

Mastering	Wireshark

Table	of	Contents
Mastering	Wireshark

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Welcome	to	the	World	of	Packet	Analysis	with	Wireshark

Introduction	to	Wireshark
A	brief	overview	of	the	TCP/IP	model
The	layers	in	the	TCP/IP	model
An	introduction	to	packet	analysis	with	Wireshark
How	to	do	packet	analysis
What	is	Wireshark?
How	it	works

Capturing	methodologies
Hub-based	networks
The	switched	environment
ARP	poisoning
Passing	through	routers
Why	use	Wireshark?
The	Wireshark	GUI

The	installation	process
Starting	our	first	capture

Summary
Practice	questions

2.	Filtering	Our	Way	in	Wireshark

An	introduction	to	filters

Capture	filters
Why	use	capture	filters
How	to	use	capture	filters
An	example	capture	filter
Capture	filters	that	use	protocol	header	values

Display	filters
Retaining	filters	for	later	use

Searching	for	packets	using	the	Find	dialog
Colorize	traffic

Create	new	Wireshark	profiles
Summary
Practice	questions

3.	Mastering	the	Advanced	Features	of	Wireshark

The	Statistics	menu
Using	the	Statistics	menu
Protocol	Hierarchy

Conversations
Endpoints
Working	with	IO,	Flow,	and	TCP	stream	graphs
IO	graphs
Flow	graphs
TCP	stream	graphs
Round-trip	time	graphs
Throughput	graphs
The	Time-sequence	graph	(tcptrace)

Follow	TCP	streams
Expert	Infos
Command	Line-fu
Summary
Exercise

4.	Inspecting	Application	Layer	Protocols

Domain	name	system
Dissecting	a	DNS	packet
Dissecting	DNS	query/response
Unusual	DNS	traffic

File	transfer	protocol
Dissecting	FTP	communications

Passive	mode
Active	mode

Dissecting	FTP	packets
Unusual	FTP

Hyper	Text	Transfer	Protocol
How	it	works	–	request/response
Request

Response
Unusual	HTTP	traffic

Simple	Mail	Transfer	Protocol
Usual	versus	unusual	SMTP	traffic
Session	Initiation	Protocol	and	Voice	Over	Internet	Protocol
Analyzing	VOIP	traffic

Reassembling	packets	for	playback
Unusual	traffic	patterns
Decrypting	encrypted	traffic	(SSL/TLS)

Summary
Practice	questions:

5.	Analyzing	Transport	Layer	Protocols

The	transmission	control	protocol
Understanding	the	TCP	header	and	its	various	flags
How	TCP	communicates

How	it	works
Graceful	termination
RST	(reset)	packets

Relative	verses	Absolute	numbers
Unusual	TCP	traffic
How	to	check	for	different	analysis	flags	in	Wireshark

The	User	Datagram	Protocol
A	UDP	header
How	it	works

The	DHCP
The	TFTP

Unusual	UDP	traffic
Summary
Practice	questions

6.	Analyzing	Traffic	in	Thin	Air

Understanding	IEEE	802.11
Various	modes	in	wireless	communications

Wireless	interference	and	strength
The	IEEE	802.11	packet	structure

RTS/CTS
Usual	and	unusual	WEP	–	open/shared	key	communication
WEP-open	key
The	shared	key
WPA-Personal
WPA-Enterprise

Decrypting	WEP	and	WPA	traffic
Summary
Practice	questions

7.	Network	Security	Analysis

Information	gathering
PING	sweep
Half-open	scan	(SYN)
OS	fingerprinting

ARP	poisoning
Analyzing	brute	force	attacks
Inspecting	malicious	traffic
Solving	real-world	CTF	challenges

Summary
Practice	questions

8.	Troubleshooting

Recovery	features
The	flow	control	mechanism
Troubleshooting	slow	Internet	and	network	latencies
Client-	and	server-side	latencies
Troubleshooting	bottleneck	issues
Troubleshooting	application-based	issues

Summary
Practice	questions

9.	Introduction	to	Wireshark	v2

The	intelligent	scroll	bar
Translation
Graph	improvements
TCP	streams
USBPcap
Summary
Practice	questions

Index

Mastering	Wireshark

Mastering	Wireshark
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1210316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-952-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Charit	Mishra

Reviewer

Anish	Nath

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Kevin	Colaco

Content	Development	Editor

Onkar	Wani

Technical	Editor

Pranjali	Mistry

Copy	Editor

Neha	Vyas

Project	Coordinator

Bijal	Patel

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Charit	Mishra	works	as	a	consultant	and	pentester	at	Protiviti,	one	of	the	top	global
consulting	firms.	He	enjoys	his	job,	which	involves	helping	clients	identify	security
vulnerabilities,	more	than	anything.	With	real	hands-on	experience	in	security,	he	has
obtained	leading	industry	certifications	such	as	OSCP,	CEH,	CompTIA	Security+,	and
CCNA	R&S.	He	also	holds	a	master’s	degree	in	computer	science.	He	has	delivered
professional	talks	at	various	institutions	and	private	organizations	on	information	security
and	penetration	testing.	You	can	reach	him	at	LinkedIn	at
https://ae.linkedin.com/in/charitmishra,	and	on	Twitter	at	@charit0819.

First	of	all,	I	would	like	to	express	my	deepest	gratitude	to	my	beloved	parents	and	my
lovely	sister,	Ayushi,	for	their	full	support,	expert	guidance,	understanding,	and
encouragement	throughout	my	journey	of	making	this	possible.	Without	their	incredible
wisdom	and	counsel,	this	would	have	been	an	overwhelming	pursuit.

I	would	like	to	also	thank	my	good	friend	and	mentor	Mr.	Piyush	Verma	for	believing	in
me	and	guiding	me	whenever	I	needed	direction.	I	am	also	thankful	to	all	my	friends	and
well	wishers,	especially	Mr.	Siddarth	Pandey,	Mr.	Arham	Husain,	Mr.	Bharath	Methari,
Mr.	Dileep	Mishra,	and	a	great	friend	from	Pakistan,	Mr.	Haider	Ali	Chughtai,	who	all
helped	me	in	every	possible	aspects	and	always	motivated	me	to	achieve	the	best.	My
apologies	if	I’ve	missed	anyone	out.

Last	but	not	least,	I	am	grateful	to	the	amazing	team	at	Packt	Publishing	for	their	constant
and	incredible	support	for	making	this	happen,	and	thanks	to	all	the	reviewers	who	helped
bring	this	book	into	the	best	shape	possible.

As	the	great	influential	Swami	Vivekananda	said,	“In	a	day,	when	you	don’t	come	across
any	problems,	you	can	be	sure	that	you	are	traveling	on	the	wrong	path”.

https://ae.linkedin.com/in/charitmishra

About	the	Reviewer
Anish	Nath	has	a	YouTube	channel	that	you	can	visit	at	https://goo.gl/sbJkuX,	where	he
loves	to	post	videos	on	security,	hacking,	and	other	cloud-related	technologies.

http://goo.gl/sbJkuX

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
	

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Almost	every	device	around	you	is	connected	to	some	other	device	over	a	network	with
the	motive	of	sharing	information	or	supporting	other	devices.	With	this	small	picture	in
your	mind,	what	do	you	think	is	the	most	critical	part	of	a	network?	Obviously,	the
channel	isn’t.

This	book	is	written	from	a	standpoint	of	using	Wireshark	to	understand	and	troubleshoot
commonly	seen	network	anomalies.	It	can	be	the	start	of	your	journey	into	the	world	of
networks/traffic/packet	analysis.	You	can	be	the	savior	of	your	generation	or	the	superhero
of	your	team	who	helps	people	with	connectivity	issues,	network	administration,	computer
forensics,	and	so	on.	If	your	routine	job	requires	dealing	with	computer	networks,	then	this
book	can	give	you	a	strong	head	start.	As	the	tagline	says	“From	0	to	1337”,that	is	we	will
start	from	the	basics	gradually	moving	on	to	the	advanced	concepts	too.

I	have	tried	to	cover	the	most	common	scenarios	that	you	could	come	across	while
troubleshooting,	along	with	hands-on	practical	cases	that	can	make	you	understand	the
concepts	better.	By	mastering	packet	analysis,	you	will	learn	how	to	troubleshoot	all	the
way	down	to	the	bare	wires.	This	will	teach	you	to	make	sense	of	the	data	flowing	around.
You	will	find	very	interesting	sections,	such	as	troubleshooting	slow	networks,	analyzing
packets	over	Wi-Fi,	malware	analysis,	and	not	to	forget,	the	latest	features	introduced	in
Wireshark	2.0	in	this	book.	Happy	troubleshooting!

What	this	book	covers
Chapter	1,	Welcome	to	the	World	of	Packet	Analysis	with	Wireshark,	provides	you	an
introduction	to	the	basics	of	the	TCP/IP	model	and	familiarizes	you	with	the	GUI	of
Wireshark	along	with	a	sample	packet	capture.	Here,	you	will	learn	how	to	set	up	network
sniffers	for	analysis	purpose.

Chapter	2,	Filtering	Our	Way	in	Wireshark,	talks	about	different	filtering	options	available
in	Wireshark,	namely	capture	and	display	filters,	and	how	to	create	and	use	different
profiles.	Make	yourself	comfortable	with	the	rich	interface	of	Wireshark	and	start
capturing	what	you	exactly	want	to.

Chapter	3,	Mastering	the	Advanced	Features	in	Wireshark,	helps	you	look	under	the	hood
of	the	statistics	menu	in	Wireshark	and	work	with	the	different	command-line	utilities	that
come	prepackaged	with	Wireshark.	You	will	also	learn	how	to	prepare	graphs,	charts,
packet	flow	diagrams,	and	most	important	of	all,	how	to	become	a	command-line	fu
master.

Chapter	4,	Inspecting	Application	Layer	Protocols,	helps	you	understand	and	analyze	the
normal	and	unusual	behavior	of	application-layer	protocols.	Here,	we	will	briefly	discuss
the	techniques	you	can	use	to	understand	the	cause.	We	all	are	aware	of	the	basics,	but
have	you	ever	thought	how	common	application-layer	protocol	traffic	can	go	crazy?	In
this	chapter,	you	will	learn	how	to	deal	with	them.

Chapter	5,	Analyzing	Transport	Layer	Protocols,	shows	how	TCP	and	UDP	protocols
work,	how	they	communicate,	what	problems	they	face,	and	how	Wireshark	can	be	used
to	analyze	them.	Make	yourself	a	transport-layer	doctor	who	can	easily	figure	out
common	anomalies	and	prove	themselves	worthy.

Chapter	6,	Analyzing	Traffic	in	Thin	Air,	shows	you	how	to	analyze	wireless	traffic	and
pinpoint	any	problems	that	may	follow.	We	will	dive	into	the	new	world	of	wireless
protocol	analysis,	where	you	can	become	a	Wi-Fi	ninja.

Chapter	7,	Network	Security	Analysis,	shows	you	how	to	use	Wireshark	to	analyze
network	security	issues,	such	as	malware	traffic,	intrusion,	and	footprinting	attempts.	In
this	chapter,	you	will	learn	how	to	figure	out	security	anomalies,	catch	the	hackers	red
handed	and	make	them	cry	like	a	baby,	and	experience	how	to	solve	CTF	challenges.

Chapter	8,	Troubleshooting,	teaches	you	how	to	configure	and	use	Wireshark	to	perform
network	troubleshooting.	Here,	you	will	master	the	art	of	troubleshooting	network	issues
such	as	slow	networks.	You	will	also	learn	how	to	troubleshoot	networking	problems	with
the	most	common	daily-life	examples.

Chapter	9,	Introduction	to	Wireshark	v2,	shows	you	the	amazing	features	launched	in	the
latest	release	of	Wireshark	with	practical	examples,	such	as	USBpcap,	intelligent	scrollbar,
new	graphs,	and	much	more.

What	you	need	for	this	book
You	just	need	a	working	installation	of	Wireshark	and	a	basic	understanding	of
networking	protocols.	Basic	familiarity	with	network	protocols	would	be	beneficial,	but	it
isn’t	mandatory.

Who	this	book	is	for
Are	you	curious	to	know	what’s	going	on	in	a	network?	Do	you	get	frustrated	when	you
are	unable	to	detect	the	cause	of	problems	in	your	networks?	If	your	answer	to	these
questions	is	yes,	then	this	book	is	for	you.

Mastering	Wireshark	is	for	Security	and	network	enthusiasts	who	are	interested	in
understanding	the	internal	workings	of	networks	and	have	prior	knowledge	of	using
Wireshark,	but	are	not	aware	about	all	of	its	functionalities.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:
“Wireshark	with	an	empty	checksum	field	that	generates	the	checksum	offloading	error.”

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Navigate	to	Edit	|
Preferences	in	the	menu	bar.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/MasteringWireshark_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/MasteringWireshark_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Welcome	to	the	World	of	Packet
Analysis	with	Wireshark
This	chapter	provides	you	an	introduction	to	the	basics	of	the	TCP/IP	model	and
familiarizes	you	with	the	GUI	of	Wireshark	along	with	a	sample	packet	capture.	You	will
be	introduced	to	the	following	topics:

	
What	is	Wireshark?
How	does	it	work?
A	brief	overview	of	the	TCP/IP	model
An	introduction	to	packet	analysis
Why	use	Wireshark?
Understanding	the	GUI	of	Wireshark
The	first	packet	capture

Introduction	to	Wireshark
Wireshark	is	one	of	the	most	advanced	packet	capturing	software,	which	makes	the	life	of
system/network	administrators	easy	and	proves	its	usefulness	among	the	groups	of
security	evangelists.	Wireshark	is	also	called	a	protocol	analyzer,	which	helps	IT
professionals	in	debugging	network-level	problems.	This	tool	can	be	of	great	use	to
optimize	network	performance.

Wireshark	runs	around	dissecting	network-level	packets	and	showing	packet	details	to
concerned	users	as	per	their	requirement.	If	you	are	one	of	those	who	deals	with	packet-
level	networking	everyday,	then	Wireshark	is	for	you	and	can	be	used	for	multiple
troubleshooting	purposes.

A	brief	overview	of	the	TCP/IP	model
Next,	it’s	time	to	discuss	the	most	important	topic	in	the	world	of	networking.	In	order	to
understand	how	all	these	things	stick	together,	we	need	to	understand	the	basics	of	the
TCP/IP	model.	Even	the	world	of	computers	needs	a	set	of	rules	and	regulations	to
communicate,	and	this	is	taken	care	by	the	networking	protocols,	which	govern	the
transmission	of	packets/segments/frames	over	a	dedicated	channel	between	hosts.

The	TCP/IP	model	was	originally	known	as	the	DoD	model,	and	the	project	was	regulated
by	United	States	Department	of	Defense.	The	TCP/IP	model	takes	care	of	every	aspect	of
every	packet’s	life	cycle,	namely,	how	a	packet	is	generated,	how	a	single	packet	gets
attached	with	a	required	set	of	information	(PDU),	how	a	packet	is	transmitted,	how	it
comes	to	life,	how	it	is	routed	through	to	intermediary	nodes	to	the	destination,	how	it	is
integrated	back	with	other	packets	to	get	the	whole	information	out,	and	so	on.

If	you	have	any	confusion	regarding	the	basics	of	networking	protocols,	I	would
recommend	that	you	do	a	quick	revision	before	proceeding	ahead,	as	this	book	requires
familiarity	with	the	TCP/UDP	protocols.	By	the	time	you	come	back,	you	will	be	able	to
visualize	and	answer	all	of	these	questions	on	your	own.

The	layers	in	the	TCP/IP	model
The	TCP/IP	model	comprises	four	layers,	as	shown	in	the	following	diagram.	Each	layer
uses	a	different	set	of	protocols	allocated	to	it.	Every	protocol	has	specific	designated
roles,	and	all	of	them	are	designed	in	such	a	way	that	they	comply	with	industry	standards.

The	first	layer	is	the	Application	Layer	that	directly	interacts	with	users	and	other
network-level	protocols;	it	is	primarily	concerned	with	the	representation	of	the	data	in	an
understandable	format	to	the	user.	The	Application	layer	also	keeps	track	of	user	web
sessions,	which	users	are	connected,	and	uses	a	set	of	protocols,	which	helps	the
application	layer	interface	to	the	other	layers	in	the	TCP/IP	model.	Some	popular
protocols	that	we	will	cover	in	this	book	are	as	follows:

	
The	Hyper	Text	Transfer	Protocol	(HTTP)
The	File	Transfer	Protocol	(FTP)
The	Simple	Network	Management	Protocol	(SNMP)
The	Simple	Mail	Transfer	Protocol	(SMTP)

The	second	layer	is	the	Transport	Layer.	The	sole	purpose	of	this	layer	is	to	create
sockets	over	which	the	two	hosts	can	communicate	(you	might	already	know	about	the
importance	of	network	sockets)	which	is	essential	to	create	an	individual	connection
between	two	devices.

There	can	be	more	than	one	connection	between	two	hosts	at	the	same	instance.	IP
addresses	and	port	numbers	together	make	this	possible.	An	IP	address	is	required	when
we	talk	about	WAN-based	communication	(in	LAN-based	communication,	the	actual	data
transfer	happens	over	MAC	addresses),	and	these	days,	a	single	system	can	communicate
with	more	than	one	device	over	multiple	channels	which	is	possible	with	the	help	of	port
numbers.	Apart	from	the	restricted	range	of	port	numbers,	every	system	is	free	to

designate	a	random	port	for	their	communication.

This	layer	also	serves	as	a	backbone	to	the	communication	between	two	hosts.	The	most
common	protocols	that	work	in	this	layer	are	TCP	and	UDP,	which	are	explained	as
follows:

	
TCP:	This	is	a	connection-oriented	protocol,	often	called	a	reliable	protocol.	Here,
firstly,	a	dedicated	channel	is	created	between	two	hosts	and	then	data	is	transferred.
Then,	the	sender	sends	equally	partitioned	chunks,	over	the	dedicated	channel,	and
then,	the	receiver	sends	the	acknowledgement	for	every	chunk	received.	Most
commonly,	the	sender	waits	for	a	particular	time	after	which	it	sends	the	same	chunk
again	for	assurance.	For	example,	if	you	are	downloading	something,	TCP	is	the	one
that	takes	care	and	makes	sure	that	every	bit	is	transferred	successfully.
UDP:	This	is	a	connection-less	protocol	and	is	often	termed	an	unreliable	form	of
communication.	It	is	simple	though	because	there	is	no	dedicated	channel	created,
and	the	sender	is	just	concerned	with	sending	chunks	of	data	to	the	destination,
whether	it	is	received	or	not.	This	form	of	communication	actually	does	not	hamper
the	communication	quality;	the	sole	purpose	of	transferring	the	bits	from	a	sender	to
receiver	is	fulfilled.	For	example,	if	you	are	playing	a	LAN-based	game,	the	loss	of	a
few	bytes	is	not	going	to	disrupt	your	gaming	experience,	and	as	a	result,	the	user
experience	is	not	harmed.

The	third	layer	is	the	Internet	Layer,	which	is	concerned	with	the	back	and	forth
movement	of	data.	The	primary	protocol	that	works	is	the	IP	(Internet	Protocol)
protocol,	and	it	is	the	most	important	protocol	of	this	layer.	The	IP	provides	the	routing
functionality	due	to	which	a	certain	packet	can	get	to	it’s	destination.	Other	protocols
included	in	this	layer	are	ICMP	and	IGMP.

The	last	layer	is	the	Link	Layer	(often	termed	as	the	Network	Interface	Layer)	that	is
close	to	the	network	hardware.	There	are	no	protocols	specified	in	this	layer	by	TCP/IP;
however,	several	protocols	are	implemented,	such	as	Address	Resolution	Protocol
(ARP)	and	Point	to	Point	(PPP).	This	layer	is	concerned	with	how	a	bit	of	information
travels	inside	the	real	wires.	It	establishes	and	terminates	the	connection	and	also	converts
signals	from	analog	to	digital	and	vice	versa.	Devices	such	as	bridges	and	switches	operate
in	this	layer.

The	combination	of	an	IP	address	and	a	MAC	address	for	both	the	client	and	server	is	the
core	of	the	communication	process,	where	the	IP	address	is	assigned	to	the	device	by	the
gateway	or	assigned	statically,	and	the	MAC	address	comes	from	the	Network	Interface
Card	(NIC),	which	should	be	present	in	every	device	that	communicates	with	other	hosts.
As	data	progresses	from	the	Application	layer	to	the	Link	Layer,	several	bits	of
information	are	attached	to	the	data	bits	in	the	form	of	headers	or	footers,	which	allow
different	layers	of	the	TCP/IP	model	to	coordinate	with	each	other.	The	process	of	adding
these	extra	bits	is	called	data	encapsulation,	and	in	this	process,	a	Protocol	data	unit
(PDU)	is	created	at	the	end	of	the	networking	model.

It	consists	of	the	information	being	sent	along	with	the	different	protocol	information	that
gets	attached	as	part	of	the	header	or	footer.	By	the	time	PDU	reaches	the	bottom-most

layer,	it	is	embedded	with	all	the	required	information	required	for	the	real	transfer.	Once
it	reaches	the	destination,	the	embedded	header	and	footer	PDU	elements	are	ripped	off
one	by	one	as	it	passes	through	each	and	every	layer	of	the	TCP/IP	model	as	it	progresses
upward	in	the	model.

The	following	figure	depicts	the	process	of	encapsulation:

Figure	1.1:	Data	encapsulation

An	introduction	to	packet	analysis	with	Wireshark
Packet	analysis	(also	known	as	packet	sniffing	or	protocol	analyzing)	is	used	to	intercept
and	capture	live	data	as	it	travels	over	the	network	(Ethernet	or	Wi-Fi)	in	order	to
understand	what	is	happening	in	the	network.	Packet	analysis	is	done	by	protocol
analyzers	such	as	Wireshark	available	on	the	Internet.	Some	of	these	are	free	and	some	are
paid	for	commercial	use.	In	this	book,	we	will	use	Wireshark	to	perform	network	analysis,
which	is	an	open	source	software	and	the	best	free-network	analyzer	available	on	the
Internet.

Numerous	problems	can	happen	in	today’s	world	of	networking;	for	this,	we	need	to	be
geared	up	all	the	time	with	the	latest	set	of	tools	that	can	avail	us	of	the	ease	of
troubleshooting	in	any	situation.	Each	of	these	problems	will	start	from	the	packet	level
and	can	gradually	grow	up	to	a	high	network	downtime.	Even	the	best	of	protocols	and
services	running	on	a	system	can	go	bad	and	behave	maliciously.	To	get	to	the	root	of	the
problem,	we	need	to	look	into	the	packet	level	to	understand	it	better.	If	you	need	to
maintain	your	network,	then	you	definitely	need	to	look	into	the	packet	level.	Packet
analysis	can	be	used	for	the	following	aspects:

	
To	analyze	network	problems	by	looking	into	the	packets	and	their	specific	details	so
that	you	can	get	a	better	hold	over	your	network.
To	detect	network	intrusion	attempts	and	whether	there	are	any	malicious	users	who
are	trying	to	get	into	your	network,	or	they	have	already	got	access	to	something	in
your	network.
To	detect	network	misuse	by	internal	or	external	users	by	establishing	firewall	rules
in	your	security	appliance	and	then	monitoring	each	of	these	rules	through
Wireshark.
To	isolate	exploited	systems	so	that	the	affected	system	doesn’t	become	a	pivot	point
for	your	network	for	malicious	users.
To	monitor	data	in	motion	once	it	travels	live	in	your	network	to	have	better	control
over	the	allowed	and	restricted	categories	of	data.	For	instance,	say	you	want	to
create	a	rule	for	your	firewall	that	will	block	the	access	to	Bit	Torrent	sites.	Blocking
access	to	them	can	be	done	from	your	manageable	router,	but	knowing	from	where
the	request	was	originated	can	be	easily	audited	through	Wireshark.
To	gather	and	report	network	statistics	by	filtering	the	most	specific	packets	as	per
your	requirements	and	then	creating	specific	capture	filters	for	your	perusal	that	can
help	you	in	the	long	run.
Learning	who	is	on	the	network	and	what	they	are	doing,	is	there	something	they	are
not	allowed	to	do,	and	is	there	anyone	who	is	trying	to	bypass	the	network
restrictions.	All	of	these	simple	day-to-day	tasks	can	be	achieved	easily	through
Wireshark.
To	debug	client/server	communications	so	that	all	the	request	and	replies
communicated	between	the	peers	on	our	network	can	be	audited	to	maintain	the
integrity	of	your	network.
To	look	for	applications	that	are	sitting	in	the	corner	of	your	own	network	and	eating
the	bandwidth.	They	might	be	making	your	network	insecure	or	making	it	visible	to

the	public	network.	Through	this	unnoticed	application,	different	forms	of	network
traffic	can	enter	without	any	restrictions.
To	debug	network	protocol	implementations	and	any	kind	of	anomalies	present	due
to	various	misconfigurations	in	the	current	running	devices.

To	identify	possible	or	malicious	attacks	that	your	network	can	be	a	victim	of,	to	analyze
them,	control/supervise	them,	and	make	yourself	ready	for	any	possible	malicious	activity.

When	performing	a	packet	analysis,	you	should	take	care	of	things	such	as	which
protocols	can	be	interpreted,	which	is	the	best	software	you	can	use	according	to	your
expertise,	which	protocol	analyzer	will	best	suit	your	network	requirement.	Experience
does	count	in	this	field;	once	you	start	working	with	Wireshark,	gradually	you	will	come
up	with	new	ideas	to	troubleshoot	and	analyze	your	packets	in	a	much	more	advanced
way.

Packet	sniffers	can	interpret	common	network	protocols	(such	as	IP	and	ICMP),	transport
layers	(such	as	TCP	and	UDP),	and	application	protocols	(such	as	DNS	and	HTTP).

Due	to	the	overwhelming	amount	of	information	presented	by	Wireshark’s	GUI,	it	might
seem	complex	to	some	users	and	might	be	considered	as	one	of	its	demerits.	There	are	a
few	CUI/GUI	tools	that	can	solve	this	purpose.	They	are	pretty	simple	to	use	and	also
present	a	simpler	interface,	for	example,	TShark,	tcpdump,	Fiddler,	and	so	on.

How	to	do	packet	analysis
When	traffic	is	captured,	either	all	raw	data	is	captured	or	only	the	header	data	is	captured
without	capturing	the	total	content	of	the	packet.	Captured	information	is	decoded	from
raw	data	to	a	human-readable	form,	which	allows	users	to	understand	the	exchanged	data
between	the	networks	in	a	much	more	precise	manner.

What	is	Wireshark?
Wireshark	is	a	packet-sniffing	software	that	is	used	by	IT	professionals	all	around	the
world	for	analysis	purpose.	You	can	download	it	for	free	from
https://www.wireshark.org/download.html.

Wireshark	can	be	installed	on	a	variety	of	platforms,	including	Linux,	MAC,	and
Windows	(most	of	the	versions).	This	is	open	source	software,	which	means	that	the	code
of	the	software	and	its	required	libraries	can	be	downloaded	from	the	same	website	we
mentioned	earlier.

One	of	the	important	key	aspects	of	packet	sniffing	is	where	to	place	the	packet	sniffer	in
the	physical	network	to	achieve	the	maximum	utilization	out	of	it;	packet	sniffing	is	often
referred	to	as	tapping	into	the	wire.

Tapping	into	the	wire	is	not	just	about	starting	Wireshark	on	your	system;	there	are	a
couple	of	things	a	person	should	know	about	before	starting	the	sniffer.	For	instance,
placing	the	sniffer	at	a	proper	place	in	the	organization’s	infrastructure,	having	working
knowledge	of	different	networking	devices	because	each	of	the	networking	devices	(hubs,
switches,	routers,	and	firewalls)	behave	differently.	It	is	also	important	to	know	how	each
of	them	work	and	how	network	devices	handle	network	traffic.	Placing	the	sniffer	in	the
right	place	can	impact	your	packet	analyzing	experience	in	a	detailed	manner,	which	in	the
end	can	lead	to	drastic	results	if	done	correctly.

After	you	have	placed	your	sniffer,	you	should	confirm	that	your	NIC	supports
promiscuous	working.	By	enabling	this,	your	interface	card	will	start	learning	about	even
those	packets	that	are	not	destined	or	routed	through	your	machine.	A	network’s
broadcasted	traffic	can	be	captured	and	analyzed	by	every	client,	which	is	part	of	the	same
network.	Network	devices	broadcast	multiple	types	of	traffic	that	can	be	listened	to	by	an
interface,	which	supports	the	promiscuous	mode.

The	ARP	protocol’s	traffic	is	broadcasted.	The	address	resolution	protocol	is	responsible
for	resolving	MAC	to	IP	addresses	and	vice	versa.	Devices	such	as	switches	send	an	ARP
packet	to	all	devices	asking	for	the	correct	device	to	respond	with	it’s	MAC	address.
Gradually,	the	switch	will	maintain	a	list	of	MAC	addresses	and	their	corresponding	IP
addresses,	which	is	even	termed	as	the	CAM	table	(content	addressable	memory).	Now,
whenever	any	host	wants	to	communicate	with	its	other	corresponding	peers	over	the
LAN,	information	required	for	the	transfer	is	communicated	to	the	sender	from	the	switch.
Information	such	as	IP	and	MAC	addresses	for	different	devices	can	be	easily	captured
and	recorded	through	ARP	traffic.

http://www.wireshark.org/download.html

How	it	works
Wireshark	comes	with	the	libcap/Winpcap	driver,	which	lets	you	switch	your	NIC	to	the
promiscuous	mode;	the	only	time	you	don’t	want	to	sniff	in	the	promiscuous	mode	is
when	the	packets	are	directly,	intentionally	destined	to	your	device.	On	a	Windows-based
system,	you	should	have	elevated	administrator	privileges	to	sniff	and	analyze	the	packets.
There	are	three	common	step	processes	that	every	protocol	analyzer	follows:	collect,
convert,	and	analyze.	These	are	described	as	follows:

	
Collect:	This	is	the	first	step	where	you	choose	a	certain	interface	to	listen	on,	and
through	this,	you	can	acquire	a	certain	amount	of	raw	data	from	the	network,	which
can	be	achieved	by	switching	your	interface	into	a	promiscuous	mode	so	that,	after
capturing	what	ever	traffic	is	being	broadcasted	in	your	network,	it	can	be	displayed
in	your	Wireshark	GUI.
Convert:	This	is	to	increase	the	readability	of	the	collected	binary	form.	Network
packets	can	be	converted	by	the	protocol	analyzer,	such	as	Wireshark,	to	simple	and
easier	formats	so	that	people	like	us	can	have	a	better	understanding	of	packets	and
solve	our	day-to-day	problems	easily.
Analyze:	In	this	final	step,	after	the	collection	and	conversion	of	the	network	packets,
a	step-by-step	process	of	analyzing	the	data	starts	where	we	look	into	the	specific
details	about	the	protocols	and	their	specific	configuration	details.	Then,	we	move	on
to	host	and	destination	addresses	and	the	kind	of	information	they	are	sharing.	Rest	of
the	analysis	is	left	to	the	user’s	consent	and	how	they	filter	and	review	the	collected
data.

If	you	want	to	get	a	foothold	on	understanding	the	process	of	packet	capturing	and
analysis,	you	really	need	to	be	well	versed	with	networking	protocols	and	how	they	work
because	the	whole	communication	that	happens	over	a	network	is	governed	by	various
protocols,	such	as	ARP,	Dynamic	Host	Control	Protocol	(DHCP),	Domain	Name
Service	(DNS),	Transmission	Control	Protocol	(TCP),	Internet	Protocol	(IP),	HTTP,
and	many	others.

Protocols	are	the	rules	and	regulations	that	govern	the	process	of	communication	between
two	network	devices	and	control	the	environment	under	which	they	operate.	Each	of	these
protocols	has	different	complexity	levels	depending	on	how	and	where	they	are	being
implemented.	Majorly,	all	protocols	work	in	the	same	fashion,	where	they	send	a	request
and	wait	for	the	confirmation,	and	as	they	receive	an	acknowledgement,	they	let	the
devices	communicate.

After	the	data	has	been	successfully	transferred	between	them,	the	connections	should	be
terminated	gracefully	in	order	to	mark	a	communication	as	successful	without	loss	of	even
a	single	bit.	While	the	data	is	transferred,	protocols	need	to	maintain	the	integrity	of	the
communication	as	well,	that	is,	if	abc	information	is	sent	from	the	sender’s	side,	it	should
be	received	in	the	same	order	and	manner.	If	the	bits	are	being	tampered	during	the
transition,	this	means	that	the	protocol	used	isn’t	reliable.	Analyzing	all	of	these	tasks	is
the	basic	work	responsibility	of	any	network	protocol	analyzer.

Capturing	methodologies
Network	packets	can	be	captured	through	various	techniques.	Depending	on	the
requirement,	a	protocol	analyzer	is	placed	at	a	certain	place	in	network	with	a	particular
type	of	configuration.

Hub-based	networks
Hub-based	networks	are	the	easiest	ones	to	sniff	out	because	you’ve	the	freedom	to	place
the	sniffer	at	any	place	you	want,	as	hubs	broadcast	each	and	every	packet	to	the	entire
network	they	are	a	part	of.	So,	we	don’t	have	to	worry	about	the	placement.	However,
hubs	have	one	weakness	that	can	drastically	decrease	network	performance	due	to	the
collision	of	packets.	Because	hubs	do	not	have	any	priority-based	system	for	device	that
send	packets,	whoever	wants	to	send	them	can	just	initiate	the	connection	with	the	HUB
(central	device)	and	start	transmitting	the	packets.	Often,	more	than	one	devices	start
sending	packets	at	the	same	instance.	Now,	as	a	result,	the	collision	of	the	packets	will
happen,	and	the	sending	side	will	be	informed	to	resend	the	previous	packet.	As	a
consequence,	things	such	as	traffic	congestion	and	improper	bandwidth	utilization	can	be
experienced.

The	switched	environment
Due	to	some	restrictions	present	in	switched-based	infrastructures,	packet	analysis
becomes	a	bit	complex.	To	bypass	these	restrictions	and	make	the	life	of	administrators
easy,	we	will	talk	about	a	couple	of	solutions	such	as	port	mirroring	and	hubbing	out.

In	port	mirroring,	once	you	have	the	command-line	configuration	console	or	web-based
interface	to	mage	you’re	the	access	point	(router/switch),	then	we	can	easily	configure
port	mirroring.

Let’s	make	it	simpler	for	you	with	a	logical	illustration.	For	instance,	let’s	assume	that	we
have	a	24-ports	switch	and	8	PCs	which	(PC-1	to	PC-8)	are	connected.	We	are	still	left
with	more	than	15	ports.	Place	your	sniffer	in	any	of	those	free	ports	and	then	configure
port	mirroring,	which	will	copy	all	the	traffic	from	whatever	device	we	want	to	the	port	of
our	choice,	where	our	protocol	analyzer	sits,	which	can	see	the	whole	bunch	of	data
traveling	through	the	mirrored	port.

Once	this	is	completely	configured,	we	will	be	able	to	easily	analyze	each	and	every	piece
of	information	going	back	and	forth	from	the	mirrored	port.	This	technique	is	one	of	the
easiest	among	others	to	configure;	the	only	thing	you	should	know	beforehand	is	how	to
configure	switches	with	command-line	interfaces.	These	days,	admins	are	provided	with	a
GUI	for	configuration	purposes	if	it	is	the	case	for	you	to	just	go	for	it.	The	following
figure	depicts	a	simple	demonstration	of	port	mirroring:

Figure	1.2:	Port	mirroring

Hubbing	out	is	feasible	when	your	switch	doesn’t	support	port	mirroring.	To	use	the
technique,	you	have	to	actually	plug	the	target	PC	out	of	the	switched	network,	then	plug
your	hub	to	the	switch,	and	then	connect	you	analyzer	and	target	device	to	the	switch	so
that	becomes	the	part	of	the	same	network.

Now,	the	protocol	analyzer	and	the	target	are	part	of	the	same	broadcast	domain.	Your
analyzer	will	easily	capture	every	packet	destined	to	target	or	originated	from	the	target.
But	make	sure	that	the	target	is	aware	about	the	data	loss	that	can	happen	while	you	try	to
create	hubbing	out	for	analysis.	The	following	figure	will	make	it	easier	for	us	to
understand	the	concept	precisely:

Figure	1.3:	Hubbing	out

ARP	poisoning
This	is	an	unethical	way	to	capture	network	traffic	where	we	try	to	imitate	another	device
between	two	parties.	Let’s	say,	for	example,	we	have	our	default	gateway	at	192.168.1.1
and	our	client	is	located	at	192.168.1.2.	Both	of	these	devices	must	have	maintained	a
local	ARP	cache	that	facilitates	them	to	send	packets	without	any	extra	overhead	over	the
LAN.	Now,	the	question	is	what	kind	information	does	the	ARP	cache	hold,	and	in	which
form.	Let	me	tell	you,	the	command	to	view	the	ARP	cache,	which	displays	MAC
addresses	associated	for	a	particular	IP	address	is	arp	-a	.	Issuing	the	arp	-a	command
(the	same	works	for	most	of	the	platforms)	populates	a	table	that	holds	a	device’s	IP
address	and	its	MAC	address.	Have	a	look	at	the	following	diagram	which	shows	a	normal
scenario	of	ARP	poisoning:

Before	ARP	Cache

192.68.1.1	–	(Server)

192.68.1.2	–	AA:BB:EE

192.68.1.3	–	AA:BB:DD

192.68.1.2	–	(Client)

192.68.1.1	–	AA:BB:CC

192.68.1.3	–	AA:BB:DD

192.68.1.3	–	(Attacker)

192.68.1.1	–	AA:BB:CC

192.68.1.2	–	AA:BB:EE

Now	that	we’ve	understood	what	is	stored	inside	an	ARP	cache,	let’s	try	to	poison	it.

After	ARP	Cache

192.68.1.1	–	(Server)

192.68.1.2	–	AA:BB:DD

192.68.1.3	–	AA:BB:DD

192.68.1.2	–	(Client)

192.68.1.1	–	AA:BB:DD

192.68.1.3	–	AA:BB:DD

192.68.1.3	–	(Attacker)

192.68.1.1	–	AA:BB:CC

192.68.1.2	–	AA:BB:EE

Figure	1.4:	ARP	poisoning	(the	normal	scenario)

Now	that	you’ve	understood	what	is	the	importance	of	the	ARP	protocol	and	how	it
works,	we	can	try	to	poison	the	arp	cache	of	both	the	default	gateway	and	the	client	with
the	attacker’s	MAC	address.	In	simple	terms,	we	will	replace	the	client’s	MAC	address	in
the	default	gateway’s	ARP	cache	with	the	attacker’s	MAC	address.	We	will	do	the	same	in
the	client’s	MAC	address,	replacing	the	default	gateway’s	MAC	address	with	the
attacker’s	MAC	address.	As	a	result,	every	packet	destined	to	the	client	from	the	default
gateway	and	vice	versa	will	be	sent	to	the	attacker’s	machine.

If	port	forwarding	is	already	configured	on	the	attacker’s	side,	the	received	packet	will	be
forwarded	to	the	real	intended	destination,	without	giving	any	hints	to	the	client	and	the
default	gateway	that	the	packet	is	being	sniffed.

Figure	1.5:	ARP	poisoning	(the	poisoned	scenario)

Other	than	these	two	techniques,	there	is	a	variety	of	hardware	available	on	the	market,
which	are	popularly	known	as	taps	and	can	be	placed	between	any	two	devices	to	sniff	and
analyze	the	traffic.	Though	this	technique	is	effective	to	capture	network	traffic	in	some
scenarios,	it	should	be	practised	or	deployed	in	a	controlled	environment	because	it	can
prove	to	be	malicious	to	the	internal	corporate	network.

Passing	through	routers
When	dealing	with	routed	environments,	the	main	aspect	of	packet	analyses	is	to	place
your	sniffer	at	the	right	place	from	where	we	can	gather	the	required	information.	Dealing
with	routed	structures	demands	more	skills,	as	sometimes	you	need	to	rethink	about	the
placement	of	your	sniffer.	Consider	a	routed	environment	with	three	routers:

Router	1,	router	2,	and	router	3	are	working	together;	each	of	them	owns	2-3	PCs.	Router
1	is	the	acting	like	a	root	node	while	controlling	its	child	networked	nodes	(router	2	and
router	3).	Router	3	clients	are	not	able	to	connect	to	router	1	clients.	To	resolve	this	issue,
the	admin	of	the	organization	has	placed	the	sniffer	inside	the	router	3	area.

After	a	while,	the	admin	has	collected	quite	a	good	amount	of	packets;	the	admin	is	still
not	able	to	detect	the	anomaly	within	the	network.	So,	he/she	decides	to	move	the	sniffer
to	another	area	in	the	network.	After	placing	the	sniffer	in	the	router	1	area,	the	admin	can
see	quite	a	useful	stream	of	packets	that	he/she	was	looking	for	earlier.	This	is	quite	a
simple	illustration	of	moving	the	sniffer	around,	which	can	be	helpful	in	certain	situations.
The	moral	is	that	placing	the	sniffer	in	your	networked	infrastructure	is	quite	an	important
task.

After	reading	this,	I	hope	you	would	now	like	to	see	how	Wireshark	actually	looks	like,	so
let’s	take	a	look	at	the	GUI	of	the	software	and	how	we	have	to	initialize	the	process	of
capturing	network	packets.

If	you	do	not	have	Wireshark	installed,	you	can	get	a	free	copy	from
https://www.wireshark.org/download.html.	To	go	through	the	illustrations	in	this	book,
you	also	need	to	be	familiar	with	the	interface.

https://www.wireshark.org/download.html

Why	use	Wireshark?
I	hope	I	am	not	the	only	one	who	is	obsessed	with	the	simplicity	of	the	packet	capturing
scenario,	which	Wireshark	facilitates	for	us.	I	will	just	quickly	point	out	the	reasons	why
most	people	prefer	Wireshark	to	other	packet	sniffers:

	
User	friendly:	It	does	count	for	every	GUI	we	have	ever	seen	or	worked	with,	how
easily	the	options	are	presented,	and	how	convenient	it	is	to	use	(I	guess,	even	the
ones	who	don’t	know	about	packet	analysis	can	start	capturing	packets	in	Wireshark
without	any	prior	specialized	knowledge).
Robustness:	The	amount	of	information	Wireshark	can	handle	is	outstanding;	what	I
actually	mean	by	this	is	software	of	this	kind	may	hang	or	crash	(because	of
thousands	of	packets	that	are	captured	and	displayed	every	second)	when	trying	to
display	the	packets	traveling	all	over	the	network.	However,	Wireshark	doesn’t—a
big	hand	to	Wireshark	creators	for	how	well	they	have	structured	it.
Platform	independent:	Yeah,	this	one	is	definitely	on	the	list.	This	free	software	can
be	installed	on	any	platform	that	is	used	for	computing	purposes	by	administrators
these	days,	whether	Linux-based,	Windows-based,	or	Macintosh-based	platforms.
Filters:	There	are	two	kinds	of	filtering	options	present	in	Wireshark:

You	choose	what	to	capture	(capture	filters)
You	choose	what	to	display	after	you’ve	captured	(display	filters)

Cost:	Wireshark	comes	free,	and	is	developed	and	maintained	by	a	dedicated
community.	Wireshark	offers	some	paid	professional	tools	also.	For	more	details
refer	to	Wireshark’s	official	website.
Support:	Wireshark	is	being	developed	very	actively	by	a	group	of	contributors
scattered	around	the	globe	.	We	can	sign	up	to	the	Wireshark’s	mailing	list	or	we	can
get	help	from	the	online	documentations,	which	can	be	accessed	through	the	GUI
itself;	and	various	online	forums	are	available	to	get	the	most	effective;	go	to	Google
paid	Wireshark	support	to	know	more	about	it.

The	Wireshark	GUI
Before	we	discuss	its	awesome	features,	let	me	take	this	opportunity	to	explain	the	history
of	Wireshark	and	how	it	came	into	existence.

Wireshark	was	built	during	the	late	’90s.	Combs,	a	young	college	graduate	from	Kansas
city	developed	Ethereal	(the	basic	version	of	Wireshark),	and	by	the	time	Combs
developed	this	awesome	piece	of	invention,	he	had	landed	himself	a	job	where	he	signed	a
formal	contract.	After	a	few	years	of	service,	Combs	decided	to	quit	his	job	and	to	pursue
his	dreams	by	developing	Ethereal	further.	Unfortunately,	as	per	the	legal	terms,	the
Combs	invention	was	part	of	the	company’s	proprietary	software.	Despite	this,	Combs	left
the	job	and	started	working	on	the	new	version	of	Ethereal,	which	he	titled	Wireshark.
Since	2006,	Wireshark	has	been	in	active	development	and	is	being	used	worldwide.	It
supports	a	majority	of	protocols	(more	than	800),	which	are	implemented	in	the	wild
today.

The	installation	process
Follow	these	steps	to	install	Wireshark	on	your	system:

	
1.	 In	this	book,	I	am	going	to	you	use	a	Mac	PC;	for	other	platforms,	the	installation	is

the	same.	Some	OSes,	such	as	Kali	Linux,	come	with	a	preinstalled	version	of
Wireshark.

2.	 So,	if	you	are	using	Macintosh,	then	first	and	foremost,	you	need	to	download	X11
Quartz	(XQuartz-2.7.7),	which	will	simulate	an	environment	to	run	Wireshark	(for
Windows	just	download	the	respective	executable	compatible	with	your	processor).

3.	 Now,	you	can	install	Wireshark	(Wireshark	1.12.6	Intel	64),	which	we	downloaded
earlier	in	this	book.

4.	 Once	both	of	these	are	successfully	installed,	we	need	to	restart	our	computer.
5.	 After	the	PC	has	been	restarted,	start	Wireshark.	As	soon	as	the	packet	analyzer

opens,	you	will	see	that	the	X11	server	starts	on	its	own.	You	don’t	need	to	worry
about	it;	just	leave	it	in	the	background.

6.	 Once	it	is	opened	completely,	it	will	look	as	shown	in	the	following	screenshot:

Figure	1.6:	The	Wireshark	screen

Before	we	go	ahead	and	start	the	first	capture,	we	need	to	get	a	bit	familiar	with	the
options	and	menus	available.

There	are	six	main	parts	in	the	Wireshark	GUI,	which	are	explained	as	follows:

	
Menu	Bar:	This	represents	tools	in	a	generalized	form	that	are	organized	in	the
Applications	menu.
Main	Tool	Bar:	This	consists	of	the	frequently	used	tools	that	can	offer	efficient
utilization	of	the	software.
Packet	List	Pane:	This	window	area	displays	all	the	various	packets	getting	captured
by	Wireshark.
Packet	Details	Pane:	This	window	gives	us	details	pertaining	to	the	selected	packet
in	the	packet	list	pane	are	shown.	For	example,	we	can	view	source	and	destination
IP	addresses	and	different	protocols	used	for	communication	arranged	in	the	bottom-
top	approach	(Link	Layer	to	Application	Layer).	Information	regarding	the	packets	is
listed	in	different	categories	of	protocols	that	can	be	expanded	to	get	more	details	for
the	selected	packet.
Bytes	Pane:	This	shows	the	data	in	the	packets	in	the	form	of	hex	bytes	and	their
corresponding	ASCII	values;	it	shows	the	values	in	the	form	in	which	they	travel	in
the	wires.

Status	Bar:	This	displays	details	such	as	total	packets	captured.

The	following	screenshot	will	help	you	to	identify	different	sections	in	the	application,
please	make	sure	you	get	yourself	acquainted	with	all	of	them	before	proceeding	to	further
chapters.

Within	the	toolbar	area,	we	have	a	few	useful	tools.	I	would	like	to	give	you	a	brief
overview	of	some	of	them:

	

	:	This	gives	you	the	option	to	choose	an	interface	for	listening

	:	Through	this,	you	can	customize	the	capturing	process

	:	These	are	to	start/stop/restart	the	capturing	process

	:	This	is	to	open	a	saved	capture	file

	:This	is	to	save	the	current	capture	in	a	file

	:	This	is	to	reload	the	current	capture	file

	:	This	is	to	close	the	current	capture	file

	:	This	is	to	go	back	to	the	recent	most	visited	packet

	:	This	icon	is	to	go	forward	to	the	most	recently	visited	packet

	:	This	is	used	to	go	to	a	specific	packet	number

	:	Toggle	Color	coding	for	the	packets	On/Off

	This	is	used	to	toggle	the	autoscroll	on/off

	:	This	is	to	zoom	in,	zoom	out,	and	reset	zoom	to	the	default

	:	This	is	used	to	change	the	color	coding	as	per	requirements

	:	This	is	used	to	narrow	down	the	window	in	order	to	capture	packets

	:	This	is	used	to	configure	display	filters	to	only	see	what	is	required

Even	after	selecting	a	working	interface,	sometimes,	you	won’t	be	able	to	see	any	packets
in	your	packet	list	pane.	There	can	be	multiple	reasons	for	this,	some	of	which	are	listed	as
follows:

	

You	do	not	have	any	network	traffic
The	packets	traveling	in	the	network	are	not	destined	to	your	device
You	do	not	have	the	promiscuous	mode	activated	or	do	not	have	an	option	for	the
promiscuous	mode

After	launching	the	Wireshark	application,	you	will	see	something	like	the	following
screenshot	on	our	screens.	Although	it	doesn’t	look	so	interesting	at	first	glance,	what
makes	it	interesting	are	the	packets	that	are	flowing	around.	Yeah,	I	am	talking	about
capturing	packets.

Figure	1.7:	The	Wireshark	capture	screen

Starting	our	first	capture
As	you’ve	been	introduced	to	the	basics	of	Wireshark	and	since	you	have	learned	how	to
install	Wireshark,	I	feel	you	are	ready	to	initiate	your	first	capture.	I	will	be	guiding	you
through	the	following	series	of	steps	to	start/stop/save	you	first	Wireshark	capture:

	
1.	 Open	the	Wireshark	application.
2.	 Choose	an	interface	to	listen	to.

Figure	1.8:	The	interface	window

3.	 Before	you	click	on	Start,	we	have	the	Options	button,	which	gives	us	the	advantage
of	customizing	the	capture	process;	but	as	of	now,	we	will	be	using	the	default
configuration.

Tip
Make	sure	that	the	Promiscuous	mode	is	activated	so	that	we	can	capture	the	traffic
that	is	not	destined	to	our	machine.

Figure	1.9:	The	capture	customization	screen

4.	 Click	on	the	Start	button	to	initiate	the	capturing	process.
5.	 Open	your	browser.
6.	 Visit	any	website	you	want	to.

Figure	1.10:	The	Wireshark	website

7.	 Switch	back	to	the	Wireshark	screen;	if	everything	goes	well,	you	should	be	able	to
see	a	numerous	packets	getting	captured	in	your	Wireshark	GUI	inside	the	packet	list
pane.

To	stop	the	capture,	you	can	just	click	on	the	stop	capture	button	in	the	toolbar	area
or	you	can	click	on	Stop	under	the	Capture	menu	bar.

Figure	1.11:	Stopping	capture

8.	 I	know	there	is	an	overwhelming	amount	of	information	you	will	see	by	now,	but
don’t	worry	about	it.	I	am	here	to	make	it	simple	for	you.

9.	 The	real	process	of	packet	analysis	starts	when	you	have	captured	packets—I	mean
packet	filtering.	We	will	be	discussing	packet	filtering	in	detail	in	the	upcoming
chapters.

10.	 Now,	the	last	step	is	to	save	the	capture	file	for	later	use:

11.	 Save	your	file	with	the	default	.pcapng	extension	in	you	folder.

If	you	have	read	all	the	steps	all	the	way	up	to	this	point,	I	would	encourage	you	to	create
your	first	capture	file.

Summary
This	chapter	lays	the	foundation	of	basic	networking	concepts	along	with	an	introduction
of	the	Wireshark	GUI.	Wireshark	is	a	protocol	analyzer	that	is	used	worldwide	by	IT
professionals	to	capture	and	analyze	network-level	packets.

The	TCP/IP	model	has	four	layers:	the	Application	Layer,	Transport	Layer,	Network
Layer,	and	Link	Layer.	Data	gets	encapsulated	as	it	passes	on	from	one	layer	to	another;
the	resulting	packet	at	the	bottom	is	called	a	complete	PDU,	which	actually	travels	over
the	channel.

To	install	Wireshark,	you	just	need	to	visit	http://www.wireshark.org	and	then	download
the	appropriate	version	of	this	open	source	software.	The	Wireshark	community	is
governed	by	real-world	geeks;	this	can	be	a	good	source	of	learning	and	for
troubleshooting	purposes.

The	Wireshark	GUI	is	user	friendly,	robust,	and	platform	independent;	even	new	IT
professionals	can	easily	adapt	the	tool.

One	important	aspect	of	protocol	analyzing	is	to	place	the	sniffer	at	the	right	place;	every
organization’s	infrastructure	is	different	from	another,	where	we	might	need	to	apply
different	techniques	in	order	to	get	the	right	packets	to	use.

Hubbing	out,	port	mirroring,	ARP	poisoning,	and	tapping	are	some	of	those	useful
techniques	that	can	be	used	to	monitor	and	analyze	traffic	in	different	situations.

There	are	six	main	parts	in	the	Wireshark	tool	window:	Menu	Bar,	Main	Tool	Bar,
Packet	List	Pane,	Packet	Details	Pane,	Bytes	Pane,	and	Status	Bar.

Using	the	back/forward	key	during	a	packet	analysis	scenario	can	be	really	useful.	One
should	know	about	all	the	tools	that	are	displayed	in	the	main	toolbar	area.

In	the	next	chapter,	you	will	learn	how	to	work	with	different	kinds	of	filters	available	in
Wireshark.

http://www.wireshark.org

Practice	questions
Q.1	How	many	layers	are	there	in	the	TCP/IP?	Name	them.

Q.2	Which	layer	in	the	TCP/IP	model	handles	Layer	2	addresses?

Q.3	The	Link	Layer	is	also	called?

Q.4	The	HTTP	protocol	uses	TCP	or	UDP?

Q.5	IP,	ICMP,	and	_________	are	the	protocols	in	the	Internet	Layer

Q.6	How	many	parts	of	the	Wireshark	window	do	you	know?

Q.7	ARP	is	a	Layer	3	protocol—true/false?

Q.8	Does	the	TCP	protocol	follow	a	three-way	handshake?

Q.9	The	Port	Mirroring	technique	is	possible	through	switches	only—True/False?

Q.10	The	Hubbing	out	technique	uses	a	router	to	isolate	a	PC	from	it	peers—true/false?

Q.11	TCP	is	an	unreliable	protocol—true/false?

Q.12	Install	Wireshark	and	start	a	sample	capture	using	your	wireless	interface.	Save	your
capture	file	on	the	desktop	with	the	name	first.pcap,	and	close	Wireshark.

Q.13	Open	your	first.pcap	capture	file	in	Wireshark	and	check	how	many	packets	you
captured	in	total.

Q.14	Which	pane	displays	information	in	the	HEX	and	ASCII	form	for	each	packet	we’ve
captured?

Q.15	Switch	off	the	promiscuous	mode	from	the	capture	options	window	and	observe
whether	you	are	still	able	to	receive	packets	from	other	devices	or	not.

Chapter	2.	Filtering	Our	Way	in	Wireshark
This	chapter	will	talk	about	different	filtering	options	available	in	Wireshark,	namely,
capture	and	display	filters.	We	will	also	look	at	how	to	create	and	use	different	profiles.
The	following	are	the	topics	we	will	cover	in	this	chapter:

	
An	introduction	to	capture	filters
Why	and	how	to	use	capture	filters
Lab	up—capture	filters
An	introduction	to	display	filters
Why	and	how	to	use	display	filters
Lab	up—display	filters
Colorizing	traffic
Creating	a	new	Wireshark	profile(s)
Lab	up—profiles

I	hope	you	are	ready	to	start	analyzing	packets	using	different	filtering	options	present	in
Wireshark	and	to	reuse	the	filters	that	we	previously	created	in	a	user-defined	profile.	I
will	be	guiding	you	with	a	technique	to	filter	packets	based	on	certain	expressions,	which
we	will	create	using	different	primitives	that	are	available.

Before	we	go	ahead	and	start	creating	awesome	filters,	I	want	to	mention	one	more
interesting	tool	that	is	used	to	find	packets:	the	find	utility.

An	introduction	to	filters
In	the	world	of	Wireshark,	there	are	two	kinds	of	filters	that	can	be	used	over	live	traffic,
and	on	saved	capture	files.	Filters	enhance	the	flexibility	of	packet	analysis,	where	a
certain	user	is	given	the	privilege	of	seeing	what	he/she	wants	to	see	to	capture	what	they
want	to	capture.

The	two	types	of	filters	are	capture	filter	and	display	filter.	Now,	let’s	have	look	at	each
one	of	them	in	detail.

Capture	filters
This	gives	you	the	facility	to	capture	what	you	want	to	capture—others	will	be	discarded.
Capturing	packets	is	a	processor-intensive	task,	and	Wireshark	will	acquire	a	quite	good
amount	of	primary	memory	as	well.	So,	sometimes,	we	will	have	to	save	the	resources	for
other	processes,	which	can	be	utilized	to	analyze	packets,	and	in	some	cases,	we	would
like	to	capture	only	that	data	which	meets	our	expression—rest	of	it	will	be	dropped.

