!
.

LR P

B-an IR AR NE RN AFEERNAEPEE @
BrappEd RPN RENE & Fid@Edddadaponm

A IIIPIIIIIIIII i EFREERAER NHEs

-
L |
-
-
-
-
-
-
-
L]
L]
-
-
=
-
]
]
]

]
]
-
L}
=

L]
-
-
L |
-
=
L]
L]
L]
L]
-
L]
-
-
=
-
-
]
-
=

Mastering Wireshark

Analyze data network like a professional by mastering
Wireshark - From 0 to 1337

Mastering Wireshark

Table of Contents

Mastering Wireshark
Credits

About the Author

About the Reviewer

www.PacktPub.com

eBooks, discount offers, and more
Why subscribe?

Preface

What this book covers

What vou need for this book
Who this book is for
Conventions

Reader feedback

Customer support
Downloading the color images of this book
Errata
Piracy
Questions

1. Welcome to the World of Packet Analysis with Wireshark

Introduction to Wireshark
A brief overview of the TCP/IP model
The layers in the TCP/IP model
An introduction to packet analysis with Wireshark
How to do packet analysis
What is Wireshark?
How it works
Capturing methodologies
Hub-based networks
The switched environment
ARP poisoning
Passing through routers
Why use Wireshark?
The Wireshark GUI
The installation process
Starting our first capture

Summary
Practice questions

2. Filtering Our Way in Wireshark

An introduction to filters

Capture filters
Why use capture filters

How to use capture filters

An example capture filter

Capture filters that use protocol header values
Display filters

Retaining filters for later use

Searching for packets using the Find dialog
Colorize traffic

Create new Wireshark profiles

Summar
Practice questions

3. Mastering the Advanced Features of Wireshark

The Statistics menu
Using the Statistics menu
Protocol Hierarchy
Conversations

Endpoints
Working with 10, Flow, and TCP stream graphs
10 graphs
Flow graphs
TCP stream graphs
Round-trip time graphs
Throughput graphs
The Time-sequence graph (tcptrace)

Follow TCP streams

Expert Infos
Command Line-fu

Summary
Exercise

4. Inspecting Application Layer Protocols

Domain name system
Dissecting a DNS packet
Dissecting DNS query/response
Unusual DNS traffic
File transfer protocol
Dissecting FTP communications
Passive mode
Active mode
Dissecting FTP packets
Unusual FTP
Hyper Text Transfer Protocol
How it works — request/response

Request

Response
Unusual HTTP traffic

Simple Mail Transfer Protocol
Usual versus unusual SMTP traffic
Session Initiation Protocol and Voice Over Internet Protocol

Analyzing VOIP traffic
Reassembling packets for playback
Unusual traffic patterns
Decrypting encrypted traffic (SSL/TLS)
Summary
Practice questions:

5. Analyzing Transport Layer Protocols

The transmission control protocol
Understanding the TCP header and its various flags

How TCP communicates

How it works

Graceful termination

RST (reset) packets
Relative verses Absolute numbers
Unusual TCP traffic

How to check for different analysis flags in Wireshark

The User Datagram Protocol
A UDP header

How it works
The DHCP
The TETP
Unusual UDP traffic

Summary
Practice questions

6. Analyzing Traffic in Thin Air

Understanding IEEE 802.11
Various modes in wireless communications
Wireless interference and strength
The IEEE 802.11 packet structure
RTS/CTS
Usual and unusual WEP — open/shared key communication
WEP-open key
The shared key
WPA -Personal
WPA-Enterprise
Decrypting WEP and WPA traffic

Summary
Practice questions

7. Network Security Analysis

Information gathering
PING sweep

Half-open scan (SYN)

OS fingerprinting

ARP poisoning

Analyzing brute force attacks
Inspecting malicious traffic
Solving real-world CTF challenges

Summary

Practice questions

8. Troubleshooting

Recovery features
The flow control mechanism
Troubleshooting slow Internet and network latencies
Client- and server-side latencies
Troubleshooting bottleneck issues
Troubleshooting application-based issues
Summary
Practice questions

9. Introduction to Wireshark v2

The intelligent scroll bar
Translation

Graph improvements
TCP streams
USBPcap

Summary
Practice questions

Index

Mastering Wireshark

Mastering Wireshark
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016
Production reference: 1210316
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-952-2

www.packtpub.com

http://www.packtpub.com

Credits

Author

Charit Mishra
Reviewer

Anish Nath
Commissioning Editor
Kunal Parikh
Acquisition Editor
Kevin Colaco

Content Development Editor
Onkar Wani

Technical Editor
Pranjali Mistry

Copy Editor

Neha Vyas

Project Coordinator
Bijal Patel

Proofreader

Safis Editing

Indexer

Rekha Nair

Production Coordinator
Manu Joseph

Cover Work

Manu Joseph

About the Author

Charit Mishra works as a consultant and pentester at Protiviti, one of the top global
consulting firms. He enjoys his job, which involves helping clients identify security
vulnerabilities, more than anything. With real hands-on experience in security, he has
obtained leading industry certifications such as OSCP, CEH, CompTIA Security+, and
CCNA R&S. He also holds a master’s degree in computer science. He has delivered
professional talks at various institutions and private organizations on information security
and penetration testing. You can reach him at LinkedIn at
https://ae.linkedin.com/in/charitmishra, and on Twitter at @charit0819.

First of all, I would like to express my deepest gratitude to my beloved parents and my
lovely sister, Ayushi, for their full support, expert guidance, understanding, and
encouragement throughout my journey of making this possible. Without their incredible
wisdom and counsel, this would have been an overwhelming pursuit.

I would like to also thank my good friend and mentor Mr. Piyush Verma for believing in
me and guiding me whenever I needed direction. I am also thankful to all my friends and
well wishers, especially Mr. Siddarth Pandey, Mr. Arham Husain, Mr. Bharath Methari,
Mr. Dileep Mishra, and a great friend from Pakistan, Mr. Haider Ali Chughtai, who all
helped me in every possible aspects and always motivated me to achieve the best. My
apologies if I’ve missed anyone out.

Last but not least, I am grateful to the amazing team at Packt Publishing for their constant
and incredible support for making this happen, and thanks to all the reviewers who helped
bring this book into the best shape possible.

As the great influential Swami Vivekananda said, “In a day, when you don’t come across
any problems, you can be sure that you are traveling on the wrong path”.

https://ae.linkedin.com/in/charitmishra

About the Reviewer

Anish Nath has a YouTube channel that you can visit at https://goo.gl/sbJkuX, where he
loves to post videos on security, hacking, and other cloud-related technologies.

http://goo.gl/sbJkuX

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT!L £°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Preface

Almost every device around you is connected to some other device over a network with
the motive of sharing information or supporting other devices. With this small picture in
your mind, what do you think is the most critical part of a network? Obviously, the
channel isn’t.

This book is written from a standpoint of using Wireshark to understand and troubleshoot
commonly seen network anomalies. It can be the start of your journey into the world of
networks/traffic/packet analysis. You can be the savior of your generation or the superhero
of your team who helps people with connectivity issues, network administration, computer
forensics, and so on. If your routine job requires dealing with computer networks, then this
book can give you a strong head start. As the tagline says “From 0 to 1337”,that is we will
start from the basics gradually moving on to the advanced concepts too.

I have tried to cover the most common scenarios that you could come across while
troubleshooting, along with hands-on practical cases that can make you understand the
concepts better. By mastering packet analysis, you will learn how to troubleshoot all the
way down to the bare wires. This will teach you to make sense of the data flowing around.
You will find very interesting sections, such as troubleshooting slow networks, analyzing
packets over Wi-Fi, malware analysis, and not to forget, the latest features introduced in
Wireshark 2.0 in this book. Happy troubleshooting!

What this book covers

Chapter 1, Welcome to the World of Packet Analysis with Wireshark, provides you an
introduction to the basics of the TCP/IP model and familiarizes you with the GUI of
Wireshark along with a sample packet capture. Here, you will learn how to set up network
sniffers for analysis purpose.

Chapter 2, Filtering Our Way in Wireshark, talks about different filtering options available
in Wireshark, namely capture and display filters, and how to create and use different
profiles. Make yourself comfortable with the rich interface of Wireshark and start
capturing what you exactly want to.

Chapter 3, Mastering the Advanced Features in Wireshark, helps you look under the hood
of the statistics menu in Wireshark and work with the different command-line utilities that
come prepackaged with Wireshark. You will also learn how to prepare graphs, charts,
packet flow diagrams, and most important of all, how to become a command-line fu
master.

Chapter 4, Inspecting Application Layer Protocols, helps you understand and analyze the
normal and unusual behavior of application-layer protocols. Here, we will briefly discuss
the techniques you can use to understand the cause. We all are aware of the basics, but
have you ever thought how common application-layer protocol traffic can go crazy? In
this chapter, you will learn how to deal with them.

Chapter 5, Analyzing Transport Layer Protocols, shows how TCP and UDP protocols
work, how they communicate, what problems they face, and how Wireshark can be used
to analyze them. Make yourself a transport-layer doctor who can easily figure out
common anomalies and prove themselves worthy.

Chapter 6, Analyzing Traffic in Thin Air, shows you how to analyze wireless traffic and
pinpoint any problems that may follow. We will dive into the new world of wireless
protocol analysis, where you can become a Wi-Fi ninja.

Chapter 7, Network Security Analysis, shows you how to use Wireshark to analyze
network security issues, such as malware traffic, intrusion, and footprinting attempts. In
this chapter, you will learn how to figure out security anomalies, catch the hackers red
handed and make them cry like a baby, and experience how to solve CTF challenges.

Chapter 8, Troubleshooting, teaches you how to configure and use Wireshark to perform
network troubleshooting. Here, you will master the art of troubleshooting network issues
such as slow networks. You will also learn how to troubleshoot networking problems with
the most common daily-life examples.

Chapter 9, Introduction to Wireshark v2, shows you the amazing features launched in the
latest release of Wireshark with practical examples, such as USBpcap, intelligent scrollbar,
new graphs, and much more.

What you need for this book

You just need a working installation of Wireshark and a basic understanding of
networking protocols. Basic familiarity with network protocols would be beneficial, but it
isn’t mandatory.

Who this book is for

Are you curious to know what’s going on in a network? Do you get frustrated when you
are unable to detect the cause of problems in your networks? If your answer to these
questions is yes, then this book is for you.

Mastering Wireshark is for Security and network enthusiasts who are interested in
understanding the internal workings of networks and have prior knowledge of using
Wireshark, but are not aware about all of its functionalities.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
“Wireshark with an empty checksum field that generates the checksum offloading error.’

)

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Navigate to Edit |
Preferences in the menu bar.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from

https://www.packtpub.com/sites/default/files/downloads/MasteringWireshark_ColoredIma;

https://www.packtpub.com/sites/default/files/downloads/MasteringWireshark_ColoredImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to

https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Welcome to the World of Packet
Analysis with Wireshark

This chapter provides you an introduction to the basics of the TCP/IP model and
familiarizes you with the GUI of Wireshark along with a sample packet capture. You will
be introduced to the following topics:

What is Wireshark?

How does it work?

A brief overview of the TCP/IP model
An introduction to packet analysis
Why use Wireshark?

Understanding the GUI of Wireshark
The first packet capture

Introduction to Wireshark

Wireshark is one of the most advanced packet capturing software, which makes the life of
system/network administrators easy and proves its usefulness among the groups of
security evangelists. Wireshark is also called a protocol analyzer, which helps IT
professionals in debugging network-level problems. This tool can be of great use to
optimize network performance.

Wireshark runs around dissecting network-level packets and showing packet details to
concerned users as per their requirement. If you are one of those who deals with packet-
level networking everyday, then Wireshark is for you and can be used for multiple
troubleshooting purposes.

A brief overview of the TCP/IP model

Next, it’s time to discuss the most important topic in the world of networking. In order to
understand how all these things stick together, we need to understand the basics of the
TCP/IP model. Even the world of computers needs a set of rules and regulations to
communicate, and this is taken care by the networking protocols, which govern the
transmission of packets/segments/frames over a dedicated channel between hosts.

The TCP/IP model was originally known as the DoD model, and the project was regulated
by United States Department of Defense. The TCP/IP model takes care of every aspect of
every packet’s life cycle, namely, how a packet is generated, how a single packet gets
attached with a required set of information (PDU), how a packet is transmitted, how it
comes to life, how it is routed through to intermediary nodes to the destination, how it is
integrated back with other packets to get the whole information out, and so on.

If you have any confusion regarding the basics of networking protocols, I would
recommend that you do a quick revision before proceeding ahead, as this book requires
familiarity with the TCP/UDP protocols. By the time you come back, you will be able to
visualize and answer all of these questions on your own.

The layers in the TCP/IP model

The TCP/IP model comprises four layers, as shown in the following diagram. Each layer
uses a different set of protocols allocated to it. Every protocol has specific designated
roles, and all of them are designed in such a way that they comply with industry standards.

The first layer is the Application Layer that directly interacts with users and other
network-level protocols; it is primarily concerned with the representation of the data in an
understandable format to the user. The Application layer also keeps track of user web
sessions, which users are connected, and uses a set of protocols, which helps the
application layer interface to the other layers in the TCP/IP model. Some popular
protocols that we will cover in this book are as follows:

The Hyper Text Transfer Protocol (HTTP)

The File Transfer Protocol (FTP)

The Simple Network Management Protocol (SNMP)
The Simple Mail Transfer Protocol (SMTP)

The second layer is the Transport Layer. The sole purpose of this layer is to create
sockets over which the two hosts can communicate (you might already know about the
importance of network sockets) which is essential to create an individual connection
between two devices.

There can be more than one connection between two hosts at the same instance. IP
addresses and port numbers together make this possible. An IP address is required when
we talk about WAN-based communication (in LAN-based communication, the actual data
transfer happens over MAC addresses), and these days, a single system can communicate
with more than one device over multiple channels which is possible with the help of port
numbers. Apart from the restricted range of port numbers, every system is free to

designate a random port for their communication.

This layer also serves as a backbone to the communication between two hosts. The most
common protocols that work in this layer are TCP and UDP, which are explained as
follows:

e TCP: This is a connection-oriented protocol, often called a reliable protocol. Here,
firstly, a dedicated channel is created between two hosts and then data is transferred.
Then, the sender sends equally partitioned chunks, over the dedicated channel, and
then, the receiver sends the acknowledgement for every chunk received. Most
commonly, the sender waits for a particular time after which it sends the same chunk
again for assurance. For example, if you are downloading something, TCP is the one
that takes care and makes sure that every bit is transferred successfully.

e UDP: This is a connection-less protocol and is often termed an unreliable form of
communication. It is simple though because there is no dedicated channel created,
and the sender is just concerned with sending chunks of data to the destination,
whether it is received or not. This form of communication actually does not hamper
the communication quality; the sole purpose of transferring the bits from a sender to
receiver is fulfilled. For example, if you are playing a LAN-based game, the loss of a
few bytes is not going to disrupt your gaming experience, and as a result, the user
experience is not harmed.

The third layer is the Internet Layer, which is concerned with the back and forth
movement of data. The primary protocol that works is the IP (Internet Protocol)
protocol, and it is the most important protocol of this layer. The IP provides the routing
functionality due to which a certain packet can get to it’s destination. Other protocols
included in this layer are ICMP and IGMP.

The last layer is the Link Layer (often termed as the Network Interface Layer) that is
close to the network hardware. There are no protocols specified in this layer by TCP/IP;
however, several protocols are implemented, such as Address Resolution Protocol
(ARP) and Point to Point (PPP). This layer is concerned with how a bit of information
travels inside the real wires. It establishes and terminates the connection and also converts
signals from analog to digital and vice versa. Devices such as bridges and switches operate
in this layer.

The combination of an IP address and a MAC address for both the client and server is the
core of the communication process, where the IP address is assigned to the device by the
gateway or assigned statically, and the MAC address comes from the Network Interface
Card (NIC), which should be present in every device that communicates with other hosts.
As data progresses from the Application layer to the Link Layer, several bits of
information are attached to the data bits in the form of headers or footers, which allow
different layers of the TCP/IP model to coordinate with each other. The process of adding
these extra bits is called data encapsulation, and in this process, a Protocol data unit
(PDU) is created at the end of the networking model.

It consists of the information being sent along with the different protocol information that
gets attached as part of the header or footer. By the time PDU reaches the bottom-most

layer, it is embedded with all the required information required for the real transfer. Once
it reaches the destination, the embedded header and footer PDU elements are ripped off
one by one as it passes through each and every layer of the TCP/IP model as it progresses
upward in the model.

The following figure depicts the process of encapsulation:

Client Web Server

o«

l T

/— Application | HTTP HTTP | Application ‘-\
Transport | TCP | HTTP HTTP | TCP | Transport
v/l';etworh IP | TCP | HTTP HTTP | TCP | IP Netwc}:a\
‘/Lt:k Ethernet| IP | TCP | HTTP HTTP | TCP | IP [Ethernet :rh

\ ..()Physicm Link() //‘

Figure 1.1: Data encapsulation

An introduction to packet analysis with Wireshark

Packet analysis (also known as packet sniffing or protocol analyzing) is used to intercept
and capture live data as it travels over the network (Ethernet or Wi-Fi) in order to
understand what is happening in the network. Packet analysis is done by protocol
analyzers such as Wireshark available on the Internet. Some of these are free and some are
paid for commercial use. In this book, we will use Wireshark to perform network analysis,
which is an open source software and the best free-network analyzer available on the
Internet.

Numerous problems can happen in today’s world of networking; for this, we need to be
geared up all the time with the latest set of tools that can avail us of the ease of
troubleshooting in any situation. Each of these problems will start from the packet level
and can gradually grow up to a high network downtime. Even the best of protocols and
services running on a system can go bad and behave maliciously. To get to the root of the
problem, we need to look into the packet level to understand it better. If you need to
maintain your network, then you definitely need to look into the packet level. Packet
analysis can be used for the following aspects:

¢ To analyze network problems by looking into the packets and their specific details so
that you can get a better hold over your network.

e To detect network intrusion attempts and whether there are any malicious users who
are trying to get into your network, or they have already got access to something in
your network.

¢ To detect network misuse by internal or external users by establishing firewall rules
in your security appliance and then monitoring each of these rules through
Wireshark.

¢ To isolate exploited systems so that the affected system doesn’t become a pivot point
for your network for malicious users.

e To monitor data in motion once it travels live in your network to have better control
over the allowed and restricted categories of data. For instance, say you want to
create a rule for your firewall that will block the access to Bit Torrent sites. Blocking
access to them can be done from your manageable router, but knowing from where
the request was originated can be easily audited through Wireshark.

e To gather and report network statistics by filtering the most specific packets as per
your requirements and then creating specific capture filters for your perusal that can
help you in the long run.

e Learning who is on the network and what they are doing, is there something they are
not allowed to do, and is there anyone who is trying to bypass the network
restrictions. All of these simple day-to-day tasks can be achieved easily through
Wireshark.

e To debug client/server communications so that all the request and replies
communicated between the peers on our network can be audited to maintain the
integrity of your network.

e To look for applications that are sitting in the corner of your own network and eating
the bandwidth. They might be making your network insecure or making it visible to

the public network. Through this unnoticed application, different forms of network
traffic can enter without any restrictions.

¢ To debug network protocol implementations and any kind of anomalies present due
to various misconfigurations in the current running devices.

To identify possible or malicious attacks that your network can be a victim of, to analyze
them, control/supervise them, and make yourself ready for any possible malicious activity.

When performing a packet analysis, you should take care of things such as which
protocols can be interpreted, which is the best software you can use according to your
expertise, which protocol analyzer will best suit your network requirement. Experience
does count in this field; once you start working with Wireshark, gradually you will come
up with new ideas to troubleshoot and analyze your packets in a much more advanced
way.

Packet sniffers can interpret common network protocols (such as IP and ICMP), transport
layers (such as TCP and UDP), and application protocols (such as DNS and HTTP).

Due to the overwhelming amount of information presented by Wireshark’s GUI, it might
seem complex to some users and might be considered as one of its demerits. There are a
few CUI/GUI tools that can solve this purpose. They are pretty simple to use and also
present a simpler interface, for example, TShark, tcpdump, Fiddler, and so on.

How to do packet analysis

When traffic is captured, either all raw data is captured or only the header data is captured
without capturing the total content of the packet. Captured information is decoded from
raw data to a human-readable form, which allows users to understand the exchanged data
between the networks in a much more precise manner.

What is Wireshark?

Wireshark is a packet-sniffing software that is used by IT professionals all around the
world for analysis purpose. You can download it for free from
https://www.wireshark.org/download.html.

Wireshark can be installed on a variety of platforms, including Linux, MAC, and
Windows (most of the versions). This is open source software, which means that the code
of the software and its required libraries can be downloaded from the same website we
mentioned earlier.

One of the important key aspects of packet sniffing is where to place the packet sniffer in
the physical network to achieve the maximum utilization out of it; packet sniffing is often
referred to as tapping into the wire.

Tapping into the wire is not just about starting Wireshark on your system; there are a
couple of things a person should know about before starting the sniffer. For instance,
placing the sniffer at a proper place in the organization’s infrastructure, having working
knowledge of different networking devices because each of the networking devices (hubs,
switches, routers, and firewalls) behave differently. It is also important to know how each
of them work and how network devices handle network traffic. Placing the sniffer in the
right place can impact your packet analyzing experience in a detailed manner, which in the
end can lead to drastic results if done correctly.

After you have placed your sniffer, you should confirm that your NIC supports
promiscuous working. By enabling this, your interface card will start learning about even
those packets that are not destined or routed through your machine. A network’s
broadcasted traffic can be captured and analyzed by every client, which is part of the same
network. Network devices broadcast multiple types of traffic that can be listened to by an
interface, which supports the promiscuous mode.

The ARP protocol’s traffic is broadcasted. The address resolution protocol is responsible
for resolving MAC to IP addresses and vice versa. Devices such as switches send an ARP
packet to all devices asking for the correct device to respond with it’s MAC address.
Gradually, the switch will maintain a list of MAC addresses and their corresponding IP
addresses, which is even termed as the CAM table (content addressable memory). Now,
whenever any host wants to communicate with its other corresponding peers over the
LAN, information required for the transfer is communicated to the sender from the switch.
Information such as IP and MAC addresses for different devices can be easily captured
and recorded through ARP traffic.

http://www.wireshark.org/download.html

How it works

Wireshark comes with the libcap/Winpcap driver, which lets you switch your NIC to the
promiscuous mode; the only time you don’t want to sniff in the promiscuous mode is
when the packets are directly, intentionally destined to your device. On a Windows-based
system, you should have elevated administrator privileges to sniff and analyze the packets.
There are three common step processes that every protocol analyzer follows: collect,
convert, and analyze. These are described as follows:

e Collect: This is the first step where you choose a certain interface to listen on, and
through this, you can acquire a certain amount of raw data from the network, which
can be achieved by switching your interface into a promiscuous mode so that, after
capturing what ever traffic is being broadcasted in your network, it can be displayed
in your Wireshark GUI.

e Convert: This is to increase the readability of the collected binary form. Network
packets can be converted by the protocol analyzer, such as Wireshark, to simple and
easier formats so that people like us can have a better understanding of packets and
solve our day-to-day problems easily.

e Analyze: In this final step, after the collection and conversion of the network packets,
a step-by-step process of analyzing the data starts where we look into the specific
details about the protocols and their specific configuration details. Then, we move on
to host and destination addresses and the kind of information they are sharing. Rest of
the analysis is left to the user’s consent and how they filter and review the collected
data.

If you want to get a foothold on understanding the process of packet capturing and
analysis, you really need to be well versed with networking protocols and how they work
because the whole communication that happens over a network is governed by various
protocols, such as ARP, Dynamic Host Control Protocol (DHCP), Domain Name
Service (DNS), Transmission Control Protocol (TCP), Internet Protocol (IP), HTTP,
and many others.

Protocols are the rules and regulations that govern the process of communication between
two network devices and control the environment under which they operate. Each of these
protocols has different complexity levels depending on how and where they are being
implemented. Majorly, all protocols work in the same fashion, where they send a request
and wait for the confirmation, and as they receive an acknowledgement, they let the
devices communicate.

After the data has been successfully transferred between them, the connections should be
terminated gracefully in order to mark a communication as successful without loss of even
a single bit. While the data is transferred, protocols need to maintain the integrity of the
communication as well, that is, if abc information is sent from the sender’s side, it should
be received in the same order and manner. If the bits are being tampered during the
transition, this means that the protocol used isn’t reliable. Analyzing all of these tasks is
the basic work responsibility of any network protocol analyzer.

Capturing methodologies

Network packets can be captured through various techniques. Depending on the
requirement, a protocol analyzer is placed at a certain place in network with a particular

type of configuration.

Hub-based networks

Hub-based networks are the easiest ones to sniff out because you’ve the freedom to place
the sniffer at any place you want, as hubs broadcast each and every packet to the entire
network they are a part of. So, we don’t have to worry about the placement. However,
hubs have one weakness that can drastically decrease network performance due to the
collision of packets. Because hubs do not have any priority-based system for device that
send packets, whoever wants to send them can just initiate the connection with the HUB
(central device) and start transmitting the packets. Often, more than one devices start
sending packets at the same instance. Now, as a result, the collision of the packets will
happen, and the sending side will be informed to resend the previous packet. As a
consequence, things such as traffic congestion and improper bandwidth utilization can be
experienced.

The switched environment

Due to some restrictions present in switched-based infrastructures, packet analysis
becomes a bit complex. To bypass these restrictions and make the life of administrators
easy, we will talk about a couple of solutions such as port mirroring and hubbing out.

In port mirroring, once you have the command-line configuration console or web-based
interface to mage you’re the access point (router/switch), then we can easily configure
port mirroring.

Let’s make it simpler for you with a logical illustration. For instance, let’s assume that we
have a 24-ports switch and 8 PCs which (PC-1 to PC-8) are connected. We are still left
with more than 15 ports. Place your sniffer in any of those free ports and then configure
port mirroring, which will copy all the traffic from whatever device we want to the port of
our choice, where our protocol analyzer sits, which can see the whole bunch of data
traveling through the mirrored port.

Once this is completely configured, we will be able to easily analyze each and every piece
of information going back and forth from the mirrored port. This technique is one of the
easiest among others to configure; the only thing you should know beforehand is how to
configure switches with command-line interfaces. These days, admins are provided with a
GUI for configuration purposes if it is the case for you to just go for it. The following
figure depicts a simple demonstration of port mirroring:

e PC running
& wireshark
PC 2
Mirrored Port =
(Copying all data
from Fa O/1) -m__ﬂ% Fa 0/2
>
Fa0/1| < 2
Switch Router

Figure 1.2: Port mirroring

Hubbing out is feasible when your switch doesn’t support port mirroring. To use the
technique, you have to actually plug the target PC out of the switched network, then plug
your hub to the switch, and then connect you analyzer and target device to the switch so
that becomes the part of the same network.

Now, the protocol analyzer and the target are part of the same broadcast domain. Your
analyzer will easily capture every packet destined to target or originated from the target.
But make sure that the target is aware about the data loss that can happen while you try to
create hubbing out for analysis. The following figure will make it easier for us to
understand the concept precisely:

Hubbing Out
server server
router router

<—2> | switch
<—>

Target 1\

* mirroring not possible protocol
Analyser

Figure 1.3: Hubbing out

ARP poisoning

This is an unethical way to capture network traffic where we try to imitate another device
between two parties. Let’s say, for example, we have our default gateway at 192.168.1.1
and our client is located at 192.168.1.2. Both of these devices must have maintained a
local ARP cache that facilitates them to send packets without any extra overhead over the
LAN. Now, the question is what kind information does the ARP cache hold, and in which
form. Let me tell you, the command to view the ARP cache, which displays MAC
addresses associated for a particular IP address is arp -a . Issuing the arp -a command
(the same works for most of the platforms) populates a table that holds a device’s IP
address and its MAC address. Have a look at the following diagram which shows a normal
scenario of ARP poisoning;:

Before ARP Cache

192.68.1.1 - (Server)
192.68.1.2 - AA:BB:EE
192.68.1.3 - AA:BB:DD

192.68.1.2 - (Client)
192.68.1.1 - AA:BB:CC
192.68.1.3 - AA:BB:DD

192.68.1.3 - (Attacker)
192.68.1.1 - AA:BB:CC
192.68.1.2 - AA:BB:EE

Now that we’ve understood what is stored inside an ARP cache, let’s try to poison it.

After ARP Cache

192.68.1.1 - (Server)
192.68.1.2 - AA:BB:DD
192.68.1.3 - AA:BB:DD
192.68.1.2 - (Client)
192.68.1.1 - AA:BB:DD
192.68.1.3 - AA:BB:DD
192.68.1.3 - (Attacker)
192.68.1.1 - AA:BB:CC

192.68.

=

.2 - AA:BB:EE

Attacker

ARP Cache
[Client 192.69.1.2 | AA'BB:EE

=——=\ Server | 192.68.1.1 | AA:BB:CC

Client ‘ *E” Server

Mormal Senario

ARP Cache ARP Cache
P MAC IP MAC
Server 192.68.1.1 | AA:BB:CC Client 192.69.1.2 | AA:BB:EE
Attacker | 192.68.1.3 | AA:BB:DD Attacker | 192.68.1.3 | AA:BB:DD

Figure 1.4: ARP poisoning (the normal scenario)

Now that you’ve understood what is the importance of the ARP protocol and how it
works, we can try to poison the arp cache of both the default gateway and the client with
the attacker’s MAC address. In simple terms, we will replace the client’s MAC address in
the default gateway’s ARP cache with the attacker’s MAC address. We will do the same in
the client’s MAC address, replacing the default gateway’s MAC address with the
attacker’s MAC address. As a result, every packet destined to the client from the default
gateway and vice versa will be sent to the attacker’s machine.

If port forwarding is already configured on the attacker’s side, the received packet will be
forwarded to the real intended destination, without giving any hints to the client and the
default gateway that the packet is being sniffed.

Port Mirroring

Attacker
ARP Cache
P MAC
192.69.1.2 | AA:BB:EE
192.68.1.1 | AA:BB:CC
A
Client Vi 3 || Server
I —_—
2\
ARP Poisoning Scenario
ARP Cache ARP Cache
IP MAC IP MAC
Server | 192,68.1.1 | AA:BB:CC Client |192,69.1.2 | AA:BB:EE
Attacker | 192.68.1.3 | AA:BB:DD Attacker | 192.68.1.3 | AA:BB:DD

Figure 1.5: ARP poisoning (the poisoned scenario)

Other than these two techniques, there is a variety of hardware available on the market,
which are popularly known as taps and can be placed between any two devices to sniff and
analyze the traffic. Though this technique is effective to capture network traffic in some
scenarios, it should be practised or deployed in a controlled environment because it can
prove to be malicious to the internal corporate network.

Passing through routers

When dealing with routed environments, the main aspect of packet analyses is to place
your sniffer at the right place from where we can gather the required information. Dealing
with routed structures demands more skills, as sometimes you need to rethink about the
placement of your sniffer. Consider a routed environment with three routers:

Router 1, router 2, and router 3 are working together; each of them owns 2-3 PCs. Router
1 is the acting like a root node while controlling its child networked nodes (router 2 and
router 3). Router 3 clients are not able to connect to router 1 clients. To resolve this issue,
the admin of the organization has placed the sniffer inside the router 3 area.

After a while, the admin has collected quite a good amount of packets; the admin is still
not able to detect the anomaly within the network. So, he/she decides to move the sniffer
to another area in the network. After placing the sniffer in the router 1 area, the admin can
see quite a useful stream of packets that he/she was looking for earlier. This is quite a
simple illustration of moving the sniffer around, which can be helpful in certain situations.
The moral is that placing the sniffer in your networked infrastructure is quite an important
task.

After reading this, I hope you would now like to see how Wireshark actually looks like, so
let’s take a look at the GUI of the software and how we have to initialize the process of
capturing network packets.

If you do not have Wireshark installed, you can get a free copy from
https://www.wireshark.org/download.html. To go through the illustrations in this book,
you also need to be familiar with the interface.

https://www.wireshark.org/download.html

Why use Wireshark?

I hope I am not the only one who is obsessed with the simplicity of the packet capturing
scenario, which Wireshark facilitates for us. I will just quickly point out the reasons why
most people prefer Wireshark to other packet sniffers:

e User friendly: It does count for every GUI we have ever seen or worked with, how
easily the options are presented, and how convenient it is to use (I guess, even the
ones who don’t know about packet analysis can start capturing packets in Wireshark
without any prior specialized knowledge).

¢ Robustness: The amount of information Wireshark can handle is outstanding; what I
actually mean by this is software of this kind may hang or crash (because of
thousands of packets that are captured and displayed every second) when trying to
display the packets traveling all over the network. However, Wireshark doesn’t—a
big hand to Wireshark creators for how well they have structured it.

¢ Platform independent: Yeah, this one is definitely on the list. This free software can
be installed on any platform that is used for computing purposes by administrators
these days, whether Linux-based, Windows-based, or Macintosh-based platforms.

¢ Filters: There are two kinds of filtering options present in Wireshark:

o You choose what to capture (capture filters)
o You choose what to display after you’ve captured (display filters)

e Cost: Wireshark comes free, and is developed and maintained by a dedicated
community. Wireshark offers some paid professional tools also. For more details
refer to Wireshark’s official website.

e Support: Wireshark is being developed very actively by a group of contributors
scattered around the globe . We can sign up to the Wireshark’s mailing list or we can
get help from the online documentations, which can be accessed through the GUI
itself; and various online forums are available to get the most effective; go to Google
paid Wireshark support to know more about it.

The Wireshark GUI

Before we discuss its awesome features, let me take this opportunity to explain the history
of Wireshark and how it came into existence.

Wireshark was built during the late ’90s. Combs, a young college graduate from Kansas
city developed Ethereal (the basic version of Wireshark), and by the time Combs
developed this awesome piece of invention, he had landed himself a job where he signed a
formal contract. After a few years of service, Combs decided to quit his job and to pursue
his dreams by developing Ethereal further. Unfortunately, as per the legal terms, the
Combs invention was part of the company’s proprietary software. Despite this, Combs left
the job and started working on the new version of Ethereal, which he titled Wireshark.
Since 2006, Wireshark has been in active development and is being used worldwide. It
supports a majority of protocols (more than 800), which are implemented in the wild
today.

The installation process

Follow these steps to install Wireshark on your system:

1. In this book, I am going to you use a Mac PC; for other platforms, the installation is
the same. Some OSes, such as Kali Linux, come with a preinstalled version of
Wireshark.

2. So, if you are using Macintosh, then first and foremost, you need to download X11
Quartz (XQuartz-2.7.7), which will simulate an environment to run Wireshark (for
Windows just download the respective executable compatible with your processor).

3. Now, you can install Wireshark (Wireshark 1.12.6 Intel 64), which we downloaded

earlier in this book.

Once both of these are successfully installed, we need to restart our computer.

After the PC has been restarted, start Wireshark. As soon as the packet analyzer

opens, you will see that the X11 server starts on its own. You don’t need to worry

about it; just leave it in the background.

6. Once it is opened completely, it will look as shown in the following screenshot:

ok

% The Wireshark Network Analyzer [Wireshark 1,12.6 (v1.12,6-0-geelfces from master-1.12)]
File Edit View Go Capture Analyze Statistics Telephony Tools [nternals Help

GodudERExXRcernTiEB I ENEL E

Filter: ‘ _J Expression...

The World's Most Popular Network Protocol Analyzer

WIRESHARK version 1.12.6 (v1.12.6-0-geelfce6 from master-1.12)

_Gpwre] Files) Online

Interface List = Open & Website
Live list of the capture interfaces Open a previously captured file ~ Visit the project's website
(counts incoming packets)
Stift Apeitarent + User's Guide

/| ar The User's Guide (online version)
Choose one or more interfaces to capture from, then Start @ Samp| e Captu res

I Ethernet: en0 T A rich assortment of example capture files on the wiki Q Security

i FireWire: fw0

{# Thunderbolt Bridge: bridge0
Wi-Fizenl 4
@/ Thunderbolt 1: en2

Work with Wireshark as securely as possible

@ Capture Options

Start a capture with detailed options

(O ¥'|Ready to load or capture ~ {No Packets i Profile: Default

Figure 1.6: The Wireshark screen

Before we go ahead and start the first capture, we need to get a bit familiar with the
options and menus available.

There are six main parts in the Wireshark GUI, which are explained as follows:

e Menu Bar: This represents tools in a generalized form that are organized in the
Applications menu.

e Main Tool Bar: This consists of the frequently used tools that can offer efficient
utilization of the software.

e Packet List Pane: This window area displays all the various packets getting captured
by Wireshark.

e Packet Details Pane: This window gives us details pertaining to the selected packet
in the packet list pane are shown. For example, we can view source and destination
IP addresses and different protocols used for communication arranged in the bottom-
top approach (Link Layer to Application Layer). Information regarding the packets is
listed in different categories of protocols that can be expanded to get more details for
the selected packet.

e Bytes Pane: This shows the data in the packets in the form of hex bytes and their
corresponding ASCII values; it shows the values in the form in which they travel in
the wires.

e Status Bar: This displays details such as total packets captured.

The following screenshot will help you to identify different sections in the application,
please make sure you get yourself acquainted with all of them before proceeding to further
chapters.

LW g By Eolln tnah

File Edit View Go Capture Analyze Statistics Telephony Tools [nternals Help

Filter: | J Expression... Clear Apply Save
No. |Time ‘Suum’ |Destination thtncuIJLengthlnfn :
10.000000000 172,20,10.7 17178, 104,38 TCP 1414 [TCP segnent of a reassenbled POU]
2 0.00000l060 172.20.10.7 17.178.104. 38 TP 1414 [TCP segment of a reassembled POU]
jo.o0DooroE0 172.20.10.7 17.178.104.38 TL5¢1.2 438 ;‘.pplicatiun Data
41666233000 17,178, 104,38 172.20.10.7 TP 54 44353067 [ACK] Segaldoha aiiet Lanad
§1.691123000 17.178,104,38 172.20.10.7 Tcp 1416 (TCP sequent of a| PacketList Pane
71.691257000 17.178,104.38 172.20.10.7 TLSV1.2 57 Application Data
81.601323000 172.20.10.7 17,178.104.38 TP 54 53067443 [ACK] Seq=3105 Ack=1361 Win=8149 Len<0
9 1.691392600 172.20,10.7 17.178.1064.38 TCP 54 53067-443 [ACK] 5eq=3105 Ack=1364 Win=8149 Len=0
10 6.263488000 83, 166, 169, 231 172.20.10.7 TLSW1.2 97 Encrypted Alert
116.283503000 172.20.10.7 83, 166,169,231 TP 66 53042443 [ACK) Seq=l Ack=32 Win=4095 Len=) TSval=822128
13 6.307300000 172.20.10.7 83, 166.169. 231 TCP 66 53042-443 [ACK) Seqsl Ack=33 Win=4096 Len=0 TSval=322128

14 6.307491000 B3, 166, 169,231 172,20.10,7 TLSv1.2 97 Encrypted Alert

REELER

b Frame 5/ 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface 0

b Ethernet IT, Src: 4a;74:6e:ba;d0:64 (4a:74:6e:ba:d0:64), Dst: Apple b9:53:ec (de:bb:2c:b9:53:ec)

b Internet Protocol Version 4, Sre: 17,178.104.38 (17.178.104.38), Dst: 172.20,10.7 (172.20.10.7)

» Transmission Control Protocol, Src Port: 443 (443), Dst Port: 53067 (53067), Seq: 1, Ack: 3105, Len: 0

IJIBEBeaﬂﬂUEﬂ C 1
03 07 01bbcf db 94 ec dc 3126 laae 085020K. LlG..P.

Packet Details Pane

0d 39 ec 60 00 00

Status Bar

D) ¥ | File: */var/folders/ck/31tvm... | Packets: 44 - Displayed: 44 (100.0%) - Dropped: 0 (0.0%) |~ [Profile: Default

Within the toolbar area, we have a few useful tools. I would like to give you a brief
overview of some of them:

N
A=
o : This gives you the option to choose an interface for listening
@)
N

o : Through this, you can customize the capturing process

o J ' 54 These are to start/stop/restart the capturing process

—

I
C—

. : This is to open a saved capture file

s

e :Thisis to save the current capture in a file

: This is to reload the current capture file

: This is to close the current capture file

o : This is to go back to the recent most visited packet

o : This icon is to go forward to the most recently visited packet

o ~: This is used to go to a specific packet number

: Toggle Color coding for the packets On/Off

e — Thisis used to toggle the autoscroll on/off
£ £ o
¢ «};}' & m} :3 ; ‘f/_;
Y it T, . .
° : This is to zoom in, zoom out, and reset zoom to the default

: This is used to change the color coding as per requirements

o : This is used to configure display filters to only see what is required

: This is used to narrow down the window in order to capture packets

Even after selecting a working interface, sometimes, you won’t be able to see any packets
in your packet list pane. There can be multiple reasons for this, some of which are listed as

follows:

¢ You do not have any network traffic

e The packets traveling in the network are not destined to your device

¢ You do not have the promiscuous mode activated or do not have an option for the
promiscuous mode

After launching the Wireshark application, you will see something like the following
screenshot on our screens. Although it doesn’t look so interesting at first glance, what
makes it interesting are the packets that are flowing around. Yeah, I am talking about
capturing packets.

[ROl) % Capturing from Wi-Fi: en1 [Wireshark 1.12.8 (v1.12.6-0-geelfced from master-1.12)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

COAN I EEXR A ¢swFIERQRQRANFOEL B

Filter: I LlExpressian.,. Clear Apply Sav

No. |Time |Snurce |De51ination |Prmam||Length|lnfu M
1 0.000000000 172.20.10.7 172,20.10.1 DNS 79 Standard query 0xa69f A gspld-ssl.apple.com
2 1.086453000 172,20,10.7 172.20.10.1 DHS 79 Standard query Oxa69f A gspl0-ssl.apple.com
3 1.089702000 172.20.10.1 172.20.10.7 DNS 190 Standard query response Oxa6df CNAME gspl0-ssl.ls-apple.com.@

51.125878000 172.20,10.1 172.20.10,7 190 Standard query response Oxabdf CNAME gspl0-ssl.ls-apple.com.s

71.748066000 172.20.10.7 17.167.194, 205 TCP 54 52086-443 [ACK] Seq=l Ack=1 Win=262144 Len=0

8 1.749286000 172.20,10.7 17.167.194, 205 SsL 244 Client Hello

93.079270000 17.167.194,205 172.20.10.7 TCP 1414 [TCP segment of & reassenbled POU]

10 3.079341000 172.20,10.7 17.167.194, 285 TCP 54 52086-443 [ACK] Seq=191 Ack=1361 Win=260768 Len=0

11 3.079986000 17,167,194, 205 172.20.10.7 TCP 1414 [TCP segment of a reassembled PDU)

12 3.080086000 172.20.10.7 17.167.194, 285 TCP 54 52086-443 [ACK] Seq=191 Ack=2721 Win=260768 Len=0

13 3.080365000 17,167,194, 205 172.20.10,7 TP 1414 [TCP segment of a reassembled POU]

14 3,080372000 17,167,194, 205 172,20.10.7 TLSv1 412 Server Hello, Certificate, Server Hello Done ¥
—— e e 3

p
P Ethernet II, Src: 4a:74:6e:ba:d0:64 (4a:74:6e:ba;d0:64), Dst: Apple b9:53:ec (d8:bb:2c:b9:53:ec)
b Internet Protocol Version 4, Src: 172,20.10.1 (172.20.10.1), Dst: 172.20.10.7 (172.20.10,7)

b User Datagram Protocol, Src Port: 53 (53), Dst Port: 52556 (52556)

I Domain Wame System (response)

nooe
0010
0020
LLED)
0040

O ¥ |Frame (frame), 168 bytes | Packets: 52 - Displayed: 52 (100.0%) {Profile: Default

T -

Figure 1.7: The Wireshark capture screen

Starting our first capture

As you’ve been introduced to the basics of Wireshark and since you have learned how to
install Wireshark, I feel you are ready to initiate your first capture. I will be guiding you
through the following series of steps to start/stop/save you first Wireshark capture:

1. Open the Wireshark application.
2. Choose an interface to listen to.

00 \| Wireshark: Capture Interfaces
Device Description IP Packets Packets/s
2 en0
2 fwo
¢ bridge0 |
% enl 446 2
2 en2
&2 o0 =225 9
$§H6|D| # Start I M Stop @thions‘ & Close ‘

Figure 1.8: The interface window

3. Before you click on Start, we have the Options button, which gives us the advantage
of customizing the capture process; but as of now, we will be using the default
configuration.

Tip
Make sure that the Promiscuous mode is activated so that we can capture the traffic
that is not destined to our machine.

% Wireshark: Capture Options

Capture
Capture Interface Link-layer header |Prom. Mude’ Snaplen [B]l Buffer [HiB]I Mon. Mudel Capture F o
O Ethernet: enD Ethernet enabled 262144 2 nja m
O FireWire: fw0 Apple IP-over-IEEE 1394 enabled 262144 2 n/a ;
«F 3 Iw

O Capture on all interfaces
B Use promiscuous mode on all interfaces

Manage Interfaces |

@ Capture Filter: ‘ ||

Capture Files

File: |

O Use multiple files Use pcap-ng format

meaabvieis) v

.

Eruwse...l

* | Compile selected BPFsl

Display Options

Update list of packets in real time
O Automatically scroll during live capture
E Hide capture info dialog

Name Resolution

B Resolve MAC addresses

O Resolve network-layer names

O Resolve transport-layer name

B Use external network name resolver

A Start | Xglose|

Figure 1.9: The capture customization screen

4. Click on the Start button to initiate the capturing process.

5. Open your browser.
6. Visit any website you want to.

be

000 M Viireshark - Go Deep.

€ - C [htips//www.wireshark.org

SharkfestlS OurSponsor ~ WinPcap

We're having a conference! You're invited!

Download

Get Started Now

Learn

Knowledge is Power

Enhance
(! With Riverbed

Figure 1.10: The Wireshark website

Lo

7. Switch back to the Wireshark screen; if everything goes well, you should be able to
see a numerous packets getting captured in your Wireshark GUI inside the packet list

pane.

To stop the capture, you can just click on the stop capture button in the toolbar area
or you can click on Stop under the Capture menu bar.

| RN | X Capturing from Wi-Fi: an1 [Wireshark 1,12.6 (v1.12,6-0-goatfce6 from master-1.12)]
File Edit View Go E®TUIY Analyze Statistics Telephony Tools |nternals Help

OO Am o HigFs ER QAN FUEE B

@ Optior
Filter;

ﬂinpression... Clear Apply Say

No. ‘Time tination \Prutocol‘Lengthhnfo
/! Restart Ctrl4R
20.001059000) i Capture Filters, . deast ARP 42 Who has 17.155.127,2237 Tell 172.20.10.1
3 1.228704000 deast ARP 42 who has 17.155.127.2227 Tell 172.20.10.1

i Refresh Interfaces

4 1.229683000 deast ARF 42 who has 17.155.127.2237 Tell 172.20.10.1
52,150384000 4a;74;6e:ba:d0:64 Broadcast ARP 42 who has 17,155.127,2227 Tell 172.20.10.1
62.151348000 4a:74:6e:ba:d0.64 Broadcast ARF 42 Who has 17,155.127.2237 Tell 172.20.10.1
74.300738000 4a:74:6e:ba:d0; 64 Broadcast ARF 42 Who has 17,155.127.2227 Tell 172.20.10.1
B 4,301645000 4a:74:6e:ba;do; 64 Broadcast ARP 42 Who has 17,155.127.2237 Tell 172.20.10.1
97.759507000 172.20.10.7 172,20,10,1 LpP 46 Source port: 65439 Destination port: 192
10 B.263903000 172.20.10.7 172.20.10.1 UoF 46 Source port: 65439 Destination port: 192
12 13.906202000 172.20.10.7 172.20,10,1 DNS 76 Standard query Dx062a A www.google,co.in
13 13.006725000 172.20.10.7 172.20.10.1 DNS 75 Standard query Oxc591 A apis.google.com
14 13.906913000 172,20.10.7 172,20.10.1 DNS 79 Standard query Oxdab? A clientsS.google.com

T e 1 Tk

P Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
b Ethernet II, Src: da:74:6e:ba;d0:64 (4a:74:6e:ba;d0:64), Dst: Broadcast (ff:ff:ff.ff:ff:ff)
7 Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IP (0x0800)

Hardware size; 6

Protocol size: 4

Opcode: request (1)

Sender MAC address: da:74:6e:ba:dD:64 (4a:74:6e:ba:do:64)

Sandar T8 addraces 173 90 10 1 (177 90 1A 1)
pooe ff ff ff ff ff ffda 74 GebadoGd @B O6 00 O1 Enid.

0010 08 00 06 04 0D 01 4a 74 Gebado B4 ac M Oa 0l tn.di...
0020 00 00 00 00 00 00 11 9b 7f de LT L

O Wi-Fi: en1: <live capture in ... {Packets: 689 - Displayed: 689 (100.0%) {Profile: Default

Figure 1.11: Stopping capture

8. I know there is an overwhelming amount of information you will see by now, but
don’t worry about it. I am here to make it simple for you.

9. The real process of packet analysis starts when you have captured packets—I mean
packet filtering. We will be discussing packet filtering in detail in the upcoming
chapters.

10. Now, the last step is to save the capture file for later use:

= Open... Ctrl+0

Open Recent 4
Merge...
Import from Hex Dump...

& Close Ctrl+w
| @ Save Ctrl+S |
~ Save As... Shift+Ctrl+S
File Set 4

Export Specified Packets...
Export Packet Dissections 4
Export Selected Packet Bytes... Ctrl+H

Export PDUs to File...
Export SSL Session Keys...

Export Objects b
& Print... Ctrl+P
&l Quit Ctrl+Q

11. Save your file with the default . pcapng extension in you folder.

If you have read all the steps all the way up to this point, I would encourage you to create
your first capture file.

Summary

This chapter lays the foundation of basic networking concepts along with an introduction
of the Wireshark GUI. Wireshark is a protocol analyzer that is used worldwide by IT
professionals to capture and analyze network-level packets.

The TCP/IP model has four layers: the Application Layer, Transport Layer, Network
Layer, and Link Layer. Data gets encapsulated as it passes on from one layer to another;
the resulting packet at the bottom is called a complete PDU, which actually travels over
the channel.

To install Wireshark, you just need to visit http://www.wireshark.org and then download
the appropriate version of this open source software. The Wireshark community is
governed by real-world geeks; this can be a good source of learning and for
troubleshooting purposes.

The Wireshark GUI is user friendly, robust, and platform independent; even new I'T
professionals can easily adapt the tool.

One important aspect of protocol analyzing is to place the sniffer at the right place; every
organization’s infrastructure is different from another, where we might need to apply
different techniques in order to get the right packets to use.

Hubbing out, port mirroring, ARP poisoning, and tapping are some of those useful
techniques that can be used to monitor and analyze traffic in different situations.

There are six main parts in the Wireshark tool window: Menu Bar, Main Tool Bar,
Packet List Pane, Packet Details Pane, Bytes Pane, and Status Bar.

Using the back/forward key during a packet analysis scenario can be really useful. One
should know about all the tools that are displayed in the main toolbar area.

In the next chapter, you will learn how to work with different kinds of filters available in
Wireshark.

http://www.wireshark.org

Practice questions

Q.1 How many layers are there in the TCP/IP? Name them.

Q.2 Which layer in the TCP/IP model handles Layer 2 addresses?

Q.3 The Link Layer is also called?

Q.4 The HTTP protocol uses TCP or UDP?

Q.5 IP, ICMP, and are the protocols in the Internet Layer

Q.6 How many parts of the Wireshark window do you know?

Q.7 ARP is a Layer 3 protocol—true/false?

Q.8 Does the TCP protocol follow a three-way handshake?

Q.9 The Port Mirroring technique is possible through switches only—True/False?
Q.10 The Hubbing out technique uses a router to isolate a PC from it peers—true/false?
Q.11 TCP is an unreliable protocol—true/false?

Q.12 Install Wireshark and start a sample capture using your wireless interface. Save your
capture file on the desktop with the name first.pcap, and close Wireshark.

Q.13 Open your first.pcap capture file in Wireshark and check how many packets you
captured in total.

Q.14 Which pane displays information in the HEX and ASCII form for each packet we’ve
captured?

Q.15 Switch off the promiscuous mode from the capture options window and observe
whether you are still able to receive packets from other devices or not.

Chapter 2. Filtering Our Way in Wireshark

This chapter will talk about different filtering options available in Wireshark, namely,
capture and display filters. We will also look at how to create and use different profiles.
The following are the topics we will cover in this chapter:

An introduction to capture filters
Why and how to use capture filters
Lab up—capture filters

An introduction to display filters
Why and how to use display filters
Lab up—display filters

Colorizing traffic

Creating a new Wireshark profile(s)
Lab up—yprofiles

I hope you are ready to start analyzing packets using different filtering options present in
Wireshark and to reuse the filters that we previously created in a user-defined profile. I
will be guiding you with a technique to filter packets based on certain expressions, which
we will create using different primitives that are available.

Before we go ahead and start creating awesome filters, I want to mention one more
interesting tool that is used to find packets: the find utility.

An introduction to filters

In the world of Wireshark, there are two kinds of filters that can be used over live traffic,
and on saved capture files. Filters enhance the flexibility of packet analysis, where a
certain user is given the privilege of seeing what he/she wants to see to capture what they
want to capture.

The two types of filters are capture filter and display filter. Now, let’s have look at each
one of them in detail.

Capture filters

This gives you the facility to capture what you want to capture—others will be discarded.
Capturing packets is a processor-intensive task, and Wireshark will acquire a quite good
amount of primary memory as well. So, sometimes, we will have to save the resources for
other processes, which can be utilized to analyze packets, and in some cases, we would
like to capture only that data which meets our expression—rest of it will be dropped.

Wireshark offers some interesting options to configure an interface, which will be
capturing traffic that meets only a certain expression, and this is achievable through the
Capture Options window, as shown in the following screenshot:

209 % Wireshark: Capture Options
Capture
Capture | Interface Link-layer header Prom. Mude! Snaplen {B]lBuffer [MiE]‘ Mon. Model(:m -
[0 Ethernet: en0 Ethernet enabled 262144 2 n/a m
O FireWire: fw0 Apple IP-over-IEEE 1394 enabled 262144 2 nfa c
O Capture on all interfaces Manage Interface5|
Use promiscuous mode on all interfaces
il Capture Filter:| || _] Compile selected BFFsl
Capture Files Display Options

File: | Browse... Update list of packets in real time

Automatically scroll during live capture
O Use multiple files Use pcap-ng format Hide capture info dialog

Name Resolution

]

Resolve MAC addresses

O Resolve pnetwork-layer names

O Resolve transport-layer name

Use external network name resolver

Stop Capture Automatically After...

o

: O |:
i Help 4 Start | H Close |

Figure 2.1: The Capture Options dialog

o

Here, points list various capture options dialog related details

e Capture: In this window, you can choose the interface you want to capture packets
from, and you can even select multiple interfaces at once to listen on all of them. The
details for every interface are listed under separate columns such as Capture,
Interface, the name of the interface, whether the promiscuous mode is enabled or
not, and so on. Under the Capture dialog, you will see a checkbox to toggle the
promiscuous mode, and you can even choose the promiscuous on all interfaces

option to activate what you require in just one click.

e Manage Interfaces: This button facilitates addition or removal of a new interface for
listening purposes you intend to. You can add even remote machine interfaces, where
you would be required to have root level privileges.

o Capture Filter: By clicking on this Capture Filter button, you will be able to
see a dialog similar to what is shown here. The already configured capture filters
are listed by default, and here, we can create and save our custom capture filters

as well.
2] % Wireshark: Capture Filter - Profile: Default
Edit Capture Filter
Ethernet address 00:08:15:00:08:15 ,,F.
..................................... Ethernet type 0x0806 (ARP)
. New | No Broadcast and no Multicast
No ARP
IP only Il
IP address 192.168.0.1
S IPX only
TCP only
e - ;
Properties
Filter name:|
Filter string:|
I{Help ¥ Cancel l <JoK |

Figure 2.2 :Default Capture filters

To start off, users can use these default filtering profiles and get an idea about how to
create custom filtering strings. Once you are well versed with the basics, you can go ahead
and use the same window to create your own custom filters, but make sure that you have
followed the Berkley Packet Filtering (BPF) syntax. The BPF syntax is an industry
standard and is used by multiple protocol analyzers, which make your filter’s
configuration file portable.

Let’s create one together to get a better hold over it; consider a scenario where we have to
capture packets originating from a web server that is located at 192.168.1.1 (change the
IP address to the web server’s address that you are monitoring), and follow the next steps:

Open the Capture Options dialog.

Click on Capture Filter.

Click on New.

Write Wweb server 192.168.1.1 inside the Filter name textbox.

Write host 192.168.1.1 and port 80 inside the Filter String text-box

i

@ . Wireshark: Capture Filter - Profile: Default
Edit Capture Filter

IPX only
TCP only
UDP only
TCP or UDP port 80 (HTTP) "
HTTP TCP port (80)

No ARP and no DNS

Qgelete| Non-HTTP and non-SMTP to/from www.wire

New |

4 » >

Properties
Filter name:|Web Server 192.168.1.1

Filter stringzlhost 192.168.0.1 and port 80

;_tﬂelp| é?@’gancei| < oK |

6. Once you’ve done this, click on OK; if you’ve entered everything correctly, the
textbox followed by the Capture Filter button will be displayed with a green
background, as shown in the following screenshot:

i Capture Filter!| [host 192.168.0.1 and port 80 J

Figure 2.4 :Creating a sample capture filter

e Capture Files: This option gives you the flexibility to save your captured packets
into the file(s) that already exists on your system. The captured packets will be added
to the file of your choice if you don’t choose any. A temporary file will be created,
and data will be written to it, which can be saved to a user-specified location. To
achieve this, write the name of the file that uses absolute path referencing or click on
Browse followed by the File textbox to choose a location.

If you select the multiple files option, then you can save your packets in multiple
files, where we can customize more options, which are stated as follows:

o Next File Every: After capturing a certain amount of data, Wireshark will create
a new file and your data will be added to it. For instance, I want to create a new
file after Wireshark captures 2 MBs of data.

o Next File Every: After a certain amount of time, Wireshark will create a new

file and your packets will be added to it. For instance, I want to create a new file
after every 5 minutes of the capturing process.

o Ring buffer: Using this option, you can restrict the creation of a new file.
Wireshark uses the First in First Out (FIFO) option to write data to multiple
filesets. For example, you have selected the Ring buffer option and increased
the number of files to 5, and you have configured that after every 5 MBs, a new
file should be created.

Now, according to this configuration, once you start capturing packets, after every 5
MBs of data, a new file will be created and the packets will be written to it. Once the
limit that you specified in the Ring Buffer area is exceeded, Wireshark will not
create a new file; instead, it will roll back to the first file and append data to it. The
following screenshot shows a similar kind of configuration:

Capture Files

File: Browse...
Use multiple files Use pcap-ng format
Next file every IS .| megabyte(s) v

O Next file every

Ring buffer with |5 -| files

Figure 2.5 : The Capture Files option

Stop Capture Settings: This option lets you stop the capturing process after a certain
condition is triggered; we have four different kinds of triggers. Activating these can
stop Wireshark from capturing new packets, and they are stated as follows:
Packet(s): Stop capturing after a certain count of packets is reached

File(s): Stop capturing after the creation of a certain number of files
Megabyte(s): Stop capturing after capturing a certain amount of data
Minute(s): Stop capturing after running for a certain period of time

O O O O

There might be one question that you may want to ask: what if we select more than
one option at a time? For instance, as shown in the following figure.

You can activate more than one option at a time; Wireshark will stop capturing
whichever condition is met first.

Stop Capture Automatically After...

10000 || packet(s) 10 .| megabyte(s) v

O

Figure 2.6 : The Stop Capture options

¢ Display Options: There are a few options available in this section that can be
configured to restrict how the packets and their corresponding information will be
displayed in the Packet List Pane option and the Protocol hierarchy window. Refer
to the following figure to see this.

If you select Update list of packets in real-time, you will observe that Packet List
Pane is updated as soon as Wireshark captures a new packet, and the pane will be
scrolled upwards automatically. Choose these options if needed; otherwise, the
resources acquired by these two tasks can be used for other processes.

If you check the Hide capture info dialog box, the Protocol Hierarchy window,
that shows the statistics (in percentage) , will be hidden. If you don’t have any
specific purpose, I would recommend that you uncheck all these options.

Display Options

Update list of packets in real time
Automatically scroll during live capture
Hide capture info dialog

Figure 2.7: Display Options

e Name Resolution: If selected, this feature can resolve the Layer 2, Layer 3, and
Layer 4 addresses to their corresponding names; for better understanding, refer to the
following screenshot:

Name Resolution

E Resolve MAC addresses

O Resolve network-layer names

O Resolve transport-layer name

Use external network name resolver

Figure 2.8: Name Resolution

Why use capture filters

Capturing only traffic that meets your requirement is really useful when you have a large
volume of packets flowing around. Creating your own custom capture filters can come in
really handy while you analyze a production environment. Capture filters are applied
before you initiate the actual capture process. In general, every packet captured by
Wireshark is passed to the capturing engine so that it gets translated to a human-
understandable format, but if you have applied a capture filter, Wireshark will drop the
packets that don’t meet your expression. All these dropped packets won’t be passed to the
capturing engine, . In comparison, display filters are much more specific and powerful;
while using capture filters, you should be careful, because there is no way of recovering
dropped packets that do not meet the expression that you created.

The Berkley Packet Filter (BPF) syntax is used to create capture filters, and several
protocol analyzers use it as well, thus maintaining industry standards. It is significantly
easy to learn and practice, just use the basic format to structure an expression.

How to use capture filters

Using the BPF syntax earlier, we created a simple capture filter through the capture filter
dialog; let’s discuss it in detail because it is really crucial to know about BPF, as it is used
by a variety of analyzers.

If you’re using the BPF syntax, you have to follow a certain format structure, which is a
combination of two arguments: identifiers and qualifiers, which are explained as follows:

¢ Identifiers: This is the value that you are looking for in your packets. For example, if
you are filtering the packets for a certain IP address, then your capture filter will look
something like host 192.168.1.1, where the value 192.168.1.1 is an identifier.

¢ Qualifiers: These are categorized into three different sections:

o Type: There are three types of type qualifiers: host, port, and net. In short, a
type qualifier refers to the name or the number that your identifier refers to. For
example, in your host 192.168.1.1 filter, host is the type qualifier.

o Direction: Sometimes, when you need to capture packets from a particular
destination or source, we can specify direction qualifiers as well. For example,
in the src host 192.168.1.1 capture filter, src specifies that we’ve to capture
packets originating from a specific host only. Likewise, if you specify dst host
192.168.1.1, would capture packets only destined to host 192.168.1.1.

o Proto: This refers to protocol qualifiers that give us the feature where we can
mention the specific protocol that we want to add in our expression for capture
purposes. For example, if you want to capture http traffic coming from your
host 192.168.1.1, then your expression will look something like src host
192.168.1.1 and tcp port 80.

In the previous example, we combined two expressions together using the concatenation
operator (&/and). Similarly, we’ve the alteration operator (|/or) and the negation operator
(!/not), which can be used to combine and create complex filters.

For example, as per our previously created filter src host 192.168.1.1 and tcp port
80, all the packets originating from 192.168.1.1 and going to port 80 will be captured.

If you add the or operator between src host 192.168.1.1 or tcp port 80, then when
an expression in your filter matches, then the packet will be captured. This means that
every packet originating from 192.168.1.1 or any packet associated with port 80 will be
captured regardless of the second condition.

In the case of the not operator, a capture filter such as not port 80 states that any packet
associated with port 80 should not be captured.

Once you start working in a production environment, you will see how common it is to
combine filters using the AND, OR, and NOT operators.

An example capture filter

Though you have a variety of filters available in Wireshark itself, which can give you an
overview of the BPF syntax, to access the present filters by default, go to Capture |
Capture Filers or click on the Capture Options button in the main toolbar and then click
on Capture Filter. From the same window, we have an option to create new filters that
we already discussed.

Refer to the following table for sample capture filters:

Filters Description

host 192.168.1.1 All traffic associated with host 192.168.1.1

port 8080 All traffic associated with port 8080

dst host 192.168.1.1 All traffic destined to host 192.168.1.1

src port 53 All traffic originating from port 53

dst port 21

src host 192.168.1.1 ‘
‘AH traffic destined to port 21

|A11 traffic originating from host 192.168.1.1

src 192.168.1.1 and tcp port [fAll traffic originating from 192.168.1.1 and associated
21 with port 21

dst 192.168.1.1 or dst
192.168.1.2

All traffic destined to 192.168.1.1 or destined to host
192.168.1.2

not port 80 All traffic not associated with port 80

not src host 192.168.1.1

not port 21 and not port 22 [|All traffic not associated with port 21 or port 22

|A11 traffic not originating from host 192.168.1.1

tcp All tcp traffic

Ipv6 All ipv6 traffic

tcp or udp All TCP or UDP traffic

host www.google.com All traffic to and from Google’s IP address

ether host 07:34:aa:b6:78:89 [|All traffic associated with the specified MAC address

Note

It is essential to know about the BPF syntax. As and when you get into Wireshark in more
detail, you will feel its importance. I would suggest that you practice it once when you are
comfortable with the syntax.

Capture filters that use protocol header values

Capture filters can be created on the basis of offset values present in protocol header
fields. The syntax to create such filters looks like
proto[offset:size(optional)]=value. Here, proto is any protocol that you want to
filter, offset is the position of the corresponding value in the header, size is the length of
the data you are looking for, and value is the data you want to find.

Say, for instance, we want to capture only ICMP reply packets; now, if you observe the
following figure, you will note that the ICMP header type is located at the first place and
the offset counting starts from 0. So, the offset value will be © in this case, and the size of
the field is 1 bytes. We have all the required information to create a capture filter, so now,
the resulting expression will look like icmp[0:1]=0.

P Internet Protocol Version 4, Src: 74.125.130.104 (74
v Ints ONT v Sdl e sbarol

+ Offset value

al=

Checksum: 0x2623 [correct]

Identifier (BE): 29962 (0x750a)

Identifier (LE): 2677 (0x0a75)

Sequence number (BE): 0 (0x0000)

Sequence number (LE): © (0x0000)

Timestamp from icmp data: Jul 16, 2015 13:22:31.57
[Timestamp from icmp data (relative): 0.350050000
P Data (48 bytes)

0020 ©0a O
0030

Figure 9 : ICMP reply

Position and Size

Figure 2.9: ICMP reply

Let’s try to apply the same to Wireshark; we will then ping www.google.com to check
whether it works.

il Capture Filter:| ’icmp[0:1]=0 j

Figure 2.10 : ICMP capture filter

Let’s ping www.google.com and check whether it works.

http://www.google.com
http://www.google.com

charits-MacBook-Pro:~ NotFound$ ping www.google.com

PING www.google.com (74.125.130.104): 56 data bytes

64 bytes from 74.125.130.104: icmp_seq=0 ttl=40 time=350.085 ms
64 bytes from 74.125.130.104: icmp_seq=1 tt1=40 time=559.549 ms
64 bytes from 74.125.130.104: icmp_seq=2 ttl1=40 time=282.911 ms
64 bytes from 74.125.130.104: icmp_seq=3 ttl=40 time=420.467 ms
64 bytes from 74.125.130.104: icmp_seq=4 ttl=40 time=311.638 ms
64 bytes from 74.125.130.104: icmp_seq=5 ttl=40 time=539.921 ms

Figure 2.11: Browse google.com

As a result, Wireshark will capture only the ICMP reply packets. Using the same
technique, you can filter out traffic on the basis of the protocol header value:

000 N "Wi-Fi: en1 (iemp[0:1]=0) [Wireshark 1.12.6 (v1.12.6-0-gee1fced from master-1.12)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

C0AmABENXRAer*TFLEB QAR §EE %L

Filter:‘ JExpression... Clear Apply

No. | Time | Source |Destination | Protocol ‘ Length| Info
10.000000000 74,125.130.104 172.20.10.7 1CHP 98 Echo (ping) reply 1d=0x75
2 1.214493000 74.125.130.104 172.20.10.7 1P 98 Echo (ping) reply id=0x75
31.941353000 74.125.130.104 172.20.10.7 1cHP 98 Echo (ping) reply id=0x75
4 3,082008000 74.125,130.104 172.20.10.7 1cHP 98 Echo (ping) reply 1d=0x75
53.978374000 74.125.130.104 172.20.10.7 1CHP 98 Echo (ping) reply id=0x75

€

D Frame 6: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface 0
b Ethernet II, Src: 4a:74:6e:ba:db:64 (4a:74:6e:ba:dD:64), Dst: Apple b9:53:ec (dB:bb:2c:b9:53:ec)
P Internet Protocol Version 4, Src: 74.125.130.104 (74.125,130,104), Dst: 172.20.10.7 (172.20.10.7)
< Internet Control Message Protocol

Type: 0 (Echo (ping) reply)

Code: 0

Checksum: 0xde88 [correct]

Identifier (BE): 29962 (0x750a)

Identifier (LE): 2677 (6xBa75)

Sequence number (BE): 5 (0x0005)

Sequence number (LE): 1280 (0x0500)

b Data (56 bytes)

0000 dB bb 2c b9 53 ec 4a 74 6e ba d 64 08 00 45 60 ..,.5.)t n..d..E
0010 00 54 00 00 00 00 28 61 Of a9 4a 7d 82 68 ac 14 . T....(. ..J}.h..
0020 ©0a 07 00 00 de BB 75 0a 00 05 55a7 62 cd 0O 09u. ..U.b...
0030 08 fo 08 09 6a 0b Oc 0d ©e Of 10 11 12 13 1415 «.vvvuss
0040 16 17 18 19 1a 1b 1c 1d le 1f 20 21 22 23 2425 "#5%

O | File: *var/folders/ck/31tvm...] Packets: 6 - Displayed: 6 (100.0%) - Dropped: 0 (0.0%)

The following table lists some sample bytes-based capture filters for TCP and ICMP; try
practicing them too:

Filter

Description

icmp[0] =

0 ||ICMP request packets

icmp[0:1]

8

ICMP reply packets

icmp[0:1]
tcp[13]

3|[ICMP destination host unreachable packets
TCP SYN flag packets only

N

tcp[13]

18 [[TCP SYN/ACK flag packets only

tcp[13]

32 [[TCP URG flag set packets only

Display filters

Display filters are much more flexible and powerful when compared to capture filters.
Display filters do not discard any packets; instead, the packets are hidden to make viewing
convenient or convenience. Discarding packets is not a very effective practice because,
once the packets are dropped, they cannot be recovered. When you apply the display filter,
only those packets that meet the specification of your filter will be displayed. In the the
second column of the status bar of the Wireshark window, you will see a number of
packets displayed after you apply a filter.

