

Mastering Python Data
Visualization

Generate effective results in a variety of visually
appealing charts using the plotting packages in Python

Kirthi Raman

BIRMINGHAM - MUMBAI

Mastering Python Data Visualization

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1211015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-832-7

www.packtpub.com

www.packtpub.com

Credits

Author
Kirthi Raman

Reviewers
Julian Quick

Hang (Harvey) Yu

Acquisition Editor
Subho Gupta

Content Development Editor
Riddhi Tuljapurkar

Technical Editor
Humera Shaikh

Copy Editors
Relin Hedly

Sonia Mathur

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Jason Monteiro

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Author

Kirthi Raman is currently working as a lead data engineer with Neustar Inc, based
in Mclean, Virginia USA. Kirthi has worked on data visualization, with a focus on
JavaScript, Python, R, and Java, and is a distinguished engineer. Previously, he
worked as a principle architect, data analyst, and information retrieval specialist at
Quotient, Inc. Kirthi has also worked as a technical lead and manager for a start-up.

He has taught discrete mathematics and computer science for several years. Kirthi
has a graduate degree in mathematics and computer science from IIT Delhi and an
MS in computer science from the University of Maryland. He has written several
white papers on data analysis and big data.

I would like to thank my wife, Radhika, my son, Sid, and daughter,
Niya, for putting up with my schedule even when I was on vacation.
I would also like to thank my dad, Venkatraman, and my sisters,
Vijaya and Meena, for their blessings.

About the Reviewers

Julian Quick is pursuing his bachelor's of science degree in environmental
resources engineering at Humboldt State University with a specialization in energy
resources and energy data analysis. He wrote Python code for the Earth Observing
Laboratory, Canary Instruments, home energy monitoring, and the National Wind
Technology Center.

I place on record my gratitude towards my family.

Hang (Harvey) Yu graduated from the University of Illinois at Urbana-Champaign
with a PhD in computational biophysics and a master's in statistics. He has extensive
experience in data mining, machine learning, and statistics. In the past, Harvey has
worked on areas such as stochastic simulations and time series in C and Python as
part of his academics. He was intrigued by algorithms and mathematical modeling
and has been involved in data analytics since then.

Hang (Harvey) Yu is currently working as a data scientist in Silicon Valley. He is
passionate about data science and has developed statistical/mathematical models
based on techniques such as optimization and predictive modeling in R. Previously,
Harvey has also worked as a computational science intern at ExxonMobil.

When Harvey is not coding, he plays soccer, reads fiction books, or listens to
classical music. You can reach him at hangyu1@illinois.edu or on LinkedIn
at www.linkedin.com/in/hangyu1.

www.linkedin.com/in/hangyu1

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: A Conceptual Framework for Data Visualization 1

Data, information, knowledge, and insight 2
Data 2
Information 3
Knowledge 4
Data analysis and insight 5

The transformation of data 5
Transforming data into information 6

Data collection 6
Data preprocessing 7
Data processing 8
Organizing data 8
Getting datasets 9

Transforming information into knowledge 9
Transforming knowledge into insight 10

Data visualization history 11
Visualization before computers 12

Minard's Russian campaign (1812) 12
The Cholera epidemics in London (1831-1855) 13
Statistical graphics (1850-1915) 13
Later developments in data visualization 14

How does visualization help decision-making? 15
Where does visualization fit in? 16
Data visualization today 17

What is a good visualization? 18
Visualization plots 21

Bar graphs and pie charts 26
Bar graphs 26
Pie charts 28

Table of Contents

[ii]

Box plots 30
Scatter plots and bubble charts 31

Scatter plots 31
Bubble charts 33

KDE plots 36
Summary 39

Chapter 2: Data Analysis and Visualization 41
Why does visualization require planning? 42
The Ebola example 43
A sports example 49

Visually representing the results 52
Creating interesting stories with data 62

Why are stories so important? 62
Reader-driven narratives 62

Gapminder 63
The State of the Union address 64
Mortality rate in the USA 65
A few other example narratives 69

Author-driven narratives 70
Perception and presentation methods 72

The Gestalt principles of perception 73
Some best practices for visualization 75

Comparison and ranking 76
Correlation 76
Distribution 78
Location-specific or geodata 80
Part-to-whole relationships 81
Trends over time 82

Visualization tools in Python 82
Development tools 83

Canopy from Enthought 83
Anaconda from Continuum Analytics 84

Interactive visualization 85
Event listeners 85
Layouts 86

Circular layout 87
Radial layout 88
Balloon layout 89

Summary 90
Chapter 3: Getting Started with the Python IDE 91

The IDE tools in Python 92
Python 3.x versus Python 2.7 92

Table of Contents

[iii]

Types of interactive tools 92
IPython 93
Plotly 94

Types of Python IDE 95
PyCharm 96
PyDev 97
Interactive Editor for Python (IEP) 98
Canopy from Enthought 100
Anaconda from Continuum Analytics 104

Visualization plots with Anaconda 109
The surface-3D plot 110
The square map plot 112

Interactive visualization packages 116
Bokeh 117
VisPy 118

Summary 119
Chapter 4: Numerical Computing and Interactive Plotting 121

NumPy, SciPy, and MKL functions 122
NumPy 122

NumPy universal functions 122
Shape and reshape manipulation 124
An example of interpolation 125
Vectorizing functions 126
Summary of NumPy linear algebra 128

SciPy 129
An example of linear equations 133
The vectorized numerical derivative 134

MKL functions 136
The performance of Python 137

Scalar selection 138
Slicing 139

Slice using flat 140
Array indexing 140

Numerical indexing 141
Logical indexing 142

Other data structures 143
Stacks 143
Tuples 144
Sets 145
Queues 146
Dictionaries 146
Dictionaries for matrix representation 148

Sparse matrices 149

Table of Contents

[iv]

Dictionaries for memoization 152
Tries 153

Visualization using matplotlib 155
Word clouds 156
Installing word clouds 156
Input for word clouds 159

Web feeds 159
The Twitter text 161

Plotting the stock price chart 164
Obtaining data 164

The visualization example in sports 173
Summary 177

Chapter 5: Financial and Statistical Models 179
The deterministic model 180

Gross returns 180
The stochastic model 191

Monte Carlo simulation 191
What exactly is Monte Carlo simulation? 191
An inventory problem in Monte Carlo simulation 192
Monte Carlo simulation in basketball 196
The volatility plot 202
Implied volatilities 207

The portfolio valuation 211
The simulation model 214
Geometric Brownian simulation 214
The diffusion-based simulation 218

The threshold model 221
Schelling's Segregation Model 221

An overview of statistical and machine learning 225
K-nearest neighbors 226
Generalized linear models 228

Bayesian linear regression 228
Creating animated and interactive plots 231
Summary 236

Chapter 6: Statistical and Machine Learning 237
Classification methods 238
Understanding linear regression 239
Linear regression 242
Decision tree 246

An example 246
The Bayes theorem 251
The Naïve Bayes classifier 252

Table of Contents

[v]

The Naïve Bayes classifier using TextBlob 254
Installing TextBlob 254
Downloading corpora 254
The Naïve Bayes classifier using TextBlob 255

Viewing positive sentiments using word clouds 259
k-nearest neighbors 261
Logistic regression 265
Support vector machines 269
Principal component analysis 271

Installing scikit-learn 275
k-means clustering 276
Summary 280

Chapter 7: Bioinformatics, Genetics, and Network Models 281
Directed graphs and multigraphs 282

Storing graph data 283
Displaying graphs 284

igraph 284
NetworkX 287
Graph-tool 293

The clustering coefficient of graphs 294
Analysis of social networks 298
The planar graph test 300
The directed acyclic graph test 302
Maximum flow and minimum cut 304
A genetic programming example 306
Stochastic block models 308
Summary 313

Chapter 8: Advanced Visualization 315
Computer simulation 316

Python's random package 317
SciPy's random functions 317
Simulation examples 319
Signal processing 322
Animation 326
Visualization methods using HTML5 328
How is Julia different from Python? 332
D3.js for visualization 333
Dashboards 334

Summary 336

Table of Contents

[vi]

Appendix: Go Forth and Explore Visualization 337
An overview of conda 338
Packages installed with Anaconda 342
Packages websites 343
About matplotlib 344

Index 345

[vii]

Preface
Data visualization is intended to provide information clearly and help the viewer
understand them qualitatively. The well-known expression that a picture is worth
a thousand words may be rephrased as "a picture tells a story as well as a large
collection of words". Visualization is, therefore, a very precious tool that helps the
viewer understand a concept quickly. However, data visualization is more of an art
than a skill because if you try to overdo it, it could have a reverse effect.

We are currently faced with a plethora of data containing many insights that hold the
key to success in the modern day. It is important to find the data, clean it, and use the
right tool to visualize it. This book explains several different ways to visualize data
using Python packages, along with very useful examples in many different areas
such as numerical computing, financial models, statistical and machine learning, and
genetics and networks.

This book presents an example code developed on Mac OS X 10.10.5 using Python
2.7, IPython 0.13.2, matplotlib 1.4.3, NumPy 1.9.2, SciPy 0.16.0, and conda build
version 1.14.1.

What this book covers
Chapter 1, A Conceptual Framework for Data Visualization, expounds that data
visualization should actually be referred to as "the visualization of information for
knowledge inference". This chapter covers the framework, explaining the transition
from data/information to knowledge and how meaningful representations (through
logarithms, colormaps, scatterplots, correlations, and others) can make knowledge
much easier to grasp.

Preface

[viii]

Chapter 2, Data Analysis and Visualization, explains the importance of visualization
and shows several steps in the visualization process, including several options of
tools to choose from. Visualization methods have existed for a long time, and we
are exposed to them very early; for instance, even young children can interpret bar
charts. Interactive visualization has many strengths, and this chapter explains them
with examples.

Chapter 3, Getting Started with the Python IDE, explains how you can use Anaconda
from Continuum Analytics without worrying about installing each Python library
individually. Anaconda has simplified packaging and deployment methods that
make it easier to run the IPython notebook alongside other libraries.

Chapter 4, Numerical Computing and Interactive Plotting, covers interactive plotting
methods with working examples in computational physics and applied mathematics.
Some notable examples are interpolation methods, approximation, clustering,
sampling, correlation, and convex optimization using SciPy.

Chapter 5, Financial and Statistical Models, explores financial engineering, which has
many numerical and graphical methods that make an interesting use case to explore
Python. This chapter covers stock quotes, regression analysis, the Monte Carlo
algorithm, and simulation methods with examples.

Chapter 6, Statistical and Machine Learning, covers statistical methods such as linear
and nonlinear regression and clustering and classification methods using numpy,
scipy, matplotlib, and scikit-learn.

Chapter 7, Bioinformatics, Genetics, and Network Models, covers interesting examples
such as social network and instances of directed graphs in real life, data structures
that are appropriate for these problems, and network analysis. This chapter uses
specific libraries such as graph-tool, NetworkX, matplotlib, scipy, and numpy.

Chapter 8, Advanced Visualization, covers simulation methods and examples of signal
processing to show several visualization methods. Here, we also have a comparison
of other advanced tools out there, such as Julia and D3.js.

Appendix, Go Forth and Explore Visualization, gives an overview of conda and lists out
various Python libraries.

Preface

[ix]

What you need for this book
For this book, you need Python 2.7.6 or a later version installed on your operating
system. For the examples in this book, Mac OS X 10.10.5's Python default version
(2.7.6) has been used. Other software packages used in this book are IPython, which
is an interactive Python environment. The new version of IPython is called Jupyter,
which now has kernels for 50 different languages.

Install the prepackaged scientific Python distributions, such as Anaconda from
Continuum or Enthought Python Distribution if possible. Anaconda typically comes
with over 300 Python packages. For the Python packages that are not included in the
prepackaged list, you may either use pip or conda to install them. Some examples are
provided in Appendix, Go Forth and Explore Visualization.

Who this book is for
There are many books on Python and data visualization. However, there are very
few that can be recommended to somebody who wants to build on the existing
knowledge about Python, and there are even fewer that discuss niche techniques to
make your code easier to work with and reusable. If you know a few things about
Python programming but have an insatiable drive to learn more, this book will show
you ways to obtain analytical results and produce amazing visual displays.

This book covers methods to produce analytical results using real-world problems.
It is not written for beginners, but if you need clarification, you can follow the
suggested reading hints in the book. If this book is your first exposure to Python or
data visualization, you will do well to study some introductory texts. My favorite
is Introduction to Computer Science and Programming by Professor John Guttag, which
is freely available at MIT OpenCourseWare, and Visualize This by Nathan Yau
from UCLA.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"First we use norm() from SciPy to create normal distribution samples and later,
use hstack() from NumPy to stack them horizontally and apply gaussian_kde()
from SciPy."

Preface

[x]

A block of code is set as follows:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
students = pd.read_csv("/Users/Macbook/python/data/ucdavis.csv")
g = sns.FacetGrid(students, palette="Set1", size=7)
g.map(plt.scatter, "momheight", "height", s=140, linewidth=.7,
edgecolor="#ffad40", color="#ff8000")
g.set_axis_labels("Mothers Height", "Students Height")

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

import blockspring
import json

print blockspring.runParsed("stock-price-comparison",
 { "tickers": "FB, LNKD, TWTR",
 "start_date": "2014-01-01", "end_date": "2015-01-01" }).params

Any command-line input or output is written as follows:

conda install jsonschema

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 jsonschema-2.4.0 | py27_0 51 KB

The following NEW packages will be INSTALLED:

 jsonschema: 2.4.0-py27_0

Proceed ([y]/n)?

Preface

[xi]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Further,
you can select the Copy code option to copy the contents of the code block into
Canopy's copy-and-paste buffer to be used in an editor."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/8327OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/8327OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/8327OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

A Conceptual Framework for
Data Visualization

The existence of the Internet and social media in modern times has led to an
abundance of data, and data sizes are growing beyond imagination. How and
when did this begin?

A decade ago, a new way of doing business evolved: of corporations collecting,
combining, and crunching large amount of data from sources throughout the
enterprise. Their goal was to use a high volume of data to improve the decision-
making process. Around that same time, corporations like Amazon, Yahoo, and
Google, which handled large amounts of data, made significant headway. Those
milestones led to the creation of several technologies supporting big data. We will not
get into details about big data, but will try exploring why many organizations have
changed their ways to use similar ideas for better decision-making.

How exactly are these large amount of data used for making better decisions? We will
get to that eventually, but first let us try to understand the difference between data,
information, and knowledge, and how they are all related to data visualization. One
may wonder, why are we talking about data, information, and knowledge. There is a
storyline that connects how we start, what we start with, how all these things benefit
the business, and the role of visualization. We will determine the required conceptual
framework for data visualization by briefly reviewing the steps involved.

A Conceptual Framework for Data Visualization

[2]

In this chapter, we will cover the following topics:

• The difference between data, information, knowledge, and insight
• The transformation of information into knowledge, and further, to insight
• Collecting, processing, and organizing data
• The history of data visualization
• How does visualizing data help decision-making?
• Visualization plots

Data, information, knowledge, and insight
The terms data, information, and knowledge are used extensively in the context of
computer science. There are many definitions of these terms, often conflicting and
inconsistent. Before we dive into these definitions, we will understand how these
terms are related to visualization. The primary objective of data visualization is to
gain insight (hidden truth) into the data or information. The whole discussion about
data, knowledge, and insight in this book is within the context of computer science,
and not psychology or cognitive science. For the cognitive context, one may refer to
https://www.ucsf.edu/news/2014/05/114321/converting-data-knowledge-
insight-and-action.

Data
The term data implies a premise from which one may draw conclusions. Though
data and information appear to be interrelated in a certain context, data actually
refers to discrete, objective facts in a digital form. Data are the basic building blocks
that, when organized and arranged in different ways, lead to information that is
useful in answering some questions about the business.

https://www.ucsf.edu/news/2014/05/114321/converting-data-knowledge-insight-and-action
https://www.ucsf.edu/news/2014/05/114321/converting-data-knowledge-insight-and-action

Chapter 1

[3]

Data can be something very simple, yet voluminous and unorganized. This discrete
data cannot be used to make decisions on its own because it has no meaning and,
more importantly, because there is no structure or relationship between them. The
process by which data is collected, transmitted, and stored varies widely with the
types of data and storage methods. Data comes in many forms; some notable forms
are listed as follows:

• CSV files
• Database tables
• Document formats (Excel, PDF, Word, and so on)
• HTML files
• JSON files
• Text files
• XML files

Information
Information is processed data presented as an answer to a business question. Data
becomes information when we add a relationship or an association. The association
is accomplished by providing a context or background to the data. The background
is helpful because it allows us to answer questions about the data.

For example, let us assume that the data given for a basketball player includes height,
weight, position, college, date of birth, draft pick, draft round, NBA-debut, and
recruiting rank. The answer to the question, "Who is the first draft pick with a height of
more than six feet and plays on the point guard position?" is also the information.

Similarly, each player's score is one piece of data. The answer to the question "Who
has the highest point per game this year and what is his score" is "LeBron James,
27.47", which is also information.

A Conceptual Framework for Data Visualization

[4]

Knowledge
Knowledge emerges when humans interpret and organize information and use that
to drive decision-making. Knowledge is the data, information, and the skills acquired
through experience. Knowledge comprises the ability to make the appropriate
decision as well as the skills to execute it.

The essential ingredient—connecting the data—allows us to understand the relative
importance of each piece of information. By comparing results from the past and
by recognizing patterns, we don't have to build a solution to a problem from
scratch. The following diagram summarizes the concepts of data, information, and
knowledge:

Data Information

Model

Classify

Structure

Cluster

New data

Can this be
associated
here?

Does it
belong to
any known
cluster?

Does it belong to
this structure or
similar structure?

Does it fit
in this
model?

Knowledge

Knowledge changes in an incremental way, particularly when information is
rearranged or reorganized or when some computing algorithm changes. Knowledge
is like an arrow pointing to the results of an algorithm that is dependent on past
information that comes from data. In many instances, knowledge is also gained by
visually interacting with the results. Insight on the other hand, opens the way to
the future.

Chapter 1

[5]

Data analysis and insight
Before we dive into the definition of insight and how it relates to business, let us see
how the idea of capturing insight ever began. For over a decade, organizations have
been struggling to make sense of all the data and information they have, particularly
with the exploding data size. They all realized the importance of data analysis (also
known as data analytics or analytics) in order to arrive at an optimal or realistic
business decision based on existing data and information.

Analytics hinges upon mathematical algorithms to determine the relationships
between the data that can yield insight. One simple way to understand insight is by
considering an analogy: when data does not have a structure and proper alignment
with the business, it gives a clearer and deeper understanding by converting the
data to a more structured form and aligning it more closely to the business goals.
Insight is that "eureka" moment when there is a breakthrough result that comes out.
One should not get confused between the terms Analytics and Business Intelligence.
Analytics has predictive capabilities while Business Intelligence provides results
based on the analysis of historical data.

Analytics is usually applicable to a broader spectrum of data and, for this reason,
it is very common that data collaboration happens internally and/or externally. In
some business paradigms, the collaboration only happens internally in an extensive
collection of a dataset, but in most other cases, an external connection helps in
connecting the dots or completing the puzzle. Two of the most common sources of
external data connection are social media and consumer base.

Later in this chapter, we refer to real-life business stories that achieved some
remarkable results by applying analytics to gain insight and drive business value,
improve decision-making, and understand their customers better.

The transformation of data
By now we know what data is, but now the question is: what is the purpose of
collecting data? Data is useful for describing a physical or social phenomenon and to
further answer questions about that phenomenon. For this reason, it is important to
ensure that the data is not faulty, inaccurate, or incomplete; otherwise, the responses
based on that data will also not be accurate or complete.

There are different categories of data, some of which are past performance data,
experimental data, and benchmark data. Past performance data and experimental data
are pretty self-explanatory. Benchmark data, on the other hand, is data that compares
the characteristics of two different items or products to a standard measure. Data gets
transformed into information, is processed further, and is then used for answering
questions. It is apparent, therefore, that our next step is to achieve that transformation.

A Conceptual Framework for Data Visualization

[6]

Transforming data into information
Data is collected and stored in several different forms depending on the content and
its significance. For instance, if the data is about playoff basketball games, then it
will be in a text and video format. Another example is the temperature recordings
from all the cities of a country, collected and made accessible via different formats.
The transformation from data to information involves collection, processing, and
organization of data as shown in the following diagram:

Collect Process Organize

The collected data needs some processing and organizing, which later may or may
not have a structure, model, or a pattern. However, this process at least gives us an
organized way of finding answers to questions about the data. The process could be
a simple sorting based on the total points scored by basketball players or a sorting
based on the names of the city and state.

The transformation from data to information could also be a little more than
just sorting such as statistical modeling or a computational algorithm. It is this
transformation from data to information that is really important and enables the data
to be queried, accessed, and manipulated. In some cases, when there is a vast and
divergent amount of data, the transformation may involve processing methods such as
filtering, aggregating, applying correlation, scaling and normalizing, and classifying.

Data collection
Data collection is a time-consuming process. So, businesses are looking for better
ways to automate data capture. However, manual data collection is still prevalent
for many processes. Data collection by automatic processes in modern times uses
input devices such as sensors. For instance, underwater coral reefs are monitored
via sensors; agriculture is another area where sensors are used in monitoring soil
properties, controlling irrigation, and fertilization methods.

Chapter 1

[7]

Another way to collect data automatically is by scanning documents and log files,
which is a form of server-side data collection. Manual processes include data
collection via web-based methods that get stored in the database, which can then be
transformed into information. Nowadays, web-based collaborative environments are
benefiting from improved communication and sharing of data.

Traditional visualization and visual analytic tools are typically designed for a single
user interacting with a visualization application on a single machine. Extending
these tools to include support for collaboration has clearly come a long way towards
increasing the scope and applicability of visualizations in the real world.

Data preprocessing
Today, data is highly susceptible to noise and inconsistency due to its size and
likely origin from multiple, heterogeneous sources and types. There are several
data preprocessing techniques such as data cleaning, data integration, data reduction,
and data transformation. Data cleaning can be applied to remove noise and correct
inconsistencies in the data. Data integration merges and combines the data from
multiple sources into a coherent format, mostly known as data warehouse.
Data reduction can reduce data size by, for instance, merging, aggregating, and
eliminating the redundant features. Data transformations may be applied where data
is scaled to fall within a smaller range, thus improving the accuracy and efficiency
in processing and visualizing them. The transformation cycle of data is shown in the
following diagram:

Extract
Data

Verify
Data

Normalize
Data

Rebuild
Missing Data

Remove
Inconsistent Data

A Conceptual Framework for Data Visualization

[8]

Anomaly detection is the identification of unusual data that might not fall into an
expected behavior or pattern in the collected data. Anomalies are also known as
outliers or noise; for example in signal data, a particular signal that is unusual is
considered noise, and in transaction data, an outlier is a fraudulent transaction.
Accurate data collection is essential for maintaining the integrity of data. As much
as the down side of anomalies, on the flip side, there is also a significant importance
of outliers—specifically in cases where one would want to find fraudulent insurance
claims, for instance.

Data processing
Data processing is a significant step in the transformation process. It is imperative
that the focus be on data quality. Some processing steps that help in preparing data
for analyzing and understanding it better are dependency modeling and clustering.
There are other processing techniques, but we will limit our discussion here with the
two most popular processing methods.

Dependency modeling is the fundamental principle of modeling data to determine
the nature and structure of the representation. This process searches for relationships
between the data elements; for example, a department store might gather data on the
purchasing habits of its customers. This process helps the department store deduce
the information about frequent purchases.

Clustering is the task of discovering groups in the data that have, in some way or
another, a "similar pattern", without using known structures in the data.

Organizing data
Database management systems allow users to store data in a structured format.
However, the databases are too large to fit into memory. There are two ways of
structuring data:

• Storing large data in disks in a structured format like tables, trees, or graphs
• Storing data in memory using data structure formats for faster access

A data structure comprises a set of different formats for structuring data to be able
to store and access it. The general data structure types are arrays, files, tables, trees,
lists, maps, and so on. Any data structure is designed to organize the data to suit a
specific purpose so that it can be stored, accessed, and manipulated at runtime.
A data structure may be selected or designed to store data for the purpose of
working on it with various algorithms for faster access.

Data that is collected, processed, and organized to be stored efficiently is much easier
to understand, which leads to information that can be better understood.

Chapter 1

[9]

Getting datasets
For readers who do not have access to organizational data, there are plenty of
resources on the Internet with rich datasets from several different sources, such as:

• http://grouplens.org (from the University of Minnesota)
• http://ichart.finance.yahoo.com/table.csv?s=YHOO&c=1962

• http://datawrangling.com/some-datasets-available-on-the-web

• http://weather-warehouse.com (weather data)
• http://www.bjs.gov/developer/ncvs/ (Bureau of Justice Statistics)
• http://census.ire.org/data/bulkdata.html (census data)
• http://ww.pro-football-reference.com (football reference)
• http://www.basketball-reference.com (basketball reference)
• http://www.baseball-reference.com (baseball reference)
• http://archive.ics.uci.edu/ml/datasets.html (machine learning)
• http://www.pewresearch.org/data/download-datasets/

• http://archive.ics.uci.edu/ml/datasets/Heart+Disease (heart
disease)

Transforming information into knowledge
Information is quantifiable and measurable, it has a shape, and can be accessed,
generated, stored, distributed, searched for, compressed and duplicated. It is
quantifiable by the volume or amount of information.

Information transforms into knowledge by the application of discrete algorithms,
and knowledge is expected to be more qualitative than information. In some problem
domains, knowledge continues to go through an evolving cycle. This evolution
happens particularly when the data changes in real time.

Knowledge is like the recipe that lets you make bread out of the information, in this
case, the ingredients of flour and yeast. Another way to look at knowledge is as the
combination of data and information, to which experience and expert opinion is added
to aid decision making. Knowledge is not merely a result of filtering or algorithms.

What are the steps involved in this transformation, and how does the change
happen? Naturally, it cannot happen by itself. Though the word information is
subject to different interpretations based on the definition, we will explore it further
within the context of computing.

http://grouplens.org
http://ichart.finance.yahoo.com/table.csv?s=YHOO&c=1962
http://datawrangling.com/some-datasets-available-on-the-web
http://weather-warehouse.com
http://www.bjs.gov/developer/ncvs/
http://census.ire.org/data/bulkdata.html
http://ww.pro-football-reference.com
http://www.basketball-reference.com
http://www.baseball-reference.com
http://archive.ics.uci.edu/ml/datasets.html
http://www.pewresearch.org/data/download-datasets/
http://archive.ics.uci.edu/ml/datasets/Heart+Disease

A Conceptual Framework for Data Visualization

[10]

A simple analogy to illustrate the difference between information and knowledge:
course materials for a particular course provide you the necessary information about
the concepts, and the teacher later helps the students to understand the concepts
through discussions. This helps the students in gaining knowledge about the course.
By a similar process, something needs to be done to transform information into
knowledge. The following diagram shows the transformation from information
to knowledge:

Aggregate Information

Discrete Algorithm

As illustrated in the figure, information when aggregated and run through some
discrete algorithms, gets transformed into knowledge. The information needs to be
aggregated to get broader knowledge. The knowledge obtained by this transformation
helps in answering questions about the data or information such as which quarter did
the company have maximum revenue from sales? How much has advertising driven
the sales? Or, how many new products have been released this year?

Transforming knowledge into insight
In the traditional system, information is processed, and then analyzed to generate
reports. Ever since the Internet came into existence, processed information is
already and always available, and social media has emerged as a new way of
conducting business.

Organizations have been using external data to gain insights via data analysis. For
example, the measure of user sentiments from tweets by consumers via Twitter is
used to follow the opinions about product brands. In some cases, there is a higher
percentage of users giving a positive message on social media about a new product,
say an iPhone or a tablet computer. The analytical tool can provide numerical evidence
of that sentiment, and this is where data visualization plays a significant role.

Chapter 1

[11]

Another example to illustrate this transformation, Netflix announced a competition
in 2009 for the best collaborative filtering algorithm to predict user ratings for films,
based on previous ratings. The winner of that competition used the pragmatic
theory and achieved a 10.05 percent improvement in predicting user ratings, which
increased the business value for Netflix.

Internal

External

Data Collaboration

Insight

Analytics

Transforming knowledge into insight is achieved using collaboration and analytics
as shown in the preceding diagram. Insight implies seeing the solution and realizing
what needs to be done. Achieving data and information is easy and organizations have
known methods to achieve that, but getting insight is very hard. Achieving insight
requires new and creative thinking and the ability to connect the dots. In addition
to applying creative thinking, data analysis and data visualization play a big role in
achieving insight. Data visualization is considered both an art and a science.

Data visualization history
Visualization has its roots in a long historical tradition of representing information
using primitive paintings and maps on walls, tables of numbers, and paintings on
clay. However, they were not known as visualization or data visualization. Data
visualization is a new term; it expresses the idea that it involves more than just
representing data in a graphical form. The information behind the data should
be revealed in an intuitive representation using good display; the graphic should
inherently aid viewers in seeing the structure of data.

A Conceptual Framework for Data Visualization

[12]

Visualization before computers
In early Babylonian times, pictures were drawn on clay and in the later periods
were rendered on papyrus. The goal of those paintings and maps was to provide
the viewer with a qualitative understanding of the information. We also know
that understanding pictures are our natural instincts as a visual presentation
of information is perceived with greater ease. This section includes only partial
details about the history of visualization. For elaborate details and examples, we
recommend two interesting resources:

• Data visualization (http://euclid.psych.yorku.ca/datavis/)
• The work of Edward Tufte and Graphics Press (www.edwardtufte.com/tufte)

Minard's Russian campaign (1812)
Charles Minard was a civil engineer working in Paris. He summarized the War of
1812—Napoleon's march on Moscow—in a figurative map. This map is a simple
picture, which is both a visual timeline and a geographic map depicting the size and
direction of the army, temperature, and the landmarks and locations. Prof. Edward
Tufte famously described this picture as possibly being the best statistical graphic
ever drawn.

http://euclid.psych.yorku.ca/datavis/
www.edwardtufte.com/tufte

Chapter 1

[13]

The wedge starts with being thick on the left-hand side, and we see the army begin
the campaign at the Polish border with 422,000 men. The wedge becomes narrower
as it gets deeper into Russia and the temperature gets lower. This visualization
manages to condense a number of different numeric and geographic facts into one
image: when the army gets reduced, the reason for the reduction, and subsequently,
their retreat.

The Cholera epidemics in London (1831-1855)
In October 1831, the first case of Asiatic cholera occurred in Great Britain, and over
52,000 people died in the epidemic. Subsequently, in 1848-1849 and 1853-1854, more
cholera epidemics produced large death tolls.

In 1855, Dr. John Snow produced a map showing the deaths due to cholera clustered
around the Broad Street pump in London. This map by Dr. John Snow was a
landmark graphic discovery, but unfortunately, it was devised at the end of that
period. His map showed the location of each of the deceased, and that provided
an insight for his conclusion that the source of outbreak could be localized to
contaminated water from a pump on Broad Street. Around that time, the use of
graphs became important in economic and state planning.

Statistical graphics (1850-1915)
By the mid 18th century, a rapid growth of visualization had been established
throughout Europe. In 1863, one page of Galton's multivariate weather chart of
Europe showed barometric pressure, wind direction, rain, and temperature for
the month of December 1861 (source: The life, letters and labors of Francis Galton,
Cambridge University Press).

During this period, statistical graphics became mainstream and there were many
textbooks written on the same. These textbooks contained detailed descriptions of
the graphic method, discussing frequencies, and the effects of the choice of scales
and baselines on the visual estimation of differences and ratios. They also contained
historical diagrams in which two or more time series could be shown on a single
chart for comparative views of their histories.

A Conceptual Framework for Data Visualization

[14]

Later developments in data visualization
In the year 1962, John W. Tukey issued a call for the recognition of data analysis as a
legitimate branch of statistics; shortly afterwards, he began the invention of a wide
variety of new, simple, and effective graphic displays under the rubric Exploratory
Data Analysis (EDA), which was followed by Exploratory Spatial Data Analysis
(ESDA). Tukey later wrote a book titled Exploratory Data Analysis in 1977. There are
a number of tools that are useful for EDA with graphical techniques, which are listed
as follows:

• Box-and-whisker plot (box plot)
• Histogram
• Multivari chart (from candlestick charts)
• Run-sequence plot
• Pareto chart (named after Vilfredo Pareto)
• Scatter plot
• Multidimensional scaling
• Targeted projection pursuit

Visualization in scientific computing is emerging as an important computer-based
field, with the goal to improve the understanding of data and to make quick real-time
decisions. Today, the ability of medical doctors to diagnose ailments is dependent
upon vision. For example, in hip-replacement surgeries, custom hips can now be
fabricated before surgical procedures. Accurate measurements can be made prior to
surgery using non-invasive 3D imaging thereby reducing the number of post-operative
body rejections from 30 percent to a mere 5 percent (source: http://bonesmart.org/
hip/hip-implants-specialized-and-custom-fitted-options/).

Visualization of the human brain structure and function in 3D is a research
frontier of far-reaching importance. Few advances have transformed the fields of
neuroscience and brain-imaging technology, like the ability to see inside and read the
brain of a living human. For continued progress in brain research, it will be necessary
to integrate structural and functional information at many levels of abstraction.

The rate at which the hardware performance power has been on the rise tells us that
we are already able to analyze DNA sequences and visually represent them. The
future advances in computing promises a much brighter progress in the fields of
medicine and other scientific areas.

http://bonesmart.org/hip/hip-implants-specialized-and-custom-fitted-options/
http://bonesmart.org/hip/hip-implants-specialized-and-custom-fitted-options/

Chapter 1

[15]

How does visualization help
decision-making?
There is a variety of ways to represent data visually. However, there are only a few
ways in which one can portray the data in a manner that allows one to see something
visually and observe new patterns. Data visualization is not as easy as it seems; it
is an art and requires a great deal of practice and experience. (Just like painting a
picture—one cannot be a master painter from day one, it takes a lot of practice.)

Human perception plays an important role in the field of data visualization. A pair of
healthy human eyes has a total field view of approximately 200 degrees horizontally
(about 120 degrees of which are shared by both the eyes). About one quarter of the
human brain is involved in visual processing, which is more than any other sense.
Among the three senses of hearing, seeing, and smelling, human vision has the
maximum sense—measured to be sixty per cent (http://contemplatingmadness.
tumblr.com/post/27478393311/10-limits-to-human-perception-and-how-
they-shape).

Effective visualization helps us in analyzing and understanding data. Author
Stephen Few described the following eight types of quantitative messages (via
visualization) that may help us with understanding or communicating from a set
of data (source: https://www.perceptualedge.com/articles/ie/the_right_
graph.pdf):

• Time-series
• Ranking
• Part-to-whole
• Deviation
• Frequency distribution
• Correlation
• Nominal comparison
• Geographic or geospatial

Scientists have mapped the human genome, and this is one of the reasons why we
are faced with the challenges of transforming knowledge into a visual representation
for better understanding. In other words, we may have to find new ways to visually
present the human genome so that it is not difficult for a common person to
understand.

http://contemplatingmadness.tumblr.com/post/27478393311/10-limits-to-human-perception-and-how-they-shape
http://contemplatingmadness.tumblr.com/post/27478393311/10-limits-to-human-perception-and-how-they-shape
http://contemplatingmadness.tumblr.com/post/27478393311/10-limits-to-human-perception-and-how-they-shape
https://www.perceptualedge.com/articles/ie/the_right_graph.pdf
https://www.perceptualedge.com/articles/ie/the_right_graph.pdf

A Conceptual Framework for Data Visualization

[16]

Where does visualization fit in?
It is important to note that data visualization is not scientific visualization. Scientific
visualization deals with the data that has an inherent physical structure, such as
air molecules flowing over an aircraft wing. Information visualization, on the other
hand, deals with abstract data, and helps in solving problems involving large
datasets. One of the challenges is to ensure that the data is clean and subsequently, to
reduce the dimensions so that unnecessary information is discarded.

Visualization can be used wherever we see increased knowledge or value of
data. That can be determined by doing more data analysis and running through
algorithms. The data analysis might vary from the simplest form to a more
complicated one.

Sometimes, there is value in looking at data beyond the mean, median, or total,
because these measurements only measure things that may seem obvious.
Sometimes, aggregates or values around a region hide the interesting details that
need special focus. One classic example is the "Anscombe's quartet" which comprises
of four datasets that have nearly identical simple statistical properties yet appear
very different when graphed. For more on this, one can refer to the link, https://
en.wikipedia.org/wiki/Anscombe%27s_quartet.

Visualize

InsightsTransform Analyze

Mostly, datasets that lend themselves well to visualization can take different forms,
but some paint a clearer picture to understand than others. In some cases, it is
mandatory to analyze them several times to get a much better understanding of the
visualization as shown in the preceding diagram.

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Chapter 1

[17]

A good visualization is not just a static picture that one can look at, like an exhibit
in a museum. It is something that allows us to drill down and find more about the
change in data. For example, view first, zoom and filter, change the values of some
scale of display, and view the results in an incremental way, as described in http://
www.mat.ucsb.edu/~g.legrady/academic/courses/11w259/schneiderman.pdf
by Ben Shneiderman. Sometimes, it is much harder to display everything on a single
display and on a single scale, and only by experience, one can better understand
these visualization methods. Summarizing further, visualization is useful in both
organizing and making sense out of data, particularly when it is in abundance.

Interactive visualization is emerging as a new form of communication, which allows
users to analyze the information in order to construct their own, new understanding
of the data.

Data visualization today
While many areas of computing aim to replace human judgment with automation,
visualization systems are unique and are explicitly designed not to replace humans.
In fact, they are designed to keep the humans actively involved in the whole process;
why is that?

Data Visualization is an art, driven by data and yet created by humans with the help
of various computing tools. An artist paints a picture using tools and materials like
brushes, and colors. Similarly, another artist tries to create data visualization with
the help of computing tools. Visualization can be aesthetically pleasing and helps in
making things clear; sometimes, it may lack one or both of those qualities depending
on the users who create it.

Today, there are over thirty different visual representations of data, each having a
reason to represent data in that specific way. As the visualization methods progress,
we have much more than just bar graphs and pie charts. Despite the many benefits of
data visualization, they are undermined due to a lack of understanding and, in some
cases, due to cluttering together of things on a dashboard that becomes
too cumbersome.

There are many ways to present data, but only a handful of those make sense in
most cases; this will be explained in detail in later sections of this chapter. Before
that discussion, let us take a look at a list of some important things that make a good
visualization.

http://www.mat.ucsb.edu/~g.legrady/academic/courses/11w259/schneiderman.pdf
http://www.mat.ucsb.edu/~g.legrady/academic/courses/11w259/schneiderman.pdf

A Conceptual Framework for Data Visualization

[18]

What is a good visualization?
Good visualization helps the users to explore and understand data, providing
value and deep insights. It is effective, visually appealing, scalable, and is easy to
understand (good visualization does not have to be too complicated). Visualization is
a central tool in finding patterns and trends in the data by carrying out research and
analysis, using whichever one can answer questions about the data.

The main principle behind an effective visualization is to identify the main point that
you want to make, recognize the level and background of your audience, accurately
represent the data, and then create a clear presentation that conveys the message to
that audience.

Example: The following representations have been created with a small sample data
source that shows the percentage of women and men conferred with degrees in ten
different disciplines for the years from 1970-2012 (womens-undergrad-degrees.csv
and mens-undergrad-degrees.csv from http://www.knapdata.com/python/):

http://www.knapdata.com/python/

Chapter 1

[19]

The full data source available at http://nces.ed.gov/programs/digest/d11/
tables/dt11_290.asp maintains the complete set of data.

One simple way is to represent them on one scale, although there is no relationship
between the numbers between the different disciplines. Let us analyze and see if this
representation makes sense, and if it doesn't, then what else do we need? Are there
any other representations?

For one thing, all the data about the different disciplines is displayed on one screen,
which is an excellent comparison. However, if we need to get the information for
the year 2000, there is no straightforward way. Unless there is an interactive mode
of display that is similar to a financial stock chart, there is no easy way to determine
the information about the degrees conferred in multiple disciplines for the year 2000.
Another confusing part of these plots is that the percentage doesn't add up to a sum
of 100 percent. On the other hand, the percentage of conferred degrees within one
discipline for men and women add up to 100 percent; for instance, the percentage of
degrees conferred in the Health Professions discipline for men and women are 15.2
percent and 84.8 percent respectively.

Can we represent these through other visualization methods? One can create bubble
charts for each year, have an interactive visualization with year selection, and also
have a play button that transitions the bubbles for each year.

This visualization better suits the data that we are looking at. We can also use the
same slider with the original plot and make it interactive by highlighting the data
for the selected year. It is a good habit to visualize the data in several different ways
to see if some display makes more sense than the other. We may have to scale the
values on a logarithmic scale if there is a very large range of numerical values (for
example, from 20 to 200,000).

One can write a program in Python to accomplish this bubble chart. Other alternate
languages are JavaScript using D3.js and R using R-Studio. It is left for the reader to
explore other visualization options.

http://nces.ed.gov/programs/digest/d11/tables/dt11_290.asp
http://nces.ed.gov/programs/digest/d11/tables/dt11_290.asp

A Conceptual Framework for Data Visualization

[20]

Google Motion Chart can be used for visualization to represent this interactive
chart at developers.google.com/chart/interactive/docs/gallery/
motionchart?csw=1#Example where it shows a working example that is similar to
this bubble chart. The bubble chart shown here is for only three years, but you can
create another one for all the years.

Data visualization is a process that has to be used after data analysis. We also
noticed earlier that data transformation, data analysis, and data visualization are
done several times; why is that so? We all know the famous quote, Knowledge is
having the right answer, Intelligence is asking the right question. Data analysis helps us
to understand the data better and therefore be in a position to respond to questions
about the data. However, when the data is represented visually in several different
ways, some new questions emerge, and this is one of the reasons why there is a
repeated process of analysis and visualization.

Visualization of data is one of the primary tools for data exploration, and almost
always precedes or inspires data analysis. There are many tools to display data
visually, but there are fewer tools to do the analysis. Programming languages
like Julia, R, and Python have ranked higher for performing data analysis, but
for visualization, JavaScript based D3.js has a much greater potential to generate
interactive data visualization.

developers.google.com/chart/interactive/docs/gallery/motionchart?csw=1#Example
developers.google.com/chart/interactive/docs/gallery/motionchart?csw=1#Example

Chapter 1

[21]

Between R and Python, R is a more difficult language to learn. Python, on the other
hand, is much easier. This is also debated on Quora; one may check the validity
of this on the internet (https://www.quora.com/Which-is-better-for-data-
analysis-R-or-Python). Today there are numerous tools in Python for statistical
modeling and data analysis, and therefore, it is an attractive choice for data science.

Visualization plots
One of the reasons why we perform visualization is to confirm our knowledge of
data. However, if the data is not well understood, you may not frame the right
questions about the data.

When creating visualizations, the first step is to be clear on the question to be
answered. In other words, how is visualization going to help? There is another
challenge that follows this—knowing the right plotting method. Some visualization
methods are as follows:

• Bar graph and pie chart
• Box plot
• Bubble chart
• Histogram
• Kernel Density Estimation (KDE) plot
• Line and surface plot
• Network graph plot
• Scatter plot
• Tree map
• Violin plot

In the course of identifying the message that the visualization should convey, it
makes sense to look at the following questions:

• How many variables are we dealing with, and what are we trying to plot?
• What do the x axis and y axis refer to? (For 3D, z axis as well.)
• Are the data sizes normalized and does the size of data points mean anything?
• Are we using the right choices of colors?
• For time series data, are we trying to identify a trend or a correlation?

https://www.quora.com/Which-is-better-for-data-analysis-R-or-Python
https://www.quora.com/Which-is-better-for-data-analysis-R-or-Python

A Conceptual Framework for Data Visualization

[22]

If there are too many variables, it makes sense to draw multiple instances of the same
plot on different subsets of data. This technique is called lattice or trellis plotting. It
allows a viewer to quickly extract a large amount of information about complex data.

Consider a subset of student data that has an unusual mixture of information about
(gender, sleep, tv, exercise, computer, gpa) and (height, momheight,
dadheight). The units for computer, tv, sleep, and exercise are hours, height is
in inches and gpa is measured on a scale of 4.0.

tv computer height dadheight exercise gpa

13.0

20.0

15.0

8.0

2.5

2.0

4.0

8.0

1.0

8.0

3.5

11.0

10.0

1.0

10.0

10.0

7.0

15.0

20.0

10.0

14.0

28.0

10.0

15.0

25.0

9.0

20.0

14.0

84.0

11.0

sleep

3.50

9.00

6.00

6.00

5.00

9.00

8.50

7.00

8.00

4.50

8.00

5.00

8.00

9.00

5.00

66.0

72.0

68.0

68.0

64.0

68.5

69.0

66.0

70.0

67.0

68.0

68.0

68.0

61.0

65.0

momheight

66.0

64.0

62.0

59.0

65.0

60.0

66.0

63.0

68.0

63.0

62.0

64.0

61.0

62.0

62.0

71.0

65.0

74.0

70.0

70.0

68.0

76.0

70.0

71.0

66.0

64.0

69.0

72.0

62.0

66.0

10.0

2.0

3.0

6.0

6.5

2.0

3.0

4.5

3.0

6.0

8.0

0.0

10.0

3.0

5.0

4.000

2.300

2.600

2.800

2.620

2.200

3.780

3.200

3.310

3.390

3.000

2.500

2.800

2.340

2.000

gender

Female

Female

Female

Female

Female

Female

Male

Male

Male

Male

Male

Male

Male

Male

Male

The preceding data is an example that has more variables than usual, and therefore,
it makes sense to do a trellis plot to visualize and see the relationship between these
variables.

One of the reasons we perform visualization is to confirm our knowledge of data.
However, if the data is not well understood, one may not frame the right
questions about it.

Chapter 1

[23]

Since there are only two genders in the data, there are 10 combinations of variables
that can be possible (sleep, tv), (sleep, exercise), (sleep, computer), (sleep, gpa),
(tv, exercise), (tv, computer), (tv, gpa), (exercise, computer), (exercise, gpa),
and (computer, gpa) for the first set of variables; another two, (height, momheight)
and (height, dadheight) for the second set. Following are all the combinations
except (sleep, tv), (tv, exercise).

A Conceptual Framework for Data Visualization

[24]

Our goal is to find what combination of variables can be used to make some sense out
of this data, or to see if any of these variables have any meaningful impact. Since the
data is about students, gpa may be a key variable that drives the relevance of the other
variables. The preceding image depicts scatter plots that show that a greater number
of female students have a higher gpa than the male students and a greater number of
male students spend more time on computer and get a similar gpa range of values.
Although all scatter plots are being shown here, the intent is to find out which data
plays a more significant role, and what sense can we make out of this data.

A greater number of blue dots high up (for gpa on the y axis) shows that there are
more female students with a higher gpa (this data was collected from UCSD).

The data can be downloaded from http://www.knapdata.com/python/ucdavis.
csv.

http://www.knapdata.com/python/ucdavis.csv
http://www.knapdata.com/python/ucdavis.csv

Chapter 1

[25]

One can use the seaborn package and display a scatter plot with very few lines
of code, and the following example shows a scatter plot of gpa along the x - axis
compared with the time spent on computer by students:

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

students = pd.read_csv("/Users/kvenkatr/Downloads/ucdavis.csv")

g = sns.FacetGrid(students, hue="gender", palette="Set1", size=6)
g.map(plt.scatter, "gpa", "computer", s=250, linewidth=0.65,
 edgecolor="white")

g.add_legend()

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

These plots were generated using the matplotlib, pandas, and seaborn library
packages. Seaborn is a statistical data visualization library based on matplotlib,
created by Michael Waskom from Stanford University. Further details about these
libraries will be discussed in the following chapters.

There are many useful classes in the Seaborn library. In particular, the FacetGrid
class comes in handy when we need to visualize the distribution of a variable or the
relationship between multiple variables separately within subsets of data. FacetGrid
can be drawn with up to three dimensions, that is, row, column and hue. These
library packages and their functions will be described in later chapters.

When creating visualizations, the first step is to be clear on the question to be
answered. In other words, how is visualization going to help? The other challenge is
choosing the right plotting method.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

A Conceptual Framework for Data Visualization

[26]

Bar graphs and pie charts
When do we choose bar graphs and pie charts? They are the oldest visualization
methods and pie chart is best used to compare the parts of a whole. However, bar
graphs can compare things between different groups to show patterns.

Bar graphs, histograms, and pie charts help us compare different data samples,
categorize them, and determine the distribution of data values across that sample. Bar
graphs come in several different styles varying from single, multiple, and stacked.

Bar graphs
Bar graphs are especially effective when you have numerical data that splits nicely
into different categories, so you can quickly see trends within your data.

Bar graphs are useful when comparing data across categories. Some notable
examples include the following:

• Volume of jeans in different sizes
• World population change in the past two decades
• Percent of spending by department

In addition to this, consider the following:

• Add color to bars for more impact: Showing revenue performance
with bars is informative, but adding color to reveal the profits adds
visual insight. However, if there are too many bars, colors might make
the graph look clumsy.

• Include multiple bar charts on a dashboard: This helps the viewer to
quickly compare related information instead of flipping through a bunch of
spreadsheets or slides to answer a question.

• Put bars on both sides of an axis: Plotting both positive and negative data
points along a continuous axis is an effective way to spot trends.

• Use stacked bars or side-by-side bars: Displaying related data on top of
or next to each other gives depth to your analysis and addresses multiple
questions at once.

These plots can be achieved with fewer than 12 lines of Python code, and more
examples will be discussed in the later chapters.

Chapter 1

[27]

With bar graphs, each column represents a group defined by a specific category; with
histograms, each column represents a group defined by a quantitative variable. With
bar graphs, the x axis does not have a low-end or a high-end value, because the labels
on the x axis are categorical and not quantitative. On the other hand, in a histogram,
there is going to be a range of values. The following bar graph shows the statistics of
Oscar winners and nominees in the US from 2000-2009:

The following Python code uses matplotlib to display bar graphs for a small data
sample from the movies (This may not necessarily be a real example, but gives an
idea of plotting and comparing):

[5]: import numpy as np
 import matplotlib.pyplot as plt

 N = 7
 winnersplot = (142.6, 125.3, 62.0, 81.0, 145.6, 319.4, 178.1)

 ind = np.arange(N) # the x locations for the groups

A Conceptual Framework for Data Visualization

[28]

 width = 0.35 # the width of the bars

 fig, ax = plt.subplots()
 winners = ax.bar(ind, winnersplot, width, color='#ffad00')

 nomineesplot = (109.4, 94.8, 60.7, 44.6, 116.9, 262.5, 102.0)
 nominees = ax.bar(ind+width, nomineesplot, width,
 color='#9b3c38')

 # add some text for labels, title and axes ticks
 ax.set_xticks(ind+width)
 ax.set_xticklabels(('Best Picture', 'Director', 'Best
 Actor',
 'Best Actress','Editing', 'Visual Effects',
 'Cinematography'))

 ax.legend((winners[0], nominees[0]), ('Academy Award
 Winners',
 'Academy Award Nominees'))

 def autolabel(rects):
 # attach some text labels
 for rect in rects:
 height = rect.get_height()
 hcap = "$"+str(height)+"M"
 ax.text(rect.get_x()+rect.get_width()/2., height, hcap,
 ha='center', va='bottom', rotation="vertical")

 autolabel(winners)
 autolabel(nominees)

 plt.show()

Pie charts
When it comes to pie charts, one should really consider answering the questions, "Do
the parts make up a meaningful whole?" and "Do you have sufficient real-estate to
represent them using a circular view?". There are critics who come crashing down
on pie charts, and one of the main reasons, for that is that when there are numerous
categories, it becomes very hard to get the proportions and compare those categories
to gain any insight. (Source: https://www.quora.com/How-and-why-are-pie-
charts-considered-evil-by-data-visualization-experts).

https://www.quora.com/How-and-why-are-pie-charts-considered-evil-by-data-visualization-experts
https://www.quora.com/How-and-why-are-pie-charts-considered-evil-by-data-visualization-experts

Chapter 1

[29]

Pie charts are useful for showing proportions on a single space or across a map.
Some notable examples include the following:

• Response categories from a survey
• Top five company market shares in a specific technology (in this case, one

can quickly know which companies have a major share in the market)

In addition to this, consider the following:

• Limit pie wedges to eight: If there are more than eight proportions to
represent, consider a bar graph. Due to limited real - estate, it is difficult to
meaningfully represent and interpret the pieces.

