further in the right direction; we now have a map file for  
our style sheet in the maps folder, created automatically during the 
compilation process.

https://github.com/floridoo/gulp-sourcemaps


Introducing PostCSS

[ 14 ]

It's worth noting that we will make full use of this area—if you see 
any reference to project area throughout the book, this will be 
our given name for this folder.

But, we can do more: although we only have a small CSS file here, it's  
still important to compress it to save on unnecessary bandwidth usage.  
We can easily fix that using PostCSS—let's take a look at how, using the 
cssnano plugin.

Creating minified style sheets
A key part of producing style sheets is minifying the output; this should feature 
as standard in any developer's workflow. Minifying the results will cut down on 
bandwidth usage. In an age of broadband or cable use, this is less critical for smaller 
sites, but should not attract any less importance than for larger sites!

Thankfully, minifying files is a cinch to achieve when working with PostCSS. For 
this next exercise, we will use the cssnano and gulp-rename plugins, available 
from http://cssnano.co/ and https://github.com/hparra/gulp-rename, 
respectively. Let's go ahead and get them installed:

1.	 We'll start by firing up a Node.js command prompt, then entering the 
following and pressing Enter:
npm install -–save-dev cssnano

npm install -–save-dev gulp-rename

Don't close the session window, we will use it later in this exercise.

2.	 Switch to the gulpfile.js file we created earlier (it's stored at the root of our 
project folder), then add the following lines immediately after the last closing 
}) on or around line 12:
gulp.task('rename', ['styles'], function () {
  return gulp.src('dest/example.css')
   .pipe(postcss([ cssnano ]))
   .pipe(rename('example.min.css'))
    .pipe(gulp.dest("dest/"));
});

gulp.task('default', ['styles', 'rename']);

3.	 At the top of the file, we need to add two declarations, otherwise our code 
will fail; go ahead and add the following two lines, as highlighted:
var sourcemaps = require('gulp-sourcemaps');

http://cssnano.co/
https://github.com/hparra/gulp-rename


Chapter 1

[ 15 ]

var rename = require('gulp-rename');
var cssnano = require('cssnano');

4.	 Any sharp-eyed readers may now spot a problem—in the last line, we have 
a reference to styles, yet nothing is shown in the code for this! To fix it, we 
need to change our code. In line 8, change the line as shown:
gulp.task('styles', function() {

5.	 Save the file, then switch back to the Node.js command prompt window and 
enter this command, followed by Enter:
gulp

6.	 Gulp will now compile:

If all is well, we should see the compiled output appear in the dest folder of 
our project area:

In our project area, we not only have the source map file created under maps,  
but now also have a minified style sheet, the latter created by renaming the output 
from cssnano (cssnano does not do this renaming natively, hence use of the  
rename plugin).



Introducing PostCSS

[ 16 ]

Unfortunately though, we still have one small issue—take a look at the contents of 
the maps folder: notice anything? Hopefully, you may spot that the source map file 
is there for the uncompressed version of our style sheet, but not the compressed one! 
Let's fix that now. To do so, we just need to use the rename task in our Gulp file,  
as shown:

    .pipe(rename('example.min.css'))
    .pipe(sourcemaps.init())
    .pipe(sourcemaps.write('maps/'))
    .pipe(gulp.dest("dest/"));

Try running Gulp now. If all is well we should see the source map appear for our 
minified style sheet:

Let's finish off our gulp file; the last stage is to add a watch facility, so that changes 
are compiled automatically as soon as files are modified.

Altering to compile automatically
Adding a watch facility is simple when using Gulp. It helps reduce the manual effort 
required when using Gulp, as we only need to fire off the Gulp task file once, and it 
will continue to apply the tasks each time files are changed.

Unlike other plugins, we don't need to install any plugins for this; simply add the 
highlighted lines from the following to the gulpfile.js file:

gulp.task('default', ['styles', 'rename', 'sourcemaps']);

var watcher = gulp.watch('src/*.css', ['default']);
watcher.on('change', function(event) {
  console.log('File ' + event.path + ' was ' + event.type + ',  
    running tasks...');
});



Chapter 1

[ 17 ]

We can see the results of the addition to our gulp task file, and how it all comes 
together, in this screenshot:

At this point, we can save the file then re-run the gulp command as before; this time 
it will automatically recompile any file that has changed, from within the src folder. 
In this instance, we've added an event handler to log an indication into the session so 
we can tell what is happening; we can easily modify this if needed.

We now have a basic working system; we will begin to add to this over the next  
few chapters, toward building up our own processor. There is one small thing we 
should cover though: it's not essential, but a useful tip for developing with PostCSS. 
I'm talking about linting your code, to ensure it is valid; let's dive in and get this set 
up for use.



Introducing PostCSS

[ 18 ]

Linting code using plugins
It goes without saying that linting code should be part of any developer's workflow. 
There are lots of different ways to achieve this, depending on the tools you use.  
The beauty of PostCSS is that we can easily add a suitable linting capability  
to our processor, using the stylelint plugin for PostCSS (available from  
http://stylelint.io/).

Why would we do this? Easy: we can get a single consistent result throughout. This 
becomes essential if you work as part of a team; instead as different team members 
using inconsistent settings, we can set up a central point for processing, to retain a 
consistent output. Moving the linting process to our central workflow means the 
server can do the grunt work for us, and provide a consistent result anytime for 
anyone running the process.

With this in mind, let's take a look at how we can set up our linting capability:

1.	 We start as always by installing our plugin. For this, fire up a Node.js 
command prompt, then change to the root of our project area.

2.	 At the command prompt, enter this command, followed by Enter:
npm install stylelint

If all is well, we should see this appear at the prompt:

3.	 Next up, we need to install a second plugin—there is a reporter function 
within stylelint that posts any messages to console (or in this case, screen). 
The plugin is postcss-reporter, and is available at https://github.com/
postcss/postcss-reporter. We can install it thus:

http://stylelint.io/
https://github.com/postcss/postcss-reporter
https://github.com/postcss/postcss-reporter


Chapter 1

[ 19 ]

4.	 With the plugins installed, we need to update our gulp file; add the 
following lines immediately below the last var line shown:
var cssnano = require('cssnano');
var stylelint = require('stylelint');
var reporter = require('postcss-reporter');

5.	 Immediately, below the rename task in the Gulp file, add this task—this takes 
care of linting our code, and flagging any errors on-screen:
gulp.task("lint-styles", function() {
  return gulp.src("src/*.css")
    .pipe(postcss([ stylelint({ 
      "rules": {
        "color-no-invalid-hex": 2,
        "declaration-colon-space-before": [2, "never"],
        "indentation": [2, 2],
        "number-leading-zero": [2, "always"]
      }
    }),
    reporter({
      clearMessages: true,
    })
  ]))
});



Introducing PostCSS

[ 20 ]

6.	 Open a copy of example.css from the root area of our project folder and 
change the color to #fff1az.

7.	 Back in the Node.js command prompt, enter this command and press Enter:
gulp

8.	 Gulp will begin to process our code; if all is well, it should flag a warning:

It shouldn't take much effort to spot that #fff1az is clearly not a valid number! 
Stylelint has correctly identified it, using the highlighted rule from our configuration:

    .pipe(postcss([ stylelint({ 
        "rules": {
          "color-no-invalid-hex": true,
          …
        }
      }),

Let's explore how this plugin works for a moment—the great thing about it is 
that there are simply dozens of rules available (which you can see at https://
cdn.rawgit.com/stylelint/stylelint/1.0.0/docs/rules.md). It works by 
concatenating together what is being checked (in this case, color) and the check 
being run against it (in our case, -no-invalid-hex, or checking for invalid hex 
numbers). We can apply any number of rules in our configuration object, to ensure 
that the output is consistent for all projects.

https://cdn.rawgit.com/ stylelint/stylelint/1.0.0/docs/rules.md
https://cdn.rawgit.com/ stylelint/stylelint/1.0.0/docs/rules.md


Chapter 1

[ 21 ]

If you would like to get a feel for how the rules can be put together, 
then check out the user guide at https://cdn.rawgit.com/
stylelint/stylelint/1.0.0/docs/user-guide.md, with 
more examples of rules available at https://cdn.rawgit.com/
stylelint/stylelint/1.0.0/docs/rules.md.

Okay, let's move on: we will begin to look at compiling code in more detail from the 
next chapter, but for now, let's take a look at how PostCSS works in more detail, and 
how we can begin to make the move from our existing processor to PostCSS.

Exploring how PostCSS works
So far, we've covered the basics of setting up and using PostCSS. It's worth taking 
a moment to learn about how it works, to better understand how we can use it and 
develop our own plugins for the platform.

PostCSS is like me on a Saturday morning after a good night out: it does nothing! 
Yes, it's true, by itself, the application doesn't do anything at all; it's when we add 
plugins into the mix that it starts to become useful.

The key to PostCSS is treating it as an enabler, it is not meant as a direct replacement 
for your existing preprocessor, or even postprocessor, but to complement them.  
It works on the basis of parsing code, processing it with any assigned plugins,  
and rendering the results:

https://cdn.rawgit.com/stylelint/stylelint/1.0.0/docs/user-guide.md
https://cdn.rawgit.com/stylelint/stylelint/1.0.0/docs/user-guide.md
https://cdn.rawgit.com/stylelint/stylelint/1.0.0/docs/rules.md
https://cdn.rawgit.com/stylelint/stylelint/1.0.0/docs/rules.md


Introducing PostCSS

[ 22 ]

It works by parsing content into an Abstract Syntax Tree (or AST) with a series of 
nodes. Each node in the tree contains a symbolic representation of an element in your 
code. In other words, if you had a condition statement that pointed to three possible 
outcomes, then the AST would have a single node, with three branches representing 
the possible outcomes.

For an example of an AST, take a look at http://jointjs.com/
demos/javascript-ast, which shows the breakdown of a 
simple arithmetic function using plain JavaScript.

Our AST is then sent through one or more plugins (we must always use one plugin, 
but can have many in our gulp file). It then converts the code to a long string, 
before processing it through any assigned plugins and spitting out the result in the 
form of valid CSS. We can use this as a basis for creating our own plugins, using 
the boilerplate code and API that are both available from the main PostCSS site on 
GitHub.

The trick to the plugin stage is in the mix of plugins we must use to satisfy our needs; 
the better ones should only perform one role. Any that perform multiple tasks are 
less ideal, as they are likely to contain excess functionality that we don't need in our 
projects.

Making the move from SASS
Assuming we decided to use PostCSS, there is almost always one question at the top 
of everyone's mind: how do we make the move?

In short, the key here is not to simply assume existing code can be put through  
the PostCSS process, as it will likely not work. Instead, we should take an iterative 
process, and begin to convert low-hanging fruit to using PostCSS. The process will of 
course require some work, but there are tips on how we can reduce the pain involved 
in making the switch to PostCSS.

The key to making the transfer is to work out what functionality needs to be 
processed, then to create the initial framework for a build process (for example,  
a Gulp or Grunt task file), then to gradually add in plugin support one by one,  
until you have a fully working compiler.

http://jointjs.com/demos/javascript-ast
http://jointjs.com/demos/javascript-ast


Chapter 1

[ 23 ]

We can take this a step further, and use plugins that replicate SASS code format into 
PostCSS; an ideal plugin to start with is Autoprefixer, followed by plugins such as 
postcss-mixins or postcss-partial-import. We will explore using SASS as a 
basis for a custom syntax in Chapter 11, Manipulating Custom Syntaxes, where we will 
use these two plugins, and more, to help make the transition process easier and help 
remove the dependencies on preprocessors such as SASS or Less. Oh, and above all, 
being based on JavaScript makes it portable; what more could a developer ask for, I 
wonder?

Many of the SASS format plugins for PostCSS now come in the 
PreCSS pack. We will explore using this in Chapter 10, Building 
a Custom Preprocessor.

Okay, on we go. Over the course of the next few chapters, we will take a look at 
different processor elements that are commonly used to create build processors, such 
as variables or mixins. We'll see how they might typically be written in processors 
such as SASS or Less, then work on converting our code to use PostCSS equivalents 
before processing to produce valid CSS. We will then finish up with pulling 
everything together to build your own custom processor for use in future projects.

Summary
Writing valid CSS is an art that has been present since the dawn of the Internet; this 
takes skill, patience, and time to produce and perfect any masterpiece. Processors 
such as SASS or Less have helped to make the process more efficient, but are 
not without their drawbacks; PostCSS allows for a more customized approach, 
but without the extra baggage. We've covered a few key points around PostCSS 
throughout this chapter, so let's take a moment to review what we've learned.

We began with a brief look at the art of processing, before introducing PostCSS as a 
tool. We then explored some of the benefits and drawbacks of using it, and how it 
can fit in seamlessly with your existing development workflow, with a little careful 
planning.

Next up, we covered the installation of PostCSS along with Gulp as the task  
runner/host process, before embarking on a simple demo to introduce how the 
compilation process works, and that with the right choice of plugins, we can take  
out some of the manual grunt work required to manage our code (pun intended!). 
With our code compiling, we then turned our attention to adding a watch facility, and 
automatic support for linting our code, to ensure we maintain consistent standards.



Introducing PostCSS

[ 24 ]

We then rounded out the chapter with a look at how PostCSS works, and 
understanding something of its architecture, so that we can begin to make the  
move from using plain CSS or an existing preprocessor, to using PostCSS.

Phew, we've certainly covered a lot; it's time to really get stuck in now, and start 
to use PostCSS in earnest. Over the next few chapters, we will explore a number 
of different concepts that are common to existing preprocessors, and explore how 
we can benefit from making the transition to using PostCSS. We have to start 
somewhere, so we'll kick off with using variables, functions, and mixins in the  
next chapter, and see how we can use some of the techniques from processors,  
but without the associated baggage!



[ 25 ]

Creating Variables and Mixins
A question: how often have you created components such as buttons, where you've 
used very similar colors multiple times throughout your code? It's a real pain to 
manually alter. Using a preprocessor such as SASS or Less makes it easier, but with 
the overhead of a full-sized library.

Can we do it differently? Absolutely; throughout the next few chapters, we'll explore 
different elements of PostCSS, before pulling it all together to produce a preprocessor 
application later in the book. We'll begin our journey with a look at using variables 
and mixins; we'll explore the basics of creating them first, before transitioning to 
support using PostCSS. In this chapter, we'll cover the following topics:

•	 An overview of creating variables and mixins using existing preprocessors
•	 Transitioning to using PostCSS equivalents
•	 Adding mixin support to PostCSS
•	 Examining the differences between standard preprocessors and PostCSS

Let's get cracking!

Introducing variables and mixins
So far, we've covered the basics of installing and configuring PostCSS—although 
there are a few steps involved, it's an easy process to get started with using the 
processor. To really get to know it though, there is no substitute for using it in anger; 
it's amazing how much you can automate, with just a little care and planning!

Let's put that to the test and use it to create a couple of simple examples using 
variables, functions, and mixins. We'll start with creating the original version using 
SASS, before converting it to use PostCSS plugins. The demos do assume a level of 
prior knowledge around using SASS, so if you are at all unfamiliar, then you may 
like to refer to my book, SASS Essentials, available from Packt Publishing.



Creating Variables and Mixins

[ 26 ]

A word of note: we will make good use of the project folders we 
created back in Chapter 1, Introducing PostCSS, where src will be our 
in-tray, and dest will contain the compiled code. Make sure you 
have this open in a window somewhere on your desktop!

Okay, the first step in this process is to get SASS installed, so let's take a look at  
that now.

Setting up SASS
Setting up SASS is really easy when using Gulp; we can use the same format of 
command to install it as we do for other plugins. The source code for the plugin is 
available at https://github.com/dlmanning/gulp-sass; it's a lightweight frontend 
for node-sass, which in turn is a Node binding for the C+ library, libsass.

Let's dive in and take a look at getting it installed:

1.	 We start, as usual, with Node. Fire up a Node.js command prompt session, 
then change to the working directory.

2.	 At the command prompt, enter the following, then press Enter:
npm install --save-dev gulp-sass

3.	 If all is well, we should see something akin to this screenshot:

Before we continue, though, I would recommend clearing out or saving the contents 
of the dest folder elsewhere for safe keeping, after each exercise:

1.	 Next up, open a copy of gulpfile.js in Sublime Text; we need to make a 
number of changes, beginning with adding a reference to the gulp-sass 
plugin (as highlighted):

https://github.com/dlmanning/gulp-sass


Chapter 2

[ 27 ]

var reporter = require('postcss-reporter');
var sass = require('gulp-sass');

SASS will, by default, produce code in unminified format; the addition of 
{outputStyle: 'compressed'} in the task will automatically compress the 
output code. This makes this line redundant, so go ahead and remove it:
var cssnano = require('cssnano');

2.	 We also need to remove the reference to cssnano on or around line 19, so go 
ahead and remove this line:
.pipe(postcss([ cssnano ]))

3.	 On or around line 10, change the name of the styles task to autoprefixer 
and the dependency name to lint-styles:
gulp.task('autoprefixer', ['lint-styles'], function() {
return gulp.src('src/*.css')

Then remove these two lines:
.pipe(sourcemaps.init())
.pipe(sourcemaps.write('maps/'))

4.	 In the rename task, modify the rename task to match this:
gulp.task('rename', ['lint-styles'], function () {
  return gulp.src('dest/*.css')
    .pipe(rename('style.min.css'))
    .pipe(sourcemaps.init())
    .pipe(sourcemaps.write('maps/'))
    .pipe(gulp.dest("dest/"));
});

5.	 On or around line 25, we need to add in the lint-styles task—go ahead 
and add in this block of code, which will check our styles for consistency:
gulp.task("lint-styles", ['sass'], function() {
  return gulp.src("src/*.css")
    .pipe(postcss([ stylelint({
      "rules": {
        "color-no-invalid-hex": 2,
        "declaration-colon-space-before": [2, "never"],
        "indentation": [2, 2],
        "number-leading-zero": [2, "always"]
      }
    }),
    reporter({
      clearMessages: true,
    })
  ]))
});

www.allitebooks.com

http://www.allitebooks.org


Creating Variables and Mixins

[ 28 ]

6.	 We're almost done. Add in the next task; this tells Gulp about how we should 
compile any SASS files presented to the task runner:
gulp.task('sass', function () {
  gulp.src('src/*.scss')
    .pipe(sass({outputStyle: 'compressed'}).on('error',  
      sass.logError))
    .pipe(gulp.dest('src/'));
});

7.	 We need to make a couple more changes. The key task that fires off a call to 
each of the sub tasks needs to be updated, to reflect the changes to our tasks:
gulp.task('default', ['sass', 'lint-styles',  
  'autoprefixer', 'rename']);

8.	 Our last change is to alter the watch facility to check for SASS files, and not 
pure CSS; go ahead and change the configuration object as shown:
var watcher = gulp.watch('src/*.scss', ['default']);

At this point, we have set up our processor to compile SASS files to valid CSS. We 
can prove this by compiling any SASS file. If all is well, our processor will produce 
valid style sheets and accompanying source map files automatically. Let's put this  
to the test as part of our next exercise, where we create an intriguing hover effect  
for images.

Creating a hover effect example
If you've seen any of my previous books, then you will see I have a thing about 
flowers, and in particular orchids; indeed, the cover on my first book was that of a 
phalaenopsis, or moth orchid! We'll use a couple of images of orchids as the basis for 
our next demo, as shown in the screenshot over the page, where it shows our desired 
effect in motion for the top image.

If you prefer using Less, then please skip to the end of this demo 
for an example using Less CSS.

For this demo, we will need a copy of the tutorial1A folder from the code 
download that accompanies this book; make sure you dig that out before continuing:

1.	 Open up a copy of style.scss from the src folder within tutorial1A; let's 
take a look at its contents.



Chapter 2

[ 29 ]

2.	 At the top of the file, we have a small handful of variables. These define some 
of the colors used within the code, and set the $fullsize variable to 100%:

The sharp-eyed among you will spot that not all colors have been given a 
value; the reason for this will become clearer later in this chapter.

3.	 Next up comes an example of a simple mixin, which converts pixel values to 
their rem unit equivalents, using 16px as the base equivalent for 1rem unit:

4.	 To complete the exercise, we need to download a font. The demo uses the 
Source Sans Pro font available at http://www.fontsquirrel.com/fonts/
source-sans-pro. Go ahead and download it; you will need to use the 
Generator option available from the black menu to produce a version that 
can be used online (it creates the CSS we've used in our demo).

5.	 At this point, go ahead and drop a copy of the style.scss file from the 
tutorial1A folder into the src folder in our project area.

6.	 We also need the img folder and the index.html file—go ahead and copy 
both across to the root of our project area.

7.	 Fire up a Node.js command prompt window, then enter this at the prompt 
and press Enter:
gulp

8.	 If all is well, we should see compressed CSS files and source maps appear in 
the dest folder in our project area—copy the maps folder and style.min.
css into the css folder of tutorial1A.

http://www.fontsquirrel.com/fonts/source-sans-pro
http://www.fontsquirrel.com/fonts/source-sans-pro


Creating Variables and Mixins

[ 30 ]

9.	 Go ahead and preview the results in a browser. If all is well, we should see 
two orchid images appear on screen; if you hover over either one, you will 
see it fly to the left or right, to reveal an information box with information 
about the orchid:

Interesting effect, huh? It's a simple animation that uses scale() to shrink the image 
to 0.5 (or 50%) of its size and slides it to the right, before sliding in the infobox 
immediately behind it. Take the mouse off the image and the reverse happens—it's 
the sample principle for the second image—but in reverse; the code sets an ltr and 
rtl class to determine which direction the image should move in the demo.



Chapter 2

[ 31 ]

Using Less CSS as an alternative
A copy of this demo using the equivalent code from the Less CSS pre-processor is 
available in the code download that accompanies this book. It's in the Tutorial1B 
folder if your preference is to use the Less CSS pre-processor; you will need to install 
the gulp-less plugin from https://github.com/plus3network/gulp-less, using 
NodeJS (in the same manner as other plugins that we've installed). An updated copy 
of the Gulp task file is also included in this folder, along with completed versions of 
the CSS code.

Transitioning to using PostCSS
Up until now, we've used SASS to build our demo; granted, it's not a particularly 
complex one, but as I always say, we must start somewhere!

Our demo is a perfect example of how we can introduce PostCSS to provide 
replacements for the SASS variables and mixins we've used—for this, we will  
avail ourselves of three plugins, namely postcss-variables, postcss-mixins,  
and postcss-calc. The first two should be self-explanatory; the third is required  
in the replacement font mixin that we've used in our code.

Okay, enough chit-chat, let's get stuck in and begin to alter our code; we'll start with 
adding variable support.

Adding variable support to PostCSS
The beauty of PostCSS plugins is that most (if not all) can be installed using the same 
method as PostCSS itself, we can use the package manager of Node.js to handle  
the process.

We'll start with postcss-css-variables, which we will use to handle variable 
support; the source for this plugin is available from https://github.com/
MadLittleMods/postcss-css-variables. Let's get it installed:

1.	 Fire up a NodeJS command prompt, then change the working directory to 
our project area.

2.	 At the command prompt, enter the following command, then press Enter:
npm install --save-dev postcss-css-variables

https://github.com/plus3network/gulp-less
https://github.com/MadLittleMods/postcss-css-variables
https://github.com/MadLittleMods/postcss-css-variables


Creating Variables and Mixins

[ 32 ]

3.	 If all is well, we should see the results of the installation appear, as shown in 
this screenshot:

At this point, Node will have also added an entry to the package.json file for the 
new plugin. Perfect—we can now put it to good use and switch to using the plugin 
in place of using SASS. Let's take a look at how to achieve this, as part of  
the upcoming exercise.

Updating our hover effect demo
If we're altering code to use PostCSS for the first time, it naturally makes sense to 
start with something simple; incorporating variables and mixins into our code is the 
perfect place to begin.

For this next exercise, we're going to create a handful of variables to store some values, 
then add a mixin to handle styles for the fonts used in the demo. Let's make a start:

1.	 We'll start by opening up a copy of gulpfile.js from the root of our project 
area—we first need to make some changes to accommodate using the new 
plugin.

2.	 In gulpfile.js, add this line immediately below the first block of var 
statements—this should be on or around line 9:
var cssvariables = require('postcss-css-variables');

3.	 We now need to make some changes to our gulp task file—we'll start with 
the simplest, which is to remove the var reference to SASS, as we will no 
longer need it:
var sass = require('gulp-sass');

Now that we have a reference to the postcss-css-variables plugin, we 
need to make use of it in our tasks. Go ahead and amend the highlighted 
lines of code in the autoprefixer task, as indicated; this also removes the 
dependency on the lint-styles task, as this is no longer needed:



Chapter 2

[ 33 ]

gulp.task('autoprefixer', function() {
  return gulp.src('src/*.css')
  .pipe(postcss([ autoprefixer, cssnano,  
    cssvariables(/* options */) ]))
  .pipe(gulp.dest('dest/'));

4.	 Note that we've also reinstated the cssnano command—you will also need to 
add this line in as a variable declaration, as indicated:
var rename = require('gulp-rename');
var cssnano = require('cssnano');

5.	 A little further down, on or around line 25, change the code as highlighted,  
as we will no longer use SASS to compile our code; we can tweak the order  
in which each task is run:
gulp.task("lint-styles", ['autoprefixer'], function() {

6.	 Next up, we can remove the SASS task in its entirety:
gulp.task('sass', function () {
  gulp.src('src/*.scss')
  .pipe(sass({outputStyle: 'compressed'})
    .on('error', sass.logError))
    .pipe(gulp.dest('src/'));
});

7.	 Toward the end of the file, go ahead and alter the default task as indicated—
we don't need to call the SASS task, as it has now been removed:
gulp.task('default', ['lint-styles',  
  'autoprefixer', 'rename']);

8.	 Alter the gulp.watch command to look for plain CSS files in the src folder—
we're not using SASS, so the reference to scss format files is now invalid and 
needs to be changed:
var watcher = gulp.watch('src/*.css', ['default']);
watcher.on('change', function(event) {

At this point, if all is well, we should have a working gulp task file that we 
can now use to compile our code. Let's go ahead and start to convert the code 
in our orchid demo, to use PostCSS:

9.	 We'll start by saving a copy of the Tutorial2 folder from the code download 
that accompanies this book, locally, to within the project area we created 
under c:\wamp\www, back in Chapter 1, Introducing PostCSS.

10.	 Open up a copy of style.css from within the src folder of the Tutorial2 
folder. At the top of the file, remove lines 1 to 14 (the variables and mixin 
code), so that the file starts with the font-face declaration.



Creating Variables and Mixins

[ 34 ]

11.	 In its place, add the following lines—these are the replacement variable 
assignments:
:root {
  --dark-grayish-green: #868a7b;
  --very-dark-gray: #333333;
  --white: #fff;
  
  --fullsize: 100%;
}

12.	 Further down, look for the html, body { declaration, and alter it as 
indicated—note the syntax used for the var statements; this is not the  
same as standard SASS. We've changed it to the format supported by  
the postcss-css-variables plugin:
html, body {
  width: var(--fullsize);
  padding: 0;
  margin: 0;
  height: var(--fullsize);
  min-width: var(--fullsize);
  max-width: var(--fullsize);
  overflow: hidden;
  background: var(--dark-grayish-green);
}

13.	 We added the --fullsize variable at the top of our style sheet—let's make 
use of it now and update the img rule accordingly:
img {
  width: var(--fullsize);
  height: var(--fullsize);
}

14.	 The final change we will make is to the .info class—go ahead and alter the 
background attribute as indicated:
/* ------ Hover Effect Styles ------ */
.info {
  background: var(--very-dark-gray);
}

Our code changes are complete, so go ahead and save the file—once done, 
fire up a NodeJS command prompt, and change to the project working area.

15.	 Save the file as styles.css into the src folder of our project area.



Chapter 2

[ 35 ]

16.	 Switch to the NodeJS command prompt, then enter the usual command at 
the prompt, and press Enter:
gulp

17.	 Copy the compiled code back to the css folder within Tutorial2. If all is 
well, when we preview the results in a browser, we should see our demo 
continue to work as shown at the start of the first part of this exercise.

Phew, there were a fair few steps there! There is a copy of the completed stylesheets, 
both prior to and post compilation, available in the code download that accompanies 
this book: they can be found in the css | completed folder. You will need to rename 
the two style sheet files to just style.css for them to work correctly.

If you want to see the effects of compiling variables, without committing changes 
to code, then have a look at the playground offered with this plugin, at https://
madlittlemods.github.io/postcss-css-variables/playground/. It's a great 
way to get accustomed to using the postcss-css-variables plugin, before diving 
in and editing production code.

Okay, let's change tack; we've covered a number of key concepts in our demo,  
so let's take a moment to let the proverbial dust settle, and explore what we've 
learned through the demo.

Taking it a step further
Over the last few pages, we've created a simple demo, which shows off animated 
information boxes for a couple of orchid images. There's nothing outrageous or 
complex about what we've done, but nevertheless, it serves to illustrate some key 
points about using this plugin, and PostCSS in general:

•	 Although we used SASS to precompile our CSS code prior to conversion,  
we could easily have used another pre-processor, such as Less CSS or Stylus. 
The key here is to work as much as possible within the confines of a task 
runner such as Gulp, so that we don't need to introduce another technology 
into the mix.

•	 It is essential to note that although converting the code looks straightforward, 
the plugin does not compile in the same manner as pre-processors such as 
SASS would compile. It makes a direct translation from SASS to Less CSS 
difficult for anything more than simple code.

https://madlittlemods.github.io/postcss-css-variables/playground/
https://madlittlemods.github.io/postcss-css-variables/playground/


Creating Variables and Mixins

[ 36 ]

•	 In this example, the key to understanding how it works is to follow the 
CSS Custom Properties Module Level 1 document from the W3C, which is 
available at https://drafts.csswg.org/css-variables/. The trick here 
is to be aware of CSS specificity, or which element takes precedence over 
others; in this respect, PostCSS does not simply replace variables with values, 
but compiles code based on calculating CSS specificity. When using PostCSS, 
it is likely you will see the :root pseudo-element being used frequently—it's 
worth getting acquainted with how it works!

For an explanation of how CSS specificity works, please refer 
to http://vanseodesign.com/css/css-specificity-
inheritance-cascade/. If needed, we can consider using a 
plugin to increase specificity—check out the postcss-increase-
specificity plugin at https://github.com/MadLittleMods/
postcss-increase-specificity.

•	 The modular nature of PostCSS means that we can be selective about the 
plugins we use—in this instance we used the postcss-css-variables 
plugin, which gives more flexibility than others such as postcss-custom-
properties. As an alternative, we might consider separating our variables 
into a separate document, and import them in using the postcss-constants 
plugin (which is available at https://github.com/macropodhq/postcss-
constants).

•	 If we use the postcss-css-variables plugin, we can either store the values 
in the code itself, or hive them off into the gulp task file; an example of the 
latter would look like this:
var postcss = require('postcss');
var cssvariables = require('postcss-css-variables');

postcss([
  cssvariables({
    variables: {
      '—foo-var': { '100px', isImportant: true },
      '--other-var': { value: '#00CC00' },
      '--important-var': { value: '#ffCC00' }
    }
  })
])
.process(css, opts);

In short, we create a reference to each variable within the configuration object for 
cssvariables, as the alias for the postcss-css-variables plugin.

https://drafts.csswg.org/css-variables/
http://vanseodesign.com/css/css-specificity-inheritance-cascaade/
http://vanseodesign.com/css/css-specificity-inheritance-cascaade/
https://github.com/MadLittleMods/postcss-increase-specificity
https://github.com/MadLittleMods/postcss-increase-specificity
https://github.com/macropodhq/postcss-constants
https://github.com/macropodhq/postcss-constants


Chapter 2

[ 37 ]

Creating an object map using this approach can have mixed benefits. For some, it 
reduces issues around separation of concerns, where we can keep more PostCSS 
code within the task file, and less within our style sheet. This can make for a task 
file that is harder to read; it's not a good route to take if you have lots of variables to 
define. In this instance, we would be better off exporting them to an import file and 
referencing them at compilation.

If there is one important message at this point, it can be that of flexibility—the 
modular nature of PostCSS means that we can be free to pick and choose how we 
proceed; it really is a case of weighing up the pros and cons of using a plugin, and 
making a decision as to whether this best fits our needs, or if we need to look for an 
alternative solution.

Setting the order of plugins
At this point, there is a key part of PostCSS we need to cover: the order we use when 
calling plugins in our task runner file. This might seem a little odd, but there are two 
good reasons for considering this when developing with PostCSS:

•	 The first reason is simple—it's about making sure that we maintain a logical 
order of when tasks are completed at compilation.

•	 The second is a little more obscure, and will come with experience—some 
plugins need to be defined in the task file in a certain order, for them to  
work correctly.

Let's explore what this means:

If we take a look at the gulp task file that we've slowly been building up, you will 
notice a key difference between lines 13 and 19; and no, it's not the task name, before 
you ask! The difference is the ['lint-styles'] constraint—this forces Gulp not to 
run this task until its predecessor has completed:

I know this might sound like common sense, and that I am only preaching what you 
may already know, but getting the order that plugins are called in PostCSS is critical 
to the successful compilation of your file.



Creating Variables and Mixins

[ 38 ]

As an example, when researching for this book, I frequently found that either my 
source map was only being produced for an uncompressed version of my style sheet, 
or that the minified style sheet wasn't being created at the right point. Simple issues, 
but tweaking the order can have a serious impact on what happens and when!

Continuing with the theme of order, it is likely you may see notes akin to this when 
browsing the source site of a PostCSS plugin:

This underlines why getting the order of your plugins is essential for an effective 
result: not only will tasks be completed in the right order and produce the expected 
results, but some plugins won't even work. This should not necessarily be taken as 
being a fault; there will be a valid reason that means plugin X must come before 
plugin Y. The key thing here is that we take any constraints into consideration. It 
is worth checking, as others may add patch support to remove constraints, or fix it 
through forking their own version of the plugin.

Okay, time to change focus and take a look at some different functionality: mixins. 
For the uninitiated, this is a key function frequently used in preprocessors such as 
SASS, where we can mix-in (yes, pun intended!) blocks of code.

The idea here being that we can create anything, from a simple few lines to a 
complex, dynamic code excerpt that PostCSS will compile into our code and use to 
produce valid CSS. Let's dive in and take a closer look.

Creating mixins with PostCSS
Our orchid demo so far uses a number of variables to define values in our code. 
While this works well, it is somewhat limiting; after all, creating lots of variables  
to handle different values is an expensive use of resources!

A smarter approach is using mixins; this works well when we can group several 
statements together as a single definition, then clone this definition into multiple  
rule sets. Users of pre-processors will of course recognize this functionality; the 
PostCSS team have created a plugin to offer similar functionality within PostCSS.



Chapter 2

[ 39 ]

The plugin source is available from https://github.com/postcss/postcss-
mixins, and can be installed via Node, using the same method we've covered 
throughout this chapter. We will also make use of the postcss-calc plugin (from 
https://github.com/postcss/postcss-calc) to create a simple mixin that 
handles pixel fall-back for rem values in our code. Let's dive in and see how it works 
in action:

1.	 We'll start—as always—by installing the postcss-mixins plugin; for this, 
fire up a NodeJS command prompt, then change the working folder to our 
project area.

2.	 At the prompt, enter each command separately, pressing Enter after each:
npm install --save-dev postcss-mixins
npm install --save-dev postcss-calc

3.	 If all is well, we should see the results of the output on-screen, as shown in 
this screenshot:

Updating our hover effect demo
At this point we will have support for mixins within PostCSS installed. Let's make 
use of them by updating our gulp task file and style sheet. We'll begin with the gulp 
task file:

1.	 Let's start by opening a copy of gulpfile.js from our project area, then 
adding the following lines immediately below the block of var declarations 
(on or around line 10):
var cssmixins = require('postcss-mixins');
var calc = require('postcss-calc');

2.	 Next, go ahead and alter this line, from within the autoprefixer task:
.pipe(postcss([ autoprefixer, cssvariables(/* options */),  
  cssmixins(/* options */), calc(/*options*/) ]))

https://github.com/postcss/postcss-mixins
https://github.com/postcss/postcss-mixins
https://github.com/postcss/postcss-calc


Creating Variables and Mixins

[ 40 ]

3.	 Save the file. We now need a copy of the demo files from the code download 
that accompanies this book—go ahead and save a copy of Tutorial3 to 
within our project area.

4.	 Open a copy of style.css from within the src folder, then add this block of 
code immediately after the variable declarations declared in the --root rule:
@define-mixin fontstyle $size, $color {
  font-size: $(size)px;
  font-size: calc($size/16)rem;
  color: $color;
}

5.	 With the mixin in place, we now need to adjust our code to make use of the 
mixin; this requires a few changes. The first change is in the h3 rule declaration:
h3 {
  @mixin fontstyle 32, #fff;
  text-transform: uppercase;

6.	 A little further down, go ahead and change the first two lines of the .info 
h3 rule, as indicated:
.info h3 {
  @mixin fontstyle 20, #fff;

7.	 The third and final change is in the rule for .info p. Change it as shown:
.info p {
  @mixin fontstyle 12, #bbb;
  padding: 50px 5px;

8.	 Save the file, then copy it to the src folder in our project area.
9.	 Fire up a NodeJS command prompt, then switch to the project area, enter the 

usual command at the prompt, and press Enter:
gulp

You may see some option messages from stylelint: these 
can be safely ignored for now, but we will explore how to 
optimize this later in the book.

10.	 Copy the compiled code back to the src folder within Tutorial3. If all is 
well, when we preview the results in a browser, we should see our demo 
continue to work as shown at the start of the first part of this exercise.



Chapter 2

[ 41 ]

Although our demo won't appear any different, there will be a noticeable difference 
in the code—a quick peek using a DOM inspector such as Firebug shows the use of 
rem values:

The use of mixins does raise some important points. Indeed, one might be forgiven 
for thinking they simply replicate functionality from SASS. The plugin we've used 
does not follow the same format, even if the principles are the same; let's pause for  
a moment and take a look at how these stack up against standard processors.

Comparing PostCSS to standard processors
The use of mixins is a great way to automatically insert pre-defined blocks of code, 
either static or dynamic, into our stylesheet, at the compilation phase.

The key thing to note is that, although the end result may be similar, the similarity 
is just in name; the mixin plugin we've used was not designed to replicate existing 
functionality available within SASS. Instead, this plugin exposes the power of 
JavaScript within PostCSS, and should be used to define function mixins, as a 
replacement for if or while statements that are not available within PostCSS.

This is particularly true if we need to change any property names within the mixin; 
an example of this would be when referencing multiple images that each need 
similar style classes to be applied:

require('postcss-mixins')({
  mixins: {
    icons: function (mixin, dir) {
      fs.readdirSync('/images/' + dir).forEach(function (file) {
        var icon = file.replace(/\.svg$/, '');
        var rule = postcss.rule('.icon.icon-' + icon);
        rule.append({



Creating Variables and Mixins

[ 42 ]

          prop:  'background',
          value: 'url(' + dir + '/' + file + ')'
        });
        mixin.replaceWith(rule);
      });
    }
  }
});

If we were to call this mixin with @mixin icons signin; from our code, we would 
see this as a result:

.icon.icon-back { background: url(signin/back.svg) }

.icon.icon-secret { background: url(signin/secret.svg) }

This does pose an interesting question: where should the cut-off point between using 
JavaScript in our task file be, in comparison to our CSS? Taking this approach does 
mean that we have the benefit of using standard JavaScript, but at the expense of 
simplicity!

This is one of the decisions you will need to make as a developer. PostCSS's flexibility 
means that not only do we need to choose the right plugin, but that the order they 
are all called in can also have an effect on the outcome of our code. In this instance, 
an alternative plugin—postcss-simple-vars—shares the same syntax as postcss-
mixins, but does not support changing of property names.

We can also consider using the postcss-nested plugin if our mixins 
are stored within nested statements; this is something we will cover in 
the next chapter.

But, to bring it back to our example: we used the classic mixin for providing pixel 
fall-back when using older versions of IE.

We could have used an alternative plugin here, in the form of postcss-simple-
mixins (available from https://www.npmjs.com/package/postcss-simple-
mixin). This is designed to provide simple support for mixins, and doesn't have  
the baggage associated with postcss-mixins.

A word of note though: the postcss-simple-mixins plugin has 
been deprecated, although it is still available for use. It does not 
support nesting or the use of arguments.

The key consideration, though, will depend on what you plan to achieve within your 
code; choosing the right plugin will reduce the inclusion of redundant functionality 
and help keep our custom processor as lean as possible.

https://www.npmjs.com/package/postcss-simple-mixin
https://www.npmjs.com/package/postcss-simple-mixin


Chapter 2

[ 43 ]

There is another reason why choosing plugins is critical: instead of using a mixin 
to just support older versions of IE, we can use the postcss-pxtorem plugin to 
generate rem values during compilation. After all, although most browsers have 
supported rem units for some time, there is always one that is late to the party:

Screenshot taken from the CanIUse site, at http://www.caniuse.com

Switching to using this plugin has the added benefit of simplifying our code, as the 
server can handle the grunt work of replacing pixel values with the equivalent rem 
units. The grunt work can be shifted to a central location, so that anyone using it will 
receive consistent results.

It's important to also note that the cross over between mixins 
and functions also exists within PostCSS. We will explore using 
functions more in Chapter 5, Managing Colors, Images, and Fonts, 
when we learn how PostCSS can be used to make our lives 
easier when working with colors or media.

Okay, onwards we go. Time to switch topics completely, and take a look at another 
key part of PostCSS: creating loops. Anyone familiar with SASS or Less will be aware 
of how mundane it can get when applying very similar styles to identical objects; a 
perfect example are the classic social media icons that frequently grace posts on a 
page. PostCSS has a plugin that allows us to mimic this functionality, so let's explore 
how to use it in action.



Creating Variables and Mixins

[ 44 ]

Looping content with PostCSS
A question: how often have you come across instances where you have a number of 
very similar images that share styles, but at the same time need to have individual 
styles applied? Sound familiar?

I am of course talking about instances such as list items, grid layouts, and the classic 
social media icons we see littered all over the Internet. We can of course simply 
write rules to cover each image, but as I am sure you will agree, it's not the smartest 
approach! Instead, we can use the power of the @each statement to iterate through 
each item and apply each style using string interpolation.

The @each plugin, by Alexander Madyankin, is one of two ways to incorporate a 
facility to loop through content; the source for this plugin is available from https://
github.com/outpunk/postcss-each. The other plugin, postcss-for (available from 
https://github.com/antyakushev/postcss-for), takes a different approach—the 
difference between the two is that the former works on objects, while the latter must 
use a range of numbers to apply styles.

If we take the second plugin for a moment, we have to loop through a consecutive 
range of numbers in order to produce our result. So, something akin to this:

@for $x from 1 to 3 {
  .grid-$x { width: $(x)px; }
}

…would produce this, when compiled:

.grid-1 {
  width: 1px
}
.grid-2 {
  width: 2px
}
.grid-3 {
  width: 3px
}

Seems pretty straightforward, right? Here comes the rub, though: unlike SASS, we 
can't use variables to define that range by default; this plugin must be defined before 
any instance of postcss-nested and postcss-simple-vars plugins. In PostCSS, 
we iterate through all of the values inclusively (that is, one to three in our example), 
which is not the same as in SASS.

https://github.com/outpunk/postcss-each
https://github.com/outpunk/postcss-each
https://github.com/antyakushev/postcss-for


Chapter 2

[ 45 ]

It's in cases like this that we must decide between using this plugin on its own, or 
with postcss-custom-properties and postcss-for-variables. This is why it 
is key to fully understand what you need to achieve, and the capabilities of plugins 
available, so that we can choose the most effective combination to suit our needs. 
The great thing about PostCSS is its flexibility, speed, and modular design; this 
modularity and flexibility can also be seen as its Achilles heel, as tweaking the choice 
and order of plugins can have a real impact on our code!

We can of course change completely, and use a separate fork of the 
postcss-for plugin, available from https://github.com/xori/
postcss-for. This caters for dollar variables.

Let's put some of this into practice. Before we get stuck in to nesting with PostCSS 
in the next chapter, we'll round out this one with a simple demo that uses a group of 
social media icons and PostCSS to set up styling automatically for us.

Iterating through @each statements
Staying with the looping theme, but on a different tack, in place of using the for 
statement, we can achieve similar effects with @each, but only if the target is an 
element on the page.

I am of course talking about elements such as buttons or menu items; these elements 
will share the same styling, but require unique IDs to allow us to interact with them. 
It goes without saying that we could simply create a shared base class and add 
multiple classes for each element…

But we can do better than that: most preprocessors have in-built functionality 
that allows us to iterate through elements and apply CSS styling to each element. 
Thankfully, PostCSS is no different; we can achieve the same result using the postcss-
each plugin, available from https://github.com/outpunk/postcss-each. It's a 
cinch to install, and we can use it to add elements such as social media icons to the 
foot of a page, and style them. I feel a demo coming on, so let's dive in and take  
a look:

1.	 We'll start with installing the plugin, so go ahead and fire up a NodeJS 
command prompt, and change the working directory to our project area.

2.	 At the prompt, enter this command to install the postcss-each plugin,  
then press Enter:
npm install --save-dev postcss-each

https://github.com/xori/postcss-for
https://github.com/xori/postcss-for
https://github.com/outpunk/postcss-each


Creating Variables and Mixins

[ 46 ]

3.	 If all is well, we should see the customary confirmation that the plugin  
is installed:

With the plugin now in place, let's move on and update our gulp file:

1.	 We need to make three changes to our gulp file, so go ahead and open a copy 
from the project area in your usual text editor.

2.	 First, go ahead and remove lines 9 to 11; they contain the variable 
declarations for the postcss-css-variables and postcss-mixins plugins.

3.	 On or around what is now line 8, we should see the variable declaration for 
postcss-calc. Immediately, below, add the following line:
var eachloop = require('postcss-each');

4.	 In the main autoprefixer task, we need to alter the postcss call; remove 
this from line 13:
cssvariables(/* options */), cssmixins(/* options */),  
  calc(/*options*/),

We should be left with this (changes have been highlighted):
.pipe(postcss([ autoprefixer, cssnano(),  
  foreach(/*options*/) ]))

At this point, we can save the file. It is now ready for us to process the CSS required 
for our next demo. For this next exercise, we will need to avail ourselves of some 
suitable social media icons. I've used the ones by Nathan Brown, available at 
http://wegraphics.net/downloads/free-stained-and-faded-social-media-
icons/. We'll use the Twitter, LinkedIn, and YouTube images.

http://wegraphics.net/downloads/free-stained-and-faded-social-media-icons/
http://wegraphics.net/downloads/free-stained-and-faded-social-media-icons/


Chapter 2

[ 47 ]

Let's make a start:

1.	 We'll start with a look at the SASS version of this demo. It's a simple 
example, but illustrates perfectly how we can use the @each function  
to iterate through each image and apply the appropriate style:
$social: twitter, linkedin, youtube;

.social-icon {
  // shared information here
  background: 50% no-repeat;
  background-size: 100%;
  float: left;
  height: 50px;
  width: 50px;
   
  // unique information loops here
  @each $network in $social {
    &.#{$network} {
      background-image: url("../img/#{$network}.png");
    }
  }
}

2.	 To compile the code, go ahead and copy the Tutorial4 folder to our  
project area.

3.	 Replace the existing gulpfile.js with a copy from the Tutorial1A folder—
this contains the appropriate commands to compile the code—we need to  
use the original version built to compile SASS code, not PostCSS, hence  
the change.

4.	 Take a copy of style.scss from the src folder of the Tutorial4 folder,  
then drop it into the src folder of our project area.

5.	 Next, fire up a NodeJS command prompt window, then change the working 
folder to our project area.

6.	 At the prompt, enter this command, then press Enter:
gulp

Keep the command prompt window open for now, we will use it again shortly.

7.	 Once the code has compiled, copy the contents of the dest folder back to the 
css folder in the Tutorial4 folder.



Creating Variables and Mixins

[ 48 ]

If all is well, we should have three icons showing, when previewing the results in 
a browser. Nothing outrageous here: we have the base rule that applies to all of the 
icons, which is followed by the individual classes required to handle each icon itself:

.social-icon {
  background: 50% no-repeat;
  background-size: 100%;
  float: left;
  height: 50px;
  width: 50px;
}

.social-icon.twitter {
  background-image: url("../img/twitter.png");
}

.social-icon.linkedin {
  background-image: url("../img/linkedin.png");
}

.social-icon.youtube {
  background-image: url("../img/youtube.png");
}

So, how would this look in PostCSS? Well, surprising as it may be, there isn't a great 
deal of change needed.

Switching to using PostCSS
We only need to change it in two places within our CSS file. I've also separated the 
nested code, to make it easier to view:

.social-icon {
  // shared information here
  background: 50% no-repeat;
  background-size: 100%;
  float: left;
  height: 50px;
  width: 50px;
}

The changes we need to make are highlighted in this block of code:

@each $media in twitter, linkedin, youtube {
  . $(img) {



Chapter 2

[ 49 ]

    background: url('../img/$(media).png');
  }
}

Our gulp file also needs to change. Let's work through the steps involved to make 
the switch to PostCSS:

1.	 We first need to replace the gulp file—go ahead and delete the copy at the 
root of the project area, then replace it with a copy from the Tutorial4 folder 
in the code download.

2.	 From the code download that accompanies this book, extract a copy of 
style—pre compile.css, and rename it as style.css. Drop it in the src 
folder of our project area.

3.	 Revert back to the command prompt, then enter gulp at the prompt and 
press Enter.

4.	 If all is well, we should see the compiled style sheets appear in the dest 
folder, along with the source maps.

5.	 Copy the contents of the dest folder in project area to the css folder within 
our local copy of the Tutorial4 folder.

6.	 Try previewing the results in a browser; if all is working as expected, we 
should see these icons appear:

Granted, it is a simple exercise, but then I've always been a fan of keeping things 
simple! Anyone can write CSS styles, but for me the "step up" is knowing that 
quantity does not always beat quality, and that there is something to be said for 
following the KISS principle, Keep It Simple… Yes, you get the idea!

But, just to show how flexible this plugin is, try this as an exercise:

•	 Browse to http://dataurl.net/, then upload each of the icons in turn,  
and use the site to generate data-URI equivalent code for each image.

•	 In the CSS, remove the existing background-image links, and replace them 
with the code from the dataurl.net site.

•	 Go ahead and compile the code using the same principles we've used 
throughout this chapter. Looks identical, doesn't it? We've removed the  
need to pull in separate resources, as we're using a pure CSS solution...

http://dataurl.net/


Creating Variables and Mixins

[ 50 ]

But, there is a catch: when the file has been compiled, check the file size. It should 
tell you that it is significantly larger than the one which doesn't contain data-URI 
equivalent code. This is to be expected: it's the trade-off between sizes versus the 
number of resources we call. It only shows how critical the order of our PostCSS 
plugins would be, to get the desired results!

Summary
Anyone who has spent time using pre-processors such as SASS will no doubt be 
familiar with variables and mixins; these make up an integral part of using PostCSS. 
We've covered a lot of material relating to their use throughout this chapter, so let's 
take a breather and review what we have learned.

We kicked off with a brief introduction to variables and mixins in SASS, before setting 
up an example demo in SASS (and Less CSS) as a basis for conversion to PostCSS.

Next up came the start of the transition process to PostCSS. We first looked at 
adding variable support in, before updating our hover demo to use the new plugin 
and remove a dependency on using SASS. We then covered some benefits and 
considerations of using PostCSS, before discovering how a simple tweak in the  
order of plugins can have a big impact on the end result.

We moved swiftly on with a look at mixins. We covered the install of the postcss-
mixins plugin, before using it to update our demo. At this point, we paused for 
a moment to consider some of the differences between standard processors and 
PostCSS, and covered how one of the key points to bear in mind is PostCSS's 
flexibility and power.

We then rounded out the chapter with a look at looping content. We first explored 
the use of the for statement, before moving on and taking a look at how we can easily 
style content using the @each function. We then covered its use in a simple demo 
for styling social media icons. This started in SASS, but finished with the converted 
results using PostCSS.

Phew, let's move on! Our next stop on this whistlestop tour of mastering PostCSS is a 
look at nesting, and no, not for our feathered friends, but how we can (dramatically) 
reduce the content we write, or at least make it easier to read!



[ 51 ]

Nesting Rules
If you have spent any time developing with preprocessors, then you will likely have 
come across nested properties—instead of writing multiple style rules with repeated 
references to the same elements, we can use nesting to create concise style rules that 
compile to valid CSS.

In this chapter, we'll delve into using the power of nesting, show you how you can 
transition from using preprocessors such as SASS or Less, and explore some of the 
tricks we can use that are not available with preprocessors such as SASS:

•	 Exploring the use of BEM (Block, Element, Modifier) or standard nesting
•	 Creating nested rules and BEM equivalents using existing preprocessors
•	 Transitioning to using PostCSS plugins
•	 Understanding the pitfalls of nesting and how we can improve our code

Let's make a start…!

Introducing nesting
The concept of nesting is nothing new when using processors such as Less CSS or 
SASS; it's a useful technique to help reduce the amount of code we need to write,  
and to organize code in a more human-readable format.

The flipside of the coin is that it is frequently abused—when using processors for the 
first time, many developers fall into the trap of thinking that everything should be 
nested. One can get away with it if the code is very simple; it is more likely to result 
in fragile code that is difficult to read and easily broken with simple changes to one 
or more styles in the code.



Nesting Rules

[ 52 ]

If nesting is done correctly, then it can be very effective; it helps avoid the need to 
repeat parent selectors, and allows us to group together rules that apply to the same 
selector, together. To see what is meant by this, take a look at this simple example  
for SASS:

#main p {
  color: #00ff00;
  width: 97%;

  .redbox {
    background-color: #ff0000;
    color: #000000;
  }
}

If this is compiled using a GUI application or via the command line, it results in  
these styles:

#main p { 
  color: #00ff00; 
  width: 97%;
}

#main p .redbox { 
  background-color: #ff0000; 
  color: #000000; 
}

The great thing about this code is that we've not tried to cram in every single rule 
that applies to the same parent selector, or a descendant; this is something we should 
consider when working with nesting.

Notice how, in our SASS example, the nesting was at the end 
of the code? It's considered good practice to include nested 
statements at the end, before the closing bracket.

Some developers counsel against using nesting though, as it causes real issues for 
elements that have been styled in specific contexts; it becomes harder to change  
the code if we need to change the style. We will explore more of the reasons why 
nesting is fraught with risks later in this chapter.



Chapter 3

[ 53 ]

Leaving aside the risks of nesting for the moment, we can use the same basic 
principle of nesting when using PostCSS—for this, we need to use the postcss-
nesting plugin by Jonathan Neal, which is available from https://github.com/
jonathantneal/postcss-nesting. To give you a flavor of what nesting looks like 
in PostCSS, take a look at this screenshot—this is an online playground provided by 
the author for trialing nested statements, where we can see the results automatically 
on the right:

The key line is on the left, fifth from the bottom: the postcss-nesting plugin uses  
@nest & as the placeholder for nesting code.

To help illustrate how the postcss-nesting plugin works, we will use it to create 
a somewhat unique navigation system. Our navigation will use a mix of jQuery and 
CSS to style and flip some demo pages, with the animation effects provided by CSS3 
styling. Intrigued? Let's dive in and take a look.

Navigating through pages
I've always had a desire to do something a little different; doing the same thing as 
everyone else becomes so passé! With this in mind, when researching for this book, 
I came across an intriguing demo by Nikolay Talanov, where pages are flipped over 
from one to the next, using either CSS3 animation if supported, or falling back to 
standard jQuery.

https://github.com/jonathantneal/postcss-nesting
https://github.com/jonathantneal/postcss-nesting


Nesting Rules

[ 54 ]

You can see the original pen demo at http://codepen.io/
suez/pen/LCHlA.

This has provided a perfect base for this chapter. For the purpose of the demos, 
I've stripped back the vendor prefixes (as these will be covered by Autoprefixer), 
tweaked the design of the first page, and switched to just using nesting throughout. 
The jQuery fall-back code has also been removed, as most modern browsers will 
support the animations with little difficulty.

Preparing our demo
For our demo, we will have four pages—the navigation will flip between each page, 
using standard CSS3 animation:

The design may be a little unique, but to help illustrate how it could be used, I've 
added a simple wireframe sketch to the front page, which could easily be expanded 
to the remaining pages and developed into something more substantial.

To see it in action, extract a copy of the Tutorial5 folder from the code download 
that accompanies this book, then run index.html in a browser, and click on the dots 
or arrow icons to the right—you will see it flip up or down, depending on which 
direction you click.

Converting from existing processors
At present, our demo is using plain CSS, and nothing is wrong with this, but I 
suspect some of you will likely be using an existing processor, such as SASS or less 
CSS. The real benefit of using PostCSS is its ability to mimic existing tools, without 
the dependencies.



Chapter 3

[ 55 ]

With this in mind, there are copies of the demo, available in the code download, 
which use Less CSS and SASS. If you prefer using SASS, then go ahead and extract 
Tutorial6A from the code download folder; for Less, use Tutorial6B. The code 
can easily be compiled using the gulpfile.js file from Tutorial1A in Chapter 2, 
Creating Variables and Mixins (for SASS), or Tutorial 1B (for Less CSS, in the same 
chapter folder).

You will need to install the plugins listed—most of these will already 
be present from previous demos, but gulp-sass and gulp-less 
will need to be installed using NPM, in the same manner.

Both will produce identical results to the vanilla CSS version, once compiled, and 
the contents of the dest folder have been copied to the css sub-folder in the tutorial 
folder. With the base demo in place, we are now ready to make the conversion—let's 
make a start by installing the postcss-nesting plugin.

Transitioning to using PostCSS plugins
We've seen that adapting code to use nesting is a simple principle, but the real art is 
getting the balance right, many developers fall into the trap of nesting everything in 
their code when using the technique for the first time.

With this in mind, let's explore how we can convert our code to using PostCSS.  
We'll start by installing the postcss-nesting plugin, which will perform most  
of the work for us:

1.	 Fire up a Node.js command prompt, then change the working directory to 
our project area.

2.	 At the command prompt, enter the following command, then press Enter:
npm install --save-dev postcss-nesting

3.	 Node.js will go away and install the plugin—it is ready for use when we see 
something akin to this screenshot:



Nesting Rules

[ 56 ]

4.	 With the plugin installed, we need to configure PostCSS to use it—open up a 
copy of gulpfile.js from the project area, ready for editing.

5.	 We need to make a few changes—the first is to assign a variable that 
references the plugin. Add the highlighted line in immediately below the last 
variable statement:
var cssnano = require('cssnano');
var nesting = require('postcss-nesting');

6.	 The autoprefixer task needs to be altered—this time around, we will start 
with compiling our nested code and adding the appropriate vendor prefixes. 
Alter the first line of this task, as indicated:
gulp.task('autoprefixer', function() {
        return gulp.src('src/*.css')

7.	 Next, add in the nesting configuration call:
     .pipe(postcss([ autoprefixer,  
       nesting({ /* options */ }) ]))

8.	 SASS normally compresses any code on compilation by default—as we're no 
longer using it, we need to provide an alternative. For this, we will reuse the 
cssnano plugin from Chapter 2, Creating Variables and Mixins. Go ahead and 
add this at line 20:
.pipe(postcss([ cssnano() ]))

9.	 The lint-styles task should then run once the vendor prefixes have been 
added; to make this happen, add the constraint as shown:
gulp.task("lint-styles", ['autoprefixer'], function() {

10.	 We no longer have any need for the sass task, so go ahead and remove it in 
its entirety, and from the default task entry—we should be left with this:
gulp.task('default', ['lint-styles', 'autoprefixer',  
  'rename']);

11.	 Last, but by no means least, go ahead and switch the order of the rename 
task. Instead of running it immediately after the autoprefixer task, we'll 
run it once the lint-styles task has been completed:
gulp.task('rename', ['lint-styles'], function () {



Chapter 3

[ 57 ]

At this stage, our gulp task file is now ready for use. We can begin to convert our 
style sheet to use PostCSS nesting as a replacement for SASS. Let's make a start on 
converting it, as part of the next exercise.

If you get stuck, there is a completed version of gulpfile.js in the 
code download that accompanies this book—simply extract a copy and 
place it in the root of our project area to use it.

Converting our demo to PostCSS
Altering our code to use PostCSS is very simple. Even if it requires a few changes, 
the format does not change significantly when compared to processors such as SASS; 
let's take a look at what is involved:

1.	 We'll begin by opening a copy of style.scss from the Tutorial6A folder in 
the code download that accompanies this book—save it to the src folder of 
our project area. Rename it to style.css.

2.	 On line 19, add @nest immediately before &:, as indicated—this is required 
to allow the postcss-nesting plugin to correctly compile each nesting 
statement:
@nest &:before, &:after {

3.	 On line 53, add @nest & immediately before h2, as shown:
@nest & h2 {

4.	 On line 61, add @nest immediately before &., as shown:
@nest &.page1 {

Repeat step 4 for lines 65, 69 and 73.
5.	 On line 119, add @nest immediately before &., as shown:

@nest &.invisible {

6.	 On line 123, add @nest immediately before ul, as shown:
@nest & ul {

7.	 On line 125, add @nest immediately before & li, as shown:
@nest & li {



Nesting Rules

[ 58 ]

8.	 On line 136, add @nest immediately before &., as shown:
@nest &:after {

Repeat the same process for lines 150 and 155.

9.	 On lines 179, add @nest immediately before &., as shown:
@nest &.up {

Repeat the same process for lines 183 and 187, then save the file.

Our style sheet is now converted; to prove it works, we need to run it through 
PostCSS, so let's do that now as part of the next exercise.

Compiling our code
With the changes made to our code, we need to compile it—let's go ahead and  
do that now, using the same process we saw back in Chapter 2, Creating Variables  
and Mixins:

1.	 Fire up a Node.js command prompt session, or use the one from earlier if  
you still have it open, and change the working folder to the project area.

2.	 At the prompt, enter this command, then press Enter:
gulp

3.	 If all is well, we should see something akin to this screenshot:

4.	 A quick peek in the dest folder of our project area should reveal the relevant 
compiled CSS and source map files, produced by PostCSS.



Chapter 3

[ 59 ]

5.	 At this point, we need to extract a copy of the Tutorial7 folder from the 
code download that accompanies this book—save this to our project area.

6.	 Copy the contents of the dest folder from our project area to the css folder 
under Tutorial7—if all is well, our demo should continue to work, but 
without the dependency of SASS.

Note, make sure you expand the demo to the full width of the screen 
to view it properly!

Try previewing the results in a browser—if all is well, we should see the same results 
appear as before, but this time using PostCSS, and without the dependency on SASS. 
We can now apply the same techniques to any project, safe in the knowledge that 
using the postcss-nesting plugin will allow us to compile to valid CSS code—or  
will it?

Exploring the pitfalls of nesting
It has to be said that although nesting is a simple technique to understand, it can be 
difficult to get right, as shown in our SASS version of the demo:

The issues we have here are twofold—the multiple levels of nesting result in a high 
level of code specificity; if we wanted to change the styling for .nav-panel ul li 
(the compiled version of line 125), it would likely break the appearance of our front 
end code. To see what I mean, let's take an example HTML page that any developer 
might create:

<body>
  <div class="container">



Nesting Rules

[ 60 ]

    <div class="content">
      <div class="articles">
        <div class="post">
          <div class="title">
            <h1><a href="#">Hello World</a>
          </div>
          <div class="content">
            <p></p>
            <ul>
              <li>...</li>
            </ul>
          </div>
          <div class="author">
            <a href="#" class="display"><img src="..." /></a>
            <h4><a href="#">...</a></h4>
            <p>
              <a href="#">...</a>
              <ul>
                <li>...</li>
              </ul>
            </p>
          </div>
        </div>
      </div>
    </div>
  </div>
</body>

Now, before you all scream, Yuk, I would never do that! at me, and claim (quite rightly) 
that we should use semantic elements such as <header>, <section>, <article>, 
and / or <footer> to provide context and meaning, instead of all of these <div> 
statements, then stop! There is a point in producing that ugly mix of code. Let me 
explain:

The example HTML we have just seen is likely to result in this nested CSS:

body {
  div.container {
    div.content {
      div.articles {
        & > div.post {
          div.title {
            h1 {
              a {
              }



Chapter 3

[ 61 ]

            }
          }
          div.content {
            p { ... }
            ul {
              li { ... }
            }
          }
          div.author {
            a.display {
              img { ... }
            }
            h4 {
              a { ... }
            }
            p {
              a { ... }
            }
            ul {
              li { ... }
            }
          }
        }
      }
    }
  }
}

Some developers might think this is perfectly acceptable—after all, they know 
no different, so why should it be an issue, right? Wrong—this code, while it may 
technically fit the styles in our HTML document, has several issues with it:

•	 It is awkward to read at best, and enough to give anyone a headache when 
trying to decipher it.

•	 Try compiling it; it will result in a lot of duplicated parent selectors, with 
code stretching to around 20 lines.

•	 Rendering performance is likely to be poor—if for example, a tool such as 
Google's Page Speed is installed, then it is likely to trigger the Prioritize 
Visible Content rule, where additional round trips are needed to render 
content on-screen above the fold.

•	 Size is likely to be an issue—even though we live in an age of broadband 
connections, it is bad manners to take a cavalier attitude to content, and not 
create something in as small a footprint as possible.



Nesting Rules

[ 62 ]

•	 Maintainability will become a problem—our example code has bound styles 
too tightly, which defeats the purpose of cascading style sheets, where we 
should be able to place common styles in a parent selector and allow these to 
cascade down to children, or be overridden as required.

How can we get around it? The simplest answer is to be sensible about the number 
of levels we use when nesting code—some developers argue no more than four; I 
would argue from experience that two should be sufficient (which in this case would 
be body div.content, had we compiled our monster CSS style sheet).

There is nothing to stop us from using four levels if we absolutely have no other way 
of achieving our desired result; if we're doing this regularly, then we clearly need to 
revisit our code!