A display filter can be used for a capture file in the Filter dialog box located above the
Packet List Pane. Display filters are more popular than capture filters. The syntax used
for display filters can be easily adapted and applied. For new users, a display filter is like a
super power that gives you the functionality of hiding inappropriate packets in run-time
that do not meet your requirements as per the current scenario.

Display filters can be created on the basis of several different constraints such as the IP
address, protocols, port numbers, and header values in specific protocols. There are lot of
conditional tools and concatenation operators that can be used to create complex
expressions. You can combine different sets of expressions to get more specific sets of
packets that we are looking for. Each and every packet shown in the Packet List Pane can
be filtered using the fields that a packet contains.

Display filters do not delete data; instead, packets are hidden, which can be made visible
again once the filter in the Filter dialog above the list pane is cleared. For instance, to
display only ICMP packets, just enter ICMP in the filter dialog and click on Apply; it’s
really simple, isn’t? If you want to see all packets again, just click on the Clear button and
everything will be back to normal.

Wireshark has a very awesome feature that can assist you while creating your filter. Just
click on the Expression button at the end of the Filter dialog box, choose the protocol you
want to filter, and specify the value if there is one.

Using the filter expression dialog is really easy, and if you are a beginner, then this is a
boon for you. Let’s learn how to use the expression dialog.

Filter: j Expression...

Figure 2.12 : The filter expression

1. As show in the preceding screenshot, click on the Expression button.
2. Now, you will be presented with the Expression window like the one shown in the
following screenshot:

@] % Wireshark: Filter Expression - Profile: Default

Field name Relation Value (IPv4 address) =

b IPMI - Intelligent Platform Manag = is present 192.168.1.1}
IPMI Session - Intelligent Platforr

[
b ipmi-trace - IPMI Trace Data Coll I=
P IPNET - Solaris IPNET

b IPolB - IP over Infiniband
[

b

-

IPP - Internet Printing Protocol
IPSICTL - IPSICTL
IPv4 - Internet Protocol Version ¢

AY AV

ih_bogus“ip“tengfh - E}([.J.Eft In
ip.checksum_bad - Bad (True:
+ > |

¥ cancel 7oK

3. For example, if you want to see only packets associated with ip:192.168.1.1, then
just scroll down in the Field Name to find IPv4. Then, expand the section and
choose the ip.addr option.

4. Then, from the Relation box next to it, choose the operator you wish to add in your

expression.

At last, write the IP you are looking for in the Value (IPv4 address) box.

6. At last, just click on OK. If you’ve followed all the steps up to here correctly, then
you would be able to see the packets originated from the ip that you mentioned
(change 192.168.1.1 to your IP address).

7. Below the Value box, there is a Predefined value box that is used when a certain
protocol restricts us to use only a specific set of values. You can choose a value form
here.

8. Below the Predefined Value box, there is a Range box that allows us to enter a
range of values such as 1-78, 0-5, 120-255 if the protocol allows the same.

ot

This is one of the easiest ways to create a display filter; there is one more way following
which we can also create such filters. Entering filters manually can drastically increase the
speed of your work, but it requires a bit more skill than there are in a novice user.

Before we start digging into creating filters manually, I want you to know about a few
more things, such as comparison and logical operators. These can be used to create simple
and the most complex filters for Wireshark.

The following table lists the comparison operators used to create display filters:

Operator{Description ‘
==/eq ‘ Equal to ‘
!=/ne ||Not equal to |

</lt Less than ‘
<=/le Less than equal to ‘
>/gt Greater than ‘
>=/ge Greater than equal to

Next, let’s have a look at the logical operators that are used to combine different
conditions together. The following table lists all of them:

Operator{Description

The AND logical operator is used when we want both parts of the expression
to state true. For example, the ip.src==192.168.1.1 and tcp filters would
only display packets originated from ip 192.168.1.1 and associated with the
tcp protocol. Only the packets that match both the expressions will be shown.

AND/&&

true at a time; if both are true, even then it’s ok. For example, the port 53 or

OR/ port 80 filters would display all packets associated with port 53 (DNS) along
with all packets associated with port 80 (http).
The NOT logical operator is used when we want to exclude some packets
NOT/! [ifrom the list pane. For example, the !dns filter would hide all the packets

associated with the DNS protocol.

|The OR logical operator is used when we just focus on one condition to be

Retaining filters for later use

Sometimes, you will have a requirement where having access to previously created filters
would make your work easy and fast enough. Wireshark gives you the facility where you
can retain your display filters through their saved names and use them at a later point of
time whenever required. This option will save you the great amount of time and effort
required to type some of the complex display filters. To create one for yourself, follow the
given steps:

1. Go to Analyze | Display filters; this will give you a window like the one shown in
the following screenshot:

O \ Wireshark: Display Filter - Profile: Default
Edit Display Filter
Ethernet address 00:08:15:00:08:15 :F
Ethernet type 0x0806 (ARP)
New ‘ Ethernet broadcast
No ARP
IP only .
IP address 192.168.0.1
‘ IP address isn't 192.168.0.1, don't use = fol
IPX only .
«& 9 | b
Properties
Filter name:|
Filter string: ni-E_gpression...‘
HHelp ‘ </ Apply ‘ ¥ Cancel ‘ 0K ‘

Figure 2.13: Adding Display Filters

2. Now, click on New, enter the values in the Filter name and Filter string fields. For
instance, we want to create a display filter for no ARP packets. Then, the values will
look something like the following screenshot:

Properties
Filter name:lND ARP

Filter string: | larp| e Elpression,,.‘

Figure 2.14 : Creating a new filter

3. After entering the same, click on Apply. Now, in the list of default filters present you
would be able to see NO ARP, which can be used later.

4. Make sure that the Filter String box is shown with a green background, which
denotes that your expression is correct; if it is in red color, then you need to recheck
it, and if it is in yellow, this denotes that the results can be unexpected. Now, you can
click on Apply and then click on Ok.

5. If you need assistance to create any filter you want, simply click on the Expression

button next to the Filter string box, where all the protocols and majorly used filter

expressions can be found.

The Delete button will assist you in deleting an existing filter from the list.

The Cancel button will discard any unsaved changes and close the window.

The Ok button commits Save and will close the window.

Now, let’s try applying the filter we just created. Navigate to Analyze | Display

Filter | (Scroll and select) Display Filter | Apply.

0o Nd

Try following the same and create your own display filter that you might want to reuse.

Searching for packets using the Find dialog

If you want to find a packet for a particular criterion, you can use the Find dialog. It has a
couple of useful search techniques that can be applied easily and effectively on an already
captured file or on a live running capture. You can access the Find utility by navigating to
Edit | Find packets or using the shortcut Ctrl + F.

0080 X Wireshark: Find Packet
Find
By: @ Display filter O Hex value O String

YIFilter: ‘

Search In String Options Direction
O Up
® Down

11 Help %Qancel‘ " Find ‘

Figure 2.15: The Find Packet dialog

Let’s see some more configurable options in it:

e The display filter: After capturing the traffic, while analyzing whether you just want
to see some specific packets based on a certain IP /Port/ Protocol, those packets that
meet a certain criteria will be displayed in the list pane, for example:

o The ip.addr == 192.168.1.1 (based on an IP address)
o The port 8080 (based on a port number)
o http (based on a protocol)

e The Hex value: If you have the hex value for a certain packet that you are looking
for, then this option can be selected. Just write the physical address separated by
colons, for example:

© BA:C4:22:90:45:00
°o AA:BB:CC
e String: The next and last option is a text-string-based search where you can enter the

name of the DNS server, name of the machine, and any resolved name that you know
about (enter any string or word), for example:

o Cisco

o An administrator

o A web server

o Google

e Search In: This feature gives us the ability to search in a specific pane. For instance,
if you are looking for a packet in the bytes pane, which matches the value Google
(the ASCII value in the packet bytes pane will be matched), then we can go ahead
and first choose the String option and then check the Search In box and choose
Packet Bytes.

e String Options: To use this, first select the String option and then select Case-
Sensitive and then if you want, choose the character width as well (but I would
suggest not changing this unless until you have a specific reason to do so).

o Direction: This last option changes the direction of a search; you can change it
to upward or downwards.

Once you have customized the options, enter the text and click on Find. This will give
you the first exact capture that matches your criterion. To move back and forth between
the matched packets, you can use Ctrl + N (next) and Ctrl + B (previous).

Colorize traffic

For better and convenient viewing experience, Wireshark gives us a feature where we can
colorize a certain type of traffic that we want to highlight. Colorization of traffic is done in
order to distinguish between different sets of traffic. Coloring a specific set of traffic with
a different rule other than the default one will be like finding a needle in a haystack.

The default profile for most protocols is already created because of which we are able to
see traffic in the packet list pane in different colors. You can access it by navigating to
View | Edit coloring rules or clicking on the Edit coloring rules button from the main
toolbar to open a window as shown in the following screenshot:

| NON | \ Wireshark: Coloring Rules - Profile: Default
Edit Filter Order— =
New List is processed in order until match is found '
— Name String
Bad TCP tcp.analysis.flags && !t 7
HSRP State 'Change | hsrp.state I= 8 && hsrp
L4 Spanning Tree Topology Change stp.type == 0x80
OSPF State Change ospf.msg =1
X ICMP errors icmp.type eq 3 || icmp. (IEEYIPS
3 ARP arp selected filter
— icmp icmp || icmpv6 up or down
ik
fingam
N T TL low or unexpected (lip.dst == 224.0.0.0/4
waExport... |
A Clear SMB smb || nbss || nbns || nl§
(N >

J{Help | -_"5pplv| %gancel\ <JoK ‘

Figure 2.16: Coloring rules

All rules that are currently saved as part of your global configuration file to colorize traffic
with certain foreground and background colors are listed in this dialog. Every packet listed
in the packet list pane follows a certain rule, which gives them a unique and distinguished
look and feel.

Let’s use this feature and color the http error packets with a color of our choice. Say, for
instance, I’ve a web server running on my machine that is used by the clients connected
for file accessing purpose. Now, one of the clients in my network is trying directory listing
and gets HTTP 404 error messages. These error messages will pop up in my packet list
pane but will be colored using the same http coloring rule that makes these errors less
visible to me. To make this more visible, I want to colorize the HTTP 404 error messages
with a black background and with a cyan foreground. Follow the steps shown here that

will achieve the same:

1. T have configured a Linux box running on 172.16.136.129, and my Mac OS is
running on 172.16.136.1 that serves as a web server for Linux, as Shown in the
following screenshot:

[JON 8 Kali-Linux-1.0.9-vm-486
n ® A @ B @ 4 | Ly A

Applications Places r: Sat Jul 18, 01:17 00

XAMPP for OS X 5.5.24-0 - Iceweasel i 1ol T

Iceweasel v JXAMPPfor 0S X 5.5.24-0 méﬂ
€ |@ 172161361 xampp/ v€|[Bvonge Qv & G

[Most Visitedv % Exploit-DB | ! Offensive Security | L... {_!ZeroBin

English / Deutsch /
Francais / Nederlands /

XAMPP for Mac 0S X &0

Try out the new XAMPP welcome page

We are working on a new Welcome page for XAMPP and we need your help! You can
you can see the current version at Dashboard. We are improving our current "FAQs" and
, adding new "How to" guides. We posted some suggestions for new guides at
Documentation ApacheFriends forum. If you have any comments or suggestions for the new welcome
Components page, please don't hesitate to postin the forum. Your feedback will help us improve
LR XAMPP!, ffyou have any comments or suggestions for the new welcome page, please
don't hesitate to post in the forum. Your feedback will help us improve XAMPP!

e R R Y SRR AR TR

cD Cdlectmn

Biorhythm _
Guest Book Welcome to XAMPP for OS X 5.5.24-0!

Inntant As

© XAMPP for 05 X 5.5... = -
Figure 2.17: The web server running on 172.16.136.1

Normal traffic from a Linux-accessing web server looks something like the
screenshot here:

No. Time Source Destination ‘ Pmtocol| Length| Info
1 0.000000000 172,16.136.129 172.16.136.1 TCP 60 55658-80 [SYN] Seq=0 Win=2920
2 -050618696,077286000 172,16, 1361 172.16.136.129 TP 64 8055658 [SYN, ACK] Seq=0 Ack
3 -2021440336.836621000 172.16.136.129 172.16.136.1 TCP 52 55658-80 [ACK] Seq=1 Ack=1
4 -1898165200, 561362000 172,16, 136, 1 172.16, 136,129 TcP 52 [TCP Window Update] 80-55658
5 41863044, 612094000 172.16.136.129 172.16.136.1 HTTP 355 GET /xampp/ HTTP/1.1
6 0,001038000 172.16,136.1 172.16.136.129 TCP 52 80-55658 [ACK] Seq=1 Ack=304
7 0,084997000 172.16.136.1 172.16. 136.129 HTTP 040 HTTP/1.1 200 OK (text/html)
8 0.085422000 172,16.136.129 172.16,136,1 TCP 52 55658-80 [ACK] Seq=304 Ack=88
9 381882809, 099438000 172.16.136.129 172.16.136.1 HTTP 400 GET /xampp/head.php HTTP/1.1
10 0. 106560000 172.16.136. 1 172.16,136.129 TCP 52 80-55658 [ACK] Seq=889 Acks=65
11 - 1437096632, 910449000 172.16.136.129 172.16.136.1 TP 60 55659-80 [SYN] Seq=0 Win=2920
12 -950618696. 095408000 172.16.136.1 172.16.136. 129 TCP 64 BO-55659 [SYN, ACK] Seq=0 Ack
13 -136085583, 409139000 172.16.136, 129 172.16.136.1 TcP 52 55659-80 [ACK] Seq=1 Ack=1 Wi
14 -1321431987.061550000 172.16.136.1 172.16.136.129 TCP 52 [TCP Window Update] BO-55659

Figure 2.18: Normal traffic on a web server running on 172.16.136.1

2. Now that everything is up and running, we will try to do some directory listing
manually from Linux, which will give eventually HTTP 404 error messages.

* E__.L:'_l - root

Applications SatJul18,0125 2 0)

Browse and run installed applications Iceweasel

lceweasel ¥ |E]Db;'ect not found! d'f.P‘
@ [@17216.136.1/xampp/abcjpg v €] |Bv GooQ| @Y < B
1 Most Visited = Exploit-DB [| Offensive Security | L... [ZeroBin »

Object not found!

The requested URL was not found on this server. If you |=
entered the URL manually please check your spelling
and try again.

If you think this is a server error, please contact the
webmaster. m

Error 404

': Object not found! - Ic...

The traffic generated through this request is captured, which can be seen in the
following screenshot:

No. Time Source Destination ‘ Protocol ‘ Length| Info

92 675.958501000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=1 Ack=l
93 -1278177470, 593326000 172.16.136.1 172.16,136,129 TCP 52 [TCP Window UpdatE] 80-556
94 675,958885000 172.16.136.129 172.16.136.1 HTTP 362 GET f:amppfabc.jpg HTTP/1.
05 238258651, 845389000 172.16.136.1 172,16.136.129 TCP 52 80-55667 [ACK] Seg=l Ack=3
96 -456584943. 391379000 172.16.136.1 172.16.136,129 TCP 657 [TCP segment of a reassemb
97 675,981774000 172.16.136.1 172.16,136, 129 TCP 483 [TCP seqmen t of a reassemb
98 675,981788000 172.16.136.1 172,16, 136,129 TCP 282 [TCP segment of a reassemby
99 -511200557.945281000 172.16.136.1 172.16.136.129 TcP 273 [TCP segment of a reassemb)
100 -1437100881,841330000 172.16.136.1 172.16.136.129 HTTR /XML 60 HTTP/1.1 404 Not Found

101 -1177513788.717358000 172.16.136.129 172.16.136.1 T Do ooe0TA0 TACK] SeqTIT Ack
102 -1177513788.717358000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 AcK
103 675, 982078000 172,16, 136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 AcK
104 1177513788, 717358000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 AcK

Figure 2.19: HTTP 404 Traffic

We can see, in the preceding captured traffic, that the client requested the abc.jpg
resource, which was not available; thus, the client received a 404 Not found error.

3. We figured out easily because there is just one client requesting a single resource.
Consider a production environment where thousands of clients are present and they
might do the same. In such cases, coloring a specific set of packets with a different
rule is a game changer.

4. Navigate to Edit Coloring Rules | New. Type HTTP 404 in the Name box. Type
http.response.code==404 in the String box. Choose the Foreground Color option
as Cyan, and choose the Background Color option as Black. Then, click on OK and
navigate to Apply | OK.

000 \ Wireshark: Edit Color Filter - Profile: Default
Filter

Name: IsIREENE!

String: | http.response.code==404 aeExpression...

Display Colors Status
Foreground Color...| Background Color...| O Disabled
?ngancel‘ dok |

5. Once you click on Apply, you will see that only the HTTP 404 error packets will be
colored according to your new coloring rule.

No. Time Source Destination | Protocol | Length| Info
94 675.958885000 172.16.136.129 172.16,136.1 HTTP 362 GET /xampp/abc. jpg HTTP/L.1
95 238258651, 845389000 172,16.136.1 172, 16.136. 129 TCP 52 BO-55667 [ACK] Seq=1 Ack=31]
96 -456584943, 391379000 172.16.136. 1 172,16, 136. 129 TCP 657 [TCP segment of a reassemble
97 675.981774000 172.16.136.1 172.16.136. 129 TCP 483 [TCP segment of a reassemble
98 675.981788000 172.16,136.1 172,16,136. 129 TCP 282 [TCP segment of a reassemble
99 -511200557. 945281000 172.16,136.1 172.16,136. 129 TCP 273 [TCP segment of a reassemble

100 1437100881 841330000 172161361 172.16.136.120 HTTP/XML____ 60 HITP/L.1 404 Not Found |
101 - 1177513788, 717358000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack=t
102 -1177513788.717358000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack=l
103 675. 982078000 172.16,136.129 172.16,136. 1 TCP 52 55667-80 [ACK] Seq=311 Ack=)
104 -1177513788.717358000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack=]
105 -1437162184, 138035000 172.16.136.129 172.16,136.1 TCP 52 55667-80 [ACK] Seq=311 Ack=]

Figure 2.20: After applying the new coloring rule

Try the same using a virtual environment to give yourself more insight into the topic.

Coloring rules listed in the Edit Coloring Rules dialog will be checked in a top-to-bottom
manner. With every packet, there is coloring rule information attached that can be listed
from the Packet Details Pane under the Frame section. Consider the following
screenshot illustrating the same:

Destination Protocol|Length|Info

100 -1437100881.841330000 172.16.136.1 172.16.136.129 HTTR /XML 60 HTTP/1.1 404 Not Found
= " -
< Frame 100: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0

Interface 1d: 0 (pktap0)

Encapsulation type: Raw IP (7)

Arrival Time: Jan 1, 1976 22:31:42.296705000 IST

[Time shift for this packet: 0.000000000 seconds]

Epoch Time: 61302,296705000 seconds

[Time delta from previous captured frame: -925900323, 896049000 seconds]

[Time delta from previous displayed frame: -925900323, 896049000 seconds]

[Time since reference or first frame: -1437100881,.841330000 seconds]

Frame Number: 100

Frame Length: 60 bytes (480 bits)

Capture Length: 66 bytes (480 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: raw:ip:tcp:http:data:data:data:data:data:data: data:data:data:data:data:data:data: data: data: data: data: data
[Number of per-protocol-data: 1]

[Coloring Rule String: http.response.code==404]

Figure 2.21: Coloring info in a frame header

Create new Wireshark profiles

Profiles in Wireshark are like customized environments, which can save a significant
amount of time while auditing a network. A profile is a set of different components, such
as capture filters, display filters, time preferences, column preferences, protocol
preferences, color profiles, and so on, that fit together and give you a case-specific
scenario, which you might require instantly.

Importing and exporting profiles is very easy in Wireshark, which is pretty useful while
auditing a network where you don’t have your preinstalled tools. Just copy and paste the
Profile configuration files in a certain directory to use them. To create a profile, follow
these steps:

1. Right-click on the Profile column in Status Bar.

| Profile: Classic

2. Click on New... in the pop-up dialog.

* Manage Profiles...

New...
#/1 Rename "Classic"...
& Delete "Classic”

& Switch to »

3. Now, choose any profile you wish to use as a template and type the name of the new
profile.

@ %/ Create New Profile

Create from: i

Profile name: |

2 Cancel ‘ < oK

4. And then, click on OK.

Now, in the status bar, you will see the the same profile has been activated. The changes
that you are going to make in this profile stay here, for example, you can create
capture/display filters, change protocol preferences, and change color preferences. This
means that any changes in a profile do not alter the contents of other profiles that are
saved.

| Profile: New profile

This way, we can create different profiles for case-sensitive scenarios that can save time
and make the task easy.

Summary

Using the Find utility can be pretty useful sometimes, and can be accessed from the Edit
menu in Wireshark. The Find utility gives us various vectors to search the packet content.

Filtering traffic lets you see only those packets that you are interested in; there are two
types of filters: display filters and capture filters.

Display filters hide the packets, and once the expression you made is cleared, all packets
can be seen again. However, capture filters discard the packets that do not meet the
expression that you created. Discarded packets are not passed to the capturing engine.

Capture filters use the BPF syntax, which is an industry standard and is used by several
other protocol analyzers.

Coloring preferences can be really useful while filtering a certain set of traffic based on a
specific expression. Distinguishing packets will be become easy, as the matched packets
will be shown with a different coloring scheme.

Profiles are like case-sensitive scenarios that can save your time and workload. Changes
made to the profiles with respect to its different components, such as display/capture filter
and color/protocol/time preferences, stay within the same.

Exporting profiles and various settings from Wireshark is very simple, which make the
software more portable.

In the next chapter, you will learn how to work with Wireshark’s advanced features such
as graphs and statistical options.

Practice questions

Q.1 Explain the difference between display filters and capture filters, and which is more
efficient in terms of system resource utilization.

Q.2 Explain the difference between Find Utility and Filters. Use the Find utility to search
using hex values.

Q.3 Create a capture filter to capture only ARP broadcast packets.

Q.4 Create a capture filter to capture all packets except the packet destined to and
originated from your physical address.

Q.5 Create a capture filter to capture only TCP SYN packets and TCP ACK packets.
Q.6 Create a capture filter to capture HTTP traffic sent only from you machine.
Q.7 Create a display filter to show packets originating only from your IP.

Q.8 Create a display filter to see packets that are only related to the protocol Secure
Socket layer.

Q.9 Create a display filter to see only the ICMP destination host’s unreachable packets.
Q.10 Create a display filter to see only TCP packets with a FIN and ACK flags set.
Q.11 Create a display filter to show TCP packets with header length greater than 40.

Q.12 Change the coloring scheme for all the DNS query Type A packets to the color of
your choice.

Q.13 Change the coloring scheme of all HTTP error messages to the color of your choice.

Q.14 Create a profile with the name DNS using a default profile, and create a capture filter
in this profile that will capture DNS traffic. Then, change the coloring scheme of all DNS
response packets to the color of your choice.

Chapter 3. Mastering the Advanced Features of
Wireshark

In this chapter, we will look under the hood of the Statistics menu in Wireshark and work
with different command-line utilities that come pre-packaged with Wireshark. Here, we
will cover the following topics:

Collecting network stats using Wireshark’s Statistics menu
LabUp—Summary, Protocol Hierarchy, Conversations, and Endpoints
Mapping overall traffic in graphical form

LabUp—~Graphs

View network traffic in plain-text form

LabUp—TCP Streams

Learn how to view logged anomalies in your trace file
LabUp—Expert Infos

Using command-line tools for protocol analysis
LabUp—CommandLine

Practice questions

With Wireshark, you can access a variety of statistics about the packets and protocols
involved in the communication between two hosts. We can collect basic as well as
advanced and specific information about protocols that are involved in the communication
process. We will discuss most of the useful tools available in this menu, which can give us
a better insight into dealing with day-to-day complex situations.

The Statistics menu

Statistics in Wireshark are not presented to you just through recorded figures; there are
graphical features too, which can present the figures in terms of graphs. Using this, the
analysis process becomes easier and much efficient. Multiple types of graphs are
available, which we can use to collect valuable information.

Command-line tools are like a samurai’s sword, which will enhance the capability of a
moderate user to become and act like an advanced user. In this chapter, we will see a
couple of inbuilt tools that are command based.

Using the Statistics menu

A wide range of tools related to network stats is available in the menu, which facilitate
users in gaining information ranging from general info to specific protocol related info in
detail.

The general details with respect to the packets captured, filters applied, marked packets,
and various other stats can be checked in the Statistics menu. Though this option is just for
informational purpose, at times this can be pretty much useful.

To access the summary stats, click on Statistics | Summary; now, you will be able to see a
window, as shown in the upcoming screenshot.

The Summary dialog is partitioned into a couple of sections, which are as follows:

e File: General information, such as the name of the file, location of the file, format
used, and encapsulation, is listed under this

e Time: This section will tell you the time when the first and the last packets were
captured and the time elapsed (total capture duration)

e Capture: This lists the name of the OS along with the version used and the interface
used to dump packets from the live network traffic

e Comments: This shows any comments that the user mentioned for reference

o Interface(s): This lists the details of every interface, using which the traffic is
captured

e Display: This section gives statistics regarding any display filter that has been used
and the percentage of ignored packets after a filter was applied

@08 %/ Wireshark: Summary

File
Name: fUsers/Charit/Desktop/sample2.pcapng
Length: 0 bytes
Format: Wireshark/... - pcapng
Encapsulation: Ethernet
Raw IP
Time
First packet: 1970-01-01 05:30:00
Last packet: 586524-01-18 19:31:01
Elapsed: 16199 days 06:18:45
Capture
05: Mac 05 X 10.10.3, build 140136 (Darwin 14.3.0)
Capture application: Dumpecap 1.12.6 (v1.12.6-0-geelfcet from master-1.

Capture file comments

Interface |Drupped Packets |Eapture Filter]Link type iPacket size limit

pktap0 0 (0.000%) none Raw IP 262144 bytes
enl 0 (0.000%) none Ethernet 262144 bytes
Display
Display filter: none
Ignored packets: 0 (0.000%)
Traffic jf.';a'ptl.i red = |Displayed |Displayed % |Marked |Marked %
Avg. packet size 441 bytes
Packets 3448 3448 100.000% 0 0.000%
Between first and last packet 18446744008861.598 sec
Bytes 1521366 1521366 100.000% 0 0.000%
Avg. MBIt /sec 0.000
Avg. packets/sec 0.000

El:lelpl Hﬁancell «IoK |

Figure 3.1: Summary dialog

Just below the Display section, you must see a few columns listing various details, which
include a summary in a tabular format that is grouped on the basis of different categories,
such as average packet size, total number of packets captured, time elapsed between the

first and last packet captured, and so on.

Display

Display filter: none

lgnored packets: 0 (0.000%)
Traffic Captured Displayed |Displayed % [Marked |Marked %
Packets 3448 3448 100.000% 0 0.000%
Between first and last packet 18446744008861.598 sec
Avg. packets/sec 0.000
Avag. packet size 441 bytes
Bytes 1521366 1521366 100.000% 0 0.000%
Avag. bytes/sec 0.000
Avg. MBit/sec 0.000

HHelp | % cancel | [oK |

Figure 3.2: Without display filter(screenshot 1)

Let’s say, for instance, we have a capture file over which we have applied the display filter
http. After this, we can access the Summary option. Take a look at the following
screenshot and try to compare them in order to understand the difference a display filter
would make in the representation of the packets related summary.

Display

Display filter: http

Ignored packets: 0 (0.000%)
Traffic Captured Displayed Displayed % |Marked |Marked %
Packets 3448 27 0.783% 0 0.000%
Between first and last packet 18446744008861.598 sec 928329326.063 sec
Avg. packets/sec 0.000 0.000
Avg. packet size 441 bytes 406 bytes
Bytes 1521366 10949 0.720% 0 0.000%
Avg. bytes[sec 0.000 0.000
Avg. MBit/sec 0.000 0.000

H Help % Cancel | [ok |

Figure 3.3: With display filter(screenshot 2)

Now, after applying the filter, the variance among the values listed in the stats can be
observed. That is, after applying the display filter http, the Displayed% column has a
different set of values as compared to the previous one without display filter.

Protocol Hierarchy

The Protocol Hierarchy window provides us with an overview regarding distribution of
protocols used in the communication process and how to spot unusual activities in your
network that do not follow the benchmark as expected. By distribution of protocols, I
mean in what percentage a certain protocol has been used in the communication between
two hosts, and statistics, for example, how many bytes and packets are being sent and
received for every protocol, are collected easily. Any form of unusual activity can be

easily figured out by matching our current traffic with the baseline created.

Display filter: nane

1720 EiE 4 %
1681 [Hillo %

1125 El .48 %
267]6.95 %
178 |8.88 %
7/049%
15 0.80 %
14 0.35%
1 0.01%
3/010%
1 0.07%
535 H1.03 %
10 0.03 %
3/002%
135 0.90 %
387 B0.08 %
21 0.10%
9 0.05%
3 002%

A

|l.-|bit.n'5 |End Packets |End Bytes IEnd Mbit/s

771877
769855
448453
105716
135024
7500
12152
5255
159
1501
1115
319932
460
276
13741
305455
1470
762
270

&

@ L % Wireshark: Protocol Hisrarchy Statistics
Protocol |%.PacktrsEPack¢ts % Bytes |Bytes
&
= Ethernet EEE:: %
= Internet Protocol Version 4 W'E %
= Transmission Control Protocol EE 3%
Data | 7.7a %
= Secure Sockets Layer | 5.16 %
Secure Sockets Layer 0.20 %
Malformed Packet 0.44 %
= Hypertext Transfer Protocol 0.41 %
Media Type 0.03%
Line-based text data 0.09 %
eXtensible Markup Language 0.03%
= User Datagram Protocol I15.52 %
Data 0.29 %
NetBIOS Mame Service 0.09 %
Domain Mame Service | 392 %
QUIC (Quick UDP Internet Connections) [J11.22 %
Internet Control Message Protocol 0.61 %
= Internet Protocol Version 6 0.26 %
Transmission Control Protocol 0.09 %
HHelp

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

T

1]
1]
651
267
171

0

0
190306
105716
127524
7500
12152
2480
159
1501
1115

0

460
276
13741
305455
1470

0

270

e

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 ¥
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

A A

#H Close

¥

Figure 3.4: Protocol Hierarchy window

If you want to check the protocol distribution for a specific host, then before you open the
Protocol Hierarchy window, apply a display filter, for example, ip.addr==172.20.10.1.
The same filter will be visible at the top of the Hierarchy window just below the title bar.
This makes it easy for us to figure out what kind of traffic is actually generated from a

certain host, and any malicious traffic from a certain host can be easily figured out.

Refer to the following screenshot:

008 % Wireshark: Pratocel Hierarchy Statistics
Display filter: ip.addr==172.20.10.1

Protocol |5 Packets [Packets |% Bytes [Bytes [Mbit/s [End Packets |End Bytes |End Mbit/s

=
= Ethernet | 50.00ES 164 EEE9 % 15531 0.000 0 0 0.000
= Internet Protocol Version 4 o % 164 JEEE9 % 15531 0.000 0 0 0.000
= User Datagram Protocol | 44 P3RS 145 [EEB7 % 14201 0.000 0 0 0.000
Data | 3.05% 10 1.60% 460 0.000 10 460 0.000
Domain Name Service | 41803 135 [EE7 % 13741 0.000 135 13741 0.000
Internet Control Message Protocol | 5.79 % 19| 462% 1330 0.000 19 1330 0.000

= Raw packet data | 50.(0F3 164 [ffb1 % 13235 0.000 0 0 0.000
= Internet Protocol Version 4 o % 164 i1 % 13235 0.000 0 0 0.000
= User Datagram Protocol 44 PR3 145 [EE31 % 12171 0.000 0 0 0.000
Data | 3.05% 10/ 1.11% 320 0.000 10 320 0.000
Domain Name Service Elis % 135 [Eflz0% 11851 0.000 135 11851 0.000
Internet Control Message Protocol | 5.79 % 19| 3.70% 1064 0.000 19 1064 0.000

H Help % Close |

Figure 3.5: Protocol Hierarchy window dafter applying display filter

Using the Protocol Hierarchy window, you can create filters too. Just right-click on the
protocol you wish to use and then go ahead and specify the expression, as shown in the
following screenshot:

Apply as Filter > | Selected |

Prepare a Filter 4 Not Selected

Find Frame > ... and Selected
Colorize Procedure 4 ... or Selected

... and not Selected
... or not Selected

There will be situations when a certain host in your network has been breached and you
might be observing some unusual traffic associated with a particular host. In such
situations, the Protocol Hierarchy window will prove worthy.

Conversations

When two devices are connected to each other on the network, they are supposed to
communicate; this is considered normal behavior. However, suppose you have thousands
of devices connected to your network and you want to figure out the most active device
that is generating too much traffic, then in that instance, the Conversations window will
be quite useful.

To access this nice tool, click on Statistics | Conversations. After this, you will be
presented with a window like the one shown in the following screenshot, which lists
various details in terms of several columns listing the packets that were transferred, the
bytes that were transferred, the flow of traffic, devices’ MAC addresses, and various other
details. At the top, you will observe various protocols displayed individually in separate
tabs, and along with each active protocol tab, you will notice a number that denotes the
number of unique conversations.

[=] =) % Conversations: sample2. poapng

Ethernet: 3| | |Pva: 2a|ipve: 2|10 | [nee| | | Tcp: 27| |uoe: 75| s |

Ethernet Conversations

Address A |Addre55 B |Packets |B‘.yte5 |Packets A=B |th35 A=B |Pa.cket5 A—B |B',,rte5 A—B

Apple_b9:53ec Broadcast 3 276 3 276]

da: 74 6e badd: G4 Broadcast 30 1260 30 1 260 o

4 = =] .
E Mame resolution O Limit to display filter

i Help Copy | 8 | | 3ciose

Figure 3.6: Conversations window

For example, if you are looking for the devices that generated a lot of packets and from
where major data transfer has happened, then open the Conversations dialog, go to the
IPv4 tab, and sort the packets column in a descending order. Here, the device listed in the
first row is your answer. Take a look at the following screenshot that illustrates the same.

2 i %| Conversations: sample2.pcapng
Ethernet: 3| [ro0r 1pva: 29 |ipve: 2| 1T [uce |esvr|sore | Tep: 27| |upP: 75 | s [wian|
IPv4 Conversations
Address A |Add ress B | Packets « |B1.ftes |Facket5 A—B |Byte5 A—B |Packet5 A—B | Bytes A—B T
172.20.10.7 216.58.220.46 430 256 350 204 27 884 226 228 461
172.20.10.1 172.20.10.7 366 31 160 172 17 970 194 13 19
172.20.10.7 173.194.126.120 364 296 096 144 28 864 220 267 23,
54.231.136.106 172.20.10.7 276 220 766 158 212 544 118 822
172.20.10.7 216.58.196.99 186 128678 82 14 340 104 114 33
172.20.10.7 216.58.196.110 130 B3 634 58 13 692 i 69 94,

Figure 3.7: Busiest devices

In the first row, we can see how many packets/bytes have been sent and received by each
endpoint and the total elapsed duration. If you wish to create a filter for the same, right-
click on the first row and then create the respective expression you are thinking about. I
chose the first option, A<->B, which only shows packets that are associated with Address
A and Address B:

Aot) sdeced L AE

Prepare a Filter Not Selected A — B
Find Frame P ... and Selected A+~ B

Colorize Procedure 4 ... or Selected A < Any

... and not Selected A — Any

.. or not Selected A « Any

Any < B

Any « B

Any —+ B

The respective filter will be inserted in the Display Filter dialog, as shown in the
following screenshot:

Filter: |ip.addr==17.143.162.208 && ip.adt:lr==1?2‘._'J Expression... Clear Apply Save

The Conversations dialog will let us collect and analyze details in a more granular form,
which can be used in various scenarios while troubleshooting and auditing networking
infrastructures.

Endpoints

Two devices that share data with each other are often referred to as endpoints with
reference to Wireshark. As we have noticed and observed, if a host intends to talk to
another host on the network, they would require some form of address to send and receive
packets—yes, I am talking about the physical address that every device holds.

Every host is able to communicate with the help of an Network Interface Card (NIC)
that holds a physical address (often termed as a MAC address), and the same address is
used for communication over a local network. Devices that communicate in this kind of
infrastructure are termed as endpoints. Wireshark gives us the facility of analyzing and

collecting information regarding these two devices.

Let’s say, for example, that we are observing heavy network traffic flowing across a
network, which is kind of unusual according to our daily traffic pattern. Now, we want to
figure out due to which device(s) the traffic pattern differs. For us, the Endpoints dialog
comes to the rescue, which can be accessed from the Endpoints menu under Statistics,
which looks something like the following screenshot. Before you go ahead and open the
Endpoints dialog, simply click on any TCP packet from the Packet List pane. What you
will see is a list of tabs visible at the top, each stating a different a protocol. Some of them
will be shown as active, and some of them will be shown as inactive because if in your
traffic you have a packet relating to a certain protocol, the tab listing that particular
protocol will be shown as active; otherwise, it will be shown as inactive.

By default, you will be presented with the Ethernet tab (lists the Layer-2 MAC address)
in most cases. Along with the protocol, you must observe a number that states the number
of endpoints captured for that specific protocol. As in our case, we are seeing 3 and the
same number of rows are visible in the Main pane.

In the Main pane, many more specific details can be seen for every endpoint, such as the
total number of packets transferred, total number of bytes transferred, and total bytes and
packets received and transmitted for an individual endpoint.

@08 % Endpoints: sample2.pcapng

Ethernet: 3| annel |[Fooi | ipva: 32 |1pve: 3| x| A [nce [rsve |scTe | Tep: 49 ok 1 [upe: 90| use [wian]
Ethernet Endpoints

Address |Packets |Brtes ‘ Tx Packets | Tx Bytes |Ru Packets | Rx Bytes |

Apple_b9:53:ec 1690 770617 870 133 603 820 637 014

Broadcast 33 1536 0 o 33 1536

E Name resolution O Limit to display filter
HHelp | Copy | @' | K Close |

Figure 3.8: Endpoints window

Now, if you want to analyze other protocols, then simply click on any tab of your choice. I
clicked on the IPv4 tab and sorted the main pane using the Packets column, which looks
like the one shown in the following screenshot:

By just looking at the Endpeoints dialog, I can now easily figure out that maximum data
was transferred from IP 172.20.10.7. This could be a one single IP talking to some server
or probably a server talking to multiple machines on our network at a moderate rate.

& =@ | Endpoints: sample2.pcapng
Ethernet: 3| 7 | IPvd: 32 |1IPv6: 3|10 | ra e | |scip|TeP: 49| fing |upe: 9o |use |w
IPv4 Endpoints

Address |EP'ac"Réi“s“A"| Bytes ITx Packets ITx Bytes | Rx Packets JRx Bytes |Lat|tude ILangltude =
172.20.10.7 3404 1518 822 1752 255 718 1652 1263104 -
17.143.162.208 S00 229 312 366 172 714 534 56 598 - -
216.58.220.46 430 256 350 226 228 466 204 27 884 - -
172.20.10.1 366 31 160 172 17 970 194 13 190 - -
173.194.126.120 364 296 096 220 267 232 144 28 864 - -
54.231.136.106 276 220 766 158 212 544 118 B 222 = =
216.58.196.99 186 128678 104 114 338 82 14 340 - -
216.58.196.110 130 83 634 72 69 942 58 13 692 - -
17.178.104.39 114 45 990 52 29624 62 16 366 - =
216.58.196.97 104 34 162 44 19 058 60 15 104 - -
17.151.236.24 90 28 432 40 20 386 50 8 046 - -
216.58.196.109 80 35 144 36 17 770 44 17 374 = -
216.58.196.98 72 28 B854 32 16 536 40 12 318 - -
17.167.194.236 60 14 250 28 10 820 32 3 430 - -l
= i — e R

Mame resolution O Limit to display filter
i Help Copy @ Map | # Close |

Figure 3.9: Endpoints dialog—IPv4v tab

If you would like to dig more into it, we have an interesting option that can be taken
advantage of; simply create a display filter for the same. To do so, right-click on the first
row with most packets transferred and choose Selected under Apply as Filter, as shown
in the following screenshot:

You will be able to see a display filter for the same Endpoint in the Display Filter dialog
above the List pane, like the one shown here:

Apply as Filter > | Selected |

Prepare a Filter 4 Not Selected
Find Frame 4 ... and Selected
Colorize Procedure 4 ... or Selected

. and not Selected
. or not Selected

This facilitates us to quickly analyze traffic for a certain endpoint and hence increases the
speed of analysis for users. Once you click on Clear, you will be presented with the same
Endpoint dialog. At the bottom of the window, you will see two check boxes and a few
buttons. The purpose of each is listed in the following:

Filter: |ip.addr==172.20.10.7 jExpressi{)n... Clear Apply Save

e Name Resolution: This resolves the name of each of the Ethernet addresses listed in
the Ethernet tab. But in some scenarios, it might affect the performance of the
application adversely too, for example, when trying to resolve the unique IP
addresses from a huge pcap file.

e Limit to display filter: This limits the results of the Endpoint window on the basis of
a display filter that you already applied before accessing the Endpoints window.

e Copy: This copies the content of the current Endpoints window tab in a CSV format
(comma-separated values).

e Map: This maps the selected endpoint’s location in your browser on the basis of its
actual geographical location.

Working with 10, Flow, and TCP stream graphs

Among various other reporting tools, Wireshark offers graphing capabilities too, which
can present captured packets in an interesting format that makes the analysis process much
more effective and easy to adapt. The graphing feature is much more effective in
comparison to scrolling thousands of packets to figure out the cause of any network-
related problem. If you have an overwhelming number of packets to be analyzed, then
graphs can be seriously productive. There are multiple types of graphs available that we
will discuss, starting with the IO graph.

10 graphs

This is one of the basic graphs that are created using the packets available in the capture
file. To create the IO graph, select any TCP packet in your capture file and then click on
IO Graph under Statistics. Refer to the following screenshot:

@ @ % Wireshark 10 Graphs: sample3.pcapng
—2000
/m\A
]—rmﬁxw}_"f’ﬁ/]-\/\{\ T ¥ T T T T T |_’f¥] f T ¥ T Tr\"r- 0
Os 20s 40s 60s 80s 100s 120s
- — -
Graphs X Axis
|Graph1 Color [¥IFilter: [Style: Line » Smooth Tick interval: 1 sec v
Graph 2 |Color [¥]Filter: [Style: Line - Smooth Pixels per tick: 5 |»
Graph 3 ¥ Filter: { Style: Line v |@ Smooth | E View as time of day
Graph 4 [Color [¥Filter: || Style: Li @ smooth "
ter: tyle: » & t
op s Ll ¥ —IﬂE es Unit: Packets/Tick =
h Filter: le: Li th
Graph 5 [¥Filter: || Style: Line v |@smooth T =
Smooth: No filter v
HHelp | Qﬂpv| ﬂglu.ﬁ:| [Save

Figure 3.10: 10O graphs

This way, you can see the highs and lows in your traffic, which can be used to rectify
problems or can even be used for monitoring purpose. In the preceding graph, the data on
the x axis represents the time in seconds and the data on y axis represents the number of
packets per tick. The scale for the x and y axis can be altered if needed, where x axis will
have a range between 10 and 0.001 seconds and y axis values will range between
packets/bytes/bits.

From the preceding graph, we can easily depict that between sixtieth to eightieth second of
the capture process, the network was most active, which generated approximately 1000
packets each second of the capture process. Now, you will be realizing how easy it was to
gather that specific information from thousands of packets in merely 4-5 seconds; this is
what graphing makes you capable of.

Just below the plotted area, you can see the Graph section, which lists various tools, such
as Graphs 1-5, several filters, and the line format, and various other details. Let’s take an
example and try to understand the functioning of each of them.

The preceding graph displays the generalized form of our network traffic. Now, my
requirement is that I just want to see the frequency of the UDP traffic separately in the
same graph plotted with a red line. For such specifications, follow these steps:

Write UDP as a filter in the second filter box from the top

Click on the Graph 1 button to deactivate it
Click on the Graph 2 button to activate it

Now, you will see the same window as shown in the following screenshot:

[Mol | % Wireshark 10 Graphs: sample3.pcapng
~ 500
| [
[L
(1 =250
| L
[|
5§ 0 1 I
' JATN / b 'y W\ r
I_ I_r‘\l_ I;L . b Y| e I- i .a-fl‘_ | e I_ o . | . : . | 0
0s 20s 40s 60s 80s 100s 120s
“ €)
Graphs X Axis
Graph 1 |Color (¥IFilter: || Style: Line v |B Smooth Tick interval: 1 sec v
IL‘.raph 2 Color [FFilter: |[udp Style: [Line v |/ Smooth | Pixels per tick: 5 v
Graph 3 [Filter: | Style: Line v |@ Smooth | View as time of day
el e Y Axis
Graph 4 |Color [¥Filter: Style: Line (E Smooth
STEPNE +| 4 Unit: Packets/Tick =
Graph 5|Color B Filter: I Style: Line ¥ . Smooth Sl TR =
Smooth: No filter -
IiHelp | Copy | X;Iuse| k- Save

Figure 3.11 : IO graph-UDP trdffic only

Analyzing specifically UDP traffic becomes easier in just a few steps. It is clearly visible
from the preceding graph that most of the UDP traffic was generated between the

seventieth to eightieth second of the capture process, and more than 250 packets were
received during the capture process. If you want to compare both TCP and UDP traffic in
the same graph, take a look at the following screenshot:

% Wireshark |0 Graphs: sample3.pcapng

~ 2000
L1000
sy 0
0s 20s 40s 60s 80s 100s 120s
4§ L
Graphs X Axis
Graph 1|Color [¥|Filter: | Style: Line - Smooth Tick interval: 1 sec -
Graph 2 Color [¥Filter: tudp Style: Line v |@ Smooth Pixels per tick: 5 |w
Graph 3|Color BFFilter: | Style: Line ~ |@ smooth U View as time of day
Graph 4 Color [¥Fil tep| Style: Li & Smooth Y
ter: o -
28 g0 kCP i moo Unit: Packets/Tick =
Colo Fi B L 1 -
Graph 5 |Color [Filter: | Style: Line Smooth . T =
Smooth: Mo filter -
IHelp | :Qupv| KQIGSE| Hsave |

Figure 3.12: 10 Graphs—TCP and UDP together

Comparing two things gives us a new angle to view regular things, and generally
speaking, the learning process becomes better when we start comparing.

Flow graphs

This is one of the nicest features in Wireshark, where we are assisted with troubleshooting
capabilities in scenarios like facing a lot of dropped connections, lost frames,
retransmission traffic, and more. Flow graphs let us create a column-based graph, which
summarizes the flow of traffic between two endpoints, and it even lets us export the results
in a simple text-based format. This is the easiest way of verifying the connection between
client and server.

For instance, I have a web server running at 172.16.136.1 and a client running at
172.16.136.129. The client will request the web server for a certain resource. Let’s see
what the flow graph looks like for such kind of requests. There will be hundreds of
packets generated, but we will look only at HTTP packets, just to make the results more
confined and understandable. Click on Flow Graph under Statistics, and then from the
pop-up dialog, choose Displayed Packet. Click on OK. Refer to the following screenshot
that illustrates the same:

% flowgraph.pcapng [Wireshark 1.12.6 (v1.12.6-0-goe 1fced from master-1.12]|
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help |
oMM EEXR a¢vwTFrEF QAN @EB%E 8 |
Fi|ter:|http jExpression... Clear A Save ‘
No. |Time |5nurce |Deq 200 ; N ﬂuu;\ﬁruph.pc;png-Graph Analysis
S 386045201 476105000 172.16. 136, 129 172

74 300661294, 800216000 172.16.136.1 172 . 72.16.136.129 2

135 - 579046220, 494573000 172.16,136,129 172 Ll 172.16.136] Comment || e

155 0, 479746000 172, 16.136. 1 172 | 380945291.47610 . GELJOMALL HTTP: GET /gmail/index.tm HTTP/1.1

247 431127217.781708008 172, 16.136.129 172 | 380661294.89921 |,y WIIPLLL 0 HTTP: HTTP/1.1 200 OK (text/humi e=https
| 260 532331502:020623000 172,16.136.] B 5790462204945 ... GELgMai.,. .~ HTTP. GET jgmailindex_fies/CheckConne ___

' Wirsshark: Ficw Graph 0.479746000 e MEIBLLL 0 TP HTTR/1.1 200 OK (textihimi)
|| 431127217.78170 I..,II.*,,IQEIIIIDIIL.-'_!,) HTTP: GET /gmail/phish php?GALX =ladgge
Choose packets 532331502.02062 |, 0 METRLLL . ' HTTP: HTTP/1.1 302 Found frext/ham)
O All packets

L #® Displayed packets B . . f |
b Frame 260: 14} Choose flow type i*% .
b Raw packet dal
b Internet Proty ® General flow i | m
b Transmission (O TCP flow i
b 110 Reassembly 15 Hag). 7
| « E=========e] Choose node address type 3 : .
o000 45 oo 05 § O Standard source/destination addresses | W ’ .
0010 ac 10 84 § e b | y
o et ® Network source/destination addresses 1 o E
0830 02 21 62 ¢ =—— T | .
0040 62 3a 57 ¢ 5| i
0050 64 77 72 S0k I RCEI‘ICH | It
0060 20 70 61 3 fa i Save As I # Close
0070 62 65 20 72 65 73 6f 75 72 63 65 Zc 20 62 6f 6f be re
0080 6¢ 65 61 6 20 67 69 76 65 Ge 20 69 6e 20 3¢ 62 lean
wRan s 2F 41 TR TR_Ae RO K1 K1 74 &0 Af Re 73 3 58 =idnml T ariane v
Frame (1427 bytes) |Reassembled TCP (13242 bytes) | De-chunked entity body (12769 bytes)|
@ *'[File: */Users/Charit/Desktop/flowgraph.pcapng” 114 kB 51 JPackets: 298 - Displayed: 6 (2.0%) - Load time: 0:00.004 { Profile: Default

Figure 3.13: Flowgraph

Now, from the Graph Analysis window, we can see at what time a certain request was
made and what response did we receive, which TCP port was used, along with some plain
English comments, and the flow of traffic is also marked. This makes it simple for us to
understand how TCP packets flow around.

TCP stream graphs

There are a couple of graphs that come in this section. Each of them depicts the network
traffic in a graphical form differently. Let’s start by taking a look at each one of them.

Round-trip time graphs

Round-trip time (RTT) is the duration in which the ACK for a packet that is sent is
received, that is, for every packet sent from a host, there is an ACK received (TCP
communication), which determines the successful delivery of the packet. The total time
that is consumed from the transfer of the packet to the ACK for the same is called round
trip time. Follow these steps to create one for yourself:

e Select any TCP packet in your packet list pane.

e Navigate to Statistics | TCP Stream Graph | Round Trip Time Graph.

e The x axis represents the TCP sequence number and the y axis represents the RTT in
seconds.

e FEach plotted point on the graph represents the RTT of a packet. If you are not seeing
anything in your graph, then you might have selected an opposite directional packet.

e RTT graphs are often used by network admins to identify any congestion or latency
that can make your network perform slowly.

e To investigate further, just click on any plotted RTT dot in your graph, and Wireshark
will point you to that specific packet in the list pane.

The following RTT graph represents normal web traffic, and at some points in the graph,
latency can be observed:

@ @ % TCP Graph 51: Wi-Fi: en1 192.124.249.8:443 — 172.20.10.7:49302

RTT [s] Round Trip Time Graph
0.10— 5

0.08—+

0.08

0.07—

0.06—

0.05

0.04—

0.03—+

0.02

0.01

-
- L

‘MW!—_? o e ! B o o J.| | R R
50000 100000 150000 200000 250000
Sequence Number[B]

Figure 3.14: Round Trip time Graph

Bottleneck and latency can often be identified with a vertical line of plotted RTT dots,
which depicts whether the packet from the sending device is first queued up and then sent
all at once or whether the packets are suffering with duplicate ACKs or packet loss, where
retransmission was required, thus increasing the RTT time.

Throughput graphs

This graph is very similar to the IO graph that depicts the traffic flow. However, it is
different in one important aspect that Throughput graphs depict the unidirectional traffic
whereas 1O graphs depict the traffic in both directions. For every TCP packet that you
select in the list pane, the Throughput graph can be different. If you are seeing a blank
graph, then just select another TCP packet and try to create the graph again. Follow these
steps to create one for yourself:

Open the trace file that contains your packets.

Apply a display filter if required.

Select any TCP packet from the list pane.

Navigate to Statistics | TCP Stream graphs | Throughput graph.
Voila! It’s done.

kWi

In the title bar, the IP address of the communicating hosts is present, along with the
direction of traffic. The x axis represents the time in seconds, and the y axis represents
throughput in bytes/seconds. Refer to the following graph (Figure 3.15) that illustrates the
same:

@0 % TCP Graph 61: Wi-Fi: en1 216,58.220.46:80 — 172.20.10.7:49265
Throughput
[B/s] Throughput (20 segment MA)
10000 —
i \
g . £
5000 — -
i |1 H
t :
- L]
- i -
™ '
P d
[I [[I | | [I | [[| | [[
5 10 15 20 25 30 35 40 45 50 35 60 65 70 75 80
Time[s]

Figure 3.15: Throughput Graph

The Time-sequence graph (tcptrace)

This graph depicts the stream of TCP data over time. The traffic that will be presented is
unidirectional (moving in one direction). Time-sequence graph gives us an idea about the
segments that are currently traveling, the acknowledgements for segments that we’ve
received, and the buffer area that the client is capable to hold. To create this graph, follow
these steps:

1. Open the capture/trace file you want to work with.
2. Click on any TCP packet from the list pane.
3. Navigate to Statistics | TCP Stream Graphs | Time sequence graph(tcptrace).
4. You must now see something like the following:
@ @ % TCP Graph 111: sample3.pcapng 96.17.182.43:80 — 172.20.10.7:52738
Sequence
numher[B] TimefSequence Graph {thlI‘&CE)
1350000]
1 i
1300000 — ,¢
i)
i . I8
1250000 — g
i £ :
] . 2]
1200000 j

1150000 2
] 4

1100000 !

i /

1050000 o
) J

1000000 — "

_‘lrl'l FrT T vF [T F T T T T T [T T T R T T FRTrT [PT R T T0 TT E T [T P T T T 1
[I [I [l | I 1 [

1.35 1.40 1.45 1.50 1.35 1.60 1.65 1.70 1.75 1.80

Timel[s]

Figure 3.16 : Time Sequence graph (tcptrace)

The x axis of the graph represents the time in seconds and the y axis represents the TCP
sequence number. TCP sequence numbers are incremented by the bytes of data sent with
every packet, that is, if the sequence number is 1 and the packet we are sending holds 10
bytes of data, then the sequence number will be incremented by 10. Hence, the sequence
number for the next packet to be sent will be 11. The throughput of the data is more when

we have steeper lines plotted, normally, the graph plotting starts from the lower-left corner
to upper-right corner.

There are actually three lines plotted on every graph. The line with multiple I written is
the TCP data segment, and the longer the I stream, the more the data in the packet. The
line below the TCP segment is the ACK stream for data sent, and the line at the top
represents the calculated client-receiving window.

The distance between the client-receiving window line and the TCP segment line is the
window size. The closer the line, the less data can be buffered, and vice versa. Consider
the following zoomed-in screenshot for more understanding:

1050000 —

1000000 —
1 ra

1.35 1.40

Figure 3.17: Throughput graph

Let’s suppose that at 1.38 seconds Host A is sending byte 995,000, and at the same time,
host A received an ACK for byte 990,000, which states that 5,000 bytes are still
unacknowledged (in-flight). A point to be noted here is that the dark grey lines denote the
ACKs received.

Follow TCP streams

Wireshark provides the feature of reassembling a stream of plain text protocol packets into
an easy-to-understand format.

@ =] % Follow TCP Stream (tcp.stream eq 8)

Stream Content

GET /GIAGZ.crt HTTP/1.1 i
Host: pki.google.com m
Accept: */+*

Accept-Language: en-us
Connection: keep-alive
Accept-Encoding: gzip, deflate
User-Agent: ocspd/1.0.3

HTTP/1.1 200 OK

Vary: Accept-Encoding

Content-Type: application/x-x509-ca-cert
Last-Modified: Fri, @8 May 2015 18:51:37 GMT
Date: Sat, 25 Jul 2015 11:26:50 GMT
Expires: Sat, 25 Jul 2015 12:26:50 GMT
X-Content-Type-0ptions: nosniff

Server: sffe

X-X¥55-Protection: 1; mode=block

Age: 117

Cache-Control: public, max-age=3600
Alternate-Protocol: 80:quic,p=0
Accept-Ranges: none

Transfer-Encoding: chunked

e e s L -

L Find | & Save As I &= Print |D ASCIl O EBCDIC © Hex Dump © CArrays ® Raw

Il Help [¥|Filter Out This Stream ‘ 2 Close |

Figure 3.18: Follow TCP Stream window

For instance, assembling an HTTP session will show you the GET requests sent from the
client and the responses received from the server accordingly. There is specific color
coding that is followed by the requests and responses shown in the Follow TCP stream
dialog. Any text in red color denotes a request that a client has sent, and any text in blue
color denotes the response received from the server. If the protocol is HTTP, then you can
view almost everything in plain text; if the protocol is HTTPS, then most of the things will
be encrypted, hence giving ambiguous text on the screen (there is a way to decrypt
HTTPS traffic too, which we will discuss in the upcoming chapters). The Follow TCP
stream option can be of great help while troubleshooting any HTTP session, which is the
same with most of the application layer protocols.

At the bottom of the dialog, you have a drop-down menu from where you can choose to
view either side of communication or you can choose the entire communication,
consisting of requests and responses that are shared between the client and the server at
the same time. Instead of just viewing the data in RAW format, you can choose between
ASCII, EBCDIC, Hex dump, and C arrays format.

If you wish to save the content shown in the dialog, then click on Save as, which will save

the content in a simple text format. Similarly, to print, you can click on Print. And if you
want to view everything except the Follow TCP stream packets that you are viewing
currently, then click on Filter out this stream. To close the dialog, click on Close.

To view the TCP stream, follow these steps:

Open the capture/trace file.

Apply the display filter if required.

Select any packet from the list pane.

Right-click on the selected packet and click on Follow TCP stream.

=

Following the preceding steps gives a simple view of viewing data. Now, figuring out who
initiated the connection will be quite easy.

Expert Infos

The information in the Expert Infos dialog is populated by the dissectors that enable the
translation of every protocol that is well known to Wireshark. The Expert Infos dialog
keeps you aware of the specific states that users should know about. Presently, expert
infos is available only for TCP-based communication. Maybe for other protocols, the
Expert Info dialog will be available by the time you read this.

You can access the Expert Info dialog by clicking on Expert Info under Analyze, or you
can click on the bottom-left corner on the colored dot just before the status bar. Refer to
the following screenshot, which illustrates the same:

] Display Filters...
Display Filter Macros...

e aFiltel 3

v/ Enabled Protocols... Shift+Ctrl+E
3t Decode As...
32 User Specified Decodes...

Follow TCP Stream

® Expert Info

Conversation Filter [2

« &

0000 d8 bb 2c b9 53 ec 4a 74 6e ba dO 64
0010 ©05 8c bO aa 00 00 3c 06 ff be 4a 7d
0020 0a 07 00 50 ce 62 06 e2 <cl d5 0d 92
0030 02 2b Oc 96 00 0O 01 01 ©8 0a 03 75
0040 40 4e 48 54 54 50 2f 31 2e 31 20 32
0050 4b 0d ©a 43 6f 6e 74 65 6e 74 2d 54
0060 20 69 6d 61 67 65 2f 62 70 65 67 6Od
0070 65 3a 20 53 61 74 2c 20 32 35 20 4a

""f1'| File: "/Users/Charit/Desktop/sample3.

ol 0 osd Ll = I D

Click to access Expert

The red dot at the bottom-left corner can be colored with different colors, such as cyan,
yellow, green, blue, and grey, where each of them has a specific meaning, which is listed
as follows:

e Red: This indicates errors

Yellow: This refers to warnings
Cyan: This refers to a note
Blue: This refers to chats
Green: This refers to comments
Grey: This means none

Now, let’s have a look at the Expert Infos dialog and discuss various other elements
residing within. Refer to the following screenshot for illustration purposes:

| NN | %/ Wireshark: 2122 Expert Infos

Errors: 3 (7) |Warnings: 3 (70) | Notes: 13 (440) | Chats: 258 (1605) | Details: 2122 |Packet Comments: 0

Group |Protoc0| |5umman_.f |Count

b Malforn TCP New fragment overlaps old data (retransmission?

b MalfornSSL Malformed Packet (Exception occurred) 2
b MalfornPNG Malformed Packet (Exception occurred) 1

O Limit to display filter

JiHelp ¥ Close

Figure 3.19: Expert Infos dialog

As you can observe, there are multiple tabs listed just below the title bar that consist of
packets listed depending on their severity level and category of information. There are
mainly four sections in the Expert Infos dialog that point to the likely cause of the
problem, so double-checking it will be helpful. Each tab contains the name of the section
and two numbers: one inside the parenthesis and one outside. The number inside the
parenthesis denotes the total number of packets that have been flagged for the containing
category, and the number outside denotes the total number of unique categories for the
packets flagged.

We will go through each section one by one, and we will also summarize the criteria by
which packets are flagged and listed under different categories, such as chat, note,
warnings, details, and so on:

e Chat: These are general messages concerning the current communication. A packet
that falls under this section is listed as follows:
o Window Update: This makes the sender aware that the TCP receive window
size has been updated.
e Note: These are unusual messages that may or may not be part of the current normal
communication. Packets that fall under this section are listed as follows:

o The Zero Window Probe: Suppose that the server receiving the packets from
the client is not able to process the packets received at the same speed that the
client is sending them, thus causing packet loss. In such cases, a server will send
a Zero Window packet to the client to halt the process of sending packets for
sometime while keeping the connection alive.

o The Keep Alive ACK: The receiver of the Keep Alive packets sends this ACK
as a response.

o The Zero Window Probe ACK: This relates to the Zero Window Probe
example. The Zero Window Probe ACK will be sent by the client in response to
the server’s request.

o Window is full: This notifies the sending host that the TCP-receiving window is
currently full.

o TCP retransmission: The TCP packet is retransmitted again because of a
duplicate ACK, packet loss, or if the timer for retransmission expires.

o The duplicate ACK: If you think about the TCP three-way handshake
communication, for every packet received at the other end, the sender should get
an ACK packet. If the receiver gets the packet with the sequence number that
has already been received, then duplicate ACKs will be generated. This will
happen in case of packet loss as well.

e Warning messages: These are unusual messages that are probably not a part of your

general communication. Packets that fall under this section are listed as follows:

o Zero Window: These messages have been observed when the receiving side
tries to notify the sender to stop sending for a while as the TCP-receiving
window is full.

o Keep Alive: These messages will be observed when any Keep Alive messages
have been captured in the communication.

o ACKed Lost Packet: These messages will be observed when an ACK for some
lost packet is received.

o Previous Segment Lost: These messages will be observed when an unexpected
packet is received out of sequence.

o QOut of Order: These messages will be observed when are packets received in
some random sequence, thus signifying no sequence.

o Fast Retransmission: These messages will be popped up when, in a short time
of 20 milliseconds, duplicate ACKs have been transmitted again.

Error: These are general error messages in the packets or are thrown by the dissector
of a specific protocol translating it. There is no specific category in error messages.
Details: Collectively, all Expert Info dialogs can be viewed in the details tab.
However, it is advisable to look into each tab individually on the basis of their
severity level. Pointing out the problems can be sometimes easy because the entries
made in the details tab are lined up in the sequence as they were captured. Viewing
anomalies through the details tab can be a bit time consuming and disadvantageous.
Packet Comments: This refers to any annotations given regarding the trace file that
can be used to share any interpretations further. Adding comments to the trace file
can be really useful while documenting for future references. To add a comment to
any packet of your choice, just right-click on the selected packet and click on Packet
Comment. You will be presented with a dialog where you can add a comment of

your choice, and the same comment will be visible in the Packet Comments section
of the Expert Infos dialog. Adding a comment will also affect how a certain packet is
shown in the Details pane. Generally, an extra field will be added to the details pane
highlighted with a green background color.

% Wireshark: 2122 Expert Infos

Errors: 3 I?]llWarnings: 3 (70) | Notes: 13 (440) | Chats: 258 (1605) | Details: 2122 |Packet Comments: 0

Selected o
.. not Selected
.. and Selected
.. or Selected
.. and not Selected
.. or not Selected

Prepare a Filter

Find Frame

Colorize Procedure

@ Internet Search
Copy

O Limit to display filter

L Help K Close |

Figure 3.20: Create filter using Expert Infos dialog

P MalfornP

v v v v wl [

Unique categories presented in every section can be expanded to get more information
about a specific packet. When you expand and click on the packet listed in the Expert
Infos dialog, Wireshark will point you to the corresponding packet in the list pane that can
be investigated further. Creating a display filter for every category is also possible; just
right-click on the selected category and choose the type of filter you want to create. Refer
to the following screenshot for illustration purposes:

% Wireshark: 2122 Expert Infos

Errors: 3 [?}!Warnings: 3 (70) | Notes: 13 (440) | Chats: 258 (1605) | Details: 2122 |Packet Comments: 0

..... n?
Selected
.. not Selected

.. and Selected

.. or Selected

.. and not Selected

.. or not Selected

Prepare a Filter

Find Frame

Colorize Procedure

i Internet Search
Copy

O Limit to display filter

JiHelp # Close |

v wr vy w v

The main motive of the Expert Infos dialog is to find the anomalies present in a trace file.
Finding the network problems in the trace file for a novice user becomes a lot easier and
faster. Viewing the Expert Infos dialog can give a better idea about the unusual behavior
of network packets. As we already discussed, the Expert Infos dialog is available for
protocols based on TCP/IP; for the rest, there is not much info available.

The best way to figure out juicy info is to look into the tabs separately instead of looking
into the details tab because, as we discussed, it can be time consuming and can lead to
various misunderstandings. Users like you are not supposed to rely completely on Expert
Infos; sometimes, the file you trace will contain anomalies that won’t be listed in the

Expert Infos dialog. May be, manual analysis will be required as well.

The protocol field that is shown in the details pane of the selected packet will be colored
as per the severity level of the Expert Infos dialog; take a look at the following screenshot
for further reference:

V

D Ethernet II, Src: 4a:74:6e:ba:d0:64 (4a:74:6e:ba:(
P Internet Protocol Version 4, Src: 216.58.220.34 (.
P Transmission Control Protocol, Src Port: 80 (80),
D Hypertext Transfer Protocol

P Portable Network Graphics

b [Malformed Packet: PNG]

Figure 3.21: Colorization rules in protocol field

We can easily identify from the preceding screenshot that for this particular packet, there
is an entry in the Error and Chat sections (red color denotes Error and blue denotes Chats).
It is also possible that a single packet is listed in two sections of the Expert Infos dialog.

Command Line-fu

With the default installation of Wireshark, there are couple of command-line tools that get
installed. These command-line tools are some sort of protocol analyzers, which can be
taken advantage of when you don’t have a GUI interface to work with or you don’t have
an option to install the GUI. There are good number of tools available in Wireshark to do
this, which are Capinfos, Dumpcap, Editcap, Mergecap, Rawshark, Reordercap,
Text2pcap, and Tshark.

The most common and widely used command-line tool for protocol analysis purposes is
Tshark, which is capable of capturing data through listening to a live wire, and it can even
analyze your already saved trace files. The captured packets are translated into an
understandable form and printed to the standard output, or you can save them to the file of
your choice. Dissectors that are used by Wireshark the same Tshark utilizes.

Tshark uses the pcap library to capture and translate the packets from the live wire or from
the already saved files. Just like Wireshark’s filtering option, we can enable filters in
Tshark. There are multiple customizable options present in Tshark that can be leveraged to
use it in a more advanced fashion.

Wireshark has a CLI version, which is almost similar to Tshark in terms of the syntax and
various options that both of them support equally. Let’s understand this topic better with
an example. Say, for instance, we have an Apache web server and FTP running on a
Windows XP box located at 172.16.136.128 and a Macintosh client running at
172.16.136.1. Using our custom infrastructure, we will generate some network packets
and try to use Tshark for capturing and analysis purposes.

PC 1: Macintosh (172.16.136.1) PC 2: Windows XP
| (172.16.136.128)

When working on a Windows PC, you might have to create the environment variable
before you can start using Tshark. The following screenshot belongs to Tshark, displaying
tshark -h (help options) within the CLI:

Anonymous:Desktop NotFound$ tshark -h

TShark 1.12.6 (v1.12.6-8-geelfce6 from master-1.12)
Dump and analyze network traffic.

See http://www.wireshark.org for more information.