Wireshark	offers	some	interesting	options	to	configure	an	interface,	which	will	be
capturing	traffic	that	meets	only	a	certain	expression,	and	this	is	achievable	through	the
Capture	Options	window,	as	shown	in	the	following	screenshot:

Figure	2.1:	The	Capture	Options	dialog

Here,	points	list	various	capture	options	dialog	related	details

	
Capture:	In	this	window,	you	can	choose	the	interface	you	want	to	capture	packets
from,	and	you	can	even	select	multiple	interfaces	at	once	to	listen	on	all	of	them.	The
details	for	every	interface	are	listed	under	separate	columns	such	as	Capture,
Interface,	the	name	of	the	interface,	whether	the	promiscuous	mode	is	enabled	or
not,	and	so	on.	Under	the	Capture	dialog,	you	will	see	a	checkbox	to	toggle	the
promiscuous	mode,	and	you	can	even	choose	the	promiscuous	on	all	interfaces

option	to	activate	what	you	require	in	just	one	click.
Manage	Interfaces:	This	button	facilitates	addition	or	removal	of	a	new	interface	for
listening	purposes	you	intend	to.	You	can	add	even	remote	machine	interfaces,	where
you	would	be	required	to	have	root	level	privileges.

Capture	Filter:	By	clicking	on	this	Capture	Filter	button,	you	will	be	able	to
see	a	dialog	similar	to	what	is	shown	here.	The	already	configured	capture	filters
are	listed	by	default,	and	here,	we	can	create	and	save	our	custom	capture	filters
as	well.

Figure	2.2	:Default	Capture	filters

To	start	off,	users	can	use	these	default	filtering	profiles	and	get	an	idea	about	how	to
create	custom	filtering	strings.	Once	you	are	well	versed	with	the	basics,	you	can	go	ahead
and	use	the	same	window	to	create	your	own	custom	filters,	but	make	sure	that	you	have
followed	the	Berkley	Packet	Filtering	(BPF)	syntax.	The	BPF	syntax	is	an	industry
standard	and	is	used	by	multiple	protocol	analyzers,	which	make	your	filter’s
configuration	file	portable.

Let’s	create	one	together	to	get	a	better	hold	over	it;	consider	a	scenario	where	we	have	to
capture	packets	originating	from	a	web	server	that	is	located	at	192.168.1.1	(change	the
IP	address	to	the	web	server’s	address	that	you	are	monitoring),	and	follow	the	next	steps:

	
1.	 Open	the	Capture	Options	dialog.
2.	 Click	on	Capture	Filter.
3.	 Click	on	New.
4.	 Write	Web	server	192.168.1.1	inside	the	Filter	name	textbox.
5.	 Write	host	192.168.1.1	and	port	80	inside	the	Filter	String	text-box

6.	 Once	you’ve	done	this,	click	on	OK;	if	you’ve	entered	everything	correctly,	the
textbox	followed	by	the	Capture	Filter	button	will	be	displayed	with	a	green
background,	as	shown	in	the	following	screenshot:

Figure	2.4	:Creating	a	sample	capture	filter

	
Capture	Files:	This	option	gives	you	the	flexibility	to	save	your	captured	packets
into	the	file(s)	that	already	exists	on	your	system.	The	captured	packets	will	be	added
to	the	file	of	your	choice	if	you	don’t	choose	any.	A	temporary	file	will	be	created,
and	data	will	be	written	to	it,	which	can	be	saved	to	a	user-specified	location.	To
achieve	this,	write	the	name	of	the	file	that	uses	absolute	path	referencing	or	click	on
Browse	followed	by	the	File	textbox	to	choose	a	location.

If	you	select	the	multiple	files	option,	then	you	can	save	your	packets	in	multiple
files,	where	we	can	customize	more	options,	which	are	stated	as	follows:

Next	File	Every:	After	capturing	a	certain	amount	of	data,	Wireshark	will	create
a	new	file	and	your	data	will	be	added	to	it.	For	instance,	I	want	to	create	a	new
file	after	Wireshark	captures	2	MBs	of	data.
Next	File	Every:	After	a	certain	amount	of	time,	Wireshark	will	create	a	new

file	and	your	packets	will	be	added	to	it.	For	instance,	I	want	to	create	a	new	file
after	every	5	minutes	of	the	capturing	process.
Ring	buffer:	Using	this	option,	you	can	restrict	the	creation	of	a	new	file.
Wireshark	uses	the	First	in	First	Out	(FIFO)	option	to	write	data	to	multiple
filesets.	For	example,	you	have	selected	the	Ring	buffer	option	and	increased
the	number	of	files	to	5,	and	you	have	configured	that	after	every	5	MBs,	a	new
file	should	be	created.

Now,	according	to	this	configuration,	once	you	start	capturing	packets,	after	every	5
MBs	of	data,	a	new	file	will	be	created	and	the	packets	will	be	written	to	it.	Once	the
limit	that	you	specified	in	the	Ring	Buffer	area	is	exceeded,	Wireshark	will	not
create	a	new	file;	instead,	it	will	roll	back	to	the	first	file	and	append	data	to	it.	The
following	screenshot	shows	a	similar	kind	of	configuration:

Figure	2.5	:	The	Capture	Files	option

Stop	Capture	Settings:	This	option	lets	you	stop	the	capturing	process	after	a	certain
condition	is	triggered;	we	have	four	different	kinds	of	triggers.	Activating	these	can
stop	Wireshark	from	capturing	new	packets,	and	they	are	stated	as	follows:

Packet(s):	Stop	capturing	after	a	certain	count	of	packets	is	reached
File(s):	Stop	capturing	after	the	creation	of	a	certain	number	of	files
Megabyte(s):	Stop	capturing	after	capturing	a	certain	amount	of	data
Minute(s):	Stop	capturing	after	running	for	a	certain	period	of	time

There	might	be	one	question	that	you	may	want	to	ask:	what	if	we	select	more	than
one	option	at	a	time?	For	instance,	as	shown	in	the	following	figure.

You	can	activate	more	than	one	option	at	a	time;	Wireshark	will	stop	capturing
whichever	condition	is	met	first.

Figure	2.6	:	The	Stop	Capture	options

Display	Options:	There	are	a	few	options	available	in	this	section	that	can	be
configured	to	restrict	how	the	packets	and	their	corresponding	information	will	be
displayed	in	the	Packet	List	Pane	option	and	the	Protocol	hierarchy	window.	Refer
to	the	following	figure	to	see	this.

If	you	select	Update	list	of	packets	in	real-time,	you	will	observe	that	Packet	List
Pane	is	updated	as	soon	as	Wireshark	captures	a	new	packet,	and	the	pane	will	be
scrolled	upwards	automatically.	Choose	these	options	if	needed;	otherwise,	the
resources	acquired	by	these	two	tasks	can	be	used	for	other	processes.

If	you	check	the	Hide	capture	info	dialog	box,	the	Protocol	Hierarchy	window,
that	shows	the	statistics	(in	percentage)	,	will	be	hidden.	If	you	don’t	have	any
specific	purpose,	I	would	recommend	that	you	uncheck	all	these	options.

Figure	2.7:	Display	Options

Name	Resolution:	If	selected,	this	feature	can	resolve	the	Layer	2,	Layer	3,	and
Layer	4	addresses	to	their	corresponding	names;	for	better	understanding,	refer	to	the
following	screenshot:

Figure	2.8:	Name	Resolution

Why	use	capture	filters
Capturing	only	traffic	that	meets	your	requirement	is	really	useful	when	you	have	a	large
volume	of	packets	flowing	around.	Creating	your	own	custom	capture	filters	can	come	in
really	handy	while	you	analyze	a	production	environment.	Capture	filters	are	applied
before	you	initiate	the	actual	capture	process.	In	general,	every	packet	captured	by
Wireshark	is	passed	to	the	capturing	engine	so	that	it	gets	translated	to	a	human-
understandable	format,	but	if	you	have	applied	a	capture	filter,	Wireshark	will	drop	the
packets	that	don’t	meet	your	expression.	All	these	dropped	packets	won’t	be	passed	to	the
capturing	engine,	.	In	comparison,	display	filters	are	much	more	specific	and	powerful;
while	using	capture	filters,	you	should	be	careful,	because	there	is	no	way	of	recovering
dropped	packets	that	do	not	meet	the	expression	that	you	created.

The	Berkley	Packet	Filter	(BPF)	syntax	is	used	to	create	capture	filters,	and	several
protocol	analyzers	use	it	as	well,	thus	maintaining	industry	standards.	It	is	significantly
easy	to	learn	and	practice,	just	use	the	basic	format	to	structure	an	expression.

How	to	use	capture	filters
Using	the	BPF	syntax	earlier,	we	created	a	simple	capture	filter	through	the	capture	filter
dialog;	let’s	discuss	it	in	detail	because	it	is	really	crucial	to	know	about	BPF,	as	it	is	used
by	a	variety	of	analyzers.

If	you’re	using	the	BPF	syntax,	you	have	to	follow	a	certain	format	structure,	which	is	a
combination	of	two	arguments:	identifiers	and	qualifiers,	which	are	explained	as	follows:

	
Identifiers:	This	is	the	value	that	you	are	looking	for	in	your	packets.	For	example,	if
you	are	filtering	the	packets	for	a	certain	IP	address,	then	your	capture	filter	will	look
something	like	host	192.168.1.1,	where	the	value	192.168.1.1	is	an	identifier.
Qualifiers:	These	are	categorized	into	three	different	sections:

Type:	There	are	three	types	of	type	qualifiers:	host,	port,	and	net.	In	short,	a
type	qualifier	refers	to	the	name	or	the	number	that	your	identifier	refers	to.	For
example,	in	your	host	192.168.1.1	filter,	host	is	the	type	qualifier.
Direction:	Sometimes,	when	you	need	to	capture	packets	from	a	particular
destination	or	source,	we	can	specify	direction	qualifiers	as	well.	For	example,
in	the	src	host	192.168.1.1	capture	filter,	src	specifies	that	we’ve	to	capture
packets	originating	from	a	specific	host	only.	Likewise,	if	you	specify	dst	host
192.168.1.1,	would	capture	packets	only	destined	to	host	192.168.1.1.
Proto:	This	refers	to	protocol	qualifiers	that	give	us	the	feature	where	we	can
mention	the	specific	protocol	that	we	want	to	add	in	our	expression	for	capture
purposes.	For	example,	if	you	want	to	capture	http	traffic	coming	from	your
host	192.168.1.1,	then	your	expression	will	look	something	like	src	host
192.168.1.1	and	tcp	port	80.

In	the	previous	example,	we	combined	two	expressions	together	using	the	concatenation
operator	(&/and).	Similarly,	we’ve	the	alteration	operator	(|/or)	and	the	negation	operator
(!/not),	which	can	be	used	to	combine	and	create	complex	filters.

For	example,	as	per	our	previously	created	filter	src	host	192.168.1.1	and	tcp	port
80,	all	the	packets	originating	from	192.168.1.1	and	going	to	port	80	will	be	captured.

If	you	add	the	or	operator	between	src	host	192.168.1.1	or	tcp	port	80,	then	when
an	expression	in	your	filter	matches,	then	the	packet	will	be	captured.	This	means	that
every	packet	originating	from	192.168.1.1	or	any	packet	associated	with	port	80	will	be
captured	regardless	of	the	second	condition.

In	the	case	of	the	not	operator,	a	capture	filter	such	as	not	port	80	states	that	any	packet
associated	with	port	80	should	not	be	captured.

Once	you	start	working	in	a	production	environment,	you	will	see	how	common	it	is	to
combine	filters	using	the	AND,	OR,	and	NOT	operators.

An	example	capture	filter
Though	you	have	a	variety	of	filters	available	in	Wireshark	itself,	which	can	give	you	an
overview	of	the	BPF	syntax,	to	access	the	present	filters	by	default,	go	to	Capture	|
Capture	Filers	or	click	on	the	Capture	Options	button	in	the	main	toolbar	and	then	click
on	Capture	Filter.	From	the	same	window,	we	have	an	option	to	create	new	filters	that
we	already	discussed.

Refer	to	the	following	table	for	sample	capture	filters:

Filters Description

host	192.168.1.1 All	traffic	associated	with	host	192.168.1.1

port	8080 All	traffic	associated	with	port	8080

src	host	192.168.1.1 All	traffic	originating	from	host	192.168.1.1

dst	host	192.168.1.1 All	traffic	destined	to	host	192.168.1.1

src	port	53 All	traffic	originating	from	port	53

dst	port	21 All	traffic	destined	to	port	21

src	192.168.1.1	and	tcp	port
21

All	traffic	originating	from	192.168.1.1	and	associated
with	port	21

dst	192.168.1.1	or	dst
192.168.1.2

All	traffic	destined	to	192.168.1.1	or	destined	to	host
192.168.1.2

not	port	80 All	traffic	not	associated	with	port	80

not	src	host	192.168.1.1 All	traffic	not	originating	from	host	192.168.1.1

not	port	21	and	not	port	22 All	traffic	not	associated	with	port	21	or	port	22

tcp All	tcp	traffic

Ipv6

tcp	or	udp

host	www.google.com

ether	host	07:34:aa:b6:78:89

All	ipv6	traffic

All	TCP	or	UDP	traffic

All	traffic	to	and	from	Google’s	IP	address

All	traffic	associated	with	the	specified	MAC	address

Note
It	is	essential	to	know	about	the	BPF	syntax.	As	and	when	you	get	into	Wireshark	in	more
detail,	you	will	feel	its	importance.	I	would	suggest	that	you	practice	it	once	when	you	are
comfortable	with	the	syntax.

Capture	filters	that	use	protocol	header	values
Capture	filters	can	be	created	on	the	basis	of	offset	values	present	in	protocol	header
fields.	The	syntax	to	create	such	filters	looks	like
proto[offset:size(optional)]=value.	Here,	proto	is	any	protocol	that	you	want	to
filter,	offset	is	the	position	of	the	corresponding	value	in	the	header,	size	is	the	length	of
the	data	you	are	looking	for,	and	value	is	the	data	you	want	to	find.

Say,	for	instance,	we	want	to	capture	only	ICMP	reply	packets;	now,	if	you	observe	the
following	figure,	you	will	note	that	the	ICMP	header	type	is	located	at	the	first	place	and
the	offset	counting	starts	from	0.	So,	the	offset	value	will	be	0	in	this	case,	and	the	size	of
the	field	is	1	bytes.	We	have	all	the	required	information	to	create	a	capture	filter,	so	now,
the	resulting	expression	will	look	like	icmp[0:1]=0.

Figure	2.9:	ICMP	reply

Let’s	try	to	apply	the	same	to	Wireshark;	we	will	then	ping	www.google.com	to	check
whether	it	works.

Figure	2.10	:	ICMP	capture	filter

Let’s	ping	www.google.com	and	check	whether	it	works.

http://www.google.com
http://www.google.com

Figure	2.11:	Browse	google.com

As	a	result,	Wireshark	will	capture	only	the	ICMP	reply	packets.	Using	the	same
technique,	you	can	filter	out	traffic	on	the	basis	of	the	protocol	header	value:

The	following	table	lists	some	sample	bytes-based	capture	filters	for	TCP	and	ICMP;	try
practicing	them	too:

Filter Description

icmp[0]	=	0 ICMP	request	packets

icmp[0:1]	=	8 ICMP	reply	packets

icmp[0:1]	=	3

tcp[13]	=	2

ICMP	destination	host	unreachable	packets

TCP	SYN	flag	packets	only

tcp[13]	=	18 TCP	SYN/ACK	flag	packets	only

tcp[13]	=	32 TCP	URG	flag	set	packets	only

Display	filters
Display	filters	are	much	more	flexible	and	powerful	when	compared	to	capture	filters.
Display	filters	do	not	discard	any	packets;	instead,	the	packets	are	hidden	to	make	viewing
convenient	or	convenience.	Discarding	packets	is	not	a	very	effective	practice	because,
once	the	packets	are	dropped,	they	cannot	be	recovered.	When	you	apply	the	display	filter,
only	those	packets	that	meet	the	specification	of	your	filter	will	be	displayed.	In	the	the
second	column	of	the	status	bar	of	the	Wireshark	window,	you	will	see	a	number	of
packets	displayed	after	you	apply	a	filter.

A	display	filter	can	be	used	for	a	capture	file	in	the	Filter	dialog	box	located	above	the
Packet	List	Pane.	Display	filters	are	more	popular	than	capture	filters.	The	syntax	used
for	display	filters	can	be	easily	adapted	and	applied.	For	new	users,	a	display	filter	is	like	a
super	power	that	gives	you	the	functionality	of	hiding	inappropriate	packets	in	run-time
that	do	not	meet	your	requirements	as	per	the	current	scenario.

Display	filters	can	be	created	on	the	basis	of	several	different	constraints	such	as	the	IP
address,	protocols,	port	numbers,	and	header	values	in	specific	protocols.	There	are	lot	of
conditional	tools	and	concatenation	operators	that	can	be	used	to	create	complex
expressions.	You	can	combine	different	sets	of	expressions	to	get	more	specific	sets	of
packets	that	we	are	looking	for.	Each	and	every	packet	shown	in	the	Packet	List	Pane	can
be	filtered	using	the	fields	that	a	packet	contains.

Display	filters	do	not	delete	data;	instead,	packets	are	hidden,	which	can	be	made	visible
again	once	the	filter	in	the	Filter	dialog	above	the	list	pane	is	cleared.	For	instance,	to
display	only	ICMP	packets,	just	enter	ICMP	in	the	filter	dialog	and	click	on	Apply;	it’s
really	simple,	isn’t?	If	you	want	to	see	all	packets	again,	just	click	on	the	Clear	button	and
everything	will	be	back	to	normal.

Wireshark	has	a	very	awesome	feature	that	can	assist	you	while	creating	your	filter.	Just
click	on	the	Expression	button	at	the	end	of	the	Filter	dialog	box,	choose	the	protocol	you
want	to	filter,	and	specify	the	value	if	there	is	one.

Using	the	filter	expression	dialog	is	really	easy,	and	if	you	are	a	beginner,	then	this	is	a
boon	for	you.	Let’s	learn	how	to	use	the	expression	dialog.

Figure	2.12	:	The	filter	expression

	
1.	 As	show	in	the	preceding	screenshot,	click	on	the	Expression	button.
2.	 Now,	you	will	be	presented	with	the	Expression	window	like	the	one	shown	in	the

following	screenshot:

3.	 For	example,	if	you	want	to	see	only	packets	associated	with	ip:192.168.1.1,	then
just	scroll	down	in	the	Field	Name	to	find	IPv4.	Then,	expand	the	section	and
choose	the	ip.addr	option.

4.	 Then,	from	the	Relation	box	next	to	it,	choose	the	operator	you	wish	to	add	in	your
expression.

5.	 At	last,	write	the	IP	you	are	looking	for	in	the	Value	(IPv4	address)	box.
6.	 At	last,	just	click	on	OK.	If	you’ve	followed	all	the	steps	up	to	here	correctly,	then

you	would	be	able	to	see	the	packets	originated	from	the	ip	that	you	mentioned
(change	192.168.1.1	to	your	IP	address).

7.	 Below	the	Value	box,	there	is	a	Predefined	value	box	that	is	used	when	a	certain
protocol	restricts	us	to	use	only	a	specific	set	of	values.	You	can	choose	a	value	form
here.

8.	 Below	the	Predefined	Value	box,	there	is	a	Range	box	that	allows	us	to	enter	a
range	of	values	such	as	1-78,	0-5,	120-255	if	the	protocol	allows	the	same.

This	is	one	of	the	easiest	ways	to	create	a	display	filter;	there	is	one	more	way	following
which	we	can	also	create	such	filters.	Entering	filters	manually	can	drastically	increase	the
speed	of	your	work,	but	it	requires	a	bit	more	skill	than	there	are	in	a	novice	user.

Before	we	start	digging	into	creating	filters	manually,	I	want	you	to	know	about	a	few
more	things,	such	as	comparison	and	logical	operators.	These	can	be	used	to	create	simple
and	the	most	complex	filters	for	Wireshark.

The	following	table	lists	the	comparison	operators	used	to	create	display	filters:

Operator Description

==/eq Equal	to

!=/ne Not	equal	to

</lt Less	than

<=/le Less	than	equal	to

>/gt Greater	than

>=/ge Greater	than	equal	to

Next,	let’s	have	a	look	at	the	logical	operators	that	are	used	to	combine	different
conditions	together.	The	following	table	lists	all	of	them:

Operator Description

AND/&&

The	AND	logical	operator	is	used	when	we	want	both	parts	of	the	expression
to	state	true.	For	example,	the	ip.src==192.168.1.1	and	tcp	filters	would
only	display	packets	originated	from	ip	192.168.1.1	and	associated	with	the
tcp	protocol.	Only	the	packets	that	match	both	the	expressions	will	be	shown.

OR/||

The	OR	logical	operator	is	used	when	we	just	focus	on	one	condition	to	be
true	at	a	time;	if	both	are	true,	even	then	it’s	ok.	For	example,	the	port	53	or
port	80	filters	would	display	all	packets	associated	with	port	53	(DNS)	along
with	all	packets	associated	with	port	80	(http).

NOT/!
The	NOT	logical	operator	is	used	when	we	want	to	exclude	some	packets
from	the	list	pane.	For	example,	the	!dns	filter	would	hide	all	the	packets
associated	with	the	DNS	protocol.

Retaining	filters	for	later	use
Sometimes,	you	will	have	a	requirement	where	having	access	to	previously	created	filters
would	make	your	work	easy	and	fast	enough.	Wireshark	gives	you	the	facility	where	you
can	retain	your	display	filters	through	their	saved	names	and	use	them	at	a	later	point	of
time	whenever	required.	This	option	will	save	you	the	great	amount	of	time	and	effort
required	to	type	some	of	the	complex	display	filters.	To	create	one	for	yourself,	follow	the
given	steps:

	
1.	 Go	to	Analyze	|	Display	filters;	this	will	give	you	a	window	like	the	one	shown	in

the	following	screenshot:

Figure	2.13:	Adding	Display	Filters

2.	 Now,	click	on	New,	enter	the	values	in	the	Filter	name	and	Filter	string	fields.	For
instance,	we	want	to	create	a	display	filter	for	no	ARP	packets.	Then,	the	values	will
look	something	like	the	following	screenshot:

Figure	2.14	:	Creating	a	new	filter

3.	 After	entering	the	same,	click	on	Apply.	Now,	in	the	list	of	default	filters	present	you
would	be	able	to	see	NO	ARP,	which	can	be	used	later.

4.	 Make	sure	that	the	Filter	String	box	is	shown	with	a	green	background,	which
denotes	that	your	expression	is	correct;	if	it	is	in	red	color,	then	you	need	to	recheck
it,	and	if	it	is	in	yellow,	this	denotes	that	the	results	can	be	unexpected.	Now,	you	can
click	on	Apply	and	then	click	on	Ok.

5.	 If	you	need	assistance	to	create	any	filter	you	want,	simply	click	on	the	Expression
button	next	to	the	Filter	string	box,	where	all	the	protocols	and	majorly	used	filter
expressions	can	be	found.

6.	 The	Delete	button	will	assist	you	in	deleting	an	existing	filter	from	the	list.
7.	 The	Cancel	button	will	discard	any	unsaved	changes	and	close	the	window.
8.	 The	Ok	button	commits	Save	and	will	close	the	window.
9.	 Now,	let’s	try	applying	the	filter	we	just	created.	Navigate	to	Analyze	|	Display

Filter	|	(Scroll	and	select)	Display	Filter	|	Apply.

Try	following	the	same	and	create	your	own	display	filter	that	you	might	want	to	reuse.

Searching	for	packets	using	the	Find	dialog
If	you	want	to	find	a	packet	for	a	particular	criterion,	you	can	use	the	Find	dialog.	It	has	a
couple	of	useful	search	techniques	that	can	be	applied	easily	and	effectively	on	an	already
captured	file	or	on	a	live	running	capture.	You	can	access	the	Find	utility	by	navigating	to
Edit	|	Find	packets	or	using	the	shortcut	Ctrl	+	F.

Figure	2.15:	The	Find	Packet	dialog

Let’s	see	some	more	configurable	options	in	it:

	
The	display	filter:	After	capturing	the	traffic,	while	analyzing	whether	you	just	want
to	see	some	specific	packets	based	on	a	certain	IP	/Port/	Protocol,	those	packets	that
meet	a	certain	criteria	will	be	displayed	in	the	list	pane,	for	example:

The	ip.addr	==	192.168.1.1	(based	on	an	IP	address)
The	port	8080	(based	on	a	port	number)
http	(based	on	a	protocol)

The	Hex	value:	If	you	have	the	hex	value	for	a	certain	packet	that	you	are	looking
for,	then	this	option	can	be	selected.	Just	write	the	physical	address	separated	by
colons,	for	example:

0A:C4:22:90:45:00

AA:BB:CC

String:	The	next	and	last	option	is	a	text-string-based	search	where	you	can	enter	the

name	of	the	DNS	server,	name	of	the	machine,	and	any	resolved	name	that	you	know
about	(enter	any	string	or	word),	for	example:

Cisco
An	administrator
A	web	server
Google

Search	In:	This	feature	gives	us	the	ability	to	search	in	a	specific	pane.	For	instance,
if	you	are	looking	for	a	packet	in	the	bytes	pane,	which	matches	the	value	Google
(the	ASCII	value	in	the	packet	bytes	pane	will	be	matched),	then	we	can	go	ahead
and	first	choose	the	String	option	and	then	check	the	Search	In	box	and	choose
Packet	Bytes.
String	Options:	To	use	this,	first	select	the	String	option	and	then	select	Case-
Sensitive	and	then	if	you	want,	choose	the	character	width	as	well	(but	I	would
suggest	not	changing	this	unless	until	you	have	a	specific	reason	to	do	so).

Direction:	This	last	option	changes	the	direction	of	a	search;	you	can	change	it
to	upward	or	downwards.

Once	you	have	customized	the	options,	enter	the	text	and	click	on	Find.	This	will	give
you	the	first	exact	capture	that	matches	your	criterion.	To	move	back	and	forth	between
the	matched	packets,	you	can	use	Ctrl	+	N	(next)	and	Ctrl	+	B	(previous).

Colorize	traffic
For	better	and	convenient	viewing	experience,	Wireshark	gives	us	a	feature	where	we	can
colorize	a	certain	type	of	traffic	that	we	want	to	highlight.	Colorization	of	traffic	is	done	in
order	to	distinguish	between	different	sets	of	traffic.	Coloring	a	specific	set	of	traffic	with
a	different	rule	other	than	the	default	one	will	be	like	finding	a	needle	in	a	haystack.

The	default	profile	for	most	protocols	is	already	created	because	of	which	we	are	able	to
see	traffic	in	the	packet	list	pane	in	different	colors.	You	can	access	it	by	navigating	to
View	|	Edit	coloring	rules	or	clicking	on	the	Edit	coloring	rules	button	from	the	main
toolbar	to	open	a	window	as	shown	in	the	following	screenshot:

Figure	2.16:	Coloring	rules

All	rules	that	are	currently	saved	as	part	of	your	global	configuration	file	to	colorize	traffic
with	certain	foreground	and	background	colors	are	listed	in	this	dialog.	Every	packet	listed
in	the	packet	list	pane	follows	a	certain	rule,	which	gives	them	a	unique	and	distinguished
look	and	feel.

Let’s	use	this	feature	and	color	the	http	error	packets	with	a	color	of	our	choice.	Say,	for
instance,	I’ve	a	web	server	running	on	my	machine	that	is	used	by	the	clients	connected
for	file	accessing	purpose.	Now,	one	of	the	clients	in	my	network	is	trying	directory	listing
and	gets	HTTP	404	error	messages.	These	error	messages	will	pop	up	in	my	packet	list
pane	but	will	be	colored	using	the	same	http	coloring	rule	that	makes	these	errors	less
visible	to	me.	To	make	this	more	visible,	I	want	to	colorize	the	HTTP	404	error	messages
with	a	black	background	and	with	a	cyan	foreground.	Follow	the	steps	shown	here	that

will	achieve	the	same:

	
1.	 I	have	configured	a	Linux	box	running	on	172.16.136.129,	and	my	Mac	OS	is

running	on	172.16.136.1	that	serves	as	a	web	server	for	Linux,	as	Shown	in	the
following	screenshot:

Figure	2.17:	The	web	server	running	on	172.16.136.1

Normal	traffic	from	a	Linux-accessing	web	server	looks	something	like	the
screenshot	here:

Figure	2.18:	Normal	traffic	on	a	web	server	running	on	172.16.136.1

2.	 Now	that	everything	is	up	and	running,	we	will	try	to	do	some	directory	listing
manually	from	Linux,	which	will	give	eventually	HTTP	404	error	messages.

The	traffic	generated	through	this	request	is	captured,	which	can	be	seen	in	the
following	screenshot:

Figure	2.19:	HTTP	404	Traffic

We	can	see,	in	the	preceding	captured	traffic,	that	the	client	requested	the	abc.jpg
resource,	which	was	not	available;	thus,	the	client	received	a	404	Not	found	error.

3.	 We	figured	out	easily	because	there	is	just	one	client	requesting	a	single	resource.
Consider	a	production	environment	where	thousands	of	clients	are	present	and	they
might	do	the	same.	In	such	cases,	coloring	a	specific	set	of	packets	with	a	different
rule	is	a	game	changer.

4.	 Navigate	to	Edit	Coloring	Rules	|	New.	Type	HTTP	404	in	the	Name	box.	Type
http.response.code==404	in	the	String	box.	Choose	the	Foreground	Color	option
as	Cyan,	and	choose	the	Background	Color	option	as	Black.	Then,	click	on	OK	and
navigate	to	Apply	|	OK.

5.	 Once	you	click	on	Apply,	you	will	see	that	only	the	HTTP	404	error	packets	will	be
colored	according	to	your	new	coloring	rule.

Figure	2.20:	After	applying	the	new	coloring	rule

Try	the	same	using	a	virtual	environment	to	give	yourself	more	insight	into	the	topic.

Coloring	rules	listed	in	the	Edit	Coloring	Rules	dialog	will	be	checked	in	a	top-to-bottom
manner.	With	every	packet,	there	is	coloring	rule	information	attached	that	can	be	listed
from	the	Packet	Details	Pane	under	the	Frame	section.	Consider	the	following
screenshot	illustrating	the	same:

Figure	2.21:	Coloring	info	in	a	frame	header

Create	new	Wireshark	profiles
Profiles	in	Wireshark	are	like	customized	environments,	which	can	save	a	significant
amount	of	time	while	auditing	a	network.	A	profile	is	a	set	of	different	components,	such
as	capture	filters,	display	filters,	time	preferences,	column	preferences,	protocol
preferences,	color	profiles,	and	so	on,	that	fit	together	and	give	you	a	case-specific
scenario,	which	you	might	require	instantly.

Importing	and	exporting	profiles	is	very	easy	in	Wireshark,	which	is	pretty	useful	while
auditing	a	network	where	you	don’t	have	your	preinstalled	tools.	Just	copy	and	paste	the
Profile	configuration	files	in	a	certain	directory	to	use	them.	To	create	a	profile,	follow
these	steps:

	
1.	 Right-click	on	the	Profile	column	in	Status	Bar.

2.	 Click	on	New…	in	the	pop-up	dialog.

3.	 Now,	choose	any	profile	you	wish	to	use	as	a	template	and	type	the	name	of	the	new
profile.

4.	 And	then,	click	on	OK.

Now,	in	the	status	bar,	you	will	see	the	the	same	profile	has	been	activated.	The	changes
that	you	are	going	to	make	in	this	profile	stay	here,	for	example,	you	can	create
capture/display	filters,	change	protocol	preferences,	and	change	color	preferences.	This
means	that	any	changes	in	a	profile	do	not	alter	the	contents	of	other	profiles	that	are
saved.

This	way,	we	can	create	different	profiles	for	case-sensitive	scenarios	that	can	save	time
and	make	the	task	easy.

Summary
Using	the	Find	utility	can	be	pretty	useful	sometimes,	and	can	be	accessed	from	the	Edit
menu	in	Wireshark.	The	Find	utility	gives	us	various	vectors	to	search	the	packet	content.

Filtering	traffic	lets	you	see	only	those	packets	that	you	are	interested	in;	there	are	two
types	of	filters:	display	filters	and	capture	filters.

Display	filters	hide	the	packets,	and	once	the	expression	you	made	is	cleared,	all	packets
can	be	seen	again.	However,	capture	filters	discard	the	packets	that	do	not	meet	the
expression	that	you	created.	Discarded	packets	are	not	passed	to	the	capturing	engine.

Capture	filters	use	the	BPF	syntax,	which	is	an	industry	standard	and	is	used	by	several
other	protocol	analyzers.

Coloring	preferences	can	be	really	useful	while	filtering	a	certain	set	of	traffic	based	on	a
specific	expression.	Distinguishing	packets	will	be	become	easy,	as	the	matched	packets
will	be	shown	with	a	different	coloring	scheme.

Profiles	are	like	case-sensitive	scenarios	that	can	save	your	time	and	workload.	Changes
made	to	the	profiles	with	respect	to	its	different	components,	such	as	display/capture	filter
and	color/protocol/time	preferences,	stay	within	the	same.

Exporting	profiles	and	various	settings	from	Wireshark	is	very	simple,	which	make	the
software	more	portable.

In	the	next	chapter,	you	will	learn	how	to	work	with	Wireshark’s	advanced	features	such
as	graphs	and	statistical	options.

Practice	questions
Q.1	Explain	the	difference	between	display	filters	and	capture	filters,	and	which	is	more
efficient	in	terms	of	system	resource	utilization.

Q.2	Explain	the	difference	between	Find	Utility	and	Filters.	Use	the	Find	utility	to	search
using	hex	values.

Q.3	Create	a	capture	filter	to	capture	only	ARP	broadcast	packets.

Q.4	Create	a	capture	filter	to	capture	all	packets	except	the	packet	destined	to	and
originated	from	your	physical	address.

Q.5	Create	a	capture	filter	to	capture	only	TCP	SYN	packets	and	TCP	ACK	packets.

Q.6	Create	a	capture	filter	to	capture	HTTP	traffic	sent	only	from	you	machine.

Q.7	Create	a	display	filter	to	show	packets	originating	only	from	your	IP.

Q.8	Create	a	display	filter	to	see	packets	that	are	only	related	to	the	protocol	Secure
Socket	layer.

Q.9	Create	a	display	filter	to	see	only	the	ICMP	destination	host’s	unreachable	packets.

Q.10	Create	a	display	filter	to	see	only	TCP	packets	with	a	FIN	and	ACK	flags	set.

Q.11	Create	a	display	filter	to	show	TCP	packets	with	header	length	greater	than	40.

Q.12	Change	the	coloring	scheme	for	all	the	DNS	query	Type	A	packets	to	the	color	of
your	choice.

Q.13	Change	the	coloring	scheme	of	all	HTTP	error	messages	to	the	color	of	your	choice.

Q.14	Create	a	profile	with	the	name	DNS	using	a	default	profile,	and	create	a	capture	filter
in	this	profile	that	will	capture	DNS	traffic.	Then,	change	the	coloring	scheme	of	all	DNS
response	packets	to	the	color	of	your	choice.

Chapter	3.	Mastering	the	Advanced	Features	of
Wireshark
In	this	chapter,	we	will	look	under	the	hood	of	the	Statistics	menu	in	Wireshark	and	work
with	different	command-line	utilities	that	come	pre-packaged	with	Wireshark.	Here,	we
will	cover	the	following	topics:

	
Collecting	network	stats	using	Wireshark’s	Statistics	menu
LabUp—Summary,	Protocol	Hierarchy,	Conversations,	and	Endpoints
Mapping	overall	traffic	in	graphical	form
LabUp—Graphs
View	network	traffic	in	plain-text	form
LabUp—TCP	Streams
Learn	how	to	view	logged	anomalies	in	your	trace	file
LabUp—Expert	Infos
Using	command-line	tools	for	protocol	analysis
LabUp—CommandLine
Practice	questions

With	Wireshark,	you	can	access	a	variety	of	statistics	about	the	packets	and	protocols
involved	in	the	communication	between	two	hosts.	We	can	collect	basic	as	well	as
advanced	and	specific	information	about	protocols	that	are	involved	in	the	communication
process.	We	will	discuss	most	of	the	useful	tools	available	in	this	menu,	which	can	give	us
a	better	insight	into	dealing	with	day-to-day	complex	situations.

The	Statistics	menu
Statistics	in	Wireshark	are	not	presented	to	you	just	through	recorded	figures;	there	are
graphical	features	too,	which	can	present	the	figures	in	terms	of	graphs.	Using	this,	the
analysis	process	becomes	easier	and	much	efficient.	Multiple	types	of	graphs	are
available,	which	we	can	use	to	collect	valuable	information.

Command-line	tools	are	like	a	samurai’s	sword,	which	will	enhance	the	capability	of	a
moderate	user	to	become	and	act	like	an	advanced	user.	In	this	chapter,	we	will	see	a
couple	of	inbuilt	tools	that	are	command	based.

Using	the	Statistics	menu
A	wide	range	of	tools	related	to	network	stats	is	available	in	the	menu,	which	facilitate
users	in	gaining	information	ranging	from	general	info	to	specific	protocol	related	info	in
detail.

The	general	details	with	respect	to	the	packets	captured,	filters	applied,	marked	packets,
and	various	other	stats	can	be	checked	in	the	Statistics	menu.	Though	this	option	is	just	for
informational	purpose,	at	times	this	can	be	pretty	much	useful.

To	access	the	summary	stats,	click	on	Statistics	|	Summary;	now,	you	will	be	able	to	see	a
window,	as	shown	in	the	upcoming	screenshot.

The	Summary	dialog	is	partitioned	into	a	couple	of	sections,	which	are	as	follows:

	
File:	General	information,	such	as	the	name	of	the	file,	location	of	the	file,	format
used,	and	encapsulation,	is	listed	under	this
Time:	This	section	will	tell	you	the	time	when	the	first	and	the	last	packets	were
captured	and	the	time	elapsed	(total	capture	duration)
Capture:	This	lists	the	name	of	the	OS	along	with	the	version	used	and	the	interface
used	to	dump	packets	from	the	live	network	traffic
Comments:	This	shows	any	comments	that	the	user	mentioned	for	reference
Interface(s):	This	lists	the	details	of	every	interface,	using	which	the	traffic	is
captured
Display:	This	section	gives	statistics	regarding	any	display	filter	that	has	been	used
and	the	percentage	of	ignored	packets	after	a	filter	was	applied

Figure	3.1:	Summary	dialog

Just	below	the	Display	section,	you	must	see	a	few	columns	listing	various	details,	which
include	a	summary	in	a	tabular	format	that	is	grouped	on	the	basis	of	different	categories,
such	as	average	packet	size,	total	number	of	packets	captured,	time	elapsed	between	the
first	and	last	packet	captured,	and	so	on.

Figure	3.2:	Without	display	filter(screenshot	1)

Let’s	say,	for	instance,	we	have	a	capture	file	over	which	we	have	applied	the	display	filter
http.	After	this,	we	can	access	the	Summary	option.	Take	a	look	at	the	following
screenshot	and	try	to	compare	them	in	order	to	understand	the	difference	a	display	filter
would	make	in	the	representation	of	the	packets	related	summary.

Figure	3.3:	With	display	filter(screenshot	2)

Now,	after	applying	the	filter,	the	variance	among	the	values	listed	in	the	stats	can	be
observed.	That	is,	after	applying	the	display	filter	http,	the	Displayed%	column	has	a
different	set	of	values	as	compared	to	the	previous	one	without	display	filter.

Protocol	Hierarchy
The	Protocol	Hierarchy	window	provides	us	with	an	overview	regarding	distribution	of
protocols	used	in	the	communication	process	and	how	to	spot	unusual	activities	in	your
network	that	do	not	follow	the	benchmark	as	expected.	By	distribution	of	protocols,	I
mean	in	what	percentage	a	certain	protocol	has	been	used	in	the	communication	between
two	hosts,	and	statistics,	for	example,	how	many	bytes	and	packets	are	being	sent	and
received	for	every	protocol,	are	collected	easily.	Any	form	of	unusual	activity	can	be
easily	figured	out	by	matching	our	current	traffic	with	the	baseline	created.

Figure	3.4:	Protocol	Hierarchy	window

If	you	want	to	check	the	protocol	distribution	for	a	specific	host,	then	before	you	open	the
Protocol	Hierarchy	window,	apply	a	display	filter,	for	example,	ip.addr==172.20.10.1.
The	same	filter	will	be	visible	at	the	top	of	the	Hierarchy	window	just	below	the	title	bar.
This	makes	it	easy	for	us	to	figure	out	what	kind	of	traffic	is	actually	generated	from	a
certain	host,	and	any	malicious	traffic	from	a	certain	host	can	be	easily	figured	out.

Refer	to	the	following	screenshot:

Figure	3.5:	Protocol	Hierarchy	window	after	applying	display	filter

Using	the	Protocol	Hierarchy	window,	you	can	create	filters	too.	Just	right-click	on	the
protocol	you	wish	to	use	and	then	go	ahead	and	specify	the	expression,	as	shown	in	the
following	screenshot:

There	will	be	situations	when	a	certain	host	in	your	network	has	been	breached	and	you
might	be	observing	some	unusual	traffic	associated	with	a	particular	host.	In	such
situations,	the	Protocol	Hierarchy	window	will	prove	worthy.

Conversations
When	two	devices	are	connected	to	each	other	on	the	network,	they	are	supposed	to
communicate;	this	is	considered	normal	behavior.	However,	suppose	you	have	thousands
of	devices	connected	to	your	network	and	you	want	to	figure	out	the	most	active	device
that	is	generating	too	much	traffic,	then	in	that	instance,	the	Conversations	window	will
be	quite	useful.

To	access	this	nice	tool,	click	on	Statistics	|	Conversations.	After	this,	you	will	be
presented	with	a	window	like	the	one	shown	in	the	following	screenshot,	which	lists
various	details	in	terms	of	several	columns	listing	the	packets	that	were	transferred,	the
bytes	that	were	transferred,	the	flow	of	traffic,	devices’	MAC	addresses,	and	various	other
details.	At	the	top,	you	will	observe	various	protocols	displayed	individually	in	separate
tabs,	and	along	with	each	active	protocol	tab,	you	will	notice	a	number	that	denotes	the
number	of	unique	conversations.

Figure	3.6:	Conversations	window

For	example,	if	you	are	looking	for	the	devices	that	generated	a	lot	of	packets	and	from
where	major	data	transfer	has	happened,	then	open	the	Conversations	dialog,	go	to	the
IPv4	tab,	and	sort	the	packets	column	in	a	descending	order.	Here,	the	device	listed	in	the
first	row	is	your	answer.	Take	a	look	at	the	following	screenshot	that	illustrates	the	same.

Figure	3.7:	Busiest	devices

In	the	first	row,	we	can	see	how	many	packets/bytes	have	been	sent	and	received	by	each
endpoint	and	the	total	elapsed	duration.	If	you	wish	to	create	a	filter	for	the	same,	right-
click	on	the	first	row	and	then	create	the	respective	expression	you	are	thinking	about.	I
chose	the	first	option,	A<->B,	which	only	shows	packets	that	are	associated	with	Address
A	and	Address	B:

The	respective	filter	will	be	inserted	in	the	Display	Filter	dialog,	as	shown	in	the
following	screenshot:

The	Conversations	dialog	will	let	us	collect	and	analyze	details	in	a	more	granular	form,
which	can	be	used	in	various	scenarios	while	troubleshooting	and	auditing	networking
infrastructures.

Endpoints
Two	devices	that	share	data	with	each	other	are	often	referred	to	as	endpoints	with
reference	to	Wireshark.	As	we	have	noticed	and	observed,	if	a	host	intends	to	talk	to
another	host	on	the	network,	they	would	require	some	form	of	address	to	send	and	receive
packets—yes,	I	am	talking	about	the	physical	address	that	every	device	holds.

Every	host	is	able	to	communicate	with	the	help	of	an	Network	Interface	Card	(NIC)
that	holds	a	physical	address	(often	termed	as	a	MAC	address),	and	the	same	address	is
used	for	communication	over	a	local	network.	Devices	that	communicate	in	this	kind	of
infrastructure	are	termed	as	endpoints.	Wireshark	gives	us	the	facility	of	analyzing	and
collecting	information	regarding	these	two	devices.

Let’s	say,	for	example,	that	we	are	observing	heavy	network	traffic	flowing	across	a
network,	which	is	kind	of	unusual	according	to	our	daily	traffic	pattern.	Now,	we	want	to
figure	out	due	to	which	device(s)	the	traffic	pattern	differs.	For	us,	the	Endpoints	dialog
comes	to	the	rescue,	which	can	be	accessed	from	the	Endpoints	menu	under	Statistics,
which	looks	something	like	the	following	screenshot.	Before	you	go	ahead	and	open	the
Endpoints	dialog,	simply	click	on	any	TCP	packet	from	the	Packet	List	pane.	What	you
will	see	is	a	list	of	tabs	visible	at	the	top,	each	stating	a	different	a	protocol.	Some	of	them
will	be	shown	as	active,	and	some	of	them	will	be	shown	as	inactive	because	if	in	your
traffic	you	have	a	packet	relating	to	a	certain	protocol,	the	tab	listing	that	particular
protocol	will	be	shown	as	active;	otherwise,	it	will	be	shown	as	inactive.

By	default,	you	will	be	presented	with	the	Ethernet	tab	(lists	the	Layer-2	MAC	address)
in	most	cases.	Along	with	the	protocol,	you	must	observe	a	number	that	states	the	number
of	endpoints	captured	for	that	specific	protocol.	As	in	our	case,	we	are	seeing	3	and	the
same	number	of	rows	are	visible	in	the	Main	pane.

In	the	Main	pane,	many	more	specific	details	can	be	seen	for	every	endpoint,	such	as	the
total	number	of	packets	transferred,	total	number	of	bytes	transferred,	and	total	bytes	and
packets	received	and	transmitted	for	an	individual	endpoint.

Figure	3.8:	Endpoints	window

Now,	if	you	want	to	analyze	other	protocols,	then	simply	click	on	any	tab	of	your	choice.	I
clicked	on	the	IPv4	tab	and	sorted	the	main	pane	using	the	Packets	column,	which	looks
like	the	one	shown	in	the	following	screenshot:

By	just	looking	at	the	Endpoints	dialog,	I	can	now	easily	figure	out	that	maximum	data
was	transferred	from	IP	172.20.10.7.	This	could	be	a	one	single	IP	talking	to	some	server
or	probably	a	server	talking	to	multiple	machines	on	our	network	at	a	moderate	rate.

Figure	3.9:	Endpoints	dialog—IPv4v	tab

If	you	would	like	to	dig	more	into	it,	we	have	an	interesting	option	that	can	be	taken
advantage	of;	simply	create	a	display	filter	for	the	same.	To	do	so,	right-click	on	the	first
row	with	most	packets	transferred	and	choose	Selected	under	Apply	as	Filter,	as	shown
in	the	following	screenshot:

You	will	be	able	to	see	a	display	filter	for	the	same	Endpoint	in	the	Display	Filter	dialog
above	the	List	pane,	like	the	one	shown	here:

This	facilitates	us	to	quickly	analyze	traffic	for	a	certain	endpoint	and	hence	increases	the
speed	of	analysis	for	users.	Once	you	click	on	Clear,	you	will	be	presented	with	the	same
Endpoint	dialog.	At	the	bottom	of	the	window,	you	will	see	two	check	boxes	and	a	few
buttons.	The	purpose	of	each	is	listed	in	the	following:

	
Name	Resolution:	This	resolves	the	name	of	each	of	the	Ethernet	addresses	listed	in
the	Ethernet	tab.	But	in	some	scenarios,	it	might	affect	the	performance	of	the
application	adversely	too,	for	example,	when	trying	to	resolve	the	unique	IP
addresses	from	a	huge	pcap	file.
Limit	to	display	filter:	This	limits	the	results	of	the	Endpoint	window	on	the	basis	of
a	display	filter	that	you	already	applied	before	accessing	the	Endpoints	window.
Copy:	This	copies	the	content	of	the	current	Endpoints	window	tab	in	a	CSV	format
(comma-separated	values).
Map:	This	maps	the	selected	endpoint’s	location	in	your	browser	on	the	basis	of	its
actual	geographical	location.

Working	with	IO,	Flow,	and	TCP	stream	graphs
Among	various	other	reporting	tools,	Wireshark	offers	graphing	capabilities	too,	which
can	present	captured	packets	in	an	interesting	format	that	makes	the	analysis	process	much
more	effective	and	easy	to	adapt.	The	graphing	feature	is	much	more	effective	in
comparison	to	scrolling	thousands	of	packets	to	figure	out	the	cause	of	any	network-
related	problem.	If	you	have	an	overwhelming	number	of	packets	to	be	analyzed,	then
graphs	can	be	seriously	productive.	There	are	multiple	types	of	graphs	available	that	we
will	discuss,	starting	with	the	IO	graph.

IO	graphs
This	is	one	of	the	basic	graphs	that	are	created	using	the	packets	available	in	the	capture
file.	To	create	the	IO	graph,	select	any	TCP	packet	in	your	capture	file	and	then	click	on
IO	Graph	under	Statistics.	Refer	to	the	following	screenshot:

Figure	3.10:	IO	graphs

This	way,	you	can	see	the	highs	and	lows	in	your	traffic,	which	can	be	used	to	rectify
problems	or	can	even	be	used	for	monitoring	purpose.	In	the	preceding	graph,	the	data	on
the	x	axis	represents	the	time	in	seconds	and	the	data	on	y	axis	represents	the	number	of
packets	per	tick.	The	scale	for	the	x	and	y	axis	can	be	altered	if	needed,	where	x	axis	will
have	a	range	between	10	and	0.001	seconds	and	y	axis	values	will	range	between
packets/bytes/bits.

From	the	preceding	graph,	we	can	easily	depict	that	between	sixtieth	to	eightieth	second	of
the	capture	process,	the	network	was	most	active,	which	generated	approximately	1000
packets	each	second	of	the	capture	process.	Now,	you	will	be	realizing	how	easy	it	was	to
gather	that	specific	information	from	thousands	of	packets	in	merely	4-5	seconds;	this	is
what	graphing	makes	you	capable	of.

Just	below	the	plotted	area,	you	can	see	the	Graph	section,	which	lists	various	tools,	such
as	Graphs	1-5,	several	filters,	and	the	line	format,	and	various	other	details.	Let’s	take	an
example	and	try	to	understand	the	functioning	of	each	of	them.

The	preceding	graph	displays	the	generalized	form	of	our	network	traffic.	Now,	my
requirement	is	that	I	just	want	to	see	the	frequency	of	the	UDP	traffic	separately	in	the
same	graph	plotted	with	a	red	line.	For	such	specifications,	follow	these	steps:

	
Write	UDP	as	a	filter	in	the	second	filter	box	from	the	top
Click	on	the	Graph	1	button	to	deactivate	it
Click	on	the	Graph	2	button	to	activate	it
Now,	you	will	see	the	same	window	as	shown	in	the	following	screenshot:

Figure	3.11	:	IO	graph-UDP	traffic	only

Analyzing	specifically	UDP	traffic	becomes	easier	in	just	a	few	steps.	It	is	clearly	visible
from	the	preceding	graph	that	most	of	the	UDP	traffic	was	generated	between	the
seventieth	to	eightieth	second	of	the	capture	process,	and	more	than	250	packets	were
received	during	the	capture	process.	If	you	want	to	compare	both	TCP	and	UDP	traffic	in
the	same	graph,	take	a	look	at	the	following	screenshot:

Figure	3.12:	IO	Graphs—TCP	and	UDP	together

Comparing	two	things	gives	us	a	new	angle	to	view	regular	things,	and	generally
speaking,	the	learning	process	becomes	better	when	we	start	comparing.

Flow	graphs
This	is	one	of	the	nicest	features	in	Wireshark,	where	we	are	assisted	with	troubleshooting
capabilities	in	scenarios	like	facing	a	lot	of	dropped	connections,	lost	frames,
retransmission	traffic,	and	more.	Flow	graphs	let	us	create	a	column-based	graph,	which
summarizes	the	flow	of	traffic	between	two	endpoints,	and	it	even	lets	us	export	the	results
in	a	simple	text-based	format.	This	is	the	easiest	way	of	verifying	the	connection	between
client	and	server.

For	instance,	I	have	a	web	server	running	at	172.16.136.1	and	a	client	running	at
172.16.136.129.	The	client	will	request	the	web	server	for	a	certain	resource.	Let’s	see
what	the	flow	graph	looks	like	for	such	kind	of	requests.	There	will	be	hundreds	of
packets	generated,	but	we	will	look	only	at	HTTP	packets,	just	to	make	the	results	more
confined	and	understandable.	Click	on	Flow	Graph	under	Statistics,	and	then	from	the
pop-up	dialog,	choose	Displayed	Packet.	Click	on	OK.	Refer	to	the	following	screenshot
that	illustrates	the	same:

Figure	3.13:	Flowgraph

Now,	from	the	Graph	Analysis	window,	we	can	see	at	what	time	a	certain	request	was
made	and	what	response	did	we	receive,	which	TCP	port	was	used,	along	with	some	plain
English	comments,	and	the	flow	of	traffic	is	also	marked.	This	makes	it	simple	for	us	to
understand	how	TCP	packets	flow	around.

TCP	stream	graphs
There	are	a	couple	of	graphs	that	come	in	this	section.	Each	of	them	depicts	the	network
traffic	in	a	graphical	form	differently.	Let’s	start	by	taking	a	look	at	each	one	of	them.

Round-trip	time	graphs
Round-trip	time	(RTT)	is	the	duration	in	which	the	ACK	for	a	packet	that	is	sent	is
received,	that	is,	for	every	packet	sent	from	a	host,	there	is	an	ACK	received	(TCP
communication),	which	determines	the	successful	delivery	of	the	packet.	The	total	time
that	is	consumed	from	the	transfer	of	the	packet	to	the	ACK	for	the	same	is	called	round
trip	time.	Follow	these	steps	to	create	one	for	yourself:

	
Select	any	TCP	packet	in	your	packet	list	pane.
Navigate	to	Statistics	|	TCP	Stream	Graph	|	Round	Trip	Time	Graph.
The	x	axis	represents	the	TCP	sequence	number	and	the	y	axis	represents	the	RTT	in
seconds.
Each	plotted	point	on	the	graph	represents	the	RTT	of	a	packet.	If	you	are	not	seeing
anything	in	your	graph,	then	you	might	have	selected	an	opposite	directional	packet.
RTT	graphs	are	often	used	by	network	admins	to	identify	any	congestion	or	latency
that	can	make	your	network	perform	slowly.
To	investigate	further,	just	click	on	any	plotted	RTT	dot	in	your	graph,	and	Wireshark
will	point	you	to	that	specific	packet	in	the	list	pane.

The	following	RTT	graph	represents	normal	web	traffic,	and	at	some	points	in	the	graph,
latency	can	be	observed:

Figure	3.14:	Round	Trip	time	Graph

Bottleneck	and	latency	can	often	be	identified	with	a	vertical	line	of	plotted	RTT	dots,
which	depicts	whether	the	packet	from	the	sending	device	is	first	queued	up	and	then	sent
all	at	once	or	whether	the	packets	are	suffering	with	duplicate	ACKs	or	packet	loss,	where
retransmission	was	required,	thus	increasing	the	RTT	time.

Throughput	graphs
This	graph	is	very	similar	to	the	IO	graph	that	depicts	the	traffic	flow.	However,	it	is
different	in	one	important	aspect	that	Throughput	graphs	depict	the	unidirectional	traffic
whereas	IO	graphs	depict	the	traffic	in	both	directions.	For	every	TCP	packet	that	you
select	in	the	list	pane,	the	Throughput	graph	can	be	different.	If	you	are	seeing	a	blank
graph,	then	just	select	another	TCP	packet	and	try	to	create	the	graph	again.	Follow	these
steps	to	create	one	for	yourself:

	
1.	 Open	the	trace	file	that	contains	your	packets.
2.	 Apply	a	display	filter	if	required.
3.	 Select	any	TCP	packet	from	the	list	pane.
4.	 Navigate	to	Statistics	|	TCP	Stream	graphs	|	Throughput	graph.
5.	 Voila!	It’s	done.

In	the	title	bar,	the	IP	address	of	the	communicating	hosts	is	present,	along	with	the
direction	of	traffic.	The	x	axis	represents	the	time	in	seconds,	and	the	y	axis	represents
throughput	in	bytes/seconds.	Refer	to	the	following	graph	(Figure	3.15)	that	illustrates	the
same:

Figure	3.15:	Throughput	Graph

The	Time-sequence	graph	(tcptrace)
This	graph	depicts	the	stream	of	TCP	data	over	time.	The	traffic	that	will	be	presented	is
unidirectional	(moving	in	one	direction).	Time-sequence	graph	gives	us	an	idea	about	the
segments	that	are	currently	traveling,	the	acknowledgements	for	segments	that	we’ve
received,	and	the	buffer	area	that	the	client	is	capable	to	hold.	To	create	this	graph,	follow
these	steps:

	
1.	 Open	the	capture/trace	file	you	want	to	work	with.
2.	 Click	on	any	TCP	packet	from	the	list	pane.
3.	 Navigate	to	Statistics	|	TCP	Stream	Graphs	|	Time	sequence	graph(tcptrace).
4.	 You	must	now	see	something	like	the	following:

Figure	3.16	:	Time	Sequence	graph	(tcptrace)

The	x	axis	of	the	graph	represents	the	time	in	seconds	and	the	y	axis	represents	the	TCP
sequence	number.	TCP	sequence	numbers	are	incremented	by	the	bytes	of	data	sent	with
every	packet,	that	is,	if	the	sequence	number	is	1	and	the	packet	we	are	sending	holds	10
bytes	of	data,	then	the	sequence	number	will	be	incremented	by	10.	Hence,	the	sequence
number	for	the	next	packet	to	be	sent	will	be	11.	The	throughput	of	the	data	is	more	when

we	have	steeper	lines	plotted,	normally,	the	graph	plotting	starts	from	the	lower-left	corner
to	upper-right	corner.