Taking a better approach
If, when working on code, we are forced to regularly use nested styles that are more 
than two or three levels deep, then there are some tricks we can use to reduce both 
the CSS specificity over time, and the need to use nesting more than two to three 
levels deep. Let's take a look at a few:

•	 Can you give yourself the class you need? Specificity can creep in if we're 
overriding an existing selector:
.section-header {
  /* normal styles */
}

body.about-page .section-header {
  /* override with higher specificity */
}

To avoid specificity, can a class be emitted through the use of server-side 
code or functions, which we can use to style the element instead?
<header class="<%= header_class %>">

Which could output one class, or both, as desired:
</header>
.section-header {
  /* normal styles */
}

.about-section-header {
  /* override with same specificity */
  /* possibly extend the standard class */
}



Chapter 3

[ 63 ]

•	 The order of your style sheets can play an important role here, even though 
you might use a single class to override styles:
<header class="section-header section-header-about">
...
</header>

Your existing class may be overriding your override; both selectors have the 
same specificity, so the last rule(s) to be applied will take precedence. The fix 
for this is simply to rework the order in which your style rules are applied,  
so that overriding classes can be applied later.

•	 Consider reducing the specificity of the element you're trying to style; can the 
element be replaced, or removed in its entirety? If, however, it's being used 
within JavaScript (or jQuery) code, then it is preferable to leave it as-is, and 
add a second class (or use an existing class already applied, if one exists).

•	 Where possible, aim to use as flat a structure as possible for your code; it is 
too easy to style an element such as this:
.module > h2 {

}

In this example, we're styling all h2 elements that are direct children of the 
parent .module class. However, this will work until we need to assign a 
different style for the h2 element. If the markup looks similar to this example:
<div class="module">
  <h2 class="unique">
    Special Header
  </h2>
</div>

…it will be difficult to apply styles easily, due to CSS specificity creeping in:
.module > h2 {
  /* normal styles */
}
.unique {
  /* I'm going to lose this specificity battle */
}
.module .unique {
  /* I'll work, but specificity creep! */
}



Nesting Rules

[ 64 ]

•	 To avoid this, using as flat a structure as possible is recommended—it will be 
worth the extra effort required to set it up:
<div class="module">
  <h2 class="module-header">
  </h2>
  <div class="module-content">
  </div>
</div>

•	 Consider using an established pattern library, or atomic design (such as 
the one at http://patternlab.io/), to help guide you through how a site 
should be built—they are likely to be built using minimal CSS specificity,  
and with hopefully little need to override existing code.

•	 Be careful if you decide to use cascading when applying CSS styles—if we 
apply a base style to an element (or class) that is reused multiple times,  
this will cause issues. To avoid this, try to avoid using cascading if it isn't 
really needed; consider limiting it to 2-3 levels only, to reduce risk of odd  
or unexpected styles being applied.

•	 Sometimes code is outside of your control—in instances such as this, we 
have to work with it; we can either try using low specificity selectors where 
possible, or use the !important keyword to override the code. For now, we 
may have to leave comments in the code to explain why the selectors are set 
as such; in an ideal world, we would try to contact the authors to see if they 
can update or alter the code to remove these issues.

•	 As a last resort, if you must get into the realms of CSS specificity, then try to 
only apply a light touch, and not take the sledgehammer approach, such as 
using a selector ID or !important.
We can try applying a single class to an existing tag, but this may not feel 
right for some; an alternative is to use two classes:
.nav .override {
}
.override .override {
}
.nav {
}

The key here, though, is to not use more than one additional class!

http://patternlab.io/


Chapter 3

[ 65 ]

•	 Nesting styles can lead to writing overly specific selectors in our code—some 
developers discourage its use for this reason, even though nesting can help 
make our code visually easier to read and digest. Instead of using compound 
selectors, we can emulate a form of name-spacing by using the ampersand 
symbol:
.somestyle {
    color: darkred;
   &-so {
      color: blue;
      &-ever {
        color: green;
      }
   }
}

…which will compile to this:
.somestyle { color: darkred; }
. somestyle-so { color: blue; }
.somestyle-so-ever { color: green; }

•	 If your style is overriding a style that is already an override—stop: Why are 
you doing this? Overriding a class or selector element can be an efficient way 
of styling, but applying a second override will only cause confusion.

We've seen a number of ways of avoiding, or reducing CSS specificity issues that are 
inherent with nesting; the key message, though, is that we are not forced to have to 
nest our code, and that, to paraphrase the front-end architect Roy Tomeij—nested 
code doesn't create bad code; bad coders do!

You can see the original article by Roy Tomeij at http://www.
thesassway.com/editorial/sass-doesnt-create-bad-
code-bad-coders-do

There is one method, though, that we've not touched on, and for good reason: it's 
a route many developers new to using processing will likely take for the first time. 
Intrigued? It has something to do with using conversion tools, and more specifically, 
how we use them to convert from plain CSS to code suitable for compiling using 
PostCSS.

http://www.thesassway.com/editorial/sass-doesnt-create-bad-code-bad-coders-do
http://www.thesassway.com/editorial/sass-doesnt-create-bad-code-bad-coders-do
http://www.thesassway.com/editorial/sass-doesnt-create-bad-code-bad-coders-do


Nesting Rules

[ 66 ]

Reconsidering our code
Imagine this scenario, if you will:

You've taken over a website, and are keen to make use of PostCSS to help with 
maintaining your code. The code uses plain vanilla CSS, so as a step to converting it, 
you happen to know of a number of sites that will convert plain CSS to SASS. After 
all, there are some similarities between PostCSS and SASS code, so why not?

You extract the results into a text file, save it, and put it through a SASS compilation 
process. Out comes some newly compiled CSS, which you drop into the relevant 
location on your server, and voilà! You have a working site that now uses SASS.  
A working site, and a perfect basis for converting to PostCSS…or is it?

The short answer should be no, but the longer one is that it will depend on your 
code. Let me explain why:

Simply pushing code through a conversion process isn't enough—granted, it will 
give you code that works, but unless it is very simple, it is likely not to give code 
that is concise and efficient. To see what I mean, take a close look at the CSS style 
sheet from Tutorial5—and specifically, the style rules for .nav-panel, from around 
line 132.

For reasons of space, the style sheet is too long to print in full— 
I would recommend taking a look at the file from the code 
download in a text editor!

A conversion process will have no problem processing it to produce valid SASS, but 
it won't look pretty—as an example, try copying lines 114 to 197 into the converter 
hosted at http://css2sass.herokuapp.com/. Doesn't look great, does it? There is 
definitely room for improvement—I've already made some changes to the code, but 
we can do more; let's take a look at what can be done to improve the code.

Updating our code
When using a CSS to SASS convertor, the one key point that should always be  
at the back of our minds is that the converted code should not be considered the  
final article.

It doesn't matter how simple or complex your code is—it should be the first step in 
our conversion process. It's just a matter of how little or how much we have to do, 
once the code has been through the converter! As an example, take a look at this 
block of code:

http://css2sass.herokuapp.com/


Chapter 3

[ 67 ]

It's a direct copy of lines 234 to 239 of the compiled version of the pen by Nikolay, 
which we used as a basis for our earlier demos. Now take a quick look at the 
equivalent code that I tweaked from the original and used in my version:

Notice any differences? The vendor prefix version of the transform attribute has 
been stripped out—most modern browsers (certainly within the last year to eighteen 
months), should handle this code without the need for vendor prefixes. The original 
version also suffered from a high degree of CSS specificity—this will become even 
more apparent if the code is nested!

To improve it, I've switched in .nav-panel ul li as a direct replacement for .nav-
panel ul .nav-btn—the code is relatively simple in that it does not need a second 
class to identify elements for styling purposes. The next logical step is to break up 
the large nesting block within the source file; it is tempting to include a single large 
block, but this will be at the expense of readability, maintenance, and performance.

We could potentially go even further, and consider removing the leading .nav-
panel; not only will it make the code infinitely easier to read, but it will also reduce 
the issues around CSS specificity. Of course, this kind of change will depend on  
what is in your code; the point here is to examine your code thoroughly, and look  
to reduce any CSS specificity as much as possible, so that your nesting won't look  
so bad!

There is an alternative means we can use though, which removes issues around CSS 
specificity—using Block Element Modifier notation (or BEM for short). It's a great 
way to systematically style elements using CSS, and it is worth taking time to get 
accustomed to how it works. Let's dive in and take a look.



Nesting Rules

[ 68 ]

Making the switch to BEM
So what is BEM, and why can it help with reducing or removing CSS specificity issues?

BEM, or Block Element Modifier, helps us style elements using a systematic naming 
convention, which is structured thus:

•	 .block: top-level containing the element we're going to change
•	 .block__modifier: the style assigned when the state of an element is 

changed
•	 .block__element: an element inside a top-level container
•	 .block__element__modifier: alternate representation of an element, when 

its state has been changed

The idea behind this style of coding is to make it portable and easier to maintain. 
The basis for this is that, while standard, non-BEM CSS is more concise, it is harder 
to infer what each rule does. We frequently have to assign multiple classes to an 
element, which introduces a degree of CSS specificity, and reduces the reusability 
of CSS rules. Using BEM allows us to combine the constituent names into one style 
class name, and remove any concern around CSS specificity.

If we use this concept, we can use it to write style rules such as this:

.block {
  &__element {
  }
  &__modifier {
  }
}

This will compile to the following:

.block {}

.block__element {}

.block__modifier {}

The preceding code uses plain BEM format, but from within a processor environment 
such as SASS to construct BEM rules in PostCSS, we can use the postcss-bem plugin 
(available from https://github.com/ileri/postcss-bem) to produce our BEM CSS 
using @-rules. For example:

@component ComponentName {
  color: cyan;
 
  @modifier modifierName {

https://github.com/ileri/postcss-bem


Chapter 3

[ 69 ]

    color: purple;
  }
 
  @descendent descendentName {
    color: darkred;
  }
 
  @when stateName {
    color: yellow;
  }
}

In this instance, @component signifies our Block, @descendant our element, and @
modifier is our modifier. When compiled, our CSS would look like this:

.ComponentName {
  color: cyan;
}
 
.ComponentName--modifierName {
  color: purple;
}
 
.ComponentName-descendentName {
  color: darkred;
}
 
.ComponentName.is-stateName {
  color: yellow;
}

The beauty of using BEM is that it helps to reduce or even avoid CSS specificity 
issues—although names are longer, we can combine both element and modifier 
names into one class, instead of having to apply three or more separate classes. 
Granted, there may be instances where we might have to apply a second class,  
but with careful planning we should be able to reduce this to a minimum.

Right, onwards we go: let's get stuck in to coding! Over the next few pages, we will 
take a look at implementing BEM styling in a simple demo, and see how we can use 
PostCSS to compile our code.



Nesting Rules

[ 70 ]

Creating simple message boxes
For our BEM demo, we're going to work through the CSS rules required to show 
some simple message boxes on screen, such as for displaying confirmation that a  
task has completed, or a warning when something isn't right.

The original version of this demo, by Rene Spronk, is available from 
http://www.cssportal.com/blog/css-notification-boxes/.

It's a simple demo, but shows off the principles behind BEM CSS perfectly—go 
ahead and extract a copy of the Tutorial8 folder, then run index.html to get a feel 
for what we will be producing. This version uses standard CSS; we will use this as a 
basis for converting to using BEM.

Let's make a start:

1.	 We'll begin by extracting a copy of the Tutorial9 folder from the code 
download that accompanies this book—drop this into our project area.

2.	 Next, in a new file, add the following CSS statements starting at line 1, and 
leaving a one-line gap between each—they should be fairly self-explanatory, 
but we will go through each block in turn.

3.	 We kick off with the core styles for each dialog—this is a basis style for each 
dialog box:
.dlgBox {
  border-radius: 0.625rem;
  padding: 0.625rem 0.625rem 0.625rem 2.375rem;
  margin: 0.625rem;
  width: 14.5rem
}

4.	 Next up comes a simple style for each <span> element—this turns the lead-in 
caption for each dialog to uppercase and sets it in bold text:
span { font-weight: bold;text-transform: uppercase; }

5.	 We now need to add our block element—it's the opening line that forms the 
basis for our styling:
@component content {

6.	 Next up comes the Element part of our style rule. These rules need to be 
added as nested (that is, indented) rules immediately underneath—using the 
PostCSS plugin, we add it in as a @descendent of our @component:
   @descendent alert {
     font-family: Tahoma, Geneva, Arial, sans-serif;

http://www.cssportal.com/blog/css-notification-boxes/


Chapter 3

[ 71 ]

     font-size: 0.6875rem;
     color: #555;
     border-radius: 0.625rem; 
   }

7.	 Up next comes the first of our status messages—we kick off with styling the 
Error message first; the main rule adds an error icon and styles the border.  
The :hover pseudo-element reduces the opacity when we hover over the box:
   @modifier error {
     background: #ffecec url("../img/error.png")  
       no-repeat 0.625rem 50%;
     border: 0.0625rem solid #f5aca6; 
   }

      @modifier error:hover { opacity: 0.8; }

8.	 This is swiftly followed by styling for the Success message:
   @modifier success {
     background: #e9ffd9 url("../img/success.png")  
       no-repeat 0.625rem 50%;
     border: 0.0625rem solid #a6ca8a; 
   }

   @modifier success:hover { opacity: 0.8; }

9.	 We can't forget the obligatory Warning message, so here's the style rule for 
that status:
   @modifier warning {
     background: #fff8c4 url("../img/warning.png")  
       no-repeat 0.625rem 50%;
     border: 0.0625rem solid #f2c779; 
      }

      @modifier warning:hover { opacity: 0.8; }

10.	 Last but by no means least, here's the final one, which is Notice; it includes 
the closing bracket for the BEM nesting:
      @modifier notice {
        background: #e3f7fc url("../img/info.png")  
          no-repeat 0.625rem 50%;
        border: 0.0625rem solid #8ed9f6; 
      }

   @modifier notice:hover { opacity: 0.8; }
}

11.	 Save the file as style.scss into the src folder of our top-level project area 
(and not into the Tutorial8 folder!).



Nesting Rules

[ 72 ]

Our simple demo isn't going to set the world alight in terms of styling. If we were to 
preview it now, the results will of course not look great; let's fix that by setting up the 
compilation and linting tasks within PostCSS.

If you are a SASS user, then you can see a version of this code suitable 
for that processor on GitHub—the code is available at: https://
gist.github.com/alibby251/45eab822a6a619467279. Note 
how similar the results are when you compare the compiled version 
with the version we'll get in the next exercise!

Compiling and linting our code
Our code is in place, but the boxes won't look particularly appetizing—most of the 
styles are still written using PostCSS @-rules. We can fix that by compiling the code, 
so let's dive in and take a look at installing support for BEM.

Installing BEM support
Setting up BEM support in PostCSS is a cinch—we can make use of two plugins 
to compile and lint our code. The plugins we need for this task are postcss-bem 
(available from https://github.com/ileri/postcss-bem), and postcss-bem-
linter (available from https://github.com/postcss/postcss-bem-linter). 
Both can be installed using the same process through Node.js.

Hopefully the process will be familiar by now, so without further ado, let's make  
a start:

1.	 We'll begin by firing up a Node.js command prompt, and navigating to our 
working folder.

2.	 At the command prompt, enter this command then press Enter:
npm install --save-dev postcss-bem

3.	 Node.js will install each of the elements required; if all is well, we should see 
this result, to indicate a successful installation:

https://gist.github.com/alibby251/45eab822a6a619467279
https://gist.github.com/alibby251/45eab822a6a619467279
https://github.com/ileri/postcss-bem
https://github.com/postcss/postcss-bem-linter


Chapter 3

[ 73 ]

4.	 Repeat the same process for postcss-bem-linter, using this command:
npm install --save-dev postcss-bem-linter

5.	 Keep the command prompt session open, but minimized. We're going to 
make use of it again in a moment!

Now that the plugin is installed, we can go ahead and add support to our gulp task 
file, and begin to parse our code:

1.	 First, go ahead and remove the existing gulpfile.js file at the root of our 
project area.

2.	 In a new file, add the following lines and save it as gulpfile.js, at the root 
of our project area. We start with setting a number of variables that call each 
of the plugins:
var gulp = require('gulp');
var postcss = require('gulp-postcss');
var bem = require('postcss-bem');
var bemLinter = require('postcss-bem-linter');
var reporter = require('postcss-reporter');

3.	 The first task in the file checks the code for consistency with BEM standards, 
and displays any errors on-screen:
gulp.task('lint', function() {
  return gulp.src('dest/*.css')
    .pipe(postcss([
      bemLinter({ preset: 'bem' }),
      reporter({ clearMessages: true })
    ]))
    .pipe(gulp.dest('dest/'));
});

4.	 The second task in the file compiles the BEM code to valid CSS:
gulp.task('bem', function() {
  return gulp.src("src/*.css")



Nesting Rules

[ 74 ]

    .pipe(postcss([bem({
      style: 'bem',
      separators: { descendent: '__' }
    })]))
    .pipe(gulp.dest('dest/'));
});

5.	 This task is the default that is called when we run gulp from the command 
line; it calls each of the tasks in turn:
gulp.task('default', ['bem', 'lint']);

6.	 We finish the gulpfile.js with a watch facility, to kick in and compile our 
code when any changes are made to it:
var watcher = gulp.watch('src/*.css', ['default']);
watcher.on('change', function(event) {
  console.log('File ' + event.path + ' was ' +  
    event.type + ', running tasks...');
});

7.	 We're going to replace the package.json file too—add these lines to a new 
file, and save it to the root of the project area. These simply tell gulp which 
versions of our plugins to use when compiling the code:
{
  "name": "postcss",
  "version": "1.0.0",
  "description": "Configuration file for PostCSS",
  "main": "index.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"
  },
  "author": "Alex Libby",
  "license": "ISC",
  "devDependencies": {
    "gulp": "^3.9.0",
    "gulp-postcss": "^6.0.0",
    "postcss-bem-linter": "^2.0.0",
    "postcss-reporter": "^1.3.0"
  }
}

8.	 From the code download that accompanies this book, go ahead and extract 
a copy of style.css from the css – completed version folder under 
Tutorial9—save this to the src folder under our project area.



Chapter 3

[ 75 ]

9.	 Revert back to the Node.js command prompt session we had before, then at 
the prompt, enter this command and press Enter:
gulp

10.	 If all is well, the code will be checked, and the results displayed on screen. 
You may see errors appear, such as those shown in this screenshot. If they 
do, they can be ignored for now (we will explore this in more detail later):

11.	 Go ahead and copy the contents of the dest folder into the css folder 
underneath Tutorial9—if all is well, we should see something akin to  
this screenshot when previewing the results in a browser:

Our simple demo shows some useful message boxes that we can use as a basis  
for something more complex; it illustrates perfectly how we can use BEM to style  
our code, while keeping issues around CSS specificity at bay. We've covered a few 
useful techniques throughout this exercise, so let's take a moment to explore them  
in more detail.



Nesting Rules

[ 76 ]

Exploring our changes in more detail
It is worth taking time to really get familiar with BEM styling principles. This is 
one of those areas where not spending time can easily dissuade you from using this 
technique; the principles are easy to understand but can take time to implement! 
Let's take a look at our code in more detail.

The key principle around BEM, when using the PostCSS plugin, is that of nesting—in 
this instance, we create our core component content, which results in an empty style 
rule at the top of our style sheet. Indented to the next level is our @descendant—this 
indicates that our message boxes are being styled as alerts. We then use a number 
of @modifiers to style each type of alert, such as success, warning, error, or notice 
(that is, information). This includes a separate style rule to cover each instance of the 
hover pseudo-element used in our code.

What does this mean for us? It means we have to not just consider each element (for 
instance, a message box) as a single entity to which we simply apply lots of classes; 
instead, we should consider the constituent parts of each element and apply a single 
class to each. Hold on, does that not mean we still have three classes in use (as we 
might have here)?

To learn more about BEM naming conventions, take a look at the 
useful article posted at https://en.bem.info/tools/bem/
bem-naming/.

Well, the answer is yes, and no: the trick here is that PostCSS will combine each 
nested style into valid CSS; for example, this extract (adapted from our demo):

@component content {
  @descendent alert {
    font-family: Tahoma, Geneva, Arial, sans-serif;
    font-size: 0.6875rem;
    color: #555;
    border-radius: 0.625rem; 

    @modifier error {
      background: #ffecec url("../img/error.png")  
        no-repeat 0.625rem 50%;
      border: 0.0625rem solid #f5aca6; 
    }
  }
}

https://en.bem.info/tools/bem/bem-naming/
https://en.bem.info/tools/bem/bem-naming/


Chapter 3

[ 77 ]

When compiled, this will appear as this CSS:

.content {}

.content__alert {
    font-family: Tahoma, Geneva, Arial, sans-serif;
    font-size: 0.6875rem;
    color: #555;
    border-radius: 0.625rem;
}
.content__alert_error {
    background: #ffecec url("../img/error.png")  
      no-repeat 0.625rem 50%;
    border: 0.0625rem solid #f5aca6;
}

The sharp-eyed among you will have spotted that we still have errors being 
generated when our code is compiled:

It's always disconcerting to see errors, but there are valid reasons for them. We 
can safely ignore the two deprecation warnings (these should be fixed in a future 
version), but the two errors are of more concern.

Fixing our errors
The two errors are being caused by postcss-bem-linter, which is not recognizing 
the two styles as valid BEM notation. This raises a question: can we alter our code to 
remove the issues?

To answer this, we would need to weigh up how much code is affected against the 
time and effort required to alter it. In our demo, there is very little code affected;  
to resolve it, we would need to alter the .dlgBox and span styles to equivalent  
BEM naming.

www.allitebooks.com

http://www.allitebooks.org


Nesting Rules

[ 78 ]

Is this worth the effort? In a small demo such as ours, it is likely that the answer is 
no, for a larger demo, we would look to alter these two styles. Instead, we can add  
a simple directive at line 48, thus:

When the code is recompiled, the errors are removed:

Purists may say this is cheating. It's true, our code is still technically not all BEM. 
In defense though, it's up to each developer to make that decision; there may be 
elements that have to remain as standard CSS, which we can't convert. In this case, 
it may be sensible to import these styles using the PostCSS import plugin—we will 
explore using this more in Chapter 10, Building a Custom Preprocessor.

It's worth noting that the postcss-bem-linter plugin will not display the results 
of any errors by itself—for this, we need to use a plugin such as postcss-reporter 
(available at https://github.com/postcss/postcss-reporter, for command 
line), or postcss-browser-reporter (from https://github.com/postcss/postcss-
browser-reporter, displays content in the browser window). Both have a number 
of options that are worth investigating to help fine-tune what is displayed when the 
code is processed through PostCSS.

https://github.com/postcss/postcss-reporter
https://github.com/postcss/postcss-browser-reporter
https://github.com/postcss/postcss-browser-reporter


Chapter 3

[ 79 ]

Summary
Over the years, developers have had to frequently write code that duplicates all or 
part of a selector—a perfect example is styling lists or navigation items. It's a real 
pain to have to write so much extra code; instead we can use nesting principles 
to help remove some of this code. We've covered a number of techniques around 
nesting in PostCSS throughout this chapter, so let's take a moment to review what 
we've learned.

We kicked off with an introduction to nesting, to help bring us up to speed, before 
launching into using the postcss-nesting plugin to create nested styles within 
PostCSS. We then moved on to creating our nesting demo. We began with preparing 
a plain vanilla CSS version, before taking a look at converting to existing processors 
such as SASS.

Moving on, we then took a look at converting our code using the postcss-nesting 
plugin, before exploring some of the pitfalls that are associated with nesting, and 
some of the tips and tricks we can use to reduce CSS specificity, one of the key issues 
associated with nesting.

We then rounded out the chapter with a look at BEM, and how it can be used in 
PostCSS. We covered some of the basic principles of this methodology, before 
applying it to a simple example. We also learned why it won't always work for  
every instance; for those where it is suitable, we took a brief look at how we can  
set PostCSS to automatically lint our BEM code.

Phew, a real whistle stop tour there! Hang on to your hats though, as it won't stop: 
in our next chapter, we're going to take a look at writing media queries, and how 
PostCSS can help with compiling them into valid CSS.





[ 81 ]

Building Media Queries
The days of simply using one device to browse an online site are long since gone: 
responsive sites will work on a range of devices, from smart phones through to 
digital TVs and laptops. A key element of making sites responsive is the use of media 
queries. In this chapter, we'll explore how to create them using PostCSS, see how 
they compare to the likes of Less and SASS, and how the use of PostCSS makes for a 
more flexible approach in comparison to standard preprocessors. This chapter will 
cover the following technical topics:

•	 Revisiting media queries
•	 Working through the basics of media queries using PostCSS
•	 Adding responsive support
•	 Optimizing media queries
•	 Retrofitting support for older browsers
•	 Taking things further—exploring the hover feature in CSS4 media queries

Let's make a start…!

Revisiting media queries
If you spend any time viewing sites on different devices, then it will hardly come as 
a surprise to see media queries in the style sheet—they form the basis for responsive 
design and declarations allow us to control what is displayed on screen, according to 
the available screen width.



Building Media Queries

[ 82 ]

The principles behind media queries are simple. In a nutshell, we have to define the 
device or media, and the resolution (or width) at which point the rule (or breakpoint) 
either kicks in or stops being applied. Take this simple example:

@media only screen and (max-width: 768px) {
  /* CSS Styles */
  ...
}

Any styles within will be applied only when we're viewing on screen, and our 
available screen estate is 768px or less. This is a simple example, they can be as 
simple or as complex as required; it's down to us as developers to work out exactly 
where our content breaks and to build a suitable breakpoint to manage the change.

To get a feel for some of the more recent media queries that are 
possible, take a look at this post by Chris Coyier, who has queries 
for laptops, PCs, and even wearable devices! The list is available at 
https://css-tricks.com/snippets/css/media-queries-
for-standard-devices/.

Okay, let's make a start: PostCSS makes it easy to manage queries for both text and 
images; we'll begin our journey with a look at handling images.

Exploring custom media queries in 
PostCSS
Making the switch to using PostCSS is a cinch, we can use the postcss-custom-
media plugin for this purpose, available at https://github.com/postcss/
postcss-custom-media.

The plugin is easy to install, it follows the same principles as all of the other plugins 
we've covered, so without further ado, let's get that out of the way now:

1.	 Fire up a Node.js command prompt, then navigate to the working directory.
2.	 At the prompt, enter this command, then press Enter:

npm install --save-dev postcss-custom-media

3.	 Keep the command prompt open for now, we will use it in the next few steps.

With the plugin installed, we can now use it, before we get stuck into converting our 
previous demo, let's work through a simple example, so you can see it in action:

https://css-tricks.com/snippets/css/media-queries-for-standard-devices/
https://css-tricks.com/snippets/css/media-queries-for-standard-devices/
https://github.com/postcss/postcss-custom-media
https://github.com/postcss/postcss-custom-media


Chapter 4

[ 83 ]

4.	 In a new file, add the following code, saving it as style.css within the src 
folder at the root of our project area:
@custom-media --apple-watch (max-device-width: 42mm) and  
  (min-device-width: 38mm);

@media (--apple-watch) {
  h2 {
    font-size: 0.8rem;
  }
}

5.	 Remove the existing gulpfile.js file from the root of the project area.
6.	 In a new file, add the following code, this will form a new gulpfile.js file; 

save this to the root of our project area:
var gulp = require('gulp');
var postcss = require('gulp-postcss');
var customMedia = require('postcss-custom-media');

gulp.task('default', function() {
    return gulp.src('src/*.css')
    .pipe(postcss([ customMedia() ]))
    .pipe(gulp.dest('dest/'));
});

var watcher = gulp.watch('src/*.css', ['default']);
watcher.on('change', function(event) {
  console.log('File ' + event.path + ' was ' +  
    event.type + ', running tasks...');
});

7.	 Revert back to the command prompt session we had open earlier, then enter 
gulp at the command prompt, and press Enter.

8.	 If all is well, we should see this code if we open up the compiled style.css 
from within the dest folder of our project area:
@media (max-device-width: 42mm) and  
  (min-device-width: 38mm) {
  h2 {
    font-size: 0.8rem;
  }
}

Believe it or not, this is all that is required to use the plugin; let's take a moment to 
consider what we've covered through this demo.



Building Media Queries

[ 84 ]

At first glance, you might be forgiven for thinking that this plugin doesn't actually 
do anything to help us—it's a valid point, but there is one key benefit to using this 
plugin. We can separate out the media breakpoints into separate variable statements, 
and store these at the top of our style sheet. This means that if we should ever need 
to update a particular breakpoint, we only need to do it once. Our code is then 
updated automatically at the compilation stage.

With that in mind, let's get stuck into a demo; we're going to work through the previous 
plain CSS version of our parallax scrolling example, and convert it to use PostCSS.

Beginning with plain CSS
Over the next few pages, we're going to use a relatively recent technique as the basis 
for our demo—parallax scrolling. Just in case you've been under a rock, parallax 
scrolling is a single page application, which allows us to scroll through content 
whilst showing a number of fixed images behind our content:

We'll be using a demo created by Nick Salloum, which is available at http://
callmenick.com/_development/simple-parallax-effect/ (I've simplified some 
of the CSS styles used, removed vendor prefixes, and reduced the number of separate 
files called by the example). We'll start with a plain CSS version of our demo—go 
ahead and extract a copy of Tutorial11 to our project area. Try running index.html; 
if all is well, we should see something akin to the screenshot at the head of this section.

It's a great effect when used well, our interest is in the last section of the CSS file, 
from around line 133; this section contains the media queries we will convert in  
our next demo.

http://callmenick.com/_development/simple-parallax-effect/
http://callmenick.com/_development/simple-parallax-effect/


Chapter 4

[ 85 ]

Altering our demo to use PostCSS
If media queries are used correctly, this can open up a world of possibilities; we can 
tweak our style sheet for anything from an iPhone through to a printer. In our demo, 
we've used a couple to adjust how content is displayed on sites where displays are 
larger than 600px or 960px width; altering these to work in PostCSS is a cinch.

The CSS3 Media Queries site has a large list of different types of queries 
that are available; if you check out the site on a target PC or device, it 
will show you if that query is supported on that device. The full list is 
available at http://www.cssmediaqueries.com.

We only need to make a couple of changes in the style sheet to switch to using 
PostCSS, so let's make a start:

Let's make a start on the changes:

1.	 We'll start by copying the style.css file from Tutorial11 folder to the src 
folder in our project area.

2.	 We need to edit the file, to convert our media queries to use the PostCSS 
plugin—go ahead and add these two lines at lines 4 and 5:
@custom-media --small-viewport all and (min-width: 600px);
@custom-media --medium-viewport all and (min-width: 960px);

3.	 Further down, replace lines 161 and 182 with this code:
@media (--small-viewport) {

4.	 On line 200, replace that line with this code:
@media (--medium-viewport) {

5.	 Save the file—next, go ahead and replace the current gulpfile.js file with 
the version from the root of the Tutorial12 folder. It has the same initial 
PostCSS task, but this has been renamed and extended with additional tasks 
that we've already used from earlier chapters.

6.	 Next, go ahead and save a copy of the package.json file from the same 
location to the root of our project area—this contains updated links to the 
plugins used in this demo.
Fire up a Node.js command prompt window, then change the working 
directory to our project area. At the prompt, enter gulp then press Enter.

7.	 If all is well, we should have a compiled CSS file appear in the dest folder—
go ahead and copy this into the css folder of the Tutorial12 folder.

http://www.cssmediaqueries.com


Building Media Queries

[ 86 ]

8.	 Go ahead and run index.html in our project area, to preview the results— 
if all is well, we should not see anything different, but a quick check in the 
source code should show that we're using the minified version of our code:

It's worth noting that in our demo, we used a typical format of media query: we 
could for example extend or alter our style sheet to work on handheld devices 
such as Galaxy tablets; the same principles apply, but clearly different width 
values will need to be used! For details on the values to use, take a look at http://
cssmediaqueries.com, which has a useful list of queries to use for recent devices.

If we want to push the boundaries of what is possible, there are a couple of options 
that we can consider:

•	 postcss-media-variables: This plugin (available at https://github.
com/WolfgangKluge/postcss-media-variables) works in the same way, 
but allows us to use variables in media queries. The benefit of using this 
plugin is that we can hive off width values into a central :root rule; we can 
potentially use one fixed value, but work out others based on this value:
/* input */
:root {
    --min-width: 1000px;
    --smallscreen: 480px;
}
@media (min-width: var(--min-width)) {}
@media (max-width: calc(var(--min-width) - 1px)) {}

@custom-media --small-device (max-width: var(--smallscreen));
@media (--small-device) {}
/* output */
@media (min-width: 1000px) {}
@media (max-width: 999px) {}
@media (max-width: 480px) {}

The downside is that it is considered as non-standard, the plugin must be 
called twice, and if other plugins are used, be called in a certain order—this 
means it might only suit a specific set of circumstances!

http://cssmediaqueries.com
http://cssmediaqueries.com
https://github.com/WolfgangKluge/postcss-media-variables
https://github.com/WolfgangKluge/postcss-media-variables


Chapter 4

[ 87 ]

•	 postcss-quantity-queries: This plugin (available at https://github.
com/pascalduez/postcss-quantity-queries) is based on the SASS 
quantity queries mixins by Daniel Guillan. This allows us to use rules  
such as this:
ul > li:at-least(4) { color: rebeccapurple; }

Which will compile to this:
ul > li:nth-last-child(n+4),
ul > li:nth-last-child(n+4) ~ li {
  color: rebeccapurple;
}

This is one of four pseudo-selector extensions we can use with this plugin, it's a 
perfect way to style items such as navigation entries, or if we wanted a numbered  
list of items with different styles for even or odd numbers. 

For a useful reference article on using quantity queries in CSS, head 
over to the post by Heydon Pickering at http://alistapart.
com/article/quantity-queries-for-css.

Let's change tack now, and focus on our content. So far, we've concentrated on the 
page layout, but we can take it further by making images truly responsive; let's dive 
in and take a look.

Making images responsive
A key element of making any site responsive has of course to be images—after all, 
we can always construct a site without images, but how effective would it really be?

Sure, one can always use a data Uniform Resource Identifier (URI) to convert 
images to CSS equivalents, but this is at the risk of dramatically inflating our style 
sheet to the point of it becoming impossible to manage. The reality is that we have 
to have some form of images—if we are to make them behave, we clearly need to 
ensure that they expand or contract in size, according to available screen estate.

The easiest way to adapt images for responsive layouts is to set a max-width value 
to 100%, along with height: auto and display: block, and remove any attribute 
that defines either a fixed height or width for that image element. We can make the 
changes manually, but this is time-consuming; instead, let's take a look at a PostCSS 
plugin that allows us to set these three values at compilation, by adding one single 
line of code to each image.

https://github.com/pascalduez/postcss-quantity-queries
https://github.com/pascalduez/postcss-quantity-queries
http://alistapart.com/article/quantity-queries-for-css
http://alistapart.com/article/quantity-queries-for-css


Building Media Queries

[ 88 ]

Making an image responsive with PostCSS
Adding responsive capabilities to a site using PostCSS is simple; it will depend 
largely on your requirements as to how we make the images responsive, but the two 
key plugins to look out for are postcss-responsive-images (available at https://
github.com/azat-io/postcss-responsive-images), and postcss-at2x (available 
at https://github.com/simonsmith/postcss-at2x).

We will cover the use of the postcss-at2x plugin in a moment, but for now, let's 
take a look at using the postcss-responsive-images plugin.

Implementing responsive capabilities to 
images
Making our images responsive requires a single line of code to be added to any 
image-based rule; let's dive in and add this capability to a copy of the Tutorial13 
folder from the code download that accompanies this book:

1.	 We'll start, as always, by installing the plugin—for this, fire up a Node.js 
command prompt, then run the commands as shown in this screenshot:

2.	 We'll start by extracting a copy of the Tutorial13 folder from the code 
download that accompanies this book, then saving it to our project area.

3.	 Open up style.css from the css folder within the Tutorial13 folder,  
then remove this rule:
img { 
  width: 584px; 
  height: 389px;
}

4.	 In its place, add the following line:
#retina img { image-size: responsive; }

https://github.com/azat-io/postcss-responsive-images
https://github.com/azat-io/postcss-responsive-images
https://github.com/simonsmith/postcss-at2x


Chapter 4

[ 89 ]

5.	 Save the file, then copy it to the src folder underneath our project area (not 
within the Tutorial folder!).

6.	 For this exercise, we're going to replace the Gulp task file—go ahead and  
add this code to a new file, saving it as gulpfile.js at the root of our  
project area:
var gulp = require('gulp');
var postcss = require('gulp-postcss');
var responsiveimages =  
  require('postcss-responsive-images');

gulp.task('default', function() {
    return gulp.src('src/*.css')
    .pipe(postcss([ responsiveimages ]))
    .pipe(gulp.dest('dest/'));
});

var watcher = gulp.watch('src/*.css', ['default']);
watcher.on('change', function(event) {
  console.log('File ' + event.path + ' was ' +  
    event.type + ', running tasks...');
});

Note that we're concentrating on just making our image responsive with this 
gulp file, hence why it is a lot shorter than previous versions we have used  
to date.

7.	 Fire up a Node.js command prompt, then change the working directory to 
our project area—at the prompt, enter gulp then press Enter.

8.	 Node will go away and compile our code—if all is well, the compiled code 
for #retina img will look like this:

9.	 Copy the compiled CSS file from the dest folder into the css folder of the 
Tutorial13 folder.



Building Media Queries

[ 90 ]

10.	 Go ahead and preview the results—try resizing the browser; if all is well, the 
image will automatically resize the image for us.

Although it's easy enough to install and use this plugin, it works best when 
referencing images directly in our HTML code, and not through the use of 
background: or content: url(…) attributes in our CSS.

What does this mean for us? It's a little limiting, as the purists amongst us may prefer 
to hive off asset attributes to CSS style sheets such is open source software, though 
this is one limitation that is bound to be fixed in the fullness of time!

The keen-eyed amongst you will spot that the image presentation clearly needs 
further work—for example, the paper clip isn't repositioning when the window 
is resized, and we need to set a minimum width so that there is some white space 
around the image when we resize it:

The key principles remain the same though, irrespective of the presentation, 
removing the fixed image sizes and replacing with a max-width of 100% is a  
good step to making an image responsive.

To get a true responsive image though, we ideally would use the new HTML5 
<picture> tags—trouble is, PostCSS doesn't yet have a plugin to implement  
these tags!



Chapter 4

[ 91 ]

If you're interested in some of the more general techniques of making 
images responsive (and outside of the world of PostCSS), then take 
a look at https://jakearchibald.com/2015/anatomy-of-
responsive-images/.

In the absence of any available capability to handle the use of <picture> tags within 
PostCSS, we can instead take a more traditional route and use media queries to help 
switch between different images, depending on the available screen estate.

We can go a step further, and even switch in images of better resolution if the device 
supports it—I'm thinking of course of Apple iPads or iPhones, which support retina 
images. We can easily use this format when working with PostCSS; for this, we need 
to make use of the postcss-at2x plugin by Simon Smith, available at https://
github.com/simonsmith/postcss-at2x. I feel a couple of demos coming on, so 
without further ado, let's go explore using this plugin.

Adding support for retina images
Retina images, a term coined by Apple's marketing team, contain up to twice as 
many pixels in the same space as standard images. This allow us to switch in images 
of higher quality (or resolution) automatically, provided we're using a device that 
supports their use.

This might be as simple as an iPhone, or something more substantial like an iPad—
Apple's marketing clout means that they are probably two of the most popular 
portable devices that people own! But I digress…

At a technical level, we have two routes available for adding retina images, before 
we explore these in more detail, let's just remind ourselves of the basics:

@media (-webkit-min-device-pixel-ratio: 2),  
  (min-resolution: 192dpi) { 
  #retina img {
    content: url("../img/mothorchid@2x.png");
  } 
}

This code is an extract from the CSS style sheet in the Tutorial15 folder, which is 
available in the code download that accompanies this book; try previewing index.
html in a browser.

For best results, it is strongly recommended that you use Google 
Chrome—it's a great browser for simulating the effects of switching 
between low and high resolution images.

https://jakearchibald.com/2015/anatomy-of-responsive-images/
https://jakearchibald.com/2015/anatomy-of-responsive-images/
https://github.com/simonsmith/postcss-at2x
https://github.com/simonsmith/postcss-at2x


Building Media Queries

[ 92 ]

The image displayed displays the text 8-bit version—to switch, try this:

1.	 Press Shift + Ctrl + I to display the Developer toolbar.
2.	 Click on the mobile phone icon to enable Responsive Design mode

We can then switch between different devices using the dropdown—try switching 
to Apple iPad; you may need to press F5 to refresh the display. If all is well, it will 
switch between 8-bit and 24-bit versions of the orchid image.

Taking the next steps
This is all good, but we're clearly not using PostCSS here—what are our options? 
Well, we have two that we can use: customMedia() or the postcss-at2x plugin. 
We've already covered the basics of using customMedia in the Exploring custom media 
queries in PostCSS section; for this, we would use a variable such as this:

/* media query for hi-resolution image support */
@custom-media --hi-resolution screen and  
  (-webkit-min-device-pixel-ratio: 2), (min-resolution: 192dpi);

This would be coupled with a query such as this:

@media (--hi-resolution) { 
  #retina img {
    content: url("../img/mothorchid@2x.png");
  } 
}

When compiled, and run in Google Chrome (to take advantage of its responsive 
design tools), we can see the image switch from 8-bit:



Chapter 4

[ 93 ]

…to a 24-bit version of the image:

A peek at the active style rules view shows the media query update automatically:

This is good, but still a manual approach that takes time—instead, we can use a 
quicker route to achieve similar results. The alternative route, using postcss-at2x, 
is a simpler option—instead of working out what resolution ratio to use, we simply 
add the term at-2x to our style rule:

#retina img { background: url("../img/mothorchid.png") at-2x; }

This automatically compiles to produce the relative resolution statements for us in 
our style sheet. It's a useful trick to use when working with iPads and other devices 
that can support hi-res images.

Make sure the src and dest folders at the root of our project area are 
clear of files before starting this demo, otherwise you might find they 
have some undesired effects during compilation!



Building Media Queries

[ 94 ]

Let's dive in and take a look at this in more detail.

1.	 We start, as usual by installing the plugin—fire up a Node.js command 
prompt, then change the working directory to our project area.

2.	 At the prompt, enter the commands shown in this screenshot, pressing Enter 
after each:

Keep the window handy, we will need it in a few steps!

3.	 Let's now set up our markup, extract a copy of the Tutorial17 folder from 
the code download that accompanies this book, and save the folder to our 
project area.

4.	 Extract a copy of the gulp file from this folder and use it to replace the 
existing one at the root of our project area.

5.	 Extract a copy of style – pre-compile.css from the Tutorial17 folder, 
then copy it to the src folder at the root of our project area. Rename it as 
style.css.

6.	 Switch back to the Node.js command prompt window we had up earlier—at 
the prompt, enter gulp then press Enter.

7.	 PostCSS will go away and compile our code—if all is well, we should see 
something akin to this extract in the compiled file within the dest folder:
#retina img {
  padding: 4px;
  border: solid 1px #bbb;
  background: #fff;
  box-shadow: 0 1px 2px rgba(0,0,0,.2);
  content: url("../img/mothorchid.png"); 
}
…
@media screen and (-webkit-min-device-pixel-ratio: 2),  
  (-webkit-min-device-pixel-ratio: 2),  
  (min-resolution: 192dpi) { 
  #retina img {



Chapter 4

[ 95 ]

    content: url("../img/mothorchid@2x.png");
  } 
}

8.	 Go ahead and copy the contents of the dest folder to the css folder within 
the Tutorial17 folder.

9.	 Try previewing the demo—if all is well, we should see that orchid flower 
as before, and force Chrome to display the hi-res version as we did in our 
previous demo.

The great thing about this plugin is that it deals with creating the media query for 
us; all we need to do is add the at2x tag to any image where we want to display 
hi-resolution versions in the browser. There is always a risk that we may end up 
producing queries that are not 100% optimized (for example, combining identical 
breakpoints into one block, and so on); we will explore a couple of options to help 
keep our queries working efficiently towards the end of this chapter.

As an aside, a more concise option for working with hi-res images which is frequently 
forgotten, is the use of image-set(); this performs in a similar fashion, by providing 
different versions for devices that support high-resolution images. PostCSS provides a 
fallback option in the form of postcss-image-set (available from https://github.
com/alex499/postcss-image-set), which sets a basic image that will work in those 
browsers that don't support the use of image-set() within a style sheet.

Exploring other media possibilities
So, we've covered a number of key topics around making content responsive, using 
media queries; what does this mean when using PostCSS? The simple answer is that 
it opens up a world of possibilities—if your site needs to use media queries, then it  
is very likely that we can use PostCSS to compile our queries into valid CSS rules.  
To pique your interest, here are a couple of options to consider:

•	 Creating a responsive slider using the bxSlider plugin, available from 
http://www.bxslider.com. Granted, it uses jQuery to move between  
each slide, but who's to say you couldn't eventually convert this to an  
all-CSS option?

•	 How about using responsive image sprites? A classic use for this is credit 
card symbols on an e-commerce shopping cart, with a bit of care, we can 
even make the image adapt to display hi-res versions, if the device being 
used supports it. We'll cover more of this in Chapter 5, Managing Colors, 
Images and Fonts, if you want to give this a try, take a look at the postcss-
sprites plugin, available from https://github.com/2createStudio/
postcss-sprites.

https://github.com/alex499/postcss-image-set
https://github.com/alex499/postcss-image-set
http://www.bxslider.com
https://github.com/2createStudio/postcss-sprites
https://github.com/2createStudio/postcss-sprites


Building Media Queries

[ 96 ]

Okay, we've covered making images responsive using PostCSS, but what about 
text? Pages won't look good if text doesn't flow properly when content is resized. 
Thankfully we can apply similar principles to text, using the postcss-responsive-
type plugin by Sean King—let's take a look at it in action.

Adding responsive text support
The process of making text responsive within PostCSS shares some similarities to the 
postcss-responsive-images plugin we've already used, in both cases, all we need to 
add is a simple attribute to make our content responsive.

The plugin we need to use for text though is the PostCSS-responsive-type 
plugin by Sean King (available at https://github.com/seaneking/postcss-
responsive-type); adding font-size, being responsive to a rule in our style sheet 
is enough to get us started. Of course, we almost certainly want to specify our own 
rules; for example, we can use something like this:

html {
  font-size: responsive 12px 21px; /* min-size, max-size */
  font-range: 420px 1280px; /* range of viewport widths */
}

This compiles into two media queries—one at 480px, and the other at 1280px; the 
former sets a text size of 12px, with the latter setting 21px as the font size. Without 
further ado, let's get stuck in and start using this plugin in anger:

1.	 Fire up a Node.js command and change the working directory to the  
project area.

2.	 Enter the command shown in this screenshot, then press Enter:

At this point, the plugin is installed—we can start to use it:

1.	 Start by extracting a copy of the Tutorial18 folder from the code download 
that accompanies this book; save it to the root area of our project folder.

https://github.com/seaneking/postcss-responsive-type
https://github.com/seaneking/postcss-responsive-type


Chapter 4

[ 97 ]

2.	 In a new file, add the following code—this contains some simple font styling 
for our demo; save it as style.css in the src folder of our project area:
@font-face {
  font-family: 'robotoregular';
  src: url('Roboto-Regular-webfont.eot');
  src: url('Roboto-Regular-webfont.eot?#iefix')  
    format('embedded-opentype'),
       url('Roboto-Regular-webfont.woff') format('woff'),
       url('Roboto-Regular-webfont.ttf')  
         format('truetype'),
       url('Roboto-Regular-webfont.svg#robotoregular')  
         format('svg');
  font-weight: normal;
  font-style: normal;
}

body {
  font-family: "robotoregular", sans-serif;
  font-size: responsive 12px 21px; 
  font-range: 420px 1280px; 
}

3.	 Next, open up a copy of the gulpfile.js file at the root of our project area.
4.	 Note how a reference to the postcss-responsive-type plugin has been 

added, as indicated:
var at2x = require('postcss-at2x');
var responsivetype = require('postcss-responsive-type');

5.	 The autoprefixer task has also been amended—it has a reference to 
the postcss-responsive-type plugin, using the variable that has been 
declared at the top of the file:
gulp.task('autoprefixer', function() {
  return gulp.src('src/*.css')
  .pipe(postcss([at2x(), responsivetype(), autoprefixer]))
  .pipe(gulp.dest('dest/'));
});

6.	 We can now compile the code from a Node.js command prompt, change the 
working directory to the project area, and run this command:
gulp



Building Media Queries

[ 98 ]

7.	 Once the code has compiled, copy the contents of the dest folder to the 
css folder of the Tutorial18 folder; if all is well, we should see this when 
previewing the results in a browser:

Try resizing the window to make it larger or smaller—you should notice that the 
text size increases or decreases in size, according to the size of the available screen 
estate. We can then use this as a basis for adding images; if we apply both postcss-
responsive-images and postcss-responsive-type plugins, we can use this as a 
solid basis for adding responsive capabilities to our sites.

A small point to note though—we've used pixel values throughout our code. 
Historical convention recommended the use of em (or even better rem) values, as 
these scaled better than standard pixel values. However, some developers now argue 
that this convention is no longer valid; there are occasions when pixel em or rem 
values should be used. It's up to us to decide which unit of value to use, and when it 
should be used!

For a good discussion on the merits of using pixel versus rem values, 
take a look at this post by Gion Kunz, at https://mindtheshift.
wordpress.com/2015/04/02/r-i-p-rem-viva-css-
reference-pixel/.

https://mindtheshift.wordpress.com/2015/04/02/r-i-p-rem-viva-css-reference-pixel/
https://mindtheshift.wordpress.com/2015/04/02/r-i-p-rem-viva-css-reference-pixel/
https://mindtheshift.wordpress.com/2015/04/02/r-i-p-rem-viva-css-reference-pixel/


Chapter 4

[ 99 ]

Leaving aside what is possible when working with media queries, there are a couple 
of key topics we should explore—optimizing media queries, and how we can retrofit 
some form of support for older browsers. We'll start with optimizing queries—
PostCSS has a couple of useful plugins available to help with maintaining our code.

Optimizing media queries
Throughout this chapter, we've explored using PostCSS to compile our media 
queries; while there are plenty of options open to us in terms of what we create,  
we should be mindful of what we create, to ensure that we're not creating a monster 
that slows our site down!

PostCSS has a couple of plugins available to help us here. They are:

•	 postcss-mq-keyframes: Available at https://github.com/TCotton/
postcss-mq-keyframes), this is a simple plugin that moves all keyframes 
out of existing queries, to the bottom of a style sheet. This allows us to 
rationalize our keyframe rules—in the event that we have multiple media 
queries, we can apply the same rule to each of these media queries.
For example, the highlighted code below would be moved out of the query, 
and become a rule in its own right:
@media only screen and (min-width: 415px) {
  .pace {
    animation: pace-anim 5s;
  }

  @keyframes pace-anim {
    100% {
      opacity: 0;
      }
  }
}

•	 css-mqpacker: Available at https://github.com/hail2u/node-css-
mqpacker), this plugin parses our code and merges any identical rules into 
one media query rule. It is arguable how much benefit we are likely to get 
from this plugin; we will likely only see any significant benefit from using  
it on larger, more complex sites!

Both plugins can be installed using the same process as all of the plugins we've 
used to date; it's worth noting that we should not overuse our queries. Instead of 
designing for specific platforms, try designing for instances where content clearly 
breaks and becomes unusable. The fewer queries we have, the easier it becomes to 
manage our code; simplicity is absolutely key to a successful site.

https://github.com/TCotton/postcss-mq-keyframes
https://github.com/TCotton/postcss-mq-keyframes
https://github.com/hail2u/node-css-mqpacker
https://github.com/hail2u/node-css-mqpacker
https://github.com/hail2u/node-css-mqpacker
https://github.com/hail2u/node-css-mqpacker
https://github.com/hail2u/node-css-mqpacker


Building Media Queries

[ 100 ]

Looking further afield, there is one area we should not forget when optimizing our 
code—what browsers should we support? I'm all for pushing the proverbial browser 
boat out and using modern browsers where possible. However, some of you may 
still have to support older browsers (and please don't tell me that includes IE6!).  
Let's explore an option available in PostCSS to help those of you still having to 
support applications that really should be put out to pasture, so to speak.

Retrofitting support for older browsers
For those of you who still have to support older browsers, such as IE6-8, then 
PostCSS can help—we can use the postcss-mqwidth-to-class plugin to generate 
hardcoded class rules, based on the media queries we specify, such as this example:

@media (min-width: 1024px) and (max-width: 1298px) {
  .bar { float: left; }
}

If we compile it using this plugin, it will produce this result:

.min-width-1024px.max-width-1298px .bar { float: left; }

Anyone spot the danger here? The code may be technically correct, but it suffers from 
some limitations which make it less attractive: a risk of high levels of CSS specificity, 
media types are ignored (such as screen or print); and JavaScript may be required if 
adding classes to the <body> or <html> tags.

Ultimately it is down to us to decide what we need to use, but we should always 
be mindful that our code doesn't introduce new issues if we have to support older 
browsers! In this instance, a better alternative to consider is the postcss-unmq plugin 
(the source is available at https://github.com/jonathantneal/postcss-unmq); 
this removes media queries in favor of allowing us to create rules that adhere to 
specific screen sizes.

Now, whilst browsers such as IE8 should indeed be (forcibly) retired from active 
service, there is something to be said for considering if we can take it one step 
further, and start to move away from using responsive design techniques.

For example, conventional wisdom suggests that using rem values were a better 
alternative than using pixels. There is now a recent shift that suggests a blanket  
use (as many developers may have done) of rem units is less preferable, and that 
we should perhaps consider a blend of different units, to ensure content is correctly 
resized and maintains sufficient clarity. This is an important concept to consider as 
part of our development work in PostCSS, so let's take a moment to consider what 
this might mean for us.

https://github.com/jonathantneal/postcss-unmq


Chapter 4

[ 101 ]

Moving away from responsive design
"Moving away from responsive design?? Have you really lost your marbles…??"

In answer to what many might consider a perfectly valid question, the answer is 
no—or as Polonius might have put it in Hamlet, "Though there be madness, yet there  
is method in't".

In short, there is a good reason for considering this topic, as creating breakpoints 
using PostCSS is a cinch, but working out what they should be is the key to the 
success of our code. Many developers have blogged online about different types 
of media queries to use—examples for tablets, desktops, and laptops are widely 
available, and are frequently updated or replaced, if hardware changes.

Since Ethan Marcotte's popularization of the term "responsive web design" in 2010, 
many have accepted responsive design as an accepted standard for creating content 
for multiple devices or platforms. As a concept though, it is starting to lose favor 
with developers; an inherent weakness is the need to download multiple assets, even 
though only select versions of those assets may be used (such as larger or smaller 
versions of images). This of course increases bandwidth usage, and ultimately makes 
a site slower to navigate.

So, should we not use responsive design at all? Well, not entirely, but it depends  
on your circumstances. Instead of blindly adding media queries that add a layer  
of complexity, take a moment to consider if you really need that media query.

As an alternative, consider using content specific breakpoints, in place of media 
equivalents; instead of tying our design to specific devices, we can work out where 
content can no longer be consumed properly, and build our breakpoint on this, 
rather than a known device width, which is likely to be changed.

Images, or specifically hi-resolution versions, are no longer an issue; in place of using 
a low and high res version of each, consider switching to SVG format. This scales 
beautifully (irrespective of device), and removes any issue with scalability on devices 
at a stroke. Granted, there are some known issues with support for IE, but most other 
browsers should be able to handle SVG without causing too many problems!

Fonts are another area where we can begin to reduce our use of media queries—here, 
we would need to look at using vw, vh, vmin, or vmax units; text will automatically 
resize if the browser viewport is resized. Adapting our code will require some 
manual changes; we can use the postcss-vmin plugin to provide some fallback for 
older versions of Internet Explorer.



Building Media Queries

[ 102 ]

Hopefully this has given you some food for thought—the key message here is that 
whilst the PostCSS plugin for media queries makes it really easy to implement, 
we should not blindly go ahead and implement lots of media queries, without 
considering if there are alternative means to achieve the same results.

Okay, let's move on: time to push the boat out a little; let's take a look at how we can 
take things further with CSS4 (as it is popularly known). We'll work on an example 
that allows us to simulate the new greater than or less than operators that can be 
used as part of CSS level 4 media queries.

Taking things further with CSS4
One of those small pet hates when working with media queries is that the query 
itself isn't really semantic; most queries will show something like max-width: 
1024px, when we really mean …less than… or …greater than….

Thankfully, with the upcoming changes to CSS in what most people call CSS4, we 
will be able to use >, <, or = symbols to express what we really mean in our code. 
The beauty about PostCSS is that we can emulate that functionality now, with the 
postcss-media-minmax plugin (available at https://github.com/postcss/
postcss-media-minmax); the plugin will convert these to the more familiar min-  
or max- statements that we already know.

It's a really easy plugin to use—we're going to break with convention here though, 
and use CodePen to demonstrate the plugin in action. CodePen will support a 
limited number of plugins, of which this is one of them—it's a perfect opportunity 
to see the effect of our query in action. For our demo, we're going to use the Font 
Awesome library to create some social media icons—our demo is loosely based on  
a version by Amey Raut:

You can see the demo at http://codepen.io/alibby251/pen/wKNMGL—the code 
that is of interest to us is from lines 70 to 79—notice the use of <= and >= in line 71:

https://github.com/postcss/postcss-media-minmax
https://github.com/postcss/postcss-media-minmax
http://codepen.io/alibby251/pen/wKNMGL


Chapter 4

[ 103 ]

When compiled, it shows this valid CSS:

The use of operators such as < or > in media queries is just a small part of what  
is coming in CSS4; for more details, take a look at the W3C editorial draft at  
http://dev.w3.org/csswg/mediaqueries/—note, it makes for dry reading!

Summary
For anyone creating responsive sites, media queries are a core part of this process—
PostCSS can easily help with creating the appropriate media queries that are needed 
for our projects. We've covered a number of key topics over the last few pages, so 
let's take a moment to consider what we've covered in this chapter.

For anyone creating responsive sites, media queries are a core part of this process—
PostCSS can easily help with creating the appropriate media queries that are needed 
for our projects. We've covered a number of key topics over the last few pages, so 
let's take a moment to consider what we've covered in this chapter.

We kicked off with a quick review of standard media queries in CSS, before altering 
our code to use PostCSS as the basis for our queries. We then put this to good use 
in making images responsive, with a look first at the options available in PostCSS, 
before working through an example using PostCSS. We then switched to a common 
use of media queries for images, with a look at switching in a high resolution version 
for those devices that support their use.

http://dev.w3.org/csswg/mediaqueries/


Building Media Queries

[ 104 ]

We then switched to making text responsive, and discovered that it is a similar 
process that takes place, albeit using a different plugin. We then moved onto 
look at optimizing queries using PostCSS, before a quick review of some of the 
options available when retrofitting support for older browsers. We then rounded 
out the chapter to look at how we can use alternative techniques to make our sites 
responsive, without the need for media queries, before finishing with discovering a 
small part of what is available within CSS4, and how PostCSS can be used to make 
those techniques available today.

Phew, we certainly covered a lot: it doesn't stop there though! The next stop on our 
journey promises to be just as interesting; every website or online application will 
use different fonts, images, or colors in some form throughout the site. We'll take a 
look at how we can use PostCSS to make our lives just that little bit easier….



[ 105 ]

Managing Colors, Images, 
and Fonts

A website isn't a great website without some form of color, imagery, or fonts—a 
mix of these will add interest, express content more clearly where words might be 
insufficient, and generally help maintain visitor engagement.

Users of existing preprocessors will of course be familiar with libraries such as the 
Compass authoring framework for SASS from http://www.compass-style.org; 
what if we could produce similar effects, but much faster, and without the need for 
dependencies? No problem, with PostCSS, we can pick and choose which plugins  
are needed for our site, and begin to build up a processor that suits our needs.  
We will cover a number of topics throughout this chapter, which will include:

•	 An overview of plugins available to handle colors, images, and fonts
•	 Creating image sprites using existing preprocessors
•	 Adding SVG support using existing preprocessors
•	 Transitioning to using PostCSS plugins
•	 Manipulating colors and color palettes using PostCSS plugins

Let's make a start…!



Managing Colors, Images, and Fonts

[ 106 ]

Adding color, fonts, and media to sites
A picture paints a thousand words…

Originally created in the 1920s, this phrase is so apt in the world of digital  
content—writing a hundred words doesn't have the same appeal if we can  
replace it with a single image and still convey the same meaning!

A part of any developer or designer's work will be to source the right images or 
fonts, or choose the right colors, and include them on the site they are building so 
they can be referenced at the appropriate point. We'll explore some of the plugins 
and tricks we can use to modify colors, but for now, let's take a look at some of the 
plugins available for manipulating images and fonts within a site.

Maintaining asset links
When sourcing media for a site, the usual process will be to create a folder for fonts, 
another for images, and so on, if any part of the process is likely to fail, then it is 
likely to be with applying incorrect links in our code. The risk of this happening  
will of course increase if we have a particularly complex folder structure!

Instead, we can take an alternative approach: why not get PostCSS (or a plugin) to do 
the work for us?

We can use the postcss-assets plugin for this purpose; if we specify a name, it will 
look in the files relative to the source file, then file paths specified in the loadPaths 
configuration option, and finally search in the URL specified in the basePath config 
path. The beauty of this is that we can simply reference the image name, and provided 
PostCSS finds an image with the same name in one of these preassigned locations, then 
it will substitute in the appropriate path for us at compilation.

If a link needs to change, then no problem, we can either add a new one in, or modify 
the existing one; CSS styles will be updated at the next compilation. Let's put this 
into practice, using the postcss-assets plugin, in a simple demo.

Automating links to assets
Remember the moody landscape image from Chapter 4, Building Media Queries?

In our first example, we're going to rework this demo, but this time use the postcss-
assets plugin (available from https://github.com/borodean/postcss-assets) 
to automate the insertion of links for all of our assets. We'll focus on images and 
fonts, but this can equally apply to media such as videos as well.

https://github.com/borodean/postcss-assets


Chapter 5

[ 107 ]

Here's a screenshot to remind ourselves of that image:

Let's make a start:

1.	 Go ahead and download a copy of the Tuturial19 folder from the code 
download that accompanies this book, save this at the root of our project 
area. This contains a partially reworked version of the demo from Chapter 4, 
Building Media Queries.

2.	 Next, go ahead and remove any copies of gulpfile.js and package.json 
from the root of our project area—we'll start this chapter with fresh copies 
from our code download.

3.	 We now need to install the postcss-assets plugin, so fire up a Node.js 
command prompt session, enter this command, and then press Enter:
npm install postcss-assets --save-dev

Don't close it, we will use it again shortly!

4.	 We need to extract copies of the gulpfile.js and package.json files from 
the code download—go ahead and save them to the root of our project area.
The sharp-eyed amongst you will note we are not installing any other 
plugins—we're using ones that we have already installed in earlier exercises; 
the package.json file will include references to these and the postcss-
assets file.



Managing Colors, Images, and Fonts

[ 108 ]

5.	 In the Tutorial19 folder, look for and copy the styles – pre-compile.
css file to the src folder in our project area; rename it to styles.css.

6.	 Revert back to the Node.js command prompt window, then enter gulp at the 
prompt and press Enter.

7.	 If all is well, we should have a maps folder and two CSS stylesheets (one 
full version, one minified)—if we copy these back to the css folder in the 
Tutorial19 folder, then run the demo, we should see a familiar image of  
a landscape with early mist, as shown at the start of this demo.

Okay, the image is displayed, along with the text in Roboto font, but how does it all 
work? It's worth taking a few moments to explore the code; setting it up correctly 
will help save you a lot of time!

Most of what is in the gulp file you will recognize from earlier demos—we've 
included the same linting, renaming, and source map creations as before. In addition 
to the new assets task (to handle our asset links), we've removed the autoprefixer 
task; we're not calling anything that requires vendor prefixes, so there is no need  
to use it.

The key process in the gulp file centers on this code—this creates, and substitutes in, 
the correct asset links. We start with the options configuration object—the loadPaths 
take care of the asset locations, and relativeTo tells the plugin to set relative links 
in relation to the dest/ folder. In this case, loadPaths defines specific folders to use; 
we use relativeTo to make these paths relative:

var options = {
  loadPaths: ['img/', 'fonts/'],
  relativeTo: 'dest/'
};

The dest/ folder is used in our creation process—in reality, this would be the 
location of our CSS style sheets on the production server. This next simple task 
simply calls the postcss-assets plugin, and processes each style sheet found  
in the src folder:

gulp.task('assets', function() {
  return gulp.src('src/*.css')
    .pipe(postcss([ assets(options) ]))
    .pipe(gulp.dest('dest/'));
});



Chapter 5

[ 109 ]

We then simply call the task, if we were to call gulp from a command prompt, then it 
will run all of these tasks:

gulp.task('default', ['assets', 'lint-styles', 'rename', 'sourcemap']);

All in all, a very simple but highly effective tool, it removes the need to insert any 
links manually, provided we've included them within the configuration object.

Alright…let's move on: we've covered a simple method to ensure we always  
have the right links for font or image files. There is still an element of manual  
work required though—do we really need to include all of the lines added for  
our custom font?

Well, we could always just use a font hosted on Google, but that destroys the point  
of using PostCSS! Instead, we can simply use the custom font name in our style 
sheet, but get PostCSS to add in the custom font-face declaration automatically  
at compilation. Intrigued? Let's take a look at how, as part of our next exercise.

Managing fonts with PostCSS
In our previous demo, we explored a means to automatically add links using 
PostCSS—it shortcuts the need to worry about providing the right locations for  
files. The trouble is, when used with custom fonts, it still requires too much work 
(yes, I know, we humans are inherently lazy!). There is a better alternative:

Enter the postcss-fontpath plugin, available from https://github.com/
seaneking/postcss-fontpath; this is a simple plugin that requires limited 
information about our custom font, and in return will produce the full font-face 
declaration at the compilation stage.