Copyright 1998-2@15 Gerald Combs <gerald@wireshark.org> and contributors.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Usage: tshark [options]

Capture interface:
-i <interface> name or idx of interface (def: first non-loopback)
-f <capture filter> packet filter in libpcap filter syntax
-5 <snaplen> packet snapshot length (def: 65535)

(1T L] L] L Bl ¥ iiale

Figure 3.22: Tshark help

We will start with the basics and eventually move toward the creation of filters, and then
we will collect statistics using the CLI-based tool Tshark:

e The first thing we should know is how many interfaces do we have available to
capture packets. Use the following command to check tshark -D:

Anonymous:Desktop NotFound$ tshark -D
en® (Ethernet)
fwd (FireWire)
bridge® (Thunderbolt Bridge)
utun@
pktap®
enl (Wi-Fi)
en2 (Thunderbolt 1)
lo@ (Loopback)

Figure 3.23: Interfaces available

If you do not specify any interface for capturing, tshark will choose the first
interface that is available on its own. Interfaces can be chosen by their names and
also by the sequence number they appear in. Refer to the preceding screenshot, which
shows all the interfaces that are available.

¢ [have a custom interface pktapo that will listen to the connection between my client
and the server. So, the command to initiate the capture process will be tshark -i
pktap® or tshark -i 5:

Anonymous:Desktop NotFound$ tshark -i pktap®
Capturing on ‘pktap@’

e Now, let’s generate some HTTP traffic by visiting the web page hosted on our server
from the client (I am using the curl command-line tool for browsing purpose):

Anonymous:Desktop NotFound$ curl http://172.16.136.128

e As soon as the preceding command has been issued, a couple of packets are captured
by tshark on the pktapo interface. And a summary of translated packets for better
understandability can be seen. Refer to the following screenshot that illustrates the
same:

Anonymous:Desktop NotFound$ tshark -i pktap®
Capturing on ‘pktapa’
©.900000 172.16.136.1 -> 172.16.136.128 TCP 64 51B16-8@ [S5YN] Seq=@ Win=65535 Len=0 M55=1460 WS

-745883619.684183 172.16.136.128 —> 172.16.136.1 TCP 64 808-+51816 [SYN, ACK] Seq=@ Ack=1 Win=64240
-733373297.962554 172.16.136.1 -> 172.16.136.128 TCP 52 51816-80 [ACK] Seq=1 Ack=1 Win=131744 Len
=1830766245.431098 172.16.136.1 -> 172.16.136.128 HTTP 138 GET / HTTP/1l.1
-1830766245.129806 172.16.136.1 —> 172.16.136.128 HTTP 138 [TCP Retransmission] GET / HTTP/1.1
-1664501840.066843 172.16.136.128 -> 172.16.136.1 TCP 52 808-51816 [ACK] Seq=1 Ack=79 Win=64162 Le
-302509417.396438 172.16.136.128 -> 172.16.136.1 TCP 52 [TCP Dup ACK G6#1] Be-51B16 [ACK] Segq=1 Ac
-2027256734.439159 172.16.136.128 -> 172.16.136.1 HTTP 345 HTTP/1.1 302 Found
-179068134,420122 172.16.136.1 -> 172.16.136.128 TCP 52 51816-80 [ACK] Seq=79 Ack=294 Win=131456
-2067155579.763355 172.16.136.1 -> 172.16.136.128 TCP 52 51816-88 [FIN, ACK] Seq=79 Ack=294 Win=1
-1830766248. 828112 172.16.136.128 -> 172.16.136.1 TCP 52 88-+51816 [ACK] Seq=294 Ack=80 Win=64162
-392509283.614170 172.16.136.1 -> 172.16.136.128 TCP 52 [TCP Dup ACK 18#1] 51816-+88 [ACK] Seq=88
-1830766248.686849 172.16.136.128 -> 172.16.136.1 TCP 52 88-51816 [FIN, ACK] Seq=294 Ack=88 Win=6
-392569681.317465 172.16.136.1 -> 172.16.136.128 TCP 52 51B16-+80 [ACK] Seq=80 Ack=295 Win=131456

Figure 3.24: Packets captured at pktap0
If you want to stop the capture process at any point, press Ctrl + C.

e To save the translated packets to a file, we need to specify the -w switch, along with
the command that will save the raw data packets to the specified file:

Anonymous:Desktop NotFound$ tshark -i pktap® -w http.txt
Capturing on 'pktap®’
11

A total of 11 packets have been captured, and a text file is being created on the
desktop with the name http.txt, which will contain raw data as shown in the
following screenshot:

Anonymous:Desktop NotFound$ cat http.txt

TM<+7?7777777.Mac 0S X 10.10.3, build 14D136 (Darwin 14.3.0)4Dumpcap

D136 (Darwin 14.3.0) " ?7?7@EE@f?@@k?7?77??71lP?7f777777

777x" “dA??77_@@E@?7@7},77777P71 784727277277
@@qrr?T??IP?If? 78117
TT?XT?7477977E77@@H???2?72721P?272f?278:7h
T??xXGET / HTTP/1.1

User-Agent: curl/7.37.1

Host: 172.16.136.128

Accept: *x/x

Figure 3.25: Raw data stored in file

¢ If you want to save the normal translated form (like the one shown in the list pane in

Wireshark), as shown in the standard output, then just redirect the output of the tshark
command to a file of your choice, as shown in the following screenshot:

Anonymous:Desktop NotFound$ tshark -i pktap@ >> http2.txt

Capturing on '‘'pktap@’
11

As you can see, 11 packets are captured and redirected to the text file http2. Let’s see
what is stored in the http2. txt file:

Anonymous :Desktop NotFound$ cat http2.txt
1 0.000000 172.16.136.1 —> 172.16.136.128 TCP 64 5182188 [SYN] Seq=0 Win=65535 Len=8 M55=146@ WS=32
2 -1B308767469.040043 172.16.136.128 —> 172.16.136.1 TCP 64 80-51821 [SYN, ACK] Seq=0 Ack=1 Win=64249
-1830767469. 040009 172.16.136.1 -> 172.16.136.128 TCP 52 51821-808 [ACK] Seq=1 Ack=1 Win=131744 Len=0
-2016764535.847514 172.16.136.1 > 172.16.136.128 HTTP 1308 GET / HTTP/1.1
-2027256734.427691 172.16.136.128 —> 172.16.136.1 HTTP 345 HTTP/1.1 382 Found
-1830767469.037172 172.16.136.1 -> 172.16.136.128 TCP 52 51821-88 [ACK] Seq=79 Ack=294 Win=131456 Le
-1830767469.0837084 172.16.136.1 -> 172.16.136.128 TCP 52 51821-+88 [FIN, ACK] Seq=79 Ack=294 Win=1314
-1935145592. 773838 172.16.136.128 -> 172.16.136.1 TCP 52 B@-51821 [ACK] Seq=294 Ack=88 Win=64162 Le
9 -1830767469.036949 172.16.136.1 —> 172.16.136.128 TCP 52 [TCP Dup ACK 7#1] 51821-88 [ACK] Seq=80 Ack
18 -1935145592.773838 172.16.136.128 -> 172.16.136.1 TCP 52 B8-51821 [FIN, ACK] Seq=294 Ack=80 Win=641§
11 -1838767469.036570 172.16.136.1 —> 172.16.136.128 TCP 52 51821-+88 [ACK] Seq=88 Ack=295 Win=131456 Ls

Hopefully, by now you must have clearly understood the difference between both
ways of saving the raw data packets and translated packets. Both of the techniques
can be used in multiple scenarios.

The next big thing you will learn is the different filters (Capture, Read, and Display)
available in Tshark. We know about Capture and Display filters already, but here we
have one more category, that is, the Read filter. The Read filter is closely similar to
the Capture filter, as both of them can filter packets from the live network. However,
the Read filter is also capable of filtering packets out of a saved file. Using the Read
filter could be processor intensive, and things like packet loss can happen, so think
twice before using it. To display the filter, the -f switch is used; -R is used for the
Read filter; and -Y is used for the display filter. Now, I am going to capture only FTP
packets using the following syntax:

Anonymous:Desktop NotFound
Capturing on 'pktape’
1 ©0.000000 172.16.136.1 -> 172.16.136.128 TCP 64 51852-20 [SYN] Seq=0 W
9.000151 172.16.136.128 -> 172.16.136.1 TCP 64 20-51852 [SYN, ACK] Sed
-1438261061.117554 172.16.136.1 —> 172.16.136.128 TCP 52 51852-20 [ACK]

9.330476 172.16.136.1 -> 172.16.136.128 TCP 52 51852-+20 [ACK] Seq=1 Acd
-1438260168.702253 172.16.136.128 —> 172.16.136.1 FTP-DATA 97 FTP Data:
~776735948.749363 172.16.136.1 -> 172.16.136.128 TCP 52 51852-20 [ACK] 9

2
3
4 -565845755.905104 172.16.136.128 —> 172.16.136.1 FTP-DATA 94 FTP Data:
5
6
7

While applying a filter, there is a restriction that the filter expression must be
specified as a single argument if it has spaces in between. Then, we need to write the
expression within double quotes. Refer to the preceding screenshot that illustrates the
same.

Now, let’s try to create one display filter using the http.pcap file. I want to filter all
packets originating from the web server located at 172.16.136.128 using the http

protocol.
e First I captured the communication between the client and server. And save the traffic
in file HTTP. pcap.

Once I have enough packets to work with, I will apply display filters, as shown in the
following screenshot:

Anonymous:Desktop NotFound$ tshark —r http.pcap -Y "ip.src==172.16.136.128 and http"
31 -2027256734.488549 172.16.136.128 -> 172.16.136.1 HTTP 345 HTTP/1.1 382 Found
42 -2027256734.408549 172.16.136.128 -> 172.16.136.1 HTTP 345 HTTP/1.1 382 Found
71 -1899318681.597223 172.16.136.128 —-> 239.255.255.250 55DP 161 M-SEARCH » HTTP/1.1
76 =1899318681.597223 172.16.136.128 -> 239.255.255.250 S55DP 161 M-SEARCH %= HTTP/1l.1
81 -1899318B681.597223 172.16.136.128 == 239.255.255.250 SSDP 161 M-SEARCH * HTTP/1l.1

9¢ -1899318681.597223 172.16.136.128 -> 239.255.255.250 S5DP 161 M-SEARCH * HTTP/1.1
467 -2027256734.408549 172.16.136.128 —> 172.16.136.1 HTTP 345 HTTP/1.1 302 Found
619 -2027256734.488549 172.16.136.128 — 172.16.136.1 HTTP 345 HTTP/1.1 382 Found
653 -2027256734.408549 172.16.136.128 —> 172.16.136.1 HTTP 345 HTTP/1.1 302 Found
1925 -1B30772787.988137 172.16.136.128 —>= 172.16.136.1 HTTP 345 HTTP/1.1 382 Found

Figure 3.26: Tshark display filter

e Suppose you want to quickly collect statistics about the http protocol from the

http.pcap file. For such a requirement, we can use this command: tshark -r
<file-name> -q -z <expression>

Anonymous:Desktop NotFound$ tshark -r http.pcap -q -z htip,tree

HTTP/Packet Counter:
Topic / Item Percent

Total HTTP Packets
HTTP Request Packets
GET
SEARCH
HTTP Response Packets
3xx: Redirection
302 Found
TT7: broken
Sxx: Server Error
4xx: Client Error
2xx: Success
1xx: Informational
Other HTTP Packets

The -q switch keeps it silent over the standard output (this is generally used while
working with statistics in Wireshark) and the -z switch for activating various
statistics options available. Both of these switches are often used together.

e Let’s take one more simple example before wrapping this up; from the http.pcap file,
I want to figure out how many hosts there are in total during the whole capture time.
For such a requirement, refer to the following screenshot:

Anonymous:Desktop NotFound$ tshark -r http.pcap —q -z hosts
TShark hosts output

5

Host data gathered from http.pcap

172.16.158.1 Anonymous. local
172.16.136.1 Anonymous. local

Here, you learned about the basic theoretical and practical concepts of the CLI utility
Tshark, along with how to capture and filter data as per our requirements. With the help of
Tshark, it becomes really easy to understand how protocols work; we saw various
techniques to collect and analyze the packets. Statistical features in Tshark are rich, which
helps a moderate user become advanced with an better understanding of how to analyze
network packets.

Summary

The Statistics menu in Wireshark contains options that can give us insight from a unique
perspective. In this chapter, we’ve discussed features such as Summary, Conversations,
Endpoints, and Graphs.

Summary is an informational feature, which offers a granular form of data, filters, and the
trace file that you are working with. The Conversations window details data regarding the
communication that happens between two or more hosts. The Endpoints dialog gives an
overview of the devices connected to the network and communicating. The Protocol
Hierarchy window gives an idea about the protocols being used in the communication,
that is, it gives us a picture of the distribution of protocols used by the hosts for
communication.

Graphs are a pictorial way of representing the statistics regarding packets. We can easily
figure out if something is wrong with our network; we can match network performances
and troubleshoot general day-to-day problems that occur.

IO graphs tell us the basic status of a network, and let us create filters. Matching network
performances and differentiating a specific protocol becomes easy due to these. The Flow
graph depicts the flow of data in a column-based manner and creates a simple interface to
understand the flow of packets in a network. TCP stream graphs are a couple of types, but
their objective is to depict the throughput of our network, that is, to know how much data
is traveling over a particular period of time.

Using the Follow TCP Stream option, you can reassemble the packets listed in a raw data
form, which can be easily read. There are different options that are available to change the
form to ASCII, Hex, and many others.

The Expert Infos dialog tells you the information that can be usual and unusual. All of
them are related to your packets; information is generated with the help of protocol
dissectors, which translate the packets to a normal form, and if they find something
unusual, then it will be listed in a section and under a category inside the dialog.

Command-line tools also get installed when you install Wireshark. The most common tool
used is Tshark, which works in a similar way to Wireshark and tcpdump. It uses the pcap
library that is used by other major protocol analyzers. With tshark, you can listen to live
networks or work along with an already saved capture file. The Filtering and Statistical
features are really efficient when dealing with any network analysis process. In the next
chapter, we will dive into analyzing the commonly used application layer protocols.

Exercise

Q.1. What is the purpose of the Statistics menu and what tools does it contain?

Q.2. Using the Conversations dialog, can you figure out the busiest host on the network?
If yes, how?

Q.3. Think of a scenario where using the Endpoints window can be useful.
Q.4. Is it possible to create a display filter using the Endpoints window?

Q.5. Switch the name resolution feature off while viewing the conversations window.
What difference does it make if it is switched on?

Q.6. Can using the Summary option from an already saved capture file help you figure out
the total number of ignored packets after you apply a display filter?

Q.7. Describe the benefits of using different graphing techniques while analyzing data.
Q.8. Using an IO graph, create a filter to plot the DNS traffic in a green line.

Q.9. Create an 10 graph and show UDP traffic in red along with general TCP traffic. Then,
change the y axis unit to per bytes.

Q.10. Create a display filter for FTP packets, and apply the same in a Flow graph. Then,
customize it to check the SEQ number and ACKs instead of details.

Q.11. Using a previously captured file, create a Round Time Trip graph and figure out the
packet whose RTT is the highest. Then, check the sequence number of that packet and
verify its sequence number by comparing it with the graph.

Q.12. Create a Throughput graph between a server and your client. Try to figure out at
what time the throughput was at its peak and also try to check the average throughput in
bytes/seconds.

Q.13. If you have a requirement to view TCP packets in a raw data form, then which
option will you opt for to customize the same window in order to view just the responses
from the server side?

Q.16. Point out at least 5 benefits of using the Follow TCP Stream dialog.

Q.17. Explain the significance of the Expert Info dialog and figure out how many
categories are there in a Warnings section.

Q.18. Using a command-line protocol analyzer, start sniffing your currently working
network interface and save all traffic to a file named traffic.pcap (capture traffic at least
for a minute).

Q.19. Capture only DNS traffic using tshark and save all the capture packets to a file
named DNS. pcap.

Q.20. Create a display filter to filter HTTP and SSL traffic from the traffic.pcap file we
created earlier and save the filtered traffic to a new file called HTTP. txt.

Q.21. Using the statistical features available in tshark, figure out the total number of hosts
in the traffic.pcap file and save all the IP addresses that belong to one single host of

your choice (Google, Yahoo, Apple, and so on) to a file named hosts. txt.

Q.22. Using the statistical feature available in tshark, check the Ethernet address of the
hosts participating in the communication process from the traffic.pcap file and figure
out the most communicating host from the list.

Q.23. View the protocol distribution using tshark statistical functions for the
traffic.pcap file.

Chapter 4. Inspecting Application Layer Protocols

This chapter will lead you through the common application layer protocols and will make
it easy for you to find any anomalies. You will understand and analyze the normal
behavior of application layer protocols by looking at the most common protocols and
understand their usual and unusual behaviors.

DNS—normal and unusual
Lab Up—DNS
FTP—normal and unusual
Lab Up

HTTP—normal and unusual
Lab Up—HTTP
SMTP—normal and unusual
Lab Up—SMTP
SIP—normal and unusual
Lab Up—SIP
VoIP—normal and unusual
Lab Up—VolIP

Decrypting encrypted traffic
Practice questions

We will cover some of the most common application layer protocols that govern today’s
networks, whether small or big. Without spending too much time, let me take you on this
wonderful journey of protocols.

Domain name system

Imagine a world of Internet where you have to type a random numerical value (IP
address), instead of a name, to visit a website. Also, assume that each numerical figure is
different. Considering this, how many IP addresses can you memorize? 5? 10? Perhaps, 50
at max? So, now, you are confined to visiting just 50 websites. This doesn’t really sound
feasible.

Suppose instead of just memorizing the IP addresses, you note down each of them,
followed by the name that you want to give to the website to figure out which website is
for what purpose. Now, you can create an Excel file for yourself, consisting of the IP
addresses written next to the name of the website you gave. This way, probably, you can
collect more than a thousand website addresses for later use.

For the sake of your unlimited web experience, DNS comes to your rescue, and it does
exactly what you did in the preceding example. DNS creates a database of websites with
their IP addresses, along with the name of the domain, A single row of record is often
termed as resource records in a zone file. Each entry in the zone file is termed as a
resource record. DNS uses TCP and UDP, both for different purposes, over the port 53 by
default.

As a client, when you try to visit a website from your LAN environment, your request is
being sent through an internal DNS server that looks up the resource records it contains.
The request is termed as a DNS query. If your DNS server has already saved the IP
address for the domain you are looking for, your client machine will get a reply from the
internal DNS server that contains the IP address of the website you are trying to visit.
Thus, you can form IP packets and start communicating. This reply is termed as a DNS
response.

Dissecting a DNS packet

A DNS packet consists of a couple of unique fields that are briefly discussed here:

e Transaction ID: This is a number that keeps the dots connected between a particular
domain query and it’s corresponding response.
¢ Query/response: Every DNS packet is marked as a query or a response, depending
on the details it contains.
o Flag bits: Each query and response contains different flag bits set, which are as
follows.
o Response: The message is a query or a response.
o Opcode: This determines the type of query contained. Opcode ranges between
0-15. Refer to the following table:

|Opcode Description

0 Standard query ‘
|1 Inverse query ‘
|2 Server status request
|3 Unassigned ‘
|4 Notify ‘
|5 “Update ‘
|6-15 Unassigned ‘

o Truncated: This determines whether the packet is truncated if its size is large
(greater than 512 bytes).

o Recursion desired: The query sent by your client is supposed to go on a
recursive search procedure from one DNS server to another if the resource
record you are looking for is not present.

o Recursion available: If this bit is set, then it means the recursion that your
client requested is available, and if what you are looking for is not present on
one server, then your query would be transferred to another DNS for lookup
procedure.

o Reserved (z): .As defined by RFC 1035; Reserved for future use, must be set to
zero for all queries and responses.

o Response code: The values in this field signifies the response.

e Response code: This field is used to signify whether errors and the type of error.
Here are the possible code values that you can receive:

Code"Description

| |
|0 No error ‘
|1 Format error ‘
|2 Server failure ‘
|3 Name error ‘
|4 Not implemented
|5 Refused ‘

Questions: Indicates the number of queries present in the packet.

Answers: Indicates the number of answers in response to the query sent.

Authority RRs: Indicates the number of authority resource records sent as response.
Additional RRs: Indicates the number of additional resource records sent as
response.

Query section: The query sent to the DNS Server, it should be the same in the
response received as well.

Answer section: The answer that came as a response to our query. The response can
be multiple too. The answer basically consists of the resource records that came in
response to our query.

Type: This field indicates the type of query sent. Refer to the following table for
common query types.

IXFR |Incremental zone transfer

Type [Description ‘
|A Host address ‘
|NS Name server ‘
|MX Mail exchange ‘
|SOA Start of zone authority ‘
|PTR Pointer record ‘
|AAAA [Pv6 address ‘
|AXFR Full zone transfer ‘
|

¢ Additional info: This field includes additional info containing resource records. It is
not required to answer the query.

Dissecting DNS query/response

A client sends a query to the DNS server that possesses the name resolution information.
Using this information, the client can start IP-based communication. Sometimes, the
information the client is looking for is not available with the DNS server it requested. In
this case, the DNS server itself transfers the query to any neighbor DNS it knows about, if
recursion is desirable. The whole query and response thing is completed within two
packets only. Refer to the following Figure 4.1 where I am trying to visit
https://www.google.co.in. A request from my client located at 192.168.1.103 is sent to
the default gateway at 192.168.1.1. This gateway will forward my query to the DNS
server it knows about:

P Frame 9: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface ©
P Ethernet II, Src: Apple b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Zte 07:73:6c (d0:5b:a8:07:73:6¢)
P Internet Protocol Version 4, Src: 192.168.1.103 (192.168.1.103), Dst: 192.168.1.1 (192.168.1.1)
P User Datagram Protocol, Src Port: 65382 (65382), Dst Port: 53 (53)
b
[Response In: 10]
Transaction ID: 0x2bda
P Flags: 0x0100 Standard query
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: ©
< Queries
< www.google.com: type A, class IN
Name: www.google.com
[Name Length: 14]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (0x0001)

Figure 4.1: DNS query

If you notice, here, DNS is using UDP as an underlying protocol. If you want to know
more about the DNS query being generated, just expand the flags section. This section
will list various details such as whether recursion is available, whether recursion is
desired, whether the query is truncated, what the response code is, what the Opcode for
the query is, and so on. Please refer to the following screenshot.

v Flags: 0x0100 Standard query

Doau 5 e Response: Message 1s a query

000 0. .. Opcode: Standard query (0)
Truncated: Message 1s not truncated
Recursion desired: Do query recursively
0.. =1Z: reserved (0)
Non-authenticated data: Unacceptable

- 9
— -
n o n

<
1|

The expanded Flags section depicts that the type of DNS packet is a query, the packet
data is not truncated, and recursion is desirable if available.

https://www.google.co.in

In response to this query, you will be seeing one more packet with the same transaction ID
that denotes the association of a particular query. It is the response packet. Response for
our query will usually consist of IPv4 address for the domain we are trying to look for.
We’ll be returned with a single IP, or maybe multiple IPs available to it. If the domain we
are looking for is not available, then its probable CNAME'’s will be returned in as favor.

Refer to Figure 4.2 to understand this:

P Frame 10: 154 bytes on wire (1232 bits), 154 bytes captured (1232 bits) on interface 0
P Ethernet II, Src: Zte 07:73:6c (d0:5b:a8:07:73:6¢c), Dst: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
b Internet Protocol Version 4, Src: 192,168.1.1 (192,168.1,1), Dst: 192,168,1.103 (192.168.1.103)
P User Datagram Protocol, Src Port: 53 (53), Dst Port: 65382 (65382)
-
[Request In: 9]
[Time: ©.004678000 seconds]
Transaction ID: 0x2bda
P Flags: 0x8180 Standard query response, No error
Questions: 1
Answer RRs: 5
Authority RRs: ©
Additional RRs: ©
P Queries
¥ Answers
b www.google.com: type A, class IN, addr 173.194,36.84
P www.google.com: type A, class IN, addr 173.194,36.83
P www.google.com: type A, class IN, addr 173,194,36.82
P www.google.com: type A, class IN, addr 173.194,36.80
b www.google.com: type A, class IN, addr 173.194.36.81

Figure 4.2: DNS response

As I said, we could get multiple replies. If you notice the Answer RRs section, we have
received 5 replies for the www.google.com domain. For verification that the response
received belongs to the previous query only, just match the Transaction ID. Expand any
section in the answers category to view more details. Refer to the following image:

¥ Answers
¥ www.google.com: type A, class IN, addr 173.194.36.84

Name: www.google.com
Type: A (Host Address) (1)
Class: IN (0x0001)
Time to live: 13
Data length: 4
Address: 173.194,.36.84 (173.194.36.84)

http://www.google.com

Unusual DNS traffic

Name resolution problems can have a significant impact on the performance of a network.
One of the most common DNS problems you can face is when looking for something that
does not exist in the DNS server’s database. Sometimes, you are trying to visit a website
that exists, but your DNS server is not able to resolve the domain you gave. It could also
be a timed-out situation where your client waited more than the expected time for a DNS
response.

In the following Figure 4.3, I am trying to check the type A record for the
http://google.com domain, which is actually an incorrect syntax. Hopefully, it won’t be
resolved:

Anonymous:~ NotFound$ host -t a http://google.com

Host http://google.com not found: 3(NXDOMAIN)

Figure 4.3: Type A record for http://google.com

As expected, we got a Not Found error. I only tried once, but the client tried it twice to
resolve the domain given. What got captured is depicted in Figure 4.4 here:

No. Time Source Destination [Protocnl|Length|lnfn
2 0.009283000 192.168.1.1 192.168.1.103 DNS 77 Standard query response Oxcdcl No such name
3 0.053794000 192,168.1.103 192.168.1.1 DNS 77 Standard query 0xbb83 A http://google.com
4 0.056583000 192.168.1.1 192.168.1.103 DNS 77 Standard query response Oxbb93 No such name

Figure 4.4: DNS Response-No Such Name

There can be multiple situations where you can get stuck. The best option is to first have a
benchmark set for your own network, and then try comparing your problem with the
benchmark you created. For example, check the name you are trying to resolve, launch a
protocol analyzer, and dig into the name resolution queries and responses. Understand
how long it is taking to complete the query, the response process, and so on. Every device
on the network maintains a local DNS cache (host file), which is initially used to resolve
any domain you request. If the local DNS cache does not have the entry for that domain,
then the request will be forwarded to the local network’s DNS server, which will perform
the lookup. If found, their response will be sent. Otherwise, the request from the local
DNS server will be forwarded to an external DNS server, which the local DNS server is
configured to look for.

http://google.com
http://google.com

File transfer protocol

Since the Internet came into existence, we have been working with FTP. It was in the
limelight even when the Internet was still a closed network used by the government and
other corporate organizations.

FTP uses the TCP protocol to initiate and transfer files over a designated channel. There
will be two channels created; one is the command channel, and the other one is
specifically a data channel. The command channel will be used to send and receive the
commands and their responses. The data channel is used to send data between the client
and the server.

Commonly, port 21 is used by the FTP server to listen for the connection, and any random
port on the client to send and receive data. As per the standard, port 21 will be used for the
command channel and port 26 for the data channel. However, you will observe random
port numbers used to transfer TCP data segments.

Dissecting FTP communications

There are two types of mode a client uses to communicate with the server: active and
passive. Both of them have a different approach to send and receive data. In earlier
versions, active mode was in use by default, but these days, you can see passive mode in
use by default. I will discuss each of them using my own virtual network where I have a
FTP server (VSFTPD) configured on the 172.16.136.129 IP and a client at
172.16.136.1. The following sections described the flow and show how the client and
server will behave in the active and passive modes.

Passive mode

e The client sends a SYN request to the server running at port 21.

e The client receives SYN/ACK from the server over a temporary port used.

e The client sends ACK to the server to confirm that the channel will be used for sending
commands. Refer to the following screenshot:

1 0.000000000 172,16,136.1 172,16.136.129 TCP 64 56982-21 [SYN] Seq= Win=65535
2 0.000187000 172,16.136.129 172.16.136.1 TCP 60 2156982 [SYN, ACK] Seq=0 Ack=]
3 1846322634.413041000 172,16.136.1 172.16.136.129 TCP 52 56982-21 [ACK] Seq=1 Ack=1 Win

e Now, the client will be shown a welcome banner and will be asked for the assigned

credentials:

4 0.018723000 172.16.136.129 172.16.136.1 FTP 88 Response: 220 Welcome to Charit's FTP se
5 555032032, 287455000 172.16.136,1 172.16.136.129 TCP 52 56982-21 [ACK] Seq=1 Ack=37 Win=131728 L
6 -9522103603.718297000 172.16.136,1 172.16,136.129 FTP 62 Request: USER abc

7 -143593220.746255000 172.16.136.129 172.16.136.1 TCP 52 21-56982 [ACK] Seq=37 Ack=11 Win=29696 L
8 4.629189000 172.16.136,129 172.16.136.1 FTP 86 Response: 331 Please specify the passwor
9 4.629206000 172.16.136.1 172.16,136.129 TCP 52 56982-21 [ACK] Seg=11 Ack=71 Win=131696
18 5.732635000 172,16.136.1 172.16,136.129 FTP 62 Request: PASS abc

11 - 1086390884, 2490946000 172.16.136.129 172.16,136.1 FTP 75 Response: 230 Login successful,

12 2070317539.792672000 172,16.136.1 172.16,136.129 TCP 52 56982-21 [ACK] Seq=21 Ack=94 Win=131672

Figure 4.5: Server showing welcome banner and asking for credentials

e Normally, passive mode must be on by default. Performing a directory listing will tell
you that the Extended passive (ESPV) mode is in use. In this mode, the client
requests the server to listen on the data port and wait for the connection. In return, the
server informs the client about the TCP port number used for the connection. Please
refer to the below screenshot.

41 14, 411830000 172.16.136.129 172.16.136.1 FTP 101 Response: 229 Entering Extended Fassive Mode (|||21768|)
42 14, 411864000 172.16.136.1 172.16.136.129 TCP 52 56982-21 [ACK] Seq=44 Ack=258 Win=131504 Len=0 T5val=2926
43 14, 412049000 172,16.136.1 172.16,136.129 TP 64 56983-21768 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=B TSV
44 -1438698634, 448607000 172.16,136,120 172.16.136.1 TCP 60 21768-56983 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=14
45 14,412381000 172.16,136.1 172.16.136.129 TCP 52 56983-21768 [ACK] Seq=l Ack=1 Win=131768 Len=0 TSval=2926
46 14, 412442000 172.16,136.1 172.16.136.129 FTP 38 Request: LIST

47 14.412903000 172.16.136.129 172.16.136.1 FTP 91 Response: 150 Here comes the directory Listing.

48 2098899472, 602007000 172.16.136.1 172.16.136.129 Tcp 52 56982-21 [ACK] Seq=50 Ack=297 Win=131472 Len=0 TSval=2926
49 14. 413462000 172.16.136.129 172.16.136.1 FTP-DATA 314 FTP Data: 262 bytes

Figure 4.6: client sends ACK to the server

In frame 42, the server informs about the IP address and the port number that the
client has to use while creating any data connection to the server.

¢ In frame 42, the server informs us about the IP address and the port number that the
client has to use while creating any data connection to the server. Followed by a
sequence of SYN, SYN/ACK, and AcK, packets which us required to create a data channel
between both the devices. After this, the LIST command is executed as seen in frame
46. Then data is transferred using the temporary ports used by both the client and the
server.

e As soon as the data transfer is complete, the sending host closes the connection by
transmitting a FIN packet which is addressed by the receiving side using an ACK
packet. The receiving side also sends a FIN packet that is acknowledged too. If both
the devices want to share more data, then a new data channel will be created using
random port numbers.

Active mode

e The client sends a SYN request to the server running at port 21.

e The client receives SYN/ACK from the server over a temporary port used by the client.

e The client sends ACK to the server to confirm that the channel will be used to send
commands. Refer to the following screenshot:

1 0.000000000 172,16.136.1 172,16.136,129 TCP 64 56982-21 [SYN] Seq=0 Win=55535
2 0.600187000 172,16,136.120 172.16,136.1 TCP 60 21-56982 [SYN, ACK] Seq=0 Ackd
3 1846322634.413041000 172.16.136.1 172,16.136.129 TCP 52 56982-21 [ACK] Seq=1 Ack=1 Win

e Now), the client will be shown a welcome banner and will be asked for the assigned

credentials:

4 0.018723000 172,16.136.129 172.16.136.1 FTP 88 Response: 220 Welcome to Charit's FTP
5 555032032, 287455000 172.16.136.1 172.16.136.128 TCP 52 56982-21 [ACK] Seq=l Ack=37 Win=131728
6 -952210303.718297000 172,16.136.1 172.16.136.129 FTP 62 Request: USER abc
7 -143593220.746255000 172,16.136,129 172.16.136.1 TCP 52 21-56982 [ACK] Seq=37 Ack=11 Win=29696
8 4.629189000 172,16.136,129 172.16.136.1 FTP 86 Response: 331 Please specify the passw
9 4.629206000 172,16.136.1 172.16.136,129 TCP 52 56982-21 [ACK] Seg=11 Ack=71 Win=13169

10 5.732635000 172,16.136,1 172.16.136.129 FTP 62 Request: PASS abc

11 -1086390884. 249094000 172.16.136.129 172.16.136.1 FTP 75 Response: 230 Login successful,

12 2070317539.792672000 172.16.136.1 172.16.136.128 TCP 52 56982-21 [ACK] Seq=21 Ack=94 Win=13167

Figure 4.7: Client is shown a welcome banner and asked for credentials

e Now, we have to turn passive mode off, because, as usual, it will be on by default.
Once done, we can create a data channel for transferring purposes, refer to the
following screenshot:

43 -544276953, 032968000

46 894485615, 992662000

40 894485615.991284000 172,
4] 894485615.991670000 172,
42 290386415. 628665000 172.
172,

172.
47 894485615.992690000 172,
48 -540049189,689031000 172,
49 894485615.993039000 172,
50 894485615.993489000 172,
51 34934B548.22093%000 172,
53 366125747, 443723000 172,
54 894485615.994235000 172,

16.136.1 172,16.136.129 FIP
16.136.129 172.16.136.1 FTP
16.136.1 172.16.136.129 TCP
16.136.1 172,16.136.129 FIP

16.136.129 172.16.136.1 TCP
16.136.1 172,16,136,129 TCP
16.136.129 172.16.136.1 FTP
16.136.1 172.16.136.129 TCP
16.136.129 172.16.136.1 FTP-DATA
16.136.1 172.16.136.129 TCP

16.136.1 172.16.136.129 TCP
16.136.129 172.16,136.1 FTP

81 Request: EPRT |1]172,16,136.1|57197]

103 Response: 200 EPRT command successful.
52 57196-21 [ACK] Seq=67 Ack=260 Win=1315¢
58 Request: LIST

52 20-57197 [ACK] Seq=1 Ack=1 Win=29696 Le
52 [TCP Window Update] 57197-20 [ACK] Seq:
91 Response: 150 Here comes the directory
52 57196-21 [ACK] Seq=73 Ack=299 Win=1314¢

314 FTP Data: 262 bytes

52 57197-20 [ACK] Seg=1 Ack=263 Win=13150:
52 57197-20 [ACK] Seg=1 Ack=264 Win=13150:
76 Response: 226 Directory send OK.

Figure 4.8 Creating data channel for transferring purpose

Frame 40 shows that the client is requesting to switch the passive mode off using the
EPRT |1]|172.16.136.1|57197| command. Extended Port (EPRT) helps in
specifying an extended address that can be used for data connection. The command
accepts three arguments: network protocol, network address, and the port number.

e Now, whenever the client tries to initiate a connection, it has to be destined for the
particular address specified by the EPRT command. Before, every data connection
server informed the client about the temporary port to be used.

You learned about the active and passive modes of communication that the FTP servers
support. You also learned how they behave. Whenever troubleshooting any FTP
connection, checking the mode will be useful and saves time.

Dissecting FTP packets

In general, every request sent from the client is a specific command set to which the server
responds with a numerical value followed by a text message. See the following
screenshot:

62 Request: PASS abc
75 Response: 230 Login successful.

As you can see, the server requested for the password, which the client provides. It can be
seen over the wire in plain text in the list pane itself. Once the server receives and verifies
that the password is correct, the respective message will be shown. In our case, the
password is correct, so the client receives 230 as a response code followed by a Login
Successful message.

The command issued from the client side can have arguments or no arguments, and the
data flowing across between the devices can be simply seen in the TCP header of the
packet. Refer to the following Figure 4.9:

43 -544276953.032968000 172.16.136.1 172.16.136.129 FTP 58 Request: LIST

44 894485615.992341000 172.16.136.129 172.16.136.1 TCP 60 20-57197 [SYN] Seg:
45 894485615.992407000 172.16.136.1 172.16.136.129 TCP 64 57197-20 [SYN, ACK]
46 894485615.992662000 172.16.136.129 172.16.136.1 TCP 52 20-57197 [ACK] Seg-
47 894485615.992600000 172.16.136.1 172.16.136.129 TCP 52 [TCP Window Update]
48 -540049189.689031000 172.16.136.129 172.16.136.1 FTP 91 Response: 150 Here
49 894485615.993039000 172.16.136.1 172.16.136.129 TCP 52 57196-21 [ACK] Seq-
51 3402MQSAQ IIA0CAAA 172 1R 13R 1 177 1A 13R 1720 Trp 57 57107 2a [Ark1 <an-

£
1€

P Frame 50: 314 bytes on wire (2512 bits), 314 bytes captured (2512 bits) on interface ©

P Raw packet data

P Internet Protocol Versien 4, Src: 172.16.136.129 (172.16.136.129), Dst: 172.16.136.1 (172.16.136.1)

P Transmission Control Protocol, Src Port: 20 (20), Dst Port: 57197 (57197), Seq: 1, Ack: 1, Len: 262
FTP Data (drwxr-xr-x 2 1001 1002 4096 Aug 03 00:45 Desktop\r\n-rw-r--r-- 10

Figure 4.9: FTP-DATA returned

Frame 43 shows that the client issued the LIST command that was processed by the server,
and 262 bytes of data was returned back to us. Select frame 50 to further investigate the
contents of the TCP header. One of the biggest disadvantages of using FTP is that all data
travels in plain text, even the usernames and passwords.

Reassembling the FTP data stream is easy because except the data, there is nothing that
travels around. There is no code or command that gets appended to the packets travelling,
thus making it easy for Wireshark and the user to understand things easily. To reassemble
the TCP stream of FTP packets, just right-click on the selected packet, choose the Follow
TCP Stream option, and view it in raw form. Refer to the following Figure 4.10:

| JON | \| Follow TCP Stream (tcp.stream eq 0)

Stream Content

220 Welcome to Charit's FTP server
USER abc
331 Please specify the password.
PASS abc
230 Login successful.
SYST
215 UNIX Type: L8
FEAT
211-Features
EPRT
EPSV
MDTM
PASY
REST STREAM
SIZE
TVFS
UTF8
211 End
PWD
2371 /[
EPRT |1]172.16.136.1|57197 |
200 EPRT command successful. Consider using EPSV.
LIST
150 Here comes the directory listing.
226 Directory send OK.
EPRT |1]172.16.136.1|57198]
200 EPRT command successful. Consider using EPSV.
LIST
150 Here comes the directory listing.
226 Directory send OK. I
QuIT
?21 Goodbye. v

=3 >

Entire conversation (563 bytes) v

" Find | [Save As | = Print |O ASCI O EBCDIC O HexDump O CArrays @ Raw

I Help | (¥ Filter Out This Stream ¥ Close

Figure 4.10: FTP stream

The entire communication between the client and the server that happened over the data
and command channels is translated into human-readable format. Text in red color is what
the client sent, and text in blue color is what the client received. These days, we have a
couple of advanced protocols that can create an encrypted channel. One of them is Secure
File Transfer Protocol (SFTP).

Unusual FTP

There can be multiple scenarios, which generate FTP traffic of an unusual type. I will use
a couple of scenarios to explain this and will show you how a certain traffic type looks. An
example would be brute force attacks where a malicious user tries different passwords
again and again, until the exact password is matched. This is the most common traffic type
that you will see while working with FTP. Applying a ftp.request.command==“PASS”
filter will show all the password attempts that have been made to your server. If you see an
unusual number of attempts in a short span of time, then it can be a brute-force attempt
against your server. Refer to the following screenshot:

86 Request: PASS administrator
77 Request: PASS nick

80 Request: PASS bethany

77 Request: PASS root

78 Request: PASS Admin

76 Request: PASS abc

78 Request: PASS Alice

Figure 4.11: FTP brute force

I applied the same display filter mentioned earlier, and you can see the results. Someone
was trying to brute force my FTP server. To secure your server from such brute force or
dictionary attacks, you can limit the server to maximum login attempts, after which the
server should lock down the respective account for a particular amount of time.

You could also colorize the brute force traffic if you want. This will eventually give you a
better overview of your capture file or live traffic. Try it out using the code that the server
sends back to the clients in response.

Another example is a malicious device that is infected by some malware. Due to the
malware, the device is trying to contact a command and control-center server to download
some payload, perhaps for privilege escalation purpose or to launch further attacks. There
is even a possibility where an attacker sitting on the other side is trying to download or
upload something. Let me take an example to explain. I have a Kali Linux box running at
192.168.1.105 and a Windows box at 192.168.1.104. Through Kali, I created a small
malware that was downloaded and installed by the victim (Windows). Once executed, we
will get the shell from the device. Then, we can launch FTP from within the shell to
connect our Kali box for privilege escalation purposes.

Refer to the following screenshot that captures the FTP traffic between the attacker and
the victim:

5 0.77097600192.168.1.105 192.168.1.104 FTP “90 Response: 220 Welcome to Charit's FTP server

8 3.01186800192.168.1.104 192.168.1.105 FTP 64 Request: USER abc
10 3.02034200192.168.1.105 192.168.1.104 FTP 88 Response: 331 Please specify the password.
12 4.89021500192.168.1.104 192.168.1.105 FTP 64 Request: PASS abc
13 4, 99799600 192.168.1.105 192.168.1.104 FTP 77 Response: 230 Login successful.
15 20.73201201592.168.1.104 192.168.1.105 FTP 60 Request: XPWD
16 20. 8443810 192.168.1.105 192.168.1.104 FTP 63 Response: 257 /"

21 26.3072450192.168.1.104 192.168.1.105 FTP 79 Request: PORT 192,168,1,104 4,77

22 26, 3814360 152.168.1.105 192.168.1.104 FTP 105 Response: 200 PORT command successful, Consider using PASV.
23 26.3908600192.168.1.104 192.168.1.105 FTP 60 Request: NLST

27 26.4087430192.168.1.105 192.168.1.104 FTP 93 Response: 150 Here comes the directory listing.

31 26.4120250152.168.1.105 192.168.1.104 FTP 78 Response: 226 Directory send OK.
41 85.1657690192.168.1.104 192.168.1.105 FTP 79 Request: PORT 192,168,1,104,4,78
42 85,2421850192.168.1,105 192.168.1.104 FTP 105 Response: 200 PORT command successful. Consider using PASV.
43 85.2533840192.168.1.104 192.168.1.105 FTP 72 Request: RETR payload. Tt
47 85,2589130192.168.1.105 192.168.1.104 FTP 121 response: 150 Opening ASCII mode data connection for payload.txt (3 bytes).
51 §5.2629570192.168.1.103 192.168.1.104 FTP 78 Response: 226 Transfer complete.

Figure 4.12: victim FTP capture

As you can clearly see, the attacker connected to the FTP server and downloaded the
payload. txt file, which might be used to gain root privileges over the box.

If something of this nature is able to bypass your firewalls and other security appliances in
place, then consider improvising the configuration you created and try to avoid these
things in future. Sometimes, activity of this kind can be legitimate as well, but it should
not stop you from investigating further. A small file of a few kbs is enough to compromise
your whole network.

Hyper Text Transfer Protocol

Data on the web is transferred using the HTTP application layer protocol. Normal
communication in HTTP is a request/response model where the communication between a
client and a server is coordinated by a set of rules. The client requests for a certain
resource to the server and then receives a status code that specifies the current status of the
requested resource. If available then, the resource is also sent along with the status code.
HTTP is one of the most popular and most widely used protocols to transfer data
requested by browsers from the respective servers. The world of Internet is mostly
governed by HTTP that runs on the transport layer.

How it works — request/response

Every time you visit a website, this smart protocol takes care of your web-browsing
experience. Web server utilizes the HTTP protocol to serve web pages they contain to the
requesting clients. At the beginning of every HTTP session, the TCP three-way handshake
takes place. It creates a dedicated channel between the communicating hosts followed by
HTTP and data packets, which are sent in and received while the session is active. For
instance, you are visiting a web server located at http://172.16.136.129 and the client at
172.16.136.1. Using our client-server infrasrtucture, we will try to capture the requests
sent and responses received.

I will try to visit the home page located at the server mentioned earlier and will capture the
traffic generated for the whole session, that is, requests sent and responses received.
Follow the actions mentioned here to replicate the scenario.

Request

e Open your browser, and type the Uniform Resource Locator (URL) of any website
that you want to visit. In my case, the website is located at http://172.16.136.129
(Don’t get confused because of the IP address I am using to visit a webserver. While
studying DNS remove, we discussed that it is just a way to locate a webserver that is
assigned with an IP address.). Press Enter to go to the home page. Here is the
screenshot of the home page I am visiting:

@00 (< il 172.16.136.129 47 * >

Charit's Web Server!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

e Due to the our preceding actions, a couple of packets are generated that are captured
by Wireshark. Let’s have a look at the list pane shown in the following screenshot:

1 0.000000000 172.16.136.1 172.16.136.129 TCP 64 59781-80 [SYN] Seq=0 Win=65535
2 -1438998251, 586830000 172,16.136.129 172,16.136.1 TCP 60 B0-59781 [SYN, ACK] Seq=0 Ack=l
3 0.000146000 172.16.136.1 172.16.136.129 TCP 52 59781-80 [ACK] Seq=1 Ack=1 Win=
5 -1439017790,883535000 172,16.136.129 172,16.136.1 TCP 52 B0-59781 [ACK] Seg=1 Ack=416

6 548191280,817750000 172.16.136.129 172,16.136.1 HTTP 262 HTTP/1.1 304 Not Modified

7 0,070913000 172.16.136.1 172.16.136.129 TCP 52 59781-80 [ACK] Seq=416 Ack=211
8 5.073679000 172.16.136.129 172.16.136.1 TCP 52 80-59781 [FIN, ACK] Seq=211 Ack
9 5.073739000 172.16.136.1 172.16,136.129 TCP 52 59781-80 [ACK] Seq=416 Ack=212
10 29, 999840000 172.16.136.1 172.16.136.129 TCP 52 59781-80 [FIN, ACK] Seq=416 Ack
11 30.000161000 172.16.136.129 172.16.136.1 TCP 52 BD-59781 [ACK] S5eq=212 Ack=417

Figure 4.13: Packets captured by Wireshark

All these packets get generated as soon as you press Enter. As you can see, the first
three packets are TCP three-way handshake packets where our client is requesting the
server to create a dedicated channel. In our case, the connection was successful.
However, if the server daemon wasn’t running or because of any reason the server is
not accepting our requests, then we could have seen RST AcCK packets, like the one
shown here:

3 [RST, ACK]

172,16,136.1 TCP 40 80-3978

172,16.136,129

2 0.000315000

Figure 4.14:RST and ACK packets, as server not accepting the requests

This error states that the server is out of service or perhaps the server is not supposed
to respond to our requests.

o After the TCP packets, you can see the first HTTP request sent by our client. Every
request comprises a couple of elements that are sent to the server:

GET / HTTP/1.1\r\n

Host: 172.16.136.129\r\n

If-None-Match: "12625d-bc-51c6ab45063d1"\r\n

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
If-Modified-Since: Mon, 03 Aug 2015 16:31:40 GMT\r\n

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_10_3) AppleWebKit/600.6.3
Accept-Language: en-us\r\n

Accept-Encoding: gzip, deflate\r\n

Connection: keep-alive\r\n

Figure 4.15: HTTP request

e This is how a request looks. In the first line, there are three things passed on to the
server as the arguments, which are HTTP method and requested resource location “/”
(root directory)

e The second line specifies the Host argument that is required by the HTTP/1.1
protocol requests. The value of this field is the webserver’s address that you typed in
the address bar of the browser.

e The fourth line is the ACCEPT parameter that mentions what kind of content is
acceptable by the requesting client in response.

e The If-modified-since parameter is sent from the client to the server, which
includes the date and time of your previous request made to the server. If the server
contents have been changed since your previous request, then you will receive the
new updated page. Otherwise, your system will present you with the locally cached
page that will eventually save some resources.

e The next field is User -Agent, which specifies the browser-related information that
you are using to visit the webpage. This information will be used by the server to
present you with browser-compatible content.

e Parameters such as Accept -Language and Accept-Encoding are passed on to the
server to inform us of what type of content is acceptable to the client. So, while the
server prepares the response material, these things should be taken into consideration.

e The Connection-Alive parameter specifies that the client wishes to keep the
connection working after this particular request has been processed.

All the HTTP packets are sent most commonly to the webserver at port 80 (other common
webserver ports are 8080, 3132, 8088 and so on. which are being dissected by Wireshark

as per HTTP protocol preferences).

Response

e As you can see, after the fourth packet, the server acknowledges the client’s request
to get to the server’s web root directory. The server starts transmitting the resource
that client requested for. The sixth packet in the list pane is what the client received, a
status code followed by a short message, including the content of the resource
requested. Refer to the following Figure 4.16 illustrating the HTTP response:

7 -1439018536. 131505000 172.16.136.1 172.16.136.129 TCP 52 5978480 [ACK] Seq=416 Ack=211 W
§ 5.010003000 172,16.136.129 172.16.136.1 TCP 52 80-59784 [FIN, ACK] Seg=21l Ack=
9 5,010052000 172,16.136.1 172.16.136.129 TCP 52 50784-80 [ACK] Seg=416 Ack=212 W
10 -1669050675.223075000 172.16.136.1 172.16.136.129 TCP 52 59784-80 [FIN, ACK] Seq=416 Ack=

11 . 1GRANAGATA IRAIAGAAA 177 1A 13R 174 172 1A 136 1 TrP 57 AN.SATRA TACK] Sen=217 Ark=417 W
; — = :

b HTTP/1.1 304 Not Modified\r\n

Date: Mon, 03 Aug 2015 17:32:35 GMT\r\n
Server: Apache/2.2.22 (Debian)\r\n
Connection: Keep-Alive\r\n

Keep-Alive: timeout=5, max=100\r\n
ETag: "12625d-bc-51c6abd5063d1"\r\n
Vary: Accept-Encoding\ryn

\rin

[HTTP response 1/1]

[Time since request: 526547318, 508758000 seconds]
[Request in frame: 4]

Figure 4.16: HTTP response

e As a part of TCP communication, the client will acknowledge every packet sent by
the server. It can be seen in the seventh packet that the client is trying to send an ACK
for the resource it received.

e Let’s dissect the response elements for packet number six. The first line consists of
three arguments sent in response. They denote the HTTP protocol version in use, the
status code (304 in our case, which specifies that the requested resource did not
change since the time mentioned in the Date parameter), and finally, a brief
description about the status code (Not Modified in our case).

¢ In the third line, the Server parameter mentions the name and version of the web
server running. We can see that Apache/2.2.22 is the server that is located at
172.16.136.129.

e The fourth and fifth lines state that the server wishes to keep the connection alive.
The duration for which the server wishes to do so is also mentioned in the next line of
the parameters sent in response to us. Rest of the content is mentioned in the next few
lines are some configuration parameters.

This is a very basic example to check out the request and responses exchanged between
the client and the server. However, this basic thing is what actually happens every time
you visit a website. As stated earlier, we receive a status code followed by a brief
description in response. With every tab you open in your browser, there will be a new
socket created between a client and a server connected through an IP address and the port

number on which the web server runs.

Unusual HTTP traffic

All the details mentioned earlier are part of a normal traffic pattern. What we are about to
witness is some unusual traffic pattern that you might face while dealing with HTTP. I will
try to mention some do’s and don’ts, which might prove helpful to you while
troubleshooting and analyzing HTTP. Most of the HTTP problems revolve around errors
such as 404, some kind of redirection, DNS resolution problems, and server-related issues.
Let me explain each scenario in detail.

For instance, you are visiting a web server, and you are looking for something that is
currently not available or the requested resource’s location has been changed. In such
cases, you will receive a 404 status code, which denotes that the requested resource is not
found on the server. Refer to the following screenshot where I tried to request for a file
named abc. txt on a web server that does not exist:

6 0,021200000 172.16.136.1 172.16.136.129 HTTP 382 GET /abc. txt HTTP/1.1
7 -6906538,832227000 172.16,136.129 172.16.136.1 TCP 52 80-59946 [ACK] Seg=1 Ack=331 Win=307
554 HTTP/1.1 Not Found (text/html)
9 0.025185000 172.16.136.1 172.16.136.129 TCP 52 59946-80 [ACK] Seq=331 Ack=583 Win=1
10 5.030627000 179.16.136.129 . 946 [FIN, ACK] Seq=503 Ack=331
11 - 1430APARIRG BEAD, et _8n TAMK1 San=331 Ark=5Ad Win=1
e ——— | = -
SR Not Found |
packet data
rnet Protocol Versio .16.136.129)
smission Contral Prq The requested URL /abe.txt was not found on this server. | 1, Len: ©

Apachel/2.2.22 (Debian) Server at 172.16.136.129 Port 80

Figure 4.17 : HI'TP 404

On the list pane, you can see that the requested resource is not available. So, we get 404
Not Found Error. Such errors could be malicious too if someone is trying to perform
directory listing on your webserver. Changing the coloring rules of such 404 packets to
something different other than the normal HTTP packets rules will get our attention
quickly. As you can see, packet number eight is a HTTP packet, applied with a different
coloring scheme.

Redirection of the user’s request is often done when a certain requested resource location
has been changed to another address or the resource isn’t available. Now, to make you
understand redirection, I have made some changes in our infrastructure that can be easily
seen in the diagram shown here:

PC 1: Original
Server
(192.168.1.104)

PC 2: Client PC 3: New Server
(192.168.1.101) HTTP Radizection (192.168.1.103)

Now, the request from the client sent to the original server at 192.168.1.104 will be
redirected to a new server located at 192.168.1.103 without any further efforts by the
client. To configure redirection, you have to modify your server’s configuration file. The
following captured packets depict the redirection happened. Refer to the next list pane in
Figure 4.18:

16 -894755292.094453000 192.168.1.101 192.168.1.1604 TCP 64 60068-80 [SYN] Seq=0 Win=65531%
17 -1439017251.826457000 192, 168.1.104 192.168.1.1601 TEE 60 80-60068 [SYN, ACK] Seq=0 Ack=
18 5.015205000 192.168.1.101 192.168.1.104 TCP 52 60068-80 [ACK] Seq=1 Ack=1 Win
19 225473059, 936095000 192, 168.1.101 192.168.1.104 HTTP 466 GET / HTTP/1.1
20 66295390, 403899000 162, 168.1. 104 192.168.1.101 TCP 52 80-60068 [ACK] Seq=1 Ack=415 W
22 -1439036540. 123162000 192,168,1,101 192.168.1.104 TCP 52 60068-80 [ACK] Seq=415 Ack=529
29 -T77577563, 228889000 192.168,1.104 192, 168.1. 101 TCP 52 80-60068 [FIN, ACK]) Seq=529 Ac
30 -1354952914,. 826457000 192, 168.1,101 192.168.1. 104 TCP 52 60068-80 [ACK] Seq=415 Ack=53C
31 -894755292.083749000 192, 168.1.101 192.168.1.1603 TCP 64 60069-80 [SYN] Seq=0 Win=65535
32 10.040659000 192.168.1. 103 192.168.1.1601 TCP 60 80-60069 [SYN, ACK] Seq=0 Ack=
33 190861013. 628710000 192.168.1.101 192.168.1.1603 TCP 52 60069-80 [ACK] Seq=1 Ack=1 Win
34 10.041701000 192, 168.1. 101 192.168.1.1603 HTTP 466 GET / HTTP/1.1
35 -1700935729. 321851000 192.168.1.103 192.168.1.1601 TCP 52 80-60069 [ACK] Seq=1 Ack=415 W
36 10045989000 192, 168.1. 103 192.168.1.101 HTTP 262 HTTP/1.1 304 Not Modified
37 -506133590.227039000 192.168.1.101 192.168.1.103 TCP 52 60069-80 [ACK] Seq=415 Ack=211
51 -1793850626, 523174000 192, 168.1.103 192.168.1.101 TCP 52 B0-60069 [FIN, ACK] seq=211 Ac
52 15,056875000 192,168.1,101 192,168,1.1603 TCP 52 60069-80 [ACK] Seq=415 Ack=21Z

Frame 21: 580 bytes on wire (4640 bits), 580 bytes captured (4640 bits) on interface 0

Raw packet data

Internet Protocol Version 4, Src: 192.168.1.104 (192.168.1.104), Dst: 192.168.1.101 (192.168.1.1601)

Transmission Control Protocol, Src Port: 80 (B@), Dst Port: 60068 (60068), Seq: 1, Ack: 415, Len: 528

Hypertext Transfer Protocol

l» HTTP/1.1 302 Found\r\n

Figure 4.18: HTTP redirection

As you can see, a TCP handshake was initiated with the old server at 104 followed by an
HTTP GET request. The server at 104 responded with a 302 Found response in packet 21,
which is an indication of redirection. Our request was sent to the new server located at 103

with whom we again initiated the TCP three-way handshake (packet 31). After packet 31,
the destination field was changed to the new server’s address.

On investigating packet 21 further, we can see the content that redirected our request to the
new server. Expand the Line-based text data section under the HTTP section of the
details pane for packet 21. Refer to the following screenshot:

Line-based text data: text/html
<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"=\n
<html=<head=\n
<title=302 Found</title=\n
</head><body>\n
<hl=Found=</hl=\n
<p>The document has moved here</a=. </p>\n
<hr=\n
<address=>Apache/2.2.22 (Debian) Server at 192.168.1.104 Port 80</address=\n
</body></html>\n

We have already discussed DNS resolution problems in the DNS protocol section. For
example, if the requested web server is not able to resolve your request using your internal
DNS server as well as other external servers, then you won’t be able to visit the website.
Even if the DNS servers are working fine and you are not able to visit the site, then
congestion can be the problem, where a server is not able to process multiple requests at
the same time. This will result in errors such as 408 time-out requests, 429 Too Many
requests, or even 404 not found. The world of HTTP is enormous, and day-to-day
situations can differ from person to person. The most important fact that you should keep
in mind is that if all your basic-level concepts are clear, then only it would be an easy to
do the job you have been assigned. Nothing can beat common sense with out-of-the-box
thinking.

Simple Mail Transfer Protocol

SMTP is used widely to send and receive emails over small, as well as large,
infrastructures (can be public or private). The protocol uses the Sender-SMTP process to
send e-mails and the Receiver-SMTP process to receive emails. This makes SMTP a
client-server-based protocol that runs over port 25. However, many mail server admins
follow the secure practice of changing the default port number for SMTP to any other
random port that prevents the server from sending any spams out there in the wild and
even keep the server out-of-reach from malicious users.

Most commonly, an SMTP channel for mail transfer is created using a TCP three-way
handshake that happens between two hosts, which is followed by a series of SMTP
packets. For illustration purpose, I configured one SMTP server on 192.168.1.105 and a
client on 192.168.1.104. The client will request the server to send an e-mail to an address
known to the client. The server will respond to this request with numerical code, followed
by a brief response parameter. For understanding the real functioning of the protocol, I
will be using the following architecture.

PC 1: SMTP ek STF
Server Client
(192.168.1.104)

(192.168.1.105)

Usual versus unusual SMTP traffic

Using the netcat client from Kali Linux, I will try connecting to the SMTP mail service
running on a Windows machine. Once a dedicated channel is created between the server
and the client, the server indicates that it is ready to accept any commands sent in. Also,
the server will respond with numerical codes with a short summary. I followed these steps
to connect and send an e-mail:

Open a connection using netcat nc -nv 192.168.1.105 25.

Initialize an SMTP session using the HELO testmail command.

Specify the from address using the MAIL FROM:<abc@charit.com> command.
Specify the recipient’s address using the RCPTS T0:<efg@charit.com> command.
To enter data into the mail body, type DATA and press Enter. Now, type the message
you wish to send. Once you are finished writing your email, type a . to mark the
ending and press Enter.

6. Now, your message will be sent. If you wish to send more emails, follow the same
procedure; or else, you can close your connection with the mail server. Type QUIT to
do so.

kWi

The series of commands I followed generated a couple of packets that contain details
about the session in a very granular form. I also created a capture filter, which captured
only the packets associated with the client and server that would help me in closely
analyzing the packets related to the session; and preventing other packets entering the list
pane. All of these commands mentioned will only work when the server is configured to
permit clear text message communication without any authentication, refer to the
following screenshot depiction for similar behavior.

1 0,000000000 192.168.1.104 192,168.1.105 TCP 60 57073-25 [SYN] Seq=0 Win=29200 Len=0 MSS

2 1439081651.426767000 192.168.1.105 162,168.1.104 TCP 60 25-57073 [SYN, ACK] Seq=0 Ack=1 Win=1638
3 -41448. 227586000 192.168.1. 104 192.168.1. 105 Tce 52 57073-25 [ACK] Seg=1 Ack=1 Win=29696 Len
4 4205130, 997054000 192.168.1.105 192,168.1. 104 SMTP 90 5: 220 Charit's.com ESMTP server ready,
5 1439081652, 143751000 192.168.1,104 192.168.1,105 TCP 52 57073-25 [ACK] Seq=1 Ack=39 Win=29696 Le
6 -287363963.384218000 192.168.1.104 192,168, 1.105 SMTP 61 C: helo abc
7 1744899513, 488830000 192.168.1. 105 192, 168.1.104 SMTP 82 5: 250 Charit's.com Hello, abc,
4 1439081657.529807000 192.168.1.104 192.168.1.105 TCP 52 57073-25 [ACK] Seq=10 Ack=69 Win=29696 L
9 1744901809.636862000 192.168.1.104 192.168.1.105 SMTP 79 C: mail from: <abc@charit.com»
10 1744899513, 488830000 192.168.1.105 192.168.1.104 SMTP 81 5: 250 Sender OK - send RCPTs
11 1439081671.468558000 192.168.1.104 192.168.1.105 TcP 52 57073-25 [ACK] 5eq=37 Ack=98 Win=29696 L
12 1439081686,949708000 192.168.1.104 192,168, 1.105 SMTP 78 C: rcpts to:<efg@charit.com=
13 4206566. 333758000 192.168.1.105 192.168.1.104 SMTP 91 S: 250 Recipient OK - send RCPT or DATA.
14 1439081687, 064346000 192.168.1.104 192,168, 1. 105 TCP 52 57073-25 [ACK] Seq=63 Ack=137 Win=29696
15 1439081688, 805525000 192.168.1.104 192,168.1.105 SMTP 57 C: data
16 4207044.779326000 192.168.1.105 192,168.1.104 SMTP 91 5: 354 0K, send data, end with CRLF.CRLF
17 2122359292, 356797000 192.168.1.104 192, 168.1.105 TCP 52 57073-25 [ACK] Seq=68 Ack=176 Win=29696
18 1439081690.221834000 192.168.1.104 192.168.1.105 SMTP 55 C: DATA fragment, 3 bytes
20 1439081690, 454208000 192.168.1.105 192,168, 1. 104 TCP 52 25-57073 [ACK] Seq=176 Ack=71 Win=16314
21 1439081690, 455528000 192.168.1.105 192,168.1.104 64 [TCP Dup ACK 20#1] 25-57073 [ACK] Seq=17
22 168258645, 511958000 192.168.1.104 192.168.1. 105 SMTP 54 C: DATA fragment, 2 bytes
23 419451065, 438925000 192.168.1.105 192,168.1. 104 SMTP 75 5: 250 Data received OK.
24 1439081690,858935000 192.168.1.104 192,168.1.105 TCP 52 57073-25 [ACK] Seq=73 Ack=199 Win=29696
25 168257924,091710008 192.168.1.104 192.168.1.105 SMTP 57 C: DATA fragment, 5 bytes
26 1439081694,129351000 192.168.1.165 192,168.1.104 SMTP 95 5: 221 Charit's.com Service closing chan
27 850006670, 085050000 192.168.1.105 192,168.1.104 TCP 52 25-57073 [FIN, ACK] Seq=242 Ack=78 Win=1
28 B50006670, 085950000 192.168.1, 104 192,168.1,105 TCP 52 57073-25 [ACK] Seq=78 Ack=242 Win=29696

Figure 4.19: SMTP session

Packets from 1-3 are TCP-handshake packets. The handshake is happening between the
client and the server. In the fourth packet, the client receives a message stating 220 as the
response code. This means the server is ready and available to respond to the client’s
request. In the sixth packet, the client initializes the standard SMTP session using the HELO
command (You must be wondering why most of the packets listed in the list pane start
with C or S. Requests sent from the client are marked with the character c, and server
responses are marked with character S.). Then, enter the sender’s and recipient’s e-mail
addresses, which were confirmed to be correct by the server, with response code 250 in
packets 10 and 13. After that, enter the e-mail body using the DATA command, which was
successfully received by the server in packet 23. In the end, the user gracefully closes the
connection by issuing the QUIT command, which the server confirmed in packet 26, thus
sending the FIN, ACK.

Now, I will introduce you to the dark side of SMTP that you might have witnessed, or you
will someday. By dark side, I meant the packets that are not supposed to pop up inside the
list pane usually. However, if they do, then you have to look into your protocol
configuration. For this, I would like to introduce you to some quite common scenarios that
you should be aware of.

The first and foremost case I can think of is when the server and the client are not able to
create a dedicated channel for communication; in short, the TCP handshake did not go
well. This can happen because of many reasons, such as the mail server daemon is not
running, the mail server is not running on the default port, the mail server daemon has
reached the maximum simultaneous client connections allowed or connections from a
particular subnet are not allowed there can be multiple scenarios related to this. The

following list pane depicts two kinds of traffic abnormalities:

5 1439201001, 772045000 192.168.1. 104 192.168.1.105 TCP 52 47386-2525 [ACK] Seg=l Ack=l Win=l

8 1439201001, 776079000 192.168.1.104 192.168.1.105 TCP 52 473862525 [ACK] Seq=l Ack=51 Win:
10 27234.243555&0& l192:168.i.135 1§2.i5&:1.1ﬁ4 TCP Sf 2525-47386 {AtKi Seq=52 Ackzi ﬁin:
Frame 6: 102 bytes on wire (816 bits), 102 bytes captured (816 bits) on interface 0

Raw packet data

Internet Protocol Version 4, Src: 192.168.1.105 (192.168.1.105), Dst: 192.168.1.104 (192.168.1.104)

Transmission Control Protocol, Src Port: 2525 (2525), Dst Port: 47386 (47386), Seq: 1, Ack: 1, Len: 50

Data (50 bytes)

Data: 35323020436f6e6e65637469676e206e617420617574686f . ..
00 45 00 00 66 05 d2 40 00 80 06 70 9e c0 a8 01 69 E,.f..@ ..p....i

10 cO a8 01 68 09 dd b9 1la 3d 0a Of 58 de cd a6 e9 ...h.... =..XN..
20 80 1B 40 00 08 4e 0O 00 01 01 D8 0a 00 0B 41 85 . @ N..A,
30 02 04 ab 8e 35 32 30 20 43 6f 6e 6e 65 63 74 69 520 Connectl

40 G&f 6e 20 6e 6f 74 20 61 75 74 68 6f 72 69 73 65 on not a uthorise
50 64 20 66 72 6f 6d 20 74 68 60 73 20 61 64 64 72 d from t his addr
60 65 73 73 2e 0d Da ess, .

Figure 4.20: SMTP unusual trdffic

The first two packets were generated due to an error, which stopped the TCP handshake
from occurring. This error can be generated due to many factors, some of which are
mentioned here:

Mail server daemon is not running

Mail server daemon default port is changed

Mail server daemon has reached the maximum simultaneous connections limit
(DDoS attack).

Mail server’s configuration has been tampered with

Let’s suppose now, that the client came to know about the correct port number to which
the connection should be initiated, but still, the session was not created successfully.
Observe the traffic starting from packet 3 to the packet 10, the last packet. A TCP three-
way handshake happened, but then, suddenly, the client was kicked off from the session.
What could be the possible reason for such a response from the server? Perhaps the client
is not allowed to get connected because of some restrictions in place, such as IP or MAC
filtering.

3 -299332529.969384000 192,168.1.104 192.168. 1,165 TCP 52 57230-25 [ACK] Seq=l Ack=1l Win=29696 Len=0 TS
4 -1435002675, 066153000 192,168, 1.105 192.168.1, 104 SMTP 90 5: 220 Charit's.com ESMTP server ready.

5 0. 144765000 192,168, 1. 104 192.168.1.105 Tce 52 57230-25 [ACK] Seg=1 Ack=39 Win=29696 Len=0 T
6 2.062258000 192.168.1.104 192.168.1. 105 SMTP 61 C: helo abc

7 2.199304000 192, 168.1. 105 192.168.1, 104 SMTP 82 5: 250 Charit's,com Hello, abc.

8 2.199772000 192, 168.1. 104 192.168.1,105 TCP 52 57230-25 [ACK] Seq=10 Ack=69 Win=29696 Len=0
9 212289295. 064342000 192.168.1.104 192.168.1.185 SMTP 76 C: mail from:<efg@abc.com=

16 12, 450170000 192, 168.1.105 192.168.1, 104 SMTP 81 S: 250 Sender 0K - send RCPTs

11 12. 450646000 162, 168.1. 104 192.168.1,105 Tce 52 57230-25 [ACK] Seqg=34 Ack=98 Win=29696 Len=0
12 22, 846623000 192,168.1. 104 192.168.1. 105 SMTP 75 C: recpts to:<abc@abc, come

14 23, 255494000 192.168.1.104 192.168.1.105 TCP 52 57230-25 [ACK] Seq=57 Ack=142 Win=29696 Len=0

17 53.671389000 192, 168. 1. 105 192.168.1, 104 TCP 52 25-57230 [ACK] Seq=143 Ack=58 Win=16328 Len=0

Figure 4.21: Client not allowed to get connected due to some restrictions

Another type of abnormal traffic that can be seen widely these days is harvesting of e-
mails used by spammer and spamming botnets roaming in the wild. A spammer tries to
harvest emails from the publicly accessible mail servers to verify which email address is
valid and which isn’t. For example, look at the following screenshot (Figure 4.15) where a
malicious user tries to verify the existence of an e-mail ID using the E-mail From field,
verification of e-mail addresses can alos be done using VRFY command. Depending on the
response, the user will come to know whether the email is valid or not. Observe packet
number 13 for the server’s response. These kinds of attacks are done using a custom-made
dictionary file, which matches the current domain requirements. Once an email is verified,
the spammer can perform various forms of social-engineering attacks. A response code
greater than 350 in SMTP protocol is probably some kind of error that can reduce your
network performance, thus increasing the latency.