There	are	actually	three	lines	plotted	on	every	graph.	The	line	with	multiple	I	written	is
the	TCP	data	segment,	and	the	longer	the	I	stream,	the	more	the	data	in	the	packet.	The
line	below	the	TCP	segment	is	the	ACK	stream	for	data	sent,	and	the	line	at	the	top
represents	the	calculated	client-receiving	window.

The	distance	between	the	client-receiving	window	line	and	the	TCP	segment	line	is	the
window	size.	The	closer	the	line,	the	less	data	can	be	buffered,	and	vice	versa.	Consider
the	following	zoomed-in	screenshot	for	more	understanding:

Figure	3.17:	Throughput	graph

Let’s	suppose	that	at	1.38	seconds	Host	A	is	sending	byte	995,000,	and	at	the	same	time,
host	A	received	an	ACK	for	byte	990,000,	which	states	that	5,000	bytes	are	still
unacknowledged	(in-flight).	A	point	to	be	noted	here	is	that	the	dark	grey	lines	denote	the
ACKs	received.

Follow	TCP	streams
Wireshark	provides	the	feature	of	reassembling	a	stream	of	plain	text	protocol	packets	into
an	easy-to-understand	format.

Figure	3.18:	Follow	TCP	Stream	window

For	instance,	assembling	an	HTTP	session	will	show	you	the	GET	requests	sent	from	the
client	and	the	responses	received	from	the	server	accordingly.	There	is	specific	color
coding	that	is	followed	by	the	requests	and	responses	shown	in	the	Follow	TCP	stream
dialog.	Any	text	in	red	color	denotes	a	request	that	a	client	has	sent,	and	any	text	in	blue
color	denotes	the	response	received	from	the	server.	If	the	protocol	is	HTTP,	then	you	can
view	almost	everything	in	plain	text;	if	the	protocol	is	HTTPS,	then	most	of	the	things	will
be	encrypted,	hence	giving	ambiguous	text	on	the	screen	(there	is	a	way	to	decrypt
HTTPS	traffic	too,	which	we	will	discuss	in	the	upcoming	chapters).	The	Follow	TCP
stream	option	can	be	of	great	help	while	troubleshooting	any	HTTP	session,	which	is	the
same	with	most	of	the	application	layer	protocols.

At	the	bottom	of	the	dialog,	you	have	a	drop-down	menu	from	where	you	can	choose	to
view	either	side	of	communication	or	you	can	choose	the	entire	communication,
consisting	of	requests	and	responses	that	are	shared	between	the	client	and	the	server	at
the	same	time.	Instead	of	just	viewing	the	data	in	RAW	format,	you	can	choose	between
ASCII,	EBCDIC,	Hex	dump,	and	C	arrays	format.

If	you	wish	to	save	the	content	shown	in	the	dialog,	then	click	on	Save	as,	which	will	save

the	content	in	a	simple	text	format.	Similarly,	to	print,	you	can	click	on	Print.	And	if	you
want	to	view	everything	except	the	Follow	TCP	stream	packets	that	you	are	viewing
currently,	then	click	on	Filter	out	this	stream.	To	close	the	dialog,	click	on	Close.

To	view	the	TCP	stream,	follow	these	steps:

	
1.	 Open	the	capture/trace	file.
2.	 Apply	the	display	filter	if	required.
3.	 Select	any	packet	from	the	list	pane.
4.	 Right-click	on	the	selected	packet	and	click	on	Follow	TCP	stream.

Following	the	preceding	steps	gives	a	simple	view	of	viewing	data.	Now,	figuring	out	who
initiated	the	connection	will	be	quite	easy.

Expert	Infos
The	information	in	the	Expert	Infos	dialog	is	populated	by	the	dissectors	that	enable	the
translation	of	every	protocol	that	is	well	known	to	Wireshark.	The	Expert	Infos	dialog
keeps	you	aware	of	the	specific	states	that	users	should	know	about.	Presently,	expert
infos	is	available	only	for	TCP-based	communication.	Maybe	for	other	protocols,	the
Expert	Info	dialog	will	be	available	by	the	time	you	read	this.

You	can	access	the	Expert	Info	dialog	by	clicking	on	Expert	Info	under	Analyze,	or	you
can	click	on	the	bottom-left	corner	on	the	colored	dot	just	before	the	status	bar.	Refer	to
the	following	screenshot,	which	illustrates	the	same:

The	red	dot	at	the	bottom-left	corner	can	be	colored	with	different	colors,	such	as	cyan,
yellow,	green,	blue,	and	grey,	where	each	of	them	has	a	specific	meaning,	which	is	listed
as	follows:

	
Red:	This	indicates	errors

Yellow:	This	refers	to	warnings
Cyan:	This	refers	to	a	note
Blue:	This	refers	to	chats
Green:	This	refers	to	comments
Grey:	This	means	none

Now,	let’s	have	a	look	at	the	Expert	Infos	dialog	and	discuss	various	other	elements
residing	within.	Refer	to	the	following	screenshot	for	illustration	purposes:

Figure	3.19:	Expert	Infos	dialog

As	you	can	observe,	there	are	multiple	tabs	listed	just	below	the	title	bar	that	consist	of
packets	listed	depending	on	their	severity	level	and	category	of	information.	There	are
mainly	four	sections	in	the	Expert	Infos	dialog	that	point	to	the	likely	cause	of	the
problem,	so	double-checking	it	will	be	helpful.	Each	tab	contains	the	name	of	the	section
and	two	numbers:	one	inside	the	parenthesis	and	one	outside.	The	number	inside	the
parenthesis	denotes	the	total	number	of	packets	that	have	been	flagged	for	the	containing
category,	and	the	number	outside	denotes	the	total	number	of	unique	categories	for	the
packets	flagged.

We	will	go	through	each	section	one	by	one,	and	we	will	also	summarize	the	criteria	by
which	packets	are	flagged	and	listed	under	different	categories,	such	as	chat,	note,
warnings,	details,	and	so	on:

	
Chat:	These	are	general	messages	concerning	the	current	communication.	A	packet
that	falls	under	this	section	is	listed	as	follows:

Window	Update:	This	makes	the	sender	aware	that	the	TCP	receive	window
size	has	been	updated.

Note:	These	are	unusual	messages	that	may	or	may	not	be	part	of	the	current	normal
communication.	Packets	that	fall	under	this	section	are	listed	as	follows:

The	Zero	Window	Probe:	Suppose	that	the	server	receiving	the	packets	from
the	client	is	not	able	to	process	the	packets	received	at	the	same	speed	that	the
client	is	sending	them,	thus	causing	packet	loss.	In	such	cases,	a	server	will	send
a	Zero	Window	packet	to	the	client	to	halt	the	process	of	sending	packets	for
sometime	while	keeping	the	connection	alive.
The	Keep	Alive	ACK:	The	receiver	of	the	Keep	Alive	packets	sends	this	ACK
as	a	response.
The	Zero	Window	Probe	ACK:	This	relates	to	the	Zero	Window	Probe
example.	The	Zero	Window	Probe	ACK	will	be	sent	by	the	client	in	response	to
the	server’s	request.
Window	is	full:	This	notifies	the	sending	host	that	the	TCP-receiving	window	is
currently	full.
TCP	retransmission:	The	TCP	packet	is	retransmitted	again	because	of	a
duplicate	ACK,	packet	loss,	or	if	the	timer	for	retransmission	expires.
The	duplicate	ACK:	If	you	think	about	the	TCP	three-way	handshake
communication,	for	every	packet	received	at	the	other	end,	the	sender	should	get
an	ACK	packet.	If	the	receiver	gets	the	packet	with	the	sequence	number	that
has	already	been	received,	then	duplicate	ACKs	will	be	generated.	This	will
happen	in	case	of	packet	loss	as	well.

Warning	messages:	These	are	unusual	messages	that	are	probably	not	a	part	of	your
general	communication.	Packets	that	fall	under	this	section	are	listed	as	follows:

Zero	Window:	These	messages	have	been	observed	when	the	receiving	side
tries	to	notify	the	sender	to	stop	sending	for	a	while	as	the	TCP-receiving
window	is	full.
Keep	Alive:	These	messages	will	be	observed	when	any	Keep	Alive	messages
have	been	captured	in	the	communication.
ACKed	Lost	Packet:	These	messages	will	be	observed	when	an	ACK	for	some
lost	packet	is	received.
Previous	Segment	Lost:	These	messages	will	be	observed	when	an	unexpected
packet	is	received	out	of	sequence.
Out	of	Order:	These	messages	will	be	observed	when	are	packets	received	in
some	random	sequence,	thus	signifying	no	sequence.
Fast	Retransmission:	These	messages	will	be	popped	up	when,	in	a	short	time
of	20	milliseconds,	duplicate	ACKs	have	been	transmitted	again.

Error:	These	are	general	error	messages	in	the	packets	or	are	thrown	by	the	dissector
of	a	specific	protocol	translating	it.	There	is	no	specific	category	in	error	messages.
Details:	Collectively,	all	Expert	Info	dialogs	can	be	viewed	in	the	details	tab.
However,	it	is	advisable	to	look	into	each	tab	individually	on	the	basis	of	their
severity	level.	Pointing	out	the	problems	can	be	sometimes	easy	because	the	entries
made	in	the	details	tab	are	lined	up	in	the	sequence	as	they	were	captured.	Viewing
anomalies	through	the	details	tab	can	be	a	bit	time	consuming	and	disadvantageous.
Packet	Comments:	This	refers	to	any	annotations	given	regarding	the	trace	file	that
can	be	used	to	share	any	interpretations	further.	Adding	comments	to	the	trace	file
can	be	really	useful	while	documenting	for	future	references.	To	add	a	comment	to
any	packet	of	your	choice,	just	right-click	on	the	selected	packet	and	click	on	Packet
Comment.	You	will	be	presented	with	a	dialog	where	you	can	add	a	comment	of

your	choice,	and	the	same	comment	will	be	visible	in	the	Packet	Comments	section
of	the	Expert	Infos	dialog.	Adding	a	comment	will	also	affect	how	a	certain	packet	is
shown	in	the	Details	pane.	Generally,	an	extra	field	will	be	added	to	the	details	pane
highlighted	with	a	green	background	color.

Figure	3.20:	Create	filter	using	Expert	Infos	dialog

Unique	categories	presented	in	every	section	can	be	expanded	to	get	more	information
about	a	specific	packet.	When	you	expand	and	click	on	the	packet	listed	in	the	Expert
Infos	dialog,	Wireshark	will	point	you	to	the	corresponding	packet	in	the	list	pane	that	can
be	investigated	further.	Creating	a	display	filter	for	every	category	is	also	possible;	just
right-click	on	the	selected	category	and	choose	the	type	of	filter	you	want	to	create.	Refer
to	the	following	screenshot	for	illustration	purposes:

The	main	motive	of	the	Expert	Infos	dialog	is	to	find	the	anomalies	present	in	a	trace	file.
Finding	the	network	problems	in	the	trace	file	for	a	novice	user	becomes	a	lot	easier	and
faster.	Viewing	the	Expert	Infos	dialog	can	give	a	better	idea	about	the	unusual	behavior
of	network	packets.	As	we	already	discussed,	the	Expert	Infos	dialog	is	available	for
protocols	based	on	TCP/IP;	for	the	rest,	there	is	not	much	info	available.

The	best	way	to	figure	out	juicy	info	is	to	look	into	the	tabs	separately	instead	of	looking
into	the	details	tab	because,	as	we	discussed,	it	can	be	time	consuming	and	can	lead	to
various	misunderstandings.	Users	like	you	are	not	supposed	to	rely	completely	on	Expert
Infos;	sometimes,	the	file	you	trace	will	contain	anomalies	that	won’t	be	listed	in	the

Expert	Infos	dialog.	May	be,	manual	analysis	will	be	required	as	well.

The	protocol	field	that	is	shown	in	the	details	pane	of	the	selected	packet	will	be	colored
as	per	the	severity	level	of	the	Expert	Infos	dialog;	take	a	look	at	the	following	screenshot
for	further	reference:

Figure	3.21:	Colorization	rules	in	protocol	field

We	can	easily	identify	from	the	preceding	screenshot	that	for	this	particular	packet,	there
is	an	entry	in	the	Error	and	Chat	sections	(red	color	denotes	Error	and	blue	denotes	Chats).
It	is	also	possible	that	a	single	packet	is	listed	in	two	sections	of	the	Expert	Infos	dialog.

Command	Line-fu
With	the	default	installation	of	Wireshark,	there	are	couple	of	command-line	tools	that	get
installed.	These	command-line	tools	are	some	sort	of	protocol	analyzers,	which	can	be
taken	advantage	of	when	you	don’t	have	a	GUI	interface	to	work	with	or	you	don’t	have
an	option	to	install	the	GUI.	There	are	good	number	of	tools	available	in	Wireshark	to	do
this,	which	are	Capinfos,	Dumpcap,	Editcap,	Mergecap,	Rawshark,	Reordercap,
Text2pcap,	and	Tshark.

The	most	common	and	widely	used	command-line	tool	for	protocol	analysis	purposes	is
Tshark,	which	is	capable	of	capturing	data	through	listening	to	a	live	wire,	and	it	can	even
analyze	your	already	saved	trace	files.	The	captured	packets	are	translated	into	an
understandable	form	and	printed	to	the	standard	output,	or	you	can	save	them	to	the	file	of
your	choice.	Dissectors	that	are	used	by	Wireshark	the	same	Tshark	utilizes.

Tshark	uses	the	pcap	library	to	capture	and	translate	the	packets	from	the	live	wire	or	from
the	already	saved	files.	Just	like	Wireshark’s	filtering	option,	we	can	enable	filters	in
Tshark.	There	are	multiple	customizable	options	present	in	Tshark	that	can	be	leveraged	to
use	it	in	a	more	advanced	fashion.

Wireshark	has	a	CLI	version,	which	is	almost	similar	to	Tshark	in	terms	of	the	syntax	and
various	options	that	both	of	them	support	equally.	Let’s	understand	this	topic	better	with
an	example.	Say,	for	instance,	we	have	an	Apache	web	server	and	FTP	running	on	a
Windows	XP	box	located	at	172.16.136.128	and	a	Macintosh	client	running	at
172.16.136.1.	Using	our	custom	infrastructure,	we	will	generate	some	network	packets
and	try	to	use	Tshark	for	capturing	and	analysis	purposes.

When	working	on	a	Windows	PC,	you	might	have	to	create	the	environment	variable
before	you	can	start	using	Tshark.	The	following	screenshot	belongs	to	Tshark,	displaying
tshark	–h	(help	options)	within	the	CLI:

Figure	3.22:	Tshark	help

We	will	start	with	the	basics	and	eventually	move	toward	the	creation	of	filters,	and	then
we	will	collect	statistics	using	the	CLI-based	tool	Tshark:

	
The	first	thing	we	should	know	is	how	many	interfaces	do	we	have	available	to
capture	packets.	Use	the	following	command	to	check	tshark	-D:

Figure	3.23:	Interfaces	available

If	you	do	not	specify	any	interface	for	capturing,	tshark	will	choose	the	first
interface	that	is	available	on	its	own.	Interfaces	can	be	chosen	by	their	names	and
also	by	the	sequence	number	they	appear	in.	Refer	to	the	preceding	screenshot,	which
shows	all	the	interfaces	that	are	available.

I	have	a	custom	interface	pktap0	that	will	listen	to	the	connection	between	my	client
and	the	server.	So,	the	command	to	initiate	the	capture	process	will	be	tshark	–i
pktap0	or	tshark	–i	5:

Now,	let’s	generate	some	HTTP	traffic	by	visiting	the	web	page	hosted	on	our	server
from	the	client	(I	am	using	the	curl	command-line	tool	for	browsing	purpose):

As	soon	as	the	preceding	command	has	been	issued,	a	couple	of	packets	are	captured
by	tshark	on	the	pktap0	interface.	And	a	summary	of	translated	packets	for	better
understandability	can	be	seen.	Refer	to	the	following	screenshot	that	illustrates	the
same:

Figure	3.24:	Packets	captured	at	pktap0

If	you	want	to	stop	the	capture	process	at	any	point,	press	Ctrl	+	C.

To	save	the	translated	packets	to	a	file,	we	need	to	specify	the	–w	switch,	along	with
the	command	that	will	save	the	raw	data	packets	to	the	specified	file:

A	total	of	11	packets	have	been	captured,	and	a	text	file	is	being	created	on	the
desktop	with	the	name	http.txt,	which	will	contain	raw	data	as	shown	in	the
following	screenshot:

Figure	3.25:	Raw	data	stored	in	file

If	you	want	to	save	the	normal	translated	form	(like	the	one	shown	in	the	list	pane	in

Wireshark),	as	shown	in	the	standard	output,	then	just	redirect	the	output	of	the	tshark
command	to	a	file	of	your	choice,	as	shown	in	the	following	screenshot:

As	you	can	see,	11	packets	are	captured	and	redirected	to	the	text	file	http2.	Let’s	see
what	is	stored	in	the	http2.txt	file:

Hopefully,	by	now	you	must	have	clearly	understood	the	difference	between	both
ways	of	saving	the	raw	data	packets	and	translated	packets.	Both	of	the	techniques
can	be	used	in	multiple	scenarios.

The	next	big	thing	you	will	learn	is	the	different	filters	(Capture,	Read,	and	Display)
available	in	Tshark.	We	know	about	Capture	and	Display	filters	already,	but	here	we
have	one	more	category,	that	is,	the	Read	filter.	The	Read	filter	is	closely	similar	to
the	Capture	filter,	as	both	of	them	can	filter	packets	from	the	live	network.	However,
the	Read	filter	is	also	capable	of	filtering	packets	out	of	a	saved	file.	Using	the	Read
filter	could	be	processor	intensive,	and	things	like	packet	loss	can	happen,	so	think
twice	before	using	it.	To	display	the	filter,	the	–f	switch	is	used;	–R	is	used	for	the
Read	filter;	and	–Y	is	used	for	the	display	filter.	Now,	I	am	going	to	capture	only	FTP
packets	using	the	following	syntax:

While	applying	a	filter,	there	is	a	restriction	that	the	filter	expression	must	be
specified	as	a	single	argument	if	it	has	spaces	in	between.	Then,	we	need	to	write	the
expression	within	double	quotes.	Refer	to	the	preceding	screenshot	that	illustrates	the
same.

Now,	let’s	try	to	create	one	display	filter	using	the	http.pcap	file.	I	want	to	filter	all
packets	originating	from	the	web	server	located	at	172.16.136.128	using	the	http

protocol.
First	I	captured	the	communication	between	the	client	and	server.	And	save	the	traffic
in	file	HTTP.pcap.

Once	I	have	enough	packets	to	work	with,	I	will	apply	display	filters,	as	shown	in	the
following	screenshot:

Figure	3.26:	Tshark	display	filter

Suppose	you	want	to	quickly	collect	statistics	about	the	http	protocol	from	the
http.pcap	file.	For	such	a	requirement,	we	can	use	this	command:	tshark	–r
<file-name>	-q	–z	<expression>

The	-q	switch	keeps	it	silent	over	the	standard	output	(this	is	generally	used	while
working	with	statistics	in	Wireshark)	and	the	–z	switch	for	activating	various
statistics	options	available.	Both	of	these	switches	are	often	used	together.

Let’s	take	one	more	simple	example	before	wrapping	this	up;	from	the	http.pcap	file,
I	want	to	figure	out	how	many	hosts	there	are	in	total	during	the	whole	capture	time.
For	such	a	requirement,	refer	to	the	following	screenshot:

Here,	you	learned	about	the	basic	theoretical	and	practical	concepts	of	the	CLI	utility
Tshark,	along	with	how	to	capture	and	filter	data	as	per	our	requirements.	With	the	help	of
Tshark,	it	becomes	really	easy	to	understand	how	protocols	work;	we	saw	various
techniques	to	collect	and	analyze	the	packets.	Statistical	features	in	Tshark	are	rich,	which
helps	a	moderate	user	become	advanced	with	an	better	understanding	of	how	to	analyze
network	packets.

Summary
The	Statistics	menu	in	Wireshark	contains	options	that	can	give	us	insight	from	a	unique
perspective.	In	this	chapter,	we’ve	discussed	features	such	as	Summary,	Conversations,
Endpoints,	and	Graphs.

Summary	is	an	informational	feature,	which	offers	a	granular	form	of	data,	filters,	and	the
trace	file	that	you	are	working	with.	The	Conversations	window	details	data	regarding	the
communication	that	happens	between	two	or	more	hosts.	The	Endpoints	dialog	gives	an
overview	of	the	devices	connected	to	the	network	and	communicating.	The	Protocol
Hierarchy	window	gives	an	idea	about	the	protocols	being	used	in	the	communication,
that	is,	it	gives	us	a	picture	of	the	distribution	of	protocols	used	by	the	hosts	for
communication.

Graphs	are	a	pictorial	way	of	representing	the	statistics	regarding	packets.	We	can	easily
figure	out	if	something	is	wrong	with	our	network;	we	can	match	network	performances
and	troubleshoot	general	day-to-day	problems	that	occur.

IO	graphs	tell	us	the	basic	status	of	a	network,	and	let	us	create	filters.	Matching	network
performances	and	differentiating	a	specific	protocol	becomes	easy	due	to	these.	The	Flow
graph	depicts	the	flow	of	data	in	a	column-based	manner	and	creates	a	simple	interface	to
understand	the	flow	of	packets	in	a	network.	TCP	stream	graphs	are	a	couple	of	types,	but
their	objective	is	to	depict	the	throughput	of	our	network,	that	is,	to	know	how	much	data
is	traveling	over	a	particular	period	of	time.

Using	the	Follow	TCP	Stream	option,	you	can	reassemble	the	packets	listed	in	a	raw	data
form,	which	can	be	easily	read.	There	are	different	options	that	are	available	to	change	the
form	to	ASCII,	Hex,	and	many	others.

The	Expert	Infos	dialog	tells	you	the	information	that	can	be	usual	and	unusual.	All	of
them	are	related	to	your	packets;	information	is	generated	with	the	help	of	protocol
dissectors,	which	translate	the	packets	to	a	normal	form,	and	if	they	find	something
unusual,	then	it	will	be	listed	in	a	section	and	under	a	category	inside	the	dialog.

Command-line	tools	also	get	installed	when	you	install	Wireshark.	The	most	common	tool
used	is	Tshark,	which	works	in	a	similar	way	to	Wireshark	and	tcpdump.	It	uses	the	pcap
library	that	is	used	by	other	major	protocol	analyzers.	With	tshark,	you	can	listen	to	live
networks	or	work	along	with	an	already	saved	capture	file.	The	Filtering	and	Statistical
features	are	really	efficient	when	dealing	with	any	network	analysis	process.	In	the	next
chapter,	we	will	dive	into	analyzing	the	commonly	used	application	layer	protocols.

Exercise
Q.1.	What	is	the	purpose	of	the	Statistics	menu	and	what	tools	does	it	contain?

Q.2.	Using	the	Conversations	dialog,	can	you	figure	out	the	busiest	host	on	the	network?
If	yes,	how?

Q.3.	Think	of	a	scenario	where	using	the	Endpoints	window	can	be	useful.

Q.4.	Is	it	possible	to	create	a	display	filter	using	the	Endpoints	window?

Q.5.	Switch	the	name	resolution	feature	off	while	viewing	the	conversations	window.
What	difference	does	it	make	if	it	is	switched	on?

Q.6.	Can	using	the	Summary	option	from	an	already	saved	capture	file	help	you	figure	out
the	total	number	of	ignored	packets	after	you	apply	a	display	filter?

Q.7.	Describe	the	benefits	of	using	different	graphing	techniques	while	analyzing	data.

Q.8.	Using	an	IO	graph,	create	a	filter	to	plot	the	DNS	traffic	in	a	green	line.

Q.9.	Create	an	IO	graph	and	show	UDP	traffic	in	red	along	with	general	TCP	traffic.	Then,
change	the	y	axis	unit	to	per	bytes.

Q.10.	Create	a	display	filter	for	FTP	packets,	and	apply	the	same	in	a	Flow	graph.	Then,
customize	it	to	check	the	SEQ	number	and	ACKs	instead	of	details.

Q.11.	Using	a	previously	captured	file,	create	a	Round	Time	Trip	graph	and	figure	out	the
packet	whose	RTT	is	the	highest.	Then,	check	the	sequence	number	of	that	packet	and
verify	its	sequence	number	by	comparing	it	with	the	graph.

Q.12.	Create	a	Throughput	graph	between	a	server	and	your	client.	Try	to	figure	out	at
what	time	the	throughput	was	at	its	peak	and	also	try	to	check	the	average	throughput	in
bytes/seconds.

Q.13.	If	you	have	a	requirement	to	view	TCP	packets	in	a	raw	data	form,	then	which
option	will	you	opt	for	to	customize	the	same	window	in	order	to	view	just	the	responses
from	the	server	side?

Q.16.	Point	out	at	least	5	benefits	of	using	the	Follow	TCP	Stream	dialog.

Q.17.	Explain	the	significance	of	the	Expert	Info	dialog	and	figure	out	how	many
categories	are	there	in	a	Warnings	section.

Q.18.	Using	a	command-line	protocol	analyzer,	start	sniffing	your	currently	working
network	interface	and	save	all	traffic	to	a	file	named	traffic.pcap	(capture	traffic	at	least
for	a	minute).

Q.19.	Capture	only	DNS	traffic	using	tshark	and	save	all	the	capture	packets	to	a	file
named	DNS.pcap.

Q.20.	Create	a	display	filter	to	filter	HTTP	and	SSL	traffic	from	the	traffic.pcap	file	we
created	earlier	and	save	the	filtered	traffic	to	a	new	file	called	HTTP.txt.

Q.21.	Using	the	statistical	features	available	in	tshark,	figure	out	the	total	number	of	hosts
in	the	traffic.pcap	file	and	save	all	the	IP	addresses	that	belong	to	one	single	host	of

your	choice	(Google,	Yahoo,	Apple,	and	so	on)	to	a	file	named	hosts.txt.

Q.22.	Using	the	statistical	feature	available	in	tshark,	check	the	Ethernet	address	of	the
hosts	participating	in	the	communication	process	from	the	traffic.pcap	file	and	figure
out	the	most	communicating	host	from	the	list.

Q.23.	View	the	protocol	distribution	using	tshark	statistical	functions	for	the
traffic.pcap	file.

Chapter	4.	Inspecting	Application	Layer	Protocols
This	chapter	will	lead	you	through	the	common	application	layer	protocols	and	will	make
it	easy	for	you	to	find	any	anomalies.	You	will	understand	and	analyze	the	normal
behavior	of	application	layer	protocols	by	looking	at	the	most	common	protocols	and
understand	their	usual	and	unusual	behaviors.

	
DNS—normal	and	unusual
Lab	Up—DNS
FTP—normal	and	unusual
Lab	Up
HTTP—normal	and	unusual
Lab	Up—HTTP
SMTP—normal	and	unusual
Lab	Up—SMTP
SIP—normal	and	unusual
Lab	Up—SIP
VoIP—normal	and	unusual
Lab	Up—VoIP
Decrypting	encrypted	traffic
Practice	questions

We	will	cover	some	of	the	most	common	application	layer	protocols	that	govern	today’s
networks,	whether	small	or	big.	Without	spending	too	much	time,	let	me	take	you	on	this
wonderful	journey	of	protocols.

Domain	name	system
Imagine	a	world	of	Internet	where	you	have	to	type	a	random	numerical	value	(IP
address),	instead	of	a	name,	to	visit	a	website.	Also,	assume	that	each	numerical	figure	is
different.	Considering	this,	how	many	IP	addresses	can	you	memorize?	5?	10?	Perhaps,	50
at	max?	So,	now,	you	are	confined	to	visiting	just	50	websites.	This	doesn’t	really	sound
feasible.

Suppose	instead	of	just	memorizing	the	IP	addresses,	you	note	down	each	of	them,
followed	by	the	name	that	you	want	to	give	to	the	website	to	figure	out	which	website	is
for	what	purpose.	Now,	you	can	create	an	Excel	file	for	yourself,	consisting	of	the	IP
addresses	written	next	to	the	name	of	the	website	you	gave.	This	way,	probably,	you	can
collect	more	than	a	thousand	website	addresses	for	later	use.

For	the	sake	of	your	unlimited	web	experience,	DNS	comes	to	your	rescue,	and	it	does
exactly	what	you	did	in	the	preceding	example.	DNS	creates	a	database	of	websites	with
their	IP	addresses,	along	with	the	name	of	the	domain,	A	single	row	of	record	is	often
termed	as	resource	records	in	a	zone	file.	Each	entry	in	the	zone	file	is	termed	as	a
resource	record.	DNS	uses	TCP	and	UDP,	both	for	different	purposes,	over	the	port	53	by
default.

As	a	client,	when	you	try	to	visit	a	website	from	your	LAN	environment,	your	request	is
being	sent	through	an	internal	DNS	server	that	looks	up	the	resource	records	it	contains.
The	request	is	termed	as	a	DNS	query.	If	your	DNS	server	has	already	saved	the	IP
address	for	the	domain	you	are	looking	for,	your	client	machine	will	get	a	reply	from	the
internal	DNS	server	that	contains	the	IP	address	of	the	website	you	are	trying	to	visit.
Thus,	you	can	form	IP	packets	and	start	communicating.	This	reply	is	termed	as	a	DNS
response.

Dissecting	a	DNS	packet
A	DNS	packet	consists	of	a	couple	of	unique	fields	that	are	briefly	discussed	here:

	
Transaction	ID:	This	is	a	number	that	keeps	the	dots	connected	between	a	particular
domain	query	and	it’s	corresponding	response.
Query/response:	Every	DNS	packet	is	marked	as	a	query	or	a	response,	depending
on	the	details	it	contains.
Flag	bits:	Each	query	and	response	contains	different	flag	bits	set,	which	are	as
follows.

Response:	The	message	is	a	query	or	a	response.
Opcode:	This	determines	the	type	of	query	contained.	Opcode	ranges	between
0–15.	Refer	to	the	following	table:

Opcode Description

0 Standard	query

1 Inverse	query

2 Server	status	request

3 Unassigned

4 Notify

5 Update

6-15 Unassigned

Truncated:	This	determines	whether	the	packet	is	truncated	if	its	size	is	large
(greater	than	512	bytes).
Recursion	desired:	The	query	sent	by	your	client	is	supposed	to	go	on	a
recursive	search	procedure	from	one	DNS	server	to	another	if	the	resource
record	you	are	looking	for	is	not	present.
Recursion	available:	If	this	bit	is	set,	then	it	means	the	recursion	that	your
client	requested	is	available,	and	if	what	you	are	looking	for	is	not	present	on
one	server,	then	your	query	would	be	transferred	to	another	DNS	for	lookup
procedure.
Reserved	(z):	.As	defined	by	RFC	1035;	Reserved	for	future	use,	must	be	set	to
zero	for	all	queries	and	responses.
Response	code:	The	values	in	this	field	signifies	the	response.

Response	code:	This	field	is	used	to	signify	whether	errors	and	the	type	of	error.
Here	are	the	possible	code	values	that	you	can	receive:

Code Description

0 No	error

1 Format	error

2 Server	failure

3 Name	error

4 Not	implemented

5 Refused

Questions:	Indicates	the	number	of	queries	present	in	the	packet.
Answers:	Indicates	the	number	of	answers	in	response	to	the	query	sent.
Authority	RRs:	Indicates	the	number	of	authority	resource	records	sent	as	response.
Additional	RRs:	Indicates	the	number	of	additional	resource	records	sent	as
response.
Query	section:	The	query	sent	to	the	DNS	Server,	it	should	be	the	same	in	the
response	received	as	well.
Answer	section:	The	answer	that	came	as	a	response	to	our	query.	The	response	can
be	multiple	too.	The	answer	basically	consists	of	the	resource	records	that	came	in
response	to	our	query.
Type:	This	field	indicates	the	type	of	query	sent.	Refer	to	the	following	table	for
common	query	types.

Type Description

A Host	address

NS Name	server

MX Mail	exchange

SOA Start	of	zone	authority

PTR Pointer	record

AAAA IPv6	address

AXFR Full	zone	transfer

IXFR Incremental	zone	transfer

Additional	info:	This	field	includes	additional	info	containing	resource	records.	It	is
not	required	to	answer	the	query.

Dissecting	DNS	query/response
A	client	sends	a	query	to	the	DNS	server	that	possesses	the	name	resolution	information.
Using	this	information,	the	client	can	start	IP-based	communication.	Sometimes,	the
information	the	client	is	looking	for	is	not	available	with	the	DNS	server	it	requested.	In
this	case,	the	DNS	server	itself	transfers	the	query	to	any	neighbor	DNS	it	knows	about,	if
recursion	is	desirable.	The	whole	query	and	response	thing	is	completed	within	two
packets	only.	Refer	to	the	following	Figure	4.1	where	I	am	trying	to	visit
https://www.google.co.in.	A	request	from	my	client	located	at	192.168.1.103	is	sent	to
the	default	gateway	at	192.168.1.1.	This	gateway	will	forward	my	query	to	the	DNS
server	it	knows	about:

Figure	4.1:	DNS	query

If	you	notice,	here,	DNS	is	using	UDP	as	an	underlying	protocol.	If	you	want	to	know
more	about	the	DNS	query	being	generated,	just	expand	the	flags	section.	This	section
will	list	various	details	such	as	whether	recursion	is	available,	whether	recursion	is
desired,	whether	the	query	is	truncated,	what	the	response	code	is,	what	the	Opcode	for
the	query	is,	and	so	on.	Please	refer	to	the	following	screenshot.

The	expanded	Flags	section	depicts	that	the	type	of	DNS	packet	is	a	query,	the	packet
data	is	not	truncated,	and	recursion	is	desirable	if	available.

https://www.google.co.in

In	response	to	this	query,	you	will	be	seeing	one	more	packet	with	the	same	transaction	ID
that	denotes	the	association	of	a	particular	query.	It	is	the	response	packet.	Response	for
our	query	will	usually	consist	of	IPv4	address	for	the	domain	we	are	trying	to	look	for.
We’ll	be	returned	with	a	single	IP,	or	maybe	multiple	IPs	available	to	it.	If	the	domain	we
are	looking	for	is	not	available,	then	its	probable	CNAME’s	will	be	returned	in	as	favor.

Refer	to	Figure	4.2	to	understand	this:

Figure	4.2:	DNS	response

As	I	said,	we	could	get	multiple	replies.	If	you	notice	the	Answer	RRs	section,	we	have
received	5	replies	for	the	www.google.com	domain.	For	verification	that	the	response
received	belongs	to	the	previous	query	only,	just	match	the	Transaction	ID.	Expand	any
section	in	the	answers	category	to	view	more	details.	Refer	to	the	following	image:

http://www.google.com

Unusual	DNS	traffic
Name	resolution	problems	can	have	a	significant	impact	on	the	performance	of	a	network.
One	of	the	most	common	DNS	problems	you	can	face	is	when	looking	for	something	that
does	not	exist	in	the	DNS	server’s	database.	Sometimes,	you	are	trying	to	visit	a	website
that	exists,	but	your	DNS	server	is	not	able	to	resolve	the	domain	you	gave.	It	could	also
be	a	timed-out	situation	where	your	client	waited	more	than	the	expected	time	for	a	DNS
response.

In	the	following	Figure	4.3,	I	am	trying	to	check	the	type	A	record	for	the
http://google.com	domain,	which	is	actually	an	incorrect	syntax.	Hopefully,	it	won’t	be
resolved:

Figure	4.3:	Type	A	record	for	http://google.com

As	expected,	we	got	a	Not	Found	error.	I	only	tried	once,	but	the	client	tried	it	twice	to
resolve	the	domain	given.	What	got	captured	is	depicted	in	Figure	4.4	here:

Figure	4.4:	DNS	Response-No	Such	Name

There	can	be	multiple	situations	where	you	can	get	stuck.	The	best	option	is	to	first	have	a
benchmark	set	for	your	own	network,	and	then	try	comparing	your	problem	with	the
benchmark	you	created.	For	example,	check	the	name	you	are	trying	to	resolve,	launch	a
protocol	analyzer,	and	dig	into	the	name	resolution	queries	and	responses.	Understand
how	long	it	is	taking	to	complete	the	query,	the	response	process,	and	so	on.	Every	device
on	the	network	maintains	a	local	DNS	cache	(host	file),	which	is	initially	used	to	resolve
any	domain	you	request.	If	the	local	DNS	cache	does	not	have	the	entry	for	that	domain,
then	the	request	will	be	forwarded	to	the	local	network’s	DNS	server,	which	will	perform
the	lookup.	If	found,	their	response	will	be	sent.	Otherwise,	the	request	from	the	local
DNS	server	will	be	forwarded	to	an	external	DNS	server,	which	the	local	DNS	server	is
configured	to	look	for.

http://google.com
http://google.com

File	transfer	protocol
Since	the	Internet	came	into	existence,	we	have	been	working	with	FTP.	It	was	in	the
limelight	even	when	the	Internet	was	still	a	closed	network	used	by	the	government	and
other	corporate	organizations.

FTP	uses	the	TCP	protocol	to	initiate	and	transfer	files	over	a	designated	channel.	There
will	be	two	channels	created;	one	is	the	command	channel,	and	the	other	one	is
specifically	a	data	channel.	The	command	channel	will	be	used	to	send	and	receive	the
commands	and	their	responses.	The	data	channel	is	used	to	send	data	between	the	client
and	the	server.

Commonly,	port	21	is	used	by	the	FTP	server	to	listen	for	the	connection,	and	any	random
port	on	the	client	to	send	and	receive	data.	As	per	the	standard,	port	21	will	be	used	for	the
command	channel	and	port	20	for	the	data	channel.	However,	you	will	observe	random
port	numbers	used	to	transfer	TCP	data	segments.

Dissecting	FTP	communications
There	are	two	types	of	mode	a	client	uses	to	communicate	with	the	server:	active	and
passive.	Both	of	them	have	a	different	approach	to	send	and	receive	data.	In	earlier
versions,	active	mode	was	in	use	by	default,	but	these	days,	you	can	see	passive	mode	in
use	by	default.	I	will	discuss	each	of	them	using	my	own	virtual	network	where	I	have	a
FTP	server	(VSFTPD)	configured	on	the	172.16.136.129	IP	and	a	client	at
172.16.136.1.	The	following	sections	described	the	flow	and	show	how	the	client	and
server	will	behave	in	the	active	and	passive	modes.

Passive	mode
	

The	client	sends	a	SYN	request	to	the	server	running	at	port	21.
The	client	receives	SYN/ACK	from	the	server	over	a	temporary	port	used.
The	client	sends	ACK	to	the	server	to	confirm	that	the	channel	will	be	used	for	sending
commands.	Refer	to	the	following	screenshot:

Now,	the	client	will	be	shown	a	welcome	banner	and	will	be	asked	for	the	assigned
credentials:

Figure	4.5:	Server	showing	welcome	banner	and	asking	for	credentials

Normally,	passive	mode	must	be	on	by	default.	Performing	a	directory	listing	will	tell
you	that	the	Extended	passive	(ESPV)	mode	is	in	use.	In	this	mode,	the	client
requests	the	server	to	listen	on	the	data	port	and	wait	for	the	connection.	In	return,	the
server	informs	the	client	about	the	TCP	port	number	used	for	the	connection.	Please
refer	to	the	below	screenshot.

Figure	4.6:	client	sends	ACK	to	the	server

In	frame	42,	the	server	informs	about	the	IP	address	and	the	port	number	that	the
client	has	to	use	while	creating	any	data	connection	to	the	server.

In	frame	42,	the	server	informs	us	about	the	IP	address	and	the	port	number	that	the
client	has	to	use	while	creating	any	data	connection	to	the	server.	Followed	by	a
sequence	of	SYN,	SYN/ACK,	and	ACK,	packets	which	us	required	to	create	a	data	channel
between	both	the	devices.	After	this,	the	LIST	command	is	executed	as	seen	in	frame
46.	Then	data	is	transferred	using	the	temporary	ports	used	by	both	the	client	and	the
server.
As	soon	as	the	data	transfer	is	complete,	the	sending	host	closes	the	connection	by
transmitting	a	FIN	packet	which	is	addressed	by	the	receiving	side	using	an	ACK
packet.	The	receiving	side	also	sends	a	FIN	packet	that	is	acknowledged	too.	If	both
the	devices	want	to	share	more	data,	then	a	new	data	channel	will	be	created	using
random	port	numbers.

Active	mode
	

The	client	sends	a	SYN	request	to	the	server	running	at	port	21.
The	client	receives	SYN/ACK	from	the	server	over	a	temporary	port	used	by	the	client.
The	client	sends	ACK	to	the	server	to	confirm	that	the	channel	will	be	used	to	send
commands.	Refer	to	the	following	screenshot:

Now,	the	client	will	be	shown	a	welcome	banner	and	will	be	asked	for	the	assigned
credentials:

Figure	4.7:	Client	is	shown	a	welcome	banner	and	asked	for	credentials

Now,	we	have	to	turn	passive	mode	off,	because,	as	usual,	it	will	be	on	by	default.
Once	done,	we	can	create	a	data	channel	for	transferring	purposes,	refer	to	the
following	screenshot:

Figure	4.8	Creating	data	channel	for	transferring	purpose

Frame	40	shows	that	the	client	is	requesting	to	switch	the	passive	mode	off	using	the
EPRT	|1|172.16.136.1|57197|	command.	Extended	Port	(EPRT)	helps	in
specifying	an	extended	address	that	can	be	used	for	data	connection.	The	command
accepts	three	arguments:	network	protocol,	network	address,	and	the	port	number.

Now,	whenever	the	client	tries	to	initiate	a	connection,	it	has	to	be	destined	for	the
particular	address	specified	by	the	EPRT	command.	Before,	every	data	connection
server	informed	the	client	about	the	temporary	port	to	be	used.

You	learned	about	the	active	and	passive	modes	of	communication	that	the	FTP	servers
support.	You	also	learned	how	they	behave.	Whenever	troubleshooting	any	FTP
connection,	checking	the	mode	will	be	useful	and	saves	time.

Dissecting	FTP	packets
In	general,	every	request	sent	from	the	client	is	a	specific	command	set	to	which	the	server
responds	with	a	numerical	value	followed	by	a	text	message.	See	the	following
screenshot:

As	you	can	see,	the	server	requested	for	the	password,	which	the	client	provides.	It	can	be
seen	over	the	wire	in	plain	text	in	the	list	pane	itself.	Once	the	server	receives	and	verifies
that	the	password	is	correct,	the	respective	message	will	be	shown.	In	our	case,	the
password	is	correct,	so	the	client	receives	230	as	a	response	code	followed	by	a	Login
Successful	message.

The	command	issued	from	the	client	side	can	have	arguments	or	no	arguments,	and	the
data	flowing	across	between	the	devices	can	be	simply	seen	in	the	TCP	header	of	the
packet.	Refer	to	the	following	Figure	4.9:

Figure	4.9:	FTP-DATA	returned

Frame	43	shows	that	the	client	issued	the	LIST	command	that	was	processed	by	the	server,
and	262	bytes	of	data	was	returned	back	to	us.	Select	frame	50	to	further	investigate	the
contents	of	the	TCP	header.	One	of	the	biggest	disadvantages	of	using	FTP	is	that	all	data
travels	in	plain	text,	even	the	usernames	and	passwords.

Reassembling	the	FTP	data	stream	is	easy	because	except	the	data,	there	is	nothing	that
travels	around.	There	is	no	code	or	command	that	gets	appended	to	the	packets	travelling,
thus	making	it	easy	for	Wireshark	and	the	user	to	understand	things	easily.	To	reassemble
the	TCP	stream	of	FTP	packets,	just	right-click	on	the	selected	packet,	choose	the	Follow
TCP	Stream	option,	and	view	it	in	raw	form.	Refer	to	the	following	Figure	4.10:

Figure	4.10:	FTP	stream

The	entire	communication	between	the	client	and	the	server	that	happened	over	the	data
and	command	channels	is	translated	into	human-readable	format.	Text	in	red	color	is	what
the	client	sent,	and	text	in	blue	color	is	what	the	client	received.	These	days,	we	have	a
couple	of	advanced	protocols	that	can	create	an	encrypted	channel.	One	of	them	is	Secure
File	Transfer	Protocol	(SFTP).

Unusual	FTP
There	can	be	multiple	scenarios,	which	generate	FTP	traffic	of	an	unusual	type.	I	will	use
a	couple	of	scenarios	to	explain	this	and	will	show	you	how	a	certain	traffic	type	looks.	An
example	would	be	brute	force	attacks	where	a	malicious	user	tries	different	passwords
again	and	again,	until	the	exact	password	is	matched.	This	is	the	most	common	traffic	type
that	you	will	see	while	working	with	FTP.	Applying	a	ftp.request.command==“PASS”
filter	will	show	all	the	password	attempts	that	have	been	made	to	your	server.	If	you	see	an
unusual	number	of	attempts	in	a	short	span	of	time,	then	it	can	be	a	brute-force	attempt
against	your	server.	Refer	to	the	following	screenshot:

Figure	4.11:	FTP	brute	force

I	applied	the	same	display	filter	mentioned	earlier,	and	you	can	see	the	results.	Someone
was	trying	to	brute	force	my	FTP	server.	To	secure	your	server	from	such	brute	force	or
dictionary	attacks,	you	can	limit	the	server	to	maximum	login	attempts,	after	which	the
server	should	lock	down	the	respective	account	for	a	particular	amount	of	time.

You	could	also	colorize	the	brute	force	traffic	if	you	want.	This	will	eventually	give	you	a
better	overview	of	your	capture	file	or	live	traffic.	Try	it	out	using	the	code	that	the	server
sends	back	to	the	clients	in	response.

Another	example	is	a	malicious	device	that	is	infected	by	some	malware.	Due	to	the
malware,	the	device	is	trying	to	contact	a	command	and	control-center	server	to	download
some	payload,	perhaps	for	privilege	escalation	purpose	or	to	launch	further	attacks.	There
is	even	a	possibility	where	an	attacker	sitting	on	the	other	side	is	trying	to	download	or
upload	something.	Let	me	take	an	example	to	explain.	I	have	a	Kali	Linux	box	running	at
192.168.1.105	and	a	Windows	box	at	192.168.1.104.	Through	Kali,	I	created	a	small
malware	that	was	downloaded	and	installed	by	the	victim	(Windows).	Once	executed,	we
will	get	the	shell	from	the	device.	Then,	we	can	launch	FTP	from	within	the	shell	to
connect	our	Kali	box	for	privilege	escalation	purposes.

Refer	to	the	following	screenshot	that	captures	the	FTP	traffic	between	the	attacker	and
the	victim:

Figure	4.12:	victim	FTP	capture

As	you	can	clearly	see,	the	attacker	connected	to	the	FTP	server	and	downloaded	the
payload.txt	file,	which	might	be	used	to	gain	root	privileges	over	the	box.

If	something	of	this	nature	is	able	to	bypass	your	firewalls	and	other	security	appliances	in
place,	then	consider	improvising	the	configuration	you	created	and	try	to	avoid	these
things	in	future.	Sometimes,	activity	of	this	kind	can	be	legitimate	as	well,	but	it	should
not	stop	you	from	investigating	further.	A	small	file	of	a	few	kbs	is	enough	to	compromise
your	whole	network.

Hyper	Text	Transfer	Protocol
Data	on	the	web	is	transferred	using	the	HTTP	application	layer	protocol.	Normal
communication	in	HTTP	is	a	request/response	model	where	the	communication	between	a
client	and	a	server	is	coordinated	by	a	set	of	rules.	The	client	requests	for	a	certain
resource	to	the	server	and	then	receives	a	status	code	that	specifies	the	current	status	of	the
requested	resource.	If	available	then,	the	resource	is	also	sent	along	with	the	status	code.
HTTP	is	one	of	the	most	popular	and	most	widely	used	protocols	to	transfer	data
requested	by	browsers	from	the	respective	servers.	The	world	of	Internet	is	mostly
governed	by	HTTP	that	runs	on	the	transport	layer.

How	it	works	–	request/response
Every	time	you	visit	a	website,	this	smart	protocol	takes	care	of	your	web-browsing
experience.	Web	server	utilizes	the	HTTP	protocol	to	serve	web	pages	they	contain	to	the
requesting	clients.	At	the	beginning	of	every	HTTP	session,	the	TCP	three-way	handshake
takes	place.	It	creates	a	dedicated	channel	between	the	communicating	hosts	followed	by
HTTP	and	data	packets,	which	are	sent	in	and	received	while	the	session	is	active.	For
instance,	you	are	visiting	a	web	server	located	at	http://172.16.136.129	and	the	client	at
172.16.136.1.	Using	our	client-server	infrasrtucture,	we	will	try	to	capture	the	requests
sent	and	responses	received.

I	will	try	to	visit	the	home	page	located	at	the	server	mentioned	earlier	and	will	capture	the
traffic	generated	for	the	whole	session,	that	is,	requests	sent	and	responses	received.
Follow	the	actions	mentioned	here	to	replicate	the	scenario.

Request
	

Open	your	browser,	and	type	the	Uniform	Resource	Locator	(URL)	of	any	website
that	you	want	to	visit.	In	my	case,	the	website	is	located	at	http://172.16.136.129
(Don’t	get	confused	because	of	the	IP	address	I	am	using	to	visit	a	webserver.	While
studying	DNS	remove,	we	discussed	that	it	is	just	a	way	to	locate	a	webserver	that	is
assigned	with	an	IP	address.).	Press	Enter	to	go	to	the	home	page.	Here	is	the
screenshot	of	the	home	page	I	am	visiting:

Due	to	the	our	preceding	actions,	a	couple	of	packets	are	generated	that	are	captured
by	Wireshark.	Let’s	have	a	look	at	the	list	pane	shown	in	the	following	screenshot:

Figure	4.13:	Packets	captured	by	Wireshark

All	these	packets	get	generated	as	soon	as	you	press	Enter.	As	you	can	see,	the	first
three	packets	are	TCP	three-way	handshake	packets	where	our	client	is	requesting	the
server	to	create	a	dedicated	channel.	In	our	case,	the	connection	was	successful.
However,	if	the	server	daemon	wasn’t	running	or	because	of	any	reason	the	server	is
not	accepting	our	requests,	then	we	could	have	seen	RST	ACK	packets,	like	the	one
shown	here:

Figure	4.14:RST	and	ACK	packets,	as	server	not	accepting	the	requests

This	error	states	that	the	server	is	out	of	service	or	perhaps	the	server	is	not	supposed
to	respond	to	our	requests.

After	the	TCP	packets,	you	can	see	the	first	HTTP	request	sent	by	our	client.	Every
request	comprises	a	couple	of	elements	that	are	sent	to	the	server:

Figure	4.15:	HTTP	request

This	is	how	a	request	looks.	In	the	first	line,	there	are	three	things	passed	on	to	the
server	as	the	arguments,	which	are	HTTP	method	and	requested	resource	location	“/”
(root	directory)
The	second	line	specifies	the	Host	argument	that	is	required	by	the	HTTP/1.1
protocol	requests.	The	value	of	this	field	is	the	webserver’s	address	that	you	typed	in
the	address	bar	of	the	browser.
The	fourth	line	is	the	ACCEPT	parameter	that	mentions	what	kind	of	content	is
acceptable	by	the	requesting	client	in	response.
The	If-modified-since	parameter	is	sent	from	the	client	to	the	server,	which
includes	the	date	and	time	of	your	previous	request	made	to	the	server.	If	the	server
contents	have	been	changed	since	your	previous	request,	then	you	will	receive	the
new	updated	page.	Otherwise,	your	system	will	present	you	with	the	locally	cached
page	that	will	eventually	save	some	resources.
The	next	field	is	User-Agent,	which	specifies	the	browser-related	information	that
you	are	using	to	visit	the	webpage.	This	information	will	be	used	by	the	server	to
present	you	with	browser-compatible	content.
Parameters	such	as	Accept-Language	and	Accept-Encoding	are	passed	on	to	the
server	to	inform	us	of	what	type	of	content	is	acceptable	to	the	client.	So,	while	the
server	prepares	the	response	material,	these	things	should	be	taken	into	consideration.
The	Connection-Alive	parameter	specifies	that	the	client	wishes	to	keep	the
connection	working	after	this	particular	request	has	been	processed.

All	the	HTTP	packets	are	sent	most	commonly	to	the	webserver	at	port	80	(other	common
webserver	ports	are	8080,	3132,	8088	and	so	on.	which	are	being	dissected	by	Wireshark

as	per	HTTP	protocol	preferences).

Response
	

As	you	can	see,	after	the	fourth	packet,	the	server	acknowledges	the	client’s	request
to	get	to	the	server’s	web	root	directory.	The	server	starts	transmitting	the	resource
that	client	requested	for.	The	sixth	packet	in	the	list	pane	is	what	the	client	received,	a
status	code	followed	by	a	short	message,	including	the	content	of	the	resource
requested.	Refer	to	the	following	Figure	4.16	illustrating	the	HTTP	response:

Figure	4.16:	HTTP	response

As	a	part	of	TCP	communication,	the	client	will	acknowledge	every	packet	sent	by
the	server.	It	can	be	seen	in	the	seventh	packet	that	the	client	is	trying	to	send	an	ACK
for	the	resource	it	received.
Let’s	dissect	the	response	elements	for	packet	number	six.	The	first	line	consists	of
three	arguments	sent	in	response.	They	denote	the	HTTP	protocol	version	in	use,	the
status	code	(304	in	our	case,	which	specifies	that	the	requested	resource	did	not
change	since	the	time	mentioned	in	the	Date	parameter),	and	finally,	a	brief
description	about	the	status	code	(Not	Modified	in	our	case).
In	the	third	line,	the	Server	parameter	mentions	the	name	and	version	of	the	web
server	running.	We	can	see	that	Apache/2.2.22	is	the	server	that	is	located	at
172.16.136.129.
The	fourth	and	fifth	lines	state	that	the	server	wishes	to	keep	the	connection	alive.
The	duration	for	which	the	server	wishes	to	do	so	is	also	mentioned	in	the	next	line	of
the	parameters	sent	in	response	to	us.	Rest	of	the	content	is	mentioned	in	the	next	few
lines	are	some	configuration	parameters.

This	is	a	very	basic	example	to	check	out	the	request	and	responses	exchanged	between
the	client	and	the	server.	However,	this	basic	thing	is	what	actually	happens	every	time
you	visit	a	website.	As	stated	earlier,	we	receive	a	status	code	followed	by	a	brief
description	in	response.	With	every	tab	you	open	in	your	browser,	there	will	be	a	new
socket	created	between	a	client	and	a	server	connected	through	an	IP	address	and	the	port

number	on	which	the	web	server	runs.

Unusual	HTTP	traffic
All	the	details	mentioned	earlier	are	part	of	a	normal	traffic	pattern.	What	we	are	about	to
witness	is	some	unusual	traffic	pattern	that	you	might	face	while	dealing	with	HTTP.	I	will
try	to	mention	some	do’s	and	don’ts,	which	might	prove	helpful	to	you	while
troubleshooting	and	analyzing	HTTP.	Most	of	the	HTTP	problems	revolve	around	errors
such	as	404,	some	kind	of	redirection,	DNS	resolution	problems,	and	server-related	issues.
Let	me	explain	each	scenario	in	detail.

For	instance,	you	are	visiting	a	web	server,	and	you	are	looking	for	something	that	is
currently	not	available	or	the	requested	resource’s	location	has	been	changed.	In	such
cases,	you	will	receive	a	404	status	code,	which	denotes	that	the	requested	resource	is	not
found	on	the	server.	Refer	to	the	following	screenshot	where	I	tried	to	request	for	a	file
named	abc.txt	on	a	web	server	that	does	not	exist:

Figure	4.17	:	HTTP	404

On	the	list	pane,	you	can	see	that	the	requested	resource	is	not	available.	So,	we	get	404
Not	Found	Error.	Such	errors	could	be	malicious	too	if	someone	is	trying	to	perform
directory	listing	on	your	webserver.	Changing	the	coloring	rules	of	such	404	packets	to
something	different	other	than	the	normal	HTTP	packets	rules	will	get	our	attention
quickly.	As	you	can	see,	packet	number	eight	is	a	HTTP	packet,	applied	with	a	different
coloring	scheme.

Redirection	of	the	user’s	request	is	often	done	when	a	certain	requested	resource	location
has	been	changed	to	another	address	or	the	resource	isn’t	available.	Now,	to	make	you
understand	redirection,	I	have	made	some	changes	in	our	infrastructure	that	can	be	easily
seen	in	the	diagram	shown	here:

Now,	the	request	from	the	client	sent	to	the	original	server	at	192.168.1.104	will	be
redirected	to	a	new	server	located	at	192.168.1.103	without	any	further	efforts	by	the
client.	To	configure	redirection,	you	have	to	modify	your	server’s	configuration	file.	The
following	captured	packets	depict	the	redirection	happened.	Refer	to	the	next	list	pane	in
Figure	4.18:

Figure	4.18:	HTTP	redirection

As	you	can	see,	a	TCP	handshake	was	initiated	with	the	old	server	at	104	followed	by	an
HTTP	GET	request.	The	server	at	104	responded	with	a	302	Found	response	in	packet	21,
which	is	an	indication	of	redirection.	Our	request	was	sent	to	the	new	server	located	at	103

with	whom	we	again	initiated	the	TCP	three-way	handshake	(packet	31).	After	packet	31,
the	destination	field	was	changed	to	the	new	server’s	address.