So, rather than talk about it, why don't we put it to use? Let's revisit the responsive 
image demo we covered in the previous demo, and alter our style sheet to use the 
fontpath plugin to handle our custom font:

1.	 We'll start by extracting a copy of the Tutorial20 folder from the code 
download that accompanies this book, and save the folder to the root of  
our project area.

2.	 Next, take a copy of package.json and gulpfile.js files from the 
Tutorial20 folder, and replace the existing versions that are at the  
root of our project area.

3.	 Go ahead and fire up a Node.js command prompt, and change the working 
folder to that of our project area.

https://github.com/seaneking/postcss-fontpath
https://github.com/seaneking/postcss-fontpath


Managing Colors, Images, and Fonts

[ 110 ]

4.	 At the command prompt, enter this command, then press Enter:
npm install postcss-fontpath --save-dev

Although we've installed the plugin explicitly, we can easily install it using 
just npm install; the presence of the package.json file in the folder will 
tell NPM what to install (in this case the missing postcss-fontpath plugin). 
Keep the session open, we will use it again shortly.

5.	 Take a copy of styles – pre-compile.css from the css – completed 
version folder, and save this as styles.css into the src folder at the root  
of our project area.

6.	 Revert back to the Node.js command prompt window, then enter gulp at the 
prompt, and press Enter.

7.	 If all is well, we should see the, by now, familiar style sheets and source 
map appear in the dest folder; copy these to the css folder within the 
Tutorial20 folder.

At this point, we should now have a working demo; we won't see anything 
intrinsically different, but know that at compilation, PostCSS has automatically 
added the right font-face declarations for our font.

The beauty about this plugin is in its simplicity—it needs no more than the addition 
of a simple command in the main task:

gulp.task('fonts', function () {
  return gulp.src('src/*.css').pipe(
    postcss([ fontpath() ])
  ).pipe(
    gulp.dest('dest/')
  );
});

There is no need to have to specify any additional configuration elements or rules, 
the plugin does exactly what it says on the tin, so to speak! Although we've not 
achieved anything ground-breaking with this example, it does serve to illustrate 
some key points about using PostCSS:

•	 PostCSS works best when plugins concentrate on a single task and don't 
try to achieve everything under the sun in one go. Adhering to the single 
responsibility principle means we can reduce duplication, make the plugin 
more robust, and avoid instances where changes can end up breaking 
functionality elsewhere in our processor! This plugin is perfect—it just 
provides a font-face declaration for the specified font, and nothing else.



Chapter 5

[ 111 ]

•	 Sometimes, when choosing the right plugin in PostCSS, there will be 
occasions when we choose something that later turns out not to work as 
expected. A case in point is the postcss-font-magician plugin (available 
from https://github.com/jonathantneal/postcss-font-magician); 
it has the right idea of providing font-face declarations, but tries to provide 
them for Google-hosted fonts, locally hosted fonts, Bootstrap, and so on. 

Unfortunately, the net result is that at the time of writing, not 
all of the functionality appears to work as expected, so it is at 
this point where we have to look for alternatives.

If you would like to explore more, then the postcss.parts directory (at http://
www.postcss.parts) has more options available; two that might be of interest are 
the Assets Rebase plugin (from https://github.com/devex-web-frontend/
postcss-assets-rebase), and the PostCSS Font Pack plugin, from https://
github.com/jedmao/postcss-font-pack. We will cover the latter plugin in  
more detail in Chapter 8, Creating PostCSS Plugins.

Okay, so we have our text in place: it does look a little boring, doesn't it? Well, we 
can fix that by adding images. So, how exactly can PostCSS help us, I hear you ask?

It can help in a number of ways—instead of using plain colors, we can begin to mix 
some together, for example. Or how about using image sprites? A pain to create 
manually, right? Not with PostCSS. I'll bet you've seen some of the image filters you 
can use on images (such as sepia or tint), but found that they don't work in every 
browser right?

These are just some of the ways that PostCSS can help us, and we will cover all of 
these and more throughout this chapter. Let's make a start though on working with 
images: our first demo will cover the creation of image sprites. We'll start with a 
quick recap of the SASS process, before switching to using PostCSS.

Creating image sprites
Let's start with something easy: I'm sure that at some point you will either have used 
or created image sprites, right? If you're a SASS developer, no doubt you will have 
availed yourself of the sprite mixins from Compass, and used an app such as Koala 
to compile, or compiled directly from the command line.

https://github.com/jonathantneal/postcss-font-magician
http://www.postcss.parts
http://www.postcss.parts
https://github.com/devex-web-frontend/postcss-assets-rebase
https://github.com/devex-web-frontend/postcss-assets-rebase
https://github.com/jedmao/postcss-font-pack
https://github.com/jedmao/postcss-font-pack


Managing Colors, Images, and Fonts

[ 112 ]

A copy of the relevant files for creating sprites using Compass 
can be found in the code download that accompanies this book, 
in the Tutorial21A folder.

The process is relatively straightforward, but you still have to set up a Compass 
project, install a GUI application (if you're using one), and so on, which is a real 
pain! We could use an online application such as SpritePad (http://spritepad.
wearekiss.com/) instead, but again that's a manual process, and it's prone to error. 
Instead, we can easily use PostCSS to help us here —over and above the normal 
variables that we declare at the top of any gulp file, there is very little required in 
order to produce basic image sprites. Let's take a look at creating one now, using  
the postcss-sprites plugin.

Demo – creating a credit card icon bar
How many times have you bought something from an e-commerce site? If you've 
bought as much as I have online, then no doubt you will have seen shopping carts 
with assorted payment card icons. These may be small, but they are nevertheless key 
to our site—after all, how can we tell if using a particular credit card might fail, if the 
online retailer doesn't accept Mastercard, for example? Seems obvious, but it's not 
always easy to tell.

Leaving that aside, it is a cinch to create an image sprite with PostCSS; gone is  
the dependency on SASS: in its place we can use the postcss-sprites plugin 
(available from https://github.com/2createStudio/postcss-sprites) to 
produce our composite image. Let's dive in and take a look.

For this demo, we will use the credit card icons available at http://findicons.
com/pack/2102/credit_card_debit_card; please feel free to substitute if you 
would like to use different icons.

All of the code for this tutorial can be found in the Tutorial21B folder, in the code 
download—we will start afresh by installing the postcss-sprites plugin:

1.	 Go ahead and fire up a Node.js command prompt, and change the working 
folder to that of our project area.

http://spritepad.wearekiss.com/
http://spritepad.wearekiss.com/
https://github.com/2createStudio/postcss-sprites
http://findicons.com/pack/2102/credit_card_debit_card
http://findicons.com/pack/2102/credit_card_debit_card


Chapter 5

[ 113 ]

2.	 At the command prompt, enter the command shown in this screenshot, then 
press Enter, once Node has confirmed successful installation, and minimize 
the window, as we will return to it later in this exercise:

3.	 Go ahead and fire up your text editor, then add the following lines—these 
represent four credit card icons we would typically add to any online 
e-commerce site:
.amex { background: #fff url(img/amex.png) no-repeat 0 0; }
.cirrus { background: url(img/cirrus.png) no-repeat 0 0; }

.delta { background: url(img/delta.png) no-repeat 0 0; }

.solo { background: url(img/solo.png) no-repeat 0 0; }

4.	 Save the file as style.css, and store it in the src folder of our project area.
5.	 In the same folder, create a folder called img at the root of our project area; 

extract copies of the icons stored in the code download that accompanies this 
book, and save them to the img folder.

6.	 From the code download that accompanies this book, go ahead and extract a 
copy of gulpfile.js, and save this to the root of our project area.

7.	 Revert back to the Node.js window, then at the prompt, enter gulp and  
press Enter.

8.	 Our code will now be compiled, if all is well, we should see something akin 
to this when viewing the style.css file within the dest folder:
.amex { background-image: url(../img/sprite.png); background-
position: 0 0; background-color: #fff; }
.cirrus { background-image: url(../img/sprite.png); background-
position: -102px 0; }
.delta { background-image: url(../img/sprite.png); background-
position: 0 -64px; }
.solo { background-image: url(../img/sprite.png); background-
position: -102px -64px; }



Managing Colors, Images, and Fonts

[ 114 ]

At this stage, we can then copy the code to our website, along with image—instead 
of using four separate icons (which each require separate calls to the server), we can 
cache the single icon. This will result in faster response times with fewer calls to our 
server. The compiled style sheet can be found in the dest folder, with the composite 
image one level up, in the img folder:

Even though this is a simple process, it's worth noting a key point with how our gulp 
file has been configured—the use of a configuration object for the sprites plugin:

var opts = {
  stylesheetPath: 'dest/',
  spritePath    : 'img/sprite.png',
  path          : 'src/img/'
};

It's not a process we've used to date, but it does not mean that it is any less useful— 
it simply boils down to a matter of personal preference and readability. It does make 
it easier to read the calls for each plugin we assign; in this instance, we're only using 
one, but you can imagine what it will be like with multiple plugins in use:

gulp.task('autoprefixer', function() {
  return gulp.src('src/*.css')
    .pipe(postcss([ sprites(opts) ]))
    .pipe(gulp.dest('dest/'));
});

Okay, let's change tack and take a look at a different side to using images with 
PostCSS: using SVG format images. Standard images don't always scale well, 
particularly when used in a responsive environment; sometimes we might use  
retina images instead, but an alternative to consider is the use of SVG images.



Chapter 5

[ 115 ]

Working with SVG in PostCSS
The rapidly increasing use of mobile devices makes creating responsive content a 
must; the traditional route is using something akin to max-width: 100% to control 
the size of an element on screen.

A better alternative is to use SVG—this maintains quality, even when resized; standard 
image formats will become pixelated if resized to an excessive size. For those of you 
who have previously used SASS, then there isn't any in-built support for SVG as such; 
the most we can hope to achieve is efficient nesting within our style sheet.

An example of what we might use can be found in the sass folder within the 
Tutorial22 folder in the code download that accompanies this book.

If we're a regular user of SVG images within SASS, then it is likely we would use 
a library such as sass-svg, from https://github.com/davidkpiano/sass-svg. 
Moving away from SASS to PostCSS is easy; the PostCSS ecosystem has a number 
of plugins we can use to manipulate images. Let's take a look at how, using the 
postcss-svg plugin.

Altering icon images using PostCSS
We'll use the postcss-svg plugin (from https://github.com/Pavliko/postcss-
svg), to manipulate some icons from the Evil Icon package (available from 
https://github.com/outpunk/gulp-evil-icons), as part of the next demo:

1.	 We'll begin by extracting a copy of the Tutorial22 folder from the code 
download that accompanies this book. Save it to the root of our project area.

2.	 From within the Tutorial22 folder, extract copies of the gulpfile.js and 
package.json files, and use them to replace any that are currently stored at 
the root of our project area.

3.	 Go ahead and extract a copy of style – pre-compile.css from the same 
folder; save this as style.css within the src folder. Do the same for the 
index.html file as well.

4.	 In a break to previous demos, we need an additional css folder—go ahead 
and create one within the dest folder.

5.	 Next, fire up a Node.js command prompt, and change the working folder to 
that of our project area.

6.	 We need to install the postcss-svg plugin, so at the command prompt, enter 
this command, then press Enter:
npm install postcss-svg --save-dev

https://github.com/davidkpiano/sass-svg
https://github.com/Pavliko/postcss-svg
https://github.com/Pavliko/postcss-svg
https://github.com/outpunk/gulp-evil-icons


Managing Colors, Images, and Fonts

[ 116 ]

7.	 Once completed, enter gulp at the command prompt, then press Enter.
8.	 If all is well, we should see the usual two style sheets appear in the /dest/

css folder, along with a source map folder. The HTML markup file will 
appear in the dest folder.
If you don't see the source map or minified versions appear, then rerun 
gulp—sometimes these files will only appear if a compiled style.css file is 
present.

9.	 Copy the contents of the dest folder to the css folder within the 
Tutorial22 folder—if all is well, we should see these icons appear when 
previewing the results in a browser:

Although this is a simple demo, we've covered some useful tips and tricks  
within; it's worth taking some time to explore how the demo was put together  
in more detail.

Exploring the results in more detail
There are several key elements to this exercise that are worthy of attention,  
the use of a CDN link and Node to provide the style sheet and icons for Evil Icons, 
the compiled HTML file and the references to use within our custom style sheet.  
We will cover all of these, but first let's explore the gulp file in more detail.

We begin with these two lines:

var evilIcons = require("gulp-evil-icons");
var postcssSVG = require('postcss-svg')

You should not be surprised to see the latter, but the former is present as the Evil 
Icons library can be installed using the gulp-evil-icons package. There are a 
number of different options available for installing, but as we're already using Gulp, 
it makes sense to continue using the task runner.

Next, we spread our work over two tasks—the first compiles the HTML code to 
assign the relevant icon image to our <icon> statements within our markup:

gulp.task('icons', function () {
  return gulp.src('src/index.html')
.pipe(evilIcons())
    .pipe(gulp.dest('dest/'));
});



Chapter 5

[ 117 ]

To change the colors requires the use of the postcss-svg plugin, here referenced by 
postcssSVG:

gulp.task('changecolor', ['icons'], function() {
  gulp.src('src/style.css')
  .pipe(postcss([ postcssSVG() ]))
    .pipe(gulp.dest('dest/'));
});

We of course had to update our default task, if we simply call gulp at the command 
line, then it will know to run all of these tasks in turn:

gulp.task('default', ['icons', 'changecolor', 'lint-styles' ,  
'rename', 'sourcemap' ]);

The last step also applies a similar update to our watch facility:

var watcher = gulp.watch('src/*.*', ['default', 'icons',  
'changecolor', 'lint-styles', 'rename', 'sourcemap']);

If we then take a look within the HTML markup, we can see a link to the Evil Icons 
library that was installed using Node.js:

<link rel="stylesheet" href="../node_modules/gulp-evil-icons/ 
node_modules/evil-icons/assets/evil-icons.css">

We then put our customizations into a separate style sheet:

<link rel="stylesheet" type="text/css" href="css/style.css">

These look something like this:



Managing Colors, Images, and Fonts

[ 118 ]

At this stage, the CSS styles may look simple, but the HTML markup is anything 
but; the postcss-svg plugin has added an in-line version of our icons to the HTML 
markup, with the appropriate edits made from our custom style sheet:

Sometimes, it is easy to wonder if using SVG is worth the extra markup, the main 
benefit being that if it is added in-line, then we reduce the number of calls to external 
resources; any content that requires altering can be done, without sacrificing the 
quality of our images.

Considering alternative options
We concentrated on using the postcss-svg plugin throughout our exercise, as a 
start to manipulating SVG images within the PostCSS system; there are some more 
options available, which may be of interest:

•	 postcss-write-svg: This plugin (available at https://github.com/
jonathantneal/postcss-write-svg) allows us to write inline SVGs in CSS.

•	 postcss-inline-svg: Another plugin (from https://github.com/
TrySound/postcss-inline-svg), which in-lines SVG images and allows  
us to customize their styles.

•	 postcss-svgo: This plugin (available at https://github.com/ben-eb/
postcss-svgo) processes inline SVG using the SVG Optimizer Tool for Node.

If you have a need to provide a fall-back position for SVG files, then you can try the 
postcss-svg-fallback plugin, available from https://github.com/justim/
postcss-svg-fallback— we will use this plugin later, in Chapter 8, Creating 
PostCSS Plugins.

Okay, let's change tack: using SVG images can be a little heavy handed if all we 
need is a straightforward format for displaying images, right? Well, we could use 
standard formats, or one which has superior quality while maintaining smaller sizes. 
I'm talking about the lesser-known WebP format from Google—let's dig in and find 
out more about this format, and why it deserves more attention.

https://github.com/jonathantneal/postcss-write-svg
https://github.com/jonathantneal/postcss-write-svg
https://github.com/TrySound/postcss-inline-svg
https://github.com/TrySound/postcss-inline-svg
https://github.com/ben-eb/postcss-svgo
https://github.com/ben-eb/postcss-svgo
https://github.com/justim/postcss-svg-fallback
https://github.com/justim/postcss-svg-fallback


Chapter 5

[ 119 ]

Adding support for WebP images
Manipulating SVG images is an acquired art, and in some instances, it will clearly be 
overkill for what we need to achieve.

Instead, for those occasions where we need the detail in our images, we might 
normally use the JPEG format, or potentially PNG as an alternative. There's nothing 
wrong with either, but, it's old hat, and I do like to push the boundaries of what is 
possible! In addition, the JPEG image format is lossy and does not support alpha 
channels; PNG images are lossless, but suffer from larger file sizes for more complex 
images. If all we did was simply insert images onto a page, then PostCSS wouldn't be 
helpful here; instead, how about considering a different format altogether?

Enter Google's WebP. You'd be forgiven for thinking "Web…what?", as it isn't 
a common format! Part of this can be attributed to the lack of take-up; the only 
browsers to support it natively are Chrome, Android, and Opera. That doesn't  
mean to say it should be discounted. The format can offer some significant space 
savings over standard image formats such as JPEG or PNG, while maintaining 
superior quality. We can even get PostCSS to do most of the work for us, to boot! 
Let's explore the nuts and bolts of this in more detail, with a simple demo.

Switching WebP images in and out
Image switching is nothing new, we covered one aspect back in Chapter 4, Building 
Media Queries, when we used PostCSS to switch-in hi-res images when supported in 
the browser.

We can use a similar technique, but this time with image formats, Google's WebP 
format was designed as a replacement for the myriad of other image formats 
available for the web. In an ideal world, we would use the new <picture> tag to 
take care of switching images automatically:

<picture>
  <source srcset="../img/landscape.webp" type="image/webp">
  <img src="../img/landscape.jpg" alt="The Oslo Opera House">
</picture>

It's not supported in all browsers, so instead, we can use a mix of PostCSS and 
Modernizr to apply the same effect. The plugin we need for this task is the webpcss 
plugin (available from https://github.com/lexich/webpcss)—we will need to 
run npm install gulp-webp --save-dev in a Node.js command prompt session  
to install the plugin. Let's dive in and take a look at it in more detail.

https://github.com/lexich/webpcss


Managing Colors, Images, and Fonts

[ 120 ]

For best results, I would recommend using Chrome throughout these 
two demos, support can be added for Windows and other browsers, 
by visiting https://developers.google.com/speed/webp/.

Viewing the differences in file sizes
Before we get stuck into using PostCSS, let's take a moment to perform a quick test. 
The files for this tutorial are in the Tutorial 23 folder:

1.	 In the code download that accompanies this book, go ahead and extract 
a copy of landscape – original version.jpg, and rename it as 
landscape.jpg. The size should be around 11.5 MB in size.

2.	 Save the image to the root of our project area—we also need a copy of  
cwebp.exe, so go ahead and extract that to our project area as well.

3.	 Fire up a command prompt session, change the working folder to our project 
area, enter gulp, and then press Enter.

4.	 If all is well, we should see the results of our conversion, and the new  
WebP-format image appear in our project area:

https://developers.google.com/speed/webp/


Chapter 5

[ 121 ]

5.	 Try performing the same process with a PNG format image; here are  
the results of a similar test I performed, with a PNG version of our  
landscape image:

In both cases, the image sizes reduced significantly, the JPEG version dropped from 
around 12.5 MB to just over 7 MB; the PNG format shrunk from an enormous 25 MB 
to around the same size!

To learn more about using the WebP format, take a look  
at the documentation on the Google Developers site at  
https://developers.google.com/speed/webp/.

Okay, time for another demo! Let's now make use of PostCSS to create our styles for 
both standard JPEG format, and WebP equivalents:

https://developers.google.com/speed/webp/


Managing Colors, Images, and Fonts

[ 122 ]

For this demo, we'll use the gulp-webpcss plugin, available from https://github.
com/lexich/webpcss:

1.	 Go ahead and download a copy of the Tuturial23 folder from the code 
download that accompanies this book, save this at the root of our project area.

2.	 Next, go ahead and remove any copies of gulpfile.js and package.json 
from the root of our project area; we need to replace them with copies from 
the Tutorial23 folder.

3.	 With these files in place, we still need to install the plugins, in a Node.js 
command prompt window, change the working folder to our project, then 
run these commands, pressing Enter after each:
npm install --save-dev gulp-webp 

npm install --save-dev gulp-webpcss 

Note the order of the parameters in these commands, if they are written in a 
different order, they will not install.

4.	 Copy the style – pre-compile.css file from the Tutorial23 folder to the 
src folder at the root of our project area, then rename it as style.css.

5.	 Fire up a Node.js command prompt, change the working folder to our project 
area, then enter gulp at the prompt and press Enter.

6.	 If all is well, we should see the code shown in this screenshot when viewing 
the contents of the compiled file; the converted image will also appear in the 
img folder:

7.	 Copy the contents of the img folder into the img folder within the 
Tutorial23 folder.

8.	 Copy the style.css file from the dest folder into the css folder within the 
Tutorial23 folder.

9.	 Go ahead and run index.html in a browser, if all is well, we should see 
something akin to the screenshot at the start of this exercise.

https://github.com/lexich/webpcss
https://github.com/lexich/webpcss


Chapter 5

[ 123 ]

If we run the same index.html in Google Chrome or Firefox, at first we should not 
see any difference—we'll only see the difference when viewing the compiled source 
within the Developer Toolbar in Chrome:

The real benefit, though, is in the img folder within our project area, the original 
JPEG image we use is 222 KB; however, the WebP is a fraction of this size: it weighs 
in at just 82 KB. See what I mean about the saving in space?

Okay, onwards we go: time to focus on another area of site building, which is 
manipulating colors. Colors play a key role within any site, as they make up a part 
of the message to the end user; let's dive in and take a look at some of the options 
available when using PostCSS.

Manipulating colors and color palettes
A challenge that any developer or designer will face is which color should be used 
on a site—a nice shade of red, or how about sea blue, for example? It doesn't matter 
whether they are responsible for choosing the shade to use, or if they have to pick the 
right RGB or HEX color to use.

Irrespective of where responsibilities lie, we still have to choose a color, and there is a 
good chance we won't be choosing one that comes from the default 256-color palette, 
but one that is likely to be a lighter or darker shade, or perhaps a mix of two colors:



Managing Colors, Images, and Fonts

[ 124 ]

Anyone used to working with SASS will already be aware of functions such as 
lighten(), darken() or saturate()—the great thing about PostCSS is that we 
can replicate similar functionality for those who want to move away from the 
dependency of SASS.

To see how easy it is to use, we're going to combine the power of two plugins for 
PostCSS—postcss-color-palette (available at https://github.com/zaim/
postcss-color-palette), and postcss-color-mix (from https://github.com/
iamstarkov/postcss-color-mix). The former allows us to choose one or more 
colors from any of three palettes, while postcss-color-mix will mix specific colors 
to make a new color. There are reasons for using these plugins, which will become 
clear; for now, let's get stuck in and watch these plugins in action.

Displaying and mixing colors using palettes
In this exercise, we're going to take a look at mixing colors; postcss-color-palette 
allows us to choose multiple colors by name (and not by number!), then converts 
them to HEX equivalent values. We can then either create gradient-type effects, or 
simply mix the colors together (using postcss-color-mix) to produce a new color.

Let's make a start:

1.	 We'll start by extracting a copy of the Tutorial24 folder from the code 
download that accompanies this book; save the folder to the root of our 
project area.

2.	 From the Tutorial24 folder, copy the package.json and gulpfile.js files 
to the root of our project area.

3.	 We also need our stylesheet, for this, go ahead and copy the style – pre-
compile.css file from the same folder and drop this into the src folder in 
our project area. Rename it as style.css.

4.	 At this point we need to install the plugin, for this, so go ahead and fire up 
a Node.js command prompt session, then change the working folder to our 
project area.

https://github.com/zaim/postcss-color-palette
https://github.com/zaim/postcss-color-palette
https://github.com/iamstarkov/postcss-color-mix
https://github.com/iamstarkov/postcss-color-mix


Chapter 5

[ 125 ]

5.	 At the prompt, enter the command shown in this screenshot, then press 
Enter, if all is well, we should see confirmation that the plugin has installed 
correctly:

6.	 Repeat step 5, but this time, run the command shown in this screenshot:

7.	 At the prompt, enter gulp, then press Enter—PostCSS will go away and 
compile the style sheet, and drop the compiled results into the dest folder.

8.	 Copy the contents of the dest folder (which will be the uncompressed and 
minified style sheets, along with a source map file) to the css folder within 
the Tutorial24 folder.

9.	 Try previewing index.html at the root of our Tutorial24 folder; if all is 
well, we should see our mixed colors, as shown in this screenshot:



Managing Colors, Images, and Fonts

[ 126 ]

Okay, the colors I've chosen clearly aren't going to win any style awards any time 
soon, but they help serve a purpose: it is very easy to use proper color names, if 
preferred, while still allowing PostCSS to compile them into valid HEX values.  
That aside, let's take a moment to consider the code we've used in this demo—it  
does raise a few key points, which we should cover, when using these plugins.

Dissecting our demo in more detail
The demo we've created follows similar principles to most other demos we've built 
so far; we begin with declaring variables to store instances of our plugins, thus:

var palette = require('postcss-color-palette');
var colormix = require('postcss-color-mix')

The magic then happens in this task, within our gulp file:

gulp.task('palette', function () {
  return gulp.src('src/*.css')
  .pipe(postcss([ autoprefixer, palette({ palette: 'mrmrs' }),  
   colormix() ]))
  .pipe(gulp.dest('dest/'));
});

Notice that we've specified a palette to use, the mrmrs option is the default, but 
we can equally use material or flatui as alternatives. All three reference the 
webcolors plugin from https://github.com/zaim/webcolors/; this package 
could be expanded to include other palettes if desired.

With the links to our two plugins in place, and the task set up, we can then begin to 
specify rules within our style sheet, which will use the plugins. We've created three, 
and all three use the postcss-color-palette to determine what the HEX value 
should be for each color; the third and final mixes the two colors together once HEX 
values have been assigned:

#box0 { background: linear-gradient(aqua, blue 50%, purple); }

#box1 { background: linear-gradient(to right, orange, red,  
yellow); }

#box2 { background: mix(teal, navy, 80%); }

https://github.com/zaim/webcolors/


Chapter 5

[ 127 ]

Getting the mix of the color right for the third rule isn't easy, the key to a successful 
mix is to avoid using colors that are in the same spectrum; the closer they are, the 
less impact the mix will have!

If you want a quick way to gauge how well colors have mixed, then try http://
jackiebalzer.com/color—this demo has a mix() option in it, which will compile 
them in the browser and avoid the need to run the compilation process manually.

We've covered some of the plugins that are likely to be more popular; there are more 
available via the PostCSS.parts directory, which may be of interest:

•	 colorguard: Helps maintain a consistent color palette
•	 postcss-ase-colors: Replaces color names with values read from an ASE 

palette file; this is perfect if you happen to be a user of Adobe PhotoShop, 
InDesign, or Illustrator

•	 postcss-shades-of-gray: Helps keep grayscale colors consistent to a  
gray palette

•	 postcss-color-pantone: Transforms Pantone color to RGB.

In the meantime, let's move on: we've explored using palettes to select our colors, 
before mixing them to create new ones. This is just scratching the surface of 
what is possible; how about creating different shades of colors, using functions 
such as darken(), tint() or lightness()? Such functions already exist in most 
preprocessors, such as SASS; let's explore how we can achieve the same results  
using PostCSS plugins.

Creating color functions with PostCSS
In our journey through manipulating colors using PostCSS, we've so far seen how 
to define colors using palettes—this may work in some instances, but there will be 
occasions when we need to specify a color that doesn't feature in a palette.

We can always try to specify the value manually, but what happens if we need  
to alter it? Do we try to find every instance of it, and risk the possibility of missing  
an instance?

The answer is no. Instead, we can use the postcss-color-function plugin to create 
our colors dynamically; we can then assign the resulting value to a variable if we find 
ourselves frequently using this color. We can use this route to produce some nice 
shades of colors, so let's get stuck in and explore using this plugin in more detail.

http://jackiebalzer.com/color
http://jackiebalzer.com/color


Managing Colors, Images, and Fonts

[ 128 ]

Adjusting colors using functions
A useful facility within most CSS preprocessors is the ability to create new colors 
dynamically, we can do this either by adjusting a color channel, or applying a filter 
effect to the color, such as making it darker:

The benefit of this is simple, it allows us to reduce the number of base colors we 
assign by default; the remaining colors can be created automatically. If we need to 
change one of our base colors, then any colors created dynamically should still work.

Thankfully, we can achieve the same effects within PostCSS, to do this, we need to 
make use of the postcss-color-function plugin, available from https://github.
com/postcss/postcss-color-function. We'll also be using the css-color-
converter plugin, to help manage conversion between different color formats.

Let's explore this in more detail with a simple demo:

1.	 We start by extracting a copy of the Tutorial25 folder from within the  
code download that accompanies this book—go ahead and save this to our 
project area.

2.	 If the project area already has a package.json and/or a gulpfile.js 
present, then remove them; replace them with the files from within the 
Tutorial25 folder.

3.	 Although we have the right configuration files in place, we still need to 
install the plugin—go ahead and fire up a Node.js command prompt session, 
then change the working folder to our project area.

4.	 At the prompt, enter these commands, pressing Enter after each:
npm install postcss-color-function --save-dev

npm install css-color-converter --save-dev

5.	 At this point, we can now go ahead and compile our style sheet—look for 
styles – pre-compile.css from within the css – completed version 
subfolder, and save it to the src folder within our project area as style.css.

https://github.com/postcss/postcss-color-function
https://github.com/postcss/postcss-color-function


Chapter 5

[ 129 ]

6.	 Switch to the Node.js command prompt from earlier, then enter gulp at the 
prompt and press Enter.

7.	 If all is well, we should see the by now compiled style sheets appear  
(both uncompressed and minified), along with the source map in the  
dest folder. Copy the contents of this folder to the css folder within  
the Tutorial25 folder.

Try previewing the results within a browser, if the compilation was successful, we 
should see four boxes with different shades of red appear, as shown at the start of 
this exercise. The question is though, we've seen the results appear, but how does 
PostCSS know to create these colors?

Dissecting our demo
It's a good question, the conversion process is very simple; the trick to it, though, lies 
not within compiling, but working out how to achieve the color! Odd as it may seem, 
choosing the color isn't as easy as it looks; let me explain more:

The compilation process is, like other PostCSS plugins, very easy to configure—we 
begin of course with creating a variable that defines the color-function plugin:

var colorfunction = require('postcss-color-function');

Next up, we add a reference to our principal gulp task, here we've used both 
autoprefixer and the color-function plugin together, but the former isn't strictly 
needed, as we're not adding any vendor prefixes:

gulp.task('autoprefixer', function() {
  return gulp.src('src/*.css')
    .pipe(postcss([  autoprefixer, colorfunction() ]))
    .pipe(gulp.dest('dest/'));
});

The real magic, though, is in the colors we assign within our style sheet—our first 
box is a control, with a standard red color:

#box0 { background-color: #ff0000; }

Next up, we're adding a tint of 60% to box1, which has the effect of turning it a  
light pink:

#box1 { background-color: color(red tint(60%)); }



Managing Colors, Images, and Fonts

[ 130 ]

Box2 goes the other way, even though we've used a lightness filter (where you might 
expect a similar result as box1), the negative number makes it a brown-red color:

#box2 { background-color: color(red lightness(-20%)); }

The final box, box3, continues the brown theme from box2, but makes it lighter. 
Note though, that in the comment, this shade is what would be produced if we had 
applied a sepia tone:

#box3 { background-color: sepia(red, 0.7);}

The question is, how would we know that this is indeed a sepia filter being applied?

At face value, it looks like we've selected red, then altered each channel by a specific 
amount to get the final result.

A drawback of using this plugin is that it doesn't have functions to support all of 
the equivalent CSS3 filters available today; it does mean we have to be resourceful, 
and calculate what the color should be directly. We will be able to change that in the 
next demo—there will be occasions when we need to create our own custom filters; a 
good example is sepia. It does mean more work upfront, but it allows us to then call 
a sepia() function by name, rather than approximate the final result.

If you struggle to find what a color should be once a filter is applied, take a look  
at http://jackiebalzer.com/color; this is a great site that allows us to choose  
a color and see what the results are when filters are applied. It is written for SASS, 
but the end result will be identical for PostCSS. A site such as ColorHexa.com 
(http://www.colorhexa.com) is a good help too, we can use it to verify what  
color values should be when a filter has been applied.

On we go. We discovered during our exercise that the postcss-color-function 
plugin doesn't cover all of the CSS3 filters that we can use in CSS; for the sepia 
example, we had to assign a calculated color value, rather than applying a filter 
effect. Let's fix that now. With a bit of upfront rework to our demo, we can create  
our own custom functions. It means that if, for example, we want a sepia effect,  
then we can call sepia(), rather than calculate what the final color should be!

Creating colors with PostCSS filters
In our previous demo, we took a look at programmatically changing colors—this is 
a function that has been present in most CSS processors (such as SASS or Less) for 
some time.

http://jackiebalzer.com/color
http://www.colorhexa.com


Chapter 5

[ 131 ]

There may be occasions where we require a finer degree of control over changing 
colors, and that simply using existing functions provided by the postcss-color-
function plugin isn't sufficient, or that the desired filter isn't available. If we're 
feeling inclined, we can create our own color functions; for this, we can use the 
postcss-functions plugin, available from https://github.com/andyjansson/
postcss-functions, to expose the use of JavaScript functions in our task file.

It's worth noting, though, that if a CSS3 filter doesn't exist, then most can be created 
using a combination of different calculations (such as the sepia example from the 
previous demo). This may technically work okay, but it is easier to simply reference 
a sepia filter by name, rather than work out that #box3 has a sepia effect applied!

I feel a demo coming on, so without further ado, here's a screenshot of what we're 
going to create:

In short, we're using a standard shade of red (#ff0000, just to be clear!), and 
calculating various shades using a tint, darken, or sepia filter.

Let's take a look at how to create these colors in more detail:

1.	 We'll start by extracting a copy of the Tutorial26 folder from the code 
download that accompanies this book; save it to the root of our project area.

2.	 Next, go ahead and remove any copies of gulpfile.js and package.json 
from the root of our project area.

3.	 From the Tutorial26 folder, copy both package.json and gulpfile.js to 
the root of our project area.

4.	 With these files in place, we still need to install the plugins. In a Node.js 
command prompt window, change the working folder to our project, then 
enter these commands, and press Enter after each:
npm install postcss-functions --save-dev

npm install css-color-converter --save-dev

5.	 From the Tutorial26 folder, copy style – pre-compile.css to the src 
folder in the project area; rename it to style.css.

https://github.com/andyjansson/postcss-functions
https://github.com/andyjansson/postcss-functions


Managing Colors, Images, and Fonts

[ 132 ]

6.	 Revert back to the Node.js command prompt window, then at the prompt, 
enter gulp and press Enter.

7.	 If all is well, we should see a source map and two compiled style sheets 
appear in the dest folder; copy these to the css folder within the 
Tutorial26 folder.

8.	 Try running the demo in a browser. If all is well, we should see four boxes 
appear, with various shades of red, as shown at the start of this exercise.

If we take a look at the contents of the gulp task file in more detail, it will look larger 
than previous exercises; it might look like we're doing more, but in reality, a lot of it 
we've already seen before, in earlier demos. Let's take a look at it in more detail.

Exploring our demo in more detail
If we open up our gulp task file, we can see it contains a number of functions,  
along with tasks that we've used in previous demos, such as lint-styles.  
The key in this demo is the three color functions, along with the main part of  
the autoprefixer task.

Let's start with the color functions, using darkenColor as our example:

function darkenColor (value, frac) {
  var darken = 1 - parseFloat(frac);
  var rgba = color(value).toRgbaArray();
  var r = rgba[0] * darken;
  var g = rgba[1] * darken;
  var b = rgba[2] * darken;
  return color([r,g,b]).toHexString();
}

We begin by extracting the decimal value, then subtracting it (as frac) from 1.  
This gives us our adjust value, or the value by how much we will darken our colors. 
Next up, we convert the color used (in this case, red) to a valid RGBA value, and split 
it into the RGBA array. We then multiply each array value from rgba by the darken 
value, and reform it as a valid color, before converting it to a HEX value.

Once each function has been created, we can then reference it from our gulp task,  
as shown:

gulp.task('autoprefixer', function() {
  return gulp.src('src/*.css')
  .pipe(postcss([  autoprefixer, functions({
    functions: {



Chapter 5

[ 133 ]

      tint: tintColor,
      darken: darkenColor,
      sepia: sepiaColor
    }
  })
  ]))
  .pipe(gulp.dest('dest/'));
});

All of the functions use a similar process, but the main calculations that use the 
values from the rgba[] array, such as adding a tint (tintColor), or working in  
a sepia effect (sepiaColor), will be different.

The question you may ask though, is where do we get the calculations from? Well, 
there are plenty of sources available on the Internet, such as this link on Stack 
Overflow: http://stackoverflow.com/questions/6615002/given-an-rgb-
value-how-do-i-create-a-tint-or-shade. Another alternative that may be worth 
a look is on Chris Coyier's CSS Tricks site, at https://css-tricks.com/snippets/
javascript/lighten-darken-color/. In reality though, the best site I've seen so 
far is in the CamanJS library, at http://www.camanjs.com; the examples in this 
demo are based on the functions available from this library at http://camanjs.com/
docs/filters.html.

A useful little tip, if you want to check what color values 
should be displayed for a particular tint or shade, is to 
check out http://highintegritydesign.com/
tools/tinter-shader/.

Comparing with CSS3 filters
A key question we must ask at this stage is "why should we go through the effort of 
creating individual functions, when we could easily use a library such as CamanJS?"

Well, there are some key reasons for taking the route that we used in our demo:

•	 CamanJS is a great library, and produces some wonderful effects, but it is an 
external dependency; we run the risk that development may be discontinued 
in the future, which might have an impact on our code.

•	 Using PostCSS means that we can remove the dependency on external 
libraries, we are in control over which effects should be included, and which 
are surplus to requirements. If we use a library such as CamanJS, then we may 
be forced to include lots of extra baggage that unnecessarily inflates our code.

http://stackoverflow.com/questions/6615002/given-an-rgb-value-how-do-i-create-a-tint-or-shade
http://stackoverflow.com/questions/6615002/given-an-rgb-value-how-do-i-create-a-tint-or-shade
https://css-tricks.com/snippets/javascript/lighten-darken-color/
https://css-tricks.com/snippets/javascript/lighten-darken-color/
http://www.camanjs.com
http://camanjs.com/docs/filters.html
http://camanjs.com/docs/filters.html
http://highintegritydesign.com/tools/tinter-shader/
http://highintegritydesign.com/tools/tinter-shader/


Managing Colors, Images, and Fonts

[ 134 ]

•	 Not every browser will support standard CSS3 filters—using PostCSS gives 
us an opportunity to design our own filters that can apply similar effects.

•	 We can always use existing processors, such as SASS, but again we have a 
dependency on an external library; using PostCSS means we can still apply 
the same principles, but without the dependency.

The key here, though, is that filter support in browsers is very good, save for IE—we 
should always consider using CSS3 filters first, but can look to create an IE-specific 
style sheet that allows us to use our own versions from within PostCSS.

Adding Instagram effects to your images
Creating filters with PostCSS shouldn't be all boring though, we can absolutely have 
some fun with filters! A quick and easy way to apply some additional style to an 
image is through the use of Instagram filters—thankfully there is a pre-built plugin 
we can use for this purpose.

Enter the Instagram plugin, available from https://github.com/azat-io/
postcss-instagram. Let's get stuck in and create a simple demo:

1.	 We'll begin, as always, by extracting a copy of the Tutorial27 folder from 
the code download that accompanies this book—save this to the project area.

2.	 Next, extract copies of gulpfile.js and package.json, replace any that are 
stored at the root of our project area, with these new copies.

3.	 We now need to install the postcss-instagram plugin, so go ahead and fire 
up a Node.js command prompt session, then change the working folder to 
our project area.

4.	 At the prompt, go ahead and enter this command, then press Enter:
npm install postcss-instagram --save-dev

5.	 Copy the style – pre-compile.css file to the src folder at the root of our 
project area, then rename it as style.css.

6.	 Once the plugin is installed, enter gulp at the prompt, then press Enter.
7.	 PostCSS will go away and compile our code, if all is well, we should see the 

usual files appear in the dest folder; copy these to the css folder within the 
Tutorial27 folder.

https://github.com/azat-io/postcss-instagram
https://github.com/azat-io/postcss-instagram


Chapter 5

[ 135 ]

At this point, if we try to preview the results in a browser, we should see something 
akin to this screenshot:

The key to this is in the main CSS style sheet, we can apply the required filter using 
nothing more than this within the rule:

This applies the 1977 filter (one of the filters available with the plugin). If we take 
a look at the compiled code, we can see that the plugin has added some additional 
rules; one to take care of creating the filter, and two to take care of positioning the 
filter on top of the image.



Managing Colors, Images, and Fonts

[ 136 ]

If we take a look at the compiled code, we can see the changes made by the plugin:

If you really want to get into the depths, then it's worth taking a look at the source 
code for this plugin, at https://github.com/azat-io/postcss-instagram/blob/
master/index.js. It is fairly complex, but if you look carefully, you can see signs of 
the filter code that is used to apply the effect to our images.

Summary
Manipulating images and color can either be very rewarding, or somewhat daunting, 
depending on how simple or complicated we make our processes! Fortunately, 
PostCSS can help automate a fair degree of our processes, so let's take a moment to 
consider what we've covered throughout this chapter.

We kicked off with a look at adding media assets, and using PostCSS to 
automatically update asset links, this helps remove any risk that we inadvertently 
use the wrong link!

We then moved on to manipulating images, we started with a look at creating image 
sprites, first using SASS, before transitioning to using PostCSS. Next up came a more 
in-depth look at altering images, where we used the Evil Icons SVG library and set 
up PostCSS to alter the color of each icon at compilation. We then moved on to learn 
about how we can switch in the WebP image format; while most people might use 
standard format images, we learned how easy it is to switch-in WebP images, when 
using a supported browser.

https://github.com/azat-io/postcss-instagram/blob/master/index.js
https://github.com/azat-io/postcss-instagram/blob/master/index.js


Chapter 5

[ 137 ]

Moving on, we then turned our attention to manipulating colors through the use of 
specific palettes, we covered how you can use PostCSS to compile in human-readable 
color names, and then mix or manipulate them within our style sheet. We then amped 
things up a little, with a look at using PostCSS to apply specific color filters, to alter 
color levels in a chosen color. We then explored some of the disadvantages of using 
standard plugins, and why we might need to create our own custom filters, that can 
be applied during compilation of our code. We then rounded out the chapter with a 
quick look at using some fun Instagram filters, where we can easily see how multiple 
filters are put together to manipulate images within our site.

Wow, we've certainly covered a lot of content! But our journey doesn't stop there: 
in the next chapter, we'll take a look at creating grids, which we can then use to 
construct layouts within our projects.





[ 139 ]

Creating Grids
There are several different routes to take when creating basic site layouts, and in 
many cases, developers may decide to use CSS grids.

A classic example for those using CSS pre-processors, is of course, the SASS grid 
system, Bourbon Neat—a great package, spoiled by the need to install Ruby. We 
can easily fix this in PostCSS, by using one of several plugins available, without the 
need for extra dependencies. In this chapter, we'll take a look at what's available, and 
work through some examples, using a plugin for creating grids within PostCSS.

We will cover a number of topics throughout this chapter, which will include:

•	 Introducing the basic principles of using CSS grids
•	 Exploring the grid plugins available for use within PostCSS
•	 Working through some simple examples using Bourbon Neat
•	 Replicating pure SCSS examples using the PostCSS plugin, PostCSS-Neat
•	 Adding responsive capabilities using the PostCSS-media-minmax plugin

Let's get cracking…!

Introducing grid design
The principles of using grids in design are not new, they date from the Second  
World War, with a number of graphic designers questioning the design of 
conventional page layouts, in favor of designing a system that provided a  
flexible, yet coherent, layout.

The same principles have been transferred to the web, starting with plain HTML, 
and CSS-based designs, before newer frameworks took over and helped to make 
construction easier.



Creating Grids

[ 140 ]

It doesn't matter how the design is constructed, we can of course use HTML and CSS, 
or we might favor the image template approach (using packages such as PhotoShop), 
particularly if responsibility for designing the front end falls with a different team.

These are perfectly acceptable methods, but require a lot of manual effort—in this 
age of web design, time is critical; we can instead make use of newer frameworks 
(such as SASS, Bourbon Neat, or Bootstrap) to create our grids, as shown in this 
example (which uses plain SASS):

We can see this type of layout in action, if we go ahead and extract the Tutorial28 
folder from the code download that accompanies this book, then review it using 
a browser. We will see this grid appear, the style.css file used by this demo 
was created using the online SASS playground, Sassmeister at: http://www.
sassmeister.com.

Much of the code used in this demo centers around each column width and the 
overall .wrapper container; if you take a look at the code, you will notice that there 
are no static values for column widths. There are a couple of static values, but their 
sizes are not critical to the overall effect.

http://www.sassmeister.com
http://www.sassmeister.com


Chapter 6

[ 141 ]

The key to our demo working centers around this block of CSS styling:

Here, we're using SASS's interpolation to first build our media query (to make it 
responsive), followed by styles for a series of columns that form our grid. When 
compiled, it creates a number of styles that apply to each part of our grid:

It's a simple matter of matching up the style with the number shown on the grid.  
If we want to change the widths, we simply need to increase the number of columns, 
and our for statement will automatically calculate a new set of values at the next 
compilation.

Okay, enough chitchat: time, I think, for a demo! Throughout this chapter, we will 
work through the principles of migrating from some basic examples using SASS, 
through to using Bourbon Neat, before converting to using PostCSS plugins. We 
always have to start somewhere, so let's begin with automating our compilation 
process using SASS.



Creating Grids

[ 142 ]

Automating the compilation process
"Installing SASS?" I hear you ask Why, when this book is about PostCSS?

I hear you, it's a good question: there is logic, though, in this madness—let me 
explain all:

While we are installing SASS, we're not going to use the standard route to  
installing it; instead, we're going to use the gulp-sass plugin. This allows us to 
make the initial switch to using a gulp file; this puts us one step further on down 
the route to converting our processes to use PostCSS. The use of a gulp file provides 
a convenient framework where we can switch components in, or out, while we 
transition to using PostCSS.

In Chapter 12, Mixing Preprocessors, we will see how PostCSS 
works well with other preprocessors, as a basis for adopting 
a consistent approach to compiling code.

So, without further ado, let's make a start on installing the gulp-sass plugin, before 
putting it to work:

1.	 We'll start by firing up a Node.js command prompt session, then changing 
the working folder to our project area.

2.	 At the prompt, go ahead and enter this command, then press Enter:
npm install gulp-sass --save-dev

Don't close the window, we will need it shortly!

3.	 Node will go away and install gulp-sass; it returns to the prompt when the 
installation is completed.

4.	 With the plugin installed, we now need to compile our code—go ahead and 
extract a copy of the Tutorial29 folder to our project area.

5.	 Copy the contents of the sass – pre-compile folder to the src folder at the 
root of our project area.

6.	 We also need to add the gulpfile.js and package.json files from the 
Tutorial29 folder to the root of our project area.

7.	 Revert back to the Node.js window we had earlier, then at the prompt, enter 
gulp and press Enter.

8.	 The files will now compile—once completed, copy them into the css folder 
within the Tutorial29 folder.



Chapter 6

[ 143 ]

9.	 Try previewing the results of our work in a browser; if all is well, we should 
see something akin to this screenshot:

Right, we now have automatic support for compiling in place; "What next?" I hear 
you ask. We're one step closer, in that our code can now be compiled automatically:

However, manual effort is still required to construct our grid! Let's start to change 
that now, there are several frameworks available that we can use, but in my view,  
one of the cleanest is SASS's Bourbon Neat. We'll use this as the basis for our next 
few exercises, before migrating to use the PostCSS version of this framework.



Creating Grids

[ 144 ]

Adding support for Bourbon Neat
For the uninitiated, SASS's grid capability is provided by the Bourbon Neat add-on 
(available from http://neat.bourbon.io/). For the purposes of our exercise, we're 
going to use the Node versions of the framework—this requires two installations to 
be completed, so let's go ahead and do that now:

1.	 If you still have it open, revert back to the Node.js command prompt session 
from the previous demo; otherwise, open a new one and change the working 
folder to our project area.

2.	 At the prompt, enter these two commands in turn, pressing Enter after each:
npm install node-bourbon --save-dev

npm install node-neat --save-dev

3.	 Both plugins will have installed correctly when we see a result akin to  
this screenshot:

4.	 With the plugins now installed, we need to modify our gulp file—go ahead 
and add this at line 5:
var neat = require('node-neat').includePaths;

5.	 Next, leave a line, then add the code as shown, at line 7:
var paths = {
  scss: 'src/*.scss'
};

http://neat.bourbon.io/


Chapter 6

[ 145 ]

6.	 The original SASS task can be replaced with this new task:
gulp.task('styles', function () {
  return gulp.src(paths.scss)
  .pipe(sass({
    includePaths: require('node-neat').includePaths
  }))
  .pipe(gulp.dest('dest/'));
});

7.	 The reference to SASS in the default task is now incorrect—go ahead and 
change it to: gulp.task('default', ['styles']);

8.	 Finally, change this line as indicated:
var watcher = gulp.watch('src/*.scss', ['styles']);

9.	 We're now ready to test our compilation process—go ahead and extract 
a copy of the contents of style – pre-compile.scss from the code 
download and save it to the src folder.

10.	 At this point, we can run gulp from a Node.js command prompt. If this 
works okay, we should get a style.css file appear in the dest folder.  
If we open it up, we should see some compiled styles, as follows, that prove 
Neat is installed and working:
@media only screen and (min-width: 30rem) {
  .wrapper {
    width: 95%;
    max-width: 72rem; }
  .col-1 {
    width: 8.33333%; }

At this point, we now have a working compilation process, and we're good to go 
with building a working site! For now, don't worry too much about the individual 
styles in the compiled test.css file, we will cover this in more detail over the next 
few pages. Let's put our new compilation process into practice and assemble a 
working example, so that we can see the grid facility in action.

Creating an example with Bourbon Neat
Constructing a site using Bourbon Neat is a simple process, it does not require any 
special markup on our web page; the effort is all within the compiled style sheet.



Creating Grids

[ 146 ]

To prove this, we'll construct a simple web page that could easily be part of any 
website—I've used a Japanese theme as the basis for my page, but the principles 
we will use can apply to any site. You'll see that (with the exception of the standard 
SASS style of code used) there are only three instances where we have used Bourbon 
Neat-specific code.

Let's make a start:

1.	 From the code download that accompanies this book, go ahead and extract a 
copy of Tutorial30, and save it to the root of our project area.

2.	 Copy the contents of the sample site – pre-compile from within the 
Tutorial30 folder to the src folder within our project area. Go ahead and 
rename it as sample.scss.

3.	 Next, fire up a Node.js command prompt, then change the working folder to 
our project area.

4.	 At the prompt, enter gulp, then press Enter—Node.js will compile the code; 
if all is well, we should see two compiled style sheets and a source map in the 
dest folder.

5.	 Go ahead and copy the contents of the dest folder into the css folder at the 
root of the Tutorial30 folder.

If we try previewing the results of our work, we should see a stylish page appear, 
with our Japanese theme:



Chapter 6

[ 147 ]

The demo covers a couple of key points and useful tricks, so let's dive in and work 
through them in more detail.

Exploring our demo in more detail
At this point, be surprised to hear that, our first tip is not directly related to SASS or 
even Bourbon Neat, but to the color scheme!

"Why", I hear you ask, "are we talking about the color scheme first?" There is a good 
reason for this: we've used variables to reference our colors, but could equally have 
used SASS functions to create the values. We've already covered this back in Chapter 5, 
Managing Colors, Images and Fonts, where we covered the use of the postcss-color-
function plugin to build these values; we will use it again later in this chapter.

The real tip here, though, is using a nifty applet by Lokesh Dhakar, called Color 
Thief (hosted at http://lokeshdhakar.com/projects/color-thief/). We can 
simply drag and drop our header image in and get a full swatch of suitable colors:

http://lokeshdhakar.com/projects/color-thief/


Creating Grids

[ 148 ]

The only downside is that it doesn't provide the color values; we can get these  
from the page's source instead.

If your preference is to use RGB(A) colors instead, then a site such as 
Color Hexa (http://colorhexa.com) will be a great help.

The key to our demo is at lines 33, 63 and 69-these are Bourbon Neat mixins that 
control the format of the outer container (line 33):

They also control the format of each of the two content areas within (lines 63 and 69):

When compiled, the outer-container mixin adds a max-width of 72% to the 
.wrapper class controlling the main section, while the span-columns() mixins add 
float, display, width, and margin-right attributes to each element, like this:

http://colorhexa.com


Chapter 6

[ 149 ]

In addition to the outer-container() and span-columns() mixins, the  
demo uses percentage values as much as possible, where rem or pixel values  
have been specified, then maintaining a cohesive design when resizing these 
elements is less critical.

We will, however, make some improvements later in this chapter, when we improve 
the responsive capabilities of our demo. For now, let's continue with our transition, 
and introduce the use of PostCSS plugins into our process.

Exploring the grid plugins in PostCSS
Throughout this chapter we've used SASS with Bourbon Neat to produce our grids. 
It's a perfectly valid option to use, but is not the only one available. We might have 
preferred to work with something like Bootstrap or the Semantic Grid System 
instead; it's ultimately down to our personal choice as to which grid system we use, 
based on our preferences and requirements.

Up until now, we've focused on using Neat. This is largely due to familiarity and 
ease of use. There will come a point, though, when we need to make the transition 
to using PostCSS—the beauty is that there is a dedicated plugin available for using 
Neat within PostCSS, at https://github.com/jo-asakura/postcss-neat. It's not 
the only grid system plugin available for PostCSS, so let's take a moment to cover the 
others that can be used:

•	 Grid: Downloadable from https://github.com/andyjansson/postcss-
grid, this plugin splits some of the configuration between PostCSS and the 
stylesheet, which helps to simplify the calculations required for formatting 
each column.

•	 Lost: Available from https://github.com/corysimmons/lost, it describes 
itself as the Autoprefixer for grid systems; it provides support for most 
preprocessors, such as Less, SASS, or Stylus.

•	 Simple-grid: From https://github.com/admdh/postcss-simple-grid, 
this plugin takes a different route: all of the configuration is done in CSS, not 
within the task configuration.

Without further ado, it's time for us to make the transition—let's make a start by 
getting the plugin installed and configured for use.

https://github.com/jo-asakura/postcss-neat
https://github.com/corysimmons/lost
https://github.com/admdh/postcss-simple-grid


Creating Grids

[ 150 ]

Transitioning to using PostCSS-Neat
Making the transition to PostCSS is relatively straightforward. We need, of course, 
to update our compilation process to remove links to SASS, and introduce our 
PostCSS plugin. 

The transition process will be completed over this and the 
next two sections.

In terms of changing the CSS, it's a little more complicated, as we have to work out 
how many columns are required for each grid block. Fortunately, our example is 
relatively straightforward, as we numbered the original blocks with the appropriate 
column count, so we can use that as a basis for changing our CSS.

Let's make a start with updating our compilation process:

1.	 We'll start by extracting a copy of the Tutorial31 folder from the code 
download that accompanies this book. Save it to the root of our project area.

2.	 From the Tutorial31 folder, go ahead and extract copies of package.json 
and gulpfile.js files. Save these to the root of our project area.

3.	 Next, we need to install the postcss-neat plugin. For this, fire up a Node.js 
command prompt, then change the working folder to our project area.

4.	 At the prompt, go ahead and enter this command, then press Enter:
npm install postcss-neat --save-dev

5.	 Node will go away and install our plugin—the plugin is installed, when we 
see this confirmation:

We now have a plugin installed and configured for use. Before we create a test  
to confirm it works OK, let's take a quick look at our gulp file, at the root of our 
project area.



Chapter 6

[ 151 ]

If you were expecting a complex configuration, then I'm sorry to disappoint you—it's 
even easier than installing Bourbon and Neat using the normal method outlined on 
their site! Our gulp file contains the requisite variable calls to each plugin at the start, 
with a watch facility at the end of the file. The section of interest to us is this:

gulp.task('neat', function () {
  var processors = [
    require('autoprefixer-core')({ browsers: ['last 1 version']  
    }),
    require('postcss-neat')(/* { options } */)
  ];
  return gulp.src('src/*.css')
    .pipe(require('gulp-postcss')(processors))
    .pipe(gulp.dest('dest/'));
});

This setup should satisfy most scenarios, with a default of 12 columns; if there is a  
need to override it, we can do so by specifying the appropriate option in our 
configuration object:

postcss([
  ...
  require('postcss-neat')({
    neatMaxWidth: '128em'
  })
  ...
])

We will use this option later in this chapter in the Testing our configuration section, 
when we build our test example.

For a full list of the attributes that can be modified, head 
over to https://github.com/jo-asakura/postcss-
neat#custom-settings.

We have a basic configuration now in place, but hold on...it looks a little short! The 
sharp-eyed among you should notice that we've included additional options in the 
gulp files in previous exercises, such as creating source maps or minifying our CSS 
files. Let's fix that now, by amending our gulp file to include these missing options. 
Everything will then be in place, ready for when we create our example site.

https://github.com/jo-asakura/postcss-neat#custom-settings
https://github.com/jo-asakura/postcss-neat#custom-settings


Creating Grids

[ 152 ]

Refining our task list
Our gulp file, as it stands, is perfectly usable, but isn't really as useful as it could 
be—there are a handful of tasks we've built into previous exercises, but which of 
these are missing here.

A perfect example is the addition of source maps, but how about minifying our code 
too? Let's take a moment to refine our task list, and add in the missing tasks:

1.	 The first task is to add in some variables that will act as references for the 
various plugins we will use—this goes in immediately after the last var 
statement, at the top of our gulp file:
var cssnano = require('cssnano');
var sourcemaps = require('gulp-sourcemaps');
var rename = require('gulp-rename');
var stylelint = require('stylelint');
var reporter = require('postcss-reporter');

2.	 The first task to add in is a facility to lint our styles:
gulp.task("lint-styles", ['neat'], function() {
  return gulp.src("dest/css/*.css")
    .pipe(postcss([ stylelint({
      "rules": {
        "color-no-invalid-hex": 2,
        "declaration-colon-space-before": [2, "never"],
        "indentation": [2, 2],
        "number-leading-zero": [2, "always"]
      }
    }),
    reporter({
      clearMessages: true,
    })
  ]))
});

3.	 With our styles checked for accuracy and consistency, we can now minify 
our code. Add the following block:
gulp.task('rename', ['lint-styles'], function () {
  return gulp.src('dest/css/*.css')
    .pipe(postcss([ cssnano() ]))
    .pipe(rename('style.css'))
    .pipe(gulp.dest("dest/css"));
});



Chapter 6

[ 153 ]

4.	 The next step is to add a source map option:
gulp.task('sourcemap', ['rename'], function () {
  return gulp.src('dest/css/*.css')
    .pipe(sourcemaps.init())
    .pipe(sourcemaps.write('maps/'))
    .pipe(gulp.dest("dest/css"));
});

5.	 With the additions to our gulp file, we need to adjust the main default task to 
call these additional tasks:
gulp.task('default', ['neat', 'lint-styles', 'rename',  
'sourcemap']);

6.	 We have a watch facility in place, but it knows nothing about these extra 
tasks; let's add them in now:
var watcher = gulp.watch('src/*.css', ['default',  'lint- 
styles', 'rename', 'sourcemap']);

We now have a working gulp file, that includes all of the configuration tasks 
required for our exercise—let's put it to the test by compiling some example code,  
to confirm it all works as expected.

Testing our configuration
A key part of our process is testing our gulp file to ensure it works; not only should 
it run all of the required tasks, but in the correct order, and produce the expected 
results. Although we've reused existing code for our gulp file, we've made some 
major changes to our gulp file—let's take a moment to test it is working, using the 
code from our previous demo.

To get our demo working under PostCSS, we need to make some changes  
to our code:

1.	 We'll start by resaving the style.scss file (from within the css folder in 
the Tutorial31 folder) as a plain CSS file, and not a SASS stylesheet, we've 
removed the use of SASS from our previous demo, making the use of the 
.scss extension redundant.

2.	 Next, we used a .wrapper class in our previous demo. This needs to be 
modified as indicated:
.wrapper {
  @neat-outer-container;
  margin: 0 auto;
}



Creating Grids

[ 154 ]

3.	 Our col-* class rules need to change too. In place of the static percentages 
from the old demo, we're going to replace them with this:
.col-1 { @neat-span-columns 1; }
.col-2 { @neat-span-columns 2; }
.col-3 { @neat-span-columns 3; }
.col-4 { @neat-span-columns 4; }
.col-5 { @neat-span-columns 5; }
.col-6 { @neat-span-columns 6; }
.col-7 { @neat-span-columns 7; }
.col-8 { @neat-span-columns 8; }
.col-9 { @neat-span-columns 9; }
.col-10 { @neat-span-columns 10;}
.col-11 { @neat-span-columns 11; }
.col-12 { @neat-span-columns 12; }

4.	 Our code is now ready, so go ahead and copy the style.css file into the src 
folder at the root of our project area.

5.	 Next, fire up a Node.js command prompt, then change the working folder to 
our project area.

6.	 At the command prompt, enter gulp then press Enter.
7.	 If all is well, we should see a compiled style.css file appear in the dest 

folder. If we open it up, we should see a number of styles displayed that 
relate to each column, such as is shown in this screenshot:

8.	 If we try previewing the demo in a browser, we should see something akin 
to this screenshot. Notice how similar it is to the original version, which we 
built in SASS:



Chapter 6

[ 155 ]

The demo that we've constructed is nearly identical to the original version. This 
proves that we have a working capability, which we can use to build our sites. The 
changes we made to our code are very simple, we added a @neat-outer-container 
to define how wide our site should be, followed by multiple instances of @neat-
span-columns, to define how many columns each element should span.

Let's put some of this new knowledge to constructing something a little more useful, in 
the form of an example site with content. We'll reuse the example site page we created 
earlier in the chapter, and work through converting it for use with PostCSS plugins.

Creating a site using Neat and PostCSS
Remember our demo with a Japanese theme from earlier, in Creating an example with 
Bourbon Neat? It's a simple demo, using Bourbon Neat to help create our grid. The 
downside, though, is, of course, the dependency on SASS!

Well, we can fix that: PostCSS has a plugin available that mimics Bourbon Neat, 
but is written entirely in JavaScript, so there is no dependency on SASS. It's easy to 
install and use, over the next few pages, we'll work through the changes required to 
switch to this plugin.

First though, let's get it set up:

1.	 We'll begin by extracting a copy of the Tutorial32 folder from the  
code download that accompanies this book. Save this to the root of 
 our project area.

2.	 Copy the sample pre-compile.css file to the src folder at the root of our 
project area.



Creating Grids

[ 156 ]

3.	 Copy the gulpfile.js, samplesite.html and package.json files to  
the root of our project area. These should replace any existing versions  
that are present.

4.	 Next, we need to install two plugins, although we've covered using 
postcss-css-variables earlier in the book, installing them will ensure  
the right references are added to the package.json file. Go ahead and fire  
up a Node.js command prompt, then change the working folder to our 
project area.

5.	 At the command prompt, enter these two statements in turn, pressing Enter 
between each one:
npm install postcss-css-variables --save-dev

npm install postcss-nested

6.	 When both plugins are installed, go ahead and enter gulp, then press Enter to 
fire off a compilation of our style sheet.

7.	 If all is well, we should see two style sheets and a source map folder appear in 
the dest folder. Copy these to the css folder at the root of our project area.

8.	 If we fire up a copy of samplesite.html, we should see our demo appear as 
before, but this time without the dependency on SASS:



Chapter 6

[ 157 ]

Do you notice any difference to our SASS-only version of this demo, from earlier?  
Hopefully not; while it may not be pixel-identical to the original, it is not far from 
it! However, it does show that with a little ingenuity, it is possible to make the 
transition to using PostCSS and still maintain the same results. It will require a 
few changes to your code and processes, so let's take a look at these in more detail, 
starting with the style sheet.

Making the change to PostCSS
Making the switch requires changes in both the gulp task file and style sheet. These 
are not to change how the page will look, but to maintain the same theme from the 
original demo. The key changes made to the style sheet are:

•	 The _reset.scss partial style sheet that we import will no longer work, 
as we are removing the reliance on SASS. To maintain its use, a compiled 
version was created using the online playground at Sassmeister (http://www.
sassmeister.com); we can then link to it from our markup page.

•	 If you take a peek at the source version of sample.css, you will see a :root 
block at the top of the file; this replaces the import statements we used. This 
block can be used to store any variables used, and we will cover this in more 
detail when we explore the changes made to our gulp task file.

•	 We no longer needed the following three statements; they are used to debug 
the SASS version of Bourbon Neat, and were then removed:
$visual-grid: true;
$visual-grid-color: #E6F6FF;
$visual-grid-opacity: 0.4;

•	 We're using PostCSS equivalents for all of the variable statements. The SASS 
versions were modified using search and replace from $... to var(--….), 
where the ... represents the variable name.

•	 Our original code had a number of references to Bourbon mixins which had 
to be updated. We used the same search and replace principle, this time 
changing @include outer… to @neat-outer… throughout the code.

•	 To keep things simple, we manually calculated any instance where  
$body-line-height was referenced, and replaced the calculation with  
the result. We could have stayed with using calculations, but it would  
have required the use of another plugin which would have been overkill  
for their limited use in our code.