Session Initiation Protocol and Voice Over Internet Protocol

SIP is a part of the VOIP protocol family that is just a signaling protocol used to create,
manage, and terminate voice over IP sessions in a networking environment. Examples of
SIP can be a two-way phone call or a conference call, including multimedia sessions
where multiple hosts can be present. This protocol is generally discussed in regards to the
initiation of the session between the remove parties ; hosts/nodes that intend to
communicate. After the initiation is completed, the data is transferred over the dedicated
channel where the Real time Transport Protocol (RTP) helps. Basically, the family of
RTP governs the transport and the flow control of all of the multimedia items (RTCP
controls the flow).

The two most used tools while working with this protocol are the Statistics menu, under
which we will cover Protocol Hierarchy, Packet Lengths, and flow graphs, which will give
you an idea of data travelling back and forth between two hosts. Under the Telephony
menu, you will see the RTP and VOIP Calls options that can facilitate us in assembling the
VOIP call streams. We can then play them back to hear the conversation, this is what
makes me really excited about Wireshark.

SIP runs over the UDP protocol and commonly uses port 5060. All of this together in an
[P-based environment makes it possible for us to dial instantly to our friends over a VoIP-
enabled device. SIP makes it easy for the VOIP telephony server to establish user
locations. It facilitates us with different call-managing features such as initiating calls,
disconnecting calls, adding someone to a conference call, transferring calls, and various
others. SIP is not going to help you maintain the quality of calls, yet SIP is one of the most
important standards used by various services. Before we jump directly into looking and
listening to the traffic, let’s get ourselves acquainted with how the traffic moves in a voice
over IP call.

There will be three parties we will consider: two of them are clients and one is the IP
telephony server that helps in transferring the required and necessary packets back and
forth between the two communicating hosts. The following figure depicts a small
infrastructure telephony architecture and lists the various steps taken:

Client 1 <---------eeeem- > Lo > (lient 2
(1) Invite---mmmmmmmmmmmmmm e >

(2) Invite ---mmmmmmmmmemmmmea- >
Lemmmmmmeee 100 Trymg (3)

Cemmmmmmmm (4) 180 Ringing
e 180 Ringing (5)

Commmmmmmmmmmeee (6) 200 Ok
O (7) 200 Ok
(8) ACK ---mmmmmme oo e e e >
(9) RTP/RTCP ommmmmm e P
e Client 1 sends an Invite request to initiate the session using SIP.
e The telephony server in between, transfers the request to Client 2.
e The telephony server acknowledges Client 1 with the 100 TRYING packet.

Client 1 receives a 180 RINGING packet as soon as Client 2 starts ringing. When
Client 2 on the other side received the call, it sends the 200 OK packet, which is
forwarded to Client 1.

Now, the client sends the ACK packet to acknowledge the receipt of the 200 OK
packet.

Now, both parties are connected with a dedicated channel over which the RTP/RTCP
packet starts flowing back and forth.

Once both of them are done, there will be a BYE packet sent from by the hosts
communicating, which is acknowledged by the other end.

If you observe, most of the packets are passing through the telephony server. Because
the telephony server only knows about the exact location of the connected hosts.
Once the connection is successfully created, all the packets are sent and received
directly by the clients without the server’s intervention.

I have configured a small VoIP telephony infrastructure using Asterisk PBX that you can
download freely from the vendor’s website. VOIP server is located at 192.168.1.107,

client 1 at 192.168.1.104, and client 2 at 192.168.1.107. Then, I downloaded X-Lite

client using which, I tried calling client 2 from client 1. Now, using the real SIP traffic
captured, it becomes easy for us to analyze and learn. Interestingly, there is an option
using which, we can play back the communication captured (this can be really dangerous

and

more amazing).

Here is example traffic captured as seen in the list pane of Wireshark:

5 0.001673000 192.168.1. 107 192,168, 1. 104 5IP 515 Status: 100 Trying |

172 ©,085903000 192,168.1.107 192,168, 1.106 SIP/SDF 917 Request: INVITE sip:101@192.168.1.106:5621
177 0. 087461000 192,168.1.107 192,168.1.104 SIP 531 Status: 180 Ringing |

178 0. 652323000 192.168.1. 106 192,168, 1. 107 SIP 348 Status: 100 Trying |

179 0,959210000 192.168.1.106 102,168,1.107 SIP 501 Status: 180 Ringing |

182 0.961010000 192.168.1.107 192,168.1.104 SIP 531 Status: 180 Ringing |

186 3, 827648000 192.168.1. 106 192,168, 1. 1687 SIP/SDP 782 Status: 200 0K |

188 3,829335000 192.168.1,107 192,168.1.106 SIP 480 Request: ACK sip:101@192.168. 1.106:56215;r
205 3,834786000 192.168.1,107 192.168.1.104 SIP/SOP 820 Status: 200 0K |

211 3,839764000 192,168.1. 104 192,168, 1. 187 SIP 482 Request: ACK sip:101@192.168.1.107 |

1644 10.852745000 192.168.1.104 192,168,1.107 SIP 641 Request: BYE sip:101@192.168.1.107 |
1645 10.853115000 192.168.1.107 192,168.1.104 SIP 489 Status: 200 0K |
1652 10.854002000 192.168.1. 107 192,168, 1. 106 SIP 527 Request: BYE sip:101@192.168,1.106:56215;r
1690 11.042924000 192.168.1.106 192,168.1.107 SIP 467 Status: 200 0K |

Figure 4.22: SIP trdffic

One thing you should consider is place the analyzer close to the telephony server so that
you can easily capture every bit of packet-level information moving around. While
capturing, if you cannot see any SIP packets, then you won’t be able to capture VOIP
packets as well. You would end up capturing UDP packets only in the list pane, which
won’t prove very fruitful for your analysis.

Analyzing VOIP traffic

Just for the sake of curiosity, I want to show you the protocol distribution for SIP traffic
that can be seen using the Protocol Hierarchy dialog from the Statistics menu. Refer to
the following Figure 17:

| NON [\ Wireshark: Protocol Hierarchy Statistics
Display filter: none
Protocol |% Packets |F'ackets |% Bytes |Bytes ‘Mbit/s |End Packets |E|

v Frame IR 1695 MU 362869 0.263 0

< Ethernet 1695 362869 0.263 0

< Internet Protocol Version 4 1688 EEEER] 362467 0.263 0

< User Datagram Protocol 1421 EEEIE: 309935 0.225 0
1.06 % 2.97 %

Real-Time Transport Protocol 1394 EZBTE% 298132 0.216 1394

= Real-time Transport Control Protocol 0.53% 9 028% 1018 0.001 0

v Real-time Transport Control Protocol =~ 0.53 % 9 028% 1018 0.001 7

Real-time Transport Control Protocol 0.12 % 2| 0.06 % 220 0.000 2

¥ Transmission Control Protocol I15.?'5 % 26?![4‘48 % 52532 0.038 116

Data | 8.91% 151 f12.37% 44876 0.033 151

Address Resolution Protocol 0.41 % 7 011% 402 0.000 7

Ik

I Help # Close |

"
™~
i

Figure 4.23: Protocol Hierarchy

Major traffic generated during the session is UDP based, and as seen in the preceding
screenshot, SIP traffic is a very small part of it. If you observe closely, it is just 1 percent
roughly, whereas RTP has a major role here with 82 percent. This gives an overview about
the session we captured and tells us which protocol participates in what percentage. As we
already know, SIP is used only to create and manage sessions that occur between two
users, or it can be a multiuser conference call.

Flow graphs are one more way of getting a summary of the traffic. They help in
understanding the movement of request and acknowledgements sent or received. Refer to
the following Figure 4.24:

@CO %/ sip.pcapng - Graph Analysis

[

92.168.1.104 192.168.1.106

Time 192 168.1.107 Comment M
0.000000000 INITESDP . i SIP From: <sip:2000@192.168.1,107 To: <sip: 101@192.168.1.107
0.000221000 SIP Status
0.000968000 (620831 \5060) : SIP Request
0.001290000 oy INMITESDP : SIP From: <sip:2000@192.168.1,107 To: <sip: 101@192.168.1.107
0.001673000 oo0gy 20 T0VING. ; SIP Status
0.085903000 [. ts-,‘;sm!wiE'SDE"‘.tEEMﬂ SIP From: "Support” <sip:2000@192.168.1.107 To: <sip: 101{@192.1¢
0.087461000 IHIM:J-3-1-'Lﬂ-llllillllf.'-j,\ 060 SIP Status
0.652323000 : :susunﬁﬁhl-_mmﬂlzssmn oF Matus
0.959210000 : . mﬁm;;lﬂﬂ_ﬂlﬂmnﬂ;tmm SIP Status
0.961010000 — . | SIP Status
3.827094000 mhmi W}.b,éﬂﬁlﬂwmm RTP Num packets: 100 Duration:1.9275 SSRC-0x54096573
3.827648000 . : g RQ0OKSD o siP status
3.829335000 i | — ACK s Request

. (5060) i
3834786000 0, RO0OKSD 'SP Status

3.839764000 i e SIP Request
3.842769000 S8 1.F) : RTP Num packets: 351 Duration:6.991s SSRC:0x609DFB3C
3.876174000 (G338 T : RTP Num packets:100 Duration:1.980s SSRC:0x1D2DFD15
3.876334000 | wmiﬂﬁfﬂﬂl&‘mm RTP Num packets: 343 Duration:6.839s SSRC:0x6B438138
5.756267000 g BLERIRT o RTP Num packets:1 Duration:0.000s SSRC:0x54096573
5.775315000 i ﬁﬁw—imaam RTP Num packets:255 Duration:5.079s S5RC:0x54096573
5.856272000 lsgiqs,mﬂﬂ.'l.”m, ' RTP Num packets:1 Duration:0.0005 SSRC:0x1D2DFD15
5.875860000 (63398)" Xt 7atio) : RTP Num packets: 243 Duration:4.839s SSRC:0x1D2DFD15
10.852745000 (62083) I.|5t.m_u SIP Request
10.853115000 00 e2000K i SIP Status i
10.854002000 : o \seate) | |SIP Request !
L
& y TRRY : L

[Save As | ¥ Close

Figure 4.24: Flow graph

There are three IPs listed just below the title bar in the center section. These IPs belong to
the server and the two clients that are trying to communicate. The entire request and the
responses with their status codes and summary messages can be seen clearly here.
Requests sent are colored in orange and the responses with green. This makes every
element look more precise and easy to understand.

Reassembling packets for playback

Yes, this is possible. You can assemble the VOIP packets back to listen to either, or both
sides of the communication in parallel. Let’s suppose I want to listen what message client
1 sitting at 192.168.1.104 sent to the client 2. We can use the Telephony menu in
Wireshark to reassemble the packets and choose the VOIP Calls option from the list. The
following screenshot illustrates the resulting dialog.

ece | sip.pcapng - VolP Calls

Detected 2 VolP Calls. Selected 1 Call.

Start Tim~ |Stop Tim |Initial Speal |From ‘Tu |Protoc| |Packet ‘State |Comments
0.085903 11.042924 192.168.1.107 "Support® <sip:2i<sip:101@192.1¢SIP 7 COMPLETI
Total: Calls: 2 Start packets: 0 Completed calls: 2 Rejected calls: 1
[¥|Prepare Filter = Flow 4)Player £ Select All | # Close I

Figure 4.25 : VOIP Calls dialog

Now, choose which side of communication you want to listen to. Then, click on the
Player button, which will then ask you to provide maximum Jitter (Jitter is the variance
in packet rate at which the packets are being sent and received. If jitter is high, then there
is a chance your network is dealing with congestion. Calls having high jitter values are not
feasible to listen to.) in our communication session. The maximum jitter value is 22. So,
by default, there will be 50 ms value given in the box. You can change this value if your
jitter is higher than that; otherwise, just click on Decode:

[NON | \| sip.pcapng - RTP Player
O View as time of day

Jitter buffer [ms] |50 :] @® Jitter buffer O Use RTP timestamp O Uninterrupted mode & Decode |

Figure 4.26: Player dialog

I did not change the default value and clicked directly on the Decode button, which
reassembled all the VoIP packets for the side of communication I chose. Refer to the
following screenshot:

L&w RTP Player

4 w
O From 192.168.1.104:63398 to 192.168.1.107:17880 Duration:6.88 Drop by Jitter Buff:0(0.0%) Out of Seq: 1(0.3%) Wrong Timestamp: 2(0.6%)

_————————————————,
O From 192.168.1.107:17880 to 192.168.1.104:63398 Duration:7.02 Drop by Jitter Buff:0(0.0%) Out of Seq: 0(0.0%) Wrong Timestamp: 0(0.0%)

0 View as time of day
iitterbuffer[n'tslliu :|ilit:erbuffer O Use RTP timestamp O Uninterrupted mode @?Decode‘ P Elay I IIFgusel B Stop | XEIosel

Figure 4.27: RTP Player

If you want to play the message, check the box just below the scrollbar and click on Play.
Various useful details related to the assembled VOIP stream are listed.

Unusual traffic patterns

Wireshark has numerous tools that help a user in maintaining QS for a certain networking
infrastructure and also consists of a tool that helps in identifying various day-to-day traffic
anomalies. A common type of traffic when dealing with an SIP server is INVITE requests
that are sent from one client to initiate the connection with another client. As you might
already know, this process is a three-way handshake where the client who initiated the
request is supposed to acknowledge when the session creation is completed. What if the
client who requested does not respond with ACK and sends another INVITE request?
Normally, the server will try to connect the client to the requested client machine,
meanwhile waiting for the ACK response for the previous request. Now, let’s suppose the
client sent 100 INVITE requests through different clients on the network and did not even
bother to send Ack for any one of those sessions created. This can result in a DOS attack
(INVITE flood attack) where the SIP server won’t be able to process any further requests
(the buffer size for INVITE is 100). To resolve this, you can apply a display filter to view
the INVITE requests sent from a client or apply a filter where the status code is 200: 0K.

Other than DOS attacks, there is a chance that your network may slow down due to packet
congestion, or you might not be able to get connected to another client on your network.
In other words, your call cannot get through, if there is lag in setting up the call (the
average call setup time is high). You will witness multiple cases once you work in a
production environment. So, Wireshark and the various powerful tools it contains comes
to our rescue.

For instance, if some client is trying to make a call to an invalid extension, they will get an
error, and the call won’t get through. Such a scenario will generate packets as shown here:

12 3,100381000 192.168.1, 104 192.168.1, 107 SIP/SDP 981 Request: INVITE sip:100@192, 168,1,107 |
13 3. 100754000 192.168.1, 107 192.168.1.104 SIP 515 Status: 100 Trying |

167 3. 366362000 192.168.1, 107 192.168.1.104 SIP 574 Status: 503 Service Unavailable |

199 3.481824000 192.168.1, 104 192.168.1.107 SIP 364 Request: ACK sip:100@192.168.1.107 |

I would suggest that you filter SIP packets consisting of error codes greater than 399 and
create a display filter using sip.Status-Code > 399. See the following screenshot that
lists multiple errors generated while client 1 was trying to call:

Filter: sip.Status-Code > 399 ¥ Expression.. Clear Save

Ne. Time Source Destination Protocol ' Lengtl | Info

104 192.168.1.107 SIP 411 Status: 4B6 Busy Here |

114 4.630082000 192, 168.

Bl - (s
1 1

403 14.460956000 192.168.1.107 192.168.1.104 sip 578 Status: 401 Unauthorized |
2206 34.235421000 192.168.1.104 192.168.1.107 sIp 452 Status: 405 Method Not Allowed |

7 : |92, 168.1.107 192.168.1.104 578 Status: 401 Unauthorized |
192.168.1.: i 452 Status: 405 Method Not Allowed |
10851 154,230859000 192.168.1.104 192.168.1,107 SIP 452 Status: 405 Method Not Allowed |
10863 214,228341000 152.168.1.104 192.168.1, 107 SIP 452 Status: 405 Method Not Allowed |

52000 152.168.1.1¢C 1 IF o895 Status: 401

10881 274.225144000 192.168.1.104 192.168.1.107 sIp 452 Status: 405 Method Not Allowed |

Figure 4.28: SIP error

Decrypting encrypted traffic (SSL/TLS)

Yes, it is possible to decrypt your online TLS traffic into a plain text SSL stream using
Wireshark. Google Chrome and Firefox look for a log file, which stores the TLS session
keys. Follow these steps to decrypt encrypted traffic:

1. Create an environment variable with the name SSLKEYLOGFILE that will point to a text
file. Your browser will look for this file every time it starts up. To create environment
variables, right-click on My Computer | Go to Advanced Settings | Environment
Variables | New | Specify Name: SSLKEYLOGFILE and Value:
C:/Users/username/sslkeylog. txt and click on Ok.

2. T have created a blank text file, C: /Users/username/sslkeylog.txt (make your new
environment variable point to this file).

3. Now, open your browser and visit a website enabled with TL.S/SSL. For
demonstration purpose, I have my own SSL webserver located at 192.168.1.105 and
a client located at 192.168.1.105.

Vo - R

<« C' (xb#rs://192.168.1.106
Test Page on My HTTPS Server

by Charit M.

The certificate I created is self-signed; that’s why you are seeing a red diagonal line
across https in the address bar. After you visit any secure website enabled with SSL,
your sslkeylog.txt will be populated with some random numbers, as shown in the
following screenshot. If not, cross check your settings before moving on:

CLIENT_RANDOM 17999a56ea29e69bch242b441b1b519e,
Ob3b%6679b9a46bfdcb280fd4eb027el786e3766c73l3f
1117p14

4. 1 captured the whole traffic between my client and server in Wireshark. Now, go to
Edit | Preferences | Protocol tree | SSL | (Pre)-Master-Secret log filename |
/path/to/sslkeylog.txt | Ok. Then, right-click on the SSL packet (Make sure you
select Decrypt packet data. The option should be present in the bytes pane) and
follow the SSL stream. Now, you will see something like Figure 4.29 here:

"'wmmcmmn

Filter: | top.siveam eq 3

M, Tame Source

90071100 192.168.1.105
90165200 192.168.1. 105
90394300192, 168.1. 1068
90470100 192.168.1. 106
90536000 192.168.1.105
90612600 192.168.1. 105
90629400 192, 168.1. 108
905911000 192.168.1. 106

191,
201.
mni.
21
1.
241,
1.
261,
28 2.

11329000 192.168.1.105

106

35 6. 91896000 192.164,1.

37 6. 91968000 192.168.1.105

Fle Edt Wiew Go Coptwe Ambae Sutisics wahw[Toals Jatemals Help
codmd BN AeveT2ER cacn @R % B

[+ Epresen.. Cr 2501 Sae

Destination

192.188.1.
192.168.1.
192.168.1.
192.168.1.
192.1648.1.
192.168.1.
192.164.1.
192.168.1.

106
106
105
105
106
106
105
105

192.168.1.
192.168.1.

192.168.1.106

Protocal

Length Irfo .

54 1313443 [ACK] Seqel Ackel Win=65700 Len=0

571 clent Kello

54 4431313 [ACK] Seqel Ack=518 Win=30720 Len=0

198 Alert (Level: warning, Description: Unrecognized Mame), server Hello, change Cipher spec, Finisl

105 @i i e e— T T
488 immm“‘."ﬁ- o/@l 8)
E;; Stream Content

GET / HTTP/1.1 -

HosT: 192,168.1.106

Connection: keep-alive

cache-control: max-ages0

sccept: text/html,application/xhtml+xml,application/xml; q=0. 9, image/webp, */*; qe0. 8

Upgr ade-Insecure-Requests: 1

User-agent: Mozilla/5.0 (windows NT 6.1; wowGd) applewebkit/537,36 (KHTML, Tike Gecko) |E|
chrome 44,0, 2403155 safari/537.36

(i Becure Sockers Layer

20 68 9d fa Se
02 4c 1b 2e 40
01 69 01 bb 05
00 1f 94 2f 00
96 B9 bf 17 39
78 ce a3a a2 53
40 9c d6 82 1d
5f 04 ca a5 67
41 03 6F 66 &7
Zf DE a4 -S‘E_’ 28

b4 d8 bb
00 40 06
M 72 de
00 17 03
cf 30 ¢3
09 b7 af
b5 98 4d
B6 b0 fe
63 le bb
cd db 3

Be ki &P

¢ b9 53
99 5a o0
M 12 ab
03 01 69
6 9 4¢
1d €7 85
8572 fa
Bd ¢k 87
fe 65 85
7d B9 3b

Se_EE 4 F

et 08 0D 4

ag 01 6a c0 ad
of 32 62 50 18
63 f2 56 ee 40
4 dl 19 86 04
7Ted2fr192a
b 99 43 3b fe
5b dc 47 db ac
82 ¢l Te ad 11
de -lE 55 ?1 fe

500

Frame 26! 602 bytes on wire (4816 bits), 602 byres caprured (4816 bits)
Ethernat II, Src: Apple_b8:53:ec (dB:bb:lc:b8:53:ec), Dst: LiteonTe_fa:|)
Internet Protocol version 4, Src: 192.166.1.106 (192.168.1.106), ost: 1)
Transmission Control Protocol, Src Port: 443 (443), Dst Port: 1313 (131))

DNT: 1
Accept-Encoding: giip, deflate, sdch
ACCEpT-Language: en-US,en;gsD. B

HTTE/1.1 200 0K

Date: Mon, 17 Aug 2005 15:46:54 cuT

server: Apache/2.2.22 (pebiam)
Last-Modified: Sat, 15 Aug 2013 09:48:32 GvT
ETag: "153a35-5a- 51d5678bi6see”
Accept-Ranges: bytes

vary: accepr-gncodi

Content-Encoding: gzip b
content-Length: 93
Keep-alive: Timeout=5,
connection: keep-alive
Content-Type: text/hrml

max=100

Entire: conversation (1269 bytes)

[t | seess | pim

BSCI) EBCDIC Hex Dumg CAmays

|Frametﬁﬂ!b;1es wmmwmpuws&mmm[wmmm

0*" File: "€\ Users\Unkniwi AgpData\Local Temph,.. | Packets: 3 -Displayed: 16 421%) - Dropped: 0 0

| e | Fite Out hisSweam | | Cose |

Figure 4.29: Decrypt SSL traffic

This is one of the easiest ways by which you can go ahead and decrypt SSL traffic with
just a few clicks. One more way is to feed the RSA private key of the server into the
Wireshark SSL preferences, which will give you the same result.

Summary

Domain name system/Service is a protocol used to resolve website names to an IP address.
Using this domain name service, your machine can communicate on an IP-based network.
Using zone transfer (if enabled), unauthenticated malicious users can ask for zone data
form name servers, which is considered highly malicious and dangerous.

File transfer protocol has been used to transfer files from one machine to another since the
Internet came into existence and is still being used in today’s modern networks. The most
unsecure part about FTP is that the data is passed in plain text and can be easily captured
using protocol analyzers, unless you are using some encrypted form of the FTP client-
server infrastructure.

The web browsers are used to present and transfer the web-based content back and forth
uses hypertext transfer protocol. It is commonly also referred to as the request/response
model, where a host requests for a certain resource and the server responds with a status
code and the resource if available. Status codes greater than 399 should be watched
closely, I would suggest is to apply different colorization schemes.

SMTP protocol is used to send e-mails. It is an unencrypted protocol where commonly
authentication mechanism is not used. Every SMTP command and its corresponding
arguments are passed over the wire in plain text that can be easily sniffed using Wireshark.

VoIP traffic is made up of two things: RTP for data transfer and SIP protocol used to create
the session. Signaling protocol creates and manages a session where real-time transport
protocol is used to carry the voice itself. Using Wireshark, anyone can capture and
reassemble the packets back to listen to a communication session. One should take care of
congestion, jitter, lag, and echoing problems while dealing with these protocols in order to
maintain the quality of service.

Practice questions:

Q.1 What is the significance of the DNS protocol while you surf the Internet?
Q.2 How would you define zone transfers and recursive DNS queries?

Q.3 What is the difference between recursion desired and recursion available in DNS
queries?

Q.4 How many DNS record types exist? Explain the purpose of the AAAA record type
and what does non-authoritative answer mean?

Q.5 Differentiate between active and passive modes of FTP. Explain which mode is better.

Q.6 What solution can you come up if you are being asked to make your FTP session
encrypted? Explain the difference it would make.

Q.7 Using a virtual infrastructure or a physical one, install the FTP server on any of the
machines and then try to communicate with it while capturing live packets in Wireshark.

Q.8 Find out how you can limit the maximum number of login attempts. How can such
limitation affect the overall security of your FTP server?

Q.9 Why do we refer to HTTP communication as a request/response approach and what is
the purpose of the three-way handshake while initiating the connection?

Q.10 Which version of HTTP are we currently using and what is the difference between
the old and new ones?

Q.11 While your browser makes an HTTP request, various other parameters are also sent
in your request. Why is it so? What is the purpose of Accept-Encoding and Accept-
Language parameters sent with your request?

Q.12 Visit websites of your choice and browse a couple of pages while capturing all the
packets in Wireshark. Then, create a display filter to check whether any redirection was
present in your whole session.

Q.13 For what purpose is SMTP on client side used? To send e-mails or receive them?
Which protocols are popularly used to receive e-mails?

Q.14 Is it possible to perform a brute force attack on an SMTP server? If yes, then how
and how do you identify such traffic pattern?

Q.15 What do you understand by e-mail harvesting and how you can perform an e-mail
harvesting attack on an SMTP server? Is there any kind of specific response you will look
for?

Q.16 Read about the difference between various email protocols and SMTP?

Q.17 What is the significance of SIP in a VOIP session? What percentage of traffic do you
think SIP will have in a whole VOIP session?

Q.18 What is the difference between RTP and RTCP protocols?

Q.19 Download a SIP traffic capture file (sippcap) from Wireshark’s website and analyze
the session using a flow graph. Are you able to the see the process flow we discussed?

Q.20 Filter out all the wrong password attempts using specific code for such responses and
apply a different coloring scheme (use the aaa.pcap capture file).

Chapter 5. Analyzing Transport Layer Protocols

This chapter will help you understand TCP and UDP protocols, how they communicate,
the problems you can face with these protocols, and how you can use Wireshark to assist
them. You will also learn how to analyze TCP and UDP protocols and look for any
anomalies that may follow. The following are the topics that we will cover in this chapter:

Understanding the TCP header and how it communicates
Understanding the TCP analysis flags

Lab up—TCP

How to check for different analysis flags in Wireshark
Understanding UDP traffic

Lab up—UDP

Practice questions

We will discuss TCP and UDP protocols using various practical examples that can give
you an insight about how low-layer protocol packets communicate and travel in your
network in order to transmit data successfully. We will also look at some common
anomalies that you might witness in your day-to-day operations.

The transmission control protocol

A TCP is a connection-oriented protocol used by various other application-layer protocols
to ensure data delivery without any loss of packets during transition. On the basis of
sequence numbers and acknowledgement numbers, a TCP ensures fail-proof delivery of
packets between the hosts that intend to communicate. A TCP is supposed to provide an
end-to-end, reliable form of communication, which should be robust at all times. It sits in
between the network layer and the application layer and uses the IP datagram to transfer
data packets between the sender and receiver. Because of this approach, the TCP and IP
are used by various application layer protocols for their reliable delivery.

A TCP is like a two-way communication process where not only the sender is involved in
the communication, but even the receiver actively works to make it a successful
connection. You can imagine it to be like a landline connection, where you dial a number;
if the number you dialed is correct, you will hear a ringtone (if the other side is open to
communicate). Only when the receiver responds by picking up the receiver, you can start
talking. Likewise, in TCP-based communication, a process called three-way handshake
takes place between the parties that are involved in the communication to create an
independent channel between the two hosts.

Understanding the TCP header and its various flags

The TCP header is normally 20 bytes long, but at times, due to the presence of the options
field, the TCP header size can vary up to 60 bytes. Refer to the following illustration of a
simplified TCP header:

Source port |[Destination port

Sequence number

Data offset Window size

Acknowledgement number ‘
Flags ‘

Checksum [[Urgent pointer

Options

Now, let’s get acquainted with the header fields to get a stronger grasp over the basics of a
TCP:

e Source port: This is the port number associated with the sender side of the
communication or you can say the port responsible for listening on the sender side.

¢ Destination port: This is the port number associated with the recipient side of the
communication or you can say the port responsible for receiving the transmitted
packets.

e Sequence number: These are the unique values that are used to ensure reliable
delivery of data. TCP tracks each segment using sequence numbers.

¢ Acknowledgement number: These values are sent in response from the receiver side
as part of the confirmation process that the packet was successfully received.

e Data offset: This indicates where the data packet begins and the length of the TCP
header. The size can vary due to the presence of the options field.

e Flags: There are various types of flag bits present; each of them has its own
significance. They initiate connection, carry data, and tear down connections, and on
the basis of their assigned purpose, we’ve named them as follows:

o SYN (synchronize): These are the packets that are used to initiate a connection
that is commonly known as the handshake process.

o ACK (acknowledgement): These packets are used to confirm that the data
packets have been received, and this also confirms the initiation and tear down
of the connections.

o RST (reset): These packets signify that the connection you were trying to create
has been shut down or may be the application we were trying to communicate
with is not accepting connections.

o FIN (finish): These packets indicate that the connection is being torn down after
the successful delivery of data packets. Both the sender and receiver send the

FIN packets to gracefully terminate the connection. If they want to communicate
again, they will start from the beginning, that is, from the three-way handshake
process.

o PSH (push): These packets indicate that the incoming data should be passed on
directly to the application instead of getting buffered. To state this simply, the
other host should receive data without waiting for it.

o URG (urgent): Marked packets indicate that the data that the packet is carrying
should be processed immediately by the TCP stack and the urgent pointer field
should be examined if it is set.

o CWR (congestion window reduced): These packets are used by the sender to
inform the receiver that due to the transmit, the buffer is getting overfilled, and
because of congestion, both the parties should slow down the transmission
process to avoid any packet loss that might happen.

Window size: This field in the header indicates the amount of data that the sender
can send, . The amount is decided during the handshake process where both the hosts
that communicate match the buffer size compatible for transmission. Flow control
can be achieved through this field.

Checksum: To cross check the integrity of the data that is being received, this field is
used, where the contents of the TCP segments are validated.

Urgent pointer: This field tells us about the value that the urgent pointer contains. It
specifically indicates the sequence number of the octet that lies before the data.
Options: This field length can vary due to the presence of various options. This field
has three parts: the first part specifies the length of the option field, the second part
denotes the options being used, and the third actually contains the options in use. One
of the important options maximum segment size (MSS) is also part of this field.
Data: The last part in the TCP header is the real data that travels around.

The preceding information gives us an overview regarding TCP headers and the
significance of various parts of the header. While analyzing TCP sessions, it becomes
quite important to know about these details.

How TCP communicates

To understand and analyze the packets in real time, I have configured a server that runs at
172.16.136.129 and a client that runs at 172.16.136.1, as shown in the following figure.
Using Wireshark, I will try to illustrate the three-way handshake process, which happens
before the actual data transfer as well as the tear down process (graceful termination). The
three-way handshake ensures that the server and client are open to making connections
and are ready with resources to create a dedicated channel between each other for a
reliable delivery of packets.

Client:172.16.136.1 Server:172.16.136.129

Client-Server

How it works

The server runs an HTTP server daemon at port 80. On the client, I will visit the default
webpage hosted at http://172.16.136.1 while capturing all the packets taking part in the
communication process.

|1 | ip.addr==172.16.136.129 and ip.addr==172. 16.136. 1|

Note

For the sake of visibility and ease, I’ve created a display filter to display the traffic
between these two hosts specifically.

282 -895706969. 756684000 172.16,136,1 172.16.136,129 TCP 64 52138-80 [SYN] Seq=0 Win=65535 Len=0
283 - 1439969339, 488273000 172.16.136.129 172.16.136.1 TCP 60 8052138 [SYN, ACK] Seg=0 Ack=1 Wing
284 15.671376000 172,16,136, 1 172.16.136.129 TCP 52 52138-80 [ACK] Seq=1 Ack=1 Win=13174
285 15.672063000 172.16.136.1 172.16.136.129 HTTP 375 GET / HTTP/1.1

286 1228372207.391617000 172.16,136,129 172.16.136.1 TCP 52 80-52138 [ACK] Seq=1 Ack=324 Win=307
287 15.672711000 172.16.136.129 172.16.136.1 HTTP 503 HTTP/1.1 200 OK (text/html)

288 15,672725000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] Seq=324 Ack=452 Win=]
289 -895706969,777480000 172.16,136,1 172.16.136.129 TCP 64 52139-80 [SYN] Seq=0 Win=65535 Len=0)
290 15. 747286000 172.16.136.129 172.16.136.1 TCP 60 80-52139 [SYN, ACK] Seq=0 Ack=1 Wins
291 714245694,355758000 172.16,136,1 172.16,136,129 TCP 52 52139-80 [ACK] Seq=1 Ack=1 Win=13174
292 378319958.968279000 172.16.136.1 172.16.136.129 HTTP 359 GET /favicon.1ico HTTP/1.1

293 1580695018, 469933090 1?2.16.135 129 172.16.136.1 TCP 52 80-52139 [ﬁCK] Seq=1 Ack=308 Wln"3ﬂ?
1294 -459410977.038322000 172.16,136.129 172.16.136.1 220 HITH . {1

295 15, 754902000 172.16.136. 1 1?2.16.136 129 TCP 52 5213980 [#CK] 5eq=308 Ack-SBS W1n=1
299 20.679013000 172.16.136.129 172.16.136.1 1R 52 80-52138 [FIN, ACK] Seq=452 Ack=324

300 609634608.344347000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] Seq=324 Ack=453 Win=]
301 20,761722000 172.16.136.129 172.16.136.1 TCP 52 80-52139 [FIN, ACK] Seg=505 Ack=308

302 -1931345972, 395708000 172.16.136.1 172.16.136.129 TCP 52 52139-80 [ACK] Seq=308 Ack=506 Win=l|

Figure 5.1: Connection Process: Three-way handshake, data transfer and tear down
process

In the packets 282, 283, and 284, it is clearly visible that the client and server are trying to
create a dedicated channel. The client initiated the creation by sending a SYN packet in the
282 packet with the SEQ set to 0. Since the server was open for communication, the server
responded with a SYN/ACK packet with ACK set to 1 and SEQ set to 0. This is followed by a
confirmation sent from the client side that is seen in the packet number 284 with SEQ=1
and Ack=1. This is what a three-way handshake process looks like. This can be seen before
any real data transfer that happens that follows the TCP approach.

After the successful completion of channel creation, the client sends a GET request to
access the contents of the web-root directory. The server acknowledged this in the packet
number 287 and sent the requested content to the client’s machine with the 200 0K status
message, which is acknowledged by the client in the next packet. As seen in the list pane
again, the client was requesting a new resource, which the server wasn’t able to find and
thus sent a 404 Not Found status message, which was acknowledged by the client in the
the packet 295.

After all the data transfer takes place, when the client has nothing left to request, or when
the server has nothing left to send, the client sends FIN/ACK packets to properly terminate
the connection. The server acknowledges this and sends its own FIN/ACK packets, which
are acknowledged by the client as well in the packet number 302. This way of termination
is often referred to as the teardown process. Take a look at the following screenshot that
illustrates this process:

. 172.16.136.1

il 172.16.136.129 Selutul
-895706969.7566 |, .0 —YN o Seq =0
-1439969339.488 | ., .. ~2YN ACK Seq = 0 Ack = 1
15.671376000 s AGKE Seq = 1 Ack = 1
15.672063000 g 5 Seq = 1 Ack = 1
1228372207.3916 | (cyqame—ACK S0 Seq = 1 Ack = 324
15.672711000 5213p - ACK o Seq = 1 Ack = 324
15.672725000 ACK o0 Seq = 324 Ack = 452

(52138)i
-895706969.7774 | ¢y 39 —2IN__o0 Seq =0
15.747286000 ' iSeq = 0 Ack = 1

4(52139) (B0)

714245694.35575 ., ., —ACK o iSeq=1Ack = 1
378319958.96827 | .., ., PSH. ACK . = Seq=1Ack = 1
1580695018.4600 ., ., ~ACK | Seq = 1 Ack = 308

-459410977.0383 Seq = 1 Ack = 308

15.754902000 | ;50 —BAK o) Seq = 308 Ack = 505
20.679013000 eaisay DN ACKS + Seq = 452 Ack = 324
609634608.34434 ., .. g Seq = 324 Ack = 453
20.761722000 vy FIN ACK T Seq = 505 Ack = 308

-1931345972.395 | o, —ACK o Seq = 308 Ack = 506

This was a small and sweet conversation that we captured and through which you learned
about the process flow. I think I’ve one more interesting way to illustrate the process flow
using graphs that we’ve already seen in the previous chapters. Refer to the preceding
screenshot.

From this flow graph, it becomes more clear and concise to view the requests and
responses shared between the two communicating hosts. The most interesting part that I
like in the preceding screenshot is the comment section that lists out the SEQ and ACK
numbers, which are sent and received by the hosts.

You must be wondering how these are generated and incremented. Let me tell you the
trick behind this amazing world of numbers that is used while transferring data. The host
that initiates a new connection uses Initial Sequence Numbers (ISN) that are generated
by the host’s operating system. It can be any random number that has no significance with
respect to the data. The sequence number we see in the packet one is zero is actually a
relative referencing technique used by Wireshark to ease the numbering system for the
sake of users. First of all, you should know that the numbers are used to keep track of how
much data is being transferred between the two hosts.

Starting from the packet 1, where SEQ=0 (the relative sequence number in real is
704809601), which is received by the server and in return replies with its own SEQ=0 and
AcKk=1 for the client’s SEQ=0. At the end of this three-way handshake, the client replies
with SEQ=1 and ACK=1 without any further increments as no data is being transferred
during the process.

Then, by the fourth packet, the client sends a GET request with SEQ=1 and ACK=1 where the
data payload length equals 323 (refer to the following figure), which the server receives
and acknowledges with SEQ=1 and ACK=324. Did you see what just happened? The server
replied by adding a total data payload length into ACK to denote that the data was
successfully received. Hence, it sends the requested resource to the client with data
payload length equals 451, which in return gets acknowledged by the client with ACK=452
and SEQ=324. In the same way, the transmission goes on until the tear down takes place
using FIN/ACK packets at the end.

D Frame 285: 375 bytes on wire (3000 bits), 375 bytes captured (3000 bits) on interface 0

P Raw packet data
D Internet Protocol Version 4, Src: 172.16.136.1 (172.16.136.1), Dst: 172.16.136.129 (172.14.136.129)

v Transmission Control Protocol, Src Port: 52138 (52138), Dst Port: 80 (80), Seq: 1, Ack: 1
Source Port: 52138 (52138)
Destination Port: 80 (80)
[Stream index: 7]
[TCP Segment Len: 323]
Sequence number: 1 (relative sequence number)
[Next sequence number: 324 (relative sequence number)]

Graceful termination

We saw, in detail, the process of TCP three-way handshake using the captured packets and
the flow graph that gave us insight about the process. Similarly, we should be comfortable

about the teardown process, which indicates proper termination of a session between two
hosts.

Considering the same scenario that we discussed here, let me show you the packets that
were generated to terminate the connection in a proper standardized format. Refer to the
following screenshot for this:

299 20.679013000 172,16.136.129 172,16.136.1 TCP 52 8052138 [FIN, ACK] Seq=452 Ack=324
300 609634608, 344347000 172.16.136.1 172,16.136.129 TCP 52 52138-80 [ACK] Seq=324 Ack=453 Win=1
301 20,761722000 172.16,136,129 172.16.136.1 TCP 52 8052139 [FIN, ACK] Seq=505 Ack=308
302 -1931345972. 395708000 172.16.136.1 172.16.136.129 TCP 52 52139-80 [ACK] Seq=308 Ack=506 Win=l

After the successful delivery of all the required packets, the server initiated the teardown
process (as there was nothing left to send or the client was just sitting idle and doing
nothing). In the beginning, the server sent its own FIN and ACK packets to the client with
SEQ=452 (the client acknowledged the same with ACK) and ACK=324 (this is the client SEQ
number when the data transfer was completed). These were acknowledged by the client in
the next packet. Following the same approach, the client issued its own FIN and ACK
packets (using SEQ and ACK numbers used in the second round of communication, where
the client requested something that wasn’t available. Refer to the preceding flow graph to
know more) to end the connection from its own side (as the connection was bi-
directional), which was received and acknowledged by the server. As soon as the client
received AcK from the server, the connection between the two hosts was closed completely,
and the sockets and other resources involved during the communication were freed up.

RST (reset) packets

Often times, there will be situations when the server daemon is not available, it is not able
to process your request due to overload, you are restricted to interact with the server, or
the port you are trying to connect to is not open for connections (not associated with any
service). There can be a lot of reasons why you will see a RST packet. Let me replicate the
scenario and capture the traffic between the client and server I have, which will surely
make it easy for you to understand this. An RST packet basically denotes that the
connection you were trying to initiate got closed abruptly.

In this scenario, the server daemon is not running and the client is trying to communicate;
as a result, it receives RST packets in return for every SYN request sent. I tried visiting the
web server just once, but you will notice more than one SYN and RST packets because
every browser performs a different number of attempts over a non-responding or a closed
socket at a particular interval of time. Hence, in our case, I am using the Apple Safari
browser, which made at least three attempts to connect back in a max time of 3-4 minutes.
I tried requesting Google Chrome as well, which made approximately 7 attempts to
connect back in merely 10 minutes (the browser will continue to make a request at a
particular interval of time). Refer to the following screenshot that illustrates the packets
captured in the process:

?‘.-' 144923193@ 381381000 172 16.136.1 172.16.136.129 TCP 64 55792-80 [SYN] Seq=0 Win=65535
5129 172.16.136. rCP 40 80-55792 [RST, ACK] Seq=1 Ack=1

172.16.136. 64 55793-80 [SYN] Seq=0 Win=65535

172. 16. 136. TCP 40 80-55793 [RST, ACK] Seq=1 Ack=l

9? 1449231930 420122000 1?2 15 135 1 172.16.136. 12 : 64 55794-80 [SYN] Seq=0 Win=65535
£)0 172.16.136. 129 172.16.136. TCP 40 80-55794 [RST, ACK] Seq=1 Ack=1

& N 172.16.136.129 vl N B B

Safari Can't Connect to the Server

Safari can't open the page “172.16.136.129" because Safari can't connect to the
server "172.16.136.129",

Figure 5.2: RST packets captured

Relative verses Absolute numbers

Wireshark purposefully translates real SEQ/ACK flag numbers to a simpler format, which
makes it significantly easier for us to keep track of data sent across the wire. For instance,
I’ve a web server at 172.16.136.129 and a client at 172.16.136.1. Using a web browser,
I will try to visit the server that will generate a couple of packets, which will be captured
by Wireshark. Refer to the following screenshot illustrating the same packets generated
for the session.

I have selected the first packet generated for the session in the list pane and its
corresponding details in the packet. The details pane and bytes pane can be seen
highlighted as follows:

e 1: In the list pane, it can be observed that the SEQ number assigned for the SYN packet
to begin communication is zero.

e 2: In the details pane, we can see that the number 0 is a relative sequence number,
which is not the real SEQ number and has been changed for our perusal by Wireshark.

¢ 3: In the bytes pane, we can see that the corresponding hex value for SEQ=0 is
0x2a028a81, which is equivalent to 704809601 in decimal.

So, the real SEQ number is 704809601, which was converted to 6 to make our analysis
easy.

ece % lcppackets.peapng [Wireshark 1.12.6 (v1.12.6-0-geelfcef from master-1.12]]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

AN ERXR A ¢éowFE ERB QAR GEEL B

Filter:|ip.addrn=1?2.16.136.129 jExpressiun... Clear Apply Save

Pratocol | Length|Info
'_"' 106969, 75668 ‘-',}ﬁ._;.- I 29 TP -'r_*“ 89 [5YH) Seq=0 Vin=65535 381083
283 -1439969339, 488273000 172.16,136.129 172.16.136.1 TCP 60 BB-52138 [SYN, ACK] 5e AM=1
284 15. 6713766608 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] Seq=1 Ack=1 Win=131744 Len=0 TSval=322881083 TSecr=37¢
285 15.672063000 172.16.136.1 172,16.136,129 HTTP 375 GET / HTTP/1.1
286 1228372207.391617600 172.16.136.129 172.16.136.1 TCP 52 80-52138 [ACK] Seq=1 Ack=324 Win=30720 Len=0 TSval=3763111 TSecr=322t
287 15, 6727116000 172.16,136.129 172,16.136.1 HTTP 503 HTTP/1.1 200 OK (text/html)
288 15.672725000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] Seq=324 Ack=452 Win=131206 Len=0 TSval=322881084 TSecr
280 -BOSTOA9G9, 7774800800 172.16.136.1 172,16.136, 129 TCP 64 52130-80 [SYN] Seq=0 Win=65535 Len=0 MS5=1460 WS=32 TSval=322881156 °
290 15, 7472866000 172.16.136,120 172,16.136,1 TCP 6O BO.52139 [SYN, ACK] Seq=0 Ack=l Win=28960 Len=B M55=1460 SACK_PERM=1
291 714245694, 355758000 172.16.136,1 172,16.136,129 TCP 52 52139-80 [ACK] Seq=1 Ack=s1 Win=131744 Len=0 TSwval=322881157 TSecr=37¢
292 378319958, 968279000 172,16, 136.1 172.16.136,129 HTTP 359 GET /favicon.ico HTTP/1.1
293 1580695018, 460033000 172.16,136.129 172.16.136.1 TCP 52 BD-52139 [ACK] Seq=1 Ack=308 Win=30720 Len=0 TSval=3763132 TSecr=322f ,
+ 9 I
b Frame 282: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface @ s
b Raw packet data
b Internet Protocol Version 4, Src: 172.16,136.1 (172.16.136.1), Dst: 172.16,136.129 (172, 16.136.129)
= Transmission Control Protocol, Src Port: 52138 (52138), Dst Port: 80 (80), Seg: @, Len: B

Source Port: 52138 (52138)
Destination Port; 8@ (BO)
[Stream index: 7]

[TCP Segment Len: 8] m

Acknowledgment number: 0 .

+ 3 e

OO0 45 00 DO 40 ed 42 40 00 40 06 ed dl ac 10 88 01 E..@.BQ. @.......
0ol8 ac 10 88 Bl N

0020 4 !
0030 I E

According to our analysis, the ACK value that we must receive should be 704809602

(incremented SEQ value with 1). Let’s verify the same using the next packet and its
corresponding related information using the details and bytes pane. Refer to the following
screenshot for illustration:

| Time | Source ‘ Destination ‘ Protocol | Length[Info
282 -895706969.756684000 172,16.136.1 172.16.136.129 TCP 64 52138-80 [SYN] Seq=0 Win=65535
284 15. 671376000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] Seqmimck=1 Win=
285 15. 672063000 172.16.136.1 172.16.136.120 HTTP 375 GET / HTTP/1.1
286 1228372207,391617000 172.16,136.129 172.16.136.1 TCP 52 80-52138 [ACK] Seq=1 Ack=324 Wi
287 15.672711000 172.16,136.129 172.16.136.1 HTTP 503 HTTP/1.1 200 0K (text/html)
288 15. 672725000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] Seq=324 Ack=452
289 -895706969, 777480000 172.16.136.1 172.16,136.129 TCP 64 52139-80 [SYN] Seq=0 Win=65535
290 15. 747286000 172,16.136.129 172.16.136.1 TCP 60 80-52139 [SYN, ACK] Seq= Ack=l
291 714245694.355758000 172.16.136.1 172.16.136.129 TCP 52 52139-80 [ACK] Seq=1 Ack=1 Wins
292 378319958, 968279000 172,16,136,1 172,16.136,129 HTTP 359 GET /ffavicon,ico HTTP/1.1
293 1580695018,460033000 172.16,136.129 172.16.136.1 TCP 52 80-52139 [ACK] Seg=1 Ack=308 Wi

me 283: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0

¢ packet data

:ernet Protocol Version 4, Src: 172.16.136.129 (172.16.136.129), Dst: 172.16.136.1 (172,16.136.1)
msmission Control Protocol, Src Port: 80 (80), Dst Port: 52138 (52138), Seq: 0, Ack: 1, Len: 0
Source Port: 80 (80)

Jestination Port: 52138 (52138)

[Stream index: 7]

[TCP Segment Len: 6]

Sequence number: 0 (relative sequence number)

4500 00 3¢ 00 00 49 00 40 06 42 18 ac 10 88 81 <0 ...
ac 10 8 01 baa 2d 39 f4 a

Refer to the following list to understand what each pointers highlights:

e The second packet I selected is the SYN, ACK packet that the client received from the
server. It contains the SEQ=0 and ACK=1 (relative numbers) servers.

e The related information for the packet 2 in the communication is shown in the details
pane and the bytes pane. If you observe, in the details pane, the ACK server sent for
the client’s request is 1.

e The hex value for the AcK received is 0x2a028a82, which is equivalent to 704809602
in decimal. This is the same value that we should be expecting.

Now, it would be easy for you to check the absolute numbers translating them from their
given hex values. There is one more interesting way by which we can customize the
numbering system, where we can view the real absolute numbers directly in the list pane
and the details pane. Follow these steps to activate and deactivate it:

1. Navigate to Edit | Preferences in the menu bar.

N

Expand the Protocol tree and look for TCP.

3. Remove the checkmark from the Relative sequence numbers option, as shown in

the following figure:

Ml Wireshark: Preferences - Profile: Default

SoulSeek "
SoupBinTCP
SPOY

SPRT

SRVLOC

SSCOP

S5H

5L

STANAG 3066 DTS
STANAG 3066 SIS
StarTeam

5TP

STT

SUA

SV
SYNCHROPHASOR
T8

TACACS+

TALI

TCAP

TcP

TCPENCAP
TCPROS

TDMoE

TDMaP

D3

tetra

Help

Show TCP summary in protocol tree:
Validate the TCP checksum if possible:
Allow subdissector to reassemble TCP streams:

Analyze TCP sequence numbers:

[Relative sequence numbers:

Scaling factor te use when not available from capture:
Track number of bytes in flight:

Calculate conversation timestamps:

Try heuristic sub-dissectors first:

Ignore TCP Timestamps in summary:

Do not call subdissectors fior ermor packets:

TCP Experimental Options with a Magic Number:

Apply

4. Navigate to Apply | Ok. That’s it. Refer to the following screenshot:

283 -1439969339.488273000 172.16.136.129 172.16.136.1 TCP 60 80-52138 [SYN, ACK] Seq=7587

284 15.671376000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] 5eq=704809602
285 15.672063000 172.16.136.1 172.16.136.129 HTIP 375 GET / HTTP/1.1

286 1228372207.391617000 172.16.136.129 172.16.136.1 TCP 52 80-52138 [ACK] 5eq=758772904
287 15.672711000 172.16.136.129 172.16.136.1 HTTP 503 HTTP/1.1 200 0K (text/html)
288 15.672725000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] 5eq=704809925
289 -8957009609, 777480000 172,16.136,1 172.16,136.129 TCP 64 52139-80 [SYN] 5Seq=101863165¢
290 15.747286000 172,16.136.129 172.16.136.1 TCP 60 80-52139 [SYN, ACK] Seq=1324
291 714245694,355758000 172.16.136.1 172.16.136.129 TCP 52 52139-80 [ACK] 5eq=101863165
292 378319958.968279000 172.16.136.1 172.16.136.129 HTTP 359 GET /favicon.ico HTTP/1.1
293 1580695018,460033000 172.16,136,129 172.16,136.1 TCP 52 80-52139 [ACK] Seq=132490464

ooooooo

ame 282: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface 0

w packet data

ternet Protocol Version 4, Src: 172,16.136.1 (172.16.136,1), Dst: 172,16.136,129 (172.16.136.129)
ansmission Control Protocol, Src Port: 52138 (52138), Dst Port: 80 (80), Seq: 704809601, Len: 0
Source Port; 52138 (52138)

Destination Port: 80 (80)

[Stream index: 7]

[TCP Segment Len: 0]

Sequence number: 704809601

Acknowledgment number: ©

As we analyzed, the first packet in the TCP handshake process has an SEQ number
704809601 as an decimal equivalent. Now, after deactivating the Relative sequence
numbers options, we can observe the same in the list and details panes.

There are a few more options that are enabled by default in the TCP Protocol Preferences
window, which makes the analyses more systematic and advanced. For example,
validating the checksum whenever possible and A=analyzing the TCP sequence numbers.

Checksums are generally used during the transmission to ensure the integrity of the data
being sent and received. As discussed, there is an extra field in the TCP header. What
actually happens is when the sender prepares the packet that needs to be transmitted, the
checksum of the packet that contains data is calculated and sent along with the packet.
Now, the receiving side will receive the packet and recalculate the checksum using the
same algorithm used by the sender. If the checksum value that came along with the packet
is identical to the one that the receiver calculated, then the packet is accepted; otherwise,
the packet that contains the error (checksum not matched) is discarded and the sender side
is not even informed about the error that has taken place. The sender is supposed to know
about this by himself. The validation of the checksum is not 100% guaranteed, and even
this reduces the performance as TCP packets reassembly won’t take place now.

Checksum offloading is a feature that only new network drivers support, where the
packets that are ready to be transmitted are passed on to the network hardware that are
captured by Wireshark with an empty checksum field that generates the checksum
offloading error. The reason is that, even before the actual packet transfer happens,
Wireshark captures the packet (the packets will contain the valid checksum once the actual
transfer happens). This might lead to several confusion. So, the best approach would be to

switch off the offloading feature from your interface if available, or to disable the Validate
checksum feature for TCP protocol preferences. Refer to the following figure that
illustrates this:

282 -895706969. 756684000 172.16.136.1 172.16.136.129 TCP 64 52138-80 [SYN] 5eq=704809601 '
283 -1439969339,488273000 172,16.136.129 172.16.136.1 TCP 60 80-52138 [SYN, ACK] Seq=75877
284 15.671376000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] 5eq=704809602 .

285 15.672063000 172.16.136,1 172.16.136.129 HTTP 375 GET /

HTTP/1.1

FI g] |

iiiiiii

Header Length: 32 bytes
. 0000 0001 1000 = Flags: 0x018 (PSH, ACK)
Window size value: 30
[Calculated window size: 30720]
[Window size scaling factor: 1024]

The packets with invalid checksums are displayed with a black background and red
foreground color. Look at the error highlighted in red color in the details pane; this states
that the checksum is incorrect, and this might be because the checksum-offloading feature
is activated. The packets with an invalid checksum cannot be reassembled, and it doesn’t
look nice (a lot of invalid errors on the screen), so the best option is to deactivate this
feature if not required.

Another option that you should know about is the Analyzing TCP sequence numbers
feature, which keeps track of the SEQ and ACK numbers and keeps you aware of the various
types of errors that can take place during transmission, for example, lost frames, duplicate
ACK, retransmissions, window scaling, and several others. Turning this feature off will also
affect the Expert Info dialog, where any of the warnings related to transmission errors
and other useful information won’t be populated.

Unusual TCP traffic

One of the scenarios that commonly falls under this category is the lost connection or
unsuccessful connection attempt scenario, which we have already analyzed in the RST
packets section. You might observe several other examples, such as high latencies, due to
long-distance communications or queuing up of the traffic. To make the analysis easy and
to sort out such problems, use the time column by sorting it, and then, you will be able to
figure out large time gaps between the packets at the top of the list pane.

Another example can be where a malicious user is trying to perform a port scan on your
network and your firewall responds with RST packets to the user to avoid such attacks, or it
might also be possible that the port that the malicious user is looking for is closed. A
normal scan can generate a lot of traffic and which is quite noisy. This can be easily
observed in the list pane of Wireshark. Refer to the following screenshot where I’ve tried
scanning my machine using nmap from another device, and it seems quite visible and
hence is easy to track:

17 42.896242000

172.16,136.129
18 -1440527712.212734600 172.16.136. 1

172.16.136.1 TcP
172.16.136, 129

44 52604993 [SYN] Seg=1
40 993-52604 [RST, ACK]

20 42, 896542000
21 -1440526406, 274558000 1
27 -1440529409. 791742000

16,1361
2.16.136. 129
.16, 136.1

172.16, 136,12
172.16.136.1
16,136,129

40 2152604 RST, ACK]
44 52604-113 [SYN] Seg=1
40 113-52604 [RST, ACK]

23 42,897040000

24 -1440529413. 396222000

25 42.897314000
26 42.897326000

16,136,129
.16,136.1

172.16.136.129

172.16,136.1

.16,136.129
172.16.136.1
172, 16,136,129

44 52604-554 [SYN] Seq=1
40 554-52604 [RST, ACK]
44 52604-143 [SYN] Seg=1
40 143-52604 [RST, ACK]

27 -1440527002, 586622000 172.16.136.129
28 -1440529304.344318000 172.16.136.1
29 -1440529409.461758000 172.16.136.129
30 42.897884000 172.16.136.1
31 -1440529409, 461758000 172.16,136.129
32 42,898151000 172.16,136.1
33 -1440529409. 461758000 172.16.136.129
172.16.136, 1

AR e A S

172.16.136.1
172.16.136. 129
172.16.136.1
172.16.136.129
172.16,136.1
172.16.136,129
172.16.136.1
172, 16,136, 129

A9Alvc A o

44 52604-111 [SYN] Seg=1
40 111-52604 [RST, ACK]
44 52604-256 [SYN] Seg=l
40 256-52604 [RST, ACK]
44 52604-8888 [SYN] Seq:
40 8888-52604 [RST, ACK]
44 526043389 [SYN] Seq=
40 3389-52604 [RST, ACK]

44 €acnad n3 fevml Faa_a1na

34 42,898425000

3c 47 annTisAnn

t

1111111

Frame 19: 44 bytes on wire (352 bits), 44 bytes captured (352 bits) on interface ©

Raw packet data

Internet Protocol Version 4, Src: 172.16.136,129 (172,16.136,129), Dst: 172.16,136,1 (172,16.136.1)

Transmission Control Protocol, Src Port: 52604 (52604), Dst Port: 21 (21), Seq: 1024978624, Len:
Source Port: 52604 (52604)

Observe Frame 19, where the port scan initiated by the malicious user sent a SYN packet in
order to check whether the port is open or closed. As a result, in our case, port 21 (FTP)
was closed; hence our machine sent a RST packet, which will be used by the port scanner
on the other side to display statistics. If the port was open, the malicious user will be
notified with SYN and Ack (refer to the following screenshot), which signify that our
machine is open to a connection over the port 21, and this might become an entry point to
the user’s malicious attacks.

e — =27 16136 100 189 9

152 [SYN, ACK]

46 -1440530052.614709000 172.16.136.1 172.16.136.120 TcP 44213

47 -1440530056.614709000 172.16.136.129 172.16.136.1 TCP 40 39152-21 [RST] Seg=

Raw packet data
Internet Protocol Version 4, Src: 172.16,136.129 (172.16,136.129), Dst: 172.16.136.1 (172.16.136.1)
Transmission Control Protocol, Src Port: 39152 (39152), Dst Port: 21 (21), Seq: 891895594, Len: 0

Figure 5.3: Port 21 open, an entry point for malicious attacks

Take a look at Frame 45, where the client sent a SYN request to the server at
172.16.136.1, and by this time, the port was open so our server sent SYN and ACK packets
(Frame 46), acknowledging the connection initiation attempt with a positive confirmation
that the server is open to connection over port 21.

There can be various scenarios other than this half-open scan (the scan shown in the
preceding screenshot is called half open because the client who initiated the connection
attempt, would never complete the connection by sending ACK, which the server will be
expecting). If your basics regarding the packet behavior, connection initiation, completion
process, TCP headers, flags in packets, and SEQ-ACK numbers are clear, then it would be
quite easy for you to point out any unusual form of traffic that is flowing around. There is
no such automated tool that can point out these abnormalities until you customize your
environment about how to react or alarm you to such traffic anomalies. These are some
traffic patterns that you can expect to happen on a regular basis.

How to check for different analysis flags in Wireshark

The analysis of the flags present in TCP packets is quite simple while using Wireshark,
there is an individual section that is available in the details pane for every TCP packet.
Let’s take a TCP packet from our previous handshake process that we captured and see
how flags are presented in the details pane. Then, we will try to create a display filter
corresponding to the same. Refer to the following screenshot that illustrates this:

ngt

No. Time Source Destination |ProtocoI|Le h| Info

05706969, 756684000

4444444

v Transmission Control Protocol, Src Port: 52138 (52138), Dst Port: 80 (B0), Seq: 704809601, Len: 0
Source Port: 52138 (52138)
Destination Port: 80 (80)
[Stream index: 7]

[TCP Segment Len: 0]
Sequence number: 704809601
Acknowledgment number: 0
Header Length: 44 bytes
v ..., 0000 0000 0010 = Flags: 0x002 (SYN) 2
OB vone cui = Reserved: Not set

Nonce: Not set

....... Congestion Window Reduced (CWR): Not set

ECN-Echo: Not set

Urgent: Not set

... = Acknowledgment: Not set

........ 0... = Push: Not set

.0.. = Reset: Not set

Syn: Set | 3

Fin: Not S

Window size value: 65535

- - =
R T
i = ;
o ;
== :
L T T T |

-~
- I
=1
ngHu

Now, we will see what each pointer signifies:

e Here, the SYN packet sent from the client to the server to initiate the three-way
handshake can be seen in the list pane.

e Here, the flags related to the same packet are set and the hex equivalent of
000000000010 is set to 0x002.

¢ For the corresponding TCP packet, the Syn flag bit is set to 1; the same can be seen in
the details pane. The rest of them are still 0.

Now, if you wish to create a display filter to see only the SYN packets that you have in the
trace file, then apply the filter shown here. As a result, you will see only SYN packets
present in your trace file. The following figure illustrates the same:

Filter:

No.

jExpression... Clear Apply Save

Protocol|Length|Info

tep.flags==0x002

Destination

282 -895706969. 756684000 172.16.136.1 172.16.136.129 TCP 64 52138-80 [SYN]
289 -895706969.777480000 172.16.136.1 172.16,136.129 TCP 64 52139-80 [SYN)

Let’s try to create one more filter to view the SYN and Ack packets only in the list pane.
Follow these steps to create the filter:

Open your trace file.

Choose any TCP SYN, or ACK packet.

Note the corresponding SYN and ACK hex equivalent values for the flags set.
Create your filter using the hex equivalent that you have. Your filter must look
something like what is shown here.

L=

The User Datagram Protocol

As defined in RFC 768, a UDP is a connection-less protocol, which is great for
transmitting real-time data between hosts and is often termed as an unreliable form of
communication. The reason for this is that UDP doesn’t care about the delivery of packets,
and any lost packets are not recovered because the sender is never informed about the
dropped or discarded packets during transmission. However, many protocols such as
DHCP, DNS, TFTP, SIP, and so on rely only on this. The protocols that use a UDP as a
transport mechanism have to rely upon other techniques to ensure data delivery and error-
checking capabilities. And these protocols are inbuilt with such features, which can
provide some level of reliability during the transmission. A point that we should not to
forget is that a UDP provides faster transmission of packets as it is not concerned about
the initiation of the connection or graceful termination as seen in the TCP. That’s why a
UDP is also referred to as a transaction-oriented protocol and not a message-oriented
protocol like a TCP.

A UDP header

The size of a usual UDP header is 8 bytes; the data that is added with the header can be
theoretically 65,535 (practically 65,507) bytes long. A UDP header is quite small when
compared to a TCP header; it has just four common fields: Source Port, Destination
Port, Packet Length, and Checksum. Refer to the UDP header shown here:

Source Port Destination Port
Packet Length Checksum 8 bytes
Application Data

e Source port: This is the port number used by the sending side to receive any replies
if needed. Most of the time, in a TCP and UDP, the port number chosen to be the part
of the socket is ephemeral. On the other side of the communication, the port number
comes in the category of well-known port numbers.

¢ Destination port: This field of the header identifies the port number used by the
server or receiving side, and all data will be transmitted to this port. This port number
is assigned to a particular service by IANA, and definitely, it is permanently assigned
to the same service specifically. For example, port 53 is for DNS and cannot be
assigned to any other service (not advisable).

e Packet length: This field specifies the length of the packet, starting from the header
to the end of the data; the minimum length you will observe will be 8 bytes every
time, that is, the length of the UDP header.

e Checksum: As discussed earlier, checksum is performed over data, that is, the packet
of the packet to ensure data integrity that is what is sent from the sender side is the
same what receiver got and to verify this there are couple of checksum algorithms
which comes to the rescue. Sometimes, while working with a UDP, you will see that
the checksum value is 0 in the packet we received. This means that the checksum is
not required to be validated.

How it works

To understand the way a UDP works, let’s go ahead and analyze some of the protocols that
use a UDP as a delivery protocol. First, I would like to discuss DHCP, and then we will
see DNS traffic as well. We actually saw UDP traffic before as well while we were going
through VOIP and SIP analysis.

For analysis purpose, I have a default gateway configured at 192.168.1.1 and a client at
192.168.1.106. Using the client, I will try to generate DHCP and DNS traffic, which will
be captured in Wireshark, and then, I will try to dissect each protocol’s communication
process as well as the different components utilized during the whole session. Refer to the
following network architecture that I have:

L~

<€ >

e e — e e —

Default Gateway IP: Client IP 192.168.1.106

192.168.1.1

The DHCP

The most common and important protocol that assigns IP addresses to devices and makes
them network compatible is Dynamic Host Configuration Protocol (DHCP). Now, from
the client, I will try to release the IP address that the client already holds, which will
generate a DHCP packet, and the same will be captured by our sniffer. Look at the
following figure to understand this:

'. Ll '_, .-.;:.__f

....... .1
D Frame 2: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface 0
D Ethernet II, Src: Apple b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Zte 07:73:6c (do:5b:a8:07:73:6c)
D
v User Datagram Protocol, Src Port: 68 (68), Dst Port: 67 (67) 2
Source Port: 68 (68) 3
Destination Port: 67 (67)

Length: 308 '
b Checksum: 0x™™ [validation disabled]

[Stream index: 0]
D Bootstrap Protocol (Release)

In the list pane, we can see a DHCP release packet that was generated implicitly by the
client in order to release the current IP address (I used the dhclient -v -r command on
the Linux terminal to release the IP address, but be careful while using this command as it
may disconnect your machine from the network, hence making it incompatible for
network communication). The client from the IP address 192.168.1.106 to the server at

192.168.1.1 initiates the request. The port numbers used by the client and server in case
of DHCP are permanent, these won’t be changed in your case either unless they are
manually configured.

The DHCP server port number is 67 and the DHCP client port number is 68 by default;
you can see the same in the preceding figure (highlighted as 3). There is a fourth field that
I have highlighted, the packet length field, which specifies the length of the packet starting
from the first byte until the end of data in the packet. However, out of 308 bytes, 8 bytes
show the length of the UDP header and the remaining 300 bytes represent the application
data that is appended. Interestingly, if a machine is power cycled, it will request the DHCP
server to allocate an IP address. This, as a result, will generate a couple of packets related
to the DHCP request, release, and offer and various others that will also use the UDP as a
transport mechanism.

:ilter:ludp.dstport==67 jExpression... Clear Save

lo. |Time Source |Destination |Protocol|Length|Info
103 91.729193000 0.0.0.0 255.255.255.255 DHCP. 342 DHCP Discover
109 93.810969000 0.0.0.0 255, 255,255,255 DHCP 342 DHCP Request

* Frame 19: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface 0
+ Ethernet II, Src: Apple b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Zte 07:73:6c (d0:5b:a8:07:73:6¢)
+ Internet Protocol Version 4, Src: 192,168.1.106 (192.168.1,.106), Dst: 192.168.1.1 (192,168.1.1)
* User Datagram Protocol, Src Port: 68 (68), Dst Port: 67 (67)
Source Port: 68 (68)
Destination Port: 67 (67)

P Checksum: 0x2d5d [validation disabled]
[Stream index: 1]
* Bootstrap Protocol (Release)

I filtered the packets listed to show only DHCP packets using the udp.port==67 filter; as a
result, only DHCP packets will be listed in the list pane.

The TFTP

The Trivial File Transfer Protocol (TFTP) is a lightweight version of the FTP that is
used to transfer between hosts. Unlike the FTP protocol, TFTP does not ask users for any
credentials. A TFTP uses a UDP as a transport mechanism. Most commonly, a TFTP is
used in LAN environments, and when dealing with manageable devices such as switches
and routers, network administrators do use TFTP servers to take a back up of
configuration files and to update the firmware running in those devices. A TFTP is also
used by security professionals to transfer files from their system to yours in order to
escalate the privileges (gaining more rights on a compromised system).

I have a TFTP server running at 192.168.1.106 and a client running at 192.168.1.104.
There is a text file abc. txt that I’ve created on the server, and the client will try to
download the same. And our sniffer in place will capture the traffic that is generated.