On	investigating	packet	21	further,	we	can	see	the	content	that	redirected	our	request	to	the
new	server.	Expand	the	Line-based	text	data	section	under	the	HTTP	section	of	the
details	pane	for	packet	21.	Refer	to	the	following	screenshot:

We	have	already	discussed	DNS	resolution	problems	in	the	DNS	protocol	section.	For
example,	if	the	requested	web	server	is	not	able	to	resolve	your	request	using	your	internal
DNS	server	as	well	as	other	external	servers,	then	you	won’t	be	able	to	visit	the	website.
Even	if	the	DNS	servers	are	working	fine	and	you	are	not	able	to	visit	the	site,	then
congestion	can	be	the	problem,	where	a	server	is	not	able	to	process	multiple	requests	at
the	same	time.	This	will	result	in	errors	such	as	408	time-out	requests,	429	Too	Many
requests,	or	even	404	not	found.	The	world	of	HTTP	is	enormous,	and	day-to-day
situations	can	differ	from	person	to	person.	The	most	important	fact	that	you	should	keep
in	mind	is	that	if	all	your	basic-level	concepts	are	clear,	then	only	it	would	be	an	easy	to
do	the	job	you	have	been	assigned.	Nothing	can	beat	common	sense	with	out-of-the-box
thinking.

Simple	Mail	Transfer	Protocol
SMTP	is	used	widely	to	send	and	receive	emails	over	small,	as	well	as	large,
infrastructures	(can	be	public	or	private).	The	protocol	uses	the	Sender-SMTP	process	to
send	e-mails	and	the	Receiver-SMTP	process	to	receive	emails.	This	makes	SMTP	a
client-server-based	protocol	that	runs	over	port	25.	However,	many	mail	server	admins
follow	the	secure	practice	of	changing	the	default	port	number	for	SMTP	to	any	other
random	port	that	prevents	the	server	from	sending	any	spams	out	there	in	the	wild	and
even	keep	the	server	out-of-reach	from	malicious	users.

Most	commonly,	an	SMTP	channel	for	mail	transfer	is	created	using	a	TCP	three-way
handshake	that	happens	between	two	hosts,	which	is	followed	by	a	series	of	SMTP
packets.	For	illustration	purpose,	I	configured	one	SMTP	server	on	192.168.1.105	and	a
client	on	192.168.1.104.	The	client	will	request	the	server	to	send	an	e-mail	to	an	address
known	to	the	client.	The	server	will	respond	to	this	request	with	numerical	code,	followed
by	a	brief	response	parameter.	For	understanding	the	real	functioning	of	the	protocol,	I
will	be	using	the	following	architecture.

Usual	versus	unusual	SMTP	traffic
Using	the	netcat	client	from	Kali	Linux,	I	will	try	connecting	to	the	SMTP	mail	service
running	on	a	Windows	machine.	Once	a	dedicated	channel	is	created	between	the	server
and	the	client,	the	server	indicates	that	it	is	ready	to	accept	any	commands	sent	in.	Also,
the	server	will	respond	with	numerical	codes	with	a	short	summary.	I	followed	these	steps
to	connect	and	send	an	e-mail:

	
1.	 Open	a	connection	using	netcat	nc	–nv	192.168.1.105	25.
2.	 Initialize	an	SMTP	session	using	the	HELO	testmail	command.
3.	 Specify	the	from	address	using	the	MAIL	FROM:<abc@charit.com>	command.
4.	 Specify	the	recipient’s	address	using	the	RCPTS	TO:<efg@charit.com>	command.
5.	 To	enter	data	into	the	mail	body,	type	DATA	and	press	Enter.	Now,	type	the	message

you	wish	to	send.	Once	you	are	finished	writing	your	email,	type	a	.	to	mark	the
ending	and	press	Enter.

6.	 Now,	your	message	will	be	sent.	If	you	wish	to	send	more	emails,	follow	the	same
procedure;	or	else,	you	can	close	your	connection	with	the	mail	server.	Type	QUIT	to
do	so.

The	series	of	commands	I	followed	generated	a	couple	of	packets	that	contain	details
about	the	session	in	a	very	granular	form.	I	also	created	a	capture	filter,	which	captured
only	the	packets	associated	with	the	client	and	server	that	would	help	me	in	closely
analyzing	the	packets	related	to	the	session;	and	preventing	other	packets	entering	the	list
pane.	All	of	these	commands	mentioned	will	only	work	when	the	server	is	configured	to
permit	clear	text	message	communication	without	any	authentication,	refer	to	the
following	screenshot	depiction	for	similar	behavior.

Figure	4.19:	SMTP	session

Packets	from	1-3	are	TCP-handshake	packets.	The	handshake	is	happening	between	the
client	and	the	server.	In	the	fourth	packet,	the	client	receives	a	message	stating	220	as	the
response	code.	This	means	the	server	is	ready	and	available	to	respond	to	the	client’s
request.	In	the	sixth	packet,	the	client	initializes	the	standard	SMTP	session	using	the	HELO
command	(You	must	be	wondering	why	most	of	the	packets	listed	in	the	list	pane	start
with	C	or	S.	Requests	sent	from	the	client	are	marked	with	the	character	C,	and	server
responses	are	marked	with	character	S.).	Then,	enter	the	sender’s	and	recipient’s	e-mail
addresses,	which	were	confirmed	to	be	correct	by	the	server,	with	response	code	250	in
packets	10	and	13.	After	that,	enter	the	e-mail	body	using	the	DATA	command,	which	was
successfully	received	by	the	server	in	packet	23.	In	the	end,	the	user	gracefully	closes	the
connection	by	issuing	the	QUIT	command,	which	the	server	confirmed	in	packet	26,	thus
sending	the	FIN,	ACK.

Now,	I	will	introduce	you	to	the	dark	side	of	SMTP	that	you	might	have	witnessed,	or	you
will	someday.	By	dark	side,	I	meant	the	packets	that	are	not	supposed	to	pop	up	inside	the
list	pane	usually.	However,	if	they	do,	then	you	have	to	look	into	your	protocol
configuration.	For	this,	I	would	like	to	introduce	you	to	some	quite	common	scenarios	that
you	should	be	aware	of.

The	first	and	foremost	case	I	can	think	of	is	when	the	server	and	the	client	are	not	able	to
create	a	dedicated	channel	for	communication;	in	short,	the	TCP	handshake	did	not	go
well.	This	can	happen	because	of	many	reasons,	such	as	the	mail	server	daemon	is	not
running,	the	mail	server	is	not	running	on	the	default	port,	the	mail	server	daemon	has
reached	the	maximum	simultaneous	client	connections	allowed	or	connections	from	a
particular	subnet	are	not	allowed	there	can	be	multiple	scenarios	related	to	this.	The

following	list	pane	depicts	two	kinds	of	traffic	abnormalities:

Figure	4.20:	SMTP	unusual	traffic

The	first	two	packets	were	generated	due	to	an	error,	which	stopped	the	TCP	handshake
from	occurring.	This	error	can	be	generated	due	to	many	factors,	some	of	which	are
mentioned	here:

	
Mail	server	daemon	is	not	running
Mail	server	daemon	default	port	is	changed
Mail	server	daemon	has	reached	the	maximum	simultaneous	connections	limit
(DDoS	attack).
Mail	server’s	configuration	has	been	tampered	with

Let’s	suppose	now,	that	the	client	came	to	know	about	the	correct	port	number	to	which
the	connection	should	be	initiated,	but	still,	the	session	was	not	created	successfully.
Observe	the	traffic	starting	from	packet	3	to	the	packet	10,	the	last	packet.	A	TCP	three-
way	handshake	happened,	but	then,	suddenly,	the	client	was	kicked	off	from	the	session.
What	could	be	the	possible	reason	for	such	a	response	from	the	server?	Perhaps	the	client
is	not	allowed	to	get	connected	because	of	some	restrictions	in	place,	such	as	IP	or	MAC
filtering.

Figure	4.21:	Client	not	allowed	to	get	connected	due	to	some	restrictions

Another	type	of	abnormal	traffic	that	can	be	seen	widely	these	days	is	harvesting	of	e-
mails	used	by	spammer	and	spamming	botnets	roaming	in	the	wild.	A	spammer	tries	to
harvest	emails	from	the	publicly	accessible	mail	servers	to	verify	which	email	address	is
valid	and	which	isn’t.	For	example,	look	at	the	following	screenshot	(Figure	4.15)	where	a
malicious	user	tries	to	verify	the	existence	of	an	e-mail	ID	using	the	E-mail	From	field,
verification	of	e-mail	addresses	can	alos	be	done	using	VRFY	command.	Depending	on	the
response,	the	user	will	come	to	know	whether	the	email	is	valid	or	not.	Observe	packet
number	13	for	the	server’s	response.	These	kinds	of	attacks	are	done	using	a	custom-made
dictionary	file,	which	matches	the	current	domain	requirements.	Once	an	email	is	verified,
the	spammer	can	perform	various	forms	of	social-engineering	attacks.	A	response	code
greater	than	350	in	SMTP	protocol	is	probably	some	kind	of	error	that	can	reduce	your
network	performance,	thus	increasing	the	latency.

Session	Initiation	Protocol	and	Voice	Over	Internet	Protocol
SIP	is	a	part	of	the	VOIP	protocol	family	that	is	just	a	signaling	protocol	used	to	create,
manage,	and	terminate	voice	over	IP	sessions	in	a	networking	environment.	Examples	of
SIP	can	be	a	two-way	phone	call	or	a	conference	call,	including	multimedia	sessions
where	multiple	hosts	can	be	present.	This	protocol	is	generally	discussed	in	regards	to	the
initiation	of	the	session	between	the	remove	parties	;	hosts/nodes	that	intend	to
communicate.	After	the	initiation	is	completed,	the	data	is	transferred	over	the	dedicated
channel	where	the	Real	time	Transport	Protocol	(RTP)	helps.	Basically,	the	family	of
RTP	governs	the	transport	and	the	flow	control	of	all	of	the	multimedia	items	(RTCP
controls	the	flow).

The	two	most	used	tools	while	working	with	this	protocol	are	the	Statistics	menu,	under
which	we	will	cover	Protocol	Hierarchy,	Packet	Lengths,	and	flow	graphs,	which	will	give
you	an	idea	of	data	travelling	back	and	forth	between	two	hosts.	Under	the	Telephony
menu,	you	will	see	the	RTP	and	VOIP	Calls	options	that	can	facilitate	us	in	assembling	the
VOIP	call	streams.	We	can	then	play	them	back	to	hear	the	conversation,	this	is	what
makes	me	really	excited	about	Wireshark.

SIP	runs	over	the	UDP	protocol	and	commonly	uses	port	5060.	All	of	this	together	in	an
IP-based	environment	makes	it	possible	for	us	to	dial	instantly	to	our	friends	over	a	VoIP-
enabled	device.	SIP	makes	it	easy	for	the	VOIP	telephony	server	to	establish	user
locations.	It	facilitates	us	with	different	call-managing	features	such	as	initiating	calls,
disconnecting	calls,	adding	someone	to	a	conference	call,	transferring	calls,	and	various
others.	SIP	is	not	going	to	help	you	maintain	the	quality	of	calls,	yet	SIP	is	one	of	the	most
important	standards	used	by	various	services.	Before	we	jump	directly	into	looking	and
listening	to	the	traffic,	let’s	get	ourselves	acquainted	with	how	the	traffic	moves	in	a	voice
over	IP	call.

There	will	be	three	parties	we	will	consider:	two	of	them	are	clients	and	one	is	the	IP
telephony	server	that	helps	in	transferring	the	required	and	necessary	packets	back	and
forth	between	the	two	communicating	hosts.	The	following	figure	depicts	a	small
infrastructure	telephony	architecture	and	lists	the	various	steps	taken:

	
Client	1	sends	an	Invite	request	to	initiate	the	session	using	SIP.
The	telephony	server	in	between,	transfers	the	request	to	Client	2.
The	telephony	server	acknowledges	Client	1	with	the	100	TRYING	packet.
Client	1	receives	a	180	RINGING	packet	as	soon	as	Client	2	starts	ringing.	When
Client	2	on	the	other	side	received	the	call,	it	sends	the	200	OK	packet,	which	is
forwarded	to	Client	1.
Now,	the	client	sends	the	ACK	packet	to	acknowledge	the	receipt	of	the	200	OK
packet.
Now,	both	parties	are	connected	with	a	dedicated	channel	over	which	the	RTP/RTCP
packet	starts	flowing	back	and	forth.
Once	both	of	them	are	done,	there	will	be	a	BYE	packet	sent	from	by	the	hosts
communicating,	which	is	acknowledged	by	the	other	end.
If	you	observe,	most	of	the	packets	are	passing	through	the	telephony	server.	Because
the	telephony	server	only	knows	about	the	exact	location	of	the	connected	hosts.
Once	the	connection	is	successfully	created,	all	the	packets	are	sent	and	received
directly	by	the	clients	without	the	server’s	intervention.

I	have	configured	a	small	VoIP	telephony	infrastructure	using	Asterisk	PBX	that	you	can
download	freely	from	the	vendor’s	website.	VOIP	server	is	located	at	192.168.1.107,
client	1	at	192.168.1.104,	and	client	2	at	192.168.1.107.	Then,	I	downloaded	X-Lite
client	using	which,	I	tried	calling	client	2	from	client	1.	Now,	using	the	real	SIP	traffic
captured,	it	becomes	easy	for	us	to	analyze	and	learn.	Interestingly,	there	is	an	option
using	which,	we	can	play	back	the	communication	captured	(this	can	be	really	dangerous
and	more	amazing).

Here	is	example	traffic	captured	as	seen	in	the	list	pane	of	Wireshark:

Figure	4.22:	SIP	traffic

One	thing	you	should	consider	is	place	the	analyzer	close	to	the	telephony	server	so	that
you	can	easily	capture	every	bit	of	packet-level	information	moving	around.	While
capturing,	if	you	cannot	see	any	SIP	packets,	then	you	won’t	be	able	to	capture	VOIP
packets	as	well.	You	would	end	up	capturing	UDP	packets	only	in	the	list	pane,	which
won’t	prove	very	fruitful	for	your	analysis.

Analyzing	VOIP	traffic
Just	for	the	sake	of	curiosity,	I	want	to	show	you	the	protocol	distribution	for	SIP	traffic
that	can	be	seen	using	the	Protocol	Hierarchy	dialog	from	the	Statistics	menu.	Refer	to
the	following	Figure	17:

Figure	4.23:	Protocol	Hierarchy

Major	traffic	generated	during	the	session	is	UDP	based,	and	as	seen	in	the	preceding
screenshot,	SIP	traffic	is	a	very	small	part	of	it.	If	you	observe	closely,	it	is	just	1	percent
roughly,	whereas	RTP	has	a	major	role	here	with	82	percent.	This	gives	an	overview	about
the	session	we	captured	and	tells	us	which	protocol	participates	in	what	percentage.	As	we
already	know,	SIP	is	used	only	to	create	and	manage	sessions	that	occur	between	two
users,	or	it	can	be	a	multiuser	conference	call.

Flow	graphs	are	one	more	way	of	getting	a	summary	of	the	traffic.	They	help	in
understanding	the	movement	of	request	and	acknowledgements	sent	or	received.	Refer	to
the	following	Figure	4.24:

Figure	4.24:	Flow	graph

There	are	three	IPs	listed	just	below	the	title	bar	in	the	center	section.	These	IPs	belong	to
the	server	and	the	two	clients	that	are	trying	to	communicate.	The	entire	request	and	the
responses	with	their	status	codes	and	summary	messages	can	be	seen	clearly	here.
Requests	sent	are	colored	in	orange	and	the	responses	with	green.	This	makes	every
element	look	more	precise	and	easy	to	understand.

Reassembling	packets	for	playback
Yes,	this	is	possible.	You	can	assemble	the	VOIP	packets	back	to	listen	to	either,	or	both
sides	of	the	communication	in	parallel.	Let’s	suppose	I	want	to	listen	what	message	client
1	sitting	at	192.168.1.104	sent	to	the	client	2.	We	can	use	the	Telephony	menu	in
Wireshark	to	reassemble	the	packets	and	choose	the	VOIP	Calls	option	from	the	list.	The
following	screenshot	illustrates	the	resulting	dialog.

Figure	4.25	:	VOIP	Calls	dialog

Now,	choose	which	side	of	communication	you	want	to	listen	to.	Then,	click	on	the
Player	button,	which	will	then	ask	you	to	provide	maximum	Jitter	(Jitter	is	the	variance
in	packet	rate	at	which	the	packets	are	being	sent	and	received.	If	jitter	is	high,	then	there
is	a	chance	your	network	is	dealing	with	congestion.	Calls	having	high	jitter	values	are	not
feasible	to	listen	to.)	in	our	communication	session.	The	maximum	jitter	value	is	22.	So,
by	default,	there	will	be	50	ms	value	given	in	the	box.	You	can	change	this	value	if	your
jitter	is	higher	than	that;	otherwise,	just	click	on	Decode:

Figure	4.26:	Player	dialog

I	did	not	change	the	default	value	and	clicked	directly	on	the	Decode	button,	which
reassembled	all	the	VoIP	packets	for	the	side	of	communication	I	chose.	Refer	to	the
following	screenshot:

Figure	4.27:	RTP	Player

If	you	want	to	play	the	message,	check	the	box	just	below	the	scrollbar	and	click	on	Play.
Various	useful	details	related	to	the	assembled	VOIP	stream	are	listed.

Unusual	traffic	patterns
Wireshark	has	numerous	tools	that	help	a	user	in	maintaining	QS	for	a	certain	networking
infrastructure	and	also	consists	of	a	tool	that	helps	in	identifying	various	day-to-day	traffic
anomalies.	A	common	type	of	traffic	when	dealing	with	an	SIP	server	is	INVITE	requests
that	are	sent	from	one	client	to	initiate	the	connection	with	another	client.	As	you	might
already	know,	this	process	is	a	three-way	handshake	where	the	client	who	initiated	the
request	is	supposed	to	acknowledge	when	the	session	creation	is	completed.	What	if	the
client	who	requested	does	not	respond	with	ACK	and	sends	another	INVITE	request?
Normally,	the	server	will	try	to	connect	the	client	to	the	requested	client	machine,
meanwhile	waiting	for	the	ACK	response	for	the	previous	request.	Now,	let’s	suppose	the
client	sent	100	INVITE	requests	through	different	clients	on	the	network	and	did	not	even
bother	to	send	ACK	for	any	one	of	those	sessions	created.	This	can	result	in	a	DOS	attack
(INVITE	flood	attack)	where	the	SIP	server	won’t	be	able	to	process	any	further	requests
(the	buffer	size	for	INVITE	is	100).	To	resolve	this,	you	can	apply	a	display	filter	to	view
the	INVITE	requests	sent	from	a	client	or	apply	a	filter	where	the	status	code	is	200:OK.

Other	than	DOS	attacks,	there	is	a	chance	that	your	network	may	slow	down	due	to	packet
congestion,	or	you	might	not	be	able	to	get	connected	to	another	client	on	your	network.
In	other	words,	your	call	cannot	get	through,	if	there	is	lag	in	setting	up	the	call	(the
average	call	setup	time	is	high).	You	will	witness	multiple	cases	once	you	work	in	a
production	environment.	So,	Wireshark	and	the	various	powerful	tools	it	contains	comes
to	our	rescue.

For	instance,	if	some	client	is	trying	to	make	a	call	to	an	invalid	extension,	they	will	get	an
error,	and	the	call	won’t	get	through.	Such	a	scenario	will	generate	packets	as	shown	here:

I	would	suggest	that	you	filter	SIP	packets	consisting	of	error	codes	greater	than	399	and
create	a	display	filter	using	sip.Status-Code	>	399.	See	the	following	screenshot	that
lists	multiple	errors	generated	while	client	1	was	trying	to	call:

Figure	4.28:	SIP	error

Decrypting	encrypted	traffic	(SSL/TLS)
Yes,	it	is	possible	to	decrypt	your	online	TLS	traffic	into	a	plain	text	SSL	stream	using
Wireshark.	Google	Chrome	and	Firefox	look	for	a	log	file,	which	stores	the	TLS	session
keys.	Follow	these	steps	to	decrypt	encrypted	traffic:

	
1.	 Create	an	environment	variable	with	the	name	SSLKEYLOGFILE	that	will	point	to	a	text

file.	Your	browser	will	look	for	this	file	every	time	it	starts	up.	To	create	environment
variables,	right-click	on	My	Computer	|	Go	to	Advanced	Settings	|	Environment
Variables	|	New	|	Specify	Name:	SSLKEYLOGFILE	and	Value:
C:/Users/username/sslkeylog.txt	and	click	on	Ok.

2.	 I	have	created	a	blank	text	file,	C:/Users/username/sslkeylog.txt	(make	your	new
environment	variable	point	to	this	file).

3.	 Now,	open	your	browser	and	visit	a	website	enabled	with	TLS/SSL.	For
demonstration	purpose,	I	have	my	own	SSL	webserver	located	at	192.168.1.105	and
a	client	located	at	192.168.1.105.

The	certificate	I	created	is	self-signed;	that’s	why	you	are	seeing	a	red	diagonal	line
across	https	in	the	address	bar.	After	you	visit	any	secure	website	enabled	with	SSL,
your	sslkeylog.txt	will	be	populated	with	some	random	numbers,	as	shown	in	the
following	screenshot.	If	not,	cross	check	your	settings	before	moving	on:

4.	 I	captured	the	whole	traffic	between	my	client	and	server	in	Wireshark.	Now,	go	to
Edit	|	Preferences	|	Protocol	tree	|	SSL	|	(Pre)-Master-Secret	log	filename	|
/path/to/sslkeylog.txt	|	Ok.	Then,	right-click	on	the	SSL	packet	(Make	sure	you
select	Decrypt	packet	data.	The	option	should	be	present	in	the	bytes	pane)	and
follow	the	SSL	stream.	Now,	you	will	see	something	like	Figure	4.29	here:

Figure	4.29:	Decrypt	SSL	traffic

This	is	one	of	the	easiest	ways	by	which	you	can	go	ahead	and	decrypt	SSL	traffic	with
just	a	few	clicks.	One	more	way	is	to	feed	the	RSA	private	key	of	the	server	into	the
Wireshark	SSL	preferences,	which	will	give	you	the	same	result.

Summary
Domain	name	system/Service	is	a	protocol	used	to	resolve	website	names	to	an	IP	address.
Using	this	domain	name	service,	your	machine	can	communicate	on	an	IP-based	network.
Using	zone	transfer	(if	enabled),	unauthenticated	malicious	users	can	ask	for	zone	data
form	name	servers,	which	is	considered	highly	malicious	and	dangerous.

File	transfer	protocol	has	been	used	to	transfer	files	from	one	machine	to	another	since	the
Internet	came	into	existence	and	is	still	being	used	in	today’s	modern	networks.	The	most
unsecure	part	about	FTP	is	that	the	data	is	passed	in	plain	text	and	can	be	easily	captured
using	protocol	analyzers,	unless	you	are	using	some	encrypted	form	of	the	FTP	client-
server	infrastructure.

The	web	browsers	are	used	to	present	and	transfer	the	web-based	content	back	and	forth
uses	hypertext	transfer	protocol.	It	is	commonly	also	referred	to	as	the	request/response
model,	where	a	host	requests	for	a	certain	resource	and	the	server	responds	with	a	status
code	and	the	resource	if	available.	Status	codes	greater	than	399	should	be	watched
closely,	I	would	suggest	is	to	apply	different	colorization	schemes.

SMTP	protocol	is	used	to	send	e-mails.	It	is	an	unencrypted	protocol	where	commonly
authentication	mechanism	is	not	used.	Every	SMTP	command	and	its	corresponding
arguments	are	passed	over	the	wire	in	plain	text	that	can	be	easily	sniffed	using	Wireshark.

VoIP	traffic	is	made	up	of	two	things:	RTP	for	data	transfer	and	SIP	protocol	used	to	create
the	session.	Signaling	protocol	creates	and	manages	a	session	where	real-time	transport
protocol	is	used	to	carry	the	voice	itself.	Using	Wireshark,	anyone	can	capture	and
reassemble	the	packets	back	to	listen	to	a	communication	session.	One	should	take	care	of
congestion,	jitter,	lag,	and	echoing	problems	while	dealing	with	these	protocols	in	order	to
maintain	the	quality	of	service.

Practice	questions:
Q.1	What	is	the	significance	of	the	DNS	protocol	while	you	surf	the	Internet?

Q.2	How	would	you	define	zone	transfers	and	recursive	DNS	queries?

Q.3	What	is	the	difference	between	recursion	desired	and	recursion	available	in	DNS
queries?

Q.4	How	many	DNS	record	types	exist?	Explain	the	purpose	of	the	AAAA	record	type
and	what	does	non-authoritative	answer	mean?

Q.5	Differentiate	between	active	and	passive	modes	of	FTP.	Explain	which	mode	is	better.

Q.6	What	solution	can	you	come	up	if	you	are	being	asked	to	make	your	FTP	session
encrypted?	Explain	the	difference	it	would	make.

Q.7	Using	a	virtual	infrastructure	or	a	physical	one,	install	the	FTP	server	on	any	of	the
machines	and	then	try	to	communicate	with	it	while	capturing	live	packets	in	Wireshark.

Q.8	Find	out	how	you	can	limit	the	maximum	number	of	login	attempts.	How	can	such
limitation	affect	the	overall	security	of	your	FTP	server?

Q.9	Why	do	we	refer	to	HTTP	communication	as	a	request/response	approach	and	what	is
the	purpose	of	the	three-way	handshake	while	initiating	the	connection?

Q.10	Which	version	of	HTTP	are	we	currently	using	and	what	is	the	difference	between
the	old	and	new	ones?

Q.11	While	your	browser	makes	an	HTTP	request,	various	other	parameters	are	also	sent
in	your	request.	Why	is	it	so?	What	is	the	purpose	of	Accept-Encoding	and	Accept-
Language	parameters	sent	with	your	request?

Q.12	Visit	websites	of	your	choice	and	browse	a	couple	of	pages	while	capturing	all	the
packets	in	Wireshark.	Then,	create	a	display	filter	to	check	whether	any	redirection	was
present	in	your	whole	session.

Q.13	For	what	purpose	is	SMTP	on	client	side	used?	To	send	e-mails	or	receive	them?
Which	protocols	are	popularly	used	to	receive	e-mails?

Q.14	Is	it	possible	to	perform	a	brute	force	attack	on	an	SMTP	server?	If	yes,	then	how
and	how	do	you	identify	such	traffic	pattern?

Q.15	What	do	you	understand	by	e-mail	harvesting	and	how	you	can	perform	an	e-mail
harvesting	attack	on	an	SMTP	server?	Is	there	any	kind	of	specific	response	you	will	look
for?

Q.16	Read	about	the	difference	between	various	email	protocols	and	SMTP?

Q.17	What	is	the	significance	of	SIP	in	a	VOIP	session?	What	percentage	of	traffic	do	you
think	SIP	will	have	in	a	whole	VOIP	session?

Q.18	What	is	the	difference	between	RTP	and	RTCP	protocols?

Q.19	Download	a	SIP	traffic	capture	file	(sippcap)	from	Wireshark’s	website	and	analyze
the	session	using	a	flow	graph.	Are	you	able	to	the	see	the	process	flow	we	discussed?

Q.20	Filter	out	all	the	wrong	password	attempts	using	specific	code	for	such	responses	and
apply	a	different	coloring	scheme	(use	the	aaa.pcap	capture	file).

Chapter	5.	Analyzing	Transport	Layer	Protocols
This	chapter	will	help	you	understand	TCP	and	UDP	protocols,	how	they	communicate,
the	problems	you	can	face	with	these	protocols,	and	how	you	can	use	Wireshark	to	assist
them.	You	will	also	learn	how	to	analyze	TCP	and	UDP	protocols	and	look	for	any
anomalies	that	may	follow.	The	following	are	the	topics	that	we	will	cover	in	this	chapter:

	
Understanding	the	TCP	header	and	how	it	communicates
Understanding	the	TCP	analysis	flags
Lab	up—TCP
How	to	check	for	different	analysis	flags	in	Wireshark
Understanding	UDP	traffic
Lab	up—UDP
Practice	questions

We	will	discuss	TCP	and	UDP	protocols	using	various	practical	examples	that	can	give
you	an	insight	about	how	low-layer	protocol	packets	communicate	and	travel	in	your
network	in	order	to	transmit	data	successfully.	We	will	also	look	at	some	common
anomalies	that	you	might	witness	in	your	day-to-day	operations.

The	transmission	control	protocol
A	TCP	is	a	connection-oriented	protocol	used	by	various	other	application-layer	protocols
to	ensure	data	delivery	without	any	loss	of	packets	during	transition.	On	the	basis	of
sequence	numbers	and	acknowledgement	numbers,	a	TCP	ensures	fail-proof	delivery	of
packets	between	the	hosts	that	intend	to	communicate.	A	TCP	is	supposed	to	provide	an
end-to-end,	reliable	form	of	communication,	which	should	be	robust	at	all	times.	It	sits	in
between	the	network	layer	and	the	application	layer	and	uses	the	IP	datagram	to	transfer
data	packets	between	the	sender	and	receiver.	Because	of	this	approach,	the	TCP	and	IP
are	used	by	various	application	layer	protocols	for	their	reliable	delivery.

A	TCP	is	like	a	two-way	communication	process	where	not	only	the	sender	is	involved	in
the	communication,	but	even	the	receiver	actively	works	to	make	it	a	successful
connection.	You	can	imagine	it	to	be	like	a	landline	connection,	where	you	dial	a	number;
if	the	number	you	dialed	is	correct,	you	will	hear	a	ringtone	(if	the	other	side	is	open	to
communicate).	Only	when	the	receiver	responds	by	picking	up	the	receiver,	you	can	start
talking.	Likewise,	in	TCP-based	communication,	a	process	called	three-way	handshake
takes	place	between	the	parties	that	are	involved	in	the	communication	to	create	an
independent	channel	between	the	two	hosts.

Understanding	the	TCP	header	and	its	various	flags
The	TCP	header	is	normally	20	bytes	long,	but	at	times,	due	to	the	presence	of	the	options
field,	the	TCP	header	size	can	vary	up	to	60	bytes.	Refer	to	the	following	illustration	of	a
simplified	TCP	header:

Source	port Destination	port

Sequence	number

Acknowledgement	number

Data	offset Flags Window	size

Checksum Urgent	pointer

Options

Now,	let’s	get	acquainted	with	the	header	fields	to	get	a	stronger	grasp	over	the	basics	of	a
TCP:

	
Source	port:	This	is	the	port	number	associated	with	the	sender	side	of	the
communication	or	you	can	say	the	port	responsible	for	listening	on	the	sender	side.
Destination	port:	This	is	the	port	number	associated	with	the	recipient	side	of	the
communication	or	you	can	say	the	port	responsible	for	receiving	the	transmitted
packets.
Sequence	number:	These	are	the	unique	values	that	are	used	to	ensure	reliable
delivery	of	data.	TCP	tracks	each	segment	using	sequence	numbers.
Acknowledgement	number:	These	values	are	sent	in	response	from	the	receiver	side
as	part	of	the	confirmation	process	that	the	packet	was	successfully	received.
Data	offset:	This	indicates	where	the	data	packet	begins	and	the	length	of	the	TCP
header.	The	size	can	vary	due	to	the	presence	of	the	options	field.
Flags:	There	are	various	types	of	flag	bits	present;	each	of	them	has	its	own
significance.	They	initiate	connection,	carry	data,	and	tear	down	connections,	and	on
the	basis	of	their	assigned	purpose,	we’ve	named	them	as	follows:

SYN	(synchronize):	These	are	the	packets	that	are	used	to	initiate	a	connection
that	is	commonly	known	as	the	handshake	process.
ACK	(acknowledgement):	These	packets	are	used	to	confirm	that	the	data
packets	have	been	received,	and	this	also	confirms	the	initiation	and	tear	down
of	the	connections.
RST	(reset):	These	packets	signify	that	the	connection	you	were	trying	to	create
has	been	shut	down	or	may	be	the	application	we	were	trying	to	communicate
with	is	not	accepting	connections.
FIN	(finish):	These	packets	indicate	that	the	connection	is	being	torn	down	after
the	successful	delivery	of	data	packets.	Both	the	sender	and	receiver	send	the

FIN	packets	to	gracefully	terminate	the	connection.	If	they	want	to	communicate
again,	they	will	start	from	the	beginning,	that	is,	from	the	three-way	handshake
process.
PSH	(push):	These	packets	indicate	that	the	incoming	data	should	be	passed	on
directly	to	the	application	instead	of	getting	buffered.	To	state	this	simply,	the
other	host	should	receive	data	without	waiting	for	it.
URG	(urgent):	Marked	packets	indicate	that	the	data	that	the	packet	is	carrying
should	be	processed	immediately	by	the	TCP	stack	and	the	urgent	pointer	field
should	be	examined	if	it	is	set.
CWR	(congestion	window	reduced):	These	packets	are	used	by	the	sender	to
inform	the	receiver	that	due	to	the	transmit,	the	buffer	is	getting	overfilled,	and
because	of	congestion,	both	the	parties	should	slow	down	the	transmission
process	to	avoid	any	packet	loss	that	might	happen.

Window	size:	This	field	in	the	header	indicates	the	amount	of	data	that	the	sender
can	send,	.	The	amount	is	decided	during	the	handshake	process	where	both	the	hosts
that	communicate	match	the	buffer	size	compatible	for	transmission.	Flow	control
can	be	achieved	through	this	field.
Checksum:	To	cross	check	the	integrity	of	the	data	that	is	being	received,	this	field	is
used,	where	the	contents	of	the	TCP	segments	are	validated.
Urgent	pointer:	This	field	tells	us	about	the	value	that	the	urgent	pointer	contains.	It
specifically	indicates	the	sequence	number	of	the	octet	that	lies	before	the	data.
Options:	This	field	length	can	vary	due	to	the	presence	of	various	options.	This	field
has	three	parts:	the	first	part	specifies	the	length	of	the	option	field,	the	second	part
denotes	the	options	being	used,	and	the	third	actually	contains	the	options	in	use.	One
of	the	important	options	maximum	segment	size	(MSS)	is	also	part	of	this	field.
Data:	The	last	part	in	the	TCP	header	is	the	real	data	that	travels	around.

The	preceding	information	gives	us	an	overview	regarding	TCP	headers	and	the
significance	of	various	parts	of	the	header.	While	analyzing	TCP	sessions,	it	becomes
quite	important	to	know	about	these	details.

How	TCP	communicates
To	understand	and	analyze	the	packets	in	real	time,	I	have	configured	a	server	that	runs	at
172.16.136.129	and	a	client	that	runs	at	172.16.136.1,	as	shown	in	the	following	figure.
Using	Wireshark,	I	will	try	to	illustrate	the	three-way	handshake	process,	which	happens
before	the	actual	data	transfer	as	well	as	the	tear	down	process	(graceful	termination).	The
three-way	handshake	ensures	that	the	server	and	client	are	open	to	making	connections
and	are	ready	with	resources	to	create	a	dedicated	channel	between	each	other	for	a
reliable	delivery	of	packets.

How	it	works
The	server	runs	an	HTTP	server	daemon	at	port	80.	On	the	client,	I	will	visit	the	default
webpage	hosted	at	http://172.16.136.1	while	capturing	all	the	packets	taking	part	in	the
communication	process.

Note
For	the	sake	of	visibility	and	ease,	I’ve	created	a	display	filter	to	display	the	traffic
between	these	two	hosts	specifically.

Figure	5.1:	Connection	Process:Three-way	handshake,	data	transfer	and	tear	down
process

In	the	packets	282,	283,	and	284,	it	is	clearly	visible	that	the	client	and	server	are	trying	to
create	a	dedicated	channel.	The	client	initiated	the	creation	by	sending	a	SYN	packet	in	the
282	packet	with	the	SEQ	set	to	0.	Since	the	server	was	open	for	communication,	the	server
responded	with	a	SYN/ACK	packet	with	ACK	set	to	1	and	SEQ	set	to	0.	This	is	followed	by	a
confirmation	sent	from	the	client	side	that	is	seen	in	the	packet	number	284	with	SEQ=1
and	ACK=1.	This	is	what	a	three-way	handshake	process	looks	like.	This	can	be	seen	before
any	real	data	transfer	that	happens	that	follows	the	TCP	approach.

After	the	successful	completion	of	channel	creation,	the	client	sends	a	GET	request	to
access	the	contents	of	the	web-root	directory.	The	server	acknowledged	this	in	the	packet
number	287	and	sent	the	requested	content	to	the	client’s	machine	with	the	200	OK	status
message,	which	is	acknowledged	by	the	client	in	the	next	packet.	As	seen	in	the	list	pane
again,	the	client	was	requesting	a	new	resource,	which	the	server	wasn’t	able	to	find	and
thus	sent	a	404	Not	Found	status	message,	which	was	acknowledged	by	the	client	in	the
the	packet	295.

After	all	the	data	transfer	takes	place,	when	the	client	has	nothing	left	to	request,	or	when
the	server	has	nothing	left	to	send,	the	client	sends	FIN/ACK	packets	to	properly	terminate
the	connection.	The	server	acknowledges	this	and	sends	its	own	FIN/ACK	packets,	which
are	acknowledged	by	the	client	as	well	in	the	packet	number	302.	This	way	of	termination
is	often	referred	to	as	the	teardown	process.	Take	a	look	at	the	following	screenshot	that
illustrates	this	process:

This	was	a	small	and	sweet	conversation	that	we	captured	and	through	which	you	learned
about	the	process	flow.	I	think	I’ve	one	more	interesting	way	to	illustrate	the	process	flow
using	graphs	that	we’ve	already	seen	in	the	previous	chapters.	Refer	to	the	preceding
screenshot.

From	this	flow	graph,	it	becomes	more	clear	and	concise	to	view	the	requests	and
responses	shared	between	the	two	communicating	hosts.	The	most	interesting	part	that	I
like	in	the	preceding	screenshot	is	the	comment	section	that	lists	out	the	SEQ	and	ACK
numbers,	which	are	sent	and	received	by	the	hosts.

You	must	be	wondering	how	these	are	generated	and	incremented.	Let	me	tell	you	the
trick	behind	this	amazing	world	of	numbers	that	is	used	while	transferring	data.	The	host
that	initiates	a	new	connection	uses	Initial	Sequence	Numbers	(ISN)	that	are	generated
by	the	host’s	operating	system.	It	can	be	any	random	number	that	has	no	significance	with
respect	to	the	data.	The	sequence	number	we	see	in	the	packet	one	is	zero	is	actually	a
relative	referencing	technique	used	by	Wireshark	to	ease	the	numbering	system	for	the
sake	of	users.	First	of	all,	you	should	know	that	the	numbers	are	used	to	keep	track	of	how
much	data	is	being	transferred	between	the	two	hosts.

Starting	from	the	packet	1,	where	SEQ=0	(the	relative	sequence	number	in	real	is
704809601),	which	is	received	by	the	server	and	in	return	replies	with	its	own	SEQ=0	and
ACK=1	for	the	client’s	SEQ=0.	At	the	end	of	this	three-way	handshake,	the	client	replies
with	SEQ=1	and	ACK=1	without	any	further	increments	as	no	data	is	being	transferred
during	the	process.

Then,	by	the	fourth	packet,	the	client	sends	a	GET	request	with	SEQ=1	and	ACK=1	where	the
data	payload	length	equals	323	(refer	to	the	following	figure),	which	the	server	receives
and	acknowledges	with	SEQ=1	and	ACK=324.	Did	you	see	what	just	happened?	The	server
replied	by	adding	a	total	data	payload	length	into	ACK	to	denote	that	the	data	was
successfully	received.	Hence,	it	sends	the	requested	resource	to	the	client	with	data
payload	length	equals	451,	which	in	return	gets	acknowledged	by	the	client	with	ACK=452
and	SEQ=324.	In	the	same	way,	the	transmission	goes	on	until	the	tear	down	takes	place
using	FIN/ACK	packets	at	the	end.

Graceful	termination
We	saw,	in	detail,	the	process	of	TCP	three-way	handshake	using	the	captured	packets	and
the	flow	graph	that	gave	us	insight	about	the	process.	Similarly,	we	should	be	comfortable

about	the	teardown	process,	which	indicates	proper	termination	of	a	session	between	two
hosts.

Considering	the	same	scenario	that	we	discussed	here,	let	me	show	you	the	packets	that
were	generated	to	terminate	the	connection	in	a	proper	standardized	format.	Refer	to	the
following	screenshot	for	this:

After	the	successful	delivery	of	all	the	required	packets,	the	server	initiated	the	teardown
process	(as	there	was	nothing	left	to	send	or	the	client	was	just	sitting	idle	and	doing
nothing).	In	the	beginning,	the	server	sent	its	own	FIN	and	ACK	packets	to	the	client	with
SEQ=452	(the	client	acknowledged	the	same	with	ACK)	and	ACK=324	(this	is	the	client	SEQ
number	when	the	data	transfer	was	completed).	These	were	acknowledged	by	the	client	in
the	next	packet.	Following	the	same	approach,	the	client	issued	its	own	FIN	and	ACK
packets	(using	SEQ	and	ACK	numbers	used	in	the	second	round	of	communication,	where
the	client	requested	something	that	wasn’t	available.	Refer	to	the	preceding	flow	graph	to
know	more)	to	end	the	connection	from	its	own	side	(as	the	connection	was	bi-
directional),	which	was	received	and	acknowledged	by	the	server.	As	soon	as	the	client
received	ACK	from	the	server,	the	connection	between	the	two	hosts	was	closed	completely,
and	the	sockets	and	other	resources	involved	during	the	communication	were	freed	up.

RST	(reset)	packets
Often	times,	there	will	be	situations	when	the	server	daemon	is	not	available,	it	is	not	able
to	process	your	request	due	to	overload,	you	are	restricted	to	interact	with	the	server,	or
the	port	you	are	trying	to	connect	to	is	not	open	for	connections	(not	associated	with	any
service).	There	can	be	a	lot	of	reasons	why	you	will	see	a	RST	packet.	Let	me	replicate	the
scenario	and	capture	the	traffic	between	the	client	and	server	I	have,	which	will	surely
make	it	easy	for	you	to	understand	this.	An	RST	packet	basically	denotes	that	the
connection	you	were	trying	to	initiate	got	closed	abruptly.

In	this	scenario,	the	server	daemon	is	not	running	and	the	client	is	trying	to	communicate;
as	a	result,	it	receives	RST	packets	in	return	for	every	SYN	request	sent.	I	tried	visiting	the
web	server	just	once,	but	you	will	notice	more	than	one	SYN	and	RST	packets	because
every	browser	performs	a	different	number	of	attempts	over	a	non-responding	or	a	closed
socket	at	a	particular	interval	of	time.	Hence,	in	our	case,	I	am	using	the	Apple	Safari
browser,	which	made	at	least	three	attempts	to	connect	back	in	a	max	time	of	3-4	minutes.
I	tried	requesting	Google	Chrome	as	well,	which	made	approximately	7	attempts	to
connect	back	in	merely	10	minutes	(the	browser	will	continue	to	make	a	request	at	a
particular	interval	of	time).	Refer	to	the	following	screenshot	that	illustrates	the	packets
captured	in	the	process:

Figure	5.2:	RST	packets	captured

Relative	verses	Absolute	numbers
Wireshark	purposefully	translates	real	SEQ/ACK	flag	numbers	to	a	simpler	format,	which
makes	it	significantly	easier	for	us	to	keep	track	of	data	sent	across	the	wire.	For	instance,
I’ve	a	web	server	at	172.16.136.129	and	a	client	at	172.16.136.1.	Using	a	web	browser,
I	will	try	to	visit	the	server	that	will	generate	a	couple	of	packets,	which	will	be	captured
by	Wireshark.	Refer	to	the	following	screenshot	illustrating	the	same	packets	generated
for	the	session.

I	have	selected	the	first	packet	generated	for	the	session	in	the	list	pane	and	its
corresponding	details	in	the	packet.	The	details	pane	and	bytes	pane	can	be	seen
highlighted	as	follows:

	
1:	In	the	list	pane,	it	can	be	observed	that	the	SEQ	number	assigned	for	the	SYN	packet
to	begin	communication	is	zero.
2:	In	the	details	pane,	we	can	see	that	the	number	0	is	a	relative	sequence	number,
which	is	not	the	real	SEQ	number	and	has	been	changed	for	our	perusal	by	Wireshark.
3:	In	the	bytes	pane,	we	can	see	that	the	corresponding	hex	value	for	SEQ=0	is
0x2a028a81,	which	is	equivalent	to	704809601	in	decimal.

So,	the	real	SEQ	number	is	704809601,	which	was	converted	to	0	to	make	our	analysis
easy.

According	to	our	analysis,	the	ACK	value	that	we	must	receive	should	be	704809602

(incremented	SEQ	value	with	1).	Let’s	verify	the	same	using	the	next	packet	and	its
corresponding	related	information	using	the	details	and	bytes	pane.	Refer	to	the	following
screenshot	for	illustration:

Refer	to	the	following	list	to	understand	what	each	pointers	highlights:

	
The	second	packet	I	selected	is	the	SYN,	ACK	packet	that	the	client	received	from	the
server.	It	contains	the	SEQ=0	and	ACK=1	(relative	numbers)	servers.
The	related	information	for	the	packet	2	in	the	communication	is	shown	in	the	details
pane	and	the	bytes	pane.	If	you	observe,	in	the	details	pane,	the	ACK	server	sent	for
the	client’s	request	is	1.
The	hex	value	for	the	ACK	received	is	0x2a028a82,	which	is	equivalent	to	704809602
in	decimal.	This	is	the	same	value	that	we	should	be	expecting.

Now,	it	would	be	easy	for	you	to	check	the	absolute	numbers	translating	them	from	their
given	hex	values.	There	is	one	more	interesting	way	by	which	we	can	customize	the
numbering	system,	where	we	can	view	the	real	absolute	numbers	directly	in	the	list	pane
and	the	details	pane.	Follow	these	steps	to	activate	and	deactivate	it:

	

1.	 Navigate	to	Edit	|	Preferences	in	the	menu	bar.
2.	 Expand	the	Protocol	tree	and	look	for	TCP.
3.	 Remove	the	checkmark	from	the	Relative	sequence	numbers	option,	as	shown	in

the	following	figure:

4.	 Navigate	to	Apply	|	Ok.	That’s	it.	Refer	to	the	following	screenshot:

As	we	analyzed,	the	first	packet	in	the	TCP	handshake	process	has	an	SEQ	number
704809601	as	an	decimal	equivalent.	Now,	after	deactivating	the	Relative	sequence
numbers	options,	we	can	observe	the	same	in	the	list	and	details	panes.

There	are	a	few	more	options	that	are	enabled	by	default	in	the	TCP	Protocol	Preferences
window,	which	makes	the	analyses	more	systematic	and	advanced.	For	example,
validating	the	checksum	whenever	possible	and	A=analyzing	the	TCP	sequence	numbers.

Checksums	are	generally	used	during	the	transmission	to	ensure	the	integrity	of	the	data
being	sent	and	received.	As	discussed,	there	is	an	extra	field	in	the	TCP	header.	What
actually	happens	is	when	the	sender	prepares	the	packet	that	needs	to	be	transmitted,	the
checksum	of	the	packet	that	contains	data	is	calculated	and	sent	along	with	the	packet.
Now,	the	receiving	side	will	receive	the	packet	and	recalculate	the	checksum	using	the
same	algorithm	used	by	the	sender.	If	the	checksum	value	that	came	along	with	the	packet
is	identical	to	the	one	that	the	receiver	calculated,	then	the	packet	is	accepted;	otherwise,
the	packet	that	contains	the	error	(checksum	not	matched)	is	discarded	and	the	sender	side
is	not	even	informed	about	the	error	that	has	taken	place.	The	sender	is	supposed	to	know
about	this	by	himself.	The	validation	of	the	checksum	is	not	100%	guaranteed,	and	even
this	reduces	the	performance	as	TCP	packets	reassembly	won’t	take	place	now.

Checksum	offloading	is	a	feature	that	only	new	network	drivers	support,	where	the
packets	that	are	ready	to	be	transmitted	are	passed	on	to	the	network	hardware	that	are
captured	by	Wireshark	with	an	empty	checksum	field	that	generates	the	checksum
offloading	error.	The	reason	is	that,	even	before	the	actual	packet	transfer	happens,
Wireshark	captures	the	packet	(the	packets	will	contain	the	valid	checksum	once	the	actual
transfer	happens).	This	might	lead	to	several	confusion.	So,	the	best	approach	would	be	to

switch	off	the	offloading	feature	from	your	interface	if	available,	or	to	disable	the	Validate
checksum	feature	for	TCP	protocol	preferences.	Refer	to	the	following	figure	that
illustrates	this:

The	packets	with	invalid	checksums	are	displayed	with	a	black	background	and	red
foreground	color.	Look	at	the	error	highlighted	in	red	color	in	the	details	pane;	this	states
that	the	checksum	is	incorrect,	and	this	might	be	because	the	checksum-offloading	feature
is	activated.	The	packets	with	an	invalid	checksum	cannot	be	reassembled,	and	it	doesn’t
look	nice	(a	lot	of	invalid	errors	on	the	screen),	so	the	best	option	is	to	deactivate	this
feature	if	not	required.

Another	option	that	you	should	know	about	is	the	Analyzing	TCP	sequence	numbers
feature,	which	keeps	track	of	the	SEQ	and	ACK	numbers	and	keeps	you	aware	of	the	various
types	of	errors	that	can	take	place	during	transmission,	for	example,	lost	frames,	duplicate
ACK,	retransmissions,	window	scaling,	and	several	others.	Turning	this	feature	off	will	also
affect	the	Expert	Info	dialog,	where	any	of	the	warnings	related	to	transmission	errors
and	other	useful	information	won’t	be	populated.

Unusual	TCP	traffic
One	of	the	scenarios	that	commonly	falls	under	this	category	is	the	lost	connection	or
unsuccessful	connection	attempt	scenario,	which	we	have	already	analyzed	in	the	RST
packets	section.	You	might	observe	several	other	examples,	such	as	high	latencies,	due	to
long-distance	communications	or	queuing	up	of	the	traffic.	To	make	the	analysis	easy	and
to	sort	out	such	problems,	use	the	time	column	by	sorting	it,	and	then,	you	will	be	able	to
figure	out	large	time	gaps	between	the	packets	at	the	top	of	the	list	pane.

Another	example	can	be	where	a	malicious	user	is	trying	to	perform	a	port	scan	on	your
network	and	your	firewall	responds	with	RST	packets	to	the	user	to	avoid	such	attacks,	or	it
might	also	be	possible	that	the	port	that	the	malicious	user	is	looking	for	is	closed.	A
normal	scan	can	generate	a	lot	of	traffic	and	which	is	quite	noisy.	This	can	be	easily
observed	in	the	list	pane	of	Wireshark.	Refer	to	the	following	screenshot	where	I’ve	tried
scanning	my	machine	using	nmap	from	another	device,	and	it	seems	quite	visible	and
hence	is	easy	to	track:

Observe	Frame	19,	where	the	port	scan	initiated	by	the	malicious	user	sent	a	SYN	packet	in
order	to	check	whether	the	port	is	open	or	closed.	As	a	result,	in	our	case,	port	21	(FTP)
was	closed;	hence	our	machine	sent	a	RST	packet,	which	will	be	used	by	the	port	scanner
on	the	other	side	to	display	statistics.	If	the	port	was	open,	the	malicious	user	will	be
notified	with	SYN	and	ACK	(refer	to	the	following	screenshot),	which	signify	that	our
machine	is	open	to	a	connection	over	the	port	21,	and	this	might	become	an	entry	point	to
the	user’s	malicious	attacks.

Figure	5.3:	Port	21	open,	an	entry	point	for	malicious	attacks

Take	a	look	at	Frame	45,	where	the	client	sent	a	SYN	request	to	the	server	at
172.16.136.1,	and	by	this	time,	the	port	was	open	so	our	server	sent	SYN	and	ACK	packets
(Frame	46),	acknowledging	the	connection	initiation	attempt	with	a	positive	confirmation
that	the	server	is	open	to	connection	over	port	21.

There	can	be	various	scenarios	other	than	this	half-open	scan	(the	scan	shown	in	the
preceding	screenshot	is	called	half	open	because	the	client	who	initiated	the	connection
attempt,	would	never	complete	the	connection	by	sending	ACK,	which	the	server	will	be
expecting).	If	your	basics	regarding	the	packet	behavior,	connection	initiation,	completion
process,	TCP	headers,	flags	in	packets,	and	SEQ-ACK	numbers	are	clear,	then	it	would	be
quite	easy	for	you	to	point	out	any	unusual	form	of	traffic	that	is	flowing	around.	There	is
no	such	automated	tool	that	can	point	out	these	abnormalities	until	you	customize	your
environment	about	how	to	react	or	alarm	you	to	such	traffic	anomalies.	These	are	some
traffic	patterns	that	you	can	expect	to	happen	on	a	regular	basis.

How	to	check	for	different	analysis	flags	in	Wireshark
The	analysis	of	the	flags	present	in	TCP	packets	is	quite	simple	while	using	Wireshark,
there	is	an	individual	section	that	is	available	in	the	details	pane	for	every	TCP	packet.
Let’s	take	a	TCP	packet	from	our	previous	handshake	process	that	we	captured	and	see
how	flags	are	presented	in	the	details	pane.	Then,	we	will	try	to	create	a	display	filter
corresponding	to	the	same.	Refer	to	the	following	screenshot	that	illustrates	this:

Now,	we	will	see	what	each	pointer	signifies:

	
Here,	the	SYN	packet	sent	from	the	client	to	the	server	to	initiate	the	three-way
handshake	can	be	seen	in	the	list	pane.
Here,	the	flags	related	to	the	same	packet	are	set	and	the	hex	equivalent	of
000000000010	is	set	to	0x002.
For	the	corresponding	TCP	packet,	the	SYN	flag	bit	is	set	to	1;	the	same	can	be	seen	in
the	details	pane.	The	rest	of	them	are	still	0.

Now,	if	you	wish	to	create	a	display	filter	to	see	only	the	SYN	packets	that	you	have	in	the
trace	file,	then	apply	the	filter	shown	here.	As	a	result,	you	will	see	only	SYN	packets
present	in	your	trace	file.	The	following	figure	illustrates	the	same:

Let’s	try	to	create	one	more	filter	to	view	the	SYN	and	ACK	packets	only	in	the	list	pane.
Follow	these	steps	to	create	the	filter:

	
1.	 Open	your	trace	file.
2.	 Choose	any	TCP	SYN,	or	ACK	packet.
3.	 Note	the	corresponding	SYN	and	ACK	hex	equivalent	values	for	the	flags	set.
4.	 Create	your	filter	using	the	hex	equivalent	that	you	have.	Your	filter	must	look

something	like	what	is	shown	here.

The	User	Datagram	Protocol
As	defined	in	RFC	768,	a	UDP	is	a	connection-less	protocol,	which	is	great	for
transmitting	real-time	data	between	hosts	and	is	often	termed	as	an	unreliable	form	of
communication.	The	reason	for	this	is	that	UDP	doesn’t	care	about	the	delivery	of	packets,
and	any	lost	packets	are	not	recovered	because	the	sender	is	never	informed	about	the
dropped	or	discarded	packets	during	transmission.	However,	many	protocols	such	as
DHCP,	DNS,	TFTP,	SIP,	and	so	on	rely	only	on	this.	The	protocols	that	use	a	UDP	as	a
transport	mechanism	have	to	rely	upon	other	techniques	to	ensure	data	delivery	and	error-
checking	capabilities.	And	these	protocols	are	inbuilt	with	such	features,	which	can
provide	some	level	of	reliability	during	the	transmission.	A	point	that	we	should	not	to
forget	is	that	a	UDP	provides	faster	transmission	of	packets	as	it	is	not	concerned	about
the	initiation	of	the	connection	or	graceful	termination	as	seen	in	the	TCP.	That’s	why	a
UDP	is	also	referred	to	as	a	transaction-oriented	protocol	and	not	a	message-oriented
protocol	like	a	TCP.