•	 We also adjusted the width of the main area in our page; it's a minor  
quirk, but required to ensure we had two areas side by side, and not  
one above the other!

http://www.sassmeister.com
http://www.sassmeister.com


Creating Grids

[ 158 ]

In addition to altering our style sheet, we also had to make some changes to the gulp 
task file. They center around replacing the main compilation task and adding in 
additional tasks to manage production and minification of our source files:

•	 We added in the rename, lint-styles, and sourcemap tasks covered in earlier 
demos. These already worked well, and required no modification.

•	 We stripped out the original styles task, and replaced it with this:

This time, we're calling them nested(), cssvariables() and Neat plugins. 
These are referenced used variables and are added in at the top of our  
gulp file.

•	 Our final change is at the end of the gulp file, where we had to adjust the 
default and watcher tasks to include the additional tasks that we added to 
our gulp file.

At this stage, do we have a working demo ready for use? Well, not quite, but let's try 
resizing our demo:

Hmm, what's happened to our content? It doesn't look great, does it? We can easily 
fix it though; it just requires the addition of some media queries to reorganize how 
our content is displayed on the screen. Let's dive in and take a look at what is needed 
to get our demo looking better at smaller sizes.



Chapter 6

[ 159 ]

Adding responsive capabilities
Although Bourbon does add a degree of responsivity to our code, it's not quite 
enough for our needs. If we try resizing our demo, it soon becomes apparent that  
the elements don't quite go where we would want them, to say the least!

The quickest way to see just how the design looks when resized for smaller devices is 
to use Google Chrome. Press Shift + Ctrl + I to enable Chrome's developer tools:

The design works well when viewed at 1280px x 1024px, but this soon changes if we 
change the available viewing estate to suit an Apple iPhone 6 at 375px by 627px:

See what I mean? It just doesn't look right, does it? Fortunately, it's easy to fix using 
PostCSS, so let's dive in and see what is required to get our design working again.



Creating Grids

[ 160 ]

Correcting the design
Getting our design to work properly for smaller devices such as iPhones is easy 
when working with PostCSS: we can use the postcss-media-minmax plugin 
available from https://github.com/postcss/postcss-media-minmax.

"How can PostCSS help us though?", I hear you ask. Easy, the point at which most 
people trip up when working with media queries is in setting the breakpoints, or 
determining where our designs break at specific sizes. The postcss-media-minmax 
plugin helps to make the text a little more human; after all, if a design works when 
the size is greater than or equal to an amount, why not say that in our code?

To see what I mean, let's get stuck into fixing our code. For simplicity, we will 
focus entirely on resizing our content for an iPhone 6, using 375px by 627px as our 
breakpoint (as determined by using Google Chrome's Responsive Design view).  
We will continue exactly where we left off from the previous demo:

1.	 We first need to install the postcss-media-minmax plugin—to do this, 
fire up a Node.js command prompt session, then at the prompt add this 
command and press Enter:
npm install postcss-media-minmax --save-dev

2.	 Next, open up a copy of the sample.css file from within the src folder in 
our project area. We'll add the media query first, adjusted to ensure we catch 
the right breakpoint:
/* media queries */
@media screen and (width >= 370px) and (width <= 630px) {

}

3.	 Immediately inside the query, go ahead and add this rule. We don't want to 
resize below 375px as a minimum:
  body {
    min-width: 375px;
  }

https://github.com/postcss/postcss-media-minmax


Chapter 6

[ 161 ]

4.	 The header image text needs to be resized to a smaller space, and we can also 
reduce it in size and move it over to the left a little:
  header {
    width: 50%;
    font-size: 2rem;
    margin-left: 45%;
  }

5.	 The #alpha content area (or menu) has automatically resized itself, but the 
main content area (#beta) is too wide; let's resize it down to fit. Our area 
won't cope with all of the text, so we'll add an overflow attribute, and set  
it to hide text outside the viewable area:
  #beta {
    margin-right: 2.35765160%;
    width: 55.1748%;
    overflow: auto;
  }

6.	 At this point, we need to install the postcss-media-minmax plugin,  
so fire up a Node,js command prompt and change the working folder  
to our project area.

7.	 At the prompt, enter this command, then press Enter:
npm install postcss-media-minmax --save-dev

8.	 When the plugin is installed, enter gulp at the command prompt, and  
press Enter.

9.	 PostCSS will now compile the code, and if all is well, we should see updated 
style sheet and source map files appear in the dest folder.

10.	 Go ahead and copy these into the css folder in the Tutorial32 folder,  
then try previewing the results in a browser.



Creating Grids

[ 162 ]

If all is well, we should see something akin to the following screenshot, when enabling 
Chrome's Responsive Design view, and switching the Device setting to Apple iPhone 6:

The changes we've made to our code are simple, and limited to supporting iPhones. 
This is just the tip of the iceberg, though: there is so much more we can do!

For example, instead of specifying an exact width value as our min-width attribute 
(or for the width of #beta, for that matter), we could consider using @neat-span-
columns to provide this value for us. Of course, we can't limit ourselves to one media 
query, we need to ensure we have enough media queries to cater for the devices we 
need to support.

This does not mean that we need to have a 1:1 relationship between a query and a 
device. Provided we design our queries carefully, we can set existing ones to cover 
several devices. Ultimately, though, the principle is still the same, but instead of 
using the standard colon notation, we can use the easier to read >= or <= symbols  
to define the breakpoint range when working with queries using PostCSS.



Chapter 6

[ 163 ]

Summary
For many developers or designers, using grid-based development forms a key  
part of their working process. Many will be familiar with the likes of Bootstrap  
or Bourbon Neat; we can easily replicate the same functionality within PostCSS.  
Let's take a moment to review what we've covered throughout this chapter.

We kicked off with a brief introduction to using grid-based development, before 
swiftly moving on to beginning the transition process to using PostCSS. Our first 
stop was a look at automating the compilation process so we can make the switch  
to using Gulp.

Next up, we then took a look at making the switch from using pure SASS to using 
the SASS-based grid system, Bourbon Neat; we covered how easy it is for Bourbon  
to build the structure of our grid system with minimal effort.

We then moved on to exploring the plugin options available from within PostCSS, 
before making the transition to using the postcss-neat plugin. We then explored 
how easy it is to refine our Gulp task process, by adding in tasks that we introduced 
from earlier in the book, to help build up a process that more closely represents  
real-world development. To confirm the process works, we performed a test using  
an adapted version of the original demo from Bourbon Neat, before moving on  
to converting our Japanese-themed demo to using PostCSS equivalent plugins.  
We then rounded out the chapter with a brief look at refining the responsive 
capabilities within our design, to ensure it works better on smaller devices.

Phew, it may not seem like much, but we certainly covered a lot over the last 
few pages! But, as always, we continue apace: in the next chapter, we'll really 
get animated (sorry, pun intended!), with a look at how PostCSS can help with 
animating content.





[ 165 ]

Animating Elements
A question: if you had the choice of three websites: one static, one with badly done 
animation, and one which has been enhanced with subtle use of animation, which 
would you choose? Well, my hope is the answer to that question should be number 
three: animation can really make a site stand out if done well, or fail miserably if 
done badly!

So far, our content has been relatively static, save for the use of media queries.  
It's time, though, to take a look at how PostCSS can help make animating content 
a little easier. We'll begin with a quick recap on the basics of animation, before 
exploring the route to moving away from pure animation, through to SASS, and 
finally, across to PostCSS. We will cover a number of topics throughout this chapter, 
which will include:

A recap on the use of jQuery to animate content:

•	 Switching to CSS-based animation
•	 Exploring the use of pre-built libraries such as Animate.css
•	 Exploring the options available when making the change to using PostCSS
•	 Working through creating an animation-based demo, using PostCSS
•	 Learning how to optimize animations using PostCSS

Let's make a start…!

Revisiting basic animations
Animation is quickly becoming king in web development, more and more websites 
are using animations to help bring life and keep content fresh. If done correctly, they 
add an extra layer of experience for the end user; done badly, and the website will 
soon lose more custom than water through a sieve!



Animating Elements

[ 166 ]

Throughout the course of the chapter, we'll take a look at making the change from 
writing standard animation, through to using processors such as SASS, and finally, 
switching to using PostCSS. I can't promise you that we'll be creating complex 
JavaScript-based demos such as the Caaaat animation (http://roxik.com/cat/—
try resizing the window!), but we will see that using PostCSS is really easy when 
creating animations for the browser.

To kick off our journey, we'll start with a quick look at the traditional animation—
how many times have you had to use .animate() in jQuery, over the years? 
Thankfully, we have the power of CSS3 to help with simple animations, but there 
was a time when we had to animate content using jQuery.

As a quick reminder, try running animate.html from the T34 – Basic animation 
using jQuery animate() folder. It's not going to set the world on fire, but is a nice 
reminder of times gone by, when we didn't know any better:

If we take a look at a profile of this animation from within a DOM inspector from 
within a browser such as Firefox, it would look something like this screenshot:

Whilst the numbers aren't critical, the key point here is the two dotted green lines, 
and that the results show a high degree of inconsistent activity. This is a good 
indicator that activity is erratic, with a low frame count, resulting in animations that 
are jumpy and less than 100% smooth.

The great thing, though, is that there are options available to help provide smoother 
animations; we'll take a brief look at some of the options available, before making 
the change to using PostCSS. For now though, let's make that first step to moving 
away from using jQuery, beginning with a look at the options available for reducing 
dependency on the use of .animate() or jQuery.

http://roxik.com/cat/


Chapter 3

[ 167 ]

Moving away from jQuery
Animating content can be a contentious subject, particularly if jQuery or JavaScript 
is used—if we were to take a straw poll of 100 people and ask which they used, it 
is very likely that we would get mixed answers! A key answer of it depends is likely 
to feature at or near the top of the list of responses; many will argue that animating 
content should be done using CSS, while others will affirm that JavaScript-based 
solutions still have value.

Leaving aside that…shall we say…lively debate, if we're looking to move away from 
using jQuery, and in particular .animate(), then we have some options available  
to us:

•	 Upgrade your version of jQuery! Yes—this might sound at odds with the 
theme of this chapter, but the most recent versions of jQuery introduced the 
use of requestAnimationFrame, which improved performance, particularly 
on mobile devices.

•	 A quick and dirty route is to use the jQuery Animate Enhanced plugin, 
available from http://playground.benbarnett.net/jquery-animate-
enhanced/; although a little old, it still serves a useful purpose. It will (where 
possible) convert .animate() calls into CSS3 equivalents; it isn't able to 
convert all, so any that are not converted will remain as .animate() calls.

•	 Using the same principle, we can even take advantage of the JavaScript 
animation library, GSAP—the Greensock team have made available a plugin 
(from https://greensock.com/jquery-gsap-plugin), that replaces 
jQuery.animate() with their own GSAP library. The latter is reputed to 
be 20 times faster than standard jQuery! With a little effort, we can look to 
rework our existing code—in place of using .animate(), we can add the 
equivalent CSS3 style(s) into our stylesheet and replace existing calls to 
.animate() with either .removeClass() or .addClass(), as appropriate.

•	 We can switch to using libraries such as Transit (http://ricostacruz.
com/jquery.transit/), it still requires the use of jQuery, but gives better 
performance than using the standard .animate() command.

•	 Another alternative is Velocity JS by Jonathan Shapiro, available from 
http://julian.com/research/velocity/; this has the benefit of not 
having jQuery as a dependency. There is even talk of incorporating all or 
part of the library into jQuery, as a replacement for .animate()—for more 
details, check out the issue log at https://github.com/jquery/jquery/
issues/2053.

http://playground.benbarnett.net/jquery-animate-enhanced/
http://playground.benbarnett.net/jquery-animate-enhanced/
https://greensock.com/jquery-gsap-plugin
http://ricostacruz.com/jquery.transit/
http://ricostacruz.com/jquery.transit/
http://julian.com/research/velocity/
https://github.com/jquery/jquery/issues/2053
https://github.com/jquery/jquery/issues/2053


Animating Elements

[ 168 ]

Many people automatically assume that CSS animations are faster than JavaScript 
(or even jQuery). After all, we don't need to call an external library (jQuery); we 
can use styles that are already baked into the browser, right? The truth is not 
as straightforward as this—in short, the right use of either will depend on your 
requirements and the limits of each method. For example, CSS animations are great 
for simple state changes, but if sequencing is required, then you may have to resort to 
using the JavaScript route.

The key, however, is less in the method used, and more in how many frames per 
second are displayed on screen. Most people cannot distinguish above 60FPS—this 
produces a very smooth experience. Anything less than around 25FPS will produce 
blur and occasionally appear jerky—it's up to us to select the best method available, 
that produces the most effective solution.

To see the difference in frame rate, take a look at https://frames-
per-second.appspot.com/—the animations on this page can be 
controlled; it's easy to see why 60FPS produces a superior experience!

So, which route should we take? Well, over the next few pages, we'll take a brief look 
at each of these options. At this point, you may well be asking, "How is this relevant 
to PostCSS though, given that this is the subject of this book?"

In a nutshell, they are all methods that either improve how animations run, or allow 
us to remove the dependency on .animate(), which we know is not very efficient! 
True, some of these alternatives still use jQuery, but the key here is that your existing 
code could be using any or a mix of these methods. Later in this chapter, we'll 
take a look at how we can begin to remove jQuery, and focus more on using CSS3 
animations, using the PostCSS plugin system.

A small word of note, all of the demos over the next few pages were 
run at the same time as a YouTube video was being run; this was to 
help simulate a little load and get a more realistic comparison. Running 
animations under load means less graphics processing power is 
available, which results in a lower FPS count.

Let's kick off with a look at our first option, the Transit.js library.

Animating content with Transit.js
In an ideal world, any project we build will have as few dependencies as possible; 
this applies equally to JavaScript or jQuery-based content as it does to CSS styling.

https://frames-per-second.appspot.com/
https://frames-per-second.appspot.com/


Chapter 3

[ 169 ]

To help with reducing dependencies, we can use libraries such as TransitJS or 
Velocity to construct our animations. The key here is to make use of the animations 
that these libraries create, as a basis for applying styles we can then manipulate using 
.addClass() or .removeClass(). To see what I mean, let's explore this concept with 
a simple demo:

1.	 We'll start by opening up a copy of animate.html—to make it easier, we 
need to change the reference to square-small from a class to a selector:
<div id="square-small"></div>

2.	 Next, go ahead and add in a reference to the Transit library, immediately 
before the closing </head> tag:
<script src="js/jquery.transit.min.js"></script>

3.	 The Transit library uses a slightly different syntax, so go ahead and update 
the call to .animate() as indicated:
smallsquare.transition({x: 280}, 'slow');

Save the file, then try previewing the results in a browser—if all is well, we should 
see no material change in the demo:

However, the animation will be significantly smoother—the frame count is higher, at 
44.28FPS, with fewer dips:

Let's compare this with the same profile screenshot taken for the Revisiting basic 
animations section, earlier in this chapter—notice anything?



Animating Elements

[ 170 ]

Profiling browser activity can be complex, but there are only two things we need to 
concern ourselves with here: the FPS value and the state of the green line. The FPS 
value, or Frames Per Second, is over three times higher, and for a large part, the 
green line is more consistent, with fewer, more short-lived dips.

This means that we have a smoother, more consistent performance; at approximately 
44FPS, the average frame rate is significantly better than using standard jQuery—but 
we're still using jQuery!

There is a difference, though—libraries such as Transit or Velocity convert animations, 
where possible, to CSS3 equivalents—if we take a peek under the covers, we can see 
this in the flesh:

We can use this to our advantage, by removing the need to use .animate() and 
simply use .addClass() or .removeClass()—we'll see this in action later in this 
chapter, in the Switching classes using jQuery section.

If you would like to compare our simple animation when 
using Transit or Velocity, there are examples available in the 
code download, as demos T35A and T35B, respectively.

To take it to the next step, we can use the Velocity library to create a version of 
our demo using plain JavaScript—we'll see how as part of the next demo. Beware 
though—this isn't an excuse to still use JavaScript; as we'll see, there is little 
difference in the frame count!

Animating with plain JavaScript
Many developers are used to working with jQuery—after all, it makes it a cinch to 
reference just about any element on a page! Sometimes though, it is preferable to 
work in native JavaScript; this could be for speed. If we only need to support newer 
browsers (such as IE11 or Edge, and recent versions of Chrome or Firefox), then 
adding jQuery as a dependency isn't always necessary.



Chapter 3

[ 171 ]

The beauty about libraries such as Transit (or Velocity) means that we don't always 
have to use jQuery to still achieve the same effect; as we'll see shortly, removing 
jQuery can help improve matters! Let's put this to the test, and adapt our earlier 
demo to work without using jQuery:

1.	 We'll start by extracting a copy of the T35B folder from the code download 
that accompanies this book. Save this to the root of our project area.

2.	 Next, we need to edit a copy of animate.html within this folder—go ahead 
and remove the link to jQuery, then remove the link to velocity.ui.min.
js; we should be left with this in the <head> of our file:
  <link rel="stylesheet" type="text/css" href="css/style.css">
  <script src="js/velocity.min.js"></script>
</head>

3.	 A little further down, alter the <script> block as shown:
  <script>
    var smallsquare =  
      document.getElementById('square-small');
    var animbutton =  
      document.getElementById('animation-button'); 
    animbutton.addEventListener("click", function() {
      Velocity(document.getElementById('square-small'),  
        {left: 280}, {duration: 'slow'});
    });
</script>

4.	 Save the file, then preview the results in a browser—if we monitor the 
performance of our demo using a DOM Inspector, we can see a similar  
frame rate being recorded in our demo:



Animating Elements

[ 172 ]

With jQuery as a dependency no longer in the picture, we can clearly see that the 
frame rate has improved; the downside, though, is that support is reduced for some 
browsers, such as IE8 or 9. This may not be an issue for your site—both Microsoft 
and the jQuery Core Team have announced changes to drop support for IE8 - 10 and 
IE8 respectively, which will help encourage users to upgrade to newer browsers.

It has to be said though, that while using CSS3 is preferable for speed and keeping 
our pages as lightweight as possible, using Velocity does provide a raft of extra 
opportunities that may be of use to your projects. The key here, though, is to 
carefully consider if you really do need them, or whether CSS3 will suffice, and  
allow you to use PostCSS.

Switching classes using jQuery
At this point, there is one question that comes to mind: what about using class-based 
animation? By this, I mean dropping any dependency on external animation libraries, 
and switching to using plain jQuery with either .addClass() or .removeClass() 
methods.

In theory, it sounds like a great idea—we can remove the need to use .animate(), 
and simply swap classes as needed, right? Well, it's an improvement, but it is still 
lower than using a combination of pure JavaScript and switching classes. It all boils 
down to a trade-off between using the ease of jQuery to reference elements, against 
pure JavaScript for speed:

1.	 We'll start by opening a copy of animate.html from the previous  
exercise—first, go ahead and replace the call to Velocity.JS with this line, 
within the <head> of our document:
<script src="js/jquery.min.js"></script>

2.	 Next, remove the code between the <script> tags, and replace it with this:
var smallsquare = $('.rectangle').find('.square-small');
$('#animation-button').on("click", function() {
      smallsquare.addClass("move");

      smallsquare.one('transitionend', function(e) {
        $('.rectangle').find('.square-small')
        .removeClass("move");
      });
    });

3.	 Save the file—if we preview the results in a browser, we should see no 
apparent change in how the demo appears, but the transition is marginally 
more performant than using a combination of jQuery and Transit:



Chapter 3

[ 173 ]

The real change in our code, though, will be apparent if we take a peek under the 
covers using a DOM Inspector:

Instead of using .animate(), we are using CSS3 animation styles to move our 
square-small <div>. Most browsers will accept the use of transition and transform, 
but it is worth running our code through a process such as Autocomplete, to ensure 
we apply the right vendor prefixes to our code.

The beauty of using CSS3 here is that, while it might not suit large, complex 
animations, we can at least begin to incorporate the use of external stylesheets  
such as Animate.css, or even use a preprocessor such as SASS to create our styles.

It's an easy change to make, so without further ado, and as the next step on our 
journey to using PostCSS, let's take a look at this in more detail.

If you would like to create custom keyframe-based animations, 
then take a look at http://cssanimate.com/, which provides 
a GUI-based interface for designing them, and will pipe out the 
appropriate code when requested.

Making use of pre-built libraries
Up to this point, all of our animations have had one thing in common—they are 
individually created, and stored within the same stylesheet as other styles for  
each project.

http://cssanimate.com/


Animating Elements

[ 174 ]

This will work perfectly well, but we can do better—after all, it's possible that we 
may well create animations that others have already built! Over time, we may also 
build up a series of animations that can form the basis of a library that can be reused 
for future projects.

A number of developers have already done this. One example of note is the 
Animate.css library, created by Dan Eden. It's worth getting to know this library, 
as we will use it later in this book in the guise of the postcss-animation plugin for 
PostCSS. In the meantime, let's run through a quick demo of how it works, as a 
precursor to working with it in PostCSS.

The images used in this demo are referenced directly from the 
LoremPixem site, as placeholder images.

Let's make a start:

1.	 We'll start by extracting a copy of the T37 folder from the code download 
that accompanies this book—save the folder to our project area.

2.	 Next, open a new file and add the following code:
body { background: #eee; }

#gallery {
  width: 745px;
  height: 500px;
  margin-left: auto;
  margin-right: auto;
}

#gallery img {
  border: 0.25rem solid #fff;
  margin: 20px;
  box-shadow: 0.25rem 0.25rem 0.3125rem #999;
  float: left;
}

.animated {
  animation-duration: 1s;
  animation-fill-mode: both;
}

.animated:hover {
  animation-duration: 1s;
  animation-fill-mode: both;
}



Chapter 3

[ 175 ]

3.	 Save this as style.css in the css subfolder within the T37 folder.
4.	 Go ahead and preview the results in a browser—if all is well, then we should 

see something akin to this screenshot:

If we run the demo, we should see images run through different types of 
animation—there is nothing special or complicated here; the question is, though, 
how does it all fit in with PostCSS?

Well, there's a good reason for this—there will be some developers who have used 
Animate.css in the past, and will be familiar with how it works; we will also be 
using the postcss-animation plugin later, in Updating code to use PostCSS, which is 
based on the Animate.css stylesheet library. For those of you who are not familiar 
with the stylesheet library though, let's quickly run through how it works, within the 
context of our demo.

Dissecting the code for our demo
The effects used in our demo are quite striking—indeed, one might be forgiven for 
thinking that they required a lot of complex JavaScript!

This, however, could not be further from the truth—the Animate.css file contains a 
number of @keyframe based animations, similar to this:

@keyframes bounce {
  0%, 20%, 50%, 80%, 100% {transform: translateY(0);}
  40% {transform: translateY(-1.875rem);}



Animating Elements

[ 176 ]

  60% {transform: translateY(-0.9375rem);}
}

We pull in the animations using the usual call to the library, within the <head> 
section of our code. We can then call any animation by name from within our code:

  <div id="gallery">
    <a href="#"><img class="animated bounce"  
src="http://lorempixum.com/200/200/city/1" alt="" /></a>
...
  </div>
  </body>

You will notice the addition of the .animated class in our code—this controls the 
duration and timing of the animation, and is set according to which animation name 
has been added to the code.

The downside of not using JavaScript (or jQuery for that matter) means that 
the animation will only run once when the demo is loaded; we can set it to run 
continuously by adding the .infinite class to the element being animated  
(this is part of the Animate library). We can fake a click option in CSS, but it is  
an experimental hack, which is not supported across all browsers—to effect any  
form of control, we really need to use JavaScript (or even jQuery)!

If you are interested in the details of the hack, then take a look at this 
response on Stack Overflow, at http://stackoverflow.com/
questions/13630229/can-i-have-an-onclick-effect-
in-css/32721572#32721572.

Okay, onwards we go: we've covered the basic use of pre-built libraries, such as 
Animate. It's time to step up a gear, and make the transition to PostCSS. As a start, 
we will use Gulp as our task runner of choice, with SASS. The latter is a perfect 
choice, as it fits in with the plugin we will use later in this chapter. Let's take a  
look at what is involved in laying the groundwork for our conversion to PostCSS.

Switching to using SASS
As a developer or designer, if our development workflow includes the use of SASS, 
then the temptation is to use mixins such as this to construct our styles:

@mixin transition ($value...) {
  @if length($value) >= 1 { // If we set value
    @include prefixer($property: transition, $value: $value);
  } @else { // If value is not set, return default value

http://stackoverflow.com/questions/13630229/can-i-have-an-onclick-effect-in-css/32721572#32721572
http://stackoverflow.com/questions/13630229/can-i-have-an-onclick-effect-in-css/32721572#32721572
http://stackoverflow.com/questions/13630229/can-i-have-an-onclick-effect-in-css/32721572#32721572


Chapter 3

[ 177 ]

    @include prefixer($property: transition, $value: all 0.15s  
      ease-in 0.05s);
  }
}

There's nothing wrong with this, but it will take effort to manage our mixins if we 
need to use more than just a small handful! The easier option is to explore using a 
pre-built animation library, as a way of reducing our development effort.

There are a number of developers who have created mixin libraries to handle 
animations; a perfect example is the SASS port of Animate, by Geoff Graham, which 
is available for download at https://github.com/geoffgraham/animate.scss.

There is something, though, that we have to be mindful of when working with 
mixins—it's all too easy to use them to manage vendor prefixes, such as this:

@mixin prefixer($property, $value) {
  -webkit-#{$property}: $value; // Attach webkit prefix  
    (Chrome, Safary, Some Android native browsers)
  -moz-#{$property}: $value; // Attach moz prefix (FireFox)
  -o-#{$property}: $value; // Attach o prefix (Opera)
  #{$property}: $value; // no prefix (modern browsers  
    and latest IE versions)
}

Although it will add the relevant vendor prefixes when the code is compiled, it's not 
considered best practice.

The onus is on us to ensure that each animation includes all of the relevant vendor 
prefixes—with the best will in the world, it's a challenge to keep up! There is also  
the issue of adding rules that won't have any effect—for example, there is no point  
in adding –o as a prefix for transition; this prefix is no longer needed.

Fortunately, there is a better way to handle prefixes—we can use Autoprefixer  
(from https://twitter.com/autoprefixer) to automatically handle vendor 
prefixes for us. The great thing about Autoprefixer is that it uses the Can I Use 
(http://www.caniuse.com) database to keep details up to date.

There are various plugins available that allow us to use task runners such as Grunt 
or Gulp. We can of course use a standalone GUI-based compiler for this purpose, 
but why run something like this when we can tie in much more functionality when 
using a task runner? We can even use any one of several plugins to remove vendor 
prefixes, prior to running a new compilation—this will ensure any redundant 
prefixes are removed.

https://github.com/geoffgraham/animate.scss
https://twitter.com/autoprefixer
http://www.caniuse.com


Animating Elements

[ 178 ]

With this in mind, let's get practical. For our next demo, we're going to construct 
a simple gallery effect, which showcases the same animations we saw earlier, but 
this time using the SASS version of Animate.css. We'll use Gulp as our task runner 
to compile the SASS code, before adding a source map, checking our code for 
consistency, adding vendor prefixes, and so on. You get the idea!

Suffice to say that we can do a lot using a task runner, so without further ado, let's 
get started with constructing our gallery.

Creating an animated gallery
Animating content can be a double-edged sword. Added with care, it can really lift 
a site to the next level. If it is done badly, then patronage of the site is likely to drop 
like a stone!

In our last demo, we constructed a simple gallery effect—this was more to show off 
the different types of animated effects we can add, rather than produce something 
that would win awards. Over the next few pages, we'll continue with our demo, 
but this time reconfigure it to use the SASS version of Animate.css. We will also 
introduce the use of a task runner to compile our code—as this is a requirement 
for using PostCSS, it seems a perfect point to start using it, as the final part of our 
transition to working with animation and PostCSS.

The files for this tutorial are available in the T38 folder in the 
accompanying code download.

Without further ado, let's add the changes to our previous demo:

1.	 We need to download the SASS version of Animate—it's available from 
https://github.com/geoffgraham/animate.scss/archive/master.zip. 
Go ahead and extract the contents of Animate.scss-master into the src 
folder at the root of our project area.

2.	 In the src folder, rename the Animate.scss file to _animate.scss—this is 
to indicate that it is a partial, which prevents it being compiled as a separate 
file by the SASS compiler.

3.	 In the src folder, go ahead and rename it as style.scss—this changes it to 
a SASS file, which is required for compilation later in the exercise. We should 
have something akin to this screenshot in our src folder:

https://github.com/geoffgraham/animate.scss/archive/master.zip


Chapter 3

[ 179 ]

4.	 Go ahead and open up the style.scss file. At the bottom, add this line at 
the top of the stylesheet:
@import "_animate.scss";

5.	 Next, add the following additional lines at the end of the stylesheet—these 
pull in the animations from the SASS version of Animate.css; the timing has 
also been extended to five seconds, as the original example was too quick:
.bounce { @include bounce(); }
.flip { @include flip(); }
.hinge { @include hinge(); }
.flash { @include flash(); }
.shake { @include shake(); }
.swing { @include swing(); }

.animated:hover {
  animation-duration: 5s;
  animation-fill-mode: both;
}

6.	 Save the file, then copy the contents of the src folder under T38 to the src 
folder at the root of our project area—we will be compiling this file shortly.



Animating Elements

[ 180 ]

7.	 In a new file, go ahead and add the following code, then save it as gulpfile.
js to the root of our project area—this will form our gulp file, which we will 
use to compile our code:
'use strict';
 
var gulp = require('gulp');
var postcss = require('gulp-postcss');
var sass = require('gulp-sass');

gulp.task('sass', function () {
  return gulp.src('src/*.scss')
    .pipe(sass().on('error', sass.logError))
    .pipe(gulp.dest('dest/'));
});

gulp.task('default', ['sass']);

var watcher = gulp.watch('src/*.scss', ['sass']);
watcher.on('change', function(event) {
  console.log('File ' + event.path + ' was ' +  
    event.type + ', running tasks...');
});

8.	 We also need a package.json file—this will store details of the plugins we 
will be using. For now, we will limit ourselves to using gulp-sass, but this 
will soon change! Go ahead and add the following lines to a new file, saving 
it as package.json in the root of our project area:
{
  "name": "postcss",
  "version": "1.0.0",
  "description": "Configuration file for PostCSS",
  "main": "index.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"
  },
  "author": "Alex Libby",
  "license": "ISC",
  "dependencies": {
    "postcss": "^5.0.8"
  },
  "devDependencies": {
    "gulp": "^3.9.0",
    "gulp-postcss": "^6.0.0",
    "gulp-sass": "^2.1.1"
  }
}



Chapter 3

[ 181 ]

9.	 The keen-eyed among you should spot that we've not installed the gulp-sass  
plugin. Let's fix that now by firing up a Node.js command prompt, then 
changing the working directory to the project area. Go ahead and run this 
command from the prompt:
npm install gulp-sass --save-dev

10.	 At the prompt, enter gulp then press Enter—Gulp will now go away and 
compile our file; if all is well, we should see a compiled style sheet appear  
in the dest folder of our project area.

11.	 At this point, try running animate.html in a browser—if all is well, we 
should see no change to our gallery effect, but can be safe in the knowledge 
that we're now using the SASS version of Animate.css.

Our demo has now been converted to using Animate.scss—we could easily have 
chosen to use any one of several compilers (such as Koala—http://www.koala-
app.com), but instead chose to use Gulp. It acts as a perfect route into making the 
transition to using PostCSS—as we've seen in earlier demos, we've already used a 
task runner in the form of Gulp for this purpose. This allows us to make that gradual 
transition—when all of the SASS elements have been converted, we simply drop the 
task from within our gulp file to complete the transition.

Adding the finishing touches
So, what next? We've created a basic gulp task file, which we used to compile our 
SASS code to valid styles.

But this is just a small part of the story; we need to add a lot more to make our 
compilation process useful and ready for conversion to using PostCSS.

Let's get started:

1.	 The first change we need to make is in the package.json file—go ahead and 
add the lines as highlighted:
    "cssnano": "^3.2.0",
    "gulp": "^3.9.0",
    "gulp-postcss": "^6.0.0",
    "gulp-rename": "^1.2.2",
    "gulp-sass": "^2.1.1",
    "gulp-sourcemaps": "^1.5.2",
    "postcss-reporter": "^1.3.0",
    "stylelint": "^2.3.7"
  }
}

http://www.koala-app.com
http://www.koala-app.com


Animating Elements

[ 182 ]

2.	 Next, we need to configure our gulp file with some additional tasks—the first 
task is to add references to some additional plugins that we've already used 
from earlier in the book. Go ahead and add the following highlighted lines:
var sass = require('gulp-sass');
var autoprefixer = require('autoprefixer');
var cssnano = require('cssnano');
var sourcemaps = require('gulp-sourcemaps');
var rename = require('gulp-rename');
var stylelint = require('stylelint');
var reporter = require('postcss-reporter');

3.	 With the additional plugin references added, we now need to add in our 
extra tasks—immediately below the SASS task, add in this task; this manages 
the linting of our code, for consistency:
gulp.task("lint-styles", ['sass'], function() {
  return gulp.src("dest/*.css")
    .pipe(postcss([ stylelint({
      "rules": {
        "color-no-invalid-hex": 2,
        "declaration-colon-space-before": [2, "never"],
        "indentation": [2, 2], 
        "number-leading-zero": [2, "always"]
      }
    }),
    reporter({
      clearMessages: true,
    })
  ]))
});

4.	 Add this next task immediately below the previous step—this renames the 
files as part of the minification process:
gulp.task('rename', ['lint-styles'], function () {
  return gulp.src('dest/*.css')
    .pipe(postcss([ cssnano() ]))
    .pipe(rename('style.min.css'))
    .pipe(gulp.dest("dest/"));
});

5.	 Our next gulp task manages the generation of source maps—this can be done 
within SASS automatically, but using a separate plugin allows flexibility 
during compilation. Go ahead and add this task immediately below the 
previous one:



Chapter 3

[ 183 ]

gulp.task('sourcemap', ['rename'], function () {
  return gulp.src('dest/*.css')
    .pipe(sourcemaps.init())
    .pipe(sourcemaps.write('maps/'))
    .pipe(gulp.dest("dest/"));
});

6.	 We're almost at the end—go ahead and alter these lines as indicated:
gulp.task('default', ['sass', 'lint-styles', 'rename', 
'sourcemap']);

var watcher = gulp.watch('src/*.scss', ['sass', 'lint-styles', 
'rename', 'sourcemap']);
watcher.on('change', function(event) {
  console.log('File ' + event.path + ' was ' +  
    event.type + ', running tasks...');
});

7.	 Save the file. Go ahead and fire up a Node.js command prompt, then change 
the working folder to our project area.

8.	 At the prompt, type in gulp then press Enter—Gulp will go away and 
compile our file.

9.	 If we take a look in the dest folder, we should see the same compiled style.
css file, but this time with accompanying minified versions of the source 
map and style sheet:

If we preview the results of our work, we should see no change in functionality 
within the demo, but can be safe in the knowledge that we now have minified 
versions of our files available for use—after all, it is always better to use minified  
files in a production environment!



Animating Elements

[ 184 ]

We've now laid the groundwork for our conversion to using PostCSS—the keen-eyed 
among you should spot that the plugin reference for PostCSS has already been added 
to our gulp file, ready for the next stage in our conversion process. Everything is now 
in place in our gulp file, save for the SASS task – at the appropriate point we will 
remove the SASS task and replace it with a PostCSS equivalent; this will take place 
in our next exercise. Before we do so, it's worth taking a little time to explore what is 
available within the PostCSS ecosystem—although there isn't a great deal on offer,  
we can still produce usable code for compilation within PostCSS.

Making the switch to PostCSS
Okay…it's time to make that change to PostCSS!

Before we get stuck into exploring what is available, there is a key question that 
I am sure you will be asking—how come we've been exploring animation using 
JavaScript, when this book is clearly about PostCSS?

There is a very good answer for this—not only are we exploring the different routes 
we might take to transition to PostCSS, but at a more basic level, whether we can 
make the change. This might sound contradictory, so let me explain all:

A key limitation of animation is the FPS count, or Frames Per Second—jQuery's 
standard .animate() method is notoriously slow, and has not been optimized for 
speed. The FPS count on our animation at the start of this chapter was significantly 
lower than that of Velocity. The same applies for the alternative Transit library that 
we also covered earlier in this chapter.

Making the switch to using CSS will improve the frame rate, but CSS-based 
animation is not yet sufficiently powerful to manage complex animations. It means 
that we as developers have to assess any requirements for a project, and weigh 
up whether CSS-based animation will work, or if we have to fall back to using 
JavaScript-based libraries.

This translates through to using PostCSS—it may be tempting to use CSS-based 
animation for a project, but this will only work if our animation requirements are 
such that it is not going to result in an overly complex, difficult to manage, solution.

Exploring plugin options within PostCSS
Assuming the use of CSS3 animations will be suitable for our project, it's at this point 
that we can begin to make the transition to using PostCSS.

If you're expecting to see an array of plugins, then I'm sorry to disappoint—at 
present, there are only four plugins for use with animations:



Chapter 3

[ 185 ]

•	 Animation: Available at https://github.com/zhouwenbin/postcss-
animation, this adds @keyframes from Animate.css. This plugin uses 
https://github.com/zhouwenbin/postcss-animation-data, which  
hosts the converted animations.

•	 PostCSS Easings: Downloadable from https://github.com/postcss/
postcss-easings, this plugin converts easing names from http://www.
easings.net to cubic-bezier() equivalent values.

•	 PostCSS Transform Shortcuts: This plugin allows us to specify individual 
values when creating transform statements—the source for this plugin is 
available from https://github.com/jonathantneal/postcss-transform-
shortcut.

•	 PostCSS MQ Keyframes: This plugin will move any keyframes from inside 
media queries to the bottom of our CSS file.

One could be forgiven for wondering what is possible with such a small range 
of plugins! We will add to the list a little later on though. Toward the end of the 
chapter, we will create a version of the postcss-animation-data plugin that  
allows us to use the Magic animations from http://www.minimamente.com/
example/magic_animations/.

Okay, let's put some of these to use: time for a demo!

Updating code to use PostCSS
Although the PostCSS ecosystem doesn't yet have a plentiful selection of animation-
based plugins, this should not stop us from using it to compile our animation styles. 
To prove this, we're going to modify the jQuery and .add/remove class version 
of our previous demo—we'll use PostCSS to add an animation easing from the 
Animate.css library created by Dan Eden.

The plugin we require is the postcss-animation plugin, which is available from 
https://github.com/zhouwenbin/postcss-animation and uses the postcss-
animation-data plugin from https://github.com/zhouwenbin/postcss-
animation-data. It's a cinch to install the plugin, which uses the same method  
as all of the other plugins we've installed to date.

Let's get started on the demo:

1.	 We'll start by installing the postcss-animation plugin—for this,  
go ahead and open a Node.js session, then change the working  
directory to our project area.

https://github.com/zhouwenbin/postcss-animation
https://github.com/zhouwenbin/postcss-animation
https://github.com/zhouwenbin/postcss-animation-data
https://github.com/postcss/postcss-easings
https://github.com/postcss/postcss-easings
http://www.easings.net
http://www.easings.net
https://github.com/jonathantneal/postcss-transform-shortcut
https://github.com/jonathantneal/postcss-transform-shortcut
http://www.minimamente.com/example/magic_animations/
http://www.minimamente.com/example/magic_animations/
https://github.com/zhouwenbin/postcss-animation
https://github.com/zhouwenbin/postcss-animation-data
https://github.com/zhouwenbin/postcss-animation-data


Animating Elements

[ 186 ]

2.	 At the prompt, enter this command and press Enter:
npm install postcss-animation --save-dev

If all is well, we should see the plugin install:

3.	 From the code download that accompanies this book, extract and save a copy 
of the contents of the T39 folder to our project area—we'll use this as a basis 
for converting to PostCSS.

4.	 Open style.css from the css sub-folder of the tutorial folder, then at the 
bottom, modify the .move rule as indicated:
.move {
  animation-name: bounce;
  transform: translate(17.5rem, 0rem);
  transition-duration: 3.5s;
}

5.	 Save this file into the src folder, then fire up a Node.js command prompt and 
change the working folder to our project area.

6.	 At the prompt, enter gulp then press Enter—if all is well, we should see 
these files appear in the dest folder:

7.	 The last step is to copy the contents of this folder into the css folder within 
the T39 folder.



Chapter 3

[ 187 ]

At this point we're good to test our demo—if we try previewing the results of our 
work, we should see no change in appearance of our demo, but can be safe in the 
knowledge that we're now compiling our code using PostCSS.

Testing our altered code
Although we may not see any change in the appearance of our demo, there will 
clearly be a difference in how it behaves. To view this, we need to take a look under 
the covers of our demo, at the code.

For this demo, we added an animation-name property, and assigned it the name 
bounce; when compiled, PostCSS adds in the appropriate @keyframes rules to  
the code:



Animating Elements

[ 188 ]

So, if we were to take a look at the performance, how does it compare? Even with the 
extra animation property assigned, it still pulls a respectable frame rate of 48.29FPS, 
when compared to using standard .animate():

This helps reinforce that where possible, we can improve performance by removing 
any dependency on using .animate() in our code. The use of CSS styling to animate 
content isn't quite ready to replace JavaScript, but it is slowly getting there!

Okay, onwards we go: we've briefly looked at the various ways to animate content; 
it's time to make that final transition to using PostCSS. How many times have you 
seen forms that display the label above, or to the left of, each field? Sure, it gets 
boring after a while, seeing the same old design! It's easy to change, so there is no 
excuse for not doing so. To prove this, we're going to use PostCSS to slide each label 
up when that field has focus. Yes, you heard me right…slide up. Let's take a look at 
how we can provide a new take on that venerable piece of functionality for any site.

Creating a demo in PostCSS
As an afterthought to the previous exercise, I posed the question, "How many times 
have you seen forms that display labels above, or to the right of, fields?" If I were to 
collect a dime for each answer, I suspect I would be off on some exotic island, rich, 
and without a care in the world—I've lost count of the number of times I've seen 
such forms, let alone anyone else who uses the Internet!

There is no excuse for plain, boring forms. To prove this, we're going to create a 
simple demo using the postcss-transform-shortcut plugin by Jonathan Neal, 
available from https://github.com/jonathantneal/postcss-transform-
shortcut. It's a straightforward plugin that allows us to specify single properties, 
which the plugin combines into a single line of code within our style sheet. Let's 
quickly install it:

1.	 First, go ahead and fire up a Node.js command prompt session, then change 
the working folder to our project area.

https://github.com/jonathantneal/postcss-transform-shortcut
https://github.com/jonathantneal/postcss-transform-shortcut


Chapter 3

[ 189 ]

2.	 At the prompt, enter this command, then press Enter:
npm install postcss-transform-shortcut --save-dev

3.	 Node will now install the plugin—it will return back to a flashing prompt 
when this is complete.

There is no need to configure it, although there is a small task we have to complete 
before we can use it.

Updating the plugin
While researching for this book, I came across an issue in the current release (1.0.0), 
whereby style sheets weren't compiling properly if they had multiple rules within; 
there are occasions when plugins may or may not work for your environment, and 
this is one of them!

Thankfully, this is an easy fix—if we take a look within the postcss-transform-
shortcut folder within the node_modules folder in our project area, we should  
see this:

Simply copy the contents of the file at https://raw.githubusercontent.com/
pc035860/postcss-transform-shortcut/07af8a78d1fb5e7fdeebc8c7f56c0c9ec
dd83efb/index.js and paste straight over the top of index.js; this should resolve 
the issue.

This has been logged as an issue in the developer's GitHub site, at 
https://github.com/jonathantneal/postcss-transform-
shortcut/issues/4, if you would like to see more details about 
the issue.

https://raw.githubusercontent.com/pc035860/postcss-transform-shortcut/07af8a78d1fb5e7fdeebc8c7f56c0c9ecdd83efb/index.js
https://raw.githubusercontent.com/pc035860/postcss-transform-shortcut/07af8a78d1fb5e7fdeebc8c7f56c0c9ecdd83efb/index.js
https://raw.githubusercontent.com/pc035860/postcss-transform-shortcut/07af8a78d1fb5e7fdeebc8c7f56c0c9ecdd83efb/index.js
https://github.com/jonathantneal/postcss-transform-shortcut/issues/4
https://github.com/jonathantneal/postcss-transform-shortcut/issues/4


Animating Elements

[ 190 ]

Building our demo
Now that we have our updated plugin in place, we can get on with building our 
demo! The next exercise will take the form of a simple credit card form—I don't 
suggest you use it in a production environment, as it is purely designed to show  
the animation effects only, and does not have any security attached to the form!

That aside, here's a screenshot of what we're going to produce, using PostCSS:

It's a simple demo, based on a codepen created by Michael Arestad, which you can 
view at http://codepen.io/MichaelArestad/pen/ohLIa—I've simplified and 
reworked the demo to illustrate how we can use PostCSS to compile the code into 
valid CSS styles.

Okay, let's make a start with setting up our demo:

1.	 We'll start by extracting a copy of the T40 – Creating a demo in PostCSS 
folder from the code download that accompanies this book; save it to our 
project area.

2.	 From within the folder, move the package.json and gulpfile.js files up  
a level to the root of our project area.

http://codepen.io/MichaelArestad/pen/ohLIa


Chapter 3

[ 191 ]

3.	 In the css – completed versions folder, copy style – pre-compile 
version.css to the src folder, and rename as style.css.

4.	 Next, fire up a Node.js command prompt session, then change the working 
folder to our project area.

5.	 At the prompt, enter gulp, then press Enter—PostCSS will go away and 
compile our code; if all is well, we should see our compiled style sheet files 
and source maps appear in the dest folder.

6.	 Copy the contents of the dest folder to the css folder within the original T40 
– Creating a demo in PostCSS folder.

7.	 Go ahead and preview the results—if all is well, we should see something 
akin to the screenshot shown at the start of our exercise.

It's a simple demo, but it shows off how we can use animations perfectly—it adds a 
subtle effect to the label, and doesn't spoil the overall use of our form. The use of the 
plugin does raise a couple of useful points, so let's take a moment to explore what 
we've just created in more detail.

Dissecting our demo in more detail
The key to a successful plugin in PostCSS is one that follows the 1:1 principle—one 
plugin for one task. The postcss-transform-shortcut plugin is no exception: it 
takes the various elements that make up a transition rule, and puts them together in 
the right order. To see what we mean, take a look at these lines from within our style 
sheet before it is compiled:



Animating Elements

[ 192 ]

Where's our transform: statement? Well, when using this plugin, it's not needed—
instead, we can simply specify the various attributes, thus:

.transform {
  transform: skewX(25deg);
  rotate: 180deg;
  scale: 2 2;
  translate: 10px 10px;
}

The plugin is set to recognize these four attributes and compile them into one single 
rule, as shown in this code excerpt:

.transform {
  transform: skewX(25deg) rotate3d(180deg,0,1)  
    scale3d(2,2,1) translate3d(10px,10px,0px);
}

Any gaps in the attributes will be automatically filled in with default values from 
within the plugin. We can even use this plugin as the basis for an equivalent for 
transitions—we will do this toward the end of the next chapter.

Optimizing our animations
When working with animations, there may be occasions when we need to use 
custom effects; one way to achieve this is through the use of @keyframes. Trouble is, 
some browsers don't support their use within media queries (yes, I'm looking at you, 
IE10 and IE11!).

How does this affect us, I hear you ask? Well, if you're building any responsive sites, 
then this is absolutely something we need to bear in mind; media queries form the 
basic structure for any responsive functionality.

It's an easy fix though—the developer, Andy Walpole, has created a simple PostCSS 
plugin called mq-keyframes, which is available at https://github.com/TCotton/
postcss-mq-keyframes.

Imagine we have code such as this in our style sheet:

@media only screen and (min-width: 375px) {
  .custom-bounce {
    animation: side-bounce 5s;
  }

  @keyframes side-bounce {
    100% {

https://github.com/TCotton/postcss-mq-keyframes
https://github.com/TCotton/postcss-mq-keyframes


Chapter 3

[ 193 ]

      opacity: 0;
    }
  }
}

All the plugin does is move the code to the bottom of our style sheets, which makes 
it easier to read, and allows IE to continue working correctly:

@media only screen and (min-width: 375px) {
  .pace {
    animation: pace-anim 5s;
  }
}

@keyframes pace-anim {
  100% {
    opacity: 0;
  }
}

This is probably one of the simplest plugins to use in PostCSS, particularly where 
animating content is concerned; it's worth using if you have to support these 
versions of Internet Explorer! The plugin can be installed in the same way as most 
other plugins for PostCSS, and does not require any additional attributes as part of 
the configuration process.

As a challenge, how about trying out the demo available 
at http://urbaninfluence.com/2015/05/make-a-
background-image-slider-with-css-keyframes/?

Using our own animation plugin
Throughout the course of this chapter, we've used the small number of  
animation-based plugins that are available for PostCSS, and demonstrated  
some of the effects possible. This is all well and good, but one can't help but  
feel that this is a little limiting—and can we do something about it?

Absolutely, the beauty of PostCSS is that if there is a need for a plugin, then we can 
create something to fill that gap. A perfect example of this is the lack of CSS-based 
animation plugins available; at present, all we have is postcss-animations, which 
inserts animations from the Animate.css style sheet created by Dan Eden. I've used 
this as a basis for a new plugin—we'll use the same framework, but convert it to 
use the Magic set of animations, available from http://www.minimamente.com/
example/magic_animations/.

http://urbaninfluence.com/2015/05/make-a-background-image-slider-with-css-keyframes/
http://urbaninfluence.com/2015/05/make-a-background-image-slider-with-css-keyframes/
http://www.minimamente.com/example/magic_animations/
http://www.minimamente.com/example/magic_animations/


Animating Elements

[ 194 ]

We will cover the construction of plugins in more detail in Chapter 8, Creating 
PostCSS Plugins. Let's make a start:

1.	 From the code download that accompanies this book, go ahead and extract a 
copy of the T41 folder, and save the contents to the root of our project area.

2.	 Copy the postcss-animation and postcss-animation-data folders to the 
node_modules folder within our project area.

3.	 Copy the gulpfile.js and package.json files to the root of our 
project area—if any are already present, replace them (or take copies for 
safekeeping).

4.	 Crack open your text editor and add the following code, saving it as style.
css in the src folder of our project area:
.foo {
  animation-name: openDownLeft;
}

5.	 Fire up a Node.js folder, then change the working folder to our project area.
6.	 At the prompt, enter gulp, then press Enter—PostCSS will go away and 

compile the code; if all is well, we should see the @keyframes code added to 
our compiled style sheet (in the dest folder), as shown in this screenshot:

Although our example only shows the single style, this doesn't matter—any style 
sheet that uses animation-name can be used, provided the animation-name value used 
matches one in the postcss-animation-data plugin. There are a few key points, 
though, that we should cover, so let's take a moment to explore these in more detail.



Chapter 3

[ 195 ]

Exploring the plugin in more detail
Our new plugin is a perfect example of how we can adapt an existing framework 
to use different values—there are a few key points we should note when using this 
plugin:

•	 A key point to consider when constructing any plugin: don't worry about 
adding vendor prefixes. These should be added as part of the compilation 
stage when the plugin is used within your projects; this will take care of any 
vendor prefixes that are required.

•	 At present, the plugin only lists two animation types from the Magic 
Animations library as examples—the full list of original animations is 
available from the Magic Animations GitHub repository at https://
github.com/miniMAC/magic/blob/master/magic.css. We can easily 
add in any that we need, using the format of "<name of animation>" : 
"<keyframe to use>", as shown in this screenshot:

As an experiment, how about trying to convert the animations from the 
Motion UI library at http://zurb.com/playground/motion-ui, for 
example? Or we can try the animations for AngularJS at http://www.
justinaguilar.com/animations/# - it's entirely up to you!

•	 Alternatively, it's worth applying the same principles to the postcss-
easings plugin available from https://github.com/postcss/postcss-
easings; this has some well-known easings built in, but they can easily be 
replaced. A great tool for this purpose is the site at http://www.cubic-
bezier.com. For example, if we take the easeInExpo easing, we create a 
Bezier curve that looks something like this:

https://github.com/miniMAC/magic/blob/master/magic.css
https://github.com/miniMAC/magic/blob/master/magic.css
http://zurb.com/playground/motion-ui
http://www.justinaguilar.com/animations/#
http://www.justinaguilar.com/animations/#
https://github.com/postcss/postcss-easings
https://github.com/postcss/postcss-easings
http://www.cubic-bezier.com
http://www.cubic-bezier.com


Animating Elements

[ 196 ]

This translates to a value of cubic-bezier(.95,.05,.79,.35), 
which we can use in our code. It's worth noting that some sites will 
show this easing as (0.05, 0.795, 0.035)—http://cubic-
bezier.com/ only shows values to two decimal places.

There are plenty of ways we can extend, modify, or create new plugins—the key  
to any should be that they are kept simple, limited to one task only, and that where 
possible, you should use the PostCSS plugin boilerplate as the basis for creating 
the plugins. The plugin we used in this exercise was created manually—this isn't 
an issue if you are creating it for your own needs, and don't intend to publish the 
plugin. In the next chapter, we will explore how easy it is to create something using 
the boilerplate code—it avoids a lot of issues at a later date!

Summary
Animating content is an almost de facto part of building modern sites – this can 
be something as simple as providing subtle effects on form labels, right through to 
providing a complex background slider. We've covered a lot of useful tips and tricks 
throughout this chapter, so let's take a moment to review what we've learned.

The theme for this chapter has been about making the transition (sorry, pun 
intended!) from using vanilla CSS or SASS to PostCSS; we kicked off with a quick 
recap of the types of animation available.

This was swiftly followed by a look at some of the methods available for starting 
to make the transition away from standard CSS, such as using prebuilt animation 
libraries, or using CSS3 transitions. We then switched to covering how similar 
animations would look within SASS, so we can compare use of libraries such as 
Animate.css, before starting the switch to using PostCSS.

We started this part of the journey by exploring the various plugins available, before 
converting our code to use PostCSS equivalent styles. We then took things up a step, 
by creating a simple demo using PostCSS, before rounding out the chapter with a 
look at a simple animation plugin created for PostCSS, which is based on the Magic 
Animation set of animations.

Phew - we've certainly covered a lot! But our journey doesn't stop there. In the next 
chapter, we'll explore some of the tips and tricks we can use to create plugins within 
PostCSS. No longer are we limited to what is available from others; we can now 
begin to create our own plugins instead...

http://cubic-bezier.com/
http://cubic-bezier.com/


[ 197 ]

Creating PostCSS Plugins
Plugins, plugins…we can't escape them; by now, you will have seen that they are 
an essential part of developing within PostCSS. Its modular nature is built entirely 
around plugins, and is how we can streamline our processing through selective use 
of these plugins.

In this chapter, we'll cover the anatomy of a PostCSS plugin and take a look at some 
pre-built examples, before embarking on the construction of a simple plugin that we 
can then test and submit for inclusion in the PostCSS system.

We will cover a number of topics throughout this chapter, which will include  
the following:

•	 Discovering how plugins can be used to extend PostCSS
•	 Examining the architecture of a standard plugin
•	 Creating a PostCSS plugin using the plugin boilerplate
•	 Building some example plugins
•	 Testing and submitting your plugin for inclusion in the PostCSS plugin library
•	 Exploring some examples of existing plugins available for PostCSS

Let's make a start…!



Creating PostCSS Plugins

[ 198 ]

Extending PostCSS with plugins
A question, how many times have you worked with plugins that by themselves don't 
actually achieve anything?

I'll bet the answer won't be a high figure—and no, I'm not including those plugins that 
claim to perform an operation, yet don't seem to work for some reason! The power of 
PostCSS lies not in the core system, but the plugins that we use to manipulate our CSS 
style sheets.

At the time of writing, there are more than 200 plugins available for use within 
PostCSS—these range from extending PostCSS (such as postcss-nested or 
postcss-mixins), to manipulating colors (such as postcss-color-hcl or postcss-
rgba-hex), to plugins that cater for future CSS syntax (such as adding @extend 
support).

The full list is available at https://github.com/postcss/
postcss/blob/master/docs/plugins.md, or via the 
searchable catalogue hosted at http://www.postcss.parts.

To date, we've used a fair number of plugins throughout our examples—we've 
configured them for use, but there is still an element of black box about them, where 
we don't always know how the insides work. It's time to change that. As a first step, 
let's briefly meet the toolset that helps make plugins possible, the PostCSS API.

Any plugin created for PostCSS will have been constructed using the API. The key to 
this API will be the Node and Container methods, which can be used to manipulate 
content once the postcss object has been initialized in the plugin. We will explore 
these in more detail throughout this chapter, but before doing so, it makes sense to 
explore the architecture of a PostCSS plugin first, so let's have a look and see what 
makes one tick.

Dissecting the architecture of a standard 
plugin
Creating a PostCSS plugin is a straightforward process—the beauty of PostCSS is 
that we as developers are free to design and construct any plugin we desire; it does 
mean that not every plugin will be of the same quality as others!

This aside, the recommended way to construct any PostCSS plugin is to use the 
boilerplate code, which is available from https://github.com/postcss/postcss-
plugin-boilerplate; we can see an example of it in this screenshot:

https://github.com/postcss/postcss/blob/master/docs/plugins.md
https://github.com/postcss/postcss/blob/master/docs/plugins.md
http://www.postcss.parts
https://github.com/postcss/postcss-plugin-boilerplate
https://github.com/postcss/postcss-plugin-boilerplate


Chapter 8

[ 199 ]

If we explore the source code for any PostCSS plugin hosted in GitHub, there will 
be a host of different files present; not all of them will be the same for each different 
plugin!

Nonetheless, if we delve in deeper, there are some files we would expect to see as 
part of the architecture of any plugin; they are as follows:

•	 index.js: This contains the main functionality for each plugin
•	 package.json: This is used to configure and manage locally installed  

NPM packages
•	 test.js: This contains the tests required to ensure the plugin works  

as expected

Let's explore these in more detail, beginning with index.js.

Exploring index.js
The crux of any plugin centers around index.js—we start with a reference to 
PostCSS (as a dependency for our plugin); this is followed by the exports function, 
which exposes functionality to anyone using the plugin:

var postcss = require('postcss');
 
module.exports = postcss.plugin('myplugin', function(options) {



Creating PostCSS Plugins

[ 200 ]

  return function (css) {
    options = options || {};
         
    // Processing code will be added here
  }
});

Discovering package.json
Next up, we have package.json—this is used to configure and manage locally 
installed Node packages; given that PostCSS is based on Node.js, we will see 
something akin to this for any plugin installed as part of the PostCSS ecosystem:

{
  "name": "PLUGIN_NAME",
  "version": "0.0.0",
  "description": "PostCSS plugin PLUGIN_DESC",
  "keywords": [
    "postcss",
    "css",
    "postcss-plugin"KEYWORDS
  ],

The first section contains some basic details about the plugin name, description, and 
version. If we look through the package.json file, it's not difficult to spot a number 
of keywords in capitals—at first glance, one might be mistaken for thinking that it 
renders as invalid JSON.

There is a reason for this—one of the steps for using this boilerplate plugin is to run 
a script that will replace these keywords with information; the script will transform 
this into valid JSON. This is something we will cover in more detail later, in the 
Creating a transition plugin section. For now, assume that this file will be converted to 
valid JSON during the build process.

Moving on, we then store the name of the author, the plugin's license, and where we 
can get the source or file bugs relating to the plugin:

  "author": "AUTHOR_NAME <AUTHOR_EMAIL>",
  "license": "MIT",
  "repository": "GITHUB_NAME/PLUGIN_NAME",
  "bugs": {
    "url": "https://github.com/GITHUB_NAME/PLUGIN_NAME/issues"
},
"homepage": "https://github.com/GITHUB_NAME/PLUGIN_NAME",



Chapter 8

[ 201 ]

This section is the most critical—the dependencies section stores details of any 
dependencies, when used in production; the devDependencies section takes care of 
dependencies when working in a development environment:

  "dependencies": {
    "postcss": "^5.0.10"
  },
  "devDependencies": {
    "ava": "^0.7.0",
    "eslint": "^1.10.2"
  },
  "scripts": {
    "test": "ava && eslint *.js"
  }
}

A key guideline given by the PostCSS team is that every plugin should be tested—
this should always be a given, to help ensure we are creating something that is solid 
and not likely to cause issues for our users. A part of the boilerplate code contains a 
suitable test script for this purpose, so let's take a quick look at it now.

Exploring test.js
The third element that is key to any plugin is the test—this should be stored in test.
js, and will look similar to this:

import postcss from 'postcss';
import test from 'ava';

import plugin from './';

function run(t, input, output, opts = { }) {
  return postcss([ plugin(opts) ]).process(input)
    .then( result => {
      t.same(result.css, output);
      t.same(result.warnings().length, 0);
    });
}

/* Write tests here
test('does something', t => {
  return run(t, 'a{ }', 'a{ }', { });
});
*/



Creating PostCSS Plugins

[ 202 ]

We will cover this part in more detail later in this chapter, in the Testing and 
submitting a plugin section—for now, let's get stuck in to creating a PostCSS-based 
plugin. We'll start with a quick look at the API, before diving into creating a 
plugin that applies a specific font stack based on a chosen font, and adds updated 
declarations if one of those fonts needs to be imported into our site.

With the framework in place, we can then build up our plugin using the PostCSS 
API; this contains a number of classes, modules, and methods that we can use. 
The key function in the API is of course postcss—this is the main entry point for 
PostCSS and is required for all plugins:

var postcss = require('postcss');

Let's take a quick look through what else is available in the API, beginning with the 
Vendor module.

The Vendor module
This module contains helpers for working with vendor prefixes—we can initiate it 
using this object:

var vendor = postcss.vendor;

The module contains two methods, as shown in the table:

Module Format Value returned
vendor.prefix String The vendor prefix extracted from an input string:

// prefix extracted = '-webkit-'
var vp = postcss.vendor;
vp.prefix('-webkit-clip-path')

vendor.unprefixed String The input string stripped of its vendor prefix:
// value extracted = 'tab-size'
var vp = postcss.vendor;
vp.unprefixed('-moz-tab-size')

The List module
This module contains helpers to safely split lists of CSS values, whilst preserving 
parentheses and quotes. We can initiate it using this object:

var list = postcss.list;



Chapter 8

[ 203 ]

The module contains two methods, as shown in the table:

Module Format Designed to split
list.space String Space-separated values (such as those for background, border-

radius, and other shorthand properties):
// expected result:
// ['1px', 'calc(10% + 1px)']
var ls = postcss.list;
ls.space('1px calc(10% + 1px)')

list.comma String Comma-separated values (such as those for transition-* and 
background properties):

// Expected result:
// ['black', 'linear-gradient(white, black)']
var ls = postcss.list;
ls.comma('black, linear-gradient(white, 
black)')

Classes available in the API
Once the PostCSS object has been defined as a dependency in our plugin, we can 
begin to manipulate its contents—for this purpose, there are a number of classes 
available to assist, as shown in this table:

Name of class Role within plugin
Processor Creates a Processor instance, initializes any plugins, then uses this 

instance on CSS files as specified in the configuration.
LazyResult Acts as a promise proxy for the result of PostCSS transformations.

Promises are a key part of working with Node.js—if you are 
not familiar with this concept, take a look at https://www.
promisejs.org/ for a detailed explanation.

Result Provides the result of any PostCSS transformations.
Warning Allows a user to manage a warning within the plugin.
CssSyntaxError Allows a user to retrieve any errors for broken CSS, generated by 

the CSS parser.
Input Represents the source CSS being manipulated by PostCSS plugins.

https://www.promisejs.org/
https://www.promisejs.org/


Creating PostCSS Plugins

[ 204 ]

Nodes available in the API
Of course, we cannot manipulate content from within a PostCSS plugin without 
having access to each CSS node—the API contains a group of useful nodes to help 
with parsing and manipulating content:

Node Represents
Root A CSS file and its parsed nodes:

var root = postcss.parse('a{color: darkred}');
root.type         //=> 'root'
root.nodes.length //=> 1

AtRule An @-based rule in CSS, such as @media print {…}
Rule A CSS rule, containing a selector and declaration block:

var root = postcss.parse('h1{}');
var rule = root.first;
rule.type       //=> 'rule'
rule.toString() //=> 'h1{}'

Declaration A CSS declaration:
var root = postcss.parse('a{color: darkred}');
var decl = root.first.first;
decl.type       //=> 'decl'
decl.toString() //=> 'color: darkred'

Comment A comment between declarations or statements (in both rules and 
@-rules):

var root = postcss.parse('a { color: /* inner */ 
darkred; /* outer */ }');
var decl    = root.first.first;
var comment = root.first.last;

comment.type //=> 'comment'
decl.between //=> ': /* inner */'

Methods available in the API
A key role of a plugin is to navigate through each node to help determine if it  
should perform some action; the API contains a number of methods to assist  
with parsing nodes:



Chapter 8

[ 205 ]

Method group Purpose
Nodes These methods are for working with each CSS node—this includes 

methods such as the following:
•	 node.type: returns a string representing the node type
•	 node.parent: returns the parent node as a string
•	 node.next() or node.prev(): returns the next or previous 

child of a node's parent.

More details are available at https://github.com/postcss/
postcss/blob/master/docs/api.md#nodes-common-
methods

Containers These methods contain methods for working with children in a 
container node—this includes methods such as the following:

•	 container.nodes: returns an array containing the 
container's children.

•	 container.first: return the container's first child node.
•	 container.last: return the container's last child node.

More details are available at https://github.com/postcss/
postcss/blob/master/docs/api.md#containers-common-
methods

The main site contains details and examples of all of the methods and classes 
available within the API—it is worth taking time to familiarize yourself with the 
options available.