TETP Server- 192.168.1.106 TFTP Client: 192.168.1.104

The traffic generated due to the transaction that takes place between two hosts is
successfully captured and the packets corresponding to it are shown in the following
figure:

Filter: |tftp
No.

jExpression... Clear Apply Save
Protocol|Length|Info

Destination
TFTF - |'89 Read Request, File: abc.txt, |

58 15.950236000 192.168.1.104 192.168.1.106 TFTP

59 15.986825000 192.168.1.166 192.168.1.104 TFTP 75 Option Acknowledgement, tsiz
60 15.989415000 192.168.1.104 192.168.1.106 TFTP 46 Acknowledgement, Block: 0
61 15.989907000 192.168.1.106 192.168.1.104 TFTP 49 Data Packet, Block: 1 (last)
62 15.992283000 192.168.1.104 192.168.1.106 TFTP 46 Acknowledgement, Block: 1

iiiiiii

b

P Ethernet II, Src: LiteonTe_fa:5e:b4 (20:68:9d:fa:5e:b4), Dst: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)

b Internet Protocol Version 4, Src: 192.168.1.104 (192.168.1.104), Dst: 192.168.1.106 (192.168.1.106)
< User Datagram Protocol, Src Port: 51118 (51118), Dst Port: 69 (69)

Source Port: 51118 (51118)
Destination Port: 69 (69)
Length: 55

P Checksum: 0xc621 [validation disabled]
[Stream index: 5]

¥ Trivial File Transfer Protocol

[Source File: abc.txt]]3
Opcode: Read Request |
Source File; abc. txt
Type: octet

P Option: blksize\000 = 512\000

P Option: timeout\000 = 10\000
P Option: tsize\000 = 0\000

Now, let’s see what each pointer signifies:

e This shows that the transfer of the packet is initiated as soon as the client requests the
abc . txt file. The request frame can be seen in the list pane.

e Asdiscussed, a TFTP uses a UDP for a transport mechanism. The related details for
the request are shown in the details pane, which states that the request was initiated
from a ephemeral port number from the client destined to port 69 on the server (69 is
a well-known port to the TFTP protocol).

e The request was specific to the abc. txt file that is also shown in the details pane in
the TFTP protocol section.

You must be wondering about the acknowledgement packets that are shared between the
two hosts. As we discussed, a UDP is an unreliable form of communication, so why are
we seeing ACKs in a UDP? The reason is that the TFTP server I am using has some kind
of inbuilt reliability feature. Even on the client side, over the standard console, after
initiating the request, I received quite interactive messages from the server, such as the file
of size 3 bytes has been transferred successfully, and various other details were listed
along with the message. The interesting thing to know here is that port 69 was only
involved in the first packet, and the rest of the packets were sent and received by the
acknowledging feature that the server is embedded with. So, the statement that some
protocols use a UDP as a transport protocol and have their own inbuilt feature to ensure
delivery is true, as we have just witnessed.

Unusual UDP traffic

Suppose that the resource we are looking for is not available on the server. How will
traffic look like then? Refer to the following screenshot to understand this:

Filter: |tftp jExpression... Clear Apply Save
No. | Time Source ‘ Destination | Protocol | Le ngth‘ Info
9 3.109903000 192.168.1.166 192.168.1.104 TFTP 61 Error Code, Code: File not found,

As seen in the preceding screenshot, the client requested an invalid resource that the server
wasn’t able to locate and hence returned with an error code and the summary message
File not found. The same message was shown over the standard console to the client.

Sometimes, it is also possible that the server daemon may not run and the client may
request a certain resource. In such cases, the client would receive the ICMP destination
unreachable error with the error code 3. Refer to the following figure for the same:

Filter: ‘tftp j Expression... Clear A Save
No. | Time Source ‘ Destination ‘Pmtocoi ‘ Length| Info
5 6,170384000 192,168, 1. 104 192.168.1.106 TFTP 89 Read Request, File: abc.txt, Transfer type

il

b Frame 6: 117 bytes on wire (936 bits), 117 bytes captured (936 bits) on interface D
P Ethernet II, Src: Apple b9:53:ec (dB:bb:2c:b9:53:ec), Dst: LiteonTe fa:Se:bd4 (20:68:9d:fa:5e:bd)
b Internet Protocol Version 4, Src: 192.168.1.106 (192.168.1.106), Dst: 192,168.1,104 (192.168.1.104)
= Internet Control Message Protocol
Type: 3 (Destination unreachable[?;]
Code: 3 (Port unreachable) i
Checksum: ©x8168 [correct]
b Internet Protocol Version 4, Src: 192,168.1,104 (192.168.1.104), Dsf; 192,168,1,106 (192.168.1,106)
< User Datagram Protocol, Src Port: 51183 (51183), Dst Port: 69 {BE)E
Source Port: 51183 (51183)
Destination Port: 69 (69)
Length: 55
b Checksum: ©xc5ed [validation disabled]
[Stream index: 1]
= Trivial File Transfer Protocol
|5ource File: abc,txt]
Opcode: Read Request il}m
Source File: abc.txt
Type: octet
b Option: blksize\000 = 512\000
P Option: timeout\000 = 101000
b Option: tsize\000 = 91000

Now, we will see what each pointer signifies:

e The server returned with an ICMP destination unreachable message when the
TFTP server daemon was not functional

e The client received an error code of type 3

e The details regarding the request were mentioned in the reply under the UDP
protocol section, which stated that the request was sent to port 69, which was

currently nonfunctional
e The requested resource was shown under the TFTP protocol section

Unusual DNS requests are also very often seen when a client initiates a request to look for
name servers associated with an address. It would look similar to the one shown in the

following figure:

No. |Time |Suurce ‘Destinatiun |Protoco|| Length‘ Info
1 0,000000000 DNS [::]Bﬂ Standard query 0x8340 PTR 0.0,0.8, in-addr.arpa

3R O am A e Avaad

et

D Frame 2: 80 bytes on wire (640 bits), 80 bytes captured (640 bits) on interface 0
b Ethernet II, Src: Zte 87:73:6c (dP:5b:aB:07:73:6c), Dst: Apple b9:53:ec (d8:bb:2c:b9:53:ec)
b Internet Protocol Version 4, Src: 192.168.1,1 (192,168.1.1), Dst: 192, 168.1, 106 (192,168, 1.106)

P
< Domain Name System (response) [é]
[Request In: 1]
[Time: 0.004784000 seconds]
Transaction ID: OxBad0
b Flags: 0x8183 Standard query response, No such name| 3
Questions: 1
Answer RRs: ©
Authority RRs: 0
Additional RRs: @
P Queries

Now, we will see what each pointer signifies:

e 1: As seen in the list pane, the client at 192.168.1.106 initiated a request to look for
the address 8.0.0.0 and received a response in Frame 2

e 2: The request was sent to the default gateway that holds the DNS cache

e 3: The gateway responded with a No such name error

There can be multiple scenarios where you will see unusual traffic related to a UDP. The
most important thing to look for is TFTP traffic, which might be generated because of a
the TFTP client in your network. It may be malicious traffic that you would like to make a

note of.

Summary

TCP is a reliable form of communication that has features like a three-way handshake and
a tear down process ensures the connection is reliable and interactive.

A TCP header is 20 bytes long and consists of various fields such as source and
destination port, SEQ and ACK numbers, offset, window size, flag bits, checksum, and
options. The presence of various flags and header fields let the sender and receiver be sure
about the delivery as well as the integrity of the data being sent.

The SEQ and ACK numbers are used by TCP-based communications to keep track of how
much data is being sent across between the hosts taking part.

A UDP is a connection-less protocol that is a nonreliable means of communication over IP,
where the lost and discarded packets are never recovered. A UDP does provide us with
faster transmission and easier creation of sessions. A UDP header is 8 bytes long, which
has very few fields such as source and destination port, packet length, and checksum. At
the end application, the data is appended.

Common protocols such as DHCP, TFTP, DNS, and RTP mostly use a UDP as a transport
mechanism, and these services are some of the major services that we deal with in our
everyday life. To make the connection reliable, some of these protocols support their own
version of acknowledging features that comes inbuilt.

In the next chapter, you will learn the basics of wireless traffic, how to decrypt wireless
traffic, and the anomalies that may follow.

Practice questions

Q.1 List at least five differences between TCP and UDP protocols.
Q.2 Capture a three-way handshake and tear down packets using your own FTP server.

Q.3 Explain the purpose of window scaling and checksum offloading and state their
corresponding significance in terms of TCP communications.

Q.4 In what way can TCP-based communication can recover from a packet loss or
unexpected termination? Imitate any scenarios that can generate such traffic.

Q.5 Create a display filter to show only TCP FIN and ACK packets sent to your machine
from your default gateway in the list pane.

Q.6 What is the difference between the absolute and relative numbering system used by
Wireshark in order to keep track of packets?

Q.7 What is the purpose of the options field at the end of the TCP header and what kind of
arguments does it contain?

Q.8 There is one more way through which you can create filters to view a packet with a
specific flags set. Without providing the HEX equivalent, figure out what it is and how
you can filter a packets set with a PSH flag set using the same technique.

Q.9 Find out why the length of data can only be 65507 bytes while working with a UDP.

Q.10 What kind of packets you will see in a list pane if the server daemon for a TFTP is
not running?

Q.11 Try performing a zone transfer on your locally configured DNS and capture the
traffic for analysis. What interesting facts did you notice about the packets? Explain them
in brief.

Chapter 6. Analyzing Traffic in Thin Air

In this chapter, you will learn how to analyze wireless traffic and pinpoint any problems.
You will also learn how to analyze wireless traffic using Wireshark. The following are the
topics we will cover in this chapter:

Understanding IEEE 802.11 traffic
Analyzing normal and unusual behavior
Lab up—wireless communication
Decrypting encrypted wireless traffic

Lab up—decrypting WEP and WPA traffic
Practice questions

We start from the basics such as how WLAN traffic gets generated and various essential
elements responsible for handling the wireless transmission between hosts. Then, moving
ahead, we will analyze the usual and unusual forms of packets that can be seen in
Wireshark. Side by side, we will identify anomalies and regular traffic patterns. We will
also discuss how you can decrypt wireless (WEP) traffic using Wireshark, which can
definitely give an advantage while auditing WLAN environment.

What we are going to witness is not much different from the wired networking that we
saw earlier; here, we will be quite concerned with the medium through which packets are
flying around us. The two layers at the bottom of the OSI model are important as they
represent the data link and the physical layer. The data link layer is divided into two parts:
Logical Link Control (LLC) and Media Access Control (MAC).

Understanding IEEE 802.11

At the Institute of Electrical and Electronics Engineer (IEEE), there are several
committees working together on several projects, and one of these is 802, which is
responsible for developing LAN standards. A free white paper can be downloaded from
the IEEE website based on 802 standards. Specifically, 802.11 contains WLAN standards.
If you want to analyze what normal traffic looks like, you should be aware of the
standards and the present working technologies within 802.11.

There are a couple of 802.11 standards, but the few important ones that we should know
about are 802.11b, 802.11a, 802.11g, and 802.11n, which are explained in the following
list:

e 802.11: This only supports a network bandwidth of 1-2 Mbps. This is the reason why
many 802.11-compatible devices have become obsolete. Hence, it became necessary
to develop other 802.11 standards.

e 802.11b: This specification uses a signaling frequency of 2.4 Ghz that is similar to
the 802.11 standard. A maximum of 11 Mbit transmission rate can be achieved over a
2.4 Ghz band using b specification. As most of the home appliances (microwave,
cordless phones, and so on) work over a 2.4 Ghz spectrum, it causes quite dense
interference and congestion during WLAN packets transmission. To avoid the
interference, the access points can be installed at a reasonable distance. The 802.11b
band is divided into 14 overlapping channels, where every channel has 22 Mhz
widths. In one instance, there can be a maximum of three non-overlapping channels
operating at the same time. This space separation is necessary and required in order
to let the channels operate individually. One device can be part of one channel at a
time; the same follows when you listen to the packets. Practically, it is possible now
to sniff more than one channel at a time, which is facilitated through various tools
that are now available; one of them is Kismet, which can sniff up to 10 channels at
regular short intervals.

e 802.11a: This is based on Orthogonal Frequency Division Multiplexing (OFDM)
that was released in 1999 and supports a maximum transmission rate up to 54 Mbps,
which also gives us an advantage over 802.11b congested bands. This specification
was developed as a second standard to 802.11 standards. It is commonly used in
business environments, but because of its high cost, the b specification is not best
suited for home environments. Though it supports higher speeds around 5 Ghz
spectrums than 802.11b, the range of devices falls short if it is configured with a
specification. The capability of bypassing the obstructions that comes in between is
not better than 802.11b. There is no channel overlap that happens in 802.11a. A
higher regulated frequency helps in preventing the interferences caused by devices
that work on 2.4 Ghz spectrums.

e 802.11g: Somewhere around the middle of 2002, this specification came into
existence, and this tried combining the best features of 802.11a and 802.11b. The
signaling frequency used here is 2.4 Ghz, and the bandwidth it supports is upto 54
Mbps. Due to the 2.4 Ghz frequency in use, the range parameter that suffered a
decline was improvised. The 802.11g also supports backward compatibility, which

means that all 802.11g access points will support network adapters using 802.11b and
vice versa. A strong point in this specification is: it won’t get easily obstructed.
802.11n: To improve further, the wireless N was introduced. The key area where the
improvement was carried on is the range and the transfer rates. The base technology
that is implemented to make all this possible is Multiple-Input Multiple-output
(MIMO) communication. There are multiple antennas fitted into the access point that
are used to send, receive, and bounce off the signals. This enables a channel
frequency of 40 Mhz. The final version of this specification, which was released in
2007, stated a transfer rate up to 600 Mbps. It can be configured with 2.4 or 5 Ghz (if
the access point is compatible with both); it can use both frequencies at the same
time, thus enabling backward compatibility with network adapters. A maximum of
four antennas can be used with the MIMO technology. Once all of this starts working
together, users can experience fastest speed and maximum signaling range, and it’s
not much affected by another device working on the same frequency band. If this
network type gets inferred, then it will other specifications such as 802.11b/g.

Various modes in wireless communications

WLAN:S uses the Carrier Sense Multiple Access and Collision Avoidance protocol
(CSMA/CA) to manage the stations sending data, where every host that wants to send
data is supposed to listen to the channel first, that is, if it is free, then the host can go ahead
and send the packet; if not, then the host has to wait for its turn. This is because the same
medium is being shared by every host, thus avoiding collisions that might happen if two
hosts start transmitting at the same time, as a result making the performance of the
network go slow and more prone to errors. The 802.11 architecture is composed of several
components such as a station (STA), a wireless access point (AP), basic service set
(BSS), extended service set (ESS), independent basic service set (IBSS), and
distribution system (DS).

There are four common modes of association between the STA and the AP, which are as
follows:

¢ Infrastructure/managed mode: A wireless network environment where two devices
wish to connect an STA and an AP to share data and network resources is termed as
the infrastructure mode. An AP is defined with a Service Set Identifier (SSID),
which is actually just a name given to the access point for identification purpose (for
security reasons, sometimes, broadcasting an SSID can be disabled, which will
prevent your wireless network from being discovered by unintended users). For
example, once you start scanning for available Wi-Fi networks around you to connect
to, you’ll be shown multiple network names, from which you are supposed to choose
a network that you know about. All these names of networks are called SSID.
Another useful term to know is Base Service Set Identifier (BSSID), that is, the
access point’s MAC address. By default, every access point is supposed to broadcast
the SSID and transmit a beacon frame 10 times in a second to let devices know that
they are ready to accept connections. Refer to the following diagram that illustrates
this example:

Client Wireless Access
Point

¢ Ad Hoc mode: In this kind of network, a peer-to-peer network is formed where two
clients are connected to each other. The packets sent and received by the wireless
clients are not relayed to the access point. The clients taking part in this
communication now handle the process of sending beacons and processing
authentication that a WAP handles in normal scenarios.

Wireless Client

Wireless Client 2
1

e Master mode: When the NIC card in your machine lets you become an AP, this is
what the master mode is all about. Higher-end devices have a capability to act like
access points, and this is possible when NIC cards start working together with a
special driver.

Wireless Client Wireless Client
working as AP

Monitor mode: For the purpose of this chapter, this mode is very important. This
mode is used to listen to the packets that are flying around; when the monitor mode is
activated, your device will stop transmitting and receiving any packets and it will just
sit silently and sniff live traffic. If you want to capture packets from the wireless
network concerning 802.11 protocols, then your NIC and the driver that is being used
must support the monitor mode. It is quite easy to activate the monitor mode on an
OS, such as Linux and MAC; however, with Windows, it becomes quite troublesome
to activate the monitor mode. This mode is often termed as the Radio Frequency
Monitor Mode (RFMON).

Wireless Client | |

Wireless Access
Point

Wireless Client with
monitor mode enabled

After learning the basics of different forms of wireless networking infrastructures that you
might note in a production environment very casually, it would definitely become a bit
easier for you to choose between the various modes available as per your requirements.

Wireless interference and strength

To better understand the normal traffic pattern, we should be aware of the various usual
factors that govern the performance of a wireless network. For example, data packets,
associations, and disassociations, signal strength with/without interferences. Our objective
while analyzing preceding parameters is to form a baseline that can prove worthy when
comparing the traffic patterns with unusual ones. The factor that affects the network
performance the most is a different form of interference, which is caused due to various
factors such as physical obstructions such as thick walls, roofs; and electronic appliances,
such as microwave, cordless phones, and so on.

While dealing with wireless networks, the integrity of data becomes more important
because the packets are simply traveling in the air, and anyone with some basic hardware
and knowledge of how wireless networks work can sniff and capture these packets easily.
Wireless networks don’t have any rescue options to protect the integrity, so using them,
you cannot be 100% assured regarding the security of data.

Let’s say, for example, you are listening to a particular channel in the spectrum. Normally,
you can sniff only one channel at a time, but if the channels start overlapping each other,
than it is quite possible that you will see other channel packets in the list pane. As per the
normal functioning of a wireless spectrum, the networks that operate close to each other
are supposed to choose non-overlapping channels such as 1,6,11,14 to avoid any issues.
Refer to the following figure that best illustrates channel overlapping (I used from the
same from Wikipedia):

1 2 3 4 5 6 i 8 9 0 1 12 13 14 Channel
2412 2417 2422 2427 2432 2437 2442 2447 2452 2457 2462 2467 2472 2.484 Center Frequency

22 MHz

The strength of the wireless network is totally dependent on Radio Frequency (RF)
signals that carry the traffic. Once the wireless signal starts traveling, the strength is
supposed to lessen eventually, as it travels farther because of the obstructions that come in
between. The device that works over the same RF energy is also responsible for reducing
the wireless signal strength. If you are also dealing with such issues, then just using
Wireshark to listen on an interface in the monitor mode won’t solve the purpose. You need
a spectrum analyzer, such as Wi-Spy+Channelyzer, that is paired with a USB (refer to
http://metageek.com) adapter and gives you an extra eye over the RF energy form;
otherwise, you won’t be able to see them. Most of the time, the device emitting high RF
energy can be the cause of poor network performance.

To inspect the environment for RF energy, you need to walk down the office on your own
with your laptop running a spectrum analyzer, which would be able to detect the RF
anomalies that can affect your wireless network performance. The placement of these
analyzers does play an important role in solving the problem. If a host in your office is not
able to connect then the best option is to place your analyzer as close to the host as
possible in order to perceive the situation from the host’s perspective. If various hosts in
your office experience a similar problem, then the best option would be to place the
analyzer near the access point they are trying to connect to. Depending on the scenario
you are dealing with, you can dynamically decide and even manually scan through the
office premises to get to know whether there is any RF energy interfering.

I don’t have any special hardware to show you RF energy, but I will use an inbuilt tool
from the Kali Linux OS, which will help us fetch various granular details regarding
different WLANSs available around my premises and all the devices that are connected to
Wi-Fi (if paired with a hardware used for spectrum analysis, this can prove really useful).
The name of the tool is Kismet, and it is quite efficient in representing details in graphical
and various available statistical formats, thus enabling us to know more about the
neighborhood (use it for ethical purposes). Follow these steps to use the Kismet tool on
Kali Linux:

1. First I enable the monitor mode using the airmon-ng start wlan® command (wlan®
is my wireless interface).

2. Open the terminal and type Kismet. You will be asked to set various customization
options—do not change any default settings.

3. Once you’re asked for the source (interface name) for the Kismet server to capture

http://metageek.com

the packets, specify your interface running on the monitor mode (in my case, this is
mon@. You can check your interface using the iwconfig command).

4. Now, let the tool run on its own for a few minutes; gradually, you will start noticing
that a graph is getting plotted for the live traffic captured. You will see various
wireless networks around you and most of the associated devices connected with it.

5. In the network section, you will see specific details for the wireless network, such as
BSSID, SSID, encryption algorithm used, and so on.

6. The clients’ section will show various devices associated with the network. Refer to
the following figure of the tool that lists my network and various clients connected to
it:

root@kali:

File Edit View Search Terminal Help
= Kismet Sort View Windows

Cyts TP 04 XSSO s Lo

Now, let’s see what does each pointer in the preceding screenshot signifies:

e In this part, just below the menu bar, the number of networks that my Wi-Fi adapter
is able to scan is shown. The first row shows my home network Anonymous and its
BSSID, when the network was last seen, the algorithm used, and the manufacturer of
the device.

¢ In this second section, Kismet lists out various devices that are currently associated

with the Anonymous network, their type (is it an access point or a wireless client),
the frequency that the devices are using for transmission, the total number of packets
a particular device has transmitted, the size of all packets, and the manufacturer of
the device (interestingly, Kismet was able to identify one device manufacturer that is
currently associated with my network, as shown in the first row). Refer to the
following screenshot that shows the device section separately:

e In the third section, there is a graph that shows the current rate at which the packets
are traveling around and the total amount of data packets that are shown with red
bars.

¢ In the fourth section, we can see a lot of details that are listed, such as the hostname
(Kali), total number of networks my NIC is able to see, for how long Kismet is
running, the total number of packets captured, and an average rate of packets seen per
second. Using such simple tools without any special configuration, we were able to
collect a good amount of specific details.

In the bottom-right corner of the window, the interface used to capture details is shown:
mon® (a monitor mode activated interface). Through this tool, we are not able to capture
any RF energy that can distort the traffic shape, which lessens our network performance.
But the same tool, when paired with Wi-Spy or Ubertooth hardware, will show the RF
energy spectrum. If you are one of those professionals who needs to deal with Wi-Fi
troubleshooting in day-to-day working, then you should use this—if not now, then
someday you will.

The RF energy emitted from the devices won’t be the problem every time; sometimes, you
would be required to look at the packet level like checking authentication and association
packets, that is, you can match your normal traffic pattern with the anomaly you might be
facing.

The IEEE 802.11 packet structure

The medium used by the packets to travel from one host to another is changed for now,
but the basic protocols that work on the preceding layers are still the same. As we already
discussed, layer 2 (data link) is of great importance here. Understanding packets traveling
in detail is obviously a good thing; we will discuss various types of frames, header
structures, and information an 802.11 packet contains.

There are basically three types of frames that you will see while analyzing wireless
packets. All the packets listed are almost similar to the one we saw earlier; the only
difference here is the extra information that is appended because of the 802.11 header. The
following are the header types that you will see:

e Management: To form a connection between the hosts at the data link layer, these
frames are used. These frames are used to join or leave a network,
associations/disassociation/reassociation and to broadcast beacon packets and a few
administrative tasks. Management frames are responsible for a lot of activities that
take place while the connection between the hosts is established.

o The beacon frame: The AP sends beacon frames every 10th of a second to let
the STA know that the AP is available for connection.

o The authentication frame: This type of frame is sent by the STA to the AP
containing its identity. If the AP follows an open system authentication, then
STA would send just one authentication frame that AP acknowledges to
understand whether the connection is accepted or rejected. If the AP follows
shared key authentication, then the STA sends a request to the AP to get
connected. Now, AP sends a challenge text to the STA. After this, STA
completes the challenge and encrypts the challenge text requested using the
same algorithm that the AP is using, and then it sends it to the AP. AP receives
and decrypts the text using it’s own key value, and no matter what the result is,
it determines the status of the connection request.

o The association request frame: This frame is sent from the STA to the AP to
provide details of the allocation of resources and for syncing purpose.

o The associate response frame: This frame is sent in response to the AP for the
STA request that is sent.

o The deauthentication frame: This is sent by the STA to terminate the
connection with the AP/STA.

o The disassociation frame: This frame is a graceful way of terminating the
connection so that the AP can free up the resources allocated for the STA.

o The probe request frame: This frame is sent by the STA to another STA/AP to
request for its details; this is basically used to find nearby APs.

o The probe response frame: This frame is sent in response to the request that
AP/STS might have received from another device in the network.

o The reassociation (request/response) frame: This frame is sent to the new AP
when an STA’s association with the current AP gets dropped. In response, the
AP acknowledges the acceptance/rejection for the reassociation request.

Monitoring the time gap between each beacon frame sent from the hosts can be

useful when dealing with high latencies. Due to these beacon packets broadcasted
from the AP, the devices know that they are available to connect to.

e Control: This is to ensure that the delivery of the packets between the hosts manages
the level of congestion in your channel and uses packets such as clear-to-send and
request-to-send. In short, we can say that these frames are used for maintenance
tasks. These control packets ensure the integrity of the packets that are transmitted.
Likewise, the management frame several kinds control frame has just three kinds:

o Request-to-send (RTS): This frame is sent by the STA to request for gaining
the control of the medium for a particular duration.

o Clear-to-send (CTS): This frame is sent by the AP from where it received the
RTS to specify when the medium will be allocated to the STA for transmission.
This frame is often used for protection from older stations that want to gain
access to the medium again.

o Acknowledgement (ACK): This frame is sent by the receiving STA to tell the
sending station that the data packet was received successfully. If the sending
station does not receive this packet, then after a definite period of time, the
sending station will resend the data packet to the same recipient to ensure the
delivery of the packet.

e Data: These frames contain the data that is actually sent between the hosts. These are
the only frames that get transmitted between the wireless and the wired domain.

The 802.11 packets are similar to the wired network packets that we saw; the
terminologies do differ a little bit, but the basic concept is identical. Let’s take a look at a
beacon frame. Refer to the following screenshot for that:

0 ORRBRORAE) 42 0773 6r Arnadract an? 11 233 Baarn frama CN=2G77
3 1919191919191913] 1 fTe B/ 73:06C Sroadcast 233 peacon trame, sN=Z9.Z/

€

P Radiotap Header vO, Length 36
<~ IEEE 802.11 Beacon frame, Flags: C
o Type/Subtype: Beacon frame (0x0008)
W Frame Control Field: 0x8000
.000 0000 HDOO 0000 = Duration: O microseconds
Receiver address: Broadcast (ff:ff:ff:ff.ff:ff)
Destination address: Broadcast (ff:ff.ff:ff:ff:ff)
Transmitter address: Zte 07:73:6c (d0:5b:a8:07:73:6c)
Source address: Zte_07:73:6¢ (d0:5b:a8:07:73:6¢)
BSS Id: Zte 07:73:6¢ (d0:5b:a8:07:73:6¢)
Fragment number: 0
Sequence number: 2927
P Frame check sequence: 0xb475d79b [corrects
v IEEE 802.11 wireless LAN management frame |3
< Fixed parameters (12 bytes)
Timestamp: 0x000000011b4d0190
Beacon Interval: 0.102400 [Seconds) | 4
P Capabilities Information: 0x0411
< Tagged parameters (157 bytes)
b Tag: SSID parameter set: Anonymous |5

Now, let’s see what all the pointers in the preceding figure signify:

1: The packet describes it all; the beacon frame is sent to the broadcast address from
the Wi-Fi-enabled device or any device that is currently listening can connect to it
using the right credentials.

e 2 and 3: Here, the type of the frame is management and the subtype is beacon.

e 4: As we discussed earlier, beacon frames are transmitted every 10 seconds. You can
verify the same from the packet itself, to be precise; the next beacon frame was sent
after an average time of 0.102385000 seconds (this is just the time gap I calculated
between the two packets seen in the list pane).

e 5: The SSID broadcast is enabled, and hence, the packet is shown with the

broadcasted SSID Anoenymous, which will be visible when you try to scan nearby

Wi-Fi hotspots that you wish to connect to (you need to use the monitor mode to

capture this packet). Various other details are included in the beacon frame that is part

of the header and is quite necessary to know about. Refer to the following frame
structure that shows how a layer 2 datagram looks like in theory and in Wireshark:

Frame Duration/ID||Address1/|Address2|JAddress3 Sequence

Control Control Address4

+ IEEE 802.11 Beacon frame, Flags: C
Type/Subtype: Beacon frame (0x0008)
¥ Frame Control Field: 0xB000
. .00 = Version: 0
. 00, = Type: Management frame (0)
1000 = Subtype: 8
7 Flags: 0x00
. ..00 = DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: @ From DS: 0) (0x00)
.B.. = More Fragments: This is the last fragment
.vvv 0.0, = Retry: Frame 1is not being retransmitted
.0 ... = PWR MGT: STA will stay up
.0, = More Data: No data buffered
.0.. = Protected flag: Data 1s not protected
B... = Order flag: Not strictly ordered
.000 0000 0000 00A0 = Duration: © microseconds
Receiver address: Broadcast (ff:ff;ff:ff:ff:ff)
Destination address: Broadcast (ffiff:ff:ff:ff.ff)
Transmitter address: Zte ©87:73:6c (d0:5b:a8:07:73:6¢)
Source address: Zte_07:73:6¢ (d0:5b:a8:07:73:6¢)
BSS Id: Zte 087:73:6c (d0:5b:aB8:07:73:6c)
Fragment number: ©
Sequence number: 2928
¥ Frame check sequence: Oxea0d6565 [correct]
[Good: True]
[Bad: False]

Let’s take a look at the fields present in the frame in detail:

This is the first section in the frame header that lists out quite a good amount of info in it.

e Frame Control

e Protocol Version: This represents a 2-bit value that is used to verify the version of
the protocol in use; the current version is O at the time of writing.

e Type: This identifies the type of the frame; in our case, we are dealing with a
management frame (beacon).

e Subtype: This represents the subtype of the header; for us, it is a beacon frame for
which we are seeing a numerical code 8.

e DS Status: This represents whether a data frame is heading to a distribution system
(DS) or working in which mode. If the bit is set to 1, then this must be a data frame;
if this is set to 0, then this frame is probably a management/control frame.

e More Fragments: If this bit is set to 1, this means that the frame has been distributed
into couple of parts and is being sent one by one.

e Retry: This bit is set to 1 when there is a requirement upon retransmission of the
frame.

e PWR Management: If this is set to 1, it represents the current power management state
of the STA whether it is active:0 or in the power-save:1 mode.

e More Data: This bit is set to 1 if the AP is trying to tell the STA in the power-save
mode that it has more frames to send. In case of control frames, this will always be o.

e order: If this bit is set to 1, this means that the frame is forcefully lined up and would
be sent in a sequence. Usually, this bit is not set because it might cost transmission
performance.

e Duration ID: This denotes the time the sender might require for frame exchange;
this is usually seen in an request-to-send (RTS) frame, which requests to occupy the
medium for a certain amount of time.

e Address 1/2/3: This is the physical address of the communicating device (receiver,
transmitter, and destination address).

e Sequence Control: This is composed of two subfields: a 12-bit sequence number
and a fragment number of 4 bit. A sequence number field is used to identify the
sequence of the frames that arrive and for their proper reassembly (this ranges
between 0-4,095). The fragment number field is used to denote the number of
fragments for each frame (this ranges between 0-15).

e Address 4: This represents the sender’s physical address and would only be present
in a wireless distribution mode.

e Data/Payload: This field is not part of the header, but at the end, it will be appended
when data is being sent across. The size of this field can be up to 2,324 bytes.

e Fcs: The frame check sequence field is used to perform a data integrity test; you must
have heard about the cyclic redundancy check (CRC), which helps in calculating a
value related to the data we received. If the FCS value is identical to the one we
calculated, then the packet is received without errors.

RTS/CTS

These are one of those essential components of WLAN data transfers that avoid collisions
from happening and ensure the integrity of the data that is sent. The following illustration
determines the four-step process that takes place to follow a 100% fail-proof delivery:

Access Point

Reauest to send

_—

Clear to send
—
Data
—

Acknowledgement

Wireless Station

First, the AP sends a request to the STA to gain medium access; once the STA approves

the AP’s request, the AP starts sending data. As soon as the data transfer is completed, the
STA sends an ACK packet to acknowledge error-free delivery. If the ACK is not sent, then
then the AP will start retransmission after some time.

Usual and unusual WEP - open/shared key
communication

Here, we will discuss two types of Wired Equivalent Privacy (WEP) authentication
procedures: open and shared keys. As a matter of fact, discussing WEP is really
unnecessary, but we should be aware of how it works because you never know when you
might be asked to troubleshoot an old router whose firmware is still not upgraded and just
supports WEP as an authentication mechanism.

WEP-open is way better than WEP-shared because even when the password that you
provide turns out to be wrong, you will get connected to the network; here, it reduces the
chance of getting the router brute forced. If you are using WEP-shared communication,
then an experienced hacker won’t take more than 2 minutes to crack your strongest key,
and because of the small pool of keys that WEP supports, your password won’t last long.

So, to begin with, we need the infrastructure to capture packets that are required for WEP-
open. A key point to note here is that the infrastructure I am using consists of three
different machines: the access point on the 192.168.1.1 IP, the station on the
192.168.1.105 IP, and Kali Linux running Wireshark on the 192.168.1.104 IP. Refer to
the following illustration to understand this:

e’

<€
e —

STAIP:
192.168.1.105

AP IP: 192.168.1.105

KALI|P:
192.168.1.105
Running Wireshark
with interface in

= monitor mode

1. First, let’s activate the monitor mode over my interface:

[JON .ssh — root@kali: ~ — ssh — 80x24

root@kali:~# airmon-ng start wlan@

Found 3 processes that could cause trouble.

If airodump-ng, aireplay-ng or airtun-ng stops working after

a short period of time, you may want to kill (some of) them!
-

PID Name

3212 NetworkManager

3282 wpa_supplicant

3947 dhclient

Process with PID 3947 (dhclient) is running on interface wlan@

Interface Chipset Driver

wlan® Atheros AR9485 ath9k - [phy@]
(monitor mode enabled on mon@)

In the bottom-right corner of the preceding screenshot, you can see the message that
the monitor mode is enabled over the mono interface. This is the same interface that
we will use to capture 802.11 packets from our AP and STA.

. Next, to confirm the channel over which my channel is working, I used the
airodump-ng mon® command.

CH 9][Elapsed: @ s][2015-09-01 16:00

BSSID PWR Beacons #Data, #/s |CH| MB ENC CIPHER AUTH ESSID

DOl e, .. t6C 69 b 21 9| 6| 54e WPA2 CCMP PSK Anony

. Now, once we have figured out that the channel is 6, we can go ahead and make our
interface listen specifically to this channel, thus avoiding any noise from other
channels. To do so, I used the iwconfig mon® channel 6 command.

root@kali:~# iwconfig mon@® channel 6

Figure 1: Configuring mon0 interface to channel 6

. Once you have completed all these steps, go ahead and launch Wireshark. If the
output of the commands you issued gives any error, then please rectify it before you
proceed.

WEP-open key

Once the interface starts working fine and you are able to see the beacon frames
broadcasted from your access point and probe request or response to and from your
station, then you can simply launch a WEP-open authentication session. When asked for a
password, just give any random password which will let you get connected to the network,
but it might be possible that you won’t be able to access the Internet connection shared by
the AP with other STAs. Refer to the following screenshot depicting a WEP-open
authentication session.

To capture the normal traffic pattern, I will use a Linux distribution (Kali) running on an
independent machine that has a feature to activate the monitor mode (without the monitor
mode, you can not capture 802.11 packets.) First, activate the monitor mode on our
WLAN adapter using a basic set of commands, and we will also configure the same
adapter to listen to a specific channel.

After launching Wireshark, make sure that you choose the mono interface only; then, you
will be able to capture relevant traffic (keep the promiscuous mode on as well).

Broadcast 802

Apple_bo: 53:ec (F02

11 207 Beacon frame, SN

=3961, FN=0, Flags= ..C, BI=100, S5ID=Anonymous

P

23 2.252831000 Ite_07:73:6c

25 2. 319546000

.li '50 Acknowledgement, Flags=........ C

26 2. 319560000 Ite_07:73:6C Apple_b9:53:ec 802.11 81 Authentication, SN=3962, FN=0, Flags=........ C

27 2.320471000 Ite 07:73:6¢ (RA)802.11 50 Acknowledgement, Flags=........C

28 2. 321668000 Apple_b9:53:ec Zte 07:73:6c 802.11 112 Association Request, SN=2184, FN=0, Flags=........ €, S5ID=Anonymous
29 2, 321686000 Apple_b9:53:ec (F802.11 50 Acknowledgement, Flagss........C

30 2, 323406000 Ite_B7:73:6¢ Apple_b9:53:ec 802.11 123 Association Response, SN=3963, FN=0, Flags=........C

31 2. 323429000 Ite 07:73:6c (RA)BOZ.11 50 Acknowledgement, Flags=........C

32 2.333407000 Apple_b9:53:ec Zte 07:73:6¢ g02.11 110 QoS Data, SN=B, FN=0, Flags=.p..... TC

33 2.333428000 Apple_b9:53:ec (F802.11 50 Acknowledgement, Flags=........C

34 2.333434000 hpple_b9:53:ec Broadcast 802,11 410 QoS Data, SN=1, FN=0, Flags=.p..... TC

35 2, 333441000 Apple_b9:53:ec (F802.11 50 Acknowledgement, Flagss........ C

36 2.333445000 Apple_b9:53:ec Ite 07:73:6¢ 802,11 64 Null function (No data), SN=2185, FN=, Flags=.......TC

B

£
-

Frame 24: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface @
Radiotap Header v0, Length 36
IEEE 802,11 Authentication, Flags: C

v Fixed parameters (6 bytes)
Authentication Algorithm: Open System (0)
Authentication SEQ: 0x0001
Status code: Successful (0x0000)

As clearly visible in the details pane of the first authentication frame selected in the list

pane, the authentication system is Open-System (numeric code 0) and the connection

attempt is successful as well. Following this, we can see an association request/response
and then some QOS and Null function data frames.

An association request/response is sent and received by the STA/AP to associate a
dropped connection, which the client was already a part of before, and to allocate the
resources STA might require for communication over the channel.

A QOS data packet is a subtype of the control frame types, which depicts the quality of
service and the over all performance.

Null Function packets are used to inform AP that the STA is going in the power-save

mode. This packet does not carry any data, just some flag information.

And for every kind of information being shared between hosts, there are ACK packets that
are sent across to determine the delivery of every packet in the communication.

The shared key

Before we start configuring, I want you to understand the process of WEP-shared key
authentication, that is, the steps involved in the whole session. Refer to the following
illustration to understand this:

Authentication Request
Authentication Response with Challenge j
Text
t’ Authentication Challenge
Response

.Authentication Response -Success or —
Failure

—

i

In short, the STA tries to connect to the AP by sending an authentication request, which
the AP acknowledges by sending a text challenge that the STA is supposed to complete
and before sending an encrypt using the key algorithm AP knows about. Once STA has
completed the challenge process over his end, STA sends the challenge response which is
being evaluated by the AP and determines the success or failure of the connection and the
same is acknowledged to the STA in another authentication frame.

So, for a normal WEP authentication session, you will observe at least four authentication
frames. If the authentication is successful, then the authentication frames will be followed
by an association request/response along with some data transfer. And if the authentication
is not successful, then after four authentication frames, the session between the STA and
the AP will end. Follow the next steps to capture WEP management, control and data

frames from your WLAN.

As discussed, you will note that the same pattern of packets is captured. Refer to the
following screenshot depicting a successful WEP authentication session that was captured
by Wireshark:

95 5,836784000 Ite 07:73:6c Broadcast 802,11 207 Beacon frame, SN=2376, FN=0, Flags=........ C, BI=100, SSID=Anonymous
96 5,889087000 Apple b9:53:ec Ite @7:73:6c 802.11 70 Authentication, SN=3435, FN=0, Flags=........ s

97 5,880112000 Apple_b9:53:ec (FBO2.11 50 Acknowledgement, Flags=........C

98 5,801149000 Ite 07:73:6¢ Apple b9:53:ec 802.11 211 Authentication, SH=2377, FN=D, Flags=........ {

99 5.891176000 Ite 07:73:6c (RA)B02.11 50 Acknowledgement, Flags=........C

106 5.893442000 Apple b9:53:ec Ite 07:73:6c B802.11 208 Authentication, SH=3436, FN=0, Flags=.p......C

101 5.893468000 Apple_b9:53:ec (FEO2.11 50 Acknowledgement, Flags=........C

162 5.894432000 Ite 07:73:6c Apple b9:53:ec 802.11 81 Authentication, SH=2378, FN=D, Flags=........C

103 5.894459000 Ite 07:73:6c (RA)80Z,11 50 Acknowledgement, Flags=........ C

104 5, 895687000 Apple_b9:53:ec Ite 07:73:6¢ 802,11 112 Association Request, SN=3437, FN=, Flags=........C, SSID=Anonymous
105 5.895707000 Apple_b9:53:ec (RBO2.11 50 Acknowledgement, Flags=........ (

106 5897408000 Ite 07:73:6c Apple_b9:53:ec 802,11 123 Association Response, SN=2379, FN<O, Flags=........C

107 5.897429000 Ite_87:73:6c (RA)B02,11 50 Acknowledgement, Flags=...... ol

108 5. 9A495R000 Annle h9:53:ec 7te AT:73:6r /2. 11 fd M1l function (Nn datal, SN=343R, FN=f. Flans=, (B

E ML

Frame 102: 81 bytes on wire (648 bits), 81 bytes captured (648 bits) on interface 0
Radiotap Header v, Length 36
IEEE 802.11 Authentication, Flags: C
7 Fixed parameters (6 bytes)
Authentication Algorithm: Shared key (1)
Authentication SEQ: 0x0004
Status code: Successful (6x0000)
b Tagged parameters (11 bytes)

e For the fourth authentication frame, I have expanded the details section to confirm
whether the connection attempt was successful or not. And from the preceding
screenshot, we can verify that it was successful. The authentication type used for the
communication can also be seen here.

e As we know, now if the connection attempt between the STA and AP fails, the whole
session will be terminated after the fourth authentication frame and we will see a
failure message. To verify the same, I tried duplicating the scenario while Wireshark
was listening through an interface in the monitor mode on an individual system.

e Refer to the following figure that illustrates a failed WEP connection attempt. In the
list pane, we can see the same authentication frame pattern (just four authentication
frames), but the last frame that the STA received from the AP acknowledges the
connection status. As is clearly visible in the details pane, the connection attempt
failed due to an incorrect challenge response text sent by the STA.

27 2.662396000 Ete:B?:TB.'&l: Broadcast g02.11 207 Beacon frame, SN=1614, FN=D, Flaés: €, BI=180, SSIl}!MDn‘:.'ITIJlIS

28 2.699043000 Apple b9:53:ec Ite 07:73:6¢ 802.11 70 Authentication, SN=4053, FN=D, Flags=........C
29 2.659060000 Apple_b9:53:ec (RE02.11 50 Acknowledgement, Flags=........ ¢
30 2.701077080 Tte B7:73:6c Apple_b9:53:ec 802,11 211 Authentication, SN=1615, FN=0, Flags=........C
31 27010940600 Ite 07:73:6¢ (RA)802.11 50 Acknowledgement, Flags=........ C
32 2.703091000 Apple b9:53:ec Zte 07:73:6¢ g02.11 208 Authentication, SN=4054, FN=D, Flags=.p......C
33 2.703109000 Apple_b9:53:ec (FBO2.11 50 Acknowledgement, Flagss........ C

34 2.704106000 Ite B7:73:6¢ Apple h9:53:ec 802,11

35 2.704129000 Ite 07:73:6¢ (RA)B02.11
F - R
Frame 34: 81 bytes on wire (648 bits), 81 bytes captured (648 bits) on interface 0

Radiotap Header v, Length 36

IEEE 802.11 Authentication, Flags: C

7 Fixed parameters (6 bytes)

Ruthentication Algorithm: Shared key (1)

Authentication SEQ: Ox0004

Status code: Authentication rejected because of challenge failure (0x000f)
b Tagged parameters (11 bytes)

We witnessed two types of authentication procedures that WEP supports, but what is
really important to know is that WEP is now obsolete, so I would never recommend to any
of you to use this as an authentication protocol. If you have any old devices that only
support WEP, then kindly upgrade to the latest hardware.

WPA-Personal

We talked about a crappy authentication algorithm that has been used since the birth of
wireless networking, but when we have a better option, why not use it. I am talking about
the Wi-Fi Protected Access (WPA) security algorithm that is stronger than WEP when
we add the corrective measures required. In 2003 when WPA was launched by Wi-Fi
Alliance as a measure to make WLAN communication stronger than the previous
protocol, WEP. Nowadays, almost every WINIC supports WPA authentication mechanism,
thus enabling you to take advantage of using a better security protocol. The Temporal
Key Integrity Protocol (TKIP) lets the existing legacy hardware upgrade easily to
implement WPA. The key size used by WEP was 40/104 bits, whereas WPA uses a key
size of 256 bits, and the interesting thing to know is that every packet transmitted between
the AP and STA is encrypted using the 256-bit key, which makes the situation quite tight
for malicious users. One more advance was done in WPA that let the devices communicate
with more assurance about the integrity of the message.

In WEP, the traditional CRC was implemented, but here, the popular Michael 64-bit
Message Integrity Check (MIC) was introduced to address the issue. WPA also uses the
RC4 algorithm to build a session based on dynamic encryption keys (you would never end
up using the same key pair between two hosts). If compared to WEDP, it has a larger IV size
of 48 bits. Refer to the following illustration of how the cipher text is formed that is
transmitted over the medium:

IV+KEY =2 RC4 —>0011\

‘_'_’ @ Key stream

Seed Plain Text m—— 1{1]0(0

CipherText | 111/ 1/1

The preceding illustration depicts how the whole process starts by appending the IV and
the dynamically generated 256-bit key. Then, is passed on to the RC4 algorithm, which
encrypts the packets with keys, and then the resulting encrypted key stream is appended

with the data and voila! We have the cipher text. Now, I will introduce you to the normal
authentication session between an AP and an STA. Refer to the following figure for the
same:

[Four Way Handshake]
B
Probe request/response,
i Rifthentication/Assocation Request-Response ™|
PSK Formed PSK Formed
AP Nonce
—
AMIC Calculate PTK
Client non¢
Calculate PTK
(and GTK if
required)
Install Kevs
MiC
Install Kevs

In the case of the Enterprise WPA configuration, first, the Master Key Exchange takes
place. I will later give you a brief about it. As of now, we have an AP that sends its nonce
(random value) to the STA (initiation of connection) that will use the AP’s nonce value
and its own nonce to calculate the Pairwise Transient Key (PTK) along with the Pre
Shared Key (PSK), which was established during the initial connection process. The
resulting value will be sent to the AP. Then, the AP will calculate the PTK over its end and
append the MIC with the receive sequence counter (RSC) that helps in identifying the
replayed messages. The resulting value will be passed on to the STA. Now, the STA will
first verify the MIC in the message to ensure the integrity and install the keys. Then, a
response will be sent to the AP regarding the status. If the status shows success, the AP
then installs the same keys (dynamic keys) that will be used in further communication

between the hosts.

After configuring WPA-Personal on my AP, I had sent an authentication request from my
client and the corresponding communication was captured by Wireshark, which is shown
in the following screenshot:

Filter: ‘eapol v |Expression... Clear A Save

No. ‘Time |Scurce |Destination ‘Protoml‘ Length‘ Info

A ' 8 7 | :-“': - .'.' 4 'l \. .'-J.": -:."-' s .:.'.rll .'..- 'f-.".' .'“':"":4':'.-'.' qe 1 \1 '.:l"."'
259 8.733391000 Apple_b9:53:ec Zte_07:73:6¢ EAPOL 197 Key (Message 2 of 4)
265 8.736180000 Zte_07:73:6¢ Apple_b9:53:ec EAPOL 203 Key (Message 3 of 4)
267 8.737817000 Apple_b9:53:ec Zte_07:73:6c EAPOL 173 Key (Message 2 of 4)

P Frame 257: 173 bytes on wire (1384 bits), 173 bytes captured (1384 bits) on interface ©
P Radiotap Header v@, Length 36
b IEEE 802.11 QoS Data, Flags:F.C
b
¥ B802.1X Authentication
Version: 802.1X-2001 (1
Type: Key (3)
Length: 95
Key Descriptor Type: EAPOL WPA Key (254)
P Key Information: 0xD08a
Key Length: 16
Replay Counter: 0
WPA Key Nonce: 5ec3l3cec318318d18df8dffdffbosd7fbBad7518aea5152. .
Key IV: 00000000000000000000000000000000
WPA Key RSC: 0000000000000000
WFA Key ID: 0000000000000000
WPA Key MIC: 00000000000000000000000000000000
WPA Key Data Length: ©

Note

You need the same infrastructure that we used while capturing WEP communication that
is an interface in the monitor mode that is listening on a separate machine.

This is what a normal WPA successful handshake (authentication) process looks like, that
is, four EAPOL packets. To analyze the session specifically between the AP and STA, I
applied a display filter to see only EAPOL packets (authentication frames). Before the
authentication frames, AP’s beacon frame, and STA’s probe, we looked at authentication
and association request/response packets that led to the authentication session, following
which PSK was used to generate the dynamic keys. Because of a software package error
that I installed on my machine, the fourth packet says Message 2 of 4, whereas it should
be Message 4 of 4.

Getting into more detail, I would like to show you the flags marked in all of these four
authentication packets that will definitely clear your thoughts regarding the WPA
handshake process. Refer to the following screenshot that illustrates this:

¥ 802.1X Authentication
Version: 802.1X-2001 (1)
Type: Key (3) Packetl
Length: 95
Key Descriptor Type: EAPOL WPA Key (254)
¥ Key Information: 0x008a
............ ,010 = Key Descriptor Version: AEY
1... = Key Type: Pairwise Key
. = Key Index: 0
. = Install: Not set
= Key ACK: Set
= Key MIC: Not set
. = Secure: Not set
. = Error; Not set
........... = Request: Not set
. ... = Encrypted Key Data: Not sef]
= SMK Message: Not set

. R

v 802, 1X Authentication
Version: 802 1X-2001 (1)
Type: Key (3) Packetz
Length: 119
Key Descriptor Type: EAPOL WPA Key (254)

¥ Key Information: 0x0l0a
. 010 = Key Descriptor Version: AES
1... = Key Type: Pairwise Key
. = Key Index: 0
. ... = Install: Not set
o = Key ACK: Not set
vl S = Key MIC: Set

i . = Secure: Not set

0 . = Error: Not set
T | o = Request: Not set
o @ineas: weaw wrag = Encrypted Key Data: Not set
il e W = SMK Message: Not set

¥ 802.1X Authentication
Version: 802.1X-2001 (1)
Type: Key (3) Packet 3
Length: 125
Key Descriptor Type: EAPOL WPA Key (254)
¥ Key Information: ©x0lca
.010

Key Descriptor Version: AES
Key Type: Palrwise Key
Key Index: D
Install: Set
Key ACK: Set
Key MIC: Set
i Secure: Not set
.... = Error: Not set
. = Request: Not set
. = Encrypted Key Data: Not set

. = SMK Message: Not set

v B02.1X Authentication
Version: 802.1X-2001 (1)
Type: Key (3) Packet 4
Length: 95
Key Descriptor Type: EAPOL WPA Key (254)

¥ Key Information: 0x010a
............ 010 = Key Descriptor Version: AES
1... = Key Type: Pairwise Key
. = Key Index: 0
. = Install: Not set
. = Key ACK: Not set

= Key MIC: Set

. = Secure; Not set

. = Error: Not set

s = Request: Not set

v = Encrypted Key Data: Not set

ol g dae R = SMK Message: Not set

Here is the description of the preceding authentication packets:

Packet 1: The pairwise master key (pre-shared key) and the ACK bit are set (probably

because of the association request/response exchanged earlier), which was sent by
the AP to STA to initiate the connection along with the nonce value that was chosen

randomly.

Packet 2: The pairwise master key and the MIC flag is set, which STA sent to the AP

to for acknowledging the request received, along with its own nonce value appended
to the AP’s nonce and the MIC for integrity check.

Packet 3: The pairwise master key, install, key ACK, and MIC flags are set, which

the AP tries to send to the STA. The STA will fulfill the challenge text values
received and will confirm to the AP along with the encrypted challenge text which

AP is going to be crosschecked.
Packet 4: Here, the pairwise master key

and the MIC flag are set, which the STA

sends to the AP to make the connection complete. Now, the AP is mutually ready to

perform data transfer with the STA.

I hope these flags help you understand the four-way handshake process in an easy and
realistic manner.

Next, we are going to see what happens when the AP receives an incorrect challenge text
from the STA, what the packets look like in the list pane, and whether there would there
be any difference in the pattern of packets that are captured.

The STA will try to connect to the AP and the AP will request the challenge text. The STA
this time is not aware of the secret keys used by other clients in the network, so ending
with an incorrect pass key which won’t be accepted by the AP, or please check
acknowledged by the STA. The STA will try again to send the challenge text and the same
process goes on. After this, you will notice a couple of similar packets in the list pane.
Refer to the following figure for the same:

Filter: |eap0| jExpression.., Clear Apply Save

No. | Time mSou rce | Destination | Protocol !.Le ngth | Info

it i ‘Apple_63:41:9 EAPOL 199 Key (Message 2 of 4)

: ; 5 Zte 07:73:6¢
155 7.392817000 Ite_07:73:6¢ Apple_63:41:95 EAPOL 173 Key (Message 1 of 4)
157 7.395444000 Apple_63:41:95 Zte_07:73:6¢ EAPOL 199 Key (Message 2 of 4)
169 8. 401006000 Ite 07:73:6¢ Apple_63:41:95 EAPOL 173 Key (Message 1 of 4)
171 8.403683000 Apple 63:41:95 Zte 07:73:6¢ EAPOL 199 Key (Message 2 of 4)
182 9.409178000 Zte_07:73:6¢ Apple_63:41:95 EAPOL 173 Key (Message 1 of 4)
184 9.411794000 Apple_63:41:95 Zte_07:73:6¢ EAPOL 199 Key (Message 2 of 4)

&
1€

iiiiiii

P Frame 132: 173 bytes on wire (1384 bits), 173 bytes captured (1384 bits) on interface 0
P Radiotap Header vO, Length 36
b IEEE 802.11 QoS Data, Flags:F.C
b
¥ 802.1X Authentication

Version: 802.1X-2001 (1)

Type: Key (3)

Length: 95

Key Descriptor Type: EAPOL WPA Key (254)

P Key Information: 0x008a

Key Length: 16

Replay Counter: 0

WPA Key Nonce: 8d2896bd4al2509584af2578d43a5e2c0e9b74db592636¢8. ..

Key IV: 00000000000000000000000000000000

WPA Key RSC: 0000000000000000

WPA Key ID: 0000000000000000

WPA Key MIC: 00000000000000000000000000000000

WPA Key Data Length: 0

Figure 2: WPA Failed authentication

As you can see in the preceding screenshot, EAPOL Message 1 and 2 can only be seen
because when the STA provides the challenge text response, the AP rejects it and again the
process starts from beginning. The same thing will continue for a couple of times, but a
packets pattern of such kind denotes unsuccessful connection attempts (may be a brute
force attack). The packets listed can be associated with each other using the replay counter
listed that we saw earlier in the key nonce in details section.

WPA-Enterprise

I promised we would be discussing the enterprise mode in brief, so here it is. In the
corporate infrastructure, the key and passwords are not kept with the AP, and even the AP
is not responsible for authentication with the STA. There is an extra entity, the RADIUS
server, that takes care of authentication here. Before the four-way handshake takes place,
the RADIUS server and the access point are supposed to go through a Master Key
Exchange, which gives an assurance to both the communicating devices that the other
part is legitimate. Let’s have a look at the following figure:

RADIUS

Master Key Exchange

e)

| PMK

Usual Four
Way

Handshake

Afterwards, the pairwise master key is created and passed on to the AP, which will lead on
and complete the four-way handshake process and complete the authentication session.

I’ve scrolled down the packet list and look what I found for you: Disassociation and
Deauthentication packets in action captured by our sniffer. So, before we wrap up, you

should take a look at them.

The wireless stations/access points use disassociation packets in order to notify the access
point that the client is now going offline and the resources that have been allocated by the

AP to wireless clients can now be released. Refer to the following figure that illustrates the
same:

No. Time Source Destination | Protocol | Length | Info

318 15.825217000 Apple_b9:53:ec Zte 07:73:6¢ |E 802.11 66 Disassociate, SN
319 15.825244000 Apple_b9:53:ectrm) 802.11 50 Acknowledgement,

&

D Frame 318: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0
D Radiotap Header v@, Length 36
‘7 IEEE 802.11 Disassociate, Flags: C
Type/Subtype: Disassociate (0x000a)
P Frame Control Field: 0xa000
.000 0001 0011 1010 = Duration: 314 microseconds
Receiver address: Zte_07:73:6c (d0:5b:a8:07:73:6¢)
Destination address: Zte 07:73:6¢ (d0:5b:a8:07:73:6¢)
Transmitter address: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
Source address: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
BSS Id: Zte_07:73:6c (d0:5b:a8:07:73:6¢)
Fragment number: ©
Sequence number: 1979
P Frame check sequence: 0x989e716b [correct]
v
v Fixed parameters (2 bytes)
Reason code: Disassociated because sending STA 1s leaving (or has left) BSS (0x0008) 2

Figure 3: The disassociation packet

As you can observe, at first, the STA sends a disassociation frame and receives ACK
(318,319) for the same. Now, for better understanding of the packets, we can take a look at
the details pane (select the disassociation packet first), where the Reason Code parameter
states that the STA is leaving or has already left. This gives us a feature through which we
can view and understand packet behavior efficiently.

The wireless stations or the access points use the deauthentication frames to notify the
other side of the communication that the other device is leaving. There can be several
reasons for it. Refer to the following figure to understand this:

No. Time Source Destination Protocol|Length|Info

467 21.434381000 Apple b9:53:ec Zte 07:73:6c 802,11 66 Deauthentication,
468 21.434398000 Apple_b9:53:ec (RA) 802.11 50 Acknowledgement, |

@

P Frame 467: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0
P Radiotap Header v@, Length 36
< IEEE 802.11 Deauthentication, Flags: C
Type/Subtype: Deauthentication (0x000c)
b Frame Control Field: 0xc000
.000 0001 0011 1010 = Duration: 314 microseconds
Recelver address: Zte_07:73:6c (d0:5b:a8:07:73:6¢)
Destination address: Zte_07:73:6¢c (d0:5b:a8:07:73:6¢)
Transmitter address: Apple b9:53:ec (d8:bb:2c:b9:53:ec)
Source address: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
BSS Id: Zte_07:73:6¢ (d0:5b:a8:07:73:6¢)
Fragment number: ©
Sequence number: 1986

P Frame check sequence: 0x9171b952 [correct]
7

v Fixed parameters (2 bytes)
Reason code: Previous authentication no longer valid (0x0002) 2

Figure 4: The deauthentication packet

First, the STA sends a deauthentication frame to the access point, which gets
acknowledged in the next packets (467,468). After expanding the details section for the
deauthentication packet, we can easily note that the Type/Subtype field is verifying the
same. And at the bottom, we get to understand why the deauthentication packet was
generated. In our case, it is Previous authentication no longer valid, which the STA
tried to notify the AP about, and if they wish to communicate again in the future, then the
process of authentication has to start over, from the probe and association frame,
following the four-way handshake.

Decrypting WEP and WPA traffic

The technique to decrypt WEP and WPA traffic is available with the use of Wireshark. As
we know, WEP is the weakest security encryption protocol and it has been exploited for a
long time. Once you have the key for the wireless network, it becomes a matter of a few
clicks to decrypt the traffic.

To demonstrate the same, I have sanitized the wireless traffic between my access point and
a client that is connected to it. Refer to the following screenshot where the normal
IEEE802.11 traffic is captured using Wireshark:

No. Time | Source Destination Protocol|Length|Info
20.000004 Tp-LinkT 2a:84:4e MS-NLB-PhysServer-10_al802.11 145 QoS Data, SN=197, FN=0, Flags=.p....F.
30.101892 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2641, FN=0, Flags=...P...T
4 4.038400 MS-NLB-PhysServer-10_Tp-LinkT 2a:84:4e 802.11 111 QoS Data, SN=345, FN=0, Flags=.p.....T
54.039428 Tp-LinkT 2a:B4:4e MS-NLB-PhysServer-10_al802.11 139 QoS Data, SN=198, FN=0, Flags=.p....F.
6 4.141316 MS-NLB-PhysServer-10_Tp-LinkT 2a:84:4e 802.11 26 QoS Null function (No data), SN=2642, FN=D, Flags=...P...T
75.038400 MS-NLB-PhysServer-10 Tp-LinkT 2a:84:4e 802.11 111 QoS Data, SN=346, FN=0, Flags=.p.....T
B 5.039430 Tp-LinkT 2a:B4:4e MS-NLB-PhysServer-10 al802.11 139 QoS Data, SN=199, FN=0, Flags=.p....F.
§ 5.141316 MS-NLB-PhysServer-10 Tp-LinkT 2a:84:4e 802,11 26 QoS Null function (No data), SN=2643, FN=0, Flags=...P...T
10 6.039426 M5-NLB-PhysServer-10_Tp-LinkT 2a:84:4e 802.11 111 QoS Data, SN=347, FN=0, Flags=.p.....T
11 6.040452 Tp-LinkT 2a:84:4e MS-NLB-PhysServer-10_al802.11 139 Qo5 Data, SN=200, FN=0, Flags=.p....F.
12 6.142340 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802,11 26 QoS NulL function (No data), SN=2644, FN=0, Flags=...P...T
13 8.039426 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802,11 111 QoS Data, SN=348, FN=0, Flags=.p.....T
14 8.040964 Tp-LinkT 2a:84:4e MS-NLB-PhysServer-10_al802.11 139 QoS Data, SN=201, FN=D, Flags=.p....F.
15 8.143876 MS-NLB-PhysServer-10_ Tp-LinkT 2a:84:de 802,11 26 (oS Null function (No data), SN=2645, FN=0, Flags=...P...T
16 12.042496 MS-NLB-PhysServer-10 Tp-LinkT 2a:84:de 802.11 111 QoS Data, SN=349, FN=0, Flags=.p.....T

Figure 5: WLAN traffic before decryption

I hope that by now you must be aware of the kind of packets that we see in the list pane,
but still, it does not make much sense in terms of network-activity-related traffic. This is
why you need to learn the technique to make the entire traffic more readable. Before you
proceed, you need to make some changes in the preferences section of the IEEE 802.11
protocol.

Go to Edit | Preferences, expand protocol section and select IEEE 802.11 and make the
changes. Refer to the following screenshot and make the changes that are highlighted:

=

Reassemble fragmented 802.11 datagrams:

Ignore vendor-specific HT elements: O
Call subdissector for retransmitted 802.11 frames:
Assume packets have FCS: O

Ignore the Protection bit: ® No O Yes - without IV O Yes - with IV
Enable decryption:

Key examples: 01:02:03:04:05 (40/64-bit WEP),
010203040506070809101111213 (104/128-bit WEP),

MyPassword[:MyAP] (WPA + plaintext password [+ SSID]),
0102030405...6061626364 (WPA + 256-bit key). Invalid keys will be ignored.

Decryption Keys: { | Edit...

Once you have set the configuration as shown in the preceding screenshot, click on the
Edit button next to Decryption Keys (to add the WEP/WPA key). Refer to the following
screenshot:

\, Decryption Key Management

e | \ Edit Decryption K“‘J L—
Modify Selected Key

Type Key :

pr = 9891012345 | :

‘ OK | Cancel |—
m | & ‘

Click on New and you will be presented with the same dialog where you can add the
WEP/WPA key in order to decrypt the preceding communication that we saw. After all
the changes have been made, click on OK under Apply. Now, you will be shown the
decrypted traffic similar to the one shown here:

No. ‘Time |Suurce Destination |Protaco|l Lengthltnfa

? ©. 000004 192.168.0. 192. 168.0. 108 P 145 Destination unreachable (Network unreachable)

3 0.101892 M5-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802,11 26 Qo5 Null function (No data), SN=2641, FN=0, Flags=...P...T
4 4.038400 192.168.0.100 192.168.8.1 DNS 111 Standard query Bxeeds A ctldl.windowsupdate.com
139 Destination unreachable (Network
6 4.141316 MS-NLB-PhysServer-18 Tp-LinkT_2a:84:4e 802.11 26 QoS Mull function (No data), SN=2642, FN=0, Flags=...P...T
7 5.038400 152,168.0, 100 192.168.0.1 DNS 111 Standard query Oxeedé A ctldl.windowsupdate,com
192. 168. 0. 100 (M 139 Destination unreachable (Network unreachable)
9 5. 141316 M5-NLB-PhysServer-18_Tp-LinkT_2a:B84:4e BO2.11 26 Qo5 Mull function (No data), SN=2643, FN=0, Flags=...P...T

10 6.039426 192,168.0, 100 192.168.08.1 DHS 111 Standard query Bxeeds A ctldl.windowsupdate.com

1 6,040452 92.168.0. 108 CHP 13% Destination unreachable (Network unreachable)

12 6,142340 M5-NLB-PhysServer-10_Tp-LinkT_2a: 84:4e B2, 11 26 Qo5 Null function (No data), SN=2644, FN=0, Flags=...P...T
13 8,039426 19%2.168.0.100 192.168.08.1 DNS 111 Standard query Bxeedsé A ctldl.windowsupdate.com

92.168.08. 100 ICMP 13% Destination unreachable (Network unreachable)

14 B. 040964 1
15 8. 143876 M5-NLB-PhysServer-10_Tp-LinkT_2a:B4:4de BOZ.11 26 QoS Mull function (No data), SN=2645, FN=D, Flags=...P...T
16 12.042496 192, 168.0. 100 192.168.0.1 DNS 111 Standard query Bxeedsé A ctldl.windowsupdate.com

Figure 6: WLAN trdffic after decryption

The same list pane that we saw in the beginning of this section for this capture file is
shown in a decrypted format now. Here, we are able to see the ICMP and DNS packets
(normal network traffic); this is the normal traffic I was talking about. To manage the
keys, there is a more effective way where you are not required to open the Decryption
keys dialog from the Preferences section under IEEE 802.11. Just navigate to View |
Wireless toolbar; this will add a new toolbar just below the display filter area.

J . J r. All'F v | Wireshark v | Wirel Decryption Keys...

Once added, you can easily mage the WEP/WPA keys. The dropdown showing
Wireshark is really helpful and will enable you to toggle encryption on/off. If you choose
None from the list, the decryption will be disabled and your traffic will be back to normal
from just 802.11 wireless traffic. If you choose Wireshark, as in the preceding screenshot,
then the decryption will be applied.

Summary

What we discussed here is not going to facilitate you with every scenario that can be seen
in wireless communication, but definitely, it will give you a jump start.

The IEEE 802.11 standard works over radio frequencies for communication purpose. The
protocol that works behind WLANS is CSMA/CD, which facilitates a collision-free
environment that is required for a wireless infrastructure. Under 802.11, there are multiple
standards that have been developed, and this provides a robust solution for different
infrastructure-based requirements.

Sometimes, you need to look at the RF energy level too, which can really play a big role in
performance upgrade. Due to various devices that work over the same spectrum of 2.4
Ghz, it is possible that your WLAN signals may get distorted. What you need in such
cases is a spectrum analyzer, which lets you analyze and monitor the RF energy flowing
around you. To do so, you need special hardware that can be purchased from an online
tech store, and you need to pair the same hardware with software that lets you use the
same, for example, Metageek’s Wi-SPY hardware paired with Channelyzer.

Kismet is a graphical tool available in Kali Linux that lets you collect various advanced
details about the wireless networks that are available around you and the devices
connected to those networks. Kismet comes with various customization options that can
be really helpful while you look for specific information. Kismet also facilitates users with
several graphical features to plot live traffic over a graph for a particular duration.

In a conventional WLAN environment, there is an AP and an STA that communicate with
each other. Before the actual data transfer takes place, both the devices are supposed to
negotiate the session over a key (password and encryption algorithm), which will be used
by both the devices that are communicating to maintain the integrity of the data that is
sent.

There are commonly three types of frames that you will see while working with
Wireshark: management, control, and data frames. These are the packets that you can see
in the details pane once a packet is selected. Management frames control the establishment
of the connection, control frames control the transfer of management, and data frames
simply consist of the actual data that is sent.

Authentication protocols such as WEP and WPA take care of how an AP and STA
negotiate to start communicating.

EAP is used to let the exchange of master keys take place. As defined in RFC 3748, EAP
is an authentication framework that supports multiple kinds of authentication methods,
and to execute EAP, you do not require an IP because it runs over data-link layer.

EAP with LAN becomes EAPOL, which is used in 802.11 infrastructures
(RADIUS/AAA) for the exchange of master keys. As per the normal pattern, an AP
broadcasts beacon frames that STAs listen for. If not, then the STAs will send a probe
request to get connected by themselves. Then, the AP and STA conduct an authentication
session and negotiate until both the hosts are convinced with each other. Once this is done,
the AP would send a success message to the STA.

Using Wireshark, it is possible to decrypt WEP communications by simply adding
wireless network keys with the protocol in use and modifying the preferences for the IEEE
802.11 protocol.

The monitor mode used to capture the relevant packets can be configured easily over a
Linux-based system, and it is essential for Wireshark 802.11 analysis.

RTS/CTS are used in contrast to CSMA/CA in 802.11, which keeps the medium collision
free and easy to work with.

Using the hash function, Password-based key derivation function (PBKDF2), the 256-
bit preshared key is evaluated using the passphrase.

Practice questions

Q.1 After reading the IEEE 802.11 section in this chapter, make an extensive note
regarding this protocol and whatever you have understood—take help from the respective
RFC if you want to.

Q.2 Install any Linux-based system live on an individual machine and try to enable the
monitor mode using the commands mentioned in this chapter.

Q.3 Capture the packets with the monitor mode off and the promiscuous mode on first,
and then capture with the monitor mode on and the Promiscuous mode on. Analyze the
difference.

Q.4 Install the Aircrack tool on your Windows machine and try capturing the 802.11
traffic around you.

Q.5 What is the difference between the various standards available in 802.11 (b/a/g/n/i.)?