• Overlay pie charts on maps: Pie charts can be much easier to spread across
a map and highlight geographical trends. (The wedges should be limited
here too.)

Consider the following code for a simple pie-chart to compare how the intake of
admissions among several disciplines are distributed:

[6]: import matplotlib.pyplot as plt

 labels = 'Computer Science', 'Foreign Languages',
 'Analytical Chemistry', 'Education', 'Humanities',
 'Physics', 'Biology', 'Math and Statistics', 'Engineering'

 sizes = [21, 4, 7, 7, 8, 9, 10, 15, 19]
 colors = ['yellowgreen', 'gold', 'lightskyblue',
 'lightcoral',
 'red', 'purple', '#f280de', 'orange', 'green']
 explode = (0,0,0,0,0,0,0,0,0.1)
 plt.pie(sizes, explode=explode, labels=labels,
 autopct='%1.1f%%', colors=colors)
 plt.axis('equal')
 plt.show()

A Conceptual Framework for Data Visualization

[30]

The following pie chart example shows the university admission intake in some
chosen top-study areas:

Box plots
Box plots are also known as box-and-whisker plots. This is a standardized way of
displaying the distribution of data based on the five number summaries: minimum,
first quartile, median, third quartile, and maximum. The following diagram shows
how a box plot can be read:

This whisker shows
the lowest value

The width of the box shows
the interquartile range

This whisker shows
the highest valuelower quartile

median

upper quartile

Chapter 1

[31]

A box plot is a quick way of examining one or more sets of data graphically, and
they take up less space to define five summaries at a time. One example that we can
think of for this usage is: if the same exam is given to two or more classes, then a box
plot can tell when the most students in one class did better than most students in the
other class. Another example is that if there are more people who eat burgers, the
median is going to be higher or the top whisker could be longer than the bottom one.
In such a case, it gives one a good overview of the data distribution.

Before we try to understand when to use box plots, here is a definition that one needs
to understand. An outlier in a collection of data values is an observation that lies at
an abnormal distance from other values.

Box plots are most useful in showing the distribution of a set of data. Some notable
examples are as follows:

• Identifying outliers in the data
• Determining how the data is skewed towards either end

In addition to this, consider the following:

• Hide the points within the box: focus on the outliers
• Compare across distributions: Box plots are good for comparing quickly

with distributions between data set

Scatter plots and bubble charts
A scatter plot is a type of visualization method for displaying two variables. The
pattern of their intersecting points can graphically show the relationship patterns.
A scatter plot is a visualization of the relationship between two variables measured
on the same set of individuals. On the other hand, a Bubble chart displays three
dimensions of data. Each entity with its triplet (a,b,c) of associated data is plotted as a
disk that expresses two of those three variables through the xy location and the third
shows the quantity measured for significance.

Scatter plots
The data is usually displayed as a collection of points, and is often used to plot
various kinds of correlations. For instance, a positive correlation is noticed when
the increase in the value of one set of data increases the other value as well. The
student record data shown earlier has various scatter plots that show the correlations
among them.

A Conceptual Framework for Data Visualization

[32]

In the following example, we compare the heights of students with the height of their
mother to determine if there is any positive correlation. The data can be downloaded
from http://www.knapdata.com/python/ucdavis.csv.

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
students = pd.read_csv("/Users/Macbook/python/data/ucdavis.csv")
g = sns.FacetGrid(students, palette="Set1", size=7)
g.map(plt.scatter, "momheight", "height", s=140, linewidth=.7,
edgecolor="#ffad40", color="#ff8000")
g.set_axis_labels("Mothers Height", "Students Height")

We demonstrate this example using the seaborn package, but one can also
accomplish this using only matplotlib, which will be shown in the following
section. The scatterplot map for the preceding code is depicted as follows:

http://www.knapdata.com/python/ucdavis.csv

Chapter 1

[33]

Scatter plots are most useful for investigating the relationship between two different
variables. Some notable examples are as follows:

• The likelihood of having skin cancer at different ages in males versus females
• The correlation between the IQ test score and GPA

In addition to this, consider the following:

• Add a trend line or line of best-fit (if the relation is linear): Adding a trend
line can show the correlation among the data values

• Use informative mark types: Informative mark types should be used if the
story to be revealed is about data that can be visually enhanced with relevant
shapes and colors

Bubble charts
The following example shows how one can use color map as a third dimension that
may indicate the volume of sales or any appropriate indicator that drives the profit:

 [7]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt

 sns.set(style="whitegrid")
 mov =
 pd.read_csv("/Users/MacBook/python/data/2014_gross.csv")

 x=mov.ProductionCost
 y=mov.WorldGross
 z=mov.WorldGross

 cm = plt.cm.get_cmap('RdYlBu')
 fig, ax = plt.subplots(figsize=(12,10))

 sc = ax.scatter(x,y,s=z*3, c=z,cmap=cm, linewidth=0.2,
 alpha=0.5)
 ax.grid()
 fig.colorbar(sc)

 ax.set_xlabel('Production Cost', fontsize=14)
 ax.set_ylabel('Gross Profits', fontsize=14)

 plt.show()
...

A Conceptual Framework for Data Visualization

[34]

The following scatter plot is the result of the example using color map:

Chapter 1

[35]

Bubble charts are extremely useful for comparing relationships between data in three
numeric-data dimensions: the x axis data, the y axis data, and the data represented by
the bubble size. Bubble charts are like XY scatter plots, except that each point on the
scatter plot has an additional data value associated with it that is represented by the
size of the circle or "bubble" centered on the XY point. Another example of a bubble
chart is shown here (without the python code, to demonstrate a different style):

In the preceding display, the bubble chart shows the Life Expectancy versus Gross
Domestic Product per Capita around different continents.

Bubble charts are most useful for showing the concentration of data along two axes
with a third data element being the significance value measured. Some notable
examples are as follows:

• The production cost of movies and gross profit made, and the significance
measured along a heated scale as shown in the example

A Conceptual Framework for Data Visualization

[36]

In addition to this, consider the following:

• Adding color and shape significance: By varying the size and color,
the data points can be transformed into a visualization that clearly
answers some questions

• Make it interactive: If there are too many data points, bubble charts could
get cluttered, so group them on the time axis or categories, and visualize
them interactively

KDE plots
Kernel Density Estimation (KDE) is a non-parametric way to estimate the
probability density function and its average across the observed data points to create
a smooth approximation. They are closely related to histograms, but sometimes can
be endowed with smoothness or continuity by a concept called kernel.

The kernel of a Probability Density Function (PDF) is the form of the PDF in which
any factors that are not functions of any of the variables in the domain are omitted.
We will focus only on the visualization aspect of it; for more theory, one may refer to
books on statistics.

There are several different Python libraries that can be used to accomplish a KDE
plot at various depths and levels including matplotlib, Scipy, scikit-learn, and
seaborn. Following are two examples of KDE Plots. There will be more examples in
later chapters, wherever necessary to demonstrate various other ways of displaying
KDE plots.

Chapter 1

[37]

In the following example, we use a random dataset of size 250 and the seaborn
package to show the distribution plot in a few simple lines:

One can display simple distribution of a data plot using seaborn, which is
demonstrated here using a random sample generated using numpy.random:

from numpy.random import randn
import matplotlib as mpl
import seaborn as sns
import matplotlib.pyplot as plt

sns.set_palette("hls")
mpl.rc("figure", figsize=(10,6))
data = randn(250)
plt.title("KDE Demonstration using Seaborn and Matplotlib",
fontsize=20)
sns.distplot(data, color='#ff8000')

A Conceptual Framework for Data Visualization

[38]

In the second example, we are demonstrating the probability density function using
SciPy and NumPy. First we use norm() from SciPy to create normal distribution
samples and later, use hstack() from NumPy to stack them horizontally and apply
gaussian_kde() from SciPy.

Chapter 1

[39]

The preceding plot is the result of a KDE plot using SciPy and NumPy, which is
shown as follows:

from scipy.stats.kde import gaussian_kde
from scipy.stats import norm
from numpy import linspace, hstack
from pylab import plot, show, hist

sample1 = norm.rvs(loc=-1.0, scale=1, size=320)
sample2 = norm.rvs(loc=2.0, scale=0.6, size=320)
sample = hstack([sample1, sample2])
probDensityFun = gaussian_kde(sample)
plt.title("KDE Demonstration using Scipy and Numpy", fontsize=20)
x = linspace(-5,5,200)
plot(x, probDensityFun(x), 'r')
hist(sample, normed=1, alpha=0.45, color='purple')
show()

The other visualization methods such as the line and surface plot, network graph
plot, tree maps, heat maps, radar or spider chart, and the violin plot will be discussed
in the next few chapters.

Summary
The examples shown so far are just to give you an idea of how one should think
and plan before making a presentation. The most important stage is the data
familiarization and preparation process for visualization. Whether one can get the
data first or shape the desired story is mainly influenced by exactly what outcome is
attempted. It is like the "chicken and the egg" situation—does data come first or the
focus? Initially, it may not be clear what data one may need, but in most cases, after a
few iterations, things will be clear as long as there are no errors in the data.

Transform the quality of data by doing some cleanup or reducing the dimensions
(if required), and fill gaps if any. Unless the data is good, the efforts that one may
put into presenting it visually will be wasted. After a reasonable understanding of
the data is achieved, it makes sense to determine what kind of visualization may be
appropriate. In some cases, it would be better to display it in several different ways
to see the story clearly.

[41]

Data Analysis and
Visualization

Most visualization stories begin with some question that is oriented towards a
topic where the data is being either explored or collected. The question contains the
premise to the story and leads us to the point at which the data takes an expedition
over the storyline. Such data expeditions that start with a question, for example,
How many Ebola deaths were reported in the year 2014? are implemented by a group of
people by collaborating with each other. The role of data communicators should be
to create an information experience that transforms how their audiences think about
their story.

The key parts of the story relate to the process of placing the visualization in a
meaningful context. The context provides knowledge that answers questions
such as the following:

• Is there sufficient data?
• Is there a time frame within which this data exists?
• Which associable events around the globe will influence this data?

To reiterate, it is important to understand the data, and identify the context of
the question to which an answer is being attempted. Sometimes, one may start
digging into the data before even finalizing the question, and in such a case, on
gaining a refined understanding of the data, you may have an improved or clearer
version of the question.

Data Analysis and Visualization

[42]

The process starts with the input data, assuming that one has ways to acquire,
parse, and gather the required information from some source. There are some
situations where it is better to visualize this collected information to eliminate noise,
while in some other cases, one may filter and analyze the data before applying
the visualization methods. In this chapter, we will learn the different ways of data
exploration to further use them for visualization methods. We will also go through
some interesting data stories and the related concepts in the following sequence:

• Acquiring, parsing, and filtering data to detect outliers and abnormalities,
data mining and refining, visual representation, and interaction

• Creating interesting stories with data
• Perception, presentation methods, and best practice for visualization
• Interactive visualization—exploring event listeners and layouts

Why does visualization require planning?
The whole process of visualization involves people with different skill sets
and domain expertise. Data wranglers diligently collect data and analyze it.
Mathematicians and statisticians understand the visual design principles and
communicate their data using those principles. Designers or artists (in some cases,
frontend developers) have the skills necessary for visualization, while business
analysts look out for things like customer behavioral patterns, outliers, or a sudden
unusual trend. However, it always starts with either acquiring or gathering data, and
with the following steps:

• Acquire or gather data from an external source, a website, or from a file
on a disk

• Parse and filter data using programming methods to parse, clean, and
reduce the data

• Analyze and refine to remove noise and unnecessary dimensions and
find patterns

• Represent and interact to present the data in ways that are more accessible
and understandable

How much of this process is followed varies with different problems, and in some
cases, there is more analysis done than filtering of data. As discussed in the previous
chapter, in some instances, the analysis and visualization is done iteratively. In other
words, the distribution of these steps is not always predictable and consistent.

Chapter 2

[43]

The Ebola example
To illustrate the steps mentioned in the previous section and how they lead to an
understandable visualization, let us consider the question we had earlier, that is,
How many Ebola deaths were reported in the year 2014? This particular question leads to
very specific data, which is usually maintained by the World Health Organization
(http://www.who.int/en/) or Humanitarian Data Exchange (https://hdx.
rwlabs.org). The original source of this data is the World Health Organization
(WHO), but the Humanitarian Data Exchange (HDX) is the contributor. Please
note, however, that we shall have all the data, along with the Python source code
examples for this book, available at a single place.

The data contains information about the spread of the Ebola disease in Guinea,
Liberia, Mali, Nigeria, Senegal, Sierra Leone, Spain, United Kingdom, and the
United States of America.

The contributor URL for this information is https://data.hdx.rwlabs.org/
dataset/ebola-cases-2014/.

The contents of the data file in the Comma Separated Value (CSV) format include
the indicator, country name, date, and the number of deaths or the number of
infections depending upon what the indicator says. There are 36 different indicators,
and the top 10 are listed as follows (others can be viewed in Appendix, Go Forth and
Explore Visualization):

• Number of probable Ebola cases in the last 7 days
• Number of probable Ebola deaths in the last 21 days
• Number of suspected Ebola cases in the last 21 days
• Number of suspected Ebola cases in the last 7 days
• Number of suspected Ebola deaths in the last 21 days
• Proportion of confirmed Ebola cases that are from the last 21 days
• Proportion of confirmed Ebola cases that are from the last 7 days
• Proportion of confirmed Ebola deaths that are from the last 21 days
• Proportion of suspected Ebola cases that are from the last 7 days
• Proportion of suspected Ebola deaths that are from the last 21 days

At this point, after looking at the list of indicators, the single question that we
had initially, that is, How many Ebola deaths were reported in the year 2014? could
be changed to multiple sets of questions. For simplicity, we stay focused on that
single question and see how we can further analyze the data and come up with a
visualization method. First, let us take a look at the ways to read the data file.

http://www.who.int/en/
https://hdx.rwlabs.org
https://hdx.rwlabs.org
https://data.hdx.rwlabs.org/dataset/ebola-cases-2014/
https://data.hdx.rwlabs.org/dataset/ebola-cases-2014/

Data Analysis and Visualization

[44]

In any programming language, there is more than one way to read a file, and one of
the options is to use the pandas library for Python, which has high performance and
uses data structures and data analysis tools. The other option is to use the csv library
to read the data file in the CSV format. What is the difference between them? They
both can do the job. In the older version of pandas there were issues with memory
maps for large data (that is, if the data file in the CSV format was very large), but
now that has been optimized. So let's start with the following code:

[1]: with open('("/Users/kvenkatr/python/ebola.csv ', 'rt') as f:
 filtereddata = [row for row in csv.reader(f) if row[3] !=
"0.0" and
 row[3] != "0" and "deaths" in row[0]]

[2]: len(filtereddata)
Out[2]: 1194

The preceding filter can also be performed using pandas, as follows:

import pandas as pd
eboladata = pd.read_csv("/Users/kvenkatr/python/ebola.csv")
filtered = eboladata[eboladata["value"]>0]
filtered = filtered[filtered["Indicator"].str.contains("deaths")]
len(filtered)

The data can be downloaded from http://www.knapdata.com/python/ebola.csv.
The next step is to open the data file with the read text (rt) format. It reads each row
and further filters the rows with zero number of deaths as the indicator string has
the word deaths in it. This is a very straightforward filter applied to ignore the data
with no reported cases or deaths. Printing only the top five rows of the filtered data
shows the following:

[3]: filtereddata[:5]
Out[3]:
[['Cumulative number of confirmed Ebola deaths',
'Guinea','2014-08-29', '287.0'],
 ['Cumulative number of probable Ebola deaths','Guinea','2014-08-29',
 '141.0'],
 ['Cumulative number of suspected Ebola deaths','Guinea','2014-08-29',
 '2.0'],
 ['Cumulative number of confirmed, probable and suspected Ebola
deaths',
 'Guinea','2014-08-29','430.0'],
 ['Cumulative number of confirmed Ebola deaths',
 'Liberia','2014-08-29','225.0']]

http://www.knapdata.com/python/ebola.csv

Chapter 2

[45]

If all the data about the reported cases of Ebola in each country are to be separated,
how do we further filter this? We can sort them on the country column. There are
four columns in this data file, indicator, country, date, and number value, as
shown in the following code:

[4]: import operator
 sorteddata = sort(filtereddata, key=operator.itemgetter(1))
[5]: sorteddata[:5]
Out[5]:
[['Cumulative number of confirmed Ebola deaths',
'Guinea','2014-08-29', '287.0'],
 ['Cumulative number of probable Ebola deaths','Guinea','2014-08-29',
 '141.0'],
 ['Cumulative number of suspected Ebola deaths','Guinea','2014-08-29',
 '2.0'],
 ['Cumulative number of confirmed, probable and suspected Ebola
deaths',
 'Guinea','2014-08-29','430.0'],
 ['Number of confirmed Ebola deaths in the last 21 days', 'Guinea',
 '2014-08-29','8.0']]

After looking at the data so far, there are two indicators that appear to be of interest
in the context in which we started this data expedition:

• Cumulative number of confirmed Ebola deaths
• Cumulative number of confirmed, probable, and suspected Ebola deaths

By applying visualization several times, we also notice that among the several
countries, Guinea, Liberia, and Sierra Leone had more confirmed deaths than the
others. We will now see how the reported deaths in these three countries could
be plotted:

import matplotlib.pyplot as plt
import csv
import operator
import datetime as dt

with open('/Users/kvenkatr/python/ebola.csv', 'rt') as f:
 filtereddata = [row for row in csv.reader(f) if row[3] != "0.0" and
 row[3] != "0" and "deaths" in row[0]]

sorteddata = sorted(filtereddata, key=operator.itemgetter(1))
guineadata = [row for row in sorteddata if row[1] == "Guinea" and

Data Analysis and Visualization

[46]

 row[0] == "Cumulative number of confirmed Ebola deaths"]
sierradata = [row for row in sorteddata if row[1] == "Sierra Leone"
and
 row[0] == "Cumulative number of confirmed Ebola deaths"]
liberiadata = [row for row in sorteddata if row[1] == "Liberia" and
 row[0] == "Cumulative number of confirmed Ebola deaths"]

g_x = [dt.datetime.strptime(row[2], '%Y-%m-%d').date() for
 row in guineadata]
g_y = [row[3] for row in guineadata]

s_x = [dt.datetime.strptime(row[2], '%Y-%m-%d').date() for
 row in sierradata]
s_y = [row[3] for row in sierradata]

l_x = [dt.datetime.strptime(row[2], '%Y-%m-%d').date() for
 row in liberiadata]
l_y = [row[3] for row in liberiadata]

plt.figure(figsize=(10,10))
plt.plot(g_x,g_y, color='red', linewidth=2, label="Guinea")
plt.plot(s_x,s_y, color='orange', linewidth=2, label="Sierra Leone")

plt.plot(l_x,l_y, color='blue', linewidth=2, label="Liberia")
plt.xlabel('Date', fontsize=18)

plt.ylabel('Number of Ebola Deaths', fontsize=18)

plt.title("Confirmed Ebola Deaths", fontsize=20)

plt.legend(loc=2)

plt.show()

Chapter 2

[47]

The result would look like the following image:

We can construct a similar plot for the other indicator, that is, cumulative number of
confirmed, probable, and suspected Ebola deaths. (This may not be the best way to do so,
but we could include the data from more countries and plot a similar result.)

import matplotlib.pyplot as plt
import csv
import operator
import datetime as dt

with open('/Users/kvenkatr/python/ebola.csv', 'rt') as f:
 filtereddata = [row for row in csv.reader(f) if row[3] != "0.0" and
 row[3] != "0" and "deaths" in row[0]]

sorteddata = sorted(filtereddata, key=operator.itemgetter(1))

guineadata = [row for row in sorteddata if row[1] == "Guinea" and

Data Analysis and Visualization

[48]

 row[0] == "Cumulative number of confirmed, probable and suspected
Ebola deaths"]
sierradata = [row for row in sorteddata if row[1] == "Sierra Leone"
and
 row[0] == " Cumulative number of confirmed, probable and suspected
Ebola deaths "]
liberiadata = [row for row in sorteddata if row[1] == "Liberia" and
 row[0] == " Cumulative number of confirmed, probable and suspected
Ebola deaths "]

g_x = [dt.datetime.strptime(row[2], '%Y-%m-%d').date() for
 row in guineadata]
g_y = [row[3] for row in guineadata]

s_x = [dt.datetime.strptime(row[2], '%Y-%m-%d').date() for
 row in sierradata]
s_y = [row[3] for row in sierradata]

l_x = [dt.datetime.strptime(row[2], '%Y-%m-%d').date() for
 row in liberiadata]
l_y = [row[3] for row in liberiadata]

plt.figure(figsize=(10,10))
plt.plot(g_x,g_y, color='red', linewidth=2, label="Guinea")
plt.plot(s_x,s_y, color='orange', linewidth=2, label="Sierra Leone")

plt.plot(l_x,l_y, color='blue', linewidth=2, label="Liberia")
plt.xlabel('Date', fontsize=18)

plt.ylabel('Number of Ebola Deaths', fontsize=18)

plt.title("Probable and Suspected Ebola Deaths", fontsize=20)

plt.legend(loc=2)

plt.show()

Chapter 2

[49]

The plot should look like this:

A sports example
To illustrate another example, and how a specific visualization method works
better than another, let us consider a different question: What are the top five record
touchdowns by quarterbacks in American Football as of Feb 2015? The original source of
data for this are the Len Dawson NFL and AFL Statistics. (Data source: http://www.
pro-football-reference.com/players/D/DawsLe00.htm.)

http://www.pro-football-reference.com/players/D/DawsLe00.htm
http://www.pro-football-reference.com/players/D/DawsLe00.htm

Data Analysis and Visualization

[50]

The data contains information about the top 22 quarterbacks: Peyton Manning, Brett
Favre, Dan Marino, Drew Brees, Tom Brady, Frank Tarkenton, John Elway, Warren
Moon, John Unitas, Vinny Testaverda, Joe Montana, Dave Krieg, Eli Manning, Sonny
Jurgensen, Dan Fouts, Philip Rivers, Ben Roethlisberger, Drew Bledsoe, Boomer
Esiason, John Hadle, Tittle, and Tony Romo:

Before we think of a visualization method, a little bit of analysis needs to be done.
These quarterbacks had played in different time periods. For example, Brett Favre
played from 1991 to 2010, and Dan Marino played from 1983 to 1999. The challenge
is that if we use a bar graph or a bubble chart, they will show the results in only
one dimension.

The first step is to parse the CSV file, and we have several options here. We can
either use the pandas read_csv function or the csv module, which has some
convenient functions such as DictReader:

import csv
import matplotlib.pyplot as plt

csv has Name, Year, Age, Cmp, Att, Yds, TD, Teams

Chapter 2

[51]

with open('/Users/MacBook/java/qb_data.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 for row in reader:
 name = row['Name']
 tds = row['TD']

The quarterback data was downloaded from the source listed previously in this
section; the filtered data is also available at http://www.knapdata.com/python/qb_
data.csv. The csv module includes classes for working with rows as dictionaries
so that the fields can be named. The DictReader and DictWriter classes translate
the rows to dictionaries instead of lists. Keys for the dictionary can be passed in or
inferred from the first row in the input (where the row contains headers). Reading
the contents of the CSV file is achieved via DictReader, where the column input
values are treated as strings:

#ways to call DictReader

if fieldnames are Name, Year, Age, Cmp, Att, Yds, TD, Teams
fieldnames = ['Name', 'Year', 'Age', 'Cmp', 'Att', 'Yds', 'TD',
'Teams']

reader = csv.DictReader(csvfile, fieldNames=fieldnames)
If csv file has first row as Name, Year, Cmp, Att, Yds, TD, Teams
we don't need to define fieldnames, the reader automatically
recognizes
them.

In order to convert some of the values to a number, we may need a function
that converts and returns a numeric value. We have also added functions like
getcolors() and num() in prepare.py, which can be used in future examples:

num(s) and getcolors() functions
def num(s):
 try:
 return int(s)
 except ValueError:
 return 0

def getcolors():
 colors = [(31, 119, 180), (255,0,0), (0,255,0), (148, 103, 189),
(140, 86, 75), (218, 73, 174), (127, 127, 127), (140,140,26), (23,
190, 207), (65,200,100), (200, 65,100), (125,255,32), (32,32,198),
(255,191,201), (172,191,201), (0,128,0), (244,130,150), (255,
127, 14), (128,128,0), (10,10,10), (44, 160, 44), (214, 39, 40),
(206,206,216)]

http://www.knapdata.com/python/qb_data.csv
http://www.knapdata.com/python/qb_data.csv

Data Analysis and Visualization

[52]

 for i in range(len(colors)):
 r, g, b = colors[i]
 colors[i] = (r / 255. , g / 255. , b / 255.)
 return colors

Visually representing the results
Based on the field names in the input data, for every quarterback, their touchdown
statistics or passing-yards statistics can be plotted on a timeline. Now that we know
what to plot, the next step is to figure out how to plot it.

Simple X-Y plots with the fields (year, touchdown) or (touchdown, year) should be
a good start. However, there are 252 quarterbacks so far in this input data file, and a
majority of them are not relevant. Therefore, showing them all with different colors
would not make sense. (Why? Do we have 252 different colors?) We can attempt to
plot the top 7 or top 10 results, as seen in the following image:

Chapter 2

[53]

The following Python program demonstrates how one can use matplotlib to
display the top 10 quarterbacks in terms of the number of touchdowns and the plot
produced by this program is shown in the preceding image:

import csv
import matplotlib.pyplot as plt

The following functions can be in separate file
(If it does, you need to import)
def num(s):
 try:
 return int(s)
 except ValueError:
 return 0

def getcolors():
 colors = [(31, 119, 180), (255,0,0), (0,255,0), (148, 103, 189),
(140, 86, 75), (218, 73, 174), (127, 127, 127), (140,140,26), (23,
190, 207), (65,200,100), (200, 65,100), (125,255,32), (32,32,198),
(255,191,201), (172,191,201), (0,128,0), (244,130,150), (255,
127, 14), (128,128,0), (10,10,10), (44, 160, 44), (214, 39, 40),
(206,206,216)]

 for i in range(len(colors)):
 r, g, b = colors[i]
 colors[i] = (r / 255. , g / 255. , b / 255.)
 return colors

def getQbNames():
 qbnames = ['Peyton Manning']
 name=''
 i=0
 with open('/Users/MacBook/java/qb_data.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 for row in reader:
 if (row['Name'] != name and qbnames[i] != row['Name']):
 qbnames.append(row['Name'])
 i = i+1
 return qbnames

def readQbdata():
 resultdata = []
 with open('/Users/MacBook/java/qb_data.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 resultdata = [row for row in reader]

Data Analysis and Visualization

[54]

 return resultdata

fdata=[]
prevysum=0

-- functions End --

qbnames = getQbNames()
fdata = readQbdata()

i=0
rank=0
prevysum=0
lastyr=0
highrank=244
colorsdata = getcolors()

fig = plt.figure(figsize=(15,13))
ax=fig.add_subplot(111,axisbg='white')

limits for TD
plt.ylim(10, 744)
plt.xlim(1940, 2021)

colindex=0
lastage=20

for qbn in qbnames:
 x=[]
 y=[]
 prevysum=0
 for row in fdata:
 if (row['Name'] == qbn and row['Year'] != 'Career'):
 yrval = num(row['Year'])
 lastage = num(row['Age'])
 prevysum += num(row['TD'])
 lastyr = yrval
 x += [yrval]
 y += [prevysum]

 if (rank > highrank):
 plt.plot(x,y, color=colorsdata[colindex], label=qbn,
linewidth=2.5)
 plt.legend(loc=0, prop={'size':10})

Chapter 2

[55]

 colindex = (colindex+1)%22
 plt.text(lastyr-1, prevysum+2, qbn+"("+str(prevysum)+"):"
+str(lastage), fontsize=9)

 else:
 plt.plot(x,y, color=colorsdata[22], linewidth=1.5)
 rank = rank +1
plt.xlabel('Year', fontsize=18)

plt.ylabel('Cumulative Touch Downs', fontsize=18)

plt.title("Cumulative Touch Downs by Quarter Backs", fontsize=20)
plt.show()

When the plot (X,Y) is switched to (Y,X), there is enough room to display the
quarterback names. In the preceding code snippet, we might have to make the
following change:

Data Analysis and Visualization

[56]

If we flip the x and y axes, then there is more room to display the name of the
quarterback and the total touchdown score, as shown in the preceding plot. In order
to accomplish this, one may have to switch x and y, and have the label text properly
positioned according to the new x and y axes.

plt.xlim(10, 744)
plt.ylim(1940, 2021)

remaining code all un-changed except

y += [num(row['Year'])]
x += [prevysum]

Don't forget to switch the x,y co-ordinates of text display

plt.text(prevysum+2, lastyr-1, qbn+"("+str(prevysum)+"):"
str(lastage), fontsize=9)

At first glance, we can only make out the quarterbacks who are leading in the
number of touchdown scores in their career (as of the 2014-2015 football season).
Based on this visualization, you can further try to analyze and understand what
else can we infer from this data. The answer to this is based on the answers of the
following questions:

• Which quarterback has played the longest in their career?
• Are there any quarterbacks today who can surpass Peyton Manning's

touchdown records?

Among the fields that we read from the input file, Age happens to be one of the field
values that we have. There are many ways to experiment with the starting value of
Age that can be used to plot the Age versus Touchdown statistics. To answer the first
question, we have to keep track of Age instead of Year. The following snippet can
be either used in a separate function (if one has to use it often), or included in the
main script:

maxage = 30

with open('/Users/MacBook/java/qb_data.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 for row in reader:
 if (num(row['Age']) > maxage):
 maxage = num(row['Age'])

print maxage

Chapter 2

[57]

Running the preceding block of code shows 44 as the maximum age of a quarterback
(when actively played in the league, and there were three such quarterbacks: Warren
Moon, Vinny Testaverde, and Steve DeBerg. Technically, George Blanda played until
he was 48 (which is the maximum age as a player), but he started as quarterback and
was also a kicker for some years).

In order to answer the other question, we plot the touchdown statistics against the
quarterback age, as follows:

import csv
import matplotlib.pyplot as plt

The following functions can be in a separate file
-- functions Begin --
def num(s):
 try:
 return int(s)
 except ValueError:
 return 0

def getcolors():
 colors = [(31, 119, 180), (255,0,0), (0,255,0), (148, 103, 189),
(140, 86, 75), (218, 73, 174), (127, 127, 127), (140,140,26), (23,
190, 207), (65,200,100), (200, 65,100), (125,255,32), (32,32,198),
(255,191,201), (172,191,201), (0,128,0), (244,130,150), (255,
127, 14), (128,128,0), (10,10,10), (44, 160, 44), (214, 39, 40),
(206,206,216)]

 for i in range(len(colors)):
 r, g, b = colors[i]
 colors[i] = (r / 255. , g / 255. , b / 255.)
 return colors

def getQbNames():
 qbnames = ['Peyton Manning']
 name=''
 i=0
 with open('/Users/MacBook/java/qb_data.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 for row in reader:
 if (row['Name'] != name and qbnames[i] != row['Name']):
 qbnames.append(row['Name'])

Data Analysis and Visualization

[58]

 i = i+1
 return qbnames

def readQbdata():
 resultdata = []
 with open('/Users/MacBook/java/qb_data.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 resultdata = [row for row in reader]
 return resultdata

fdata=[]
prevysum=0

-- functions End --

qbnames = getQbNames()
fdata = readQbdata()

i=0
rank=0
prevysum=0
lastyr=0
highrank=244
colorsdata = getcolors()

fig = plt.figure(figsize=(15,13))
ax=fig.add_subplot(111,axisbg='white')

limits for TD
plt.ylim(10, 744)
#change xlimit to have age ranges
plt.xlim(20, 50)

colindex=0
lastage=20

for qbn in qbnames:
 x=[]
 y=[]
 prevysum=0
 for row in fdata:
 if (row['Name'] == qbn and row['Year'] != 'Career'):

Chapter 2

[59]

 yrval = num(row['Year'])
 lastage = num(row['Age'])
 prevysum += num(row['TD'])
 lastyr = yrval
 x += [lastage]
 y += [prevysum]

 if (rank > highrank):
 if (lastage == 44):
 plt.plot(x,y, color='red', label=qbn, linewidth=3.5)
 else:
 plt.plot(x,y, color=colorsdata[colindex], label=qbn,
linewidth=2.5)
 plt.legend(loc=0, prop={'size':10})

 colindex = (colindex+1)%22
 plt.text(lastage-1, prevysum+2, qbn+"("+str(prevysum)+"):"
+str(lastage), fontsize=9)

 else:
 if (lastage == 44):
 plt.plot(x,y, color='red', label=qbn, linewidth=3.5)
 plt.text(lastage-1, prevysum+2, qbn+"("+str(prevysum)+"):"
+str(lastage), fontsize=9)
 else:
 plt.plot(x,y, color=colorsdata[22], linewidth=1.5)
 rank = rank +1

plt.xlabel('Age', fontsize=18)

plt.ylabel('Number of Touch Downs', fontsize=18)

plt.title("Touch Downs by Quarter Backs by Age", fontsize=20)
plt.show()

Data Analysis and Visualization

[60]

When you take a look at the plotting results, only two quarterback results are
comparable to Peyton Manning at the age of 35, which are Drew Brees and Tom
Brady. However, given the current age of Tom Brady and his accomplishments so
far, it appears that only Drew Brees has a better probability of surpassing Peyton
Manning's touchdown records.

Chapter 2

[61]

This conclusion is shown in the following image with a simpler plot for data based
on the age of 35. Comparing the top four quarterback results—Peyton Manning,
Tom Brady, Drew Brees, and Brett Favre—we see that Drew Brees's achievement at
the age of 35 is comparable to that of Peyton at the same age. Although the write-up
by NY Times with the title Why Peyton Manning's record will be hard to beat concludes
differently, the following plot, at least, is inclined towards the possibility that Drew
Brees might beat the record:

Data Analysis and Visualization

[62]

Creating interesting stories with data
Data visualization regularly promotes its ability to reveal stories with data, and in
some cases, reveal the not so trivial stories visually. In the recent past, journalists
have been integrating visualizations more into their narratives, often helping us
better understand their stories. In the commercial world, there are few that grasp
the ways in which data can be associated with a meaningful story that appeals both
emotionally and intelligently to the audience. As Rudyard Kipling wrote, If history
were taught in the form of stories, it would never be forgotten; a similar thought applies
to data. We should, therefore, understand that data would be understood and
remembered better if presented in the right way.

Why are stories so important?
There are many tools and methods of visualization that we have today: bar and pie
charts, tables, line graphs, bubble charts, scatter plots, and so on—the list is long.
However, with these tools, the focus is on data exploration, and not on aiding a
narrative. While there are examples of visualizations that do help tell stories, they are
rare. This is mainly because finding the story is significantly harder than crunching the
numbers. There are reader-driven narratives and author-driven narratives as well.

An author-driven narrative has data and visualization that are chosen by the author
and presented to the public reader. A reader-driven narrative, on the other hand,
provides tools and methods for the reader to play with the data, which gives the
reader more flexibility and choices to analyze and understand the visualization.

Reader-driven narratives
In 2010, researchers at Stanford University studied and reviewed the emerging
importance of storytelling and suggested some design strategies for narrative
visualization. According to their study, a purely author-driven approach has a strict
linear path through the visualization, relies on messaging, and has no interactivity,
whereas a reader-driven approach has no prescribed ordering of images, no
messaging, and has a high degree of interactivity. An example of the author-driven
approach is a slideshow presentation. The seven narratives of visualization listed by
that study include magazine style, annotated chart, partitioned poster, flow chart,
comic strip, slideshow, and a film/video/animation.

Chapter 2

[63]

Gapminder
A classic example of a reader-driven narrative combined with a data-driven one
is Gapminder World (http://gapminder.org/world). It has a collection of over
600 data indicators in international economy, environment, health, technology, and
much more. It provides tools that students can use to study real-world issues and
discover patterns, trends, and correlations. This was developed by the Trendalyzer
software that was originally developed by Hans Rosling's foundation in Sweden, and
later acquired by Google in March 2007.

The information visualization technique used by Gapminder is an interactive
bubble chart with the default set to five variables: X, Y, bubble size, color, and a
time variable that is controlled by a slider. This sliding control and the selection of
what goes along the X and Y axes makes it interactive. However, creating a story,
even with a tool like this, is not necessarily easy. Storytelling is a craft and can be an
effective knowledge-sharing technique, because it conveys the context and emotional
content more effectively than most other modes of communication.

http://gapminder.org/world

Data Analysis and Visualization

[64]

The most attractive storytellers grasp the importance of understanding the audience.
They might tell the same story to a child and an adult, but the articulation would be
different. Similarly, a data-driven or reader-driven story should be adjusted based on
who is listening or studying it. For example, to an executive, statistics are likely the
key, but a business intelligence manager would most likely be interested in methods
and techniques.

There are many JavaScript frameworks that are available today for creating
interactive visualization, and the most popular one is D3.js. Using Python, there are
only a few ways today in which one can create an interactive visualization (without
using Flash). One way is by generating the data in the JSON format that D3.js can
use to plot, and the second option is to use Plotly (http://www.plot.ly). We will go
into more detail about Plotly in the concluding section of this chapter.

The State of the Union address
Twitter has created a visualization from the tweets during President Obama's speech
that graphs the tweets by location and topic. This visualization is interesting because
it captures a lot of details in one place. Scroll through the speech to see how Twitter
reacted; it is posted at http://twitter.github.io/interactive/sotu2015/#p1.

http://www.plot.ly
http://twitter.github.io/interactive/sotu2015/#p1

Chapter 2

[65]

Mortality rate in the USA
The mortality rate in the USA fell by about 17 percent from 1968 to 2010, years for
which we have detailed data (from http://www.who.int/healthinfo/mortality_
data/en/). Almost all of this improvement can be attributed to improved survival
prospects for men. It looks like progress stopped in the mid 1990s, but one of the
reasons may be that the population has aged a lot since then. One may read a
complete description of this from Bloomberg, but here we attempt to display two
visualizations:

• Mortality rate during the period 1968-2010 among men, women,
and combined

• Mortality rate for seven age groups to show some interesting results

http://www.who.int/healthinfo/mortality_data/en/
http://www.who.int/healthinfo/mortality_data/en/

Data Analysis and Visualization

[66]

The code for this example is as follows:

import csv
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(15,13))
plt.ylim(740,1128)
plt.xlim(1965,2011)
Data from http://www.who.int/healthinfo/mortality_data/en/
with open('/Users/MacBook/Downloads/mortality1.csv') as csvfile:
 mortdata = [row for row in csv.DictReader(csvfile)]

x=[]
males_y=[]
females_y=[]
every_y=[]
yrval=1968
for row in mortdata:
 x += [yrval]
 males_y += [row['Males']]
 females_y += [row['Females']]
 every_y += [row['Everyone']]
 yrval = yrval + 1

plt.plot(x, males_y, color='#1a61c3', label='Males', linewidth=1.8)
plt.plot(x, females_y, color='#bc108d', label='Females',
linewidth=1.8)
plt.plot(x, every_y, color='#747e8a', label='Everyone', linewidth=1.8)
plt.legend(loc=0, prop={'size':10})
plt.show()

Chapter 2

[67]

The mortality rates were measured per 100,000 people. By dividing the population
into separate age cohorts, the improvements in life expectancy are shown to have been
ongoing, particularly showing most progress for the age group below 25. What exactly
happened to the population falling under the age group of 25-44 (shown in red)? The
narrative on Bloomberg lays out the reason very well by connecting another fact that
the number of deaths caused by AIDS had an effect on that age group during that time.

AIDS killed more than 40,000 Americans a year and 75 percent of them were in
the age group of 25-44. Therefore, the unusual results are seen during that window
of time.

import csv
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(15,13))
plt.ylim(35,102)

Data Analysis and Visualization

[68]

plt.xlim(1965,2015)

colorsdata = ['#168cf8', '#ff0000', '#009f00', '#1d437c', '#eb912b',
'#8663ec', '#38762b']
labeldata = ['Below 25', '25-44', '45-54', '55-64', '65-74', '75-84',
'Over 85']

using reader() instead of DictReader() so that we could loop to
build y-values in list
with open('/Users/MacBook/Downloads/mortality2.csv') as csvfile:
 mortdata = [row for row in csv.reader(csvfile)]

x=[]
for row in mortdata:
 yrval = int(row[0])
 if (yrval == 1969):
 y = [[row[1]],[row[2]],[row[3]],[row[4]],[row[5]],[row[6]],[r
ow[7]]]
 else:
 for col in range(0,7):
 y[col] += [row[col+1]]
 x += [yrval]

for col in range(0,7):
 if (col == 1):
 plt.plot(x, y[col], color=colorsdata[col], label=labeldata[col],
linewidth=3.8)
 else:
 plt.plot(x, y[col], color=colorsdata[col], label=labeldata[col],
linewidth=2)

plt.legend(loc=0, prop={'size':10})
plt.show()

The difference between csv.reader() and csv.DictReader() is that when the
input CSV file has fieldnames (or column names), DictReader() uses the fieldnames
as keys and the actual value in that column as the data value. In the preceding
example, we have used reader(), because it is convenient when there is looping
involved (y[col] = [row[col+1]]). Moreover, with reader(), if the column
names exist in the CSV file, that first row should be ignored.

We have also made filtered data for both these examples available as mortality1.
csv and mortality2.csv at http://www.knapdata.com/python.

http://www.knapdata.com/python

Chapter 2

[69]

For mortdata[:4], the result would be different in each of these methods of
reading. In other words, the result of mortdata[:4] when we use reader()
will be as follows:

[['1969', '100', '99.92', '97.51', '97.47', '97.54', '97.65',
'96.04'], ['1970', '98.63', '97.78', '97.16', '97.32', '96.2',
'96.51', '83.4'], ['1971', '93.53', '95.26', '94.52', '94.89',
'93.53', '93.73', '89.63'], ['1972', '88.86', '92.45', '94.58',
'95.14', '94.55', '94.1', '89.51']]

With DictReader(), assuming that the CSV file has fieldnames, the four rows will
be displayed as follows:

[{'25-44': '99.92', '45-54': '97.51', '55-64': '97.47', '65-74':
'97.54', '75-84': '97.65', 'Below 25': '100', 'Over 85': '96.04',
'Year': '1969'},
 {'25-44': '97.78', '45-54': '97.16', '55-64': '97.32', '65-74':
'96.2', '75-84': '96.51', 'Below 25': '98.63', 'Over 85': '83.4',
'Year': '1970'},
 {'25-44': '95.26', '45-54': '94.52', '55-64': '94.89', '65-74':
'93.53', '75-84': '93.73', 'Below 25': '93.53', 'Over 85': '89.63',
'Year': '1971'},
 {'25-44': '92.45', '45-54': '94.58', '55-64': '95.14', '65-74':
'94.55', '75-84': '94.1', 'Below 25': '88.86', 'Over 85': '89.51',
'Year': '1972'}]

A few other example narratives
There are numerous examples that one can explore, visualize, interact and play with.
Some notable ones are as follows:

• How the recession reshaped the economy in 255 charts (NY Times): This
narrative shows how, in five years since the end of the Great Recession, the
economy regained the lost nine million jobs, highlighting which industries
recovered faster than others. (Source: http://tinyurl.com/nwdp3pp.)

• Washington Wizards shooting stars of 2013 (Washington Post): This
interactive graphic was created a few years ago based on the performance of
the Washington Wizards in 2013, trying to analyze and see how the signing
of Paul Pierce could bring much improved shooting from the mid-range.
(Source: http://www.washingtonpost.com/wp-srv/special/sports/
wizards-shooting-stars/.)

http://tinyurl.com/nwdp3pp
http://www.washingtonpost.com/wp-srv/special/sports/wizards-shooting-stars/
http://www.washingtonpost.com/wp-srv/special/sports/wizards-shooting-stars/

Data Analysis and Visualization

[70]

Author-driven narratives
The New York Times produces some of the world's best data visualization,
multimedia, and interactive stories. Their ambition for these projects has always been
to meet the journalistic standards at a very prestigious level and to create genuinely
new kinds of experiences for the readers. The storytelling culture among them is one
of the sources of energy behind this work.

For example, there is a combination of data and author-driven narrative titled The
Geography of Chaos in Yemen. On March 26, 2015, Saudi Arabian jets struck targets
in Yemen in a drive against the Houthi rebel group. Yemen plays an important role
for the key players such as Saudi Arabia, Iran, and the United States. The Houthis'
influence has grown over the past years, which was captured visually by the authors
at the NY Times.

Chapter 2

[71]

Yemen is home to one of Al Qaeda's most active branches in the Arabian Peninsula.
Since 2009, the United States has carried out at least 100 airstrikes in Yemen. In addition
to Al Qaeda's occupation, the Islamic State also has activities in that region, and
recently, they claimed responsibility for the bombings at two Shiite mosques in Sana
that killed more than 135 people. The following visualization comes from The Bureau
of Investigative Journalism, American Enterprise Institute's Critical Threat Project:

Another good example is the visualization of the Atlantic's past by David McCandless,
which shows what the oceans were like before over-fishing. It is hard to imagine the
damage that over-fishing is wreaking on the oceans. The effects are invisible, hidden
in the ocean. The following image shows the biomass of the popularly-eaten fish in
the North Atlantic Ocean in 1900 and 2000. The popularly-eaten fish include tuna, cod,
haddock, hake, halibut, herring, mackerel, pollock, salmon, sea trout, striped bass,
sturgeon, and turbot, many of which are now vulnerable or endangered.

Data Analysis and Visualization

[72]

Dr. Villy Christensen and his colleagues at the University of British Columbia used
ecosystem models, underwater terrain maps, fish-catch records, and statistical
analysis to render the biomass of the Atlantic fish at various points in this century.

Perception and presentation methods
In the past, data size and variety did not impose much of a challenge; therefore,
perceiving and analyzing data was straightforward. Today there are large quantities
of data in innumerable fields, and visualization can provide valuable assistance
to humans for perceiving and interacting with visualization of the data. Human
factors contribute significantly to the whole visualization process in order to better
understand data and aid in decision-making tasks.

Visualization techniques can be categorized into two areas:

• Scientific visualization: This involves scientific data with an inherent
physical entity

• Information visualization: This involves abstract data (spatial or non-spatial)

Chapter 2

[73]

Most visualization systems are designed so that humans and computers can
cooperate, each performing the following tasks:

• Visually representing data to enhance data analysis
• Visually displaying models, interpretations of data, ideas, hypotheses,

and insight
• Helping users to improve their models by finding either supporting or

contradictory evidence for their hypotheses
• Helping users to organize and share their ideas

New insights into visual perception are arising from work in various disciplines
besides information visualization, such as human factors and human-computer
interaction. One of the great strengths of data visualization is our ability to process
visual information much more rapidly than verbal information. Psychologists
studied perceptual organization during the 1920s in Germany, and the first group of
them was the Gestalt Theorists.

The Gestalt principles of perception
The word Gestalt means "organized whole" or, in other words, when parts identified
individually have different characteristics to the whole. For example, for describing
a tree, you can say that it has different parts such as the trunk, leaves, branches, fruit
(in some cases). However, when we look at an entire tree, we are not conscious of the
parts, but aware of the whole object—in this case, the tree.

The principles of Gestalt perception are as follows:

• Proximity: Objects that are close together or connected to each other are
perceived as a group, reducing the need to process smaller objects separately.

Data Analysis and Visualization

[74]

• Similarity: Objects that share similar attributes, color, or shape are perceived
as a group.

• Common fate: When both the principles of proximity and similarity are in
place, a movement takes place. Then they appear to change grouping.

• Good continuation: Some things are important as a whole, which means
if there are interruptions, then it changes the perceptive reading. In the
following image, we perceive the two crossed lines instead of four lines
meeting at the center:

• Closure: Even if a part of the border of a shape is missing, we still tend to see
the shape as completely enclosed by the border and ignore the gaps.

Chapter 2

[75]

It is very useful to know these principles for creating any visualization method.

Let's elaborate this further with an example. Proximity refers to the visual approach
of grouping shapes together if they appear similar to each other. Such a group is
usually perceived as a single unit. For instance, the following image shows how one
can distinguish proximity:

Some best practices for visualization
The first important step one can take to make a great visualization is to know what is
the goal behind the effort. How does one know if the visualization has a purpose? It
is also very important to know who the audience is and how this will help them.

Once the answers to these questions are known, and the purpose of visualization is
well understood, the next challenge is to choose the right method to present it. The
most commonly-used types of visualization could further be categorized according
to the following:

• Comparison and ranking
• Correlation
• Distribution
• Location-specific or geodata
• Part-to-whole relationships
• Trends over time

Data Analysis and Visualization

[76]

Comparison and ranking
Comparing and ranking can be done in more than one way, but the traditional way
is by using bar charts. A bar chart is believed to encode quantitative values as length
on the same baseline. However, it is not always the best way to display comparison
and rankings. For instance, to display the top 12 countries in Africa by GDP, the
following presentation is a creative way to visualize (courtesy: Stats Legend, Andrew
Gelman and Antony Unwin):

Correlation
A simple correlation analysis is a great place to start for identifying the relationships
between measures, although correlation doesn't guarantee a relationship. To confirm
that the relationship truly exists, a statistical methodology is often required. The
following is an example to build a simple scatter plot to detect the correlations
between two factors, say gpa and tv or gpa and exercise among the students from
a university:

Chapter 2

[77]

However, we can use other ways in order to display the correlation matrix. For
instance, one can use scatter plots, heat maps, or some specific example to show
the influence network amongst stocks in the S&P 100. (The following two plots are
taken from Statistical Tools for High Throughput Analysis at http://www.sthda.com.)
To emphasize further, a correlation matrix involves data in a matrix form. The data
is correlated by using a scaled color map, as shown in the following examples. For
more details, we suggest you to refer to the site, http://www.sthda.com.

A correlation matrix is used to investigate the dependence between multiple
variables at the same time. The result is a table containing the correlation coefficients
between each variable and the others. Heat maps originated in 2D display of the
values in a data matrix. There are many different color schemes that can be used to
illustrate the heat map, with perceptual advantages and disadvantages for each.

http://www.sthda.com
http://www.sthda.com

Data Analysis and Visualization

[78]

Distribution
A distribution analysis shows how the quantitative values are distributed across
their range, and is therefore, extremely useful in data analysis. For example, compare
the grade distribution of homework the midterm, the final exam, and the total
course grade of a class of students. In this example, we will discuss two of the most
commonly used chart types for this purpose. One is a histogram (as shown in the
following image), and the other is a box plot or box-and-whisker plot.

Chapter 2

[79]

The shape of a histogram depends strongly on the specified bin size
and locations. The box-and-whisker plots are excellent for displaying multiple
distributions. They pack all the data points—in this case, grades per student—into
a box-and-whisker display. Now you can easily identify the low values, the
25th-percentile values, the medians, the 75th-percentiles, and the maximum values
across all categories—all at the same time.