Details for each method or class are available on the PostCSS API page 
at https://github.com/postcss/postcss/blob/master/
docs/api.md

Okay, enough with theory: on we go! Let's change tack and put some of what we've 
just learnt to good use by constructing a couple of plugins for PostCSS. These will 
use a real mix of the API commands that we've briefly looked at earlier in this 
chapter; our first demo centers around a shorthand plugin for creating transition 
statements within CSS rules in a style sheet, so let's get stuck in and see how it 
works.

https://github.com/postcss/postcss/blob/master/docs/api.md#nodes-common-methods
https://github.com/postcss/postcss/blob/master/docs/api.md#nodes-common-methods
https://github.com/postcss/postcss/blob/master/docs/api.md#nodes-common-methods
https://github.com/postcss/postcss/blob/master/docs/api.md#containers-common-methods
https://github.com/postcss/postcss/blob/master/docs/api.md#containers-common-methods
https://github.com/postcss/postcss/blob/master/docs/api.md#containers-common-methods
https://github.com/postcss/postcss/blob/master/docs/api.md
https://github.com/postcss/postcss/blob/master/docs/api.md


Creating PostCSS Plugins

[ 206 ]

Creating an transition plugin
The idea for this plugin is not new; it's loosely based on the postcss-transform-
shortcut plugin by Jonathan Neal, available from https://github.com/
jonathantneal/postcss-transform-shortcut. The concept is not necessarily 
a shorter means to create transition statements, but it makes it easier by allowing 
authors to specify values independently. These are then automatically inserted into 
the correct order within the transition declaration.

The source code for this plugin is also available on GitHub, at 
https://github.com/alexlibby/postcss-transition-
shortcut; the NPM package is also available at https://www.
npmjs.com/package/postcss-transition-shortcut.

Let's dive in and take a look at how it is put together, in more detail:

1.	 We'll start by installing Git—this is required for installing the plugin 
boilerplate. To do this, browse to https://git-scm.com/book/en/v2/
Getting-Started-Installing-Git, and follow the instructions for your 
platform.

2.	 Open a Node.js command prompt, then change the working folder to our 
project directory.

3.	 In the prompt, enter this command then press Enter:
git clone https://github.com/postcss/postcss-plugin-boilerplate.
git

4.	 Git will clone the postcss-plugin-boilerplate repository to our project 
area, as shown in this screenshot:

5.	 The plugin boilerplate includes a script to automatically generate the 
skeleton for our plugin—go ahead and run this command in the prompt:
node ./postcss-plugin-boilerplate/start

https://github.com/jonathantneal/postcss-transform-shortcut
https://github.com/jonathantneal/postcss-transform-shortcut
https://github.com/alexlibby/postcss-transition-shortcut
https://github.com/alexlibby/postcss-transition-shortcut
https://www.npmjs.com/package/postcss-transition-shortcut
https://www.npmjs.com/package/postcss-transition-shortcut
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git


Chapter 8

[ 207 ]

6.	 It will show a series of prompts for various bits of information. Go ahead 
and fill in appropriate responses, similar to that shown in this screenshot. 
Note that it is not obligatory to have a GitHub account, as the information 
is simply added to the package.json file; if you spend any time developing 
plugins in the future, then it is recommended that you go ahead and create 
one:

7.	 Once the plugin folder has been created, we can remove the postcss-
plugin-boilerplate folder from the project root folder, as this is no  
longer needed.

8.	 If all is well, we should see something akin to this screenshot, when browsing 
the contents of our plugin folder:



Creating PostCSS Plugins

[ 208 ]

9.	 At this point, we can now add the code for our plugin into index.js—to 
do this, open up a copy of the file from within the postcss-transition-
shortcut plugin from within our project area, and alter the code as shown:
var postcss = require('postcss');

module.exports = postcss.plugin('postcss-transition-shortcut', 
function (opts) {
  opts = opts || {};

  var defaults = {
    property: 'all',
    duration: '1s',
    timing: 'ease-in-out',
    delay: '1s'
  };

  return function (css, result) {
    css.walkRules(function (rule) {
      var transitionRule;
      var transitionValues = [];
      var index = -1, node;
      var attributes = /^ (property|duration|timing|delay)$/;

      while (node = rule.nodes[++index]) {
         if (attributes.test(node.prop)) {
          transitionRule = transitionRule ||  
            node.cloneBefore({ prop: 'transition' });
          var transValues = postcss.list.space(node.value);
          transitionValues.push(transValues.join(','));
          node.remove();
          --index;
        }
      }
      transitionRule.value =
        transitionValues.join(' '); 
      });
  };
});

At this stage we will have a working plugin—the proof, though (to quote an old 
English saying), is in the pudding: does the plugin work as we expect? Well, there's 
no better way to find out than by trying it out, so let's set up a quick demo to confirm 
it works as expected. Before we do so, though, there is one important point I need to 
make, which concerns the generation of PostCSS plugins.



Chapter 8

[ 209 ]

Creating a test for our plugin
The sharp-eyed amongst you will notice though that if we don't specify one of the 
four values for our transition plugin, then the code at present won't use the default; 
hopefully an update will come in a future version of the plugin.

This aside, the process for testing our plugin uses the AVA test runner, available 
from https://github.com/sindresorhus/ava. The framework for the test is 
already created within the plugin boilerplate, which leaves us to add the test code to 
test.js file. Let's take a peek at what's required:

1.	 We'll start by installing the AVA test runner—for this, fire up a Node.js 
command prompt, and change the working folder to the root of our  
plugin folder.

2.	 In the prompt, enter these commands, pressing Enter after each—the first 
installs AVA, with the second adding it to our package.json file:
npm install --global ava

ava --init

3.	 Open a new file in your text editor of choice—go ahead and add the following 
highlighted lines to test.js, within the plugin folder we created in the 
previous exercise:
      t.same(result.warnings().length, 0);
    }); 
} 

test('transitionShtct', t => { 
  return run( t, 'div { property: all; duration: 1s;  
    timing: ease-in-out; delay: 1s; }',  
      'div { transition: all 1s ease-in-out 1s; }', { }); 
});

4.	 Next, fire up a Node.js command prompt, then change the working directory 
to our plugin project folder.

5.	 At the prompt, enter npm test and press Enter.

https://github.com/sindresorhus/ava


Creating PostCSS Plugins

[ 210 ]

6.	 AVA will perform the test, which is then linted using ESLint. If all is well, 
we should see the results shown in this screenshot—assuming nothing was 
amiss with the test:

All good so far, right—at this point, we're OK to create a simple demo to prove 
plugin works…or are we? Well, the test shows a pass, so the code should be OK.  
But further down there are a ton of errors displayed, similar to this screenshot— 
what gives?

The test has passed, yet the tests would seem to indicate otherwise; a look further 
down reveals yet more errors:

This raises some important points about testing, so let's cover these before continuing 
with our demo.



Chapter 8

[ 211 ]

Correcting the errors
The main error, or Exported linebreaks to be 'LF'…, is a simple one to fix—it's 
being caused by Sublime Text being set to use Windows as the default line endings 
setting. Assuming we're using Sublime Text, let's go ahead and deal with that error:

1.	 Open up Sublime Text, then open index.js from our plugin folder.
2.	 Click on View | Line Endings.
3.	 Change the selected option to Unix, and save the file.
4.	 Repeat steps 1 to 3 for test.js—once done, close both files.

If we re-run the test, we should see a significant drop in listed errors—there will be 
some left for us to fix in index.js and test.js, similar to this screenshot:

Most of the errors are self-explanatory—the two that are less obvious are Expected 
indentation of X spaces… and Line X exceeds the maximum line length…. 
We can fix the first by replacing all instances of tabs with four individual spaces per 
tab. The second error is simple to fix—simply split the line of code into two lines.

We need to work through all of the remaining errors, as far as possible—these won't 
entirely be the same for your version of the plugin, but some will be similar.

If you come across any errors where you want to understand the 
reason behind the error, take a look at https://jslinterrors.
com/—it's a great source for defining what an error means!

https://jslinterrors.com/
https://jslinterrors.com/


Creating PostCSS Plugins

[ 212 ]

Assuming we've cleared most of the errors, we should be left with just one:

Is this an error we should fix, and therefore can clear from the report? The simple 
answer is that it depends—it highlights an important point about using linting for 
code, so let's take a moment to cover this in more detail.

Clearing the final error
The last error shown in the report presents some challenges—the code is valid, 
yet ESLint flags the error. The reason for this is that it has found an assignment 
expression within a while statement initializer; it is treated as a possible mistake in 
the code and may have unintended effects on the code.

In some respects, it can be treated as a warning, and not necessarily as an error.  
Prior to July 2013 we could have configured our test to ignore this, but changes made 
to ESLint since that date mean that this error cannot be cleared without reworking 
the code.

If you would like to understand more about the causes of this error, 
then please refer to http://jslinterrors.com/unexpected-
assignment-expression/.

In our instance, the code is valid and will not cause any errors—it leaves us with 
several options as to what we can do going forward:

•	 We can simply ignore the error and carry on—it's not great that the test fails, 
but in this case it won't cause any harm to our code

•	 We can switch off the test for it, so that while this condition is not tested, the 
test will at least show a 100% pass

http://jslinterrors.com/unexpected-assignment-expression/
http://jslinterrors.com/unexpected-assignment-expression/


Chapter 8

[ 213 ]

•	 We can look to alter the code to design out the error/warning—this is the 
ideal solution, but it may be a longer term route, depending on the nature of 
the changes we need to make

For now, we're going to switch off the test for this error—we can do this by editing 
the .eslintrc file from within our plugin, and set the value in square brackets to 0:

This will work in the short term, but with a view to revisiting the code to design out 
the ambiguity at some point in the future.

Performing a test using the plugin
With our plugin in place, let's test it out—for this, we need a couple of files from 
the code download that accompanies this book; the files are available in the T43 – 
building a transition shortcut plugin folder:

1.	 Go ahead and extract copies of gulpfile.js and package.json, then save 
them to the root of our project area.

2.	 In a new file, add the following CSS styles, saving it as style.css in the src 
folder in our project area:
div {
  property: all;
  duration: 1s;
  timing: ease-in-out;
  delay: 1s;
}

3.	 Fire up a Node.js command prompt, then change the working directory to 
our project area.

4.	 At the prompt, enter gulp then press Enter—PostCSS will go away and 
compile the source style sheet. If all is well, we should see the compiled 
results of our style sheet in the dest folder of our project area:



Creating PostCSS Plugins

[ 214 ]

At this stage, we've run the test for our plugin—we go one step further, and add 
our plugin to a test runner service such as Travis CI (at https://travis-ci.org). 
Although this is a mandatory part of the process for creating any PostCSS plugin, 
there is a fairly steep learning curve, and anyone working on Windows may run into 
difficulties! If you are a Windows user, you will have to make test.js executable 
via the command line—this requires prior knowledge of using Git, which is beyond 
the scope of this book.

For now, we'll skip past the Travis CI part of the process—the plugin is sufficiently 
straightforward that the local testing with test.js will suffice. Let's change tack—
our plugin contains a number of useful concepts in PostCSS, so let's explore how  
it is put together in more detail.

Dissecting our plugin in detail
The inspiration for this plugin is twofold—at the time of writing, PostCSS doesn't 
have a great number of animation-based plugins, and it borrows the same concept 
used in the postcss-transform-shortcut plugin.

We start with the ubiquitous call to initialize PostCSS as a dependency for our plugin:

var postcss = require('postcss');

Next up, we initialize postcss.plugin, to expose functionality within our plugin to 
the ecosystem:

module.exports = postcss.plugin('postcss-transition-shortcut',  
  function (options) {

At present, our plugin doesn't contain any options, so it will be set as blank; if we 
had had some options set, then these will be stored in the options array:

options = options || {};

A key part of our plugin is to set some default options—we need to have some 
default values set, if we don't specify one or more values:

var defaults = {
  property: 'all',
  duration: '1s',
  timing: 'ease-in-out',
  delay: '1s'
};

Up next comes the crux of our plugin—it returns the result of this function:

  return function (css) {

https://travis-ci.org


Chapter 8

[ 215 ]

     css.walkRules(function (rule) {
       var transitionRule;
       var transitionValues = [];
       var index = -1, node;
       var attributes = /^(property|duration|timing|delay)$/;

We walk through each rule using css.walkRules—it sets up a number of variables 
and an array; we also set a search string that will be used to find any instance of our 
transition properties.

If we find a suitable instance of our property, we then clone it, adding the property 
name transition before it. We then work through each of up to four properties that 
may be set, joining them together into the final transition declaration:

       while (node = rule.nodes[++index]) {
        if (attributes.test(node.prop)) {
          transitionRule = transitionRule ||  
            node.cloneBefore({ prop: 'transition' });
           var transValues = postcss.list.space(node.value);
           transitionValues.push(transValues.join(','));
           node.remove();
           --index;
         }
       }
       transitionRule.value = transitionValues.join(' ');
    });
  };
});

Let's move on. Our first example was a straightforward plugin; although it does need 
some further development (as indicated in Testing our plugin), it still serves a useful 
purpose. In our next example, we'll take a different approach: we will use an existing 
plugin as a basis for our new version. This plugin, unlike the first one, will not see 
the light of day in GitHub, though—we'll explore the reasons for this, and more,  
as part of our next exercise.

Building a custom font plugin
For our next demo, we're not going to build something original, but start with 
adapting an existing plugin that is already available for PostCSS. The plugin we will 
use is postcss-fontpath by Seane King (available from https://github.com/
seaneking/postcss-fontpath); we're going to incorporate an autocomplete facility 
that automatically adds the relevant font stack, based on the name provided, and 
using the lists available at http://www.cssfontstack.com.

https://github.com/seaneking/postcss-fontpath
https://github.com/seaneking/postcss-fontpath
http://www.cssfontstack.com


Creating PostCSS Plugins

[ 216 ]

"Why do this", I hear you ask? To prove a point—it isn't always necessary to re-
invent the wheel; sometimes it is preferable to simply adapt something that exists, 
which doesn't quite fit our requirements. In this instance, the code we're adding 
will make it more useful; it will need some further development to allow for error-
checking, but nonetheless still serves a purpose.

A point of note—recommended practice is to use the plugin boilerplate 
we covered in the previous section. For this next exercise, we will build 
it manually—this is to show you something of the process, even though 
it is not one we would release into the wild.

Okay, that aside, let's get stuck in and start developing our plugin:

1.	 We'll start by creating a folder within the root of our project area—go ahead 
and name this folder postcss-custom-fonts.

2.	 Next, we need to set up the folder as a Node module, so fire up a Node.js 
command prompt and change the working folder to our plugin folder.

At the prompt, enter npm init to start the process of creating a package.json 
file—use the details shown in this screenshot, at the appropriate prompt:

3.	 With the prompt still open, go ahead and enter these commands, then press 
Enter—the first one is needed to install PostCSS as a dependency for our 
plugin, with the second installing underscore.js, as a second dependency 
(it's used for the extend method):
npm install postcss --save

npm install underscore --save



Chapter 8

[ 217 ]

Keep the session open—we will need it towards the end of this exercise.

4.	 From the code download that accompanies this book, we need to extract a 
copy of index.js—copy this to the plugin folder.

5.	 If all is well, we should see something akin to this screenshot when browsing 
the contents of our plugin folder:

6.	 With our plugin in place, let's test it out. For this, we need a couple of files 
from the code download that accompanies this book. Go ahead and extract 
copies of gulpfile.js and package.json from the T42 – Building a 
custom font plugin folder (and not the plugin one!), then save them to the 
root of our project area.

7.	 In a new file, add the following CSS styles, saving it as style.css in the src 
folder in our project area:
@font-face {
  font-family: 'robotoregular';
  font-path: '/fonts/Roboto-Regular-webfont';
  font-weight: normal;
  font-style: normal;
}

h1 { font-family: robotoregular,  fontstack("Extra Stack"); }

8.	 Revert back to the Node.js command prompt session we had open at the  
start of this exercise. Make sure the working folder is set to our project area 
before continuing.



Creating PostCSS Plugins

[ 218 ]

9.	 At the prompt, enter gulp then press Enter—PostCSS will go away and 
compile the source style sheet. If all is well, we should see the compiled 
results of our style sheet in the dest folder of our project area:

At this stage, we now have a working plugin—even though this is not an original 
creation, it still highlights a number of key concepts around construction of PostCSS 
plugins. Let's take a moment to explore the functionality of our plugin in more detail.

Dissecting the functionality of our plugin
At first glance, the code for our plugin may look complex, but in reality it is relatively 
straightforward to follow—let's go through it in sections, beginning with defining 
instances of the postcss object and a fontstacks_config object we will use in  
the plugin:

var postcss = require('postcss');
var _ = require('underscore');

// Font stacks from http://www.cssfontstack.com/
var fontstacks_config = {
  'Arial': 'Arial, "Helvetica Neue", Helvetica, sans-serif',
  'Times New Roman': 'TimesNewRoman, "Times New Roman", Times,
  Baskerville, Georgia, serif'
}

Next up, we add a simple helper function—this is used to convert font names into 
title case; the names listed in fontstacks_config are case sensitive, and will fail if 
they don't match:

// Credit for this function: http://stackoverflow.com/a/196991
function toTitleCase(str) {
  return str.replace(/\w\S*/g, function(txt){
    return txt.charAt(0).toUpperCase() + txt.substr(1).toLowerCase();
  });
}



Chapter 8

[ 219 ]

This is the start of the plugin—the first two lines are the obligatory initialization to 
make the plugin available for use, followed by defining an options object. We then 
use _.extend to extend the predefined values in our chosen font stack with those 
added to the configuration object when running the plugin:

module.exports = postcss.plugin('customfonts', function (options) {
  return function (css) {

    options = options || {};
    fontstacks_config = _.extend(fontstacks_config,  
      options.fontstacks);

We then walk through each rule and node, working out if they first contain a font 
declaration, then if they contain a font name that matches one in the predefined font 
stacks. If there is a match, then the font name is converted to the appropriate font 
stack and inserted with any additional fonts specified, but which don't match our 
font stacks:

    css.walkRules(function (rule) {
      rule.walkDecls(function (decl, i) {
        var value = decl.value;
        if (value.indexOf( 'fontstack(' ) !== -1) {
          var fontstack_requested = value.match(/\(([^)]+)\)/)[1]. 
          replace(/["']/g, "");
          fontstack_requested = toTitleCase(fontstack_requested);

          var fontstack = fontstacks_config[fontstack_requested];
          var first_font =  value.substr(0, value. 
          indexOf('fontstack('));

          var new_value = first_font + fontstack;
          decl.value = first_font + fontstack;
        }
      });
    });

In the second half of the plugin, we perform a simpler task—we work our way 
through each rule and declaration, looking for any instances of @font-face in the 
code. We then define a fontpath variable that removes any quotes from the supplied 
values, and a format array to manage the different font formats available for use:

    css.walkAtRules('font-face', function(rule) {
      rule.walkDecls('font-path', function(decl) {
        var fontPath = decl.value.replace(/'/g, ''),
        src = '',
        formats = [



Creating PostCSS Plugins

[ 220 ]

          { type: 'woff', ext: '.woff' },
          { type: 'truetype', ext: '.ttf' },
          { type: 'svg', ext: '.svg' }
        ];

We then build up the relevant statement for each font type, before assembling  
the custom font declaration and inserting it back into the appropriate point in  
our style sheet:

        formats.forEach(function(format, index, array) {
          if (index === array.length - 1){
            src += 'url("' + fontPath + format.ext + '")
        format(\'' + format.type + '\')';
          } else {
            src += 'url("' + fontPath + format.ext + '")
        format(\'' + format.type + '\'),\n ';
          }
        });

        decl.cloneBefore({ prop: 'src', value: src });
        decl.remove();
      });
    });
  }
});

Our plugin has exposed some key concepts in PostCSS plugin design—the main ones 
are the use of .WalkDecls and .WalkRules (or .WalkAtRules). I would strongly 
recommend familiarizing yourself with the API documentation at https://github.
com/postcss/postcss/blob/master/docs/api.md, which outlines all of the 
commands available within the API, and gives a brief description of their purpose.

Despite creating what should be a useful plugin, it isn't one that I would recommend 
releasing into the wild. At this point you may think I have completely lost the plot, 
but as I always say, "there's method in the madness"—there are good reasons for 
not publishing this plugin, so let's take a moment to explore why it might not be a 
sensible move to release this plugin in its current format.

https://github.com/postcss /postcss/blob/master/docs/api.md
https://github.com/postcss /postcss/blob/master/docs/api.md


Chapter 8

[ 221 ]

Exploring the dangers of publishing this 
plugin
Over the last few pages, we've created what should be a useful plugin to manipulate 
custom fonts—it automatically builds up the right font stack based on pre-defined 
settings, and will fill in the appropriate @font-face code for us. At this point we 
should have a plugin that can be released into the wild, for anyone to use…surely?

Well yes, and no—even though this plugin serves a purpose, it is not one that I 
would recommend making available…at least not yet! There are a few reasons why, 
which also help to illustrate the benefits of using the boilerplate code we covered 
earlier in this chapter:

•	 The plugin doesn't have a test.js file or configuration associated with it—
one of the requirements for releasing plugins is that each be tested, using a 
test.js file. Ideally we might use a service such as Travis CI to help with 
this, but this really only works if you use a Unix-based environment for 
development.

•	 The plugin itself performs two different roles, which is not recommended—
best practice for PostCSS plugins is to try where possible to limit the role to 
one task only. The benefits of this can be seen when using a task runner—we 
can pick and choose which plugins to use, without introducing too much 
extra unwanted functionality.

•	 The architecture of our code is not optimal—this is primarily due to the 
use of css.WalkRules (line 16), and css.WalkAtRules (line 28). These 
two commands parse each node within the container, and call the callback 
function for each rule node and at-rule node. The difference here is that  
css.WalkRules works on every rule; css.WalkAtRules will only work  
on @-rules (such as @font-face). They are not interchangeable, which  
makes it very inefficient at compilation.

•	 If we don't use the plugin boilerplate, then most of the files required for 
publishing code will not be present—these either have to be created by  
hand, or created as part of submitting to GitHub. If we use the boilerplate, 
then this will be done for us automatically, along with configuring the 
package.json file for us—all we need to do is add a suitable task runner 
such as Gulp or Grunt.

One might ask why we would even consider this route, if it is likely to throw  
up issues during development—the simple answer is that it helps us understand 
something of how plugins should be built. If we're building a plugin for personal  
use only, then there is no need for some of the files or processes that we have to  
use when releasing plugins for general use.



Creating PostCSS Plugins

[ 222 ]

Simplifying the development process
Leaving aside the intended audience for our plugins, throughout our development 
process we've used a mix of different techniques, but with one thing in common—
our plugins have very few dependencies! This is not to be sniffed at, as clearly any 
dependencies that change may have a resulting knock-on effect for our plugin.

This aside, there will be times when the lack of any dependencies may require more 
development effort than is sensible (or practical)—it is at this point where we may 
need to consider using additional plugins to handle some of the processing. A perfect 
example of this is to parse a font: statement so that we can work on the constituent 
elements; there are a few others that are worthy of note:

Type of parser 
or helper

URL of plugin source Purpose of plugin

Selector https://github.com/
postcss/postcss-
selector-parser

Manages selector strings.

Value https://github.com/
TrySound/postcss-value-
parser

Transforms CSS values and @-rule 
parameters into a tree of nodes for 
easy traversal.

Property https://github.com/
jedmao/postcss-resolve-
prop

Resolves a rule's property value—
this is particularly useful if multiple 
values are specified for the same 
property.

Font https://github.com/
jedmao/parse-css-font

Parses a font property, and returns 
values for each element, such as 
font-size, family, style, or 
lineHeight.

Dimension https://github.com/
jedmao/parse-css-
dimension

Parses a CSS dimension such as 
number, length, or percentage, 
to return a JavaScript object.

Sides https://github.com/
jedmao/parse-css-sides

Parses an element's side attributes 
(such as margin, padding, or 
border properties), and returns 
values for all four sides as strings.

Font helpers https://github.com/
jedmao/postcss-font-
helpers

Used to manipulate font statements 
in CSS—it either returns individual 
elements or a combined font object, 
as required.

Margin helpers https://github.com/
jedmao/postcss-margin-
helpers

Used to manipulate margin values 
for any specified element.

https://github.com/postcss/postcss-selector-parser
https://github.com/postcss/postcss-selector-parser
https://github.com/postcss/postcss-selector-parser
https://github.com/TrySound/postcss-value-parser
https://github.com/TrySound/postcss-value-parser
https://github.com/TrySound/postcss-value-parser
https://github.com/jedmao/postcss-resolve-prop
https://github.com/jedmao/postcss-resolve-prop
https://github.com/jedmao/postcss-resolve-prop
https://github.com/jedmao/parse-css-font
https://github.com/jedmao/parse-css-font
https://github.com/jedmao/parse-css-dimension
https://github.com/jedmao/parse-css-dimension
https://github.com/jedmao/parse-css-dimension
https://github.com/jedmao/parse-css-sides
https://github.com/jedmao/parse-css-sides
https://github.com/jedmao/postcss-font-helpers
https://github.com/jedmao/postcss-font-helpers
https://github.com/jedmao/postcss-font-helpers
https://github.com/jedmao/postcss-margin-helpers
https://github.com/jedmao/postcss-margin-helpers
https://github.com/jedmao/postcss-margin-helpers


Chapter 8

[ 223 ]

So, should we use them? It's not obligatory by any means, but they may help remove 
some of the effort required to create our plugin. If any are used, then it pays to 
keep a close note of any changes being made to the plugins, so that we can correct 
any issues that occur promptly; after all, no-one likes a plugin that isn't maintained 
properly by the developer!

Let's move on, a key part of plugin construction is consistency; the power of PostCSS 
allows any plugin to be created, so keeping a sense of uniformity is essential. To help 
with this, the developer of PostCSS has released a set of guidelines: let's dive in and 
take a look at these in more detail.

Guidelines for plugin building
One of the key benefits of the PostCSS ecosystem is its flexibility—it allows any 
developer to create any plugin, or adapt existing ones, as long as the license allows 
for further development!

To help retain a sense of consistency, the developer has issued a series of mandatory 
guidelines, which should be followed where practical:

•	 The name of your plugin should clearly indicate the purpose of that plugin—
for example, if you built one to mimic the CSS4 :hover pseudo-class, then 
postcss-hover would be a good example.

•	 It is better to create a plugin that does one thing well, and not one that tries to 
perform multiple tasks at the same time.

•	 Always use the postcss.plugin method when creating plugins—you are 
then hooking into a common plugin API.

•	 Where possible, try to use asynchronous methods—you should also set a 
node.source for each node, so that PostCSS can generate an accurate source 
map.

•	 Do not use the console when displaying errors—some PostCSS runners do 
not allow console output. Use result.warn instead to manage errors.

•	 Any plugin created and published must be tested, with documented 
examples (where possible) and a change log in English.

•	 If you are writing a plugin for Node, then the postcss-plugin keyword must 
feature in the package.json file—this is used for feedback about the PostCSS 
ecosystem.

More details on these guidelines are available at https://github.
com/postcss/postcss/blob/master/docs/guidelines/
plugin.md.

https://github.com/postcss/postcss/blob/master/docs/guidelines/plugin.md
https://github.com/postcss/postcss/blob/master/docs/guidelines/plugin.md
https://github.com/postcss/postcss/blob/master/docs/guidelines/plugin.md


Creating PostCSS Plugins

[ 224 ]

In addition, it is likely that we will use a task runner of some description, such as 
Broccoli, Grunt, or Brunch, or as in our case, Gulp. To help retain that consistency, 
the developer has issued a series of guidelines that should be followed where 
appropriate:

•	 If your plugin uses a config file, then it must always be written in JavaScript, 
and set to support functions in parameters.

•	 When using runners, always set the to and from options, even if your runner 
doesn't handle writing to disk—this is to ensure that PostCSS generates 
accurate source maps and displays better syntax errors.

•	 PostCSS runners must only use the publicly available asynchronous API—
runners should not rely on undocumented methods or properties that may 
be removed in a future release.

•	 Don't simply display the full JavaScript stack when handling 
CssSyntaxError messages—not every developer is familiar with JavaScript! 
Instead, make sure any errors are handled gracefully.

•	 Any warnings that appear from result.warnings() should be displayed 
by PostCSS runners; this can be facilitated by using the postcss-logs-
warnings or postcss-messages plugins if needed.

•	 If your plugin uses the source map option, then by default this will be 
generated as an inline map by PostCSS. Runners must provide an option to 
save the map to a separate file, if required.

More details on these guidelines are available at https://github.
com/postcss/postcss/blob/master/docs/guidelines/
runner.md.

The guidelines provided for plugins are mandatory, but in some cases can be seen 
as a start point—for example, a change log should always be maintained, but it is 
up to the developer as to whether this is a HISTORY.md, CHANGELOG.md, or a GitHub 
Releases document. The trick here is careful planning, and to keep it simple—
focus on the basics first, before moving onto more complex projects. We can then 
get accustomed to what must be provided as a minimum for each plugin, before 
extending it to cover task runner use.

Okay, let's change tack at this point: one of the guidelines we've covered states 
that every plugin should be tested as part of normal practice; now is a perfect 
opportunity to explore what this means in more detail.

https://github.com/postcss/postcss/blob/master/docs/guidelines/runner.md
https://github.com/postcss/postcss/blob/master/docs/guidelines/runner.md
https://github.com/postcss/postcss/blob/master/docs/guidelines/runner.md


Chapter 8

[ 225 ]

Making the plugin available for use
A key part of creating any plugin is testing—once tested, we can then decide if we 
want to release it for general use on GitHub and Node's package manager directory. 
It's not obligatory, but if we have created something that could be useful to others, 
then it is only fair that we make it available!

There are a few steps involved in the process—they can be split into three groups: 
testing the plugin, adding the final details (in GitHub), and submitting it for 
inclusion on the PostCSS plugin directory. We'll be using the postcss-transition-
shortcut plugin that we've just created, as a basis for releasing it for general use.

We've already covered the requirements for testing our plugin, so let's explore the 
remaining steps needed to make our plugin available for general use by developers. 
The first step is to publish our plugin to a suitable repository on GitHub. This 
process falls outside of the scope of this book, but in a nutshell, the process for 
making the plugin available is as follows:

•	 Add examples of code to the README.md file—this should show an example 
of a source file, and what we would expect to see when that file has been 
processed.

•	 In the CHANGELOG.md file, add the initial version number for the plugin.
•	 All of the changes need to be committed to GitHub—my preferred choice is 

GitHub Desktop, available for Windows or Mac from https://desktop.
github.com/. For Linux users, there are several options available at 
https://git-scm.com/download/gui/linux.

•	 At this point, we now need to publish our plugin to Node's package 
directory, NPM. The process involves adding a new user to NPM, then 
publishing all files to NPM; the details are outlined in full at https://docs.
npmjs.com/getting-started/publishing-npm-packages.

Once the plugin has been prepared, tested and published, all that remains is to fork 
PostCSS, add your plugin to the Plugins section in README.md, and send a pull 
request. We can then monitor the site's Twitter feed for updates about our plugin.

If you are interested, then you may like to refer to GitHub Essentials by 
Achilleas Pipinellis, available at https://www.packtpub.com/.

https://desktop.github.com/
https://desktop.github.com/
https://git-scm.com/download/gui/linux
https://docs.npmjs.com/getting-started/publishing-npm-packages
https://docs.npmjs.com/getting-started/publishing-npm-packages
https://www.packtpub.com/


Creating PostCSS Plugins

[ 226 ]

Summary
Unlike other processors, plugins play a central role in PostCSS—we can pick and 
choose what functionality we want to use; if it doesn't exist, then we are free to create 
our own version. Throughout the course of this chapter, we've covered some key 
concepts around the use of plugins, so let's take a moment to review what we have 
learnt.

We kicked off with a quick introduction to the use of plugins, which was swiftly 
followed by exploring the architecture of a standard plugin that included a look at 
some of the key files that make up a standard plugin. We then moved on to take a 
look at some of the classes, modules, and methods available as part of the API.

Next up, we began working through the construction of an example plugin, before 
constructing a suitable test process and correcting the errors generated from linting 
the code as part of the test. We then rounded off our plugin with a look in more 
detail, to understand some of the key concepts behind how it works.

Moving on, we then covered the construction of a second plugin, but this time 
explored the manual process, and examined why this is not a recommended practice. 
We took a look at some of the issues that can arise from this practice, and why using 
the plugin boilerplate makes development easier.

We then rounded out the chapter by exploring some of the helper plugins we can use 
to simplify development, along with the recommended guidelines for development, 
and the process for making the plugin available for other developers to use in the 
future.

Okay, onwards we go: so far, we've used a variety of plugins throughout the book. 
There are three particular groups of plugins that are particularly useful—they are  
for fallback support, implementing shortcuts to creating CSS, and plugin packs.  
We'll cover all three (and more) in the next chapter.



[ 227 ]

Working with Shortcuts, 
Fallbacks, and Packs

If you spend any time working with CSS, then it is likely you will come across 
instances where you wished there was a quicker way to add a particular block  
of code to your page, apply vendor prefixes, or perhaps set a predefined border  
to an element on the page.

We can easily achieve this by using one or more of the many shortcuts, fallbacks, 
or pack plugins available for use with PostCSS. In this chapter, we'll explore some 
common scenarios where plugins are required, before learning how to create them  
in the next chapter. We will cover a number of topics throughout this chapter,  
which will include the following:

•	 Exploring some of the PostCSS shortcuts and packs available for use
•	 Using plugins to lint and optimize your CSS code
•	 Supplementing the existing shortcuts available in PostCSS
•	 Applying fallbacks to PostCSS code to maintain support for older browsers

Let's get cracking!



Working with Shortcuts, Fallbacks, and Packs

[ 228 ]

Using shortcut plugins in PostCSS
Building a web-based application or site can be a lengthy process—there are so  
many elements to consider, and it takes time to create content that is engaging  
and informative.

Naturally, a smart designer or developer will always look for a shortcut to save 
time—after all, why take an hour to do something, if a shortcut will take half the 
time? The great thing about PostCSS is that it has a good selection of shortcut  
plugins that we can use; these include plugins such as the examples:

•	 postcss-focus: This plugin is available at https://github.com/postcss/
postcss-focus, this simple plugin adds a :focus pseudo-selector to any 
:hover attribute encountered in a style rule.

•	 postcss-border: If specified in a shorthand version, this plugin will add a 
border-width attribute to an existing border: attribute. The plugin source  
is available from https://github.com/andrepolischuk/postcss-border.

•	 postcss-short-data: This plugin is available at https://github.com/
jonathantneal/postcss-short-data, this interesting plugin allows us to 
write shorthand data attribute selectors, akin to pseudo-selectors, which are 
compiled into data- attributes.

We've already incorporated or talked about a number of the shortcut plugins that are 
available within PostCSS—these include postcss-responsive-type which we used 
to build a responsive page earlier in the book, easings, and of course, postcss-
transform-shortcut from Chapter 7, Animating Content.

There are a lot more plugins available for use. Throughout the course of this chapter, 
we're going to explore some of the shortcut plugins available, plus some of the packs 
that we can use to supplement functionality within our preprocessor. A good place 
to start is the selection of plugin packs available for use within PostCSS—let's take a 
moment to explore these in more detail.

Exploring plugin packs for PostCSS
Cast your mind back, if you will, to some advice I gave earlier about plugins—
remember how I said that in an ideal world, a plugin should serve a single purpose?

Well, one might be forgiven for thinking that we're ignoring this advice when we 
talk about plugin packs. In reality, we're not; all of the plugin packs available for 
PostCSS provide a single interface for multiple single plugins. At present, the list  
of plugin packs include these examples:

https://github.com/postcss/postcss-focus
https://github.com/postcss/postcss-focus
https://github.com/andrepolischuk/postcss-border
https://github.com/jonathantneal/postcss-short-data
https://github.com/jonathantneal/postcss-short-data


Chapter 9

[ 229 ]

•	 Oldie: Available from https://github.com/jonathantneal/oldie, this 
plugin is an interface for nine separate plugins; it handles support for older 
versions of IE.

•	 Short: Hosted at https://github.com/jonathantneal/postcss-short, 
this plugin lets us write styles using our own shorthand properties.

•	 AtCSS : This plugin is available at https://github.com/morishitter/
atcss, this interesting plugin provides a new take on SASS' @extend by 
allowing us to create rules that inherit from base rules.

•	 precss: This plugin, from https://github.com/jonathantneal/precss, 
allows us to use SASS-like markup in our style sheets. We will explore this  
in more detail in Chapter 11, Manipulating Custom Syntaxes.

•	 Stylelint: This plugin pack should form part of any PostCSS developer's 
toolkit: it allows us to lint our style sheets automatically. The pack is 
available from https://github.com/stylelint/stylelint.

•	 Cssnano: In a similar vein, cssnano should be part of any developer's toolkit: 
this pack is perfect for compressing and optimizing code within our style 
sheets. You can get the plugin from https://github.com/ben-eb/cssnano.

•	 Rucksack: Last, but by no means least, Rucksack (as described by the 
developer), is a "…little bag of CSS superpowers". This pack adds support  
for functionality such as font src generation, providing fallback support  
for RGBA values, or the clearfix hack.

These packs provide a real mix of functionality—it is naturally up to us to decide 
which plugins we want to use. At this point, though, one might be tempted to ask 
"why use a pack—surely this adds unnecessarily redundant functionality that we're 
trying to avoid adding?"

It's a good question, the simple answer is that it will depend on your requirements.  
If all we're interested in is adding vendor prefixes, then checking and compressing 
our code, then we would most likely use autoprefixer, cssnano, and stylelint. 
But if we wanted to add property aliases, then autoprefixer can be dropped in 
favor of using Rucksack with cssnano and stylelint. The key here, though, is to 
carefully assess what you need, and work out the best combination of plugins to  
use from the selection available for PostCSS.

Okay, time for a change: let's move on! We will be exploring some of these plugin 
packs over the next few pages: let's make a start with a simple plugin, in the form  
of postcss-short.

https://github.com/jonathantneal/oldie
https://github.com/jonathantneal/postcss-short
https://github.com/morishitter/atcss
https://github.com/morishitter/atcss
https://github.com/jonathantneal/precss
https://github.com/stylelint/stylelint
https://github.com/ben-eb/cssnano


Working with Shortcuts, Fallbacks, and Packs

[ 230 ]

Writing styles in shorthand
This plugin, available from https://github.com/jonathantneal/postcss-short, 
is a wrapper for several plugins available for the PostCSS ecosystem; these include 
Shorthand Border, Shorthand Color, and Shorthand Size. Installing the plugin is a 
breeze—it uses the same format as most other PostCSS plugins, and can be installed 
using this command within our project root area, in a Node.js command prompt 
session:

npm install postcss-short --save-dev

The great thing about this plugin (and other plugin packs) is that it removes the  
need to call lots of separate plugins. We must bear in mind though that to make  
this worthwhile, we need to be calling most of the plugins in some form or other.  
If we're only calling one or two from postcss-short, then we may prefer to call 
them individually, and not use the postcss-short plugin.

Leaving aside any concerns about using the plugin, let's take a look at some 
examples of it in action. The best way to experience it is to use the online editor 
at http://jonathantneal.github.io/postcss-short/. We can use this to 
experiment before adding the final result to our style sheet prior to compilation:

In this example (taken from the plugin site), we've used all of the plugins, with 
the exception of Shorthand Text and Shorthand Data. In our code, we've used the 
relevant shorthand as specified for the plugin—PostCSS will compile this into valid 
CSS styles, as outlined within each plugin.

https://github.com/jonathantneal/postcss-short
http://jonathantneal.github.io/postcss-short/


Chapter 9

[ 231 ]

Which plugins we use will of course depend on our requirements—there is every 
possibility that you will find yourselves using particular plugins more than others. 
Staying with the theme of shorthand, though, there is one plugin pack that is likely 
to feature often in your toolkit—Rucksack. No, I don't suggest this is an opportunity 
to go on holiday (no pun intended), but more an occasion to use what will be a very 
useful set of plugins within PostCSS.

Adding shortcuts with Rucksack
Mention the word Rucksack, and one might be forgiven for thinking we were  
about to go on a journey or holiday—whilst the desire might be there, there are  
more practical matters to attend to first!

This said, working with PostCSS can easily be seen as going on a journey; this  
is particularly true when working with plugins. One of the plugins (or to be  
more accurate, packs) that you will very likely come across when working with 
PostCSS is Rucksack (see the play on words there?). This useful pack, available  
from http://simplaio.github.io/rucksack/, contains a number of plugins  
that have been linked together to provide additional functionality that we can  
use when compiling style sheets using Rucksack, such as these examples:

•	 Alias: This is available at https://github.com/seaneking/postcss-
alias, this plugin allows us to create shorthand CSS properties.

•	 Clearfix: As a developer, I am sure you will be familiar with the clearfix 
hack: this plugin by Sean King provides the PostCSS equivalent, and is 
available at https://github.com/seaneking/postcss-clearfix.

•	 Font src expansion: How many times have you used custom font 
declarations in your code? They're a pain to write—another plugin by  
Sean King (at https://github.com/seaneking/postcss-fontpath),  
makes it a cinch to add to your code.

The irony here, though, is that we've already used Rucksack without realizing it—
remember the postcss-responsive-type plugin we used back in Chapter 4, Building 
Media Queries? Or the autoprefixer plugin we've used in just about every chapter 
throughout the book? Both of these plugins are available via Rucksack—Rucksack is 
really an abstract layer that ties in access from multiple plugins into one consistent 
interface for us to use.

Okay, enough chitchat: let's get stuck into a demo and see some action! For our next 
demo, we're going to construct a simple slider using some standard HTML markup 
and CSS3 styles; no JavaScript will be used at all. We'll start with a quick run-through 
of our slider, before we convert the style sheet to use Rucksack.

http://simplaio.github.io/rucksack/
https://github.com/seaneking/postcss-alias
https://github.com/seaneking/postcss-alias
https://github.com/seaneking/postcss-clearfix
https://github.com/seaneking/postcss-fontpath


Working with Shortcuts, Fallbacks, and Packs

[ 232 ]

Introducing our demo
For this next demo, we're going to break tradition and not install the plugin we're 
about to use first, before creating our demo. Instead, we'll set up our demo first—we 
can then ascertain where Rucksack can be used once we've set our baseline solution.

Our demo centers on a simple image slider, which uses pure CSS3 styling to control 
the animation. This is a screenshot of what we're going to create:

To see the demo in action, go ahead and extract the T45 – converting to use 
Rucksack folder from a copy of the code download that accompanies this book—
save it to our project area. Go ahead and preview the results by running slider.
html in a browser, then click on the numbers in the bottom left to move between 
different images.

You will need to rename the style post-completed.css file 
style.css for it to operate correctly.



Chapter 9

[ 233 ]

Installing Rucksack as a plugin
With our demo in place, it's time to install Rucksack, and ascertain where we can use 
it in our demo! Rucksack, like most other PostCSS plugins, can be installed using the 
same method—we can use NPM:

1.	 Fire up a Node.js command prompt, then change the working folder to  
our project area.

2.	 In the prompt, enter npm install rucksack-css --save-dev, then  
press Enter.

3.	 NPM will go away and install the plugin—if all is well, we should see 
something akin to this:

A note of caution—there are several plugins available for Rucksack: make sure you 
install the right one! There is a Gulp plugin, but this does not appear to work within 
PostCSS, even though we are using Gulp as our task runner.

This aside, let's move on. Before we go through the process of converting our slider to 
use Rucksack, let's take a quick look at using it in action with a simple easing demo.

Easing into using Rucksack
Any developer who spends time animating content on a website will no doubt have 
created rules to control how content eases in or out of the page. Striking the right 
balance between easing content in and out of the page and the site becoming too 
overladen with effects takes time to get right!

Leaving aside the awful pun in that last comment, this is where Rucksack can help—
one of the simpler plugins that forms part of this package is postcss-easings. This 
plugin, available from https://github.com/postcss/postcss-easings and one 
that we touched on in Chapter 7, Animating Content, has but one role in life: convert 
any recognized easing name into a cubic-bezier equivalent value.

https://github.com/postcss/postcss-easings


Working with Shortcuts, Fallbacks, and Packs

[ 234 ]

For an example of a Bezier curve, take a look at  
http://cubic-bezier.com/#.17,.67,.83,.67.

Is there any benefit in doing this, I hear you ask? Well, two that come to mind are 
consistency and a central point of source. Let me explain what I mean.

A central point of source borrows a principle from CSS preprocessors such as SASS 
or less, where a single value is defined at the top of the file; any instance found 
elsewhere in the file will be automatically replaced by its value (in this instance, 
a cubic-bezier easing). This then helps with consistency: we can specify names 
for any custom easings in the configuration, which will replace any instance found 
during compilation.

The benefit of this means that we only need to update one central point (that is,  
point of source), and can avoid mixing different types of easing values in our code—
they will be converted to cubic-bezier values at compilation.

Okay, let's move on: time for a demo! Before we get stuck in, let's quickly cover what 
we're going to construct. Our demo is a simple affair with four squares that we will 
animate using nothing more than plain HTML and CSS (yes, no JavaScript). We will 
use a handful of effects, such as easeOutBack, which looks something like this:

You can learn more about the details for this particular easing at 
http://easings.net/#easeOutBack—it translates to cubic-
bezier(0.175, 0.885, 0.32, 1.275) when used in code.

Let's get on and construct that demo…

http://cubic-bezier.com/#.17,.67,.83,.67
http://easings.net/#easeOutBack


Chapter 9

[ 235 ]

Animating content using the plugin
If you're expecting dramatic effects, then I am sorry to disappoint—this exercise  
has been kept deliberately simple, to show you how easy it is to use Rucksack.  
We mentioned earlier that the overall result will be four simple squares that we  
can animate at will—they will look something like this:

The use of this plugin does raise one important question—we will cover this once 
we've built our demo:

1.	 From the code download that accompanies this book, go ahead and extract 
a copy of the T44 - postcss-easings folder, and save it to the root of our 
project area.

2.	 Next, copy the gulpfile.js and package.json files from this T44 - 
postcss-easings folder to the root of our project area—go ahead  
and replace any that are already present in this location, or save them 
somewhere for safekeeping.

3.	 Copy the style – pre-comile.css file from the css – completed 
versions folder to the src folder within our project area; this sets it  
ready for compilation. Rename it style.css.

4.	 Go ahead and fire up a Node.js command prompt session, then change the 
working folder to our project area.



Working with Shortcuts, Fallbacks, and Packs

[ 236 ]

5.	 In the prompt, enter Gulp then press Enter—our file will be compiled,  
like this:

6.	 Assuming no issues appeared during compilation, copy the contents of the 
dest folder to the css folder within the T44 - postcss-easings folder.

7.	 Try previewing the results of our handiwork in a browser—if we hover over 
each square, the animation will kick in; they should appear similar to the 
figure shown at the start of this exercise.

Our demo was never meant to be anything more complicated—the aim was to show 
off how easy it is to get a consistent effect, provided the configuration object is correctly 
set up! It does, however, raise an important question concerning our choice of plugins, 
so let's explore that in more detail.

Dissecting our demo in more detail
This is one example of where simplicity pays in spades; the postcss-easings 
plugin requires no configuration for standard use, and will only need configuring 
if the easing we use are not already part of its core library. The ones we picked for 
this demo are already defined in the plugin—if we open a copy of the compiled style 
sheet, we should see something akin to this:



Chapter 9

[ 237 ]

The key to configuring this plugin lies in two lines of code, on or around lines 11  
and 16:

var rucksack = require('rucksack-css');
  .pipe(postcss([ rucksack() ]))

Much of what is present in the Gulp task file that we used in this demo is code that 
we've already seen before; it frequently pays to think ahead, so that we can build 
a gulp file that can be reused for future projects. Once configured, then any style 
recognized by the plugin will be compiled into valid CSS.

If we had decided to use a custom easing style, then we can easily update the 
configuration object accordingly:

In case you're wondering about the name given—this effect replicates the motion 
when punching the air after you've achieved a good result, particularly if it has been 
a troublesome issue to solve!

Before we move on to our next exercise, we should answer the question that I alluded 
to earlier: which plugin should we use? But hold on, we're using the postcss-easings 
plugin, right?

No, I've not completely lost the plot: the postcss-easings plugin is available 
separately, and is referenced within the Rucksack pack of plugins. The key here, 
though, is that if we only need to use postcss-easings, then there is no sense in 
calling in Rucksack's plugins, which will only add an unnecessary burden to our 
workflow. Instead, we can change line 11 in our gulp task file to the following:

var easings = require('postcss-easings');

And we can change line 16 to the following:

.pipe(postcss([ easings() ]))

As long as the plugin is still installed from earlier, then the code will be compiled as 
before, but without the extra overhead of the other plugins that form Rucksack.



Working with Shortcuts, Fallbacks, and Packs

[ 238 ]

Converting our slider to use Rucksack
If we're working with Rucksack, we've seen that the key to successful use is less about 
configuring it for use in our Gulp file, and more about deciding which plugins to use. 
To see what we mean by this, take a look at the original stylesheet from Introducing  
our demo carefully; it should reveal that we can use a number of plugins to improve  
on existing functionality:

•	 Responsive typography: Our demo is already partially responsive, but the 
label text isn't resizing if we change the size of our slider. We can fix this by 
altering our code to trigger Rucksack to make our fonts responsive.

•	 Shorthand positioning: This is a great plugin for adding position attributes; 
why bother adding top, left, right, and bottom attributes when we do all four 
in a single line of code? Add this one-liner, and we can get PostCSS to do the 
heavy lifting for us.

•	 Property aliases: Continuing with the shorthand theme, we can use this 
plugin to set up shorthand versions of any attribute we care to use; it means 
we only need to type in one or two letters, which PostCSS will transpile to 
the full version of that attribute.

•	 Font src expansion: If we look at our source style sheet carefully, we should 
see a small issue on or around line 6. The code calls for Open Sans as a font, 
but this is not a standard font! Thankfully, we can easily fix it by telling 
the browser where to download it from—Rucksack provides a convenient 
shorthand form for adding this detail to our code.

•	 Hex RGBA shortcuts: We've used a mix of RGBA and HEX codes in our style 
sheet to represent colors, yet some older browsers don't support the former 
style. This is becoming less of an issue, but as it is added automatically by 
Rucksack, then there is no harm in adding the latter values!

•	 Easings: Our slider demo used a single instance of an easing, in the form of 
ease-in-out-back. In the previous demo, we used postcss-easings (that is 
the basis for this part of Rucksack) to convert the names to cubic-bezier 
values; we should look to continue this theme when updating the slider.

•	 Automatic prefixing: This isn't enabled by default, so it's up to us to decide if 
we want to use it. It references the same autoprefixer plugin we've already 
used in earlier demos; if we're going to make good use of Rucksack, then it 
makes sense to enable it and remove any existing reference that is already in 
our code. We're going to use most of the plugins referenced in Rucksack, so 
we will enable it for use. If, however, we only need one or two, or we don't 
need support for older browsers, then it can remain switched off.



Chapter 9

[ 239 ]

•	 Legacy fallbacks: Support for older browsers is provided by the laggard 
plugin in Rucksack. This provides a mix of fallback mechanisms, such as 
adding fallback support for rem values, HEX fallbacks for RGBA values,  
or the 3D transform hack for will-change. We'll be adding rem fallback 
support, so we will enable this plugin for use.

Now that we've covered the elements we want to use, it's time for us to make the 
changes. Without further ado, let's make a start:

1.	 From the code download that accompanies this book, go ahead and extract  
a copy of the T45 - converting to use Rucksack folder, and save it to 
our project area.

2.	 From within the T45 - converting to use Rucksack folder, copy the 
gulpfile.js and package.json files to the root of our project area.

3.	 Next, copy the contents of the css-completed version folder from within  
the T45 - converting to use Rucksack folder to the src folder at the  
root of our project area. Rename pre-compile version.css style.css,  
then open up this file in a text editor—we need to make some changes to  
the styles within the file.

4.	 Our first change is to make the text in our demo responsive—do a search 
for font-size, and change any instance to font-size: responsive. This 
should cover each of the five number labels, and the div.slide-content > 
figcaption rule.

5.	 Next up, is adding our shorthand version for the position attribute—in this 
instance, there is only one we can change, which is on line 42. Comment  
out the bottom, left, right, and top attributes specified on lines 33-36,  
then replace the position: attribute with this:
position: 427px 0 0 0;

Note, the other instances of position can't be changed as we've 
not specified individual placement values in these rules.

6.	 Our next conversion is to add some aliases—this is just a shortcut to typing 
in more text! For our demo, go ahead and add this at the top of our style 
sheet:
@alias {
  pb: padding-bottom;
  bs: box-shadow;
  bgc: background-color;
}



Working with Shortcuts, Fallbacks, and Packs

[ 240 ]

Next, do a search and replace for each of these three styles—replace the full name 
with the shortcut names given in the @alias block.

1.	 Remember the small issue I pointed out earlier, about the missing support 
for the Open Sans font? Well, we can easily fix that—at the top of our style 
sheet file, go ahead and add this block; this tells the browser where to find 
the Open Sans font:
@font-face {
  font-family: 'open_sansregular';
  font-path: '../fonts/OpenSans-Regular-webfont';
  font-weight: normal;
  font-style: normal;
}

2.	 We touched briefly on Rucksack's ability to convert easing names to cubic-
bezier values. The demo uses an easing name—this has already been set to  
one that is supported within Rucksack, so we don't need to alter our code.  
The same applies to the RGBA fall-back support—Rucksack will automatically 
convert any RGBA values it sees to HEX equivalents within our code.

3.	 The remaining two changes are for legacy support and automatic prefixing—
to enable these, we have to modify our gulp file as shown in the screenshot:

4.	 Save the file, then switch to a Node.js command prompt—at the prompt, 
make sure the working folder is set to our project area.

5.	 At the prompt, enter gulp, then press Enter—PostCSS will go away and 
compile the code; if all is well, we should see our compiled files in the  
dest folder:



Chapter 9

[ 241 ]

At this stage, we have a compiled set of files. To confirm if the demo works, go ahead 
and copy them to the css folder within the T45 - converting to use Rucksack 
folder; try previewing the results of our work by running slider.html. If all is well, 
we should see the same slider effect:

All should be good, we have a working demo and our code has compiled 
successfully. At this point we can move on to our next task, right…?

Dissecting our code
Well, it's worth taking a look at our compiled code first: Rucksack has made some 
additional changes to our code that we may not have expected to see.

For example, Rucksack has provided pixel-based fallback support for the rem units 
listed throughout our code, along with the HEX fallback support we discussed earlier:

body {
  font-family: "open_sansregular";
  line-height: 25.888px;
  line-height: 1.618rem;
  background-color: #ecf0f1;
  background-color: rgba(236, 240, 241, 1.0);
  color: #44466a;
  color: rgba(68, 68, 618, 1.0);
}



Working with Shortcuts, Fallbacks, and Packs

[ 242 ]

Next, take a look at line 96—remember the font-size: responsive attribute that 
we added? This is the compiled result:

font-size: calc(12px + 9 * ( (100vw - 420px) / 860));

Throughout the bottom two-thirds, there are a number of media queries that have 
been added; these were added as part of making our font styles responsive. Further 
down, at around line 226, we have this block:

-ms-filter: "progid:DXImageTransform.Microsoft.Alpha(Opacity=0)";
 -webkit-transition: opacity 0.35s;
 transition: opacity 0.35s;

At first glance, you might wonder where this came from, as we didn't specify an ms-
filter attribute in our code. Well, this is thanks to Rucksack—it has added opacity 
support for IE automatically.

The key to this little exploration, though, is that choosing plugins should be  
an iterative process that will only really finish when the site is no longer needed. 
For example, we could easily add another step to our workflow that reduces calc() 
operations to static values (where allowed—the plugin for this is postcss-calc).  
We should always consider using postcss-remove-prefixes periodically to  
keep our code up to date; there will come a time when we either don't need to  
add prefixes, or existing prefixes become redundant.

Leaving aside the changes to our style sheet, there is one more to consider—you will 
note that the Autoprefixer plugin has been commented out in our code:



Chapter 9

[ 243 ]

This is with good reason—Rucksack has built-in support for autoprefixer, so 
there is no need to call it twice; ironically, it simply calls the same plugin that is 
commented out of our code! It's up to us whether we want to call it from within 
Rucksack, or separately; this will largely depend on what else is being called from 
with Rucksack, and whether adding autoprefixer will help provide a stronger  
case for using Rucksack.

Linting and optimizing your code
Bandwidth usage has always been critical to the success of a website; remember the 
good old days of 56K modems? We've come a long way since then, but this is still no 
excuse for producing sites that swallow bandwidth like it's going out of fashion!

A part of this comes in the form of linting and minifying our style sheets before 
deploying into production use—it goes without saying that this should form part 
of any developer's workflow process by default. We can do this manually, but this 
manual job is prone to missing opportunities, which can lead to inconsistencies in 
our code.

Instead, we can use the power of PostCSS to perform the heavy lifting for us; the 
stylelint and cssnano plugin packs make for a powerful optimization facility! 
If we take a careful look at most gulp task files that we've created throughout the 
course of this book, both processes are taking place; in this example, stylelint is 
used at line 22, and cssnano at line 38:



Working with Shortcuts, Fallbacks, and Packs

[ 244 ]

Exploring the use of cssnano
For anyone starting out with PostCSS for the first time, then simply specifying 
cssnano() as one of the processors for PostCSS should be sufficient:

If we take a look at the T45 – converting to use Rucksack demo, our original 
style sheet file weighs in at 4KB when compiled, but which drops to 3KB after 
compression. Granted, it's only a small file, but a 25% drop in size is still not an 
insignificant drop!

At this point, it is worth noting that even though we are 
using Gulp, the plugin in use is the PostCSS version, and 
not gulp-cssnano.

The cssnano plugin is not a single plugin, but a wrapper for a number of plugins, 
which include examples such as these:

•	 postcss-reduce-idents: This reduces any custom identifier names  
(such as those used in @keyframes) to two letter equivalent codes;  
this helps with minifying code.

•	 postcss-zindex: This plugin reduces any z-index declarations that are 
unnecessarily higher than they should be.

•	 postcss-convert-values: If our CSS uses any number of different units, 
then we can reduce the CSS size by expressing the value a different way. 
For example, 400ms can be expressed as .4s (a reduction by two characters). 
Some might argue this is a little extreme, but every little helps!

•	 postcss-colormin: In a similar vein, we can reduce the length of color 
names using this plugin: if rgba(255, 0, 0, 1) is used in our code, then 
we can replace this with red. Although the name is indeed shorter, this is at 
the expense of losing consistency with naming our colors, which may not be 
so desirable.



Chapter 9

[ 245 ]

Moving on, there are some key points we should be aware of, when using cssnano:

•	 You will notice the presence of the gulp-rename plugin in use within our 
Gulp file—cssnano does not have a capability to rename a compressed file to 
something we would expect to see within our code. We can use gulp-rename 
to create a version that developers would expect to see in code; it does leave 
a copy of the original file in place, if needed.

•	 Most options within cssnano are enabled by default; we can switch off 
individual ones in the configuration object, as shown in this example:
var nano = require('gulp-cssnano');

gulp.task('default', function () {
    return gulp.src('./main.css')
        .pipe(nano({discardComments: {removeAll: true}}))
        .pipe(gulp.dest('./out'));
});

For a full list of the transform options, take a look at 
http://cssnano.co/options/. Click on the link to 
view individual configuration options for that plugin.

•	 This plugin automatically includes autoprefixer. Technically, there is no need 
to include it separately as we have done in previous exercises, so ideally it 
should be removed. We will focus on this more as part of optimizing our 
processor in Chapter 10, Building a Custom Processor.

•	 There are some transforms that are available within cssnano, but which are 
not switched on by default; these are not considered safe and should only 
be included if you are 100% sure it has not affected your code. The details of 
unsafe transforms are available on the options page at http://cssnano.
co/options/.

Okay, let's move on: the second half of our double act is the stylelint plugin pack; 
unlike cssnano, stylelint takes the opposite approach and allows you to enable 
any rule as needed, from a list of over 100 available rules. Let's dive in and take a 
look in more detail.

http://cssnano.co/options/
http://cssnano.co/options/
http://cssnano.co/options/


Working with Shortcuts, Fallbacks, and Packs

[ 246 ]

Configuring Stylelint as our linter
How does one describe Stylelint, if you've never met it before? Well, to quote its 
website, "stylelint is a mighty, modern CSS linter".

Whether we agree with such a bold statement, it is certainly worth getting to know 
Stylelint as a linter. Available from http://stylelint.io/, the key to this plugin 
lies not in the plugin itself, but in the rules that define what we want to check in our 
code. At present, we can use any one of 100+ rules, or a mix of several; these can be 
specified in a .styleintrc file, within our package.json file, or as a stylelint.
config.js file that exports a JavaScript object.

We've already used stylelint in earlier projects; for convenience, our Gulp task for 
linting styles has a number of rules specified within the object:

I've chosen a number of rules to illustrate how we can use Stylelint; it is, of course, 
up to each of you as developers to choose which rules you want to test as part of 
linting your code. Stylelint does not contain a core set of rules that are enabled by 
default—any checking it does will be dependent on what is specified in the rule 
configuration.

A useful source to bookmark is http://stylelint.
io/—this contains a full set of rules that can be added 
to our Stylelint configuration prior to compiling code.

For example, if we were building a responsive site that made heavy use of the 
Golden Rule, we may want to limit any percentage values to no more than three  
or four places. For this, we would specify the number-max-precision rule—this 
takes an integer value; specifying 3 would flag warnings for these two attributes:

.foo { top: 3.2456px; }

.foo { top: 3.245634px; }

http://stylelint.io/
http://stylelint.io/
http://stylelint.io/


Chapter 9

[ 247 ]

This is not the case for this one:

@media (min-width: 3.234em) {...}

I would strongly recommend reading through the list of rules to get a flavor of 
what is available; it will take time to familiarize yourselves with the contents, but 
the reward will be code that is optimized and checked prior to it being used in a 
production environment. There is one small point though—even if we optimize  
our code ad infinitum, there is always a possibility that we still have to include  
some support for older browsers.

In an ideal world, we would convince our clients of the merits of limiting such 
support (or not even covering it). If clients insist on it, however, against our better 
judgment, then PostCSS can easily help with providing that support. Let's explore 
what is available—much of this will center around IE (as this is the biggest culprit), 
but will equally apply to other browsers.

Providing fallback support
A key concern when designing web content is browser support—which browsers 
do we support? If the only browsers we had to support were the likes of Firefox or 
Chrome, then our job would be easy. Trouble is, we also have IE, Safari, Edge…not 
to mention mobile devices! Life would be boring otherwise…

But I digress, back to reality: for those legacy browsers that refuse to conform  
(yes, I'm looking at you in particular, IE), we have to consider providing some 
form of support or graceful degradation. Thankfully, there are a number of plugins 
we can use within the PostCSS ecosystem—we've already used one in the form of 
Autoprefixer; there are others available, so let's dive in and take a look at a selection 
of these plugins in more detail. Before we do so, though, there is a useful tip that I 
want to explore, which can help with checking for, and providing, legacy support in 
our browsers.

Detecting support for features
A key part of the development process is to ensure that our code works on those 
browsers we have to support. If we're lucky enough that this range of browsers is 
limited to newer offerings, then this is less of an issue.

For some developers, there will be a need to have to support older browsers; this is 
particularly true if the environment contains other browser-based applications that 
require use of these older browsers, and cannot be replaced.



Working with Shortcuts, Fallbacks, and Packs

[ 248 ]

To help get around this, we could use libraries such as Modernizr (http://www.
modernizr.com), but a more efficient means is to use the CSS @supports directive. 
In short, this operates in a similar fashion to media queries; we can specify a backup 
property that is supported by all browsers, and cancel it out if we're using a browser 
that can support an enhanced property:

section {
  float: left;
}

@supports (display: -webkit-flex) or (display: flex) {
  section {
    display: -webkit-flex;
    display: flex;
    float: none;
  }
}

In the main, this is more likely to be useful for those who have to provide support for 
older versions of IE (given that other browsers have offered better support for some 
time). Ideally, we would look to persuade clients of the merits of not supporting 
older versions of IE (at least 8, and possibly 9). If we have to support them, this 
method coupled with the use of autoprefixer could prove very useful.

Providing support for oldie
When it comes to providing support for legacy browsers, the biggest culprit is 
arguably Microsoft's IE. Whilst it has to be said that support in newer versions is 
improving, its popularity means that there are still enough old versions to warrant 
the need to provide support!

To their credit, Microsoft have announced that they no longer support IE8 to 10—this 
is a step in the right direction to help encourage users to upgrade, although it will be 
some time before these versions completely disappear from use.

So, if you still have to support old versions of IE, what can we do? A good solution 
to try out is the oldie pack of plugins; its name makes a reference to what some term 
oldIE, or those versions of IE that should have been consigned to history a long time 
ago!

http://www.modernizr.com
http://www.modernizr.com


Chapter 9

[ 249 ]

This plugin, available from https://github.com/jonathantneal/oldie, is a 
wrapper for a host of plugins available within PostCSS; examples include the 
following:

•	 post-calc: This reduces any instance of calc() to single values where 
possible; instances of calc() that use a mix of units may not be replaced

•	 postcss-unroot: If our CSS uses :root selectors, then old versions of IE will 
fail; this plugin replaces them with HTML to allow our code to compile

•	 postcss-unnot: In a similar vein, if we've specified rules that include 
elements where :not pseudo-elements have been used, then these selectors 
will be removed

•	 postcss-unopacity: This converts any instance of the opacity property to 
use filter: alpha(opacity=XX), where XX is the equivalent value for the 
original opacity property

The pack includes other plugins—to get a feel for what plugins are included, it's worth 
taking a look at the index.js file for the plugin pack; it will look something like this:

The beauty, though, is that we are not forced to use the oldie plugin in its entirety. 
If, by some quirk of fate, we've managed to create something that in the main avoids 
those CSS attributes that are likely to make oldIE choke, then we can opt to simply 
reference those plugins that we need to use instead.

This will, of course, depend on how much we've used—a more likely scenario is that 
we will end up needing to use all of the plugins, so it makes better sense to use oldie 
instead! Of course, we could always encourage our clients to drop oldIE—this might 
not be as simple as it sounds…

https://github.com/jonathantneal/oldie


Working with Shortcuts, Fallbacks, and Packs

[ 250 ]

Removing style hacks from code
If we're lucky enough to have understanding clients—and chance would be a fine 
thing—then there is likely to be a task that we need to perform: remove any style 
hacks from our code that relate to browsers we no longer support. The removal of 
these hacks may be trivial if we only have a small style sheet; the reality is that it  
will likely be a long, manual process for larger sheets, which carries a risk of us 
missing hacks.