Q.6 Suppose you have a router, and over to one end of the router you have a switch
connected, which further connects to multiple wired clients. Over the other end of the
router, you have a wireless access point connect, which serves as a medium to let various
wireless devices connect to the corporate network. Now, send a packet from the wireless
domain to the wired domain and analyze the packets while they transit between the
domains. What difference would it make in the 802.11 header?

Q.7 What can be happen when your wireless NIC does not support the monitor mode or
the promiscuous mode? Explain the importance of each.

Q.8 To view the availability of the probe requests that your device has sent to the access
point, which display filter would you use?

Q.9 Configure your AP with the WEP-Open authentication and then try to connect to it
using the AP while capturing the traffic, and do the same with WEP-Shared and analyze
the difference in the pattern of the packets that appear.

Q.10 Which one is better: WEP-Open or WEP-Shared key and why?

Q.11 Use a capture filter to capture traffic only from your host, access point, and the
broadcast address. Does this help you to decrease the noise?

Q.12 Configure your wireless interface in the monitor mode to a specific channel and
capture the WLAN traffic then.

Q.13 What is the difference between the WPA-Shared key and WPA-Enterprise
authentication protocols? Elaborate the same.

Q.14 Duplicate the scenario where you have a WEP-Shared key configured access point
capture, with quite a good amount of traffic for the same, and try to decrypt the traffic you
have using the WEP key.

Q.15 Why is WEP-Open better than the WEP-Shared key authentication mechanism?

Q.16 Can you figure out a way that you can forcefully disassociate a wireless client from
it’s own currently connected network?

Q.17 For deauthentication packets, how many types you do think exist? Modify the
coloring rule for the same to view the packets uniquely. In what way are they different
from the disassociation packets?

Q.18 While analyzing the WPA handshake, do you observe any open-system-based
authentication before the actual handshake? If it is there, then analyze the traffic and
explain what is it for?

Q.19 Configure your access point with the WEP protocol encryption capture normal
802.11 wireless frames. Then, using the same approach that we discussed, try to decrypt
your traffic using the key for your network.

Q.20 Is it possible to decrypt the traffic using the ASCII format key or you can you also
mention the key in HEX format? If yes, in which case can writing the key in HEX format
prove worthy?

Chapter 7. Network Security Analysis

This chapter will teach you how to use Wireshark to analyze network security issues, such
as analyzing malware traffic and foot printing attempts. You will learn how to use
Wireshark for network security analysis. This chapter will cover the following topics:

Analyzing port scanning, foot printing, and attack activities
Lab up—port scanning with Nmap

Analyzing brute force attacks

Lab up—analyzing brute force attacks

Inspecting malicious traffic

Lab up—inspecting malicious traffic

Solving real-world CTF challenges

Practice questions

Up to this chapter, I have tried to make you aware of how one should use Wireshark to
analyze the packets flowing around. We have just focused on how to use this sniffing tool
for basic analysis purposes. However, what I am about to tell you is that in most of the
places, Wireshark is used for security-analysis purpose, ranging from basic footprinting
attacks to advanced Trojan-based attacks.

Using a couple of scenarios in my virtual lab, I will try to duplicate the most common one,
along with capturing the live traffic between the attacker and the victim. Later on, we will
dissect the trace file to get an idea of how malicious traffic looks like. We will use this
knowledge base to create IDS/IPS or firewall signatures in an attempt to protect our
internal critical infrastructure by analyzing the traffic shown in Wireshark.

To achieve all this, you need to change your perspective a little bit. In other words, you
need to act and think like a security professional who is in charge of the corporate network
and constantly working to tighten the perimeter that will make the attack process more
complex for bad users. We can start all of this by analyzing the packets captured for our
daily usual traffic and also duplicate certain scenarios.

Information gathering

The primary step in the exploitation process is to collect as much information as you can.
In today’s world, gathering specific and relevant information about a person or an
organization is not so difficult (using search engines), and this is where everything begins.
A lot of security professionals will start launching attacks directly on the targets, which is
not appropriate in the beginning. Let’s say, for example, there is an ABC Corp. Ltd.
located in the next block, and an XYZ attacker is planning to exploit it in terms of
physical security (to get entry to the server rooms or any high-valued target available
inside). To do so, the first thing the attacker should know is the working hours and the
non-working hours. Then, they should know about the working days in the targeted
company. The attacker should also know about the physical layout of the building the
company is located in, and they should have some basic knowledge about the security
policy. With all this information, the attacker should be able to identify the weak points
inside the premises that might be an easy target and can give access to what they are
looking for. Did you notice what just happened in the preceding scenario? We assumed
that the attacker is collecting useful information and then planning and figuring out the
easy targets to attack, because following this approach will improve the chances of
success. Footprinting and reconnaissance are synonyms for the term information
gathering. The chances of success would be higher if you are following the planned
approach.

Let’s use the same approach in targeting an organization using networks. The first step
would be to identify the public IP address of the organization, the subnet it belongs to, and
the range of IP addresses allocated to the organization. This basic information can be
passively (without directly interacting with the company’s network) collected through the
use of DNS lookup services available online. We can try to check whether zone transfer is
available, which can give some juicy and granular details regarding the organization’s
infrastructure we are targeting. After you have collected the basic information and have
mapped the basic layout, you are ready to perform a port scan. I would prefer that you do
a ping sweep first, which will tell you about the live machines over the network, and from
where you will get to know more about the network (while performing a ping sweep, you
can modify the TTL value to figure out the internal LAN architecture).

Before we go ahead and try duplicating the most common scenarios, I want you to
visualize the local virtual computer infrastructure I have created for practice purpose.
Refer to the following figure:

Mobile Access Point

(™

7
=

KALI LINUX

Hopefully, now you have a rough idea about my internal network that I’ll be working
with. The access point located at 192.168.1.1 assigns the IP address to all these devices
using DHCP (the DHCP range starts from 192.168.1.100 and continues up to
192.168.1.110; it means I can have a maximum of 10 DHCP clients at one instance). For
this chapter, the IP address for our attacking machine is static assigned to 192.168.1.106.

PING sweep

Let’s begin with our first scenario where an attacker would try to perform a ping sweep
attack over the subnet, and the traffic generated is captured by our sniffer listening through
its interface in the promiscuous mode Refer to the following figure that displays the traffic
pattern that was generated after running a bash script the script pings each IP starting from
100 to 110):

No. ITime |Suurce IDesrination JPmlncnI‘ Lengthl Info
1 0. 000000000 Apple b9:53:ec Broadcast ARP 42 who has 192.168.1.1107 Tell 192.168.1.106
2 0.004128000 Apple_b9:53:ec Broadcast ARP 42 Who has 192.168.1,1097 Tell 192.168.1,186
3 0.008476000 Apple b9:53:ec Broadcast ARP 42 Who has 192.168.1,1087 Tell 192.168.1.106
4 0,012705000 Apple_b9:53:ec Broadcast ARP 42 who has 192.168,1.1077 Tell 192, 168.1.106
5 0.023785000 192.168. 1. 106 192.168. 1. 105 ICMP 98 Echo {ping) request 1id=8x11a8, seq=1/256, ttl=64
6 0.027774000 192.168. 1. 104 192. 168. 1. 106 ICMHP 98 Echo {ping) reply 1d=0x11a3, seq=1/256, ttl=64
7 8.031652000 Apple_b9:53:ec Broadcast ARP 42 who has 192.168.1,1037 Tell 192.168.1.106
8 8.035462000 192.168, 1. 106 192.168, 1. 162 IcHe 98 Echo {ping) request 1d=0x1199, seq=1/256, ttl=64
9 0.9040423000 192.168. 1. 106 192.168.1.101 ICMP 98 Echo (ping) request 1d=0x1194, seq=1/256, ttl=64
16 ©.847374000 192.168. 1. 106 192. 168. 1. 108 ICHP 98 Echo (ping) request 1d=0x118f, seq=1/256, ttl=64
11 8, 122601600 LiteonTe_fa:5e:bdBroadcast ARP 42 Who has 192.168,1.1067 Tell 192, 168,1.185
12 0, 124979000 Apple_b9:53:ec LiteonTe fa:5e:b4 ARP 42 192.168.1, 106 15 at d8:bb:2c:b9:53:ec
13 6. 1251186000 192.168. 1. 100 192. 168, 1. 108 bile, o 98 Echo {ping) reply 1d=0x118f, seq=1/256, ttl=64
15 8.131304600 192.168. 1. 191 192.168. 1. 106 ICHP 98 Echo {ping) reply 1d=0x1194, seq=1/256, ttl=64
16 0. 438404000 Apple_b9:53:ec Ite B7:73:6c ARP 42 Who has 192.168.1.17 Tell 192, 168.1.106
17 0. 528177000 Zte 87:73:6¢C Apple_b9:53:ec ARP 42 192.168.1.1 15 at dO:5b:aB:87:73:6¢

Figure 7.1: Ping sweep

Starting from packet 1-4, the Kali box started generating an ARP request because of the
ICMP ping command issued, but none of those IP’s are allocated. Hence, we did not
receive any replies. In packet 5, Kali box sent a ping request to 105, and the reply for it
was received in packet 14, which means the device is on. Then, in packet 7, an ARP
request was sent to 103, but this IP might also be unallocated for the instance, so no reply
again. In packets 8-10, Kali box sent an ICMP request packet to IP’s 102, 101, and 100.
The reply for the same can be seen in packets 13 and 15 from IP’s 101 and 100. For 102,
we did not receive any reply. It might be any device blocking our ping probes or some
mobile device not responding to the ping probes. Finally, in packet number 17, we can see
that the access point is informing the Kali Machine about its physical address. If you scroll
down through your trace file, you would see various replies from online devices
describing their physical addresses.

Half-open scan (SYN)

The next step in the process would be to scan any specific device that you would like to
target. Let’s suppose I want to target my Win7 machine running at IP 192.168.1.105. My
next step should be to check for available services running on that box. By services, I
mean HTTP daemons, mail server daemons, FTP server, and so on. You might be
wondering what a half-open scan is? Look at the process of a TCP three-way handshake
we discussed, where the client initiates the connection by sending a SYN packet if the
server is available. Then, the client receives the SYN, ACK packet, and in return, the client
sends an ACK packet to the server for completing the handshake process.

Now, what would happen if the ACK packet sent in the last step of the TCP handshake is
never sent to the server? The server will wait for a specific period before terminating the
handshake process initiated by the client, and the connection to the specific TCP service
would never be completed. That’s why this type of scan is called half-open scan. This is a
very common scanning technique used by the majority of users who are involved in
malicious activities, being aware of such traffic pattern could help us in identifying future
risks. I initiated the half-open scan from Kali box to target Win7 box. I am using Nmap,
which is an open source tool available for every platform and can be downloaded for free
from http://nmap.org (to use the tool, you can refer to various tutorials available online).
The traffic generated because of the SYN scan is captured and shown in the following
screenshot:

Filter:|ip.nddr==192.168.1.105 ﬂfxpression... Clear Apply Save

No. Time Source Destination Protocol| Length|Info
13 0. 312790080 192.168.1.106 192,168.1,165 TP 58 34806-53 (SYN] Seq=1408496563 Win=1024 Len=0 MS=1460

19 0.313759000 192.168.1.106 192.168.1.105 TCP 58 34806-80 [SYN] Seq=1408496563 Win=1024 Len=0 M55=1460

Figure 7.2: Half-open scan

There are three kinds of replies that you can see after the scanning is completed: Open,
Closed, and Filtered. Now, the point to discuss is what these states mean and what relation
do these states have with the packet shown in the preceding screenshot. Let’s look at the
states in more detail here:

e Open: If a service is open, then a SYN, ACK packet will be sent back to your machine

http://nmap.org

for taking the TCP handshake process to the next step of completion. In packet 26,
Kali sent an SYN request to port 135 and received a SYN, ACK reply in packet 28.

e Closed: If a service is not available to respond, then you would receive an RST
packet that confirms that the service/daemon is currently not running. In packet 22, a
SYN request was sent destined to port 113. In packet 25, the RST packet for the same
is received. It states that the service is not available at this moment.

¢ Filtered: Sometimes, a firewall might be configured between you and your target
that might be intercepting your requests and would be dropping them without
forwarding them to the target. In such scenarios, you might be seeing port states such
as open|filtered, closed|filtered, or just filtered.

e Let’s suppose you are trying to scan an HTTP webserver that is outside your VLAN
and is restricted by the firewall from your machine. Then, the handshake process
would never move to the second step, that is, you will never receive a reply of any
kind. You will not receive any SYN, ACK or RST packet.

Using this scan type, you can identify the state of the services running. However, using
this kind of scan type will generate a hefty amount of traffic too. The scan I initiated was
completed in 1.76 seconds, and in such a short time, it generated 2024 packets between
the two machines. Now, this proves disadvantageous. Any well-configured IDS/IPS can
figure out such activity very easily, which will in turn trigger an alert to notify the security
admins. Nmap has configurable switches that can help you out in these situations too.

OS fingerprinting

Being aware of the operating system running on the target takes the scanning process to
the next step in the methodology. If the attacker knows about the OS you are running, the
patch level of your OS, and the version of your OS, then it would be quite simple to
structure the attack process and will increase the chances of success.

There are a couple of tools available in Kali that will let you identify the target’s OS. It is
not 100 percent accurate, and it is correct most of the times. Now, how do you think a
simple tool is available to identify the remote machine’s OS? I will tell you the secret.
Every OS has a different way of implementing the TCP stack. So, a packet received from
the remote machine will have certain fields in it such as TTL, fragment offset, and most
importantly window size. By comparing the values in the packet with the database we
have, it will tell you the OS. For example, if you try to ping a Windows machine, the TTL
value returned would be 128, and if you ping a Linux machine, the TTL value would be
64 most of the time. Simple, isn’t?

There are two types of fingerprinting: active and passive. They are described here:

¢ Active fingerprinting: When you are directly interacting with the system, the
requests and responses are directly shared between you and the target. This kind of
scan can be really dangerous and is not stealthy. The captured packets will give you
values that can be matched with the signature we have to identify the OS running on
the remote machine.

¢ Passive fingerprinting: When you are just listening for the packets originated or
destined to the target, the values in the packets can be examined in order to identify
the OS running. A disadvantage off passive type scan is that it is not as accurate as
active fingerprinting. But the process would be stealthier than active scans.

Using the nmap scan, I will try to fingerprint a machine at IP 192.168.1.109 and
192.168.1.104 and see what kind of traffic is generated due to such requests. The type of
scan we will witness is active scanning, and we will be directly interacting with the
systems. We won’t just rely on Nmap’s output to confirm the OS. The packet that would
be returned to our attacking machine is the base of all necessary information, which I will
try to dissect for your better understanding.

I will use the nmap -0 192.168.1.109,192.168.1.104 command for active OS
fingerprinting, where the -0 switch is for checking the OS and its version. Refer to the
following two screenshots to compare the outputs they present to us:

Filter Im,addlulgzlﬁ.a,l 104 . ;Lwressuun Clear Save Filter |||:|.src-=192.1E18.1.1M B Expression... Clear Save

No. |Time [Source Destination Protocol |Length| Info Mo |Time Source Destination | Protocol Length nfo

P: Ui ke |
1 Protocol, Src Part: 135 (138), Dst Port: 62841 (B2R41], Seq: HRI2LA2T6, Ack: 4123704

Sequence number: 4031218279

Ackmowl sdgmant nembor: 4123706060
Header Length: 24 Bytes
0000 DOOL BOID = Flags: DxB12 (SWW, ACK)
TRITE B4 240

24 bytes], Marimin segment size, Mo-Oparation (NOP), Window scale, Me:Operation (NOP), Mo:Operation (WGP

Using just the TTL field, we can verify that the first traffic we captured is from some
Linux/Macintosh-based machine, as the TTL value is 64. The second traffic screenshot
belongs to a Windows machine as the TTL value is set to 128.

Secondly, the maximum segment size highlighted at the bottom can also be a deciding
factor for OS fingerprinting. In both cases, it is 1460. The value is correct if you are
talking about a Linux-based machine, but if it is a Windows machine, then you might
observe that the value is 1440 most of the time.

For both Linux and Windows platforms, the Fragment Offset field should be 0 (not set).
See how, simply by observing basic fields in the TCP header and IP header, we were able
to fingerprint on our own. Now let’s see what nmap has to say.

Refer to the following screenshots for illustration:

Running: Apple Mac 0S X 10.7.X|10.9.X|10.8.X, Apple i0S 4.X|5.X|6.X
0S CPE: cpe:/o:apple:mac_os x:10.7 cpe:/o:apple:mac_os x:10.9 cpe:/o:apple:mac_

s x:10.8 cpe:/o:apple:iphone _0s:4 cpe:/a:apple:apple_tv:4 cpe:/o:apple:iphone o

:5 cpe:/o:apple:iphone o0s:6

0S details: Apple Mac 05 X 10.7.0 (Lion) - 10.9.2 (Mavericks) or 105 4.1 - 7.1
Darwin 10.0.0 - 14.0.0)

Network Distance: 1 hop

Figure 7.3: nmap output for 192.168.1.104

The nmap output for the machine IP 192.168.1.104 detects that the machine might be one
of these OSes running (in the red box). I think what we figured out and it is quite close.
OS detection by nmap is done by analyzing the requests and responses traffic that the target
machine generates.

Running: Microsoft Windows 2003

0S CPE: cpe:/o:microsoft:windows _server 2003::spl cpe:/o:microsoft:windows serve
r 2003::sp2

0S details: Microsoft Windows Server 2003 SP1 or SP2
Network Distance: 1 hop

The nmap output for the machine at 192.168.1.109 says that it is a Windows server
machine, may be sP1 or sp2. This time, the result is more accurate than the previous one.
We also presumed that it would be a Windows OS, and it is.

The traffic generated from both these scans would be quite similar to the SYN scan traffic
where the TCP handshake request and 1cMP request/replies can be seen. Once the
attacker’s machine running nmap receives the replies for the requests made, it will start
analyzing and comparing the results with the database of the results it already has. Thus,
in the end, after comparing the values, Nmap will present you with the most accurate
results.

So, if you are seeing a lot of RST or RST, ACK packets sent from one of your internal LAN
machines, then it is something that you should be worried about. Better create signatures
for such traffic in your firewall so that they can alert you.

ARP poisoning

As we all know, the function of the ARP protocol is to translate an IP address to its
corresponding MAC address. By doing so, the devices are able to communicate effectively
in a LAN-based network. Any device that wishes to get connected with the other device
on the same network requires the MAC address of the other hosts. Every OS maintains a
list of communicating devices that can be populated in the terminal window using the arp
-a command. The same command is used on every platform. We have also seen the ARP
requests and reply packets that are used by the devices connected to the local network to
gain the MAC addresses of other devices.

For instance, I have a local network too, which is being governed by the router (gateway)
located at 192.168.1.1, and there are 3 devices connected to it. The following table lists
all the required information specific to the devices connected, which we will use later:

Device IP Address

MAC Address ‘

Router (default gateway)|[192.168.1.1 |[D0:5B:A8:07:73:6C

Apple (victim) “192.168.1.103“D8:BB:2C:B9:53:EC‘
'Windows server (victim) | “

192.168.1.109(00:0C:29:B3:CB:B6 ‘

Kali Linux (attacker) 192.168.1.106

00:0C:29:5D:A7:F7 ‘

This preceding information is listed in the ARP cache of every host connected to the local
network. You must be thinking exactly how this is being populated in the local cache.
Whenever any device intends to communicate with the other device, the requesting device
sends a broadcast to the whole subnet. Then, the device to which the IP address belongs
replies with it’s MAC address using a unicast packet. For example, if the Apple machine
wishes to communicate with the Windows machine located at 192.168.1.109, Apple will
send a broadcast asking for the Windows MAC address stating who has 192.168.1.1097?
Tell 192.168.1.103. Then, as soon as the Windows machine gets to know about the
request, the ARP reply unicast packet stating 192.168.1.109 is at 00:0C:29:B3:CB:B6
will be broadcasted. This is how the process works.

The preceding packets transfer will only happen if the Apple machine has the Windows
MAC address in it’s local cache. After searching in the local cache, the request is sent to
the default gateway. If the default gateway knows about it, an ARP reply packet is sent by
the gateway itself. If not, then the request will be forwarded to the subnet from where the
destination PC will reply with the physical address using a unicast packet. After this, the
conversation can happen using TCP/IP.

ARP poisoning is used to poison the local cache of the victim that enables the attacker to
sniff the data that is travelling between the two victims. The attacker intercepts the traffic
and then forwards it to the other side. Refer to the following illustration:

Gateway

Traffic being intercepted by Attacker 8

Kali — (Attacker)

We can poison the local ARP cache of both the victims and can achieve the same. There is
one more thing you need to configure: IP forwarding on Kali so that your attacking
machine would be able to transfer the traffic back and forth without any loss or without
letting the victims get suspicious. Follow these steps to achieve ARP poisoning:

e First, configure IP forwarding using the echo ‘1’ >
/proc/sys/net/ipva/ip_forward command.

¢ Once this is configured, you can go ahead and send unsolicited ARP reply packets to
both the victims for poisoning the cache. Before we poison it, let’s take a look at how
they look in normal form, for both the victim machines:

_oix

:\Documents and Settings\Administrator’arp -a

Interface: 192.168.1.189 -—— 8x160083

Internet Address Physical Address Type
192.168.1.183 d8-bbh-2c-h%-53-ec dynamic
192.168.1.1066 B8-Bc-29-5d-a?-£f? dynamic

:\Documents and Settings\Administrator’

Figure 7.4: Windows server cache

To populate entries in 1inux arp cache use similar commands; refer to the following
screenshot for reference.

nonymous:~ NotFound$ arp -a

(172.16.136.1) at 0:50:56:¢c0:0:1 on vmnetl ifscope permanent [ethernet]
(172.16.158.1) at 0:50:56:c0:0:8 on vmnet8 ifscope permanent [ethernet]
(192.168.1.1) at d@:5b:a8:7:73:6¢ on enl ifscope [ethernet]
(192.168.1.100) at f@:c1:f1:63:41:95 on enl ifscope [ethernet]
(192.168.1.106) at 0:c:29:5d:a7:f7 on enl ifscope [ethernet]
(192.168.1.109) at 0:c:29:b3:cb:b6 on enl ifscope [ethernet]

0
0
3

0
0

LS BTN IETS IETS BTSN IELS T -

Figure 7.5: Apple cache

e Now, let’s start sending unsolicited ARP reply packets to the Windows server
machine that Apple machine is located at 00:0C:29:5D:A7:F7. The same packet
would be sent to the Apple machine that the Windows server machine is located at
00:0C:29:5D:A7:F7. If you notice, the MAC address specified in the packets sent to
the Windows and Apple machines belongs to Kali (the attacker). Refer to the
following screenshot to check out the command I used for the spoofing fake MAC
addresses:

arpspoof -i eth0® -t 192.168.1.109 192.168.1.10
23:ec © 42: arp reply 192, lDH 1.103 1s-at -:u:-u-;:-ﬂ7-
» arp reply 192.168.1.103 is-at 0:c:2

06 42: arp reply 157.'.'_'2 1.163 1s-at @:c:
2: arp reply lJ 68.1.103 is-at O:c:
42: arp reply 192.168.1.103 is-at 0:¢
42: arp reply 192.168.1.103

Figure 7.6: ARP reply packets sent to the Windows server on behalf of the Apple
device

.103 192.168.1.169
.109 is-at 0:c:29:
109 is-at 0:

,109 is-at 0:

109 is-at 0:c
.109 is-at 0:c
109 1s-at 0:c:
109 is-at 0:c:
109 is-at 0:c:29:

1 ethe -t 192.16

Z: arp reply 192.

. arp reply 192.
42 arp re C
): arp reply

(o)
o3 —
}_l
un

a
oo
—
v W oo L

- -

oo CO oo
..I.._l..

2. arp reply
. arp reply .
2: arp reply 192
42 arp reply I

O Cn O Ch O O
oD

oo
un

- l.l.l-l-lu -
|--|--'-|—'-r--|—-|u-'-|—'-|—'-(I)

o N
o OO

Figure 7.7: ARP reply packets sent to Apple device on behalf of the Windows server

Using a one-liner command with few parameters, we were able to poison the victim’s
cache by sending numerous ARP reply packets.

e The traffic generated due to the preceding command was also captured at the same
time. Let’s see how it looks. Refer to the following screenshot:

23 3,015821000 Vmware 5d:a7:7 Vmiare b3:ich:b6 AP 42 192,168.1,103 1s at 00:0c:29:5:a7:f7

24 5,016999000 Vmware 5d:a7:17 Vmware_b3:ch:b6 ARP 42 192.168.1.103 15 at 00:0c:29:5d:47:f7

5 2,001262000 Vmware_5d:a7:f7 d8:bb:2c:b9:53:ec ARP 42 192,168.1,100 15 at 00:0c:29:5d:a7:17

6 4.001992000 Vimware 5d:a7:17 d8:bb:2c:b9:53:ec ARP 42 192,168.1,109 15 at 00:0¢:29:5d:a7:17

¢ Once multiple number of such packets are received by both of the victims, they will
start believing it and accordingly will update the cache. Let’s have a look at both the
machine caches to verify this. Refer to the following screenshots:

¢+ Command Prompt - 0| x|
G
C:\Documents and Settings\Administrator’arp -a

Interface: 192.168.1.109 -—- Bx10603
Internet Address Physical Address Type

192.168.1.163 BB-Bc-29-5d-a?7-f"? dynamic
192.168.1.1686 B8-Bc-29-5d-a?-£f? dynamic

G:\Documents and Settings\Administrator’

Figure 7.8: Poisoned window’s cache

Anonymous i~ NotFound$ arp -a

? (172.16.136.1) at 0:50:56:¢0:0:1 on vmnetl ifscope permanent [ethernet]
7 (172.16.158.1) at 0:50:56:¢0:0:8 on vmnet8 ifscope permanent [ethernet]
? (192.168.1.1) at d@:5b:a8:7:73:6¢ on enl ifscope [ethernet]

7 (192,168.1.100) at f0:c1:f1:63:41:95 on enl ifscope [ethernet]

? (192.168.1.106) at @:c:29:5d:a7:f7 on enl ifscope [ethernet]

7 (192.168.1.109) at @:c:29:5d:a7:f7 on enl ifscope [ethernet]

Figure 7.9: Poisoned Apple’s cache

e Now, whatever traffic is sent between these two devices will be forwarded through
the attacking box. For verification purposes, I turned off the Windows server machine
and tried sending ICMP packets from the Apple machine. Refer to the following
output shown for the ICMP destination host unreachable replies coming from
192.168.1.106 (Kali):

Anonymous i~ NotFound$ ping 192.168.1.109
PING 192.168.1.109 (192.168.1.109): 56 data bytes
92 bytes from 192,168.1.106: Redirect Host(New addr: 192.168.1.109)
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
4 5 00 0054 8554 © 0000 3f 01 7230 192.168.1.103 192.168.1.109

The preceding output assures that the packets are being forwarded through

192.168.1.106, hence making our ARP poisoning attack a success.

e Now, the question is how to secure yourself from such attacks. The best thing I would
suggest is to make manual entries for the device’s MAC address in the local cache of
the communicating client. This will definitely ignore unsolicited ARP reply packets
while modifying the local cache. Refer to the following screenshot:

C:\Documents and Settings\Administrator>arp -s 192.168.1.1083 d8-bbh-2c-h9-53-ec

C:\Documents and Settings\Administrator>arp -a

Interface: 192.168.1.109 — Bx18603
Internet Address Physical Address Type
192.168.1.1683 d8-hbh—2¢c-h?-53-ec static

Figure 7.10: Adding a static entry to local ARP cache

Once you add a static entry in every possible host in your network, it won’t be possible
then to modify the local cache using the arp spoof tool. Similarly, for HTTPS traffic, you
can use the SSL strip tool available online in order to sniff secure traffic.

Analyzing brute force attacks

Most of you must be aware of the popularity of brute force attacks. The chances of success
are not high. Yet, many security professionals and malicious users implement their
password-guessing ability with the help of modern tools. Brute force attack is just a way
in which you try to log on to a particular service/application using the password dictionary
that might have been created on the basis of the target’s profile. Tools such as Cewl,
Crunch, and John let you create dictionary files. Even you can salt the passwords.
Discussing how to create one for yourself is out of the scope of this book, but I would
recommend that you have a look at these tools (all of them come preinstalled with Kali
Linux).

To analyze these common and malicious attacks, I will attempt to brute force two
important services: Telnet and FTP. You might be aware of these two services and how
much they are being used in corporate networking infrastructure. Telnet is used to perform
administration of devices such as routers, switches, and different kinds of web servers
remotely. FTP is used to transfer files efficiently with the assurance of integrity and
confirmed delivery of the data.

First, take a look at most widely used protocol for remote administration that is often
overlooked from a security standpoint. Using simple brute force techniques, any script
kiddie can gain access to your network, and the consequences of such acts can be really
destructive in terms of money and availability of the service. If dealing with consumers,
then their records that might be worth millions, leading to full remote code execution of
the administrative systems.

For this illustration, I have a Windows server machine running at 192.168.1.109 and an
attacker at 192.168.1.106. The attacker will first prepare its dictionary file and then will
proceed to use an automated tool to attack over the Telnet administration service running
under the Windows server machine. The traffic generated for such activities will be logged
in through our wonderful sniffer for our analysis. I tried connecting to the Telnet service
like a normal user using these steps:

e Using the Telnet command followed by the IP address, I was able to get connected to
the service. In return, it printed a banner for me: welcome to Microsoft Telnet
service.

e Then, I supplied the wrong user credentials, which was not accepted by the server.
Hence, it showed a login error, which stated bad username or password.

e Then, I supplied a legitimate set of credentials, which were identified and accepted
by the service.

e Once the user is authorized, the Windows command prompt with certain
authorization is presented along with a banner. welcome to Microsoft Telnet
Server.

o After I got connected, I was able to issue remote commands (Windows) from my
machine itself.

e Then, at the end, to terminate the connection gracefully and to free up all resources
that were allocated to use for smooth functioning, I issued the exit command that

gave a message connection closed by foreign host.

Here is the screenshot illustrates the normal functioning of a Microsoft Telnet server:

T ® * Charit — root@kali: ~ — ssh — 87x35

root@kali:~# telnet 192.168.1.109
Trying 192.168.1.109...

Connected to 192.168.1.109.

Escape character is '~]'.

Welcome to Microsoft Telnet Service

login: anonymous
password:
Logon failure: unknown user name or bad password.

Login Failed

login: administrator
password:

¥=SoD===—====——===—=—=——————==——=—=——====—======

Welcome to Microsoft Telnet Server.
C:\Documents and Settings\Administrator>dir
Volume in drive C has no label.
Volume Serial Number is 98F1-FD57

Directory of C:\Documents and Settings\Administrator

02/01/2015 10:24 AM <DIR> .
02/01/2015 10:24 AM <DIR> .
02/01/2015 190:41 AM <DIR> Desktop

02/01/2015 10:24 AM <DIR> Favorites

02/01/2015 190:24 AM <DIR> My Documents

02/01/2015 01:09 PM <DIR> Start Menu

02/01/2015 01:11 PM @ Sti_Trace. log
1 File(s) @ bytes

6 Dir(s) 17,937,584,128 bytes free

C:\Documents and Settings\Administrator>exitConnection closed by foreign host.

Figure 7.11: Telnet normal session

The traffic generated was also captured by Wireshark. Instead of showing the traffic, I
decided to show you the whole communication in plain text format that you can achieve
by assembling the TCP stream by right-clicking on the list pane and choosing show TCP
stream (the Telnet server is configured with an echo option, so there is a chance we might
see some characters echoed back from the server to the client). Refer to the following
screenshot:

A Wl N g '...Welcome to Microsoft Telnet Service

login: aannoonnyymmoouuss

password: abcl23
Logon failure: unknown user name or bad password.

Login Failed

login: aaddmmiinniittrr..ssttrraattoorr

password: chris
.......... xterm-256color............xterm-256¢color..

e == i —f—i—i—]

Welcome to Microsoft Telnet Server.

e —— == —f— ————]

C:\Documents and Settings\Administrator>ddiirr

Volume in drive C has no label.
Volume Serial Number is 98F1-FD57

Directory of C:\Documents and Settings\Administrator

02/01/2015 10:24 AM <DIR>

02/01/2015 10:24 AM <DIR> ‘s
02/01/2015 10:41 AM <DIR> Desktop
02/01/2015 10:24 AM <DIR> Favorites

Figure 7.12: Telnet follow TCP stream

Everything we typed and received in response from the server is being shown in simple
plain text readable form by just following the TCP stream.

Now, after seeing how a normal session looks, if you want to learn how to perform a brute
force attack, follow these steps:

e Create a virtual pen-testing lab that consists of at least two machines: one will be an
attacker (Kali) and the other machine can be of your choice (make sure you can
install Telnet on it).

e Try pinging the target to test the connectivity. Issue the Telnet command to create a
normal session and test whether everything is working fine.

e Now, open Kali and issue the medusa -h <target ip> -U <usernames file> -P
<password file> -M telnet command. Refer to the following screenshot:

_:E# medusa -h 192,168.1.109 -U user.txt -P pass.txt -M telnet
Medusa v2.0 [http://www.foofus.net] (C) JoMo-Kun / Foofus Networks <jmk@foofus.net=

ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:
ACCOUNT CHECK:

[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:
[telnet] Host:

192.168.1.169 (1 of 1, © complete) User:
192.168.1.109 (1 of 1, @ complete) User:
192.168.1.169 (1 of 1, © complete) User:
192.168.1.169 (1 of 1, O complete) User:
192.168.1.109 (1 of 1, @ complete) User:
192.168.1.169 (1 of 1, © complete) User:
192.168,1,109 (1 of 1, O complete) User:
192.168.1.169 (1 of 1, © complete) User:
192.168.1.169 (1 of 1, O complete) User:
192.168.1.169 (1 of 1, O complete) User:
192.168.1.109 (1 of 1, O complete) User:
192,168,1,109 (1 of 1, @ complete) User:

Alice (1 of 8, O conplete) Password:
Alice (1 of 8, @ complete) Password:
Alice (1 of 8, O conplete) Password:
Alice (1 of 8, O conplete) Password:
Admin (2 of 8, 1 complete) Password:
Adnin (2 of 8, 1 conplete) Password:
Admin (2 of 8, 1 conplete) Password:
Adnin (2 of 8, 1 conplete) Password:
root (3 of 8, 2 complete) Password:
root (3 of 8, 2 complete) Password:
root (3 of 8, 2 complete) Password:
root (3 of 8, 2 complete) Password:

abc (1 of 4 complete)
efg (2 of 4 complete)
chris (3 of 4 complete
mo (4 of 4 complete)
abe (1 of 4 complete)
efg (2 of 4 complete)
chris (3 of 4 complete
mo (4 of 4 complete)
abc (1 of 4 complete)
efg (2 of 4 complete)
chris (3 of 4 complete)
mo (4 of 4 complete)

Figure 7.13: Brute force—Telnet

At last, using a different set of combinations, we were able to brute force the server.
The traffic generated because of all these attempts made one after another is of
special interest to us.

e There is a lot of TCP and TELNET traffic generated in the file, which include traffic
patterns such as the three-way handshake and transfer of data between the server and
client through Telnet. However, not everything is of interest to us. Refer to the
following screenshot:

Filter: |ip{addr==192,168.1.109 and tcp Save

|Source
192.1

jExpression.., Clear App

‘Destinaﬂon lProtocoIlLength|Infu
192,168,1.1 66 43702-23 [ACK]

Wireshark V|.'.: . . Decryption Keys...

. ’Tinne

40 16, 336439000
11 16. 336554000
53 20.908945000
54 20.909263000

168.1. 109 Tcp

5eq=3010083708 Ack=57989536

3 | |CF D ALK 4
87 Telnet Data ...
66 43702-23 [ACK]

TELNET
TCP

106
109

192,168, 1,
192.168.1.

168.1.
168. 1.

192,

192, 5eq=3010083708 Ack=57989557

56 21.411738000 192.168.1. 192.168,1.169 69 Telnet Data ...

1 1 TELNET
57 21,412049000 192.168.1.109 192,168, 1. 186 TCP 66 23-43702 [ACK] Seq=57989557 Ack=3010083711
58 21. 412169000 192.168.1.109 192, 168. 1. 186 TELNET 104 Telnet Data ...
59 21,412294000 192.168,1.106 192,168, 1,109 TELNET 84 Telnet Data ...
60 21.412410000 192.168,1.106 192,168, 1,109 Tcp 66 43702-23 [ACK] 5eq=3010083729 Ack=57989595
1 1

61 21.412410000 192.168. 1. 192,168, 1. 106 e 66 23-43702 [ACK] 5eq=57989595 Ack=3010083729

75 Telnet Data ...
66 43702-23 [ACK] 5eq=3010083729 Ack=57989604

TELNET
TCP

106
109
1,109

109

192.168. 1.
192.168.1.

168.1.
168. 1.

182.
192.

63 21.412630000
64 21.412757000

106

66 21,915442000 192,168, 1.106 192,168, 1, TELNET 73 Telnet Data ...

67 21.915638000 192.168.1.109 192,168, 1, 106 TP 66 2343702 [ACK] Seq=57989604 Ack=3010083736
68 21.916603000 192.168.1.109 192,168, 1. 106 TELNET 83 Telnet Data ...

Figure 7.14: Telnet and TCP traffic between the server and our client

¢ To view only the malicious traffic, I applied another display filter that will show only
the various connection attempts between the two hosts. Refer to the following
screenshot:

Filter: ‘telnet.data == "Welcome to Microsoft Telnet j Expression... Clear “Apply Save

No. ‘Time Source |Destinatic:-n ‘ProtocollLengthllnfo
100 29.029568000 192.168.1.109 192.168.1. 106 TELNET 104 Telnet Data ...
150 36.661261000 192.168.1.109 192.168.1. 106 TELNET 104 Telnet Data ...
197 44.413837000 192, 168.1.109 192.168.1, 106 TELNET 104 Telnet Data ...
242 52.032871000 192,168,1.109 192,168.1, 106 TELNET 104 Telnet Data ...
295 59.571317000 192.168.1.109 192.168.1. 106 TELNET 104 Telnet Data ...
348 67.125144000 192.168.1.109 192.168.1. 106 TELNET 104 Telnet Data ...
427 74.695691000 192.168.1.109 192.168.1. 106 TELNET 104 Telnet Data ...
517 82.307902000 192, 168.1.109 192.168.1, 106 TELNET 104 Telnet Data ...
572 89.889223000 192,168,1.109 192,168.1, 106 TELNET 104 Telnet Data ...
622 97.457400000 192,168.1.109 192.168.1.106 TELNET 104 Telnet Data ...
683 105. 004159000 192.168.1.109 192.168.1. 106 TELNET 104 Telnet Data ...
695 112. 538637000 192.168.1.109 192.168.1. 106 TELNET 104 Telnet Data ...
708 120.257229000 192.168.1.109 192.168.1. 106 TELNET 104 Telnet Data ...
720 127.819544000 192, 168.1.109 192.168.1, 106 TELNET 104 Telnet Data ...

«f — — —

P Frame 58: 104 bytes on wire (832 bits), 104 bytes captured (832 bits) on interface 0

P Ethernet II, Src: Apple b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Vmware 5d:a7:f7 (00:0c:29:5d:a7:f7)

b Internet Protocol Version 4, Src: 192,168.1.109 (192,168,1,109), Dst; 192.168.1,106 (192.168.1,106)

P Transmission Control Protocol, Src Port: 23 (23), Dst Port: 43702 (43702), Seq: 57989557, Ack: 3010083711, Len: 38

v Telnet

e Now, observe the display filter telnet.data==Welcome to Microsoft Telnet
Service along with the Time column. The string I applied in as the filter is the same
as the one we received as a banner while connecting to the service. The banner is
printed approximately 15 times in a span of 100 seconds (less than a minute).

e Does this now seem suspicious to you now? If it is, then you can take preventive
measures to protect your infrastructure by creating useful signatures for the same
traffic pattern that will help you in getting alarmed.

Next, it’s time to look at another popular service, FTP, that we discussed in earlier
chapters in detail. Let’s look at how a brute force attack would look like against the FTP
service. FTP is a very crucial service. If attacked by any means, the service will crash or
become unusable for the legitimate users. It can cause big trouble to the network admins
with serious downtime. To deal with such activity that happens in day-to-day operations,
you need to be prepared by being aware of the malicious traffic patterns that you can
compare with the baseline traffic pattern we created earlier.

For testing and analysis purpose, I configured one FTP server at 192.168.1.108 over a
Windows 7 machine and the attacker is at the same place over IP 192.168.1.106. [used a
Kali Linux operating system to duplicate the attack and normal traffic pattern scenario.
Follow these steps if you want to duplicate it for educational purpose only:

e Configure the client and the server using whatever platform suits your needs best and
make sure the connection between the FTP server and the client works freely without
a single glitch.

e Now, first, we will try to visit the server using a legitimate user and will record the

traffic. Later, we will use the Follow TCP stream option in Wireshark to view the
traffic details in easy to understand plain text format.

e Refer to the following screenshot where I initiated the connection between the server
and the client using the netcat client available over the Kali platform. I then logged in
using the wrong credentials in the first attempt, and then used the correct ones in the
second attempt:

[NON | Charit — root@kali: ~ — ssh — 80x25

root@kali:~# nc -nv 192.168.1.108 21

(UNKNOWN) [192.168.1.108] 21 (ftp) open

220-FileZilla Server version 0.9.32 beta

220-written by Tim Kosse (Tim.Kosse@gmx.de)

220 Please visit http://sourceforge.net/projects/filezilla/

user charit

331 Password required for charit

pass abc

530 Login or password incorrect!

user charit

331 Password required for charit

pass charit

230 Logged on

help

214-The following commands are recognized:
USER PASS QUIT CwD PWD PORT PASV TYPE
LIST REST CDUP RETR STOR SIZE DELE RMD
MKD RNFR RNTO ABOR SYST NOOP APPE NLST
MDTM XPWD XCUP XMKD XRMD NOP EPSV EPRT
AUTH ADAT PBSZ PROT FEAT MODE OPTS HELP
ALLO MLST MLSD SITE P@SW STRU CLNT MFMT

214 Have a nice day.

quit

221 Goodbye

o After I successfully logged in, I issued the help command to view the commands
available for execution. Then, I issued the quit command to terminate the connection
gracefully. Refer to the preceding screenshot.

e Our sniffer captured the whole conversation. Instead of viewing the traffic in the list
pane, we are again seeing the assembled TCP stream. Refer to the following
screenshot:

Stream Content

220-FileZilla Server version 0.9.32 beta

220-written by Tim Kosse (Tim.Kosse@gmx.de)

220 Please visit http://sourceforge.net/projects/filezilla/

user charit

331 Password required for charit

pass abc

530 Login or password incorrect!

user charit

331 Password required for charit

pass charit

230 Logged on

help

214-The following commands are recognized:
USER PASS QUIT CWD PWD PORT PASV TYPE
LIST REST (CDUP RETR STOR SIZE DELE RMD
MKD RNFR RNTO ABOR SYST NOOP APPE NLST
MDTM XPWD XCUP XMKD XRMD NOP EPSV EPRT
AUTH ADAT PBSZ PROT FEAT MODE OPTS HELP
ALLO MLST MLSD SITE P@W STRU CLNT MFMT

214 Have a nice day.

quit

321 Goodbye

Figure 7.15: FTP assembled stream

¢ Now, as we have seen the normal traffic patterns that you would witness in every day
operations, it’s time to look at something malicious, such as the brute force attack
attempts executed against your FTP servers. I used a different brute force tool that is
it also popular among the category THC-hydra.

e Before you issue the command, make sure you have you own custom-made
dictionary file that suits you well for your target (refer to the openwall website at
http://www.openwall.com/wordlists/ to get the best dictionary files available).

¢ Once you have the dictionary file and the target up and running, issue the hydra -1
<username> -P <password file> ftp://<you target’s IP address> command.
Refer to the following screenshot:

http://www.openwall.com/wordlists/

WOORRRAN -5+ hydra -1 charit -P pass.txt ftp://192.168.1.103
Hydra v7.6 (c)2013 by van Hauser/THC & David Maciejak - for legal purposes only

Hydra (http://www.thc.org/thc-hydra) starting at 2015-09-12 18:16:00
[DATA] 11 tasks, 1 server, 11 login tries (1:1/p:11), ~1 try per task
[DATA] attacking service ftp on port 21
() () host: IGENIGERINIEE 1ogin: BREEN password: ERERE
1 of 1 target successfully completed, 1 valid password found
Hydra (http://www.thc.org/thc-hydra) finished at 2015-09-12 18:16:04

e The traffic generated was also captured by our sniffer. Instead of displaying all the
traffic, I used a display filter ftp.request.command==PASS in order to view only
traffic that might be malicious. The following screenshot shows what display filter I
used to query malicious repetitive packets.

Filter: |ftp.request.cnmmand mx=uPASS: j Expression... Clear Apply Save

No. | Time Source ‘ Destination ‘ Protocoll Length||nfo
60 1.169458000 192.168.1.106 192.168.1.103 FTP 76 Request: PASS 007
61 1,169645000 192,168, 1, 106 192,168,1,103 FTP 76 Request: PASS mno
62 1.169830000 192.168.1,106 192,168.1,103 FTP 79 Request: PASS charit
63 1.170013000 192.168.1,106 192.168.1.103 FTP 77 Request: PASS root
128 3.500600000 192.168.1,106 192.168.1.103 FTP 76 Request: PASS 123
131 3.501315000 192.168.1,106 192,168.1,103 FTP 76 Request: PASS efg
132 3.501529000 192.168.1.106 192.168.1,103 FTP 76 Request: PASS abc
133 3.502078000 192.168.1,106 192.168.1.103 FTP 78 Request: PASS admin
134 3,502479000 192,168.1,106 192.168.1,103 FTP 78 Request: PASS chris
136 3. 503548000 192.168.1,106 192.168.1,103 FTP 76 Request: PASS mo

Figure 7.16: FTP Brute Force attack traffic pattern

e [t is easily identifiable that the traffic is malicious because, in a span of maximum 85
seconds (calculated using the time column), there were approximately 10 password
attempts made. This does look dangerous, and activities of such kind should be
monitored closely in order to protect your resources facing the Internet.

There is one more way through which you can point out such traffic patterns. The best
advisable option using Wireshark is to create a different coloring scheme using the same
display filter expression that we used in order to point out the malicious traffic even faster.
Refer to the following screenshot where I did the same and created a different coloring
scheme for both TELNET and FTP traffic:

Filter
List is processed in order until match is found
Name String

Figure 7.17: Coloring scheme for malicious traffic

There are various other application layer protocols (HTTP, SSH, SMTP, and so on) that
fall prey to these brute forcing techniques and might result in heavy losses for corporate
infrastructures. In order to make these services secure, you can force encryption over the
service that you are configuring and use strong password policies, such as an
alphanumeric password with minimum length. You can also enforce a password change
policy at a regular intervals, such as 30 days or something. Last but not least, you can
make the employees aware of such activities. Any form of social engineering attacks
executed against an employee can leverage the attacker to gain access to the infrastructure
more easily.

Inspecting malicious traffic

In some previously mentioned topics, we have witnessed a few scenarios that generated
malicious traffic. Some of the common protocols, such as HTTP, DNS, ARP, IRC, that are
seen in the list pane can carry malicious traffic. So, knowing about the malware traffic
analysis is definitely an important skill every network and security professional should be
well versed with. In today’s digital world, various advance have been made. Yet, threats
including malware infection persist. Every organization should consider threats of such
nature to be critical. For illustrating the threats that are caused due to various malicious
traffic, I have configured a few things in my virtual lab. The traffic generated because of
the activities between the client and the server would be captured in parallel, which we
will use to analyze later. Refer to the following screenshot:

1. Client visits legitimate website Eeeianie

Compromised

iy website

IP:192.168.1.107

Malware location

—and C&C center
IP:192.168.1.100

Malwares are supposed to perform a couple of tasks once installed on the victim’s
machine, such as passing on the secret content to the person in command, receiving
commands from the server, and infecting and corrupting systems. Even if you have the
best security solutions installed in your infrastructure, you are still open to wide attack
vectors, including malware infections.

Now, we have understood the basics of how malicious traffic is being generated, and we
also have a clear image of the infrastructure that we will work with. So, without wasting
even a second more, let’s go ahead and start the process. Follow these steps if you want to
replicate the scenario in your own virtual lab:

® You require three machines connected to the same LAN. Make sure they are able to
talk to each other, that is, verify the connectivity.

e On the IP address 192.168.1.106 stays a legitimate website, which the client is
habituated to visit. However, this time, the client is not aware of the infection that
causes redirection to another webserver. Refer to the following screenshot of the

legitimate server:

O ® 1 192.168.1.106

& ¢ |1 192.168.1.106

Charit's Apache Web Server

Figure 7.18: Legitimate website

¢ To simulate the redirection, I have configured my Apache server running on 106 to
redirect every request coming to IP 192.168.1.100 and download the efg.exe

malware from there.

e So, next time the client visits the website running at 192.168.1.106, it gets
redirected to a new webserver address, which directly asks the client to run a file

named efg.exe. Refer to the following screenshot:

File Download - Security Warning |

Do you want to run or save this file?

ﬁ Mame: efg.exe
Type: Application, 1.25 MB

From: 192,168.1.100

M Cancel !

Hun Save

While files from the Intemet can be useful, this file type can
@ potentially harm pour computer. |f you do not trust the source, do not
- run or save this software. What's the nsk?

x|

Figure 7.19: Client gets redirected to IP 192.168.1.100 and is asked to run the

application.

e If the client clicks on Run they might not be aware of the dangerous effects the
malware can pose to the client’s machine and the network client is a part of. The

publisher of the application is not verified, so the browser is not able to verify it. This
results in giving an unknown publisher error. If the client still proceeds and clicks on
Run, the malware will be installed. Refer to the following screenshot:

Internet Explorer - Security Warning] X|

The publisher could not be verified. Are you sure you want to run this
software?

Mame: efg.exe

Publisher: Unknown Publisher

Run . DontRun

should only run software from publishers you trust, How can I decide what

@ This file does not have a valid digital signature that verifies its publisher, You
software ko run?

Figure 7.20: Unknown publisher error

Now, let’s suppose that, if the client hits run, then the malware will be downloaded to
the client’s machine. It will be executed later on, thus creating a connection back to
the command and control center.

If the connection back to the attacker was successful, then without the knowledge of
the client, the attacker can copy files, delete files, take screenshots, take webcam
snaps, record voice through the mic, corrupt system files, and so on. You might have
heard of various malwares such as ransom wares, spywares, and adwares.

The whole traffic generated because of all these activities is being captured. Let’s
take a look at it. Instead of showing you the traffic, I assembled the TCP stream first
between the client and the legitimate server.

To understand the way our malware works, we need to look at more details, which
can be presented to us by Wireshark. Refer to the following screenshot that shows the
assembled TCP stream:

[NON | X Follow TCP Stream (tcp.stream eq 0)

Stream Content

GET / HTTP/1.1

MAccept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; SV1; .NET CLR 1.1.4322)
Host: 192.168.1.106

Connection: Keep-Alive

HTTP/1.1 301 Moved Permanently

Date: Mon, 14 Sep 2015 10:40:42 GMT

Server: Apache/2.2.22 (Debian)

Location: http://192.168.1.100/efg. exe
Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 248

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=iso-8859-1

........... e RO e G TV R A iy SO L i] (e |, - B TN 1)

! SR TR SRl Y2 i
leveeobo..v=2,...08. ...V, 800 o0 MUl L 02 TBUR,, Co

L.T9.Lh, ..I>&..aP...; \evuvoennTonn Lonn 300t WE Bt i3 0020500

Entire conversation (846 bytes) hd |

"\ Find | [save As ’ & Print |O ASCIl O EBCDIC O Hex Dump O CArrays ® Raw

I{Help [[¥|Filter Out This Stream | H Close ’

Figure 7.21: TCP stream between the client and real (compromised) server

As you can clearly see, the client is trying to visit the webserver, and the request is
being forwarded with HTTP redirection to the new address 192.168.1.100, trying to
download the malicious file.

¢ Once the client gets a redirection response, the client again initiates a three-way
handshake with the new server and tries to download the file. After a couple of
packets were exchanged between the hosts in the later frames, the clients received a
200 OK status message, suggesting successful download of the malware.

1285 30, 4200630192, 68,1100~ 192,168.1. 107 TP ASRRTTR/L.L 200 0K (application/x-nsdownload)

In the following screenshot, you can see that the malware signature can be easily
recognized by any IDS/IPS in place:

. JON | \ ' Follow TCP Stream (tcp.stream eq 1)

Stream Content

GET /efg.exe HTTP/1.1 A
Accept: 1mage/gif, 1mage/x-xbitmap, image/jpeg, image/pjpeg, */* m
Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; SV1; .NET CLR 1.1.4322)
Connection: Keep-Alive

Host: 192.168.1.100

HTTP/1.1 200 OK

Date: Mon, 14 Sep 2015 10:40:40 GMT

Server: Apache/2.2.12 (Win32) DAV/2 mod_ssl/2.2.12 OpenSSL/0.9.8k mod_autoindex_color
PHP/5.3.0 mod_perl/2.0.4 Perl/v5.10.0
Last-Modified: Mon, 14 Sep 2015 10:40:40 GMT
ETag: W/*2a00000000ffOe-142200-51fb4c11c8780"
Accept-Ranges: bytes

Content-Length: 1319424

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: application/x-msdownload

W A e L 1,.L.1This
program cannot be run in DOS mode.

S)»
Entire conversation (1309951 bytes) - |

"L Find HSave As | & Print |O ASCIl O EBCDIC O Hex Dump O CArrays ® Raw

HHelp [¥|Filter Out This Stream | ¥ Close [

Figure 7.22: Malware signature

The GET request was initiated by the client in search of efg.exe, to which the server
responded with a 200 OK status message. Later, you can see the known malware signature
starting with the characters Mz followed by some random character. A quick Google search
regarding the same will reveal its behavior and pattern. Our search also reveals that it is an
executable file, as Wikipedia states 16/32 bit DOS executable files can be identified by the
letters Mz at the beginning of the file in ASCII. Refer to the following screenshot:

DOS [edi)
Main articles: DOS MZ executable and New Executable

16-bit DOS MZ executable
The original DOS executable file format. These can be identified by the letters "MZ" at the beginning of the file in ASCIL.

Until this point, its clear that the is a Windows executable file is clear which might be

malicious.

Moving on with our investigation regarding the malicious file, I would like to export the
efg.exe file using Wireshark.

1. Go to File | Export Objects | HTTP. You will see a dialog similar to the one shown

here:
| JON | \| Wireshark: HTTP object list
Packet num |Hostname |Content Type |Size |Filename
8 192.168.1.106 text/html 315 bytes /
22 192.168.1.106 text/html 315 bytes /

I Help {73 Save As | o Save Al | ¥ cancel |

Figure 7.23: Exporting HTTP objects

2. Now, to export the file, you need to select the conversation that states the name of the
file along with it. Then click on Save As and save the file at a location of your
choice.

3. The best option would be to upload this file to websites such as
http://www.virustotal.com, which will cross examine the PE-executable file with
numerous antivirus software online and will show you a detailed analytical report.
Refer to the following screenshot:

http://www.virustotal.com

__ total

VirusTotal is a free service that analyzes suspicious files and URLs and facilitates
the quick detection of viruses, worms, trojans, and all kinds of malware.

OFile @URL Q Search

efg.exe Choose File
Maximum file size: 128MB

By clicking 'Scan itl', you consent to our Terms of Service and allow VirusTotal to
share this file with the security community. See our Privacy Policy for details.

Scan it!

4. Now, click on Scan it! to let the website examine the file and wait for the results:

Figure 7.24: Uploading efg. exe to virustotal.com

D

total

SHA256: 3867030071 ee085a4981cBbd7a621942e6(78af87hfaled1cd1509416a19bf
File name: efg.exe :

=
Detection ratio: 31/56 ‘IO 0

Analysis date: ~ 2015-09-14 10:52:33 UTC (1 minute ago)

31 out of 56 antivirus software detected the executable file as malicious, which is

Figure 7.25: efg. exe examination completed

quite alarming.

5. Further, I manually examine the conversation between the infected machine and the
command and control center by looking at the hex dump in the following TCP stream

window. I observe something. Refer to the following screenshot:

LR TR T e T

000A1978
000A1988
000A1998
000A19A8
000A19B8
000A19C8
000A19D8
0O00A19ES
000AL9F8
000A1A08
000A1A18
D00A1A28
000A1A38
000A1A48
O00A1AS8

Stream Content

46
69
65
be
64
61
75
0o
53
49
64
54
96
65
00

T

69
6c
49
64
50
74
12
00
65
6d
af
6f
01
56
00

O

bc
65
be
bc
69
68
12
d4
74
70
be
6b
4c
61
00

65
54
66
65
70
de
b5
02
45
b5
55
65
6f
6c
00

LT

54
69
6f
00
65
bl
be
48
be
12
13
be
6f
75
00

69
6d
12
00
00
6d
74
65
64
73
65
50
6b
65
00

W o

6d
65
6d
8d
fb
65
-
61
4f
6f
12
12
75
41
00

65
00
61
03
01
57
69
70
66
be
00
69
70
00
00

54
ec
74
50
47
00
72
33
46
bl
1f
76
50
00
00

W ww

6f
01
69
65
65
00
65
69
69
74
00
69
72
00
00

4c
47
6f
65
74
bf
63
7a
6cC
65
41
6c
69
00
00

LT

6f
65
be
6b
46
01
74
65
65
4c
64
65
76
00
00

63
74
42
de
15
47
6f
00
00
6f
6a
67
69
00
00

O

61
46
79
61
T
65
12
00
00
67
75
65
6c
00
00

bC
69
48
6d
6C
74
79
53
13
67
73
73
65
00
00

LT

46
6c
61
65
50
43
57
04
01
65
74

FileTime
ileTime,.
elnforma

T S T

TolocalF
.. GetFil
t1onByHa

ndle....

dPipe. ..

athNameW

urrentDi

PeekName

GetFullP

i BETC
rectoryw

....Heap
SetEndof
Imperson
dOnUser.

Size..S.
File..s.
atelogge

. .Adjust

00 TokenPri vileges.

67
00

.. Lookup
eValueA.

........

Privileg

Figure 7.26: Hexdump in TCP stream dialog

It seems that the server machine that has taken the control of the victim issues some
command to gather quick information regarding the machine. The highlighted content on
the right-hand side of the window states strings such as Get File Information, Get full
PC name, Get Current directory, Adjust token Privileges, and so on.

As per my analysis, the file that got installed to the windows box is definitely malicious. It
might have caused some serious damage to the individual machine as well as the network.
The best advisable solution is to isolate the machine from the network, unless it is being

disinfected using specialized tools.

To conclude this section, I have one more thing to depict using the list pane in Wireshark.
Refer to the following screenshot:

10.
20,
3
4 0.
bt
6 0.
70.
8 0.
1)
10 0.
11 0.
12°0:
13 0.
14 0.

0000000 Apple_b9:53:ec

0002370(Apple_b9:53:ec

00041001192,
00051200192,
00066000192,
001145600192,
00134600192,
00208900192,
00345900192,

168.
168.
168.
168.
168.
168.
168.

1.107
1.106
1.107
1.107
1.106
1.106
1.107

1404520(LiteonTe fa:5e:bd
1409980(Apple_b9:53:ec
16200100192, 168, 1. 100
1622670(192.168,1. 107
1627790(192.168.1. 107

Broadcast

Vmware b3:
192,
192.
192,
192,
192,
192.
192,

168.
168.
168.
168.
168.
168.
168.

ch:b6
1.106
. 107
. 106
. 106
. 187
.107

1
1
1
1
1
1.100

Broadcast

LiteonTe fa:5e:b4

182.168.1.107
182.168.1.100
192.168.1. 100

ARP
ARP
TCP
TCP
TCP

HTTP

TCP

HTTP

TCP
ARP
ARP
TCP
TCP

HTTP

42 Who has 192.168.1.1067 Tell 192.168.1.107

47 192.168.1,106 1s at d8:bb:2c:b9:53:ec (dupl
62 1339-80 [SYN] Seq=2857922741 Win=64240 Len=
62 80-1339 [SYN, ACK] Seq=2114108500 Ack=28579
54 1339-80 [ACK] Seq=2857922742 Ack=2114108501
340 GET / HTTP/1.1

54 80-1339 [ACK] Seq=2114108501 Ack=2857923028
614 HTTP/1.1 301 Moved Permanently (text/html)
62 1340-80 [SYN] Seq=3060050875 Win=64240 Len=
42 Who has 192.168.1.1077 Tell 192.168.1.100
47 192.168.1.107 1s at dB8:bb:2c:b9:53:ec

62 80-1340 [SYN, ACK] Seq=2258050522 Ack=30600
54 1340-80 [ACK] Seq=3060050876 Ack=2258050523
347 GET /efg.exe HTTP/1.1

Figure 7.27: Unusual behavior noticed in list pane

Observe the behavior of the packets from the beginning, as it started with the ARP request
sent by the Windows machine because it was trying to look for a legitimate web server

locally configured. Followed by the three-way handshake, the client initiates a GET request
in frame 6, which the server acknowledged in the following packet. Then, the server states
that the resource the client is looking for has been moved to another location, and the
client is required to go there. After this, the client generates an SYN request in frame 9.
Then, the command and control center generates the ARP packets asking for the client’s
physical address in order to get in touch with it and to transfer the file. Then, at last, in
frames 12 and 13, the three-way handshake is completed, which ends in generating a GET
request from the victim’s machine in order to start the transfer of the exploit as seen in
frame 13. The consequences of such traffic patterns can be highly devastating. A good
network/security admin should be aware of such traffic patterns and can use such traffic
behavior to create firewall/IDS-IPS signatures that can generate quick alerts. They can
help in avoiding and making their infrastructures ready to fight with these malicious
traffic.

Solving real-world CTF challenges

Capturing the flag events is the most common thing that happens in security conferences.
The objective is to learn and play with the challenges based on real-world scenarios that
can assist you quite well in learning the methodology. Popular conferences such as DEF
Con, PlaidCTF, CSAW, and Codegate can be searched for if you are interested in cracking
flags. Basic programming, networking, forensics, and common sense are the skills
required to take part in these challenges.

I have made a couple of challenges for you and we will be solving them as well in a step-
by-step approach. I have made all of them pretty simple in order to give you an idea of
how the CTF thing works and definitely the approach you are supposed to follow. So, let’s
begin and capture some flags.

First CTF: Leverage the weakness in remote administration services

No. | Time I Source | Spoqt)estination | DFDRT‘ Frulocul‘ Info

54.230.228.18 443 192.168. 1. 104 56183 TCP 44356183 [ACK] Seq=1527212327 Ack=2153657923 Win=70
’16. 58,2268, 34 0 (53

3 0.418061000
192.168.1.106 123 125.62.193. 121 123 NTP NTP Version 4, client

5 0.589610000

6 0.724491000 125.62.193.121 123 192.168. 1. 106 123 NTP NTP Version 4, server

7 1,589365000 192,168, 1. 106 123 123.108. 200,124 123 NTP NTP Versien 4, client

8 1.719188000 123.108, 200,124 123 192.168. 1. 106 123 NTP NTP Versien 4, server

9 2. 589697000 192.168. 1. 106 123 120.88.46. 10 123 NTP NTP Version 4, client
4

18 2. 704410000 120.88.46.10 123 192.168. 1. 106 123 NTP NTP Version 4, server

12 2.904148000 192.168.1. 104 42699 192.168.1.1 53 DS Standard query 0x656b A dz13wBafda7il.cloudfront.net

13 2,004606000 192.168.1.104 46769 192.168.1.1 53 DNS Standard query 8x752e A matching.granify.com
14 2905049000 192.168.1,104 63641 192.168.1.1 33 OHS Standard query 0xf3dl A static.hotjar.com

15 2,905314000 192.168.1.104 32494 192.168.1.1 53 DNS Standard query Ox447a A widgets.getsitecontrol.com

P Frame 1: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface 8

b Ethernet II, Src: Apple_b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Zte_07:73:6c (d0:5b:a8:07:73:6c)

b Internet Protocol Version 4, Src: 192.168.1.104 (192.168.1.104), Dst: 216.58.220.34 (216.58.220.34)

P Transmission Control Protocol, Src Port: 56133 (56133), Dst Port: 88 (B6), Seq: 1268126250, Ack: 875498243, Len: @

parsnr

0000 d0 5b a8 07 73 6c d8 bb 2c b9 53 ec 08 00 45 00 . [..sl.. ,.5...E.
6010 00 28 2f 8e 40 00 49 06 94 d4 cO a8 61 68 d8 3a . (/. @@h.:
0020 dc 22 db 45 00 S0 4b 96 12 2a 34 2f 6b 63 50 14 .".E.PK. .%4/..P.
e300 20 0aa0dOOBOEE 0

@ ¥ | File: */Users/Charit/Desktop/telnet-flag.pcapng” 899 kB 0... | Packets: 2274 - Displayed: 2274 (100.0%) - Load time: 0:00.061 [Profile: Default

Figure 7.28: CTF1 trace file

e Solution: We have a telnet-flag.pcap file that lists multiple packets in the list
pane. The question is asking us to take advantage of remote administration services.
How many services do we know which are used for remote administration RDP,
Telnet, and SSH? To better understand the scenario, let’s open our trace file in
Wireshark first. Refer to the following screenshot:

No. I Time | Source ISpurt__!D: stination | DPORT | Frammll Info

3 0. 418061000 54.230.228.18 443 192, 168. 1. 184 56183 TP 443-56183 [ACK] Seq=1527212327 Ack=2153657923 Win=70
| 40460573000 182.168.1.104 56131 J16.58.220.3 80 TCF 5613180 [RST, ACK] Seq=2685404637 Ack=3466255308 Win)
5 0. 589610000 192,168, 1. 186 123 125.62,.193. 121 123 NP NTP Version 4, client
60, 724451000 125 62.193.121 123 192.168.1.106 123 NP NTF Version 4, server
T 1. 589365000 192.168.1. 166 123 123.108. 200. 124 123 NTH NTP Wersiom 4, cliemt
B 1.719188000 123.108. 200,124 123 192.168.1.106 122 HTP HTP Version 4, server
9 2. 589697000 192.168.1.186 123 120.88.46.10 123 NTF NTP Versiom 4, cliemt
10 2. To4410000 120.88.46.10 123 192,168, 1. 106 123 NTP NTP Version 4, server
© T 2.003603000 192 168,1.104 56205 B3.066,169.231 443 TOP 56295443 [SYN] Seqed116328342 Win=65535 Lensd MSS=14
12 2,504 148008 192,168, 1. 104 42699 192.168.1.1 53 i Standard query Ox656b A drliwBafdi?il.clovdfrent.net
13 7. 504506000 192, 168.1. 164 46760 192, 168.1.1 53 ows Standard query Ox752e & matchang.granify.com
14 2. 505045008 1592.168.1. 104 63641 192.168.1.1 53 1+ Standard query Oxf3dl A& static.hotjar.com
15 2.905314000 192, 168.1. 184 32494 192.168.1.1 53 s Standard query Oxd447a A widgets.getsitecontrol.com

P Frame 1: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on mturh:l L]

b Ethernet II, Src: Apple_b®:53:ec (di:bb:2c:b8:53:ech, Dst: Zte 07:73:6c (dO:5b:a@:07:73:6¢)

b Internet Protocol Version 4, Src: 192.168.1.104 (192.168.1.104), Dst: 216.58.270.34 (216.58.220.34)

b Transmission Control Protocol, Src Port: 56133 (56133}, Dst Port: 86 (BO), Seq: 1268126258, Ack: 875408243, Len: 8

0006 o0 5b a8 O7 73 6ic 98 bb 3¢ bR 53 ec 08 00 45 DO | T TR
0010 00 28 2f Be 40 00 40 06 94 d4 c@ aB 01 68 dB da /.88h.:
G020 dc 22 db 45 60 50 4b 06 12 23 M 2H Bb 03 50 14 CLE.PK. W/LP
00 XoaadsbBOOO 0 L

@ ¥|File: *Users/Charit/Desktop/telnet-flag.pcapng” 899 kB 0., Packets; 2274 - Displayed: 2274 (100.0%) - Load time: 0:00.061 {Profile: Default

As you can see, there are more than two thousand packets in our trace file. It would be
practically impossible to scroll to the bottom to see each packet. The best option would be
to look into the protocol hierarchy window, which will give us a brief regarding all
protocols involved in the whole trace file. From here, it would be easy for us to identify
the remote administration services. The protocol hierarchy window can be accessed from
the Statistics menu. Refer to the following screenshot:

Protocol % Packets [Packets |% Bytes |Bytes

100.00 % - 2274 100.00 % 823058

v Ethernet 2274 IONIEA 823058
< Internet Protocol Version 4 2266 EEELRA 822722 0.146
< Transmission Control Protocol ENEE] 2177 EEBYE] 799706 0.142
v Secure Sockets Layer 7.92% 635 44 % 349318 0.062
Secure Sockets Layer 048% 11 087% 7149 0.001
Malformed Packet 110% 25 017% 1375 0.000
File Transfer Protocol (FTP) 0.44 % 10 0.09% 756 0.000
Telnet | 3.43% 78 0.73% 6000 0.001
Hypertext Transfer Protocol - 0.09% 2 020% 1636 0.000
v User Datagram Protocol | 378% 86/ 2.75% 22656 0.004
Network Time Protocol 026% 6 007% 540 0.000
Domain Name Service 0 295 % 67 243% 19972 0.004
NetBIOS Name Service 031% 7.009% 716 0.000
v NetBIOS Datagram Service - 0.26% 6 017% 1428 0.000
v SMB (Server Message Block Protocol) | 0.26 % 6 017% 1428 0.000
¥ SMB MailSlot Protocol 026% 6 017% 1428 0.000
Microsoft Windows Browser Protocol 0.26 % 6 017% 1428 0.000
Internet Control Message Protocol 0.13% 3.004% 360 0.000
Address Resolution Protocol 0.31% 7 0.04 % 294 0.000
v Text item 0.04 % 1 001% 42 0.000
Address Resolution Protocol 0.04% 1 001% 42 0.000

Figure 7.29: Protocol hierarchy CTF1

Among all the protocols listed, I can see only one that is used for remote administration,
and we can use it to move on with our CTF process. So, I applied the display filter telnet
in order to see only relevant traffic. Refer to the following screenshot:

Filter: |te|net j Expression... Clear Apply Save

No. | Time Source ‘ Sport| Destination | DPORT l Protocol ‘ Info
404 6,895186000 192,168.1.108 23 192.168.1.106 45932 TELNET Telnet Data ...
407 6.964431000 192,168.1.106 45932 192.168.1.108 23 TELNET Telnet Data ...
409 7.066463000 192,168.1.108 23 192.168.1.106 45932 TELNET Telnet Data ...
419 7,108133000 192,168, 1.106 45932 192,168.1.108 23 TELNET Telnet Data ...
421 7.207867000 192,168.1.108 23 192.168.1.106 45932 TELNET Telnet Data ...
423 7.268273000 192,168.1.106 45932 192.168.1.108 23 TELNET Telnet Data ...
424 7,364004000 192,168.1.108 23 192.168.1.106 45932 TELNET Telnet Data ...
428 7.500046000 192.168.1.106 45932 192.168.1.108 23 TELNET Telnet Data ...
457 11.207799000 192, 168.1.106 45933 192,168.1.108 23 TELNET Telnet Data ...
494 15.754880000 192, 168.1.108 23 192.168.1.106 45933 TELNET Telnet Data ...
496 15.755366000 192, 168.1.108 23 192.168,1.106 45933 TELNET Telnet Data ...
498 15.755873000 192, 168.1.106 45933 192.168.1.108 23 TELNET Telnet Data ...
499 15.756022000 192,168.1.108 23 192.168.1.106 45933 TELNET Telnet Data ...
501 16.564974000 192,168, 1.106 45933 192,168.1.108 23 TELNET Telnet Data ...
502 16.565218000 192,168.1.108 23 192.168.1.106 45933 TELNET Telnet Data ...