One of the many ways to conveniently plot these in Python is by using Plotly,
which is an online analytics and visualization tool. Plotly provides online graphing,
analytics, and statistics tools as well as scientific plotting libraries for Python, R,
Julia, and JavaScript. For examples of histograms and box-and-whisker plots, refer to
https://plot.ly/python/histograms-and-box-plots-tutorial.

https://plot.ly/python/histograms-and-box-plots-tutorial

Data Analysis and Visualization

[80]

Location-specific or geodata
Maps are the best way to display data that is location-specific. Maps are best used
when paired with another chart that details what the map is displaying (such as a
bar chart sorted from greatest to least, line chart showing the trends, and so on).
For example, the following map shows the intensity of an earthquake compared
across continents:

Chapter 2

[81]

Part-to-whole relationships
Pie charts are known to be common for displaying part-to-whole relationships,
but there are other ways to do it. Grouped bar charts are good for comparing
each element in the categories with the others, and for comparing elements across
categories. However, grouping makes it harder to tell the difference between the
total of each group. This is where the stacked column charts come in.

The stacked column charts are great for showing the total because they visually
aggregate all the categories in a group. The downside is that it becomes harder to
compare the sizes of the individual categories. Stacking also indicates a part-to-whole
relationship.

Data Analysis and Visualization

[82]

Trends over time
One of the most frequently used visualization methods to analyze data is to display
a trend over a period of time. In the following example, the investment in wearables
startups from 2009-2015 has been plotted. It shows that the investment in wearables
has been on the rise for a few years; activity shot through the roof in 2014, with 61
completed deals totaling $427 million, when compared to 43 deals worth only $166
million in 2013 (just a year earlier).

With this observation, it will be interesting to see how the marketplace evolves over
the coming years.

Visualization tools in Python
Analyzing and visualizing data requires several software tools: a text editor to write
the code (preferably syntax highlighted), Python and additional libraries to run and
test the code, and perhaps a tool to present the results. There are two categories of
software tools: general-purpose software tools and specific software components.

Chapter 2

[83]

Development tools
The general-purpose software tool is an integrated development environment
(IDE), which is an application that has all the productivity tools within one package.
These IDEs are usually very convenient from the standpoint of handling the Python
libraries. More details about these IDE tools will be discussed in the following
chapter. In this chapter, we'll limit our discussion to a brief introduction to Canopy
from Enthought and Anaconda from Continuum Analytics.

The specific software component are Python plotting libraries such as Bokeh,
IPython, matplotlib, NetworkX, SciPy and NumPy, Scikit-learn, and Seaborn.
Both the IDEs have a very convenient way to handle the adding, removing, and
updating to later versions of these plotting libraries.

Canopy from Enthought
Enthought Canopy has a free version that is released under the BSD-style license,
and comes with GraphCanvas, SciMath, and Chaco as plotting tools, among
several other libraries. It has an advanced text editor, integrated IPython console,
graphics package manager, and online documentation links. The Canopy analysis
environment streamlines data analysis, visualization, algorithm design, and
application development for scientists, engineers, and analysts.

Data Analysis and Visualization

[84]

Anaconda from Continuum Analytics
Anaconda IDE is based on the conda application. Conda is an application for finding
and installing software packages. A conda package is a binary tarball containing
system-level libraries, Python modules, executable programs, or other components.
Conda keeps track of the dependencies between packages and platform specifics,
making it simple to create working environments from different sets of packages.

Anaconda has sypder-app, a scientific Python development environment, which
has an IPython viewer as well. In addition to this, IPython can be launched as a GUI
or a web-based notebook. The most convenient thing is that you can install Python in
the home directory without touching the system-installed Python. Not all packages
are ready to work with Python 3 as yet; therefore, it is better to use Python 2 with
these IDEs.

IPython (http://ipython.scipy.org/) provides an enhanced, interactive Python
shell, and is highly recommended mostly because data analysis and visualization
is interactive in nature. IPython is supported on most platforms. Some additional
features that come with IPython are as follows:

• Tab completion: This involves completion of variables, functions, methods,
attributes, and filenames. Tab completion is achieved with the GNU Readline
library (http://tiswww.case.edu/php/chet/readline/rltop.html) and
is highly addictive. It is very hard to go back to a regular command-line
interface after you are exposed to GNU Readline.

• Command history capabilities: This issues the command history for a full
account of the previously used commands.

http://ipython.scipy.org/
http://tiswww.case.edu/php/chet/readline/rltop.html

Chapter 2

[85]

Interactive visualization
For a visualization to be considered interactive, it must satisfy two criteria:

• Human input: The control of some aspect of the visual representation of
information must be available to humans

• Response time: The changes made by humans must be incorporated into the
visualization in a timely manner

When large amounts of data must be processed to create a visualization, this
becomes very hard, sometimes impossible, even with the current technology;
therefore, "interactive visualization" is usually applied to systems that provide
feedback to the users within several seconds of input. Many interactive visualization
systems support a metaphor of navigation, analogous to navigation through the
physical world.

The benefit of interaction is that people can explore a larger information space
in a shorter time, which can be understood through one platform. However, a
disadvantage to this interaction is that it requires a lot of time to exhaustively check
every possibility to test the visualization system. Moreover, designing systems to
guarantee immediate response to user actions can require significant algorithmic
attention.

Any visualization method needs a good plan of layout. Some layout methods
automatically lead to symmetrical drawings; alternatively, some drawing methods
start by finding symmetries in the data. Interactive visualization is implemented
using event listeners, and to some, this is well understood as common knowledge,
but in any case, the following section describes what it is all about.

Event listeners
An event listener is a process that is used when a mouse is either moved or clicked.
Technically, there are many kinds of events, but purely for interactive visualization,
you need to only know what happens when the user navigates through the
visualization with the mouse. The latency of interaction, that is, the time it takes for
the system to respond to the mouse action, matters immensely.

Data Analysis and Visualization

[86]

The most obvious principle is that the user should indeed have some sort of
confirmation that the action has completed, rather than being left dangling
wondering whether the action is still in progress. Thus, feedback such as
highlighting a selected item is a good way to confirm that the desired operation
has completed successfully. Visual feedback should typically take place within the
immediate response latency class of around one second. The following is an example
of a JavaScript event listener in Google Charts:

chart = new google.visualization.PieChart(document.getElementById(
'chart_div'));
google.visualization.events.addListener(chart, 'select',
selectHandler);
chart.draw(data, options);

function selectHandler() {
 var selectedItem = chart.getSelection()[0];
 var value = data.getValue(selectedItem.row, 0);
 alert('The user selected ' + value);
}

Another principle is that if an action takes significantly longer than a user would
naturally expect, some kind of progress indicator should be shown to the user. It is
much easier to write event listeners in JavaScript, but in order to create an interactive
visualization using plotting methods written in Python, one should use Plotly.

There is another module, graph-tool (https://graph-tool.skewed.de), that can
be harnessed to perform animations in a straightforward manner. It uses GTK+ to
display animations in an interactive window as well as off-screen to a file. The idea is
to easily generate visualizations, which can be used in presentations and embedded
in websites.

Layouts
In order to display data visually and efficiently, it is very important to know the
layout methods. Aesthetics is one of the criteria that measures the strength and
weakness of the layout algorithm. In order to make the layout results more readable,
the structure needs to have either an hierarchy or a symmetry, if possible; one critical
factor is the utilization of space.

https://graph-tool.skewed.de

Chapter 2

[87]

A good layout is essential for untangling and understanding any graphic. Generally,
each layout is uniquely suited to different kinds of data visualization in order to be
best understood. A few notable layout methods are as follows:

• Circular layout
• Radial layout
• Balloon layout

Circular layout
Tables are natural containers for data. Whenever information is presented, chances
are very high that it is presented by means of a table. In many cases, however, when
this information is complex (and the table, therefore, is large), a tabular presentation
is difficult to parse visually and the patterns in the tabulated data remain opaque.

In other words, a useful container is not always a useful way to present data. The
table presents individual data very well, but their inter-relationship and the patterns
that they compose are hardly visible. A circular layout can use several different
combinations (qualitative and quantitative) to be displayed in a single visualization
as shown in the following image:

Data Analysis and Visualization

[88]

For instance, it is intuitive to display a complex relationship within a limited space as
shown in the preceding image.

The preceding image shows an example of a complex hierarchical relationship
displayed in a circular layout.

Radial layout
Sunburst visualization is a radial space-filling visualization technique for displaying
tree-like structures (as shown in the preceding image). There are other space-filling
visualization methods that use other visual encodings for describing hierarchies. For
example, the treemap is a space-filling visualization that uses "containment" to show
"parent-child" relationships. There are a couple of subtle changes that can improve
the way the information is communicated by this visualization.

Since the length of each orbit increases with the radius, there tends to be more room
for the nodes. A radial tree will spread the larger number of nodes over a larger area
as the levels increase.

Chapter 2

[89]

Balloon layout
There are different variations to a balloon layout, and one may even view
these as bubbles. However, if we use different colors and sizes of the balloons
(or circles/bubbles), a lot more can be displayed in this visualization, as shown
in the following image:

Data Analysis and Visualization

[90]

Summary
The principles of visualization methods are useful to follow for creating an effective
story. The narratives explained in this chapter give an idea of aesthetics and the vast
variation of approaches.

The goal of data visualization is to communicate information clearly and efficiently
to the users, via the visual display method selected. Effective visualization helps
in analyzing and reasoning about data and evidence. It makes complex data more
accessible, understandable, and usable. Users may have particular analytical tasks,
such as making comparisons or understanding causality, and the design principle of
the graphic follows the task.

Tables are generally used where users will look up a specific measure of a variable,
while charts of various types are used to show patterns or relationships in the data
for one or more variables.

Data visualization is both an art and a science and it is like solving a mathematical
problem. There is no one right way to solve it. Similarly, there is no one right way
to create a visualization method. There are many tools out there for visualization,
and we know a few tools that support Python. In the following chapter, more details
about these tools will be discussed.

[91]

Getting Started with
the Python IDE

Python is a widely used programming language that has been around for over 20
years. Among many other things, this language is quite popular for its simplicity
and dynamic typing. Type(datum) dynamically determines the type of the data object.
It has a syntax that allows programmers to write a very few lines of code. Python
supports multiple programming paradigms that include functional, object-oriented,
and procedural styles.

Python interpreters are available on almost every operating system that is in use.
Its built-in data structures combined with dynamic binding make it very attractive
to use as a high performance language to connect the existing manipulative
components quickly. Even in distributed applications, Python is used as a glue in
conjunction with Hive (NoSQL) to accomplish something very quick and efficient.
Python, which is powerful and popular in the software development community,
needs an interactive environment to create, edit, test, debug, and run programs.

An integrated development environment (IDE) is a software application that
provides a comprehensive and powerful set of tools to build applications for target
systems that run Windows, Linux, or Mac OS operating systems. These tools provide
a single and consistent integrated environment and are designed to maximize
productivity. There are many choices of IDE for Python programming. The details
will be discussed in the following section of this chapter. In addition, we will discuss
the following topics:

• The IDE tools in Python
• The installation guide — instructions to download and install tools
• The conda command-line interface (CLI) and Spyder

Getting Started with the Python IDE

[92]

• The data visualization tools in the IDE tools that are specific to libraries that
are useful for visualization

• Interactive visualization packages
• Some plotting examples using the IDE tools

The IDE tools in Python
Analyzing and visualizing data requires several software tools: a text editor to write
code (preferably the syntax highlight), additional tools and libraries to run and test
the code, and perhaps another set of tools to present the results. There are many
advantages of an IDE. Some notable ones are as follows:

• The syntax highlight (showing errors or warnings right away)
• Stepping through code in the debug mode
• The interactive console
• Integration with the interactive graphic notebook (such as IPython)

Python 3.x versus Python 2.7
Python 3.x is not backward compatible with the 2.x version. This is why Python 2.7
is still being used. In this book, we will use Python 2.7 and try not to focus on Python
3.x. This issue is beyond the scope of this book, and we recommend that you search
for information about how to write code that works with different versions. Some
IDE tools have specific instructions to use both these versions. In some cases, the
code may have to be written a little differently.

Types of interactive tools
Before discussing further about the Python IDEs, it is important to consider the
different ways available to display interactive data visualization. There are many
options to create interactive data visualization, but here, we will consider only two
popular tools to accomplish this:

• IPython
• Plotly

Chapter 3

[93]

IPython
In the year 2001, Fernando Perez began working on IPython, an enhanced
interactive Python shell with improvements, such as history caching, profiles, object
information, and session logging. Originally focused on the interactive computing in
Python, it later included Julia, R, Ruby, and so on. Some features—such as automatic
parenthesizing and tab completion—are small timesavers and very productive in
terms of usability. In standard Python, to do tab completion, you have to import a
few modules, whereas IPython offers tab completion by default.

IPython provides the following rich set of tools for Python scripting:

• Terminal commands and Qt-based tools that are convenient
• An interactive environment that is purely a web-based notebook with the

same core features as the standalone notebook; it also supports code, text,
mathematical expressions, and inline plots

• A convenient interactive data visualization; this capability has been the
reason for many IDEs having integrated support for IPython

• Easy-to-use and high-performance tools for multiprocess computing

The four most helpful commands for IPython with a brief description:

Command Description
? This specifies the introduction and overview of IPython's

features
%quickref This denotes quick reference
--help-all This specifies Python's help
%who/%whos This gives information about identifiers

The IPython notebook is a web-based interactive computational environment. Here,
you can merge code, mathematics, and plotting into a single document.

Getting Started with the Python IDE

[94]

IPython (http://ipython.scipy.org/) provides an enhanced interactive Python
shell and is highly recommended mostly because data analysis and visualization are
interactive in nature. IPython is supported on most platforms. Some added features
that come with IPython are:

• Tab completion: This involves the completion of variables, functions,
methods, attributes, and filenames. Tab completion is achieved using the
GNU Readline library (http://tiswww.case.edu/php/chet/readline/
rltop.html). It is very hard to go back to a regular command-line interface
after you have been exposed to GNU Readline.

• Command history capabilities: This issues the command history for a full
account of the previously used commands.

An example that was run on IPython is shown in the following screenshot. To learn
more about IPython and the IPython notebook, refer to http://nbviewer.ipython.
org.

Plotly
Plotly is an online analytics and data visualization tool that provides online
graphing, analytics, and statistical tools for better collaboration. This tool was built
using Python with a user interface that uses JavaScript and a visualization library
that uses D3.js, HTML, and CSS. Plotly includes the scientific graphic libraries for
many languages, such as Arduino, Julia, MATLAB, Perl, Python, and R. For an
example source of Plotly, refer to https://plot.ly/~etpinard/84/fig-31a-hans-
roslings-bubble-chart-for-the-year-2007/.

http://ipython.scipy.org/
http://tiswww.case.edu/php/chet/readline/rltop.html
http://tiswww.case.edu/php/chet/readline/rltop.html
http://nbviewer.ipython.org
http://nbviewer.ipython.org
https://plot.ly/~etpinard/84/fig-31a-hans-roslings-bubble-chart-for-the-year-2007/
https://plot.ly/~etpinard/84/fig-31a-hans-roslings-bubble-chart-for-the-year-2007/

Chapter 3

[95]

The following is the infamous example of bubble chart that shows GDP per capita
around the globe.

Plotly provides a convenient way to convert plots from matplotlib to Plotly, as
shown in the following code (assuming that you have a Plotly account and signed in
with your credentials):

import plotly.plotly as py
import matplotlib.pyplot as plt
#auto sign-in with credentials or use py.sign_in()
mpl_fig_obj = plt.figure()
#code for creating matplotlib plot
py.plot_mpl(mpl_fig_obj)

Types of Python IDE
The following are some of the popular Python IDEs that are available today:

• PyCharm: This specifies the user interface based on Java Swing
• PyDev: This denotes the user interface based on SWT (works on Eclipse)
• Interactive Editor for Python (IEP)
• Canopy from Enthought: This is based on PyQt
• The Anaconda distribution of Spyder from Continuum Analytics: This is

also based on PyQt

Getting Started with the Python IDE

[96]

PyCharm
PyCharm is one of the few popular IDEs that has great features, and the community
version is free. The PyCharm 4.0.6 community edition is the current version that is
available for free download at https://www.jetbrains.com/pycharm/download.
They have shortcuts reference cards available for Mac, Linux, and Windows.
Dr. Pedro Kroger had written an elaborate description on PyCharm at http://
pedrokroger.net/getting-started-pycharm-python-ide/. You can refer to this
link for more details. Among many interesting features, the code wizard and the
NumPy array viewer are shown in the following screenshot:

Polar projection can be done quickly, as shown in the preceding screenshot, and the
creation of an array of random samples is shown in the following screenshot:

https://www.jetbrains.com/pycharm/download
http://pedrokroger.net/getting-started-pycharm-python-ide/
http://pedrokroger.net/getting-started-pycharm-python-ide/

Chapter 3

[97]

A similar random sample is created in a different IDE (such as Spyder); here is
an example:

rand_4 = np.random.random_sample((2,2,2,2))-1
array([[[[-0.6565232 , -0.2920045],
[-0.45976502, -0.70469325]],
[[-0.80218558, -0.77538009],
[-0.34687551, -0.42498698]]],
[[[-0.60869175, -0.9553122],
[-0.05888953, -0.70585856]],
[[-0.69856656, -0.21664848],
[-0.29017137, -0.61972867]]]])

PyDev
PyDev is a plugin for the Eclipse IDE. In other words, rather than creating a new
IDE, a plugin for Eclipse was sufficient to make use of other default functionalities
that a regular IDE may have. PyDev supports code refactoring, graphical debugging,
interactive console, code analysis, and code folding.

Getting Started with the Python IDE

[98]

You can install PyDev as a plugin for Eclipse or install LiClipse, an advanced Eclipse
distribution. LiClipse adds support not only for Python, but also for languages such
as CoffeeScript, JavaScript, Django templates, and so on.

PyDev comes preinstalled in LiClipse, but it requires Java 7 to be installed first. For
the complete installation steps, you can refer to http://pydev.org/manual_101_
install.html.

Interactive Editor for Python (IEP)
IEP is another Python IDE that has similar tools available in other IDEs, but appears
similar to any tool that you may have used on Microsoft Windows.

IEP is a cross-platform Python IDE aimed at interactivity and introspection, which
makes it very suitable for scientific computing. Its practical design is aimed at
simplicity and efficiency.

IEP consists of two main components, the editor and the shell, and uses a set of
pluggable tools to help the programmer in various ways. Some example tools
are source structure, project manager, interactive help, and workspace. Some key
features are as follows:

• Code introspection like in any modern IDE
• Either run the Python script from the command line or interactively via a file

or the IPython interface
• Shells run as a background process
• Multiple shells can use different Python versions (from v2.4 to 3.x)

http://pydev.org/manual_101_install.html
http://pydev.org/manual_101_install.html

Chapter 3

[99]

The following screenshot shows how you can use two different versions of Python in
the same IDE:

Some people do not consider IEP as an IDE tool, but it serves the purpose of
developing the programs of Python, editing them, and running them. It supports
multiple Python shells simultaneously. Therefore, it is a very productive tool for
someone who wants to program using more than one GUI toolkit, such as PySide,
PyQt4, GTK, and Tk interactively.

IEP is written in (pure) Python 3 and uses the Qt GUI toolkit, but it can be used
to execute code on any Python version available. You can download IEP from
http://www.iep-project.org/downloads.html.

http://www.iep-project.org/downloads.html

Getting Started with the Python IDE

[100]

Canopy from Enthought
Enthought Canopy has a free version that is released under the BSD-style license,
which comes with GraphCanvas, SciMath, and Chaco as plotting tools, among
several other libraries. Like all the IDEs, it has a text editor. It also has the IPython
console that is quite useful to be able to run and visualize results. In addition, it comes
with a graphics package manager as well. When Canopy is launched, it gives an
option with an Editor, Package Manager, and Doc Browser to choose from. One may
also attempt to use their training materials, as shown in the following screenshot:

Besides other development code, Canopy has the IPython notebook integrated and
convenient functions that you can use to create data visualization. Like most IDEs,
this has an editor, a file browser, and the IPython console. In addition, there is a
status display that shows the current editing status. These components of Canopy
IDE mainly perform the following:

• The file browser: With this, you can read or write Python programs from the
hard drive

• The Python code editor: This specifies a syntax-highlighted code editor with
additional features specifically meant for Python code

• The Python pane: This is an integrated IPython (interactive Python) prompt
that can be used to run the Python program interactively, rather than from
a file

Chapter 3

[101]

• The editor status bar: This can be used to display the line number, the
column number, the file type, and the file path

The following screenshot shows the number highlighted. This represents the
components of IDEs described before this. The file browser and Python panes can
be dragged and dropped onto the different positions in a code editor window or
outside the borders. When a pane is dragged, the location where it could dock is
highlighted in blue, as shown in the following screenshot:

The documentation is organized via a browser called Canopy Documentation Browser,
which is accessible from the Help menu. This includes the links to documentation for
some commonly used Python packages.

One significant feature of Documentation Browser is that it provides easy access to the
sample code presented in the documentation. When a user right-clicks on a sample
code box, a display to the context menu is shown. Further, you can select the Copy
code option to copy the contents of the code block into Canopy's copy-and-paste
buffer to be used in an editor.

Getting Started with the Python IDE

[102]

Canopy comes in several different products for individuals, and the free version is
called Canopy Express with approximately 100 core packages. This free version is a
useful tool for easy Python development for scientific and analytic computing. You
can download this at https://store.enthought.com/downloads/ after selecting
the target operating system as one of Windows, Linux, or Mac OS.

One of the challenges in the Python development environment is that managing the
packages of many different libraries and tools can be a very time-consuming and
daunting task. This is how their Documentation Browser looks like.

https://store.enthought.com/downloads/

Chapter 3

[103]

Canopy has a package manager that can be used to discover the Python packages
available with Canopy and decide which additional ones to install and which ones
to remove. There is a convenient search interface to find and install any available
packages and to revert to the previous states of packages.

Canopy uses a Python capability to determine the Python packages that are
available. When Canopy starts, it looks for packages first in the virtual environment
and displays them, as shown in the following screenshot:

Getting Started with the Python IDE

[104]

The numbered highlighted areas of the IDE are:

1. The navigation panel: This is similar to any IDE; the navigation has a
tree-list kind of structure to select the components of the package manager.

2. The main view area: Once the selection on the left-hand side changes, the
right-hand side panel will display the item selected, along with the associated
package listings (as shown in the preceding screenshot), the specific package
information with a button titled More Info, and so on.

3. The search bar: This is similar to any search functionality and helps to
quickly search the names and descriptions of the packages. For example,
the typing machine filters the list down to eleven packages (the number of
matches may vary depending on the operating system).

4. The subscription status and help: This is where the link to subscription and
the name of the account currently in use will be displayed.

5. The status bar: For every navigation that the user makes, the status
bar will show the details about the current state of results based on
the navigational changes.

Anaconda from Continuum Analytics
Anaconda is one of the most popular IDEs that is being used by the community. It
comes with a compiled long list of packages that are already integrated. This IDE is
based on the core component called conda (which is explained in detail later), and
you may either install or update the Python packages using conda or pip.

Anaconda is a free collection of powerful packages for Python that enables large-
scale data management, analysis, and visualization for business intelligence,
scientific analysis, engineering, machine learning, and more.

Anaconda has a Scientific PYthon Development EnviRonment (Spyder), which has
an IPython viewer as well. In addition, IPython can be launched as a GUI or a web-
based notebook. The most convenient aspect is that you can install Python in a home
directory and not touch the system installed Python. Not all packages are yet ready
to work with Python 3; therefore, it is better to use Python 2 with these IDEs. The
Anaconda IDE has two important components and is based on the conda package
manager. The two components are conda and spyder.

Chapter 3

[105]

The following screenshot appears when Anaconda is launched. This gives users
several options that include the IPython console, the IPython notebook, the Spyder
IDE, and glueviz:

An overview of Spyder
Spyder is a Python development environment that comes with the following
components:

• The Python code editor: This comes with a separate browser for functions,
and the class editor comes with a support for Pylint code analysis. Code
completion has become a norm today and is convenient on all the IDEs, so it
supports this too.

• The interactive console: The Python language is most suited for interactive
work; therefore, it is imperative that consoles have all the necessary tools that
support instant evaluation of the code written in the editor.

• Exploring variables: Exploring variables during any interactive execution
helps in the overall productivity. Editing the variables is also possible, such
as a dictionary and sometimes arrays.

Getting Started with the Python IDE

[106]

The code editor and the IPython console are shown in the following screenshot:

An overview of conda
Conda is a command-line tool used for managing environments and the packages
of Python, rather than using pip. There are ways to query and search the packages,
create new environments if necessary, and install and update the Python packages
in the existing conda environments. This command-line tool also keeps track of
dependencies between packages and platform specifics, helping you to create
working environments from the different combination of packages. To check which
version of conda is running, you can enter the following code (in my environment, it
shows the 3.10.1 version):

Conda –v

3.10.1

A conda environment is a filesystem directory that contains a specific collection of
conda packages. As a concrete example, you may want to have one environment that
provides NumPy 1.7 and another environment that provides NumPy 1.6 for legacy
testing; conda makes this kind of mixing and matching easy. To begin using an
environment, simply set the PATH variable to point to its bin directory.

Chapter 3

[107]

Let's take a look at an example of how to install a package called SciPy with conda.
Assuming that you have installed Anaconda correctly and conda is available in the
running path, you may have to enter the following code to install SciPy:

$ conda install scipy

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 flask-0.10.1 | py27_1 129 KB

 itsdangerous-0.23 | py27_0 16 KB

 jinja2-2.7.1 | py27_0 307 KB

 markupsafe-0.18 | py27_0 19 KB

 werkzeug-0.9.3 | py27_0 385 KB

The following packages will be linked:

 package | build

 ---------------------------|-----------------

 flask-0.10.1 | py27_1

 itsdangerous-0.23 | py27_0

 jinja2-2.7.1 | py27_0

 markupsafe-0.18 | py27_0

 python-2.7.5 | 2

 readline-6.2 | 1

 sqlite-3.7.13 | 1

 tk-8.5.13 | 1

 werkzeug-0.9.3 | py27_0

 zlib-1.2.7 | 1

Proceed ([y]/n)?

Getting Started with the Python IDE

[108]

You should note that any dependencies on the package that is being tried to install
would be recognized, downloaded, and linked automatically. If any Python package
needs to be installed or updated, you will have to use the following code:

conda install <package name> or conda update <package name>

Here is an example of package update from the command line using conda (to
update matplotlib):

conda update matplotlib

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 freetype-2.5.2 | 0 691 KB

 conda-env-2.1.4 | py27_0 15 KB

 numpy-1.9.2 | py27_0 2.9 MB

 pyparsing-2.0.3 | py27_0 63 KB

 pytz-2015.2 | py27_0 175 KB

 setuptools-15.0 | py27_0 436 KB

 conda-3.10.1 | py27_0 164 KB

 python-dateutil-2.4.2 | py27_0 219 KB

 matplotlib-1.4.3 | np19py27_1 40.9 MB

 --

 Total: 45.5 MB

The following NEW packages will be INSTALLED:

 python-dateutil: 2.4.2-py27_0

The following packages will be UPDATED:

 conda: 3.10.0-py27_0 --> 3.10.1-py27_0

Chapter 3

[109]

 conda-env: 2.1.3-py27_0 --> 2.1.4-py27_0

 freetype: 2.4.10-1 --> 2.5.2-0

 matplotlib: 1.4.2-np19py27_0 --> 1.4.3-np19py27_1

 numpy: 1.9.1-py27_0 --> 1.9.2-py27_0

 pyparsing: 2.0.1-py27_0 --> 2.0.3-py27_0

 pytz: 2014.9-py27_0 --> 2015.2-py27_0

 setuptools: 14.3-py27_0 --> 15.0-py27_0

Proceed ([y]/n)?

In order to check the packages that are installed using Anaconda, navigate to the
command line and enter the following command to quickly display the list of all the
packages installed in the default environment:

conda list

In addition, you can always install a package with the usual means, for example, pip
install, or from the source using a setup.py file. Although conda is the preferred
packaging tool, there is nothing special about Anaconda that prevents the usage of a
standard Python packaging tool (such as pip).

IPython is not required, but it is highly recommended. IPython should be installed
after Python, GNU Readline, and PyReadline are installed. Anaconda and Canopy
do these things by default. There are Python packages that are used in all the
examples in this book for a good reason. In the following section, we have updated
this list.

Visualization plots with Anaconda
From getting data, manipulating and processing data to visualizing and
communicating the research results, Python and Anaconda support a variety of
processes in the scientific data workflow. Python can be used in a wide variety of
applications (even beyond scientific computing); users can adopt this language
quickly and don't need to learn new software or programming languages. Python's
open source availability enhances the research results and enables users to connect
with a large community of scientists and engineers around the world.

Getting Started with the Python IDE

[110]

The following are some of the common plotting libraries that you can use
with Anaconda:

• matplotlib: This is one of the most popular plotting libraries for Python.
Coupled with NumPy and SciPy, this is one of the major driving forces in
the scientific Python community. IPython has a pylab mode, which was
specifically designed to perform interactive plotting using matplotlib.

• Plotly: This is a collaborative plotting and analytics platform that works on a
browser. It supports interactive graphs using IPython notebooks. Graphs are
interactive and can be styled by modifying the code and viewing the results
interactively. Any plotting code that is generated using matplotlib can be
easily exported to a Plotly version.

• Veusz: This is a GPL-scientific plotting package written in Python and PyQt.
Veusz can also be embedded in other Python programs.

• Mayavi: This is a three-dimensional plotting package that is fully scriptable
from Python and is similar to a simple pylab and MATLAB-like interface for
plotting arrays.

• NetworkX: This is a Python language software package for the creation,
manipulation, and study of the structure, dynamics, and functions of
complex networks.

• pygooglechart: This is a powerful package that enables you to create
visualization methods and allows you to interface with the Google Chart API.

The surface-3D plot
Three-dimensional plots are generated from the data defined as Z as a function of
(X,Y). This is mathematically denoted as Z=f(X,Y). In our example here, we will plot
Z=sin(sqrt(X2+Y2)), and this is essentially similar to a two-dimensional parabola. The
following steps need to be followed for our plot:

1. First, generate the X and Y grid with the following code:
import numpy as np

X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
Generate the Z data:
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

Chapter 3

[111]

Plotting a simple three-dimensional surface sin(sqrt(X**2+Y**2)) using the
mpl_toolkits package is shown here; the blow and the plot diagram is
represented using a color bar:

2. Then, plot the surface, as shown in the following code:

from mpl_toolkits.mplot3d import Axes3d
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure(figsize=(12,9))
ax = fig.gca(projection='3d')
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

Getting Started with the Python IDE

[112]

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.
coolwarm, linewidth=0, antialiased=False)

ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

fig.colorbar(surf, shrink=0.6, aspect=6)

plt.show()

In order to make this three-dimensional plot work, you have to make sure that
matplotlib and NumPy are installed. The default package in Anaconda comes with
these installed.

The square map plot
With the comparison and ranking example that we discussed in the previous chapter
to display the top 12 countries in Africa by GDP using the squarify algorithm (with
matplotlib), you can obtain a plot that looks similar to a tree map, as shown in the
following code:

Squarified Treemap Layout : source file (squarify.py)
Implements algorithm from Bruls, Huizing, van Wijk, "Squarified
Treemaps"
squarify was created by Uri Laserson
primarily intended to support d3.js

def normalize_sizes(sizes, dx, dy):
 total_size = sum(sizes)
 total_area = dx * dy
 sizes = map(float, sizes)
 sizes = map(lambda size: size * total_area / total_size, sizes)
 return sizes

def pad_rectangle(rect):
 if rect['dx'] > 2:
 rect['x'] += 1
 rect['dx'] -= 2
 if rect['dy'] > 2:
 rect ['y'] += 1
 rect['dy'] -= 2

def layoutrow(sizes, x, y, dx, dy):
 covered_area = sum(sizes)

Chapter 3

[113]

 width = covered_area / dy
 rects = []
 for size in sizes:
 rects.append({'x': x, 'y': y, 'dx': width, 'dy': size / width})
 y += size / width
 return rects

def layoutcol(sizes, x, y, dx, dy):
 covered_area = sum(sizes)
 height = covered_area / dx
 rects = []
 for size in sizes:
 rects.append({'x': x, 'y': y, 'dx': size / height, 'dy': height})
 x += size / height
 return rects

def layout(sizes, x, y, dx, dy):
 return layoutrow(sizes, x, y, dx, dy) if dx >= dy else
layoutcol(sizes, x, y, dx, dy)

def leftoverrow(sizes, x, y, dx, dy):
 covered_area = sum(sizes)
 width = covered_area / dy
 leftover_x = x + width
 leftover_y = y
 leftover_dx = dx - width
 leftover_dy = dy
 return (leftover_x, leftover_y, leftover_dx, leftover_dy)

def leftovercol(sizes, x, y, dx, dy):
 covered_area = sum(sizes)
 height = covered_area / dx
 leftover_x = x
 leftover_y = y + height
 leftover_dx = dx
 leftover_dy = dy - height
 return (leftover_x, leftover_y, leftover_dx, leftover_dy)

def leftover(sizes, x, y, dx, dy):
 return leftoverrow(sizes, x, y, dx, dy) if dx >= dy else
leftovercol(sizes, x, y, dx, dy)

def worst_ratio(sizes, x, y, dx, dy):

Getting Started with the Python IDE

[114]

 return max([max(rect['dx'] / rect['dy'], rect['dy'] / rect['dx'])
for rect in layout(sizes, x, y, dx, dy)])

def squarify(sizes, x, y, dx, dy):
 sizes = map(float, sizes)
 if len(sizes) == 0:
 return []
 if len(sizes) == 1:
 return layout(sizes, x, y, dx, dy)
 # figure out where 'split' should be
 i = 1
 while i < len(sizes) and worst_ratio(sizes[:i], x, y, dx, dy) >=
worst_ratio(sizes[:(i+1)], x, y, dx, dy):
 i += 1
 current = sizes[:i]
 remaining = sizes[i:]
 (leftover_x, leftover_y, leftover_dx, leftover_dy) =
leftover(current, x, y, dx, dy)
 return layout(current, x, y, dx, dy) + \
squarify(remaining, leftover_x, leftover_y, leftover_dx, leftover_dy)

def padded_squarify(sizes, x, y, dx, dy):
 rects = squarify(sizes, x, y, dx, dy)
 for rect in rects:
 pad_rectangle(rect)
 return rects

The squarify function displayed in the preceding code can be used to display the top
12 countries by GDP in Africa, as shown in the following code:

import matplotlib.pyplot as plt
import matplotlib.cm
import random
import squarify

x = 0.
y = 0.
width = 950.
height = 733.
norm_x=1000
norm_y=1000

fig = plt.figure(figsize=(15,13))

Chapter 3

[115]

ax=fig.add_subplot(111,axisbg='white')

initvalues = [285.4,188.4,173,140.6,91.4,75.5,62.3,39.6,29.4,28.5,
26.2, 22.2]
values = initvalues
labels = ["South Africa", "Egypt", "Nigeria", "Algeria", "Morocco",
"Angola", "Libya", "Tunisia", "Kenya", "Ethiopia", "Ghana", "Cameron"]

colors = [(214,27,31),(229,109,0),(109,178,2),(50,155,18),
(41,127,214),(27,70,163),(72,17,121),(209,0,89),
(148,0,26),(223,44,13), (195,215,0)]
Scale the RGB values to the [0, 1] range, which is the format
matplotlib accepts.
for i in range(len(colors)):
 r, g, b = colors[i]
 colors[i] = (r / 255., g / 255., b / 255.)

values must be sorted descending (and positive, obviously)
values.sort(reverse=True)

the sum of the values must equal the total area to be laid out
i.e., sum(values) == width * height
values = squarify.normalize_sizes(values, width, height)

padded rectangles will probably visualize better for certain cases
rects = squarify.padded_squarify(values, x, y, width, height)

cmap = matplotlib.cm.get_cmap()

color = [cmap(random.random()) for i in range(len(values))]
x = [rect['x'] for rect in rects]
y = [rect['y'] for rect in rects]
dx = [rect['dx'] for rect in rects]
dy = [rect['dy'] for rect in rects]

ax.bar(x, dy, width=dx, bottom=y, color=colors, label=labels)

va = 'center'
idx=1

for l, r, v in zip(labels, rects, initvalues):
 x, y, dx, dy = r['x'], r['y'], r['dx'], r['dy']
 ax.text(x + dx / 2, y + dy / 2+10, str(idx)+"--> "+l, va=va,
 ha='center', color='white', fontsize=14)

Getting Started with the Python IDE

[116]

 ax.text(x + dx / 2, y + dy / 2-12, "($"+str(v)+"b)", va=va,
 ha='center', color='white', fontsize=12)
 idx = idx+1
ax.set_xlim(0, norm_x)
ax.set_ylim(0, norm_y)
plt.show()

Interactive visualization packages
A few years ago, there were not many interactive tools besides IPython. In order
to understand how you can make any visualization interactive, it makes sense to
compare it with an existing tool (such as D3.js). One of the reasons why D3.js is very
powerful is that a JavaScript-based plotting framework can make the plots to be
presented on the Web. Moreover, it comes with all the event-driven functions that
can be configured easily.

Chapter 3

[117]

There are two visualization libraries called Bokeh and VisPy that are popular among
a few that are available today. There is another tool called Wakari. This is mainly
used for data analytics with a resemblance to IPython in terms of how you can
create a browser-based visualization. The Ashiba project was another tool that was
developed by Clayton Davis at Continuum, but since the focus of Continuum shifted
to Bokeh and Wakari, there is very little work that has been done on Ashiba in the
past few years.

Bokeh
Bokeh is an interactive visual library that is developed in Python and is targeted to
work via web browsers. Where does the name Bokeh come from? This is a Japanese
word that describes the blurring or the parts of an image that are out of focus. The
goal was to develop a library that closely resembles the aesthetics of D3.js; the choice
of the name Bokeh seemed to match. Bokeh writes to the HTML5 Canvas library
and therefore guarantees to work on browsers that support HTML5. This is useful
because you would want to compare the JavaScript-based plots with Python.

We will not elaborate much about this tool. You can read and explore more about
this at http://bokeh.pydata.org. However, what is important is to know the
dependencies of the Bokeh library. Before installing the Bokeh library, it is required
that jsonschema be installed, as follows:

conda install jsonschema

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 jsonschema-2.4.0 | py27_0 51 KB

The following NEW packages will be INSTALLED:

 jsonschema: 2.4.0-py27_0

Proceed ([y]/n)?

http://bokeh.pydata.org

Getting Started with the Python IDE

[118]

The examples of interactive visualization using Bokeh, pandas, SciPy, matplotlib,
and ggplot can be found at http://nbviewer.ipython.org/gist/fonnesbeck/
ad091b81bffda28fd657.

VisPy
VisPy is a visualization library for 2D or 3D plotting that is interactive and has
high performance. You can take advantage of the OpenGL knowledge to create
visualization quickly. It also has methods that do not necessarily require a deep
understanding of OpenGL. For more information, you can read the documentation at
vispy.org.

In order to install the VisPy library, one may attempt the conda install vispy
command, but it most likely responds with the binstar search –t conda vispy
suggestion. The following code is one of those in the list:

conda install --channel https://conda.binstar.org/asmeurer vispy

With this command, you will obtain the following the response:

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 numpy-1.8.2 | py27_0 2.9 MB

 vispy-0.3.0 | np18py27_0 679 KB

 --

 Total: 3.6 MB

The following NEW packages will be INSTALLED:

 vispy: 0.3.0-np18py27_0

The following packages will be DOWNGRADED:

 numpy: 1.9.2-py27_0 --> 1.8.2-py27_0

Proceed ([y]/n)?

http://nbviewer.ipython.org/gist/fonnesbeck/ad091b81bffda28fd657
http://nbviewer.ipython.org/gist/fonnesbeck/ad091b81bffda28fd657
vispy.org

Chapter 3

[119]

There are many examples in the gallery collection of VisPy. One particular example
of the display of points that uses the vispy.gloo command and GLSL shading code
can be viewed at http://vispy.org/gloo.html?highlight=gloo#module-vispy.
gloo.

Summary
There is a good set of tools and packages for Python developers that are available
today. Python has a large standard library. This is commonly cited as one of Python's
greatest strengths. It has modules to create the graphical user interfaces, connecting
to relational databases, pseudorandom number generators, arithmetic with arbitrary
precision decimals, manipulating regular expressions. In addition, there are high-
performance packages to plot 2D and 3D graphics, machine learning and statistical
algorithms, and so on.

We have seen that the IDE tools (such as Canopy and Anaconda) have leveraged
the efficient development work from a computation and visualization standpoint,
among many other areas. There are many effective ways to produce visualization
methods using these tools. In the following few chapters, interesting examples will
be shown with these tools and packages.

[121]

Numerical Computing and
Interactive Plotting

The field of high-performance numerical computing lies at the crossroads of
a number of disciplines and skill sets. In order to be successful at using high-
performance computing today, it requires knowledge and skills of programming,
data science, and applied mathematics. In addition to these, efficient implementation
of the computational problems requires some understanding of processing and
storage devices.

The role of computing in science has evolved to a different level in recent years.
Programming languages (such as R and MATLAB) were common in academic
research and scientific computing. Today, Python plays a big role in scientific
computing for a good reason. The Python community has put together many efficient
tools and packages that is being used not only by the research community, but also
successful commercial organizations such as Yahoo, Google, Facebook, and Amazon.

There are two popular packages that are widely used in scientific computing. They
are Numerical Python Package (NumPy) and Scientific Python Package (SciPy).
NumPy is popular for efficient arrays and in particular the ease of indexing. In the
following sections, we will discuss the following topics:

• NumPy, SciPy, and MKL functions
• Numerical indexing and logical indexing
• Data structures—stacks, queues, tuples, sets, tries, and dictionaries
• Visualizing plots using matplotlib, and so on
• Optimization and interpolation using NumPy and SciPy with examples
• Integrating Cython with NumPy and advantages of Cython

Numerical Computing and Interactive Plotting

[122]

NumPy, SciPy, and MKL functions
Almost all scientific and numerical computing requires the representation of data in
the form of vectors and matrices, and NumPy handles all these in terms of arrays.

NumPy and SciPy are computational modules of Python that provide convenient
mathematical and numerical methods in precompiled, fast functions. The NumPy
package provides basic routines to manipulate large arrays and matrices of numeric
data. The SciPy package extends NumPy with a collection of useful algorithms
with applied mathematical techniques. In NumPy, ndarray is an array object that
represents a multidimensional, homogeneous array of items that have a known size.

NumPy
NumPy not only uses array objects, but also linear algebraic functions that can be
conveniently used for computations. It provides a fast implementation of arrays and
associated array functionalities. Using an array object, one can perform operations
that include matrix multiplication, transposition of vectors and matrices, solve
systems of equations, perform vector multiplication and normalization, and so on.

NumPy universal functions
A universal function (ufunc) is a function that operates on ndarrays by each element,
supporting type casting and several other standard features. In other words, ufunc
is a vectorized wrapper for a function that takes scalar inputs and produces scalar
outputs. Many built-in functions are implemented in the compiled C code, which
makes it faster.

NumPy universal functions are faster than Python functions because looping is
performed in compiled code. Also, since arrays are typed, their type is known before
any sort of computation occurs.

A simple example of ufunc operating on each element is shown here:

import numpy as np
x = np.random.random(5)
print x
print x + 1 # add 1 to each element of x

[0.62229809 0.18010463 0.28126201 0.30701477 0.39013144]
[1.62229809 1.18010463 1.28126201 1.30701477 1.39013144]

Other examples are np.add and np.subtract.

Chapter 4

[123]

NumPy's ndarray is similar to the lists in Python, but it is rather strict in storing
only a homogeneous type of object. In other words, with a Python list, one can mix
the element types, such as the first element as a number, the second element as a
list, and the next element as another list (or dictionary). The performance in terms of
operating the elements of ndarray is significantly faster for a large size array, which
will be demonstrated here. The example here demonstrates that it is faster because we
will measure the running time. However, for readers who are curious about NumPy
implementations in C, there is a documentation on the same available at http://
docs.scipy.org/doc/numpy/reference/internals.code-explanations.html.

import numpy as np

arr = np.arange(10000000)
listarr = arr.tolist()

def scalar_multiple(alist, scalar):
 for i, val in enumerate(alist):
 alist[i] = val * scalar
 return alist

Using IPython's magic timeit command
timeit arr * 2.4
10 loops, best of 3: 31.7 ms per loop
above result shows 31.7 ms (not seconds)

timeit scalar_multiple(listarr, 2.4)
1 loops, best of 3: 1.39 s per loop
above result shows 1.39 seconds (not ms)

In the preceding code, each array element occupies 4 bytes. Therefore, a million
integer arrays occupy approximately 44 MB of memory, and the list uses 711 MB
of memory. However, arrays are slower for small collection sizes, but for large
collection sizes, they use less memory space and are significantly faster than lists.

NumPy comes with many useful functions that are broadly categorized as
trigonometric functions, arithmetic functions, exponent and logarithmic functions,
and miscellaneous functions. Among many miscellaneous functions, convolve() for
linear convolution and interp() for linear interpolation are popular. In addition,
for most experimental work that involve equally spaced data, the linspace() and
random.rand() functions are among a few that are used widely.

http://docs.scipy.org/doc/numpy/reference/internals.code-explanations.html
http://docs.scipy.org/doc/numpy/reference/internals.code-explanations.html

Numerical Computing and Interactive Plotting

[124]

Shape and reshape manipulation
Changing the shape of an existing array can be more efficient than creating a new
array from the old data with a new shape. In the first example, reshape happens in
memory (the array is not stored in a variable), whereas in the following code, the
array is first stored in a variable a and then a is reshaped:

import numpy as np

np.dandom.rand(2,4)
array([[0.96432148, 0.63192759, 0.12976726, 0.56131001],
 [0.27086909, 0.92865208, 0.27762891, 0.40429701]])

np.random.rand(8).reshape(2,4)
array([[0.39698544, 0.88843637, 0.66260474, 0.61106802],
 [0.97622822, 0.47652548, 0.56163488, 0.43602828]])

In the preceding example, after creating 8 values, they are reshaped into a valid
dimension of choice, as shown in the following code:

#another example
a = np.array([[11,12,13,14,15,16],[17,18,19,20,21,22]])

print a
[[11, 12, 13, 14, 15, 16], [17, 18, 19, 20, 21, 22]]

the following shows shape is used to know the dimensions
a.shape
(2,6)

#Now change the shape of the array
a.shape=(3,4)
print a
[[11 12 13] [14 15 16] [17 18 19] [20 21 22]]

xrange is used instead of range because it is faster for loops and avoids the storage
of the list of integers; it just generates them one by one. The opposite of shape and
reshape is ravel(), as shown in the following code:

#ravel example
a = np.array([[11,12,13,14,15,16],[17,18,19,20,21,22]])

a.ravel()
array([11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22])

Chapter 4

[125]

An example of interpolation
Here is an example of interpolation using interp():

n=30

create n values of x from 0 to 2*pi
x = np.linspace(0,2*np.pi,n)

y = np.zeros(n)

#for range of x values, evaluate y values
for i in xrange(n):
 y[i] = np.sin(x[i])

The image displayed in the following picture is the result of a simple sine curve
interpolation:

The following code shows the plotting curves with and without interpolation:

import numpy as np
import matplotlib.pyplot as plt

create n values of x from 0 to 2*pi
x = np.linspace(0, 8*np.pi, 100)

y = np.sin(x/2)

#interpolate new y-values
yinterp = np.interp(x, x, y)

Numerical Computing and Interactive Plotting

[126]

#plot x,y values using circle marker (line style)
plt.plot(x, y, 'o')

#plot interpolated curve using dash x marker
plt.plot(xvals, yinterp, '-x')

plt.show()

Vectorizing functions
Vectorizing functions via vectorize() in NumPy and SciPy can be very efficient.
Vectorize has the capability to convert a function that takes scalars as arguments to
a function that takes arrays as arguments by applying the same rule element-wise.
We will demonstrate this here with two examples.

The first example uses a function that takes three scalar arguments to produce a
vectorized function that takes three array arguments, as shown in the following code:

import numpy as np

def addition(x, y, z):
 return x + y + z

def addpoly():
 i = np.random.randint(25)
 poly1 = np.arange(i, i+10)
 i = np.random.randint(25)
 poly2 = np.arange(i, i+10)
 poly3 = np.arange(10, 18)
 print poly1
 print poly2
 print poly3
 print '-' * 32
 vecf = np.vectorize(addition)
 print vecf(poly1,poly2,poly3)

addpoly()

[4 5 6 7 8 9 10 11 12 13]
[13 14 15 16 17 18 19 20 21 22]
[10 11 12 13 14 15 16 17 18 19]

[27 30 33 36 39 42 45 48 51 54]

Note that arrange is an array-valued version of the built-in Python range function.

Chapter 4

[127]

The second example uses a function that takes one scalar argument to produce a
vectorized function that takes an array argument, as shown in the following code:

import numpy as np

def posquare(x):
 if x >= 0: return x**2
 else: return -x

i = np.random.randint(25)
poly1 = np.arange(i,i+10)

print poly1
vecfunc = vectorize(posquare, otypes=[float])
vecfunc(poly1)

[14 15 16 17 18 19 20 21 22 23]
array([196., 225., 256., 289., 324., 361., 400., 441., 484., 529.])

There is yet another example that is interesting to study with the help of an example
code. This example shows three ways to increment the array elements by a constant
and measure the running time to determine which method is faster:

import numpy as np
from time import time

def incrembyone(x):
 return x + 1

dataarray=np.linspace(1,5,1000000)

t1=time()
lendata = len(dataarray)
print "Len = "+str(lendata)
print dataarray[1:7]
for i in range(lendata):
 dataarray[i]+=1
print " time for loop (No vectorization)->" + str(time() - t1)

t2=time()

vecincr = np.vectorize(incrembyone) #1
vecincr(dataarray) #2
print " time for vectorized version-1:" + str(time() - t2)
t3 = time()

Numerical Computing and Interactive Plotting

[128]

This way to increment array elements with one line
is pretty powerful, accomplishes same thing as #1 and #2
dataarray+=1 # how does this achieve the results
print dataarray[1:7]
print " time for vectorized version-2:" + str(time() - t3)

Len = 1000000
 [1.000004 1.000008 1.000012 1.000016 1.00002 1.000024]
time for loop (No vectorization)->0.473765850067
time for vectorized version-1:0.221153974533 # half the time

[3.000004 3.000008 3.000012 3.000016 3.00002 3.000024]
time for vectorized version-2:0.00192213058472 # in fraction time

Besides the vectorizing techniques, there is another simple coding practice that could
make programs more efficient. If there are prefix notations that are being used in
loops, it is best practice to create a local alias and use this alias in the loop. One such
example is shown here:

fastsin = math.sin

x = range(1000000)
for i in x:
 x[i] = fastsin(x[i])

Summary of NumPy linear algebra
The following is a list of some well-known functions that NumPy offers in
linear algebra:

Name Description
dot(a,b) This is a dot product of two arrays
linalg.norm(x) This is a matrix or vector norm
linalg.cond(x) This specifies the condition number
linalg.solve(A,b) This solves linear system Ax=b
linalg.inv(A) This represents an inverse of A
linalg.pinv(A) This specifies a pseudo-inverse of A
linalg.eig(A) These are eigenvalues/vectors of square A
linalg.eigvals(A) These are eigenvalues of general A
linalg.svd(A) This is a singular value decomposition

Chapter 4

[129]

SciPy
NumPy has already many convenient functions that can be used in computation.
Then, why do we need SciPy? SciPy is an extension of NumPy for mathematics,
science, and engineering that has many packages available for linear algebra,
integration, interpolation, fast Fourier transforms, large matrix manipulation,
statistical computation, and so on. The following table shows a brief description
of these packages:

Subpackage Brief description of functionalities
scipy.cluster This specifies the functions for clustering, including vector

quantization and k-means.
scipy.fftpack This denotes the functions of fast Fourier transform.
scipy.
integrate

This specifies the functions for performing numerical integration
using trapezoidal, Simpson's, Romberg, and other methods. It also
specifies methods for integration of ordinary differential equations.
One can perform single, double, and triple integrations on a function
object with the functions quad, dblquad, and tplquad.

scipy.
interpolate

This denotes the functions and classes for interpolation objects with
discrete numeric data and linear and spline interpolation.

scipy.linalg This is a wrapper for the package linalg in NumPy. All the
functionalities from NumPy is part of scipy.linalg, along with
several other functions.

scipy.
optimize

This denotes the maximization and minimization functions that
include Neider-Mead Simplex, Powell's, conjugate gradient BFGS,
least squares, constrained optimizers, simulated annealing, Newton's
method, bisection method, Broyden Anderson, and line search.

scipy.sparse This specifies the functions that can work with large sparse matrices.
scipy.special This has special functions for computational physics, such as elliptic,

bessel, gamma, beta, hypergeometric, parabolic, cylinder, mathieu,
and spheroidal wave.