Instead, we can avail ourselves of a plugin, in the form of stylehacks; this works very 
well with the stylelint plugin we've already used in demos throughout this book. 
Available from https://github.com/ben-eb/stylehacks, the plugin uses hacks 
listed on http://browserhacks.com, and is a cinch to install—let's take a look at it 
in action:

1.	 We'll start by extracting a copy of the T47 - using stylehacks folder from 
the code download that accompanies this book; save it to the root of our 
project folder.

2.	 Copy the gulpfile.js and package.json files to the root of the project folder.
3.	 In a text editor, go ahead and add this code, saving it as style.css in the src 

folder in our project area (not within the T47 - using stylehacks folder!):
h1 {
  _color: white;
  color: rgba(255, 255, 255, 0.5);
}

4.	 Next, fire up a Node.js command prompt session, then change the working 
folder to our project area.

5.	 We now need to install the plugin—in the prompt, enter this command, then 
press Enter:
npm install stylehacks --save-dev

6.	 When the plugin has installed, go ahead and enter gulp in the prompt, then 
press Enter.

7.	 PostCSS will compile our code—if all is well, we should see this in the dest 
folder at the root of our project area:

https://github.com/ben-eb/stylehacks
http://browserhacks.com


Chapter 9

[ 251 ]

Assuming we have a successful compilation, try opening the style.css file in a text 
editor—we will, of course, have the requisite source map directive at the foot of the 
code, but otherwise notice how it has removed the color hack:

The key to this process lies within this task in our Gulp file:

gulp.task('styles', function () {
  return gulp.src('src/*.css')
    .pipe(postcss([ stylehacks({browsers: 'last 1 version, >  
      10%'}) ]))
    .pipe(gulp.dest('dest/'));
});

In our Gulp file, we've added the browsers attribute—this tells stylehacks to remove 
any hacks that are not required for modern browsers or those that have more than 
10% global usage. This setting is based on the Browserslist query list available from 
https://github.com/ai/browserslist—it's worth noting that this can be used  
for plugins such as Autoprefixer as well.

https://github.com/ai/browserslist


Working with Shortcuts, Fallbacks, and Packs

[ 252 ]

If we start to include more plugins that make use of the Browserslist 
queries, then consider using a variable in place of the query; updating 
this from a central location will automatically update all plugins that 
use it accordingly. For more details, please refer to the Browserslist 
site on GitHub.

Although this is a simple plugin to use, there is one nagging question that kept 
coming back whilst researching for this book: how useful is this plugin in reality?  
For some, you may think I need my head examined, but there is a reason behind 
this—let me explain.

If you've spent any time developing with jQuery, then you should be aware that it 
has dropped support for IE6-8 from jQuery 2.x, and will only develop support for  
it within the 1.x branch. Much of the baggage within jQuery within the 1.x branch  
is based on catering for browser hacks; the biggest culprit for these hacks is IE!

At the time of writing, Microsoft have publicly stated that support for IE10 and 
below is being dropped (at least for Windows 8)—they will only support IE11  
on the Windows 8.1 platform, plus their new browser, MS Edge.

Given that many of the hacks found in CSS are for IE (and that this also applies to 
jQuery), one can't but wonder if the stylehacks plugin will still remain useful within 
the not too distant future! We should also be asking ourselves if using hacks is a 
good design decision. Are we designing a problem for ourselves at a later date, or 
should we be reconsidering our original design, and perhaps revisiting whether we 
need to support older browsers with a dedicated style sheet, rather than introducing 
hacks in amongst code designed for more recent browsers?

Summary
A key part of PostCSS is exploring the ever-increasing array of plugins available for 
the PostCSS ecosystem; in some respects, it can be likened to a journey of discovery. 
This is no different for single plugins, or those available within packs—we've already 
seen that many of these packs are made up of the same plugins that are available 
individually! Let's take a moment to review what we've learnt.

We kicked off our journey with a look at working with plugins that can help save 
time with writing—these can either be those that allow us to write in shorthand,  
or those that add missing styles, based on styles we specify in code. These also 
included some plugins that help provide fallback support for older browsers.



Chapter 9

[ 253 ]

We then moved onto working with the postcss-short plugin, as an example of 
how we can reduce development time, before moving on to explore the Rucksack 
suite of plugins that can help add some of the missing elements we may need to 
use in CSS. To explore how Rucksack works, we started with a simple easing demo, 
before working our way through a more complex demo of a slider and converting it 
to use Rucksack, and exploring some of the ways in which this plugin pack can help 
in our development.

Next up in our journey came a look at what should be a crucial part of any 
development workflow for a developer—checking our code for consistency, and 
optimizing it. We covered the use of the cssnano and stylelint plugins, and how 
they can be tailored to our needs.

We then rounded out the chapter by revisiting support for older browsers—we 
supplemented our earlier visit with a more in-depth look at what is available within 
PostCSS; we explored the fact that many fallbacks are primarily caused by IE, and 
discussed how we can either help support older versions of this browser, or whether 
we should consider consigning support for some older browsers to history.

Phew, this was a real whirlwind tour through the plugin packs available for PostCSS! 
Our journey does not stop here, as we now need to pull all of the last few chapters 
together and produce a complete custom processor—this will be the subject of the 
next chapter.





[ 255 ]

Building a Custom Processor
One of the key benefits of using PostCSS is its modular approach—we're not forced 
to use a large library, particularly if we only need to make use of a small part of its 
functionality! In this chapter, we'll pull together some of the themes we've discussed 
throughout earlier chapters, and create a fully working preprocessor, customized to 
our needs.

We'll use it to compile code for a simple site, explore using it for CMS systems 
such as WordPress, then take a look at extending it to work with frameworks such 
as CSStyle. We will cover a number of topics throughout this chapter, which will 
include the following:

•	 Creating our processor
•	 Optimizing the output
•	 Adding source map and vendor prefix support
•	 Testing the final preprocessor on a simple site system
•	 Extending our preprocessor to use the CSStyle framework

Let's make a start!

Creating your processor
Many developers who work with existing processors such as SASS, less, or Stylus 
will be accustomed to working with a library that is a necessary dependency, and 
where it is unlikely that they will be using 100% of the functionality available for 
their chosen processor.



Building a Custom Processor

[ 256 ]

This is not the case with PostCSS. One of the key attractions is its flexibility; gone 
are the days when we have excess baggage in our processor that is redundant for 
our needs! The power of flexibility can also be a shortcoming, where does one start 
deciding what to include in our processor, I hear you ask?

Throughout the course of this chapter, we will bring together the various elements 
of the processor we've used in the demos, and work through changes we can make 
to improve or extend functionality. The key, though, to any processor is that there 
is no right or wrong answer; each will be different, and they will depend on your 
requirements.

As time goes by, it is likely that you will find common elements that can be reused 
between projects, ultimately, it is up to you as the developer to find the combination 
that meets your requirements. This aside, let's begin with a detailed look at the 
processor we've used in recent examples, and explore some of the ideas and tips  
we can use to create our own version.

Exploring our processor
As part of creating the demos we've worked through in this book, we concentrated 
on ensuring plugins are installed, and that we have the right files in the right place. 
There is something missing though, and that is—what actually happens in the files? 
Why do we have tasks in a particular order? What is the reasoning behind choosing 
some of the plugins that we've used…and so on—you get the idea!

Over the next few pages, we're going to try to answer some of these questions (and 
more), by exploring the processor that we've used in some of the recent examples; 
you will see that there isn't a one-answer-fits-all approach, but more a case of 
working through your requirements, and picking plugins to suit your needs.

Before we go into depth, though, let's just quickly recap the make-up of our 
processor, starting with the package.json file.

Dissecting the package.json file
The package.json file tells PostCSS which plugins to use, and may contain some of 
the key configuration settings to be used during compilation:

{
  "name": "postcss",
  "version": "1.0.0",
  "description": "Configuration file for PostCSS",



Chapter 10

[ 257 ]

  "main": "index.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"
  },
  "author": "Alex Libby",
  "license": "ISC",
  "dependencies": { "postcss": "^5.0.8" },

The top half of our processor contains a number of key properties that tell us details 
such as the version, description, who created it, any dependencies, and the license 
being used for the project:

  "devDependencies": {
    "autoprefixer": "^6.0.3",
    "cssnano": "^3.2.0",
    "gulp": "^3.9.0",
    "gulp-postcss": "^6.0.0",
    "gulp-rename": "^1.2.2",
    "gulp-sourcemaps": "^1.5.2",
    "postcss-reporter": "^1.3.0",
    "stylelint": "^2.3.7"
  }
}

In comparison, the key part for us is in the bottom half; this lists all of the plugins that 
will be used within our project. In many of our projects, we've installed the plugin—at 
point of installation, the plugin will add an entry into this file that contains the name 
and the minimum version required (represented by the ^ symbol).

It is worth noting that we can manually add entries to, or remove entries from this 
file, or even copy package.json files from one project to another if needed. This 
is particularly useful if we know that a new project has identical (or very similar) 
requirements to an existing one; plugins will only add an entry into this file at 
installation, if one does not already exist.

Exploring the Gulp task file
The gulpfile.js file is where the real magic happens—this contains all of the tasks 
that need to be performed on each style sheet within our project. Outside of the 
style sheet, this is the second of two files that we've simply copied across from the 
code download to our project area. Now that we've been using it in anger, it's worth 
taking a moment to explore what happens in more detail.



Building a Custom Processor

[ 258 ]

The gulpfile.js file is made up of several sections—in our example, we begin with 
a list of variables that define references to each of our plugins:

'use strict';

var gulp = require('gulp');
var postcss = require('gulp-postcss');
//var autoprefixer = require('autoprefixer');
var cssnano = require('gulp-cssnano');
var sourcemaps = require('gulp-sourcemaps');
var rename = require('gulp-rename');
var stylelint = require('stylelint');
var reporter = require('postcss-reporter');
var rucksack = require('rucksack-css');

The first task in our list is the most important one—this picks up and compiles the 
source code into a valid CSS file and deposits it in the dest folder. As part of this,  
we provide links to any PostCSS plugin that is needed to transform our code—in  
this example, we're using Rucksack, set to include fallback support but not add 
vendor prefixes:

gulp.task('styles', function () {
  return gulp.src('src/*.css')
    .pipe(postcss([ rucksack({ fallbacks: true,  
    autoprefixer: true }) ]))
    .pipe(gulp.dest('dest/'));
});

This chunky task is less complicated than it looks—it checks our code for consistency, 
based on the rules set; it outputs any warnings or errors on screen using the reporter 
plugin. The key here is the ['styles'] attribute—this tells PostCSS not to perform 
this task until the styles task has been completed:

gulp.task("lint-styles", ['styles'], function() {
    return gulp.src("dest/*.css")
    .pipe(postcss([ stylelint({
        "rules": {
          "color-no-invalid-hex": 2,
          "declaration-colon-space-before": [2, "never"],
          "indentation": [2, 2],
          "number-leading-zero": [2, "always"]
        }
      }),
      reporter({ clearMessages: true, })
    ]))
});



Chapter 10

[ 259 ]

In comparison, the next two tasks are relatively straightforward—this one takes care 
of compressing our compiled code, and renaming it with a .min.css extension:

gulp.task('rename', ['lint-styles'], function () {
  return gulp.src('dest/*.css')
    .pipe(postcss([ cssnano() ]))
    .pipe(rename('style.min.css'))
    .pipe(gulp.dest("dest/"));
});

This task is equally straightforward—it creates a source map of our style sheet, and 
sets it in a format that PostCSS can release into a file within the dest folder of our 
project area:

gulp.task('sourcemap', ['rename'], function () {
  return gulp.src('dest/*.css')
    .pipe(sourcemaps.init())
    .pipe(sourcemaps.write('maps/'))
    .pipe(gulp.dest("dest/"));
});

The last two steps play the most important role in any Gulp task file—the first will 
fire off calls to each of our tasks if we enter gulp in a command line prompt:

gulp.task('default', ['styles', 'lint-styles',  'rename', 
'sourcemap']);

This task, although not obligatory, watches out for any changes to our code and 
sets off the tasks in our Gulp file automatically. It will respect any constraints set, 
although for consistency, it is preferable to list the tasks being performed in the  
same order as they are shown in the file:

var watcher = gulp.watch('src/*.css', ['styles',
'lint-styles', 'rename', 'sourcemap']);
watcher.on('change', function(event) {
  console.log('File ' + event.path + ' was ' +
event.type + ', running tasks...');
});

There is more to the compilation process than these two files—thought should also 
be given to how we structure our working environment. A quick look at the Gulp 
task file should reveal that we've used a simple in-tray/out-tray approach; code is 
picked up from the src folder, and the results placed into the dest folder at the end 
of compilation.



Building a Custom Processor

[ 260 ]

This is an important part of the process—after all, there is no benefit in using 
PostCSS if we don't give any thought to the structure of our project area! Part of 
this is to maintain separation between source and compiled files, but also that we 
may decide to expand our compilation process to include tasks such as shrinking 
images. There is no right or wrong in how this area should be structured—this will 
be dictated by our project requirements.

Dissecting issues with our processor
With a Gulp task file and associated package.json file in place, we should be good 
to go, right? Well, not quite—yes, our processor has been used on demos throughout 
the book to great effect. But there is more that we can do: our Gulp file should never 
be static; we should always look to review it periodically, to ensure it is working at 
optimal efficiency.

To see an updated version of our Gulp file, take a look in the 
T49 – fixing issues in Gulpfile folder within the 
code download that accompanies this book.

Our Gulp file does have a few issues we need to address, so let's look at these now:

•	 Some of our tasks are not correctly named—for example, the styles task could 
be renamed to better reflect that we're using Rucksack in this task.

•	 There is a question about the use of source maps; so far we've used a dedicated 
source map plugin to create them. An upcoming change in Gulp 4 will reduce 
the need for a plugin—support for creating them is being added to Gulp core, 
so a separate plugin won't be required so often!

•	 In the rename task, we've hard-coded a style.min.css filename as the 
output; this isn't going to suit all requirements, so we should change this  
to make it dynamic.

•	 Staying with the rename task—we're combining two tasks, when they should 
be split into two separate processes.

•	 Take a look at the processor list within the styles task at line 16; this isn't too 
bad now, but over time it could become long and awkward to read! Instead, 
we need to change it so that at the point of calling PostCSS, we can use an 
array instead to provide the names.

•	 When creating source maps, our current setup provides both a full fat and 
minified version; is this really necessary? The issue comes from cssnano, 
which is compressing every .css file it sees; this isn't necessary, so needs  
to be changed.



Chapter 10

[ 261 ]

•	 The use of cssnano that should be run as a task within PostCSS is causing 
issues—even though it would make sense to run it this way, it needs to be 
run independently, to satisfy our needs.

•	 We should make a decision on whether we use a dedicated plugin for 
providing vendor prefix support, or rely on the use of other plugins that  
may have this built in already.

•	 When compiling source files, our processor is producing two minified files; 
one is correctly named, but the other is meant to be the uncompressed 
version for development purposes.

Over the next few pages, we will explore ways of fixing and improving our Gulp 
task file—it's key to understand that whilst many of these changes are specific to 
our task file, they are ones that may crop up for your future projects. Above all, it is 
essential that we should continually review our production process to ensure it is 
working as needed.

Let's begin the process of fixing and improving our Gulp file before we put it to test 
on a sample site.

Fixing our Gulp task file
It has to be said that there are a few issues we need to resolve—the key here is that 
none of them will stop our compilation process; we should consider them more  
as rough edges on a diamond, which need polishing to make our process sparkle 
(pun intended!).

Please note, the line numbers in the next exercise refer to the unmodified 
version of the source code from the T48 – existing processor 
folder, prior to making any changes. If you want to keep existing 
copies of files, please move them prior to starting the exercise.

Okay, let's get cracking: there are a few changes to make, so we will start with the 
key task, which compiles the source file:

1.	 For this process, we need a copy of the gulpfile.js file from the T48 – 
existing processor folder within the code download that accompanies  
this book; go ahead and save it as gulpfile.js at the root of our project area.

2.	 The first change we need to make is to enable autoprefixer support in the 
file—you should find it there but commented out on line 5; go ahead and 
remove the comment.



Building a Custom Processor

[ 262 ]

3.	 On or around line 16, look for this line:
.pipe(postcss([ rucksack({ fallbacks: true, autoprefixer: true }) ]))

We're not going to include fallback support, and will take care of 
autoprefixer separately, so for now, alter it as shown:
.pipe(postcss([ rucksack(), autoprefixer() ]))

4.	 Our next change is in the lint-styles task—two changes are required here; 
first, add this block at line 13, below the declaration for Rucksack:
var stylerules = {
  "color-no-invalid-hex": 2,
  "declaration-colon-space-before": [2, "never"],
  "indentation": [2, 2],
  "number-leading-zero": [2, "always"]
};

5.	 Next, go ahead and replace the entire lint-styles task with this:
gulp.task('lint', ['styles'], function() {
  return gulp.src("dest/*.css")
    .pipe(postcss([ stylelint({ "rules": stylerules }), 
    reporter({ clearMessages: true })
  ]))
});

6.	 In the rename task, we have three changes to make—first, remove the 
cssnano line at line 38; we're splitting the task into two, and this will be 
handled in a new task.

7.	 This task has a prerequisite, which we've renamed—go ahead and change 
line 36 to this:
gulp.task('rename', ['lint'], function () {

8.	 Next, alter the rename command as indicated—this is on line 39:
.pipe(rename(renameFunction))

9.	 In the next task, sourcemap, we have one alteration to make—on or around 
line 47, change this line as shown:
gulp.task('sourcemap', ['rename'], function () {
  return gulp.src(sourceMapLocation)

10.	 We've talked about splitting out the minification task—go ahead and add this 
below the sourcemap task:
gulp.task('minifyCSS', ['sourcemap'], function () {
  return gulp.src('dest/*.min.css')



Chapter 10

[ 263 ]

    .pipe(cssnano({ autoprefixer: false }))
    .pipe(gulp.dest("dest/"));
});

11.	 We've made changes to the task names, so we need to update the default  
task and watch facility—look for the string of names in square brackets on  
or around lines 50 and 52. Replace it with this string:
['styles', 'lint' , 'rename' , 'sourcemap', 'minifyCSS']

12.	 Our watch task can also be put on a diet—there is no need to specify all of 
the tasks twice! Instead, go ahead and change the code as indicated—when 
changes are made, the watch facility will run the default task, which already 
has the requisite tasks:
gulp.task('default', ['styles', 'lint' , 'rename' , 'minifyCSS', 
'sourcemap']);

var watcher = gulp.watch('src/*.css', ['default']);
watcher.on('change', function(event) {

13.	 We're almost done—there are some additional declarations we need to add 
at the top of our file, to ensure everything works as expected. Below the 
stylerules declaration added in step 4, go ahead and add these extra lines:
var renameFunction = function (path) {
  path.extname = ".min.css";
  return path;
};

var sourceMapLocation = ['dest/*.css', '!dest/*.min.css'];

We now have an updated Gulp task file—we now need to copy the style.css from 
the src folder under T49 – fixing issues in Gulpfile to the src folder at the 
root of our project area. If all is well, we should have something akin to this in the 
dest folder of our project area when we compile our file, and a file named style.
css.map in the maps folder:



Building a Custom Processor

[ 264 ]

At this point, I am sure you will have a few questions about some of the changes 
we've made—the demo highlights a few key points, so it's worth taking time out  
to explore these in more detail.

If you come across any issues with changing the gulp file, then 
check out a completed version in the T49 - fixing issues 
in Gulpfile folder in the code download that accompanies 
this book.

Understanding the changes made
Throughout the course of our demo, we made a number of changes to our Gulp task 
file—the key thing to note is that none of them are compulsory. Our task file worked 
perfectly well prior to making the changes, so if they aren't compulsory, why are we 
making them?

The answer to this is simple—using a task runner such as Gulp is about automating 
processes so that you arrive at just the content you need. We had that, but the task 
runner produced extra files, didn't compress them as expected, and our Gulp file 
contained tasks that had multiple steps within the same task. The work we completed 
was about adding polish to the process—although our Gulp task file worked, we 
explored how we could improve on it by tweaking some of the processes.

We kicked off with changes to how vendor prefixes were added—our existing task 
completed this as part of compiling using the Rucksack plugin. The Rucksack plugin 
was to provide fallback support—I'm not a fan of working with older browsers, so 
we don't need it. This makes it less beneficial to incorporate vendor prefix support 
from such a large plugin, thus support is not enabled.

There is another plugin available for PostCSS that handles 
vendor prefixes—doiuse, available at https://github.com/
anandthakker/doiuse. Just another option to try!

The lint-styles task worked well—the changes we made focus on making the code 
easier to read in the task file. We moved the configuration block to the start of the 
file, and rearranged the format of the task; this means that we should not have to 
change the task, even though we may change the configuration!

https://github.com/anandthakker/doiuse
https://github.com/anandthakker/doiuse


Chapter 10

[ 265 ]

Most of the remaining changes focus on splitting multiple roles into single tasks,  
and correcting some anomalies in the output. Our compilation process produced  
a minified file with the right extension, but also minified the original source file. 
We also had two source map files produced in a similar fashion—this is clearly not 
ideal! The changes we made now mean that our original source file is not minified, 
but only one minified file is produced, and that we have a single uncompressed style 
sheet created during the process.

Perfect, we now have a polished compilation process, which is producing the 
right files at the appropriate point; what next? Well, we can now add additional 
functionality to our compilation process. Using a task runner such as Gulp is about 
automating menial tasks, so let's explore what we might achieve in more detail.

Optimizing the output
The PostCSS system will quite happily play nicely with other plugins, be they 
Gulp-based, or using another task runner such as Grunt or Broccoli. This opens up 
a real world of possibilities, limited only by your imagination! There is one small 
but important point, though—it makes it crucial that we not only optimize our 
processor output (as we have done), but also fine tune it to ensure that we've added 
functionality that suits our needs.

So, what can we add? Well, here's a starter for ten: how about compressing images? 
Another common task relates to adding responsive content—we've already covered 
this earlier in the book with the postcss-responsive-type plugin. We could take 
that further, by adding a task that resizes images automatically to different sizes;  
we can then use these as appropriate in a responsive site.

Ultimately, it is up to you—as time goes by and you get more accustomed to using 
PostCSS, then it is likely that you will find yourself using some plugins more than 
others. The key here, though, is not about simply adding in plugins haphazardly—
instead, we're looking for plugins that we would use regularly in our development 
workflow, and can form the basis of a baseline processor. Any additional 
functionality that is needed to support a particular project can then be added at the 
appropriate time.

A great place to look is the PostCSS plugin directory at http://postcss.parts— 
it's worth taking a look to see what is there, and giving them a try! To get us started, 
we're going to work through a few ideas that are likely to be useful additions to your 
processor, beginning with improving support for source maps.

http://postcss.parts


Building a Custom Processor

[ 266 ]

Altering our source map support
If we take a look back at our gulp file prior to completing the exercise in Fixing 
our gulp task file, we can see it worked, but it suffered from a major drawback. The 
compilation process produced an extra source map which was minified by name,  
but not in reality! This is clearly something we didn't need—the changes made to  
this task transformed it into what we have now:

var sourceMapLocation = ['dest/*.css', '!dest/*.min.css'];
...
gulp.task('sourcemap', ['rename'], function () {
  return gulp.src(sourceMapLocation)
...
});

This is a much better version—it only produces one source map file, which is not 
compressed; compression is not needed. That being said, we can still improve on it; 
it's simply a matter of working through the documentation to really explore what is 
available, and see if it can help us. As a starter, try this for size.

There may be instances where we need control over the full URL when compiling 
our code and creating the source map, for example, if we're transferring from a  
test environment to a production one. In an ideal world, we would use a relative  
file structure to avoid this issue, but for those occasions where this isn't possible,  
a simple change to our Gulp task will suffice:

    .pipe(sourcemaps.write('maps/', {
      sourceMappingURLPrefix: 'https://www.mydomain.com/'
    }))

We can see the result in this screenshot:

Ultimately, the requirements for our projects will determine how source map 
support needs to be configured—we may even have to go as far as compiling 
multiple files into one larger master file, if our project requirements dictate.



Chapter 10

[ 267 ]

There's one thing to bear in mind, though—there are plans to include native source 
map support in Gulp 4; this will likely mean that the need for a separate plugin will 
become redundant. It pays to keep abreast of changes, particularly if it might affect 
our processor!

For a completed version of our Gulp file, which includes these changes, 
take a look at the T50 - adjusting source map settings folder 
in the code download that accompanies this book.

Let's change tack at this point, changing the source map compilation process was a 
straightforward alteration. We can take it up a notch with another key area—vendor 
prefixes. We've already covered the basics, so we'll take a look at how we can 
improve support.

Taking care of prefixes
Aha, prefixes! The bane of any designer: adding them and keeping them up to date 
can be a real chore.

The autoprefixer task that has already featured throughout these pages goes some 
way to reducing the burden: it will add the current prefixes and remove any that are 
no longer needed. This is good…but we can do better! This time around, though, the 
emphasis is less on code, and more on the kinds of decisions we need to make:

•	 What browser versions do you need to support? The autoprefixer plugin 
already uses data from http://caniuse.com/, which is sufficient for most 
requirements. However, we can tweak our code to use Browserslist (hosted 
at https://github.com/ai/browserslist) to determine which versions to 
support. For example, we might add > 5% to limit support to browsers which 
have over 5% of global use:
.pipe(postcss([ rucksack(), autoprefixer({browsers:  
['last 2 versions']}) ])

In an ideal world, I would push that as high as 10%, but that might be taking 
it too far!

•	 From a consistency perspective, we should make it clear that autoprefixer 
is disabled from within Rucksack—my preference is not to enable it there, as 
it can get confusing as to which plugin is adding prefixes (given that cssnano 
can add them too). To correct this, all we need to do is to change this line:
.pipe(postcss([ rucksack({autoprefixer: false  }),
 autoprefixer({browsers: ['last 2 versions']}) ])

http://caniuse.com/
https://github.com/ai/browserslist


Building a Custom Processor

[ 268 ]

It's not obligatory, but it at least makes it clear! If we wanted to be real purists, we 
would split this task into two separate ones, so that we're keeping to the one task: 
one role mantra:

•	 Although autoprefixer handles the removal of redundant prefixes, there 
is a useful trick we can use: add support for the postcss-remove-prefixes 
and postcss-unprefix plugins. The reason for this is simple—we may well 
not have a level playing field when running autoprefixer, where some 
vendor prefixes may be missing from our code. Adding these two plugins 
ensures that our code is as terse as possible prior to running autoprefixer.

•	 If our code is based on using SASS, then there is a good chance that the 
Compass library is being used—it is worth checking to see if this is being 
used to add vendor prefixes. If it is, it may be worth switching to using 
autoprefixer, as it is reported to be more efficient at removing code. Don't 
forget that we can compile SASS code within our Gulp file at the same time 
as running PostCSS plugins—we will explore more of this later in this book.

It goes without saying that vendor prefixes continually change; with careful planning 
and the right use of plugins, we can be safe in the knowledge that no matter what 
happens, our code will be updated at the next compilation.

Now, moving on: I am sure you are familiar with the ubiquitous pseudo-selector, 
such as hover. This is one area where we need to carefully consider what we might 
incorporate into our baseline processor; PostCSS has a number of plugins that can 
facilitate handling pseudo-selectors in our code. Let's take a look at this in more detail.

Adding support for pseudo-selectors
When designing sites, pseudo-selectors are a key part of providing interaction—
they can be anything from the simple hover, all the way through to newer elements 
such as :range or :placeholder. We also have to be mindful of support—thankfully 
most elements will work in reasonably recent browsers (yes, even IE8!), but not 
all browsers use the same format of single or double colons when referencing the 
selector in CSS.



Chapter 10

[ 269 ]

To help with both styling and providing consistency, PostCSS has a number of 
options we can use; we will explore using the postcss-pseudo-elements-content 
plugin in a moment, but for now, let's take a quick look at some of the options to give 
you a flavor of what is available:

•	 Do you often find yourself adding the focus pseudo-selector to your code? 
If the answer is yes, then the postcss-focus plugin will be of interest. 
Available from https://github.com/postcss/postcss-focus, this  
plugin will add a focus pseudo-selector automatically, when compiling 
code. The styles will be the same as the :hover element.

•	 We've just talked about adding a focus element automatically—the 
developer Jonathan Neal had the idea of creating a polyfill to add support  
for an :enter pseudo-selector, which would replace both :hover and 
:focus within code. When compiled, the code would transpile any instance  
of :enter into :hover and :active styles in our code. Head over to 
https://github.com/jonathantneal/postcss-pseudo-class-enter  
for more details on this plugin.

•	 This next plugin could be euphemistically described as being one for those 
who have better things to do than write styles for links…. In plain speak, this 
is a real shortcut of a plugin! It adds styles for all of the link-related classes 
automatically; browse to https://github.com/jedmao/postcss-all-
link-colors for an example of how to be really lazy…

•	 For those of you who regularly have to style form buttons (and face it, who 
doesn't?), then this next plugin from https://github.com/andrepolischuk/
postcss-pseudo-class-any-button will be of interest: it allows us to use 
the :any-button selector (which isn't an official selector). When compiled, it 
transpiles this into four different types—plain button and three inputs (reset, 
submit, and button).

This is just a small selection of the handful of plugins currently available in the 
PostCSS ecosystem, for handling pseudo-selectors. We can talk about using them, 
but in reality, the best way to understand their usefulness is to see them in action! 
With this in mind, let's take a look at one in action: postcss-pseudo-elements-
content. This little beauty has but one purpose in life: to add a content: attribute  
to appropriate pseudo-selectors, if one is not present in our code.

https://github.com/postcss/postcss-focus
https://github.com/jonathantneal/postcss-pseudo-class-enter
https://github.com/jedmao/postcss-all-link-colors
https://github.com/jedmao/postcss-all-link-colors
https://github.com/andrepolischuk/postcss-pseudo-class-any-button
https://github.com/andrepolischuk/postcss-pseudo-class-any-button


Building a Custom Processor

[ 270 ]

Updating our code
There are a few examples of plugins that help handle pseudo-selectors better; 
our projects will dictate whether we should use them on a per case basis, or can 
incorporate some or all of them into our baseline processors.

One example that might suit being added to our baseline processor is postcss-
pseudo-elements-content, which is available from https://github.com/omgovich/
postcss-pseudo-elements-content. This simple plugin parses our code and will 
add a content: '' statement to our code, when it sees instances of appropriate pseudo-
selectors. It doesn't require any configuration, so without further ado, let's get stuck 
into using it:

1.	 We'll start as always with installing the plugin—for this, fire up a Node.js 
command prompt window and change the working folder to our project area.

2.	 In the prompt, go ahead and run this command:
npm install postcss-pseudo-elements-content --save-dev

If all is well, we should see something akin to this:

1.	 From a copy of the code download that accompanies this book, extract a 
copy of style.css and content.html from the T51 - adding before 
and after content folder. Save the style sheet to the src folder, and the 
content.html to the root of our project area.

2.	 Open up a copy of gulpfile.js that is at the root of our project area, then 
add this line in at line 11:
var pseudoContent = require('postcss-pseudo-elements- 
  content');

https://github.com/omgovich/postcss-pseudo-elements-content
https://github.com/omgovich/postcss-pseudo-elements-content


Chapter 10

[ 271 ]

3.	 A little further down, we need to update our first task to allow for the 
additional plugin; go ahead and alter the line as indicated:
gulp.task('styles', function() {
  return gulp.src('src/*.css')
  .pipe(postcss([ autoprefixer(), pseudoContent() ]))

4.	 In the Node.js command prompt, enter gulp then press Enter—if all is well, 
we should see our style sheet files and source map appear in the dest folder.

5.	 Copy the contents of this folder to the css folder at the root of our project 
areas; if we preview content.html, we should see our menu appear:

In a sense, this could be treated as a shortcut plugin (in a similar fashion to ones we 
worked with earlier in the book). The magic happens by adding –c after our pseudo-
selector, as shown in this code extract:

.underline a:hover::after-c, .underline a:focus::after-c {
  opacity: 1;
  transform: translateY(0px);
}

When compiled, it adds the content: '' attribute, as shown in this screenshot:

Although it is debatable whether it is worth adding a plugin for something this 
small, it does at least ensure that we keep a consistent code base when compiling  
our style sheet.

The real decision is whether your code has sufficient instances of pseudo-selectors to 
warrant installing these plugins as part of a baseline, or if your projects dictate their 
use on a case-by-case basis.



Building a Custom Processor

[ 272 ]

Let's change tack, most of the improvements we've covered relate to text. Text 
sites can be very unappealing without images—thankfully, there are some plugins 
available to help extend our baseline processor, and better manage images. I feel a 
demo coming on, so let's go explore this in more detail.

Dealing with images
If we were to consider our processor as being solely for compiling PostCSS code, 
then we are selling ourselves short—we've already covered how the use of a task 
runner such as Gulp allows us to add additional tasks such as autoprefixer and 
cssnano.

A great one to consider adding is the ability to compress our images for optimum 
size; would you want to do this manually, no matter how much or how little might 
be saved in size? I thought not. Automating this process means we can get on 
with tasks that add more value to the process. We can achieve this with the gulp-
imagemin plugin, available from https://github.com/sindresorhus/gulp-
imagemin—let's take a look at what might be involved in minifying our images:

1.	 Fire up a Node.js command prompt window, then change the working 
directory to our project area.

2.	 In the prompt, enter both commands, pressing Enter after each:
npm install gulp-imagemin --save-dev

npm install imagemin-jpegtran --save-dev

Keep the prompt open—we will use it again shortly.

3.	 From the code download that accompanies this book, go ahead and 
extract copies of the gulpfile.js and package.json files from the T52 - 
optimizing images folder; save these to the root of our project area.

4.	 Create a folder called img at the root of our project folder; this will be used as 
a temporary replacement for the dest folder already present.

5.	 Find some large images—they should be JPEG format, and ideally be several 
megabytes in size; about four to six images will suffice.

https://github.com/sindresorhus/gulp-imagemin
https://github.com/sindresorhus/gulp-imagemin


Chapter 10

[ 273 ]

6.	 Go back to the Node.js prompt, then enter gulp and press Enter—the 
screenshot below shows an example I performed with a handful of images:

If all is well, we should see our newly compressed images in the img folder—this  
is a useful task to have within our processor, so let's go through a few points in  
more detail.

Exploring the process
Image compression is key to a performant site—users will be turned off if the text 
appears within a couple of seconds, but images take much longer to appear! There 
are a few points to consider, though, with this approach:

•	 It's not particularly fast—minifying a dozen images each around 2 MB in 
size isn't too bad, but this isn't going to improve if you have to minify large 
numbers of images.

•	 We've limited our support to JPEG images—it is possible to optimize SVG 
and PNG images, but this will require changes to our code. If we look closely 
at the code used, we can see this:
var images = require('gulp-imagemin');
var jpegtran = require('imagemin-jpegtran');

The latter plugin is installed automatically by gulp-imagemin, and would need to be 
changed if working with SVG or PNG images:

•	 Tests performed locally seem to indicate that the size of reduction isn't as 
good as one might expect; I suspect that this will improve with much larger 
images. It is worth experimenting with changing the compression level—
make sure your source images are as large as possible!



Building a Custom Processor

[ 274 ]

Once our images have been optimized for size, we can then explore further options—
here are a couple worth considering:

•	 In the age of development over multiple devices, we need our images to be 
responsive; the gulp-responsive plugin available from https://github.
com/azat-io/postcss-responsive-images can help create these images.

•	 We might want to use sprites instead. Thankfully, adding sprite support is 
easy within PostCSS: take a look at the postcss-sprites plugin for this task.

•	 You may like to consider using an asset manager to resolve URLs—the 
postcss-assets plugin is a perfect candidate for this task. The source and 
details for using are available from https://github.com/assetsjs/
postcss-assets.

There's an important point to note, though—although plugins are available for the 
purpose, it is not worth considering minifying HTML; it is unlikely that you will get 
any significant space back, and the code will become hard to read. It is best to reserve 
minifying files for those external assets that have to be linked to your HTML pages, 
in order to get the most benefit.

Okay, let's move on: before we test our processor, there is one more idea that may 
be worth consideration. Adding an automatic reload capability to our code means 
that we do not need to reload our pages to view updated content. There is a heavy 
reliance on the use of Chrome to make it work, so it won't be for everyone: let's look 
at what would be involved in more detail.

Adding reload capabilities
Adding a reload capability reduces the amount of time spent manually reloading our 
pages after a code change; the latter can be a real pain, especially when working with 
complex CSS styles!

The downside to this is that it only works in Chrome—if this isn't an issue, then these 
are the steps you would need to follow to make this work:

1.	 We'll start by extracting copies of the gulpfile.js and package.json files 
from the T53 – adding livereload capabilities folder, from the code 
download that accompanies this book. Save both copies to the root of our 
project area.

2.	 From the same T53 – adding livereload capabilities folder, extract 
and save a copy of the style.css file from the src folder within, to the src 
folder at the root of our project area.

https://github.com/azat-io/postcss-responsive-images
https://github.com/azat-io/postcss-responsive-images
https://github.com/assetsjs/postcss-assets
https://github.com/assetsjs/postcss-assets


Chapter 10

[ 275 ]

3.	 Fire up a Node.js command prompt, then change the working folder to our 
project area.

4.	 In the prompt, enter npm install gulp-livereload –save-dev and press 
Enter—let this install.

5.	 Download and install the Chrome applet for LiveReload from  
http://bit.ly/IKI2MY.

6.	 Add this line at the end of the sourcemap task:
.pipe(plugins.livereload());

7.	 Remove the semi-colon at the end of line 60.
8.	 Add this line to our watch task:

plugins.livereload.listen();

9.	 Our task file will look like this, with the changes made at lines 61 and 68:

At this point, we can test to ensure it works by making a change to our style sheet—if 
all is well, Gulp will kick in and recompile our code; if we have a site open in a browser 
that we're developing, then this would be automatically reloaded by the plugin.

For those of you interested in using this plugin in more detail, 
please refer to the documentation available on the GitHub site 
at https://github.com/vohof/gulp-livereload. There 
is a full version of the code used in this example, within the T53 
- adding livereload capabilities folder in the code 
download that accompanies this book.

Right, onwards we go! We're almost at the end of our journey through the art of the 
possible; before we move onto testing our processor, I thought I would leave you 
with a few more ideas that you may like to consider using in your processors. All of 
them should install using the same process that we've seen throughout this book.

http://bit.ly/IKI2MY
https://github.com/vohof/gulp-livereload


Building a Custom Processor

[ 276 ]

Extending our processor further
Over the last few pages, we've explored a number of ways to improve our existing 
processor, as well as a few ideas for extending functionality. Although we can 
always keep to PostCSS plugins, we run the risk of limiting the "art of the possible", 
or what is available for us to use.

Sometimes, we might want to go a little further afield—creating a processor isn't just 
about the nitty-gritty of compiling code, but also about our working environment 
and the processes required to support it (at least in part). To prove this, we're going 
to explore installing the postcss-stats plugin as an example of how we can extend 
both our plugin and working environment.

This plugin helps provide useful statistics about each project as it is compiled—it's 
based on the CSS Stats system, and is available online at http://www.cssstats.com.

Throughout the demo, you may see a few issues with deprecated 
warnings—at the time of writing, the plugin needs a little polishing/
updating. Don't worry though: the plugin will still work fine for the 
purposes of our demo.

The source for this plugin is available on GitHub at https://github.com/cssstats 
/postcss-cssstats, and can be installed using the usual route. Let's dive in and 
take a look:

1.	 We'll start by firing up a Node.js command prompt session, then changing 
the working directory to the root of our project area.

2.	 We need to install the plugin, so in the prompt, enter this command and 
press Enter:
npm install postcss-cssstats --save-dev 

Keep this open—we will need it later in the exercise.

Next, we need to update our gulpfile.js and package.json files—go ahead 
and extract copies of both files from the T54 - using cssstats folder in the code 
download that accompanies this book. Save both files to the root of our project area:

1.	 With our files in place, we can now test that it works—go ahead and save a 
copy of style.css from the same folder into the src folder of our project area.

2.	 Revert to the Node.js command prompt we had open earlier—in the prompt, 
enter gulp, and press Enter.

http://www.cssstats.com
https://github.com/cssstats /postcss-cssstats
https://github.com/cssstats /postcss-cssstats


Chapter 10

[ 277 ]

3.	 PostCSS will compile our code—if all is well, we should see files appear in 
the now familiar dest folder…and we should also see something akin to  
this screenshot:

If I were a betting man (I'm not, but assume I am for this)—I would bet even odds 
that you're probably thinking "What on earth does all of that text mean?" Well, let me 
shed some light on what it all means.

In a nutshell, we've installed what is effectively a reporting system—this details a 
bunch of statistics about our code. It contains details about all kinds of information, 
including the number of selectors, colors, the level of CSS specificity, declarations, and 
so on. It's an easy way to get information about our code, as a means of documenting it 
for later use. The reason it is so easy to get the information lies in how it is configured—
take a look at the gulpfile.js file; we will add a call to the plugin at the top:

var reporter = require('postcss-reporter');

We can then modify the styles single task, by adding this line near the end:

    .pipe(postcss([ cssstats( function(stats) {
      console.log(stats);
    })
  ]))
  .pipe(gulp.dest('dest/'));
})

The trouble is, whilst it might be easy to get the information, it's not so easy to store 
it!  We can absolutely improve on it; instead of getting the information via our 
processor, we can go directly to the source. Let's explore how to make this happen:

1.	 We'll start by firing up a Node.js command prompt, then changing the 
working folder to the root of our project area.



Building a Custom Processor

[ 278 ]

2.	 At the prompt, go ahead and enter npm install gulp-stylestats 
--save-dev, then press Enter.

3.	 We now need to edit the gulpfile.js and package.json files we used in 
the previous exercise, so open the gulpfile.js file in a text editor, and add 
these lines immediately below the closing bracket of the sourcemap task:
gulp.task('stylestats', ['minifyCSS'], function () {
  gulp.src('dest/*.css')
    .pipe(stylestats({
      type: 'json',
      outfile: true
    }))
    .pipe(gulp.dest('dest/'));
});

4.	 Next, we need to update the default task—alter it as indicated:
gulp.task('default', ['styles', 'lint', 'rename',
 'minifyCSS', 'sourcemap', 'stylestats']);

5.	 Revert to the Node.js command prompt, then enter gulp and press Enter—
assuming we still have the same style.css file in the src folder, we should 
see this appear in the dest folder at the root of our project area:



Chapter 10

[ 279 ]

6.	 Whilst we clearly need to alter the parameters of our Gulp file to  
prevent it producing minified JSON files, we can at least see the result 
of the (uncompressed) JSON file. Go ahead and open it up—it will look 
something like this:

Although we're still only seeing code, we can now parse the content at will;  
we could, for instance, use jQuery to explore the contents and render it on screen 
using an appropriate style and format. I am sure you will agree though that this is 
a much easier way to view (and store) the information! The plugin needs minimal 
configuration to get started. We can use it to view any standard CSS file, once it has 
been through the compilation process.

There are a number of options we can use with the 
gulp-stylestats plugin—for details, take a look 
at https://github.com/t32k/stylestats.

Right, we now have a completed processor; hopefully, this will also include a style 
guide that is running, using one of the plugins we've just discussed in the previous 
exercise. It's time we moved on—there is one task we should complete, though, before 
we embark on the next stage of our journey. It's time we put our processor to the test…



Building a Custom Processor

[ 280 ]

Testing the final pre-processor
Throughout this book, we've explored a number of different plugins and concepts to 
help construct a processor; over the last few pages, we've brought together some of 
those concepts as the final version of our processor—at least one we can start using 
in anger.

There is one key step left to complete—we've compiled code for simple exercises, this 
works well, but doesn't really represent the kind of processes we might go through 
as developers! For this, we need to construct a real-world example, and put our 
processor through its paces.

As luck would have it, there is an example web page we can use from the code 
download that accompanies this book—let's take a look at putting its style sheet  
code through our processor. We'll begin by running the normal tasks we've done 
before, but will add a selection of plugins to make for a more realistic example:

1.	 We'll start by extracting a copy of the T55 - testing our processor folder 
from the code download that accompanies this book; go ahead and save it to 
the root of our project area.

2.	 Copy the gulpfile.js and package.json files from within this sub-folder 
to the root of our project area.

3.	 Fire up a Node.js command prompt, then change the working folder to our 
project area.

4.	 In the prompt, go ahead and enter these three lines, pressing Enter after each:
npm install postcss-nesting --save-dev

npm install postcss-short-color --save-dev

npm install postcss-pixrem

5.	 Copy the site.css file from within the css – completed version folder 
under T55 – testing our processor, to the src folder at the root of our 
project area.

6.	 Revert to the Node.js session, then enter gulp at the prompt and press 
Enter—wait for it to complete compiling.

7.	 When compilation has finished, copy the contents of the dest folder to the 
css folder within T55 – testing our processor.

8.	 Try previewing the results of the compiled file—if all is well, we should see 
something akin to this screenshot:



Chapter 10

[ 281 ]

Try resizing the browser window, or enabling Responsive Design mode in your 
browser (if supported)—we should see that content automatically flows or resizes, 
according to the size you set for the browser window. Overall, a successful result!

The question is—what happened here? If we take a look at our code, the sharp-eyed 
should spot the addition of three plugins, plus a lot more code in the compiled version; 
let's take a moment to digest the results of our exercise.

Digesting the results of our exercise
If we look through our Gulp task file carefully, there should not be much in there 
that comes as a surprise—many of the tasks used are ones we have used on many 
occasions throughout the book.

The key here, though, is that whilst we can run the standard processor that we've 
already used before, it's unlikely to suit all occasions. It's more likely that we can 
use it as our base (as stated earlier), then add any extra plugins as needed. The great 
thing about this is that most of the configuration work is done—it keeps a consistent 
approach to our work. All that remains is to install any plugins that we don't already 
have in place—we of course have most of them, but need to install three additional 
ones, as highlighted here:

gulp.task('styles', function () {
  return gulp.src('src/*.css')
    .pipe(postcss([ rucksack({ fallbacks: true }),  
    autoprefixer(), shortcolor, nesting, pixrem ]))
    .pipe(gulp.dest('dest/'));
});



Building a Custom Processor

[ 282 ]

These have to be accompanied with the relevant calls at the top of our Gulp task file:

var nesting = require('postcss-nesting');
var shortcolor = require('postcss-short-color');
var pixrem = require('pixrem');

In turn, these plugins are as follows:

•	 Rucksack: This is to handle responsive/media queries, fallback colors from 
rgba to hex, and implement @font-face.

•	 Pixrem: Available at https://github.com/robwierzbowski/node-pixrem, 
this takes care of providing a fallback mechanism for the rem unit values 
used throughout our style sheet.

•	 Nesting: Downloadable from https://github.com/jonathantneal/
postcss-nesting (via Node), this covers an instance of nesting used in  
our code.

•	 Shorthand Color: In a couple of instances, we combined background-
color and color attributes in a shorthand form that is later transpiled by 
the plugin. You can see more about this plugin at https://github.com/
jonathantneal/postcss-short-color.

We can of course add others, and continue converting our code—there are other 
instances where Nesting can be applied, such as in the rules that control styling for 
our navigation. The key here, though, is that success is measured in how much we 
have to change our processor's default setup—in this instance, we didn't have to 
change it at all! We of course added extra plugins that required a change to one line 
of code in the processor, but none of the other tasks required any changes at all.

It's at this stage that we have effectively completed the journey to create our 
processor—well, strictly speaking, our journey should always be considered without 
end; this will help ensure our tool remains up to date. This aside, though, there are 
some useful tips we can use when creating our processor, so let's take a moment to 
cover these in more detail.

Getting started with some hints and tips
The time has come when it is over to you as developers to start creating your own 
processor! It may seem a daunting task at first, depending on the size and nature of 
your project; I've listed a few tips to help you over the initial hurdle of planning and 
creating your processor:

https://github.com/robwierzbowski/node-pixrem
https://github.com/jonathantneal/postcss-nesting
https://github.com/jonathantneal/postcss-nesting
https://github.com/jonathantneal/postcss-short-color
https://github.com/jonathantneal/postcss-short-color


Chapter 10

[ 283 ]

•	 Every processor is unique—do not be afraid to experiment. The processor of 
course must meet your requirements, but there are several ways to crack a 
nut, so if the first plugin you try doesn't work, then move on and try another.

•	 Don't fall into the trap that many do, and consider PostCSS as either a pre-
processor or a post-processor; it is neither and yet it is also both. The library 
itself does nothing; the magic lies in the plugins you add, which determine 
how it performs.

•	 Start small—PostCSS was designed to be modular, so if all you need to begin 
with is a facility to add vendor prefixes, then fine. Over time, you can easily 
add extra plugins to your processor; it does not matter if this is adding to 
existing functionality, or replacing an old process that is no longer efficient  
or works.

•	 Think iteratively—don't even try to convert something as large as the style 
sheet for WordPress in one go! You will soon lose patience and momentum, 
and potentially abandon a project before you get the benefits of using PostCSS.

•	 The only time a processor should be retired is if there is a fundamental 
change in the architecture of your project, which makes it incompatible with 
PostCSS. The versatility of PostCSS is such that this isn't likely to happen—
you should always review the functionality periodically to ensure you 
are getting the best out of your processor. Plugins change, are deprecated, 
or new ones are added—a check will ensure your solution still works as 
efficiently as possible.

•	 Any processor should not be limited to PostCSS plugins only—even though 
this is what we've focused on, there are thousands of other plugins available 
for your task runner of choice, which will likely work with PostCSS. The 
key here is that if it helps automate a mundane task that saves you time as a 
developer, then consideration should be given to whether it can be included 
in your processor.

•	 I personally take the view that if it can be automated reliably, then include 
a task for it—we live in an age where time is precious; there is no value in 
manually resizing images, for example, if it can be done automatically!

•	 Although we've talked about some of the tasks we can complete using a task 
runner, we must not forget the folder structure too. There is nothing worse 
than compiling files for different environments, for example, if they land up 
in badly-organized folders! Gulp can automate a multitude of tasks, so the 
fewer changes we have to do, or the fewer files we have to copy, the better.



Building a Custom Processor

[ 284 ]

Hopefully, they are a few tips to get you started! The great thing about PostCSS is that 
no two processors will be the same; whilst some may count that as a shortcoming,  
it should be noted that there is a wealth of possibilities out there to be explored, 
and that you can make your processor as simple or as complex as your project 
requirements dictate.

Before we bow out from our journey through building a custom processor, there 
is something we should consider. Our processor was constructed entirely using 
PostCSS plugins; in reality, our processor is more likely to go through a transitional 
phase, where we convert from the likes of SASS or less to using PostCSS.

To help with this process, we can always make use of a library such as CSStyle—this 
little interesting gem can work with either SASS or PostCSS, and could be a useful 
addition to the transition process. Over the course of the next two chapters, we will 
learn how to create custom syntaxes and explore some of the ways we can process 
both PostCSS and SASS content through the same process. As a taster for what is 
coming, let's take a quick tour through CSSStyle and see how it works in action.

Introducing the CSStyle library
Cast your mind back to Chapter 3, Nesting Rules, where we explored the concepts 
behind BEM, or the Block, Element, Modifier way of writing CSS. The key benefit  
of using this method is to help reduce CSS specificity, or where we might otherwise 
end up using something such as the following to style a simple button:

#maincontent .button .red.large:hover

Okay, it's a little contrived, but you get the idea: the level of specificity makes it 
awkward to manage and potentially reuse in future projects.

We took a look at BEM as a possible alternative—it has the benefit of reducing  
styles down to one or two classes, but can be awkward to remember which 
conventions to use:

.component {
  /* represents a component */
}

.component__element {
  /* represents a small part that is used to make a component */

}



Chapter 10

[ 285 ]

'.component--modifier {
  /* represents a state modifier for the component */
}

Okay, so how can we get around this? Well, here's an option we can consider using: 
the CSStyle library. There are several reasons why this can help us—let's take a look 
in more detail.

Exploring the benefits of using CSStyle
The key behind CSStyle (available from http://csstyle.io/) is that it is made up 
of modular blocks, in a similar fashion to BEM. The difference, though, is that instead 
of having to remember a set of conventions that aren't the most intuitive, we can use 
a simpler set to create cleaner code.

The real beauty, though, is that we can use either SASS or PostCSS to create our 
site—we can begin with SASS, but we can also begin to transition over to using 
PostCSS with minimal changes. Let's put this into practice, and explore a quick  
demo to see how easy it is to make these changes—before we do so, take a look at 
http://codepen.io/alibby251/pen/pgmqjJ; this is a Pen that illustrates what 
we're going to create:

It won't win any style awards, but the purpose of this demo is to show you the 
process and not necessarily produce anything that is stunning! With that in mind,  
let's make a start:

1.	 We'll begin by extracting a copy of the T56 - using csstyle with sass 
folder from the code download that accompanies this book; save the folder  
to the root of our project area.

2.	 Copy the contents of the src folder within T56 - using csstyle with 
sass to the src folder at the root of our project area.

3.	 Go ahead and replace the gulpfile.js and package.json files at the root 
of our project area with copies from within the T56 - using csstyle with 
sass folder.

4.	 Fire up a Node.js command prompt session, then change the working folder 
to the root of our project area.

http://csstyle.io/
http://codepen.io/alibby251/pen/pgmqjJ


Building a Custom Processor

[ 286 ]

5.	 At the prompt, enter gulp and press Enter—if all is well, we should see a 
compiled style.css file appear in the dest folder in our project area.

6.	 Copy the contents of the dest folder back to the css folder within the T56 - 
using csstyle with sass folder.

At this point, try previewing the results in a browser. If all is well, we will see the 
three buttons appear, just as they show in the Pen we mentioned at the start of this 
exercise.

All looks good…we have a working demo, with a compiled style sheet—but hold 
on…in SASS? Yes, if you look carefully, the demo was indeed set to use SASS, but 
with good reason: we're going to see how easy it is to change to using PostCSS 
without making material changes to our style sheet or our compilation process.  
Let's make a start:

1.	 In the gulpfile.js that is at the root of our project area, comment out  
line 5, and uncomment lines 6 and 7; this switches our task file from using 
SASS to PostCSS.

2.	 Rename the [sass] task [style], on line 9.
3.	 On line 10, the gulp.src call is looking for SASS files; change it to src/*.css.
4.	 Replace line 11 with this line: .pipe(postcss([nested, csstyle]))—this 

removes the dependency on SASS and switches to using PostCSS.
5.	 On line 15, our default task will call the [sass] task; change [sass] to 

[style].
6.	 Change the watch task on line 17 to monitor CSS files, and not SASS:

var watcher = gulp.watch('src/*.css', ['style']);

7.	 Go ahead and open up the SASS style sheet in the src folder at the root of 
our project area—rename the file as style.css.

8.	 In style.css, go ahead and remove the @import 'csstyle' line at the top 
of our style sheet.

9.	 Do a search and replace for @include—remove all instances in our style sheet.

That's it for our demo, sorry to disappoint if you were expecting more! All that 
remains is to replace the gulpfile.js and package.json files at the root of the 
project area with copies from the T57 – using csstyle with postcss folder,  
and compile as normal.



Chapter 10

[ 287 ]

Dissecting our demo
Making the transition from SASS to PostCSS can be as easy or as complex as we 
make it. Using the CSStyle library can go a long way to easing the transition away 
from existing processors such as SASS.

Although our demo was just a quick whistle-stop tour through using CSStyle (and 
we will revisit it in Chapter 12, Mixing Preprocessors), it nevertheless illustrates a few 
important points of interest:

•	 The library uses the concept of components, options, parts, and tweaks to 
create the base components, pass styling to override base rules, add extra 
elements (such as icons), or tweak code. Careful design means that we can 
reduce or remove the need to alter our HTML as part of the transition to 
using PostCSS.

•	 It is perfectly possible to compile the SASS version of our demo using  
a standard SASS compiler; the reason for choosing to use a task runner 
version (in this case for Gulp) means that we can centralize the compilation 
process in one task file, and remove the need to use separate compilers in  
our process.

•	 When planning the design or transition of our site to use PostCSS, it pays  
to choose plugins carefully within PostCSS; this will determine how easy  
or complex it will be to make the changes in our code and processor.

•	 Our demo focused on the core compilation process, and didn't include 
the extra tasks we used in the past, such as adding source maps. This was 
purely for clarity—there is no reason why we can't add the remaining tasks 
we've used before, once we've confirmed our compilation process works as 
expected.

Ultimately though, the use of this library is about helping to ease the process of 
making the transition to using PostCSS. There are different ways to approach this—
using CSSStyle means that we have to completely redesign our HTML, but can easily 
alter the processor with minimal fuss. The flip side to this is that we can use PostCSS 
plugins that mimic SASS coding standards, or create our own custom syntax—we 
will explore these concepts in the next two chapters.



Building a Custom Processor

[ 288 ]

Summary
Creating our own processor can be a satisfying experience—we have total control 
over what elements should be included, and can add or remove elements at any 
time. Throughout the course of this book, we've explored a number of elements  
that make up what might be a typical processor; in this chapter, we pulled together 
all of these elements to create our final article. Let's take a moment to review what 
we have learnt.

We began with a look at some of the key elements of our processor, which we've 
already used previously, but have not really understood in detail how it all fits 
together. With this in mind, we moved on to examine some of the issues with our 
processor, before working out ways of correcting those issues and altering our code.

With our updated processor in place, we then took a look at ways of optimizing 
our output by altering existing functionality, or including new options that may or 
may not make up a baseline processor or one customized for a specific project. We 
then took a look at extending our functionality, that includes options we would not 
normally consider, but will complement our work processes perfectly.

We then rounded out our chapter with a quick test of our processor on a sample 
site, before exploring some of the hints and tips that will help us when creating our 
processors. The final step in our journey took a quick look at the CSSStyle library,  
as a precursor to creating custom syntaxes for PostCSS, which we will explore in  
the next chapter.



[ 289 ]

Manipulating Custom 
Syntaxes

Although many developers have moved on from using preprocessors to using 
PostCSS, it is important to note that PostCSS is not a replacement, just an alternative 
way of preprocessing CSS styles. To help with the transition, we're not forced to 
learn a new syntax. Using a handful of plugins, we can take advantage of the speed 
of PostCSS, while still using syntaxes that we're accustomed to, such as Less, SASS, 
or Stylus.

In this chapter, we'll take a look at the plugins that make this possible, and work 
on some simple examples that show you how using a custom syntax that we're all 
familiar with is still possible when using PostCSS.

This chapter will cover the following technical topics:

•	 Introducing custom syntaxes
•	 Implementing examples of custom syntax plugins
•	 Parsing CSS
•	 Converting content to strings with the API
•	 Adding highlighting support to our code

Let's make a start!



Manipulating Custom Syntaxes

[ 290 ]

Introducing custom syntaxes
W3Schools defines a CSS syntax as follows:

"A CSS rule-set consists of a selector and a declaration block: The selector points to 
the HTML element you want to style. The declaration block contains one or more 
declarations separated by semicolons."

We as developers spend many hours crafting sites; this can be something small as  
a one-page contact card-type site, right through to a large e-commerce website. It 
does not matter which styles we decide to use, or how we get there: the key is that 
the final result must use the same standard syntax that we've grown to love over  
the years.

This does not mean to say that our source should be standard CSS, in fact, it would 
be very restrictive if this were the only option! We could use libraries such as SASS or 
Less, but instead, how about using the API and custom syntax plugins to manipulate 
our styles directly? We touched on some of the principles back in Chapter 8, Creating 
PostCSS Plugins; it's time to revisit this and explore how we can begin to remove this 
restriction.

Why would we want to do this, I hear you ask? The answer's simple—let's assume 
for a moment you create themes for WordPress. WordPress' default themes are 
created using SASS (and PostCSS); this means a dependency on SASS in some  
form. We can mitigate this a little by using the gulp-sass plugin, but this still  
uses libsass to compile code.

What if we could turn this on its head, and use the API and custom syntax plugins 
that parses SASS code and converts it to PostCSS equivalent? Okay, granted, we may 
not be able to cover all styles; we can at least make a start on converting some, and 
reduce our dependency on using SASS. Let's make a start. Before we get stuck into 
producing code, we have a simple administrative task to perform: we need to install 
a syntax highlighter first.

Preparing our environment
Throughout the course of this chapter, we will be working directly with the PostCSS 
API (or a plugin's individual API, if it has one). As we are working directly on CSS 
(and not simply through a plugin's configuration object), it makes sense to install a 
syntax highlighter that works with PostCSS.



Chapter 11

[ 291 ]

Not every text editor has one, but if you happen to use Sublime Text, with the 
Package Control facility installed (and I am assuming this is the case for the demos 
in this book), then it has a highlighter available for PostCSS that we can install. The 
plugin is available at https://github.com/hudochenkov/Syntax-highlighting-
for-PostCSS. Let's get it installed using the following steps:

1.	 Open up Sublime Text, then press Cmd + Shift + P (OS X) or Ctrl + Shift + P 
(Linux/Windows) to open the command palette.

2.	 From the list that appears, click on Package Control: Install Package.
3.	 After a few moments, it will show a new list; start typing Syntax 

Highlighting for PostCSS:

4.	 When it appears, click on it to install; it takes a couple of moments to complete.

We can of course simply use a highlighter that works with JavaScript; this won't be 
the same though: having a highlighter designed for PostCSS will make it easier to 
edit code!

The syntax highlighter that we've just installed comes with its own theme. If you like 
to roll your own, then you can do so, using the Base16 site at http://chriskempson.
github.io/base16/.

Okay, let's move on; it's time to get stuck into code. Let's begin by exploring some of 
the plugins available for parsing code in PostCSS.

http://chriskempson.github.io/base16/
http://chriskempson.github.io/base16/


Manipulating Custom Syntaxes

[ 292 ]

Implementing custom syntax plugins
The PostCSS ecosystem contains over 100 plugins at last count; this is on  
the increase. These plugins will all serve different needs, but will have one thing  
in common: the process they use to transform our code.

Now, we should be clear that this similarity is at a very high level; we are not 
referring to the technical details of each plugin! This aside, when creating our  
own custom syntax, we must follow a three-step process:

1.	 We first put our code through a parser.
2.	 We then transform it using anyone of a number of plugins.
3.	 We finally stringify it, or convert it to valid CSS in string format.

We already have a handful of plugins that allow us to work with other syntaxes 
within a PostCSS environment; these include languages such as less or JavaScript:

Name of plugin Purpose of plugin
sugarss This plugin is an indent-based syntax like SASS or Stylus.

Plugin is available from https://github.com/postcss/
sugarss. 

postcss-less We can use this plugin to transform less into valid CSS. Note: it does 
not compile code.
Plugin is available from https://github.com/webschik/
postcss-less.

postcss-js Anyone working with JavaScript can use this plugin to write styles in 
JS or transform React Inline Styles, Radium, or JSS.
Plugin is available from https://github.com/postcss/
postcss-js.

postcss-scss For those of you using SASS, this plugin is perfect for working with 
SASS code; it does not compile code to CSS.
Plugin is available from https://github.com/postcss/
postcss-scss. 

postcss-safe-
parser

This plugin is perfect for finding and fixing CSS syntax errors.It's 
available to download from https://github.com/postcss/
postcss-safe-parser.

poststylus We can use this plugin to transform styles created using the Stylus 
library into valid CSS. Note: it does not compile code.
Plugin is available from https://github.com/seaneking/
poststylus.

https://github.com/postcss/sugarss
https://github.com/postcss/sugarss
https://github.com/webschik/postcss-less
https://github.com/webschik/postcss-less
https://github.com/postcss/postcss-js
https://github.com/postcss/postcss-js
https://github.com/postcss/postcss-safe-parser
https://github.com/postcss/postcss-safe-parser
https://github.com/seaneking/poststylus
https://github.com/seaneking/poststylus


Chapter 11

[ 293 ]

Although all of these plugins serve a different purpose, they all follow the same 
principle: they parse the code and transform it, before converting it to a format that 
can be saved to file as a valid style sheet output.

Leaving aside which parser we use, there is one question though: why would we 
want to manipulate our code directly? There are a few reasons for needing to alter 
the code directly; here are a few:

•	 We may want to create a report that details facts and figures about our code 
for reference purposes; it is true that there will be plugins or scripts available 
to do this already, but PostCSS can get us the basics during compilation, and 
not as a separate process.

•	 How about this for an idea? If you happen to use an application such as 
Adobe Color CC, then we can consider using the API to directly transform 
specific colors into valid RGB(A) or HEX equivalent values. We could use a 
plugin to achieve this, but performing this directly using the API allows us to 
retain flexibility with our choice of colors.

•	 There is nothing stopping us from dissecting existing plugins, and rebasing 
the tasks they perform into something that we could add to a task runner file, 
and then adapt to our needs. We might ultimately consider creating a plugin, 
but if the steps required are very specific to our needs, then a plugin may not 
be a useful addition.

•	 There are occasions when error handling can be lacking. The API contains 
some useful functionality that allows us to add suitably formatted messages 
on screen, if our process fails.

These are just a few ideas to get started, in addition to manipulating existing non-
PostCSS styles (such as those created using SASS, for example).

Enough talking, I feel a demo coming! We've met some of the plugins available, so 
it's time to put them to good use; two of particular interest are the postcss-scss and 
postcss-safe-parser plugins. Let's dive in and take a look at them in more detail, 
beginning with postcss-safe-parser.

Parsing content and fixing errors
Over the next few pages, we'll touch on using a couple of parser plugins, to show 
how easy it is to transform our code. We will take a look at a plugin that removes  
the need for SASS (at least at a basic level); before we do so, let's first explore using 
the postcss-safe-parser plugin.