Figure 7.30: Telnet traffic CTF1

Now, the next step would be to follow the TCP stream of these packets, which will reveal
more information regarding the Telnet session.

This is what the question was about: leveraging the weakness in a remote administration
service. Telnet sessions can be viewed in plain text format, and we finally leveraged the
weakness to take advantage of viewing the session’s information in plain text format. The
flag is the password used by the user to log in to the Windows machine to perform
maintenance activities.

FLAG : Sup3rs3cr3t

The following screenshot illustrates how the TCP stream windows will look after the
packets are assembled. Also, the Telnet session’s password can be seen clearly.

Stream Content

-55::::::::":.::.':'..:: | S . SFUTLNTVER. SFUTLNTMODE.
T P i e .DISPLAY. kali:0. El '...Welcome to Microsoft Telnet Service

login: aaddmmiinniissttrraattoorr

password Sup3rs3cr3t

Welcome to Microsoft Telnet Server.

t == == == == == ==

C:\Documents and Settings\Administrator>iippccoonnffiigg

Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection- specific DNS Suffix

IP Address. : 192,168.1.108
Subnet Mask . . . & . & 4 « &« w &« 3 255.255.255.9
Default Gateway : 192,168.1.1

Entire conversation (843 bytes)

Figure 7.31: TCP stream dialog CTF1

I hope you have understood the basic approach of CTF solving. We would follow similar
approach in solving further CTF challenges.

This time I have designed a CTF that utilizes another common protocol and will let you
learn the basics of the CTF challenge approach.

Second CTF: Image magic

Solution is in the title of this CTF and it is pretty small and attractive, though we have no
idea what we are looking for, but for sure there is something related to images. Wireshark
performs magic every time; this is what my perspective tells me about the challenge.

Following an approach similar to the one we talked about first, we would open the trace
file in order to learn basic stats related to the traffic capture that will give us an overview

of the protocols used during the session. Refer to the following screenshot:

Fiiter:l _'JE:pression... Clear Apply Save

No. | Time [Saurce |Sport| Destination |DPDRT | Pratacal] Info
1 0.000000000 192.168.1.104 37451 192.168,1.1 53 DNS Standard query Oxaadd A www.google.co.in
20.000263000 192.168,1.104 19870 192.168.1.1 oy DNS Standard query 0x7b0d A apis,google.com
10.000474000 192,168, 1. 104 18423 192,168,1.1 53 NS Standard query 0x9fbc A clientsS.google.com
40.000672000 192.168.1.104 22076 192.168.1.1 53 NS Standard query Oxaldc A Lhd.googleusercontent.com
50.000881000 192.168.1.104 26759 192.168,1.1 53 DNS Standard query OxB6al A play,google, com
G 0.001090000 192.168.1.104 2936 192.168,1.1 53 DNS Standard query Oxeddl A plus,google.com
7 0.068967000 192.168.1.1 33 192,168, 1.104 37451 DNS Standard query response Oxaad0 A 216.58.220.35
8 0.069228000 192,168, 1.1684 28218 192.168,1.1 53 DNS Standard query Bxea7d A ssl.gstatic.com
10 6.071029680 192.168.1.1 53 192.168, 1.104 19870 DNS Standard query response 8x7bBd (CNAME plus.l.google.co
11 0.671383080 192.16B.1.104 42441 192.168.1.1 53 NS Standard query 0xBOlb A www.gstatic.com
12 0.075404000 192.168.1.1 53 192.168.1.104 18423 ONS Standard query response 0x9fbc CNAME clients.l.google
14 6.076447000 192.168,1.1 53 192.168, 1. 104 22076 DNS Standard query response Oxallc CNAME googlehosted.l.g
15 B, 077054000 192,168.1.1 53 152,168, 1,104 6759 DNS Standard query response OxBG6al CNAME play.l.google.co

17 0.077679000 192,168.1.1 53 192.168, 1. 104 2936 DNS Standard query response Oxeddl A 216.58.220.46

19 0.152852000 192.168.1.1 53 192.168. 1. 104 28218 DNS Standard query response @xea79 A 216.58.220.35

b Frame 1367: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) en interface 0
b Ethernet I1, Src: Apple b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Zte 07:73:6c (d0;5h:a8;07:73:6c)

b Internet Protocol Version 4, Src: 192.168.1.104 (192.168.1.104), Dst: 116,202.225.77 (116.202,225.77)

9000 d0 5b 38 07 73 6c d8 bb 2 b9 53 ec 08 00 45 00 .[..sL.. ,.5. . .E. i
0010 00 40 92 76 40 00 40 06 90 19 c0 3B 01 6B T4 ca .@.v@.@.ht.

0020 el 4d dc 49 01 bb 64 1c 57 51 00 00 00 00 b0 62 .M.I..d. WQ......

030 f Ff ¢B 04 00 00 02 64 ©5 b4 01 03 03 05 01 B1 ...0vovr vererrn
0040 8 Da 32 ea 6a 73 00 60 00 00 04 02 00 00 EAE

@ *|File: */Users/Charit /Desktop/flag,pcapng” 2545 kB 00:01:00 §Packets: 4812 - Displayed: 4812 (100.0%) - Load time: 0:00,065 Profile: Default
Figure 7.32: Trace file CTF2

The trace file starts with a lot of DNS packets, which don’t look very useful for our
analysis. Looking at the following status bar in Wireshark, we can say that there are
around 4,800 frames definitely captured. This one is not something that we can inspect
element by element, so we need the help of our best guy: protocol hierarchy dialog (now I
hope, without any specific instruction, that you can open the dialog):

ec@ % Wireshark: Protocol Hierarchy Statistics
Display filter: none
Protocol |‘3i Packets [Packets |% Bytes |Bytes |Mbit,is |Em:|F
= Frame 4812 [LLNEE] 2382942 0.314
= Ethernet 4812 [TIKEE] 2382942 0.314
= Internet Protocol Version 4 4801 EEELE] 2382480 0.314
= User Datagram Protocol 195 % 94 1.12 % 26725 0.004
Domain Name Service 1.79 % 86 1.09% 26005 0.003
MNetwork Time Protocol 0.17 % 8 0.03% 720 0.000
= Transmission Control Protocol 4707 EERELE] 2355755 0.311
= Secure Sockets Layer Es.56 % 1230 EE.95 % 809029 0.107
Secure Sockets Layer 0.60 % 29 1.18% 28006 0.004
Malformed Packet 0.52 % 25 0.06 % 1375 0.000
- 0.08 % 0.14 %
JPEG File Interchange Format 0.02 % 1/ 0.05% 1287 0.000
Malformed Packet 0.19 % 9 0.02% 495 0.000
File Transfer Protocol (FTP) 0.21 % 10/ 0.03 % 756 0.000
Address Resolution Protocol 0.23% 11| 0.02 % 462 0.000
i =) yo
HHelp % Close |

Figure 7.33: Protocol hierarchy CTF2

In the list of various protocols, I spotted JPEG, which is an image extension, and is listed
under the HTTP section in the dialog. We can conclude from this that there is some
relation between these two ,so our display filter could become HTTP, which will keep us
moving in the right direction.

As soon as I type HTTP in the display filter box and press enter, I am presented with just
four packets. One of those listed is a . jpg file with the name flag. Refer to the following
screenshot:

Filter: [http jExpression". Clear Apply Save
No. Time Source Sport| Destination DPORT | Protocol | Info
1330 8.506833000 192.168.1.104 56389 216.58.220.46 GET / HTTP/1.1
1359 8,828249000 216.58.220.46 80 192.168.1.104 56389 HTTP HTTP/1.1 301 Moved Permanently
4696 46.211934000 192, 168. 1,108 1637 192.168.1.106 80 HTTP GET /flag.jpg HTTP/1.1
4761 46,286776000 192,168.1.106 80 192.168.1.108 1637 HTIP HTTP/1.1 200 0K (JPEG JFIF image}

Figure 7.34: Display filter HTTP—CTF2

Frame number 4,696 lists a GET request for a alg. jpg file. Investigating, further by
looking at the TCP stream of this packet, confirms that there was a . jpg file requested by
the client at 192.168.1.108. Refer to the following screenshot:

Stream Content

GET /flag.jpg HTTP/1.1

Accept: 1image/qif, 1image/x-xbitmap, 1mage/jpeg, 1image/pjpeg, */*

Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; SV1; .NET CLR 1.1.432
Host: 192,168.1.106

Connection: Keep-Alive

HTTP/1.1 200 OK

Date: Thu, 17 Sep 2015 09:05:24 GMT

Server: Apache/2.2.22 (Debian)
Last-Modified: Thu, 17 Sep 2015 08:10:02 GMT
ETag: "154002-12ef5-51fecf132d262"
Accept-Ranges: bytes

Content-Length: 77557

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: 1image/jpeg

llllllllllllllllllllllllllllllllllllll

Entire conversation (78148 bytes)

Figure 7.35: TCP stream—CTF2

The request made by the client is now confirmed and verified. The next step would be to
export this object from the stream. Go to File | Export Objets | HTTP.

$] @ \ Wireshark: HTTP object list

Packet num |Hostname Content Type ‘Size |Fi|ename |
4761 192.168.1.106 image/jpeg 77 kB flag.jpg

JiHelp | 74 Save &s[[rd Save A1I| X Cancel |

The window just lists one flag. jpg file. Follow the mentioned steps in order to export the
image object. First select the row one showing the images object then click on save as and
save the file at any desired location. When finished, open the file to view the flag content.
Refer to the following screenshot to see the content of the exported object.

Figure 7.36: CTF2

This challenge was pretty interesting, because you learned about a different idea behind
CTF challenges.

Our final challenge also introduces us to a new idea behind CTF’s.
Third CTF: Are you Pro Enough!!

Title of the challenge is pretty challenging in itself. However, we will solve this together.
So, let’s open the trace file first.

At first glance, it looks like other trace files we have seen with numerous useless packets
filled in. Without getting ourselves confused with the overwhelming amount of
information there, let’s follow the approach that we have been following so far. Refer to
the following screenshot:

FiIter:‘ jExpression... ear Appl
No. | Time ‘ Source ‘ Sport| Destination ‘ DPORT ‘ Protocol| Info

2 0.374589000 192,168.1.104 57436 216.58.209. 206 80 TcP 57436-80 [ACK] Seq=3269130868 Ack=13
31.210095000 192,168.1,104 57435 216.58,209.206 g0 TCP 57435-80 [ACK] 5eq=2379564888 Ack=42

TP

.1;@[

6 3.02645 192.168, 1. 104 16,202,225,
S

B 3. 103449000 5.77
9.3.629703000 192.168.1,104

11 3. 840186000

.168.1.104
.58.220.46

57453.443 [ACK] Seq=3110812772 Ack=1
i 104 [TCP ACKed unseen segment] 443-57453

192,168.1.104 216.58,220,34 443 TCP 57455-443 [ACK] Seq=2054217085 Ack=1
16.58.220. 34 168 1 164 CTAGE [TCR n - i 3 _EJALT
192.168.1.104

13 3.952494000
14 4

154.926050000 192,168.1.104 57451 216.58.209.198 443 TCP 57451-443 [ACK] Seq=3608687153 Ack=1

.58,220 .46 57432443 [ACK] Seq=2923333224 Ack=l
168.1. 104 [TCP ACKed unseen seqment] 443-57432

B¢

16 4.985049000 192, 168.1, 104 57463 216,58, 209,194 443 TCP 57463-443 [ACK] 5Seq=3070932444 Ack=9
17 5001706000 216. 58,209, 198 443 192,168.1.164 57451 TCF [TCP ACKed unseen seqment] 443-5745
18 5.037320000 192.168.1,104 57454 216.58,220.34 443 TP 57454-443 [ACK]) Seq=1538303151 Ack=l

19 5.035051000 9,194 44: 192.168. 1,104 57463 TCF [TCP ACKed unseen segment] 4

i

b Frame 1: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface 0

P Ethernet II, Src: Apple_b9:53:ec (d8:bb:2c:h9:53:ec), Dst: Zte 07:73:6c (dB:5b:a8:07;73:6¢c)

b Internet Protocol Version 4, Src; 192.168.1.104 (192,168,1,104), Dst: 216.58.220,46 (216,58,220.46)

b Transmission Control Protocol, Src Port: 57434 (57434), Dst Port: 80 (80), Sea: 2021126317, Ack: 4168055135, Len: O

1€ A
0000 do 5b a8 07 73 6c d8 bb 2c b9 53 ec @8 00 4500 .[..sl.. ,.5...E,
0010 00 28 ec 6a 00 00 40 06 17 ec cO a8 01 68 d8 3a (. P P
0020 dc 2e 0 53 00 50 78 77 f0 ad fB 6f 79 5f 50 10 ...Z.Pxw ...0y_P.
0030 20 00 5d bb 00 00 it

© ¥ |File: */Users/Charit/Desktop/voip-flag.pcapng" 559 kB 00:... {Packets: 2360 - Displayed: 2360 (100.0%) - Load time: 0:00.039
Figure 7.37: Packet list pane—CTF3

Look at the protocol hierarchy window that can help us in revealing more about the CTF
challenge we are dealing with. Refer to the following screenshot:

Data
Real-Time Transport Protocol
< Real-time Transport Control Protocol
v Real-time Transport Control Protocol
Real-time Transport Control Protocol

Bk.86 %
| 56.8 7
0.30 %
0.30 %

0.04 %

Protocol % Packets |Packets |% Bytes |Bytes
v Frame 2360 LR 479211
v Ethernet 2360 INEES 479211
<~ Internet Protocol Version 4 2323 EERTE] 476348
< Transmission Control Protocol] 9.03% 213|5.35% 25623
= Secure Sockets Layer 1.40 % 33 247% 11835
Secure Sockets Layer 0.04 % 1 027 % 1315
= NetBIOS Session Service 0.42 % 10 0.40 % 1913
SMB (Server Message Block Protocol) 0.42 % 10 0.40 % 1913

= 0.08 % 0.19 %

Media Type 0.04 % 1 010% 463
¥ User Datagram Protocol 2108 EEIERD 450617
Session Initiation Protocol 0.76 % 18 2.13% 10210
Domain Name Service 1.06 % 25/ 0.75% 3586
Network Time Protocol 0.34 % 8 0.15% 720

681 [E.17 % 144566
1342 EEEh % 287096

7.017% 810
7.017% 810
1 0.02% 110

Figure 7.38: Protocol hierarchy—CTF3

As expected, we get a new insight about the trace file, and we can observe that the UDP
traffic percentage is about 89 percent, which is quite a big number. It lists Real Time
Protocol under it. So, let’s go ahead and create a display filter for RTP traffic, which can
take us to the next step in solving the riddle. Refer to the following screenshot:

Filter: Irtp j Expression... Clear

Apply Save

No. ‘ Time

Source

|5por

t‘ Destination

| DPORT | Protocol Info

153 22.991364000
155 23.010037000
157 23.029883000
160 23.050162000

162 23.068664000
164 23.069831000
165 23.089663000
167 23.090159000

192.168.1.1607
192.168.1.1607
192.168.1,107
192.168.1.107

192,168.1.105
192.168. 1. 107
192,168, 1.105
192.168.1.107

16530
16530
16530
16530

57232
16530
57232
16530

192.168.1.105
192,168, 1.105
192.168. 1.105
192.168.1.105

192.168.1,187
192.168. 1.105
192.168,1.107
192,168.1.105

57232
57232
57232
51232

16530
571232
16530
57232

RTP
RTP
RTP
RTP

RTP
RTP
RTP
RTP

PT=ITU-T G.711 PCMY,
PT=ITU-T G.711 PCMY,
PT=ITU-T G.711 PCMU,
PT=ITU-T G.711 PCMU,

PT=ITU-T G.711 PCMJ,
PT=ITU-T G.711 PCMU,
PT=ITU-T G.711 PCMJ,
PT=ITU-T G.711 PCMU,

SSRC=0x6CCB32AE,
SSRC=0xBCCA3ZAE,
SSRC=0x6CCB32AE,
SSRC=0x6CCB32AE,

SSRC=BX14FF15F5,
SSRC=0x6CCB32AE,
SSRC=0X14FF15FS,
SSRC=DX6CCB32AE,

Figure 7.39: RTP display filter—CTF3

It seems like a call session is in progress between the two hosts at 192.168.1.107 and
192.168.1.105. Next, using the playback feature in Wireshark, I will reassemble the
stream and will try to play back. Go to Telephony menu | VoIP Calls and select the SIP
call in row 1 and click on Player. Refer to the following screenshot:

Detected 1 VolIP Call. Selected 1 Call.

StartTirr'|StopTim ’Inilial Speal |From To ‘Protocl |Packet |State |Comments
W = ———} Y
Total: Calls: 1 Start packets: 0 Completed calls: 1 Rejected calls: 1
ElPrepareFiIter| = Flow) Player B Select All | ¥ Close |

e
Figure 7.40: VOIP calls dialog—CTF3

Once the call session is visible, select it and click on the player where you will be asked to
give the jitter value. Specify 200 as the value and click on Decode:

»

Jitter buffer [ms] [200]

|4

Now, you should be able to see the assembled VoIP stream available for playback. Select
the first part of the communication and click on Play. The person communicating from
Side A side says, Start the transfer of the rabbit and playing Side B’s part we can observe
that it is just an echo of Side’s A message. Refer to the following screenshot:

4

O From 192.168.1.105:57232 to 192.168.1.107:16530 Duration:13.48 Drop by Jitter Buff:0(0.0%) Out of Seq: 1(0.1%) W

O View as time of day

]itterbuffer[ms]lzﬂﬂ :| ® Jitter buffer © Use RTP timestamp O Uninterrupted mode @*‘Decodc' [Play | i

Figure 7.41: Reassembled VoIP call for playback—CTF3

We did not get many clues from this message. Let’s look at the protocol hierarchy dialog
once again and see what we have in the TCP section. Other than the HTTP protocol, there
isn’t much useful information. Under the HTTP tree, there is a media type, which means
something got transferred between the hosts on the network (as the person on VOIP call
said start the transfer). We applied HTTP as a display filter, we got the following
screenshot:

: |http j Expression... Clear Save

| Time | Source |Spnrt‘ Destination | DPCIRTl Pmmcoll Info

2346 56.423315000 192.168.1.106 80 192.168.1. 105 1130 HTIP HTTP/1.1 200 OK (application/rar)

As is clearly visible, a flag. rar file got transferred. Let’s export this to a . rar file for
extraction. Go to File | Export Objects | HTTP, select the first row, and click on Save as
to save the . rar file. The file got successfully saved, but when we tried opening the file, it
asked for a password, which we don’t know have:

@® The Unarchiver

CH You need to supply a password to open the archive “flag.rar”.
[wan I

Apply to all Stop

Figure 7.42: Flag. rar ask password

Did you notice what the person said over the call “start the transfer of the rabbit”, so why
don’t we check therabbit as password to this archive file.

Luckily, our first guess worked. This might not happen every time we solve CTF
challenges. There is a file inside it called flag. txt that reads You Gotcha!! Refer to the
following screenshot:

You Gotcha !!

This section was particularly real fun! I enjoyed solving it for you. I hope the approach
and flow we followed would prove useful for other CTFs that you might start solving after
reading this chapter. Best of luck to you for your independent analysis, and remember that
using out-of-the-box thinking and a bit of common sense is also required.

Summary

Use Wireshark to keep your network secure by defending against the most common form
of infiltration attempts. Analyzing the packets with security perspective will give you a
new insight into how to deal with malicious users.

Activities such as port scanning, footprinting, and various active information-gathering
attempts are the basis of attacking methodologies that can be taken advantage of to bypass
your security infrastructure.

Guessing passwords for a legitimate service is called a brute force attack. If the same form
of attack is combined with dictionaries, which consist of millions of passwords, the
chances to break in get higher. Through Wireshark, you can view such attempts made
against a service in your network.

Using a legitimate looking piece of software, a malicious user can gain entry into your
network. These days, the most common form through which malwares are being
distributed is emails. Another attack form, such as phishing, when combined with
malwares, becomes seriously dangerous.

Wireshark can help you in analyzing malware behaviors, and using the behavior analyzed,
you would be able to create the necessary signatures for your IDS/IPS firewalls in place.

Capture the flag events are commonly conducted at security conferences. Multiple
educational exercises are provided to the participants to experience real-world scenarios.
The real CTF is where a TEAM A tries to penetrate into TEAM B’s network and vice
versa at the same time. Both the teams are responsible for securing against the malicious
attacks sent in. There are multiple categories in CTF events, such as reverse engineering,
protocol analysis, programming, cryptanalysis, and so on. Mastering Wireshark can ease
your way while dealing with protocol analysis related CTFs.

Observing things scattered around with a security professional’s perspective will let you
see things differently. From a person inside the corporate infrastructure, things might feel
OK. However, from outside, you might be very vulnerable. Security professionals are like
immunity to the IT industry, and analyzing the packets using Wireshark is one of their
weapons in the arsenal.

Practice questions

Q.1 What is the difference between the active and passive information gathering
techniques?

Q.2 Which information-gathering technique is stealthier and why?
Q.3 What do you understand by the term banner grabbing?
Q.4 Use the netcat utility in Linux to connect to a running HTTP service.

Q.5 What is the difference between the -sT and -sS switches used in nmap scans? Can you
use both at the same time?

Q.6 Use nmap to perform OS fingerprinting on a machine and then redirect the output of
the scan to a file for later use.

Q.7 Without using nmap, can you fingerprint an OS using Wireshark?
Q.8 How OS fingerprinting attempts made against you can lead to serious damage?

Q.9 Figure out the techniques to evade firewalls deployed in corporate environments using
nmap.

Q.9 Is it possible to combine two attacking methodologies, ARP spoofing and DNS
poisoning, in order to achieve bigger and better results?

Q.10 Try brute forcing a service in you lab environment and analyze the traffic pattern
using your own custom-made dictionary files.

Q.11 Try leaning about brute forcing tools already installed in Kali Linux and figure out
which tool is more suitable for RDP brute force attacks.

Q.12 What other filter expression can be useful while analyzing the malicious FTP traffic
patterns?

Q.13 Is it possible to force encryption over the FTP session so that the following TCP
stream won’t show the traffic in normal text form?

Q.14 Why is it important to isolate an infected PC that emits unusual traffic from your
network, and what traffic patterns related to it make it malicious?

Q.15 Visit various online CTF challenge websites and try solving a few of them. Do you
still find it difficult to understand the challenge, or does it seem a bit easier now?

Chapter 8. Troubleshooting

This chapter will teach you how to configure and use Wireshark to perform network
troubleshooting. You will also master the art of troubleshooting network issues using
Wireshark. The following are the topics that we will cover in this chapter:

Using Wireshark to troubleshoot slow Internet issues
Lab up

Troubleshooting network latencies

Lab up

Troubleshooting bottleneck issues

Lab up

Troubleshooting application-based issues

Lab up

Practice questions

The loss of packets during transmissions is one of the most common problems that all
network administrators deal with in their day-to-day lives. However, thankfully, we have
various built-in error recovery features in the transmission protocol that come to our
rescue to deal with the problems. However, it is essential to understand how these error
recovery features work in order to troubleshoot the problems by just looking at the packets
flow in the list pane if and when human intelligence is required. Troubleshooting latencies
or any application-based issues in your network requires you to have an understanding of
the traffic flow and the way packets interact with each other. Before we start getting our
hands dirty with a troublesome network, we need to understand some basics of the
recovery features that would help you diagnose and figure out the root of such problems.
Consider yourself blessed that you have the privilege of using Wireshark—the most
popular and well-versed tool for network packet analysis—which is an open source tool.
This won’t state the problems for you, but the time required to troubleshoot network-
related issues is drastically reduced.

Now, you might feel like asking the question: “how does it looks like or how you can
identify such happenings?” Just as every coin has two sides, the network communication
has two ends: a sender and a receiver. On the sender side, recovery features are handled by
the Retransmission Timeout (RTO) values, which are a sum of Round Trip Time
(RTT) and mean of standard deviation. On the receiver side, recovery mechanism is
handled by keeping a track of SEQ and ACK values that are shared between the
communicating hosts.

You definitely have heard about flow control features, we discussed the same in previous
chapters while dissecting TCP-based communications. Flow control features are used in
order to keep the transmission more reliable by taking help of dynamic functionalities
such as sliding window and zero window notifications. Now that you have the basic
understanding of, [want you to understand things in detail. Note that we will talk about
TCP-based communication most of the time in this chapter.

Recovery features

TCP retransmissions and duplicate ACKs are the tactics that are used while recovering
from a failed packet transmission or an out-of-order packets transmission scenario.
Commonly, network latencies (the total time it takes for a packet to be sent along with the
time its ACK is received) are observed, due to which the performance of networks are
significantly disturbed. When the amount of retransmissions and duplicate ACK packets are
seen very often in the list pane, most probably, there is a chance that your network is
facing high latencies; if not, then just sit back and relax. My point is that you should be
concerned about such activities, and if possible, mix some network management
techniques with your protocol analysis that can keep you updated all the time with what’s
happening inside

The devices use TCP retransmission in order to send data reliably. Values such as RTT and
RTO are maintained by the sender of the data in order to facilitate a reliable form of
communication. The sender initiates the retransmission timer as soon as the packet leaves
the ACK, and when the same is received, the sender stops the retransmission timer. The
timer value here determines the timeout value. Now, if the sender does not receive the ACK,
after a certain amount of time, the sender initializes the retransmission of the same packet.
If the sender still does not receive any AcK, the timeout value will be doubled and the
sender will retransmit the same packet again. The same cycle is followed until the ACK is
received or the sender reaches maximum retransmission attempts. The sender, based on
the operating system maintains a number of retransmission attempts, which are triggered
when a certain timeout value is reached.

Server: 192.168.1.1 Client: 192.168.1.2

Figure 8.1: TCP duplicate ACK and retransmission

For instance, in the preceding figure, a client is located at 192.168.1.2 and the server is
located at 192.168.1.1. Here, the client is requesting some resource that the server holds,
following which the transmission between the two hosts starts after the three-way
handshake is successfully completed. For every data packet received, the client sends a
Ack for the same. Now, suppose that for some random packet in the stream, the server did
not receive the ACK even after the timeout value for the data packet expired. The server
initiates the retransmission of the similar data packet again. The same process is followed
unless and until the server receives an AcK for every packet, or the server at 192.168.1.1
reaches the maximum number of default attempts, five, in a row. Refer to the following
figure that shows this retransmission process:

Server: 192.168.1.1 Client : 192.168.1.2

Default RTO Set
:;_and Sends PCKT —>]

SendsACK 2
AdiustsRTO [€

Sends PCKT 2 \)

PCKT 2 lost during transmission

Retransmission timer
expires Sends PCKT 2
again

Sends ACK

3

Session
ends | €

Figure 8.2: TCP retransmission

On the basis of the preceding simplified scenario, I suppose now that you have understood
the gist of the retransmission process.

Now, we will discuss duplicate ACKs and fast retransmission, which is another recovery
feature that the clients take care of. In the previous chapter, we discussed the SEQ and ACK
numbers that are used in order to keep track of TCP-based communication. You might also
remember how the ACK values were incremented using the data payload size, where we
added the received packet SEQ value and data payload size value and the resulting sum
became the AcK value. We sent this value with our AcK packet, and we expect to receive
the next data packet marked with the same SEQ value. Suppose that the server starts
sending data packets, and the first data packet is marked with a SEQ value of 100 with a
data payload size equals 10. Once the client receives the ACK packet, it prepares to send to
the server with value set to 110 (remember the formula: SEQ number received + Data
payload size = ACK value).

As soon as the server receives the ACK packet with the value 110, it prepares for another
data packet to be sent with SEQ 116 with a payload size of 10. After receiving this, the
client will respond with ACK 126. The same process goes on till the end of the session.
Now, suppose that instead of sending the next packet with SEQ set to 10, the server sends a
packet with SEQ 130, which is out of order, and after receiving this, the client would send
a duplicate ACK set to 120 to the server to recheck and send the missing packet again from
the data stream.

Server ; 192.168.1.1 Client : 192.168.1.2

S —— — X
e ——

Initializes Data stream

with SEQ=100 and

ayload Size=10 —
e Sends ACK =
110
1€

Sends next packet
with SEQ=120

—=={ Sends Duplicate ACK 1=

Sends Duplicate ACK 2 =

—
,‘._—

Fast retransmission
Sends previous packet

with SEQ=110 3

From the preceding scenario, I hope you have understood the process of duplicate ACKs
and fast retransmission, which you can use while troubleshooting your realtime network
for related anomalies. Before we go ahead and discuss flow control, I would like you to
see real packets in my network that are related to both cases of error recovery that we
discussed. Refer to the following Figure 8.3 and Figure 8.4:

Process continues

No. IRTO |Suurce Destination |Pr0toc0l||nfo
18036 192.168.1.103 216.58.220.36 TCP 58915-80 [FIN, ACK]

o5 i 1|-
180 3 1.18]

Figure 8.3: TCP retransmission packets

In the preceding screenshot, a client located at 192.168.1.103 sends FIN and ACK to the
server at 216.58.220.36. After this, the client would expect to receive a ACK packet in the
next place. However, the client does not receive anything back from the server. Now, after
the RTO time expires, the client starts sending the same packet after double the time, and
the process of sending TCP retransmission packets after a certain period of time goes on
until the client receives an ACK packet or reaches the maximum number of retransmission
attempts. Observe the RTO column and how the value starts doubling up until it reaches a
maximum limit.

With the next scenario in Figure 8.4, I want you to witness the duplicate ACK packet that is
being generated because of a malformed packet sent by the server at 216.58.220.46 to the

client at 192.168.1.103. As soon as the client receives it, a duplicate ACK packet is sent in
response to the malformed packet that is seen out of sequence.

Observe that the 6027 frame with SEQ = 1920 and Data payload size = 46 is being sent
across from one host to another. Next, in the response frame 6070, a malformed packet
with a random SEQ value was sent in response. Due to this, the host at 192.168.1.103
generates a duplicate ACK packet and sends it to the host on the other side with the SEQ and
AcK values similar to the frame 6027. Now, this time in response, the host at
216.58.220.46 sends a valid ACK frame 6115 with ACK incremented to 1966 (1920+46),
as expected, and then the communication goes on.

No. ‘ RTO | Source

|Destinat ion ‘ Protocol ‘ Info

6115 216.58.220.46 192.168.1.103 TCP 443-58797 [ACK] Seq=6171 Ack=1966 Win=563872 Len=0
P Frame 6027: 100 bytes on wire (800 bits), 100 bytes captured (800 bits) on interface @

b Ethernet II, Src: Apple_b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Zte_07:73:6c (d0:5b:aB:07:73:6c)

b Internet Protocol Version 4, Src: 192.168.1.103 (192.168.1.103), Dst: 216.58.220.46 (216.58.220.46)

< Transmission Control Protocol, Src Port: 58797 (58797), Dst Port: 443 (443), Seq: 1920, Ack: 6171, Len: 46

Source Port:
Destination Port: 443
[Stream index: 111

[TCP Segment Len: 46]

sequence number: 1920

[Next sequence number:

58797 (58797)

(443)

(relative sequence number)
1966 {relative sequence number)]

Acknowledgment number:

6171 {relative ack number)

With these real-life examples, I expect that you have understood the behavior of TCP error

Figure 8.4: Duplicate ACK

recovery features more precisely.

The flow control mechanism

This is another feature used by the TCP protocol to avoid any data loss during the
transmission. Using flow control, the sender syncs the transmission rate with the receiver’s
buffer space with a motive to avoid any future data loss. Consider a scenario where the
recipient has a buffer space of 1,000 bytes available at an instance, and the sender side is
capable of sending up to 5,000 bytes per frame. Now, using this information, both the
hosts have to sync their window size to 1,000 bytes only to avoid any data loss. Refer to
the following figure that shows this feature:

SEQ1 >

€ ACK 2
SEQ2 | SEQ3

€ ACK 4
SEQ4 | SEQ5 | SEQ6

€ ACK 7
SEQ7 | SEQ8 | SEQ9 | SEQ10

€ ACK 10
SEQ10 | SEQ11 | SEQ12 >

€ ACK 13

The preceding figure depicts the way both the communicating hosts negotiate the window
size for transmission purpose. Observe the behavior, beginning from the frame with SEQ
1 where Host 2 responds with ACK 2 to specify that the frame was successfully received.

Next, HOST 1 tries to increase the transmission rate to two frames and sends them with
SEQ 2 and 3. Host 2 responds with ACK 4, which denotes that both frames were
successfully received. Similarly, we succeed in increasing the rate to three frames.

Next, HOST 1 increases the rate to 4 and tries sending packets with SEQ 7, 8, 9, and 10.
This time, HOST 2 responds with ACK 10, which means that Host 2 receiving the
window size can afford maximum 3 frames at an instance, and the sending side should
adjust to it.

Next time, when Host 1 transmits, the windows size would be set to 3 frames, which the
recipient can afford to process on his/her end. The window size is not set to a permanent
value; it can vary until the whole transmission is completed, and the whole process is
called the TCP sliding window mechanism and is used to avoid data loss during a
transmission.

Think about what would happen if the recipient side is left with no buffer space, that is, 0
bytes. It can handle at some moment during the transmission. What will the TCP do in
such case? Will the communication channel drop or the TCP will come up with something
more reliable.

Yes, the TCP has another data loss recovery feature called the Zero window notification.
Here, the recipient side sends a Windows update packet set to 0 bytes and asks the sender
to halt the transmission of frames. In response, the sending side will understand the
situation and respond with a Keep Alive packet that is sent at a particular duration while
waiting for the next Window Update packet from the client. Refer to the Figure 8.6 that
illustrates the same.

HOST 1 starts communicating after the three-way handshake process has been completed.
After a few packets get transmitted successfully, the receiving side buffer space gets filled
up with other resources, so HOST 2 responds with a Zero Window packet telling Host 1
to halt sending packets until further notice. Accepting the Host 2 zero window packet,
Host 1 starts transmitting Keep Alive packets in order to keep the connection active and
waits for further notice. Once Host 1 receives the new window size and ACK for the
frames that were transmitted, it will start sending the data packets again in accordance
with the receiver’s buffer space.

€ ACK 2
SEQ2 | SEQ3 >1
€ ACK 4
SEQ4 | SEQ5 | SEQ6 >1

< ACK - Window Update 0
Keep Alive 1

Keep Alive
€ ACK 7

Figure 8.6: The zero window notification

The technique we discussed here is quite efficient in preventing any data loss that might
happen during a transmission or due to an overwhelmed sender. The TCP hosts a great
mechanism to control the transmission process, thus making it more reliable for any type
of communication.

Troubleshooting slow Internet and network latencies

The discussion that we had on delays observed in the list pane can be categorized in two
categories: the normal/acceptable delays and the unacceptable delays. Yes, you heard me
right, there are some forms of delay that are acceptable, and you should not waste any
precious time of yours in troubleshooting any of those cases.

Assign a category to your current scenario on the basis of the test results that you have
obtained from the client site (try to put sniff packets from the complaining client’s
perspective) into one of the following categories: wire latency, client latency, and server
latency. Seeing your scenario with the perspective of one of these cases will assist you in
solving the problem with a more process-oriented approach, hence making the task less
complex, which will end up getting sorted out in lesser time with lesser resources.

Before you start troubleshooting such scenarios, I would highly recommend that you
change the default list pane view by customizing the existing time column (customize the
time value to seconds since Previous Displayed Packet), which would work as a
column to figure out latency issues, that is, it will show you the total amount of time
between two related packets in a sequence. Refer to the following figure to customize the
time column.

To further elaborate the best practices that are followed, I will discuss a step-down
approach, which you can use as part of your checklists. Make sure that you understand one
thing clearly: tracking an issue can be quite critical on a server side because you may see
thousands of packets flying in and out per seconds. This can be really messy and would
only end up in making the whole problem more intense. Looking at thousand of packets to
figure out the source of slow Internet connection doesn’t sound feasible. So, the best
option would be to filter out things, prioritize them, and look at the problem from the
client’s end first.

=]] | "Wi-Fi en1 [Wireshark 1.12.6 [v1.12.6-0-gea1fces from master-1.12)]
Eile Edit Go Capture Analyze Statistics Telephony Tools Internals Help
© @ |- MainToolbar T 3 I_C]‘G QeeF @gMEL B
< Eilter Toolbar
Filter:] | wireess Toolbar pression...
Mo. |Til ¥ Status Bar |Fmtnculilnfn
ESNm——{ - Packet List J6 TCP 44356314 [SYN. ACK] Seq=8 Ack=1 Win=18966 Len=3 MSS1448 SACK_PERM=I TSval=1933504
92 a q < Packet Details 4 TCP S8314-443 [ACK] 5eq=1 Ack=1 Win=131368 Len=8 T5val=286545856 Tecr=1933584932
693 « Packet Bytes 4 TLSv1.2 Client Hello
94 4 6 TCP 443.38314 [ACK] Seq=l Ack=S1S Win=3Oass Len=d T5val=1933584503 TSecr=1863438036
635 LR Time Display Format (8 Date and Time of Day: 1970-01-01 01:02:03.123456 CtrlsAlt+1
% o0 Name Resolution b| Date iwith day of year) and Time of Day: 19707001 01:02:03.123456
598 a4 « Colorize Packet List Time of Day: 01:02:03.123456 CrrlsAlt+2
533 8.8 Auto Scroll in Live Capture Seconds Since Epoch (1970-01-01): 1234567890.123456 CtrlsAlt+3
7 a
S 8.4@ Zoom In il Seconds S.tn“ B:ul.nnlng of Capture: 123.123456 Ctrl+Alt+4
82 LH Zoom Qut Ctrl4- Seconds Since Previous Captured Packet: 1.123456 Ctri+Alts5
783 @ j :‘ Nmial Sz i = Seconds Since Previous Displayed Packet: 1.123456 Ctri4Alt46
e % g — | UTCDate and Time of Day: 1970-01-01 01:02:03,12 3456 Crrl+Alt+7
786 & 1 [Resize All Columns Shift4Cerl+R | UTC Date (with day of year) and Time of Day: 1970001 01:02:03.123456
187 54 Displayed Columns F| UTC Time of Day: 01:02:03.123456 CtrlsAlt47
; : tRight |+ Automatic (File Format Precision) 1
Frame 63
b Ethernet e Subtree tleft | Seconds: ©
P Internet| Expand All Ctrl+Right Deciseconds: 0.1
Y "‘““’", Collapse All Ctrl+Left Centiseconds: 0.12
| Colorize Conversation s
Agge o4 c: Microseconds: 0.123456
el ;E t Calor - Nanoseconds. 0.123456789
galg 1 1MW
ag4e a8 af Eulorlng RIS Display Seconds with hours and minutes
ﬂ?’iflle } Pgn... | Packets: 21847 - Displayed:; 21847 {100.0%) - Dropped: 0 (0.0%) {Profile; Default

Figure 8.7: Customizing the time column

e Starting your investigation at the client’s end makes it much simpler because you

won’t be dealing with several packets that may not be relevant to your scenario. On
the other side, if there is even a hairline chance that you won’t be able to see the
packets that are relevant to you, this might make the troubleshooting experience a bit
challenging.

Apart from all the challenges that you might face at the client’s end, the first thing
you should ask your client is to replicate the problem if possible, or if the problem is
occurring in a time-based manner, then you should wait at the client’s end in order to
witness and understand the scenario. The ultimate goal should be to capture the
relevant packets and get a crystal clear understanding of the problem that the client is
facing from their perspective.

Now, when you have the trace file in hand, you can look at the process where the
client is trying to connect to the server: the whole process where the client issues a
DNS query with an objective to attain a server’s logical location over the Web. If the
local DNS cache already holds the IP address of the server, then you might not
observe any DNS packets; instead, a direct SYN packet would be seen in the list pane
sent to the server to initiate the independent connection. What you need to make sure
here is that if the DNS queries are seen in the list pane, then the round trip time
should be low, as expected (approximately less than or equal to 150 ms).

6. 606213600 92, Mark Packet (toggle) |314-4:=3 [swi] Seq-& Win= 655

692 0.008095800 192.1 Ig"“"_: Packet (toggle) 314443 [ﬁCK] Seq-lAck 1\-:1

693 0.000293000 192.1 © Set Time Reference (toggle) ient Hello

694 6, 046993000 208.11 (9 Time Shift... 3.50314 [ACK] Seq=1 Ack=518

695 6.111376060 L ——— me query NB ISATAP<80>

696 0.811230000 gagEn| ROt Fackel rver Hello, Change Cipher Sp

697 0.0AEGB2060 192. 1| 7 Packet Comment... 314-443 [ACK] Seq=518 Ack=15

698 0,000585000 192.1 ange Cipher Spec, Hello Requ

699 ©.854128000 208,11 Manually Resolve Address 3-568314 [ACK] Seq=155 Ack=73

760 0.037189000 46:8c40: _ SEARCH * HTTP/1.1

701 0.0889939800 208.11 Apply as Filter P lplication Data, Application

782 0.000868000 L2 Prepare aFilter P | Selected =25

;" Conversation Filter »| Not Selected —

Frame 696: 78 bytes on wire (624 b . i b

> BRI C::)|DTIZE Conversation .. and Selected

b Internet Prot_uco}__‘.fe_r_s]_qn asreit SCTP 4 ... or Selected 23!

b [ransmission Control Protocol, Src| Follow TCP Stream ... and not Selected
Follow UDP Stream .. of not Selected
Eallru €C1 Crraam CEFFE]

The next would be the three-way handshake packet that you will be observing in the
list pane. The best option would be to isolate the communicating hosts that can help
you in eliminating any further communication. You can just right-click on the
communication and create a filter as illustrated in Figure 8.8

Once you have filtered out the problematic connection between the hosts, the next
task would be to observe the total time. The time between duration when the SYN
packet was sent and the corresponding SYN/ACK packet was received. This can be
compared with the baseline that you already have to come up with a variance that
could help you in pointing out whether the connection is slow or is working fine.
Refer to the following screenshot that illustrates the same:

692 ©.000095600 192.168.10.196 208.117.231.154 TCP 50314-443 [ACK] Seq=1
Figure 8.8: The time between the SYN and SYN/ACK packets

As you can see, the time between the SYN and SYN/ACK packets is relatively low,
and this seems to be a good working connection. This kind of connections can be
helpful while you are designing a baseline for your network. At a later point in time,
the same can be used to compare with problematic scenarios. Refer to the following
screenshot that show DNS and TCP packets of the same communication:

(117 8. 464740660 192.168.10. 136 192.168.16.1 DN5 Standard query @x3823 A www.google. ae
687 @.001462600 192.168.16. 136 192.166.18.1 DNS Standard query @x227b A ssl.gstatic.com
GBS 0.040831600 192.168.10.1 192.168.10.196 DN Standard gquery response @x3023 A 208,117

689 8.006382000 192.168,168.1 192,168,180, 156 DN5 Standard gquery response @x227b A 2088.117

692 B,880895080 192,168.16.196 208.117.231,154 TCP 50314-443 [ACK] Seq=1 Ack=1 Win=131360 Le

Figure 8.9: The ideal baseline trace

The client issues a request to visit the google.ae (frame 686) website, which the
local server acknowledged in order to first look for the IP address in a local cache.

Once the local DNS server completes, the search process, the client receives DNS
responses including Google’s IP address, which can be used to visit the website
(frame 688 and 689).

e As soon as this process completes, the client at 192.168.10.196 issues a SYN
request to one of Google’s IP address in order to visit the web page. Without any
further delay (less than tenth of a second), the server responds with SYN/ACK, and the
process goes on.

Let’s suppose that the total time between the SYN and SYN/ACK packets is high by
approximately 0.90-1.0 seconds. At first glance, you ignore this an move ahead, and you
will observe a quick ACK packet sent in response from the client followed by a HTTP GET
request (in case the client is visiting a website). Next, the ACK packet acknowledging your
GET request surprisingly takes more than a second to come. Now, this points to some
serious latency issues. The question is, who will be the one you are going to blame—the
client or the server? The client did its part by sending the SYN packet on time. Then, is it
the server who is handling a high load of traffic and is quite busy with other applications,
because of which you are handling high round trip time? The answer is neither the client
nor the server. Then why is the round trip time high? The probable answer for such cases
in my knowledge would be the wire. Yes, you heard it right. The wire can also take part in
making your network slower then expected. So, while troubleshooting slow networks, if
you observe high round trip times associated with the SYN/ACK and ACK packets, then you
can be sure that your client and server are not the source of the issue.

What you can do is start examining the devices between the hosts, such as the routers,
switches, firewalls, proxy servers, and so on. Although the example we talked about
doesn’t give you the exact source of the problem, it definitely gives you a clear
understanding that both the communicating hosts are not promoting any form of latency.

Now, for better understanding, I would like to show you the same in practical terms. Refer
to the following screenshot that lists out a few packets shared between two hosts, starting
from a three-way handshake:

33 0. 060060000 192.168.16.196 128.173.97.16%9 TCP 50885-80 [SYN] Seqg=
36 B.20418.2000 192.168.10.196 128.173.97.169 TCP 20B86-B0 [S5YN] 5Seqg=
39 B.363438000 128,173.97.169 192,168.10.196 TCP B@-50886 [S5YN, ACK]
48 0.0001687000 192.168.16.196 12B.173.97.169 TCP 50886-80 [ACK] Seq=
41 0.000271000 192.168.10.196 128.173.97.169 HTTP GET /linux/opensuse
44 B.292131000 128,173.97.169 192,168.10.196 TCP 8050886 [ACK] 5eq=

Figure 8.10: Wire latency

First, the client located at 192.168.10.196 and the server located at 128.173.97.169 start
communicating. In the beginning, we see that a three-way handshake takes place between
the client and the server, but did you notice the amount of time it took for the SYN/ACK
packet to come (more than 0.36 seconds). Look at the frame 39, and it is something that
you should take care of. Moving on, we saw one more similar event after the GET request
was issued, where the Ack packet took approximately 0.30 seconds to come back. The
latency observed is not because of the client or the server, as we discussed earlier. The
latency here is promoted by the devices that lie on the wire. The best troubleshooting
option in such cases would be to look at the routers, switches, or any firewalls that were

implemented without wasting time in troubleshooting the source and the destination.

Client- and server-side latencies

You might think about the scenarios where you would come across or see latency issues
that the client/server promotes. Let me explain this to you with some real-life examples;
first, we will take a look at the latencies promoted by the clients.

A few days ago, I was just visiting some random websites over the Internet to look for
some research material, and meanwhile, Wireshark was running in the background and
capturing every packet I was tying to visit. I surfed the Web for approximately 3-4 minutes
and then closed the browser as well as stopped Wireshark from sniffing any packets. After
the whole thing, I decided to look into the trace file to investigate any client-side latency
issues.

Refer to the following screenshot from my trace file, which shows frequent client-side
latencies that will eventually affect the performance of my network:

9985 1.002448000 192.168.16.196 149.126.77.16 HTTP GET /_Inc
10167 ©.131159000 149.126.77.16 192.168.10.196 13,5 2 [TCP segm
10168 ©.880558000 149.126.77.16 152.168.10.196 HTTP HTTP/1.1
10109 ©.000064000 152.168.10.196 145.126.77.16 JEr 52043-80
10468 3.540005000 192.168.10.196 149.126.77.16 HTTP GET / Inc

Figure 8.11: Client-side latency

As you can see in the frame 9985 and frame 10408, there are GET requests that my machine
at 192.168.10.196 had issued, and the amount of time it took was 1 second for the first
time and more then 3.5 seconds the next time. I became curious and started thinking about
why this happened and what can be the most appropriate reason for such latencies.

Once I started further investigation, I saw that the three-way handshake process happened
in a timely manner and there were no signs of latencies. Now, my attention went to my
machine. Maybe, there is something that is tampering with my network connectivity. I
looked at the resource allocation window in terms of primary memory and CPU
utilization. What I saw was that the CPU and memory utilization meter were showing high
consumption, which led me to enquire more about the number of applications running.
There were three virtual machines running that I forgot to turn off, which were utilizing all
the memory. This, in my belief, is one of the strongest reasons, because of which I was
experiencing latencies on the client side (my machine). I hope that, with this practical
example, you might have understood how client-side latencies can be one of the reasons
for low network and Internet performances.

Moving on with this simple example, let’s get ourselves introduced with server-side
latency issues. I followed the same approach of surfing the Web with random websites
while capturing packets with Wireshark for a couple of minutes and then analyzing the
cause of any form of latency that can be seen in the list pane. This time, I came across an
interesting session between my machine and a website. First, I would like you to have a
look at it. Refer to the following screenshot that illustrates this:

498 6, 088367000 192.168.10,196 198,41 184,93 TCP 53934-80 [S5YN] Seq=@
499 0. 006508000 198.41.184.93 152.168.10.196 TCP BO-53934 [SYN, ACK] §
500 0.000101060 192.168.10.196 198 41 184.53 TCP 53934-80 [ACK] Seg=1
501 0.023622000 192.168.10.196 198.41.184.93 HTTP GET / HTTP/1.1

562 6. 087538000 198.41.184.93 192.168.10.196 TCP 80-53934 [ACK] S5eg=1
503 B,357595008 198.41.184,.93 152.168.10.19 TCP [TCP segment of a res

Figure 8.12: Server-side latencies

As you can see, the session between my machine at 192.168.10.96 and the server at
198.41.184.93 begins with a smooth three-way handshake without any sign of latencies.
Next, the client issues a web request, following which the server sends an
acknowledgement. Uptil here, everything has gone flawlessly, and there were no traces of
latencies. However, when the server was about to start the data transfer, the server stopped
for a while, as you can see in the frame 503. The server took around 0.35 seconds to
initiate the data transfer. This clearly illustrates that the server might have experienced
heavy network traffic, or may be, the server was running several applications that were
causing high CPU and memory consumption. There can be several other reasons as well
for the latency that we just witnessed. Observing all of it, we can give a conclusion that
the server is the reason for the latency; in this case, the server was incapable of processing
the client’s request in a reasonable amount of time, which ended up as a minor latency
issue.

You learned how the devices over the wire, the client side, and the server side can promote
high latencies while you surf the Internet or even your internal LAN network can be a
victim of the same. We talked about delays before the server’s SYN/ACK packet is received.
These delays can happen because of the device in between (over the wire) and may be
witnessed due to the server’s high response time. Let’s make things more interesting with
a small practical example about identifying high HTTP response time. This will be useful
for you to identify high response time. Follow these steps to replicate the same in parallel:

1. Open your browser and visit some websites while Wireshark runs in the background

listening to your packets.

Once you have visited at least 3-4 websites, you can stop the capture process.

3. Now, switch to Wireshark and make some necessary changes. First, disable Allow
subdissector to reassemble TCP streams. Select any TCP packet in the list pane,
then right-click on the TCP section in the details pane, and then click on the Allow
subdissector to reassemble TCP streams option to disable it. Look the the
following screenshot that illustrates this:

N

R e L LT

Follow UDP Stream 7-80 [ACK] Seq=1 Ack=1 Win=131872 Len=8 TSval=237147613 Tecr=5

58 B. 193026008 1807/88/more-of -using-rpcclient-to-find.html HTTP/1.1

59 B.192419808 Follow 55L Stream 5426 [ACK] Seq=1 Ack=d53 Win=43648 Len=8 TSval=579849786 TSecr=i
68 B.182715088 1.1 268 OK

61 B.060131008 COP‘I" 4 6-88 [ACK] Seq=433 Ack=390 Win=131456 Len=8 TSval=2372481086 T5e
62 B.080257008 Export Selected Packet Bytes... 5426 [ACK] 5eq=330 Ack=453 Win=43648 Len=1418 TSval=579849967 T!
63 6.6808322008 Edit Packet 5426 [ACK] 5eq=1808 Ack=453 Win=43648 Len=1418 TSval=379849967 1
1€]
b Frame 57: 66 bytes on wire| ® Wiki Protocol Page erface

B Ethernet 11, Src: Apple_b3| @ Filter Field Reference b8 (dd:ca:6d; 54:d1:b8)

b Internet Protocol Version ,233,166,121 (64,233,166,121)

| Protocol Help
* Transmission Control Proto S
— T — N :n Transmission Control Protocol Preferences...

% Dacods AS.. + Show TCP summary in protocol tree
2 Disable Protocol... Validate the TCP checksum if possible
Resolve Name Allow subdissector to reassemble TCP streams

Figure 8.13: Disable the Allow subdissector setting

4. Next, we have to add the http.time delta column to the list pane in order to see
things more clearly and to easily identify any traces of latencies.

5. Select any HTTP packet from the list pane and then expand the HTTP protocol
section in the details pane. Then, right-click on the Time since request parameter

and click on the Apply as Column option. Refer to the following screenshot that
illustrates this:

FHter:|

No. Time RTO
60 9.102719606

61 0.000131000

62 0.000257000

63 0.000322000

«€&

¥ HTTP/1.1 200 OK\r\n
P [Expert Info (Chat/Se
Request Version: HTTP
Status Code: 200
Response Phrase: 0K
Content-Type: text/htmi;
Expires: Fri, 16 Oct 20]
Date: Fri, 16 Oct 2015 @
Cache-Control: private,
Last-Modified: Wed, 14 (
ETag: "1lc455lac-93ce-47¢
Content-Encoding: gzip\f
X-Content-Type-Options:
X-XS55-Protection: 1; mog
< Content-Length: 3355@\r)
[Content length: 3395
Server: GSE\r\n
\rin
[HTTP response 1/2]

[Time since request: 0.

Apply as Column

Apply as Filter »
Prepare a Filter »
Colorize with Filter 4

Follow TCP Stream
Follow UDP Stream
Follow SSL Stream

Copy)
Export Selected Packet Bytes...
Edit Packet

@ Wiki Protocol Page
@ Filter Field Reference
Protocol Help
Protocol Preferences »

32 Decode As...

v Disable Protocol...
Resolve Name
Go to Corresponding Packet
Show

Packet Reference in New Window

Figure 8.14: Apply Time since request as a column

6. Once this is done, you would be able to see the Time Since Request columns just

7.

before the info column in the list
Now, you are left with just one st
web servers that you visited. Sim

pane.
ep: to identify the highest response time from the
ply sort the newly added columns in a descending

order to the highest response time. Refer to the following screenshot that illustrates

this:

Time since reqpm*'lnfn

No So

w3z Sort Ascending

Sort Descending

rting

Figure 8.15: Sorting the http.time delta column

8. Once this is sorted, you would be able to see the highest response time at the top of

the list pane, as shown in the following screenshot:

Time since reque ~
1.100031000
1.050687000
1.033782000
0.853658000
0.617082000

Figure 8.16: High HTTP response time

9. The session at the top of my list pane between my machine and a web server that I
visited denotes quite a high response time of more than a second. See how easy it was
to identify the http delays in order to make your troubleshooting job easy. I hope it
would be easy for you to replicate the same.

You can also achieve this in a visual representation, where you can create an IO graph to
identify high latencies. Refer to the following small illustration using which you can
replicate the scenario (note that I am using the same trace file that we saw earlier in the
previous example):

~2.0s
rl ~1.0s
| I
WA
M S 1
L Al AL 008
0s 205 40s
r— = T
Graphs X Axis
Graph 1 Color ,"-'";Filter' I Cale: MAX(*) = |http.time Style: Line * |E Smooth Tick interval: 1 sec 4
Graph 2 |Color ?}Filter.l Calc: SUM(*) - Style: Line * |E Smooth Pixels per tick: 5 =
Graph 3 ¥ Filter: | Cale: SUM(®) - Style: Line » |@ Smooth U View as time of day
By — "Ir.l!'-:l:i&
Graph 4|Color [¥]Filte Cale: SUM(* - Style: L * |E Smooth
raph 4|Color FIFilter) _ Lo i MO Unit: Advanced... =
Craph Fjl | M Je: Li B5 th T
raph 5 L Filter | Calc: SUM(") o Style: Line i oo Scale; Auto v
Smooth: Mo filter =

Figure 8.17: Using an IO graph to identify the delays in HTTP response

As you can clearly observe in the graph, the response time for the requests you made took
more than a second to complete in a total browsing session of approximately 45 seconds.

There can be multiple situations where you will witness such traffic patterns; this one is
definitely because of a web server that makes your web surfing experience bad. The
reasons behind such a pattern can vary from a server in a heavy traffic load to a server

hosting several applications, or it can be possible that the server you are trying to visit
might be consulting some other web server in order to fulfill your request.

Next, let’s see an example where DNS queries and their responses are responsible for
causing your Internet or local networking experience to suffer. As we saw, other protocols
in conjunction with DNS make the whole networking experience better, but at times, the
same DNS protocol can cause trouble. Follow the next steps to identify the source of
problems using DNS response time:

1. Open your browser and visit at least 3-4 websites. Wireshark should be capturing
your web session packets while in the background.
2. Stop the capturing process and apply dns as a display filter in your trace file in order

to see only dns packets.

3. Now, select any dns response packet from the list pane and expand the corresponding
DNS section in the details pane for the same packet. Right-click on the Time
parameter and click on Apply as Column. Refer to the following screenshot to see

this:
]

Filter: [dns Appw as Column lear Apply Save
No. |[Time | RTO Apply as Filter nfo

5 0. 000000000 b Filt tandard query ©x4966 /
5 8.014773000 S itandard query response
18 0.036924000 Colorize with Filter P tandard query €x70a5 |
11 0.063136000 Follow TCP Stream tandard query response
12 B.060472000 tandard query @x2635 |
13 5.003174000 F””OW UDP Stream tandard query response
17 0.025906000 Follow SSL Stream tandard query @x8d82 |
18 0.00825393000 tandard query Gx3dd4 |
19 0.000275000 Copy tandard query @x3c91
= B R

b Frame 6: 274 bytes on M
P Ethernet II, Src: Route
P Internet Protocol Versi
P User Datagram Protocol,
¥ Domain Name System (res

[Reguest In: 5]

@ Wiki Protocol Page

@ Filter Field Reference
Protocol Help
Protocol Preferences

on interface @
53:ec (d8:bb:2c:b9:53:
?.168,10.196 (192.168.1

Figure 8.18: Applying DNS Time parameter as column

4. Once you’ve done this, you will see a time column next to the info column in the list

pane.

5. Our next objective is to sort the column in a descending order to figure out the
highest DNS response time. Refer to the following screenshot to replicate the same:

. Il L
T
Iﬂ 4z Sort Ascending
. Sort Descending

No Sorting

. Ta e

Figure 8.19: Sorting the DNS time column in a descending order

6. Once this is sorted, you would be able to see the session details in the list pane with
the highest DNS response time that can be used to investigate further. If the server
belongs to your premises, then you are the only one who has to take care of it. Refer
to the following screenshot that illustrates this:

Time -]
2.015793000
1.392289000
1.235350000
0.900501000
©.796791000

Figure 8.20: High DNS response time

7. Seems like some of the servers are responding really slow, and this badly affects your
overall web surfing/networking experience.

8. Similarly, you can create an IO graph to see the whole scenario in a graphical form,
and it would be far easier to visualize and understand the case. Refer to this
screenshot that illustrates this:

~3.05
L 25
Hlﬂ .
|||T[rr-:'||I1I\TD.05
03 205 405
Graphs X Axis
EFGTa_pi'IT Color (¥Filter: | Cale: MAX(*) * |dns.time Style: Line ¥ |2 Smooth | Tick interval: 1 sec v
Graph 2 |Calor :E'!Fjlter-| Calc: SUM(*) v Style: Line v [E Smooth Pixels per tick: 5 v
Graph 3 -?]Filter:l Cale: SUM(*) v Style: Line v |2 Smooth U Yiew as time of day
-_— T — Y Axis
Graph 4 |Color (Fjlt | Cale: SUM(* v Style: Line * |E Smooth
rap um; il 2 {]— e Unit: Advanced... -
r IEIEi " L] - . i v B P —
Graph § _Filter.l Cale: SUM(*) Style: Line Smooth sl At =
Smooth: Mo filter =

Figure 8.21: DNS high response time depicted with the help of an 1O graph

You can easily observe in the preceding graph that the DNS response time was quite high
and reached to an approximate of 2.5 seconds, and it is something that should be taken
care of.

Through the preceding realistic examples, I hope you have understood the approach that
can give you a kickstart in troubleshooting such scenarios in future corporate
infrastructures, which you might be asked someday to troubleshoot.

Troubleshooting bottleneck issues

Next, we have a commonly occurring issue in corporate networks. You might have already
gone through the harsh suffering of troubleshooting them using various hardware and
software tools. The first thing to do is to understand what these issues are and what kind of
problems we can we face.

When packets are queued up or there is a delay in the transmission process between the
host, which is not expected to happen, you might think “why do such delays happen?” The
answer to this depends on many factors such as when your system of the server side is not
able to send/receive information with the speed at which it is being processed. These kind
of issues severely affect the performance of networks by slowing the rate at which the
TCP/IP packets are transmitted, because of which the data between the hosts starts moving
back and forth at a comparatively slower rate.

Using my small LAN network, I decided to create an exercise, which you can also
replicate on your end easily. For the infrastructure, I have a gateway at 192.168.10.1 and
my client at 192.168.10.209. Refer to the following figure that illustrates this:

Client: 192.168.10.209 Gateway: 192.168.10.1

What you need next is a network traffic generator. Research it a bit and try to use anyone
that makes you feel comfortable. Lastly, you need a ping utility, which is already installed
on every known operating system.

So, here’s the scenario. I will start a non-top ping from the client to the server. While the
client is pinging, I will launch the traffic generator application, which will try to interrupt
the ping process by trying to consume the gateway’s resources in order to create a
bottleneck scenario for the client.

We will first see a normal traffic pattern in the IO graph so that we would work as our
baseline when we would be required to compare with the bottleneck issue. Here is the
screenshot for the normal traffic pattern shown in terms of an 1O graph:

—20

[10
IIIII|III||I|II|III||I|II|IIIl|I|II|II||IIiII|IIlI||-III|II|II|III|IIlI|l‘fI’I\l|II|I G
0.00s 0.10s 0.20s 0.30s 0.40s 0.50s 0.60s 0.70s
= -
Graphs X Axis
|Graphl Color M Filter: Style: Line v |@ Smooth Tick interval: 0.01 sec '~
Graph 2 [Color MiFilter: Style: Line + |E Smooth Pixels per tick: lli}v
Graph 3 MFilter:] Style: Line v |B Smooth D View as time of day
Graph 4 [Color [Fil Style: Li @ Smooth o
ra olor [¥]Filter: tyle: Line hud moot
P —_ Vi e Unit: Packets/Tick ~
Graph 5 MiFilter: Style: Line 4 . Smooth Eeala: e =

Smooth: No filter v

Figure 8.22: Normal trdffic in an 10 graph

In the preceding graph, no major deviation can be observed; hence, we can include such a
traffic pattern while creating a baseline for our network. Just the ICPMP packets are sent
from the client to the server without much trouble.

Next, I want you to see and observe the difference between the traffic pattern that we saw
and the one below the 10 graph, which was captured for the same network infrastructure.
However, there was one more application that was involved in the replication of the event,
which generated unnecessary traffic. This resulted in network clogging, which is popularly
known as a bottleneck.

The application I used is the network traffic generator that can be used to deviate a normal
traffic pattern. This results in a network bottleneck scenario and can even result in a denial
of service. Refer to the following screenshot for reference:

—100

|IF'II|'III'I|IIII|IIII|FIII"|II'll|IIII|IIIIIIIFI|r|Ir1IIlIllIIl|IIIIEIIr1|rlII|III G
9.20s 9.30s 9.40s 9.50s 9.60s 9.70s 9.80s 9.90s
“ |) >
Graphs X AXis
IGrﬂph 1 Color Filter: Style: Line + |E Smooth Tick interval: 0.01 sec
Graph 2 [Color [¥Filter: Style: Line v | & Smooth Pixels per tick: 10*
Graph 3 MIFilter: | Style: Line v | Smooth [View as time of day
—G 0 —EF_I o —L' Be h Y Axis

ra olor iter: tyle: Line v moot , .
kil 00 —_ Leethi b G Unit: Packets/Tick ~
Graph 5 ' Filter: Style: Line + |E Smooth
el E]_ el il Scale: Auto hd

Smooth: No filter i

Figure 8.23: A bottleneck scenario

Bottleneck issues are represented by ups and downs, as shown in the preceding graph. The
rate at which the throughput drops is the same rate at which it jumps up, and this pattern of
deviation in normal traffic denotes that there is a bottleneck being formed.

When every technique you know about troubleshooting fails, then at the end, you can use
the network baseline, which can prove worthy while dealing with the slowness of the
network. As discussed earlier, a network baseline is just crucial information that you have
collected through various points in your network. The sole purpose of the network
baseline you have is to compare abnormal traffic with it in order to understand the level of
deviation.

We already discussed slow DNS and HTTP responses that make up your web surfing
experiences. If you already have a baseline regarding your network, then it would be
thousand times easier for you to troubleshoot. You would be able to identify the root cause
of the situation you are dealing with, and definitely, this will save a lot of time for other
analysis.

Remember one thing that the baseline created for two different networks can vary in vast
aspects, so you should not compare them with each another. An interesting and creative
way of creating a baseline would be to create separate baselines, that is, one for the
network, one for the hosts in your network (how well they coordinate with each other
without creating much noise), and one for the applications communicating over a network.

While creating baselines, you can also consider each and every site you are working with
separately. In my opinion, the best approach would be break up each site with similar
categories. When you are dealing with a WAN, a troubleshooting site baseline can prove

useful. Several components can be considered while dealing with WAN sites, such as data
transfer rate, several applications in use, the pattern of the broadcast traffic, and various
other categories that you may come up with can come handy while making a standardized
baseline for a particular site.

Troubleshooting slow networks is definitely a piece of art. I would say, you won’t be able
to get its real gist unless you get your hands dirty. With experience, you will gradually
gain the insight required to solve problems ranging from slow Internet to complex
infrastructure-related issues

Troubleshooting application-based issues

There can be scenarios where applications running in your network can be one of the
major sources of issues that clients face. You cannot blame the network every time for not
working popularly; there can be other reasons as well for the anomalies. When
troubleshooting any application-based issue, capturing packets from one end won’t be
fruitful enough. You should try to move to analyzers all around and capture as many traces
of the application’s traffic as possible. Capturing from multiple points will give you a
much closer insight into network-based applications.

As discussed earlier, you can create baselines by following certain different parameters.
Similarly, for network-based applications, there can be a certain defined set of rules, by
using which the best baseline for your network can be formed, for example, dependencies
applications have another coordinating application, analyzing the startup and shutdown
process, the rate at which the application transmits packets, various protocols that
coordinate in order to make the application work flawlessly, the way an application
interacts with the network once a new installation is in process, and so on.

While creating a baseline for application-based performance issues, it won’t be feasible all
the time to capture traffic directly from the complaining hosts because it may cause the
hosts to suffer high-traffic load and might make it unusable. For your trace file, there
might be an unusual number of dropped packets that would get captured and would make
your application baseline less appropriate.

As long as dissectors in Wireshark are able to translate the application-based requests and
responses in a plain-text format, you are good to go. In the following section, I will take
two popular application protocols, HTTP and DNS, to illustrate a few basic scenarios that
you can replicate in order to follow the methodology.

First, we will look at the HTTP application-based anomalies. Remember that you should
be able to identify the responses from the error-prone application if you are aware of the
response code. As you know, HTTP is based on the request/response model, where a client
requests for a certain resource to the server and the server responds with the valid resource
if available; if not, then with a certain error code, which your browser is able to translate.

HTTP error codes are categorized into five sections of errors, where each error is based on
certain logical parameters. To learn more about error code, visit
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. For illustration purpose, I will
explain the procedure so that you can figure out the most commonly seen error code,
which is client errors.

The infrastructure I am going to use is pretty simple, easy, and similar to the one that we
used earlier. The client is located at 192.168.10.196 and the gateway is located at
192.168.10.1. [will try to make a few requests to the gateway and a few to any web
server located in the wild (note that my intention is just to replicate error code that you can
see in the list pane of Wireshark, and not to compromise any web server.)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Client: 192.168.10.209 Gateway: 192.168.10.1

At first, we will try to generate some client error code. Follow the next steps to walk
through this; otherwise, you can just read it once and then replicate the whole scenario:

1. Open your browser and visit the default home page of your gateway. Hopefully, it
will present you with a login screen like the one shown here:

WebFig Login:
Login: :m:im'n Login
Password:

L
|

oA

Winbox Telnet Graphs License Help

@
A\

Figure 8.24: The gateway’s Login panel

N

Open Wireshark, and let it run in the background while capturing all your activities.
3. Enter an incorrect password in the password field and click on Login. This will show
you the incorrect login name and password message on the screen or something

similar.