In addition to the preceding listed subpackages, SciPy also has a scipy.io package
that has functions to load a matrix called spio.loadmat(), save a matrix called
spio.savemat(), and read images via scio.imread(). When there is a need to
develop computational programs in Python, it is good practice to check the SciPy
documentation to see whether it contains the functions that already accomplish the
intended task.

Let's take a look at an example using scipy.polyId():

import scipy as sp

function that multiplies two polynomials

Numerical Computing and Interactive Plotting

[130]

def multiplyPoly():
 #cubic1 has coefficients 3, 4, 5 and 5
 cubic1 = sp.poly1d([3, 4, 5, 5])

 #cubic2 has coefficients 4, 1, -3 and 3
 cubic2 = sp.poly1d([4, 1, -3, 3])

 print cubic1
 print cubic2

 print '-' * 36

 #print results of polynomial multiplication
 print cubic1 * cubic2

multiplyPoly() # produces the following result

 3 2
3 x + 4 x + 5 x + 5
 3 2
4 x + 1 x - 3 x + 3

 6 5 4 3 2
12 x + 19 x + 15 x + 22 x + 2 x + 15

The result matches with the multiplication done in the traditional term-by-term
method, as follows:

As such, polynomial representation can be used for integration, differentiation, and
other computational physics. These capabilities along with many more functions in
NumPy, SciPy, and other package extensions clearly indicate that Python is another
alternative to MATLAB and is therefore used in some academic environments.

There are many different kinds of interpolation that SciPy offers. The following
example uses interpolate.splev, which uses B-spline and its derivatives and
interpolate.splprep for the B-spline representation of two-dimensional curves
(N-dimensional in general):

import numpy as np
import matplotlib.pyplot as plt
import scipy as sp

Chapter 4

[131]

t = np.arange(0, 2.5, .1)
x = np.sin(2*np.pi*t)
y = np.cos(2*np.pi*t)

tcktuples,uarray = sp.interpolate.splprep([x,y], s=0)
unew = np.arange(0, 1.01, 0.01)

splinevalues = sp.interpolate.splev(unew, tcktuples)

plt.figure(figsize=(10,10))
plt.plot(x, y, 'x', splinevalues[0], splinevalues[1],
np.sin(2*np.pi*unew), np.cos(2*np.pi*unew), x, y, 'b')

plt.legend(['Linear', 'Cubic Spline', 'True'])
plt.axis([-1.25, 1.25, -1.25, 1.25])
plt.title('Parametric Spline Interpolation Curve')

plt.show()

The following diagram is the result of this spline interpolation using SciPy and NumPy:

Numerical Computing and Interactive Plotting

[132]

Let's take a look at an example in numerical integration and solve linear equations using
some of the SciPy functions (such as Simpson's and Romberg) and compare these with
the NumPy function trapezoidal. We know that when a function such as f(x) = 9 – x2 is
integrated from -3 to 3, we expect 36 units, as shown in the following diagram:

The preceding plot shows the 9-x2 function (which is symmetric along the Y axis).
Mathematically, the integration from -3 to 3 is twice that of the integration from 0 to
3. How do we numerically integrate using SciPy? The following code shows one way
to perform it using the trapezoidal method from NumPy:

import numpy as np
from scipy.integrate import simps, romberg

a = -3.0; b = 3.0;
N = 10

x = np.linspace(a, b, N)
y = 9-x*x
yromb = lambda x: (9-x*x)

t = np.trapz(y, x)
s = simps(y, x)
r = romberg(yromb, a, b)

#actual integral value
aiv = (9*b-(b*b*b)/3.0) - (9*a-(a*a*a)/3.0)

print 'trapezoidal = {0} ({1:%} error)'.format(t, (t - aiv)/aiv)
print 'simpsons = {0} ({1:%} error)'.format(s, (s - aiv)/aiv)
print 'romberg = {0} ({1:%} error)'.format(r, (r - aiv)/aiv)

Chapter 4

[133]

print 'actual value = {0}'.format(aiv)

trapezoidal = 35.5555555556 (-1.234568% error)
simpsons = 35.950617284 (-0.137174% error)
romberg = 36.0 (0.000000% error)
actual value = 36.0

An example of linear equations
Let's try to solve a set of linear equations in three variables (x, y, and z) as follows:

• x + 2y – z = 2
• 2x – 3y + 2z = 2
• 3x + y – z = 2

NumPy offers a convenient method np.linalg.solve() to solve linear equations.
However, the inputs are expected in vector form. The following program shows how
one can solve linear equations.

import numpy as np

Matrix A has coefficients of x,y and z
A = np.array([[1, 2, -1],
 [2, -3, 2],
 [3, 1, -1]])
#constant vector
b = np.array([2, 2, 2])

#Solve these equations by calling linalg.solve
v = np.linalg.solve(A, b)

v is the vector that has solutions
print "The solution vector is "
print v
Reconstruct Av to see if it produces identical values
print np.dot(A,v) == b

The solution vector is
[1. 2. 3.]
[True True True]

Note that np.dot(A,v) is a matrix multiplication (not A*v). The solution vector
v = [1,2,3] is the correct expected result.

Numerical Computing and Interactive Plotting

[134]

The vectorized numerical derivative
Now as the last example in this section, we will take a look at the vectorized
numeric derivatives that NumPy offers. We do know that the derivative is

 by applying the quotient rule of differentiation.
However, by applying the vectorized methods in Python to compute the derivatives
without loop, we will see the following code:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi/2, np.pi/2, 44)
y = 1/(1+np.cos(x)*np.cos(x))
dy_actual = np.sin(2*x)/(1+np.cos(x)*np.cos(x))**2

fig = plt.figure(figsize=(10,10))
ax=fig.add_subplot(111,axisbg='white')

we need to specify the size of dy ahead because diff returns
dy = np.zeros(y.shape, np.float) #we know it will be this size
dy[0:-1] = np.diff(y) / np.diff(x)
dy[-1] = (y[-1] - y[-2]) / (x[-1] - x[-2])

plt.plot(x,y, linewidth=3, color='b', label='actual function')
plt.plot(x,dy_actual,label='actual derivative', linewidth=2,
color='r')
plt.plot(x,dy,label='forward diff', linewidth=2, color='g')
plt.legend(loc='upper center')
plt.show()

In the following example, we can see how you can plot the actual function, its
derivative, and the forward difference in the same plot. The actual derivative is
plugged into dy_actual, and the forward difference is calculated using diff()
from NumPy.

Chapter 4

[135]

The following plot diagram is the result of this program:

Numerical Computing and Interactive Plotting

[136]

MKL functions
The MKL functions from Intel provide high-performance routines on vectors and
matrices. In addition, they include FFT functions and vector statistical functions.
These functions have been enhanced and optimized to work efficiently on Intel
processors. For Anaconda users, Continuum has packaged these FFT functions
into binary versions of Python libraries for MKL optimizations. However MKL
optimizations are available as an add-on as part of the Anaconda Accelerate package.
The graph here shows the difference in slowness without MKL:

The preceding graph has been taken from
https://store.continuum.io/cshop/mkl-optimizations/.

https://store.continuum.io/cshop/mkl-optimizations/

Chapter 4

[137]

For larger array inputs, MKL offers a significant improvement over performance, as
shown in the following screenshot:

The preceding image has been taken from https://software.intel.com/en-us/
articles/numpyscipy-with-intel-mkl.

The performance of Python
Python programmers often try to rewrite their innermost loops in C and call the
compiled C functions from Python for performance reasons. There are many projects
aimed at making this kind of optimization easier, such as Cython. However, it
would be preferable to make their existing Python code faster without depending on
another programming language.

https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl
https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl

Numerical Computing and Interactive Plotting

[138]

There are few other options available to improve the performance of the
computationally intensive programs in Python:

• Use Numbapro: This is a Python compiler from Continuum Analytics that
can compile the Python code for execution on CUDA-capable GPUs or
multicore CPUs. This compiled code runs the native compiled code and is
several times faster than the interpreted code. Numbapro works by enabling
compilation at runtime (this is just-in-time or the JIT compilation). With
Numbapro, it is possible to write standard Python functions and run them on
a CUDA-capable GPU. Numbapro is designed for array-oriented computing
tasks, such as the widely used NumPy library. Numbapro is an enhanced
version of Numba and is part of Anaconda Accelerate, a commercially
licensed product from Continuum Analytics.

• Use Scipy.weave: This is a module that lets you insert snippets of the C code
and seamlessly transports the arrays of NumPy into the C layer. It also has
some efficient macros.

• Use multicore approach: The multiprocessing package of Python 2.6 or
higher provides a relatively simple mechanism to create a subprocess. Even
desktop computers these days have multicore processors; it makes sense to
put all the processors to work. This is much simpler than using threading.

• Use process pool called pool: This is another class in the multiprocessing
package. With pool, you can define the number of worker processes to be
created in the pool and then pass an iterable object containing the parameters
for each process.

• Use Python in a distributed computing package (such as Disco): This is a
lightweight, open source framework for distributed computing based on the
MapReduce paradigm (http://discoproject.org). Other similar packages
are Hadoop Streaming, mrjob, dumbo, hadoopy, and pydoop.

Scalar selection
Scalar selection is the simplest method to select elements from an array and
is implemented using [rowindex] for one-dimensional arrays, [rowindex,
columnindex] for two-dimensional arrays, and so on. The following is a simple code
that shows an array element reference:

import numpy as np
x = np.array([[2.0,4,5,6], [1,3,5,9]])

x[1,2]
5.0

http://discoproject.org

Chapter 4

[139]

A pure scalar selection always returns a single element and not an array. The data
type of the selected element matches the data type of the array used in the selection.
Scalar selection can also be used to assign a value to an array element, as shown in
the following code:

x[1,2] = 8

x
array([[2, 4, 5, 6],[1, 3, 8, 9]])

Slicing
Arrays can be sliced just like lists and tuples. Array slicing is identical to list slicing,
except that the syntax is simpler. Arrays are sliced using the [: , :, ... :]
syntax, where the number of dimensions of the arrays determine the size of the slice,
except that these dimensions for which slices are omitted, all elements are selected.
For example, if b is a three-dimensional array, b[0:2] is the same as b[0:2,:,:].
There are shorthand notations for slicing. Some common ones are:

• : and: are the same as 0:n:1, where n is the length of the array
• m: and m:n: are the same as m:n:1, where n is the length of the array
• :n: is the same as 0:n:1
• ::d: is the same as 0:n:d, where n is the length of the array

All these slicing methods have been referenced with the usage of arrays. This can
also be applicable to lists. Slicing of one-dimensional arrays is identical to slicing
a simple list (as one-dimensional arrays can be seen equivalent to a list), and the
returned type of all the slicing operations matches the array being sliced. The
following is a simple mechanism that shows array slices:

x = array([5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])

interpret like this – default start but end index is 2
y = x[:2]
array([5, 6])

interpretation – default start and end, but steps of 2
y = x[::2]
array([5,7,9,11,13,15,17,19])

Numerical Computing and Interactive Plotting

[140]

NumPy attempts to convert data type automatically if an element with one data type is
inserted into an array with a different data type. For example, if an array has an integer
data type, place a float into the array results in the float being truncated and store it as
an integer. This can be dangerous; therefore in such cases, arrays should be initialized
to contain floats unless a considered decision is taken to use a different data type for
a good reason. This example shows that even if one element is float and the rest is
integer, it is assumed to be the float type for the benefit of making it work properly:

a = [1.0, 2,3,6,7]
b = array(a)

b.dtype
dtype('float64')

Slice using flat
Data in matrices are stored in a row-major order, which means elements are indexed
first by counting along the rows and then down the columns. For example, in the
following matrix, there are three rows and three columns; the elements are read in
the order 4,5,6,7,8,9,1,2,3 (for each row, column-wise):

Linear slicing assigns an index to each element of the array in the order of the
elements read. In two-dimensional arrays or lists, linear slicing works by first
counting across the rows and then down the columns. In order to use linear slicing,
you have to use the flat function, as shown in the following code:

a=array([[4,5,6],[7,8,9],[1,2,3]])
b = a.flat[:]

print b
[4, 5, 6, 7, 8, 9, 1, 2, 3]

Array indexing
Elements from NumPy arrays can be selected using four methods: scalar selection,
slicing, numerical indexing, and logical (or Boolean) indexing. Scalar selection and slicing
are the basic methods to access elements in an array, which has already been discussed
here. Numerical indexing and logical indexing are closely related and allows more
flexible selection. Numerical indexing uses lists or arrays of locations to select elements,
whereas logical indexing uses arrays that contain Boolean values to select elements.

Chapter 4

[141]

Numerical indexing
Numerical indexing is an alternative to slice notation. The idea in numerical indexing
is to use coordinates to select elements. This is similar to slicing. Arrays created using
numerical indexing create copies of data, whereas slices are only views of data, and
not copies. For performance sake, slicing should be used. Slices are similar to one-
dimensional arrays, but the shape of the slice is determined by the slice inputs.

Numerical indexing in one-dimensional arrays uses the numerical index values
as locations in the array (0-based indexing) and returns an array with the same
dimensions as the numerical index.

Note that the numerical index can be either a list or a NumPy array and must contain
integer data, as shown in the following code:

a = 10 * arange(4.0)
array([0.,10.,20.,30.])

a[[1]] # arrays index is list with first element
array([10.])

a[[0,3,2]] # arrays index are 0-th, 3-rd and 2-nd
array([0., 30., 20.])

sel = array([3,1,4,2,3,3]) # array with repetition
a[sel]
array([30. 10. 0. 20. 30. 30.])

sel = array([4,1],[3,2]])
a[sel]
array([[30.,10.], [0.,20.]])

These examples show that the numerical indices determine the element location, and
the shape of the numerical index array determines the shape of the output.

Similar to slicing, numerical indexing can be combined using the flat function to
select elements from an array using the row-major ordering of the array. The behavior
of numerical indexing with flat is identical to that of using numerical indexing on a
flattened version of the underlying array. A few examples are shown here:

a = 10 * arange(8.0)
array([0., 10., 20., 30., 40., 50., 60., 70.])

a.flat[[3,4,1]]
array([30., 40., 10.])

a.flat[[[3,4,7],[1,5,3]]]
array([[30., 40., 70.], [10., 50., 30.]])

Numerical Computing and Interactive Plotting

[142]

Logical indexing
Logical indexing is different from slicing and numeric indexing; it rather uses logical
indices to select elements, rows, or columns. Logical indices act as light switches and
are either true or false. Pure logical indexing uses a logical indexing array with the
same size as the array being used for selection and always returns a one-dimensional
array, as shown in the following code:

x = arange(-4,5)

x < 0
array([True, True, True, True, False, False, False, False, False],
dtype=bool)

x[x>0]
array([1, 2, 3, 4])

x[abs(x) >= 2]
array([-4, -3, -2, 2, 3, 4])

#Even for 2-dimension it still does the same
x = reshape(arange(-8, 8), (4,4))
x
array([[-8, -7, -6, -5], [-4, -3, -2, -1], [0, 1, 2, 3], [4, 5,
6, 7]])

x[x<0]
array([-8, -7, -6, -5, -4, -3, -2, -1])

Here is another example to demonstrate logical indexing:

from math import isnan
a = [[3, 4, float('NaN')], [5, 9, 8], [3, 3, 2], [9, -1,
float('NaN')]]

list2 = [3, 4, 5, 6]
list1_valid = [elem for elem in list1 if not any([isnan(element) for
element in elem])]

list1_valid
[[3, 7, 8], [1, 1, 1]]

list2_valid = [list2[index] for index, elem in enumerate(list1) if not
any([isnan(element) for element in elem])]

list2_valid
 [4, 5]

Chapter 4

[143]

Other data structures
Python has data structures such as stacks, lists, sets, sequences, tuples, lists, heaps,
arrays, dictionaries, and deque. We have already discussed lists while attempting
to understand arrays. Tuples are typically more memory efficient than lists because
they are immutable.

Stacks
The list method is very convenient to be used as a stack, which is known to be
an abstract data type with the principle of operation last-in, first-out. The known
operations include adding of an item at the top of the stack using append(),
extracting of the item from the top of the stack using pop(), and removing of the
item using remove(item-value), as shown in the following code:

stack = [5, 6, 8]
stack.append(6)
stack.append(8)

stack
[5, 6, 8, 6, 8]

stack.remove(8)
stack
[5, 6, 6, 8]

stack.pop()
8

stack.remove(8)
Traceback (most recent call last):
File "<ipython-input-339-61d6322e3bb8>", line 1, in <module>
stack.remove(8)
 ValueError: list.remove(x): x not in list

The pop() function is most efficient (constant-time) because all the other elements
remain in their location. However, the parameterized version, pop(k), removes the
element that is at the k < n index of a list, shifting all the subsequent elements to
fill the gap that results from the removal. The efficiency of this operation is linear
because the amount of shifting depends on the choice of index k, as illustrated in the
following image:

Numerical Computing and Interactive Plotting

[144]

Tuples
A tuple is a sequence of immutable objects that look similar to lists. Tuples are
heterogeneous data structures, which means that their elements have different
meanings, whereas lists are a homogeneous sequence of elements. Tuples have
structure, and lists have order. Some examples of tuples are days of the week, course
names, and grading scales, as shown in the following code:

#days of the week
weekdays = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday")

#course names
courses = ("Chemistry", "Physics", "Mathematics", "Digital Logic",
"Circuit Theory")

#grades
grades = ("A+", "A", "B+", "B", "C+", "C", "I")

Tuples have immutable objects. This means that you cannot change or remove them
from tuple. However, the tuple can be deleted completely, for example, "del grades"
will delete this tuple. After this, if an attempt is made to use that tuple, an error will
occur. The following are the built-in tuple functions:

• cmp(tup1, tup2): This function can be used to compare the elements of two
tuples

• len(tuple): This function can be used to get the total length of the tuple
• max(tuple): This function can be used to determine the maximum value in

the tuple
• min(tuple): This function can be used to determine the minimum value in

the tuple
• tuple(lista): This function can be used to convert lista to tuple

Python has a max() function that behaves as expected for numerical values.
However, if we pass a list of strings, max() returns the item that is the longest.

weekdays = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday")
print max(weekdays)
Wednesday

Similarly min() has the same behavior for strings.

print min(weekdays)
Friday

Chapter 4

[145]

When we need to find how many elements are in an array or list, len() is a
convenient method that does the job.

len(weekdays)
7

Sets
Sets are similar to lists, but are different in two aspects. Firstly, they are an unordered
collection as compared to lists (which are ordered by location or index). Secondly,
they do not have duplicates (if you know the mathematical definition of sets). The
notation used for a set is shown in the following command:

setoftrees = { 'Basswood', 'Red Pine', 'Chestnut', 'Gray Birch',
'Black Cherry'}

newtree = 'Tulip Tree'
if newtree not in setoftrees: setoftrees.add(newtree)

Now with this command, you can see what is on setoftrees:

setoftrees # typing this shows list of elements shown below
{'Basswood', 'Black Cherry', 'Chestnut', 'Gray Birch', 'Red Pine',
'Tulip Tree'}

Then, build charsinmath and charsinchem using the appropriate spelling, as shown
in the following code

#example of set of operation on letters
charsinmath = set('mathematics')
charsinchem = set('chem')

Now, let's try to see what the values are in these sets:

Charsinmath # typing this shows letters in charsinmath
{'a', 'c', 'e', 'h', 'i', 'm', 's', 't'}

charsinchem # typing this shows letters in charsinchem
{'c', 'e', 'h', 'm'}

In order to find the set difference, we need to display charsinmath – charsinchem
as follows:

take away letters from charsinchem from charsinmath
charsinmath - charsinchem
{'a', 'i', 's', 't'}

Numerical Computing and Interactive Plotting

[146]

Queues
Just like stacks, it is possible to use a list as a queue. However, the difference is that
elements can be added or removed from the end of the list or from the beginning of the
list. Although adding and removing from the end of a list is efficient, doing the same
from the beginning is not efficient because in this case, elements have to be shifted.

Fortunately, Python has deque in its collections package that efficiently implements
the adding and removing of elements from both ends using append(), pop(),
appendleft(), and popleft(), as shown in the following code:

from collections import deque

queue = deque(["Daniel", "Sid", "Mathew", "Michael"])
queue.append("Dirk") # Dirk arrives
queue.append("Monte") # Monte arrives queue

queue
deque(['Daniel', 'Sid', 'Mathew', 'Michael', 'Dirk', 'Monte'])

queue.popleft()
'Daniel'

queue.pop()
'Monte'

queue.appendleft('William')
queue
deque(['William', 'Sid', 'Mathew', 'Michael', 'Dirk'])

queue.append('Lastone')
queue
deque(['William', 'Sid', 'Mathew', 'Michael', 'Dirk', 'Lastone'])

Dictionaries
Dictionaries are a collection of unordered data values that are composed of a
key/value pair, which has the unique advantage of accessing a value based on the
key as an index. The question is that if the key is a string, then how does the indexing
work? The key has to be hashable: a hash function is applied on the key to extract
the location where the value is stored. In other words, the hash function takes a key
value and returns an integer. Dictionaries then use these integers (or hash values) to
store and retrieve the value. Some examples are shown here:

Chapter 4

[147]

#example 1: Top 10 GDP of Africa
gdp_dict = { 'South Africa': 285.4, 'Egypt': 188.4, 'Nigeria': 173,
'Algeria': 140.6, 'Morocco': 91.4, 'Angola': 75.5, 'Libya': 62.3,
'Tunisia': 39.6, 'Kenya': 29.4, 'Ethiopia': 28.5, 'Ghana': 26.2,
'Cameron': 22.2}

gdp_dict['Angola']
75.5

#example 2: English to Spanish for numbers one to ten
english2spanish = { 'one' : 'uno', 'two' : 'dos', 'three': 'tres',
'four': 'cuatro', 'five': 'cinvo', 'six': 'seis', 'seven': 'seite',
'eight': 'ocho', 'nine': 'nueve', 'ten': 'diez'}

english2spanish['four']
'cuatro'

The keys should be immutable to have a predictable hash value; otherwise, the hash
value change will result in a different location. Also, unpredictable things could
occur. The default dictionary does not keep the values in the order they is inserted;
therefore, by iterating after the insertion, the order of the key/value pair is arbitrary.

Python's collections package has an equivalent OrderedDict() function that keeps
the order of pairs in the inserted order. One additional difference between the
default dictionary and the ordered dictionary is that in the former, equality always
returns true if they have an identical set of key/value pairs (not necessarily in the
same order), and in the latter, equality returns true only when they have an identical
set of key/value pairs and when they are in the same order. The following example
demonstrates this:

using default dictionary
dict = {}

dict['cat-ds1'] = 'Introduction to Data Structures'
dict['cat-ds2'] = 'Advanced Data Structures'
dict['cat-la1'] = 'Python Programming'
dict['cat-la2'] = 'Advanced Python Programming'
dict['cat-pda'] = 'Python for Data Analysis'
dict['cat-ps1'] = 'Data Science in Python'
dict['cat-ps2'] = 'Doing Data Science'

for key, val in dict.items(): print key,val

cat-ps1 Data Science in Python
cat-ps2 Doing Data Science

Numerical Computing and Interactive Plotting

[148]

cat-pda Python for Data Analysis
cat-la2 Advanced Python Programming
cat-la1 Python Programming
cat-ds1 Introduction to Data Structures
cat-ds2 Advanced Data Structures

#using OrderedDict (inserting data the same way as before)
odict = OrderedDict()

odict['cat-ds1'] = 'Introduction to Data Structures'
odict['cat-ds2'] = 'Advanced Data Structures'
odict['cat-la1'] = 'Python Programming'
odict['cat-la2'] = 'Advanced Python Programming'
odict['cat-pda'] = 'Python for Data Analysis'
odict['cat-ps1'] = 'Data Science in Python'
odict['cat-ps2'] = 'Doing Data Science'

for key, val in odict.items(): print key,val

cat-ds1 Introduction to Data Structures
cat-ds2 Advanced Data Structures
cat-la1 Python Programming
cat-la2 Advanced Python Programming
cat-pda Python for Data Analysis
cat-ps1 Data Science in Python
cat-ps2 Doing Data Science

If you have to implement something similar to this, it is computationally better to
use the ISBN as the key, rather than the catalog number as in a library. However,
there may be old books that do not have an ISBN; therefore, an equivalent unique
key/value has to be used to maintain consistency with other new books that have an
ISBN number. A hash value is usually a number, and with a numeric key, the hash
function might be much easier compared to an alphanumeric key.

Dictionaries for matrix representation
Usually, there are many examples where you can apply dictionaries when there is
a key/value association. For example, state abbreviations and names; either one
could be the key and the other the value, but it would be more efficient to have the
abbreviation as the key. Other examples are word and word count or city names and
population. One interesting area of computation where dictionaries could really be
efficient is the representation of a sparse matrix.

Chapter 4

[149]

Sparse matrices
Let's examine the space utilization of a matrix; for a 100 x 100 matrix represented
using a list, each element occupies 4 bytes; therefore, the matrix would need 40,000
bytes, which is approximately 40 KB of space. However, among these 40,000 bytes,
if only 100 of them have a nonzero value and the others are all zero, then the space
is wasted. Now, let's consider a smaller matrix for the simplicity of discussion, as
shown in the following image:

This matrix has approximately 20 percent of nonzero values; therefore, finding an
alternative way to represent the nonzero elements of the matrix would be a good
start. There are seven values of 1, five values of 2 and 3 each, and one value of 4, 6,
and 7. This could be represented as follows:

A = {1: [(2,2),(6,6), (0,7),(1,8),(7,8),(3,9),(8,9)],
 2: [(5,2),(8,2),(6,3),(0,4),(0,9)],
 3: [(5,0),(8,0),(9,1),(1,3),(5,8)],
 4:[(1,1)], 6:[(2,0)], 7:[(2,5)]}

However, this representation makes it harder to access the (i,j)th value of A. There
is a better way to represent this sparse matrix using dictionary, as shown in the
following code:

def getElement(row, col):
 if (row,col) in A.keys():
 r = A[row,col]
 else:
 r = 0
 return r

A={(0,4): 2, (0,7): 1, (1,1): 4, (1,3):3, (1,8): 1, (2,0): 6, (0,9):
2, (2,2):1, (2,5): 7, (3,9): 1, (5,0): 3, (5,2): 2, (5,8): 3, (6,3):
2, (6,6):1, (7,8): 1, (8,0): 3, (8,2): 2, (8,9): 1, (9,1): 3}

Numerical Computing and Interactive Plotting

[150]

print getElement(1,3)
3

print getElement(1,2)
0

To access an element at (1, 3) of the matrix A, we could use A[(1, 3)], but if the
key does not exist, it will throw an exception. In order to get the nonzero value
using the key and return 0 if the key does not exist, we can use a function called
getElement(), as shown in the preceding code.

Visualizing sparseness
We can visually see how sparse the matrix is with the help of SquareBox diagrams.
The following image shows the sparseDisplay() function. This uses square boxes
for each matrix entry that attempts to view the display. The black color represents
sparseness, whereas the green color represents nonzero elements:

The following code demonstrates how one can display sparseness:

import numpy as np
import matplotlib.pyplot as plt

"""
 SquareBox diagrams are useful for visualizing values of a 2D array,
 Where black color representing sparse areas.
"""
def sparseDisplay(nonzero, squaresize, ax=None):
 ax = ax if ax is not None else plt.gca()

 ax.patch.set_facecolor('black')
 ax.set_aspect('equal', 'box')
 for row in range(0,squaresize):
 for col in range(0,squaresize):

Chapter 4

[151]

 if (row,col) in nonzero.keys():
 el = nonzero[(row,col)]
 if el == 0: color='black'
 else: color = '#008000'
 rect = plt.Rectangle([col,row], 1, 1,
 facecolor=color, edgecolor=color)
 ax.add_patch(rect)

 ax.autoscale_view()
 ax.invert_yaxis()

if __name__ == '__main__':
 nonzero={(0,4): 2, (0,7): 1, (1,1): 4, (1,3): 3, (1,8): 1,
(2,0): 6, (0,9): 2, (2,2): 1, (2,5): 7, (3,9): 1, (5,0): 3,
(5,2): 2, (5,8): 3, (6,3): 2, (6,6): 1, (7,8): 1, (8,0): 3, (8,2): 2,
(8,9): 1, (9,1): 3}

 plt.figure(figsize=(4,4))
 sparseDisplay(nonzero, 10)
 plt.show()

This is only a quick example to display the sparse matrix. Imagine that you have a 30
x 30 matrix with only a few nonzero values, then the display would look somewhat
similar to the following image. The saving in this case is 97 percent as far as space
utilization is concerned. In other words, the larger the matrix, the lesser the space
utilized, as shown in the following image:

Having found a way to store the sparse matrix using dictionary, you may have to
remember that there is no need to reinvent the wheel. Moreover, it makes sense
to consider the possibility of storing the sparse matrix to understand the power of
dictionary. However, what is really recommended is to take a look at the SciPy and
pandas package for the sparse matrix. There may be further opportunities in this
book to use these approaches in some examples.

Numerical Computing and Interactive Plotting

[152]

Dictionaries for memoization
Memoization is an optimization technique in computational science that enables one
to store intermediate results, which otherwise could be expensive. Not every problem
needs memoization, but when there is a pattern of computing the same values by
calling the function, it is often useful to use this approach. One example where this
approach can be used is in the computation of the Fibonacci function using the
dictionary to store the already computed value, so next time, you can just search for
the value, rather than recompute it again, as shown in the following code:

fibvalues = {0: 0, 1: 1, 2:1, 3:2, 4:3, 5:5}

def fibonacci(n):
 if n not in fibvalues:
 sumvalue = fibonacci(n-1) + fibonacci(n-2)
 fibvalues[n] = sumvalue
 return fibvalues[n]

fibonacci(40)
102334155

print sorted(fibvalues.values())
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887,
9227465, 14930352, 24157817, 39088169, 63245986, 102334155]

#regular fibonacci without using dictionary
def fib(n):
 if n <= 1 : return 1
 sumval = fib(n-1)+fib(n-2)
 return sumval

The dictionary of fibvalues is very useful to prevent the recomputation of the
values of Fibonacci, but fibcalled is used here only to demonstrate that by using
dictionary, there cannot be more than one call to fibonacci() for a particular value
of n. By comparing the ratio of the running times for fib() (without using dictionary
to store the computed value) and fibonacci(), we can see that when plotted, it
looks similar to the following screenshot:

Chapter 4

[153]

from time import time

for nval in range(16,27):
 fibvalues = {0: 0, 1: 1, 2:1, 3:2, 4:3, 5:5}
 t3 = time()
 fibonacci(nval)
 diftime1 = time()-t3
 t2 = time()
 fib(nval)
 diftime2 = time()-t2
 print "The ratio of time-2/time-1 :"+str(diftime2/diftime1)

Tries
Trie (pronounced trie or trai) is a data structure that has different names (digital tree,
radix tree, or prefix tree). Tries are very efficient for search, insert, and delete functions.
This data structure is very optimal for storage. For example, when the words add,
also, algebra, assoc, all, to, trie, tree, tea, and ten are stored in the trie, it will look similar
to the following diagram:

Numerical Computing and Interactive Plotting

[154]

The characters are shown in uppercase just for clarity purposes in the preceding
diagram, whereas in real storage, the characters are stored as they appear in words.
In the implementation of trie, it makes sense to store the word count. The search
functionality is very efficient and in particular when the pattern does not match, the
results are even quicker. In other words, if the search is for are, then the failure is
determined at the level when the letter r is not found.

One of the popular functionalities is longest prefix matching. In other words, if we
were to find all the words in the dictionary that have the longest prefix match with a
particular search string: base (for example). The results could be base, based, baseline,
or basement, or even more words if they are found in the dictionary of words.

Python has many different implementations: suffix_tree, pytire, trie, datrie,
and so on. There is a nice comparison study done by J. F. Sebastian that can be
accessed at https://github.com/zed/trie-benchmark.

Most search engines have an implementation of trie called inverted index. This is the
central component where space optimization is very important. Moreover, searching
for this kind of structure is very efficient to find the relevance between
the search string and the documents. Another interesting application of trie is IP
routing, where the ability to contain large ranges of values is particularly suitable.
It also saves space.

A simple implementation in Python (not necessarily the most efficient) is shown in
the following code:

_end = '_end_'

to search if a word is in trie
def in_trie(trie, word):
 current_dict = trie
 for letter in word:
 if letter in current_dict:
 current_dict = current_dict[letter]
 else:
 return False
 else:
 if _end in current_dict:
 return True
 else:
 return False

#create trie stored with words
def create_trie(*words):
 root = dict()

https://github.com/zed/trie-benchmark

Chapter 4

[155]

 for word in words:
 current_dict = root
 for letter in word:
 current_dict = current_dict.setdefault(letter, {})
 current_dict = current_dict.setdefault(_end, _end)
 return root

def insert_word(trie, word):
 if in_trie(trie, word): return

 current_dict = trie
 for letter in word:
 current_dict = current_dict.setdefault(letter, {})
 current_dict = current_dict.setdefault(_end, _end)

def remove_word(trie, word):
 current_dict = trie
 for letter in word:
 current_dict = current_dict.get(letter, None)
 if current_dict is None:
 # the trie doesn't contain this word.
 break
 else:
 del current_dict[_end]

dict = create_trie('foo', 'bar', 'baz', 'barz', 'bar')
print dict
print in_trie(dict, 'bar')
print in_trie(dict, 'bars')
insert_word(dict, 'bars')
print dict
print in_trie(dict, 'bars')

Visualization using matplotlib
matplotlib has been a popular plotting package besides a few other that are
available today. The capability of matplotlib is now being realized by the Python
community. John Hunter, the creator and project leader of this package summed it
up as matplotlib tries to make easy things easy and hard things possible. You can generate
very high-quality, publication-ready graphs with very little effort. In this section, we
will pick a few interesting examples to illustrate the power of matplotlib.

Numerical Computing and Interactive Plotting

[156]

Word clouds
Word clouds give greater prominence to words that appear more frequently in any
given text. They are also called tag clouds or weighted words. You can tweak word
clouds with different fonts, layouts, and color schemes. The significance of a word's
strength in terms of the number of occurrences visually maps to the size of their
appearance. In other words, the word that appears the largest in visualization is the
one that has appeared the most in the text.

Beyond the obvious map to their occurrences, word clouds have several useful
applications for social media and marketing. Some of the applications are as follows:

• Businesses can get to know their customers and how they view their
products. Some organizations have used a very creative method of asking
their fans or followers to post words about what they think of their brand,
taking all these words into a word cloud to better understand the most
common impressions of their product brand.

• Finding ways to learn about their competitors by identifying a brand whose
online presence is popular. Creating a word cloud from their content to
better understand what words and themes hook the product target market.

In order to create a word cloud, you can write the Python code or use something
that already exists. Andreas Mueller from the NYU Center for Data Science created
a pretty simple and easy-to-use word cloud in Python. It can be installed with the
instructions given in the next section.

Installing word clouds
For faster installation, you can just use pip with sudo access, as shown in the
following code:

sudo pip install git+git://github.com/amueller/word_cloud.git

Alternatively, you can obtain the package via wget on Linux or curl on Mac OS with
the following code:

wget https://github.com/amueller/word_cloud/archive/master.zip

unzip master.zip

rm master.zip

cd word_cloud-master

sudo pip install -r requirements.txt

Chapter 4

[157]

For the Anaconda IDE, you will have to install it using conda with the following
three steps:

#step-1 command

conda install wordcloud

Fetching package metadata:

Error: No packages found in current osx-64 channels matching: wordcloud

You can search for this package on Binstar with

This only means one has to search the source location

binstar search -t conda wordcloud

Run 'binstar show <USER/PACKAGE>' to get more details:

Packages:

 Name | Access | Package Types |

 ------------------------- | ------------ | --------------- |

 derickl/wordcloud | public | conda |

Found 1 packages

step-2 command

binstar show derickl/wordcloud

Using binstar api site https://api.binstar.org

Name: wordcloud

Summary:

Access: public

Package Types: conda

Versions:

 + 1.0

To install this package with conda run:

conda install --channel https://conda.binstar.org/derickl wordcloud

step-3 command

conda install --channel https://conda.binstar.org/derickl wordcloud

Numerical Computing and Interactive Plotting

[158]

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 cython-0.22 | py27_0 2.2 MB

 django-1.8 | py27_0 3.2 MB

 pillow-2.8.1 | py27_1 454 KB

 image-1.3.4 | py27_0 24 KB

 setuptools-15.1 | py27_1 435 KB

 wordcloud-1.0 | np19py27_1 58 KB

 conda-3.11.0 | py27_0 167 KB

 --

 Total: 6.5 MB

The following NEW packages will be INSTALLED:

 django: 1.8-py27_0

 image: 1.3.4-py27_0

 pillow: 2.8.1-py27_1

 wordcloud: 1.0-np19py27_1

The following packages will be UPDATED:

 conda: 3.10.1-py27_0 --> 3.11.0-py27_0

 cython: 0.21-py27_0 --> 0.22-py27_0

 setuptools: 15.0-py27_0 --> 15.1-py27_1

The following packages will be DOWNGRADED:

 libtiff: 4.0.3-0 --> 4.0.2-1

Proceed ([y]/n)? y

Chapter 4

[159]

Input for word clouds
In this section, there will be two sources where you can extract words to construct
word clouds. The first example shows how to extract text from the web feeds of
some known websites and how to extract the words from its description. The second
example shows how to extract text from tweets with the help of search keywords.
The two examples will need the feedparser package and the tweepy package, and
by following similar steps (as mentioned for other packages previously), you can
easily install them.

Our approach will be to collect words from both these examples and use them as the
input for a common word cloud program.

Web feeds
There are well grouped and structured RSS or atom feeds in most of the news and
technology service websites today. Although our aim is to restrict the context to
technology alone, we can determine a handful of feed lists, as shown in the following
code. In order to be able to parse these feeds, the parser() method of feedparser
comes in handy. Word cloud has its own stopwords list, but in addition to this, we
can also use one while collecting the data, as shown here (stopwords here is not
complete, but you can gather more from any known resource on the Internet):

import feedparser
from os import path
import re

d = path.dirname(__file__)
mystopwords = ['test', 'quot', 'nbsp']

feedlist = ['http://www.techcrunch.com/rssfeeds/',
'http://www.computerweekly.com/rss',
'http://feeds.twit.tv/tnt.xml',
'https://www.apple.com/pr/feeds/pr.rss',
'https://news.google.com/?output=rss'
'http://www.forbes.com/technology/feed/' 'http://rss.
nytimes.com/services/xml/rss/nyt/Technology.xml', 'http://www.
nytimes.com/roomfordebate/topics/technology.rss',
'http://feeds.webservice.techradar.com/us/rss/reviews'
'http://feeds.webservice.techradar.com/us/rss/news/software',
'http://feeds.webservice.techradar.com/us/rss',
'http://www.cnet.com/rss/',
'http://feeds.feedburner.com/ibm-big-data-hub?format=xml',
'http://feeds.feedburner.com/ResearchDiscussions-DataScien
ceCentral?format=xml', 'http://feeds.feedburner.com/
BdnDailyPressReleasesDiscussions-BigDataNews?format=xml',

Numerical Computing and Interactive Plotting

[160]

'http://http://feeds.feedburner.com/ibm-big-data-hub-
galleries?format=xml', 'http://http://feeds.feedburner.com/
PlanetBigData?format=xml',
'http://rss.cnn.com/rss/cnn_tech.rss',
'http://news.yahoo.com/rss/tech',
'http://slashdot.org/slashdot.rdf',
'http://bbc.com/news/technology/']

def extractPlainText(ht):
 plaintxt=''
 s=0
 for char in ht:
 if char == '<': s = 1
 elif char == '>':
 s = 0
 plaintxt += ' '
 elif s == 0: plaintxt += char
 return plaintxt

def separatewords(text):
 splitter = re.compile('\\W*')
 return [s.lower() for s in splitter.split(text) if len(s) > 3]

def combineWordsFromFeed(filename):
 with open(filename, 'w') as wfile:
 for feed in feedlist:
 print "Parsing " + feed
 fp = feedparser.parse(feed)
 for e in fp.entries:
 txt = e.title.encode('utf8') +
 extractPlainText(e.description.encode('utf8'))
 words = separatewords(txt)

 for word in words:
 if word.isdigit() == False and word not in mystopwords:
 wfile.write(word)
 wfile.write(" ")
 wfile.write("\n")
 wfile.close()
 return

combineWordsFromFeed("wordcloudInput_FromFeeds.txt")

Chapter 4

[161]

The Twitter text
In order to access the Twitter API, you will need the access token and consumer
credentials that consist of four parameters: access_token, access_token_secret,
consumer_key, and consumer_secret. In order to obtain these keys, you will have
to use a Twitter account. The steps involved in obtaining these keys are available on
the Twitter website. The steps involved are:

1. Log in to the Twitter account.
2. Navigate to developer.twitter.com and use Manage My Apps to follow

through and obtain the parameters mentioned before.

Assuming that these parameters are ready, with the tweepy package, you can access
tweets via Python. The following code displays a simple custom stream listener.
Here, as the tweets are streamed, there is a listener that listens to the status and
writes the state to a file. This can be used later to create word clouds.

The stream uses a filter to narrow the Twitter text that is focused on the Python
program, data visualization, big data, machine learning, and statistics. The tweepy stream
provides the tweets that are extracted. This can run forever because there is unlimited
data available out there. How do we set it to stop? The accessing speed may be slower
than you would expect, and for the purposes of creating a word cloud, you would
imagine that extracting a certain number of tweets is probably sufficient. We therefore
set a limit and called it MAX_TWEETS to be 50, as shown in the following code:

import tweepy
import json
import sys
import codecs

counter = 0
MAX_TWEETS = 500

#Variables that contains the user credentials to access Twitter API
access_token = "Access Token"
access_token_secret = "Access Secret"
consumer_key = "Consumer Key"
consumer_secret = "Consumer Secret"

fp = codecs.open("filtered_tweets.txt", "w", "utf-8")

class CustomStreamListener(tweepy.StreamListener):

 def on_status(self, status):
 global counter

developer.twitter.com

Numerical Computing and Interactive Plotting

[162]

 fp.write(status.text)
 print "Tweet-count:" +str(counter)
 counter += 1
 if counter >= MAX_TWEETS: sys.exit()

 def on_error(self, status):
 print status

if __name__ == '__main__':

 auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
 auth.set_access_token(access_token, access_token_secret)
 streaming_api = tweepy.streaming.Stream(auth,
 CustomStreamListener(), timeout=60)

 streaming_api.filter(track=['python program', 'statistics',
 'data visualization', 'big data', 'machine learning'])

Using any bag of words, you can write fewer than 20 lines of the Python code to
generate word clouds. A word cloud generates an image, and using matplotlib.
pyplot, you can use imshow() to display the word cloud image. The following word
cloud can be used with any input file of words:

from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
from os import path

d = path.dirname("__file__")
text = open(path.join(d, 'filtered_tweets.txt')).read()

wordcloud = WordCloud(
 font_path='/Users/MacBook/kirthi/RemachineScript.ttf',
 stopwords=STOPWORDS,
 background_color='#222222',
 width=1000,
 height=800).generate(text)

Open a plot of the generated image.
plt.figure(figsize=(13,13))
plt.imshow(wordcloud)
plt.axis("off")
plt.show()

Chapter 4

[163]

The required font file can be downloaded from any of a number of sites
(one specific resource for this font is available at http://www.dafont.com/
remachine-script.font). Wherever the font file is located, you will have to use this
exact path set to font_path. For using the data from feeds, there is only one line that
changes, as shown in the following code:

text = open(path.join(d, 'wordcloudInput_fromFeeds.txt')).read()

http://www.dafont.com/remachine-script.font
http://www.dafont.com/remachine-script.font

Numerical Computing and Interactive Plotting

[164]

Using the similar idea of extracting text from tweets to create word clouds, you could
extract text within the context of mobile phone vendors with keywords, such as iPhone,
Samsung Galaxy, Amazon Fire, LG Optimus, Nokia Lumia, and so on, to determine the
sentiments of consumers. In this case, you may need an additional set of information,
that is, the positive and negative sentiment values associated with words.

There are a few approaches that you can follow in a sentiment analysis on tweets in a
restricted context. First, a very naïve approach would be to just associate weights to
words that correspond to a positive sentiment as wp and a negative sentiment as wn,
applying the following notation p(+) as the probability of a positive sentiment and
p(-) for a negative sentiment:

The second approach would be to use a natural language processing tool and apply
trained classifiers to obtain better results. TextBlob is a text processing package that
also has sentiment analysis (http://textblob.readthedocs.org/en/dev).

TextBlob builds a text classification system and creates a training set in the JSON
format. Later, using this training and the Naïve Bayes classifier, it performs the
sentiment analysis. We will attempt to use this tool in later chapters to demonstrate
our working examples.

Plotting the stock price chart
The two biggest stock exchanges in the U.S. are the New York Stock Exchange (NYSE),
founded in 1792 and the NASDAQ founded in 1971. Today, most stock market trades
are executed electronically. Even the stocks themselves are almost always held in the
electronic form, not as physical certificates. There are numerous other websites that also
provide real-time stock price data, apart from NASDAQ and NYSE.

Obtaining data
One of the websites to obtain data is Yahoo, which provides data via the API, for
example, to obtain the stock price (low, high, open, close, and volume) of Amazon,
the URL is http://chartapi.finance.yahoo.com/instrument/1.0/amzn/
chartdata;type=quote;range=3y/csv. Depending on the plotting method you
select, there is some data conversion that is required. For instance, the data obtained
from this resource includes date in a format that does not have any format, as shown
in the following code:

http://textblob.readthedocs.org/en/dev
http://chartapi.finance.yahoo.com/instrument/1.0/amzn/chartdata;type=quote;range=3y/csv
http://chartapi.finance.yahoo.com/instrument/1.0/amzn/chartdata;type=quote;range=3y/csv

Chapter 4

[165]

uri:/instrument/1.0/amzn/chartdata;type=quote;range=3y/csv
ticker:amzn
Company-Name:Amazon.com, Inc.
Exchange-Name:NMS
unit:DAY
timestamp:
first-trade:19970516
last-trade:20150430
currency:USD
previous_close_price:231.9000
Date:20120501,20150430
labels:20120501,20120702,20121001,20130102,20130401,20130701,20131001,
20140102,20140401,20140701,20141001,20150102,20150401
values:Date,close,high,low,open,volume
close:208.2200,445.1000
high:211.2300,452.6500
low:206.3700,439.0000
open:207.4000,443.8600
volume:984400,23856100
20120501,230.0400,232.9700,228.4000,229.4000,6754900
20120502,230.2500,231.4400,227.4000,227.8200,4593400
20120503,229.4500,232.5300,228.0300,229.7400,4055500
...
...
20150429,429.3700,434.2400,426.0300,426.7500,3613300
20150430,421.7800,431.7500,419.2400,427.1100,3609700

We will discuss three approaches in creating the plots. Each one has its own
advantages and limitations.

In the first approach, with the matplotlib.cbook package and the pylab package,
you can create a plot with the following lines of code:

from pylab import plotfile show, gca
import matplotlib.cbook as cbook
fname = cbook.get_sample_data('/Users/MacBook/stocks/amzn.csv',
asfileobj=False)
plotfile(fname, ('date', 'high', 'low', 'close'), subplots=False)
show()

Numerical Computing and Interactive Plotting

[166]

This will create a plot similar to the one shown in the following screenshot:

There is one additional programming effort that is required before attempting to plot
using this approach. The date values have to be formatted to represent 20150430 as
%d-%b-%Y. With this approach, the plot can also be split into two, one showing the
stock price and the other showing the volume, as shown in the following code:

from pylab import plotfile show, gca
import matplotlib.cbook as cbook
fname = cbook.get_sample_data('/Users/MacBook/stocks/amzn.csv',
asfileobj=False)
plotfile(fname, (0,1,5), plotfuncs={f:'bar'})
show()

Chapter 4

[167]

The second approach is to use the subpackages of matplotlib.mlab and
matplotlib.finance. This has convenient methods to fetch the stock data from
http://ichart.finance.yahoo.com/table.csv?s=GOOG&a=04&b=12&c=2014&d=0
6&e=20&f=2015&g=d, and to just show a sample, here is a code snippet:

ticker='GOOG'

import matplotlib.finance as finance
import matplotlib.mlab as mlab
import datetime

startdate = datetime.date(2014,4,12)
today = enddate = datetime.date.today()

fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)
r = mlab.csv2rec(fh); fh.close()
r.sort()
print r[:2]

[(datetime.date(2014, 4, 14), 538.25, 544.09998, 529.56, 532.52002,
2568000, 532.52002) (datetime.date(2014, 4, 15), 536.82001,
538.45001, 518.46002, 536.44, 3844500, 536.44)]

When you attempt to plot the stock price comparison, it does not make sense to
display the volume information because for each stock ticker, the volumes are
different. Also, it becomes too cluttered to view the stock chart.

http://ichart.finance.yahoo.com/table.csv?s=GOOG&a=04&b=12&c=2014&d=06&e=20&f=2015&g=d
http://ichart.finance.yahoo.com/table.csv?s=GOOG&a=04&b=12&c=2014&d=06&e=20&f=2015&g=d

Numerical Computing and Interactive Plotting

[168]

matplotlib already has a working example to plot the stock chart, which is
elaborate enough and includes Relative Strength Indicator (RSI) and Moving
Average Convergence/Divergence (MACD), and is available at http://
matplotlib.org/examples/pylab_examples/finance_work2.html. For details
on RSI and MACD, you can find many resources online, but there is one interesting
explanation at http://easyforextrading.co/how-to-trade/indicators/.