A	UDP	header
The	size	of	a	usual	UDP	header	is	8	bytes;	the	data	that	is	added	with	the	header	can	be
theoretically	65,535	(practically	65,507)	bytes	long.	A	UDP	header	is	quite	small	when
compared	to	a	TCP	header;	it	has	just	four	common	fields:	Source	Port,	Destination
Port,	Packet	Length,	and	Checksum.	Refer	to	the	UDP	header	shown	here:

	
Source	port:	This	is	the	port	number	used	by	the	sending	side	to	receive	any	replies
if	needed.	Most	of	the	time,	in	a	TCP	and	UDP,	the	port	number	chosen	to	be	the	part
of	the	socket	is	ephemeral.	On	the	other	side	of	the	communication,	the	port	number
comes	in	the	category	of	well-known	port	numbers.
Destination	port:	This	field	of	the	header	identifies	the	port	number	used	by	the
server	or	receiving	side,	and	all	data	will	be	transmitted	to	this	port.	This	port	number
is	assigned	to	a	particular	service	by	IANA,	and	definitely,	it	is	permanently	assigned
to	the	same	service	specifically.	For	example,	port	53	is	for	DNS	and	cannot	be
assigned	to	any	other	service	(not	advisable).
Packet	length:	This	field	specifies	the	length	of	the	packet,	starting	from	the	header
to	the	end	of	the	data;	the	minimum	length	you	will	observe	will	be	8	bytes	every
time,	that	is,	the	length	of	the	UDP	header.
Checksum:	As	discussed	earlier,	checksum	is	performed	over	data,	that	is,	the	packet
of	the	packet	to	ensure	data	integrity	that	is	what	is	sent	from	the	sender	side	is	the
same	what	receiver	got	and	to	verify	this	there	are	couple	of	checksum	algorithms
which	comes	to	the	rescue.	Sometimes,	while	working	with	a	UDP,	you	will	see	that
the	checksum	value	is	0	in	the	packet	we	received.	This	means	that	the	checksum	is
not	required	to	be	validated.

How	it	works
To	understand	the	way	a	UDP	works,	let’s	go	ahead	and	analyze	some	of	the	protocols	that
use	a	UDP	as	a	delivery	protocol.	First,	I	would	like	to	discuss	DHCP,	and	then	we	will
see	DNS	traffic	as	well.	We	actually	saw	UDP	traffic	before	as	well	while	we	were	going
through	VOIP	and	SIP	analysis.

For	analysis	purpose,	I	have	a	default	gateway	configured	at	192.168.1.1	and	a	client	at
192.168.1.106.	Using	the	client,	I	will	try	to	generate	DHCP	and	DNS	traffic,	which	will
be	captured	in	Wireshark,	and	then,	I	will	try	to	dissect	each	protocol’s	communication
process	as	well	as	the	different	components	utilized	during	the	whole	session.	Refer	to	the
following	network	architecture	that	I	have:

The	DHCP
The	most	common	and	important	protocol	that	assigns	IP	addresses	to	devices	and	makes
them	network	compatible	is	Dynamic	Host	Configuration	Protocol	(DHCP).	Now,	from
the	client,	I	will	try	to	release	the	IP	address	that	the	client	already	holds,	which	will
generate	a	DHCP	packet,	and	the	same	will	be	captured	by	our	sniffer.	Look	at	the
following	figure	to	understand	this:

In	the	list	pane,	we	can	see	a	DHCP	release	packet	that	was	generated	implicitly	by	the
client	in	order	to	release	the	current	IP	address	(I	used	the	dhclient	–v	–r	command	on
the	Linux	terminal	to	release	the	IP	address,	but	be	careful	while	using	this	command	as	it
may	disconnect	your	machine	from	the	network,	hence	making	it	incompatible	for
network	communication).	The	client	from	the	IP	address	192.168.1.106	to	the	server	at

192.168.1.1	initiates	the	request.	The	port	numbers	used	by	the	client	and	server	in	case
of	DHCP	are	permanent,	these	won’t	be	changed	in	your	case	either	unless	they	are
manually	configured.

The	DHCP	server	port	number	is	67	and	the	DHCP	client	port	number	is	68	by	default;
you	can	see	the	same	in	the	preceding	figure	(highlighted	as	3).	There	is	a	fourth	field	that
I	have	highlighted,	the	packet	length	field,	which	specifies	the	length	of	the	packet	starting
from	the	first	byte	until	the	end	of	data	in	the	packet.	However,	out	of	308	bytes,	8	bytes
show	the	length	of	the	UDP	header	and	the	remaining	300	bytes	represent	the	application
data	that	is	appended.	Interestingly,	if	a	machine	is	power	cycled,	it	will	request	the	DHCP
server	to	allocate	an	IP	address.	This,	as	a	result,	will	generate	a	couple	of	packets	related
to	the	DHCP	request,	release,	and	offer	and	various	others	that	will	also	use	the	UDP	as	a
transport	mechanism.

I	filtered	the	packets	listed	to	show	only	DHCP	packets	using	the	udp.port==67	filter;	as	a
result,	only	DHCP	packets	will	be	listed	in	the	list	pane.

The	TFTP
The	Trivial	File	Transfer	Protocol	(TFTP)	is	a	lightweight	version	of	the	FTP	that	is
used	to	transfer	between	hosts.	Unlike	the	FTP	protocol,	TFTP	does	not	ask	users	for	any
credentials.	A	TFTP	uses	a	UDP	as	a	transport	mechanism.	Most	commonly,	a	TFTP	is
used	in	LAN	environments,	and	when	dealing	with	manageable	devices	such	as	switches
and	routers,	network	administrators	do	use	TFTP	servers	to	take	a	back	up	of
configuration	files	and	to	update	the	firmware	running	in	those	devices.	A	TFTP	is	also
used	by	security	professionals	to	transfer	files	from	their	system	to	yours	in	order	to
escalate	the	privileges	(gaining	more	rights	on	a	compromised	system).

I	have	a	TFTP	server	running	at	192.168.1.106	and	a	client	running	at	192.168.1.104.
There	is	a	text	file	abc.txt	that	I’ve	created	on	the	server,	and	the	client	will	try	to
download	the	same.	And	our	sniffer	in	place	will	capture	the	traffic	that	is	generated.

The	traffic	generated	due	to	the	transaction	that	takes	place	between	two	hosts	is
successfully	captured	and	the	packets	corresponding	to	it	are	shown	in	the	following
figure:

Now,	let’s	see	what	each	pointer	signifies:

	
This	shows	that	the	transfer	of	the	packet	is	initiated	as	soon	as	the	client	requests	the
abc.txt	file.	The	request	frame	can	be	seen	in	the	list	pane.
As	discussed,	a	TFTP	uses	a	UDP	for	a	transport	mechanism.	The	related	details	for
the	request	are	shown	in	the	details	pane,	which	states	that	the	request	was	initiated
from	a	ephemeral	port	number	from	the	client	destined	to	port	69	on	the	server	(69	is
a	well-known	port	to	the	TFTP	protocol).

The	request	was	specific	to	the	abc.txt	file	that	is	also	shown	in	the	details	pane	in
the	TFTP	protocol	section.

You	must	be	wondering	about	the	acknowledgement	packets	that	are	shared	between	the
two	hosts.	As	we	discussed,	a	UDP	is	an	unreliable	form	of	communication,	so	why	are
we	seeing	ACKs	in	a	UDP?	The	reason	is	that	the	TFTP	server	I	am	using	has	some	kind
of	inbuilt	reliability	feature.	Even	on	the	client	side,	over	the	standard	console,	after
initiating	the	request,	I	received	quite	interactive	messages	from	the	server,	such	as	the	file
of	size	3	bytes	has	been	transferred	successfully,	and	various	other	details	were	listed
along	with	the	message.	The	interesting	thing	to	know	here	is	that	port	69	was	only
involved	in	the	first	packet,	and	the	rest	of	the	packets	were	sent	and	received	by	the
acknowledging	feature	that	the	server	is	embedded	with.	So,	the	statement	that	some
protocols	use	a	UDP	as	a	transport	protocol	and	have	their	own	inbuilt	feature	to	ensure
delivery	is	true,	as	we	have	just	witnessed.

Unusual	UDP	traffic
Suppose	that	the	resource	we	are	looking	for	is	not	available	on	the	server.	How	will
traffic	look	like	then?	Refer	to	the	following	screenshot	to	understand	this:

As	seen	in	the	preceding	screenshot,	the	client	requested	an	invalid	resource	that	the	server
wasn’t	able	to	locate	and	hence	returned	with	an	error	code	and	the	summary	message
File	not	found.	The	same	message	was	shown	over	the	standard	console	to	the	client.

Sometimes,	it	is	also	possible	that	the	server	daemon	may	not	run	and	the	client	may
request	a	certain	resource.	In	such	cases,	the	client	would	receive	the	ICMP	destination
unreachable	error	with	the	error	code	3.	Refer	to	the	following	figure	for	the	same:

Now,	we	will	see	what	each	pointer	signifies:

	
The	server	returned	with	an	ICMP	destination	unreachable	message	when	the
TFTP	server	daemon	was	not	functional
The	client	received	an	error	code	of	type	3
The	details	regarding	the	request	were	mentioned	in	the	reply	under	the	UDP
protocol	section,	which	stated	that	the	request	was	sent	to	port	69,	which	was

currently	nonfunctional
The	requested	resource	was	shown	under	the	TFTP	protocol	section

Unusual	DNS	requests	are	also	very	often	seen	when	a	client	initiates	a	request	to	look	for
name	servers	associated	with	an	address.	It	would	look	similar	to	the	one	shown	in	the
following	figure:

Now,	we	will	see	what	each	pointer	signifies:

	
1:	As	seen	in	the	list	pane,	the	client	at	192.168.1.106	initiated	a	request	to	look	for
the	address	8.0.0.0	and	received	a	response	in	Frame	2
2:	The	request	was	sent	to	the	default	gateway	that	holds	the	DNS	cache
3:	The	gateway	responded	with	a	No	such	name	error

There	can	be	multiple	scenarios	where	you	will	see	unusual	traffic	related	to	a	UDP.	The
most	important	thing	to	look	for	is	TFTP	traffic,	which	might	be	generated	because	of	a
the	TFTP	client	in	your	network.	It	may	be	malicious	traffic	that	you	would	like	to	make	a
note	of.

Summary
TCP	is	a	reliable	form	of	communication	that	has	features	like	a	three-way	handshake	and
a	tear	down	process	ensures	the	connection	is	reliable	and	interactive.

A	TCP	header	is	20	bytes	long	and	consists	of	various	fields	such	as	source	and
destination	port,	SEQ	and	ACK	numbers,	offset,	window	size,	flag	bits,	checksum,	and
options.	The	presence	of	various	flags	and	header	fields	let	the	sender	and	receiver	be	sure
about	the	delivery	as	well	as	the	integrity	of	the	data	being	sent.

The	SEQ	and	ACK	numbers	are	used	by	TCP-based	communications	to	keep	track	of	how
much	data	is	being	sent	across	between	the	hosts	taking	part.

A	UDP	is	a	connection-less	protocol	that	is	a	nonreliable	means	of	communication	over	IP,
where	the	lost	and	discarded	packets	are	never	recovered.	A	UDP	does	provide	us	with
faster	transmission	and	easier	creation	of	sessions.	A	UDP	header	is	8	bytes	long,	which
has	very	few	fields	such	as	source	and	destination	port,	packet	length,	and	checksum.	At
the	end	application,	the	data	is	appended.

Common	protocols	such	as	DHCP,	TFTP,	DNS,	and	RTP	mostly	use	a	UDP	as	a	transport
mechanism,	and	these	services	are	some	of	the	major	services	that	we	deal	with	in	our
everyday	life.	To	make	the	connection	reliable,	some	of	these	protocols	support	their	own
version	of	acknowledging	features	that	comes	inbuilt.

In	the	next	chapter,	you	will	learn	the	basics	of	wireless	traffic,	how	to	decrypt	wireless
traffic,	and	the	anomalies	that	may	follow.

Practice	questions
Q.1	List	at	least	five	differences	between	TCP	and	UDP	protocols.

Q.2	Capture	a	three-way	handshake	and	tear	down	packets	using	your	own	FTP	server.

Q.3	Explain	the	purpose	of	window	scaling	and	checksum	offloading	and	state	their
corresponding	significance	in	terms	of	TCP	communications.

Q.4	In	what	way	can	TCP-based	communication	can	recover	from	a	packet	loss	or
unexpected	termination?	Imitate	any	scenarios	that	can	generate	such	traffic.

Q.5	Create	a	display	filter	to	show	only	TCP	FIN	and	ACK	packets	sent	to	your	machine
from	your	default	gateway	in	the	list	pane.

Q.6	What	is	the	difference	between	the	absolute	and	relative	numbering	system	used	by
Wireshark	in	order	to	keep	track	of	packets?

Q.7	What	is	the	purpose	of	the	options	field	at	the	end	of	the	TCP	header	and	what	kind	of
arguments	does	it	contain?

Q.8	There	is	one	more	way	through	which	you	can	create	filters	to	view	a	packet	with	a
specific	flags	set.	Without	providing	the	HEX	equivalent,	figure	out	what	it	is	and	how
you	can	filter	a	packets	set	with	a	PSH	flag	set	using	the	same	technique.

Q.9	Find	out	why	the	length	of	data	can	only	be	65507	bytes	while	working	with	a	UDP.

Q.10	What	kind	of	packets	you	will	see	in	a	list	pane	if	the	server	daemon	for	a	TFTP	is
not	running?

Q.11	Try	performing	a	zone	transfer	on	your	locally	configured	DNS	and	capture	the
traffic	for	analysis.	What	interesting	facts	did	you	notice	about	the	packets?	Explain	them
in	brief.

Chapter	6.	Analyzing	Traffic	in	Thin	Air
In	this	chapter,	you	will	learn	how	to	analyze	wireless	traffic	and	pinpoint	any	problems.
You	will	also	learn	how	to	analyze	wireless	traffic	using	Wireshark.	The	following	are	the
topics	we	will	cover	in	this	chapter:

	
Understanding	IEEE	802.11	traffic
Analyzing	normal	and	unusual	behavior
Lab	up—wireless	communication
Decrypting	encrypted	wireless	traffic
Lab	up—decrypting	WEP	and	WPA	traffic
Practice	questions

We	start	from	the	basics	such	as	how	WLAN	traffic	gets	generated	and	various	essential
elements	responsible	for	handling	the	wireless	transmission	between	hosts.	Then,	moving
ahead,	we	will	analyze	the	usual	and	unusual	forms	of	packets	that	can	be	seen	in
Wireshark.	Side	by	side,	we	will	identify	anomalies	and	regular	traffic	patterns.	We	will
also	discuss	how	you	can	decrypt	wireless	(WEP)	traffic	using	Wireshark,	which	can
definitely	give	an	advantage	while	auditing	WLAN	environment.

What	we	are	going	to	witness	is	not	much	different	from	the	wired	networking	that	we
saw	earlier;	here,	we	will	be	quite	concerned	with	the	medium	through	which	packets	are
flying	around	us.	The	two	layers	at	the	bottom	of	the	OSI	model	are	important	as	they
represent	the	data	link	and	the	physical	layer.	The	data	link	layer	is	divided	into	two	parts:
Logical	Link	Control	(LLC)	and	Media	Access	Control	(MAC).

Understanding	IEEE	802.11
At	the	Institute	of	Electrical	and	Electronics	Engineer	(IEEE),	there	are	several
committees	working	together	on	several	projects,	and	one	of	these	is	802,	which	is
responsible	for	developing	LAN	standards.	A	free	white	paper	can	be	downloaded	from
the	IEEE	website	based	on	802	standards.	Specifically,	802.11	contains	WLAN	standards.
If	you	want	to	analyze	what	normal	traffic	looks	like,	you	should	be	aware	of	the
standards	and	the	present	working	technologies	within	802.11.

There	are	a	couple	of	802.11	standards,	but	the	few	important	ones	that	we	should	know
about	are	802.11b,	802.11a,	802.11g,	and	802.11n,	which	are	explained	in	the	following
list:

	
802.11:	This	only	supports	a	network	bandwidth	of	1-2	Mbps.	This	is	the	reason	why
many	802.11-compatible	devices	have	become	obsolete.	Hence,	it	became	necessary
to	develop	other	802.11	standards.
802.11b:	This	specification	uses	a	signaling	frequency	of	2.4	Ghz	that	is	similar	to
the	802.11	standard.	A	maximum	of	11	Mbit	transmission	rate	can	be	achieved	over	a
2.4	Ghz	band	using	b	specification.	As	most	of	the	home	appliances	(microwave,
cordless	phones,	and	so	on)	work	over	a	2.4	Ghz	spectrum,	it	causes	quite	dense
interference	and	congestion	during	WLAN	packets	transmission.	To	avoid	the
interference,	the	access	points	can	be	installed	at	a	reasonable	distance.	The	802.11b
band	is	divided	into	14	overlapping	channels,	where	every	channel	has	22	Mhz
widths.	In	one	instance,	there	can	be	a	maximum	of	three	non-overlapping	channels
operating	at	the	same	time.	This	space	separation	is	necessary	and	required	in	order
to	let	the	channels	operate	individually.	One	device	can	be	part	of	one	channel	at	a
time;	the	same	follows	when	you	listen	to	the	packets.	Practically,	it	is	possible	now
to	sniff	more	than	one	channel	at	a	time,	which	is	facilitated	through	various	tools
that	are	now	available;	one	of	them	is	Kismet,	which	can	sniff	up	to	10	channels	at
regular	short	intervals.
802.11a:	This	is	based	on	Orthogonal	Frequency	Division	Multiplexing	(OFDM)
that	was	released	in	1999	and	supports	a	maximum	transmission	rate	up	to	54	Mbps,
which	also	gives	us	an	advantage	over	802.11b	congested	bands.	This	specification
was	developed	as	a	second	standard	to	802.11	standards.	It	is	commonly	used	in
business	environments,	but	because	of	its	high	cost,	the	b	specification	is	not	best
suited	for	home	environments.	Though	it	supports	higher	speeds	around	5	Ghz
spectrums	than	802.11b,	the	range	of	devices	falls	short	if	it	is	configured	with	a
specification.	The	capability	of	bypassing	the	obstructions	that	comes	in	between	is
not	better	than	802.11b.	There	is	no	channel	overlap	that	happens	in	802.11a.	A
higher	regulated	frequency	helps	in	preventing	the	interferences	caused	by	devices
that	work	on	2.4	Ghz	spectrums.
802.11g:	Somewhere	around	the	middle	of	2002,	this	specification	came	into
existence,	and	this	tried	combining	the	best	features	of	802.11a	and	802.11b.	The
signaling	frequency	used	here	is	2.4	Ghz,	and	the	bandwidth	it	supports	is	upto	54
Mbps.	Due	to	the	2.4	Ghz	frequency	in	use,	the	range	parameter	that	suffered	a
decline	was	improvised.	The	802.11g	also	supports	backward	compatibility,	which

means	that	all	802.11g	access	points	will	support	network	adapters	using	802.11b	and
vice	versa.	A	strong	point	in	this	specification	is:	it	won’t	get	easily	obstructed.
802.11n:	To	improve	further,	the	wireless	N	was	introduced.	The	key	area	where	the
improvement	was	carried	on	is	the	range	and	the	transfer	rates.	The	base	technology
that	is	implemented	to	make	all	this	possible	is	Multiple-Input	Multiple-output
(MIMO)	communication.	There	are	multiple	antennas	fitted	into	the	access	point	that
are	used	to	send,	receive,	and	bounce	off	the	signals.	This	enables	a	channel
frequency	of	40	Mhz.	The	final	version	of	this	specification,	which	was	released	in
2007,	stated	a	transfer	rate	up	to	600	Mbps.	It	can	be	configured	with	2.4	or	5	Ghz	(if
the	access	point	is	compatible	with	both);	it	can	use	both	frequencies	at	the	same
time,	thus	enabling	backward	compatibility	with	network	adapters.	A	maximum	of
four	antennas	can	be	used	with	the	MIMO	technology.	Once	all	of	this	starts	working
together,	users	can	experience	fastest	speed	and	maximum	signaling	range,	and	it’s
not	much	affected	by	another	device	working	on	the	same	frequency	band.	If	this
network	type	gets	inferred,	then	it	will	other	specifications	such	as	802.11b/g.

Various	modes	in	wireless	communications
WLANs	uses	the	Carrier	Sense	Multiple	Access	and	Collision	Avoidance	protocol
(CSMA/CA)	to	manage	the	stations	sending	data,	where	every	host	that	wants	to	send
data	is	supposed	to	listen	to	the	channel	first,	that	is,	if	it	is	free,	then	the	host	can	go	ahead
and	send	the	packet;	if	not,	then	the	host	has	to	wait	for	its	turn.	This	is	because	the	same
medium	is	being	shared	by	every	host,	thus	avoiding	collisions	that	might	happen	if	two
hosts	start	transmitting	at	the	same	time,	as	a	result	making	the	performance	of	the
network	go	slow	and	more	prone	to	errors.	The	802.11	architecture	is	composed	of	several
components	such	as	a	station	(STA),	a	wireless	access	point	(AP),	basic	service	set
(BSS),	extended	service	set	(ESS),	independent	basic	service	set	(IBSS),	and
distribution	system	(DS).

There	are	four	common	modes	of	association	between	the	STA	and	the	AP,	which	are	as
follows:

	
Infrastructure/managed	mode:	A	wireless	network	environment	where	two	devices
wish	to	connect	an	STA	and	an	AP	to	share	data	and	network	resources	is	termed	as
the	infrastructure	mode.	An	AP	is	defined	with	a	Service	Set	Identifier	(SSID),
which	is	actually	just	a	name	given	to	the	access	point	for	identification	purpose	(for
security	reasons,	sometimes,	broadcasting	an	SSID	can	be	disabled,	which	will
prevent	your	wireless	network	from	being	discovered	by	unintended	users).	For
example,	once	you	start	scanning	for	available	Wi-Fi	networks	around	you	to	connect
to,	you’ll	be	shown	multiple	network	names,	from	which	you	are	supposed	to	choose
a	network	that	you	know	about.	All	these	names	of	networks	are	called	SSID.
Another	useful	term	to	know	is	Base	Service	Set	Identifier	(BSSID),	that	is,	the
access	point’s	MAC	address.	By	default,	every	access	point	is	supposed	to	broadcast
the	SSID	and	transmit	a	beacon	frame	10	times	in	a	second	to	let	devices	know	that
they	are	ready	to	accept	connections.	Refer	to	the	following	diagram	that	illustrates
this	example:

Ad	Hoc	mode:	In	this	kind	of	network,	a	peer-to-peer	network	is	formed	where	two
clients	are	connected	to	each	other.	The	packets	sent	and	received	by	the	wireless
clients	are	not	relayed	to	the	access	point.	The	clients	taking	part	in	this
communication	now	handle	the	process	of	sending	beacons	and	processing
authentication	that	a	WAP	handles	in	normal	scenarios.

Master	mode:	When	the	NIC	card	in	your	machine	lets	you	become	an	AP,	this	is
what	the	master	mode	is	all	about.	Higher-end	devices	have	a	capability	to	act	like
access	points,	and	this	is	possible	when	NIC	cards	start	working	together	with	a
special	driver.

Monitor	mode:	For	the	purpose	of	this	chapter,	this	mode	is	very	important.	This
mode	is	used	to	listen	to	the	packets	that	are	flying	around;	when	the	monitor	mode	is
activated,	your	device	will	stop	transmitting	and	receiving	any	packets	and	it	will	just
sit	silently	and	sniff	live	traffic.	If	you	want	to	capture	packets	from	the	wireless
network	concerning	802.11	protocols,	then	your	NIC	and	the	driver	that	is	being	used
must	support	the	monitor	mode.	It	is	quite	easy	to	activate	the	monitor	mode	on	an
OS,	such	as	Linux	and	MAC;	however,	with	Windows,	it	becomes	quite	troublesome
to	activate	the	monitor	mode.	This	mode	is	often	termed	as	the	Radio	Frequency
Monitor	Mode	(RFMON).

After	learning	the	basics	of	different	forms	of	wireless	networking	infrastructures	that	you
might	note	in	a	production	environment	very	casually,	it	would	definitely	become	a	bit
easier	for	you	to	choose	between	the	various	modes	available	as	per	your	requirements.

Wireless	interference	and	strength
To	better	understand	the	normal	traffic	pattern,	we	should	be	aware	of	the	various	usual
factors	that	govern	the	performance	of	a	wireless	network.	For	example,	data	packets,
associations,	and	disassociations,	signal	strength	with/without	interferences.	Our	objective
while	analyzing	preceding	parameters	is	to	form	a	baseline	that	can	prove	worthy	when
comparing	the	traffic	patterns	with	unusual	ones.	The	factor	that	affects	the	network
performance	the	most	is	a	different	form	of	interference,	which	is	caused	due	to	various
factors	such	as	physical	obstructions	such	as	thick	walls,	roofs;	and	electronic	appliances,
such	as	microwave,	cordless	phones,	and	so	on.

While	dealing	with	wireless	networks,	the	integrity	of	data	becomes	more	important
because	the	packets	are	simply	traveling	in	the	air,	and	anyone	with	some	basic	hardware
and	knowledge	of	how	wireless	networks	work	can	sniff	and	capture	these	packets	easily.
Wireless	networks	don’t	have	any	rescue	options	to	protect	the	integrity,	so	using	them,
you	cannot	be	100%	assured	regarding	the	security	of	data.

Let’s	say,	for	example,	you	are	listening	to	a	particular	channel	in	the	spectrum.	Normally,
you	can	sniff	only	one	channel	at	a	time,	but	if	the	channels	start	overlapping	each	other,
than	it	is	quite	possible	that	you	will	see	other	channel	packets	in	the	list	pane.	As	per	the
normal	functioning	of	a	wireless	spectrum,	the	networks	that	operate	close	to	each	other
are	supposed	to	choose	non-overlapping	channels	such	as	1,6,11,14	to	avoid	any	issues.
Refer	to	the	following	figure	that	best	illustrates	channel	overlapping	(I	used	from	the
same	from	Wikipedia):

The	strength	of	the	wireless	network	is	totally	dependent	on	Radio	Frequency	(RF)
signals	that	carry	the	traffic.	Once	the	wireless	signal	starts	traveling,	the	strength	is
supposed	to	lessen	eventually,	as	it	travels	farther	because	of	the	obstructions	that	come	in
between.	The	device	that	works	over	the	same	RF	energy	is	also	responsible	for	reducing
the	wireless	signal	strength.	If	you	are	also	dealing	with	such	issues,	then	just	using
Wireshark	to	listen	on	an	interface	in	the	monitor	mode	won’t	solve	the	purpose.	You	need
a	spectrum	analyzer,	such	as	Wi-Spy+Channelyzer,	that	is	paired	with	a	USB	(refer	to
http://metageek.com)	adapter	and	gives	you	an	extra	eye	over	the	RF	energy	form;
otherwise,	you	won’t	be	able	to	see	them.	Most	of	the	time,	the	device	emitting	high	RF
energy	can	be	the	cause	of	poor	network	performance.

To	inspect	the	environment	for	RF	energy,	you	need	to	walk	down	the	office	on	your	own
with	your	laptop	running	a	spectrum	analyzer,	which	would	be	able	to	detect	the	RF
anomalies	that	can	affect	your	wireless	network	performance.	The	placement	of	these
analyzers	does	play	an	important	role	in	solving	the	problem.	If	a	host	in	your	office	is	not
able	to	connect	then	the	best	option	is	to	place	your	analyzer	as	close	to	the	host	as
possible	in	order	to	perceive	the	situation	from	the	host’s	perspective.	If	various	hosts	in
your	office	experience	a	similar	problem,	then	the	best	option	would	be	to	place	the
analyzer	near	the	access	point	they	are	trying	to	connect	to.	Depending	on	the	scenario
you	are	dealing	with,	you	can	dynamically	decide	and	even	manually	scan	through	the
office	premises	to	get	to	know	whether	there	is	any	RF	energy	interfering.

I	don’t	have	any	special	hardware	to	show	you	RF	energy,	but	I	will	use	an	inbuilt	tool
from	the	Kali	Linux	OS,	which	will	help	us	fetch	various	granular	details	regarding
different	WLANs	available	around	my	premises	and	all	the	devices	that	are	connected	to
Wi-Fi	(if	paired	with	a	hardware	used	for	spectrum	analysis,	this	can	prove	really	useful).
The	name	of	the	tool	is	Kismet,	and	it	is	quite	efficient	in	representing	details	in	graphical
and	various	available	statistical	formats,	thus	enabling	us	to	know	more	about	the
neighborhood	(use	it	for	ethical	purposes).	Follow	these	steps	to	use	the	Kismet	tool	on
Kali	Linux:

	
1.	 First	I	enable	the	monitor	mode	using	the	airmon-ng	start	wlan0	command	(wlan0

is	my	wireless	interface).
2.	 Open	the	terminal	and	type	Kismet.	You	will	be	asked	to	set	various	customization

options—do	not	change	any	default	settings.
3.	 Once	you’re	asked	for	the	source	(interface	name)	for	the	Kismet	server	to	capture

http://metageek.com

the	packets,	specify	your	interface	running	on	the	monitor	mode	(in	my	case,	this	is
mon0.	You	can	check	your	interface	using	the	iwconfig	command).

4.	 Now,	let	the	tool	run	on	its	own	for	a	few	minutes;	gradually,	you	will	start	noticing
that	a	graph	is	getting	plotted	for	the	live	traffic	captured.	You	will	see	various
wireless	networks	around	you	and	most	of	the	associated	devices	connected	with	it.

5.	 In	the	network	section,	you	will	see	specific	details	for	the	wireless	network,	such	as
BSSID,	SSID,	encryption	algorithm	used,	and	so	on.

6.	 The	clients’	section	will	show	various	devices	associated	with	the	network.	Refer	to
the	following	figure	of	the	tool	that	lists	my	network	and	various	clients	connected	to
it:

Now,	let’s	see	what	does	each	pointer	in	the	preceding	screenshot	signifies:

	
In	this	part,	just	below	the	menu	bar,	the	number	of	networks	that	my	Wi-Fi	adapter
is	able	to	scan	is	shown.	The	first	row	shows	my	home	network	Anonymous	and	its
BSSID,	when	the	network	was	last	seen,	the	algorithm	used,	and	the	manufacturer	of
the	device.
In	this	second	section,	Kismet	lists	out	various	devices	that	are	currently	associated

with	the	Anonymous	network,	their	type	(is	it	an	access	point	or	a	wireless	client),
the	frequency	that	the	devices	are	using	for	transmission,	the	total	number	of	packets
a	particular	device	has	transmitted,	the	size	of	all	packets,	and	the	manufacturer	of
the	device	(interestingly,	Kismet	was	able	to	identify	one	device	manufacturer	that	is
currently	associated	with	my	network,	as	shown	in	the	first	row).	Refer	to	the
following	screenshot	that	shows	the	device	section	separately:

In	the	third	section,	there	is	a	graph	that	shows	the	current	rate	at	which	the	packets
are	traveling	around	and	the	total	amount	of	data	packets	that	are	shown	with	red
bars.
In	the	fourth	section,	we	can	see	a	lot	of	details	that	are	listed,	such	as	the	hostname
(Kali),	total	number	of	networks	my	NIC	is	able	to	see,	for	how	long	Kismet	is
running,	the	total	number	of	packets	captured,	and	an	average	rate	of	packets	seen	per
second.	Using	such	simple	tools	without	any	special	configuration,	we	were	able	to
collect	a	good	amount	of	specific	details.

In	the	bottom-right	corner	of	the	window,	the	interface	used	to	capture	details	is	shown:
mon0	(a	monitor	mode	activated	interface).	Through	this	tool,	we	are	not	able	to	capture
any	RF	energy	that	can	distort	the	traffic	shape,	which	lessens	our	network	performance.
But	the	same	tool,	when	paired	with	Wi-Spy	or	Ubertooth	hardware,	will	show	the	RF
energy	spectrum.	If	you	are	one	of	those	professionals	who	needs	to	deal	with	Wi-Fi
troubleshooting	in	day-to-day	working,	then	you	should	use	this—if	not	now,	then
someday	you	will.

The	RF	energy	emitted	from	the	devices	won’t	be	the	problem	every	time;	sometimes,	you
would	be	required	to	look	at	the	packet	level	like	checking	authentication	and	association
packets,	that	is,	you	can	match	your	normal	traffic	pattern	with	the	anomaly	you	might	be
facing.

The	IEEE	802.11	packet	structure
The	medium	used	by	the	packets	to	travel	from	one	host	to	another	is	changed	for	now,
but	the	basic	protocols	that	work	on	the	preceding	layers	are	still	the	same.	As	we	already
discussed,	layer	2	(data	link)	is	of	great	importance	here.	Understanding	packets	traveling
in	detail	is	obviously	a	good	thing;	we	will	discuss	various	types	of	frames,	header
structures,	and	information	an	802.11	packet	contains.

There	are	basically	three	types	of	frames	that	you	will	see	while	analyzing	wireless
packets.	All	the	packets	listed	are	almost	similar	to	the	one	we	saw	earlier;	the	only
difference	here	is	the	extra	information	that	is	appended	because	of	the	802.11	header.	The
following	are	the	header	types	that	you	will	see:

	
Management:	To	form	a	connection	between	the	hosts	at	the	data	link	layer,	these
frames	are	used.	These	frames	are	used	to	join	or	leave	a	network,
associations/disassociation/reassociation	and	to	broadcast	beacon	packets	and	a	few
administrative	tasks.	Management	frames	are	responsible	for	a	lot	of	activities	that
take	place	while	the	connection	between	the	hosts	is	established.

The	beacon	frame:	The	AP	sends	beacon	frames	every	10th	of	a	second	to	let
the	STA	know	that	the	AP	is	available	for	connection.
The	authentication	frame:	This	type	of	frame	is	sent	by	the	STA	to	the	AP
containing	its	identity.	If	the	AP	follows	an	open	system	authentication,	then
STA	would	send	just	one	authentication	frame	that	AP	acknowledges	to
understand	whether	the	connection	is	accepted	or	rejected.	If	the	AP	follows
shared	key	authentication,	then	the	STA	sends	a	request	to	the	AP	to	get
connected.	Now,	AP	sends	a	challenge	text	to	the	STA.	After	this,	STA
completes	the	challenge	and	encrypts	the	challenge	text	requested	using	the
same	algorithm	that	the	AP	is	using,	and	then	it	sends	it	to	the	AP.	AP	receives
and	decrypts	the	text	using	it’s	own	key	value,	and	no	matter	what	the	result	is,
it	determines	the	status	of	the	connection	request.
The	association	request	frame:	This	frame	is	sent	from	the	STA	to	the	AP	to
provide	details	of	the	allocation	of	resources	and	for	syncing	purpose.
The	associate	response	frame:	This	frame	is	sent	in	response	to	the	AP	for	the
STA	request	that	is	sent.
The	deauthentication	frame:	This	is	sent	by	the	STA	to	terminate	the
connection	with	the	AP/STA.
The	disassociation	frame:	This	frame	is	a	graceful	way	of	terminating	the
connection	so	that	the	AP	can	free	up	the	resources	allocated	for	the	STA.
The	probe	request	frame:	This	frame	is	sent	by	the	STA	to	another	STA/AP	to
request	for	its	details;	this	is	basically	used	to	find	nearby	APs.
The	probe	response	frame:	This	frame	is	sent	in	response	to	the	request	that
AP/STS	might	have	received	from	another	device	in	the	network.
The	reassociation	(request/response)	frame:	This	frame	is	sent	to	the	new	AP
when	an	STA’s	association	with	the	current	AP	gets	dropped.	In	response,	the
AP	acknowledges	the	acceptance/rejection	for	the	reassociation	request.

Monitoring	the	time	gap	between	each	beacon	frame	sent	from	the	hosts	can	be

useful	when	dealing	with	high	latencies.	Due	to	these	beacon	packets	broadcasted
from	the	AP,	the	devices	know	that	they	are	available	to	connect	to.

Control:	This	is	to	ensure	that	the	delivery	of	the	packets	between	the	hosts	manages
the	level	of	congestion	in	your	channel	and	uses	packets	such	as	clear-to-send	and
request-to-send.	In	short,	we	can	say	that	these	frames	are	used	for	maintenance
tasks.	These	control	packets	ensure	the	integrity	of	the	packets	that	are	transmitted.
Likewise,	the	management	frame	several	kinds	control	frame	has	just	three	kinds:

Request-to-send	(RTS):	This	frame	is	sent	by	the	STA	to	request	for	gaining
the	control	of	the	medium	for	a	particular	duration.
Clear-to-send	(CTS):	This	frame	is	sent	by	the	AP	from	where	it	received	the
RTS	to	specify	when	the	medium	will	be	allocated	to	the	STA	for	transmission.
This	frame	is	often	used	for	protection	from	older	stations	that	want	to	gain
access	to	the	medium	again.
Acknowledgement	(ACK):	This	frame	is	sent	by	the	receiving	STA	to	tell	the
sending	station	that	the	data	packet	was	received	successfully.	If	the	sending
station	does	not	receive	this	packet,	then	after	a	definite	period	of	time,	the
sending	station	will	resend	the	data	packet	to	the	same	recipient	to	ensure	the
delivery	of	the	packet.

Data:	These	frames	contain	the	data	that	is	actually	sent	between	the	hosts.	These	are
the	only	frames	that	get	transmitted	between	the	wireless	and	the	wired	domain.

The	802.11	packets	are	similar	to	the	wired	network	packets	that	we	saw;	the
terminologies	do	differ	a	little	bit,	but	the	basic	concept	is	identical.	Let’s	take	a	look	at	a
beacon	frame.	Refer	to	the	following	screenshot	for	that:

Now,	let’s	see	what	all	the	pointers	in	the	preceding	figure	signify:

	
1:	The	packet	describes	it	all;	the	beacon	frame	is	sent	to	the	broadcast	address	from
the	Wi-Fi-enabled	device	or	any	device	that	is	currently	listening	can	connect	to	it
using	the	right	credentials.
2	and	3:	Here,	the	type	of	the	frame	is	management	and	the	subtype	is	beacon.
4:	As	we	discussed	earlier,	beacon	frames	are	transmitted	every	10	seconds.	You	can
verify	the	same	from	the	packet	itself,	to	be	precise;	the	next	beacon	frame	was	sent
after	an	average	time	of	0.102385000	seconds	(this	is	just	the	time	gap	I	calculated
between	the	two	packets	seen	in	the	list	pane).
5:	The	SSID	broadcast	is	enabled,	and	hence,	the	packet	is	shown	with	the
broadcasted	SSID	Anonymous,	which	will	be	visible	when	you	try	to	scan	nearby
Wi-Fi	hotspots	that	you	wish	to	connect	to	(you	need	to	use	the	monitor	mode	to
capture	this	packet).	Various	other	details	are	included	in	the	beacon	frame	that	is	part
of	the	header	and	is	quite	necessary	to	know	about.	Refer	to	the	following	frame
structure	that	shows	how	a	layer	2	datagram	looks	like	in	theory	and	in	Wireshark:

Frame
Control Duration/ID Address1 Address2 Address3 SequenceControl Address4

Let’s	take	a	look	at	the	fields	present	in	the	frame	in	detail:

This	is	the	first	section	in	the	frame	header	that	lists	out	quite	a	good	amount	of	info	in	it.

	
Frame	Control

Protocol	Version:	This	represents	a	2-bit	value	that	is	used	to	verify	the	version	of
the	protocol	in	use;	the	current	version	is	0	at	the	time	of	writing.
Type:	This	identifies	the	type	of	the	frame;	in	our	case,	we	are	dealing	with	a
management	frame	(beacon).
Subtype:	This	represents	the	subtype	of	the	header;	for	us,	it	is	a	beacon	frame	for
which	we	are	seeing	a	numerical	code	8.
DS	Status:	This	represents	whether	a	data	frame	is	heading	to	a	distribution	system
(DS)	or	working	in	which	mode.	If	the	bit	is	set	to	1,	then	this	must	be	a	data	frame;
if	this	is	set	to	0,	then	this	frame	is	probably	a	management/control	frame.
More	Fragments:	If	this	bit	is	set	to	1,	this	means	that	the	frame	has	been	distributed
into	couple	of	parts	and	is	being	sent	one	by	one.
Retry:	This	bit	is	set	to	1	when	there	is	a	requirement	upon	retransmission	of	the
frame.
PWR	Management:	If	this	is	set	to	1,	it	represents	the	current	power	management	state
of	the	STA	whether	it	is	active:0	or	in	the	power-save:1	mode.
More	Data:	This	bit	is	set	to	1	if	the	AP	is	trying	to	tell	the	STA	in	the	power-save
mode	that	it	has	more	frames	to	send.	In	case	of	control	frames,	this	will	always	be	0.
Order:	If	this	bit	is	set	to	1,	this	means	that	the	frame	is	forcefully	lined	up	and	would
be	sent	in	a	sequence.	Usually,	this	bit	is	not	set	because	it	might	cost	transmission
performance.
Duration	ID:	This	denotes	the	time	the	sender	might	require	for	frame	exchange;
this	is	usually	seen	in	an	request-to-send	(RTS)	frame,	which	requests	to	occupy	the
medium	for	a	certain	amount	of	time.
Address	1/2/3:	This	is	the	physical	address	of	the	communicating	device	(receiver,
transmitter,	and	destination	address).
Sequence	Control:	This	is	composed	of	two	subfields:	a	12-bit	sequence	number
and	a	fragment	number	of	4	bit.	A	sequence	number	field	is	used	to	identify	the
sequence	of	the	frames	that	arrive	and	for	their	proper	reassembly	(this	ranges
between	0-4,095).	The	fragment	number	field	is	used	to	denote	the	number	of
fragments	for	each	frame	(this	ranges	between	0-15).
Address	4:	This	represents	the	sender’s	physical	address	and	would	only	be	present
in	a	wireless	distribution	mode.
Data/Payload:	This	field	is	not	part	of	the	header,	but	at	the	end,	it	will	be	appended
when	data	is	being	sent	across.	The	size	of	this	field	can	be	up	to	2,324	bytes.
FCS:	The	frame	check	sequence	field	is	used	to	perform	a	data	integrity	test;	you	must
have	heard	about	the	cyclic	redundancy	check	(CRC),	which	helps	in	calculating	a
value	related	to	the	data	we	received.	If	the	FCS	value	is	identical	to	the	one	we
calculated,	then	the	packet	is	received	without	errors.

RTS/CTS
These	are	one	of	those	essential	components	of	WLAN	data	transfers	that	avoid	collisions
from	happening	and	ensure	the	integrity	of	the	data	that	is	sent.	The	following	illustration
determines	the	four-step	process	that	takes	place	to	follow	a	100%	fail-proof	delivery:

First,	the	AP	sends	a	request	to	the	STA	to	gain	medium	access;	once	the	STA	approves
the	AP’s	request,	the	AP	starts	sending	data.	As	soon	as	the	data	transfer	is	completed,	the
STA	sends	an	ACK	packet	to	acknowledge	error-free	delivery.	If	the	ACK	is	not	sent,	then
then	the	AP	will	start	retransmission	after	some	time.

Usual	and	unusual	WEP	–	open/shared	key
communication
Here,	we	will	discuss	two	types	of	Wired	Equivalent	Privacy	(WEP)	authentication
procedures:	open	and	shared	keys.	As	a	matter	of	fact,	discussing	WEP	is	really
unnecessary,	but	we	should	be	aware	of	how	it	works	because	you	never	know	when	you
might	be	asked	to	troubleshoot	an	old	router	whose	firmware	is	still	not	upgraded	and	just
supports	WEP	as	an	authentication	mechanism.

WEP-open	is	way	better	than	WEP-shared	because	even	when	the	password	that	you
provide	turns	out	to	be	wrong,	you	will	get	connected	to	the	network;	here,	it	reduces	the
chance	of	getting	the	router	brute	forced.	If	you	are	using	WEP-shared	communication,
then	an	experienced	hacker	won’t	take	more	than	2	minutes	to	crack	your	strongest	key,
and	because	of	the	small	pool	of	keys	that	WEP	supports,	your	password	won’t	last	long.

So,	to	begin	with,	we	need	the	infrastructure	to	capture	packets	that	are	required	for	WEP-
open.	A	key	point	to	note	here	is	that	the	infrastructure	I	am	using	consists	of	three
different	machines:	the	access	point	on	the	192.168.1.1	IP,	the	station	on	the
192.168.1.105	IP,	and	Kali	Linux	running	Wireshark	on	the	192.168.1.104	IP.	Refer	to
the	following	illustration	to	understand	this:

	
1.	 First,	let’s	activate	the	monitor	mode	over	my	interface:

In	the	bottom-right	corner	of	the	preceding	screenshot,	you	can	see	the	message	that
the	monitor	mode	is	enabled	over	the	mon0	interface.	This	is	the	same	interface	that
we	will	use	to	capture	802.11	packets	from	our	AP	and	STA.

2.	 Next,	to	confirm	the	channel	over	which	my	channel	is	working,	I	used	the
airodump-ng	mon0	command.

3.	 Now,	once	we	have	figured	out	that	the	channel	is	6,	we	can	go	ahead	and	make	our
interface	listen	specifically	to	this	channel,	thus	avoiding	any	noise	from	other
channels.	To	do	so,	I	used	the	iwconfig	mon0	channel	6	command.

Figure	1:	Configuring	mon0	interface	to	channel	6

4.	 Once	you	have	completed	all	these	steps,	go	ahead	and	launch	Wireshark.	If	the
output	of	the	commands	you	issued	gives	any	error,	then	please	rectify	it	before	you
proceed.

WEP-open	key
Once	the	interface	starts	working	fine	and	you	are	able	to	see	the	beacon	frames
broadcasted	from	your	access	point	and	probe	request	or	response	to	and	from	your
station,	then	you	can	simply	launch	a	WEP-open	authentication	session.	When	asked	for	a
password,	just	give	any	random	password	which	will	let	you	get	connected	to	the	network,
but	it	might	be	possible	that	you	won’t	be	able	to	access	the	Internet	connection	shared	by
the	AP	with	other	STAs.	Refer	to	the	following	screenshot	depicting	a	WEP-open
authentication	session.

To	capture	the	normal	traffic	pattern,	I	will	use	a	Linux	distribution	(Kali)	running	on	an
independent	machine	that	has	a	feature	to	activate	the	monitor	mode	(without	the	monitor
mode,	you	can	not	capture	802.11	packets.)	First,	activate	the	monitor	mode	on	our
WLAN	adapter	using	a	basic	set	of	commands,	and	we	will	also	configure	the	same
adapter	to	listen	to	a	specific	channel.

After	launching	Wireshark,	make	sure	that	you	choose	the	mon0	interface	only;	then,	you
will	be	able	to	capture	relevant	traffic	(keep	the	promiscuous	mode	on	as	well).

As	clearly	visible	in	the	details	pane	of	the	first	authentication	frame	selected	in	the	list
pane,	the	authentication	system	is	Open-System	(numeric	code	0)	and	the	connection
attempt	is	successful	as	well.	Following	this,	we	can	see	an	association	request/response
and	then	some	QOS	and	Null	function	data	frames.

An	association	request/response	is	sent	and	received	by	the	STA/AP	to	associate	a
dropped	connection,	which	the	client	was	already	a	part	of	before,	and	to	allocate	the
resources	STA	might	require	for	communication	over	the	channel.

A	QOS	data	packet	is	a	subtype	of	the	control	frame	types,	which	depicts	the	quality	of
service	and	the	over	all	performance.

Null	Function	packets	are	used	to	inform	AP	that	the	STA	is	going	in	the	power-save

mode.	This	packet	does	not	carry	any	data,	just	some	flag	information.

And	for	every	kind	of	information	being	shared	between	hosts,	there	are	ACK	packets	that
are	sent	across	to	determine	the	delivery	of	every	packet	in	the	communication.

The	shared	key
Before	we	start	configuring,	I	want	you	to	understand	the	process	of	WEP-shared	key
authentication,	that	is,	the	steps	involved	in	the	whole	session.	Refer	to	the	following
illustration	to	understand	this:

In	short,	the	STA	tries	to	connect	to	the	AP	by	sending	an	authentication	request,	which
the	AP	acknowledges	by	sending	a	text	challenge	that	the	STA	is	supposed	to	complete
and	before	sending	an	encrypt	using	the	key	algorithm	AP	knows	about.	Once	STA	has
completed	the	challenge	process	over	his	end,	STA	sends	the	challenge	response	which	is
being	evaluated	by	the	AP	and	determines	the	success	or	failure	of	the	connection	and	the
same	is	acknowledged	to	the	STA	in	another	authentication	frame.

So,	for	a	normal	WEP	authentication	session,	you	will	observe	at	least	four	authentication
frames.	If	the	authentication	is	successful,	then	the	authentication	frames	will	be	followed
by	an	association	request/response	along	with	some	data	transfer.	And	if	the	authentication
is	not	successful,	then	after	four	authentication	frames,	the	session	between	the	STA	and
the	AP	will	end.	Follow	the	next	steps	to	capture	WEP	management,	control	and	data

frames	from	your	WLAN.

As	discussed,	you	will	note	that	the	same	pattern	of	packets	is	captured.	Refer	to	the
following	screenshot	depicting	a	successful	WEP	authentication	session	that	was	captured
by	Wireshark:

	
For	the	fourth	authentication	frame,	I	have	expanded	the	details	section	to	confirm
whether	the	connection	attempt	was	successful	or	not.	And	from	the	preceding
screenshot,	we	can	verify	that	it	was	successful.	The	authentication	type	used	for	the
communication	can	also	be	seen	here.
As	we	know,	now	if	the	connection	attempt	between	the	STA	and	AP	fails,	the	whole
session	will	be	terminated	after	the	fourth	authentication	frame	and	we	will	see	a
failure	message.	To	verify	the	same,	I	tried	duplicating	the	scenario	while	Wireshark
was	listening	through	an	interface	in	the	monitor	mode	on	an	individual	system.
Refer	to	the	following	figure	that	illustrates	a	failed	WEP	connection	attempt.	In	the
list	pane,	we	can	see	the	same	authentication	frame	pattern	(just	four	authentication
frames),	but	the	last	frame	that	the	STA	received	from	the	AP	acknowledges	the
connection	status.	As	is	clearly	visible	in	the	details	pane,	the	connection	attempt
failed	due	to	an	incorrect	challenge	response	text	sent	by	the	STA.

We	witnessed	two	types	of	authentication	procedures	that	WEP	supports,	but	what	is
really	important	to	know	is	that	WEP	is	now	obsolete,	so	I	would	never	recommend	to	any
of	you	to	use	this	as	an	authentication	protocol.	If	you	have	any	old	devices	that	only
support	WEP,	then	kindly	upgrade	to	the	latest	hardware.

WPA-Personal
We	talked	about	a	crappy	authentication	algorithm	that	has	been	used	since	the	birth	of
wireless	networking,	but	when	we	have	a	better	option,	why	not	use	it.	I	am	talking	about
the	Wi-Fi	Protected	Access	(WPA)	security	algorithm	that	is	stronger	than	WEP	when
we	add	the	corrective	measures	required.	In	2003	when	WPA	was	launched	by	Wi-Fi
Alliance	as	a	measure	to	make	WLAN	communication	stronger	than	the	previous
protocol,	WEP.	Nowadays,	almost	every	WNIC	supports	WPA	authentication	mechanism,
thus	enabling	you	to	take	advantage	of	using	a	better	security	protocol.	The	Temporal
Key	Integrity	Protocol	(TKIP)	lets	the	existing	legacy	hardware	upgrade	easily	to
implement	WPA.	The	key	size	used	by	WEP	was	40/104	bits,	whereas	WPA	uses	a	key
size	of	256	bits,	and	the	interesting	thing	to	know	is	that	every	packet	transmitted	between
the	AP	and	STA	is	encrypted	using	the	256-bit	key,	which	makes	the	situation	quite	tight
for	malicious	users.	One	more	advance	was	done	in	WPA	that	let	the	devices	communicate
with	more	assurance	about	the	integrity	of	the	message.

In	WEP,	the	traditional	CRC	was	implemented,	but	here,	the	popular	Michael	64-bit
Message	Integrity	Check	(MIC)	was	introduced	to	address	the	issue.	WPA	also	uses	the
RC4	algorithm	to	build	a	session	based	on	dynamic	encryption	keys	(you	would	never	end
up	using	the	same	key	pair	between	two	hosts).	If	compared	to	WEP,	it	has	a	larger	IV	size
of	48	bits.	Refer	to	the	following	illustration	of	how	the	cipher	text	is	formed	that	is
transmitted	over	the	medium:

The	preceding	illustration	depicts	how	the	whole	process	starts	by	appending	the	IV	and
the	dynamically	generated	256-bit	key.	Then,	is	passed	on	to	the	RC4	algorithm,	which
encrypts	the	packets	with	keys,	and	then	the	resulting	encrypted	key	stream	is	appended

with	the	data	and	voila!	We	have	the	cipher	text.	Now,	I	will	introduce	you	to	the	normal
authentication	session	between	an	AP	and	an	STA.	Refer	to	the	following	figure	for	the
same:

In	the	case	of	the	Enterprise	WPA	configuration,	first,	the	Master	Key	Exchange	takes
place.	I	will	later	give	you	a	brief	about	it.	As	of	now,	we	have	an	AP	that	sends	its	nonce
(random	value)	to	the	STA	(initiation	of	connection)	that	will	use	the	AP’s	nonce	value
and	its	own	nonce	to	calculate	the	Pairwise	Transient	Key	(PTK)	along	with	the	Pre
Shared	Key	(PSK),	which	was	established	during	the	initial	connection	process.	The
resulting	value	will	be	sent	to	the	AP.	Then,	the	AP	will	calculate	the	PTK	over	its	end	and
append	the	MIC	with	the	receive	sequence	counter	(RSC)	that	helps	in	identifying	the
replayed	messages.	The	resulting	value	will	be	passed	on	to	the	STA.	Now,	the	STA	will
first	verify	the	MIC	in	the	message	to	ensure	the	integrity	and	install	the	keys.	Then,	a
response	will	be	sent	to	the	AP	regarding	the	status.	If	the	status	shows	success,	the	AP
then	installs	the	same	keys	(dynamic	keys)	that	will	be	used	in	further	communication

between	the	hosts.

After	configuring	WPA-Personal	on	my	AP,	I	had	sent	an	authentication	request	from	my
client	and	the	corresponding	communication	was	captured	by	Wireshark,	which	is	shown
in	the	following	screenshot:

Note
You	need	the	same	infrastructure	that	we	used	while	capturing	WEP	communication	that
is	an	interface	in	the	monitor	mode	that	is	listening	on	a	separate	machine.

This	is	what	a	normal	WPA	successful	handshake	(authentication)	process	looks	like,	that
is,	four	EAPOL	packets.	To	analyze	the	session	specifically	between	the	AP	and	STA,	I
applied	a	display	filter	to	see	only	EAPOL	packets	(authentication	frames).	Before	the
authentication	frames,	AP’s	beacon	frame,	and	STA’s	probe,	we	looked	at	authentication
and	association	request/response	packets	that	led	to	the	authentication	session,	following
which	PSK	was	used	to	generate	the	dynamic	keys.	Because	of	a	software	package	error
that	I	installed	on	my	machine,	the	fourth	packet	says	Message	2	of	4,	whereas	it	should
be	Message	4	of	4.

Getting	into	more	detail,	I	would	like	to	show	you	the	flags	marked	in	all	of	these	four
authentication	packets	that	will	definitely	clear	your	thoughts	regarding	the	WPA
handshake	process.	Refer	to	the	following	screenshot	that	illustrates	this:

Here	is	the	description	of	the	preceding	authentication	packets:

	
Packet	1:	The	pairwise	master	key	(pre-shared	key)	and	the	ACK	bit	are	set	(probably
because	of	the	association	request/response	exchanged	earlier),	which	was	sent	by
the	AP	to	STA	to	initiate	the	connection	along	with	the	nonce	value	that	was	chosen
randomly.
Packet	2:	The	pairwise	master	key	and	the	MIC	flag	is	set,	which	STA	sent	to	the	AP
to	for	acknowledging	the	request	received,	along	with	its	own	nonce	value	appended
to	the	AP’s	nonce	and	the	MIC	for	integrity	check.
Packet	3:	The	pairwise	master	key,	install,	key	ACK,	and	MIC	flags	are	set,	which
the	AP	tries	to	send	to	the	STA.	The	STA	will	fulfill	the	challenge	text	values
received	and	will	confirm	to	the	AP	along	with	the	encrypted	challenge	text	which
AP	is	going	to	be	crosschecked.
Packet	4:	Here,	the	pairwise	master	key	and	the	MIC	flag	are	set,	which	the	STA
sends	to	the	AP	to	make	the	connection	complete.	Now,	the	AP	is	mutually	ready	to
perform	data	transfer	with	the	STA.

I	hope	these	flags	help	you	understand	the	four-way	handshake	process	in	an	easy	and
realistic	manner.

Next,	we	are	going	to	see	what	happens	when	the	AP	receives	an	incorrect	challenge	text
from	the	STA,	what	the	packets	look	like	in	the	list	pane,	and	whether	there	would	there
be	any	difference	in	the	pattern	of	packets	that	are	captured.

The	STA	will	try	to	connect	to	the	AP	and	the	AP	will	request	the	challenge	text.	The	STA
this	time	is	not	aware	of	the	secret	keys	used	by	other	clients	in	the	network,	so	ending
with	an	incorrect	pass	key	which	won’t	be	accepted	by	the	AP,	or	please	check
acknowledged	by	the	STA.	The	STA	will	try	again	to	send	the	challenge	text	and	the	same
process	goes	on.	After	this,	you	will	notice	a	couple	of	similar	packets	in	the	list	pane.
Refer	to	the	following	figure	for	the	same:

Figure	2:	WPA	Failed	authentication

As	you	can	see	in	the	preceding	screenshot,	EAPOL	Message	1	and	2	can	only	be	seen
because	when	the	STA	provides	the	challenge	text	response,	the	AP	rejects	it	and	again	the
process	starts	from	beginning.	The	same	thing	will	continue	for	a	couple	of	times,	but	a
packets	pattern	of	such	kind	denotes	unsuccessful	connection	attempts	(may	be	a	brute
force	attack).	The	packets	listed	can	be	associated	with	each	other	using	the	replay	counter
listed	that	we	saw	earlier	in	the	key	nonce	in	details	section.