4. Next, visit any random website and click on any link. After the link is successfully
opened, change the web extension of the web page visible in the address bar to
anything such as .foo, .abc, and so on. Doing this will give you an error on the web
page, such as page not found. Just ignore it for time being.

5. Now, come back to Wireshark and stop the packet capturing process that we started

earlier.

6.

7.

11.

12.

13.

You should be able to see a number of packets in the list pane, but our concern in this
section is to look at error code messages and nothing else.

Now, click on the display filter box and apply the http.response.code > = 400
filter. Then, click on apply. Refer to the following screenshot that illustrates this:

Filter: |http.response.code >=400 j

Figure 8.25: Display filter

Once the filter has been applied, you will be able to see only those packets that match
the criteria. Refer to the following screenshot that illustrates this:

Filter: |http.response.code >=400 jExpression... Clear Save

No. |[Time Source Destination |Pr0tnc0|i Info

934 65,585781000 &5 NENEEEEEN40 192.168.10.196 HTTP HTTP/1.1 464 Not Found (text/html)
1071 4.656607600 o5 NENENENN)26 192.168.10.196 HTTP HTTP/1.1 404 Not Found (text/html)

Figure 8.26: HI'TP Response code >= 400

See, how easily you were able to identify error code from an enormous trace file.
You can also create a button for the same. Once you click on it, you will only be able
to see relevant packets. You can colorize them for a better viewing experience.

We learnt about Coloring options in the earlier chapter. I want you to learn how to
create a button for specific display filters this time.

Do not clear the current filter; just click on the Save button that is next to the Apply
button in the display filter area.

Filter: |http.response.code >=400 v |Expressi0n... Clear Save

Figure 8.27: The display filter toolbar

Once you click on Save, you will be presented with a dialog. To provide a name for
the button, specify any name of your choice and click on OK. Refer to the following
screenshot that illustrates this:

@) \| Wireshark: Save Filter
Save Filter as...

|http.response.code >=400 |HTTP 400

;iﬂelp‘ %Qancel‘ Sok |

Figure 8.28: Creating a button

14. Once you click on OK, you will be able to see the button next to the Save button in
the display filter toolbar area.

15. Now, whenever you want, you can create a similar display filter without typing it into
the display filter box. You just need to click on the button that you created recently.

Expression... Clear \ppl\ Save HTTP 400

Figure 8.29: The newly added button

To make this more interesting, I would advise you to create a coloring rule for the HTTP
404 error. This will definitely help you identify particular error types more conveniently.

Next, we will see another application protocol that is commonly used by various
applications in order to translate a domain name to its IP address. Yes, I am referring to
DNS. As we know, the DNS protocol runs over a UDP or TCP. There are various response
code that relate to DNS errors that range from 0 to 21. The dissectors present in Wireshark
do know about response code. Using this, Wireshark is able to show you messages
relevant to the error code. To replicate an error, I will visit a website that does not exist on
the Web; hence, I will receive an error. But my gateway does not know about this, so it
will try to resolve the IP address associated with that name. In return, we will see a DNS
response containing an error. The infrastructure is the same that we used in the preceding
examples. The client is located at 192.168.10.209 and the gateway is at 192.168.10.1.

Client: 192.168.10.209 Gateway: 192.168.10.1

>

You can replicate the scenario step by step with me or do it later once you finish reading.
Follow these steps to replicate the scenario:

1. Open Wireshark, and start capturing. Let it run in the background.

2. Open a terminal (Command Prompt) of whichever operating system you are using,
type nslookup in it, and press Enter.

3. Now, you’ll enter the interactive mode of the nslookup tool. If you are not aware of
the tool, do read about it before you proceed. There are plenty of documents available
for the tool. Refer to the following screenshot:

Anonymous:~ NotFound$ nslookup

> i

Figure 8.30: The NSLOOKUP tool

4. To generate DNS error response code, just type any domain name and press Enter.
Before you specify a domain change the type of query to A by using the set type=a
command and then give the domain you want.

Anonymous:~ NotFound$ nslookup
> set type=a

> google.com

Server: 192.168.108.1
Address: 192.168.10.1#53

Non-authoritative answer:
Mame: google.com
Address: 208.117.231.155
Name: google.com
Address: 208.117.231.154
Name: google.com

Address: 208.117.231.148
Name: google.com
Address: 208.117.231.151
Name: google.com
Address: 208.117.231.150
Mame: google.com
Address: 2©8.117.231.152
Name: google.com
Address: 208.117.231.153
Name: google.com

Address: 208.117.231.149
>

5. First, we can try the same for a domain that exists, such as google.com. Then, you
can try it for the nonexistent domain. Refer to the Figure 8.31 shown here.

6. The preceding screenshot shows the various IP addresses that are associated with the
google.com domain. The domain already exists. That’s why we are able to see the
reply. What if you try a domain that doesn’t exist. Refer to the following screenshot
that illustrates this:

Anonymous:~ NotFound$ nslookup
> set type=a

> charitmishra.co.uk

Server: 192.168.10.1
Address: 192.168.10.1#53

¥k server can't find charitmishra.co.uk: NXDOMAIN
-

Figure 8.31: The nonexistent domain

7. 1typed my name in place of the domain name and pressed Enter, and this is what I
saw because there was no domain with that name. The DNS server was not able to
resolve an IP address, hence resulting in the reply server can’t find.

http://google.com
http://google.com

10.

11.

12.

Now, you can go back to Wireshark and stop the capture process. We will now start
analyzing error code.

The best option would be to segregate the DNS error response code from the normal
frames in the trace file that we have. To achieve this, apply the dns.flags.rcode ==
3 display filter, which means that the shown DNS response frame with error code 3 is
for nonexistent domains. For more information on DNS error code, visit
https://tools.ietf.org/html/rfc2929.

Once you have applied the preceding display filter, you will only see relevant packets
matching your filter expression.

Filter: [dns.flags.rcode == jExpression... Clear Apply Save
No. |Time Source Destination | Protc-col‘ Info
52 6.001806600 192.168.10.1 192.168.10.19 DNS Standard query response 0xad03 o such name

Figure 8.32: DNS error response

As you can see in the list pane, only packets that are related to error code 3 are
visible.

If you want, you can save the filter expression in the form of a button for later use
following the same approach we used earlier.

Troubleshooting application-based issues depends on how well you are aware of the error
code. There might be a case that you can witness where you don’t have the option of
installing Wireshark for your assistance. You will be presented with error code for
troubleshooting purposes. So I recommend that you at least know about the common error
codes in the most popular application protocols that are normally used.

https://tools.ietf.org/html/rfc2929

Summary

Troubleshooting is an art that comes with experience, and to become a master in it, you
are required to practice things practically on your own.

There are various error recovery features that are provided by the TCP protocol that help
us to recover from loss of packets that might happen commonly in a production
environment.

TCP retransmission and duplicate ACKs are some of those techniques that are used by the
TCP protocol in order to make the life of network administrators a bit more comfortable.

Slow network is one of those common problems that you have to face on a daily basis.
Before you start solving these latency issues, you should know the basic methodology that
you can follow, that is, to categorize your scenario in one of the latency categories: a wire,
client, or server.

Solving bottleneck issues, such as packets getting queued up inside the sender buffer area
and causing trouble, is quite important. The best approach in solving a bottleneck issue
would be to take the help of 10 graphs that you learned about in the earlier chapter to
visualize a situation and get hold over it.

Applications use protocols such as HTTP and DNS. This is very common, but you must
be aware of error codes these can present, and without using Wireshark, you should be
able to identify the situation. I do not know every error code, even I can not do that. But
the most common ones that you might witness.

Creating a baseline is one of the most convenient ways of dealing with issues in your
network. When you have a trace file containing an optimized traffic pattern, then, by
comparing the normal pattern with the deviated pattern, you can solve the issue in less
time with few resources. Collect the network traces for your baseline from various
locations in your network at least 2-3 times.

Practice questions

Q.1 Create a baseline from different positions of your network regarding various common
protocols used in communication.

Q.2 Explain the various characteristics that TCP error recovery features have.

Q.3 Which protocols other than DNS and HTTP can be troublesome for you, and what
approach will you follow in order to troubleshoot them?

Q.4 What do you understood by the term “bottleneck issues”, and can they be ignored. If
yes/no, why?

Q.5 Create a trace file for your own host and at least capture 10,000 packets. Then,
analyze how many types of errors you are able to see for the HTTP protocols, and how
many of them can you replicate.

Q.6 Using the baseline that you created earlier, try to match an unusual traffic pattern and
observe what anomalies you can figure out by the comparison process.

Q.7 For the DNS protocol, replicate an error code other than 3 and capture traffic for the
same.

Q.8 Prepare a checklist for the latency types we discussed and mention as many scenarios
as you can think about in each category. Once you’ve prepared this, try using the same in a
troubleshooting scenario. Does this speed up your overall process?

Q.9 Try creating coloring rules for error responses for various application protocols you
want to and analyze what difference does it makes in the troubleshooting issue.

Chapter 9. Introduction to Wireshark v2

This chapter will introduce you to the amazing features launched with the latest version of
Wireshark. The following are some of the prominent changes that users will become
aware of, and all the sample examples in this chapter are being using version 2:

Comparison between Wireshark v2 (QT) and the Legacy framework (GTK)
The intelligent scroll bar

The Translation feature

Graph improvements

Newer TCP streams

USBPcap

Summary

Practice questions

Wireshark has been there with us for approximately two decades now; there weren’t any
major updates that we witnessed during its lifecycle. However, there were minor updates
introduced to make the application more convenient and robust during this long period.
But this time, we have a newly branded Wireshark v2 with glazing arsenal. Yes, we are
really lucky to witness this major update for the most popular and amazing tool in the
protocol analysis industry.

I am really excited to discuss the different sets of tools introduced with the latest release,
but, before that, it is necessary that you get acquainted with the background of the QT and
GTK frameworks. You definitely have to Google these either now or maybe after reading
this chapter. However, make sure that you note them.

For your convenience, I will give you a gist and some background of these frameworks;
the reason why I am emphasizing the difference between the two is that the newly
developed version 2 of our protocol analyzer is developed using the QT framework. QT
and GTK are frameworks used for the development of GUI cross-platform utilities such as
Wireshark. In general, from the end user’s perspective, the difference would be based
purely on graphical changes, but performance wise, GTK is more economical as compared
to QT. For better understanding, these aren’t just toolkits and frameworks; instead, these
are sets of libraries used by developers to create better GUIs for end users. Basically, it’s
reusing the designs already made by others. The main advantage of reusing designs is that
it allows the newly installed program to look more similar to the other already installed
programs on your machine. For instance, let’s see both the new and old version of the
application parallelly; refer to the following screenshot for this:

‘ The Wireshark Metwork Analyzes [Wireshark 20.0rc3 (v20.0rc3-0-gBd 1dbe1 from mas.. — O x .‘

File Edt Yiew Go Copture Analyze Statistics Telephony Tools |ntemals Help |

e ANl BERXE +«++9FT L BE Q4§ @ RE R SEAqaD
e ' B - bgvession. 4
Filter: v | Expression : :.' 4
f(The World's Most Popular Network Protocol Ana
.P : : Welcome to Wireshark
Versio t3-0-g841d5e1 from master-2.0)
Open
A e tetehel bt €1 1]
D e e LUSAN
OP'Eﬂ D:\Mastenng Wireshark| Mastering Wireshanki Chapter Mvow-flag.poapng (nat found Recently Files
© Interface List Cin ¥ sl cpting! e D:\Mastering Wireshark\Mastering Wireshank\Chapter Mtelnet-flog.peapng (et found)
Livi bt o that CapRE PETiC
:;U,.,.I riomeg :':,m ! C'prn Recent C\Users ichant mishvo| Deskiop | SCADA - Gﬂg:r'm mb.pcap (not found
D . i C\Users\chant mishna\ Desktop| SCADA| mb. peap (net found
R ———
4 Start G
Chosase ane o Mmaee interface to Liptus bom then Stant W Cha
! Etharnet

& VirtualBox Host-Only Network

Capture
;_J Vihware Network Adapter YMnetd
using this filter:
i Bluetooth Network Connection Q Sampl! capmr“
2! Local Ares Connection” 6 A feh penment of snsmpl captu e on o Ethernat

| VirtuslBox Host-Only Network
B Wi-hr ! e
Vidware Network Adapter Winetd __ VUL
Bluetooth Metwork Conngction
Local Anea Connection® § r
Wi-Fi bt
Local Area Connection® 5

¢® Local Area Connection” §

8 Wbware Natwnr dedanter YMpat]

@ Capture Options

Seaet 5 captun with Setiied opuans

Learn
User's Guide * Wiki - Questions and Answers © Mailing Lists
Capture Help L, T
Tou are runving Wireshark 2.0.0rc3 (v2.0.0re-0-gB41d% | from master-2.0), You receive aitomat updates.
o Hnw tn Cantura W
¥
O ¥ | Ready to load ot capture Mo .. | Profile Defauh | 7 P Packets Prafie: Defauit

Figure 9.1: The GTK and QT frameworks

You must be wondering how you can get your machine installed with the latest version of
Wireshark. It’s really easy; you just have to visit http://wireshark.org, and then go to the
download page. There, you will find the latest release. Download the one appropriate to
your operating system. During installation, there is one important question that you will be
asked, that is, whether you want to install the legacy version along with the newer release
or you just want to install the newer version (note that only Windows users have this
privilege; Mac and Linux users can just install the latest version of the application).

There is one more component that you will see being installed on your machine:
USBpcap. I have dedicated a separate section in this chapter for this particular topic. For
the sake of basic introduction, USBpcap facilitates users to capture data that moves back
and forth from your machine’s USB port. The tool has been available for Linux users for
quite a long time, but luckily, Windows users can also utilize this now.

For starters, let’s have a look at the main screen , which has a completely different feel
from the previous version. Refer to the following screenshot to get a look:

http://wireshark.org

y filter ... <M: *| Bpression. 4

Welcome to Wireshark
Open

[Users/Charit/Downloads/bottleneck,pcapng (8807 KB)
[Usars{Charit/Downloads/normal pcapng (22 KB)

;Usersﬂ‘.‘nenwestropmar.pcanng (not found)

fUsers/Charit/Desktop/nor.pcapng fnof found)

[Users/Charit/Desxktop/Mastering Wireshark/Chapter 8/high_dns_response.pcapng (1732 KB)
[Users{Charit/Downloads/latency3.pcap (2507 Bytes)
[Users/Charit/Downloads/latency2.pcap (2507 Bytes)

Capture
wuiging this filter: | Enter a captur
Etharnet: en
FirgWire; fwQ

Thunderbolt Bridge: bridge0 _
awdil L

Thimadarkhalt 1. anf

Learn

User's Guide -+ Wiki + Questions and Answers - Malling Lists

You are running Wireshark 2.0.0 (v2.0.0-0-g9a73b82 from master-2.0).

Figure 9.2: The main screen of Wireshark v2

I hope you feel the same way I do about the new, exciting look. Everything in this version
looks so properly arranged and cleaner. Even a novice user who has no experience at all in
protocol analysis can get a great head start just because this has now become a simple and
attractive interface.

Just observe the toolbar area, for instance. In this version, it seems like the developers
have filtered out the unwanted and less commonly used tools, which eventually makes the
interface quite comfortable for the eyes. In this new version, we have quick access directly
to a basic toolset, such as the start and stop capture buttons, the interface customization
button, a button to save/open/close the current capture file, some navigational tools, and
the auto scroll and coloring activate/deactivate button.

Just below the toolbar area, we have our good old friend, the Display Filter toolset, which
is redesigned with great efforts. On the leftmost side of display filter text box, you will see
a bookmark kind of icon (in blue—top-left corner) that will show you the default and
manually created filter expressions. Refer to the following screenshot that shows an
illustration:

W | Apply a display filter ... <3 />

Caun vhie fils
oave this Titer

Manage Display Filters
Manage Filter Expressions

Ethernet address 00:08:15:00:08:15: eth.addr == 00:08:15:00:08:15
Ethernet type 0x0806 (ARP): eth.type == 0x0806

Ethernet broadcast: eth.addr == ff:ff.ff:ff ff.ff

IP only: ip

IP address 192.168.0.1: ip.addr == 192.168.0.1

IP address isn't 192.168.0.1, don't use != for this!: !(ip.addr == 192.168.0.1)
IPX only: ipx

TCP only: tcp

UDP only: udp

Non-DNS: !(udp.port == 53 || tcp.port == 53)

TCP or UDP port is 80 (HTTP): tcp.port == 80 || udp.port == 80

HTTP: http

No ARP and no DNS: not arp and !(udp.port == 53)

Non-HTTP and non-SMTP to/from 192.168.0.1: not (tcp.port == 80) and not (tcp.port == 25) and ip.add...
NO: larp

Figure 9.3: The Display Filter toolbar

As you can see, all the filters are listed, which you might have created, or are default ones.
So now, it’s a matter of just a click if you want to activate any one of them, instead of
getting a pop-up window from where you choose and apply the filter, like in the older
version. This definitely speeds up the process of analyzing and makes the life of IT
professionals easier.

On the other end of the Display Filter toolbar, we have a few old tools that have been
remodeled in a fresh look, along with some functionality improvements; refer to the
following screenshot for an illustration:

'| Expression... +

Figure 9.4: The Display Filter toolset

To apply any display filter now, you just need to click on the arrow, and the dropdown
next to it will give you access to frequently used filter expressions (history of last-used
expressions). Then, you have the Expression button, which will help you access the
dialog where you can get access to all possible filter expressions categorized on the basis
of protocols. Next, on the rightmost side of the display filter textbox, you have the + sign;
by clicking on this, you can create a filter button. Let me help you in creating one for
yourself in the newer version to get started.

For example, I want to create a button to see only the ARP packets, so I will type arp in
the display filter area and click on the + sign at the end of the toolbar. Then, you need to

specify the name of the button you want:

a L | Epnssion. | +

Filter Expression Preferences Label; |ARP Fitter: arp Ok | Cancel

Figure 9.5: Adding a custom display filter expression button

This will add a physical button next to the + sign. This technique will prove worthy and
very effective when you have long display filter expressions, which you might need often.
So, instead of typing the whole expression again, you can just activate them with a single
click. As a result, you will see something like what is shown in the following screenshot.
Now, you are just a single click away from applying arp as the display filter:

= | Expression... 4+ ARP

Figure 9.6: The display filter button created

Next, below the display filter toolbar, you can see the recently used files; just double-click
on any file you want to open.

After the Open file section, we have the capture filter toolbar, and I don’t think you need
any explanation regarding what it is for and how you are going to use it for your perusal.

Now comes the major change that you will witness on the main screen, that is, the
interface’s name followed by an interactive graph. The graphs you will see are actually
live, meaning you will see the fluctuations, that is, the lines going up and down. The
miniature graph followed by the interface name represents the amount of traffic moving
back and forth from the interfaces you have. The proper terminology for these miniature
graphs is sparklines. In the older legacy version, we had the live statistics in numerical
form.

Now, if you decide to capture traffic from a particular interface, just double-click on the
graph area, and Wireshark will do the rest for you.

The intelligent scroll bar

This is one of the features launched in the latest release, and you might have already
noticed some colored sections/lines in the scroll bar area. If not, then go back to any of the
capture files you have, slowly scroll up and down, and observe the coloring pattern in the
scroll bar area. Any guesses what difference it would make in the analysis process? Let’s
understand this with an example.

I will use a previously captured file for demonstration purpose, which has HTTP and
HTTPS packets along with some retransmission and duplicate frames. There is no
difference that you can figure out at first glance, but as soon as you start scrolling, the
coloring pattern will be shown in the scroll bar area. This pattern is based on the coloring
rules that you have in your application. For example, as per the default coloring rules,
duplicate and retransmission packets are usually seen with a black background and a red
foreground, and HTTP packets are shown with a green background and a black
foreground. Now, let’s verify this in the application itself. Refer to the following figure for
the same:

51 Ack=11052 Win=500 Len=0 TSval=2290195322 TSecr=322878220
Ack=626 Win=2860 Len=0

Ack=1276 Win=3160 Len=0
t captured] Application Data

1 + 443 [ACK] Seq=1276 Ack=1 Win=8192 Len=0 SLE=388 SRE=424 Blue Line
52121 [PSH, ACK] Seq=1 Ack=1276 Win=3160 Len=387

76 Ack=424 Win=8178 Len=0

76 Ack=893 Win=8177 Len=0 Black Lines

76 Ack=919 Win=8176 Len=0 M

51 Ack=11121 Win=500 Len=0 TSval=2290195491 TSecr=322878351

Green

Colored
Section

Figure 7 Intelligent Serollbar in action

Figure 9.7: The intelligent scroll bar in action

The way packets in the list pane are shown in different colors is similar to the way the
scroll bar represents the different sections of your list pane.

In the same way that the blue line indicates the selected packet, the black lines denote the
duplicate ACKs and retransmissions, and the green-colored section indicates that at the
bottom of the capture file, we have some HTTP packets listed. By just observing the
coloring pattern in the scroll bar area, we can figure out what sort of packets we have
ahead, and most importantly, navigating to a certain section of packets you are looking for
is now much easier and faster.

We already discussed customizing the coloring rules in previous chapters; let’s take one
more example of the same capture file, and this time, I want to customize the HTTP
packet coloring rule. We will change the green background color to yellow. Let’s see what
difference it would make in the scroll bar area in the following screenshot:

@ Wireshark File Edit View Go Capture Analyze S

@0 ® v Main Toolbar

v Filter Toolbar
sl = @ Wireless Toolbar
|_H Apply a display filter ... <38/> + Status Bar

Mo. Time Source
+/ Packet List
226 -1461647500.. 173. :
v Packet Details

227 1439819206... 17 P
228 0.006341 [v Facxet Dytes
g '545 Time Display Format
il ehinde b ' Name Resolution

23 742687193, 9. 17 Zoom
233 0.0eeesl
234 0.006564
235 =531332573.. Expand All
236 -1629153623. Collapse All
237 -720731259...
238 -1906678008. 173. v &= Colorize Packet List
239 -948534350... 0} Coloring Rules...

240 ©.255380 ') Colorize Conversation

Figure 9.8: Accessing the coloring rules dialog

To access the coloring rules, you need to click on View from the menu bar and then
choose Coloring Rules at the bottommost corner, which will show you the dialog where
all coloring rules will be listed. Try changing the HTTP coloring rule to yellow. Once this
has been done, close the dialog and reopen the capture file in order to see the change.

Now, try scrolling the same file, and I hope you will see the difference in the coloring
pattern in the scroll bar and your list pane too, where all HTTP packets are colored with a
yellow background. Refer to the following screenshot:

} | HTTP http || tcp.port == 80 || http2

p IPX ipx || spx

| DCERPC deerpe
Routing hsrp || eigrp || ospf || bgp || cdp || vrrp |
0 AR A eI A B A ARG e B A

Double click to edit. Drag to move. Rules are processed in order until 8 mateh is found.

Figure 9.9: The HTTP coloring rule

Now, let’s compare what difference it made when we tried scrolling up and down in the
list pane after the new coloring rule was applied. Refer to the following screenshot to go
through the illustration:

1322878221 TSecr=2290194860
1290194968 TSecr=322877886 [l Yellow
: Colored
:322878350 TSecr=2290194999 - HTTP
/ Section
:322878350 TSecr=22990194990 -
1322878354 TSerr=220A104040A4 —

Figure 9.10 Effect of the HTTP coloring rule can be seen in the scroll bar

A good amount of cleanup has been done from the toolbar area where, for example, the
coloring rules toolset has been removed, and now you can access it from the view menu.
The + and — symbols at the bottom of the coloring rules window can facilitate you with
the configuration of the rules.

Translation

I think this amazing and pretty cool feature is not able to gain limelight, so I want you to
know that Wireshark offers you to change the language to any other language of your
choice, for example, Spanish, Japanese, Chinese (Mandarin actually), Polish, French, and
so on, and this feature has been there their since version 1.99.

Giving the privilege to users to change the default language of the application to their
native language is all about personalizing user experience while working with the
application. If users feel more connected and comfortable with the application, then they
will definitelybecome more productive.

Let’s see, with the help of an example, how we can change our system’s default language
to Japanese (launched with version 2.0). Follow the given steps to achieve the same:

1. Navigate to Wireshark | Preferences (Windows users need to navigate to View |
Edit | Preferences):

Wireshark File Edit
About Wireshark

Preferences... *®,

Services »

Hide Wireshark 3H
Hide Others 3#EH

Quit Wireshark 3Q

2. Now, choose Japanese from the drop-down list at the bottom, and click on OK:

b Statistics
Advanced

Help

SNOW Up 10

10 | filter entries

10 | recent files

Confirm unsaved capture files
Automatically scroll packet details

Packet detail scroll percentage: 0

Main toolbar stvle: . lcans anlv a
M Chinese

Language: y/ &3 English
11 French
™= German
1 1 [talian

-
== Polish

Use system setting —

Cancel

3. Now, you probably will see everything in Japanese, as shown in the following

screenshot:
® 0 M Wireshark - &
v AR AAUH Y RODYA ZENEERR
LA72F
5 771 IEHRL
73VhER | o ERECERT Y
Fy/Fv
74 LR co7 05 [754 %...
Name Resolution B
» Protocols CZETHER
b Statistics 10 | 24077 FY
FHOZAE 0| BEODT 7/
BELTWVEVWF Y I F+ 771 LOWE
Nry FNEEEBBNICA20-)b
Ny MERIZZ20-LULEBIS®E): 0
AZa=-Y=-0RF1) FAIVDH 5
Sia: * Japanese
el corcel | (D |

4. To revert it back to System Default, follow the same steps.

The most amazing thing about this is that you can also become part of the change; this

means that if you want to help Wireshark’s team in adding your native language, then you
can get in touch with them.

From the help menu, you can list all the keyboard shortcuts, which can be used to make
things work faster than usual. Even to make graphs, now you have a shortcut available.

Graph improvements

This is something that you will be really pleased to know about. Yes, Wireshark has made

quite significant changes that will make your analytical tasks more comfortable. To
understand the difference, the best option will be to go through an example.

We will try to create an IO graph in order to witness the changes that the new version has.

I am using a capture file from the previous chapter, which has mixed packet types and

mostly contains VoIP traffic. The sole purpose of this exercise is to see how graphs can be
of better assistance in version 2 of Wireshark. Follow these steps to create an IO graph in

Wireshark version 2.0:

1. Capture the normal traffic from your network or open any previously captured trace

file that you have.

2. Click on I0 Graph under Statistics. Once you do that, you will be directly presented

with a graph without any further hassle:

200 Wireshark - 10 Graphs * voip-flag
Wireshark 10 Graphs: voip-flag
A\ N
bR R
150 - e T i
| |
| |
120 + | ||
o | ||
w
o 90 | |
= [
[%]
g | |
[
60 - | |I
|
| |
|
L B A
- 7\ | I| "I\l,
A // |) || Af\
0 __:rc-.-." i 'M-Eu:-%(a\c’. - 005t po 000poooo Lm...fr._-._..-—m.,*-’f‘—"'“ 'j\’-:. Lﬁ':}wu--.rrﬁq_.-:
0 10 20 30 40 50 60
Time (s)
Click ta sefect packet 2190 (355 = 157),
.Namu Display fil.tor Color Style Y .éut'..s X F|e d Smaoothing
All packets . Line Packets/s Mone
TCP errors tcp.analysis.flags B Square Packets/s None
icmp iemp] Impulse Packets/s None
+ th Mouse) drags Z00MS Interval 1sec ﬁ Time of day Log scale Reset
Help Copy Close

Figure 9.11: The IO graph

3. Now, if you want to modify and configure the graph, then you can use various
configurable options given at the bottom of the dialog.

4. For instance, if I want to add any filter to the graph, I can click on the + symbol at the
bottom and a new line will be shown, as in the following screenshot:

Name Display filter Color Style Y Axis Y Field Smoothing
All packets B Llne Packets/s None
TCP errors tcp.analysis.flags . Square Packets/s MNone
icmp icmp D Impulse Packets/s None
All packets . Line Packets/s None

Figure 9.12: Adding a filter to a graph

5. Now, I want to see the traffic pattern for the ARP packets along with other traffic-
related details. So, I would write arp as a filter expression in the display filter column

and ARP packets in the name column. If you want to customize the look and feel
too, you are most welcome to do so.

Wireshark 10 Graphs: voip-flag
N
Illflll 'v-') \".' :r.r—- »
150 [re—d y ™
' |
| |
120 + | II
@ | |
3 |
a 90Ff | .
* |
0 | |
o |
60 - | |I
| '.
30 + A | \
A\ | II I II"I,_
O __/ — -/ | o III Y
0 _:I.—.:}H./_ -4 \).yﬂ,..d::l,‘{: i_-.." - = Hdo ."F-"T.'r'- FEeer O s 7 5 O J.G_....?.,_._._..---.,.r:'_'r—“ﬂ I.:_. B -3 55'.~a='5?'\--l—'=p:.---c
0 10 20 30 40 50 60
Time (s)
Hover aver the graph for detals.
Name Display filter Color Style ¥ Axis ¥ Field Smoothing
TCP errors tcp.analysis.flags . Square Packets/s Mone
icmp icmp |:| Impulse Packets/s MNone
¥ ARP packets arp I Line Packets/s Mone

Figure 9.13: The ARP filter added in the 10 graph

6. As you can see, our newly created filter is in effect, and we can observe the
frequency of ARP packets appearing in our graph as well.

Using graphs is now much more convenient, as you are no longer required to pass any
statistical information to the graph. Just choose whichever graph you want, and then the
default version of the graph will be presented to you without any questions asked. Now, if

you feel like changing the graph as per your need, then just use the toolset given at the end
of the graph to custom configure it.

Now, after we have made an IO graph, you will see how clean it looks; there are lots of
features that have been introduced. Using the default graph, most of the time you will be
able to figure out the ups and downs in your trace file. The legends are shown at the

bottom most in a separate section, along with other configurable options like changing
colors, hiding or enabling a filter, and much more.

Additional features can be listed and explored in the graphs; all you need to do is right-
click on the graph area. The graph can now be moved along with the x and y axis by just
clicking and dragging. Adding new arguments to the graph couldn’t be any easier than
this. As you can see, so many new amazing features are waiting for you to discover them.

Wireshark |0 Graphs: voip-flag
Ir\ A
150 | ~o/ vV oo

| | Zoom In +
| I| Zoom In X Axis X
120 - | || Zoom In Y Axis Y
L. | I| Zoom Qut -
§ oof | I Zoom Qut % Ax!s X
g | I Zoom Qut Y Axis by
o . l Reset Graph 0

60 | \ ——
| II Maove Right 10 Pixels -
II Move Left 10 Pixels -
0 F l_j'l".ll | II Maove Up 10 Pixels 1
o, /J || Move Down 10 Pixels !
0 Hree0l pagadolho! LogU¥c0ooatbopsadioosoes Move Right 1 Pixel -
0 10 20 30 40 Move Left 1 Pixel e o
Time (s) Move Up 1 Pixel 1
Maove Down 1 Pixel {rl

Click to sefect packe! 810 (255 = 152).

MName Display filter Color Style ¥ Axis Go To Packet Under Cursor G
All packets . Line Packets/s Drag / Zoom Z
TCP errors tep.analysis.flags . Square Packets/s Capture / Session Time Origin T
ARP packets arp m Line Packets/s Crosshairs Space

+ = B Mouse Qdrags ' zooms Interval 1sec 7| Time of day Log scale Reset

Help Copy Close

Figure 9.14: The right-click options list

Opening two graphs is now possible; and maybe someday, you will feel like comparing
the traffic patterns in two trace files that you have. For example, I want to compare the
normal VoIP traffic pattern and the malicious traffic pattern. Then, we can use two graphs

to figure out the difference graphically, and it’s really effective. Refer to the following
screenshots:

Wireshark |0 Graphs: voip-flag
Ir\ A
150 ~o/ vV oo
| | Zoom In +
| I| Zoom In X Axis X
120 - | || Zoom In Y Axis Y
L. | I| Zoom Qut -
§ oof | I Zoom Qut % Ax!s X
g | I Zoom Qut Y Axis by
= | !_ Reset Graph 0
60 | i ‘. . :
| II Move Right 10 Pixels =t
II Move Left 10 Pixels -
0 Var | II Mave Up 10 Pixels 1
o 0. /J || Move Down 10 Pixels !
0 lgoe08 eeedoling “DogD¥p0pas0b0goa00oosoes Move Right 1Pixel iF-
0 10 20 30 40 Move Left 1 Pixel {re
Time (s) Move Up 1 Pixel 1
Move Down 1 Pixel {rl
Click to sefect packe! 810 (255 = 152).

MName Display filter Color Style ¥ Axis Go To Packet Under Cursor G
All packets . Line Packets/s Drag / Zoom 7
TCP errors tep.analysis.flags . Square Packets/s Capture / Session Time Origin T
ARP packets arp Line Packets/s Crosshairs Space

+ - Mouse) drags zooms Interval 1sec %] Time of day Log scale Reset

Help Copy Close

Figure 9.15: Comparing two graphs at a single instance

Similarly, you can create a flow graph that can be of great assistance while analyzing the
TCP flow and to know how SYN and AcK coordinate with each other. I would highly
recommend that you create the flow graph in the newer version of Wireshark.

To switch between the graphs, you have the drop-down list sitting at the bottom-left corner

of the graph window, which can assist you in doing so, and you are no longer required to
go the window in the background to switch between graphs.

Another useful feature that can be taken advantage of when you are trying to create reports
for your client or maybe for your own reference purpose is to export the graphs in PDF

formats. You might have done this before; if not, then let’s do this together here. Follow
the given steps to do so:

1. You need to click on the Save as icon at the bottom-right corner in the graph dialog
window. Now, choose the location where you want to save the PDFs and click on
Save.

2. Once this has been done, you can export the PDF to anywhere you want to. Refer to
the following screenshot:

Wireshark - Save Graph As...

Save As: voip-flag

Tags:

E

Portable Document Format (*.pdf) H

Where: || Desktop

Cancel Save

Figure 9.16: Exporting graphs to PDF format

Now, whenever you want to import it into your report, just add it like an image and the

graph from the PDF you exported will be added to your document. Doing this is really this
easy:

& & "L voip-flag.pdf
Home Tools voip-flag.pdf @ E Sign In
® 8 B Q z AR M O® [- B

Wireshark 10 Graphs: voip-flag

b J"h Y T
180 frrm=t \-’r("".I
i ! |
|
120 | -!
o | | i
] |
o 90 | |
-
= | |
o b |
80 | | II
| I |
30| ' I' '
- A/) | \ /)
L | | I, T
0 r;ﬂ-mﬂ-eﬂ-l oGg S '—'l}clllfr{— Opop0Bogoo0fog E—rm-ﬁ-qrﬁrﬂgrr?ﬂt-egfk‘iu-'f'ﬁimﬂ*?ﬂprﬁF—u
0 10 20 30 a0 50 80
Time (s)

Figure 9.17: The graph exported as PDF

TCP streams

This is one of the features that you might have used very often so far, and I suppose the
story will be same for all IT professionals using Wireshark as a utility. The gist of the tool
definitely will remain the same in the next version, which is going to come in the future;
however, there are some new things that I would like to emphasize. To view the TCP
stream window, the process remains the same as usual. Right-click on the list pane area
and choose Follow by hovering your mouse over it, which will the present available
different streams. Then, click on TCP Stream options. Refer to the following screenshot
to see these steps:

Mark/Unmark Packet #EM
Ignore/Unignore Packet IV Seq=1 Ack=2 W
Set/Unset Time Reference &T
Time Shift... 8T

Packet Comment...

Edit Resolved Name
Seq=1 Ack=2

2
Apply as Filter > _
Prepare a Filter B
Conversation Filter >)
Colorize Conversation @l Seq=1 Ack=2
SCTP > 3
| Follow > [EREENRe
Copy UDP Stream
SSL Stream
Protocol Preferences e o Moty -7
Decode As... Seq=1 Ack=2

Show Packet in New Window

Figure 9.18: Follow TCP streams

Following this will present you with a usual-looking stream window similar to what we
have seen in our previous chapters. However, we definitelyhave some new features to
discuss, such as the flexibility of moving back and forth between the different TCP/UDP
streams available, and the find utility that lets you search in the stream window for any
text.

First, we will see how you can traverse in between the different streams available in your

trace file. Then, we will try to search some text through the follow streams window. Refer
to the following Stream option screenshot that can be used to traverse between various
TCP streams available:

[JNON) Wireshark * Follow TCP Stream (tcp.stream eq 0) - tcp-packets

GET / HTTP/1.1

Host: 192.168.1.106

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;0=0.8

Accept-Language: en-us

Connection: keep-alive

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_10_3) AppleWebKit/600.6.3 (KHTML, like Gecko)
Version/8.0.6 Safari/6080.6.3

GET /abe.jpeg HTTP/1.1

Host: 192.168.1.106

Connection: keep-alive

Accept: */%

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 05 X 10_10_3) AppleWebKit/600.6.3 (KHTML, like Gecko)
Version/8.0.6 Safari/600.6.3

Accept-Language: en-us

Referer: http://192,168.1.106/

Accept-Encoding: gzip, deflate

2 elient pki(s), 0 server pki(s), 0 turns. D
Entire convi ﬂ Show dataas ASCII E Stream 0 °
[" Find Next |
Help Hide this stream Print Save as... Close

Figure 9.19: Follow the TCP Stream dialog

The stream option labeled (1) at the bottom-right corner of the preceding dialog gives you
the flexibility to move back and forth between the different streams available. You have
two choices here: you can specify the number of the stream you want to look at or you can
traverse up or down by clicking on the up/down arrow followed by the textbox. So now, if
you are looking for a different stream, you don’t have to close and reopen the dialog, like
we did while working with the earlier version of the application. Refer to the following
screenshot:

Stream 1

w

Figure 20: The Stream option

The part labeled (2) gives you the facility to find any ASCII text inside the Follow stream
dialog, which definitely gives an extra mile advantage for every person actively using this
beautiful application. Most of the time, when we are using the stream dialog, it is for
analytical purpose, and with these new features, our job becomes more easy and

interesting. Refer to the following screenshots for reference regarding both the newly
introduced options:

Figure 9.21: The Find utility in the Follow TCP stream dialog

For example, if you want to search for the text abc in the current stream, then just type the
search string in the find textbox and press Enter or click on Find Next.

GET / HTTP/1.1

Host: 192.168.1.106

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;q=0.8

Accept-Language: en-us

Connection: keep-alive

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_10_3) AppleWebKit/600.6.3 (KHTML, like Gecko)
Version/8.@.6 Safari/600.6.3

GET /abc.jpeg HTTP/1.1

Host: 192.168.1,106

Connection: keep-alive

Accept: #/x

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_10_3) AppleWebKit/60@.6.3 (KHTML, like Gecko)
Version/8.0.6 Safari/600.6.3

Accept-Language: en-us

Referer: http://192.168.1.106/

Accept-Encoding: gzip, deflate

2 client pkt{s), 0 server pkt(s), 0 tums.

Entireconmﬁ Show dataas ASCII E Stream 0 °

Find: abc

Figure 9.22: The Find utility in the Follow TCP stream dialog

USBPcap

USBPcap has been there from a long time with Linux and Mac users, but for Windows,
this is the first time that users will be able to sniff the activity over USB interfaces. So,
let’s quickly walk through this latest feature and try to understand how to work with it
with the help of an example. Follow the given steps to replicate the scenario:

1.

vk

After the successful installation of Wireshark on your Windows machine, it is highly
recommended that you restart your machine because USBPcap might give you some
trouble.

After your PC has restarted, open Command Prompt and change your current
directory to the USBpcap installation directory that should be located at C:\Program
Files\USBPcap\.

Now, perform a directory listing using the dir command to check whether
USBPcapCMD . exe is present in the directory. Refer to the following screenshot that
represents this step:

:\>cd "Program Files”
C:\Program Files>cd USBPcap
s \Program Files\USBPcap>dir

Volume in drive C is Windows8

Volume Serial Number is 4813

Directory of C:\Program Files\USBPcap

11/20/2015 ©2:19 PM
22:19 PM i3 AL
82:17 PM 192,360 abc
82:19 PN 56,765 abc.pcap
11:12 PM 60,904
11:18 PM]
11:180 PM
11:16 PM
11:687 PM
7 File(s)

2 Dir(s)

Figure 9.23: The USBPcap installation directory

Type USBPcapCMD. exe in the Command Prompt to launch the sniffing application.

As soon as it has been launched successfully, you will be asked to choose a root hub
over which you want to sniff the traffic and the name of the trace file where you want
to redirect the output. Refer to following screenshot that illustrates this:

oo

Now, as instructed, the application will initiate the sniffing process over root hub 1
and will dump any activity captured over the USB interfaces to the abc.pcap file.
Now, try to copy something from your PC to the USB drive or vice versa. You
probably won’t be able to see any live activity over the Command Prompt, but in the
background, it is actually running.

Whenever you want to stop the sniffing process, you can press Ctrl + C.

Now, it’s time to open the abc.pcap file using Wireshark to see what we have in the
trace file. Refer to the following screenshot that illustrates this:

‘ abc.pcap
File Edit View Go Copture Analyze Statistics Telephony Wireless Tocls Help
aAnm;:® RE QesEF S5 =QQaH
LIE - :
Mo, Tirme Source Destration Protoco Length Info
1 8.200000 host 1.1.2 USEMS 58 SCSI: Test Unit Ready LUN: @xee
2 ©.P0B008 1.1.1 host USBMS 46
3 1.000150 host 1.1.2 USBMS 58 SCSI: Test Unit Ready LUN: @x0@
4 1.000150 1.1.1 host USBMS an
5 2.800316 host 1.1.2 USBMS 58 SCSI: Test Unit Ready LUN: 8x0@
6 2.808316 Lil.1 host USBMS 4p
7 3.801945 host 1.1.2 USBMS 56 SCSI: Test Unit Ready LUM: @xB@
B 31.001945 1.1.1 host USEMS 4n
9 4.804159 host 1.1.2 usBHs 58 SCSI: Test Unit Ready LUN: @6x88
18 4.884159 1.1.1 host USBMS 48
11 5.824353 host 1.1.2 UsBMS 58 SCSI: Test Unit Ready LUN: x99
12 5.004353 1.1.1 host USBMS an
13 &.205854 host 1.1.2 UsSBMS 58 SCSI: Test Unit Ready LUN: &x8@
14 6.0@5854 1.1.1 host USBMS 48
15 7.8@527@ host 1.1.2 USBMS 58 SCSI: Test Unit Ready LUN: 9x@8
16 7.805270 1.1.1 host USBMS an
17 8.805476 host 1.1.2 USBMS 58 SCSI: Test Unit Ready LUM: 8x0@
18 B.085476 1.1.1 host USBMS 48
19 9.885682 host 1.1.2 USBMS 58 SCSI: Test Unit Ready LUN: @x@8
28 9.005682 1.1.1 host USBMS 4
21 18.085395 host 1.1.2 USBMS 58 SCSI: Test Unit Ready LUM: &x8@
Frame 1: 58 bytes on wire (464 bits), 58 bytes captured (464 bits)
USE URBE
USE Mass Storage
SCSI CDB Test Unit Ready
1b 8@ 18 60 53 99 23 =8 ff ff 02 20 82 2@ 09 28 il IETEEE
90 91 90 01 02 82 83 1T ©0 02 &9 55 53 42 43 18 PP — - |
68 53 99 00 00 00 99 P2 OO 06 00 OO0 D0 0O 02 B0 Bisiass wessasds
20 00 00 00 OO 00 92 0O 02 29

Figure 9.24: The abc. pcap trace file

As you can see, we have an activity, which got captured; it all looks similar to what we
saw with network packets. We have all the familiar columns that list out various details
such as time, source, destination, and so on. So we were able to successfully dump the
activity over available USB interfaces without any technical hassle and I hope you will do
some research to get a better understanding about USBPcap.

Summary

The newer version of Wireshark has adopted a new framework that gives us a new and
totally amazing GUI. The older version was built upon the GTK framework, and since
now we have the QT framework, from the perspective of a normal user, the differences are
mostly concerned with its look and feel.

Scrolling is definitely one of the tools that we all have seen in all major applications, but
hats off to the developers who came up with such a creative idea of showing the coloring
pattern of your trace file inside the scroll bar while you are trying to look for something
specific. It does give an extra advantage.

The Translation feature makes Wireshark more international and close to every user in
terms of personalization. As many Wireshark users might not comfortable with the
English language, now they have the facility to change the language to their native
language, which would make the analytical process for a professional more effective.

Graphs are one of the features using which differences between normal and abnormal
conditions can be figured out, and are used very often. Now, creating and customizing
graphs is easier than ever, and the look and feel has drastically improved as well.

The following protocol-specific streams dialog is introduced with some of the new
features that let you find an ASCII string, and itlets you move easily between the streams
available too; you don’t have to close and reopen the dialog to move to a different stream.

USBPcap has been there with us for quite a long time, and most Linux and Mac users are
probably aware of this fact. The way your NIC card lets you listen over the wired/wireless
channel is similar to the way the USBpcap option would let you listen over the USB ports
that you have. This means that now, Wireshark can also trace the activities happening over
a USB interface.

Practice questions

Q.1 Try to find out the major differences between the GTK and QT frameworks. And
which one do you think is better?

Q.2 Try out the Translation feature by changing the system default language in Wireshark
to any other language of your choice.

Q.3 Create a Flow graph using the newer version and the legacy version, and observe how
many differences you can figure out between the graphs.

Q.4 Open any previous capture file you have, and try to figure out how many TCP streams
there are in it.

Q.5 Figure out a way to remove the display filter button for the ARP protocol that we
created earlier in this chapter.

Q.6 Try changing coloring rules for ARP packets, and check whether you can observe the
difference in the intelligent scroll bar area.

Q.7 After installing the newer version of Wireshark on a Windows machine, try to launch
USBPcap. Then, copy and paste from your PC to the sub device or vice versa (dump all
the activities in the test.pcap file).

Q.8 Open the recently captured test.pcap trace file for the USB interface activity in
Wireshark, and try to figure out what the packets listed in the list pane state. Specifically,
try to analyze the values shown in the source and destination columns.

Index
A

o ACK packets / WEP-open key
¢ Address Resolution Protocol (ARP)

o about / The layers in the TCP/IP model

o poisoning / ARP poisoning, ARP poisoning
¢ advantages, Wireshark

o user friendly / Why use Wireshark?
robustness / Why use Wireshark?
platform independent / Why use Wireshark?
filters / Why use Wireshark?
cost / Why use Wireshark?

o support / Why use Wireshark?
¢ application-based issues

o troubleshooting / Troubleshooting application-based issues
e association request/response / WEP-open key

O O O O

¢ Base Service Set Identifier (BSSID) / Various modes in wireless communications

bottleneck issues

o troubleshooting / Troubleshooting bottleneck issues
BPF syntax

o identifiers / How to use capture filters

o qualifiers / How to use capture filters
brute force attacks

o malicious traffic, inspecting / Inspecting malicious traffic
o real-world CTF challenges, solving / Solving real-world CTF challenges

capture filters
o using / Why use capture filters
o using, techniques / How to use capture filters

o example / An example capture filter
o with protocol header values / Capture filters that use protocol header values
capturing methodologies
o about / Capturing methodologies
hub-based networks / Hub-based networks
switched environment / The switched environment
ARP poisoning / ARP poisoning
passing, through routers / Passing through routers

o first capture, starting / Starting our first capture
Carrier Sense Multiple Access and Collision Avoidance protocol (CSMA/CA) /

Various modes in wireless communications
client-side latency issues / Client- and server-side latencies
Command Line-fu
o about / Command Line-fu
comparison operators

o </It/ Display filters
==/eq / Display filters
<=/le / Display filters
!=/ne / Display filters
>/gt / Display filters

o >=/ge / Display filters
control frame

o about / The IEEE 802.11 packet structure

o Request-to-send (RTS) / The IEEE 802.11 packet structure

o (Clear-to-send (CTS) / The IEEE 802.11 packet structure

o Acknowledgement (ACK) / The IEEE 802.11 packet structure
Conversations

o about / Conversations
cyclic redundancy check (CRC) / The IEEE 802.11 packet structure

O O O O

O O O O

deauthentication packet / WPA-Enterprise
disassociation packet / WPA-Enterprise
display filters

o about / Display filters

o retaining, for later use / Retaining filters for later use
distribution system (DS) / The IEEE 802.11 packet structure

DNS error code

o URL / Troubleshooting application-based issues
DNS packet

o dissecting / Dissecting a DNS packet
Domain Name Service (DNS) / How it works
domain name system (DNS)

about / Domain name system
packet, dissecting / Dissecting a DNS packet
packet, fields / Dissecting a DNS packet

query/response, dissecting / Dissecting DNS query/response
unusual DNS traffic / Unusual DNS traffic

Dynamic Host Configuration Protocol (DHCP) / The DHCP
Dynamic Host Control Protocol (DHCP) / How it works

O O O O O

encrypted traffic (SSL/TLS)
o decrypting / Decrypting encrypted traffic (SSL/TLS)
endpoints
o about / Endpoints
Expert Info dialog
o about / Expert Infos
Chat section / Expert Infos
Note section / Expert Infos
warning messages / Expert Infos
error section / Expert Infos
details / Expert Infos
o Packet Comments / Expert Infos
Extended passive (ESPV) mode / Passive mode
Extended Port (EPRT) / Active mode

O O O O O

¢ fields, domain name system (DNS) packet
o Transaction ID / Dissecting a DNS packet

Query/response / Dissecting a DNS packet
Flag bits / Dissecting a DNS packet
Response code / Dissecting a DNS packet
Questions / Dissecting a DNS packet
Answers / Dissecting a DNS packet
Authority RRs / Dissecting a DNS packet
Additional RRs / Dissecting a DNS packet
Query section / Dissecting a DNS packet
Answer section / Dissecting a DNS packet
Type / Dissecting a DNS packet
Additional info / Dissecting a DNS packet
window size / Understanding the TCP header and its various flags
checksum / Understanding the TCP header and its various flags
urgent pointer / Understanding the TCP header and its various flags
options / Understanding the TCP header and its various flags
o data / Understanding the TCP header and its various flags
e file transfer protocol (FTP)

o about / File transfer protocol
o communications, dissecting / Dissecting FTP communications

o packets, dissecting / Dissecting FTP packets

o unusual FTP / Unusual FTP
¢ File Transfer Protocol (FTP) / The layers in the TCP/IP model
o filters

o display filters / Display filters
e Find dialog

o used, for searching for packets / Searching for packets using the Find dialog
e flags, TCP

o SYN (synchronize) / Understanding the TCP header and its various flags
ACK (acknowledgement) / Understanding the TCP header and its various flags
RST (reset) / Understanding the TCP header and its various flags
FIN (finish) / Understanding the TCP header and its various flags
PSH (push) / Understanding the TCP header and its various flags
URG (urgent) / Understanding the TCP header and its various flags
CWR (congestion window reduced) / Understanding the TCP header and its
various flags
¢ flow control mechanism / The flow control mechanism
e flow graphs

o about / Flow graphs
e FTP communications

o dissecting / Dissecting FTP communications

o passive mode / Passive mode

O 0O 0O O 0O O 0o 0o o 0O 0o o o o o

O O O O o o

o active mode / Active mode
e FTP packets

o Dissecting / Dissecting FTP packets

G

e Google
o reference link / Dissecting DNS query/response, Unusual DNS traffic

e graph improvements / Graph improvements

half-open scan (SYN)
o performing / Half-open scan (SYN)
o open state / Half-open scan (SYN)
o closed state / Half-open scan (SYN)
o filtered state / Half-open scan (SYN)
header fields, TCP

o source port / Understanding the TCP header and its various flags

o destination port / Understanding the TCP header and its various flags

o sequence number / Understanding the TCP header and its various flags

o acknowledgement number / Understanding the TCP header and its various flags

o data offset / Understanding the TCP header and its various flags
header types, IEEE 802.11 packet structure

o management frames / The IEEFE 802.11 packet structure

o control frames / The IEEE 802.11 packet structure
o data frames / The IEEE 802.11 packet structure
HTTP error code
o URL / Troubleshooting application-based issues
HUB / Hub-based networks
hub-based networks / Hub-based networks
hubbing out / The switched environment
Hyper Text Transfer Protocol (HTTP) / The lavers in the TCP/IP model

about / Hyper Text Transfer Protocol

working / How it works — request/response
request / Request

response / Response
unusual HTTP traffic / Unusual HTTP traffic

O O O O O

e IEEE 802.11

e}

O O O O O o o

e}

e}

about / Understanding IEEE 802.11
standards / Understanding IEEE 802.11

wireless communications, modes / Various modes in wireless communications
station (STA) / Various modes in wireless communications

wireless access point (AP) / Various modes in wireless communications

basic service set (BSS) / Various modes in wireless communications

extended service set (ESS) / Various modes in wireless communications
independent basic service set (IBSS) / Various modes in wireless
communications

distribution system (DS) / Various modes in wireless communications

packet structure / The IEEE 802.11 packet structure

¢ information gathering

e}

e}

e}

e}

about / Information gathering
PING sweep, performing / PING sweep

half-open scan (SYN), performing / Half-open scan (SYN)
OS fingerprinting / OS fingerprinting

e Initial Sequence Numbers (ISN) / How it works
¢ Internet Protocol (TCP) / How it works
e 10O graph

e}

creating / Graph improvements

e [0 graphs

e}

e}

working with / Working with 10, Flow, and TCP stream graphs
about / 10 graphs

¢ layers, TCP/IP model
about / The layers in the TCP/IP model
Application Layer / The layers in the TCP/IP model
Transport Layer / The layers in the TCP/IP model
Internet layer / The layers in the TCP/IP model
Link Layer / The layers in the TCP/IP model
¢ logical operators

o AND/&& / Display filters

o OR/|| / Display filters
o NOT/!/ Display filters

O O O O

(¢]

M

e malicious traffic

o inspecting / Inspecting malicious traffic
e management frames

o about/ The IEEE 802.11 packet structure
beacon frame / The IEEE 802.11 packet structure
authentication frame / The IEEE 802.11 packet structure
association request frame / The IEEE 802.11 packet structure
associate response frame / The IEEE 802.11 packet structure
deauthentication frame / The IEEE 802.11 packet structure
disassociation frame / The IEEE 802.11 packet structure

probe request frame / The IEEE 802.11 packet structure

probe response frame / The IEEE 802.11 packet structure
o reassociation (request/response) frame / The IEEFE 802.11 packet structure

Master Key exchange / WPA-Enterprise
maximum segment size (MSS) / Understanding the TCP header and its various flags
Message integrity check (MIC) / WPA-Personal
MetaGeek
o reference link / Wireless interference and strength
e modes, wireless communications
o about / Various modes in wireless communications
infrastructure/managed mode / Various modes in wireless communications
Ad Hoc mode / Various modes in wireless communications
master mode / Various modes in wireless communications
monitor mode / Various modes in wireless communications
wireless interference / Wireless interference and strength
o strength / Wireless interference and strength
e Multiple-Input Multiple-output (MIMO) / Understanding IEEE 802.11

O O O O O O O o

O O O O O

Name Resolution
o about / Endpoints
Network Interface Card (NIC) / The layers in the TCP/IP model
o about / Endpoints
network latencies
o troubleshooting / Troubleshooting slow Internet and network latencies
Nmap
o reference link / Half-open scan (SYN)
Null Function packets / WEP-open key

o

¢ Orthogonal Frequency Division Multiplexing (OFDM) / Understanding IEEE 802.11
e OS fingerprinting

o about / OS fingerprinting

o active fingerprinting / OS fingerprinting

o passive fingerprinting / OS fingerprinting

packet analysis

o with Wireshark / An introduction to packet analysis with Wireshark
packet analysis, Wireshark used

o about / An introduction to packet analysis with Wireshark

o aspects / An introduction to packet analysis with Wireshark

o performing / How to do packet analysis
packets

o searching, Find dialog used / Searching for packets using the Find dialog
o traffic colorization / Colorize traffic
packet structure, IEEE 802.11
o about/ The IEEE 802.11 packet structure
o RTS/CTS /RTS/CTS
Pairwise Transient Key (PTK) / WPA-Personal
Password-based key derivation function (PBKDF2) / Summary
ping sweep attack
o performing / PING sweep
Point to Pont (PPP) / The layers in the TCP/IP model
port mirroring / The switched environment
Pre Shared Key (PSK) / WPA-Personal
processes, protocol analyzer
o collect / How it works
o convert / How it works
o analyze / How it works
Protocol data unit (PDU) / The layers in the TCP/IP model
Protocol Hierarchy
o about / Protocol Hierarchy

Q

e QOS data packet / WEP-open key

e qualifiers
o type / How to use capture filters
o direction / How to use capture filters
o proto / How to use capture filters

e Radio Frequency (RF) / Wireless interference and strength
¢ Radio Frequency Monitor Mode (RFMON) / Various modes in wireless
communications
e RADIUS server / WPA-Enterprise
e Read filter
o about / Command Line-fu
e real-world CTF challenges
o solving / Solving real-world CTF challenges
e Real time transport protocol (RTP) / Session Initiation Protocol and Voice Over
Internet Protocol
e receive sequence counter (RSC) / WPA-Personal
e recovery features
o flow control mechanism / The flow control mechanism
o slow Internet, troubleshooting / Troubleshooting slow Internet and network

latencies
o network latencies, troubleshooting / Troubleshooting slow Internet and network
latencies

client-side latency issues / Client- and server-side latencies
server-side latency issues / Client- and server-side latencies
bottleneck issues, troubleshooting / Troubleshooting bottleneck issues
application-based issues, troubleshooting / Troubleshooting application-based
issues
e Request-to-send (RTS) frame / The IEEE 802.11 packet structure
e routers
o passing through / Passing through routers

O O O O

Secure File Transfer Protocol (SFTP) / Dissecting FTP packets

server-side latency issues / Client- and server-side latencies

Service Set Identifier (SSID) / Various modes in wireless communications

Session Initiation Protocol (SIP) / Session Initiation Protocol and Voice Over Internet

Protocol

Simple Mail Transfer Protocol (SMTP) / The layers in the TCP/IP model
o about / Simple Mail Transfer Protocol
o usual, versus unusual SMTP traffic / Usual versus unusual SMTP traffic
o Session Initiation Protocol (SIP) / Session Initiation Protocol and Voice Over
Internet Protocol
o Voice Over Internet Protocol (VOIP) / Session Initiation Protocol and Voice
Over Internet Protocol
o Voice Over Internet Protocol (VOIP) traffic, analyzing / Analyzing VOIP traffic
o unusual traffic patterns / Unusual traffic patterns
o encrypted traffic (SSL/TLS), decrypting / Decrypting encrypted traffic
(SSL/TLS)
Simple Network Management Protocol (SNMP) / The layers in the TCP/IP model
slow Internet

o troubleshooting / Troubleshooting slow Internet and network latencies
STA / WPA-Enterprise
standards, IEEE 802.11

o about / Understanding TEEF 802.11
802.11 / Understanding IEEFE 802.11

802.11b / Understanding IEEE 802.11
802.11a / Understanding IEEFE 802.11

802.11g / Understanding IEEE 802.11

o 802.11n/ Understanding IEEE 802.11
Statistics menu

o about / The Statistics menu

o using / Using the Statistics menu

o Protocol Hierarchy / Protocol Hierarchy
switched environment / The switched environment

O O O O

T

e TCP/ The layers in the TCP/IP model

about / The transmission control protocol
header / Understanding the TCP header and its various flags

flags / Understanding the TCP header and its various flags
communicating / How TCP communicates

working / How it works
graceful termination / Graceful termination
RST (reset) packets / RST (reset) packets
relative, verses absolute numbers / Relative verses Absolute numbers
unusual TCP traffic / Unusual TCP traffic
analysis flags, checking in Wireshark / How to check for different analysis flags
in Wireshark
e TCP/IP model
o overview / A brief overview of the TCP/IP model
o layers / The layers in the TCP/IP model
e TCP sliding window mechanism / The flow control mechanism
e TCP stream graphs
o about / TCP stream graphs
o Round-trip time (RTT) / Round-trip time graphs
o Throughput graphs / Throughput graphs
o Time-Sequence graph (tcptrace) / The Time-sequence graph (tcptrace)

e TCP streams

o following / Follow TCP streams
/ TCP streams
Temporal Key Integrity Protocol (TKIP) / WPA-Personal
three-way handshake / The transmission control protocol
translation / Translation
Transmission Control Protocol (TCP) / How it works
Trivial File Transfer Protocol (TFTP) / The TETP

O 0O 0O O 0O 0O o o o o

UDP / The layers in the TCP/IP model
o about / The User Datagram Protocol
header / A UDP header
working / How it works
Dynamic Host Configuration Protocol (DHCP) / The DHCP
Trivial File Transfer Protocol (TFTP) / The TFTP
o unusual traffic / Unusual UDP traffic
UDP header
o about / A UDP header
o source port field / A UDP header
o destination port field / A UDP header
o packet length field / A UDP header
o checksum field / A UDP header
Uniform Resource Locator (URL) / Request
unusual FTP / Unusual FTP
USBPcap
o about / USBPcap
usual SMTP traffic
o versus unusual SMTP traffic / Usual versus unusual SMTP traffic

O O O O

\%

e VirusTotal
o reference link / Inspecting malicious traffic
¢ Voice Over Internet Protocol (VOIP)
o about / Session Initiation Protocol and Voice Over Internet Protocol

o traffic, analyzing / Analyzing VOIP traffic
o packets, resembling for playback / Reassembling packets for playback
e VOIP traffic
o analyzing / Analyzing VOIP traffic
o packets, reassembling for playback / Reassembling packets for playback

W

e WEP
o open key / Usual and unusual WEP — open/shared key communication, WEP-
open key
o shared key / Usual and unusual WEP — open/shared key communication, The
shared key

o about / Usual and unusual WEP — open/shared key communication
o personal / WPA-Personal

o traffic, decrypting / Decrypting WEP and WPA traffic
Wi-Fi Protected Access (WPA)
o about / WPA-Personal
o enterprise / WPA-Enterprise
o traffic, decrypting / Decrypting WEP and WPA traffic
Wireshark
o about / Introduction to Wireshark, What is Wireshark?
packet analysis / An introduction to packet analysis with Wireshark
reference link / What is Wireshark?, Passing through routers, Summary
working / How it works
advantages / Why use Wireshark?
Statistics menu / The Statistics menu
o analysis flags, checking / How to check for different analysis flags in Wireshark
Wireshark GUI
o about / The Wireshark GUI
o installation process / The installation process
Wireshark profiles
o creating / Create new Wireshark profiles
Wireshark v2
translation / Translation
o graph improvements / Graph improvements
o TCP streams / TCP streams
o USBPcap / USBPcap

[]
O O O O O

(¢]

e Zero window notification / The flow control mechanism

Table of Contents

Mastering Wireshark
Credits

About the Author

About the Reviewer

www.PacktPub.com

eBooks, discount offers, and more
Why subscribe?

Preface

What this book covers

What vou need for this book
Who this book is for
Conventions

Reader feedback

Customer support

Downloading the color images of this book

Errata

Piracy

Questions

1. Welcome to the World of Packet Analysis with Wireshark

Introduction to Wireshark
A brief overview of the TCP/IP model
The layers in the TCP/IP model

An introduction to packet analysis with Wireshark

How to do packet analysis
What is Wireshark?
How it works

Capturing methodologies
Hub-based networks

The switched environment

ARP poisoning

Passing through routers
Why use Wireshark?

The Wireshark GUI

The installation process
Starting our first capture
Summary

Practice questions
2. Filtering Our Way in Wireshark

An introduction to filters

Capture filters

Why use capture filters

How to use capture filters

An example capture filter

Capture filters that use protocol header values
Display filters

Retaining filters for later use

Searching for packets using the Find dialog
Colorize traffic

Create new Wireshark profiles

Summary
Practice questions

3. Mastering the Advanced Features of Wireshark

The Statistics menu

Using the Statistics menu

Protocol Hierarchy

Conversations

Endpoints
Working with IO, Flow, and TCP stream graphs
IO graphs

Flow graphs
TCP stream graphs

Round-trip time graphs

Throughput graphs
The Time-sequence graph (tcptrace)

Follow TCP streams

Expert Infos

Command Line-fu

Summary

Exercise

4. Inspecting Application Layer Protocols
Domain name system

Dissecting a DNS packet

Dissecting DNS query/response

Unusual DNS traffic

File transfer protocol

Dissecting FTP communications

Passive mode
Active mode

Dissecting FTP packets
Unusual FTP

Hyper Text Transfer Protocol
How it works — request/response
Request

Response
Unusual HTTP traffic

Simple Mail Transfer Protocol

Usual versus unusual SMTP traffic

Session Initiation Protocol and Voice Over Internet Protocol

Analyzing VOIP traffic
Reassembling packets for playback

Unusual traffic patterns

Decrypting encrypted traffic (SSL/TLS)
Summary

Practice questions:

5. Analyzing Transport Layer Protocols

The transmission control protocol

Understanding the TCP header and its various flags
How TCP communicates

How it works

Graceful termination

RST (reset) packets

Relative verses Absolute numbers
Unusual TCP traffic

How to check for different analysis flags in Wireshark

The User Datagram Protocol
A UDP header

How it works

The DHCP

The TETP

Unusual UDP traffic

Summary
Practice questions

6. Analyzing Traffic in Thin Air
Understanding IEEE 802.11

Various modes in wireless communications

Wireless interference and strength

The IEEE 802.11 packet structure

RTS/CTS

Usual and unusual WEP — open/shared key communication
WEP-open key

The shared key

WPA-Personal

WPA -Enterprise

Decrypting WEP and WPA traffic

Summary

Practice questions

7. Network Security Analysis
Information gathering

PING sweep

Half-open scan (SYN)

OS fingerprinting

ARP poisoning

Analyzing brute force attacks
Inspecting malicious traffic
Solving real-world CTF challenges
Summary

Practice questions

8. Troubleshooting

Recovery features

The flow control mechanism

Troubleshooting slow Internet and network latencies
Client- and server-side latencies

Troubleshooting bottleneck issues

Troubleshooting application-based issues

Summary
Practice questions

9. Introduction to Wireshark v2

The intelligent scroll bar

Translation

Graph improvements

TCP streams

USBPcap

Summary
Practice questions

Index

	Mastering Wireshark
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Welcome to the World of Packet Analysis with Wireshark
	Introduction to Wireshark
	A brief overview of the TCP/IP model
	The layers in the TCP/IP model
	An introduction to packet analysis with Wireshark
	How to do packet analysis
	What is Wireshark?
	How it works
	Capturing methodologies
	Hub-based networks
	The switched environment
	ARP poisoning
	Passing through routers
	Why use Wireshark?
	The Wireshark GUI
	The installation process
	Starting our first capture
	Summary
	Practice questions
	2. Filtering Our Way in Wireshark
	An introduction to filters
	Capture filters
	Why use capture filters
	How to use capture filters
	An example capture filter
	Capture filters that use protocol header values
	Display filters
	Retaining filters for later use
	Searching for packets using the Find dialog
	Colorize traffic
	Create new Wireshark profiles
	Summary
	Practice questions
	3. Mastering the Advanced Features of Wireshark
	The Statistics menu
	Using the Statistics menu
	Protocol Hierarchy
	Conversations
	Endpoints
	Working with IO, Flow, and TCP stream graphs
	IO graphs
	Flow graphs
	TCP stream graphs
	Round-trip time graphs
	Throughput graphs
	The Time-sequence graph (tcptrace)
	Follow TCP streams
	Expert Infos
	Command Line-fu
	Summary
	Exercise
	4. Inspecting Application Layer Protocols
	Domain name system
	Dissecting a DNS packet
	Dissecting DNS query/response
	Unusual DNS traffic
	File transfer protocol
	Dissecting FTP communications
	Passive mode
	Active mode
	Dissecting FTP packets
	Unusual FTP
	Hyper Text Transfer Protocol
	How it works – request/response
	Request
	Response
	Unusual HTTP traffic
	Simple Mail Transfer Protocol
	Usual versus unusual SMTP traffic
	Session Initiation Protocol and Voice Over Internet Protocol
	Analyzing VOIP traffic
	Reassembling packets for playback
	Unusual traffic patterns
	Decrypting encrypted traffic (SSL/TLS)
	Summary
	Practice questions:
	5. Analyzing Transport Layer Protocols
	The transmission control protocol
	Understanding the TCP header and its various flags
	How TCP communicates
	How it works
	Graceful termination
	RST (reset) packets
	Relative verses Absolute numbers
	Unusual TCP traffic
	How to check for different analysis flags in Wireshark
	The User Datagram Protocol
	A UDP header
	How it works
	The DHCP
	The TFTP
	Unusual UDP traffic
	Summary
	Practice questions
	6. Analyzing Traffic in Thin Air
	Understanding IEEE 802.11
	Various modes in wireless communications
	Wireless interference and strength
	The IEEE 802.11 packet structure
	RTS/CTS
	Usual and unusual WEP – open/shared key communication
	WEP-open key
	The shared key
	WPA-Personal
	WPA-Enterprise
	Decrypting WEP and WPA traffic
	Summary
	Practice questions
	7. Network Security Analysis
	Information gathering
	PING sweep
	Half-open scan (SYN)
	OS fingerprinting
	ARP poisoning
	Analyzing brute force attacks
	Inspecting malicious traffic
	Solving real-world CTF challenges
	Summary
	Practice questions
	8. Troubleshooting
	Recovery features
	The flow control mechanism
	Troubleshooting slow Internet and network latencies
	Client- and server-side latencies
	Troubleshooting bottleneck issues
	Troubleshooting application-based issues
	Summary
	Practice questions
	9. Introduction to Wireshark v2
	The intelligent scroll bar
	Translation
	Graph improvements
	TCP streams
	USBPcap
	Summary
	Practice questions
	Index