In an attempt to use the existing code, modify it, and make it work for multiple
charts, a function called plotTicker() was created. This helps in plotting each ticker
within the same axis, as shown in the following code:

import datetime
import numpy as np

import matplotlib.finance as finance
import matplotlib.dates as mdates
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

startdate = datetime.date(2014,4,12)
today = enddate = datetime.date.today()

plt.rc('axes', grid=True)
plt.rc('grid', color='0.75', linestyle='-', linewidth=0.5)
rect = [0.4, 0.5, 0.8, 0.5]

fig = plt.figure(facecolor='white', figsize=(12,11))

axescolor = '#f6f6f6' # the axes background color

ax = fig.add_axes(rect, axisbg=axescolor)
ax.set_ylim(10,800)

def plotTicker(ticker, startdate, enddate, fillcolor):
 """
 matplotlib.finance has fetch_historical_yahoo() which fetches
 stock price data the url where it gets the data from is
 http://ichart.yahoo.com/table.csv stores in a numpy record
 array with fields:
 date, open, high, low, close, volume, adj_close
 """

 fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)
 r = mlab.csv2rec(fh);
 fh.close()
 r.sort()

http://matplotlib.org/examples/pylab_examples/finance_work2.html
http://matplotlib.org/examples/pylab_examples/finance_work2.html
http://easyforextrading.co/how-to-trade/indicators/

Chapter 4

[169]

 ### plot the relative strength indicator
 ### adjusted close removes the impacts of splits and dividends
 prices = r.adj_close

 ### plot the price and volume data

 ax.plot(r.date, prices, color=fillcolor, lw=2, label=ticker)
 ax.legend(loc='top right', shadow=True, fancybox=True)

 # set the labels rotation and alignment
 for label in ax.get_xticklabels():
 # To display date label slanting at 30 degrees
 label.set_rotation(30)
 label.set_horizontalalignment('right')

 ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d')

#plot the tickers now
plotTicker('BIDU', startdate, enddate, 'red')
plotTicker('GOOG', startdate, enddate, '#1066ee')
plotTicker('AMZN', startdate, enddate, '#506612')

plt.show()

When you use this to compare the stock prices of Bidu, Google, and Amazon, the
plot would look similar to the following screenshot:

Numerical Computing and Interactive Plotting

[170]

Use the following code to compare the stock prices of Twitter, Facebook,
and LinkedIn:

plotTicker('TWTR', startdate, enddate, '#c72020')
plotTicker('LNKD', startdate, enddate, '#103474')
plotTicker('FB', startdate, enddate, '#506612')

Now, you can add the volume plot as well. For a single ticker plot with volume, use
the following code:

import datetime

import matplotlib.finance as finance
import matplotlib.dates as mdates
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

startdate = datetime.date(2013,3,1)
today = enddate = datetime.date.today()

rect = [0.1, 0.3, 0.8, 0.4]

fig = plt.figure(facecolor='white', figsize=(10,9))
ax = fig.add_axes(rect, axisbg='#f6f6f6')

Chapter 4

[171]

def plotSingleTickerWithVolume(ticker, startdate, enddate):

 global ax

 fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)

 # a numpy record array with fields:
 # date, open, high, low, close, volume, adj_close
 r = mlab.csv2rec(fh);
 fh.close()
 r.sort()

 plt.rc('axes', grid=True)
 plt.rc('grid', color='0.78', linestyle='-', linewidth=0.5)

 axt = ax.twinx()
 prices = r.adj_close

 fcolor = 'darkgoldenrod'

 ax.plot(r.date, prices, color=r'#1066ee', lw=2, label=ticker)
 ax.fill_between(r.date, prices, 0, prices, facecolor='#BBD7E5')
 ax.set_ylim(0.5*prices.max())

 ax.legend(loc='upper right', shadow=True, fancybox=True)

 volume = (r.close*r.volume)/1e6 # dollar volume in millions
 vmax = volume.max()

 axt.fill_between(r.date, volume, 0, label='Volume',
 facecolor=fcolor, edgecolor=fcolor)

 axt.set_ylim(0, 5*vmax)
 axt.set_yticks([])

 for axis in ax, axt:
 for label in axis.get_xticklabels():
 label.set_rotation(30)
 label.set_horizontalalignment('right')

 axis.fmt_xdata = mdates.DateFormatter('%Y-%m-%d')

plotSingleTickerWithVolume ('MSFT', startdate, enddate)
plt.show()

Numerical Computing and Interactive Plotting

[172]

With the single ticker plot along with volume and the preceding changes in the
earlier code, the plot will look similar to the following screenshot:

You may also have the option of using the third approach: using the blockspring
package. In order to install blockspring, you have to use the following pip command:

pip install blockspring

Blockspring's approach is to generate the HTML code. It autogenerates data for the
plots in the JavaScript format. When this is integrated with D3.js, it provides a very
nice interactive plot. Amazingly, there are only two lines of code:

import blockspring
import json

print blockspring.runParsed("stock-price-comparison",
 { "tickers": "FB, LNKD, TWTR",
 "start_date": "2014-01-01", "end_date": "2015-01-01" }).params

Depending on the operating system, when this code is run, it generates the HTML
code in a default area.

Chapter 4

[173]

The visualization example in sports
Let's consider a different example here to illustrate the various different approaches
to visualizing data. Instead of choosing a computational problem, we will restrict
ourselves to a simple set of data, and show how many different analyses can be done
that ultimately result in visualizations, to help in clarifying these analyses.

There are several major league sports in North American sports, and we will
compare four of them: The National Football League (NFL), Major League Baseball
(MLB), National Basketball Association (NBA), and National Hockey League. NFL
has a combined team value of 9.13 billion dollars and a total revenue of 9.58 billion
dollars. We will select this sport with the following data of team values and their
championships (only part of the data is shown here):

Numerical Computing and Interactive Plotting

[174]

The team value is one significant factor in comparing different teams, but
championships also have a value. A simple plot of this data with years completed
along the x axis, the number of championships along the y axis, and the bubble size
representing the number of championship per year average would give us something
similar to the following image:

However, unless you can make it interactive by displaying the labels or details,
the preceding plot may not be very useful. The preceding plot is possible with
matplotlib, as shown in the following code:

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(15,10), facecolor='w')

def plotCircle(x,y,radius,color, alphaval):
 circle = plt.Circle((x, y), radius=radius, fc=color,\
 alpha=alphaval)
 fig.gca().add_patch(circle)
 nofcircle = plt.Circle((x, y), radius=radius, ec=color, \
 fill=False)
 fig.gca().add_patch(nofcircle)

x = [55,83,90,13,55,82,96,55,69,19,55,95,62,96,82,30,22,39, \
 54,50,69,56,58,55,55,47,55,20,86,78,56]
y = [5,3,4,0,1,0,1,3,5,2,2,0,2,4,6,0,0,1,0,0,0,0,1,1,0,0,3,0, \
 0,1,0]
r = [23,17,15,13,13,12,12,11,11,10,10,10,10,10,9,9,9,8,8,8,8, \
 8,8,8,7,7,7,7,6,6,6]
for i in range(0,len(x)):
 plotCircle(x[i],y[i],r[i],'b', 0.1)

plt.axis('scaled')
plt.show()

Chapter 4

[175]

You can even use this numeric data to convert into a format that JavaScript can
understand (JSON format) so that when integrated with an SVG map, it is possible to
display the valuation on the map, as shown in the following screenshot:

The preceding map with bubbles would be better if there were associated labels
displayed. However, due to the lack of space in certain regions of the map, it would
make much more sense to add an interactive implementation to this map and have
the information displayed via navigation.

You can refer to the original data source at http://tinyurl.com/oyxk72r.

An alternate source is available at http://www.knapdata.com/python/nfl_
franch.html.

There are several other visualization methods you could apply, apart from the
plain bubble chart and the bubble chart on maps. One of the visual formats that
will look cluttered when displaying the statistics of 32 teams would be a pie chart
or a bar chart.

http://tinyurl.com/oyxk72r
http://www.knapdata.com/python/nfl_franch.html
http://www.knapdata.com/python/nfl_franch.html

Numerical Computing and Interactive Plotting

[176]

It not only looks cluttered, the labels are hardly readable. The whole point in
showing this pie chart is to illustrate that in this sort of data, one has to seek alternate
methods of visualization, as shown in the following image:

If we combine a set of teams within a certain range of their team value, then by
reducing them, we may be able to show them in a more organized fashion, as shown
in the following image:

Chapter 4

[177]

The preceding image is one alternative to display the value of teams by segregating
them into groups, for example, denote 2300 million dollars for $2300,000,000, which
means 2300 million dollars. This way, the data labels are readable.

Summary
During the last several decades, computing has emerged as a very important
part of many fields. In fact, the curriculum of computer science in many schools,
such as Stanford, UC-Berkeley, MIT, Princeton, Harvard, Caltech, and so on, has
been revised to accommodate interdisciplinary courses because of this change. In
most scientific disciplines, computational work is an important complement to
experiments and theory. Moreover, a vast majority of experimental and theoretical
papers involve some numerical calculations, simulations, or computer modeling.

Python has come a long way, and today the community of Python has grown to the
extent that there are sources and tools to help write minimal code to accomplish
almost everything that one may need in computing very efficiently. We could only
pick a few working examples in this chapter, but in the following chapters, we will
take a look at more examples.

[179]

Financial and
Statistical Models

Financial and economic models primarily help in the simplification and abstraction
of data and make extensive use of probability and statistics. It's always important
to take a look at the data; the first step in data analysis should be plotting the data.
Problems such as bad data, outliers, and missing data can often be detected by
visualizing data. Bad data should be corrected whenever possible or otherwise
discarded. However, in some unusual cases, such as in a stock market, outliers are
good data and should be retained. To summarize, it is important to detect the bad
data and outliers and to understand them so that appropriate action can be taken.
The choice of data variables plays an important role in these models.

The selection of variables is important because the nature of a model will often
determine the facts that are being looked at. For instance, in order to measure
inflation, a model of behavior is required so that you can understand the real
changes in price, and the changes in price that directly connect to inflation.

There are many interesting models and their applications that we can discuss, but to
stay within the scope of this book, we will select some examples. In some cases, such
as Monte Carlo, we will also select some application in sports. In the later sections,
we will discuss the following topics:

• Monte Carlo simulation—examples applicable in many areas
• Price models with examples
• Understanding volatility measures with examples
• The threshold model—Shelling's model of segregation
• Bayesian regression methods with plotting options

Financial and Statistical Models

[180]

• Geometric Brownian, diffusion-based simulation, and portfolio valuation
• Profiling and creating real-time interactive plots
• Statistical and machine learning overview

Computational finance is a field in computer science and deals with the data and
algorithms that arise in financial modeling. For some readers, the contents of this
chapter may be well understood, but for others, looking at these concepts will be
useful for learning some new insights that may likely be useful in their lives or be
applicable in their areas of interests.

Before you learn about the applications of Monte Carlo simulation methods, let's
take a look at a very simple example of investment and gross returns over a period
of time.

The deterministic model
The ultimate goal of investment is to make a profit, and the revenue from investing
or loss depends on both the change in prices and the number of assets being held.
Investors are usually interested in revenues that are highly relative to the size of
the initial investments. Returns measure this mainly because returns are an asset.
For example, a stock, a bond, or a portfolio of stocks and bonds are by definition
expressed as changes, and price is expressed as a fraction of the initial price. Let's
take a look at the gross returns example.

Gross returns
Let's assume that Pt is the investment amount at time t. A simple gross return is
expressed as follows:

1
11t

t
t

P R
P
+

+= +

Here, Pt+1 is the returned investment value and the return is Rt+1. For example, if Pt =
10 and Pt+1 = 10.6, then Rt+1 = 0.06 = 6%. Returns are scale-free, meaning that they do
not depend on the units, but returns are dependent on the units of t (hour, day, and
so on). In other words, if t is measured in years, then, as stated more precisely, this
net return is 6 percent per year.

Chapter 5

[181]

The gross return over the most recent k years is the product of k single year gross
returns (from t-k to t), as shown here:

()

()() ()

1 1

1 2

1 1

1

1 1 1

t
t

t k

t t t k

t t t k

t t t k

PR k
P

P P P
P P P

R R R

−

− − +

− − −

− − +

+ =

=

= + + +

…

…

This is an example of a deterministic model, except that there is one caveat that we
did not mention: you have to incorporate the inflation rate in the equation per year.
If we include this in the preceding equation by assuming Ft is the inflation that
corresponds to the return Rt, we will get the following equation:

() ()
()

()
()

()
()

1 1

1 1

1 1 1
1

1 1 1
t t t k

t
t t t k

R R R
R k

F F F
− − +

− − +

+ + +
+ =

+ + +
…

If we assume Ft = 0, then the previous equation would be applicable. Assume that we
do not include inflation and ask this question: "with an initial investment of $10,000
in 2010 and a return rate of 6%, after how many years will my investment double?"

Let's try to find the answer with the Python program. In this program, we also have
to add a straight line that is almost similar to y = 2x and see where it intersects the
curve of the return values plotted on the y axis with the year running on the x axis.
First, we will plot without the line to determine whether the invested value is almost
doubled in 12 years. Then, we will calculate the slope of the line m = 10,000/12 =
833.33. Therefore, we included this slope value of 833.33 in the program to display
both the return values and the straight line. The following code compares the return
value overlap with the straight line:

import matplotlib.pyplot as plt

principle_value=10000 #invested amount
grossReturn = 1.06 # Rt

return_amt = []
x = []
y = [10000]
year=2010
return_amt.append(principle_value)
x.append(year)

Financial and Statistical Models

[182]

for i in range(1,15):
 return_amt.append(return_amt[i-1] * grossReturn)
 print "Year-",i," Returned:",return_amt[i]

 year += 1
 x.append(year)
 y.append(833.33*(year-2010)+principle_value)

set the grid to appear
plt.grid()

plot the return values curve
plt.plot(x,return_amt, color='r')
plt.plot(x,y, color='b')

Year- 1 Returned: 10600.0
Year- 2 Returned: 11236.0
Year- 3 Returned: 11910.16
Year- 4 Returned: 12624.7696
Year- 5 Returned: 13382.255776
Year- 6 Returned: 14185.1911226
Year- 7 Returned: 15036.3025899
Year- 8 Returned: 15938.4807453
Year- 9 Returned: 16894.78959
Year- 10 Returned: 17908.4769654
Year- 11 Returned: 18982.9855834
Year- 12 Returned: 20121.9647184
Year- 13 Returned: 21329.2826015
Year- 14 Returned: 22609.0395575

After looking at the plot, you would wonder whether there is a way to find out how
much money the banks that provide mortgage loans make. We'll leave this to you.

Chapter 5

[183]

An interesting fact is that the curve intersects the line before 2022. At this point,
the return value is exactly $20,000. However, in 2022, the return value will be
approximately $20,121. Having looked at the gross returns, is it similar in stocks?
Many stocks, especially of mature companies, pay dividends that must be accounted
for in the equation.

Financial and Statistical Models

[184]

If a dividend (or interest) Dt is paid prior to time t, then the gross return at time t is
defined as follows:

1

1 t t
t

t

P DR
P−

+
+ =

Another example is a mortgage loan, where a certain amount of loan is
borrowed from a financial institution at an interest rate. Here, for the purposes of
understanding the nature of the business, we will select a loan amount of $350,000 at
an interest rate of 5 percent on a 30-year term. This is a typical example of American
Mortgage Loan
(the loan amount and interest rate varies depending on the credit history and the
market rate of interest of a loan seeker).

A simple interest calculation is known to be P (1 + rt), where P is the principal
amount, r is the interest rate, and t is the term, so the total amount accrued at the
end of 30 years is:

5 5350,000 1 30 350,000 875,000
100 2

 × + × = × =

It turns out that by the end of 30 years, you would have paid more than twice the
loan amount (we have not taken the real estate taxes into account in this calculation):

from decimal import Decimal
import matplotlib.pyplot as plt

colors = [(31, 119, 180),(174, 199, 232),(255,128,0),(255, 15, 14),
 (44, 160, 44),(152, 223, 138),(214, 39, 40),(255,173, 61),
 (148, 103, 189),(197, 176, 213),(140, 86, 75),(196, 156, 148),
 (227, 119, 194),(247, 182, 210),(127, 127, 127),
 (199, 199, 199),(188, 189, 34), (219, 219, 141),
 (23, 190, 207), (158, 218, 229)]

Scale the RGB values to the [0, 1] range, which is the format
matplotlib accepts.
for i in range(len(colors)):
 r, g, b = colors[i]
 colors[i] = (r / 255., g / 255., b / 255.)

def printHeaders(term, extra):
 # Print headers
 print "\nExtra-Payment: $"+str(extra)+" Term:"+str(term)+" years"
 print "---"
 print 'Pmt no'.rjust(6), ' ', 'Beg. bal.'.ljust(13), ' ',

Chapter 5

[185]

 print 'Payment'.ljust(9), ' ', 'Principal'.ljust(9), ' ',
 print 'Interest'.ljust(9), ' ', 'End. bal.'.ljust(13)
 print ''.rjust(6, '-'), ' ', ''.ljust(13, '-'), ' ',
 print ''.rjust(9, '-'), ' ', ''.ljust(9, '-'), ' ',
 print ''.rjust(9, '-'), ' ', ''.ljust(13, '-'), ' '

def amortization_table(principal, rate, term, extrapayment,
printData=False):
 xarr=[]
 begarr = []

 original_loan = principal
 money_saved=0
 total_payment=0
 payment = pmt(principal, rate, term)
 begBal = principal

 # Print data
 num=1
 endBal=1
 if printData == True: printHeaders(term, extrapayment)
 while (num < term + 1) and (endBal >0):

 interest = round(begBal * (rate / (12 * 100.0)), 2)
 applied = extrapayment+round(payment - interest, 2)
 endBal = round(begBal - applied, 2)
 if (num-1)%12 == 0 or (endBal < applied+extrapayment):
 begarr.append(begBal)
 xarr.append(num/12)
 if printData == True:
 print '{0:3d}'.format(num).center(6), ' ',
 print '{0:,.2f}'.format(begBal).rjust(13), ' ',
 print '{0:,.2f}'.format(payment).rjust(9), ' ',
 print '{0:,.2f}'.format(applied).rjust(9), ' ',
 print '{0:,.2f}'.format(interest).rjust(9), ' ',
 print '{0:,.2f}'.format(endBal).rjust(13)
 total_payment += applied+extrapayment
 num +=1
 begBal = endBal
 if extrapayment > 0 :
 money_saved = abs(original_loan - total_payment)
 print '\nTotal Payment:','{0:,.2f}'.format(total_payment).
rjust(13)
 print ' Money Saved:','{0:,.2f}'.format(money_saved).rjust(13)
 return xarr, begarr, '{0:,.2f}'.format(money_saved)

def pmt(principal, rate, term):

Financial and Statistical Models

[186]

 ratePerTwelve = rate / (12 * 100.0)

 result = principal * (ratePerTwelve / (1 - (1 + ratePerTwelve) **
(-term)))

 # Convert to decimal and round off to two decimal
 # places.
 result = Decimal(result)
 result = round(result, 2)
 return result

plt.figure(figsize=(18, 14))

#amortization_table(150000, 4, 180, 500)
i=0
markers = ['o','s','D','^','v','*','p','s','D','o','s','D','^','v','*
','p','s','D']
markersize=[8,8,8,12,8,8,8,12,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8]

for extra in range(100,1700,100):
 xv, bv, saved = amortization_table(450000, 5, 360, extra, False)
 if extra == 0:
 plt.plot(xv, bv, color=colors[i], lw=2.2, label='Principal only',
marker=markers[i], markersize=markersize[i])
 else:
 plt.plot(xv, bv, color=colors[i], lw=2.2, label="Principal
plus\$"+str(extra)+str("/month, Saved:\$")+saved, marker=markers[i],
markersize=markersize[i])
 i +=1

plt.grid(True)
plt.xlabel('Years', fontsize=18)
plt.ylabel('Mortgage Balance', fontsize=18)
plt.title("Mortgage Loan For $350,000 With Additional Payment Chart",
fontsize=20)
plt.legend()
plt.show()

When this program is run, you would get the amortized schedule for every 12
months for all the cases of extra payment, starting from $100 to $1600. Here is just
one of those cases:

Extra-Payment: $800 Term: 30 years
---Pmt
no Beg. bal. Payment Principal Interest End. bal. -----
- --------- ------- --------- --------- ------
 1 350,000.00 1,878.88* 1,220.55 1,458.33 348,779.45
 13 335,013.07 1,878.88 1,282.99 1,395.89 333,730.08

Chapter 5

[187]

 25 319,259.40 1,878.88 1,348.63 1,330.25 317,910.77
 37 302,699.75 1,878.88 1,417.63 1,261.25 301,282.12
 49 285,292.85 1,878.88 1,490.16 1,188.72 283,802.69
 61 266,995.41 1,878.88 1,566.40 1,112.48 265,429.01
 73 247,761.81 1,878.88 1,646.54 1,032.34 246,115.27
 85 227,544.19 1,878.88 1,730.78 948.10 225,813.41
 97 206,292.20 1,878.88 1,819.33 859.55 204,472.87
109 183,952.92 1,878.88 1,912.41 766.47 182,040.51
121 160,470.74 1,878.88 2,010.25 668.63 158,460.49
133 135,787.15 1,878.88 2,113.10 565.78 133,674.05
145 109,840.70 1,878.88 2,221.21 457.67 107,619.49
157 82,566.78 1,878.88 2,334.85 344.03 80,231.93
169 53,897.49 1,878.88 2,454.31 224.57 51,443.18
181 23,761.41 1,878.88 2,579.87 99.01 21,181.54
188 5,474.98 1,878.88 2,656.07 22.81 2,818.91
189 2,818.91 1,878.88 2,667.13 11.75 151.78

* $1878.88 includes $1078.88 plus $800 extra payment towards principal
Total Payment: $504,526.47 Money Saved: $154,526.47
Approximately after 15 years 10 months, one can pay off in half the
time.

The Python code results in the following plot that compares the additional savings
with principal savings on a mortgage payment:

Financial and Statistical Models

[188]

The preceding plot shows the mortgage balance dropping earlier than the 30 years
by paying an additional amount against the principal amount.

The monthly payment for a fixed rate mortgage is the amount paid by the borrower
every month to ensure that the loan is paid in full with interest at the end of its term.
The monthly payment depends on the interest rate (r) as a fraction, the number of
monthly payments (N), which is called the loan's term, and the amount borrowed
(P), which is called the loan's principal; when you rearrange the formula for the
present value of an ordinary annuity, we get the formula for the monthly payment.
However, every month, if an extra amount is paid along with the fixed monthly
payment, then the loan amount can be paid off in a much shorter time.

In the following chart, we have attempted to use the money saved from the program
and plot that money against the additional amount in the range of $500 to $1300. If
we see carefully, with an additional amount of $800, you can save almost half the
loan amount and pay off the loan in half the term.

Chapter 5

[189]

The preceding plot shows the savings for three different loan amounts, where the
additional contribution is shown along the x axis and savings in thousands is shown
along the y axis. The following code uses a bubble chart that also visually shows
savings toward additional amount toward the principal on a mortgage loan:

import matplotlib.pyplot as plt

set the savings value from previous example
yvals1 = [101000,111000,121000,131000,138000,
143000,148000,153000,158000]
yvals2 = [130000,142000,155000,160000,170000,
180000,190000,194000,200000]
yvals3 = [125000,139000,157000,171000,183000,
194000,205000,212000,220000]
xvals = ['500','600','700', '800', '900','1000','1100','1200','1300']

#initialize bubbles that will be scaled
bubble1 = []
bubble2 = []
bubble3 = []

scale it on something that can be displayed
It should be scaled to 1000, but display will be too big
so we choose to scale by 5% (divide these by 20 again to relate
to real values)

for i in range(0,9):
 bubble1.append(yvals1[i]/20)
 bubble2.append(yvals2[i]/20)
 bubble3.append(yvals3[i]/20)

#plot yvalues with scaled by bubble sizes
#If bubbles are not scaled, they don't fit well
fig, ax = plt.subplots(figsize=(10,12))
plt1 = ax.scatter(xvals,yvals1, c='#d82730', s=bubble1, alpha=0.5)
plt2 = ax.scatter(xvals,yvals2, c='#2077b4', s=bubble2, alpha=0.5)
plt3 = ax.scatter(xvals,yvals3, c='#ff8010', s=bubble3, alpha=0.5)

#Set the labels and title
ax.set_xlabel('Extra Dollar Amount', fontsize=16)
ax.set_ylabel('Savings', fontsize=16)
ax.set_title('Mortgage Savings (Paying Extra Every Month)',
 fontsize=20)

#set x and y limits
ax.set_xlim(400,1450)

Financial and Statistical Models

[190]

ax.set_ylim(90000,230000)

ax.grid(True)
ax.legend((plt1, plt2, plt3), ('$250,000 Loan', '$350,000 Loan',
 '$450,000 Loan'), scatterpoints=1, loc='upper left',
 markerscale=0.17, fontsize=10, ncol=1)

fig.tight_layout()
plt.show()

By creating a scatter plot, it is much easier to view which loan category would offer
more savings compared to others, but to keep it simple, we will compare only three
loan amounts: $250,000, $350,000, and $450,000.

The following plot is the result of a scatter plot that demonstrates the savings by
paying extra every month:

Chapter 5

[191]

The stochastic model
We have discussed the deterministic model, where a single outcome with
quantitative input values has no randomness. The word stochastic is derived from
the Greek word called Stochastikos. It means skillful at guessing or chance. The
antonym of this is "certain", "deterministic", or "sure". A stochastic model predicts a
set of possible outcomes weighted by their likelihoods or probabilities. For instance,
a coin when flipped in the air will "surely" land on earth eventually, but whether it
lands heads or tails is "random".

Monte Carlo simulation
Monte Carlo simulation, which is also viewed as a probability simulation, is a
technique used to understand the impact of risk and uncertainty in any forecasting
model. The Monte Carlo method was invented in 1940 by Stanislaw Ulam when
he was working on several nuclear weapon projects at the Los Alamos National
Laboratory. Today, with computers, you can generate random numbers and run
simulations pretty fast, but he amazingly found this method many years ago when
computing was really hard.

In a forecasting model or any model that plans ahead for the future, there are
assumptions made. These may be assumptions about the investment return on a
portfolio, or how long it will take to complete a certain task. As these are future
projections, the best thing to do is estimate the expected value.

What exactly is Monte Carlo simulation?
Monte Carlo simulation is a method to iteratively evaluate a deterministic model
with sets of random numbers as inputs. This method is often used when the model
is complex, nonlinear, or involves more than just a couple of uncertain parameters.
A simulation can typically involve more than 100,000 or even a million evaluations
of the model. Let's take a look at the difference between a deterministic model
and a stochastic model. A deterministic model will have actual inputs that are
deterministic to produce consistent results, as shown in the following image:

Model

f(x , x , x)1 2 3

x1

x2

x3

Consistent result

Let's see how a probabilistic model is different from the deterministic model.

Financial and Statistical Models

[192]

Stochastic models have inputs that are probabilistic and come from a probabilistic
density function, producing a result that is also probabilistic. Here is how a
stochastic model looks:

Model

f(x , x , x)1 2 3

random x1

random x2

random x3

Most likely result

Now, how do we describe the preceding diagram in words?

First, create a model. Let's say that you have determined three random inputs: x1,
x2, and x3, determined a method: f(x1, x2 , x3), and generated a set of 10,000 random
values of inputs (in some cases, it could be less or more). Evaluate the model for
these inputs, repeat it for these 10,000 random inputs, and record these as yi, where i
runs from 1 to 10,000. Analyze the results and pick one that is most likely.

For instance, if we were to find an answer to the question, that is, "what is the
probability that the Los Angeles Clippers will win the seventh game?" With some
random inputs in the context of basketball that make reasonable sense to the
question, you can find an answer by running Monte Carlo simulation and obtain an
answer: there is a 45 percent chance that they will win. Well, actually they lost.

Monte Carlo simulation depends heavily on random number generators; therefore, it
makes sense to figure out what is the fastest and efficient way to perform Monte Carlo
simulation? Hans Petter Langtangen has performed an outstanding task that shows
that Monte Carlo simulation can be made much more efficient by porting the code
to Cython at http://hplgit.github.io/teamods/MC_cython/sphinx/main_MC_
cython.html, where he also compares it with pure C implementation.

Let's consider several examples to illustrate Monte Carlo simulation. The first
example shows an inventory problem. Later, we will discuss an example in sports
(Monte Carlo simulation is applicable to many sports analytics.

An inventory problem in Monte Carlo simulation
A fruit retail salesman sells some fruit and places an order for Y units everyday.
Each unit that is sold gives a profit of 60 cents and units not sold at the end of the
day are thrown out at a loss of 40 cents per unit. The demand, D, on any given day
is uniformly distributed on [80, 140]. How many units should the retailer order to
maximize the expected profit?

http://hplgit.github.io/teamods/MC_cython/sphinx/main_MC_cython.html
http://hplgit.github.io/teamods/MC_cython/sphinx/main_MC_cython.html

Chapter 5

[193]

Let's denote the profit as P. When you attempt to create equations based on the
preceding problem description, s denotes the number of units sold, whereas d
denotes the demand, as shown in the following equation:

()
0.6
0.6 0.4
s if d s

P
d s d if s d

≥= − − >

Using this representation of profit, the following Python program shows
maximum profit:

import numpy as np
from math import log

import matplotlib.pyplot as plt

x=[]
y=[]

#Equation that defines Profit
def generateProfit(d):

 global s

 if d >= s:
 return 0.6*s
 else:
 return 0.6*d - 0.4*(s-d)

Although y comes from uniform distribution in [80,140]
we are running simulation for d in [20,305]

maxprofit=0

for s in range (20, 305):

 # Run a simulation for n = 1000
 # Even if we run for n = 10,000 the result would
 # be almost the same
 for i in range(1,1000):

 # generate a random value of d
 d = np.random.randint(10,high=200)

Financial and Statistical Models

[194]

 # for this random value of d, find profit and
 # update maxprofit
 profit = generateProfit(d)
 if profit > maxprofit:
 maxprofit = profit

 #store the value of s to be plotted along X axis
 x.append(s)

 #store the value of maxprofit plotted along Y axis
 y.append(log(maxprofit)) # plotted on log scale

plt.plot(x,y)
print "Max Profit:",maxprofit

Will display this
Max Profit: 119.4

The following plot shows that the profit increases when the number of units are sold,
but when the demand is met, the maximum profit stays constant:

Chapter 5

[195]

The preceding plot is shown on the log scale, which means that the maximum
profit was 119.4 from a simulation run for n=1000. Now, let's try to take a look at
an analytical solution and see how close the simulation result is to the one from the
analytical method.

As the demand (D) is uniformly distributed in [80,140], the expected profit is derived
from the following integral:

()

()

()

140

80

140

80

2

2 2

2

0.6 0.40.6
60 60

0.40.6
60 60

8 160140
100 600 15 3
7 8 160
5 100 600 15 3
5 29 160
600 15 3
29 29 600 116

60 15 15

s

s

s

s

x s xsProfit = dx dx

x ss dx dx

s ss s

s ss s

s s

s s

− −
+

−
= +

= − + + −

= − + + −

= − + −

×
− + = ⇒ = =

∫ ∫

∫ ∫

The answer using the analytical method is 116, and Monte Carlo simulation also
produces somewhere around this figure: 119. Sometimes, it produces 118 or 116. This
depends on the number of trials.

Let's consider another simple example and seek an answer to the question: "in a
classroom full of 30 students, what is the probability that more than one person will
have the same birthday?" We will assume that it is not a leap year and instead of using
the month and day, we will just use the days in the calendar year, that is, 365 days. The
logic is pretty simple. The following code shows how one can calculate the probability
of more than one person having the same birthday in a room of 30 students:

import numpy as np
numstudents = 30
numTrials = 10000
numWithSameBday = 0

for trial in range(numTrials):
 year = [0]*365

 for i in range(numstudents):
 newBDay = np.random.randint(365)
 year[newBDay] = year[newBDay] + 1

 haveSameBday = False

Financial and Statistical Models

[196]

 for num in year:
 if num > 1:
 haveSameBday = True

 if haveSameBday == True:
 numWithSameBday = numWithSameBday + 1

prob = float(numWithSameBday) / float(numTrials)
print("The probability of a shared birthday in a class of ",
numstudents, " is ", prob)

('The probability of a shared birthday in a class of ', 30, ' is ',
0.7055)

In other words, there is a 70 percent chance that two people have the same birthday
in a class of 30 students. The following example illustrates how Monte Carlo
simulation can be applied to know the likelihood of winning the game in a situation
that continues to occur more often today than in the past.

Monte Carlo simulation in basketball
Let's consider an example in a basketball game that is being addressed at the Khan
Academy using JavaScript. The question was, "when down by three and left with
only 30 seconds, is it better to attempt a hard 3-point shot or an easy 2-point shot and
get another possession?"(asked by Lebron James).

Most readers may understand the basketball game, but we will only highlight some
of the important rules. Each team has a 24-second possession of the ball. Within this
time, if they score (even in less time), the opposing team gets possession for the next
24 seconds. However, as there is only 30 seconds left, if a player can make a quick
3-point shot in probably less than 10 seconds, then there is about 20 seconds left for
the opposing team. Basketball, similar to any other sport, is very competitive, and
since the player's goal is to reduce the trailing points, it is in their best interest to get
a 3-point score. Let's try to write a Python program to answer the question.

Before showing the simulation program, let's take a look at some of the parameters
that are involved in this problem domain. In order to determine whether shooting a
3-point shot is better in terms of the probability of winning, the following statistics of
the player and also the opposing team is very important. The threePtPercent and
twoPtPercent of the player not only determines his strength, but also determines
the opposing team's percentage of scoring a 2-point labeled oppTwoPtPercent,
and the opposing team's strength in a free throw percentage which is labeled
oppFtPercent.

Chapter 5

[197]

There are other combinations too, but to keep it simple, we will stop here. The higher
the opposing team's free throw percentage, the more our answer is inclined towards
making a 3-point shot. You can lower the value of oppFtPercent and see what is
being discussed here. For this example, we will show snippets in different bits and
pieces, and you can put them together in whichever way you are comfortable and
use them to run. First, we will need the NumPy package because here, we intend to
use the random number generator from this package, and matplotlib is required to
plot, as shown in the following code:

import numpy as np
import matplotlib.pyplot as plt

In many examples, we will use colors that are standard colors used in tableau, and
you may want to put this in a separate file. The following array of color codes can be
used in any visualization plot:

colors = [(31, 119, 180), (174, 199, 232), (255, 127, 14),
 (255, 187, 120), (44, 160, 44), (214, 39, 40), (148,103,189),
 (152, 223, 138), (255,152,150), (197, 176, 213), (140, 86, 75),
 (196, 156, 148), (227,119,194), (247, 182, 210), (127,127,127),
 (199, 199, 199),(188,189, 34),(219, 219, 141), (23, 190,207),
 (158, 218, 229),(217,217,217)]

Scale RGB values to the [0, 1] range, format matplotlib accepts.
for i in range(len(colors)):
 r, g, b = colors[i]
 colors[i] = (r / 255., g / 255., b / 255.)

Let's take a look at the three-point attempt. If threePtPercent is larger than
the random number and there is more probability of an overtime, then a win is
guaranteed. Take a look at the following code:

def attemptThree():
 if np.random.randint(0, high=100) < threePtPercent:
 if np.random.randint(0, high=100) < overtimePercent:
 return True #We won!!
 return False #We either missed the 3 or lost in OT

The logic for the two-point attempt is a little bit involved because it is all about
how much time is left and who has the possession of the ball. Assuming that on
an average, it takes only 5 seconds to attempt a two-point shot and the two-point
scoring percent labeled twoPtPercent of the player is pretty high, then they score a
two-point shot, which will be deducted from the value in the pointsDown variable.
The following function is for a two-point scoring attempt:

def attemptTwo():
 havePossession = True
 pointsDown = 3

Financial and Statistical Models

[198]

 timeLeft = 30
 while (timeLeft > 0):
 #What to do if we have possession
 if (havePossession):
 #If we are down by 3 or more, we take the
 #2 quickly. If we are down by 2 or less
 #We run down the clock first
 if (pointsDown >= 3):
 timeLeft -= timeToShoot2
 else:
 timeLeft = 0

 #Do we make the shot?
 if (np.random.randint(0, high=100) < twoPtPercent):
 pointsDown -= 2
 havePossession = False
 else:
 #Does the opponent team rebound?
 #If so, we lose possession.
 #This doesn't really matter when we run
 #the clock down
 if (np.random.randint(0, high=100) >= offenseReboundPercent):
 havePossession = False
 else: #cases where we don't have possession
 if (pointsDown > 0): #foul to get back possession

 #takes time to foul
 timeLeft -= timeToFoul

 #opponent takes 2 free throws
 if (np.random.randint(0, high=100) < oppFtPercent):
 pointsDown += 1

 if (np.random.randint(0, high=100) < oppFtPercent):
 pointsDown += 1
 havePossession = True
 else:
 if (np.random.randint(0, high=100) >= ftReboundPercent):
 #you were able to rebound the missed ft
 havePossession = True
 else:
 #tied or up so don't want to foul;
 #assume opponent to run out clock and take
 if (np.random.randint(0, high=100) < oppTwoPtPercent):

Chapter 5

[199]

 pointsDown += 2 #They made the 2
 timeLeft = 0

 if (pointsDown > 0):
 return False
 else:
 if (pointsDown < 0):
 return True
 else:
 if (np.random.randint(0, high=100) < overtimePercent):
 return True
 else:
 return False

For the sake of comparison, we will choose five players who have either a good
3-point average or a 2-point average or both, as shown in the following code:

plt.figure(figsize=(14,14))
names=['Lebron James', 'Kyrie Irving', 'Steph Curry',
 'Kyle Krover', 'Dirk Nowitzki']
threePercents = [35.4,46.8,44.3,49.2, 38.0]
twoPercents = [53.6,49.1,52.8, 47.0,48.6]
colind=0

for i in range(5): # can be run individually as well
 x=[]
 y1=[]
 y2=[]
 trials = 400 #Number of trials to run for simulation
 threePtPercent = threePercents[i] # % chance of making 3-pt shot
 twoPtPercent = twoPercents[i] # % chance of making a 2-pt shot
 oppTwoPtPercent = 40 #Opponent % chance making 2-pter
 oppFtPercent = 70 #Opponent's FT %
 timeToShoot2 = 5 #How many seconds elapse to shoot a 2
 timeToFoul = 5 #How many seconds elapse to foul opponent
 offenseReboundPercent = 25 #% of regular offense rebound
 ftReboundPercent = 15 #% of offense rebound after missed FT
 overtimePercent = 50 #% chance of winning in overtime

 winsTakingThree = 0
 lossTakingThree = 0
 winsTakingTwo = 0
 lossTakingTwo = 0

Financial and Statistical Models

[200]

 curTrial = 1

 while curTrial < trials:
 #run a trial take the 3
 if (attemptThree()):
 winsTakingThree += 1
 else:
 lossTakingThree += 1
 #run a trial taking a 2
 if attemptTwo() == True :
 winsTakingTwo += 1
 else:
 lossTakingTwo += 1

 x.append(curTrial)
 y1.append(winsTakingThree)
 y2.append(winsTakingTwo)
 curTrial += 1

 plt.plot(x,y1, color=colors[colind], label=names[i]+" Wins Taking
Three Point", linewidth=2)
 plt.plot(x,y2, color=colors[20], label=names[i]+" Wins Taking Two
Point", linewidth=1.2)
 colind += 2

legend = plt.legend(loc='upper left', shadow=True,)
for legobj in legend.legendHandles:
 legobj.set_linewidth(2.6)
plt.show()

This was run for individual players by setting the range 1 and only including that
player's name and statistics. In all the cases, as the opponent team's 2-point percent
was high (70 percent), for all the players, Monte Carlo simulation resulted in
suggesting wins by taking a 3-point score. Let's take a look at the results when one of
them is plotted individually and all together.

Chapter 5

[201]

We have picked players with a reasonably good 3-point percentage from the latest
statistics available at http://www.basketball-reference.com/teams/. The
statistics is current as of May 12, 2015. In all the cases, taking an attempt to score 3
points has a better chance of winning. If the opposing team has a lower average of
free point throws, then the result will be different.

The following two plots shows the results for an individual player and five chosen
players from the NBA League (2015):

http://www.basketball-reference.com/teams/

Financial and Statistical Models

[202]

The preceding screenshot shows the three-point and two-point attempts by Lebron.
The following plot shows the attempts of the other four players for comparison:

The volatility plot
We have seen many useful Python packages so far. Time and again, we have seen the
use of matplotlib, but here, we will show the use of pandas with a very few lines of
code so that you can achieve financial plots quickly. Standard deviation is a statistical
term that measures the amount of variation or dispersion around an average. This is
also a measure of volatility.

By definition, dispersion is the difference between the actual value and the average
value. For plotting volatility along with the closed values, this example illustrates
how you can see from a given start date, how a particular stock (such as IBM) is
performing, and take a look at the volatility with the following code:

import pandas.io.data as stockdata
import numpy as np

Chapter 5

[203]

r,g,b=(31, 119, 180)
colornow=(r/255.,g/255.,b/255.)
ibmquotes = stockdata.DataReader(name='IBM', data_source='yahoo',
start='2005-10-1')
ibmquotes['Volatility'] = np.log(ibmquotes['Close']/
 ibmquotes['Close'].shift(1))
ibmquotes[['Close', 'Volatility']].plot(figsize=(12,10), \
 subplots=True, color=colornow)

The following screenshot is a result of the volatility plot:

Financial and Statistical Models

[204]

Now, let's see how our volatility is measured. Volatility is the measure of variation
of price, which can have various peaks. Moreover, the exponential function lets us
plug in time and gives us growth; logarithm (inverse of exponential) lets us plug in
growth and gives us the time measure. The following snippet shows logarithm plot
of measuring volatility:

%time
ibmquotes['VolatilityTest'] = 0.0
for I in range(1, len(ibmquotes)):
 ibmquotes['VolatilityTest'] =
 np.log(ibmquotes['Close'][i]/ibmquotes['Close'][i-1])

If we time this, the preceding snippet will take the following:

CPU times: user 1e+03 ns, sys: 0 ns, total: 1e+03 ns Wall time: 5.01
µs

To break down and show how we did is using %time and assigning volatility measure
using the ratio of close value against the change in close value, as shown here:

%time
ibmquotes['Volatility'] = np.log(ibmquotes['Close']/
ibmquotes['Close'].shift(1))

If we time this, the preceding snippet will take the following:

CPU times: user 2 µs, sys: 3 µs, total: 5 µs Wall time: 5.01 µs.

The higher the variance in their values, the more volatile it turns out. Before we
attempt to plot some of the implied volatility of volatility against the exercise price,
let's take a look at the VSTOXX data. This data can be downloaded from http://
www.stoxx.com or http://www.eurexchange.com/advanced-services/. Sample
rows of the VSTOXX data is shown here:

 V2TX V6I1 V6I2 V6I3 V6I4 V6I5 V6I6 V6I7
V6I8
 Date
2015-05-18 21.01 21.01 21.04 NaN 21.12 21.16 21.34 21.75
21.84
2015-05-19 20.05 20.06 20.15 17.95 20.27 20.53 20.83 21.38
21.50
2015-05-20 19.57 19.57 19.82 20.05 20.22 20.40 20.63 21.25
21.44
2015-05-21 19.53 19.49 19.95 20.14 20.39 20.65 20.94 21.38
21.55
2015-05-22 19.63 19.55 20.07 20.31 20.59 20.83 21.09 21.59
21.73

http://www.stoxx.com
http://www.stoxx.com
http://www.eurexchange.com/advanced-services/

Chapter 5

[205]

This data file consists of Euro Stoxx volatility indices, which can all be plotted via
one simple filter mechanism of dates between Dec 31, 2011 to May 1, 2015. The
following code can be used to plot the VSTOXX data:

import pandas as pd

url = 'http://www.stoxx.com/download/historical_values/h_vstoxx.txt'
vstoxx_index = pd.read_csv(url, index_col=0, header=2,
 parse_dates=True, dayfirst=True,
 sep=',')
vstoxx_short = vstoxx_index[('2011/12/31' < vstoxx_index.index)
 & (vstoxx_index.index < '2015/5/1')]
to plot all together
vstoxx_short.plot(figsize=(15,14))

When the preceding code is run, it creates a plot that compares Euro Stoxx
volatility index:

Financial and Statistical Models

[206]

The preceding plot shows all the indices plot together, but if they are to be plotted on
separate subplots, you may have to set the following subplots to True:

to plot in subplots separately
vstoxx_short.plot(subplots=True, grid=True, color='r',
 figsize=(20,20), linewidth=2)

Chapter 5

[207]

Implied volatilities
The Black–Scholes–Merton model is a statistical model of a financial market. From
this model, one can find an estimate of the price of European style options. This
formula is widely used, and many empirical tests have shown that the Black–Scholes
price is "fairly close" to the observed prices. Fischer Black and Myron Scholes
first published this model in their 1973 paper, The Pricing of Options and Corporate
Liabilities. The main idea behind the model is to hedge the option by buying and
selling the underlying asset in just the right way.

In this model, the price of a European call option on a nondividend paying stock
is as follows:

() ()

()

1 2

2

1

2

2

rT
o o

o

o

C S N d Xe N d

Sln r T
X T

d
T

Sln r T
X T

d
T

N d is standard Normal Distribution

σ

σ
σ

σ

−= −

 + +
 =

 + −
 =

()

o

where
S the stock price T timetoexpiration
X exercise priceor strike price r risk freeinterest rate

= standard deviation of log returns volatilityσ

= =
= =

For a given European call option, Cg, the implied volatility is calculated from the
preceding equation (the standard deviation of log returns). The partial derivative
of the option pricing formula with respect to the volatility is called Vega. This is a
number that tells in what direction and to what extent the option price will move
if there is a positive 1 percent change in the volatility and only in the volatility, as
shown in the following equation:

()1o
o

CVega S N d T
σ

∂ ′= =
∂

Financial and Statistical Models

[208]

The volatility model (such as BSM) forecasts the volatility and what the financial uses
of this model entail, forecasting the characters of the future returns. Such forecasts
are used in risk management and hedging, market timing, portfolio selection, and
many other financial activities. American Call or Put Option provides you the right
to exercise at any time, but for European Call or Put Option, one can exercise only on
the expiration date.

There is no closed form solution to Black–Scholes–Merton (BSM), but with the
Newton's method (also known as the Newton-Raphson method), one can obtain an
approximate value by iteration. Whenever an iterative method is involved, there is
a certain amount of threshold that goes in to determine the terminating condition
of the iteration. Let's take a look at the Python code to find the values by iteration
(Newton's method) and plot them:

()

()

1

1

1
1

1
1

n n

n n n

n
n n

n

n

n
n n

C C C

C C
C

C C
vega

σ
σ σ σ

σ σ
σ
σ

σ σ

∗
+

+

∗
+

+

∗
+

+

∂ −
= − ∂ −

 − ⇒ − = −
∂

 ∂
 −

⇒ = −

from math import log, sqrt, exp
from scipy import stats
import pandas as pd
import matplotlib.pyplot as plt

colors = [(31, 119, 180), (174, 199, 232), (255,128,0),
 (255, 15, 14), (44, 160, 44), (152, 223, 138), (214, 39, 40),
 (255, 152, 150),(148, 103, 189), (197, 176, 213), (140, 86, 75),
(196, 156, 148),(227, 119, 194), (247, 182, 210), (127, 127, 127),
(199, 199, 199),(188, 189, 34), (219, 219, 141), (23, 190, 207),
(158, 218, 229)]

Scale the RGB values to the [0, 1] range, which is the format
matplotlib accepts.
for i in range(len(colors)):
 r, g, b = colors[i]
 colors[i] = (r / 255., g / 255., b / 255.)

def black_scholes_merton(S, r, sigma, X, T):

Chapter 5

[209]

 S = float(S) # convert to float
 logsoverx = log (S/X)
 halfsigmasquare = 0.5 * sigma ** 2
 sigmasqrtT = sigma * sqrt(T)

 d1 = logsoverx + ((r + halfsigmasquare) * T) / sigmasqrtT
 d2 = logsoverx + ((r - halfsigmasquare) * T) / sigmasqrtT

 # stats.norm.cdf —> cumulative distribution function
 value = (S * stats.norm.cdf(d1, 0.0, 1.0) –
 X * exp(-r * T) * stats.norm.cdf(d2, 0.0, 1.0))

 return value

def vega(S, r, sigma, X, T):

 S = float(S)
 logsoverx = log (S/X)
 halfsigmasquare = 0.5 * sigma ** 2
 sigmasqrtT = sigma * sqrt(T)
 d1 = logsoverx + ((r + halfsigmasquare) * T) / sigmasqrtT
 vega = S * stats.norm.cdf(d1, 0.0, 1.0) * sqrt(T)

 return vega

def impliedVolatility(S, r, sigma_est, X, T, Cstar, it):

 for i in range(it):
 numer = (black_scholes_merton(S, r, sigma_est, X, T) - Cstar)
 denom = vega(S,r, sigma_est, X, T)
 sigma_est -= numer/denom

 return sigma_est

We have these functions ready to be used, which can either be used in a separate file
and imported, or to run this only once, be embedded in code altogether. The input
file is obtained from stoxx.com in a file called vstoxx_data.h5, as shown in the
following code:

h5 = pd.HDFStore('myData/vstoxx_data_31032014.h5', 'r')

futures_data = h5['futures_data'] # VSTOXX futures data
options_data = h5['options_data'] # VSTOXX call option data

h5.close()

options_data['IMP_VOL'] = 0.0

stoxx.com

Financial and Statistical Models

[210]

V0 = 17.6639 # the closing value of the index
r=0.04 # risk free interest rate
sigma_est=2
tol = 0.5 # tolerance level for moneyness

Now, let's run the iteration with the options_data and futures_data values form:

for option in options_data.index:
 # iterating over all option quotes
 futureval = futures_data[futures_data['MATURITY'] ==
 options_data.loc[option]['MATURITY']]['PRICE'].values[0]

 # picking the right futures value
 if (futureval * (1 - tol) < options_data.loc[option]['STRIKE']
 < futureval * (1 + tol)):
 impliedVol = impliedVolatility(V0,r,sigma_est,
 options_data.loc[option]['STRIKE'],
 options_data.loc[option]['TTM'],
 options_data.loc[option]['PRICE'], #Cn
 it=100) #iterations
 options_data['IMP_VOL'].loc[option] = impliedVol

plot_data = options_data[options_data['IMP_VOL'] > 0]
maturities = sorted(set(options_data['MATURITY']))

plt.figure(figsize=(15, 10))

i=0
for maturity in maturities:

 data = plot_data[options_data.MATURITY == maturity]

 # select data for this maturity
 plot_args = {'lw':3, 'markersize': 9}
 plt.plot(data['STRIKE'], data['IMP_VOL'], label=maturity.date(),
 marker='o', color=colors[i], **plot_args)
 i += 1

plt.grid(True)

plt.xlabel('Strike rate X', fontsize=18)
plt.ylabel(r'Implied volatility of σ', fontsize=18)
plt.title('Short Maturity Window (Volatility Smile)', fontsize=22)

plt.legend()
plt.show()

Chapter 5

[211]

The following plot is the result of running the preceding program that demonstrates
implied volatility against the strike rate with data downloaded from http://
vstoxx.com. Alternatively, this can be downloaded at http://knapdata.com/
python/vstoxx_data_31032014.h5. The following plot shows implied volatility
against the strike rate of Euro Stoxx:

The portfolio valuation
The common sense of portfolio valuation of an entity is to estimate its current
worth. Valuations are usually applicable on a financial asset or liability and can
be performed on stocks, options, business enterprises, or intangible assets. For the
purposes of understanding valuation and their visualization methods, we will pick
mutual funds and plot them, compare them, and find the correlation.

Let's assume that we value all the portfolios denominated in a single currency.
This simplifies the aggregation of values in a portfolio significantly.