WPA-Enterprise
I	promised	we	would	be	discussing	the	enterprise	mode	in	brief,	so	here	it	is.	In	the
corporate	infrastructure,	the	key	and	passwords	are	not	kept	with	the	AP,	and	even	the	AP
is	not	responsible	for	authentication	with	the	STA.	There	is	an	extra	entity,	the	RADIUS
server,	that	takes	care	of	authentication	here.	Before	the	four-way	handshake	takes	place,
the	RADIUS	server	and	the	access	point	are	supposed	to	go	through	a	Master	Key
Exchange,	which	gives	an	assurance	to	both	the	communicating	devices	that	the	other
part	is	legitimate.	Let’s	have	a	look	at	the	following	figure:

Afterwards,	the	pairwise	master	key	is	created	and	passed	on	to	the	AP,	which	will	lead	on
and	complete	the	four-way	handshake	process	and	complete	the	authentication	session.

I’ve	scrolled	down	the	packet	list	and	look	what	I	found	for	you:	Disassociation	and
Deauthentication	packets	in	action	captured	by	our	sniffer.	So,	before	we	wrap	up,	you

should	take	a	look	at	them.

The	wireless	stations/access	points	use	disassociation	packets	in	order	to	notify	the	access
point	that	the	client	is	now	going	offline	and	the	resources	that	have	been	allocated	by	the
AP	to	wireless	clients	can	now	be	released.	Refer	to	the	following	figure	that	illustrates	the
same:

Figure	3:	The	disassociation	packet

As	you	can	observe,	at	first,	the	STA	sends	a	disassociation	frame	and	receives	ACK
(318,319)	for	the	same.	Now,	for	better	understanding	of	the	packets,	we	can	take	a	look	at
the	details	pane	(select	the	disassociation	packet	first),	where	the	Reason	Code	parameter
states	that	the	STA	is	leaving	or	has	already	left.	This	gives	us	a	feature	through	which	we
can	view	and	understand	packet	behavior	efficiently.

The	wireless	stations	or	the	access	points	use	the	deauthentication	frames	to	notify	the
other	side	of	the	communication	that	the	other	device	is	leaving.	There	can	be	several
reasons	for	it.	Refer	to	the	following	figure	to	understand	this:

Figure	4:	The	deauthentication	packet

First,	the	STA	sends	a	deauthentication	frame	to	the	access	point,	which	gets
acknowledged	in	the	next	packets	(467,468).	After	expanding	the	details	section	for	the
deauthentication	packet,	we	can	easily	note	that	the	Type/Subtype	field	is	verifying	the
same.	And	at	the	bottom,	we	get	to	understand	why	the	deauthentication	packet	was
generated.	In	our	case,	it	is	Previous	authentication	no	longer	valid,	which	the	STA
tried	to	notify	the	AP	about,	and	if	they	wish	to	communicate	again	in	the	future,	then	the
process	of	authentication	has	to	start	over,	from	the	probe	and	association	frame,
following	the	four-way	handshake.

Decrypting	WEP	and	WPA	traffic
The	technique	to	decrypt	WEP	and	WPA	traffic	is	available	with	the	use	of	Wireshark.	As
we	know,	WEP	is	the	weakest	security	encryption	protocol	and	it	has	been	exploited	for	a
long	time.	Once	you	have	the	key	for	the	wireless	network,	it	becomes	a	matter	of	a	few
clicks	to	decrypt	the	traffic.

To	demonstrate	the	same,	I	have	sanitized	the	wireless	traffic	between	my	access	point	and
a	client	that	is	connected	to	it.	Refer	to	the	following	screenshot	where	the	normal
IEEE802.11	traffic	is	captured	using	Wireshark:

Figure	5:	WLAN	traffic	before	decryption

I	hope	that	by	now	you	must	be	aware	of	the	kind	of	packets	that	we	see	in	the	list	pane,
but	still,	it	does	not	make	much	sense	in	terms	of	network-activity-related	traffic.	This	is
why	you	need	to	learn	the	technique	to	make	the	entire	traffic	more	readable.	Before	you
proceed,	you	need	to	make	some	changes	in	the	preferences	section	of	the	IEEE	802.11
protocol.

Go	to	Edit	|	Preferences,	expand	protocol	section	and	select	IEEE	802.11	and	make	the
changes.	Refer	to	the	following	screenshot	and	make	the	changes	that	are	highlighted:

Once	you	have	set	the	configuration	as	shown	in	the	preceding	screenshot,	click	on	the
Edit	button	next	to	Decryption	Keys	(to	add	the	WEP/WPA	key).	Refer	to	the	following
screenshot:

Click	on	New	and	you	will	be	presented	with	the	same	dialog	where	you	can	add	the
WEP/WPA	key	in	order	to	decrypt	the	preceding	communication	that	we	saw.	After	all
the	changes	have	been	made,	click	on	OK	under	Apply.	Now,	you	will	be	shown	the
decrypted	traffic	similar	to	the	one	shown	here:

Figure	6:	WLAN	traffic	after	decryption

The	same	list	pane	that	we	saw	in	the	beginning	of	this	section	for	this	capture	file	is
shown	in	a	decrypted	format	now.	Here,	we	are	able	to	see	the	ICMP	and	DNS	packets
(normal	network	traffic);	this	is	the	normal	traffic	I	was	talking	about.	To	manage	the
keys,	there	is	a	more	effective	way	where	you	are	not	required	to	open	the	Decryption
keys	dialog	from	the	Preferences	section	under	IEEE	802.11.	Just	navigate	to	View	|
Wireless	toolbar;	this	will	add	a	new	toolbar	just	below	the	display	filter	area.

Once	added,	you	can	easily	mage	the	WEP/WPA	keys.	The	dropdown	showing
Wireshark	is	really	helpful	and	will	enable	you	to	toggle	encryption	on/off.	If	you	choose
None	from	the	list,	the	decryption	will	be	disabled	and	your	traffic	will	be	back	to	normal
from	just	802.11	wireless	traffic.	If	you	choose	Wireshark,	as	in	the	preceding	screenshot,
then	the	decryption	will	be	applied.

Summary
What	we	discussed	here	is	not	going	to	facilitate	you	with	every	scenario	that	can	be	seen
in	wireless	communication,	but	definitely,	it	will	give	you	a	jump	start.

The	IEEE	802.11	standard	works	over	radio	frequencies	for	communication	purpose.	The
protocol	that	works	behind	WLANS	is	CSMA/CD,	which	facilitates	a	collision-free
environment	that	is	required	for	a	wireless	infrastructure.	Under	802.11,	there	are	multiple
standards	that	have	been	developed,	and	this	provides	a	robust	solution	for	different
infrastructure-based	requirements.

Sometimes,	you	need	to	look	at	the	RF	energy	level	too,	which	can	really	play	a	big	role	in
performance	upgrade.	Due	to	various	devices	that	work	over	the	same	spectrum	of	2.4
Ghz,	it	is	possible	that	your	WLAN	signals	may	get	distorted.	What	you	need	in	such
cases	is	a	spectrum	analyzer,	which	lets	you	analyze	and	monitor	the	RF	energy	flowing
around	you.	To	do	so,	you	need	special	hardware	that	can	be	purchased	from	an	online
tech	store,	and	you	need	to	pair	the	same	hardware	with	software	that	lets	you	use	the
same,	for	example,	Metageek’s	Wi-SPY	hardware	paired	with	Channelyzer.

Kismet	is	a	graphical	tool	available	in	Kali	Linux	that	lets	you	collect	various	advanced
details	about	the	wireless	networks	that	are	available	around	you	and	the	devices
connected	to	those	networks.	Kismet	comes	with	various	customization	options	that	can
be	really	helpful	while	you	look	for	specific	information.	Kismet	also	facilitates	users	with
several	graphical	features	to	plot	live	traffic	over	a	graph	for	a	particular	duration.

In	a	conventional	WLAN	environment,	there	is	an	AP	and	an	STA	that	communicate	with
each	other.	Before	the	actual	data	transfer	takes	place,	both	the	devices	are	supposed	to
negotiate	the	session	over	a	key	(password	and	encryption	algorithm),	which	will	be	used
by	both	the	devices	that	are	communicating	to	maintain	the	integrity	of	the	data	that	is
sent.

There	are	commonly	three	types	of	frames	that	you	will	see	while	working	with
Wireshark:	management,	control,	and	data	frames.	These	are	the	packets	that	you	can	see
in	the	details	pane	once	a	packet	is	selected.	Management	frames	control	the	establishment
of	the	connection,	control	frames	control	the	transfer	of	management,	and	data	frames
simply	consist	of	the	actual	data	that	is	sent.

Authentication	protocols	such	as	WEP	and	WPA	take	care	of	how	an	AP	and	STA
negotiate	to	start	communicating.

EAP	is	used	to	let	the	exchange	of	master	keys	take	place.	As	defined	in	RFC	3748,	EAP
is	an	authentication	framework	that	supports	multiple	kinds	of	authentication	methods,
and	to	execute	EAP,	you	do	not	require	an	IP	because	it	runs	over	data-link	layer.

EAP	with	LAN	becomes	EAPOL,	which	is	used	in	802.11	infrastructures
(RADIUS/AAA)	for	the	exchange	of	master	keys.	As	per	the	normal	pattern,	an	AP
broadcasts	beacon	frames	that	STAs	listen	for.	If	not,	then	the	STAs	will	send	a	probe
request	to	get	connected	by	themselves.	Then,	the	AP	and	STA	conduct	an	authentication
session	and	negotiate	until	both	the	hosts	are	convinced	with	each	other.	Once	this	is	done,
the	AP	would	send	a	success	message	to	the	STA.

Using	Wireshark,	it	is	possible	to	decrypt	WEP	communications	by	simply	adding
wireless	network	keys	with	the	protocol	in	use	and	modifying	the	preferences	for	the	IEEE
802.11	protocol.

The	monitor	mode	used	to	capture	the	relevant	packets	can	be	configured	easily	over	a
Linux-based	system,	and	it	is	essential	for	Wireshark	802.11	analysis.

RTS/CTS	are	used	in	contrast	to	CSMA/CA	in	802.11,	which	keeps	the	medium	collision
free	and	easy	to	work	with.

Using	the	hash	function,	Password-based	key	derivation	function	(PBKDF2),	the	256-
bit	preshared	key	is	evaluated	using	the	passphrase.

Practice	questions
Q.1	After	reading	the	IEEE	802.11	section	in	this	chapter,	make	an	extensive	note
regarding	this	protocol	and	whatever	you	have	understood—take	help	from	the	respective
RFC	if	you	want	to.

Q.2	Install	any	Linux-based	system	live	on	an	individual	machine	and	try	to	enable	the
monitor	mode	using	the	commands	mentioned	in	this	chapter.

Q.3	Capture	the	packets	with	the	monitor	mode	off	and	the	promiscuous	mode	on	first,
and	then	capture	with	the	monitor	mode	on	and	the	Promiscuous	mode	on.	Analyze	the
difference.

Q.4	Install	the	Aircrack	tool	on	your	Windows	machine	and	try	capturing	the	802.11
traffic	around	you.

Q.5	What	is	the	difference	between	the	various	standards	available	in	802.11	(b/a/g/n/i.)?

Q.6	Suppose	you	have	a	router,	and	over	to	one	end	of	the	router	you	have	a	switch
connected,	which	further	connects	to	multiple	wired	clients.	Over	the	other	end	of	the
router,	you	have	a	wireless	access	point	connect,	which	serves	as	a	medium	to	let	various
wireless	devices	connect	to	the	corporate	network.	Now,	send	a	packet	from	the	wireless
domain	to	the	wired	domain	and	analyze	the	packets	while	they	transit	between	the
domains.	What	difference	would	it	make	in	the	802.11	header?

Q.7	What	can	be	happen	when	your	wireless	NIC	does	not	support	the	monitor	mode	or
the	promiscuous	mode?	Explain	the	importance	of	each.

Q.8	To	view	the	availability	of	the	probe	requests	that	your	device	has	sent	to	the	access
point,	which	display	filter	would	you	use?

Q.9	Configure	your	AP	with	the	WEP-Open	authentication	and	then	try	to	connect	to	it
using	the	AP	while	capturing	the	traffic,	and	do	the	same	with	WEP-Shared	and	analyze
the	difference	in	the	pattern	of	the	packets	that	appear.

Q.10	Which	one	is	better:	WEP-Open	or	WEP-Shared	key	and	why?

Q.11	Use	a	capture	filter	to	capture	traffic	only	from	your	host,	access	point,	and	the
broadcast	address.	Does	this	help	you	to	decrease	the	noise?

Q.12	Configure	your	wireless	interface	in	the	monitor	mode	to	a	specific	channel	and
capture	the	WLAN	traffic	then.

Q.13	What	is	the	difference	between	the	WPA-Shared	key	and	WPA-Enterprise
authentication	protocols?	Elaborate	the	same.

Q.14	Duplicate	the	scenario	where	you	have	a	WEP-Shared	key	configured	access	point
capture,	with	quite	a	good	amount	of	traffic	for	the	same,	and	try	to	decrypt	the	traffic	you
have	using	the	WEP	key.

Q.15	Why	is	WEP-Open	better	than	the	WEP-Shared	key	authentication	mechanism?

Q.16	Can	you	figure	out	a	way	that	you	can	forcefully	disassociate	a	wireless	client	from
it’s	own	currently	connected	network?

Q.17	For	deauthentication	packets,	how	many	types	you	do	think	exist?	Modify	the
coloring	rule	for	the	same	to	view	the	packets	uniquely.	In	what	way	are	they	different
from	the	disassociation	packets?

Q.18	While	analyzing	the	WPA	handshake,	do	you	observe	any	open-system-based
authentication	before	the	actual	handshake?	If	it	is	there,	then	analyze	the	traffic	and
explain	what	is	it	for?

Q.19	Configure	your	access	point	with	the	WEP	protocol	encryption	capture	normal
802.11	wireless	frames.	Then,	using	the	same	approach	that	we	discussed,	try	to	decrypt
your	traffic	using	the	key	for	your	network.

Q.20	Is	it	possible	to	decrypt	the	traffic	using	the	ASCII	format	key	or	you	can	you	also
mention	the	key	in	HEX	format?	If	yes,	in	which	case	can	writing	the	key	in	HEX	format
prove	worthy?

Chapter	7.	Network	Security	Analysis
This	chapter	will	teach	you	how	to	use	Wireshark	to	analyze	network	security	issues,	such
as	analyzing	malware	traffic	and	foot	printing	attempts.	You	will	learn	how	to	use
Wireshark	for	network	security	analysis.	This	chapter	will	cover	the	following	topics:

	
Analyzing	port	scanning,	foot	printing,	and	attack	activities
Lab	up—port	scanning	with	Nmap
Analyzing	brute	force	attacks
Lab	up—analyzing	brute	force	attacks
Inspecting	malicious	traffic
Lab	up—inspecting	malicious	traffic
Solving	real-world	CTF	challenges
Practice	questions

Up	to	this	chapter,	I	have	tried	to	make	you	aware	of	how	one	should	use	Wireshark	to
analyze	the	packets	flowing	around.	We	have	just	focused	on	how	to	use	this	sniffing	tool
for	basic	analysis	purposes.	However,	what	I	am	about	to	tell	you	is	that	in	most	of	the
places,	Wireshark	is	used	for	security-analysis	purpose,	ranging	from	basic	footprinting
attacks	to	advanced	Trojan-based	attacks.

Using	a	couple	of	scenarios	in	my	virtual	lab,	I	will	try	to	duplicate	the	most	common	one,
along	with	capturing	the	live	traffic	between	the	attacker	and	the	victim.	Later	on,	we	will
dissect	the	trace	file	to	get	an	idea	of	how	malicious	traffic	looks	like.	We	will	use	this
knowledge	base	to	create	IDS/IPS	or	firewall	signatures	in	an	attempt	to	protect	our
internal	critical	infrastructure	by	analyzing	the	traffic	shown	in	Wireshark.

To	achieve	all	this,	you	need	to	change	your	perspective	a	little	bit.	In	other	words,	you
need	to	act	and	think	like	a	security	professional	who	is	in	charge	of	the	corporate	network
and	constantly	working	to	tighten	the	perimeter	that	will	make	the	attack	process	more
complex	for	bad	users.	We	can	start	all	of	this	by	analyzing	the	packets	captured	for	our
daily	usual	traffic	and	also	duplicate	certain	scenarios.

Information	gathering
The	primary	step	in	the	exploitation	process	is	to	collect	as	much	information	as	you	can.
In	today’s	world,	gathering	specific	and	relevant	information	about	a	person	or	an
organization	is	not	so	difficult	(using	search	engines),	and	this	is	where	everything	begins.
A	lot	of	security	professionals	will	start	launching	attacks	directly	on	the	targets,	which	is
not	appropriate	in	the	beginning.	Let’s	say,	for	example,	there	is	an	ABC	Corp.	Ltd.
located	in	the	next	block,	and	an	XYZ	attacker	is	planning	to	exploit	it	in	terms	of
physical	security	(to	get	entry	to	the	server	rooms	or	any	high-valued	target	available
inside).	To	do	so,	the	first	thing	the	attacker	should	know	is	the	working	hours	and	the
non-working	hours.	Then,	they	should	know	about	the	working	days	in	the	targeted
company.	The	attacker	should	also	know	about	the	physical	layout	of	the	building	the
company	is	located	in,	and	they	should	have	some	basic	knowledge	about	the	security
policy.	With	all	this	information,	the	attacker	should	be	able	to	identify	the	weak	points
inside	the	premises	that	might	be	an	easy	target	and	can	give	access	to	what	they	are
looking	for.	Did	you	notice	what	just	happened	in	the	preceding	scenario?	We	assumed
that	the	attacker	is	collecting	useful	information	and	then	planning	and	figuring	out	the
easy	targets	to	attack,	because	following	this	approach	will	improve	the	chances	of
success.	Footprinting	and	reconnaissance	are	synonyms	for	the	term	information
gathering.	The	chances	of	success	would	be	higher	if	you	are	following	the	planned
approach.

Let’s	use	the	same	approach	in	targeting	an	organization	using	networks.	The	first	step
would	be	to	identify	the	public	IP	address	of	the	organization,	the	subnet	it	belongs	to,	and
the	range	of	IP	addresses	allocated	to	the	organization.	This	basic	information	can	be
passively	(without	directly	interacting	with	the	company’s	network)	collected	through	the
use	of	DNS	lookup	services	available	online.	We	can	try	to	check	whether	zone	transfer	is
available,	which	can	give	some	juicy	and	granular	details	regarding	the	organization’s
infrastructure	we	are	targeting.	After	you	have	collected	the	basic	information	and	have
mapped	the	basic	layout,	you	are	ready	to	perform	a	port	scan.	I	would	prefer	that	you	do
a	ping	sweep	first,	which	will	tell	you	about	the	live	machines	over	the	network,	and	from
where	you	will	get	to	know	more	about	the	network	(while	performing	a	ping	sweep,	you
can	modify	the	TTL	value	to	figure	out	the	internal	LAN	architecture).

Before	we	go	ahead	and	try	duplicating	the	most	common	scenarios,	I	want	you	to
visualize	the	local	virtual	computer	infrastructure	I	have	created	for	practice	purpose.
Refer	to	the	following	figure:

Hopefully,	now	you	have	a	rough	idea	about	my	internal	network	that	I’ll	be	working
with.	The	access	point	located	at	192.168.1.1	assigns	the	IP	address	to	all	these	devices
using	DHCP	(the	DHCP	range	starts	from	192.168.1.100	and	continues	up	to
192.168.1.110;	it	means	I	can	have	a	maximum	of	10	DHCP	clients	at	one	instance).	For
this	chapter,	the	IP	address	for	our	attacking	machine	is	static	assigned	to	192.168.1.106.

PING	sweep
Let’s	begin	with	our	first	scenario	where	an	attacker	would	try	to	perform	a	ping	sweep
attack	over	the	subnet,	and	the	traffic	generated	is	captured	by	our	sniffer	listening	through
its	interface	in	the	promiscuous	mode	Refer	to	the	following	figure	that	displays	the	traffic
pattern	that	was	generated	after	running	a	bash	script	the	script	pings	each	IP	starting	from
100	to	110):

Figure	7.1:	Ping	sweep

Starting	from	packet	1–4,	the	Kali	box	started	generating	an	ARP	request	because	of	the
ICMP	ping	command	issued,	but	none	of	those	IP’s	are	allocated.	Hence,	we	did	not
receive	any	replies.	In	packet	5,	Kali	box	sent	a	ping	request	to	105,	and	the	reply	for	it
was	received	in	packet	14,	which	means	the	device	is	on.	Then,	in	packet	7,	an	ARP
request	was	sent	to	103,	but	this	IP	might	also	be	unallocated	for	the	instance,	so	no	reply
again.	In	packets	8–10,	Kali	box	sent	an	ICMP	request	packet	to	IP’s	102,	101,	and	100.
The	reply	for	the	same	can	be	seen	in	packets	13	and	15	from	IP’s	101	and	100.	For	102,
we	did	not	receive	any	reply.	It	might	be	any	device	blocking	our	ping	probes	or	some
mobile	device	not	responding	to	the	ping	probes.	Finally,	in	packet	number	17,	we	can	see
that	the	access	point	is	informing	the	Kali	Machine	about	its	physical	address.	If	you	scroll
down	through	your	trace	file,	you	would	see	various	replies	from	online	devices
describing	their	physical	addresses.

Half-open	scan	(SYN)
The	next	step	in	the	process	would	be	to	scan	any	specific	device	that	you	would	like	to
target.	Let’s	suppose	I	want	to	target	my	Win7	machine	running	at	IP	192.168.1.105.	My
next	step	should	be	to	check	for	available	services	running	on	that	box.	By	services,	I
mean	HTTP	daemons,	mail	server	daemons,	FTP	server,	and	so	on.	You	might	be
wondering	what	a	half-open	scan	is?	Look	at	the	process	of	a	TCP	three-way	handshake
we	discussed,	where	the	client	initiates	the	connection	by	sending	a	SYN	packet	if	the
server	is	available.	Then,	the	client	receives	the	SYN,	ACK	packet,	and	in	return,	the	client
sends	an	ACK	packet	to	the	server	for	completing	the	handshake	process.

Now,	what	would	happen	if	the	ACK	packet	sent	in	the	last	step	of	the	TCP	handshake	is
never	sent	to	the	server?	The	server	will	wait	for	a	specific	period	before	terminating	the
handshake	process	initiated	by	the	client,	and	the	connection	to	the	specific	TCP	service
would	never	be	completed.	That’s	why	this	type	of	scan	is	called	half-open	scan.	This	is	a
very	common	scanning	technique	used	by	the	majority	of	users	who	are	involved	in
malicious	activities,	being	aware	of	such	traffic	pattern	could	help	us	in	identifying	future
risks.	I	initiated	the	half-open	scan	from	Kali	box	to	target	Win7	box.	I	am	using	Nmap,
which	is	an	open	source	tool	available	for	every	platform	and	can	be	downloaded	for	free
from	http://nmap.org	(to	use	the	tool,	you	can	refer	to	various	tutorials	available	online).
The	traffic	generated	because	of	the	SYN	scan	is	captured	and	shown	in	the	following
screenshot:

Figure	7.2:	Half-open	scan

There	are	three	kinds	of	replies	that	you	can	see	after	the	scanning	is	completed:	Open,
Closed,	and	Filtered.	Now,	the	point	to	discuss	is	what	these	states	mean	and	what	relation
do	these	states	have	with	the	packet	shown	in	the	preceding	screenshot.	Let’s	look	at	the
states	in	more	detail	here:

	
Open:	If	a	service	is	open,	then	a	SYN,	ACK	packet	will	be	sent	back	to	your	machine

http://nmap.org

for	taking	the	TCP	handshake	process	to	the	next	step	of	completion.	In	packet	26,
Kali	sent	an	SYN	request	to	port	135	and	received	a	SYN,	ACK	reply	in	packet	28.
Closed:	If	a	service	is	not	available	to	respond,	then	you	would	receive	an	RST
packet	that	confirms	that	the	service/daemon	is	currently	not	running.	In	packet	22,	a
SYN	request	was	sent	destined	to	port	113.	In	packet	25,	the	RST	packet	for	the	same
is	received.	It	states	that	the	service	is	not	available	at	this	moment.
Filtered:	Sometimes,	a	firewall	might	be	configured	between	you	and	your	target
that	might	be	intercepting	your	requests	and	would	be	dropping	them	without
forwarding	them	to	the	target.	In	such	scenarios,	you	might	be	seeing	port	states	such
as	open|filtered,	closed|filtered,	or	just	filtered.
Let’s	suppose	you	are	trying	to	scan	an	HTTP	webserver	that	is	outside	your	VLAN
and	is	restricted	by	the	firewall	from	your	machine.	Then,	the	handshake	process
would	never	move	to	the	second	step,	that	is,	you	will	never	receive	a	reply	of	any
kind.	You	will	not	receive	any	SYN,	ACK	or	RST	packet.

Using	this	scan	type,	you	can	identify	the	state	of	the	services	running.	However,	using
this	kind	of	scan	type	will	generate	a	hefty	amount	of	traffic	too.	The	scan	I	initiated	was
completed	in	1.76	seconds,	and	in	such	a	short	time,	it	generated	2024	packets	between
the	two	machines.	Now,	this	proves	disadvantageous.	Any	well-configured	IDS/IPS	can
figure	out	such	activity	very	easily,	which	will	in	turn	trigger	an	alert	to	notify	the	security
admins.	Nmap	has	configurable	switches	that	can	help	you	out	in	these	situations	too.

OS	fingerprinting
Being	aware	of	the	operating	system	running	on	the	target	takes	the	scanning	process	to
the	next	step	in	the	methodology.	If	the	attacker	knows	about	the	OS	you	are	running,	the
patch	level	of	your	OS,	and	the	version	of	your	OS,	then	it	would	be	quite	simple	to
structure	the	attack	process	and	will	increase	the	chances	of	success.

There	are	a	couple	of	tools	available	in	Kali	that	will	let	you	identify	the	target’s	OS.	It	is
not	100	percent	accurate,	and	it	is	correct	most	of	the	times.	Now,	how	do	you	think	a
simple	tool	is	available	to	identify	the	remote	machine’s	OS?	I	will	tell	you	the	secret.
Every	OS	has	a	different	way	of	implementing	the	TCP	stack.	So,	a	packet	received	from
the	remote	machine	will	have	certain	fields	in	it	such	as	TTL,	fragment	offset,	and	most
importantly	window	size.	By	comparing	the	values	in	the	packet	with	the	database	we
have,	it	will	tell	you	the	OS.	For	example,	if	you	try	to	ping	a	Windows	machine,	the	TTL
value	returned	would	be	128,	and	if	you	ping	a	Linux	machine,	the	TTL	value	would	be
64	most	of	the	time.	Simple,	isn’t?

There	are	two	types	of	fingerprinting:	active	and	passive.	They	are	described	here:

	
Active	fingerprinting:	When	you	are	directly	interacting	with	the	system,	the
requests	and	responses	are	directly	shared	between	you	and	the	target.	This	kind	of
scan	can	be	really	dangerous	and	is	not	stealthy.	The	captured	packets	will	give	you
values	that	can	be	matched	with	the	signature	we	have	to	identify	the	OS	running	on
the	remote	machine.
Passive	fingerprinting:	When	you	are	just	listening	for	the	packets	originated	or
destined	to	the	target,	the	values	in	the	packets	can	be	examined	in	order	to	identify
the	OS	running.	A	disadvantage	off	passive	type	scan	is	that	it	is	not	as	accurate	as
active	fingerprinting.	But	the	process	would	be	stealthier	than	active	scans.

Using	the	nmap	scan,	I	will	try	to	fingerprint	a	machine	at	IP	192.168.1.109	and
192.168.1.104	and	see	what	kind	of	traffic	is	generated	due	to	such	requests.	The	type	of
scan	we	will	witness	is	active	scanning,	and	we	will	be	directly	interacting	with	the
systems.	We	won’t	just	rely	on	Nmap’s	output	to	confirm	the	OS.	The	packet	that	would
be	returned	to	our	attacking	machine	is	the	base	of	all	necessary	information,	which	I	will
try	to	dissect	for	your	better	understanding.

I	will	use	the	nmap	–O	192.168.1.109,192.168.1.104	command	for	active	OS
fingerprinting,	where	the	–O	switch	is	for	checking	the	OS	and	its	version.	Refer	to	the
following	two	screenshots	to	compare	the	outputs	they	present	to	us:

Using	just	the	TTL	field,	we	can	verify	that	the	first	traffic	we	captured	is	from	some
Linux/Macintosh-based	machine,	as	the	TTL	value	is	64.	The	second	traffic	screenshot
belongs	to	a	Windows	machine	as	the	TTL	value	is	set	to	128.

Secondly,	the	maximum	segment	size	highlighted	at	the	bottom	can	also	be	a	deciding
factor	for	OS	fingerprinting.	In	both	cases,	it	is	1460.	The	value	is	correct	if	you	are
talking	about	a	Linux-based	machine,	but	if	it	is	a	Windows	machine,	then	you	might
observe	that	the	value	is	1440	most	of	the	time.

For	both	Linux	and	Windows	platforms,	the	Fragment	Offset	field	should	be	0	(not	set).
See	how,	simply	by	observing	basic	fields	in	the	TCP	header	and	IP	header,	we	were	able
to	fingerprint	on	our	own.	Now	let’s	see	what	nmap	has	to	say.

Refer	to	the	following	screenshots	for	illustration:

Figure	7.3:	nmap	output	for	192.168.1.104

The	nmap	output	for	the	machine	IP	192.168.1.104	detects	that	the	machine	might	be	one
of	these	OSes	running	(in	the	red	box).	I	think	what	we	figured	out	and	it	is	quite	close.
OS	detection	by	nmap	is	done	by	analyzing	the	requests	and	responses	traffic	that	the	target
machine	generates.

The	nmap	output	for	the	machine	at	192.168.1.109	says	that	it	is	a	Windows	server
machine,	may	be	SP1	or	SP2.	This	time,	the	result	is	more	accurate	than	the	previous	one.
We	also	presumed	that	it	would	be	a	Windows	OS,	and	it	is.

The	traffic	generated	from	both	these	scans	would	be	quite	similar	to	the	SYN	scan	traffic
where	the	TCP	handshake	request	and	ICMP	request/replies	can	be	seen.	Once	the
attacker’s	machine	running	nmap	receives	the	replies	for	the	requests	made,	it	will	start
analyzing	and	comparing	the	results	with	the	database	of	the	results	it	already	has.	Thus,
in	the	end,	after	comparing	the	values,	Nmap	will	present	you	with	the	most	accurate
results.

So,	if	you	are	seeing	a	lot	of	RST	or	RST,	ACK	packets	sent	from	one	of	your	internal	LAN
machines,	then	it	is	something	that	you	should	be	worried	about.	Better	create	signatures
for	such	traffic	in	your	firewall	so	that	they	can	alert	you.

ARP	poisoning
As	we	all	know,	the	function	of	the	ARP	protocol	is	to	translate	an	IP	address	to	its
corresponding	MAC	address.	By	doing	so,	the	devices	are	able	to	communicate	effectively
in	a	LAN-based	network.	Any	device	that	wishes	to	get	connected	with	the	other	device
on	the	same	network	requires	the	MAC	address	of	the	other	hosts.	Every	OS	maintains	a
list	of	communicating	devices	that	can	be	populated	in	the	terminal	window	using	the	arp
–a	command.	The	same	command	is	used	on	every	platform.	We	have	also	seen	the	ARP
requests	and	reply	packets	that	are	used	by	the	devices	connected	to	the	local	network	to
gain	the	MAC	addresses	of	other	devices.

For	instance,	I	have	a	local	network	too,	which	is	being	governed	by	the	router	(gateway)
located	at	192.168.1.1,	and	there	are	3	devices	connected	to	it.	The	following	table	lists
all	the	required	information	specific	to	the	devices	connected,	which	we	will	use	later:

Device IP	Address MAC	Address

Router	(default	gateway) 192.168.1.1 D0:5B:A8:07:73:6C

Apple	(victim) 192.168.1.103 D8:BB:2C:B9:53:EC

Windows	server	(victim) 192.168.1.109 00:0C:29:B3:CB:B6

Kali	Linux	(attacker) 192.168.1.106 00:0C:29:5D:A7:F7

This	preceding	information	is	listed	in	the	ARP	cache	of	every	host	connected	to	the	local
network.	You	must	be	thinking	exactly	how	this	is	being	populated	in	the	local	cache.
Whenever	any	device	intends	to	communicate	with	the	other	device,	the	requesting	device
sends	a	broadcast	to	the	whole	subnet.	Then,	the	device	to	which	the	IP	address	belongs
replies	with	it’s	MAC	address	using	a	unicast	packet.	For	example,	if	the	Apple	machine
wishes	to	communicate	with	the	Windows	machine	located	at	192.168.1.109,	Apple	will
send	a	broadcast	asking	for	the	Windows	MAC	address	stating	Who	has	192.168.1.109?
Tell	192.168.1.103.	Then,	as	soon	as	the	Windows	machine	gets	to	know	about	the
request,	the	ARP	reply	unicast	packet	stating	192.168.1.109	is	at	00:0C:29:B3:CB:B6
will	be	broadcasted.	This	is	how	the	process	works.

The	preceding	packets	transfer	will	only	happen	if	the	Apple	machine	has	the	Windows
MAC	address	in	it’s	local	cache.	After	searching	in	the	local	cache,	the	request	is	sent	to
the	default	gateway.	If	the	default	gateway	knows	about	it,	an	ARP	reply	packet	is	sent	by
the	gateway	itself.	If	not,	then	the	request	will	be	forwarded	to	the	subnet	from	where	the
destination	PC	will	reply	with	the	physical	address	using	a	unicast	packet.	After	this,	the
conversation	can	happen	using	TCP/IP.

ARP	poisoning	is	used	to	poison	the	local	cache	of	the	victim	that	enables	the	attacker	to
sniff	the	data	that	is	travelling	between	the	two	victims.	The	attacker	intercepts	the	traffic
and	then	forwards	it	to	the	other	side.	Refer	to	the	following	illustration:

We	can	poison	the	local	ARP	cache	of	both	the	victims	and	can	achieve	the	same.	There	is
one	more	thing	you	need	to	configure:	IP	forwarding	on	Kali	so	that	your	attacking
machine	would	be	able	to	transfer	the	traffic	back	and	forth	without	any	loss	or	without
letting	the	victims	get	suspicious.	Follow	these	steps	to	achieve	ARP	poisoning:

	
First,	configure	IP	forwarding	using	the	echo	‘1’	>
/proc/sys/net/ipv4/ip_forward	command.
Once	this	is	configured,	you	can	go	ahead	and	send	unsolicited	ARP	reply	packets	to
both	the	victims	for	poisoning	the	cache.	Before	we	poison	it,	let’s	take	a	look	at	how
they	look	in	normal	form,	for	both	the	victim	machines:

Figure	7.4:	Windows	server	cache

To	populate	entries	in	linux	arp	cache	use	similar	commands;	refer	to	the	following
screenshot	for	reference.

Figure	7.5:	Apple	cache

Now,	let’s	start	sending	unsolicited	ARP	reply	packets	to	the	Windows	server
machine	that	Apple	machine	is	located	at	00:0C:29:5D:A7:F7.	The	same	packet
would	be	sent	to	the	Apple	machine	that	the	Windows	server	machine	is	located	at
00:0C:29:5D:A7:F7.	If	you	notice,	the	MAC	address	specified	in	the	packets	sent	to
the	Windows	and	Apple	machines	belongs	to	Kali	(the	attacker).	Refer	to	the
following	screenshot	to	check	out	the	command	I	used	for	the	spoofing	fake	MAC
addresses:

Figure	7.6:	ARP	reply	packets	sent	to	the	Windows	server	on	behalf	of	the	Apple
device

Figure	7.7:	ARP	reply	packets	sent	to	Apple	device	on	behalf	of	the	Windows	server

Using	a	one-liner	command	with	few	parameters,	we	were	able	to	poison	the	victim’s
cache	by	sending	numerous	ARP	reply	packets.

The	traffic	generated	due	to	the	preceding	command	was	also	captured	at	the	same
time.	Let’s	see	how	it	looks.	Refer	to	the	following	screenshot:

Once	multiple	number	of	such	packets	are	received	by	both	of	the	victims,	they	will
start	believing	it	and	accordingly	will	update	the	cache.	Let’s	have	a	look	at	both	the
machine	caches	to	verify	this.	Refer	to	the	following	screenshots:

Figure	7.8:	Poisoned	window’s	cache

Figure	7.9:	Poisoned	Apple’s	cache

Now,	whatever	traffic	is	sent	between	these	two	devices	will	be	forwarded	through
the	attacking	box.	For	verification	purposes,	I	turned	off	the	Windows	server	machine
and	tried	sending	ICMP	packets	from	the	Apple	machine.	Refer	to	the	following
output	shown	for	the	ICMP	destination	host	unreachable	replies	coming	from
192.168.1.106	(Kali):

The	preceding	output	assures	that	the	packets	are	being	forwarded	through

192.168.1.106,	hence	making	our	ARP	poisoning	attack	a	success.

Now,	the	question	is	how	to	secure	yourself	from	such	attacks.	The	best	thing	I	would
suggest	is	to	make	manual	entries	for	the	device’s	MAC	address	in	the	local	cache	of
the	communicating	client.	This	will	definitely	ignore	unsolicited	ARP	reply	packets
while	modifying	the	local	cache.	Refer	to	the	following	screenshot:

Figure	7.10:	Adding	a	static	entry	to	local	ARP	cache

Once	you	add	a	static	entry	in	every	possible	host	in	your	network,	it	won’t	be	possible
then	to	modify	the	local	cache	using	the	arp	spoof	tool.	Similarly,	for	HTTPS	traffic,	you
can	use	the	SSL	strip	tool	available	online	in	order	to	sniff	secure	traffic.

Analyzing	brute	force	attacks
Most	of	you	must	be	aware	of	the	popularity	of	brute	force	attacks.	The	chances	of	success
are	not	high.	Yet,	many	security	professionals	and	malicious	users	implement	their
password-guessing	ability	with	the	help	of	modern	tools.	Brute	force	attack	is	just	a	way
in	which	you	try	to	log	on	to	a	particular	service/application	using	the	password	dictionary
that	might	have	been	created	on	the	basis	of	the	target’s	profile.	Tools	such	as	Cewl,
Crunch,	and	John	let	you	create	dictionary	files.	Even	you	can	salt	the	passwords.
Discussing	how	to	create	one	for	yourself	is	out	of	the	scope	of	this	book,	but	I	would
recommend	that	you	have	a	look	at	these	tools	(all	of	them	come	preinstalled	with	Kali
Linux).

To	analyze	these	common	and	malicious	attacks,	I	will	attempt	to	brute	force	two
important	services:	Telnet	and	FTP.	You	might	be	aware	of	these	two	services	and	how
much	they	are	being	used	in	corporate	networking	infrastructure.	Telnet	is	used	to	perform
administration	of	devices	such	as	routers,	switches,	and	different	kinds	of	web	servers
remotely.	FTP	is	used	to	transfer	files	efficiently	with	the	assurance	of	integrity	and
confirmed	delivery	of	the	data.

First,	take	a	look	at	most	widely	used	protocol	for	remote	administration	that	is	often
overlooked	from	a	security	standpoint.	Using	simple	brute	force	techniques,	any	script
kiddie	can	gain	access	to	your	network,	and	the	consequences	of	such	acts	can	be	really
destructive	in	terms	of	money	and	availability	of	the	service.	If	dealing	with	consumers,
then	their	records	that	might	be	worth	millions,	leading	to	full	remote	code	execution	of
the	administrative	systems.

For	this	illustration,	I	have	a	Windows	server	machine	running	at	192.168.1.109	and	an
attacker	at	192.168.1.106.	The	attacker	will	first	prepare	its	dictionary	file	and	then	will
proceed	to	use	an	automated	tool	to	attack	over	the	Telnet	administration	service	running
under	the	Windows	server	machine.	The	traffic	generated	for	such	activities	will	be	logged
in	through	our	wonderful	sniffer	for	our	analysis.	I	tried	connecting	to	the	Telnet	service
like	a	normal	user	using	these	steps:

	
Using	the	Telnet	command	followed	by	the	IP	address,	I	was	able	to	get	connected	to
the	service.	In	return,	it	printed	a	banner	for	me:	Welcome	to	Microsoft	Telnet
service.

Then,	I	supplied	the	wrong	user	credentials,	which	was	not	accepted	by	the	server.
Hence,	it	showed	a	login	error,	which	stated	bad	username	or	password.
Then,	I	supplied	a	legitimate	set	of	credentials,	which	were	identified	and	accepted
by	the	service.
Once	the	user	is	authorized,	the	Windows	command	prompt	with	certain
authorization	is	presented	along	with	a	banner.	Welcome	to	Microsoft	Telnet
Server.

After	I	got	connected,	I	was	able	to	issue	remote	commands	(Windows)	from	my
machine	itself.
Then,	at	the	end,	to	terminate	the	connection	gracefully	and	to	free	up	all	resources
that	were	allocated	to	use	for	smooth	functioning,	I	issued	the	exit	command	that

gave	a	message	connection	closed	by	foreign	host.

Here	is	the	screenshot	illustrates	the	normal	functioning	of	a	Microsoft	Telnet	server:

Figure	7.11:	Telnet	normal	session

The	traffic	generated	was	also	captured	by	Wireshark.	Instead	of	showing	the	traffic,	I
decided	to	show	you	the	whole	communication	in	plain	text	format	that	you	can	achieve
by	assembling	the	TCP	stream	by	right-clicking	on	the	list	pane	and	choosing	show	TCP
stream	(the	Telnet	server	is	configured	with	an	echo	option,	so	there	is	a	chance	we	might
see	some	characters	echoed	back	from	the	server	to	the	client).	Refer	to	the	following
screenshot:

Figure	7.12:	Telnet	follow	TCP	stream

Everything	we	typed	and	received	in	response	from	the	server	is	being	shown	in	simple
plain	text	readable	form	by	just	following	the	TCP	stream.

Now,	after	seeing	how	a	normal	session	looks,	if	you	want	to	learn	how	to	perform	a	brute
force	attack,	follow	these	steps:

	
Create	a	virtual	pen-testing	lab	that	consists	of	at	least	two	machines:	one	will	be	an
attacker	(Kali)	and	the	other	machine	can	be	of	your	choice	(make	sure	you	can
install	Telnet	on	it).
Try	pinging	the	target	to	test	the	connectivity.	Issue	the	Telnet	command	to	create	a
normal	session	and	test	whether	everything	is	working	fine.
Now,	open	Kali	and	issue	the	medusa	–h	<target	ip>	-U	<usernames	file>	-P
<password	file>	-M	telnet	command.	Refer	to	the	following	screenshot:

Figure	7.13:	Brute	force—Telnet

At	last,	using	a	different	set	of	combinations,	we	were	able	to	brute	force	the	server.
The	traffic	generated	because	of	all	these	attempts	made	one	after	another	is	of
special	interest	to	us.

There	is	a	lot	of	TCP	and	TELNET	traffic	generated	in	the	file,	which	include	traffic
patterns	such	as	the	three-way	handshake	and	transfer	of	data	between	the	server	and
client	through	Telnet.	However,	not	everything	is	of	interest	to	us.	Refer	to	the
following	screenshot:

Figure	7.14:	Telnet	and	TCP	traffic	between	the	server	and	our	client

To	view	only	the	malicious	traffic,	I	applied	another	display	filter	that	will	show	only
the	various	connection	attempts	between	the	two	hosts.	Refer	to	the	following
screenshot:

Now,	observe	the	display	filter	telnet.data==Welcome	to	Microsoft	Telnet
Service	along	with	the	Time	column.	The	string	I	applied	in	as	the	filter	is	the	same
as	the	one	we	received	as	a	banner	while	connecting	to	the	service.	The	banner	is
printed	approximately	15	times	in	a	span	of	100	seconds	(less	than	a	minute).
Does	this	now	seem	suspicious	to	you	now?	If	it	is,	then	you	can	take	preventive
measures	to	protect	your	infrastructure	by	creating	useful	signatures	for	the	same
traffic	pattern	that	will	help	you	in	getting	alarmed.

Next,	it’s	time	to	look	at	another	popular	service,	FTP,	that	we	discussed	in	earlier
chapters	in	detail.	Let’s	look	at	how	a	brute	force	attack	would	look	like	against	the	FTP
service.	FTP	is	a	very	crucial	service.	If	attacked	by	any	means,	the	service	will	crash	or
become	unusable	for	the	legitimate	users.	It	can	cause	big	trouble	to	the	network	admins
with	serious	downtime.	To	deal	with	such	activity	that	happens	in	day-to-day	operations,
you	need	to	be	prepared	by	being	aware	of	the	malicious	traffic	patterns	that	you	can
compare	with	the	baseline	traffic	pattern	we	created	earlier.

For	testing	and	analysis	purpose,	I	configured	one	FTP	server	at	192.168.1.108	over	a
Windows	7	machine	and	the	attacker	is	at	the	same	place	over	IP	192.168.1.106.	I	used	a
Kali	Linux	operating	system	to	duplicate	the	attack	and	normal	traffic	pattern	scenario.
Follow	these	steps	if	you	want	to	duplicate	it	for	educational	purpose	only:

	
Configure	the	client	and	the	server	using	whatever	platform	suits	your	needs	best	and
make	sure	the	connection	between	the	FTP	server	and	the	client	works	freely	without
a	single	glitch.
Now,	first,	we	will	try	to	visit	the	server	using	a	legitimate	user	and	will	record	the

traffic.	Later,	we	will	use	the	Follow	TCP	stream	option	in	Wireshark	to	view	the
traffic	details	in	easy	to	understand	plain	text	format.
Refer	to	the	following	screenshot	where	I	initiated	the	connection	between	the	server
and	the	client	using	the	netcat	client	available	over	the	Kali	platform.	I	then	logged	in
using	the	wrong	credentials	in	the	first	attempt,	and	then	used	the	correct	ones	in	the
second	attempt:

After	I	successfully	logged	in,	I	issued	the	help	command	to	view	the	commands
available	for	execution.	Then,	I	issued	the	quit	command	to	terminate	the	connection
gracefully.	Refer	to	the	preceding	screenshot.
Our	sniffer	captured	the	whole	conversation.	Instead	of	viewing	the	traffic	in	the	list
pane,	we	are	again	seeing	the	assembled	TCP	stream.	Refer	to	the	following
screenshot:

Figure	7.15:	FTP	assembled	stream

Now,	as	we	have	seen	the	normal	traffic	patterns	that	you	would	witness	in	every	day
operations,	it’s	time	to	look	at	something	malicious,	such	as	the	brute	force	attack
attempts	executed	against	your	FTP	servers.	I	used	a	different	brute	force	tool	that	is
it	also	popular	among	the	category	THC-hydra.
Before	you	issue	the	command,	make	sure	you	have	you	own	custom-made
dictionary	file	that	suits	you	well	for	your	target	(refer	to	the	openwall	website	at
http://www.openwall.com/wordlists/	to	get	the	best	dictionary	files	available).
Once	you	have	the	dictionary	file	and	the	target	up	and	running,	issue	the	hydra	–l
<username>	–P	<password	file>	ftp://<you	target’s	IP	address>	command.
Refer	to	the	following	screenshot:

http://www.openwall.com/wordlists/

The	traffic	generated	was	also	captured	by	our	sniffer.	Instead	of	displaying	all	the
traffic,	I	used	a	display	filter	ftp.request.command==PASS	in	order	to	view	only
traffic	that	might	be	malicious.	The	following	screenshot	shows	what	display	filter	I
used	to	query	malicious	repetitive	packets.

Figure	7.16:	FTP	Brute	Force	attack	traffic	pattern

It	is	easily	identifiable	that	the	traffic	is	malicious	because,	in	a	span	of	maximum	85
seconds	(calculated	using	the	time	column),	there	were	approximately	10	password
attempts	made.	This	does	look	dangerous,	and	activities	of	such	kind	should	be
monitored	closely	in	order	to	protect	your	resources	facing	the	Internet.

There	is	one	more	way	through	which	you	can	point	out	such	traffic	patterns.	The	best
advisable	option	using	Wireshark	is	to	create	a	different	coloring	scheme	using	the	same
display	filter	expression	that	we	used	in	order	to	point	out	the	malicious	traffic	even	faster.
Refer	to	the	following	screenshot	where	I	did	the	same	and	created	a	different	coloring
scheme	for	both	TELNET	and	FTP	traffic:

Figure	7.17:	Coloring	scheme	for	malicious	traffic

There	are	various	other	application	layer	protocols	(HTTP,	SSH,	SMTP,	and	so	on)	that
fall	prey	to	these	brute	forcing	techniques	and	might	result	in	heavy	losses	for	corporate
infrastructures.	In	order	to	make	these	services	secure,	you	can	force	encryption	over	the
service	that	you	are	configuring	and	use	strong	password	policies,	such	as	an
alphanumeric	password	with	minimum	length.	You	can	also	enforce	a	password	change
policy	at	a	regular	intervals,	such	as	30	days	or	something.	Last	but	not	least,	you	can
make	the	employees	aware	of	such	activities.	Any	form	of	social	engineering	attacks
executed	against	an	employee	can	leverage	the	attacker	to	gain	access	to	the	infrastructure
more	easily.

Inspecting	malicious	traffic
In	some	previously	mentioned	topics,	we	have	witnessed	a	few	scenarios	that	generated
malicious	traffic.	Some	of	the	common	protocols,	such	as	HTTP,	DNS,	ARP,	IRC,	that	are
seen	in	the	list	pane	can	carry	malicious	traffic.	So,	knowing	about	the	malware	traffic
analysis	is	definitely	an	important	skill	every	network	and	security	professional	should	be
well	versed	with.	In	today’s	digital	world,	various	advance	have	been	made.	Yet,	threats
including	malware	infection	persist.	Every	organization	should	consider	threats	of	such
nature	to	be	critical.	For	illustrating	the	threats	that	are	caused	due	to	various	malicious
traffic,	I	have	configured	a	few	things	in	my	virtual	lab.	The	traffic	generated	because	of
the	activities	between	the	client	and	the	server	would	be	captured	in	parallel,	which	we
will	use	to	analyze	later.	Refer	to	the	following	screenshot:

Malwares	are	supposed	to	perform	a	couple	of	tasks	once	installed	on	the	victim’s
machine,	such	as	passing	on	the	secret	content	to	the	person	in	command,	receiving
commands	from	the	server,	and	infecting	and	corrupting	systems.	Even	if	you	have	the
best	security	solutions	installed	in	your	infrastructure,	you	are	still	open	to	wide	attack
vectors,	including	malware	infections.

Now,	we	have	understood	the	basics	of	how	malicious	traffic	is	being	generated,	and	we
also	have	a	clear	image	of	the	infrastructure	that	we	will	work	with.	So,	without	wasting
even	a	second	more,	let’s	go	ahead	and	start	the	process.	Follow	these	steps	if	you	want	to
replicate	the	scenario	in	your	own	virtual	lab:

	
You	require	three	machines	connected	to	the	same	LAN.	Make	sure	they	are	able	to
talk	to	each	other,	that	is,	verify	the	connectivity.

On	the	IP	address	192.168.1.106	stays	a	legitimate	website,	which	the	client	is
habituated	to	visit.	However,	this	time,	the	client	is	not	aware	of	the	infection	that
causes	redirection	to	another	webserver.	Refer	to	the	following	screenshot	of	the
legitimate	server:

Figure	7.18:	Legitimate	website

To	simulate	the	redirection,	I	have	configured	my	Apache	server	running	on	106	to
redirect	every	request	coming	to	IP	192.168.1.100	and	download	the	efg.exe
malware	from	there.
So,	next	time	the	client	visits	the	website	running	at	192.168.1.106,	it	gets
redirected	to	a	new	webserver	address,	which	directly	asks	the	client	to	run	a	file
named	efg.exe.	Refer	to	the	following	screenshot:

Figure	7.19:	Client	gets	redirected	to	IP	192.168.1.100	and	is	asked	to	run	the
application.

If	the	client	clicks	on	Run	they	might	not	be	aware	of	the	dangerous	effects	the
malware	can	pose	to	the	client’s	machine	and	the	network	client	is	a	part	of.	The

publisher	of	the	application	is	not	verified,	so	the	browser	is	not	able	to	verify	it.	This
results	in	giving	an	unknown	publisher	error.	If	the	client	still	proceeds	and	clicks	on
Run,	the	malware	will	be	installed.	Refer	to	the	following	screenshot:

Figure	7.20:	Unknown	publisher	error

Now,	let’s	suppose	that,	if	the	client	hits	run,	then	the	malware	will	be	downloaded	to
the	client’s	machine.	It	will	be	executed	later	on,	thus	creating	a	connection	back	to
the	command	and	control	center.
If	the	connection	back	to	the	attacker	was	successful,	then	without	the	knowledge	of
the	client,	the	attacker	can	copy	files,	delete	files,	take	screenshots,	take	webcam
snaps,	record	voice	through	the	mic,	corrupt	system	files,	and	so	on.	You	might	have
heard	of	various	malwares	such	as	ransom	wares,	spywares,	and	adwares.
The	whole	traffic	generated	because	of	all	these	activities	is	being	captured.	Let’s
take	a	look	at	it.	Instead	of	showing	you	the	traffic,	I	assembled	the	TCP	stream	first
between	the	client	and	the	legitimate	server.
To	understand	the	way	our	malware	works,	we	need	to	look	at	more	details,	which
can	be	presented	to	us	by	Wireshark.	Refer	to	the	following	screenshot	that	shows	the
assembled	TCP	stream:

Figure	7.21:	TCP	stream	between	the	client	and	real	(compromised)	server

As	you	can	clearly	see,	the	client	is	trying	to	visit	the	webserver,	and	the	request	is
being	forwarded	with	HTTP	redirection	to	the	new	address	192.168.1.100,	trying	to
download	the	malicious	file.

Once	the	client	gets	a	redirection	response,	the	client	again	initiates	a	three-way
handshake	with	the	new	server	and	tries	to	download	the	file.	After	a	couple	of
packets	were	exchanged	between	the	hosts	in	the	later	frames,	the	clients	received	a
200	OK	status	message,	suggesting	successful	download	of	the	malware.

In	the	following	screenshot,	you	can	see	that	the	malware	signature	can	be	easily
recognized	by	any	IDS/IPS	in	place:

Figure	7.22:	Malware	signature

The	GET	request	was	initiated	by	the	client	in	search	of	efg.exe,	to	which	the	server
responded	with	a	200	OK	status	message.	Later,	you	can	see	the	known	malware	signature
starting	with	the	characters	MZ	followed	by	some	random	character.	A	quick	Google	search
regarding	the	same	will	reveal	its	behavior	and	pattern.	Our	search	also	reveals	that	it	is	an
executable	file,	as	Wikipedia	states	16/32	bit	DOS	executable	files	can	be	identified	by	the
letters	MZ	at	the	beginning	of	the	file	in	ASCII.	Refer	to	the	following	screenshot:

Until	this	point,	its	clear	that	the	is	a	Windows	executable	file	is	clear	which	might	be

malicious.

Moving	on	with	our	investigation	regarding	the	malicious	file,	I	would	like	to	export	the
efg.exe	file	using	Wireshark.

	
1.	 Go	to	File	|	Export	Objects	|	HTTP.	You	will	see	a	dialog	similar	to	the	one	shown

here:

Figure	7.23:	Exporting	HTTP	objects

2.	 Now,	to	export	the	file,	you	need	to	select	the	conversation	that	states	the	name	of	the
file	along	with	it.	Then	click	on	Save	As	and	save	the	file	at	a	location	of	your
choice.

3.	 The	best	option	would	be	to	upload	this	file	to	websites	such	as
http://www.virustotal.com,	which	will	cross	examine	the	PE-executable	file	with
numerous	antivirus	software	online	and	will	show	you	a	detailed	analytical	report.
Refer	to	the	following	screenshot:

http://www.virustotal.com

Figure	7.24:	Uploading	efg.exe	to	virustotal.com

4.	 Now,	click	on	Scan	it!	to	let	the	website	examine	the	file	and	wait	for	the	results:

Figure	7.25:	efg.exe	examination	completed

31	out	of	56	antivirus	software	detected	the	executable	file	as	malicious,	which	is
quite	alarming.

5.	 Further,	I	manually	examine	the	conversation	between	the	infected	machine	and	the
command	and	control	center	by	looking	at	the	hex	dump	in	the	following	TCP	stream

window.	I	observe	something.	Refer	to	the	following	screenshot:

Figure	7.26:	Hexdump	in	TCP	stream	dialog

It	seems	that	the	server	machine	that	has	taken	the	control	of	the	victim	issues	some
command	to	gather	quick	information	regarding	the	machine.	The	highlighted	content	on
the	right-hand	side	of	the	window	states	strings	such	as	Get	File	Information,	Get	full
PC	name,	Get	Current	directory,	Adjust	token	Privileges,	and	so	on.

As	per	my	analysis,	the	file	that	got	installed	to	the	windows	box	is	definitely	malicious.	It
might	have	caused	some	serious	damage	to	the	individual	machine	as	well	as	the	network.
The	best	advisable	solution	is	to	isolate	the	machine	from	the	network,	unless	it	is	being
disinfected	using	specialized	tools.