Manipulating Custom Syntaxes

[ 294 ]

The postcss-safe-parser plugin, available from https://github.com/postcss/
postcss-safe-parser, is perfect for finding and fixing CSS errors. It's a simple 
plugin to use and install; let's make a start:

1.	 We'll start by installing the plugin, so go ahead, and fire up a Node.js 
command prompt session, then change the working directory to the root  
of our project area.

2.	 At the prompt, enter this command, then press Enter to install the plugin:
npm install postcss-safe-parser --save-dev

3.	 Next, go ahead and extract a copy of the T58 – parsing invalid content 
folder from the code download that accompanies this book; save it to the root 
of our project area.

4.	 Copy the package.json and gulpfile.js files from it to the root of our 
project area.

5.	 Switch back to the NodeJS command prompt session, then at the prompt, 
enter gulp and press Enter.

If all is well, we should see a successful compilation: a file marked output.css will 
be created at the root of our project area.

Go ahead and open it. Even though our example only contained one malformed 
selector, the file contains the same selector, but this time with the missing closing 
parenthesis added. We can also see the results appear in the console log at the same 
time as seen in the following screenshot:

So what's going on here? Well, some of this will be familiar. We're using a standard 
format task in our Gulp file, along with references to some of the plugins that we've 
already met, such as autoprefixer.



Chapter 11

[ 295 ]

The content that is of interest to us though, is in the default Gulp task as seen in the 
following screenshot:

The task may seem a little complex, but in reality, we're parsing our CSS, prior to 
manipulating it. We start by defining a postcss object (into which feeds a request to 
run autoprefixer). This then processes our CSS into an AST, using a parser to find 
and fix any issues, before piping it out on screen and into a file named output.css 
in our project area.

Abstract Syntax Trees (AST) are a graphical tree representation 
of the syntactic structure of our CSS style sheets or code.

Okay, our example was very simplistic, but this was intended to show you how the 
principle works. In this next example, the same principle has been used to convert 
standard SCSS code to valid CSS; note, though, that we're not calling SASS (as we 
have done before), but converting the SCSS code to valid CSS styles.

Parsing SCSS content
In our previous demo, we explored the use of PostCSS to parse our CSS and added 
the missing closing bracket as a fix for our code. It was a simplistic example; perfect 
if you're working with standard CSS, but what if your projects are using SASS?



Manipulating Custom Syntaxes

[ 296 ]

Well, as part of our next example, we'll prove that using a compiler is now old hat; 
we'll use the postcss-scss plugin (from https://github.com/postcss/postcss-
scss) to directly transform our SASS code, before unwrapping the nesting styles 
using the postcss-nested plugin (available from https://github.com/postcss/
postcss-nested):

1.	 We'll start by installing the postcss-scss plugin. Go ahead and fire up a 
NodeJS command prompt session, then change the working directory to  
the root of our project area.

2.	 At the prompt, enter this command, then press Enter:
npm install postcss-scss --save-dev

Keep the session open when the plugin has completed installation:

3.	 From the downloaded code that accompanies this book, go ahead and extract 
a copy of the package.json file from the T59 – Parsing SCSS content 
folder. Save this to the root of our project area.

4.	 From the same T59 – Parsing SCSS content folder, copy the contents of the 
src folder to the src folder at the root of our project area.

5.	 In a new file, add the following code and save it as gulpfile.js in the src 
folder at the root of our project area:
'use strict';
var gulp = require('gulp');
var postcss = require('postcss');
var fs = require('fs')
var autoprefixer = require('autoprefixer');
var nested = require('postcss-nested');

var scss = fs.readFileSync('src/styles.scss', 'utf-8');



Chapter 11

[ 297 ]

gulp.task('default', function () {
  var syntax = require('postcss-scss');
  postcss([ autoprefixer, nested() ]).process(scss, {  
    syntax: syntax }).then(function (result) {
    fs.writeFileSync('dest/styles.css', result.content);
  });
});

The keen-eyed amongst you will spot the reference to postcss-nested. We cannot 
call PostCSS without specifying something, so we'll use this plugin to unwrap the 
nested statements in our code:

1.	 Revert back to the NodeJS command prompt session, then add this command 
and press Enter:
npm install postcss-nested --save-dev

2.	 Once Node has completed installing the plugin, enter gulp at the prompt 
then press Enter:

3.	 If all is well, we will see a compiled file appear in the dest folder:

But hold on a moment: this is a valid CSS file, right? Absolutely. But…we've so far 
had to use a compiler to produce valid CSS code; how come we haven't needed to 
add one now?



Manipulating Custom Syntaxes

[ 298 ]

Exploring what happened
Well, the answer lies in the conversion process—traditionally we would have had 
to compile our code, even though standard SASS files are a superset of current CSS. 
Instead, we've simply rewritten our code using a syntax that translates a standard 
SCSS file to valid CSS.

If we take a look at our Gulp file in more detail, we can see references to the standard 
gulp-postcss plugin, along with declared instances of the fs, autoprefixer, 
postcss-nested, and postcss-scss plugins. The key for this demo starts on line 
10, where we declare an instance of the scss variable, and use the file system (fs) 
plugin for Node to read the contents of the file into this variable.

Once into the task, we create an instance of PostCSS as an object, before feeding it the 
autoprefixer and nested() plugins (as variables). We then process our SASS code 
using the syntax that comes with the postcss-scss plugin, before piping out the 
contents as a file into the dest folder in our project area.

See? Nice and easy; not a SASS compiler in sight! This simple change removes the 
need for any dependency on a compiler, after all, SCSS files are just standard CSS 
text files, so why use a compiler? With all of this talk of parsing CSS (or SCSS for  
that matter), it's worth spending some time exploring what we mean by this, and 
how it is important to the whole process.

Parsing CSS
At the heart of writing any custom syntax is the ability to parse content—it doesn't 
matter whether this is CSS, JavaScript, or something else; we clearly need to 
understand what we're working with, before we can make changes! At a basic level, 
these are the steps we must take to transform our CSS when working with PostCSS:



Chapter 11

[ 299 ]

We begin with our source CSS (which comes with or without a source map),  
which we parse only once, but then put through any number of specified plugins 
(the example shows two, but we can easily use more). We then convert the output  
to a string using a stringifier; at this point, we can view the contents on screen or 
save them to disk.

Let's for a moment take a look at parsing some example code. For this next example, 
we will use a single CSS rule and parse it using the postcss-value-parser plugin 
(from https://github.com/TrySound/postcss-value-parser); the reason for  
this will become clear shortly:

1.	 From the code download that accompanies this book, extract and save copies 
of the gulpfile.js and package.json files from the T60 – parsing color 
values folder to the root of our project area; if you want to save any existing 
files from there, then please do so first.

2.	 Fire up a NodeJS command prompt session then change the working folder 
to the root of our project area.

3.	 We need to install the postcss-value-parser plugin, so at the prompt, 
enter this command and press Enter:
npm install postcss-value-parser --save-dev 

NPM will now install the plugin; keep the session open when it has finished:



Manipulating Custom Syntaxes

[ 300 ]

4.	 At the prompt, type gulp then press Enter; gulp will now go away and 
display the contents, which will look something like this:

Yikes! What does that all mean? Don't worry, it looks worse than it really is; this is an 
example of an AST, which we discussed earlier in this chapter. This gives us in-depth 
information on the contents of our CSS, such as the values, types of values, and 
where they appear in the tree.

The great thing, though, is that once we have all of this content, then we are free to 
query and manipulate the content at will. Once we have manipulated the content, 
we then need to convert it to string format, so it can be displayed on screen in a more 
intelligent format, or saved to disk.

For this demo, we used the postcss-value-parser plugin to create our AST; we 
can also try using the postcss-safe-parser plugin (from https://github.com/
postcss/postcss-safe-parser), or the postcss-selector-parser plugin (from 
https://github.com/postcss/postcss-selector-parser), to achieve similar 
effects.

And the reason why we only used one line of CSS code in our demo? Well, parsing 
CSS code can get very complex. The example shown in our demo is relatively 
straightforward; just imagine what it will be like with 2,000+ lines of code!

Let's develop this theme further, and use it to replace some example RGBA values 
with equivalent HEX-based colors. We can easily do this through the use of the 
postcss-unrgba plugin (from https://github.com/jonathantneal/postcss-
unrgba), but it weighs in at almost 60 lines; our Gulp file is 43 lines, and a lot of  
that is comments!

https://github.com/postcss/postcss-safe-parser
https://github.com/postcss/postcss-safe-parser
https://github.com/jonathantneal/postcss-unrgba


Chapter 11

[ 301 ]

Replacing RGBA colors
Our next example is a relatively straightforward search and replace; it is a perfect 
example of how it isn't always necessary to use plugins, and that we can parse our 
code directly to achieve the same effect. Let's make a start:

1.	 We'll start by extracting a copy of the T61 – changing colors folder from 
the downloaded code that accompanies this book; save the folder to the root 
of our project area.

2.	 Copy the gulpfile.js and package.json files from the T61 – changing 
colors folder to the root of our project area.

3.	 Copy the src folder from the T61 – changing colors folder to the root of 
our project area.

4.	 Next, fire up a NodeJS command prompt session then change the working 
folder to the root of our project area.

5.	 We now need to install an additional plugin, color-convert (available from 
https://github.com/qix-/color-convert), which we will use to change 
the color once we've sucked out the details from within the AST. For this, 
go ahead and fire up a NodeJS command prompt, then change the working 
folder to the root of our project area.

6.	 At the prompt, enter npm install color-convert --save-dev and  
press Enter.

7.	 When the plugin has finished installing, go ahead and enter gulp, then press 
Enter. If all is well, we should see the, by now, familiar transformed style 
sheet appear in our destination folder:



Manipulating Custom Syntaxes

[ 302 ]

At this point, our style sheet has been transformed. If we preview the results in a text 
editor, we can confirm that HEX-equivalent values have indeed replaced the original 
RGBA colors, as shown in the following screenshot:

Not convinced? Take a look at the same rule within the source file; here it shows the 
original RGBA value:

See how easy that was? There is one thing note; if we take a look at the Gulp file, it 
might at first glance look like we still have a few plugins in use. The key here is that 
three of these are part of Node (fs, path, and util), so we haven't had to install any 
new ones, over and above the value-parser and color-convert examples.

Exploring how it all works
It's worth taking the time to consider this code in more detail. This contains some 
useful techniques that will help get you started on the road to creating custom 
syntaxes, starting with retrieving the values we need.

We begin with reading the contents of our style sheet file, before parsing it through 
the postcss-value-parser plugin. We walk through each node within the AST, 
ignoring any that contain a node.type of function or a node.value of rgba. For any 
that remain, we collect any that have a node type of word, before mapping them into 
a single array value which we convert to a number.

This is then transformed from a function node to a word node, before we finally 
convert the value from an RGBA to HEX color. The contents are converted to a 
string, and saved to disk in the destination folder, with the same file name.



Chapter 11

[ 303 ]

Node types represent the type of selector we're working with—
examples include root, string, tag, and attribute. In our 
example, we've used node.type to display a string representation 
of the selector type, which we can manipulate in code.

Okay, let's move on: the key basis for working with custom syntaxes is to understand 
the content we need to work with; crack this and you are part of the way to 
transforming your styles into valid CSS. To help with the process, though, we will 
need to convert our content to a format that can be saved to disk. It's time to take a 
look at how, using the PostCSS API.

Formatting the output with the API
When parsing CSS, the output by default is going to resemble something as shown in 
the following screenshot:

It looks a really ugly mess, but is in fact the standard format for an AST tree.  
The trouble is, it's not very helpful if we want to use details from it in our code!  
To get around this, we need to convert our content into a string format: the simplest 
method is to use the .toString() method, which is perfect for saving the content  
to disk.



Manipulating Custom Syntaxes

[ 304 ]

All of the code for the next exercise is in the T62 – adding a stringifier folder in 
the code download that accompanies this book.

It's a cinch to use in our Gulp file; let's take a look as part of our next exercise:

1.	 We'll start by creating a new Gulp task file. In your usual text editor of 
choice, add the following code; there is a reasonable amount involved,  
so we will go through it in sections, beginning with the declarations for  
the plugins used:
'use strict';
var gulp = require('gulp');
var postcss = require('postcss');
var util = require('util');
var autoprefixer = require('autoprefixer');
var fs = require('fs');

2.	 We need to set up a few variables; these will be used to store values 
generated during the compilation process:
var newValue = 'white', result, selectors = [], root, decl;

3.	 Next up is the start of our task. The first step is to parse some simple CSS,  
as a basis for our demo. We then get the first child in our code, and save it  
to the decl variable:
gulp.task('default', function () {
  root = postcss.parse('a { color: black }');
  decl = root.first.first;

4.	 The first piece of information we want is a selector count; this next block will 
count through each selector using root.walkRules, and push the value into 
the selectors array:
  // get a selector count
  selectors = [];
  root.walkRules(function (rule) {
    selectors.push(rule.selector);
  });

5.	 At this point, we're ready to pipe out a summary report of our code—we use 
console.log to display a number of different values on screen:
  console.log("\nThe declaration type is: " + decl.type);
  console.log("The value of this declaration is: " +  
    decl.toString());
  console.log("Number of nodes in this CSS: " +  
    root.nodes.length);
  console.log("Selectors used in this CSS: " +  
    selectors.toString());



Chapter 11

[ 305 ]

6.	 We're almost there—in this next block, we do the PostCSS equivalent of a 
search and replace to update our color from black to white:
  // Replace color black with white
  root.walkDecls(function (decl) {
    if ( decl.value.match(/^black/) ) {
      decl.value = 'white';
    }
  });

7.	 We can display our content on screen, but a more useful step is to save 
it to disk—for this, we can use the fs plugin from Node.js to create our 
transformed CSS file and associated source map:
  // display content on screen and save to file
  result = root.toResult({ to: 'all.css', map: { inline:  
    false } });
  console.log("Updated color value: " +  
    decl.value.toString() + "\n");
  fs.writeFileSync('dest/styles.css', result.css);
  fs.writeFileSync('dest/styles.css.map', result.map);
});

8.	 Save the Gulp file to the root of our project area, then fire up a Node.js 
command prompt, and change the working directory to that of our  
project area.

9.	 At the prompt, type in gulp, then press Enter and let the compilation complete.
If all is well, we should see the results of step 6 appear on screen, like so:



Manipulating Custom Syntaxes

[ 306 ]

The transformed CSS file and source map will be present in the dest folder:

So, how does this all help us? Well, the ability to parse our code directly opens up 
some real possibilities; let's pause for a moment to explore what has happened in  
our demo, and how we can take advantage of this functionality in future projects.

Dissecting our example code
Throughout the book, we've used a variety of plugins to transform our code. These 
will all make use of the PostCSS API in some form. However, we are not limited 
to simply using plugins; we can also transform our code directly using the API. At 
this point, it should be noted that we are not talking about creating a custom parser; 
indeed, this would easily form enough content for a short book in its own right!

A look through the Gulp file might be enough to put some people off. It is true that 
creating a custom syntax to parse code created using Stylus or less is not easy, and 
falls outside the scope of this book. However, we can make use of some of the API to 
query our content. In our example, there are two blocks of code that are of interest.

The first block parses each selector and keeps a running count. We can use the 
.walkRules method to iterate through each rule:

Once we have that raw information, we can then stringify it (or convert it to a string), 
before displaying the content on screen:



Chapter 11

[ 307 ]

It's worth noting that the PostCSS API contains additional functionality to stringify 
our CSS and assemble it together. These are known as the Stringify and Builder 
commands; these are only meant for use when creating custom syntaxes. We've 
simply parsed our content using existing plugins designed for this purpose, so using 
toString() is sufficient for our needs.

Moving on—our example was kept deliberately simple to illustrate the process. 
We can easily add additional functionality. The API reference documentation at 
https://github.com/postcss/postcss/blob/master/docs/api.md is a good 
place to start. How about adding error-checking, for example? We've already added 
one option from it, in the form of source maps; let's briefly cover this in more detail.

Adding source maps
Throughout many of our demos, we've incorporated a task that creates a source map 
of our CSS styling. It's worked perfectly well so far, but it isn't the final answer—we 
can do better! To see what is possible, take another look at the last block of code in 
the Gulp task file used in the previous demo (which should be around lines 33 to 36):

// display content on screen and save to file
result = root.toResult({ to: 'all.css', map: { inline: false } });
...
fs.writeFileSync('dest/styles.css', result.css);
fs.writeFileSync('dest/styles.css.map', result.map);

Here, we're creating a version of our transformed code that can be saved to file 
{inline: false} prevents the creation of a source map directly in our code. 
Instead, we use NodeJS' file system to create a source map based on result.map;  
this contains the content of our transformed code.

There are a few points to note when using this method; for more details, take a look 
at the main PostCSS site at https://github.com/postcss/postcss/blob/master/
docs/source-maps.md.

Time to change tack: so far we've concentrated on writing our code, but what about 
presentation? It's not entirely necessary, but setting up highlighting has a twofold 
benefit: it makes it easier to edit our code, and we can also use it to provide a consistent 
theme when documenting our code electronically. After all, I'm sure you at least do the 
latter…don't you?



Manipulating Custom Syntaxes

[ 308 ]

Highlighting our syntax code
Throughout many of our demos, we've concentrated on using plugins, with minimal 
changes required to configure the code for use. There is nothing wrong with this, but 
as always, we can do better. How about installing support for highlighting?

This is an easy way to make it easier to read our code, indeed, we should have 
installed something like this a long time ago! That aside, it's easy enough to fix; 
support is available for a wide variety of editors. For the purposes of this chapter,  
I will assume you are using Sublime Text; this is an example of how it might look 
(the screenshot shows the Twilight Light theme in use):

Let's dive in and take a look at how to get this set up, using Sublime Text's  
package manager.

Installing themes
Adding theme support is a cinch when using an editor such as Sublime Text.  
Let's work through the steps:

1.	 We'll start by opening a command prompt session. Go ahead and add this 
command, then press Enter:
cd %APPDATA%\Sublime Text 3\Packages\User

2.	 Next, enter this command, then press Enter:
git clone git://github.com/chriskempson/base16-textmate.git Base16



Chapter 11

[ 309 ]

3.	 Open Sublime Text. If all is well, we should see a new menu entry if we click 
on Preferences | Color Scheme | User:

An easy change to make, but a useful one; nevertheless, it's only part of what we can 
do! To really go to town (figuratively speaking), we can apply similar styling to our 
CSS styles. This makes it easier to read if we want to document our styles online. 
After all, color is clearly easier to read than black and white! Let's take a moment to 
explore what is required to apply a color theme to our documented code.

Creating a HTML display theme
A part of developing code is the need to document it. This is not only for our sanity, 
but also for future changes, should someone else need to alter our code! Creating 
printed documentation is now old hat, a better method is to create it online, where 
we can easily update it without too much fuss. At the same time, we can add some 
color to it, to make it visually more appealing and provide a more consistent format 
to our efforts.

We could create this code manually, but that is a resource-heavy process that is 
prone to error! Instead, we can use the Midas library (available from http://
midasjs.com) to automate the creation of the basis for our documentation, and we  
can style it using one of the base16 themes we covered in the previous exercise.

http://midasjs.com


Manipulating Custom Syntaxes

[ 310 ]

Let's make a start on installing that support:

1.	 We'll start by firing up a NodeJS command prompt, then changing the 
working folder to our project area.

2.	 At the prompt, enter this command, then press Enter:
npm install midas --save-dev 

3.	 Once it has finished installing, go ahead and extract the src folder and the 
gulpfile.js and package.json files from the T63 – incorporating 
midas folder, then save them to the root of our project area.

4.	 Revert to the NodeJS command prompt, then enter gulp and press Enter.
5.	 Gulp will go away and compile a HTML-based extract of our code as 

styles.html, which has been properly formatted with extra markup.  
The file will appear in the dest folder within our project area.

At this point, if we were to view the contents of that file, it will look very plain; this 
is easy to fix! To do this, we will use the Brewer theme by Timothée Poisot, available 
from https://github.com/chriskempson/base16-builder/blob/master/
schemes/brewer.yml; there are a few steps involved to make this happen:

1.	 Browse to https://github.com/ben-eb/midas/blob/master/templates/
template-light.css, then save this as a CSS file within the dest folder of 
our project area.

2.	 Open it in a text editor; it contains a series of placeholders for the base16 
themes that are available for use. We would normally use Ruby to generate 
the CSS for one of these themes, but this isn't entirely necessary; instead, 
use your editor's search and replace to match up each placeholder with the 
appropriate color:



Chapter 11

[ 311 ]

3.	 Save the result; to make it work, we need to adjust the contents of the 
styles.html file to reference the new style sheet, so that it has the proper 
HTML structure. Once done, it will look something like this:

This looks far more appealing, I think you'll agree! Although it requires some 
work to create the initial theme, this will be a one-off process for each theme that 
you create. Any changes made to the CSS rules or declarations can be generated 
automatically, and the HTML result updates accordingly.

Summary
We kicked off with a quick introduction to custom syntaxes, before preparing our 
environment for developing code. We then covered some of the plugins available 
for parsing content, before exploring some of the reasons as to why we might need 
to parse custom syntaxes or styles directly before implementing two as examples of 
how to manipulate our code.

We then dived in and explored how most PostCSS plugins perform changes to our 
code. We then explored some of the techniques required to alter styles directly, 
before considering the effects of our changes on the code itself.

Next up, we examined how content can be formatted for screen or to a state ready for 
saving to disk (including the creation of source maps). We noted that whilst there are 
some specific methods available, these are reserved for custom syntax development, 
and that the options we used would suffice for initial manipulation of our code.



Manipulating Custom Syntaxes

[ 312 ]

We then rounded out the chapter with a look at how we can add highlighting 
support to our projects—we examined the reasons for adding this, such as making 
code editing easier, and covered a quick demo that uses the Midas library to create 
properly laid out documentation for our projects.

The use of different syntaxes is a great way to remove the need for rewriting existing 
code into valid CSS. There is one thing, though: what happens if we have a mix of 
both standard CSS and pre-processor code, such as from less or Stylus? Can we work 
with both at the same time? Absolutely! We will take a look at the Pleeease library, 
which supports this, in the next chapter.



[ 313 ]

Mixing Preprocessors
Throughout the book, we've explored using PostCSS, and seen how we can build 
a more efficient preprocessor that meets our needs, without the extra baggage of 
standard preprocessors. Hold on though—doesn't it take time to build a processor? 
How do we manage the transition? 

No problem, enter the Pleeease library! Throughout this chapter, we'll use the power 
of Pleeease to combine both preprocessors and postprocessors into one process, mixing 
existing systems such as SASS, Less, and Stylus. Over the next few pages we take a 
look at some examples, and show you how easy it is to harness the power of Pleeease.

This chapter will cover the following technical topics:

•	 Examining the benefits of using the Pleeease library
•	 Installing and configuring the library
•	 Exploring some of the features of Pleeease
•	 Compiling code using Node or the command line
•	 Setting up a configuration file
•	 Converting a WordPress installation and testing the results

Let's make a start!



Mixing Preprocessors

[ 314 ]

Taking the first steps
When developing a site, developers will nearly always have the opportunity to 
design and build it from the ground up; we can make decisions regarding the  
color scheme to use, the structure of the site, and its general appearance.

Sometimes, though, there will be occasions when we want to use a new technology, 
but have to use an existing site. A question on the minds of many in this position will 
likely be: where does one start? It will, of course, depend on many factors, of which 
one is likely to be whether existing processors such as SASS or Less are being used 
on the site.

The flexibility and power of PostCSS allows us to transition easily from the likes  
of Less or SASS to using PostCSS—throughout this chapter, we're going to go on  
a journey to explore some of the tricks we can use to begin that transition process. 
We'll explore some of the plugin options available, then finish with a look at 
converting a CMS system such as WordPress to using PostCSS.

Any reason why WordPress was chosen? It is compiled from SASS, 
but also uses PostCSS to handle vendor prefixes, we'll build on this 
with additional plugins later in the chapter.

Let's begin that journey, our first step is to explore some of the plugins we can use to 
begin that transition process from using SASS to PostCSS.

Exploring the conversion process
Cast your mind back to Chapter 10, Building a Custom Processor, for a moment.

The key theme of that chapter was bringing together a number of plugins we 
covered throughout the preceding chapters, to create what would become our 
processor. So far, all of the plugins used were based around pure PostCSS, so they 
wouldn't be able to compile raw SASS code.

We took a brief look at the CSStyle library, as a possible means of getting around 
this—it's a great library for producing clean code using BEM principles, but it 
requires that code is written using a specific format. Ordinarily, there is nothing 
wrong with this at all—every developer's utopia should be to produce clean,  
efficient code, right?



Chapter 12

[ 315 ]

Yet there is just one small problem, reality! It wouldn't be practical to rewrite a large, 
complex e-commerce site to use CSStyle without an enormous amount of work; it 
would require a lengthy transition period to effect such a change. It's not impossible, 
but using BEM-style notation is better done from ground up, or at least in defined 
chunks, if your site has multiple style sheets in use.

So if using CSStyle isn't a practical solution for our needs, how can we make that 
change? There is a more practical solution available to us—it may take longer,  
but the disruption should be reduced, and allow us to make smaller changes to  
our code in a more manageable transition process:

•	 We start by introducing a task runner to compile existing processor code—
plugins exist for using libraries such as SASS or Less within runners such  
as Gulp or Broccoli, to allow us to compile code.

•	 Once we've transitioned to using a task runner, we can then introduce 
plugins to handle core processes, such as managing vendor prefixes,  
creating source maps, and minifying our style sheets.

•	 We can then break down our existing style sheet into smaller chunks 
and import each into a master file during compilation. Each can then 
be converted to use PostCSS plugins that replicate existing processor 
functionality—for example, we might use postcss-simple-vars to  
create new variables to replace existing SASS-based examples.

The latter step in this process should be iterative, at least until everything has been 
converted, and allows us to remove any dependency on existing processors. We've 
used a fair number of Gulp task files to date, so we should be reasonably familiar 
with the basic use of one by now—here's what a task file might look like, if we were 
using SASS and Gulp:

var gulp = require('gulp');
var postcss = require('gulp-postcss');
var sass = require('gulp-sass');
 
var autoprefixer = require('autoprefixer');
var cssnano = require('cssnano');
 
gulp.task('css', function () {
  var processors = [ autoprefixer, cssnano ];
  return gulp.src('./src/*.scss')
    .pipe(sass().on('error', sass.logError))
    .pipe(postcss(processors))
    .pipe(gulp.dest('./dest'));
});



Mixing Preprocessors

[ 316 ]

In this example, we're using the Gulp plugins for SASS and PostCSS—SASS code is 
compiled first, before vendor prefixes are added by PostCSS, and the code is minified 
into the final article.

The benefits of this process, though, mean that we can control the rate of conversion—
we are not forced to have to convert everything in one go, and can be selective about 
what is converted at each point in the process. There will still be a dependency on 
an external library, but this is temporary; we can remove that dependency when 
everything has been converted to using PostCSS.

Choosing our plugins
Assuming that we've made the transition process to using a task runner, then where 
do we go from here?

Well, it's time to choose the plugins we need to use, based on the functionality offered 
by our site. Some of the more useful plugins to get you started are as follows: 

Plugin Purpose of plugin
postcss-mixins If your code contains SASS mixins, then this will be essential—the 

format is very similar, so changes can be made using a search and 
replace in your editor. The plugin is available from https://
github.com/postcss/postcss-mixins.

postcss-nested Nesting code in SASS is a key concept—the postcss-nested 
plugin from https://github.com/postcss/postcss-nested 
is a good choice for replicating this functionality within SASS.
Coupled with this, the postcss-nested-props and postcss-
nested-vars plugins can be used to unwrap any properties or 
variables that are in nested code.

postcss-sassy-
mixins

There are occasions when we might have blocks of reusable code; 
we can use mixins to help reduce the amount of code written in our 
style sheets.
A key concept borrowed from SASS, this plugin replicates the same 
functionality, and allows us to easily convert from using SASS to 
PostCSS. The plugin source is available from https://github.
com/andyjansson/postcss-sassy-mixins.

postcss-
simple-extend

If we have styles that share common elements, then we can remove 
some of this duplication by extending existing styles. This is a 
common practice when using SASS; the postcss-simple-extend 
plugin from https://github.com/davidtheclark/postcss-
simple-extend is perfect for replicating this within PostCSS.

https://github.com/postcss/postcss-mixins
https://github.com/postcss/postcss-mixins
https://github.com/postcss/postcss-nested
https://github.com/andyjansson/postcss-sassy-mixins
https://github.com/andyjansson/postcss-sassy-mixins
https://github.com/davidtheclark/postcss-simple-extend
https://github.com/davidtheclark/postcss-simple-extend


Chapter 12

[ 317 ]

Other plugins are available, depending on your needs. The majority of plugins 
available are for SASS, but that is simply due to its maturity; others will no doubt 
become available for processors such as Less or Stylus over time.

Take a look at the PostCSS plugins catalog available from 
http://postcss.parts for more details.

Adding single plugins is a perfectly acceptable option, but what if we're adding 
more than just a couple of plugins to mimic SASS code? There are two options that 
would be useful here, and which we've not covered in our list—using the PreCSS or 
Pleeease libraries.

The Pleeease library was designed to handle some of the more menial tasks that are a 
necessary evil when compiling our code. Although not all of the supported tasks will 
apply, there will be at least three that do—minifying code, adding vendor prefixes, 
and generating source maps.

In stark contrast, the PreCSS library is likely to be more useful, as it is a collection 
of plugins that emulate SASS features. The beauty, though, is that we only need to 
install one plugin to handle changes; PreCSS abstracts the manual conversion of 
PostCSS styles into valid CSS using a single interface. We will explore using it in 
more detail a little later on in this chapter, but for now, let's turn our attention to 
putting the Pleeease library through its paces.

Introducing the Pleeease library
The Pleeease library, available from http://pleeease.io/, is designed to simplify 
the use of preprocessors, and combine the benefits of using multiple tools in one 
library. It means we can configure it to any one of three processors, such as SASS, 
Less, or Stylus, in addition to PostCSS, when compiling our code. The compilation 
can also include all of the typical tasks we might otherwise have to do, such as 
generating source maps, adding vendor prefixes, and minifying the results.

The library is easy to install—in its simplest format, we can use a configuration file to 
compile at the command line. Alternatively, we can use any one of several plugins to 
hook into a task runner, such as Gulp or Grunt. Let's take a moment to explore this in 
more detail, beginning with installing and configuring the plugin for use.

http://postcss.parts
http://pleeease.io/


Mixing Preprocessors

[ 318 ]

Installing and configuring the Pleeease library
The Pleeease library is based on Node.js; it is a cinch to install, either for use manually 
at the command line, or via a task runner such as Gulp. Let's make a start on getting 
everything set up for use:

1.	 We'll begin by installing the Pleeease library—for this, go ahead and fire up 
a Node.js command prompt session, then change the working folder to our 
project area.

2.	 At the prompt, enter npm install -g pleeease-cli, then press Enter—wait 
for Node to complete the installation.

At this point, the Pleeease library is installed and configured for use from the 
command line—if Node complains of elements that need to be updated, then it 
may be necessary to run npm update –g n to bring your version up to date. If you 
are a Windows user, then there is a handy PowerShell script available at https://
github.com/felixrieseberg/npm-windows-upgrade to help with this process.

You may get a couple of warnings about deprecated modules for 
graceful-fs and lodash: these can be ignored for the purposes 
of the demo.

Assuming we did not encounter any issues with installing Pleeease (over and  
above some deprecation warnings, as already mentioned), then we are now  
ready to use Pleeease in anger. Over the next few pages, we will take a look at 
compiling manually as well as using Gulp as our favored task runner. Let's begin  
by exploring how easy it is to perform a basic compilation at the command line  
using a .pleeeaserc file.

For the purposes of this chapter, we will concentrate on using SASS; 
if your preference is to use Less, you can use the gulp-less plugin 
as an alternative. Likewise, if your desire is to use Stylus, then the 
gulp-stylus plugin will work equally well with Pleeease.

Compiling code manually
The simplest way to compile code using the Pleeease library is with a .pleeeaserc 
configuration file.

This resembles a (simplified) JSON file, and will look something like this:

{
  "in": ["foo.css", "bar.css"],
  "out": "baz.css",

https://github.com/felixrieseberg/npm-windows-upgrade
https://github.com/felixrieseberg/npm-windows-upgrade


Chapter 12

[ 319 ]

  "browsers": ["last 3 versions", "Android 2.3"]
}

Looks pretty straightforward, doesn't it? We simply need to specify our source files 
(in), and what we should get (out). In this example, we've gone one step further, to 
specify the level of browser support needed—this is mainly to ensure that the right 
vendor prefixes have been applied.

This setting uses the same configuration as Autoprefixer: we can equally pass 
it a valid query from the Browserslist query list at https://github.com/ai/
browserslist#queries.

This is a useful method for compiling if our requirements do not stretch to using a 
task runner, or we want to keep our processes simple. The only downside is that we 
can't tie in any other tasks that could be automated, such as renaming the compiled 
style sheet with a .min.css extension—for this, we will need to use a task runner 
such as Gulp.

If we do use a task runner, this opens up all kinds of possibilities, such as automating 
processes to resize images, renaming compiled style sheets, and checking our code for 
consistency. Before we do so, let's just cover a useful tip—the Pleeease site includes an 
online playground (available at http://pleeease.io/play/). We can use this to help 
familiarize ourselves with using the library before committing ourselves to compiling 
code for a production site:

Okay, enough chitchat: it's time to get practical, so to speak! For some, compiling 
at the command line might be enough, but in this modern age of automation, why 
spend time performing manual processes that can easily be automated?

https://github.com/ai/browserslist#queries
https://github.com/ai/browserslist#queries
http://pleeease.io/play/


Mixing Preprocessors

[ 320 ]

Compiling using a task runner
If you haven't already guessed by now, I'm a big fan of using Node.js—my task 
runner of choice is Gulp. It used to be Grunt, but there is something about Gulp that 
I find is easier to use—I'm not sure why! Anyway, either can be used with Pleeease, 
so if your preference isn't Gulp, then please feel free to alter the code accordingly.

Let's work through the steps needed to use Gulp to run our compilation process:

1.	 Fire up a Node.js command prompt session, then change the working folder 
to our project area.

2.	 At the prompt, enter these commands, pressing Enter after each:
npm install gulp-pleeease

Keep the Node.js command prompt session open—we will need it shortly.

3.	 Extract a copy of the T65 – using gulp-pleeease folder from the code 
download that accompanies this book to the root of our project area.

4.	 Copy the package.json and gulpfile.js files to the root of our project 
area, then copy example.css from the src folder under T65 – using  
gulp-pleeease to the src folder at the root of our project area.

5.	 Revert to the Node.js command prompt session, then at the prompt enter 
gulp and press Enter:

Assuming compilation is successful, Gulp will produce the now familiar files within 
the dest folder at the root of our project area. If we take a look at the results, we 
should see that it has minified the file, added vendor prefixes, and converted the 
blue and red color attributes to their equivalent HEX values.

Let's put this technique to good use and create a simple web page as an example of 
how we can use Pleeease. When checking our Gulp file, we will see that we don't 
need to use half of the plugins we've used in previous exercises, as Pleeease adds 
that support from within its plugin.



Chapter 12

[ 321 ]

Building an example using Pleeease
Throughout many of the demos in this book, we've had to import a series of plugins 
to manage different tasks such as minifying code, or checking it for consistency.

There is nothing technically wrong with this approach, but it is inefficient—after all, 
why use six tools when one will suffice, so to speak? We've tried to maintain a one 
plugin—one job rule throughout the book, so why are we breaking with convention?

The great thing about using Pleeease is that it already contains support for some of 
these tasks that would otherwise require separate plugins; this means we can remove 
some of the plugins referenced in the Gulp task file. Pleeease is simply a layer that 
abstracts support for six other plugins through one common interface.

Let's put that to use in the form of compiling styles for a simple web page:

Let's make a start:

1.	 We'll start, as always, by extracting a copy of the TXX – creating a page 
using pleeease folder from the code download that accompanies this book; 
save it to the root of our project area.

2.	 From the css – completed version folder, copy the styles – pre 
compile.css file to the src folder at the root of our project area; rename  
it styles.css.

3.	 Copy the gulpfile.js and package.json files from the root of the 
tutorial folder to the root of the project area—these should replace  
any already present at the root of our project area.

4.	 Fire up a Node.js command prompt session, then change the working folder 
to the project area.



Mixing Preprocessors

[ 322 ]

5.	 At the prompt, type gulp then press Enter—Pleeease will now go away and 
compile our code, and spit out valid style sheet files in the dest folder at the 
root of our project area.

6.	 Once completed, copy the contents of the dest folder to the css folder within 
the tutorial folder.

If we try previewing the results of our work by double-clicking on webpage.html, 
we should see a web page appear, similar to the screenshot at the start of this demo. 
The real proof, though, is in the Gulp task file—in comparison to other examples 
we've created in earlier demos, we've managed to remove one task completely,  
and reduce the number of plugins referenced by over half!

Compiling with other preprocessors
Yet there is one problem—so far, all of our work using Pleeease is PostCSS-based; 
what if we had been using a processor such as SASS as the basis for producing  
our code? 

Unfortunately, this is where Pleeease falls down—although it does include support 
for SASS, Stylus, and Less, it is still very experimental. An example of where this 
causes an issue is in nesting; Pleeease has yet to support nesting when configured  
to use SASS. This reduces the appeal of using Pleeease—after all, one of the key 
reasons for using PostCSS is to remove any dependency on libraries such as SASS!

To get around this means using the gulp-sass plugin. This is a wrapper for the 
libsass library. To achieve this, we would add a task such as this to our Gulp  
task file:

When using this method, we can pre-compile our SASS code to valid CSS before 
transforming it with PostCSS plugins. The trouble is, it seems an inefficient way to 
compile our code—there is a better alternative, in the form of the PreCSS library.



Chapter 12

[ 323 ]

Using the PreCSS library
Okay…so why is it better, I hear you ask?

The simple answer to this is that we can compile SASS-like code directly without 
using an external library such as libsass. The distinction here, though, is that it works 
on SASS-like code, not direct SASS.

This isn't an issue though—we can easily perform a search and replace using a text 
editor to make the minor formatting changes required to make it compatible for 
PreCSS. The library source is available at https://github.com/jonathantneal/
precss; the developer has even provided an online playground for our use, at 
https://jonathantneal.github.io/precss/, so that we can try out changes 
before committing to code.

At this point, we're going to break with convention—rather than produce a simple 
web page, let's push the boat out and use a content management system such as 
WordPress. Why? Well, for two reasons: WordPress already uses both PostCSS  
and SASS—it makes perfect sense to continue using the same tools! On this basis, 
let's dive in and take a look at using both in more detail.

Converting a WordPress installation
All of our existing examples have so far been based around single pages; many 
developers are likely to use content management systems such as WordPress.

Thankfully, we can apply many of the same principles we've used so far to styling 
WordPress—in fact, there are some plugins we can use that mimic SASS, which 
is used to create core style sheets for themes that come as part of each WordPress 
download. The theme we will use is Twenty Sixteen, which comes with current 
versions of WordPress downloaded since December 2015; it can also be downloaded 
from https://wordpress.org/themes/twentysixteen/.

For the remainder of this chapter, we're going to explore some of the tips and tricks 
we can use to incorporate PostCSS into a WordPress theme. A key point of note here, 
is that we've already covered some of the tasks that can be used—with care and 
planning, some can easily be reused when creating style sheets for CMS applications. 
We'll explore some of the tips and tricks we can use—although these will be geared 
towards the Twenty Sixteen theme, they can equally be used in other themes that are 
developed for WordPress.

https://github.com/jonathantneal/precss
https://github.com/jonathantneal/precss
https://jonathantneal.github.io/precss/
https://wordpress.org/themes/twentysixteen/


Mixing Preprocessors

[ 324 ]

This next example does assume a certain amount of knowledge 
of WordPress, and ideally some of the basics around using SASS 
or Less—I would recommend reading around these topics if you 
are new to either application.

Let's get started. Our first task is to set up our environment, ready for use. Before 
we set up our environment, though, I would strongly recommend you have a copy 
of the code download for this chapter handy—much of what will be discussed will 
make reference to the code!

Setting up our environment
To get the best out of this chapter, we need to set up an installation of WordPress—
for the uninitiated, there are two ways to achieve this:

•	 We can install WordPress as a locally hosted application using a web server 
such as WAMPSever (http://www.wampserver.com/en) or Apache  
(http://www.apachefriends.org—if you are a Linux or Mac user)

•	 We can use a version of WordPress installed on our own web space online

For the purposes of this book, we will use the former—to get hold of WordPress, 
head over to http://www.wordpress.org and hit the blue Download WordPress 
button on the right side of the screen (near the top).

I will assume our version of WordPress has been installed locally under C:\wamp\www\
wordpress, using your local web server of choice, following the instructions available 
at https://codex.wordpress.org/Installing_WordPress. My preference is to use 
WAMPServer (available from http://www.wampserver.com/en), but if you would 
like to use a different web server or folder, then please adjust the steps accordingly.

Okay, with WordPress installed, configured, and ready to go, let's crack on.  
The next step is to take a look at the options available to us for beginning the 
transition process.

The steps given throughout the remainder of this chapter 
will be geared towards Windows, as this is the platform 
normally used by the author; please adjust accordingly, 
if you use Linux or Mac devices.

http://www.wampserver.com/en
http://www.apachefriends.org
http://www.wordpress.org
https://codex.wordpress.org/Installing_WordPress
http://www.wampserver.com/en


Chapter 12

[ 325 ]

Considering the conversion process
Where does one start, when working with an average WordPress style sheet, I hear 
you ask?

Well, the first thing we should not do is be put off by its size. Yes, I know this might 
sound crazy (after all, the Twenty Sixteen theme weighs in at 3920 lines!), but with 
some planning, we can easily break this into something more manageable.

If we only achieve one task with PostCSS, then that task must be to make use of the 
postcss-import plugin to help break our code into more manageable principles. 
If you happen to have used processors such as SASS or Less, then it's the same 
principle—in our master style.css, we can create a series of import statements,  
and hive off each block into separate files.

Once we've broken the style sheet into more manageable chunks, there are a fair 
few things we can implement in our code; we should always consider it an iterative 
process, until such time as we exhaust all possible alternatives, the site is no longer 
required, or we migrate to a different solution. Over the next few pages, we'll cover 
some of the ideas and considerations that are likely to crop up—this should help get 
you started with making the changes to your theme. So without further ado, where 
do we start?

Well, the obvious one is using Autoprefixer; WordPress makes good use of CSS3 
styles, of which a fair number still require vendor prefixes. A consideration here, 
though, is that as we will be working backwards from the original style sheet, 
we will need to strip out existing vendor prefixes and set our task runner to add 
these in automatically. It's a necessary evil of working with existing style sheets in 
WordPress, but at least we should only have to do it once! There may be a temptation 
to create a mixin to manage vendor prefixes, but this is not considered best practice—
Autoprefixer will update styles at each compilation.

We're already familiar with using Autoprefixer from earlier examples—in the same 
vein, we can also consider minifying our code, which will help reduce bandwidth 
usage. Adding such a facility should be a cinch—we can use the same tasks from 
earlier demos, as long as we set the right order of tasks. We will need to alter it to 
compile style.css directly (this is the main file for WordPress style sheets), but  
as our processor will be geared towards using WordPress, this won't be an issue.

Another area we can look at is rem unit support, with pixel fallback. Many developers 
have their own views on using rem as a unit of measure; some say pixel values work 
just as well, but its suitability will depend on where it is being applied. This aside, 
Gulp has a suitable plugin we can use to help provide this functionality, if we need it.



Mixing Preprocessors

[ 326 ]

One way to really make an impact on our code is to use nesting—this is a common 
technique for preprocessors such as SASS, and involves writing code in a nested 
format. The key benefit is to remove code that is duplicated—consider it a form of 
shorthand (in a manner of speaking), which will be transformed into valid CSS at 
compilation.

A useful technique to also look at is the use of variables; these work in much the same 
way as scripting or programming languages. Now before you go running for the hills, 
don't worry: they are easy to use. We need to provide a list of placeholder names, and 
the values they represent; we can then do a search and replace throughout our code for 
each value, and replace it with the appropriate variable. Why do this, I hear you ask? 
Well, it's simple: if you change a color in the future, you only need to change it in one 
place; PostCSS will automatically change all other instances for you at the compilation 
stage.

If you would like to really get stuck into the core code for WordPress, then it's 
always worth exploring the code repository at https://core.trac.wordpress.
org/browser/trunk/. If you look carefully, you should even see where PostCSS  
is being used!

Okay, enough chitchat: let's get stuck into some code! The changes we will make 
as part of our next demo are just some of the ways in which we can incorporate the 
use of PostCSS plugins (or Gulp, for that matter), into our process. We'll begin by 
exploring the changes we need to make, and follow this with some ideas for you  
to try out as part of using PostCSS.

Making changes to our code
Although we've only covered a few ideas, there are nevertheless a fair few steps to 
go through; the key to this (and keeping your sanity!) is to complete each in blocks, 
and not all in one go.

The bulk of our changes will use existing tasks we've created in earlier demos; to this 
we will add the PreCSS library (from https://github.com/jonathantneal/precss), 
along with postcss-import and gulp-pixrem plugins. With this in mind, we'll make a 
start—our first task is to split the code into more manageable style sheets.

https://core.trac.wordpress.org/browser/trunk/
https://core.trac.wordpress.org/browser/trunk/
https://github.com/jonathantneal/precss


Chapter 12

[ 327 ]

Splitting our style sheet
The critical part of this process is to split our style sheet—for this, we will use the 
postcss-import plugin, from https://github.com/postcss/postcss-import:

1.	 We'll start, as always, by firing up a Node.js command prompt, then 
changing the working folder to the root of our project area.

2.	 At the prompt, go ahead and enter this command, then press Enter:
npm install postcss-import --save-dev

3.	 Wait for Gulp to complete the installation process.

Next, we need to split our style sheet into separate blocks; the most convenient way 
to do this is split it into sections according to the list at the top of style.css:

1.	 In the src folder at the root of our project area, create a new folder called css.
2.	 Go ahead and open up a copy of style.css from within the Twenty Sixteen 

folder—it's located at C:\wamp\www\wordpress\wp-content\themes\
twentysixteen\.

3.	 Save this to the src folder at the root of our project area.
4.	 On or around line 53, add this line: @import "css/variables.css";. Don't 

worry for now what it will be for—this will become clear later in this chapter.
5.	 Find lines 54 to 252, then copy them to a new file—save this as  

normalize.css in the css folder within the root src folder.
6.	 In the style.css file within the src folder, add these import statements,  

as indicated:

https://github.com/postcss/postcss-import


Mixing Preprocessors

[ 328 ]

7.	 Repeat the process until you have extracted all sections into their own files (1 
to 15). Save them with the same names as each main section.

Note, when saving the files, you don't need to split sections 11 to 15 
into their sub-sections—keep these within their respective files.

8.	 We have one last step to perform: we need our Gulp task file! From the  
code download that accompanies this book, go ahead and extract a copy  
of gulpfile.js and package.json from the T68 - converting a 
WordPress theme folder, then save both to the root of our project area.

9.	 Take a quick look at the gulpfile.js file, in particular, at lines 31 to 35:

Notice how we are compiling directly to style.css, unlike previous exercises?  
It's not ideal, but as WordPress themes use style.css by default, this is something 
we can live with as part of our compilation process.

Adding support for vendor prefixes
Our next task is to install support for adding vendor prefixes—in a sense, we've 
already covered how to achieve this. Most, if not all, of our previous demos already 
include support for vendor prefixes, using the Autoprefixer plugin.

As a reminder, Autoprefixer is available from https://github.com/postcss/
autoprefixer; there is an online version we can use to test changes at https://
autoprefixer.github.io/.

If we take a look at the Gulp task file we downloaded in the previous example,  
we can see the autoprefixer plugin has been called as part of firing PostCSS:

https://github.com/postcss/autoprefixer
https://github.com/postcss/autoprefixer
https://autoprefixer.github.io/
https://autoprefixer.github.io/


Chapter 12

[ 329 ]

There are, however, a couple of key points we should note at this stage.

When using the Autoprefixer plugin, it uses data from the Can I Use site  
(http://www.caniuse.com) to update any vendor prefixes it finds that are out  
of date. It is worth spending time going through your style sheet to ensure that it 
does not already include vendor prefixes—if it does, these need to be removed.

We can remove them manually, or a more effective route is to use the postcss-
remove-prefixes plugin, available from https://github.com/johnotander/
postcss-remove-prefixes. We can add it to our Gulp task file, or run it directly 
from the command line. The key here is to complete the removal first, so that 
Autoprefixer can then be used to manage vendor prefixes.

WordPress already uses Autoprefixer to manage vendor prefixes—you can see 
evidence of it in the Grunt file at https://core.trac.wordpress.org/browser/
trunk/Gruntfile.js. Granted, it is using Grunt, but the process is very similar 
for those of you using Gulp or one of the other task runners available that are 
compatible with PostCSS:

http://www.caniuse.com
https://github.com/johnotander/postcss-remove-prefixes
https://github.com/johnotander/postcss-remove-prefixes
https://core.trac.wordpress.org/browser/trunk/Gruntfile.js
https://core.trac.wordpress.org/browser/trunk/Gruntfile.js


Mixing Preprocessors

[ 330 ]

Although setting up Autoprefixer in our Gulp task file is very easy—at least the 
basics—it will only be successful if we spend time removing any vendor prefixes that 
can then be added automatically at compilation. The postcss-remove-prefixes 
plugin will remove simple examples such as the following one, so that we are left 
with unprefixed versions that Autoprefixer can then update during compilation:

The final core task we should perform is to check our code for consistency—by now, 
this should be an all-too familiar task, as we've already set up a suitable task from 
earlier demos that can easily be reused for compiling WordPress themes. It's time 
to revisit this task. To ensure it works correctly, we will need to amend the settings 
slightly, so let's cover that now.

Checking our code for consistency
If we take a look at the Gulp task file we saved at the start of these changes, we 
should see this configuration object:

A little further down is the task, there are two changes here: we've hardcoded the 
destination file, and the order which has been adjusted, to allow for the presence 
of the pxrem task. The indentation setting has also been changed within the 
configuration object—when compiled, the style sheet uses tabs for indentation.

This will throw up a host of warnings, we can either manually alter 3000+ entries, 
or alter how the indentation is checked. Hopefully it's a no-brainer as to which we 
would prefer to do, at least in the short term!



Chapter 12

[ 331 ]

Leaving aside these two changes, the remainder of the linting task has not changed:

Okay, let's change tack: there is one more core task which we should run, which 
is to minify our code. We've already used it in a number of demos, but let's take a 
moment to just revisit it within the context of compiling WordPress themes.

Minifying our code
If we had to rank the top four key tasks that could be performed using PostCSS, then 
this next task should definitely be at the top of that list. Minifying our code is key to 
conserving bandwidth usage—WordPress themes are no lightweights!

Our Gulp file already has this built in: the package.json file will have the appropriate 
reference set. If we take a look at the task file in more detail, we should see something 
akin to this:

Looks familiar? It should—it's an almost direct copy of the existing task we've 
used from earlier demos. We've switched off autoprefixer, as this is being used 
elsewhere in our Gulp file.

Let's move on. WordPress uses SASS as its main pre-processor; we could use the 
Pleeease library to compile both SASS and PostCSS code, but a cleaner option is to 
use the PreCSS library. This abstracts support for a number of plugins that emulate 
SASS code (but without the SASS baggage, so to speak). Let's dive in and take a look 
at this in more detail.



Mixing Preprocessors

[ 332 ]

Creating variables
One of the key features of SASS (and other processors) is the ability to use variables as 
placeholders for values—these are transformed into valid CSS styles at compilation.

Why use them, I hear you ask? Simple, if you decide to change a font family, or color, 
do you want to wade through thousands of lines of code to update any instance 
where it has been used? I would hope the answer is no—and quite rightly so: we 
have better things to do! One of those, is to install the plugin that will add variable 
support in the form of PreCSS.

We've already installed PreCSS from an earlier demo, so all that remains to do is to 
ensure it is added to our Gulp task file accordingly (it's already in ours, and in the 
accompanying package.json file):

The real work comes in changing our style sheet—let's take a look at what is required:

1.	 First, we need to create a file to store our variables—go ahead and create a 
blank file in the css subfolder under the src folder at the root of our project 
area, and label it variables.css.

2.	 Open up the variables.css file. Go ahead and add these values:
/**
 * 0 - Variables
 */

 /**
 * 0.1 - Colors
 */
$lightgray: #d1d1d1;
$almostblack: #1a1a1a;
$verydarkgray: #686868;
$white: #ffffff;
$verylightgray: #f7f7f7;
$strongblue: #007acc;



Chapter 12

[ 333 ]

/**
 * 0.2 - Fonts
 */
$Monserrat: Montserrat, "Helvetica Neue", sans-serif;
$OpenSans: "Open Sans", sans-serif;
$Merriweather: Merriweather, Georgia, serif;
$Inconsolata: Inconsolata, monospace;

/**
 * 0.3 - Font Sizes
 */
$baseSize: 16px;

3.	 Save the file, if we take a look back at Splitting our style sheet, you will notice 
that we've already included a link to it from our master style sheet:

4.	 Values from this file will replace placeholders within our code, to produce 
valid CSS.



Mixing Preprocessors

[ 334 ]

5.	 The next task is a necessary evil, we have to work our way through each 
style sheet to be imported, and replace existing values with the variable 
equivalents. This screenshot shows a part example—here, the font-family 
value has been updated, but the border value has yet to be changed:

6.	 Once each file has been changed, then save each, ready for the next exercise.

There is no easy way to get around it, but altering WordPress theme style sheets can 
require lots of patience! The best way to manage it is to use your editor's search and 
replace function— editors such as Sublime Text 3 (the author's editor of preference) 
have a very useful facility to replace text in multiple files; making use of this will 
help reduce the manual effort required to update each file.

Adding support for rem units
This next task is one that is likely to cause debate—altering our code to use rem 
units, with pixel fallback added automatically.

Some developers claim that pixel values work just as well; others say that it all 
depends on where you need to specify a value, as to which unit of measure to use. 
Either way, we can use PostCSS to add pixel fall-back support automatically. The 
source for this plugin is available from https://github.com/gummesson/gulp-
pixrem. Let's explore what is needed to add support for rem units:

1.	 Open up a Node.js command prompt session, or if the one from the previous 
session is still available, then revert to it.

2.	 Ensure that the working folder is set to the root of our project folder, then at 
the prompt enter this command and press Enter:
npm install gulp-pixrem --save-dev

3.	 Gulp will go away and install the plugin—wait for it to complete  
before continuing.



Chapter 12

[ 335 ]

4.	 We already have our Gulp task file in place—if we look at it in detail, we can 
see it being called at line 39:

At this point, we have everything in place - the next task is to work our way through 
the various style sheets that we've created, and replace any instance of pixel values 
with rem equivalents.

This is a thankless but necessary task—the plugin works by adding pixel fallback 
values for any instances of rem units that it finds within our code. It is up to us to 
do as much or as little as we want, in terms of changing values—it is worth making 
some changes to ensure that the code compiles, but the remaining changes can be 
done over time.

When compiling the code, we will end up with code similar to this example—this 
extract comes from the Widgets section (section 10):

It's easy to simply convert our style sheet to use pixel fallback support—the key here 
is that we need to decide where we want to be using rem unit support, and where 
existing values such as pixels or em units would be preferable.

Moving on, there are two more tasks we can set up as part of our compilation 
process—how about mimicking the ability to nest styles from SASS, or creating mini 
loops to automate generating certain styles? Don't worry if this is not something that 
you're familiar with—let's dive in and see what these mean in action.



Mixing Preprocessors

[ 336 ]

Nesting rules in our style sheet
The nesting of styles is a common feature when using processors such as SASS—if 
we have a bunch of styles that have very similar selectors, then it creates a degree  
of unwanted duplication.

We could stick with this duplication, but a more sensible option is to take the core 
part of the selector, then nest descendants within that block—this example is taken 
from the typography.css file:

The idea is to avoid having to write the same duplicated parent styles—we can 
concentrate on the children instead! While the code may look longer, it is definitely 
easier to read; we can group together styles that have a common parent.

The technique is easy to pick up, but can be deceptively hard to get right; if you are 
not familiar with it, then I would recommend taking a look at my two books on SASS 
SASS Essentials and SASS CSS How-to, available at https://www.packtpub.com/.

https://www.packtpub.com/


Chapter 12

[ 337 ]

Once compiled, the code will appear as normal CSS. There's one thing to note, 
though: resist the temptation to nest everything; nesting is really best kept to  
where you can see a real difference in the amount of code used!

Looping through styles
There is one more change we can make to our code—take a look at the media.css 
file that we created earlier in this chapter, in particular around lines 158 to the end:

I can already hear the next questions coming, what is that meant to be, and why are 
we using what looks like a programming loop in our code? In this instance, we're 
borrowing a principle from SASS, namely creating loops; this, coupled with string 
interpolation allows us to create the rules automatically.

String interpolation is creating a placeholder in our code, 
which will be transformed with values at compilation.

When the code is compiled, this is how the code will look:

It's a more advanced principle to grasp, but certainly one worth spending time getting 
up to speed—if applied correctly, it can save a lot of time with creating styles!

Let's change tack at this point—we've covered a number of concepts that will help 
get you started; there are a few more ideas that we can follow up at a later date,  
once the basics are in place. Let's take a moment to consider these in more detail.



Mixing Preprocessors

[ 338 ]

Considering future possible ideas
Over the last few pages, we've covered a number of areas where PostCSS can be used 
to help better manage our WordPress style sheets. It's important to bear in mind that 
there are no hard and fast rules on what should be used, but that each style sheet will 
have its own requirements.

The options we've covered only scratch the surface of what is possible—for those of 
you who are familiar with SASS, you may well be asking why we didn't use SASS 
mixins, for example. The simple reason is that there is nothing stopping us from 
doing so: it was all about providing options that give us a quick and easy win at the 
conversion stage.

Let's pause for a moment and consider some other ideas that will help get you 
started on updating our style sheet:

•	 Adding mixins: This is the obvious choice, but one that needs planning; this 
will be all about creating blocks of code that can be reused at will throughout 
our code.

•	 Color fallback: Although not part of the PreCSS package we've been using  
to date, color fallback is another option to consider. The core WordPress 
themes use standard HEX notation; we can update it to use RGB equivalents 
and use a PostCSS plugin to add in HEX values. If we prefer, we can even 
use a plugin such as postcss-rgba-hex to convert from using RGBA colors  
to plain HEX—you may prefer working with the former, or have processes 
that require the use of the former format.

•	 Font support: How about incorporating the font-magician plugin for 
PostCSS? If we look at the variables file created earlier, it will contain a 
number of fonts that are not standard (at least to Windows); it means that  
our WordPress theme will look a little plain, to say the least! Fortunately,  
we can use the font-magician plugin to provide font-face support for the non-
standard fonts; most, such as Inconsolata, Open Sans, and Merriweather, are 
available from the Font Squirrel website at http://www.fontsquirrel.com.

We've picked on just three ways to help extend your theme—with the use of a task 
runner such as Gulp, we are really only limited by the extent of what is available as 
plugins for Gulp. We don't have to limit ourselves to PostCSS plugins only; this will 
restrict what we can do, and mean that we're missing out on useful functionality.  
The key here is to consider what changes you want to make, and plan how and  
when you will make them—the process should be iterative, which will help with 
managing the changes!

http://www.fontsquirrel.com


Chapter 12

[ 339 ]

Compiling and testing the changes
Over the last few pages, we've covered a number of key tasks that would be perfect 
for compiling WordPress themes.

In an ideal world, we would automate as much as possible, or at least tasks where  
it would make sense—to remove tasks that give little value when done manually,  
for example. The key, though, is to give plenty of thought as to which order these  
tasks should be carried out; getting the order right can be the difference between 
receiving a valid style sheet file ready for use, and getting…well, what can only be 
classed as rubbish! Yes, that might seem a little extreme, but if the task order isn't 
right, then you can get compiled files that break your theme.

Leaving this aside, let's take a look at compiling our code—for the purposes of this 
exercise, we will use a copy of the pre-edited files that are available in the code 
download that accompanies this book.

Before continuing, you may like to save copies of the source files 
you've created in the src folder that sits at the root of our project 
area, for safe keeping.

To get a feel for what we will be discussing, this is a screenshot excerpt of the Twenty 
Sixteen theme in action:



Mixing Preprocessors

[ 340 ]

Let's make a start:

1.	 We'll start by downloading and extracting a copy of the src folder that  
is under T68 - converting a WordPress theme in the code download; 
save this to the root of our project area. Make sure there are no other files 
present in this folder first!

2.	 Next, make sure that the gulpfile.js and package.json files that we 
downloaded earlier are still present—we will need both during compilation.

3.	 Go ahead and fire up a Node.js command prompt session, then change the 
working folder to the root of our project area.

4.	 At the prompt, enter gulp then press Enter; Gulp will run through each  
task and spit out a compiled theme file in the dest folder at the root of  
our project area.

5.	 Copy this to the root of the Twenty Sixteen folder, which can be found at 
C:\wamp\www\wordpress\wp-content\themes\twentysixteen—if you  
use Linux or OSX, then please alter the path accordingly.

We now have a fully compiled style sheet! There are some points of note though—for 
example, the order of tasks that we covered earlier in this section doesn't match the 
order shown in the gulpfile.js file. Let's cover these points now:

•	 The type of tasks you include can be split into two groups—those that I 
would describe as core, such as minifying files or providing source maps; 
these can be done for any sites. The second ones are custom tasks—these 
will be specific for each site, and might include requests to compile variables 
or nested code. It's up to you to plan how these are created, so that you can 
reuse them for future projects.

•	 There is no right or wrong answer as to what should be included in a Gulp 
task file; the tasks you want to include, and the order they are called, will 
ultimately be determined by your own requirements. In our example, we 
used this order, from top to bottom:

Name of task Purpose
styles This compiled the raw code—merging the rules into one 

file, running PreCSS through the code, and updating 
vendor prefixes where needed.

pxrem With the base code in place, we can now run through it 
and add pixel fallback for rem units, where appropriate.

lint In this task, we're checking the compiled code for 
consistency.



Chapter 12

[ 341 ]

Name of task Purpose
rename We then rename our base compiled file to have a .min.

css extension; this is in preparation for minifying our 
code.

sourcemap At this stage, we want to produce a source map, so this 
task kicks in to create a suitable map file for us.

minifyCSS The final task is to minify the CSS style sheet file—it 
already has the right extension in place.

We've done the hard work—it's time to see the fruits of our labor in action. The style 
sheet is now in the theme folder within our WordPress installation—all that remains 
is to test it! We could get into using automated testing facilities such as Quixote 
(available from http://www.quixote-css.com/), but this would fall outside of the 
scope of this book. Instead, we can simply launch our local WordPress installation 
and check to see what it looks like—this is a useful way to gauge if there is anything 
amiss with our theme.

For our demo, we used the Twenty Sixteen theme. Out of the box, this is a very 
bare theme. Although this may not seem much, we've done most of the hard work 
needed to implement a PostCSS workflow when working with WordPress. A key 
measure of success is that the base theme should be identical to the original version 
that came with WordPress. If this is the case, it then means we can now concentrate 
on manipulating our style sheet over a period of time to further develop the styles 
within this (or any other) theme.

Summary
The success of using PostCSS will be partially determined by how well your code 
comes across from existing processors such as SASS—this will come from planning 
and taking an iterative approach to converting code. We've covered a lot of tips and 
ideas to help with the process, so let's take a moment to review what we've learnt.

We kicked off with a look at exploring the conversion process, and covered some of 
the plugins we might use to help with the process. We then moved on to covering 
the Pleeease library, with a look at installing and configuring it before using it in a 
quick demo.

Next up came a quick discussion about why Pleeease may not be as useful as we 
first thought; we then covered using the PreCSS library as a better alternative for 
transitioning to PostCSS.

http://www.quixote-css.com/


Mixing Preprocessors

[ 342 ]

We then explored using PreCSS in some depth by working through making changes 
to a standard theme for WordPress—we discovered some of the tips and tricks we can 
use to score quick wins when making the initial changes. We then rounded out the 
chapter with a look at compiling our code, and checking it in a standard WordPress 
installation to ensure it is still working as we would expect to see it operating.

Phew, we've covered a lot! With careful planning and using an iterative approach, 
we can transition from using processors such as SASS, and move to using PostCSS. 
However, sometimes our code may not work as expected—there are a few places 
where our code may trip up, so we'll cover them in the next chapter.



[ 343 ]

Troubleshooting  
PostCSS Issues

For many readers, PostCSS can be a little confusing—after all, it's still a relatively new 
library that is unlike other processors! Throughout the book, we've been on a journey 
of discovery—we'll finish with a look at some tips and tricks for best practice, along 
with some pointers for troubleshooting if we should find ourselves stuck.

Throughout the course of this chapter, we will take a look at some common issues 
you might experience when creating PostCSS processors. We'll see how easy it is to 
fix them, and discover what to do next if issues are not as easy to solve as we might 
have expected…

We will cover a number of topics throughout this chapter, which will include  
the following:

•	 Fixing some common issues
•	 Exploring some common issues in detail
•	 Getting help from others

Let's make a start!



Troubleshooting PostCSS Issues

[ 344 ]

Fixing some common issues
In an ideal world, any processor we build will work flawlessly, irrespective of which 
task runner or method we use to process each PostCSS task. Our aim is to end up 
with one or more successfully compiled files, as shown in this example:

But as we all know, not everything goes well 100% of the time; if it did, we would 
either be exceptionally lucky, or things would begin to get mundane! 

Being a pragmatist, I suspect most people will have some form of issue crop up as 
they get to grips with PostCSS; throughout the course of this chapter we will explore 
some of the more common issues, how to resolve them, and bring together some 
of the tips and tricks we can use to help make our lives a little easier when using 
PostCSS. Let's begin with a look at some of the more common issues we might face, 
in more detail. 