We will pick three funds from the Vanguard, such as Vanguard US Total (vus.to),
Vanguard Canadian Capped (vre.to), and Vanguard Emerging Markets (vee.to).
The following code shows the comparison of three Vanguard funds.

import pandas as pd #gets numpy as pd.np

http://vstoxx.com
http://vstoxx.com
http://knapdata.com/python/vstoxx_data_31032014.h5
http://knapdata.com/python/vstoxx_data_31032014.h5

Financial and Statistical Models

[212]

from pandas.io.data import get_data_yahoo
import matplotlib.pyplot as plt

get data
data = get_data_yahoo(["vus.to","vre.to","vee.to"],
 start = '2014-01-01')['Adj Close']

data.plot(figsize=(10,10), lw=2)
plt.show()

There is also another alternative to obtain data using get_data_yahoo() from
pandas.io.data, as shown in the following screenshot:

Besides plotting them, one may also get the correlation matrix after converting prices
to log returns in order to scale the values, as shown in the following code:

#convert prices to log returns
retn=data.apply(pd.np.log).diff()

make corr matrix

Chapter 5

[213]

retn.corr()

#make scatterplot to show correlation
pd.tools.plotting.scatter_matrix(retn, figsize=(10,10))
plt.show()

some more stats
retn.skew()
retn.kurt()
Output
vee.to 0.533157
vre.to 3.717143
vus.to 0.906644
dtype: float64

The correlation plot is shown in the following image. This was obtained using
the scatter_matrix function from pandas after applying the skew() and
kurt() correlation:

Financial and Statistical Models

[214]

The simulation model
A model is a representation of a construction and system's functions. A model is
similar to the system it represents and is easier to understand. A simulation of a
system is a working model of the system. The model is usually reconfigurable to
allow frequent experimentation. The operation of the model can be useful to study
the model. Simulation is useful before an existing system is built to reduce the
possibility of failure in order to meet specifications.

When is a particular system suitable for the simulation model? In general, whenever
there is a need to model and analyze randomness in a system, simulation is the tool
of choice.

Geometric Brownian simulation
Brownian motion is an example of a random walk, which is widely used to model
physical processes, such as diffusion and biological processes and social and
financial processes (such as the dynamics of a stock market).

Brownian motion is a sophisticated method. This is based on a process in plants
discovered by R. Brown in 1827. It has a range of applications, including modeling
noise in images, generating fractals, the growth of crystals, and the stock market
simulation. For the purposes of the relevance of the contents here, we will pick the
latter, that is, the stock market simulation.

M.F.M Osborne studied the logarithms of common stock prices and the value of
money and showed that they have an ensemble of impact in statistical equilibrium.
Using statistics and the prices of stock choice at random times, he was able to
derive a distribution function that closely resembles the distribution for a particle in
Brownian motion.

Definition of geometric Brownian motion:

A stochastic process (St) is said to follow a geometric Brownian motion if it satisfies
the following stochastic differential equation:

t t t t

t
t

t

dS uS dt S dW
dS udt dW
S

σ

σ

= +

= +

Chapter 5

[215]

Integrating both sides and applying the initial condition: St = So, the solution to the
preceding equation can be arrived at as follows:

2

2 tu t W

t oS S exp
σ σ

 − + =

Using the preceding derivation, we can plug in the values to obtain the following
Brownian motion:

import matplotlib.pyplot as plt
import numpy as np

'''
Geometric Brownian Motion with drift!
u=drift factor
sigma: volatility
T: time span
dt: length of steps
S0: Stock Price in t=0
W: Brownian Motion with Drift N[0,1]
'''
rect = [0.1, 5.0, 0.1, 0.1]
fig = plt.figure(figsize=(10,10))

T = 2
mu = 0.1
sigma = 0.04
S0 = 20
dt = 0.01
N = round(T/dt)
t = np.linspace(0, T, N)

Standare normal distrib
W = np.random.standard_normal(size = N)
W = np.cumsum(W)*np.sqrt(dt)

X = (mu-0.5*sigma**2)*t + sigma*W

#Brownian Motion
S = S0*np.exp(X)

plt.plot(t, S, lw=2)
plt.xlabel("Time t", fontsize=16)

Financial and Statistical Models

[216]

plt.ylabel("S", fontsize=16)
plt.title("Geometric Brownian Motion (Simulation)",
 fontsize=18)
plt.show()

The result of the Brownian motion simulation is shown in the following screenshot:

The simulating stock prices using Brownian motion is also shown in the
following code:

import pylab, random

class Stock(object):
 def __init__(self, price, distribution):
 self.price = price
 self.history = [price]
 self.distribution = distribution
 self.lastChange = 0

Chapter 5

[217]

 def setPrice(self, price):
 self.price = price
 self.history.append(price)

 def getPrice(self):
 return self.price

 def walkIt(self, marketBias, mo):
 oldPrice = self.price
 baseMove = self.distribution() + marketBias
 self.price = self.price * (1.0 + baseMove)
 if mo:
 self.price = self.price + random.gauss(.5, .5)*self.
lastChange
 if self.price < 0.01:
 self.price = 0.0
 self.history.append(self.price)
 self.lastChange = oldPrice - self.price

 def plotIt(self, figNum):
 pylab.figure(figNum)
 pylab.plot(self.history)
 pylab.title('Closing Price Simulation Run-' + str(figNum))
 pylab.xlabel('Day')
 pylab.ylabel('Price')

def testStockSimulation():
 def runSimulation(stocks, fig, mo):
 mean = 0.0
 for s in stocks:
 for d in range(numDays):
 s.walkIt(bias, mo)
 s.plotIt(fig)
 mean += s.getPrice()
 mean = mean/float(numStocks)
 pylab.axhline(mean)
 pylab.figure(figsize=(12,12))
 numStocks = 20
 numDays = 400
 stocks = []
 bias = 0.0
 mo = False
 startvalues = [100,500,200,300,100,100,100,200,200, 300,300,400,50
0,00,300,100,100,100,200,200,300]
 for i in range(numStocks):
 volatility = random.uniform(0,0.2)

Financial and Statistical Models

[218]

 d1 = lambda: random.uniform(-volatility, volatility)
 stocks.append(Stock(startvalues[i], d1))
 runSimulation(stocks, 1, mo)

testStockSimulation()
pylab.show()

The results of the closing price simulation using random data from the uniform
distribution is shown in the following screenshot:

The diffusion-based simulation
Stochastic models provide a more detailed understanding of the reaction diffusion
processes. Such a description is often necessary for the modeling of biological systems.
There are a variety of simulation models that have been studied, and to restrict
ourselves within the context of this chapter, we will consider the square-root diffusion.

Chapter 5

[219]

The square-root diffusion, popularized for finance by Cox, Ingersoll, and Ross (1985)
is used to model mean reverting quantities (such as interest rates and volatility). The
stochastic differential equation of this process is as follows:

()
|

Drift part Diffusion

t t t tdx k x dt x dWθ σ= − +�����

The values of xt have chi-squared distribution, but in the discrete version, they can be
approximated by normal distribution. By discrete version, we mean applying Euler's
numerical method of approximation using the iterative approach, as shown in the
following equation:

()

() ()max ,0 max ,0

new new
t s s s t

t t

s s t t

x x k x t x tw

x x
where x x and x x

θ σ+ +

+

+ +

= + − ∆ + ∆

=
= =

import numpy as np
import matplotlib.pyplot as plt
import numpy.random as npr

S0 = 100 # initial value
r = 0.05
sigma = 0.25
T = 2.0

x0=0
k=1.8
theta=0.24
i = 100000
M = 50
dt = T / M
def srd_euler():
 xh = np.zeros((M + 1, i))
 x1 = np.zeros_like(xh)
 xh[0] = x0
 x1[0] = x0
 for t in range(1, M + 1):
 xh[t] = (xh[t - 1]
 + k * (theta - np.maximum(xh[t - 1], 0)) * dt
 + sigma * np.sqrt(np.maximum(xh[t - 1], 0)) * np.sqrt(dt)
 * npr.standard_normal(i))
 x1 = np.maximum(xh, 0)
 return x1

Financial and Statistical Models

[220]

x1 = srd_euler()

plt.figure(figsize=(10,6))
plt.hist(x1[-1], bins=30, color='#98DE2f', alpha=0.85)
plt.xlabel('value')
plt.ylabel('frequency')
plt.grid(False)

plt.figure(figsize=(12,10))
plt.plot(x1[:, :10], lw=2.2)
plt.title("Square-Root Diffusion - Simulation")
plt.xlabel('Time', fontsize=16)
plt.ylabel('Index Level', fontsize=16)
#plt.grid(True)
plt.show()

Chapter 5

[221]

The threshold model
A threshold model is any model where some threshold value(s) is/are used to
distinguish the ranges of values, where the behavior predicted by the model
converges in some important way. Schelling attempted to model the dynamics of
segregation, which was motivated when individual interactions by constructing two
simulation models.

Schelling's Segregation Model
Schelling's Segregation Model (SSM) was first developed by Thomas C. Schelling.
This model is one of the first constructive models of a system that is capable of
self-organization.

Schelling experimented by placing pennies and dimes on a chessboard and moving
them around according to various rules. In his experiment, he used a board
analogous to a city, a board square to a domicile, and squares to a neighborhood.
The pennies and dimes (visually different as well) could represent smokers,
nonsmokers, male, female, executives, nonexecutives, students, or teachers for
two groups.

The simulation rules specify the termination condition as none of the agents moved from
their current position because they are happy, which means that agents will move if they
are not happy.

The Schelling Model is used to simulate the segregation of a classroom, where the
model shows that segregated patterns can occur even for weak preferences on
neighboring classmates.

Suppose we have three types of student categories based on their number one
priority: sports, advanced proficiency academics, and regular, each with type 0, 1,
and 2 respectively.

Financial and Statistical Models

[222]

For the purpose of illustration here, we will assume that there are 250 students of
each type in a high school. Each agent represents a student. These agents all live on
a single unit square (this can be visualized as a high school building). The position
of an agent is just a point (x, y), where 0 < x ,y <1. An agent is happy if half or more
of her 12 nearest neighbors are of the same type (nearest in terms of Euclidean
distance). The initial position of each agent is an independent draw from a bivariate
uniform distribution, as shown in the following code:

from random import uniform, seed
from math import sqrt
import matplotlib.pyplot as plt

num = 250 # These many agents of a particular type
numNeighbors = 12 # Number of agents regarded as neighbors
requireSameType = 8 # At least this many neighbors to be same type

seed(10) # for reproducible random numbers

class StudentAgent:

 def __init__(self, type):
 #Students of different type will be shown in colors
 self.type = type
 self.show_position()

 def show_position(self):
 # position changed by using uniform(x,y)
 self.position = uniform(0, 1), uniform(0, 1)

 def get_distance(self, other):
 #returns euclidean distance between self and other agent.
 a = (self.position[0] - other.position[0])**2
 b = (self.position[1] - other.position[1])**2
 return sqrt(a + b)

 def happy(self, agents):
 "returns True if reqd number of neighbors are the same type."
 distances = []

 for agent in agents:
 if self != agent:
 distance = self.get_distance(agent)
 distances.append((distance, agent))
 distances.sort()

Chapter 5

[223]

 neighbors = [agent for d, agent in distances[:numNeighbors]]
 numSameType = sum(self.type == agent.type
 for agent in neighbors)
 return numSameType >= requireSameType

 def update(self, agents):
 "If not happy, randomly choose new positions until happy."
 while not self.happy(agents):
 self.show_position()

def plot_distribution(agents, cycle_num):

 x1,y1 = [],[]
 x2,y2 = [],[]
 x3,y3 = [],[]

 for agent in agents:
 x, y = agent.position
 if agent.type == 0:
 x1.append(x); y1.append(y)
 elif agent.type == 1:
 x2.append(x); y2.append(y)
 else:
 x3.append(x); y3.append(y)

 fig, ax = plt.subplots(figsize=(10,10))
 plot_args = {'markersize' : 8, 'alpha' : 0.65, 'markersize': 14}
 ax.set_axis_bgcolor('#ffffff')
 ax.plot(x1, y1, 'o', markerfacecolor='#1b62a5', **plot_args)
 ax.plot(x2, y2, 'o', markerfacecolor='#279321', **plot_args)
 ax.plot(x3, y3, 'D', markerfacecolor='#fd6610', **plot_args)
 ax.set_title('Iteration {}'.format(cycle_num))
 plt.show()

agents = [StudentAgent(0) for i in range(num)]
agents.extend(StudentAgent(1) for i in range(num))
agents.extend(StudentAgent(2) for i in range(num))
count = 1
terminate=False
while terminate == False:
 plot_distribution(agents, count)
 count += 1
 no_one_moved = True

Financial and Statistical Models

[224]

 for agent in agents:
 old_position = agent.position
 agent.update(agents)
 if agent.position != old_position:
 no_one_moved = False
 if no_one_moved:
 terminate=True

Chapter 5

[225]

An overview of statistical and
machine learning
The field of Artificial Intelligence (AI) is not new, and if we remember thirty years
ago when we studied AI, except for robotics, there was very little understanding of
the future this field held back then. Now, especially in the last decade, there has been
a considerable growth of interest in Artificial Intelligence and machine learning. In
the broadest sense, these fields aim to 'discover and learn something useful' about
the environment. The gathered information leads to the discovery of new algorithms,
which then leads to the question, "how to process high-dimensional data and deal
with uncertainty"?

Machine learning aims to generate classifying expressions that are simple enough
to follow by humans. They must mimic human reasoning sufficiently to provide
insights into the decision process. Similar to statistical approaches, background
knowledge may be exploited in the development phase. Statistical learning plays a
key role in many areas of science, and the science of learning plays a key role in the
fields of statistics, data mining, and artificial intelligence, which intersect with areas
of engineering and other disciplines.

The difference between statistical and machine learning is that statistics emphasizes
inference, whereas machine learning emphasizes prediction. When one applies
statistics, the general approach is to infer the process by which data was generated.
For machine learning, one would want to know how to predict the future
characteristics of the data with respect to some variable. There is a lot of overlap
between statistical learning and machine learning, and often one side of the experts
argues one way versus the other. Let's leave this debate to the experts and select
a few areas to discuss in this chapter. Later in the following chapter, there will be
elaborate examples of machine learning. Here are some of the algorithms:

• Regression or forecasting
• Linear and quadratic discriminant analysis
• Classification
• Nearest neighbor
• Naïve Bayes
• Support vector machines
• Decision trees
• Clustering

Financial and Statistical Models

[226]

The algorithms of machine learning are broadly categorized as supervised learning,
unsupervised learning, reinforced learning, and deep learning. The supervised
learning method of classification is where the test data is labeled, and like a teacher,
it gives the classes supervision. Unsupervised learning does not have any labeled
training data, whereas supervised learning has completely labeled training data.
Semisupervised learning falls between supervised and unsupervised learning. This
also makes use of the unlabeled data for training.

As the context of this book is data visualization, we will only discuss a few
algorithms in the following sections.

K-nearest neighbors
The first machine learning algorithm that we will look at is k-nearest neighbors
(k-NN). k-NN does not build the model from the training data. It compares a new
piece of data without a label to every piece of existing data. Then, take the most
similar pieces of data (the nearest neighbors) and view their labels. Now, look at
the top k most similar pieces of data from the known dataset (k is an integer and is
usually less than 20). The following code demonstrates k-nearest neighbors plot:

from numpy import random,argsort,sqrt
from pylab import plot,show
import matplotlib.pyplot as plt

def knn_search(x, data, K):

 """ k nearest neighbors """

 ndata = data.shape[1]
 K = K if K < ndata else ndata
 # euclidean distances from the other points
 sqd = sqrt(((data - x[:,:ndata])**2).sum(axis=0))
 idx = argsort(sqd) # sorting
 # return the indexes of K nearest neighbors
 return idx[:K]

data = random.rand(2,200) # random dataset
x = random.rand(2,1) # query point

neig_idx = knn_search(x,data,10)

plt.figure(figsize=(12,12))

plotting the data and the input point
plot(data[0,:],data[1,:],'o, x[0,0],x[1,0],'o', color='#9a88a1',

Chapter 5

[227]

 markersize=20)

highlighting the neighbors
plot(data[0,neig_idx],data[1,neig_idx],'o',
 markerfacecolor='#BBE4B4',markersize=22,markeredgewidth=1)

show()

The approach to k-Nearest Neighbors is as follows:

• Collecting data using any method
• Preparing numeric values that are needed for a distance calculation
• Analyzing with any appropriate method
• Training none (there is no training involved)
• Testing to calculate the error rate
• The application takes some action on the calculated k-nearest neighbor

search and identifies the top k nearest neighbors of a query

In order to test out a classifier, you can start with some known data so that you can
hide the answer from the classifier and ask the classifier for its best guess.

Financial and Statistical Models

[228]

Generalized linear models
Regression is a statistical process to estimate the relationships among variables. More
specifically, regression helps you understand how the typical value of the dependent
variable changes when any one of the independent variables is varied.

Linear regression is the oldest type of regression that can apply interpolation, but it
is not suitable for predictive analytics. This kind of regression is sensitive to outliers
and cross-correlations.

Bayesian regression is a kind of penalized estimator and is more flexible and stable
than traditional linear regression. It assumes that you have some prior knowledge
about the regression coefficients, and statistical analysis is applicable in the context of
the Bayesian inference.

We will discuss a set of methods in which the target value (y) is expected to be a linear
combination of some input variables (x1, x2, and … xn). In other words, representing the
target values using notations is as follows:

() 1 1 2 2
0

ˆ

ˆ ,
n

o n n o i i
i

Predicted value y is givenby

y w x w w x w x w x w w x
=

= + + + + = +∑…

Now, let's take a look at the Bayesian linear regression model. A logical question one
may ask is "why Bayesian?" The answer being:

• Bayesian models are more flexible
• The Bayesian model is more accurate in small samples (may depend on priors)
• Bayesian models can incorporate prior information

Bayesian linear regression
First, let's take a look at a graphical model for linear regression. In this model, let's
say we are given data values—D = ((x1, y1), (x2, y2), … (xn, yn)) —and our goal is to
model this data and come up with a function, as shown in the following equation:

() ()
()
()()

2
0

2

0,

,

T

T
i i

f x w x

w N I

Y N w x

φ

σ

φ σ

=

∼

∼

Chapter 5

[229]

Here, w is a weight vector and each Yi is normally distributed, as shown in the
preceding equation. Yi are random variables, and with a new variable x to condition
each of the random variable Yi = yi from the data, we can predict the corresponding y
for the new variable x, as shown in the following code:

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn.linear_model import BayesianRidge
from sklearn.linear_model import LinearRegression

np.random.seed(0)
n_samples, n_features = 200, 200

X = np.random.randn(n_samples, n_features) # Gaussian data
Create weights with a precision of 4.
theta = 4.
w = np.zeros(n_features)

Only keep 8 weights of interest
relevant_features = np.random.randint(0, n_features, 8)
for i in relevant_features:
 w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(theta))

alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_
samples)
y = np.dot(X, w) + noise

Fit the Bayesian Ridge Regression
clf = BayesianRidge(compute_score=True)
clf.fit(X, y)

Plot weights and estimated and histogram of weights
plt.figure(figsize=(11,10))
plt.title("Weights of the model", fontsize=18)
plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate")
plt.plot(w, 'g-', label="Training Set Accuracy")
plt.xlabel("Features", fontsize=16)
plt.ylabel("Values of the weights", fontsize=16)
plt.legend(loc="best", prop=dict(size=12))
plt.figure(figsize=(11,10))

Financial and Statistical Models

[230]

plt.title("Histogram of the weights", fontsize=18)
plt.hist(clf.coef_, bins=n_features, log=True)
plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_
features)),
 'ro', label="Relevant features")
plt.ylabel("Features", fontsize=16)
plt.xlabel("Values of the weights", fontsize=16)
plt.legend(loc="lower left")
plt.show()

The following two plots are the results of the program:

Chapter 5

[231]

Creating animated and interactive plots
There are a few tools for interactive plots that one may choose from, such as Bokeh,
Plotly, and VisPy.

Bokeh allows you to plot matplotlib objects via JavaScript, which enables the
interactive part easily. For instance, if one needs a map plot that is interactive, Bokeh
can be used. Bokeh uses JavaScript and enables D3.js style plots and targets the
visualization via modern web browsers. Bokeh delivers good performance over a
large dataset. You can easily install bokeh either via conda or pip, as shown in the
following code:

conda install bokeh

 OR

pip install bokeh

import collections

Financial and Statistical Models

[232]

from bokeh.sampledata import us_counties, unemployment
from bokeh.plotting import figure, show, output_file
from bokeh.models import HoverTool

county_coordinate_xs=[
us_counties.data[code]['lons'] for code in us_counties.data
if us_counties.data[code]['state'] == 'ca'
]
county_coordinate_ys=[
us_counties.data[code]['lats'] for code in us_counties.data
if us_counties.data[code]['state'] == 'ca'
]

colors = ["#e6f2ff", "#cce5ff", "#99cbff", "#b2d8ff", "#73abe5",
"#5985b2"]
county_colors = []
for county_id in us_counties.data:
 if us_counties.data[county_id]['state'] != 'ca':
 continue
 try:
 rate = unemployment.data[county_id]
 idx = min(int(rate/2), 5)
 county_colors.append(colors[idx])
 except KeyError:
 county_colors.append("black")

output_file("california.html", title="california.py example")

TOOLS="pan,wheel_zoom,box_zoom,reset,hover,save"
p = figure(title="California Unemployment 2009", width=1000,
height=1000, tools=TOOLS)

p.patches(county_coordinate_xs, county_coordinate_ys,
fill_color=county_colors, fill_alpha=0.7,
line_color="white", line_width=0.5)

mouse_hover = p.select(dict(type=HoverTool))
mouse_hover.point_policy = "follow_mouse"
mouse_hover.tooltips = collections.OrderedDict([
("index", "$index"), ("(x,y)", "($x, $y)"),
("fill color", "$color[hex, swatch]:fill_color"),
])
show(p)

Chapter 5

[233]

In order to view the results, you may have to use a browser to open
California.html:

Plotly is another option that allows interactive plots, but requires one to be online
and have a Plotly account. The plots using Plotly look very nice and is interactive.
The following code shows how one can create interactive plots using plotly:

from pylab import *
import plotly
#py = plotly.plotly('me', 'mykey')

def to_plotly(ax=None):
 if ax is None:
 ax = gca()

Financial and Statistical Models

[234]

 lines = []
 for line in ax.get_lines():
 lines.append({'x': line.get_xdata(),
 'y': line.get_ydata(),
 'name': line.get_label(),
 })

 layout = {'title':ax.get_title(),
 'xaxis':{'title':ax.get_xlabel()},
 'yaxis':{'title':ax.get_ylabel()}
 }
 filename = ax.get_title() if ax.get_title() != '' else 'Untitled'
 print filename
 close('all')
 #return lines, layout
 return py.iplot(lines,layout=layout, filename = filename)

plot(rand(100), label = 'trace1')
plot(rand(100)+1, label = 'trace2')
title('Title')
xlabel('X label')
ylabel('Y label ')

response = to_plotly()
response

Chapter 5

[235]

VisPy is another high performance interactive tool built using Python and
OpenGL; therefore, it delivers the power of modern GPU's. It is fairly new, and as
it matures, it leaves users with another good visualization library to choose from.
The following example shows that using vispy one can create an image that can be
zoomed interactively:

import sys

from vispy import scene
from vispy import app
import numpy as np

canvas = scene.SceneCanvas(keys='interactive')
canvas.size = 800, 800
canvas.show()

Set up a viewbox to display the image with interactive pan/zoom
view = canvas.central_widget.add_view()

Create the image
img_data = np.random.normal(size=(100, 100, 3), loc=128,
 scale=40).astype(np.ubyte)
image = scene.visuals.Image(img_data, parent=view.scene)

Set 2D camera (the camera will scale to the contents in the scene)
view.camera = scene.PanZoomCamera(aspect=1)

if __name__ == '__main__' and sys.flags.interactive == 0:
 app.run()

Financial and Statistical Models

[236]

The preceding image shows the plot that appears the first time, but as we move the
mouse and zoom in on it, it appears as follows:

Summary
This chapter discussed typical financial examples and looked at machine learning
towards the end. A brief introduction to the deterministic model using gross profit
analysis and savings in mortgage payments was discussed.

Using real-world data in the form of options, the implied volatilities of European
call options on the VSTOXX volatility index was also discussed. We also looked at
Monte Carlo simulation. Using different implementation approaches, we showed
simulation methods using the Monte Carlo method, the inventory problem, and a
basketball situation.

Further, you learned simulation models (such as geometric Brownian and the
diffusion-based simulation) with the example of the stock market model. The
chapter also focused on how diffusion can be used to show drift and volatility.

We also looked at Bayesian linear regression and interactive plotting methods
that one can choose from. Then, we discussed the k-nearest neighbors algorithm,
instance-based learning performance, and the machine learning algorithm. This
example was just touched to generate an interest about the subject and give you an
idea about these algorithms. However, in the following chapter, we will look at more
interesting statistical and machine learning algorithms.

[237]

Statistical and Machine
Learning

Machine learning enables you to create and use computer algorithms, learn from
these algorithms, correct them, and improve them to draw any new patterns that
were unknown in the past. You can also extract insights from these new patterns
that were found from the data. For instance, one may be interested in teaching a
computer how to recognize ZIP codes value in an image. Another example is if we
have a specific task, such as to determine spam messages, then instead of writing a
program to solve this directly, in this paradigm, you can seek methods to learn and
become better at getting accurate results using a computer.

Machine learning has become a significant part of artificial intelligence in recent
years. With the power of computing, it is very likely that we will be able to build
intelligent systems using machine learning methods. With the power of computing
that we have today, these tasks have become far simpler than they were two decades
ago. The primary goal of machine learning is to develop algorithms that have
promising value in the real world. Besides time and space efficiency, the amount of
data that is required by these learning algorithms also plays a challenging role. As
machine learning algorithms are driven by data, you can see why there are so many
different algorithms already today in this subject area. In the following sections of
this chapter, we will discuss the following topics with examples:

• Classification methods—decision tree and linear and k-nearest neighbors
• Naïve Bayes, linear regression, and logistic regression
• Support vector machines
• Tree-based regression and unsupervised learning
• Principal component analysis
• Clustering based on similarity
• Measuring performance for classification

Statistical and Machine Learning

[238]

Classification methods
Machine learning algorithms are useful in many real-world applications, for
example, if someone is interested in making accurate predictions about the climate or
in the diagnosis of a disease. The learning is usually based on some known behavior
or observations. This means that machine learning is about learning to improve on
something in the future based on the experience or observations of the past.

Machine learning algorithms are broadly categorized as supervised learning,
unsupervised learning, reinforced learning, and deep learning. The supervised
learning method of classification (where the test data is labeled) is similar to a
teacher who supervises different classes. Supervised learning relies on the algorithm
to learn from data when we specify a target variable. Building an accurate classifier
requires the following features:

• A good set of training examples
• A reasonably good performance on the training set
• A classifier method that is closely related to prior expectations

Chapter 6

[239]

A binary classifier takes the data items and places them in one of the two classes
(for higher dimensions, the data items are placed in k classes). The examples of a
binary classifier determines whether a person's results can be diagnosed with the
possibility of being positive on some disease or negative. The classifier algorithm
is probabilistic. With some margin of error, someone can be diagnosed as either
positive or negative. In any of these algorithms, there is a general approach to
accomplish this, which goes in the following order:

• Collecting data from a reliable source.
• Preparing or reorganizing data with a specific structure. For a binary

classifier, a distance calculation is required.
• Analyzing data with any appropriate method.
• Training (this is not applicable for a binary classifier).
• Testing (calculating the error rate).

In this chapter, the discussion will be to focus on what tools are available to visualize
the input and results, but there is not much focus on the machine learning concepts.
For greater depth on this subject, you can refer to the appropriate material. Let's
take a look at an example and gradually walk through to see the various options to
choose from.

Understanding linear regression
A simple scenario would be where one would like to predict whether a student
is likely to be accepted into a college undergraduate program (such as Princeton
University) based on the data of the GPA score and the SAT score with sample
data as follows:

Statistical and Machine Learning

[240]

In order to be able to consider the acceptance versus some score that is a combination
of the SAT score and the GPA score, just for the purposes of illustrating an example
here (note that this does not resemble the actual admissions process), we will attempt
to figure out the line of separation. As the SAT scores vary from 2100 to 2390 along
the x axis, we can try five values from y=2490 – 2*i*2000. In the following example,
we have 2150 instead of 2000. GPA along the y axis has extreme values as 3.3 and 5.0;
therefore, we use the incremental values starting with 3.3 using 3.3+0.2i from one
extreme and 5.0-0.2i from the other extreme (with a step size of 0.2).

As a first attempt to see how the data visually looks, we will attempt to explore it
with matplotlib and numpy. Using the SAT and GPA scores in the x and y axes
and applying the scatter plot, we will attempt to find the line of separation in the
following example:

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np

mpl.rcParams['axes.facecolor']= '#f8f8f8'
mpl.rcParams['grid.color'] = '#303030'
mpl.rcParams['grid.color']= '#303030'
mpl.rcParams['lines.linestyle'] = '--'
#SAT Score
x=[2400,2350,2400,2290,2100,2380,2300,2280,2210,2390]

#High school GPA
y=[4.4,4.5,4.2,4.3,4.0,4.1,3.9,4.0,4.3,4.5]

a = '#6D0000'
r = '#00006F'
#Acceptance or rejections core
z=[a,a,a,r,r,a,r,r,a,a]

plt.figure(figsize=(11,11))
plt.scatter(x,y,c=z,s=600)

To see where the separation lies
for i in range(1,5):
 X_plot = np.linspace(2490-i*2,2150+i*2,20)
 Y_plot = np.linspace(3.3+i*0.2,5-0.2*i,20)
 plt.plot(X_plot,Y_plot, c='gray')

plt.grid(True)

plt.xlabel('SAT Score', fontsize=18)

Chapter 6

[241]

plt.ylabel('GPA', fontsize=18)
plt.title("Acceptance in College", fontsize=20)
plt.legend()

plt.show()

In the preceding code, we will not perform any regression or classification. This is
just an attempt to understand how the data visually looks. You can also draw several
lines of separation to get an intuitive understanding of how linear regression works.

You can see that there is not enough data to apply an accurate way to predict with
the test data. However, if we attempt to get more data and use some well-known
packages to apply machine learning algorithms, we can get a better understanding of
the results. For instance, adding extracurricular activities (such as sports and music).

Statistical and Machine Learning

[242]

Linear regression
The main goal of using linear regression is to predict a numeric target value. One way
to do this is to write an equation for the target value with respect to the inputs. For
example, assume that we are trying to forecast the acceptance rate of a fully rounded
student who participates in sports and music, but belongs to a low-income family.

One possible equation is acceptance = 0.0015*income + 0.49*(participation_score); this is
a regression equation. This uses a simple linear regression to predict a quantitative
response with a single feature. It takes the following form:

0 1

0

1

where yis the response
feature
intercept
is thecoefficient for x

y x

x

β β

β
β

= +

=
=
=

Together, β0 and β1 are called the model coefficients. To create our model, you must
learn the values of these coefficients. Once you've learned these coefficients, you can
use the model to predict the acceptance rate reasonably.

These coefficients are estimated using the least squares criteria, which means that we
will find the separating line mathematically and minimize the sum of squared residuals.
The following is a portion of the data that is used in the following example:

Chapter 6

[243]

The following Python code shows how one can attempt scatter plots to determine the
correlation between variables:

from matplotlib import pyplot as pplt

import pandas as pds

import statsmodels.formula.api as sfapi

df = pds.read_csv('/Users/myhomedir/sports.csv', index_col=0)
fig, axs = plt.subplots(1, 3, sharey=True)
df.plot(kind='scatter', x='sports', y='acceptance', ax=axs[0],
figsize=(16, 8))
df.plot(kind='scatter', x='music', y='acceptance', ax=axs[1])
df.plot(kind='scatter', x='academic', y='acceptance', ax=axs[2])

create a fitted model in one line
lmodel = sfapi.ols(formula='acceptance ~ music', data=df).fit()

X_new = pd.DataFrame({'music': [df.music.min(), df.music.max()]})
predictions = lmodel.predict(X_new)

df.plot(kind='scatter', x='music', y='acceptance', figsize=(12,12),
s=50)

plt.title("Linear Regression - Fitting Music vs Acceptance Rate",
fontsize=20)
plt.xlabel("Music", fontsize=16)
plt.ylabel("Acceptance", fontsize=16)

then, plot the least squares line

Statistical and Machine Learning

[244]

As shown in the preceding image, the blue dots are the observed values of (x,y), the
line that crosses diagonally is the least square fit based on the (x,y) values, and the
orange lines are the residuals, which are the distances between the observed values
and the least squares line.

Using statsmodels, pandas, and matplotlib (as shown in the preceding image),
we can assume that there is some sort of scoring based on how a university rates its
students' contribution to academics, sports, and music.

To test a classifier, we can start with some known data and not knowing the answer,
we will seek the answer from the classifier for its best guess. In addition, we can add
the number of times the classifier was wrong and divide it by the total number of
tests conducted to get the error rate.

Chapter 6

[245]

The following is a plot of linear regression derived from the previous Python code.

There are numerous other Python libraries that one can use for linear regression, and
scikit-learn, seaborn, statsmodels, and mlpy are some of the notable and popular
libraries among them. There are numerous examples already on the Web that explains
linear regression with these packages. For details on the scikit-learn package, refer
to http://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.LinearRegression.html.

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Statistical and Machine Learning

[246]

There is another interesting machine learning model called decision tree learning,
which can sometimes be referred to as classification tree. Another similar model is
regression tree. Here, we will see the differences between them and whether one
makes sense over the other.

Decision tree
Classification trees are used to separate the data into classes belonging to the
response variable. The response variable usually has two classes: Yes or No (1 or 0)
and sunny or rain. If the target variable has more than two categories, then C4.5 can
be applicable. C4.5 improves the ID3 algorithm for the continuous attributes, the
discrete attributes, and the post construction process.

Similar to most learning algorithms, the classification tree algorithm analyzes a
training set and then builds a classifier based on that training so that with new data in
the future, it can classify the training as well as the new data correctly. A test example
is an input object, and the algorithm must predict an output value. Classification trees
are used when the response or target variable is categorical in nature.

On the contrary, regression trees are needed when the response variable is
continuous and not discrete. For example, the predicted price of a product. A
regression tree is built through binary partitioning. This is an iterative process that
splits the data into partitions or branches and then continues splitting each partition
into smaller groups as the method moves up each partition or branch. In other
words, regression trees are applicable when the problem involves prediction as
opposed to classification. For more details on this, we recommend you refer to books
on classification and regression trees.

When the relationship between predictors and response is linear, a standard
regression tree is more appropriate, and when the relationship between predictors
and response is nonlinear, then C4.5 should be used. Furthermore, to summarize,
when the response variable has only two categories, the classification tree algorithm
should be used.

An example
For a decision tree algorithm to play tennis or golf, one can easily sort down the
decision process by asking a question, that is, is it raining out there or is it sunny?
and draw the decision diagram branching out at every question based on the
answers. The playing nature of the games are almost the same—tennis versus
golf—and in any sporting event, if it is windy and raining, chances are that there is
not going to be a game.

Chapter 6

[247]

For tennis, if the outlook is sunny, but the humidity is high, then it is recommended
to not play. Similarly, if it is raining and windy, then the whole dynamics of the
tennis game will be pretty bad. Therefore, chances are that it is no fun playing
tennis under these conditions as well. The following diagram shows all the
possible conditions:

Outlook

WindHumidity

Sunny RainOvercast

Yes

Strong Weak

No Yes

High Normal

No Yes

We can also add discrete attributes (such as temperature); for what range of
temperatures does it not make sense to play tennis? Probably, if the temperature is
greater than 70 degrees Fahrenheit, that is, if the temperature is hot. We can write the
rules combining all these as follows:

If (Outlook = Sunny) and (Humidity = High) then play=No
If (Outlook = Rain) and (Wind = Strong) then play=No
If (Outlook = Sunny) and (Humidity = Normal) or
 (Outlook = Overcast) or (Outlook=Rain and Wind=Weak) then play=Yes

With the following training set, we can run the algorithm to select the next best classifier:

Outlook Temperature Humidity Wind Play?
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No
Rain Mild Normal Weak Yes

Statistical and Machine Learning

[248]

Outlook Temperature Humidity Wind Play?
Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No

The top down induction of decision trees (ID3) is a method that follows these rules:

• Iterate over leaf nodes until stopping condition:
1. Identify the best decision attribute for the next node in the traversal.
2. Assign that best node from step 1 as the decision attribute.
3. For each value of those best nodes, create new descendants of

those nodes.
4. Sort the training data into leaf nodes.
5. Stopping condition for iteration:

If the training data is classified within the threshold

One clear distinction between a linear regression and a decision tree algorithm is that
the decision boundaries are parallel to the axes, for example, if we have two features
(x1 and x2), then it can only create rules, such as x1 >=5.2, x2 >= 7.2. The advantage the
decision tree algorithm has is that it is robust to errors, which means that the training
set could have errors. Also, it doesn't affect the algorithm much.

Using the sklearn package from scikit-learn (scikit-learn.org) and the
following code, we can plot the decision tree classifier:

from sklearn.externals.six import StringIO
from sklearn import tree
import pydot

Four columns from the table above with values
1st col - 1 for Sunny, 2 for Overcast, and 3 for Rainy
2nd col - 1 for Hot, 2 for Mild, 3 for Cool
3rd col – 1 for High and 2 for Normal
4th col – 0 for Weak and 1 for Strong

X=[[1,1,1,0],[1,1,1,1],[2,1,1,0],[2,3,2,1],[1,2,1,0],[1,3,2,0],\
[3,2,1,0],[3,3,2,0],[3,3,2,1],[3,2,2,0],[1,2,2,1],[2,2,1,1],\
[2,1,2,0],[3,2,1,0]]

scikit-learn.org

Chapter 6

[249]

1 for Play and 0 for Don't Play
Y=[0,0,1,1,0,1,1,1,0,1,1,1,1,0]

clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)

dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data)

graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("game.pdf")

Use the export functionality of sklearn to be able to convert the tree diagram in the
form of a graph that looks similar to the following diagram:

In order to create your own tree structure, there is an option of using plotting
methods from matplotlib. In order to display a tree-like diagram, matplotlib has
annotation that allows you to create a tree-shaped structure with labels, as shown in
the following code:

import matplotlib.pyplot as plt

#create nodes here
branchNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
startNode = dict(boxstyle="sawtooth", fc="0.9")

Statistical and Machine Learning

[250]

def createPlot():
 fig = plt.figure(1, facecolor='white')
 fig.clf()
 createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo
purposes
 plotNode('from here', (0.3,0.8), (0.3, 0.8), startNode)
 plotNode('a decision node', (0.5, 0.1), (0.3, 0.8), branchNode)
 plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
 plt.show()
...

This is usually an idea of how you can create a tree structure from scratch using
matplotlib. Basically the preceding example shows the creation of three nodes and
connecting them to form a small tree. The results of this code are shown as follows:

Chapter 6

[251]

The Bayes theorem
In order to understand the Bayes theorem first, before we attempt to take a look
at the Naïve Bayes classification method, we should consider this example. Let's
assume that among all the people in the U universe, the set of people who have
breast cancer is set A, and set B is the set of people who had a screening test and were
unfortunately diagnosed with the result positive for breast cancer. This is shown as
the overlap region A∩B in the following diagram:

There are two unusual areas that need focus: B – A∩B or people without breast
cancer and with a positive test on diagnosis and the event A – A∩B or people with
breast cancer and with a negative test on diagnosis. Now, let's attempt to answer
whether we know that the test is positive for a randomly selected person. Then,
what is the probability that the person has breast cancer? This visually translates to
whether we know that a person is visible in the B area, then what is the probability
that the same person appears in A∩B? Mathematically, this translates to what is
probability (A given B). Conditional probability equation is shown here:

()

() ()
()

|

|

A B
A B U

P A B
BB
U

P A B
P A B

P B

∩
∩

= =

∩
=

Statistical and Machine Learning

[252]

Similarly, if we know that a randomly selected person has cancer, what is the
probability that the diagnosis test came out positive? This translates to probability
(B given A), as shown in the following code:

()

() ()
()

() () () () ()

() () ()
()

|

|

| |
|

|

A B
A B U

P B A
AB
U

P A B
P B A

P A
P A B P B A P A P A B P B

P B A P A
P A B

P B

∩
∩

= =

∩
=

⇒ ∩ = =

=

Thus, we derive at the Bayes theorem, where A and B are events with P (B) nonzero.

The Naïve Bayes classifier
The Naive Bayes classifier technique is based on the Bayesian theorem and is
appropriate when the dimensionality of the input is high. Although it appears to be
very simple, it is technically better performed than the other classification methods.

(More information is available at http://scikit-learn.org/stable/modules/
naive_bayes.html and http://sebastianraschka.com/Articles/2014_naive_
bayes_1.html).

Let's take a look at the following example that shows objects in red and blue. As
indicated, the objects shown in red represent the set of people who have breast
cancer, and the objects shown in blue represent the set of people diagnosed positive
for breast cancer. Our task is to be able to label any new data, which in this case is
a new person as they emerge that is based on the existing structure or category of
objects and identify the group or class that the new data or person belongs to.

In Bayesian, the prior probability is more inclined to be close to the pattern or
behavior of how the objects are currently characterized. This is mainly due to the fact
that the word prior is synonymous to previous experience here; therefore, if there
is a greater percentage of red than blue objects, then this gives us an advantage in
expecting that the predicted outcome should be higher for it to be red.

The method here is a combination of Naïve Bayes and the k-nearest neighbor
algorithm. For a pure Naïve Bayes classification, we will discuss another example
using TextBlob (http://textblob.readthedocs.org/en/dev/).

http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/modules/naive_bayes.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://textblob.readthedocs.org/en/dev/

Chapter 6

[253]

The following image visually shows a new person as unclassified yet:

Using the prior probability of red and blue, you can calculate the posterior
probability of x being red or blue, as shown in the following code:

13
21
8
21
in the vicinity 1

13
in the vicinity 3

8

prior probability of red

prior probability of blue

Number of redlikelihood of x given red
Total number of reds

Number of bluelikelihood of x given blue
Total number of blue

posterior prob

=

=

= =

= =

1 13 1
13 21 21
3 8 3 1
8 21 21 7

ability of x being red

posterior probability of x being blue

= × =

= × = =

The new person is most likely to be classified as one who is diagnosed positive with
breast cancer.

Statistical and Machine Learning

[254]

The Naïve Bayes classifier using TextBlob
TextBlob is an interesting library that has a collection of tools for text processing
purposes. It comes with the API for natural language processing (NLP) tasks,
such as classification, noun phrase extraction, part-of-speech tagging, and
sentiment analysis.

There are a few steps involved to make sure that one can use TextBlob. Any library
that works with NLP needs some corpora; therefore, the following sequence of
installation and configuration needs to be done before attempting to use this
interesting library:

• Installing TextBlob (either via conda or pip)
• Downloading corpora

Installing TextBlob
Using binstar search -t conda textblob, one can find where to install
it for anaconda users. More details can be found in Appendix, Go Forth and
Explore Visualization.

Downloading corpora
The following command will let one download corpora:

$ python -m textblob.download_corpora

[nltk_data] Downloading package brown to
[nltk_data] /Users/administrator/nltk_data...
[nltk_data] Unzipping corpora/brown.zip.
[nltk_data] Downloading package punkt to
[nltk_data] /Users/administrator/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.
[nltk_data] Downloading package wordnet to
[nltk_data] /Users/administrator/nltk_data...
[nltk_data] Unzipping corpora/wordnet.zip.
[nltk_data] Downloading package conll2000 to
[nltk_data] /Users/administrator/nltk_data...
[nltk_data] Unzipping corpora/conll2000.zip.
[nltk_data] Downloading package maxent_treebank_pos_tagger to
[nltk_data] /Users/administrator/nltk_data...
[nltk_data] Unzipping taggers/maxent_treebank_pos_tagger.zip.
[nltk_data] Downloading package movie_reviews to
[nltk_data] /Users/administrator/nltk_data...
[nltk_data] Unzipping corpora/movie_reviews.zip.
Finished.

Chapter 6

[255]

The Naïve Bayes classifier using TextBlob
TextBlob makes it easy to create custom text classifiers. In order to understand this
better, one may need to do some experimentation with their training and test data.
In the TextBlob 0.6.0 version, the following classifiers are available:

• BaseClassifier

• DecisionTreeClassifier

• MaxEntClassifier

• NLTKClassifier *

• NaiveBayesClassifier

• PositiveNaiveBayesClassifier

The classifier marked with * is the abstract class that wraps around the
nltk.classify module.

For sentiment analysis, one can use the Naive Bayes classifier and train the system
with this classifier and textblob.en.sentiments.PatternAnalyzer. A simple
example is as follows:

from textblob.classifiers import NaiveBayesClassifier
from textblob.blob import TextBlob

from textblob.classifiers import NaiveBayesClassifier
from textblob.blob import TextBlob

train = [('I like this new tv show.', 'pos'),
 # similar train sentences with sentiments goes here]
test = [('I do not enjoy my job', 'neg'),
 # similar test sentences with sentiments goes here]
]

cl = NaiveBayesClassifier(train)
cl.classify("The new movie was amazing.") # shows if pos or neg

cl.update(test)

Classify a TextBlob
blob = TextBlob("The food was good. But the service was horrible. "
 "My father was not pleased.", classifier=cl)
print(blob)
print(blob.classify())

Statistical and Machine Learning

[256]

for sentence in blob.sentences:
 print(sentence)
 print(sentence.classify())

Here is the result that will be displayed when the preceding code is run:

pos

neg

The food was good.

pos

But the service was horrible.

neg

My father was not pleased.

pos

One can read the training data from a file either in the text format or the JSON
format. The sample data in the JSON file is shown here:

[
 {"text": "mission impossible three is awesome btw","label": "pos"},
 {"text": "brokeback mountain was beautiful","label":"pos"},
 {"text": " da vinci code is awesome so far","label":"pos"},
 {"text": "10 things i hate about you + a knight's tale * brokeback
mountain","label":"neg"},
 {"text": "mission impossible 3 is amazing","label":"pos"},

 {"text": "harry potter = gorgeous","label":"pos"},
 {"text": "i love brokeback mountain too:]","label":"pos"},
]

from textblob.classifiers import NaiveBayesClassifier
from textblob.blob import TextBlob
from nltk.corpus import stopwords

stop = stopwords.words('english')

pos_dict={}
neg_dict={}
with open('/Users/administrator/json_train.json', 'r') as fp:
 cl = NaiveBayesClassifier(fp, format="json")
print "Done Training"

rp = open('/Users/administrator/test_data.txt','r')
res_writer = open('/Users/administrator/results.txt','w')
for line in rp:
 linelen = len(line)

Chapter 6

[257]

 line = line[0:linelen-1]
 sentvalue = cl.classify(line)
 blob = TextBlob(line)
 sentence = blob.sentences[0]
 for word, pos in sentence.tags:
 if (word not in stop) and (len(word)>3 \
 and sentvalue == 'pos'):
 if pos == 'NN' or pos == 'V':
 pos_dict[word.lower()] = word.lower()
 if (word not in stop) and (len(word)>3 \
 and sentvalue == 'neg'):
 if pos == 'NN' or pos == 'V':
 neg_dict[word.lower()] = word.lower()

 res_writer.write(line+" => sentiment "+sentvalue+"\n")

 #print(cl.classify(line))
print "Lengths of positive and negative sentiments",len(pos_dict),
len(neg_dict)

Lengths of positive and negative sentiments 203 128

We can add more training data from the corpus and evaluate the accuracy of the
classifier with the following code:

test=[
("mission impossible three is awesome btw",'pos'),
("brokeback mountain was beautiful",'pos'),
("that and the da vinci code is awesome so far",'pos'),
("10 things i hate about you =",'neg'),
("brokeback mountain is a spectacularly beautiful movie",'pos'),
("mission impossible 3 is amazing",'pos'),
("the actor who plays harry potter sucks",'neg'),
("harry potter = gorgeous",'pos'),
('The beer was good.', 'pos'),
('I do not enjoy my job', 'neg'),
("I ain't feeling very good today.", 'pos'),
("I feel amazing!", 'pos'),
('Gary is a friend of mine.', 'pos'),
("I can't believe I'm doing this.", 'pos'),
("i went to see brokeback mountain, which is beautiful(",'pos'),
("and i love brokeback mountain too:]",'pos')
]

print("Accuracy: {0}".format(cl.accuracy(test)))

Statistical and Machine Learning

[258]

from nltk.corpus import movie_reviews

reviews = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
new_train, new_test = reviews[0:100], reviews[101:200]

cl.update(new_train)
accuracy = cl.accuracy(test + new_test)
print("Accuracy: {0}".format(accuracy))

Show 5 most informative features
cl.show_informative_features(4)

The output would be as follows:

Accuracy: 0.973913043478

Most Informative Features

contains(awesome) = True pos : neg = 51.9 : 1.0

contains(with) = True neg : pos = 49.1 : 1.0

contains(for) = True neg : pos = 48.6 : 1.0

contains(on) = True neg : pos = 45.2 : 1.0

First, the training set had 250 samples with an accuracy of 0.813 and later it added
another 100 samples from movie reviews. The accuracy went up to 0.974. We
therefore attempted to use different test samples and plotted the sample size versus
accuracy, as shown in the following graph:

Chapter 6

[259]

Viewing positive sentiments using word
clouds
Word clouds give greater prominence to words that appear more frequently in any
given text. They are also called tag clouds or weighted words. The significance of a
word's strength in terms of its number of occurrences visually maps to the size of its
appearance. In other words, the word that appears the largest in visualization is the
one that has appeared the most in the text.

Beyond showing the occurrences of the words in shapes and colors, word clouds
have several useful applications for social media and marketing as follows:

• Businesses could get to know their customers and how they view their
products. Some organizations have used a very creative way of asking their
fans or followers to post words about what that they think of their brand,
taking all these words to a word cloud to understand what the most common
impressions of their product brand are.

• Finding ways to know competitors by identifying a brand whose online
presence is popular. Creating a word cloud from their content to better
understand what words and themes hook the product target market.

In order to create a word cloud, one can write the Python code or use something
that already exists. Andreas Mueller from NYU Center for Data Science
created a word cloud in Python. This is pretty simple and easy to use.
The RemachineScript.ttf font file can be downloaded from
http://www.fonts101.com/fonts/view/Script/63827/Remachine_Script.

STOPWORDS consist of extremely common words, for example a, an, the, is, was,
at, in, and many more. The following code creates a word cloud using a list of
STOPWORDS in order to ignore them:

from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
from os import path

d = path.dirname("__file__")
text = open(path.join(d, '/Users/MacBook/kirthi/results.txt')).read()

wordcloud = WordCloud(
 font_path='/Users/MacBook/kirthi/RemachineScript.ttf',
 stopwords=STOPWORDS,
 background_color='#222222',
 width=1000,
 height=800).generate(text)

http://www.fonts101.com/fonts/view/Script/63827/Remachine_Script

Statistical and Machine Learning

[260]

In order to plot this, first set the figure size and use imshow() that will display the
word cloud as an image.

Open a plot of the generated image.
plt.figure(figsize=(13,13))

plt.imshow(wordcloud)
plt.axis("off")

plt.show()

To summarize, we will first extract the sentiments from the TextBlob example and
assume that the extracted results are in results.txt. Then, we will use these words
to visualize data as a word cloud with the matplotlib package.

The results of wordcloud are shown in the following image:

Chapter 6

[261]

k-nearest neighbors
The k-nearest neighbor (k-NN) classification is one of the easiest classification
methods to understand (particularly when there is little or no prior knowledge
about the distribution of the data). The k-nearest neighbor classification has a way
to store all the known cases and classify new cases based on a similarity measure
(for example, the Euclidean distance function). The k-NN algorithm is popular in its
statistical estimation and pattern recognition because of its simplicity.