To	conclude	this	section,	I	have	one	more	thing	to	depict	using	the	list	pane	in	Wireshark.
Refer	to	the	following	screenshot:

Figure	7.27:	Unusual	behavior	noticed	in	list	pane

Observe	the	behavior	of	the	packets	from	the	beginning,	as	it	started	with	the	ARP	request
sent	by	the	Windows	machine	because	it	was	trying	to	look	for	a	legitimate	web	server

locally	configured.	Followed	by	the	three-way	handshake,	the	client	initiates	a	GET	request
in	frame	6,	which	the	server	acknowledged	in	the	following	packet.	Then,	the	server	states
that	the	resource	the	client	is	looking	for	has	been	moved	to	another	location,	and	the
client	is	required	to	go	there.	After	this,	the	client	generates	an	SYN	request	in	frame	9.
Then,	the	command	and	control	center	generates	the	ARP	packets	asking	for	the	client’s
physical	address	in	order	to	get	in	touch	with	it	and	to	transfer	the	file.	Then,	at	last,	in
frames	12	and	13,	the	three-way	handshake	is	completed,	which	ends	in	generating	a	GET
request	from	the	victim’s	machine	in	order	to	start	the	transfer	of	the	exploit	as	seen	in
frame	13.	The	consequences	of	such	traffic	patterns	can	be	highly	devastating.	A	good
network/security	admin	should	be	aware	of	such	traffic	patterns	and	can	use	such	traffic
behavior	to	create	firewall/IDS-IPS	signatures	that	can	generate	quick	alerts.	They	can
help	in	avoiding	and	making	their	infrastructures	ready	to	fight	with	these	malicious
traffic.

Solving	real-world	CTF	challenges
Capturing	the	flag	events	is	the	most	common	thing	that	happens	in	security	conferences.
The	objective	is	to	learn	and	play	with	the	challenges	based	on	real-world	scenarios	that
can	assist	you	quite	well	in	learning	the	methodology.	Popular	conferences	such	as	DEF
Con,	PlaidCTF,	CSAW,	and	Codegate	can	be	searched	for	if	you	are	interested	in	cracking
flags.	Basic	programming,	networking,	forensics,	and	common	sense	are	the	skills
required	to	take	part	in	these	challenges.

I	have	made	a	couple	of	challenges	for	you	and	we	will	be	solving	them	as	well	in	a	step-
by-step	approach.	I	have	made	all	of	them	pretty	simple	in	order	to	give	you	an	idea	of
how	the	CTF	thing	works	and	definitely	the	approach	you	are	supposed	to	follow.	So,	let’s
begin	and	capture	some	flags.

First	CTF:	Leverage	the	weakness	in	remote	administration	services

Figure	7.28:	CTF1	trace	file

	
Solution:	We	have	a	telnet-flag.pcap	file	that	lists	multiple	packets	in	the	list
pane.	The	question	is	asking	us	to	take	advantage	of	remote	administration	services.
How	many	services	do	we	know	which	are	used	for	remote	administration	RDP,
Telnet,	and	SSH?	To	better	understand	the	scenario,	let’s	open	our	trace	file	in
Wireshark	first.	Refer	to	the	following	screenshot:

As	you	can	see,	there	are	more	than	two	thousand	packets	in	our	trace	file.	It	would	be
practically	impossible	to	scroll	to	the	bottom	to	see	each	packet.	The	best	option	would	be
to	look	into	the	protocol	hierarchy	window,	which	will	give	us	a	brief	regarding	all
protocols	involved	in	the	whole	trace	file.	From	here,	it	would	be	easy	for	us	to	identify
the	remote	administration	services.	The	protocol	hierarchy	window	can	be	accessed	from
the	Statistics	menu.	Refer	to	the	following	screenshot:

Figure	7.29:	Protocol	hierarchy	CTF1

Among	all	the	protocols	listed,	I	can	see	only	one	that	is	used	for	remote	administration,
and	we	can	use	it	to	move	on	with	our	CTF	process.	So,	I	applied	the	display	filter	telnet
in	order	to	see	only	relevant	traffic.	Refer	to	the	following	screenshot:

Figure	7.30:	Telnet	traffic	CTF1

Now,	the	next	step	would	be	to	follow	the	TCP	stream	of	these	packets,	which	will	reveal
more	information	regarding	the	Telnet	session.

This	is	what	the	question	was	about:	leveraging	the	weakness	in	a	remote	administration
service.	Telnet	sessions	can	be	viewed	in	plain	text	format,	and	we	finally	leveraged	the
weakness	to	take	advantage	of	viewing	the	session’s	information	in	plain	text	format.	The
flag	is	the	password	used	by	the	user	to	log	in	to	the	Windows	machine	to	perform
maintenance	activities.

FLAG	:	Sup3rs3cr3t

The	following	screenshot	illustrates	how	the	TCP	stream	windows	will	look	after	the
packets	are	assembled.	Also,	the	Telnet	session’s	password	can	be	seen	clearly.

Figure	7.31:	TCP	stream	dialog	CTF1

I	hope	you	have	understood	the	basic	approach	of	CTF	solving.	We	would	follow	similar
approach	in	solving	further	CTF	challenges.

This	time	I	have	designed	a	CTF	that	utilizes	another	common	protocol	and	will	let	you
learn	the	basics	of	the	CTF	challenge	approach.

Second	CTF:	Image	magic

Solution	is	in	the	title	of	this	CTF	and	it	is	pretty	small	and	attractive,	though	we	have	no
idea	what	we	are	looking	for,	but	for	sure	there	is	something	related	to	images.	Wireshark
performs	magic	every	time;	this	is	what	my	perspective	tells	me	about	the	challenge.

Following	an	approach	similar	to	the	one	we	talked	about	first,	we	would	open	the	trace
file	in	order	to	learn	basic	stats	related	to	the	traffic	capture	that	will	give	us	an	overview

of	the	protocols	used	during	the	session.	Refer	to	the	following	screenshot:

Figure	7.32:	Trace	file	CTF2

The	trace	file	starts	with	a	lot	of	DNS	packets,	which	don’t	look	very	useful	for	our
analysis.	Looking	at	the	following	status	bar	in	Wireshark,	we	can	say	that	there	are
around	4,800	frames	definitely	captured.	This	one	is	not	something	that	we	can	inspect
element	by	element,	so	we	need	the	help	of	our	best	guy:	protocol	hierarchy	dialog	(now	I
hope,	without	any	specific	instruction,	that	you	can	open	the	dialog):

Figure	7.33:	Protocol	hierarchy	CTF2

In	the	list	of	various	protocols,	I	spotted	JPEG,	which	is	an	image	extension,	and	is	listed
under	the	HTTP	section	in	the	dialog.	We	can	conclude	from	this	that	there	is	some
relation	between	these	two	,so	our	display	filter	could	become	HTTP,	which	will	keep	us
moving	in	the	right	direction.

As	soon	as	I	type	HTTP	in	the	display	filter	box	and	press	enter,	I	am	presented	with	just
four	packets.	One	of	those	listed	is	a	.jpg	file	with	the	name	flag.	Refer	to	the	following
screenshot:

Figure	7.34:	Display	filter	HTTP—CTF2

Frame	number	4,696	lists	a	GET	request	for	a	alg.jpg	file.	Investigating,	further	by
looking	at	the	TCP	stream	of	this	packet,	confirms	that	there	was	a	.jpg	file	requested	by
the	client	at	192.168.1.108.	Refer	to	the	following	screenshot:

Figure	7.35:	TCP	stream—CTF2

The	request	made	by	the	client	is	now	confirmed	and	verified.	The	next	step	would	be	to
export	this	object	from	the	stream.	Go	to	File	|	Export	Objets	|	HTTP.

The	window	just	lists	one	flag.jpg	file.	Follow	the	mentioned	steps	in	order	to	export	the
image	object.	First	select	the	row	one	showing	the	images	object	then	click	on	save	as	and
save	the	file	at	any	desired	location.	When	finished,	open	the	file	to	view	the	flag	content.
Refer	to	the	following	screenshot	to	see	the	content	of	the	exported	object.

Figure	7.36:	CTF2

This	challenge	was	pretty	interesting,	because	you	learned	about	a	different	idea	behind
CTF	challenges.

Our	final	challenge	also	introduces	us	to	a	new	idea	behind	CTF’s.

Third	CTF:	Are	you	Pro	Enough!!

Title	of	the	challenge	is	pretty	challenging	in	itself.	However,	we	will	solve	this	together.
So,	let’s	open	the	trace	file	first.

At	first	glance,	it	looks	like	other	trace	files	we	have	seen	with	numerous	useless	packets
filled	in.	Without	getting	ourselves	confused	with	the	overwhelming	amount	of
information	there,	let’s	follow	the	approach	that	we	have	been	following	so	far.	Refer	to
the	following	screenshot:

Figure	7.37:	Packet	list	pane—CTF3

Look	at	the	protocol	hierarchy	window	that	can	help	us	in	revealing	more	about	the	CTF
challenge	we	are	dealing	with.	Refer	to	the	following	screenshot:

Figure	7.38:	Protocol	hierarchy—CTF3

As	expected,	we	get	a	new	insight	about	the	trace	file,	and	we	can	observe	that	the	UDP
traffic	percentage	is	about	89	percent,	which	is	quite	a	big	number.	It	lists	Real	Time
Protocol	under	it.	So,	let’s	go	ahead	and	create	a	display	filter	for	RTP	traffic,	which	can
take	us	to	the	next	step	in	solving	the	riddle.	Refer	to	the	following	screenshot:

Figure	7.39:	RTP	display	filter—CTF3

It	seems	like	a	call	session	is	in	progress	between	the	two	hosts	at	192.168.1.107	and
192.168.1.105.	Next,	using	the	playback	feature	in	Wireshark,	I	will	reassemble	the
stream	and	will	try	to	play	back.	Go	to	Telephony	menu	|	VoIP	Calls	and	select	the	SIP
call	in	row	1	and	click	on	Player.	Refer	to	the	following	screenshot:

Figure	7.40:	VoIP	calls	dialog—CTF3

Once	the	call	session	is	visible,	select	it	and	click	on	the	player	where	you	will	be	asked	to
give	the	jitter	value.	Specify	200	as	the	value	and	click	on	Decode:

Now,	you	should	be	able	to	see	the	assembled	VoIP	stream	available	for	playback.	Select
the	first	part	of	the	communication	and	click	on	Play.	The	person	communicating	from
Side	A	side	says,	Start	the	transfer	of	the	rabbit	and	playing	Side	B’s	part	we	can	observe
that	it	is	just	an	echo	of	Side’s	A	message.	Refer	to	the	following	screenshot:

Figure	7.41:	Reassembled	VoIP	call	for	playback—CTF3

We	did	not	get	many	clues	from	this	message.	Let’s	look	at	the	protocol	hierarchy	dialog
once	again	and	see	what	we	have	in	the	TCP	section.	Other	than	the	HTTP	protocol,	there
isn’t	much	useful	information.	Under	the	HTTP	tree,	there	is	a	media	type,	which	means
something	got	transferred	between	the	hosts	on	the	network	(as	the	person	on	VOIP	call
said	start	the	transfer).	We	applied	HTTP	as	a	display	filter,	we	got	the	following
screenshot:

As	is	clearly	visible,	a	flag.rar	file	got	transferred.	Let’s	export	this	to	a	.rar	file	for
extraction.	Go	to	File	|	Export	Objects	|	HTTP,	select	the	first	row,	and	click	on	Save	as
to	save	the	.rar	file.	The	file	got	successfully	saved,	but	when	we	tried	opening	the	file,	it
asked	for	a	password,	which	we	don’t	know	have:

Figure	7.42:	Flag.rar	ask	password

Did	you	notice	what	the	person	said	over	the	call	“start	the	transfer	of	the	rabbit”,	so	why
don’t	we	check	therabbit	as	password	to	this	archive	file.

Luckily,	our	first	guess	worked.	This	might	not	happen	every	time	we	solve	CTF
challenges.	There	is	a	file	inside	it	called	flag.txt	that	reads	You	Gotcha!!	Refer	to	the
following	screenshot:

This	section	was	particularly	real	fun!	I	enjoyed	solving	it	for	you.	I	hope	the	approach
and	flow	we	followed	would	prove	useful	for	other	CTFs	that	you	might	start	solving	after
reading	this	chapter.	Best	of	luck	to	you	for	your	independent	analysis,	and	remember	that
using	out-of-the-box	thinking	and	a	bit	of	common	sense	is	also	required.

Summary
Use	Wireshark	to	keep	your	network	secure	by	defending	against	the	most	common	form
of	infiltration	attempts.	Analyzing	the	packets	with	security	perspective	will	give	you	a
new	insight	into	how	to	deal	with	malicious	users.

Activities	such	as	port	scanning,	footprinting,	and	various	active	information-gathering
attempts	are	the	basis	of	attacking	methodologies	that	can	be	taken	advantage	of	to	bypass
your	security	infrastructure.

Guessing	passwords	for	a	legitimate	service	is	called	a	brute	force	attack.	If	the	same	form
of	attack	is	combined	with	dictionaries,	which	consist	of	millions	of	passwords,	the
chances	to	break	in	get	higher.	Through	Wireshark,	you	can	view	such	attempts	made
against	a	service	in	your	network.

Using	a	legitimate	looking	piece	of	software,	a	malicious	user	can	gain	entry	into	your
network.	These	days,	the	most	common	form	through	which	malwares	are	being
distributed	is	emails.	Another	attack	form,	such	as	phishing,	when	combined	with
malwares,	becomes	seriously	dangerous.

Wireshark	can	help	you	in	analyzing	malware	behaviors,	and	using	the	behavior	analyzed,
you	would	be	able	to	create	the	necessary	signatures	for	your	IDS/IPS	firewalls	in	place.

Capture	the	flag	events	are	commonly	conducted	at	security	conferences.	Multiple
educational	exercises	are	provided	to	the	participants	to	experience	real-world	scenarios.
The	real	CTF	is	where	a	TEAM	A	tries	to	penetrate	into	TEAM	B’s	network	and	vice
versa	at	the	same	time.	Both	the	teams	are	responsible	for	securing	against	the	malicious
attacks	sent	in.	There	are	multiple	categories	in	CTF	events,	such	as	reverse	engineering,
protocol	analysis,	programming,	cryptanalysis,	and	so	on.	Mastering	Wireshark	can	ease
your	way	while	dealing	with	protocol	analysis	related	CTFs.

Observing	things	scattered	around	with	a	security	professional’s	perspective	will	let	you
see	things	differently.	From	a	person	inside	the	corporate	infrastructure,	things	might	feel
OK.	However,	from	outside,	you	might	be	very	vulnerable.	Security	professionals	are	like
immunity	to	the	IT	industry,	and	analyzing	the	packets	using	Wireshark	is	one	of	their
weapons	in	the	arsenal.

Practice	questions
Q.1	What	is	the	difference	between	the	active	and	passive	information	gathering
techniques?

Q.2	Which	information-gathering	technique	is	stealthier	and	why?

Q.3	What	do	you	understand	by	the	term	banner	grabbing?

Q.4	Use	the	netcat	utility	in	Linux	to	connect	to	a	running	HTTP	service.

Q.5	What	is	the	difference	between	the	–sT	and	–sS	switches	used	in	nmap	scans?	Can	you
use	both	at	the	same	time?

Q.6	Use	nmap	to	perform	OS	fingerprinting	on	a	machine	and	then	redirect	the	output	of
the	scan	to	a	file	for	later	use.

Q.7	Without	using	nmap,	can	you	fingerprint	an	OS	using	Wireshark?

Q.8	How	OS	fingerprinting	attempts	made	against	you	can	lead	to	serious	damage?

Q.9	Figure	out	the	techniques	to	evade	firewalls	deployed	in	corporate	environments	using
nmap.

Q.9	Is	it	possible	to	combine	two	attacking	methodologies,	ARP	spoofing	and	DNS
poisoning,	in	order	to	achieve	bigger	and	better	results?

Q.10	Try	brute	forcing	a	service	in	you	lab	environment	and	analyze	the	traffic	pattern
using	your	own	custom-made	dictionary	files.

Q.11	Try	leaning	about	brute	forcing	tools	already	installed	in	Kali	Linux	and	figure	out
which	tool	is	more	suitable	for	RDP	brute	force	attacks.

Q.12	What	other	filter	expression	can	be	useful	while	analyzing	the	malicious	FTP	traffic
patterns?

Q.13	Is	it	possible	to	force	encryption	over	the	FTP	session	so	that	the	following	TCP
stream	won’t	show	the	traffic	in	normal	text	form?

Q.14	Why	is	it	important	to	isolate	an	infected	PC	that	emits	unusual	traffic	from	your
network,	and	what	traffic	patterns	related	to	it	make	it	malicious?

Q.15	Visit	various	online	CTF	challenge	websites	and	try	solving	a	few	of	them.	Do	you
still	find	it	difficult	to	understand	the	challenge,	or	does	it	seem	a	bit	easier	now?

Chapter	8.	Troubleshooting
This	chapter	will	teach	you	how	to	configure	and	use	Wireshark	to	perform	network
troubleshooting.	You	will	also	master	the	art	of	troubleshooting	network	issues	using
Wireshark.	The	following	are	the	topics	that	we	will	cover	in	this	chapter:

	
Using	Wireshark	to	troubleshoot	slow	Internet	issues
Lab	up
Troubleshooting	network	latencies
Lab	up
Troubleshooting	bottleneck	issues
Lab	up
Troubleshooting	application-based	issues
Lab	up
Practice	questions

The	loss	of	packets	during	transmissions	is	one	of	the	most	common	problems	that	all
network	administrators	deal	with	in	their	day-to-day	lives.	However,	thankfully,	we	have
various	built-in	error	recovery	features	in	the	transmission	protocol	that	come	to	our
rescue	to	deal	with	the	problems.	However,	it	is	essential	to	understand	how	these	error
recovery	features	work	in	order	to	troubleshoot	the	problems	by	just	looking	at	the	packets
flow	in	the	list	pane	if	and	when	human	intelligence	is	required.	Troubleshooting	latencies
or	any	application-based	issues	in	your	network	requires	you	to	have	an	understanding	of
the	traffic	flow	and	the	way	packets	interact	with	each	other.	Before	we	start	getting	our
hands	dirty	with	a	troublesome	network,	we	need	to	understand	some	basics	of	the
recovery	features	that	would	help	you	diagnose	and	figure	out	the	root	of	such	problems.
Consider	yourself	blessed	that	you	have	the	privilege	of	using	Wireshark—the	most
popular	and	well-versed	tool	for	network	packet	analysis—which	is	an	open	source	tool.
This	won’t	state	the	problems	for	you,	but	the	time	required	to	troubleshoot	network-
related	issues	is	drastically	reduced.

Now,	you	might	feel	like	asking	the	question:	“how	does	it	looks	like	or	how	you	can
identify	such	happenings?”	Just	as	every	coin	has	two	sides,	the	network	communication
has	two	ends:	a	sender	and	a	receiver.	On	the	sender	side,	recovery	features	are	handled	by
the	Retransmission	Timeout	(RTO)	values,	which	are	a	sum	of	Round	Trip	Time
(RTT)	and	mean	of	standard	deviation.	On	the	receiver	side,	recovery	mechanism	is
handled	by	keeping	a	track	of	SEQ	and	ACK	values	that	are	shared	between	the
communicating	hosts.

You	definitely	have	heard	about	flow	control	features,	we	discussed	the	same	in	previous
chapters	while	dissecting	TCP-based	communications.	Flow	control	features	are	used	in
order	to	keep	the	transmission	more	reliable	by	taking	help	of	dynamic	functionalities
such	as	sliding	window	and	zero	window	notifications.	Now	that	you	have	the	basic
understanding	of,	I	want	you	to	understand	things	in	detail.	Note	that	we	will	talk	about
TCP-based	communication	most	of	the	time	in	this	chapter.

Recovery	features
TCP	retransmissions	and	duplicate	ACKs	are	the	tactics	that	are	used	while	recovering
from	a	failed	packet	transmission	or	an	out-of-order	packets	transmission	scenario.
Commonly,	network	latencies	(the	total	time	it	takes	for	a	packet	to	be	sent	along	with	the
time	its	ACK	is	received)	are	observed,	due	to	which	the	performance	of	networks	are
significantly	disturbed.	When	the	amount	of	retransmissions	and	duplicate	ACK	packets	are
seen	very	often	in	the	list	pane,	most	probably,	there	is	a	chance	that	your	network	is
facing	high	latencies;	if	not,	then	just	sit	back	and	relax.	My	point	is	that	you	should	be
concerned	about	such	activities,	and	if	possible,	mix	some	network	management
techniques	with	your	protocol	analysis	that	can	keep	you	updated	all	the	time	with	what’s
happening	inside

The	devices	use	TCP	retransmission	in	order	to	send	data	reliably.	Values	such	as	RTT	and
RTO	are	maintained	by	the	sender	of	the	data	in	order	to	facilitate	a	reliable	form	of
communication.	The	sender	initiates	the	retransmission	timer	as	soon	as	the	packet	leaves
the	ACK,	and	when	the	same	is	received,	the	sender	stops	the	retransmission	timer.	The
timer	value	here	determines	the	timeout	value.	Now,	if	the	sender	does	not	receive	the	ACK,
after	a	certain	amount	of	time,	the	sender	initializes	the	retransmission	of	the	same	packet.
If	the	sender	still	does	not	receive	any	ACK,	the	timeout	value	will	be	doubled	and	the
sender	will	retransmit	the	same	packet	again.	The	same	cycle	is	followed	until	the	ACK	is
received	or	the	sender	reaches	maximum	retransmission	attempts.	The	sender,	based	on
the	operating	system	maintains	a	number	of	retransmission	attempts,	which	are	triggered
when	a	certain	timeout	value	is	reached.

Figure	8.1:	TCP	duplicate	ACK	and	retransmission

For	instance,	in	the	preceding	figure,	a	client	is	located	at	192.168.1.2	and	the	server	is
located	at	192.168.1.1.	Here,	the	client	is	requesting	some	resource	that	the	server	holds,
following	which	the	transmission	between	the	two	hosts	starts	after	the	three-way
handshake	is	successfully	completed.	For	every	data	packet	received,	the	client	sends	a
ACK	for	the	same.	Now,	suppose	that	for	some	random	packet	in	the	stream,	the	server	did
not	receive	the	ACK	even	after	the	timeout	value	for	the	data	packet	expired.	The	server
initiates	the	retransmission	of	the	similar	data	packet	again.	The	same	process	is	followed
unless	and	until	the	server	receives	an	ACK	for	every	packet,	or	the	server	at	192.168.1.1
reaches	the	maximum	number	of	default	attempts,	five,	in	a	row.	Refer	to	the	following
figure	that	shows	this	retransmission	process:

Figure	8.2:	TCP	retransmission

On	the	basis	of	the	preceding	simplified	scenario,	I	suppose	now	that	you	have	understood
the	gist	of	the	retransmission	process.

Now,	we	will	discuss	duplicate	ACKs	and	fast	retransmission,	which	is	another	recovery
feature	that	the	clients	take	care	of.	In	the	previous	chapter,	we	discussed	the	SEQ	and	ACK
numbers	that	are	used	in	order	to	keep	track	of	TCP-based	communication.	You	might	also
remember	how	the	ACK	values	were	incremented	using	the	data	payload	size,	where	we
added	the	received	packet	SEQ	value	and	data	payload	size	value	and	the	resulting	sum
became	the	ACK	value.	We	sent	this	value	with	our	ACK	packet,	and	we	expect	to	receive
the	next	data	packet	marked	with	the	same	SEQ	value.	Suppose	that	the	server	starts
sending	data	packets,	and	the	first	data	packet	is	marked	with	a	SEQ	value	of	100	with	a
data	payload	size	equals	10.	Once	the	client	receives	the	ACK	packet,	it	prepares	to	send	to
the	server	with	value	set	to	110	(remember	the	formula:	SEQ	number	received	+	Data
payload	size	=	ACK	value).

As	soon	as	the	server	receives	the	ACK	packet	with	the	value	110,	it	prepares	for	another
data	packet	to	be	sent	with	SEQ	110	with	a	payload	size	of	10.	After	receiving	this,	the
client	will	respond	with	ACK	120.	The	same	process	goes	on	till	the	end	of	the	session.
Now,	suppose	that	instead	of	sending	the	next	packet	with	SEQ	set	to	10,	the	server	sends	a
packet	with	SEQ	130,	which	is	out	of	order,	and	after	receiving	this,	the	client	would	send
a	duplicate	ACK	set	to	120	to	the	server	to	recheck	and	send	the	missing	packet	again	from
the	data	stream.

From	the	preceding	scenario,	I	hope	you	have	understood	the	process	of	duplicate	ACKs
and	fast	retransmission,	which	you	can	use	while	troubleshooting	your	realtime	network
for	related	anomalies.	Before	we	go	ahead	and	discuss	flow	control,	I	would	like	you	to
see	real	packets	in	my	network	that	are	related	to	both	cases	of	error	recovery	that	we
discussed.	Refer	to	the	following	Figure	8.3	and	Figure	8.4:

Figure	8.3:	TCP	retransmission	packets

In	the	preceding	screenshot,	a	client	located	at	192.168.1.103	sends	FIN	and	ACK	to	the
server	at	216.58.220.36.	After	this,	the	client	would	expect	to	receive	a	ACK	packet	in	the
next	place.	However,	the	client	does	not	receive	anything	back	from	the	server.	Now,	after
the	RTO	time	expires,	the	client	starts	sending	the	same	packet	after	double	the	time,	and
the	process	of	sending	TCP	retransmission	packets	after	a	certain	period	of	time	goes	on
until	the	client	receives	an	ACK	packet	or	reaches	the	maximum	number	of	retransmission
attempts.	Observe	the	RTO	column	and	how	the	value	starts	doubling	up	until	it	reaches	a
maximum	limit.

With	the	next	scenario	in	Figure	8.4,	I	want	you	to	witness	the	duplicate	ACK	packet	that	is
being	generated	because	of	a	malformed	packet	sent	by	the	server	at	216.58.220.46	to	the

client	at	192.168.1.103.	As	soon	as	the	client	receives	it,	a	duplicate	ACK	packet	is	sent	in
response	to	the	malformed	packet	that	is	seen	out	of	sequence.

Observe	that	the	6027	frame	with	SEQ	=	1920	and	Data	payload	size	=	46	is	being	sent
across	from	one	host	to	another.	Next,	in	the	response	frame	6070,	a	malformed	packet
with	a	random	SEQ	value	was	sent	in	response.	Due	to	this,	the	host	at	192.168.1.103
generates	a	duplicate	ACK	packet	and	sends	it	to	the	host	on	the	other	side	with	the	SEQ	and
ACK	values	similar	to	the	frame	6027.	Now,	this	time	in	response,	the	host	at
216.58.220.46	sends	a	valid	ACK	frame	6115	with	ACK	incremented	to	1966	(1920+46),
as	expected,	and	then	the	communication	goes	on.

Figure	8.4:	Duplicate	ACK

With	these	real-life	examples,	I	expect	that	you	have	understood	the	behavior	of	TCP	error
recovery	features	more	precisely.

The	flow	control	mechanism
This	is	another	feature	used	by	the	TCP	protocol	to	avoid	any	data	loss	during	the
transmission.	Using	flow	control,	the	sender	syncs	the	transmission	rate	with	the	receiver’s
buffer	space	with	a	motive	to	avoid	any	future	data	loss.	Consider	a	scenario	where	the
recipient	has	a	buffer	space	of	1,000	bytes	available	at	an	instance,	and	the	sender	side	is
capable	of	sending	up	to	5,000	bytes	per	frame.	Now,	using	this	information,	both	the
hosts	have	to	sync	their	window	size	to	1,000	bytes	only	to	avoid	any	data	loss.	Refer	to
the	following	figure	that	shows	this	feature:

The	preceding	figure	depicts	the	way	both	the	communicating	hosts	negotiate	the	window
size	for	transmission	purpose.	Observe	the	behavior,	beginning	from	the	frame	with	SEQ
1	where	Host	2	responds	with	ACK	2	to	specify	that	the	frame	was	successfully	received.

Next,	HOST	1	tries	to	increase	the	transmission	rate	to	two	frames	and	sends	them	with
SEQ	2	and	3.	Host	2	responds	with	ACK	4,	which	denotes	that	both	frames	were
successfully	received.	Similarly,	we	succeed	in	increasing	the	rate	to	three	frames.

Next,	HOST	1	increases	the	rate	to	4	and	tries	sending	packets	with	SEQ	7,	8,	9,	and	10.
This	time,	HOST	2	responds	with	ACK	10,	which	means	that	Host	2	receiving	the
window	size	can	afford	maximum	3	frames	at	an	instance,	and	the	sending	side	should
adjust	to	it.

Next	time,	when	Host	1	transmits,	the	windows	size	would	be	set	to	3	frames,	which	the
recipient	can	afford	to	process	on	his/her	end.	The	window	size	is	not	set	to	a	permanent
value;	it	can	vary	until	the	whole	transmission	is	completed,	and	the	whole	process	is
called	the	TCP	sliding	window	mechanism	and	is	used	to	avoid	data	loss	during	a
transmission.

Think	about	what	would	happen	if	the	recipient	side	is	left	with	no	buffer	space,	that	is,	0
bytes.	It	can	handle	at	some	moment	during	the	transmission.	What	will	the	TCP	do	in
such	case?	Will	the	communication	channel	drop	or	the	TCP	will	come	up	with	something
more	reliable.

Yes,	the	TCP	has	another	data	loss	recovery	feature	called	the	Zero	window	notification.
Here,	the	recipient	side	sends	a	Windows	update	packet	set	to	0	bytes	and	asks	the	sender
to	halt	the	transmission	of	frames.	In	response,	the	sending	side	will	understand	the
situation	and	respond	with	a	Keep	Alive	packet	that	is	sent	at	a	particular	duration	while
waiting	for	the	next	Window	Update	packet	from	the	client.	Refer	to	the	Figure	8.6	that
illustrates	the	same.

HOST	1	starts	communicating	after	the	three-way	handshake	process	has	been	completed.
After	a	few	packets	get	transmitted	successfully,	the	receiving	side	buffer	space	gets	filled
up	with	other	resources,	so	HOST	2	responds	with	a	Zero	Window	packet	telling	Host	1
to	halt	sending	packets	until	further	notice.	Accepting	the	Host	2	zero	window	packet,
Host	1	starts	transmitting	Keep	Alive	packets	in	order	to	keep	the	connection	active	and
waits	for	further	notice.	Once	Host	1	receives	the	new	window	size	and	ACK	for	the
frames	that	were	transmitted,	it	will	start	sending	the	data	packets	again	in	accordance
with	the	receiver’s	buffer	space.

Figure	8.6:	The	zero	window	notification

The	technique	we	discussed	here	is	quite	efficient	in	preventing	any	data	loss	that	might
happen	during	a	transmission	or	due	to	an	overwhelmed	sender.	The	TCP	hosts	a	great
mechanism	to	control	the	transmission	process,	thus	making	it	more	reliable	for	any	type
of	communication.

Troubleshooting	slow	Internet	and	network	latencies
The	discussion	that	we	had	on	delays	observed	in	the	list	pane	can	be	categorized	in	two
categories:	the	normal/acceptable	delays	and	the	unacceptable	delays.	Yes,	you	heard	me
right,	there	are	some	forms	of	delay	that	are	acceptable,	and	you	should	not	waste	any
precious	time	of	yours	in	troubleshooting	any	of	those	cases.

Assign	a	category	to	your	current	scenario	on	the	basis	of	the	test	results	that	you	have
obtained	from	the	client	site	(try	to	put	sniff	packets	from	the	complaining	client’s
perspective)	into	one	of	the	following	categories:	wire	latency,	client	latency,	and	server
latency.	Seeing	your	scenario	with	the	perspective	of	one	of	these	cases	will	assist	you	in
solving	the	problem	with	a	more	process-oriented	approach,	hence	making	the	task	less
complex,	which	will	end	up	getting	sorted	out	in	lesser	time	with	lesser	resources.

Before	you	start	troubleshooting	such	scenarios,	I	would	highly	recommend	that	you
change	the	default	list	pane	view	by	customizing	the	existing	time	column	(customize	the
time	value	to	seconds	since	Previous	Displayed	Packet),	which	would	work	as	a
column	to	figure	out	latency	issues,	that	is,	it	will	show	you	the	total	amount	of	time
between	two	related	packets	in	a	sequence.	Refer	to	the	following	figure	to	customize	the
time	column.

To	further	elaborate	the	best	practices	that	are	followed,	I	will	discuss	a	step-down
approach,	which	you	can	use	as	part	of	your	checklists.	Make	sure	that	you	understand	one
thing	clearly:	tracking	an	issue	can	be	quite	critical	on	a	server	side	because	you	may	see
thousands	of	packets	flying	in	and	out	per	seconds.	This	can	be	really	messy	and	would
only	end	up	in	making	the	whole	problem	more	intense.	Looking	at	thousand	of	packets	to
figure	out	the	source	of	slow	Internet	connection	doesn’t	sound	feasible.	So,	the	best
option	would	be	to	filter	out	things,	prioritize	them,	and	look	at	the	problem	from	the
client’s	end	first.

Figure	8.7:	Customizing	the	time	column

	
Starting	your	investigation	at	the	client’s	end	makes	it	much	simpler	because	you
won’t	be	dealing	with	several	packets	that	may	not	be	relevant	to	your	scenario.	On
the	other	side,	if	there	is	even	a	hairline	chance	that	you	won’t	be	able	to	see	the
packets	that	are	relevant	to	you,	this	might	make	the	troubleshooting	experience	a	bit
challenging.
Apart	from	all	the	challenges	that	you	might	face	at	the	client’s	end,	the	first	thing
you	should	ask	your	client	is	to	replicate	the	problem	if	possible,	or	if	the	problem	is
occurring	in	a	time-based	manner,	then	you	should	wait	at	the	client’s	end	in	order	to
witness	and	understand	the	scenario.	The	ultimate	goal	should	be	to	capture	the
relevant	packets	and	get	a	crystal	clear	understanding	of	the	problem	that	the	client	is
facing	from	their	perspective.
Now,	when	you	have	the	trace	file	in	hand,	you	can	look	at	the	process	where	the
client	is	trying	to	connect	to	the	server:	the	whole	process	where	the	client	issues	a
DNS	query	with	an	objective	to	attain	a	server’s	logical	location	over	the	Web.	If	the
local	DNS	cache	already	holds	the	IP	address	of	the	server,	then	you	might	not
observe	any	DNS	packets;	instead,	a	direct	SYN	packet	would	be	seen	in	the	list	pane
sent	to	the	server	to	initiate	the	independent	connection.	What	you	need	to	make	sure
here	is	that	if	the	DNS	queries	are	seen	in	the	list	pane,	then	the	round	trip	time
should	be	low,	as	expected	(approximately	less	than	or	equal	to	150	ms).

The	next	would	be	the	three-way	handshake	packet	that	you	will	be	observing	in	the
list	pane.	The	best	option	would	be	to	isolate	the	communicating	hosts	that	can	help
you	in	eliminating	any	further	communication.	You	can	just	right-click	on	the
communication	and	create	a	filter	as	illustrated	in	Figure	8.8

Once	you	have	filtered	out	the	problematic	connection	between	the	hosts,	the	next
task	would	be	to	observe	the	total	time.	The	time	between	duration	when	the	SYN
packet	was	sent	and	the	corresponding	SYN/ACK	packet	was	received.	This	can	be
compared	with	the	baseline	that	you	already	have	to	come	up	with	a	variance	that
could	help	you	in	pointing	out	whether	the	connection	is	slow	or	is	working	fine.
Refer	to	the	following	screenshot	that	illustrates	the	same:

Figure	8.8:	The	time	between	the	SYN	and	SYN/ACK	packets

As	you	can	see,	the	time	between	the	SYN	and	SYN/ACK	packets	is	relatively	low,
and	this	seems	to	be	a	good	working	connection.	This	kind	of	connections	can	be
helpful	while	you	are	designing	a	baseline	for	your	network.	At	a	later	point	in	time,
the	same	can	be	used	to	compare	with	problematic	scenarios.	Refer	to	the	following
screenshot	that	show	DNS	and	TCP	packets	of	the	same	communication:

Figure	8.9:	The	ideal	baseline	trace

The	client	issues	a	request	to	visit	the	google.ae	(frame	686)	website,	which	the
local	server	acknowledged	in	order	to	first	look	for	the	IP	address	in	a	local	cache.

Once	the	local	DNS	server	completes,	the	search	process,	the	client	receives	DNS
responses	including	Google’s	IP	address,	which	can	be	used	to	visit	the	website
(frame	688	and	689).
As	soon	as	this	process	completes,	the	client	at	192.168.10.196	issues	a	SYN
request	to	one	of	Google’s	IP	address	in	order	to	visit	the	web	page.	Without	any
further	delay	(less	than	tenth	of	a	second),	the	server	responds	with	SYN/ACK,	and	the
process	goes	on.

Let’s	suppose	that	the	total	time	between	the	SYN	and	SYN/ACK	packets	is	high	by
approximately	0.90-1.0	seconds.	At	first	glance,	you	ignore	this	an	move	ahead,	and	you
will	observe	a	quick	ACK	packet	sent	in	response	from	the	client	followed	by	a	HTTP	GET
request	(in	case	the	client	is	visiting	a	website).	Next,	the	ACK	packet	acknowledging	your
GET	request	surprisingly	takes	more	than	a	second	to	come.	Now,	this	points	to	some
serious	latency	issues.	The	question	is,	who	will	be	the	one	you	are	going	to	blame—the
client	or	the	server?	The	client	did	its	part	by	sending	the	SYN	packet	on	time.	Then,	is	it
the	server	who	is	handling	a	high	load	of	traffic	and	is	quite	busy	with	other	applications,
because	of	which	you	are	handling	high	round	trip	time?	The	answer	is	neither	the	client
nor	the	server.	Then	why	is	the	round	trip	time	high?	The	probable	answer	for	such	cases
in	my	knowledge	would	be	the	wire.	Yes,	you	heard	it	right.	The	wire	can	also	take	part	in
making	your	network	slower	then	expected.	So,	while	troubleshooting	slow	networks,	if
you	observe	high	round	trip	times	associated	with	the	SYN/ACK	and	ACK	packets,	then	you
can	be	sure	that	your	client	and	server	are	not	the	source	of	the	issue.

What	you	can	do	is	start	examining	the	devices	between	the	hosts,	such	as	the	routers,
switches,	firewalls,	proxy	servers,	and	so	on.	Although	the	example	we	talked	about
doesn’t	give	you	the	exact	source	of	the	problem,	it	definitely	gives	you	a	clear
understanding	that	both	the	communicating	hosts	are	not	promoting	any	form	of	latency.

Now,	for	better	understanding,	I	would	like	to	show	you	the	same	in	practical	terms.	Refer
to	the	following	screenshot	that	lists	out	a	few	packets	shared	between	two	hosts,	starting
from	a	three-way	handshake:

Figure	8.10:	Wire	latency

First,	the	client	located	at	192.168.10.196	and	the	server	located	at	128.173.97.169	start
communicating.	In	the	beginning,	we	see	that	a	three-way	handshake	takes	place	between
the	client	and	the	server,	but	did	you	notice	the	amount	of	time	it	took	for	the	SYN/ACK
packet	to	come	(more	than	0.36	seconds).	Look	at	the	frame	39,	and	it	is	something	that
you	should	take	care	of.	Moving	on,	we	saw	one	more	similar	event	after	the	GET	request
was	issued,	where	the	ACK	packet	took	approximately	0.30	seconds	to	come	back.	The
latency	observed	is	not	because	of	the	client	or	the	server,	as	we	discussed	earlier.	The
latency	here	is	promoted	by	the	devices	that	lie	on	the	wire.	The	best	troubleshooting
option	in	such	cases	would	be	to	look	at	the	routers,	switches,	or	any	firewalls	that	were

implemented	without	wasting	time	in	troubleshooting	the	source	and	the	destination.

Client-	and	server-side	latencies
You	might	think	about	the	scenarios	where	you	would	come	across	or	see	latency	issues
that	the	client/server	promotes.	Let	me	explain	this	to	you	with	some	real-life	examples;
first,	we	will	take	a	look	at	the	latencies	promoted	by	the	clients.

A	few	days	ago,	I	was	just	visiting	some	random	websites	over	the	Internet	to	look	for
some	research	material,	and	meanwhile,	Wireshark	was	running	in	the	background	and
capturing	every	packet	I	was	tying	to	visit.	I	surfed	the	Web	for	approximately	3-4	minutes
and	then	closed	the	browser	as	well	as	stopped	Wireshark	from	sniffing	any	packets.	After
the	whole	thing,	I	decided	to	look	into	the	trace	file	to	investigate	any	client-side	latency
issues.

Refer	to	the	following	screenshot	from	my	trace	file,	which	shows	frequent	client-side
latencies	that	will	eventually	affect	the	performance	of	my	network:

Figure	8.11:	Client-side	latency

As	you	can	see	in	the	frame	9985	and	frame	10408,	there	are	GET	requests	that	my	machine
at	192.168.10.196	had	issued,	and	the	amount	of	time	it	took	was	1	second	for	the	first
time	and	more	then	3.5	seconds	the	next	time.	I	became	curious	and	started	thinking	about
why	this	happened	and	what	can	be	the	most	appropriate	reason	for	such	latencies.

Once	I	started	further	investigation,	I	saw	that	the	three-way	handshake	process	happened
in	a	timely	manner	and	there	were	no	signs	of	latencies.	Now,	my	attention	went	to	my
machine.	Maybe,	there	is	something	that	is	tampering	with	my	network	connectivity.	I
looked	at	the	resource	allocation	window	in	terms	of	primary	memory	and	CPU
utilization.	What	I	saw	was	that	the	CPU	and	memory	utilization	meter	were	showing	high
consumption,	which	led	me	to	enquire	more	about	the	number	of	applications	running.
There	were	three	virtual	machines	running	that	I	forgot	to	turn	off,	which	were	utilizing	all
the	memory.	This,	in	my	belief,	is	one	of	the	strongest	reasons,	because	of	which	I	was
experiencing	latencies	on	the	client	side	(my	machine).	I	hope	that,	with	this	practical
example,	you	might	have	understood	how	client-side	latencies	can	be	one	of	the	reasons
for	low	network	and	Internet	performances.

Moving	on	with	this	simple	example,	let’s	get	ourselves	introduced	with	server-side
latency	issues.	I	followed	the	same	approach	of	surfing	the	Web	with	random	websites
while	capturing	packets	with	Wireshark	for	a	couple	of	minutes	and	then	analyzing	the
cause	of	any	form	of	latency	that	can	be	seen	in	the	list	pane.	This	time,	I	came	across	an
interesting	session	between	my	machine	and	a	website.	First,	I	would	like	you	to	have	a
look	at	it.	Refer	to	the	following	screenshot	that	illustrates	this:

Figure	8.12:	Server-side	latencies

As	you	can	see,	the	session	between	my	machine	at	192.168.10.96	and	the	server	at
198.41.184.93	begins	with	a	smooth	three-way	handshake	without	any	sign	of	latencies.
Next,	the	client	issues	a	web	request,	following	which	the	server	sends	an
acknowledgement.	Uptil	here,	everything	has	gone	flawlessly,	and	there	were	no	traces	of
latencies.	However,	when	the	server	was	about	to	start	the	data	transfer,	the	server	stopped
for	a	while,	as	you	can	see	in	the	frame	503.	The	server	took	around	0.35	seconds	to
initiate	the	data	transfer.	This	clearly	illustrates	that	the	server	might	have	experienced
heavy	network	traffic,	or	may	be,	the	server	was	running	several	applications	that	were
causing	high	CPU	and	memory	consumption.	There	can	be	several	other	reasons	as	well
for	the	latency	that	we	just	witnessed.	Observing	all	of	it,	we	can	give	a	conclusion	that
the	server	is	the	reason	for	the	latency;	in	this	case,	the	server	was	incapable	of	processing
the	client’s	request	in	a	reasonable	amount	of	time,	which	ended	up	as	a	minor	latency
issue.

You	learned	how	the	devices	over	the	wire,	the	client	side,	and	the	server	side	can	promote
high	latencies	while	you	surf	the	Internet	or	even	your	internal	LAN	network	can	be	a
victim	of	the	same.	We	talked	about	delays	before	the	server’s	SYN/ACK	packet	is	received.
These	delays	can	happen	because	of	the	device	in	between	(over	the	wire)	and	may	be
witnessed	due	to	the	server’s	high	response	time.	Let’s	make	things	more	interesting	with
a	small	practical	example	about	identifying	high	HTTP	response	time.	This	will	be	useful
for	you	to	identify	high	response	time.	Follow	these	steps	to	replicate	the	same	in	parallel:

	
1.	 Open	your	browser	and	visit	some	websites	while	Wireshark	runs	in	the	background

listening	to	your	packets.
2.	 Once	you	have	visited	at	least	3-4	websites,	you	can	stop	the	capture	process.
3.	 Now,	switch	to	Wireshark	and	make	some	necessary	changes.	First,	disable	Allow

subdissector	to	reassemble	TCP	streams.	Select	any	TCP	packet	in	the	list	pane,
then	right-click	on	the	TCP	section	in	the	details	pane,	and	then	click	on	the	Allow
subdissector	to	reassemble	TCP	streams	option	to	disable	it.	Look	the	the
following	screenshot	that	illustrates	this:

Figure	8.13:	Disable	the	Allow	subdissector	setting

4.	 Next,	we	have	to	add	the	http.time	delta	column	to	the	list	pane	in	order	to	see
things	more	clearly	and	to	easily	identify	any	traces	of	latencies.

5.	 Select	any	HTTP	packet	from	the	list	pane	and	then	expand	the	HTTP	protocol
section	in	the	details	pane.	Then,	right-click	on	the	Time	since	request	parameter
and	click	on	the	Apply	as	Column	option.	Refer	to	the	following	screenshot	that
illustrates	this:

Figure	8.14:	Apply	Time	since	request	as	a	column

6.	 Once	this	is	done,	you	would	be	able	to	see	the	Time	Since	Request	columns	just
before	the	info	column	in	the	list	pane.

7.	 Now,	you	are	left	with	just	one	step:	to	identify	the	highest	response	time	from	the
web	servers	that	you	visited.	Simply	sort	the	newly	added	columns	in	a	descending
order	to	the	highest	response	time.	Refer	to	the	following	screenshot	that	illustrates
this:

Figure	8.15:	Sorting	the	http.time	delta	column

8.	 Once	this	is	sorted,	you	would	be	able	to	see	the	highest	response	time	at	the	top	of

the	list	pane,	as	shown	in	the	following	screenshot:

Figure	8.16:	High	HTTP	response	time

9.	 The	session	at	the	top	of	my	list	pane	between	my	machine	and	a	web	server	that	I
visited	denotes	quite	a	high	response	time	of	more	than	a	second.	See	how	easy	it	was
to	identify	the	http	delays	in	order	to	make	your	troubleshooting	job	easy.	I	hope	it
would	be	easy	for	you	to	replicate	the	same.

You	can	also	achieve	this	in	a	visual	representation,	where	you	can	create	an	IO	graph	to
identify	high	latencies.	Refer	to	the	following	small	illustration	using	which	you	can
replicate	the	scenario	(note	that	I	am	using	the	same	trace	file	that	we	saw	earlier	in	the
previous	example):

Figure	8.17:	Using	an	IO	graph	to	identify	the	delays	in	HTTP	response

As	you	can	clearly	observe	in	the	graph,	the	response	time	for	the	requests	you	made	took
more	than	a	second	to	complete	in	a	total	browsing	session	of	approximately	45	seconds.

There	can	be	multiple	situations	where	you	will	witness	such	traffic	patterns;	this	one	is
definitely	because	of	a	web	server	that	makes	your	web	surfing	experience	bad.	The
reasons	behind	such	a	pattern	can	vary	from	a	server	in	a	heavy	traffic	load	to	a	server

hosting	several	applications,	or	it	can	be	possible	that	the	server	you	are	trying	to	visit
might	be	consulting	some	other	web	server	in	order	to	fulfill	your	request.

Next,	let’s	see	an	example	where	DNS	queries	and	their	responses	are	responsible	for
causing	your	Internet	or	local	networking	experience	to	suffer.	As	we	saw,	other	protocols
in	conjunction	with	DNS	make	the	whole	networking	experience	better,	but	at	times,	the
same	DNS	protocol	can	cause	trouble.	Follow	the	next	steps	to	identify	the	source	of
problems	using	DNS	response	time:

	
1.	 Open	your	browser	and	visit	at	least	3-4	websites.	Wireshark	should	be	capturing

your	web	session	packets	while	in	the	background.
2.	 Stop	the	capturing	process	and	apply	dns	as	a	display	filter	in	your	trace	file	in	order

to	see	only	dns	packets.
3.	 Now,	select	any	dns	response	packet	from	the	list	pane	and	expand	the	corresponding

DNS	section	in	the	details	pane	for	the	same	packet.	Right-click	on	the	Time
parameter	and	click	on	Apply	as	Column.	Refer	to	the	following	screenshot	to	see
this:

Figure	8.18:	Applying	DNS	Time	parameter	as	column

4.	 Once	you’ve	done	this,	you	will	see	a	time	column	next	to	the	info	column	in	the	list
pane.

5.	 Our	next	objective	is	to	sort	the	column	in	a	descending	order	to	figure	out	the
highest	DNS	response	time.	Refer	to	the	following	screenshot	to	replicate	the	same:

Figure	8.19:	Sorting	the	DNS	time	column	in	a	descending	order

6.	 Once	this	is	sorted,	you	would	be	able	to	see	the	session	details	in	the	list	pane	with
the	highest	DNS	response	time	that	can	be	used	to	investigate	further.	If	the	server
belongs	to	your	premises,	then	you	are	the	only	one	who	has	to	take	care	of	it.	Refer
to	the	following	screenshot	that	illustrates	this:

Figure	8.20:	High	DNS	response	time

7.	 Seems	like	some	of	the	servers	are	responding	really	slow,	and	this	badly	affects	your
overall	web	surfing/networking	experience.

8.	 Similarly,	you	can	create	an	IO	graph	to	see	the	whole	scenario	in	a	graphical	form,
and	it	would	be	far	easier	to	visualize	and	understand	the	case.	Refer	to	this
screenshot	that	illustrates	this:

Figure	8.21:	DNS	high	response	time	depicted	with	the	help	of	an	IO	graph

You	can	easily	observe	in	the	preceding	graph	that	the	DNS	response	time	was	quite	high
and	reached	to	an	approximate	of	2.5	seconds,	and	it	is	something	that	should	be	taken
care	of.

Through	the	preceding	realistic	examples,	I	hope	you	have	understood	the	approach	that
can	give	you	a	kickstart	in	troubleshooting	such	scenarios	in	future	corporate
infrastructures,	which	you	might	be	asked	someday	to	troubleshoot.

Troubleshooting	bottleneck	issues
Next,	we	have	a	commonly	occurring	issue	in	corporate	networks.	You	might	have	already
gone	through	the	harsh	suffering	of	troubleshooting	them	using	various	hardware	and
software	tools.	The	first	thing	to	do	is	to	understand	what	these	issues	are	and	what	kind	of
problems	we	can	we	face.

When	packets	are	queued	up	or	there	is	a	delay	in	the	transmission	process	between	the
host,	which	is	not	expected	to	happen,	you	might	think	“why	do	such	delays	happen?”	The
answer	to	this	depends	on	many	factors	such	as	when	your	system	of	the	server	side	is	not
able	to	send/receive	information	with	the	speed	at	which	it	is	being	processed.	These	kind
of	issues	severely	affect	the	performance	of	networks	by	slowing	the	rate	at	which	the
TCP/IP	packets	are	transmitted,	because	of	which	the	data	between	the	hosts	starts	moving
back	and	forth	at	a	comparatively	slower	rate.

Using	my	small	LAN	network,	I	decided	to	create	an	exercise,	which	you	can	also
replicate	on	your	end	easily.	For	the	infrastructure,	I	have	a	gateway	at	192.168.10.1	and
my	client	at	192.168.10.209.	Refer	to	the	following	figure	that	illustrates	this:

What	you	need	next	is	a	network	traffic	generator.	Research	it	a	bit	and	try	to	use	anyone
that	makes	you	feel	comfortable.	Lastly,	you	need	a	ping	utility,	which	is	already	installed
on	every	known	operating	system.

So,	here’s	the	scenario.	I	will	start	a	non-top	ping	from	the	client	to	the	server.	While	the
client	is	pinging,	I	will	launch	the	traffic	generator	application,	which	will	try	to	interrupt
the	ping	process	by	trying	to	consume	the	gateway’s	resources	in	order	to	create	a
bottleneck	scenario	for	the	client.

We	will	first	see	a	normal	traffic	pattern	in	the	IO	graph	so	that	we	would	work	as	our
baseline	when	we	would	be	required	to	compare	with	the	bottleneck	issue.	Here	is	the
screenshot	for	the	normal	traffic	pattern	shown	in	terms	of	an	IO	graph:

Figure	8.22:	Normal	traffic	in	an	IO	graph

In	the	preceding	graph,	no	major	deviation	can	be	observed;	hence,	we	can	include	such	a
traffic	pattern	while	creating	a	baseline	for	our	network.	Just	the	ICPMP	packets	are	sent
from	the	client	to	the	server	without	much	trouble.

Next,	I	want	you	to	see	and	observe	the	difference	between	the	traffic	pattern	that	we	saw
and	the	one	below	the	IO	graph,	which	was	captured	for	the	same	network	infrastructure.
However,	there	was	one	more	application	that	was	involved	in	the	replication	of	the	event,
which	generated	unnecessary	traffic.	This	resulted	in	network	clogging,	which	is	popularly
known	as	a	bottleneck.

The	application	I	used	is	the	network	traffic	generator	that	can	be	used	to	deviate	a	normal
traffic	pattern.	This	results	in	a	network	bottleneck	scenario	and	can	even	result	in	a	denial
of	service.	Refer	to	the	following	screenshot	for	reference:

Figure	8.23:	A	bottleneck	scenario

Bottleneck	issues	are	represented	by	ups	and	downs,	as	shown	in	the	preceding	graph.	The
rate	at	which	the	throughput	drops	is	the	same	rate	at	which	it	jumps	up,	and	this	pattern	of
deviation	in	normal	traffic	denotes	that	there	is	a	bottleneck	being	formed.

When	every	technique	you	know	about	troubleshooting	fails,	then	at	the	end,	you	can	use
the	network	baseline,	which	can	prove	worthy	while	dealing	with	the	slowness	of	the
network.	As	discussed	earlier,	a	network	baseline	is	just	crucial	information	that	you	have
collected	through	various	points	in	your	network.	The	sole	purpose	of	the	network
baseline	you	have	is	to	compare	abnormal	traffic	with	it	in	order	to	understand	the	level	of
deviation.

We	already	discussed	slow	DNS	and	HTTP	responses	that	make	up	your	web	surfing
experiences.	If	you	already	have	a	baseline	regarding	your	network,	then	it	would	be
thousand	times	easier	for	you	to	troubleshoot.	You	would	be	able	to	identify	the	root	cause
of	the	situation	you	are	dealing	with,	and	definitely,	this	will	save	a	lot	of	time	for	other
analysis.

Remember	one	thing	that	the	baseline	created	for	two	different	networks	can	vary	in	vast
aspects,	so	you	should	not	compare	them	with	each	another.	An	interesting	and	creative
way	of	creating	a	baseline	would	be	to	create	separate	baselines,	that	is,	one	for	the
network,	one	for	the	hosts	in	your	network	(how	well	they	coordinate	with	each	other
without	creating	much	noise),	and	one	for	the	applications	communicating	over	a	network.

While	creating	baselines,	you	can	also	consider	each	and	every	site	you	are	working	with
separately.	In	my	opinion,	the	best	approach	would	be	break	up	each	site	with	similar
categories.	When	you	are	dealing	with	a	WAN,	a	troubleshooting	site	baseline	can	prove

useful.	Several	components	can	be	considered	while	dealing	with	WAN	sites,	such	as	data
transfer	rate,	several	applications	in	use,	the	pattern	of	the	broadcast	traffic,	and	various
other	categories	that	you	may	come	up	with	can	come	handy	while	making	a	standardized
baseline	for	a	particular	site.

Troubleshooting	slow	networks	is	definitely	a	piece	of	art.	I	would	say,	you	won’t	be	able
to	get	its	real	gist	unless	you	get	your	hands	dirty.	With	experience,	you	will	gradually
gain	the	insight	required	to	solve	problems	ranging	from	slow	Internet	to	complex
infrastructure-related	issues

Troubleshooting	application-based	issues
There	can	be	scenarios	where	applications	running	in	your	network	can	be	one	of	the
major	sources	of	issues	that	clients	face.	You	cannot	blame	the	network	every	time	for	not
working	popularly;	there	can	be	other	reasons	as	well	for	the	anomalies.	When
troubleshooting	any	application-based	issue,	capturing	packets	from	one	end	won’t	be
fruitful	enough.	You	should	try	to	move	to	analyzers	all	around	and	capture	as	many	traces
of	the	application’s	traffic	as	possible.	Capturing	from	multiple	points	will	give	you	a
much	closer	insight	into	network-based	applications.

As	discussed	earlier,	you	can	create	baselines	by	following	certain	different	parameters.
Similarly,	for	network-based	applications,	there	can	be	a	certain	defined	set	of	rules,	by
using	which	the	best	baseline	for	your	network	can	be	formed,	for	example,	dependencies
applications	have	another	coordinating	application,	analyzing	the	startup	and	shutdown
process,	the	rate	at	which	the	application	transmits	packets,	various	protocols	that
coordinate	in	order	to	make	the	application	work	flawlessly,	the	way	an	application
interacts	with	the	network	once	a	new	installation	is	in	process,	and	so	on.