Exploring some common issues
PostCSS as a processing system is easy to set up and use, but occasionally we may 
come across issues during development. The issues will vary, of course, but to  
help you along, we can explore some of the more common issues we may face 
during development. 

For the purposes of this chapter, we will assume that the Gulp task runner has been 
used—you will likely see similar issues with other task runners such as Grunt or 
Broccoli. It's time to explore some of these issues in more detail.



Chapter 13

[ 345 ]

Not compatible with your operating system…
The beauty of PostCSS is that we can install any one of dozens of plugins available—
if we're using a task runner such as Gulp, then we can easily extend this to cover the 
vast array available for use.

In most instances, plugins will install without a hitch; you may find that you see this 
appear occasionally:

The warning message that is of most importance to us is not the ENOENT messages, 
but this one:

notsup: Not compatible with your operating system or architecture: 
fsevents@1.0.6

It should be noted that this is only a warning, and not an error (as such)—it is caused 
by the use of fsevents, which is MacOSX only and will not work on Windows or 
Linux environments. In most cases this can be ignored, although it would be wise to 
test your processor to ensure it has not had any detrimental impact on your code.

This error is not limited to fsevents—it can apply to any package, 
which is not supported in the environment you use.

Task '<name of task>' is not in your gulpfile
We've created a Gulp task file with a number of tasks within, and run it to compile 
our style sheet. Instead of getting our processed files, we end up with this message:



Troubleshooting PostCSS Issues

[ 346 ]

This is caused by the Gulp task not being present in the gulp file—in this declaration 
example, we're calling the rename task:

But a look through the gulp file shows that there is no rename task in sight:



Chapter 13

[ 347 ]

This is a simple fix—just rename the task so that the names match, and retry  
the compilation. Note, though—if more than one task is incorrectly named,  
then the process will fail but will only show the name of the first one that is  
at fault. Make sure that each task name is entered correctly in the file to ensure 
successful compilation.

Cannot find module '<name of plugin>'
If any error is likely to catch us out, then it is this one—let me explain:

As you get to grips with installing PostCSS plugins, you will see many that use the 
naming convention postcss-<name of plugin>. It seems a sensible proposition, 
but beware – not every PostCSS plugin uses this naming convention! 

A great example is Rucksack – one would expect to use postcss-rucksack (and yes, 
that includes me!), but we will get this error if we do:

It turns out that Rucksack is one of those examples that doesn't use the same naming 
convention that many people would expect it to use. Instead, it uses rucksack-css, 
as the name we would expect to use had already been taken.



Troubleshooting PostCSS Issues

[ 348 ]

This is one of those instances where it pays to read the documentation, if only to save a 
lot of embarrassment later:

It clearly states what name to use when installing the plugin! Yes, it happens to the 
best of us…

ReferenceError: <name of task> is not defined
Let us assume that we have a series of tasks in our gulp file, but for some unknown 
reason, we're getting this error when we compile our code:



Chapter 13

[ 349 ]

What could be causing it? Well, there are at least two possible causes:

•	 We include the plugin within the task itself, but forget to include a reference 
to it within the declarations at the top of our file

•	 We do manage to include both the plugin within the task and its associated 
declaration, but somehow manage not to give the same declaration name

The fix for this is to make sure that when we include the declaration at the top of the 
Gulp task file, that the same name is used when calling the task later in the file.

Please provide array of postcss processors!
This next error is one that can catch anyone out, but is easy to fix—as time goes by 
you will develop your own processor; you will likely reach a point where you start 
to move some of the PostCSS processor tasks out from the main PostCSS call into 
their own task.

Imagine that you have a PostCSS task similar to this:

There is a natural temptation to split this task into separate ones; after all, I extolled 
the virtues of keeping a 1:1 relationship between the task name (that is, styles), and 
what it does in the task! If, however, you take things a little too far, and think that 
you don't need to have a PostCSS processor in the task, then you may come unstuck, 
and land up with an error similar to this screenshot:



Troubleshooting PostCSS Issues

[ 350 ]

A quick check in your Gulp task file will likely show something akin to this:

We have a postcss task, but without any processors within it! Although it is tempting 
to rework processors to ensure we maintain that 1:1 relationship, we must always 
leave one processor in the postcss() task, to ensure it operates correctly.

You will hear talk of the term processor used in several different 
ways—they can equally apply as a generic term for what is our 
Gulp task file. It can also apply to the processor tasks that should 
be added to any postcss() task.

Entries failing to appear in the package.json 
file
This next error is a little trickier to catch, but the fix for it is easy—over time, you will 
likely make changes to your Gulp task file; this of course means that new plugins 
will need to be added from another package.json file (if already installed), or added 
afresh, if they haven't already been installed.

As the Gulp task file is just a plain text file, we can edit it in any text editor—my 
personal favorite is Sublime Text 3 (http://www.sublimetext.com/3), but any will 
suffice. Notepad isn't a good one, as it will fail to handle the line-endings correctly!

This aside, if we edit our package.json file to remove an entry, then add a new one, 
we might come across this warning:

http://www.sublimetext.com/3


Chapter 13

[ 351 ]

The cause of this little gem is a really irritating one—it's amazing how one single 
character can cause all these warnings! The culprit is the extraneous comma at the 
end of a line where there isn't another plugin listed immediately after, as shown  
on line 27 in this screenshot:

If we remove the comma and retry the installation, we will soon see that the error 
has disappeared.

Output of compiling results is not as expected
This final error can be deceptive—it's not strictly speaking even an error! Imagine 
we've created a killer processor application using Node and Gulp; it contains 
a number of tasks similar to the ones we created earlier, and have since used 
throughout this book.

We enter the relevant command and hit Enter. PostCSS starts the compilation:  
so far so good. A look in the dest folder shows this—where's our minified file  
and source map?



Troubleshooting PostCSS Issues

[ 352 ]

But hold on – where's the error? A check of the output from the compilation process 
shows no error, so what gives?

This little oddity is caused by miscalculating the order in which tasks should run—
although the screenshot clearly says an error, it's not an error in the true sense.  
Let me explain.

The key to a successful compilation process (and by default, a working processor), lies 
in the need to make sure that each task we run is fired in the right order. To generate 
this error, I removed the constraint on our rename task in the Gulp file from the T45 – 
converting to use Rucksack demo, thus:

gulp.task('rename', function () {
  return gulp.src('dest/*.css')
    .pipe(postcss([ cssnano() ]))
    .pipe(rename('style.min.css'))
    .pipe(gulp.dest("dest/"));
});

The task looks perfectly acceptable, but introduces a problem—instead of just one 
starting task, we now have two! 

The net result of this is that the styles task is run first (as it is called first in the default 
task from line 36). It's quickly followed by the rename task (no constraint on it), then 
sourcemap and lint-styles (following the constraints set against each task).



Chapter 13

[ 353 ]

We end up with just one compiled file in the dest folder—the rename and styles 
tasks are both run at the same time; as the latter isn't completed, the former can't 
produce any content!

Let's move on. If all else fails, and you find problems you can't fix, then it is time to 
seek help….here's a quick rundown of the options available to you as a beginner to 
using PostCSS.

Getting help from others
At this stage, you've tried fixing an issue, but failed – you're not quite sure where to 
go next…

Don't worry, there are plenty of people who have been there, and needed help! A 
good start is the main documentation, which is available at https://github.com/
postcss/postcss/tree/master/docs. If this draws a blank, then Google is a good 
option; in addition, there are a couple of other options that may help.

Logging issues at Stack Overflow
If you spend time researching Google and don't find anyone who has had this 
problem before, then you can try logging a question on Stack Overflow:

https://github.com/postcss/postcss/tree/master/docs
https://github.com/postcss/postcss/tree/master/docs


Troubleshooting PostCSS Issues

[ 354 ]

The URL is http://stackoverflow.com/questions/tagged/postcss—this lists 
all of the questions tagged with the name postcss, and is open to anyone to suggest 
a course of action or hopefully a tip that will get you back in business. If you do find 
yourself logging an issue, please try where possible to give details of the system you 
use (Windows, Mac, or Linux), any screenshots or details of the error, and the steps 
you were taking to arrive at the error.

Finding a bug with PostCSS
Taking things a step further, you can also log a development request, or an issue  
that requires a change to the code—to do this, please browse to the issues log on  
the GitHub site, at https://github.com/postcss/postcss/issues:

There are a few things to bear in mind:

•	 Don't be alarmed if you are advised to log the issue on the plugin's website, 
and not in GitHub for PostCSS – many issues are not as a result of a problem 
in PostCSS, but in the plugin itself.

http://stackoverflow.com/questions/tagged/postcss
https://github.com/postcss/postcss/issues


Chapter 13

[ 355 ]

•	 It helps to show a copy of your task runner's task file and package.json, just 
in case—some of the issues that people experience are as a result of (known 
or unknown) compatibility issues between plugins, or where a certain order 
must be followed to ensure plugins can be used.

•	 PostCSS plugin developers frequently develop on the Apple Mac or Linux 
platforms—it means that some errors you may see are as a result of using a 
platform that doesn't support one or more commands in the plugin. 

•	 If you do come across problems when using one or more plugins, try to strip 
back your processor tasks to those that include the plugins that are causing 
issues. Even if this doesn't eliminate the issue, it will help narrow the cause 
and avoid unnecessary checks by others during the troubleshooting process.

•	 The license used by PostCSS is the MIT license—it effectively means that you 
can do as you like with the software, as long as the copyright notice remains 
with the library. 

•	 It's worth noting that CodePen supports the use of PostCSS—you may find it 
useful to try out code online (and have it compile automatically), rather than 
running your processor manually. CodePen only supports a limited range of 
plugins, so it won't be useful for all occasions—but hopefully some!

For more details, take a look at this blog posting on the 
CodePen site: https://blog.codepen.io/2015/07/14/
postcss-now-supported-on-codepen/.

•	 The downside of open source software (and plugins created for PostCSS) is 
the varying levels of support offered by plugin developers—whilst support 
for the core system is very good, you may find support for individual plugins 
to not be quite so active! Don't rely on plugin developers to respond quickly 
if you have a critical issue—please log it via Stack Overflow first, before 
raising it on the plugin site. The latter should be used if the issue is identified 
to require further development.

With these in mind, good luck! PostCSS is fast gaining ground—with some big 
name companies using it, such as WordPress and Google, it is sure to become very 
popular. It would be a shame to give up on something if you come across a problem 
with using a plugin!

Remember, if one plugin doesn't work, then look around—others may well be 
available that can take their place. It's a dog eat dog world, where those plugins that 
are not supported are likely to fall by the wayside, leaving those where support is 
active and problems are resolved efficiently and promptly.

https://blog.codepen.io/2015/07/14/postcss-now-supported-on-codepen/
https://blog.codepen.io/2015/07/14/postcss-now-supported-on-codepen/


Troubleshooting PostCSS Issues

[ 356 ]

Summary
When learning a new topic, it is highly likely that we will have questions—throughout 
the course of this chapter, we've looked at some of the common errors you might 
experience, and listed solutions to help get back on track. We then explored what 
might happen if you have issues that can't easily be resolved with help from other 
developers.

Okay, let's move on: we've covered a lot of ground throughout the book, so it's time 
to look forward and see what CSS may bring. The great thing about PostCSS is that 
plugins already exist that allow us to use tomorrow's features today—we'll cover this 
and more in the next chapter.



[ 357 ]

Preparing for the Future
Mastering CSS is an essential skill—the technology is continually evolving, so in 
order to succeed, we must keep abreast of changes. PostCSS is a great tool that 
allows us to not only use CSS rules of today, but work with rules of the future.  
In this chapter, we'll take a look at some of the CSS syntax that makes up what  
is frequently referred to as CSS4, and how we can provide equivalent support  
using current CSS3 classes.

We will cover a number of topics throughout this chapter, which will include  
the following:

•	 Understanding some of the risks of supporting future CSS standards today
•	 Exploring using cssnext to provide support for future CSS syntax
•	 Working with some of the existing plugins to convert CSS4 standards into 

current CSS3 code
•	 Examining how we can change existing plugins to add more support for new 

CSS4 selectors

Let's make a start!

Supporting CSS4 styles today
Style sheets have been in existence for over 35 years, with the original version of 
what we now know as CSS dating from the days of SGML in the 1980s.

We have come a long way since the original CSS standard was released in 1996—over 
the last few years, the standard for CSS4 has been developed, with new features such 
as :not or :matches pseudo-classes to better target elements, custom properties  
(or variables), and location-based links, such as local-link. Over the course of the 
next few pages, we're going to explore a few of these CSS4 features, and see how we 
can introduce support for them using current CSS3 equivalent code.



Preparing for the Future

[ 358 ]

There is one small thing that we need to clear up first—CSS4…does not exist. What? 
I hear you say. Surely it must, I've seen plenty online about it! Yes, it is true: CSS4 as 
a standard does exist, but not as a single unique entity. Let me explain.

Previous iterations of CSS have been based around creating a single global standard, 
irrespective of how browser manufacturers decide to support elements that make up 
standard. It's for this reason that we had to rely heavily on vendor prefixes for some 
years, we still do, but most vendors have since removed prefixes from many of the 
more common attributes such as border-radius or box-shadow.

The key difference here, though, is that a decision was taken to deliver CSS4 as a 
series of modules—CSS as a standard has become very heavy, with the resulting 
increase in time required for development becoming unsustainable. This is why  
we will see talk of CSS Modules, such as Custom Properties or Selectors—these can 
evolve as independent standards to a point that we may no longer refer to CSS as 
version X, but just CSS.

Any reference to CSS4 within this chapter is purely to identify 
next generation styles we can implement using PostCSS plugins 
and CSS3 current standards.

Okay, this aside, it's time to get stuck in: PostCSS offers good support for some of  
the more common elements of we collectively call CSS4. Let's take a look to see  
what is available.

Converting CSS4 styles for use
The idea behind basing CSS4 around a series of modules was aimed at making it 
easier (and ultimately quicker) to update each standard; it does mean that modules 
will be in a state of flux, at least for the time being!

This said, there are some clear styles we can recreate using current CSS3 styles— 
one such example is CSS4 Selectors. Even though it is still in draft at the time  
of writing, a PostCSS plugin is available in the form of postcss-selector-not 
(from https://github.com/postcss/postcss-selector-not). A sister style  
that is also available as a PostCSS plugin is postcss-selector-matches (available 
from https://github.com/postcss/postcss-selector-matches)—these two  
are intended to replicate the :not negation and :matches pseudo-selectors that  
are coming as part of the new CSS4 standard.

https://github.com/postcss/postcss-selector-not
https://github.com/postcss/postcss-selector-matches


Chapter 14

[ 359 ]

For more information on individual CSS4 selectors, take a look at the 
full list available at http://css4-selectors.com/selectors/. 
This will also give you an indication of available browser  
support—this list will be updated with changes as selectors  
are ratified for use.

Looking further afield, there are a small handful of plugins that provide support for 
upcoming CSS4 standards—in addition to the :matches and :not plugins, we can 
use any of the following:

Name of plugin Purpose of plugin
mq4-hover-shim Currently in beta, this plugin provides limited support for the 

Media Queries Level 4 hover media feature—it is available 
from https://github.com/twbs/mq4-hover-shim.

host Working with the Shadow DOM? If you need to make :host 
selectors work properly with pseudo-classes, then this plugin 
is for you—the source is available at https://github.com/
vitkarpov/postcss-host.

pseudo-class-any-
link

How many times have you had to add pseudo-selectors such as 
:link or :visited to your code? This PostCSS plugin fixes 
that—we can now use the proposed :any-link pseudo-class 
in CSS.
Head over to https://github.com/jonathantneal/
postcss-pseudo-class-any-link for more details.

postcss-initial The PostCSS Initial plugin resets a specified property's value 
to what it was initially set in code (and not by the browser). 
For more details, head over to https://github.com/
maximkoretskiy/postcss-initial.

font-variant This plugin transforms font-variant settings to the 
equivalent font-feature-settings value—it is designed 
for special cases, when it is not possible to reproduce using 
normal means, for example, a slashed zero to differentiate 
between a 0 and an O—the former equates to zero.
The source for the plugin is available at https://github.
com/postcss/postcss-font-variant.

postcss-input-
range

This plugin allows us to style input range elements. We 
need to provide unprefixed CSS styles, and the plugin will 
automatically handle support for all of the various prefixes 
required to allow this element to be styled across different 
browsers.
The source for this plugin can be downloaded from https://
github.com/jonathantneal/postcss-input-range.

http://css4-selectors.com/selectors/
https://github.com/twbs/mq4-hover-shim
https://github.com/vitkarpov/postcss-host
https://github.com/vitkarpov/postcss-host
https://github.com/jonathantneal/postcss-pseudo-class-any-link
https://github.com/jonathantneal/postcss-pseudo-class-any-link
https://github.com/maximkoretskiy/postcss-initial
https://github.com/maximkoretskiy/postcss-initial
https://github.com/postcss/postcss-font-variant
https://github.com/postcss/postcss-font-variant
https://github.com/jonathantneal/postcss-input-range
https://github.com/jonathantneal/postcss-input-range


Preparing for the Future

[ 360 ]

Okay, let's move on: I feel a demo coming! Let's take a look at using the postcss-
selector-matches property, to see how we can use it in action.

Validating e-mail addresses
How many times have you come across e-mail submissions from your site, where 
you aren't 100% sure your visitors have left a valid e-mail address?

If we leave aside exact numbers, it goes without saying that any requests submitted 
from any website must have a valid e-mail address; with the plethora of top level 
domains that are now available, it's even more critical that they be valid!

To help with this, we can use the :invalid and :valid attributes to style <input> 
fields—whilst they may not be able to tell if .design is a valid TLD (and yes, it is), 
they can at least cope with the basics of ensuring that you have a TLD present, an @ 
symbol, and the name of a recipient.

You can perform a test in your browser to gauge support for 
these and other CSS4 selectors—check out the CSS4 Selectors 
site, at http://css4-selectors.com/.

Let's knock up a simple example using the postcss-selectors-matches plugin for 
PostCSS, to see how we can style such fields:

1.	 We'll start as always by firing up a Node.js command prompt session,  
then changing the working folder to our project area.

2.	 At the prompt, go ahead and enter this command, then press Enter:
npm install postcss-selector-matches --save-dev

Keep the window open, we will need it shortly. If all is well, we should see 
this appear:

http://css4-selectors.com/


Chapter 14

[ 361 ]

3.	 Next, extract a copy of the T69 - matches pseudo-selector folder from 
the code download that accompanies this book, and save it to the root of  
our project area.

4.	 Copy matches – pre-compile.css from the css—completed version folder 
within T69 - matches pseudo-selector, and save it to the src folder at 
the root of our project area.

5.	 Copy the gulpfile.js and package.json files from the T69 - matches 
pseudo-selector folder to the root of our project area, and rename it 
matches.css

6.	 Revert to the Node.js command prompt session from earlier, then at the 
prompt enter gulp and press Enter.

7.	 If all is well, PostCSS will go away and compile our code into valid CSS—we 
should see the now familiar files appear in the dest folder.

8.	 Copy the contents of this dest folder to the css folder underneath T69 - 
matches pseudo-selector, then try previewing the matches.html file  
in a browser. If all is well, we should see something akin to this:

It's a simple demo, and yes, somewhat contrived. At this level, it wouldn't be 
necessary to use :matches, as it ends up generating more code than is necessary!  
But it does show how easy it is to apply the technique, and have it provide valid  
CSS, as in the case of our example:

Okay, let's change tack: we will stay with the range theme for our next demo, but this 
time look at a more stylish example, where we can really go to town on transforming 
the appearance of our selected element.



Preparing for the Future

[ 362 ]

The range input element is one that has been traditionally hard to style, more often 
than not, we may end up resorting to using jQuery UI to change its appearance! Not 
so with CSS4—we can use a series of new CSS attributes to apply styles, without the 
use of any additional libraries. Let's take a look at this in more detail.

Supporting the new range input
A quick question, how many times have you had to create a site where you needed 
to choose a value, say from 1 to 100? Or pick a specific opacity of color, from almost 
transparent to completely opaque?

Okay, perhaps they're an odd couple of questions to ask, but the eagle-eyed should 
spot that I am of course referring to using sliders, which we can adjust to select a 
specific value. There are different ways to add these to a page, but which in the main 
will require some help to style, perhaps the most recognizable tool being jQuery UI!

This is fine if we need to use jQuery UI in our pages to provide other functionality, 
but what if we only needed it for the slider? It's a bit of overkill—thankfully, we can 
fix that with the use of the postcss-input-range plugin, available from https://
github.com/jonathantneal/postcss-input-range. It's time for that demo, so let's 
knock up a quick example of how one can be styled to represent a progress bar:

1.	 We'll start by installing the postcss-input-range plugin, for this, go ahead 
and fire up a Node.js command prompt, then change the working folder to 
our project area.

2.	 At the prompt, enter the following command, then press Enter:
npm install postcss-input-range --save-dev

If all is well, we should see something akin to this screenshot:

https://github.com/jonathantneal/postcss-input-range
https://github.com/jonathantneal/postcss-input-range


Chapter 14

[ 363 ]

3.	 Next, extract a copy of the T70 - using range input folder from the  
code download that accompanies this book. Go ahead and save it in our 
project area.

4.	 In the css folder of T70 - using range input, copy the range – pre-
compile.css file to the src folder of our project area, and rename it range.
css.

5.	 Copy the gulpfile.js and package.json files from the T70 - using 
range input folder to the root of our project area.

6.	 Revert to the Node.js command prompt window, then at the prompt enter 
gulp and press Enter.

7.	 Gulp will now run our compilation process, if all is well, we should see the 
now familiar style sheet files appear in the dest folder, along with a map 
file in the maps subfolder. Copy these to the css folder under T70 - using 
range input.

8.	 If all is well, we should see something akin to this screenshot when 
previewing the results in a browser:

There is nothing complicated in this demo, even though we've only scratched the 
surface of what is possible when styling the range element—for example, we can add 
datalists to define certain values to scroll through, such as specific times of the day.

Browser support is still limited, but for an idea of what is possible, check out  
http://demo.agektmr.com/datalist/; the CSS guru Chris Coyier also has a couple 
of articles on the use of range inputs on his site at http://www.css-tricks.com.

The real magic in our demo appears when we take a look at the compiled code—one 
of the key elements for styling a range input is the range-thumb attribute, which is 
the knob we use to select a value on the slider. Here are two examples of how our 
code now looks, with support added for Firefox:

http://demo.agektmr.com/datalist/
http://www.css-tricks.com


Preparing for the Future

[ 364 ]

This has support for Internet Explorer (which has been superseded by Edge):

When using this plugin, we don't have to worry about adding vendor prefixes—our 
original code contains just the unprefixed versions; the relevant prefixes will be 
added at compilation, until such time as they are no longer needed for styling our 
input element.

If you would like help with styling the new range input element, 
then check out http://danielstern.ca/range.css/—it's a 
useful tool!

Over the course of the last two demos, we've briefly scratched the surface of what 
is possible when using PostCSS—we've used the same format of Gulp task file to 
incorporate support for each plugin, which when run, has produced the requisite 
CSS style sheet for each demo. Nothing outrageous here, right? After all, it's followed 
the same principles we covered earlier, such as one plugin for one task…or can we  
do better?

Yes, by now you should know that I always like to go one better if I can. Remember 
how I said it is preferable to create tasks in our runner that worked on a one-to-one 
basis? Was each task in our (Gulp) file related to a specific plugin? Well, as someone 
once said, rules are meant to be broken—it's time to throw out the rulebook, and 
consider a different approach, at least for future syntax…

Supporting future syntax with cssnext
A key part of supporting CSS4 is the constant state of flux that we must deal with, 
until such time as modules have been standardized. If we maintained our current 
approach, it would entail constant updates of any plugins we decided to use that 
relate to CSS4 attributes—this is clearly not sustainable!

Instead, we can use a single plugin pack, in this case cssnext, to manage support for 
a range of new features. The beauty, though, is that all of the features are enabled by 
default, and will only kick in when needed in the code. There will of course come a 
time when new features are supported natively, at this point, we can simply discard 
the compilation process without impacting the final result.

http://danielstern.ca/range.css/


Chapter 14

[ 365 ]

It's worth taking the time to get to know cssnext—let's dive in and take a look in 
more detail.

Creating a site template with cssnext
The cssnext plugin is one of those exceptions to our guideline of one plugin per 
task; we call it using the plugin name, but in reality, it will perform a number of 
transformations at the same time.

The plugin is available from http://cssnext.io/. It is worth noting that an older 
version exists; we're using the newer version in this demo. The cssnext plugin was 
originally a complete system in its own right, before PostCSS became as popular as  
it is now.

The plugin contained options which didn't really belong to a plugin focused on the 
future of CSS, so the developers rewrote it to make cssnext simpler. At the same 
time, it was designed to be integrated into PostCSS, where we can use it at the same 
time as other plugins within our processor.

The plugin even has its own playground, which we can use to 
test if changes will produce the desired effect—check it out at 
http://cssnext.io/playground/.

Let's explore this plugin in more detail—we'll begin by installing it, before setting up 
code for our next demo.

Setting up our demo
For this next demo, we're going to set up a basic template that can be used for a 
site—it's not going to win any awards for style, but the aim here is to explore how 
easy it is to make the changes, not become top billing at the next awards ceremony! 
Let's dive in and take a look at what we need to do:

1.	 We'll start by firing up a Node.js command prompt session then changing  
the working folder to the root of our project area.

2.	 At the prompt, enter this command, then press Enter:
npm install postcss-cssnext --save-dev

http://cssnext.io/
http://cssnext.io/playground/


Preparing for the Future

[ 366 ]

If all is well, we should see something akin to this screenshot:

3.	 Next, go ahead and extract a copy of the T71 - working with cssnext 
folder from the code download that accompanies this book—save it to the 
root of our project area.

4.	 From the T71 - working with cssnext folder, save copies of the styles.css 
file to the src folder at the root of our project area, then package.json and 
gulpfile.js to the root of our project area.

5.	 Revert to the prompt we had open, then enter gulp and press Enter.
6.	 Gulp will go away and compile our file, when it has completed, we will see 

the now familiar files appear in the dest folder at the root of our project area.
7.	 Copy the contents of the dest folder at the root of our project area to the  

css folder within T71 - working with cssnext folder at the root of our 
project area.

8.	 Go ahead and preview sitepage.html from within the T71 - working 
with cssnext folder in a browser—if all is well, we should see something 
akin to this screenshot:



Chapter 14

[ 367 ]

We've now seen the template for our site—there are several places where we have 
made changes to take advantage of the power of cssnext. For this, go ahead and 
open up a copy of the file stylescss from within the css folder of T71 - working 
with cssnext folder that we saved to our project area—let's explore what changes 
have been made:

•	 Autoprefixer: The plugin covers support for providing vendor prefixes for 
any future styles; any in the base file have been removed, and will be added 
during compilation.

•	 Media query ranges / custom queries: Instead of using the existing format, 
which isn't always clear, we can begin to use >= or <= to better express the 
range that we're applying as part of our query. At the same time, we can use 
a custom query to define preset ranges at the top of our file, which can be 
used throughout the style sheet.

•	 Nesting: Fans of existing preprocessors such as SASS or Less will be familiar 
with the nesting principle; put simply, this allows us to nest styles inside 
each other. We can then adjust the selectors used for these rules, so that when 
compiled, each rule is transformed into valid CSS.

•	 Custom selectors: Staying with the preprocessor theme, we can create 
custom values at the top of our code, and apply them as appropriate 
throughout.

•	 #rrggbbaa colors: Traditionally, hex colors have been expressed as either 
three or six digit values; using cssnext, we can expand them to either 
four or eight digit values. The cssnext plugin will transpile them into 
standard RGBA values, with equivalent HEX values provided as a fallback 
mechanism.

•	 rem units: Traditionally, developers have used pixel values to apply sizes 
to elements or fonts. Pixel values don't respect user settings in a browser, so 
may not resize as expected. To work around this, em units were introduced; 
the math behind calculating em values was simplified with the introduction 
of rem units. Today, some developers argue that pixel values should reign 
supreme; the cssnext plugin provides both pixel and rem units, which can 
be used where supported by browsers.

At first thought, you might expect to have to include a number of plugins, or a 
detailed configuration object; not so! Instead, all we need in our Gulp task file is this:



Preparing for the Future

[ 368 ]

I've always been a keen fan of keeping things simple—the cssnext plugin is  
a perfect example! Whilst we may need to update the plugin regularly to keep 
abreast of changes, we don't need to change our Gulp file.

The plugin will simply transform those styles it finds that are supported by the 
plugin, and leave alone any not covered by the plugin. The beauty of this is that  
we can either let it run as is, or if we want disable functionality that is no longer 
needed, then we simply disable it within the configuration object:

cssnext(input, { 
  features: { customProperties: false }
})

To prove that the changes we made work, we've turned our (non-responsive) 
template from this:

…to this view, where our content clearly fits the smaller screen better:



Chapter 14

[ 369 ]

Even though it's only a small part of the changes made, is directly responsible for 
making our template responsive, it goes to show that incorporating cssnext into  
our processes is easier than you might think!

Okay, let's move on: we're going to take a look at a couple more plugins, but with 
a twist. We'll first look at using a plugin to provide support for a new color being 
introduced as part of CSS4, before using it as a basis for fixing a keyword issue that 
should have been fixed a long time ago!

Creating plugins to provide extra CSS4 
support
Throughout the course of this chapter, we've covered a number of plugins that 
handle support for the upcoming CSS4 standards, and explored how we can use  
the cssnext plugin pack to manage the transition to using these new styles.

There is more out there that we can do—the great thing about PostCSS is that we can 
absolutely write our own plugins to help bolster support for CSS4 attributes. To help 
prove this, over the next few pages we'll work our way through fixing some issues in 
CSS, and altering an existing CSS4 color plugin to add support for a different color; 
we'll start with adding a little color to our next demo, if you pardon the pun!



Preparing for the Future

[ 370 ]

Adding future color support to CSS
"She made it to six. For almost twelve hours, she was six…"

There is something of a poignant twist to this next demo—the color rebeccapurple, 
which forms the basis for this next exercise, came about as a tribute to Eric Meyer's 
daughter, Rebecca, who passed away on her sixth birthday in June 2014, due to cancer.

As anyone who spends any time developing CSS styles will know, Eric has been a 
major advocate of web standards, and in particular CSS—it is often said that one 
would be hard pushed not to read a book about CSS during their development 
that had not been written by Eric! The community proposed the addition of 
rebeccapurple as a color in Rebecca's memory (it was her favorite color), and in 
recognition of Eric's contribution. It was announced by the CSS Working Group that 
the change had been approved, to be added as part of the upcoming CSS4 standard.

To help support the change for browsers that have not yet caught up, the developer 
Maxime Thirouin created a PostCSS plugin to transform the rebeccapurple color 
to the more compatible format of rgb(102, 51, 153)—the source for this plugin is 
available at https://github.com/postcss/postcss-color-rebeccapurple.

Let's take a look at the plugin in more detail:

1.	 We'll start by installing the postcss-color-rebeccapurple plugin, so go 
ahead and fire up a Node.js command prompt, and change the working 
folder to our project root.

2.	 At the prompt, go ahead and enter the following command:
npm install postcss-color-rebeccapurple –save-dev 

Then press Enter—if all is well, we should see something akin to  
this screenshot:

https://github.com/postcss/postcss-color-rebeccapurple


Chapter 14

[ 371 ]

Keep the window open—we'll need it shortly.

3.	 Next, go ahead and extract a copy of the T72 - adding rebeccapurple 
color folder from the code download that accompanies this book—save the 
folder to the root of our project area.

4.	 Copy the styles – pre-compile.css from within the T72 - adding 
rebeccapurple color folder to the root src folder of our project area,  
and rename as styles.css

5.	 Copy the gulpfile.js and package.json files from the T72 - adding 
rebeccapurple color folder to the root of our project area.

6.	 Revert to the Node.js command prompt session, then enter gulp at the 
prompt and press Enter.

7.	 When compilation has finished, copy the contents of the dest folder 
from the root of our project area to the css folder under T72 - adding 
rebeccapurple color.

8.	 Try previewing the results—if all is well, we should see this simple box, 
which has been backfilled with the color rebeccapurple:

To prove it works, have a look at the .css file from within the css folder under T72 
- adding rebeccapurple color—we should see the compiled RGB value within:



Preparing for the Future

[ 372 ]

We can also validate this with a quick check using a site such as ColorHexa.com—
check out http://www.colorhexa.com/663399; searching for rebecca purple  
will show the same page.

There is a perfect opportunity here—I believe that there is always something good 
that can come from something tragic. Leaving aside the raison d'être for this plugin, 
we can use it as a basis for adding support for additional colors from the CSS4 Color 
Module standard.

The changes we need to make are relatively straightforward, and can easily form the 
basis for a new plugin. Let's take a look at what's involved; for this demo we will use 
burlywood, which is a light shade of brown:

1.	 We'll start by editing our CSS file—open up styles.css in the src folder 
under the root of our project area and change the highlighted line as indicated:
      #box {
        background-color: burlywood;
        height: 10rem;

2.	 Next, we need to update the rebeccapurple plugin file to change existing 
color references to use the new color—we'll start with the initial declaration:
      var postcss = require("postcss")
      var color = require("color")("burlywood").rgbString()

The plugin index.js file can be found within the node_modules\
postcss-color-rebeccapurple\ folder.

3.	 We then need to change the check made in the code that changes each 
instance of the color:
      if (value && value.indexOf("burlywood") !== -1) {
        decl.value = value.replace(/(burlywood)\b/gi, color)
      }
    })

4.	 For now, go ahead and save the file—yes, the plugin name doesn't represent 
the color, but this is only a test, so it won't matter.

5.	 Fire up a Node.js command prompt, then change the working folder to our 
project area. At the prompt, enter gulp then press Enter.

6.	 Copy the contents of the root dest folder to the css folder in the T73 - 
adding support for new color folder.

http://www.colorhexa.com/663399


Chapter 14

[ 373 ]

7.	 Run testpage.html—if all is well, we can see the compiled RGB value 
within, as before:

8.	 Try re-running the testpage.html file from within the T73 - adding 
support for new color folder; we should see the change in color  
(and yes, it's definitely not purple!):

We can verify that the color displayed is indeed burleywood, using the same 
principle as before. This time check out http://www.colorhexa.com/deb887,  
which clearly shows the HEX and RGB values:

All that remains for you now is to convert this into a plugin. This should be easy to 
do: try taking a copy of the existing rebeccapurple plugin, then performing a search 
and replace with the color of your choice. It's not perfect, but will give you a head 
start—the next part will be to use what we learnt back in Chapter 8, Creating PostCSS 
Plugins, to turn it into a fully-fledged plugin available in the NPM repository.

http://www.colorhexa.com/deb887


Preparing for the Future

[ 374 ]

To get a list of the CSS4 Module colors, have a look on 
Google—there are plenty of links; try this as a start: 
https://github.com/segundofdez/css4-
colors/blob/master/less/colors.less.

Okay, time to change focus: although this chapter is meant to be about looking 
forward, we're going to change direction and look backwards for a moment.

The reason for this? A number of mistakes in the design of CSS have been 
acknowledged by the CSS Working Group. A PostCSS plugin by Jonathan Neal 
provides a short-term fix for a number of these issues—some which could well  
be fixed properly in a future version of CSS!

Going back in time
When developing code, I'm a great fan of only developing for modern browsers as a 
rule—ideally n-1, or current plus one previous version. In the main, this isn't an issue 
for the likes of Firefox or Chrome, but it's a different story for IE. Where possible, 
older versions of IE will very likely be left by the wayside…but that's another story!

The one exception we can make though is not around browser support, but trying 
to correct some issues with attribute naming. The CSS Working Group have 
acknowledged that some of the attribute names weren't defined correctly when they 
were released—you can see a complete list at https://wiki.csswg.org/ideas/
mistakes, which is regularly updated.

To help with this, and as a precursor to the second demo in this section, we're going 
to install the Time Machine plugin for PostCSS (hence the title of this section!). 
This provides a short-term fix for some of the bugs in CSS. We will then use this as 
inspiration to design a quick and dirty plugin to fix another bug that is listed on the 
CSSWG site, but which is not fixed by the Time Machine plugin.

The source for this plugin is available from  
https://github.com/jonathantneal/postcss-time-machine.

For this demo, we will reuse the simple demo created to display the rebeccapurple 
color from Adding future color support to CSS. The compiled results from that demo 
use an RGBA function—the CSSWG have stated that RGBA should not exist, and 
instead the alpha channel should have been added as the fourth channel for the RGB() 
function. We'll fix that as part of our demo—the plugin will allow us to write what was 
intended, whilst compiling it to code that can be understood by any browser.

https://github.com/segundofdez/css4-colors/blob/master/less/colors.less
https://github.com/segundofdez/css4-colors/blob/master/less/colors.less
https://wiki.csswg.org/ideas/mistakes
https://wiki.csswg.org/ideas/mistakes
https://github.com/jonathantneal/postcss-time-machine


Chapter 14

[ 375 ]

Let's make a start on installing the plugin for use in our demo:

1.	 We'll start by installing the plugin, so go ahead and fire up a Node.js command 
prompt session, then change the working folder to our project area.

2.	 At the prompt, enter this command and press Enter:
npm install postcss-time-machine --save-dev

If all is well, we should see something akin to this screenshot—keep the 
session open, as we will need it shortly:

3.	 Next, go ahead and extract a copy of the T74 - going back in time folder 
from the code download that accompanies this book—save the folder to the 
root of our project area.

4.	 Copy the styles – pre-compile.css from within the T74 - going back 
in time folder to the root src folder of our project area, and rename it 
styles.css.

5.	 Copy the gulpfile.js and package.json files from the same T74 - going 
back in time folder to the root folder of our project area.

6.	 Revert to the Node.js command prompt, then at the prompt, enter gulp and 
press Enter.

7.	 If all is well, we should see our usual compiled files appear in the dest 
folder—copy these to the css folder under T74 - going back in time.



Preparing for the Future

[ 376 ]

At this point, try previewing the results of our demo, if all is well, we should see the 
same box as before, but this time with a slightly lighter shade of rebecca purple as 
its color:

If we take a look at the CSS styles though, the keen-eyed may spot something—how 
come we're using 194 as our alpha value, yet the code shows 0.8? The answer is 
simple: this plugin was designed to use 0 to 255 for each value, including the alpha 
channel. Simply divide 194 by 255:

The answer is 0.8. Okay, you will actually get something like 0.76078, but if we 
round up to one decimal place, this will become 0.8:

Now, before we continue, there is something we should consider: the practical 
application of this plugin. It's not meant to pour cold water on a nice idea, but 
adoption may take a little time—developers in a team will be used to writing styles  
that include functions such as rgba(), background-blend-mode, or hsla(),  
so it may take some time to change the mindset!

This said, it is a useful fix if we want to adhere to the intended standards, and can 
manage the change of mindset to not type function names that we may have been 
doing for some time. We can even take things a step further and create our own 
plugin—Time Machine doesn't include fixes for all of the attributes, so let's take a 
look at creating one to manage the bug that surrounds the background-blend-mode 
attribute in CSS.



Chapter 14

[ 377 ]

Creating our own plugin
One of the attributes not fixed by the Time Machine plugin is the background-
blend-mode function—this is normally used to calculate the final color pixel when 
layers overlap each other.

The bug that was introduced relates to the name—the CSS Working Group (CSSWG) 
have acknowledged that all blend-mode variants should be written without -mode 
in the name, so that in our case, background-blend-mode would be written as 
background-blend.

It's an easy fix to make, here's a perfect opportunity for you to try creating your own 
plugin! We're going to take a different route at this point—time for some audience 
participation, so to speak!

To help you along the way, it's worth taking another look at Chapter 8, Creating 
PostCSS Plugins; when creating the plugin, we can use this code:

var postcss = require('postcss');
 
module.exports = postcss.plugin('backgroundblend', function 
backgroundblend(options) {
  return function (css) {
    options = options || {};
         
    // Processing code will be added here
    css.eachDecl('background-blend', function (decl) {
      if (decl.prop.indexOf('background-blend') !== -1) {
        decl.prop  = 'background-blend-mode';
      }
    });
  };
});

Most of this code is boilerplate, but the key to making this work is this excerpt:

    css.eachDecl('background-blend', function (decl) {
      if (decl.prop.indexOf('background-blend') !== -1) {
        decl.prop = 'background-blend-mode';
      }
    });

In a nutshell, we parse each CSS rule in turn—if any contain background-blend,  
we simply replace each instance with background-blend-mode.



Preparing for the Future

[ 378 ]

To prove it works, we can use the following code to test if our plugin works:

<!DOCType html>
<head>
  <meta charset="utf-8">
  <title>Demo: Creating new plugin to change blend-mode</title>
  <link rel="stylesheet" type="text/css" href="css/styles.css">
</head>
<body>
  <div id="div"></div>
</body>
</html>

If all is well, we should get something akin to this screenshot:

If you get stuck, then a completed version is available in the code download that 
accompanies this book; a quick peek in the T75 - back in time change folder  
for styles – pre-compile.css will show this:

When compiled, we can clearly see it shows the version we will be used to seeing:



Chapter 14

[ 379 ]

It's a quick and dirty plugin, which will likely need a little more development before 
putting it into production use—for example, it caters purely for background-blend-
mode, whereas we should support any attribute that contains blend-mode within  
the name!

Summary
Creating CSS styles opens up a world of possibilities: we are only limited by what 
we must support! Throughout the course of this chapter, we've explored some of the 
possible options we can use when working with the newer CSS4 styles—let's take a 
moment to review what we have learnt.

We kicked off with a quick introduction to what we know as CSS4—we then moved 
on to explore some of the plugins that cater for supporting newer styles with more 
compatible CSS equivalent code.

Up next came a simple demo that explored some of the new CSS4 pseudo-classes, and 
how we might use them in a (theoretical) context. We then moved onto something 
more practical, in the form of styling the new range input using just CSS.

Moving swiftly on, we then took a look at the cssnext plugin pack, which provides 
an abstract layer for supporting CSS4; we saw how easy it is to implement, and that 
we can easily switch off functionality if it is no longer needed in our projects.

Our next demo came in the form of working with color—we used the rebeccapurple 
plugin to show firstly how easy it is to add support for one of the new colors within 
CSS4, then to modify it to provide support for other colors as needed in our projects. 
We then rounded out the chapter with a look back in time at some of the mistakes 
made when CSS was released, and how (with a little imagination), we might provide a 
temporary workaround until such time as these mistakes are fixed in a future version 
of CSS.

We've now come to the end of the book - I hope you've enjoyed our journey through 
the world of PostCSS, and that hopefully this book will help improve your skills as a 
future developer or user of PostCSS.





[ 381 ]

Index
Symbols
663399 color information

reference link  372
#deb887 Color Information

reference link  373
@each statements

iterating through  45-48

A
Abstract Syntax Trees (AST)

about  22, 295
URL  22

animated gallery
creating  178-181

animations (T41)
about  165, 166, 192
own animation plugin (T41), using  193, 194
plugin, exploring  195, 196

Apache webserver
URL  5

API reference documentation
reference link  307

architecture, standard plugin
classes, in API  203
exploring  198, 199
index.js file  199
List module  202
methods, in API  204, 205
nodes, in API  204
package.json file  199
package.json, using  200, 201
reference link  198
test.js file  199
test.js file, exploring  201, 202

Vendor module  202
asset

links, automating  106-109
links, maintaining  106

AtCSS
reference link  229

autoprefixer plugin
reference link  267

AVA test runner
reference link  209

B
Base16

reference link  291
Block Element Modifier (BEM)

about  68, 69
changes, exploring  76, 77
code, compiling  72
code, linting  72
errors, fixing  77, 78
simple message boxes, creating  70, 71
support, installing  72-75

boilerplate
reference link  198

Bourbon Neat
about  139
demo, exploring  148, 149
used, for creating example  145-147

Brewer theme
reference link  310

Browserslist query list
reference link  251
URL  319

bxSlider plugin
reference link  95



[ 382 ]

C
Caaaat animation

URL  166
Can I Use site

URL  329
changes

compiling  339-341
Chrome applet

download link  275
classes

switching, jQuery used  172, 173
classes, API

CssSyntaxError  203
input  203
LazyResult  203
processor  203
result  203
warning  203

code
altered code, testing  187, 188
changes, making  326
checking, for consistency  330
linting  243
linting, plugins used  18-21
minifying  331
optimizing  243
updating, to use PostCSS  185-187

CodePen
reference link  355

color-convert plugin
reference link  301

color functions
adjusting, functions used  128, 129
creating, with PostCSS  127
demo, dissecting  129, 130
Instagram effects, adding  134-136

color palettes
manipulating  123

colors
adding, to sites  106
creating, PostCSS filters used  130-132
CSS3 filters, comparing  133, 134
demo, dissecting  126
displaying, palettes used  124, 125
demo, exploring  132, 133
manipulating  123

mixing, palettes used  124, 125
common issues

<name of plugin> module,  
missing  347, 348

<name of task>, not defined  348
array of postcss processors,  

providing  349, 350
compiling results output  351-353
exploring  344
fixing  344
no <name of task> task  345-347
operating system compatibility issues  345
package.json file, entries  350, 351

containers
reference link  205

content
animating, Transit.js used  168-170

conversion process
about  314-326
plugins, selecting  316, 317

credit card icons
URL  112

CSS
attribute naming issues, solving  374
future color support, adding  370-374
parsing  298-302
plugin, creating  377-379
plugin, installing  375, 376
reference link  374
RGBA colors, replacing  301, 302
working  302

CSS3 filters
comparing with  133, 134

CSS3 Media Queries
reference link  85, 86

CSS4
used, for working with media  

queries  102, 103
CSS4 Module colors

reference link  374
CSS4 selectors

reference link  359, 360
CSS4 styles

converting  358, 359
email addresses, validating  360, 361
new range input, supporting  362-364



[ 383 ]

css-mqpacker plugin
reference link  99

cssnano plugin
key points  245
postcss-colormin  244
postcss-convert-values  244
postcss-reduce-idents  244
postcss-zindex  244
reference link  229, 245
uses, exploring  244, 245

cssnext
#rrggbbaa colors  367
autoprefixer plugin  367
custom selectors  367
demo, setting up  365-369
media query ranges / custom queries  367
nesting  367
reference link  365
rem units  367
used, for creating site template  365
used, for supporting future syntax  364, 365

CSS Stats system
reference link  276
reference link, on GitHub  276

CSS tricks
reference link  363

CSStyle library
about  284
benefits  285, 286
demo, dissecting  287
example, reference link  285
reference link  285

CSS working Group (CSSWG)  377
custom font plugin

building  215-218
dissecting  218-220
publishing shortcomings, exploring  221
reference link  215

custom media queries, PostCSS
demo, altering for PostCSS usage  85-87
exploring  82, 83
plain CSS, beginning  84
reference link  82

custom syntaxes  290
custom syntax plugins

content, parsing  293, 294

errors, fixing  293, 294
exploring  298
implementing  292, 293
SCSS content, parsing  295-297

D
datalist experiment

reference link  363
demo, creating

about  188, 189
building  190
dissection  191, 192
plugin, updating  189

development environment
setting up  6-9

development process
simplifying  222, 223

doiuse plugin
reference link  264

E
environment

preparing  290, 291
setting up  324

F
fallback support

for features, detecting  247, 248
providing  247
providing, for oldie  248, 249
style hacks, removing from  

code  250-252
file system (fs) plugin  298
final pre-processor

results, examining  281, 282
testing  280, 281

fonts
adding, to sites  106
managing, with PostCSS  109-111

Font Squirrel website
URL  338

font-variant plugin
about  359
reference link  359



[ 384 ]

G
generator option  29
Git

reference link  206
GitHub Desktop

plugin availability, reference link  225
grid design

about  139-141
compilation process, automating  142-145

grid plugins
exploring  149

Grunt file
URL  329

Gulp
URL  13

gulp-imagemin plugin
reference link  272

gulp-less plugin
URL  31

gulp-livereload plugin
reference link  275

gulp-rename plugins
URL  14

gulp-responsive plugin
reference link  274

gulp-webpcss plugin
URL  122

H
help

obtaining  353
reference link  353

host plugin
about  359
reference link  359

Hover effect demo
updating  32-37

hover effect example
creating  28-30
Less CSS, using as alternative  31

I
images

Instagram effects, adding  134-136
making, responsive  87

making, responsive with PostCSS  88
media possibilities, exploring  95
options  92-95
responsive capabilities, implementing  

to images  88-90
responsive feature, reference link  91
support, adding for retina images  91

image sprites
creating, existing preprocessors  

used  111, 112
credit card icon bar, creating  112-114

issues, dissecting
changes, detecting  264
Gulp task file, fixing  261-263
processor, using  260

J
jQuery

about  167, 168
content animating, Transit.js used  168-170
plain JavaScript, animating with  170-172
used, for switching classes  172, 173

jQuery Animate Enhanced plugin
URL  167

JSLint error
reference link  211

L
Less CSS

using, as alternative  31
links

automating, to assets  106-109
Linux

plugin availability, reference link  225
List module

list.comma method  203
list.space method  203

looping content
@each statements, iterating through  45-48
PostCSS, used for switching through  48, 49
with PostCSS  44, 45

M
MAMP

URL  5



[ 385 ]

media
adding, to sites  106

media queries
optimizing  99
reference link  82
revisiting  81, 82
W3C editorial draft, reference link  103

methods, API
containers  205
nodes  205
reference link  205

Midas library
reference link  309

mixin plugin  316
mixins

about  25, 26
creating, with PostCSS  38, 39
Hover effect demo, updating  39-41
PostCSS, comparing to standard  

processors  41-43
Modernizr

reference link  248
mq4-hover-shim plugin

about  359
reference link  359

N
nested plugin  316
nesting

about  51-53
reference link  282

nesting, pitfalls
about  59-61
better approach  62-65
code  66
code, updating  66, 67

Node.js
URL  6

nodes, API
AtRule  204
comment  204
declaration  204
reference link  205
root  204
rule  204

NPM
plugin availability, reference link  225
reference link  206

O
older browsers

support, retrofitting  100
oldie

post-calc plugin  249
postcss-unnot plugin  249
postcss-unopacity plugin  249
postcss-unroot plugin  249
reference link  229, 249
support, providing  248

output
example code, dissecting  306
formatting, with API  303-306
source maps, adding  307

output optimization
about  265
code, updating  270-272
images, dealing  272, 273
prefixes  267, 268
process, exploring  273, 274
reference link  270
source map support, altering  266, 267
support, adding for pseudo-selectors  268

P
pages

demo, preparing  54
existing processors, converting from  54, 55
navigating through  53, 54

parser( helper)
dimension, reference link  222
font helpers, reference link  222
font, reference link  222
margin helpers, reference link  222
property, reference link  222
selector, reference link  222
sides, reference link  222
value, reference link  222

pixel
versus rem values  98



[ 386 ]

pixrem
about  282
reference link  282

Pleeease library
about  317
code, manual compilation  318, 319
configuring  318
installing  318
task runner, used for compilation  320
URL  317
used, for building example  321

plugin packs
AtCSS  229
Cssnano  229
exploring, for PostCSS  228, 229
Oldie  229
oldie, reference link  229
precss  229
precss, reference link  229
reference link  230
Rucksack  229
Short  229
Short, reference link  229
Stylelint  229
Stylelint, reference link  229
styles, writing in shorthand  230, 231

plugins
animation  185
building, guidelines  223, 224
creating, for providing CSS4 support  369
options, exploring  184, 185
order, setting  37, 38
PostCSS Easings  185
PostCSS MQ Keyframes  185
PostCSS Transform Shortcuts  185
usage availability, planning  225
used, for extending PostCSS  198
used, for linting code  18-21

PostCSS
about  2
benefits  3, 4
changes, creating  184
css-mqpacker plugin  99
custom media queries, exploring  82, 83
extending, with plugins  198
fonts, managing  109-111
installing  9, 10

issues, reference link  354
looping content with  44
misconceptions, clearing up  5
mixins, creating with  38, 39
pitfalls  4
plugin packs, exploring  228, 229
postcss-mq-keyframes plugin  99
reference link  223, 354
SASS, moving from  22
shortcut plugins, using  228
transitioning to  31
URL  3, 4
used, for creating simple example  11, 12
used, for finding bug  354, 355
used, for making image responsive  88
variable support, adding  31, 32
website link  307
working  21, 22

postcss-all-link-colors plugin
reference link  269

PostCSS API
reference link  291

postcss-assets plugin
reference link  274

postcss-at2x plugin
reference link  88, 91

postcss-custom-media plugin
reference link  82

postcss-easings plugin
reference link  233

PostCSS, example creating
about  11, 12
automatic compilation  16, 17
minified style sheets, creating  14-16
source map support, adding  12, 13

PostCSS filters
used, for creating colors  131, 132

postcss-focus plugin
reference link  269

postcss-fontpath
reference link  215

postcss-image-set
reference link  95

postcss-initial plugin
about  359
reference link  359



[ 387 ]

postcss-inline-svg plugin
URL  118

postcss-input-range plugin
about  359
postcss-input-range  359
reference link  362

postcss-js
about  292
reference link  292

postcss-less
about  292
reference link  292

postcss-media-minmax plugin
reference link  102

postcss-media-variables
reference link  86

postcss-mq-keyframes plugin
reference link  99

postcss-neat
configuration, testing  153-155
task list, refining  152, 153
transitioning  150, 151

postcss-nested plugin
reference link  296

PostCSS plugin
design  220
reference link  198, 265
reference links  198

PostCSS plugins
code, compiling  58
demo, converting  57
using  55, 56

PostCSS plugins catalog
URL  317

postcss-pseudo-class-any-button plugin
reference link  269

postcss-pseudo-class-enter plugin
reference link  269

postcss-quantity-queries
reference link  87

postcss-remove-prefixes plugin
URL  329

postcss-responsive-images
reference link  88

PostCSS-responsive-type plugin
reference link  96

postcss-safe-parser plugin
about  292-294
reference link  292, 300

postcss-scss plugin
about  292
reference link  292, 296

postcss-selector-matches
reference link  358

postcss-selector-not
reference link  358

postcss-selector-parser plugin 
reference link  300

postcss-sprites plugin
reference link  95
URL  112

postcss-svg-fallback plugin
URL  118

postcss-svgo plugin
URL  118

postcss-time-machine plugin
reference link  374

postcss-transform-shortcut plugin
reference link  206

postcss-unmq plugin
reference link  100

postcss-unrgba plugin
reference link  300

postcss-value-parser plugin
reference link  299

postcss-write-svg plugin
URL  118

poststylus
about  292
reference link  292

PowerShell script
URL  318

pre-built libraries
code, dissecting to demo  175, 176
using  173-175

precss
reference link  229

precss library
URL  323
using  323

PreCSS library
URL  326



[ 388 ]

preprocessors
other preprocessors, compiling with  322

processing  2
processor

creating  255, 256
creating, tips  282, 283
exploring  256
extending  276-279
Gulp task file, exploring  257-259
issues, dissecting  260
package.json file, dissecting  256, 257

promises
reference link  203

pseudo-class-any-link plugin
about  359
reference link  359

Q
quantity queries

reference link  87
Quixote

URL  341

R
range input element

reference link  364
rebeccapurple color

reference link  370
reload capabilities

adding  274, 275
rem units

support, adding for  334, 335
responsive capabilities

adding  159
design, correcting  160-162

responsive design
avoiding  101, 102

responsive text support
adding  96-98

Rucksack
about  229, 282
alias functionality  231
automatic prefixing  238
clearfix functionality  231

code, dissecting  241, 242
demo, exploring  236, 237
easings  238
font src expansion  231, 238
Hex RGBA shortcuts  238
installing, as plugin  233
legacy fallbacks  239
property aliases  238
reference link  231
responsive typography  238
shortcuts, adding  231
shorthand positioning  238
slider conversion, for using  238-241
used, for animation  235, 236
used, for easing  233, 234

runner.md
reference link  224

S
SASS

animated gallery, creating  178-181
finishing touches, adding  181-184
setting up  26-28
switching to  176, 177
URL  26

Sassmeister
URL  140

sassy-mixins plugin  316
separation of concerns  37
short

reference link  229
shortcut plugins

postcss-border  228
postcss-border, reference link  228
postcss-focus  228
postcss-focus, reference link  228
postcss-short-data  228
postcss-short-data, reference link  228
using, in PostCSS  228

shortcuts
adding, with Rucksack  231
demo  232

Shorthand Color
about  282
reference link  282



[ 389 ]

simple-extend plugin  316
simple-parallax-effect

reference link  84
site

colors, adding  106
creating, Neat used  155-157
creating, PostCSS used  155-157
fonts, adding  106
media, adding  106
PostCSS change, making  157, 158

Source Sans Pro font
URL  29

SpritePad
URL  112

Stack Overflow
logging issues  353, 354
URL  176

standard plugin
architecture, exploring  198, 199

Style hacks 
reference link  250

Stylelint
configuring, as linter  246, 247
reference link  229, 246, 250

styles
looping through  337

style sheet
rules, nesting  336
splitting  327, 328
updating  338

Sublime Text 3
reference link  350

sugarss
about  292
reference link  292

supporting CSS4 styles  357, 358
SVG

alternative options, considering  118
icon images altering, PostCSS used  115, 116
results, exploring  116-118
working with  115

syntax code
highlighting  308
HTML display theme, creating  309-311
themes, installing  308, 309

T
template-light.css file

reference link  310
Transit

URL  167
transition plugin

creating  206-208
errors, correcting  211, 212
exploring  214, 215
final error, clearing  212
test, creating  209, 210
used, for performing test  213

transpilers  2
Travis CI

reference link  214

U
unexpected assignment expression error

reference link  212
Uniform Resource Identifier (URI)  87

V
variables

about  25, 26
creating  332-334

variable support
adding, to PostCSS  31, 32

Velocity JS
URL  167

Vendor module
vendor.prefix method  202
vendor.unprefixed method  202

vendor prefixes
support, adding  328-330

W
W3C

URL  36
WAMP

URL  5
webpcss plugin

URL  119



[ 390 ]

WebP format
URL  121

WebP images
file sizes differences, viewing  120-122
support, adding  119
switching, in and out  119

WordPress
installation, converting  323
URL  324




	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing PostCSS
	Discovering the art of processing
	Introducing PostCSS
	Exploring the benefits of using PostCSS
	Considering some of the pitfalls
	Clearing up some misconceptions
	Preparing for exercises in this book

	Setting up a development environment
	Installing PostCSS

	Creating a simple example using PostCSS
	Adding source map support
	Creating minified style sheets
	Altering to compile automatically

	Linting code using plugins
	Exploring how PostCSS works
	Making the move from SASS

	Summary

	Chapter 2: Creating Variables and Mixins
	Introducing variables and mixins
	Setting up SASS

	Creating a hover effect example
	Using LESS CSS as an alternative

	Transitioning to using PostCSS
	Adding variable support to PostCSS
	Updating our hover effect demo
	Taking it a step further

	Setting the order of plugins
	Creating mixins with PostCSS
	Updating our hover effect demo
	Comparing PostCSS to standard processors

	Looping content with PostCSS
	Iterating through @each statements
	Switching to using PostCSS

	Summary

	Chapter 3: Nesting Rules
	Introducing nesting
	Navigating through pages
	Preparing our demo
	Converting from existing processors

	Transitioning to using PostCSS plugins
	Converting our demo to PostCSS
	Compiling our code

	Exploring the pitfalls of nesting
	Taking a better approach
	Reconsidering our code
	Updating our code

	Making the switch to BEM
	Creating simple message boxes
	Compiling and linting our code
	Installing BEM support

	Exploring our changes in more detail
	Fixing our errors

	Summary

	Chapter 4: Building Media Queries
	Revisiting media queries
	Exploring custom media queries in PostCSS
	Beginning with plain CSS
	Altering our demo to use PostCSS

	Making images responsive
	Making an image responsive with PostCSS
	Implementing responsive capabilities to images
	Adding support for retina images
	Taking the next steps
	Exploring other media possibilities

	Adding responsive text support
	Optimizing media queries
	Retrofitting support for older browsers
	Moving away from responsive design
	Taking things further with CSS4
	Summary

	Chapter 5: Managing Colors, Images, and Fonts
	Adding color, fonts, and media to sites
	Maintaining asset links
	Automating links to assets

	Managing fonts with PostCSS
	Creating image sprites
	Demo – creating a credit card icon bar

	Working with SVG in PostCSS
	Altering icon images using PostCSS
	Exploring the results in more detail
	Considering alternative options

	Adding support for WebP images
	Switching WebP images in and out
	Viewing the differences in file sizes

	Manipulating colors and color palettes
	Displaying and mixing colors using palettes
	Dissecting our demo in more detail

	Creating color functions with PostCSS
	Adjusting colors using functions
	Dissecting our demo
	Creating colors with PostCSS filters
	Exploring our demo in more detail
	Comparing with CSS3 filters

	Adding Instagram effects to your images

	Summary

	Chapter 6: Creating Grids
	Introducing grid design
	Automating the compilation process
	Adding support for Bourbon Neat

	Creating an example with Bourbon Neat
	Exploring our demo in more detail

	Exploring the grid plugins in PostCSS
	Transitioning to using PostCSS-Neat
	Refining our task list
	Testing our configuration

	Creating a site using Neat and PostCSS
	Making the change to PostCSS

	Adding responsive capabilities
	Correcting the design

	Summary

	Chapter 7: Animating Elements
	Revisiting basic animations
	Moving away from jQuery
	Animating content with Transit.js
	Animating with plain JavaScript
	Switching classes using jQuery

	Making use of pre-built libraries
	Dissecting the code for our demo

	Switching to using SASS
	Creating an animated gallery
	Adding the finishing touches

	Making the switch to PostCSS
	Exploring plugin options within PostCSS
	Updating code to use PostCSS
	Testing our altered code

	Creating a demo in PostCSS
	Updating the plugin
	Building our demo
	Dissecting our demo in more detail

	Optimizing our animations
	Using our own animation plugin
	Exploring the plugin in more detail

	Summary

	Chapter 8: Creating PostCSS Plugins
	Extending PostCSS with plugins
	Dissecting the architecture of a standard plugin
	Exploring index.js
	Discovering package.json
	Exploring test.js
	The Vendor module
	The List module
	Classes available in the API
	Nodes available in the API
	Methods available in the API

	Creating an transition plugin
	Creating a test for our plugin
	Correcting the errors
	Clearing the final error
	Performing a test using the plugin
	Dissecting our plugin in detail

	Building a custom font plugin
	Dissecting the functionality of our plugin
	Exploring the dangers of publishing this plugin

	Simplifying the development process
	Guidelines for plugin building
	Making the plugin available for use
	Summary

	Chapter 9: Working with Shortcuts, Fallbacks, and Packs
	Using shortcut plugins in PostCSS
	Exploring plugin packs for PostCSS
	Writing styles in shorthand

	Adding shortcuts with Rucksack
	Introducing our demo
	Installing Rucksack as a plugin
	Easing into using Rucksack
	Animating content using the plugin
	Dissecting our demo in more detail

	Converting our slider to use Rucksack
	Dissecting our code

	Linting and optimizing your code
	Exploring the use of cssnano
	Configuring Stylelint as our linter

	Providing fallback support
	Detecting support for features
	Providing support for oldie
	Removing style hacks from code

	Summary

	Chapter 10: Building a Custom Processor
	Creating your processor
	Exploring our processor
	Dissecting the package.json file
	Exploring the Gulp task file

	Dissecting issues with our processor
	Fixing our Gulp task file
	Understanding the changes made

	Optimizing the output
	Altering our source map support
	Taking care of prefixes
	Adding support for pseudo-selectors
	Updating our code
	Dealing with images
	Exploring the process


	Adding reload capabilities
	Extending our processor further
	Testing the final pre-processor
	Digesting the results of our exercise

	Getting started with some hints and tips
	Introducing the CSStyle library
	Exploring the benefits of using CSStyle
	Dissecting our demo

	Summary

	Chapter 11: Manipulating Custom Syntaxes
	Introducing custom syntaxes
	Preparing our environment
	Implementing custom syntax plugins
	Parsing content and fixing errors
	Parsing SCSS content
	Exploring what happened

	Parsing CSS
	Replacing RGBA colors
	Exploring how it all works

	Formatting the output with the API
	Dissecting our example code
	Adding source maps

	Highlighting our syntax code
	Installing themes
	Creating a HTML display theme

	Summary

	Chapter 12: Mixing Preprocessors
	Taking the first steps
	Exploring the conversion process
	Choosing our plugins

	Introducing the Pleeease library
	Installing and configuring the Pleeease library
	Compiling code manually
	Compiling using a task runner
	Building an example using Pleeease

	Compiling with other preprocessors
	Using the PreCSS library
	Converting a WordPress installation
	Setting up our environment
	Considering the conversion process
	Making changes to our code
	Splitting our style sheet
	Adding support for vendor prefixes
	Checking our code for consistency
	Minifying our code
	Creating variables
	Adding support for rem units
	Nesting rules in our style sheet
	Looping through styles
	Considering future possible ideas

	Compiling and testing the changes
	Summary

	Chapter 13: Troubleshooting 
PostCSS Issues
	Fixing some common issues
	Exploring some common issues
	Not compatible with your operating system…
	Task '<name of task>' is not in your gulpfile
	Cannot find module '<name of plugin>'
	ReferenceError: <name of task> is not defined
	Please provide array of postcss processors!
	Entries failing to appear in the package.json file
	Output of compiling results is not as expected

	Getting help from others
	Logging issues at Stack Overflow
	Finding a bug with PostCSS

	Summary

	Chapter 14: Preparing for the Future
	Supporting CSS4 styles today
	Converting CSS4 styles for use
	Validating e-mail addresses
	Supporting the new range input

	Supporting future syntax with cssnext
	Creating a site template with cssnext
	Setting up our demo

	Creating plugins to provide extra CSS4 support
	Adding future color support to CSS
	Going back in time
	Creating our own plugin

	Summary

	Index