For 1-nearest neighbor (1-NN), the label of one particular point is set to be the
nearest training point. When you extend this for a higher value of k, the label of a
test point is the one that is measured by the k nearest training points. The k-NN
algorithm is considered to be a lazy learning algorithm because the optimization is
done locally, and the computations are delayed until classification.

There are advantages and disadvantages of this method. The advantages are high
accuracy, insensitive to outliers, and no assumptions about data. The disadvantages
of k-NN is that it is computationally expensive and requires a lot of memory.

One of the following distance metrics could be used:

()

()

2

1

1
1

1

k

i i
i

k

i i
i

k qq
i i

i

Euclidean Distance x y

Manhattan Distance x y

Minkowski Distance x y

=

=

=

−

−

 −

∑

∑

∑

Let's consider an example where we are given a big basket of fruits with apples,
bananas, and pears only. We will assume that the apples were red apples, not green.
There is one characteristic that will distinguish these fruits from one another: color.
Apples are red, bananas are yellow, and pears are green. These fruits can also be
characterized by the weight of each. The following assumptions are made for the
purpose of illustrating this example:

The shape characteristic is categorized as follows:

• For an apple, the shape value lies between 1 and 3, whereas the weight lies
between 6 and 7 ounces

• For a pear, the shape value lies between 2 and 4, whereas the weight lies
between 5 and 6 ounces

• For a banana, the shape value lies between 3 and 5, whereas the weight lies
between 7 and 9 ounces

Statistical and Machine Learning

[262]

We have the data about the fruits in a basket as follows:

If we have an unlabeled fruit with a known weight and a color category, then
applying the k-nearest neighbor method (with any distance formula) will most likely
find the nearest k neighbors (if they are green, red, or yellow, the unlabeled fruit is
most likely a pear, apple, or banana respectively). The following code demonstrates
k-nearest neighbor algorithm using the shape and weight of fruits:

import csv
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt

count=0
x=[]
y=[]
z=[]

with open('/Users/myhome/fruits_data.csv', 'r') as csvf:
 reader = csv.reader(csvf, delimiter=',')
 for row in reader:
 if count > 0:
 x.append(row[0])

Chapter 6

[263]

 y.append(row[1])
 if (row[2] == 'Apple'): z.append('r')
 elif (row[2] == 'Pear'): z.append('g')
 else: z.append('y')
 count += 1

plt.figure(figsize=(11,11))

recs=[]
classes=['Apples', 'Pear', 'Bananas']
class_colours = ['r','g','y']
plt.title("Apples, Bananas and Pear by Weight and Shape", fontsize=18)

plt.xlabel("Shape category number", fontsize=14)
plt.ylabel("Weight in ounces", fontsize=14)

plt.scatter(x,y,s=600,c=z)

Statistical and Machine Learning

[264]

Let's pick four unlabeled fruits with their x and y values as A(3.5,6.2), B(2.75,6.2),
C(2.9, 7.6), and D(2.4, 7.2) with the following code:

from math import pow, sqrt
dist=[]
def determineFruit(xv, yv, threshold_radius):
 for i in range(1,len(x)):
 xdif=pow(float(x[i])-xv, 2)
 ydif=pow(float(y[i])-yv, 2)
 sqrtdist = sqrt(xdif+ydif))
 if (xdif < threshold_radius and
 ydif < thresholdradius and sqrtdist < threshold_radius):
 dist.append(sqrtdist)
 else:
 dist.append(99)
 pear_count=0
 apple_count=0
 banana_count=0
 for i in range(1,len(dist)):
 if dist[i] < threshold_radius:
 if z[i] == 'g': pear_count += 1
 if z[i] == 'r': apple_count += 1
 if z[i] == 'y': banana_count += 1
 if (apple_count >= pear_count and apple_count >= banana_count):
 return "apple"
 elif (pear_count >= apple_count and pear_count >= banana_count):
 return "pear"
 elif (banana_count >= apple_count and banana_count >= pear_count):
 return "banana"

dist=[]
determine = determineFruit(3.5,6.2, 1)
print determine

'pear'

Chapter 6

[265]

Logistic regression
As we have seen earlier, one problem with linear regression is that it tends to
underfit the data. This gives us the lowest mean-squared error for unbiased
estimators. With the underfit model, we will not get the best predictions. There are
some ways to reduce this mean-squared error by adding some bias to our estimator.

Logistic regression is one of the ways to fit models for data that have true or false
responses. Linear regression cannot predict all the probabilities directly, but logistic
regression can. In addition, the predicted probabilities can be calibrated better when
compared to the results from Naive Bayes.

For this discussion, by keeping our focus on the binary response, we can set the
value of 1 to true and 0 to false. The logistic regression model assumes that the
input variables can be scaled by the inverse log function; therefore, another way to
take a look at this is that the log of the observed y value can be expressed as a linear
combination of the n input variables of x, as shown in the following equation:

()
()
()
()

()

0
log
1

1

1
1 1

n

j j
j

z

z

z z

P x
b x z

P x

P x
e

P x

eP x
e e

=

−

= =
−

=
−

⇒ = =
+ +

∑

As the inverse of a logarithmic function is an exponential function, the expression
on the right-hand side appears to be a version of a sigmoid of the linear combination
of the variables of x. This means that the denominator can never be 1 (unless z is 0).
The value of P(x) is therefore strictly greater than 0 and less than 1, as shown in the
following code:

import matplotlib.pyplot as plt
import matplotlib
import random, math
import numpy as np
import scipy, scipy.stats
import pandas as pd

x = np.linspace(-10,10,100)
y1 = 1.0 / (1.0+np.exp(-x))
y2 = 1.0 / (1.0+np.exp(-x/2))
y3 = 1.0 / (1.0+np.exp(-x/10))

plt.title("Sigmoid Functions vs LineSpace")
plt.plot(x,y1,'r-',lw=2)

Statistical and Machine Learning

[266]

plt.plot(x,y2,'g-',lw=2)
plt.plot(x,y3,'b-',lw=2)
plt.xlabel("x")
plt.ylabel("y")
plt.show()

The following image shows a standard sigmoid function:

The following is an example showing probability of happy and sad.

()

() ()
1

11
1

z

z

z

eP happy
e

P sad P happy
e

=
+

= − =
+

Kaggle hosts all the machine learning competitions. It usually provides the training
and test data. A while ago, predicting the survivors of the Titanic was contested on
Kaggle based on the real data. The titanic_train.csv and titanic_test.csv files
are for training and testing purposes respectively. Using the linear_model package
from scikit-learn, which includes logistic regression, we can see that the following
code is a modified version of the author's version who won the contest:

Import numpy as np
import pandas as pd
import sklearn.linear_model as lm
import sklearn.cross_validation as cv
import matplotlib.pyplot as plt

Chapter 6

[267]

train = pd.read_csv('/Users/myhome/titanic_train.csv')
test = pd.read_csv('/Users/myhome/titanic_test.csv')
train[train.columns[[2,4,5,1]]].head()

data = train[['Sex', 'Age', 'Pclass', 'Survived']].copy()
data['Sex'] = data['Sex'] == 'female'
data = data.dropna()

data_np = data.astype(np.int32).values
X = data_np[:,:-1]
y = data_np[:,-1]

female = X[:,0] == 1
survived = y == 1

This vector contains the age of the passengers.
age = X[:,1]
We compute a few histograms.
bins_ = np.arange(0, 121, 5)
S = {'male': np.histogram(age[survived & ~female],
 bins=bins_)[0],
 'female': np.histogram(age[survived & female],
 bins=bins_)[0]}
D = {'male': np.histogram(age[~survived & ~female],
 bins=bins_)[0],
 'female': np.histogram(age[~survived & female],
 bins=bins_)[0]}
bins = bins_[:-1]
plt.figure(figsize=(15,8))
for i, sex, color in zip((0, 1),('male', 'female'), ('#3345d0',
'#cc3dc0')):
 plt.subplot(121 + i)
 plt.bar(bins, S[sex], bottom=D[sex], color=color,
 width=5, label='Survived')
 plt.bar(bins, D[sex], color='#aaaaff', width=5, label='Died',
alpha=0.4)
 plt.xlim(0, 80)
 plt.grid(None)

 plt.title(sex + " Survived")
 plt.xlabel("Age (years)")
 plt.legend()

(X_train, X_test, y_train, y_test) = cv.train_test_split(X, y, test_

Statistical and Machine Learning

[268]

size=.05)
print X_train, y_train

Logistic Regression from linear_model
logreg = lm.LogisticRegression();
logreg.fit(X_train, y_train)
y_predicted = logreg.predict(X_test)

plt.figure(figsize=(15,8));
plt.imshow(np.vstack((y_test, y_predicted)),
 interpolation='none', cmap='bone');
plt.xticks([]); plt.yticks([]);
plt.title(("Actual and predicted survival outcomes on the test set"))

The following is a linear regression plot showing male and female survivors
of Titanic:

Chapter 6

[269]

We have seen that scikit-learn has a good collection of functions for machine
learning. They also come with a few standard datasets, for example, the iris dataset
and the digits dataset for the classification and the Boston house prices the dataset
for regression. Machine learning is about learning the properties of data and
applying these properties to the new dataset.

Support vector machines
Support vector machines (SVM) are supervised learning methods that can be
applied to regression or classification. These learning methods are an extension of
nonlinear models, which empirically offers good performance and is successful in
many applications, such as bioinformatics, text, image recognition, and so on. These
methods are computationally inexpensive and easy to implement, but are prone to
underfitting and may have low accuracy.

Let's understand the goal of SVM. The goal here is to map or find a pattern between
x and y, where we want to perform the mapping from X → Y (x ϵ X and y ϵ Y).
Here, x can be an object, whereas y can be a label. Another simple example is that X
is an n-dimensional real value space, whereas y is a set of -1, 1.

A classic example of SVM is that when two pictures of a tiger and a human being are
given, X becomes the set of pixel images, whereas Y becomes the label that answers
the question, that is, "is this a tiger or a human being?" when an unknown picture is
given. Here is another example of the character recognition problem:

Statistical and Machine Learning

[270]

There are already many examples of SVM on the Internet, but here, we will show
how you can use scikit-learn (sklearn) to apply the visualization methods on
various machine learning algorithms that include SVM. In sklearn, among many
other things, the sklearn.svm package includes the following SVR models:

import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt

X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = (np.cos(X)+np.sin(X)).ravel()
y[::5] += 3 * (0.5 - np.random.rand(8))

svr_rbfmodel = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_linear = SVR(kernel='linear', C=1e3)
svr_polynom = SVR(kernel='poly', C=1e3, degree=2)
y_rbfmodel = svr_rbfmodel.fit(X, y).predict(X)
y_linear = svr_linear.fit(X, y).predict(X)
y_polynom = svr_polynom.fit(X, y).predict(X)

plt.figure(figsize=(11,11))
plt.scatter(X, y, c='k', label='data')
plt.hold('on')
plt.plot(X, y_rbfmodel, c='g', label='RBF model')
plt.plot(X, y_linear, c='r', label='Linear model')
plt.plot(X, y_polynom, c='b', label='Polynomial model')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()

Chapter 6

[271]

Principal component analysis
Principal component analysis (PCA) transforms the attributes of unlabeled data
using a simple rearrangement and transformation with rotation. Looking at the data
that does not have any significance, you can find ways to reduce dimensions this
way. For instance, when a particular dataset looks similar to an ellipse when run at
a particular angle to the axes, while in another transformed representation moves
along the x axis and clearly has signs of no variation along the y axis, then it may be
possible to ignore that.

k-means clustering is appropriate to cluster unlabeled data. Sometimes, one can use
PCA to project data to a much lower dimension and then apply other methods, such
as k-means, to a smaller and reduced data space.

Statistical and Machine Learning

[272]

However, it is very important to perform dimension reduction carefully because
any dimension reduction may lead to the loss of information, and it is crucial that
the algorithm preserves the useful part of the data while discarding the noise. Here,
we will motivate PCA from at least two perspectives and explain why preserving
maximal variability makes sense:

• Correlation and redundancy
• Visualization

Suppose that we did collect data about students on a campus that involves details
about gender, height, weight, tv time, sports time, study time, GPA, and so on. While
performing the survey about these students using these dimensions, we figured that
the height and weight correlation yields an interesting theory (usually, the taller the
student, the more weight due to the bone weight and vice versa). This may probably
not be the case in a bigger set of population (more weight does not necessarily mean
taller). The correlation can also be visualized as follows:

Chapter 6

[273]

import matplotlib.pyplot as plt
import csv

gender=[]
x=[]
y=[]
with open('/Users/kvenkatr/height_weight.csv', 'r') as csvf:
 reader = csv.reader(csvf, delimiter=',')
 count=0
 for row in reader:
 if count > 0:
 if row[0] == "f": gender.append(0)
 else: gender.append(1)
 height = float(row[1])
 weight = float(row[2])
 x.append(height)
 y.append(weight)
 count += 1

plt.figure(figsize=(11,11))
plt.scatter(y,x,c=gender,s=300)
plt.grid(True)
plt.xlabel('Weight', fontsize=18)
plt.ylabel('Height', fontsize=18)
plt.title("Height vs Weight (College Students)", fontsize=20)
plt.legend()

plt.show()

Statistical and Machine Learning

[274]

Using sklearn again with the preprocessing, datasets, and decomposition
packages, you can write a simple visualization code as follows:

from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

data = load_iris()
X = data.data

convert features in column 1 from cm to inches
X[:,0] /= 2.54
convert features in column 2 from cm to meters
X[:,1] /= 100
from sklearn.decomposition import PCA

def scikit_pca(X):

 # Standardize
 X_std = StandardScaler().fit_transform(X)

 # PCA
 sklearn_pca = PCA(n_components=2)
 X_transf = sklearn_pca.fit_transform(X_std)

 # Plot the data
 plt.figure(figsize=(11,11))
 plt.scatter(X_transf[:,0], X_transf[:,1], s=600, color='#8383c4',
alpha=0.56)
 plt.title('PCA via scikit-learn (using SVD)', fontsize=20)
 plt.xlabel('Petal Width', fontsize=15)
 plt.ylabel('Sepal Length', fontsize=15)
 plt.show()

scikit_pca(X)

Chapter 6

[275]

This plot shows PCA using the scikit-learn package:

Installing scikit-learn
The following command will help the installation of the scikit-learn package:

$ conda install scikit-learn

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/myhomedir/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 nose-1.3.7 | py27_0 194 KB

 setuptools-18.0.1 | py27_0 341 KB

Statistical and Machine Learning

[276]

 pip-7.1.0 | py27_0 1.4 MB

 scikit-learn-0.16.1 | np19py27_0 3.3 MB

 --

 Total: 5.2 MB

The following packages will be UPDATED:

 nose: 1.3.4-py27_1 --> 1.3.7-py27_0

 pip: 7.0.3-py27_0 --> 7.1.0-py27_0

 scikit-learn: 0.15.2-np19py27_0 --> 0.16.1-np19py27_0

 setuptools: 17.1.1-py27_0 --> 18.0.1-py27_0

Proceed ([y]/n)? y

Fetching packages ...

For anaconda, as the CLI is all via conda, one can install it using conda. For other ways,
by default, one would always attempt to use pip install. However, in any case, you
should check the documentation for installation. As all the scikit-learn packages are
pretty popular and have been around for a while, not much has changed. Now, in the
following section, we will explore k-means clustering to conclude this chapter.

k-means clustering
k-means clustering originated from signal processing and is a popular method in
data mining. The main intent of k-means clustering is to find some m points of a
dataset that can best represent the center of some m-regions in the dataset.

k-means clustering is also known as partition clustering. This means that one needs
to specify the number of clusters before any clustering process is started. You can
define an objective function that uses the sum of Euclidean distance between a data
point and its nearest cluster centroid. One can follow a systematic procedure to
minimize this objective function iteratively by finding a brand new set of cluster
centers that can lower the value of the objective function iteratively.

k-means clustering is a popular method in cluster analysis. It does not require any
assumptions. This means that when a dataset is given and a predetermined number
of clusters is labeled as k and when you apply the k-means algorithm, it minimizes
the sum-squared error of the distance.

Chapter 6

[277]

The algorithm is pretty simple to understand as follows:

• Given is a set of n points (x,y) and a set of k centroids
• For each (x,y), find the centroid that is closest to that point (which determines

the cluster this (x,y) belong to
• In each cluster, find the median and set this as the centroid of that cluster and

repeat this process

Let's take a look at a simple example (this can be applied to a large collection of points)
using k-means from the sklearn.cluster package. This example shows that with
minimal code, you can accomplish k-means clustering using the scikit-learn library:

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

import csv

x=[]
y=[]

with open('/Users/myhomedir/cluster_input.csv', 'r') as csvf:
 reader = csv.reader(csvf, delimiter=',')
 for row in reader:
 x.append(float(row[0]))
 y.append(float(row[1]))

data=[]
for i in range(0,120):
 data.append([x[i],y[i]])

plt.figure(figsize=(10,10))

plt.xlim(0,12)
plt.ylim(0,12)

plt.xlabel("X values",fontsize=14)
plt.ylabel("Y values", fontsize=14)

plt.title("Before Clustering ", fontsize=20)

plt.plot(x, y, 'k.', color='#0080ff', markersize=35, alpha=0.6)

kmeans = KMeans(init='k-means++', n_clusters=3, n_init=10)
kmeans.fit(data)

Statistical and Machine Learning

[278]

plt.figure(figsize=(10,10))

plt.xlabel("X values",fontsize=14)
plt.ylabel("Y values", fontsize=14)

plt.title("After K-Means Clustering (from scikit-learn)", fontsize=20)

plt.plot(x, y, 'k.', color='#ffaaaa', markersize=45, alpha=0.6)

Plot the centroids as a blue X
centroids = kmeans.cluster_centers_

plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=200,
 linewidths=3, color='b', zorder=10)

plt.show()

Plotting the data before clustering looks like this:

Chapter 6

[279]

In this example, if we set k=5 for five clusters, then this cluster remains the same,
but the other two clusters get split into two to obtain five clusters, as shown in the
following diagram:

Statistical and Machine Learning

[280]

Summary
This chapter illustrates popular machine learning algorithms with examples. A
brief introduction to linear and logistic regression was discussed. Using the college
acceptance criteria for linear regression and the Titanic survivors for logistic
regression, this chapter also illustrated how you can use the statsmodels.formula.
api, pandas, and sklearn.linear_model packages for these regression methods. In
both these examples, matplotlib has been used for visualization methods.

You learned about decision trees. Using the sports example (golf and tennis), we
looked at the decision tree using the sklearn and pydot packages. Further, we
discussed Bayes theorem and the Naïve Bayes classifier. Using the TextBlob package
and the movie reviews data from the nltk corpora, we looked at the example of a
word cloud visually using the wordcloud package.

You learned about the k-nearest neighbors algorithm. Here, we looked at an
example that classified fruits based on their weight and shape, visually separating
them by their color.

We also looked at the illustration of SVM in its simplest form with an example
of how to generate data from the sklearn.svm package and plotted the results
using the matplotlib library. You learned about PCA, how to determine the
redundancy, and eliminate some of the variables. We used the iris example with the
sklearn.preprocesing library to see how to visualize results. Finally, we looked
at k-means clustering with an example of random points using sklearn.cluster
as it is the simplest way you can achieve clustering (with minimal code). In the next
chapter, we will discuss various examples of bioinformatics, genetics, and network.

[281]

Bioinformatics, Genetics,
and Network Models

Scientific applications have multiple black boxes, and what goes inside these boxes
is complex and often thought of as magical. However, they all follow a systematic
set of protocols. These protocols are well known in the research community. For
instance, network models are widely used to represent complex structured data,
such as protein networks, molecular genetics, and chemical structures. Another
interesting field in the research community is bioinformatics. This is a growing field
that has lately generated a considerable amount of breakthrough in research.

In the field of biology, there are many different complex structures, such as DNA
sequences, protein structures, and so on. In order to compare, let's take a look at some
of the unknown elements within these structures. It is helpful to have a model that will
visually display them. Similarly, in any application of the graph theory or networks, it
is essentially beneficial to be able to visualize the complex graph structure.

Later in this chapter, we will discuss some interesting examples, such as social
networks, directed graph examples in real life, data structures appropriate for these
problems, and network analysis. For the purposes of demonstrating examples, here
we will use specific libraries, such as metaseq, NetworkX, matplotlib, Biopython, and
ETE toolkit, covering the following topics:

• Directed graphs and multigraphs
• The clustering coefficient of graphs
• Analysis of social networks
• The planar graph test and the directed acyclic graph test
• Maximum flow and minimum cut
• A genetic programming example
• Stochastic block models and random graphs

Bioinformatics, Genetics, and Network Models

[282]

Directed graphs and multigraphs
First, we will review directed graphs and multigraphs. Later, we will figure out the
options in Python to generate them. Also, we will take a look at an example where
you may require directed graphs. Before we conceptually describe graphs and
directed graphs, let's take a look at the different ways to understand when you can
use graphs and directed graphs.

Computers that are connected to each other within a university campus area can be
considered a connected graph, where each computer in this connection is viewed as a
node or a vertex. The connected path is an edge, and in some cases, if there is only a
one-way connection, then it is a directed graph. For instance, a very restricted federal
network will not allow any connection from outside to go in, but will probably not
restrict the other way around. The following are simple graphs showing distances
between places:

In the preceding examples, the graph with city labels A through F is a directed
graph, and the other one on the right-hand side is an undirected graph. In the
directed graph, if the arrow points both ways, there is a way to go both ways,
whereas in the undirected graph, both ways are assumed. If we were to represent
these graphs using some data structure, what would that be? Also, if we were to plot
these kinds of graphs, which libraries do we use and how do we accomplish it?

Chapter 7

[283]

Storing graph data
Graph data is usually represented as an adjacency matrix, unless it is sparse. An
adjacency matrix is a matrix that has V2 rows, assuming that the graph has a V
vertex or a node. For example, for the two graphs shown in the preceding figure,
the adjacency matrix looks similar to the following tables:

A B C D E F
A 0 25 26
B 0 85 5 10
C 26 85 0 10
D 0 11
E 9 0 88
F 11 88 0

Chicago Boston New
York

Wash
DC

Miami Dallas

Chicago 0 1613 1145
Boston 1613 0 338 725
New York 338 0 383 2145
Wash DC 1145 725 383 0 1709 2113
Miami 2145 1709 0 2161
Dallas 2113 2161 0

For undirected graphs, by symmetry, it is enough to use half the storage (no need to
store all the information from A to B and B to A). The blank entries show that there is
not enough data about the distance. If the matrix is sparse, where most of the entries
are not filled, then you can store it as a list of lists. Fortunately, there are convenient
methods in scipy to deal with sparse matrices. The following code is only for the
first graph shown in the preceding figure:

import scipy.sparse as sparse

matrixA = sparse.lil_matrix((6,6))

matrixA = sparse.lil_matrix([[0,25,26,0,0,0], [0,0,85,5,10,0],
 [26,85,0,0,0,10], [0,0,0,0,0,11],[0,0,0,9,0,88],[0,0,0,11,88,0]])
print matrixA
(0, 1) 25
(0, 2) 26

Bioinformatics, Genetics, and Network Models

[284]

(1, 2) 85
(1, 3) 5
(1, 4) 10
(2, 0) 26
(2, 1) 85
(2, 5) 10
(3, 5) 11
(4, 3) 9
(4, 5) 88
(5, 3) 11
(5, 4) 88

Displaying graphs
The preceding example only shows how to represent the graph using the scipy
library (the scipy.sparse package in particular). However, in the following section,
we will see how to display these graphs. Although there are numerous Python
packages that you can choose from to display graphs, the top three popular choices
among these are NetworkX, igraph (from igraph.org), and graph-tool. Let's take a
look at an example of graph display using these three packages.

igraph
Originally, igraph was intended for R users, but later, the Python version was
added. For smaller graphs, you can add the vertices and edges and display them
very easily, but in most cases, graphs are not small; therefore, igraph offers
functions that reads the data of a graph from files conveniently and displays it.

Currently, igraph offers several formats, such as dimacs, dl, edgelist, graml,
graphdb, gml, lgl, ncol, and pajek. GraphML is an XML-based file format and can
be used for large graphs, and the NCOL graph format is suited for large graphs with
a weighted edge list. The LGL graph format can also be used for a large graph layout
with weighted edges. Most others use a simple textual format. Only the DL file
format is fully supported by igraph, and for all others, igraph only supports partial
file formats.

Similar to many other Python packages, the good part about igraph is that it offers
very convenient ways to configure and display graphs and stores them in the SVG
format so that they can be embedded in an HTML file.

igraph.org

Chapter 7

[285]

Let's take a look at one example that involves the pajek format (for more details on
pajek, you can refer to http://vlado.fmf.uni-lj.si/pub/networks/pajek/).
There are many other parameters. A few among these are labelcolor, vertexsize,
and radius for some vertex shapes. We will see two examples here. The first
example has assigned labels and edges for a small graph, whereas the second
example reads the data of a graph from a file and displays it. The following example
shows a labeled graph using the igraph package:

from igraph import *

vertices = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]

edges = [(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,1),
 (1,8), (8,2),(2,4),(4,9),(9,5),(5,7),(7,0)]

graphStyle = { 'vertex_size': 20}
g = Graph(vertex_attrs={"label": vertices}, edges=edges,
directed=True)
g.write_svg("simple_star.svg", width=500, height=300, **graphStyle)

There are 10 vertices in the star graph that forms five triangles and a pentagon.
Also, there are 15 edges because the five triangles complete the set of edges. It is a
very simple graph, where each edge is defined by the associated vertex numbers
that starts from zero. The following labeled graph plot is the result of the preceding
Python example:

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Bioinformatics, Genetics, and Network Models

[286]

This second example illustrates not only how to read the graph data from a file, but also
how to save the plot in the SVG format so that you can embed the SVG data in HTML:

from igraph import read

g=read("ragusa.net",format="pajek")

g.vs["color"]="#3d679d"
g.es["color"]="red"

graphStyle={ 'vertex_size': 12, 'margin': 6}
#graphStyle["layout"]=g.layout("fr") # optional

g.write_svg("ragusa_graph.svg", width=600, height=600,**graphStyle)

The pajek format file is read using the read function from igraph. When you set up
the edge and the vertex color, you can generate the SVG format of the graph. There
are several different layouts that igraph offers that you can experiment with. The
following plot shows a graph that was created using the igraph package by reading
the graph data from a file:

Chapter 7

[287]

The graph data in the pajek format was obtained from the pajek networks website
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm) from a
file named Rgausa16.net. Once a data file from here is downloaded, you can use it
in a similar way and display the graph, as shown in the preceding image. If we use
the tinamatr.net data and set the circular layout, then the graph would appear in a
circular layout, as shown in the following code:

graphStyle["layout"]=g.layout("circle")

NetworkX
One of the reasons this Python package is called NetworkX is because it is a library
for network and graph analysis. From finding the shortest path from a source node
or vertex to the destination node or vertex, finding the degree distribution to figure
the nodes that are similar to the junction, and finding the clustering coefficient of a
graph, there are several ways to perform a graph analysis.

The study of graphs has been around for a while and is applicable in neurobiology,
chemistry, social network analysis, page ranks, and many more such interesting
areas today. Social networks are assortative truly in the sense of joining similar
affiliated members, and biological networks are the opposite. In other words, the
friendship between Facebook users or the academicians (who are coauthors) can be
visualized easily via graphs. Python packages offer users many options. Often, users
choose several of these to combine the best of their individual functionalities.

NetworkX offers graph building and analysis capabilities. You can read and write
network data in standard and nonstandard data formats, generate graph networks,
analyze their structure, and build several models. The following Python code shows
how one can create a directed graph by just using matplotlib:

import matplotlib.pyplot as plt
import pylab
from pylab import rcParams

import networkx as nx
import numpy as np

set the graph display size as 10 by 10 inches
rcParams['figure.figsize'] = 10, 10

G = nx.DiGraph()

Add the edges and weights
G.add_edges_from([('K', 'I'),('R','T'),('V','T')], weight=3)
G.add_edges_from([('T','K'),('T','H'),('I','T'),('T','H')], weight=4)
G.add_edges_from([('I','R'),('H','N')], weight=5)
G.add_edges_from([('R','N')], weight=6)

http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm

Bioinformatics, Genetics, and Network Models

[288]

these values to determine node colors
val_map = {'K': 1.5, 'I': 0.9, 'R': 0.6, 'T': 0.2}
values = [val_map.get(node, 1.0) for node in G.nodes()]

edge_labels=dict([((u,v,),d['weight'])
 for u,v,d in G.edges(data=True)])

#set edge colors
red_edges = [('R','T'),('T','K')]
edge_colors = ['green' if not edge in red_edges else 'red' for edge in
G.edges()]

pos=nx.spring_layout(G)

nx.draw_networkx_edges(G,pos,width=2.0,alpha=0.65)
nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)

nx.draw(G,pos, node_color = values, node_size=1500,
 edge_color=edge_colors, edge_cmap=plt.cm.Reds)

pylab.show()

The following diagram illustrates how you can use NetworkX to configure the edge
weights and the visual aesthetics of a graph. Among several approaches of displaying
a directed graph, NetworkX took a different approach by showing a thick bar at the
end, rather than using an arrow symbol that determines the direction of a graph.

Chapter 7

[289]

When there is a scientific study that involves a collection of elements that represent
things or people, the association between them is better represented in the form
of graphs, where these elements are vertices or nodes. In most of these cases, the
centrality visually identifies nodes that are significantly important. Python packages
(such as NetworkX) have many useful functions for graph analysis that includes
finding cliques in the graph. For smaller graphs, it is easier to visually inspect
intricate details, but for larger graphs, one would want to recognize a pattern of
behavior, such as isolated cluster groups.

Typically, the labels for nodes and edges depend on what you are trying to display
as a graph. For instance, protein interaction can be displayed as a graph. A more
complex example will be a sequence space graph, where a graph node represents
a protein sequence, whereas an edge represents a single DNA mutation. It would
be easier for scientists to zoom into these images to see patterns, as shown in
the following image. This example does not use Python and uses interactive
programming to zoom and view the intricate details.

The preceding image has been taken from
http://publications.csail.mit.edu/.

http://publications.csail.mit.edu/

Bioinformatics, Genetics, and Network Models

[290]

Sometimes, you would want to highlight different routes on a map. For instance, if
a road map is being displayed and you have to display the routes that the Olympic
cycling team is going to follow this year on this map, you can do something similar
to the following code:

import networkx as nx
from pylab import rcParams

set the graph display size as 10 by 10 inches
rcParams['figure.figsize'] = 10, 10

def genRouteEdges(r):
 return [(r[n],r[n+1]) for n in range(len(r)-1)]

G=nx.Graph(name="python")
graph_routes = [[11,3,4,1,2], [5,6,3,0,1], [2,0,1,3,11,5]]
edges = []
for r in graph_routes:
 route_edges = genRouteEdges(r)
 G.add_nodes_from(r)
 G.add_edges_from(route_edges)
 edges.append(route_edges)

print("Graph has %d nodes with %d edges" %(G.number_of_nodes(),
G.number_of_edges()))

pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G,pos=pos)
nx.draw_networkx_labels(G,pos=pos)

colors = ['#00bb00', '#4e86cc', 'y']
linewidths = [22,14,10]

for ctr, edgelist in enumerate(edges):
 nx.draw_networkx_edges(G,pos=pos,edgelist=edgelist,
 edge_color = colors[ctr], width=linewidths[ctr])

Using convenient methods from NetworkX for a specific route, you can easily highlight
the routes with different colors and line widths, as shown in the following image:

Chapter 7

[291]

As shown in the preceding image, by controlling the highlights of routes, you can
recognize different routes on a map.

Additionally, from the shortest path to degree distribution to clustering coefficients,
NetworkX offers a variety of ways to perform a graph analysis. One simple way to
see the shortest path is shown in the following code:

import networkx as nx

g = nx.Graph()
g.add_edge('m','i',weight=0.1)
g.add_edge('i','a',weight=1.5)
g.add_edge('m','a',weight=1.0)
g.add_edge('a','e',weight=0.75)
g.add_edge('e','h',weight=1.5)
g.add_edge('a','h',weight=2.2)

print nx.shortest_path(g,'i','h')
nx.draw(g)

#printed shortest path as result
['i', 'a', 'h']

Bioinformatics, Genetics, and Network Models

[292]

One more example using NetworkX (particularly reading the data in the
GML format) is the "coappearance of characters in the Les Miserables novel",
which we downloaded from the datasets available from gephi.org at
https://gephi.org/datasets/lesmiserables.gml.zip.

The preceding plot is the result of the program that reads the association of
characters from Les Miserables and creates a network diagram, as shown in the
following code:

import networkx as nx
from pylab import rcParams
rcParams['figure.figsize'] = 12, 12

G = nx.read_gml('/Users/kvenkatr/Downloads/lesmiserables.gml',
relabel=True)
G8= G.copy()
dn = nx.degree(G8)
for n in G8.nodes():
 if dn[n] <= 8:
 G8.remove_node(n)
pos= nx.spring_layout(G8)

gephi.org
https://gephi.org/datasets/lesmiserables.gml.zip

Chapter 7

[293]

nx.draw(G8, node_size=10, edge_color='b', alpha=0.45, font_size=9,
pos=pos)
labels = nx.draw_networkx_labels(G8, pos=pos)

Graph-tool
Among the three packages, igraph, networkx, and graph-tool, the graph-tool
package is the hardest to install, especially on a Mac OS. Graph-tool has
many convenient functions and is also considered very efficient in terms of
centrality-related algorithms. This includes k-core, PageRank, minimum spanning
tree, and the single source shortest path. The comparison table is available at
https://graph-tool.skewed.de/performance. The module that includes
centrality-related algorithms as mentioned earlier is graph_tool.centrality.

import graph_tool.all as gtool

gr = gtool.collection.data["polblogs"]
gr = gtool.GraphView(gr, vfilt=gtool.label_largest_component(gr))

cness = gtool.closeness(gr)

gtool.graph_draw(gr, pos=gr.vp["pos"], vertex_fill_color=cness,
 vertex_size=gtool.prop_to_size(cness, mi=5, ma=15),
 vorder=cness, vcmap=matplotlib.cm.gist_heat,
 output="political_closeness.pdf")

https://graph-tool.skewed.de/performance

Bioinformatics, Genetics, and Network Models

[294]

The prefix centra in the "centrality" word truly means that some entity (in this
context, this would be a node or vertex) is central. Also, many other entities are
connected to the central entity. So, we can ask a reasonable question, that is, what
are the characteristics that makes a vertex important? In the graph_tool centrality
module, there are nine centrality-related algorithms that are offered, and PageRank is
one among these, in addition to closeness.

PageRank
The graph_tool.centrality .pagerank() function generates the PageRank of the
v vertex. Most people who know Google's PageRank understand how the measure
works. In a nutshell, it is a way to measure how important web page A is (in terms of
how many outside web sites B are depending on web page A and also on how many
web pages A depends on – in graph theory they are called in-degree and out-degree).
In addition to these, Google applies many other external factors to rank a web page.
In the preceding example, if we replace the line that finds closeness by PageRank
as follows:

pagerank = gtool.pagerank(gr)

This should generate a graph with the emphasis on PageRank. In addition to the
centrality measure, there is one other factor called the clustering coefficient of a graph.

The clustering coefficient of graphs
The clustering coefficient of a node or a vertex in a graph depends on how close the
neighbors are so that they form a clique (or a small complete graph), as shown in the
following diagram:

Chapter 7

[295]

There is a well known formula to cluster coefficients, which looks pretty heavy
with mathematical symbols. However, to put it in simple words, take a look at the
following equation:

()
()

2
1

_

i
b b

links to the nodei
C

n n
where n bis the number of neighbors to nodei

×
=

−

This involves keeping track of the links at every vertex and calculating the clustering
index at every vertex, where the neighbor of a node in the most obvious sense is a node
that is only one link away from that node. Clustering index calculation is shown here:

()
()

2
1

_

i
b b

links to the nodei
C

n n
where n bis the number of neighbors to nodei

×
=

−

Bioinformatics, Genetics, and Network Models

[296]

The following code illustrates how you can show the characters of the Les Miserables
novel and how each character is associated or connected to other characters:

import networkx as nx
from pylab import rcParams
rcParams['figure.figsize'] = 12, 12

G = nx.read_gml('/Users/kvenkatr/Downloads/lesmiserables.gml',
relabel=True)
G8= G.copy()

dn = nx.degree(G8)

for n in G8.nodes():
 if dn[n] <= 8:
 G8.remove_node(n)

pos= nx.spring_layout(G8)
nx.draw(G8, node_size=10, edge_color='b', alpha=0.45, font_size=9,
pos=pos)
labels = nx.draw_networkx_labels(G8, pos=pos)

def valuegetter(*values):
 if len(values) == 1:
 item = values[0]
 def g(obj):
 return obj[item]
 else:
 def g(obj):
 return tuple(obj[item] for item in values)
 return g

def clustering_coefficient(G,vertex):
 neighbors = G[vertex].keys()
 if len(neighbors) == 1: return -1.0
 links = 0
 for node in neighbors:
 for u in neighbors:
 if u in G[node]: links += 1
 ccoeff=2.0*links/(len(neighbors)*(len(neighbors)-1))
 return links, len(neighbors),ccoeff

def calculate_centrality(G):
 degc = nx.degree_centrality(G)
 nx.set_node_attributes(G,'degree_cent', degc)

Chapter 7

[297]

 degc_sorted = sorted(degc.items(), key=valuegetter(1),
reverse=True)
 for key, value in degc_sorted[0:10]:
 print "Degree Centrality:", key, value
 return G, degc

print "Valjean", clustering_coefficient(G8,"Valjean")
print "Marius", clustering_coefficient(G8,"Marius")
print "Gavroche", clustering_coefficient(G8,"Gavroche")
print "Babet", clustering_coefficient(G8,"Babet")
print "Eponine", clustering_coefficient(G8,"Eponine")
print "Courfeyrac", clustering_coefficient(G8,"Courfeyrac")
print "Comeferre", clustering_coefficient(G8,"Combeferre")
calculate_centrality(G8)

There are two results of the preceding code; the first part is the textual output that
gets printed, whereas the second part is the network diagram that gets plotted, as
shown in the following code and diagram:

#Text Results printed
Valjean (82, 14, 0.9010989010989011)
Marius (94, 14, 1.032967032967033)
Gavroche (142, 17, 1.0441176470588236)
Babet (60, 9, 1.6666666666666667)
Eponine (36, 9, 1.0)
Courfeyrac (106, 12, 1.606060606060606)
Comeferre (102, 11, 1.8545454545454545)

Degree Centrality: Gavroche 0.708333333333
Degree Centrality: Valjean 0.583333333333
Degree Centrality: Enjolras 0.583333333333
Degree Centrality: Marius 0.583333333333
Degree Centrality: Courfeyrac 0.5
Degree Centrality: Bossuet 0.5
Degree Centrality: Thenardier 0.5
Degree Centrality: Joly 0.458333333333
Degree Centrality: Javert 0.458333333333
Degree Centrality: Feuilly 0.458333333333

Bioinformatics, Genetics, and Network Models

[298]

The graph results are shown here below.

Clearly among all, so far we have found that Comeferre happens to have a larger
clustering coefficient (0.927). Often, when we plot a large graph in two dimensions, it
is not easy to visually see the clustering coefficient.

Analysis of social networks
Accessing data from social networks, such as LinkedIn, Facebook, or Twitter,
used to be much simpler and easier several years ago. Now, most of the APIs have
restrictions. Also, the accessing methods are a little bit more involved. First, one
has to get authentication (which used to be the case even earlier) and then use
methods that access either friends or connections. We have only chosen Twitter for
demonstrating the analysis of social network data here, but you can also find other
social media data in a similar way.

Chapter 7

[299]

In order to access Twitter data, as we noticed from the previous chapters (when we
discussed word clouds), you have to get authentication keys to access their APIs.
There are four keys: CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN_KEYS, and
ACCESS_TOKEN_SECRET. Once these credentials are verified via Python successfully,
you can call GetFriends() and GetFollowers() to get the list of friends and
followers. There are many packages available in Python to access Twitter data. So, it is
very confusing which ones to use. We have used tweepy in past examples. Here, in the
following code, we will use Python-Twitter because it has convenient modules to get
data, summarize it, store it in cPickle, and then visualize it.

import cPickle
import os
import twitter # https://github.com/ianozsvald/python-twitter

Usage:
$ # setup CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN_KEY, ACCESS_
TOKEN_SECRET
as environment variables
$ python get_data.py # downloads friend and follower data to ./data

Errors seen at runtime:
raise URLError(err)
urllib2.URLError: <urlopen error [Errno 104] Connection reset by
peer>

DATA_DIR = "data" # storage directory for friend/follower data

list of screen names that we'll want to analyze
screen_names = ['KirthiRaman', 'Lebron']

def get_filenames(screen_name):
 """Build the friends and followers filenames"""
 return os.path.join(DATA_DIR, "%s.friends.pickle" % (screen_
name)), os.path.join(DATA_DIR, "%s.followers.pickle" % (screen_name))

if __name__ == "__main__":

 # deliberately stripped my keys
 t = twitter.Api(consumer_key='k7atkBNgoGrioMS...',
 consumer_secret='eBOx1ikHMkFc...',
 access_token_key='8959...',
 access_token_secret='O7it0...');

 print t.VerifyCredentials()

 for screen_name in screen_names:

Bioinformatics, Genetics, and Network Models

[300]

 fr_filename, fo_filename = get_filenames(screen_name)
 print "Checking for:", fr_filename, fo_filename
 if not os.path.exists(fr_filename):
 print "Getting friends for", screen_name
 fr = t.GetFriends(screen_name=screen_name)
 cPickle.dump(fr, open(fr_filename, "w"), protocol=2)
 if not os.path.exists(fo_filename):
 print "Getting followers for", screen_name
 fo = t.GetFollowers(screen_name=screen_name)
 cPickle.dump(fo, open(fo_filename, "w"), protocol=2)

The friends and followers information is dumped in cPickle. By running the following
commands (as explained in https://github.com/ianozsvald/python-twitter),
you can run the following code:

python get_data.py
python summarise_data.py
python draw_network.py

The planar graph test
Planar graphs are graphs that can be drawn on a plane without any intersecting
edges. In order to draw them, you have to start from a vertex, draw from edge to
edge, and keep track of the faces as the drawing continues. According to Kuratowski,
a graph is planar if it does not contain a subgraph that is part of the complete graph
on five vertices.

https://github.com/ianozsvald/python-twitter

Chapter 7

[301]

The following is a simple example of a planar graph:

Euler's formula connects a number of vertices, edges, and faces. According to Euler's
formula, if a finite and connected planar graph is drawn in the plane without any
intersecting edge, and if v represents the number of vertices, e represents the number
of edges, and f represents the number of faces, then v − e + f = 2.

Besides Mayavi, NetworkX, and planarity, you can use the gamera package to
create and display graphs. However, gamera is only available on Windows. We have
a simple example here that uses planarity and NetworkX:

import planarity
import networkx as nx

complete graph of 8 nodes, K8
G8=nx.complete_graph(8)

K8 is not planar
print(planarity.is_planar(G8))

Will display false because G8 is not planar subgraph
K=planarity.kuratowski_subgraph(G8)

Will display the edges
print(K.edges())

#Will display the graph
nx.draw(G8)

False
[(0, 4), (0, 5), (0, 7), (2, 4), (2, 5), (2, 7), (3, 5), (3, 6), (3,
7), (4, 6)]

Bioinformatics, Genetics, and Network Models

[302]

This example illustrates that the following complete graph of eight nodes is not planar:

The preceding diagram shows that a planar graph with only eight nodes could look
messy, so a graph with more nodes will look more complex.

The directed acyclic graph test
Let's take a look at what a directed acyclic graph (DAG) is first. A directed acyclic
graph is a graph that is directed, which means that the edges from a given vertex A
to B will be directed in a particular direction (A->B or B->A) and is acyclic. Acyclic
graphs are those graphs that are not cyclic, which also means that there is no cycle
(they don't go around in cycle).

What is a good example of a DAG? A tree or even a trie. We all know what they
are because it was discussed in one of the previous chapters of this book. A good
example of using trie is to store the words of dictionaries and have a spell check
algorithm. We will not go further into details about this, but in the context of
visualization and to check whether a graph is acyclic or not, we will determine the
Python packages that offer methods to test whether a graph is acyclic or not.

Chapter 7

[303]

NetworkX has a convenient function called is_directed_acyclic_graph (Graph).
Here is an example of a graph that is acyclic; using this function, we will test to see
whether it returns true:

import matplotlib.pyplot as plt
import pylab
from pylab import rcParams

import networkx as nx
import numpy as np

set the graph display size as 10 by 10 inches
rcParams['figure.figsize'] = 10, 10

G = nx.DiGraph()

Add the edges and weights
G.add_edges_from([('K', 'I'),('R','T'),('V','T')], weight=3)
G.add_edges_from([('T','K'),('T','H'),('T','H')], weight=4)
these values to determine node colors
val_map = {'K': 1.5, 'I': 0.9, 'R': 0.6, 'T': 0.2}
values = [val_map.get(node, 1.0) for node in G.nodes()]

edge_labels=dict([((u,v,),d['weight'])
 for u,v,d in G.edges(data=True)])

#set edge colors
red_edges = [('R','T'),('T','K')]
edge_colors = ['green' if not edge in red_edges else 'red' for edge in
G.edges()]

pos=nx.spring_layout(G)

nx.draw_networkx_edges(G,pos,width=2.0,alpha=0.65)
nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)

nx.draw(G,pos, node_color = values, node_size=1500,
 edge_color=edge_colors, edge_cmap=plt.cm.Reds)

pylab.show()
nx.is_directed_acyclic_graph(G)

True

Bioinformatics, Genetics, and Network Models

[304]

The acyclic graph from this example is displayed in the following diagram:

Maximum flow and minimum cut
A flow network is a directed graph from a source to a destination with capacities
assigned along each edge. Just as we can model a street map as a directed graph
in order to find the shortest path from one place to another, we can also interpret a
directed graph as a "flow network". Some examples of flow networks are liquid flowing
through pipes, current passing through electrical networks, and data transferring
through communication networks. The following is an example graph flow diagram:

The edges of the G graph are expected to have a capacity that indicates how much
flow the edge can support. If this capacity is not present, then it is assumed to have
infinite capacity. The maximum flow of the flow network G here is 4.

Chapter 7

[305]

In the NetworkX package, the maximum_flow_value(Graph, from, to) function
evaluates the maximum flow of a graph, as shown in the following code:

import networkx as nx
G = nx.DiGraph()
G.add_edge('p','y', capacity=5.0)
G.add_edge('p','s', capacity=4.0)
G.add_edge('y','t', capacity=3.0)
G.add_edge('s','h', capacity=5.0)
G.add_edge('s','o', capacity=4.0)

flow_value = nx.maximum_flow_value(G, 'p', 'o')

print "Flow value", flow_value
nx.draw(G, node_color='#a0cbe2')

Flow value 4.0

The graph from the preceding code is being tested for maximum_flow_value, and the
display of this graph is shown in the following diagram:

Bioinformatics, Genetics, and Network Models

[306]

A genetic programming example
CnvKit is also available, but it is a CLI and not easy to use. In addition to this, PyCogent,
which was developed by researchers at NCBI from the National Institutes of Health
(NIH), is a useful tool. However, they are not easy to use. We will use a package called
Bio (https://github.com/biopython/biopython/tree/master/Bio) and libraries
from Python programming for biology.

In general, every experiment, research project, or study has sequence as the key object
that is used in bioinformatics. As a mathematician, my visual thought of a sequence
relates to a string with certain patterns (such as ATAGCATATGCT). To begin with, here
is a simple example that shows a sequence, GC ratio, and codons:

from Bio.Seq import Seq
from Bio.Alphabet import IUPAC
from Bio.SeqUtils import GC

def DNACodons(seq):
 end = len(seq) - (len(seq) % 3) – 1
 codons = [seq[i:i+3] for i in range(0, end, 3)]
 return codons DNACodons(my_seq)
my_seq = Seq('GGTCGATGGGCCTAGCAGCATATCTGAGC', IUPAC.unambiguous_dna)
print "GC Result==>", GC(my_seq)

DNACodons(my_seq)
[Seq('GGT', IUPACUnambiguousDNA()),
 Seq('CGA', IUPACUnambiguousDNA()),
 Seq('TGG', IUPACUnambiguousDNA()),
 Seq('GCC', IUPACUnambiguousDNA()),
 Seq('TAG', IUPACUnambiguousDNA()),
 Seq('CAG', IUPACUnambiguousDNA()),
 Seq('CAT', IUPACUnambiguousDNA()),
 Seq('ATC', IUPACUnambiguousDNA()),
 Seq('TGA', IUPACUnambiguousDNA())]

GC Result==> 58.6206896552

https://github.com/biopython/biopython/tree/master/Bio

Chapter 7

[307]

Let's consider two molecular structures, collect certain atoms, and try to plot
their positions with their Phi and Psi angles. The allowed molecular structures
are DNA, RNA, and protein. Using the Modelling and Maths modules from the
PythonForBiology library, we will attempt to plot these structures side by side:

The two plots uses data from two files: testTransform.pdb and 1A12.pub. This
contains the regulator of chromosome condensation (RCC1) of humans, as shown in
the following code:

bio_1.py
#
import matplotlib.pyplot as plt
from phipsi import getPhiPsi
from Modelling import getStructuresFromFile

def genPhiPsi(fileName):
 struc = getStructuresFromFile(fileName)[0]

Bioinformatics, Genetics, and Network Models

[308]

 phiList = []
 psiList = []
 for chain in struc.chains:
 for residue in chain.residues[1:-1]:
 phi, psi = getPhiPsi(residue)
 phiList.append(phi)
 psiList.append(psi)

 return phiList, psiList

if __name__ == '__main__':

 phiList = []
 psiList = []
 phiList, psiList = genPhiPsi('examples/testTransform.pdb')

 phiList2 = []
 psiList2 = []
 phiList2, psiList2 = genPhiPsi('examples/1A12.pdb')

 plt.figure(figsize=(12,9))
 f, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(12,9))

 ax1.scatter(phiList, psiList, s=90, alpha=0.65)
 ax1.axis([-160,160,-180,180])
 ax1.set_title('Ramachandran Plot for Two Structures')
 ax2.scatter(phiList2, psiList2, s=60, alpha=0.65, color='r')
 plt.show()

The library used in this example will be available with the code examples in a file
called PythonForBiology.zip. You can extract it and run this code via a command
line, assuming that you have numpy and matplotlib installed.

Stochastic block models
In the previous chapters, we have already discussed stochastic models using the
Monte Carlo simulation. So far, we have been discussing graphs and networks, so
purely from that context, a community structure can also be viewed as a graph.
In such graphs, nodes often cluster together as densely connected subgraphs. In
general, the probability of an edge between two such nodes is a function of the
cluster to which the node belongs.

Chapter 7

[309]

A popular choice for such a network partition is the stochastic block model. A simple
definition of a stochastic block model is characterized by a scalar n. This represents
the number of groups or the number of clusters and a matrix that shows the nodes
and their connections. For a more rigorous mathematical definition, you can refer to
a statistics book.

Among a few Python packages that support stochastic models, PyMC is one
that offers Markov Chain Monte Carlo (MCMC) and three building blocks
for probability models, such as stochastic, deterministic, and potential. In
addition to PyMC, there is another interesting package called StochPy for
Stochastic Modeling. The SSA module in particular offers convenient methods
(http://stochpy.sourceforge.net/examples.html). The first example uses pymc
with a normal distribution to display a composite plot and another with an MCMC
model, as shown in the following code:

import pymc as mc

from pylab import rcParams

set the graph display size as 10 by 10 inches
rcParams['figure.figsize'] = 12, 12
z = -1.

#instead of 0 and 1, some unknown mu and std goes here:
X = mc.Normal("x", 0, 1, value = -3.)

#Here below, one can place unknowns here in place of 1, 0.4
@mc.potential
def Y(x=X, z=z):
 return mc.lognormal_like(z-x, 1, 0.4,)

mcmc = mc.MCMC([X])
mcmc.sample(10000,500)
mc.Matplot.plot(mcmc)

http://stochpy.sourceforge.net/examples.html

Bioinformatics, Genetics, and Network Models

[310]

The example shown here is to illustrate how you can display a complex model in
very few lines of code:

There are examples in PyMC for disaster_model, and with MCMC and 50,000
simple iterations, the model display appears as follows:

from pymc.examples import disaster_model
from pymc import MCMC

from pylab import hist, show, rcParams

rcParams['figure.figsize'] = 10, 10

M = MCMC(disaster_model)
M.sample(iter=65536, burn=8000, thin=16)

hist(M.trace('late_mean')[:], color='#b02a2a')

show()

Chapter 7

[311]

If we were to show the histogram plot of mean values from the model, this is one
option of using PyMC:

The following code uses the stochpy timeseries trajectory data for simulation:

import stochpy as stp
smod = stp.SSA()

from pylab import rcParams
set the graph display size as 10 by 10 inches
rcParams['figure.figsize'] = 12, 12

smod.Model('dsmts-003-04.xml.psc')
smod.DoStochSim(end=35,mode='time',trajectories=2000)
smod.GetRegularGrid()
smod.PlotAverageSpeciesTimeSeries()

Bioinformatics, Genetics, and Network Models

[312]

StochPy has several convenient methods to simulate stochastic models and display
the results, as shown in the following image:

Chapter 7

[313]

Summary
This chapter illustrates the examples of networks and bioinformatics and the choice
of Python packages to be able to plot the results. We looked at a brief introduction to
graphs and multigraphs and used the sparse matrix and distance graphs to illustrate
how you can store and display graphs with several different packages, such as
NetworkX, igraph (from igraph.org), and graph-tool.

The clustering coefficient and centrality of graphs demonstrates how you can
compute clustering coefficients so that they are able to know how significant a node
or vertex is in the graph. We also looked at the analysis of social network data with
an illustration of Twitter friends and followers visually, using the Python-Twitter
package and the NetworkX library.

You also learned about genetic programming samples with a demonstration of how
you can see codons in a DNA sequence and how to compute GC ratio with the bio
package. In addition to this, we demonstrated how to display the structures of DNA,
RNA, or protein.

The planar graph test, the acyclic graph test, and maximum flow using the NetworkX
package, along with a very few lines of code of how to test all of these was discussed.
In addition, you can plot stochastic block models with several choices, such as
PyMC or StochPy. In the next chapter, we will conclude with advanced visualization
methods that you can choose from.

igraph.org

[315]

Advanced Visualization
Visualization methods have transformed from the traditional bar and pie graphs
several decades ago to much more creative forms lately. Designing visualization
is not as straightforward as picking one from the many choices that a particular
tool offers. The right visualization conveys the right message, and the wrong
visualization may distort, confuse, or convey the wrong message.

Computers and storage devices within them are useful in not only storing large
chunks of data using data structures, but also to use the power of computing
via algorithms. According to Michael Bostock, the creator of D3.js and a leading
visualization expert, we should visualize the algorithm and not just the data that
feeds into it. An algorithm is the core engine behind any process or computational
model; therefore, this algorithm has become an important use case for visualization.

Visualizing algorithms has only been recognized in the recent past few years, and
one interesting place to explore this concept is visualgo.net, where they have
some advanced algorithms to teach data structures and algorithms. Visualgo
contains algorithms that can be found in Dr. Steven Halim's book titled Competitive
Programming. Another similar interesting visualization methods have been made
available by Prof. David Galles from the University of San Francisco
(https://www.cs.usfca.edu/~galles/visualization/). There are other such
contributions to teach algorithms and data.

visualgo.net
https://www.cs.usfca.edu/~galles/visualization/

Advanced Visualization

[316]

We discussed many different areas, including numerical computing, financial
models, statistical and machine learning, and network models. Later in this
chapter, we will discuss some new and creative ideas about visualization and
some simulation and signal processing examples. In addition, we will cover
the following topics:

• Computer simulation, signal processing, and animation examples
• Some interesting visualization methods using HTML5
• How is Julia different from Python?—advantages and disadvantages
• Why is D3.js the most popular visualization tool when compared with

Python
• Tools to create dashboards

Computer simulation
A computer simulation is a discipline that gained popularity for more than several
decades. It is a computer program that attempts to simulate an abstract model.
The models of computer simulation can assist in the creation of complex systems
as a way to understand and evaluate hidden or unknown scenarios. Some notable
examples of computer simulation modeling are weather forecasting and aircraft
simulators used for training pilots.

Computer simulations have become a very productive part of mathematical
modeling of systems in diverse fields, such as physics, chemistry, biology,
economics, engineering, psychology, and social science.

Here are the benefits of simulation models:

• Gaining a better understanding of an algorithm or process that is being
studied

• Identifying the problem areas in the processes and algorithm
• Evaluating the impact of changes in anything that relates to the algorithmic

model

The types of simulation models are as follows:

• Discrete models: In this, changes to the system occur only at specific times
• Continuous models: In this, the state of the system changes continuously

over a period of time
• Mixed models: This contains both discrete and continuous elements

Chapter 8

[317]

In order to conduct a simulation, it is common to use random probabilistic inputs
because it is unlikely that you would have real data before any such simulation
experiment is performed. It is therefore common that simulation experiments involve
random numbers whether it is done for a deterministic model or not.

To begin with, let's consider several options to generate random numbers in Python
and illustrate one or more examples in simulation.

Python's random package
Python provides a package called random that has several convenient functions that
can be used for the following:

• To generate random real numbers between 0.0 and 1.0, or between specific
start and end values

• To generate random integers between specific ranges of numbers
• To get a list of random values from a list of numbers or letters

import random

print random.random() # between 0.0 and 1.0
print random.uniform(2.54, 12.2) # between 2.54 and 12.2
print random.randint(5,10) # random integer between 5 and 10

print random.randrange(25) # random number between 0 and 25
random numbers from the range of 5 to 500 with step 5
print random.randrange(5,500,5)

three random number from the list
print random.sample([13,15,29,31,43,46,66,89,90,94], 3)
Random choice from a list
random.choice([1, 2, 3, 5, 9])

SciPy's random functions
NumPy and SciPy are Python modules that consist of mathematical and numerical
routines. The Numeric Python (NumPy) package provides basic routines to
manipulate large arrays and matrices of numeric data. The scipy package extends
NumPy with algorithms and mathematical techniques.

Advanced Visualization

[318]

NumPy has a built-in pseudorandom number generator. The numbers are
pseudorandom, which means that they are generated deterministically from a single
seed number. Using the same seed number, you can generate the same set of random
numbers, as shown in the following code:

Import numpy as np
np.random.seed(65536)

A different random sequence can be generated by not providing the seed value.
NumPy automatically selects a random seed (based on the time) that is different
every time a program is run with the following code:

np.random.seed()

An array of five random numbers in the interval [0.0, 1.0] can be generated as
follows:

import numpy as np
np.random.rand(5)
#generates the following
array([0.2611664, 0.7176011, 0.1489994, 0.3872102, 0.4273531])

The rand function can be used to generate random two-dimensional arrays as well,
as shown in the following code:

np.random.rand(2,4)
array([
[0.83239852, 0.51848638, 0.01260612, 0.71026089],
[0.20578852, 0.02212809, 0.68800472, 0.57239013]])

To generate random integers, you can use randint (min, max), where min and max
define the range of numbers, in which the random integer has to be drawn, as shown
in the following code:

np.random.randint(4,18)

Use the following code to draw the discrete Poisson distribution with λ = 8.0:

np.random.poisson(8.0)

To draw from a continuous normal (Gaussian) distribution with the mean as μ = 1.25
and the standard deviation as σ = 3.0, use the following code:

np.random.normal(2.5, 3.0)

#for mean 0 and variance 1
np.random.mormal()

Chapter 8

[319]

Simulation examples
In the first example, we will select geometric Brownian motion, which is also
known as exponential Brownian motion, to model the stock price behavior with the
Stochastic Differential Equation (SDE):

t t t tdS S dt S dWµ σ= +

In the preceding equation, Wt is Brownian motion, μ the percentage drift, and σ is
the percentage volatility. The following code shows Brownian motion plot:

from numpy.random import standard_normal
from numpy import zeros, sqrt
import matplotlib.pyplot as plt

S_init = 20.222
T =1
tstep =0.0002
sigma = 0.4
mu = 1
NumSimulation=6

colors = [(214,27,31), (148,103,189), (229,109,0), (41,127,214),
(227,119,194),(44,160,44),(227,119,194), (72,17,121), (196,156,148)]

Scale the RGB values to the [0, 1] range.

for i in range(len(colors)):
 r, g, b = colors[i]
 colors[i] = (r / 255., g / 255., b / 255.)

plt.figure(figsize=(12,12))

Steps=round(T/tstep); #Steps in years
S = zeros([NumSimulation, Steps], dtype=float)
x = range(0, int(Steps), 1)

for j in range(0, NumSimulation, 1):

 S[j,0]= S_init
 for i in x[:-1]:
 S[j,i+1]=S[j,i]+S[j,i]*(mu-0.5*pow(sigma,2))*tstep+ \
 sigma*S[j,i]*sqrt(tstep)*standard_normal()

Advanced Visualization

[320]

 plt.plot(x, S[j], linewidth=2., color=colors[j])

plt.title('%d Simulation using %d Steps, \nσ=%.6f μ=%.6f
S_0=%.6f ' % (int(NumSimulation), int(Steps), sigma, mu, S_init),
 fontsize=18)
plt.xlabel('steps', fontsize=16)
plt.grid(True)
plt.ylabel('stock price', fontsize=16)
plt.ylim(0,90)

plt.show()

The following plot shows the results of six simulations using Brownian motion:

Chapter 8

[321]

Another simulation example here demonstrates how you can apply the Hodrick–
Prescott filter to get a smoothed curve representation of the stock price data that falls
under the class of time series data:

Here, we will use the finance subpackage in matplotlib to generate the stock price
data for a range of dates with the start date as May 2012 and the end date as Dec
2014. Using the hold method of matplotlib, you can show the smoothed curve
together with the stock price plot, as shown in the following code:

from matplotlib import finance
import matplotlib.pyplot as plt

import statsmodels.api as sm

titleStr='Stock price of FB from May. 2012 to Dec. 2014'

Advanced Visualization

[322]

plt.figure(figsize=(11,10))

dt1 = datetime.datetime(2012, 05, 01)
dt2 = datetime.datetime(2014, 12, 01)
sp=finance.quotes_historical_yahoo('FB',dt1,dt2,asobject=None)

plt.title(titleStr, fontsize=16)
plt.xlabel("Days", fontsize=14)
plt.ylabel("Stock Price", fontsize=14)

xfilter = sm.tsa.filters.hpfilter(sp[:,2], lamb=100000)[1]

plt.plot(sp[:,2])
plt.hold(True)
plt.plot(xfilter,linewidth=5.)

In addition to these examples, you can simulate a queue system or any process that is
event-based. For instance, you can simulate a neural network, and one such package
that helps to model one quickly is available at http://briansimulator.org. Take a
look at their demo programs for more details.

Signal processing
There are many examples in signal processing that you could think of, but we will
choose one specific example that involves convolution. A convolution of two signals
is a way to combine them to produce a filtered third signal. In a real-life situation,
signal convolutions are applied to smoothen images. To a great extent, convolution
is also applied to calculate signal interference. For more details, you can refer to a
book on microwave measurements, but we will attempt to show you some simple
examples.

Let's consider three simple examples here. The first example illustrates the
convoluted signal of a digital signal and simulates the analog signal using hamming,
as shown in the following code:

import matplotlib.pyplot as plt
from numpy import concatenate, zeros, ones, hamming, convolve

digital = concatenate ((zeros(20), ones(25), zeros(20)))
norm_hamming = hamming(80)/sum(hamming(80))
res = convolve(digital, norm_hamming)
plt.figure(figsize=(10,10))
plt.ylim(0, 0.6)
plt.plot(res, color='r', linewidth=2)

http://briansimulator.org

Chapter 8

[323]

plt.hold(True)
plt.plot(data, color='b', linewidth=3)
plt.hold(True)
plt.plot(norm_hamming, color='g', linewidth=4)
plt.show()

In this example, we will use concatenate and zeros and ones from numpy to
produce digital signals, hamming to produce analog signals, and convolve to apply
convolutions.

If we plot all the three signals, that is, digital signals, analog hammings, and
convolved result signals (res), the resulting signal will be shifted as expected, as
shown in the following graph:

Advanced Visualization

[324]

In another example, we will use a random signal, that is, random_data and apply
fast Fourier transform (FFT) as follows:

import matplotlib.pyplot as plt
from scipy import randn
from numpy import fft

plt.figure(figsize=(10,10))
random_data = randn(500)
res = fft.fft(random_data)
plt.plot(res, color='b')
plt.hold(True)
plt.plot(random_data, color='r')
plt.show()

Using randn from scipy to generate random signal data and fft from numpy that
performs fast Fourier transform, the result that comes out of the transform is plotted
in blue and the original random signal is plotted in red using matplotlib, as shown
in the following image:

Chapter 8

[325]

In the third example, a simple illustration of how to create an inverted image using
the scipy package is shown. Before we get to the actual Python code and the results,
let's try to analyze how an inverted image will help in visualizing data.

It is debated that in certain cases, inverted colors create less strain on our vision
and is comfortable to look at. Surprisingly, if we place the original image and the
inverted image side by side, inverted images will help in visualizing certain areas
that may otherwise be difficult in the original image, if not for all images at least
in certain cases. The following code shows how you can convert an image to an
inverted image using scipy.misc.pilutil.Image():

import scipy.misc as scm
from scipy.misc.pilutil import Image

open original image
orig_image = Image.open('/Users/kvenkatr/Desktop/filter.jpg')

extract image data into array
image1 = scm.fromimage(orig_image)
invert array values
inv_image = 255 - image1

using inverted array values, convert image
inverted_image = scm.toimage(inv_image)

#save inverted image
inverted_image.save('/Users/kvenkatr/Desktop/filter_invert.jpg').

The inverted image result is shown along with the original image here:

Advanced Visualization

[326]

Similarly, other filtering mechanisms can be applied to any image using some of the
following functions:

convolve() Multidimensional convolution.
correlate() Multi-dimensional correlation.
gaussian_filter() Multidimensional Gaussian filter

A full list of functions is shown at http://tinyurl.com/3xubv9p.

Animation
You can accomplish animation in Python using matplotlib, but the results are
saved in a file in the MP4 format that can be used to be replayed later. The basic
setup for the animation is as follows:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation

Set up the figure, axis, and the plot element to be animated
fig = plt.figure()
ax = plt.axes(xlim=(0, 3.2), ylim=(-2.14, 2.14))
line, = ax.plot([], [], lw=2)

Make sure that the animation package is imported from matplotlib, sets the axes,
and prepares the necessary plotting variables (this is just an empty line) as follows:

initialization function: plot the background of each frame
def init():
 line.set_data([], [])
 return line,

The initialization of plotting needs to be performed before starting any animation
because it creates a base frame, as shown in the following code:

animation function. This is called sequentially
def animate(i):
 x = np.linspace(0, 2, 1000)
 xval = 2 * np.pi * (x - 0.01 * i)
 y = np.cos(xval) # Here we are trying to animate cos function
 line.set_data(x, y)
 return line,

http://tinyurl.com/3xubv9p

Chapter 8

[327]

Here is the animate function that takes the frame number as the input, defines the
changed x and y values, and sets the plotting variables:

anim = animation.FuncAnimation(fig, animate, init_func=init,\
 frames=200, interval=20, blit=True)
anim.save('basic_animation.mp4', fps=30)
plt.show()

The actual animation object is created via FuncAnimation and passes the init()
and animate() functions, along with the number of frames, frames per second
(fps), and time interval parameters. The blit=True parameter tells you that only the
changed part of the display needs to be redrawn (otherwise, one may see flickers).

Before you attempt to perform an animation, you have to make sure that mencoder or
ffmpeg is installed; otherwise, running this program without ffmpeg or mencoder will
result in the following error: ValueError: Cannot save animation: no writers
are available. Please install mencoder or ffmpeg to save animations..
The following image shows an animation of trigonometric curves, such as sin or cos:

You can embed this MP4 file in an HTML for display and press the play button in the
bottom-left corner to see the animation.

There is an interesting demonstration of a double pendulum animation by Jake
Vanderplas at
https://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/
and a dynamic image animation at
http://matplotlib.org/examples/animation/dynamic_image2.html.

https://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/
http://matplotlib.org/examples/animation/dynamic_image2.html

Advanced Visualization

[328]

In this book, so far we have discussed visualization methods that involve how to
plot in Python or create external formats (such as MP4). One of the reasons why
JavaScript-based visualization methods are popular is because you can present them
on the Web and also associate some event-driven animation to them. Support Vector
Graphics (SVG) is gaining popularity for many reasons, and one among them is the
ability to scale to any size without losing details.

Visualization methods using HTML5
A simple illustration of SVG to display circles using feGaussianBlur is shown in the
following code:

 <svg width="230" height="120" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">
 <filter id="blurMe">
 <feGaussianBlur in="SourceGraphic" stdDeviation="5" />
 </filter>

 <circle cx="60" cy="80" r="60" fill="#E90000" />
 <circle cx="190" cy="80" r="60" fill="#E90000"
 filter="url(#blurMe)" />
 <circle cx="360" cy="80" r="60" fill="#4E9B01" />
 <circle cx="490" cy="80" r="60" fill="#4E9B01"
 filter="url(#blurMe)" />
 <circle cx="660" cy="80" r="60" fill="#0080FF" />
 <circle cx="790" cy="80" r="60" fill="#0080FF"
 filter="url(#blurMe)" />
 </svg>

The first two circles are drawn with the radius as 60 and are filled with the same
color, but the second circle uses the blurring filter. Similarly, adjacent circles in green
and blue also follow the same behavior (for a colored effect, refer to
http://knapdata.com/dash/html/svg_circle.html), as shown in the
following image:

http://knapdata.com/dash/html/svg_circle.html

Chapter 8

[329]

How can we use this blurring concept when the data presentation needs parts-of-
whole in visualization, but does not combine to become a whole. What does this
mean? Let's consider two examples. In the first example, we'll consider a class of
students enrolled in foreign languages (in some cases, more than one language). If
we were to represent the distribution as follows, how would we do it?

You can generate the SVG format via the Python program, as show in the following
code:

import os
display_prog = 'more' # Command to execute to display images.
svcount=1

class Scene:
 def __init__(self,name="svg",height=400,width=1200):
 self.name = name
 self.items = []
 self.height = height
 self.width = width
 return

 def add(self,item): self.items.append(item)

 def strarray(self):
 var = ["<html>\n<body>\n<svg height=\"%d\" width=\"%d\" >\n"
% (self.height,self.width),
 " <g id=\"setttings\">\n",
 " <filter id=\"dropshadow\" height=\"160%\">\n",
 " <feGaussianBlur in=\"SourceAlpha\"
stdDeviation=\"5\"></feGaussianBlur>\n",
 " <feOffset dx=\"0\" dy=\"3\"
result=\"offsetblur\"></feOffset>\n",
 " <feMerge>\n",
 " <feMergeNode></feMergeNode>\n",

Advanced Visualization

[330]

 " <feMergeNode in=\"SourceGraphic\"></
feMergeNode>\n",
 " </feMerg>\n",
 " </filter>\n"]
 for item in self.items: var += item.strarray()
 var += [" </g>\n</svg>\n</body>\n</html>"]
 return var

 def write_svg(self,filename=None):
 if filename:
 self.svgname = filename
 else:
 self.svgname = self.name + ".html"
 file = open(self.svgname,'w')
 file.writelines(self.strarray())
 file.close()
 return

 def display(self,prog=display_prog):
 os.system("%s %s" % (prog,self.svgname))
 return

def colorstr(rgb): return "#%x%x%x" % (rgb[0]/16,rgb[1]/16,rgb[2]/16)

class Text:
 def __init__(self, x,y,txt, color, isItbig, isBold):
 self.x = x
 self.y = y
 self.txt = txt
 self.color = color
 self.isItbig = isItbig
 self.isBold = isBold
 def strarray(self):
 if (self.isItbig == True):
 if (self.isBold == True):
 retval = [" <text y=\"%d\" x=\"%d\" style=\"font-
size:18px;font-weight:bold;fill:%s\">%s</text>\n" %(self.y, self.x,
self.color,self.txt)]
 else:
 retval = [" <text y=\"%d\" x=\"%d\" style=\"font-
size:18px;fill:%s\">%s</text>\n" %(self.y, self.x, self.color,self.
txt)]
 else:
 if (self.isBold == True):

Chapter 8

[331]

 retval = [" <text y=\"%d\" x=\"%d\" style=\"fill:%s;font-
weight:bold;\">%s</text>\n" %(self.y, self.x, self.color,self.txt)]
 else:
 retval = [" <text y=\"%d\" x=\"%d\" style=\"fill:%s\">%s</
text>\n" %(self.y, self.x, self.color,self.txt)]
 return retval

class Circle:
 def __init__(self,center,radius,color, perc):
 self.center = center #xy tuple
 self.radius = radius #xy tuple
 self.color = color #rgb tuple in range(0,256)
 self.perc = perc
 return

 def strarray(self):
 global svcount
 diam = self.radius+self.radius
 fillamt = self.center[1]-self.radius - 6 + (100.0 - self.
perc)*1.9
 xpos = self.center[0] - self.radius
 retval = [" <circle cx=\"%d\" cy=\"%d\" r=\"%d\"\n" %\
 (self.center[0],self.center[1],self.radius),
 " style=\"stroke: %s;stroke-width:2;fill:white;filt
er:url(#dropshadow)\" />\n" % colorstr(self.color),
 " <circle clip-path=\"url(#dataseg-%d)\" fill=\"%s\"
cx=\"%d\" cy=\"%d\" r=\"%d\"\n" %\
 (svcount, colorstr(self.color),self.center[0],self.
center[1],self.radius),
 " style=\"stroke:rgb(0,0,0);stroke-width:0;z-
index:10000;\" />\n",
 "<clipPath id=\"dataseg-%d\"> <rect height=\"%d\"
width=\"%d\" y=\"%d\" x=\"%d\"></rect>" %(svcount,diam,
diam,fillamt,xpos),
 "</clipPath>\n"
]
 svcount += 1
 return retval

def languageDistribution():
 scene = Scene('test')
 scene.add(Circle((140,146),100,(0,128,0),54))
 scene.add(Circle((370,146),100,(232,33,50),42))
 scene.add(Circle((600,146),100,(32,119,180),65))

Advanced Visualization

[332]

 scene.add(Circle((830,146),100,(255,128,0),27))
 scene.add(Text(120,176,"English", "white", False, True))
 scene.add(Text(120,196,"Speaking", "#e2e2e2", False, False))
 scene.add(Text(340,202,"German", "black", False, True))
 scene.add(Text(576,182,"Spanish", "white", False, True))
 scene.add(Text(804,198,"Japanese", "black", False, True))

 scene.add(Text(120,88,"54%", "black", True, True))
 scene.add(Text(350,88,"42%", "black", True, True))
 scene.add(Text(585,88,"65%", "black", True, True))
 scene.add(Text(815,88,"27%", "black", True, True))

 scene.write_svg()
 scene.display()
 return

if __name__ == '__main__': languageDistribution()

The preceding example gives an idea to create custom svg methods for visualization.
There are many other svg writers in Python today, but none of them have
demonstrated the methods to display the one that we have shown here. There are
also many different ways to create custom visualization methods in other languages,
such as Julia. This has been around for almost three years now and is considered
suitable for numerical and scientific computing.

How is Julia different from Python?
Julia is a dynamic programming language. However, it is comparable to C in terms
of performance because Julia is a low-level virtual machine-based just-in-time
compiler (JIT compiler). As we all know, in Python, in order to combine C and
Python, you may have to use Cython.

Some notable advantages of Julia are as follows:

• Performance comparable to C
• The built-in package manager
• Has lisp-like macros
• Can call Python functions using the PyCall package
• Can call C functions directly
• Designed for distributed computing
• User-defined types are as fast as built-ins

Chapter 8

[333]

The only disadvantage is that you have to learn a new language, although there are
some similarities with C and Python.

D3.js (where D3 in short means DDD, which stands for document-driven data) is
one among the competing frameworks in Python for visualization.

D3.js for visualization
D3.js is a JavaScript library for presenting data on the Web and helps in displaying
data, using HTML, SVG, and CSS.

D3.js attaches data to Document Object Model (DOM) elements; therefore, you can
use CSS3, HTML, and SVG to showcase their data. Furthermore, as JavaScript has
event listeners, you can make the data interactive.

Mike Bostock created D3.js during his PhD work at the Stanford Visualization
Group. First, Mike worked with the Stanford Visualization Group to produce
Protivis, which then eventually became D3. Mike Bostock, Vadim Ogievetsky, and
Jeffrey Heer produced a paper titled D3: Data-Driven Documents, which can be
accessed at http://vis.stanford.edu/papers/d3.

In practice, the underlying principle of D3.js is to use the CSS style selector to select
from DOM nodes and then use the jQuery style to manipulate them. Here is an
example:

d3.selectAll("p") // select all <p> elements
 .style("color", "#FF8000") // set style "color" to value "#FF8000"
 .attr("class", "tin") // set attribute "class" to value "tin"
 .attr("x", 20); // set attribute "x" to 20px

http://vis.stanford.edu/papers/d3

Advanced Visualization

[334]

One of the many advantages of D3 is that by simply accessing a mechanism of DOM,
you can create a stunning representation of data. Another advantage is that by fully
using the power of JavaScript combined with the power of computing today, you
can easily add the navigational behavior quickly. There is a large collection of such
visualizations available at http://bost.ocks.org/mike/. One example of D3
visualization plot is shown here:

There are many visualization examples that you can produce, and among the
examples in the gallery
(http://christopheviau.com/d3list/gallery.html#visualizationType=lollipop),
my favorite is the one that tells the story about different aggregations using multiple
series and multiple axes, which can be viewed at http://tinyurl.com/p988v2u
(also shown in the preceding image).

Dashboards
Python has many advantages compared to D3. When you combine these two, you
can use the best of both. For instance, Python offers some very good options of
packages for numerical and scientific computing. For this reason, it has been very
popular to academia.

http://bost.ocks.org/mike/
http://christopheviau.com/d3list/gallery.html#visualizationType=lollipop
http://tinyurl.com/p988v2u

Chapter 8

[335]

There are very few interesting data visualization and collaboration tools that
have emerged lately, and one such tool is Plotly (https://plot.ly). The Python
dashboard collection can be accessed at https://plot.ly/python/dashboard/.
As this is fairly new, we have not had a chance to explore further to see what
one can do. Splunk offers an SDK to create Python-based dashboards at
http://dev.splunk.com/view/SP-CAAADSR, and Pyxley is a collection of packages
that combine the power of Python and JavaScript to create web-based dashboards.
One of the examples from Splunk Dashboard is shown here:

One of the examples of Plotly is shown in the preceding image. It demonstrates
how you can generate a visualization that looks pretty, is easy to understand, and is
navigable at http://tinyurl.com/pwmg5zr.

https://plot.ly
https://plot.ly/python/dashboard/
http://dev.splunk.com/view/SP-CAAADSR
http://tinyurl.com/pwmg5zr

Advanced Visualization

[336]

Summary
This chapter illustrates additional topics that were not covered in the previous
chapters, such as signal processing and animation using Python. In addition, we
also compared Python with D3.js and Julia and determined their strengths. Several
examples of signal processing were discussed. We also looked at the convolution of
analog and digital signal spectrums using numpy and matplotlib.

We also looked at an example of animation and demonstrated how you can generate
the MP4 format animation via Python. We also compared Julia with Python and
listed a few advantages of Julia over Python and compared them to see
the differences.

Further, we showcased the strengths of D3.js, highlighting the difference between
this JavaScript-based visualization tool and Python. Finally, we discussed the options
available for dashboards and listed a few options to create Python-based dashboards.

[337]

Go Forth and Explore
Visualization

Python has been around since 1991 and has gained popularity among the community
of scientists and engineers. Among many libraries, numpy, scipy, and matplotlib
have been widely used in scientific computing. Sage covers the areas of algebra,
combinatorics, numerical mathematics, number theory, and calculus using an easy
browser interface via IPython. Another popular package called pandas can be used
to store and process complex datasets.

There are multiple tools to run and edit Python programs, and one among them
is Anaconda from Continuum. One of the advantages of Anaconda is that it does
not cost anything and comes inbuilt with most necessary packages. The underlying
command-line tool for managing environments and Python packages is conda, and
the editor is Spyder.

In the past, installing Spyder was complicated because it involved downloading
and installing it in a multistep process. Installation in the recent versions has been
very straightforward, and one can download and install all the components together
automatically in one step.

Go Forth and Explore Visualization

[338]

An overview of conda
Conda is a command line-tool that is responsible for managing environments and
Python packages, rather than using pip. There are ways to query and search the
packages, create new environments if necessary, and install and update Python
packages into the existing conda environments. This command-line tool also keeps
track of dependencies between packages and platform specifics, helping you to
create working environments from different combinations of packages. To check the
version of conda that is running, you can enter conda --version in Python and it
will show, for example, conda 3.18.2 as the version.

A conda environment is a filesystem directory that contains a specific collection of
conda packages. To begin using an environment, simply set the PATH variable to
point it to its bin directory.

Here is an example of the package installation from the command line using conda:

$ conda install scipy

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------|-----------------

 flask-0.10.1 | py27_1 129 KB

 itsdangerous-0.23 | py27_0 16 KB

 jinja2-2.7.1 | py27_0 307 KB

 markupsafe-0.18 | py27_0 19 KB

 werkzeug-0.9.3 | py27_0 385 KB

The following packages will be linked:

 package | build

 ---------------------|-----------------

 flask-0.10.1 | py27_1

Appendix

[339]

 itsdangerous-0.23 | py27_0

 jinja2-2.7.1 | py27_0

 markupsafe-0.18 | py27_0

 python-2.7.5 | 2

 readline-6.2 | 1

 sqlite-3.7.13 | 1

 tk-8.5.13 | 1

 werkzeug-0.9.3 | py27_0

 zlib-1.2.7 | 1

Proceed ([y]/n)?

Any dependencies on the package that we are installing will be recognized,
downloaded, and linked automatically.

Here is an example of package update from the command line using conda:

$ conda update matplotlib

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 freetype-2.5.2 | 0 691 KB

 conda-env-2.1.4 | py27_0 15 KB

 numpy-1.9.2 | py27_0 2.9 MB

 pyparsing-2.0.3 | py27_0 63 KB

 pytz-2015.2 | py27_0 175 KB

 setuptools-15.0 | py27_0 436 KB

 conda-3.10.1 | py27_0 164 KB

 python-dateutil-2.4.2 | py27_0 219 KB

 matplotlib-1.4.3 | np19py27_1 40.9 MB

Go Forth and Explore Visualization

[340]

 --

 Total: 45.5 MB

The following NEW packages will be INSTALLED:

 python-dateutil: 2.4.2-py27_0

The following packages will be UPDATED:

 conda: 3.10.0-py27_0 --> 3.10.1-py27_0

 conda-env: 2.1.3-py27_0 --> 2.1.4-py27_0

 freetype: 2.4.10-1 --> 2.5.2-0

 matplotlib: 1.4.2-np19py27_0 --> 1.4.3-np19py27_1

 numpy: 1.9.1-py27_0 --> 1.9.2-py27_0

 pyparsing: 2.0.1-py27_0 --> 2.0.3-py27_0

 pytz: 2014.9-py27_0 --> 2015.2-py27_0

 setuptools: 14.3-py27_0 --> 15.0-py27_0

Proceed ([y]/n)?

In some cases, there are more steps involved in installing a package via conda. For
instance, to install wordcloud, you will have to perform the steps given in this code:

#step-1 command

conda install wordcloud

Fetching package metadata:

Error: No packages found in current osx-64 channels matching: wordcloud

You can search for this package on Binstar with

This only means one has to search the source location

binstar search -t conda wordcloud

Run 'binstar show <USER/PACKAGE>' to get more details:

Packages:

 Name | Access | Package Types |

Appendix

[341]

 ------------------------- | ------------ | --------------- |

 derickl/wordcloud | public | conda |

Found 1 packages

step-2 command

binstar show derickl/wordcloud

Using binstar api site https://api.binstar.org

Name: wordcloud

Summary:

Access: public

Package Types: conda

Versions:

 + 1.0

To install this package with conda run:

conda install --channel https://conda.binstar.org/derickl wordcloud

step-3 command

conda install --channel https://conda.binstar.org/derickl wordcloud

Fetching package metadata:

Solving package specifications: .

Package plan for installation in environment /Users/MacBook/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 cython-0.22 | py27_0 2.2 MB

 django-1.8 | py27_0 3.2 MB

 pillow-2.8.1 | py27_1 454 KB

 image-1.3.4 | py27_0 24 KB

 setuptools-15.1 | py27_1 435 KB

 wordcloud-1.0 | np19py27_1 58 KB

Go Forth and Explore Visualization

[342]

 conda-3.11.0 | py27_0 167 KB

 --

 Total: 6.5 MB

The following NEW packages will be INSTALLED:

 django: 1.8-py27_0

 image: 1.3.4-py27_0

 pillow: 2.8.1-py27_1

 wordcloud: 1.0-np19py27_1

The following packages will be UPDATED:

 conda: 3.10.1-py27_0 --> 3.11.0-py27_0

 cython: 0.21-py27_0 --> 0.22-py27_0

 setuptools: 15.0-py27_0 --> 15.1-py27_1

Finally, the following packages will be downgraded:

 libtiff: 4.0.3-0 --> 4.0.2-1

Proceed ([y]/n)? y

Anaconda is a free Python distribution for scientific computing. This distribution
comes with Python 2.x or Python 3.x and 100+ cross-platform tested and optimized
Python packages. Anaconda can also create custom environments that mix and
match different Python versions.

Packages installed with Anaconda
The following command will display a list of all the packages in the Anaconda
environment:

conda list

The featured packages in Anaconda are Astropy, Cython, h5py, IPython, LLVM,
LLVMpy, matplotlib, Mayavi, NetworkX, NLTK, Numexpr, Numba, numpy, pandas,
Pytables, scikit-image, scikit-learn, scipy, Spyder, Qt/PySide, and VTK.

Appendix

[343]

In order to check the packages that are installed with Anaconda, navigate to the
command line and enter the conda list command to quickly display a list of all
the packages installed in the default environment. Alternatively, you can also check
Continuum Analytics for details on the list of packages available in the current and
latest release.

In addition, you can always install a package with the usual means, for example,
using the pip install command or from the source using a setup.py file.
Although conda is the preferred packaging tool, there is nothing special about
Anaconda that prevents the usage of standard Python packaging tools.

IPython is not required, but it is highly recommended. IPython should
be installed after Python, GNU Readline, and PyReadline are installed.
Anaconda and Canopy does these things by default. There are Python
packages that are used in all the examples in this book for a good reason.
In the following section, we have updated the list.

Packages websites
Here is a list of Python packages that we have mentioned in this book with their
respective websites, where you can find the most up-to-date information:

• IPython: This is a rich architecture for interactive computing
(http://ipython.org)

• NumPy: This is used for high performance and vectorized computations on
multidimensional arrays (http://www.numpy.org)

• SciPy: This is used for advanced numerical algorithms
(http://www.scipy.org)

• matplotlib: This is used to plot and perform an interactive visualization
(http://matplotlib.org)

• matplotlib-basemap: This is a mapping toolbox for matplotlib
(http://matplotlib.org/basemap/)

• Seaborn: This is used to represent statistical data visualization for
matplotlib (http://stanford.edu/~mwaskom/software/seaborn)

• Scikit: This is used for machine learning purposes in Python
(http://scikit-learn.org/stable)

• NetworkX: This is used to handle graphs (http://networkx.lanl.gov)
• Pandas: This is used to deal with any kind of tabular data

(http://pandas.pydata.org)

http://ipython.org
http://www.numpy.org
http://www.scipy.org
http://matplotlib.org
http://matplotlib.org/basemap/
http://stanford.edu/~mwaskom/software/seaborn
http://scikit-learn.org/stable
http://networkx.lanl.gov
http://pandas.pydata.org

Go Forth and Explore Visualization

[344]

• Python Imaging Library (PIL): This is used for image processing algorithms
(http://www.pythonware.com/products/pil)

• PySide: This acts as a wrapper around Qt for graphical user interfaces
(GUIs) (http://qt-project.org/wiki/PySide)

• PyQt: This is similar to PySide, but with a different license
(http://www.riverbankcomputing.co.uk/software/pyqt/intro)

• Cython: This is used to leverage C code in Python (http://cython.org)

About matplotlib
The matplotlib package comes with many convenient methods to create
visualization charts and graphs. Only a handful of these have been explored in this
book. You will have to explore matplotlib further from the following sources:

• http://www.labri.fr/perso/nrougier/teaching/matplotlib/

• http://matplotlib.org/Matplotlib.pdf

One should also refer to other packages listed in the previous section, which are
libraries that make plotting more attractive.

http://www.pythonware.com/products/pil
http://qt-project.org/wiki/PySide
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://cython.org
http://www.labri.fr/perso/nrougier/teaching/matplotlib/
http://matplotlib.org/Matplotlib.pdf

[345]

Index
Symbols
1-nearest neighbor (1-NN) 261

A
anaconda

packages, installed 342, 343
Anaconda distribution of Spyder from

Continuum Analytics 95
Anaconda from Continuum Analytics 104
analytics 5
animation 326-328
Anscombe's quartet

URL 16
array indexing

about 140
logical indexing 142
numerical indexing 141

Artificial Intelligence (AI) 225
author-driven narratives 70-72

B
balloon layout 89
bar graphs 26, 27
Bayesian linear regression 228-230
Bayes theorem 251, 252
Bio package

URL 306
Bokeh 117, 118
box-and-whisker plot 78, 79
box plot 30, 31, 78
bubble charts 33-35

C
Canopy Express 102
Canopy from Enthought 95, 100, 101
circular layout 87, 88
classification methods 238, 239
clustering 8
cognitive context

URL 2
command-line interface (CLI) 91
Comma Separated Value (CSV) 43
computer simulation

about 316, 317
animation 326-328
benefits 316
dashboards 334, 335
examples 319-322
Julia 332-334
Python, random package 317
SciPy's random 317, 318
signal, processing 322-326
types 316
visualization methods, HTML5

used 328-332
conda 106-109, 338-342
correlation coefficients 77
Cython 344

URL 192

D
D3.js

for visualization 333-335
dashboards 334
data 2

[346]

data analysis 5
data analytics 5
data collection 7
data preprocessing 7, 8
data processing 8
datasets

getting 9
data source

URL 19, 175
data structures

dictionaries 146-148
queues 146
sets 145
stacks 143
tries 153, 154
tuples 144

data transformation
about 5, 6
data collection 6
data, organizing 8
data preprocessing 7, 8
data processing 8
datasets, getting 9

data visualization
about 17
before computers 12, 13
developments 14
history 11
URL 12

decision tree
about 246
example 246-248

deterministic model
about 180
gross return 180-190

dictionaries
about 146-148
for matrix representation 148
memoization 152
sparse matrices 149

diffusion-based simulation 218, 219
directed acyclic graph test 302-304
directed graphs 282
Disco

URL 138
Document Object Model (DOM)

elements 333

E
Ebola example

about 43-49
URL 44

economic model 179
event listeners 85, 86

F
fast Fourier transform (FFT) 324
financial model 179
flow network

maximum flow 304, 305
font file

URL 163
frames per second (fps) 327

G
Gapminder 63, 64
genetic programming

example 306-308
geometric Brownian simulation 214-218
Gestalt perception

principles 73-75
good visualization 18-20
graph data

storing 283
graphical user interfaces (GUIs) 344
graphs

clustering coefficient 294-298
displaying 284
igraph 284-287
NetworkX 287-292

graph-tool
about 293, 294
PageRank 294
URL 293

H
histogram 78
Humanitarian Data Exchange (HDX) 43
human perception

URL 15

[347]

I
IDE tools

about 92
interactive tools, types 92
Python 3.x versus Python 2.7 92

igraph 284-287
information

about 3
transforming, to insight 10, 11
transforming, to knowledge 9, 10

information visualization 72
integrated development environment

(IDE) 83, 91
Interactive Editor for Python (IEP) 95-99
interactive tools

about 92
IPython 93, 94
Plotly 94, 95

Interactive visualization packages 116, 117
IPython

about 93, 94, 343
URL 84

J
JIT (just-in-time) compilation 138
Julia 332, 333

K
Kernel Density Estimation (KDE) 36-39
k-means clustering 276-279
k-nearest neighbor (k-NN) 226, 227, 261-264

L
layouts

balloon layout 89
circular layout 87, 88
radial layout 88

linear models 228
linear regression 239-245
logical indexing 142
logistic regression 265-269

M
machine learning 225, 226, 237
matplotlib

about 343, 344
sources 344

matplotlib-basemap 343
Mayavi 110
MKL functions 136, 137
Monte Carlo simulation

about 191
implied volatilities 207-211
in basketball 196-202
inventory problem 192-196
URL 192
volatility plot 202-206

Moving Average Convergence/Divergence
(MACD)

URL 168
multigraphs 282

N
Naïve Bayes classifier

about 252, 253
TextBlob, installing 254
TextBlob used 254-258

natural language processing (NLP)
tasks 254

NetworkX 110, 343 287
New York Stock Exchange (NYSE) 164
numerical indexing 141
Numerical Python Package (NumPy)

about 122, 343
interpolation, example 125
linear algebra, summary 128
reshape manipulation 124
shape manipulation 124
universal functions 122, 123
vectorizing functions 126-128

P
pajek format

URL 285
pajek networks

URL 287

[348]

Pandas 343
perception and presentation methods

about 72, 73
Gestalt principles 73-75

pie charts 26-29
planar graph test 300-302
Plotly 110 94, 95
plots

animated and interactive plots, creating
231-236

portfolio valuation 211-213
positive sentiments

viewing, word clouds used 259
Principal component analysis (PCA)

about 271-274
scikit-learn, installing 276

Probability Density Function (PDF) 36
PyCharm 95-97
PyDev 95-98
pygooglechart 110
PyQt 344
PySide 344
Python

about 91, 337
IDE tools 92
packages 343
performance 137

Python 3.x
versus Python 2.7 92

Python IDE, types
about 95
Anaconda from Continuum Analytics 104,

105
Canopy, from Enthought 100-103
Interactive Editor for Python (IEP) 98, 99
PyCharm 96, 97
PyDev 97, 98

Python Imaging Library (PIL) 344

Q
queues 146

R
radial layout 88
reader-driven narratives

about 62

example narratives 69
Gapminder 63, 64
union address, state 64
USA, mortality rate 65-68

Relative Strength Indicator (RSI)
URL 168

S
Scalar selection 138
scatter plots

about 31-33
URL 32

Schelling Segregation Model (SSM) 221
Scientific PYthon Development

EnviRonment (Spyder) 104
Scientific Python Package (SciPy)

about 122-132, 343
linear equations, example 133
packages 129
vectorized numerical derivative 134

scientific visualization 72
Scikit 343
scikit-learn

installing 276
package, URL 245

Seaborn 343
sets 145
signal processing 322
slicing

about 139, 140
flat used 140

social networks
analysis 298-300

sparse matrices
visualize sparseness 150, 151

sports example
about 49, 50, 51
results, visually representing 52-61
URL 49

Spyder
about 105
components 105, 106

square map plot 112, 114
SSA module

URL 309
stacks 143

[349]

statistical learning 225, 226
Stochastic block models 308-311
Stochastic Differential Equation (SDE) 319
stochastic model

about 191
diffusion-based simulation 218, 219
geometric Brownian simulation 214-218
Monte Carlo simulation 191
portfolio valuation 211-213
simulation model 214

stock price
URL 164

stories
author-driven narratives 62, 70, 71
creating, with data 62
reader-driven narratives 62

Support vector machines (SVM) 269
surface-3D plot 110-112
sypder-app 84

T
tab completion

URL 84
TextBlob

URL 164, 252
threshold model 221
tries 153, 154
tuples 144, 145
Twitter text 161-164

V
Veusz 110
VisPy

about 117-119
URL 119

visualization
about 16, 17
benefits 15
example 173-176
information visualization 72
matplotlib used 155
planning, need for 42
plots 21-25
scientific visualization 72
URL 15, 25

visualization, best practices
about 75
comparison and ranking 76
correlation 76, 77
distribution 78, 79
location-specific or geodata 80
part to whole 81
trends over time 82

visualization, interactive
about 85
event listeners 85, 86
layouts 86

visualization plots, with Anaconda
about 109, 110
square map plot 112, 114
surface-3D plot 110-112

visualization tools, in Python
about 82
Anaconda, from Continuum Analytics 84
Canopy, from Enthought 83
development tools 83

VSTOXX data
URL 204, 211

W
Wakari 117
web feeds 159
word clouds

about 156
data, obtaining 164-172
input for 159
installing 156
stock price chart, plotting 164
Twitter text 161-164
used, for viewing positive sentiments 259
web feeds 159

World Health Organization (WHO) 43

Thank you for buying
Mastering Python Data Visualization

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Python Data
Visualization
ISBN: 978-1-78355-333-4 Paperback: 212 pages

Master how to build dynamic HTML5-ready SVG
charts using Python and the pygal library

1. A practical guide that helps you break into the
world of data visualization with Python.

2. Understand the fundamentals of building
charts in Python.

3. Packed with easy-to-understand tutorials
for developers who are new to Python or
charting in Python.

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

2. Understand the topics such as importing
data for visualization and formatting data
for visualization.

3. Understand the underlying data and how to
use the right visualizations.

Please check www.PacktPub.com for information on our titles

Learning IPython for Interactive
Computing and Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and data
visualization

1. A practical step-by-step tutorial which will
help you to replace the Python console with the
powerful IPython command-line interface.

2. Use the IPython notebook to modernize the
way you interact with Python.

3. Perform highly efficient computations with
NumPy and Pandas.

4. Optimize your code using parallel computing
and Cython.

Practical Data Science Cookbook
ISBN: 978-1-78398-024-6 Paperback: 396 pages

89 hands-on recipes to help you complete real-world
data science projects in R and Python

1. Learn about the data science pipeline and use it
to acquire, clean, analyze, and visualize data.

2. Understand critical concepts in data science in
the context of multiple projects.

3. Expand your numerical programming skills
through step-by-step code examples and learn
more about the robust features of R and Python.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Conceptual Framework for Data Visualization
	Data, information, knowledge, and insight
	Data
	Information
	Knowledge
	Data analysis and insight

	The transformation of data
	Transforming data into information
	Data collection
	Data preprocessing
	Data processing
	Organizing data
	Getting datasets

	Transforming information into knowledge
	Transforming knowledge into insight

	Data visualization history
	Visualization before computers
	Minard's Russian campaign (1812)
	The Cholera epidemics in London (1831-1855)
	Statistical graphics (1850-1915)
	Later developments in data visualization

	How does visualization help
decision-making?
	Where does visualization fit in?
	Data visualization today
	What is a good visualization?

	Visualization plots
	Bar graphs and pie charts
	Bar graphs
	Pie charts

	Box plots
	Scatter plots and bubble charts
	Scatter plots
	Bubble charts

	KDE plots

	Summary

	Chapter 2: Data Analysis and Visualization
	Why does visualization require planning?
	The Ebola example
	A sports example
	Visually representing the results

	Creating interesting stories with data
	Why are stories so important?
	Reader-driven narratives
	Gapminder
	The State of the Union address
	Mortality rate in the USA
	A few other example narratives

	Author-driven narratives

	Perception and presentation methods
	The Gestalt principles of perception

	Some best practices for visualization
	Comparison and ranking
	Correlation
	Distribution
	Location-specific or geodata
	Part-to-whole relationships
	Trends over time

	Visualization tools in Python
	Development tools
	Canopy from Enthought
	Anaconda from Continuum Analytics

	Interactive visualization
	Event listeners
	Layouts
	Circular layout
	Radial layout
	Balloon layout

	Summary

	Chapter 3: Getting Started with
the Python IDE
	The IDE tools in Python
	Python 3.x versus Python 2.7
	Types of interactive tools
	IPython
	Plotly

	Types of Python IDE
	PyCharm
	PyDev
	Interactive Editor for Python (IEP)
	Canopy from Enthought
	Anaconda from Continuum Analytics

	Visualization plots with Anaconda
	The surface-3D plot
	The square map plot

	Interactive visualization packages
	Bokeh
	VisPy

	Summary

	Chapter 4: Numerical Computing and Interactive Plotting
	NumPy, SciPy, and MKL functions
	NumPy
	NumPy universal functions
	Shape and reshape manipulation
	An example of interpolation
	Vectorizing functions
	Summary of NumPy linear algebra

	SciPy
	An example of linear equations
	The vectorized numerical derivative

	MKL functions
	The performance of Python

	Scalar selection
	Slicing
	Slice using flat

	Array indexing
	Numerical indexing
	Logical indexing

	Other data structures
	Stacks
	Tuples
	Sets
	Queues
	Dictionaries
	Dictionaries for matrix representation
	Sparse matrices
	Dictionaries for memoization

	Tries

	Visualization using matplotlib
	Word clouds
	Installing word clouds
	Input for word clouds
	Web feeds
	The Twitter text

	Plotting the stock price chart
	Obtaining data

	The visualization example in sports
	Summary

	Chapter 5: Financial and
Statistical Models
	The deterministic model
	Gross returns

	The stochastic model
	Monte Carlo simulation
	What exactly is Monte Carlo simulation?
	An inventory problem in Monte Carlo simulation
	Monte Carlo simulation in basketball
	The volatility plot
	Implied volatilities

	The portfolio valuation
	The simulation model
	Geometric Brownian simulation
	The diffusion-based simulation

	The threshold model
	Schelling's Segregation Model

	An overview of statistical and
machine learning
	K-nearest neighbors
	Generalized linear models
	Bayesian linear regression

	Creating animated and interactive plots
	Summary

	Chapter 6: Statistical and Machine Learning
	Classification methods
	Understanding linear regression
	Linear regression
	Decision tree
	An example

	The Bayes theorem
	The Naïve Bayes classifier
	The Naïve Bayes classifier using TextBlob
	Installing TextBlob
	Downloading corpora
	The Naïve Bayes classifier using TextBlob

	Viewing positive sentiments using word clouds

	k-nearest neighbors
	Logistic regression
	Support vector machines
	Principal component analysis
	Installing scikit-learn

	k-means clustering
	Summary

	Chapter 7: Bioinformatics, Genetics,
and Network Models
	Directed graphs and multigraphs
	Storing graph data
	Displaying graphs
	igraph
	NetworkX
	Graph-tool

	The clustering coefficient of graphs
	Analysis of social networks
	The planar graph test
	The directed acyclic graph test
	Maximum flow and minimum cut
	A genetic programming example
	Stochastic block models
	Summary

	Chapter 8: Advanced Visualization
	Computer simulation
	Python's random package
	SciPy's random functions
	Simulation examples
	Signal processing
	Animation
	Visualization methods using HTML5
	How is Julia different from Python?
	D3.js for visualization
	Dashboards

	Summary

	Appendix: Go Forth and Explore Visualization
	An overview of conda
	Packages installed with Anaconda
	Packages websites
	About matplotlib

	Index