While	creating	a	baseline	for	application-based	performance	issues,	it	won’t	be	feasible	all
the	time	to	capture	traffic	directly	from	the	complaining	hosts	because	it	may	cause	the
hosts	to	suffer	high-traffic	load	and	might	make	it	unusable.	For	your	trace	file,	there
might	be	an	unusual	number	of	dropped	packets	that	would	get	captured	and	would	make
your	application	baseline	less	appropriate.

As	long	as	dissectors	in	Wireshark	are	able	to	translate	the	application-based	requests	and
responses	in	a	plain-text	format,	you	are	good	to	go.	In	the	following	section,	I	will	take
two	popular	application	protocols,	HTTP	and	DNS,	to	illustrate	a	few	basic	scenarios	that
you	can	replicate	in	order	to	follow	the	methodology.

First,	we	will	look	at	the	HTTP	application-based	anomalies.	Remember	that	you	should
be	able	to	identify	the	responses	from	the	error-prone	application	if	you	are	aware	of	the
response	code.	As	you	know,	HTTP	is	based	on	the	request/response	model,	where	a	client
requests	for	a	certain	resource	to	the	server	and	the	server	responds	with	the	valid	resource
if	available;	if	not,	then	with	a	certain	error	code,	which	your	browser	is	able	to	translate.

HTTP	error	codes	are	categorized	into	five	sections	of	errors,	where	each	error	is	based	on
certain	logical	parameters.	To	learn	more	about	error	code,	visit
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.	For	illustration	purpose,	I	will
explain	the	procedure	so	that	you	can	figure	out	the	most	commonly	seen	error	code,
which	is	client	errors.

The	infrastructure	I	am	going	to	use	is	pretty	simple,	easy,	and	similar	to	the	one	that	we
used	earlier.	The	client	is	located	at	192.168.10.196	and	the	gateway	is	located	at
192.168.10.1.	I	will	try	to	make	a	few	requests	to	the	gateway	and	a	few	to	any	web
server	located	in	the	wild	(note	that	my	intention	is	just	to	replicate	error	code	that	you	can
see	in	the	list	pane	of	Wireshark,	and	not	to	compromise	any	web	server.)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

At	first,	we	will	try	to	generate	some	client	error	code.	Follow	the	next	steps	to	walk
through	this;	otherwise,	you	can	just	read	it	once	and	then	replicate	the	whole	scenario:

	
1.	 Open	your	browser	and	visit	the	default	home	page	of	your	gateway.	Hopefully,	it

will	present	you	with	a	login	screen	like	the	one	shown	here:

Figure	8.24:	The	gateway’s	Login	panel

2.	 Open	Wireshark,	and	let	it	run	in	the	background	while	capturing	all	your	activities.
3.	 Enter	an	incorrect	password	in	the	password	field	and	click	on	Login.	This	will	show

you	the	incorrect	login	name	and	password	message	on	the	screen	or	something
similar.

4.	 Next,	visit	any	random	website	and	click	on	any	link.	After	the	link	is	successfully
opened,	change	the	web	extension	of	the	web	page	visible	in	the	address	bar	to
anything	such	as	.foo,	.abc,	and	so	on.	Doing	this	will	give	you	an	error	on	the	web
page,	such	as	page	not	found.	Just	ignore	it	for	time	being.

5.	 Now,	come	back	to	Wireshark	and	stop	the	packet	capturing	process	that	we	started
earlier.

6.	 You	should	be	able	to	see	a	number	of	packets	in	the	list	pane,	but	our	concern	in	this
section	is	to	look	at	error	code	messages	and	nothing	else.

7.	 Now,	click	on	the	display	filter	box	and	apply	the	http.response.code	>	=	400
filter.	Then,	click	on	apply.	Refer	to	the	following	screenshot	that	illustrates	this:

Figure	8.25:	Display	filter

8.	 Once	the	filter	has	been	applied,	you	will	be	able	to	see	only	those	packets	that	match
the	criteria.	Refer	to	the	following	screenshot	that	illustrates	this:

Figure	8.26:	HTTP	Response	code	>=	400

9.	 See,	how	easily	you	were	able	to	identify	error	code	from	an	enormous	trace	file.
10.	 You	can	also	create	a	button	for	the	same.	Once	you	click	on	it,	you	will	only	be	able

to	see	relevant	packets.	You	can	colorize	them	for	a	better	viewing	experience.
11.	 We	learnt	about	Coloring	options	in	the	earlier	chapter.	I	want	you	to	learn	how	to

create	a	button	for	specific	display	filters	this	time.
12.	 Do	not	clear	the	current	filter;	just	click	on	the	Save	button	that	is	next	to	the	Apply

button	in	the	display	filter	area.

Figure	8.27:	The	display	filter	toolbar

13.	 Once	you	click	on	Save,	you	will	be	presented	with	a	dialog.	To	provide	a	name	for
the	button,	specify	any	name	of	your	choice	and	click	on	OK.	Refer	to	the	following
screenshot	that	illustrates	this:

Figure	8.28:	Creating	a	button

14.	 Once	you	click	on	OK,	you	will	be	able	to	see	the	button	next	to	the	Save	button	in
the	display	filter	toolbar	area.

15.	 Now,	whenever	you	want,	you	can	create	a	similar	display	filter	without	typing	it	into
the	display	filter	box.	You	just	need	to	click	on	the	button	that	you	created	recently.

Figure	8.29:	The	newly	added	button

To	make	this	more	interesting,	I	would	advise	you	to	create	a	coloring	rule	for	the	HTTP
404	error.	This	will	definitely	help	you	identify	particular	error	types	more	conveniently.

Next,	we	will	see	another	application	protocol	that	is	commonly	used	by	various
applications	in	order	to	translate	a	domain	name	to	its	IP	address.	Yes,	I	am	referring	to
DNS.	As	we	know,	the	DNS	protocol	runs	over	a	UDP	or	TCP.	There	are	various	response
code	that	relate	to	DNS	errors	that	range	from	0	to	21.	The	dissectors	present	in	Wireshark
do	know	about	response	code.	Using	this,	Wireshark	is	able	to	show	you	messages
relevant	to	the	error	code.	To	replicate	an	error,	I	will	visit	a	website	that	does	not	exist	on
the	Web;	hence,	I	will	receive	an	error.	But	my	gateway	does	not	know	about	this,	so	it
will	try	to	resolve	the	IP	address	associated	with	that	name.	In	return,	we	will	see	a	DNS
response	containing	an	error.	The	infrastructure	is	the	same	that	we	used	in	the	preceding
examples.	The	client	is	located	at	192.168.10.209	and	the	gateway	is	at	192.168.10.1.

You	can	replicate	the	scenario	step	by	step	with	me	or	do	it	later	once	you	finish	reading.
Follow	these	steps	to	replicate	the	scenario:

	
1.	 Open	Wireshark,	and	start	capturing.	Let	it	run	in	the	background.
2.	 Open	a	terminal	(Command	Prompt)	of	whichever	operating	system	you	are	using,

type	nslookup	in	it,	and	press	Enter.
3.	 Now,	you’ll	enter	the	interactive	mode	of	the	nslookup	tool.	If	you	are	not	aware	of

the	tool,	do	read	about	it	before	you	proceed.	There	are	plenty	of	documents	available
for	the	tool.	Refer	to	the	following	screenshot:

Figure	8.30:	The	NSLOOKUP	tool

4.	 To	generate	DNS	error	response	code,	just	type	any	domain	name	and	press	Enter.
Before	you	specify	a	domain	change	the	type	of	query	to	A	by	using	the	set	type=a
command	and	then	give	the	domain	you	want.

5.	 First,	we	can	try	the	same	for	a	domain	that	exists,	such	as	google.com.	Then,	you
can	try	it	for	the	nonexistent	domain.	Refer	to	the	Figure	8.31	shown	here.

6.	 The	preceding	screenshot	shows	the	various	IP	addresses	that	are	associated	with	the
google.com	domain.	The	domain	already	exists.	That’s	why	we	are	able	to	see	the
reply.	What	if	you	try	a	domain	that	doesn’t	exist.	Refer	to	the	following	screenshot
that	illustrates	this:

Figure	8.31:	The	nonexistent	domain

7.	 I	typed	my	name	in	place	of	the	domain	name	and	pressed	Enter,	and	this	is	what	I
saw	because	there	was	no	domain	with	that	name.	The	DNS	server	was	not	able	to
resolve	an	IP	address,	hence	resulting	in	the	reply	server	can’t	find.

http://google.com
http://google.com

8.	 Now,	you	can	go	back	to	Wireshark	and	stop	the	capture	process.	We	will	now	start
analyzing	error	code.

9.	 The	best	option	would	be	to	segregate	the	DNS	error	response	code	from	the	normal
frames	in	the	trace	file	that	we	have.	To	achieve	this,	apply	the	dns.flags.rcode	==
3	display	filter,	which	means	that	the	shown	DNS	response	frame	with	error	code	3	is
for	nonexistent	domains.	For	more	information	on	DNS	error	code,	visit
https://tools.ietf.org/html/rfc2929.

10.	 Once	you	have	applied	the	preceding	display	filter,	you	will	only	see	relevant	packets
matching	your	filter	expression.

Figure	8.32:	DNS	error	response

11.	 As	you	can	see	in	the	list	pane,	only	packets	that	are	related	to	error	code	3	are
visible.

12.	 If	you	want,	you	can	save	the	filter	expression	in	the	form	of	a	button	for	later	use
following	the	same	approach	we	used	earlier.

Troubleshooting	application-based	issues	depends	on	how	well	you	are	aware	of	the	error
code.	There	might	be	a	case	that	you	can	witness	where	you	don’t	have	the	option	of
installing	Wireshark	for	your	assistance.	You	will	be	presented	with	error	code	for
troubleshooting	purposes.	So	I	recommend	that	you	at	least	know	about	the	common	error
codes	in	the	most	popular	application	protocols	that	are	normally	used.

https://tools.ietf.org/html/rfc2929

Summary
Troubleshooting	is	an	art	that	comes	with	experience,	and	to	become	a	master	in	it,	you
are	required	to	practice	things	practically	on	your	own.

There	are	various	error	recovery	features	that	are	provided	by	the	TCP	protocol	that	help
us	to	recover	from	loss	of	packets	that	might	happen	commonly	in	a	production
environment.

TCP	retransmission	and	duplicate	ACKs	are	some	of	those	techniques	that	are	used	by	the
TCP	protocol	in	order	to	make	the	life	of	network	administrators	a	bit	more	comfortable.

Slow	network	is	one	of	those	common	problems	that	you	have	to	face	on	a	daily	basis.
Before	you	start	solving	these	latency	issues,	you	should	know	the	basic	methodology	that
you	can	follow,	that	is,	to	categorize	your	scenario	in	one	of	the	latency	categories:	a	wire,
client,	or	server.

Solving	bottleneck	issues,	such	as	packets	getting	queued	up	inside	the	sender	buffer	area
and	causing	trouble,	is	quite	important.	The	best	approach	in	solving	a	bottleneck	issue
would	be	to	take	the	help	of	IO	graphs	that	you	learned	about	in	the	earlier	chapter	to
visualize	a	situation	and	get	hold	over	it.

Applications	use	protocols	such	as	HTTP	and	DNS.	This	is	very	common,	but	you	must
be	aware	of	error	codes	these	can	present,	and	without	using	Wireshark,	you	should	be
able	to	identify	the	situation.	I	do	not	know	every	error	code,	even	I	can	not	do	that.	But
the	most	common	ones	that	you	might	witness.

Creating	a	baseline	is	one	of	the	most	convenient	ways	of	dealing	with	issues	in	your
network.	When	you	have	a	trace	file	containing	an	optimized	traffic	pattern,	then,	by
comparing	the	normal	pattern	with	the	deviated	pattern,	you	can	solve	the	issue	in	less
time	with	few	resources.	Collect	the	network	traces	for	your	baseline	from	various
locations	in	your	network	at	least	2-3	times.

Practice	questions
Q.1	Create	a	baseline	from	different	positions	of	your	network	regarding	various	common
protocols	used	in	communication.

Q.2	Explain	the	various	characteristics	that	TCP	error	recovery	features	have.

Q.3	Which	protocols	other	than	DNS	and	HTTP	can	be	troublesome	for	you,	and	what
approach	will	you	follow	in	order	to	troubleshoot	them?

Q.4	What	do	you	understood	by	the	term	“bottleneck	issues”,	and	can	they	be	ignored.	If
yes/no,	why?

Q.5	Create	a	trace	file	for	your	own	host	and	at	least	capture	10,000	packets.	Then,
analyze	how	many	types	of	errors	you	are	able	to	see	for	the	HTTP	protocols,	and	how
many	of	them	can	you	replicate.

Q.6	Using	the	baseline	that	you	created	earlier,	try	to	match	an	unusual	traffic	pattern	and
observe	what	anomalies	you	can	figure	out	by	the	comparison	process.

Q.7	For	the	DNS	protocol,	replicate	an	error	code	other	than	3	and	capture	traffic	for	the
same.

Q.8	Prepare	a	checklist	for	the	latency	types	we	discussed	and	mention	as	many	scenarios
as	you	can	think	about	in	each	category.	Once	you’ve	prepared	this,	try	using	the	same	in	a
troubleshooting	scenario.	Does	this	speed	up	your	overall	process?

Q.9	Try	creating	coloring	rules	for	error	responses	for	various	application	protocols	you
want	to	and	analyze	what	difference	does	it	makes	in	the	troubleshooting	issue.

Chapter	9.	Introduction	to	Wireshark	v2
This	chapter	will	introduce	you	to	the	amazing	features	launched	with	the	latest	version	of
Wireshark.	The	following	are	some	of	the	prominent	changes	that	users	will	become
aware	of,	and	all	the	sample	examples	in	this	chapter	are	being	using	version	2:

	
Comparison	between	Wireshark	v2	(QT)	and	the	Legacy	framework	(GTK)
The	intelligent	scroll	bar
The	Translation	feature
Graph	improvements
Newer	TCP	streams
USBPcap
Summary
Practice	questions

Wireshark	has	been	there	with	us	for	approximately	two	decades	now;	there	weren’t	any
major	updates	that	we	witnessed	during	its	lifecycle.	However,	there	were	minor	updates
introduced	to	make	the	application	more	convenient	and	robust	during	this	long	period.
But	this	time,	we	have	a	newly	branded	Wireshark	v2	with	glazing	arsenal.	Yes,	we	are
really	lucky	to	witness	this	major	update	for	the	most	popular	and	amazing	tool	in	the
protocol	analysis	industry.

I	am	really	excited	to	discuss	the	different	sets	of	tools	introduced	with	the	latest	release,
but,	before	that,	it	is	necessary	that	you	get	acquainted	with	the	background	of	the	QT	and
GTK	frameworks.	You	definitely	have	to	Google	these	either	now	or	maybe	after	reading
this	chapter.	However,	make	sure	that	you	note	them.

For	your	convenience,	I	will	give	you	a	gist	and	some	background	of	these	frameworks;
the	reason	why	I	am	emphasizing	the	difference	between	the	two	is	that	the	newly
developed	version	2	of	our	protocol	analyzer	is	developed	using	the	QT	framework.	QT
and	GTK	are	frameworks	used	for	the	development	of	GUI	cross-platform	utilities	such	as
Wireshark.	In	general,	from	the	end	user’s	perspective,	the	difference	would	be	based
purely	on	graphical	changes,	but	performance	wise,	GTK	is	more	economical	as	compared
to	QT.	For	better	understanding,	these	aren’t	just	toolkits	and	frameworks;	instead,	these
are	sets	of	libraries	used	by	developers	to	create	better	GUIs	for	end	users.	Basically,	it’s
reusing	the	designs	already	made	by	others.	The	main	advantage	of	reusing	designs	is	that
it	allows	the	newly	installed	program	to	look	more	similar	to	the	other	already	installed
programs	on	your	machine.	For	instance,	let’s	see	both	the	new	and	old	version	of	the
application	parallelly;	refer	to	the	following	screenshot	for	this:

Figure	9.1:	The	GTK	and	QT	frameworks

You	must	be	wondering	how	you	can	get	your	machine	installed	with	the	latest	version	of
Wireshark.	It’s	really	easy;	you	just	have	to	visit	http://wireshark.org,	and	then	go	to	the
download	page.	There,	you	will	find	the	latest	release.	Download	the	one	appropriate	to
your	operating	system.	During	installation,	there	is	one	important	question	that	you	will	be
asked,	that	is,	whether	you	want	to	install	the	legacy	version	along	with	the	newer	release
or	you	just	want	to	install	the	newer	version	(note	that	only	Windows	users	have	this
privilege;	Mac	and	Linux	users	can	just	install	the	latest	version	of	the	application).

There	is	one	more	component	that	you	will	see	being	installed	on	your	machine:
USBpcap.	I	have	dedicated	a	separate	section	in	this	chapter	for	this	particular	topic.	For
the	sake	of	basic	introduction,	USBpcap	facilitates	users	to	capture	data	that	moves	back
and	forth	from	your	machine’s	USB	port.	The	tool	has	been	available	for	Linux	users	for
quite	a	long	time,	but	luckily,	Windows	users	can	also	utilize	this	now.

For	starters,	let’s	have	a	look	at	the	main	screen	,	which	has	a	completely	different	feel
from	the	previous	version.	Refer	to	the	following	screenshot	to	get	a	look:

http://wireshark.org

Figure	9.2:	The	main	screen	of	Wireshark	v2

I	hope	you	feel	the	same	way	I	do	about	the	new,	exciting	look.	Everything	in	this	version
looks	so	properly	arranged	and	cleaner.	Even	a	novice	user	who	has	no	experience	at	all	in
protocol	analysis	can	get	a	great	head	start	just	because	this	has	now	become	a	simple	and
attractive	interface.

Just	observe	the	toolbar	area,	for	instance.	In	this	version,	it	seems	like	the	developers
have	filtered	out	the	unwanted	and	less	commonly	used	tools,	which	eventually	makes	the
interface	quite	comfortable	for	the	eyes.	In	this	new	version,	we	have	quick	access	directly
to	a	basic	toolset,	such	as	the	start	and	stop	capture	buttons,	the	interface	customization
button,	a	button	to	save/open/close	the	current	capture	file,	some	navigational	tools,	and
the	auto	scroll	and	coloring	activate/deactivate	button.

Just	below	the	toolbar	area,	we	have	our	good	old	friend,	the	Display	Filter	toolset,	which
is	redesigned	with	great	efforts.	On	the	leftmost	side	of	display	filter	text	box,	you	will	see
a	bookmark	kind	of	icon	(in	blue—top-left	corner)	that	will	show	you	the	default	and
manually	created	filter	expressions.	Refer	to	the	following	screenshot	that	shows	an
illustration:

Figure	9.3:	The	Display	Filter	toolbar

As	you	can	see,	all	the	filters	are	listed,	which	you	might	have	created,	or	are	default	ones.
So	now,	it’s	a	matter	of	just	a	click	if	you	want	to	activate	any	one	of	them,	instead	of
getting	a	pop-up	window	from	where	you	choose	and	apply	the	filter,	like	in	the	older
version.	This	definitely	speeds	up	the	process	of	analyzing	and	makes	the	life	of	IT
professionals	easier.

On	the	other	end	of	the	Display	Filter	toolbar,	we	have	a	few	old	tools	that	have	been
remodeled	in	a	fresh	look,	along	with	some	functionality	improvements;	refer	to	the
following	screenshot	for	an	illustration:

Figure	9.4:	The	Display	Filter	toolset

To	apply	any	display	filter	now,	you	just	need	to	click	on	the	arrow,	and	the	dropdown
next	to	it	will	give	you	access	to	frequently	used	filter	expressions	(history	of	last-used
expressions).	Then,	you	have	the	Expression	button,	which	will	help	you	access	the
dialog	where	you	can	get	access	to	all	possible	filter	expressions	categorized	on	the	basis
of	protocols.	Next,	on	the	rightmost	side	of	the	display	filter	textbox,	you	have	the	+	sign;
by	clicking	on	this,	you	can	create	a	filter	button.	Let	me	help	you	in	creating	one	for
yourself	in	the	newer	version	to	get	started.

For	example,	I	want	to	create	a	button	to	see	only	the	ARP	packets,	so	I	will	type	arp	in
the	display	filter	area	and	click	on	the	+	sign	at	the	end	of	the	toolbar.	Then,	you	need	to

specify	the	name	of	the	button	you	want:

Figure	9.5:	Adding	a	custom	display	filter	expression	button

This	will	add	a	physical	button	next	to	the	+	sign.	This	technique	will	prove	worthy	and
very	effective	when	you	have	long	display	filter	expressions,	which	you	might	need	often.
So,	instead	of	typing	the	whole	expression	again,	you	can	just	activate	them	with	a	single
click.	As	a	result,	you	will	see	something	like	what	is	shown	in	the	following	screenshot.
Now,	you	are	just	a	single	click	away	from	applying	arp	as	the	display	filter:

Figure	9.6:	The	display	filter	button	created

Next,	below	the	display	filter	toolbar,	you	can	see	the	recently	used	files;	just	double-click
on	any	file	you	want	to	open.

After	the	Open	file	section,	we	have	the	capture	filter	toolbar,	and	I	don’t	think	you	need
any	explanation	regarding	what	it	is	for	and	how	you	are	going	to	use	it	for	your	perusal.

Now	comes	the	major	change	that	you	will	witness	on	the	main	screen,	that	is,	the
interface’s	name	followed	by	an	interactive	graph.	The	graphs	you	will	see	are	actually
live,	meaning	you	will	see	the	fluctuations,	that	is,	the	lines	going	up	and	down.	The
miniature	graph	followed	by	the	interface	name	represents	the	amount	of	traffic	moving
back	and	forth	from	the	interfaces	you	have.	The	proper	terminology	for	these	miniature
graphs	is	sparklines.	In	the	older	legacy	version,	we	had	the	live	statistics	in	numerical
form.

Now,	if	you	decide	to	capture	traffic	from	a	particular	interface,	just	double-click	on	the
graph	area,	and	Wireshark	will	do	the	rest	for	you.

The	intelligent	scroll	bar
This	is	one	of	the	features	launched	in	the	latest	release,	and	you	might	have	already
noticed	some	colored	sections/lines	in	the	scroll	bar	area.	If	not,	then	go	back	to	any	of	the
capture	files	you	have,	slowly	scroll	up	and	down,	and	observe	the	coloring	pattern	in	the
scroll	bar	area.	Any	guesses	what	difference	it	would	make	in	the	analysis	process?	Let’s
understand	this	with	an	example.

I	will	use	a	previously	captured	file	for	demonstration	purpose,	which	has	HTTP	and
HTTPS	packets	along	with	some	retransmission	and	duplicate	frames.	There	is	no
difference	that	you	can	figure	out	at	first	glance,	but	as	soon	as	you	start	scrolling,	the
coloring	pattern	will	be	shown	in	the	scroll	bar	area.	This	pattern	is	based	on	the	coloring
rules	that	you	have	in	your	application.	For	example,	as	per	the	default	coloring	rules,
duplicate	and	retransmission	packets	are	usually	seen	with	a	black	background	and	a	red
foreground,	and	HTTP	packets	are	shown	with	a	green	background	and	a	black
foreground.	Now,	let’s	verify	this	in	the	application	itself.	Refer	to	the	following	figure	for
the	same:

Figure	9.7:	The	intelligent	scroll	bar	in	action

The	way	packets	in	the	list	pane	are	shown	in	different	colors	is	similar	to	the	way	the
scroll	bar	represents	the	different	sections	of	your	list	pane.

In	the	same	way	that	the	blue	line	indicates	the	selected	packet,	the	black	lines	denote	the
duplicate	ACKs	and	retransmissions,	and	the	green-colored	section	indicates	that	at	the
bottom	of	the	capture	file,	we	have	some	HTTP	packets	listed.	By	just	observing	the
coloring	pattern	in	the	scroll	bar	area,	we	can	figure	out	what	sort	of	packets	we	have
ahead,	and	most	importantly,	navigating	to	a	certain	section	of	packets	you	are	looking	for
is	now	much	easier	and	faster.

We	already	discussed	customizing	the	coloring	rules	in	previous	chapters;	let’s	take	one
more	example	of	the	same	capture	file,	and	this	time,	I	want	to	customize	the	HTTP
packet	coloring	rule.	We	will	change	the	green	background	color	to	yellow.	Let’s	see	what
difference	it	would	make	in	the	scroll	bar	area	in	the	following	screenshot:

Figure	9.8:	Accessing	the	coloring	rules	dialog

To	access	the	coloring	rules,	you	need	to	click	on	View	from	the	menu	bar	and	then
choose	Coloring	Rules	at	the	bottommost	corner,	which	will	show	you	the	dialog	where
all	coloring	rules	will	be	listed.	Try	changing	the	HTTP	coloring	rule	to	yellow.	Once	this
has	been	done,	close	the	dialog	and	reopen	the	capture	file	in	order	to	see	the	change.

Now,	try	scrolling	the	same	file,	and	I	hope	you	will	see	the	difference	in	the	coloring
pattern	in	the	scroll	bar	and	your	list	pane	too,	where	all	HTTP	packets	are	colored	with	a
yellow	background.	Refer	to	the	following	screenshot:

Figure	9.9:	The	HTTP	coloring	rule

Now,	let’s	compare	what	difference	it	made	when	we	tried	scrolling	up	and	down	in	the
list	pane	after	the	new	coloring	rule	was	applied.	Refer	to	the	following	screenshot	to	go
through	the	illustration:

Figure	9.10	Effect	of	the	HTTP	coloring	rule	can	be	seen	in	the	scroll	bar

A	good	amount	of	cleanup	has	been	done	from	the	toolbar	area	where,	for	example,	the
coloring	rules	toolset	has	been	removed,	and	now	you	can	access	it	from	the	view	menu.
The	+	and	–	symbols	at	the	bottom	of	the	coloring	rules	window	can	facilitate	you	with
the	configuration	of	the	rules.

Translation
I	think	this	amazing	and	pretty	cool	feature	is	not	able	to	gain	limelight,	so	I	want	you	to
know	that	Wireshark	offers	you	to	change	the	language	to	any	other	language	of	your
choice,	for	example,	Spanish,	Japanese,	Chinese	(Mandarin	actually),	Polish,	French,	and
so	on,	and	this	feature	has	been	there	their	since	version	1.99.

Giving	the	privilege	to	users	to	change	the	default	language	of	the	application	to	their
native	language	is	all	about	personalizing	user	experience	while	working	with	the
application.	If	users	feel	more	connected	and	comfortable	with	the	application,	then	they
will	definitelybecome	more	productive.

Let’s	see,	with	the	help	of	an	example,	how	we	can	change	our	system’s	default	language
to	Japanese	(launched	with	version	2.0).	Follow	the	given	steps	to	achieve	the	same:

	
1.	 Navigate	to	Wireshark	|	Preferences	(Windows	users	need	to	navigate	to	View	|

Edit	|	Preferences):

2.	 Now,	choose	Japanese	from	the	drop-down	list	at	the	bottom,	and	click	on	OK:

3.	 Now,	you	probably	will	see	everything	in	Japanese,	as	shown	in	the	following
screenshot:

4.	 To	revert	it	back	to	System	Default,	follow	the	same	steps.

The	most	amazing	thing	about	this	is	that	you	can	also	become	part	of	the	change;	this

means	that	if	you	want	to	help	Wireshark’s	team	in	adding	your	native	language,	then	you
can	get	in	touch	with	them.

From	the	help	menu,	you	can	list	all	the	keyboard	shortcuts,	which	can	be	used	to	make
things	work	faster	than	usual.	Even	to	make	graphs,	now	you	have	a	shortcut	available.

Graph	improvements
This	is	something	that	you	will	be	really	pleased	to	know	about.	Yes,	Wireshark	has	made
quite	significant	changes	that	will	make	your	analytical	tasks	more	comfortable.	To
understand	the	difference,	the	best	option	will	be	to	go	through	an	example.

We	will	try	to	create	an	IO	graph	in	order	to	witness	the	changes	that	the	new	version	has.
I	am	using	a	capture	file	from	the	previous	chapter,	which	has	mixed	packet	types	and
mostly	contains	VoIP	traffic.	The	sole	purpose	of	this	exercise	is	to	see	how	graphs	can	be
of	better	assistance	in	version	2	of	Wireshark.	Follow	these	steps	to	create	an	IO	graph	in
Wireshark	version	2.0:

	
1.	 Capture	the	normal	traffic	from	your	network	or	open	any	previously	captured	trace

file	that	you	have.
2.	 Click	on	IO	Graph	under	Statistics.	Once	you	do	that,	you	will	be	directly	presented

with	a	graph	without	any	further	hassle:

Figure	9.11:	The	IO	graph

3.	 Now,	if	you	want	to	modify	and	configure	the	graph,	then	you	can	use	various
configurable	options	given	at	the	bottom	of	the	dialog.

4.	 For	instance,	if	I	want	to	add	any	filter	to	the	graph,	I	can	click	on	the	+	symbol	at	the
bottom	and	a	new	line	will	be	shown,	as	in	the	following	screenshot:

Figure	9.12:	Adding	a	filter	to	a	graph

5.	 Now,	I	want	to	see	the	traffic	pattern	for	the	ARP	packets	along	with	other	traffic-
related	details.	So,	I	would	write	arp	as	a	filter	expression	in	the	display	filter	column
and	ARP	packets	in	the	name	column.	If	you	want	to	customize	the	look	and	feel
too,	you	are	most	welcome	to	do	so.

Figure	9.13:	The	ARP	filter	added	in	the	IO	graph

6.	 As	you	can	see,	our	newly	created	filter	is	in	effect,	and	we	can	observe	the
frequency	of	ARP	packets	appearing	in	our	graph	as	well.

Using	graphs	is	now	much	more	convenient,	as	you	are	no	longer	required	to	pass	any
statistical	information	to	the	graph.	Just	choose	whichever	graph	you	want,	and	then	the
default	version	of	the	graph	will	be	presented	to	you	without	any	questions	asked.	Now,	if
you	feel	like	changing	the	graph	as	per	your	need,	then	just	use	the	toolset	given	at	the	end
of	the	graph	to	custom	configure	it.

Now,	after	we	have	made	an	IO	graph,	you	will	see	how	clean	it	looks;	there	are	lots	of
features	that	have	been	introduced.	Using	the	default	graph,	most	of	the	time	you	will	be
able	to	figure	out	the	ups	and	downs	in	your	trace	file.	The	legends	are	shown	at	the
bottom	most	in	a	separate	section,	along	with	other	configurable	options	like	changing
colors,	hiding	or	enabling	a	filter,	and	much	more.

Additional	features	can	be	listed	and	explored	in	the	graphs;	all	you	need	to	do	is	right-
click	on	the	graph	area.	The	graph	can	now	be	moved	along	with	the	x	and	y	axis	by	just
clicking	and	dragging.	Adding	new	arguments	to	the	graph	couldn’t	be	any	easier	than
this.	As	you	can	see,	so	many	new	amazing	features	are	waiting	for	you	to	discover	them.

Figure	9.14:	The	right-click	options	list

Opening	two	graphs	is	now	possible;	and	maybe	someday,	you	will	feel	like	comparing
the	traffic	patterns	in	two	trace	files	that	you	have.	For	example,	I	want	to	compare	the
normal	VoIP	traffic	pattern	and	the	malicious	traffic	pattern.	Then,	we	can	use	two	graphs
to	figure	out	the	difference	graphically,	and	it’s	really	effective.	Refer	to	the	following
screenshots:

Figure	9.15:	Comparing	two	graphs	at	a	single	instance

Similarly,	you	can	create	a	flow	graph	that	can	be	of	great	assistance	while	analyzing	the
TCP	flow	and	to	know	how	SYN	and	ACK	coordinate	with	each	other.	I	would	highly
recommend	that	you	create	the	flow	graph	in	the	newer	version	of	Wireshark.

To	switch	between	the	graphs,	you	have	the	drop-down	list	sitting	at	the	bottom-left	corner
of	the	graph	window,	which	can	assist	you	in	doing	so,	and	you	are	no	longer	required	to
go	the	window	in	the	background	to	switch	between	graphs.

Another	useful	feature	that	can	be	taken	advantage	of	when	you	are	trying	to	create	reports
for	your	client	or	maybe	for	your	own	reference	purpose	is	to	export	the	graphs	in	PDF
formats.	You	might	have	done	this	before;	if	not,	then	let’s	do	this	together	here.	Follow
the	given	steps	to	do	so:

	
1.	 You	need	to	click	on	the	Save	as	icon	at	the	bottom-right	corner	in	the	graph	dialog

window.	Now,	choose	the	location	where	you	want	to	save	the	PDFs	and	click	on
Save.

2.	 Once	this	has	been	done,	you	can	export	the	PDF	to	anywhere	you	want	to.	Refer	to
the	following	screenshot:

Figure	9.16:	Exporting	graphs	to	PDF	format

Now,	whenever	you	want	to	import	it	into	your	report,	just	add	it	like	an	image	and	the
graph	from	the	PDF	you	exported	will	be	added	to	your	document.	Doing	this	is	really	this
easy:

Figure	9.17:	The	graph	exported	as	PDF

TCP	streams
This	is	one	of	the	features	that	you	might	have	used	very	often	so	far,	and	I	suppose	the
story	will	be	same	for	all	IT	professionals	using	Wireshark	as	a	utility.	The	gist	of	the	tool
definitely	will	remain	the	same	in	the	next	version,	which	is	going	to	come	in	the	future;
however,	there	are	some	new	things	that	I	would	like	to	emphasize.	To	view	the	TCP
stream	window,	the	process	remains	the	same	as	usual.	Right-click	on	the	list	pane	area
and	choose	Follow	by	hovering	your	mouse	over	it,	which	will	the	present	available
different	streams.	Then,	click	on	TCP	Stream	options.	Refer	to	the	following	screenshot
to	see	these	steps:

Figure	9.18:	Follow	TCP	streams

Following	this	will	present	you	with	a	usual-looking	stream	window	similar	to	what	we
have	seen	in	our	previous	chapters.	However,	we	definitelyhave	some	new	features	to
discuss,	such	as	the	flexibility	of	moving	back	and	forth	between	the	different	TCP/UDP
streams	available,	and	the	find	utility	that	lets	you	search	in	the	stream	window	for	any
text.

First,	we	will	see	how	you	can	traverse	in	between	the	different	streams	available	in	your

trace	file.	Then,	we	will	try	to	search	some	text	through	the	follow	streams	window.	Refer
to	the	following	Stream	option	screenshot	that	can	be	used	to	traverse	between	various
TCP	streams	available:

Figure	9.19:	Follow	the	TCP	Stream	dialog

The	stream	option	labeled	(1)	at	the	bottom-right	corner	of	the	preceding	dialog	gives	you
the	flexibility	to	move	back	and	forth	between	the	different	streams	available.	You	have
two	choices	here:	you	can	specify	the	number	of	the	stream	you	want	to	look	at	or	you	can
traverse	up	or	down	by	clicking	on	the	up/down	arrow	followed	by	the	textbox.	So	now,	if
you	are	looking	for	a	different	stream,	you	don’t	have	to	close	and	reopen	the	dialog,	like
we	did	while	working	with	the	earlier	version	of	the	application.	Refer	to	the	following
screenshot:

Figure	20:	The	Stream	option

The	part	labeled	(2)	gives	you	the	facility	to	find	any	ASCII	text	inside	the	Follow	stream
dialog,	which	definitely	gives	an	extra	mile	advantage	for	every	person	actively	using	this
beautiful	application.	Most	of	the	time,	when	we	are	using	the	stream	dialog,	it	is	for
analytical	purpose,	and	with	these	new	features,	our	job	becomes	more	easy	and

interesting.	Refer	to	the	following	screenshots	for	reference	regarding	both	the	newly
introduced	options:

Figure	9.21:	The	Find	utility	in	the	Follow	TCP	stream	dialog

For	example,	if	you	want	to	search	for	the	text	abc	in	the	current	stream,	then	just	type	the
search	string	in	the	find	textbox	and	press	Enter	or	click	on	Find	Next.

Figure	9.22:	The	Find	utility	in	the	Follow	TCP	stream	dialog

USBPcap
USBPcap	has	been	there	from	a	long	time	with	Linux	and	Mac	users,	but	for	Windows,
this	is	the	first	time	that	users	will	be	able	to	sniff	the	activity	over	USB	interfaces.	So,
let’s	quickly	walk	through	this	latest	feature	and	try	to	understand	how	to	work	with	it
with	the	help	of	an	example.	Follow	the	given	steps	to	replicate	the	scenario:

	
1.	 After	the	successful	installation	of	Wireshark	on	your	Windows	machine,	it	is	highly

recommended	that	you	restart	your	machine	because	USBPcap	might	give	you	some
trouble.

2.	 After	your	PC	has	restarted,	open	Command	Prompt	and	change	your	current
directory	to	the	USBpcap	installation	directory	that	should	be	located	at	C:\Program
Files\USBPcap\.

3.	 Now,	perform	a	directory	listing	using	the	dir	command	to	check	whether
USBPcapCMD.exe	is	present	in	the	directory.	Refer	to	the	following	screenshot	that
represents	this	step:

Figure	9.23:	The	USBPcap	installation	directory

4.	 Type	USBPcapCMD.exe	in	the	Command	Prompt	to	launch	the	sniffing	application.
5.	 As	soon	as	it	has	been	launched	successfully,	you	will	be	asked	to	choose	a	root	hub

over	which	you	want	to	sniff	the	traffic	and	the	name	of	the	trace	file	where	you	want
to	redirect	the	output.	Refer	to	following	screenshot	that	illustrates	this:

6.	 Now,	as	instructed,	the	application	will	initiate	the	sniffing	process	over	root	hub	1
and	will	dump	any	activity	captured	over	the	USB	interfaces	to	the	abc.pcap	file.

7.	 Now,	try	to	copy	something	from	your	PC	to	the	USB	drive	or	vice	versa.	You
probably	won’t	be	able	to	see	any	live	activity	over	the	Command	Prompt,	but	in	the
background,	it	is	actually	running.

8.	 Whenever	you	want	to	stop	the	sniffing	process,	you	can	press	Ctrl	+	C.
9.	 Now,	it’s	time	to	open	the	abc.pcap	file	using	Wireshark	to	see	what	we	have	in	the

trace	file.	Refer	to	the	following	screenshot	that	illustrates	this:

Figure	9.24:	The	abc.pcap	trace	file

As	you	can	see,	we	have	an	activity,	which	got	captured;	it	all	looks	similar	to	what	we
saw	with	network	packets.	We	have	all	the	familiar	columns	that	list	out	various	details
such	as	time,	source,	destination,	and	so	on.	So	we	were	able	to	successfully	dump	the
activity	over	available	USB	interfaces	without	any	technical	hassle	and	I	hope	you	will	do
some	research	to	get	a	better	understanding	about	USBPcap.

Summary
The	newer	version	of	Wireshark	has	adopted	a	new	framework	that	gives	us	a	new	and
totally	amazing	GUI.	The	older	version	was	built	upon	the	GTK	framework,	and	since
now	we	have	the	QT	framework,	from	the	perspective	of	a	normal	user,	the	differences	are
mostly	concerned	with	its	look	and	feel.

Scrolling	is	definitely	one	of	the	tools	that	we	all	have	seen	in	all	major	applications,	but
hats	off	to	the	developers	who	came	up	with	such	a	creative	idea	of	showing	the	coloring
pattern	of	your	trace	file	inside	the	scroll	bar	while	you	are	trying	to	look	for	something
specific.	It	does	give	an	extra	advantage.

The	Translation	feature	makes	Wireshark	more	international	and	close	to	every	user	in
terms	of	personalization.	As	many	Wireshark	users	might	not	comfortable	with	the
English	language,	now	they	have	the	facility	to	change	the	language	to	their	native
language,	which	would	make	the	analytical	process	for	a	professional	more	effective.

Graphs	are	one	of	the	features	using	which	differences	between	normal	and	abnormal
conditions	can	be	figured	out,	and	are	used	very	often.	Now,	creating	and	customizing
graphs	is	easier	than	ever,	and	the	look	and	feel	has	drastically	improved	as	well.

The	following	protocol-specific	streams	dialog	is	introduced	with	some	of	the	new
features	that	let	you	find	an	ASCII	string,	and	itlets	you	move	easily	between	the	streams
available	too;	you	don’t	have	to	close	and	reopen	the	dialog	to	move	to	a	different	stream.

USBPcap	has	been	there	with	us	for	quite	a	long	time,	and	most	Linux	and	Mac	users	are
probably	aware	of	this	fact.	The	way	your	NIC	card	lets	you	listen	over	the	wired/wireless
channel	is	similar	to	the	way	the	USBpcap	option	would	let	you	listen	over	the	USB	ports
that	you	have.	This	means	that	now,	Wireshark	can	also	trace	the	activities	happening	over
a	USB	interface.

Practice	questions
Q.1	Try	to	find	out	the	major	differences	between	the	GTK	and	QT	frameworks.	And
which	one	do	you	think	is	better?

Q.2	Try	out	the	Translation	feature	by	changing	the	system	default	language	in	Wireshark
to	any	other	language	of	your	choice.

Q.3	Create	a	Flow	graph	using	the	newer	version	and	the	legacy	version,	and	observe	how
many	differences	you	can	figure	out	between	the	graphs.

Q.4	Open	any	previous	capture	file	you	have,	and	try	to	figure	out	how	many	TCP	streams
there	are	in	it.

Q.5	Figure	out	a	way	to	remove	the	display	filter	button	for	the	ARP	protocol	that	we
created	earlier	in	this	chapter.

Q.6	Try	changing	coloring	rules	for	ARP	packets,	and	check	whether	you	can	observe	the
difference	in	the	intelligent	scroll	bar	area.

Q.7	After	installing	the	newer	version	of	Wireshark	on	a	Windows	machine,	try	to	launch
USBPcap.	Then,	copy	and	paste	from	your	PC	to	the	sub	device	or	vice	versa	(dump	all
the	activities	in	the	test.pcap	file).

Q.8	Open	the	recently	captured	test.pcap	trace	file	for	the	USB	interface	activity	in
Wireshark,	and	try	to	figure	out	what	the	packets	listed	in	the	list	pane	state.	Specifically,
try	to	analyze	the	values	shown	in	the	source	and	destination	columns.

Index
A
	

ACK	packets	/	WEP-open	key
Address	Resolution	Protocol	(ARP)

about	/	The	layers	in	the	TCP/IP	model
poisoning	/	ARP	poisoning,	ARP	poisoning

advantages,	Wireshark
user	friendly	/	Why	use	Wireshark?
robustness	/	Why	use	Wireshark?
platform	independent	/	Why	use	Wireshark?
filters	/	Why	use	Wireshark?
cost	/	Why	use	Wireshark?
support	/	Why	use	Wireshark?

application-based	issues
troubleshooting	/	Troubleshooting	application-based	issues

association	request/response	/	WEP-open	key

B
	

Base	Service	Set	Identifier	(BSSID)	/	Various	modes	in	wireless	communications
bottleneck	issues

troubleshooting	/	Troubleshooting	bottleneck	issues
BPF	syntax

identifiers	/	How	to	use	capture	filters
qualifiers	/	How	to	use	capture	filters

brute	force	attacks
malicious	traffic,	inspecting	/	Inspecting	malicious	traffic
real-world	CTF	challenges,	solving	/	Solving	real-world	CTF	challenges

C
	

capture	filters
using	/	Why	use	capture	filters
using,	techniques	/	How	to	use	capture	filters
example	/	An	example	capture	filter
with	protocol	header	values	/	Capture	filters	that	use	protocol	header	values

capturing	methodologies
about	/	Capturing	methodologies
hub-based	networks	/	Hub-based	networks
switched	environment	/	The	switched	environment
ARP	poisoning	/	ARP	poisoning
passing,	through	routers	/	Passing	through	routers
first	capture,	starting	/	Starting	our	first	capture

Carrier	Sense	Multiple	Access	and	Collision	Avoidance	protocol	(CSMA/CA)	/
Various	modes	in	wireless	communications
client-side	latency	issues	/	Client-	and	server-side	latencies
Command	Line-fu

about	/	Command	Line-fu
comparison	operators

</lt	/	Display	filters
==/eq	/	Display	filters
<=/le	/	Display	filters
!=/ne	/	Display	filters
>/gt	/	Display	filters
>=/ge	/	Display	filters

control	frame
about	/	The	IEEE	802.11	packet	structure
Request-to-send	(RTS)	/	The	IEEE	802.11	packet	structure
Clear-to-send	(CTS)	/	The	IEEE	802.11	packet	structure
Acknowledgement	(ACK)	/	The	IEEE	802.11	packet	structure

Conversations
about	/	Conversations

cyclic	redundancy	check	(CRC)	/	The	IEEE	802.11	packet	structure

D
	

deauthentication	packet	/	WPA-Enterprise
disassociation	packet	/	WPA-Enterprise
display	filters

about	/	Display	filters
retaining,	for	later	use	/	Retaining	filters	for	later	use

distribution	system	(DS)	/	The	IEEE	802.11	packet	structure
DNS	error	code

URL	/	Troubleshooting	application-based	issues
DNS	packet

dissecting	/	Dissecting	a	DNS	packet
Domain	Name	Service	(DNS)	/	How	it	works
domain	name	system	(DNS)

about	/	Domain	name	system
packet,	dissecting	/	Dissecting	a	DNS	packet
packet,	fields	/	Dissecting	a	DNS	packet
query/response,	dissecting	/	Dissecting	DNS	query/response
unusual	DNS	traffic	/	Unusual	DNS	traffic

Dynamic	Host	Configuration	Protocol	(DHCP)	/	The	DHCP
Dynamic	Host	Control	Protocol	(DHCP)	/	How	it	works

E
	

encrypted	traffic	(SSL/TLS)
decrypting	/	Decrypting	encrypted	traffic	(SSL/TLS)

endpoints
about	/	Endpoints

Expert	Info	dialog
about	/	Expert	Infos
Chat	section	/	Expert	Infos
Note	section	/	Expert	Infos
warning	messages	/	Expert	Infos
error	section	/	Expert	Infos
details	/	Expert	Infos
Packet	Comments	/	Expert	Infos

Extended	passive	(ESPV)	mode	/	Passive	mode
Extended	Port	(EPRT)	/	Active	mode

F
	

fields,	domain	name	system	(DNS)	packet
Transaction	ID	/	Dissecting	a	DNS	packet
Query/response	/	Dissecting	a	DNS	packet
Flag	bits	/	Dissecting	a	DNS	packet
Response	code	/	Dissecting	a	DNS	packet
Questions	/	Dissecting	a	DNS	packet
Answers	/	Dissecting	a	DNS	packet
Authority	RRs	/	Dissecting	a	DNS	packet
Additional	RRs	/	Dissecting	a	DNS	packet
Query	section	/	Dissecting	a	DNS	packet
Answer	section	/	Dissecting	a	DNS	packet
Type	/	Dissecting	a	DNS	packet
Additional	info	/	Dissecting	a	DNS	packet
window	size	/	Understanding	the	TCP	header	and	its	various	flags
checksum	/	Understanding	the	TCP	header	and	its	various	flags
urgent	pointer	/	Understanding	the	TCP	header	and	its	various	flags
options	/	Understanding	the	TCP	header	and	its	various	flags
data	/	Understanding	the	TCP	header	and	its	various	flags

file	transfer	protocol	(FTP)
about	/	File	transfer	protocol
communications,	dissecting	/	Dissecting	FTP	communications
packets,	dissecting	/	Dissecting	FTP	packets
unusual	FTP	/	Unusual	FTP

File	Transfer	Protocol	(FTP)	/	The	layers	in	the	TCP/IP	model
filters

display	filters	/	Display	filters
Find	dialog

used,	for	searching	for	packets	/	Searching	for	packets	using	the	Find	dialog
flags,	TCP

SYN	(synchronize)	/	Understanding	the	TCP	header	and	its	various	flags
ACK	(acknowledgement)	/	Understanding	the	TCP	header	and	its	various	flags
RST	(reset)	/	Understanding	the	TCP	header	and	its	various	flags
FIN	(finish)	/	Understanding	the	TCP	header	and	its	various	flags
PSH	(push)	/	Understanding	the	TCP	header	and	its	various	flags
URG	(urgent)	/	Understanding	the	TCP	header	and	its	various	flags
CWR	(congestion	window	reduced)	/	Understanding	the	TCP	header	and	its
various	flags

flow	control	mechanism	/	The	flow	control	mechanism
flow	graphs

about	/	Flow	graphs
FTP	communications

dissecting	/	Dissecting	FTP	communications
passive	mode	/	Passive	mode

active	mode	/	Active	mode
FTP	packets

Dissecting	/	Dissecting	FTP	packets

G
	

Google
reference	link	/	Dissecting	DNS	query/response,	Unusual	DNS	traffic

graph	improvements	/	Graph	improvements

H
	

half-open	scan	(SYN)
performing	/	Half-open	scan	(SYN)
open	state	/	Half-open	scan	(SYN)
closed	state	/	Half-open	scan	(SYN)
filtered	state	/	Half-open	scan	(SYN)

header	fields,	TCP
source	port	/	Understanding	the	TCP	header	and	its	various	flags
destination	port	/	Understanding	the	TCP	header	and	its	various	flags
sequence	number	/	Understanding	the	TCP	header	and	its	various	flags
acknowledgement	number	/	Understanding	the	TCP	header	and	its	various	flags
data	offset	/	Understanding	the	TCP	header	and	its	various	flags

header	types,	IEEE	802.11	packet	structure
management	frames	/	The	IEEE	802.11	packet	structure
control	frames	/	The	IEEE	802.11	packet	structure
data	frames	/	The	IEEE	802.11	packet	structure

HTTP	error	code
URL	/	Troubleshooting	application-based	issues

HUB	/	Hub-based	networks
hub-based	networks	/	Hub-based	networks
hubbing	out	/	The	switched	environment
Hyper	Text	Transfer	Protocol	(HTTP)	/	The	layers	in	the	TCP/IP	model

about	/	Hyper	Text	Transfer	Protocol
working	/	How	it	works	–	request/response
request	/	Request
response	/	Response
unusual	HTTP	traffic	/	Unusual	HTTP	traffic

I
	

IEEE	802.11
about	/	Understanding	IEEE	802.11
standards	/	Understanding	IEEE	802.11
wireless	communications,	modes	/	Various	modes	in	wireless	communications
station	(STA)	/	Various	modes	in	wireless	communications
wireless	access	point	(AP)	/	Various	modes	in	wireless	communications
basic	service	set	(BSS)	/	Various	modes	in	wireless	communications
extended	service	set	(ESS)	/	Various	modes	in	wireless	communications
independent	basic	service	set	(IBSS)	/	Various	modes	in	wireless
communications
distribution	system	(DS)	/	Various	modes	in	wireless	communications
packet	structure	/	The	IEEE	802.11	packet	structure

information	gathering
about	/	Information	gathering
PING	sweep,	performing	/	PING	sweep
half-open	scan	(SYN),	performing	/	Half-open	scan	(SYN)
OS	fingerprinting	/	OS	fingerprinting

Initial	Sequence	Numbers	(ISN)	/	How	it	works
Internet	Protocol	(TCP)	/	How	it	works
IO	graph

creating	/	Graph	improvements
IO	graphs

working	with	/	Working	with	IO,	Flow,	and	TCP	stream	graphs
about	/	IO	graphs

L
	

layers,	TCP/IP	model
about	/	The	layers	in	the	TCP/IP	model
Application	Layer	/	The	layers	in	the	TCP/IP	model
Transport	Layer	/	The	layers	in	the	TCP/IP	model
Internet	layer	/	The	layers	in	the	TCP/IP	model
Link	Layer	/	The	layers	in	the	TCP/IP	model

logical	operators
AND/&&	/	Display	filters
OR/||	/	Display	filters
NOT/!	/	Display	filters

M
	

malicious	traffic
inspecting	/	Inspecting	malicious	traffic

management	frames
about	/	The	IEEE	802.11	packet	structure
beacon	frame	/	The	IEEE	802.11	packet	structure
authentication	frame	/	The	IEEE	802.11	packet	structure
association	request	frame	/	The	IEEE	802.11	packet	structure
associate	response	frame	/	The	IEEE	802.11	packet	structure
deauthentication	frame	/	The	IEEE	802.11	packet	structure
disassociation	frame	/	The	IEEE	802.11	packet	structure
probe	request	frame	/	The	IEEE	802.11	packet	structure
probe	response	frame	/	The	IEEE	802.11	packet	structure
reassociation	(request/response)	frame	/	The	IEEE	802.11	packet	structure

Master	Key	exchange	/	WPA-Enterprise
maximum	segment	size	(MSS)	/	Understanding	the	TCP	header	and	its	various	flags
Message	integrity	check	(MIC)	/	WPA-Personal
MetaGeek

reference	link	/	Wireless	interference	and	strength
modes,	wireless	communications

about	/	Various	modes	in	wireless	communications
infrastructure/managed	mode	/	Various	modes	in	wireless	communications
Ad	Hoc	mode	/	Various	modes	in	wireless	communications
master	mode	/	Various	modes	in	wireless	communications
monitor	mode	/	Various	modes	in	wireless	communications
wireless	interference	/	Wireless	interference	and	strength
strength	/	Wireless	interference	and	strength

Multiple-Input	Multiple-output	(MIMO)	/	Understanding	IEEE	802.11

N
	

Name	Resolution
about	/	Endpoints

Network	Interface	Card	(NIC)	/	The	layers	in	the	TCP/IP	model
about	/	Endpoints

network	latencies
troubleshooting	/	Troubleshooting	slow	Internet	and	network	latencies

Nmap
reference	link	/	Half-open	scan	(SYN)

Null	Function	packets	/	WEP-open	key

O
	

Orthogonal	Frequency	Division	Multiplexing	(OFDM)	/	Understanding	IEEE	802.11
OS	fingerprinting

about	/	OS	fingerprinting
active	fingerprinting	/	OS	fingerprinting
passive	fingerprinting	/	OS	fingerprinting

P
	

packet	analysis
with	Wireshark	/	An	introduction	to	packet	analysis	with	Wireshark

packet	analysis,	Wireshark	used
about	/	An	introduction	to	packet	analysis	with	Wireshark
aspects	/	An	introduction	to	packet	analysis	with	Wireshark
performing	/	How	to	do	packet	analysis

packets
searching,	Find	dialog	used	/	Searching	for	packets	using	the	Find	dialog
traffic	colorization	/	Colorize	traffic

packet	structure,	IEEE	802.11
about	/	The	IEEE	802.11	packet	structure
RTS/CTS	/	RTS/CTS

Pairwise	Transient	Key	(PTK)	/	WPA-Personal
Password-based	key	derivation	function	(PBKDF2)	/	Summary
ping	sweep	attack

performing	/	PING	sweep
Point	to	Pont	(PPP)	/	The	layers	in	the	TCP/IP	model
port	mirroring	/	The	switched	environment
Pre	Shared	Key	(PSK)	/	WPA-Personal
processes,	protocol	analyzer

collect	/	How	it	works
convert	/	How	it	works
analyze	/	How	it	works

Protocol	data	unit	(PDU)	/	The	layers	in	the	TCP/IP	model
Protocol	Hierarchy

about	/	Protocol	Hierarchy

Q
	

QOS	data	packet	/	WEP-open	key
qualifiers

type	/	How	to	use	capture	filters
direction	/	How	to	use	capture	filters
proto	/	How	to	use	capture	filters

R
	

Radio	Frequency	(RF)	/	Wireless	interference	and	strength
Radio	Frequency	Monitor	Mode	(RFMON)	/	Various	modes	in	wireless
communications
RADIUS	server	/	WPA-Enterprise
Read	filter

about	/	Command	Line-fu
real-world	CTF	challenges

solving	/	Solving	real-world	CTF	challenges
Real	time	transport	protocol	(RTP)	/	Session	Initiation	Protocol	and	Voice	Over
Internet	Protocol
receive	sequence	counter	(RSC)	/	WPA-Personal
recovery	features

flow	control	mechanism	/	The	flow	control	mechanism
slow	Internet,	troubleshooting	/	Troubleshooting	slow	Internet	and	network
latencies
network	latencies,	troubleshooting	/	Troubleshooting	slow	Internet	and	network
latencies
client-side	latency	issues	/	Client-	and	server-side	latencies
server-side	latency	issues	/	Client-	and	server-side	latencies
bottleneck	issues,	troubleshooting	/	Troubleshooting	bottleneck	issues
application-based	issues,	troubleshooting	/	Troubleshooting	application-based
issues

Request-to-send	(RTS)	frame	/	The	IEEE	802.11	packet	structure
routers

passing	through	/	Passing	through	routers

S
	

Secure	File	Transfer	Protocol	(SFTP)	/	Dissecting	FTP	packets
server-side	latency	issues	/	Client-	and	server-side	latencies
Service	Set	Identifier	(SSID)	/	Various	modes	in	wireless	communications
Session	Initiation	Protocol	(SIP)	/	Session	Initiation	Protocol	and	Voice	Over	Internet
Protocol
Simple	Mail	Transfer	Protocol	(SMTP)	/	The	layers	in	the	TCP/IP	model

about	/	Simple	Mail	Transfer	Protocol
usual,	versus	unusual	SMTP	traffic	/	Usual	versus	unusual	SMTP	traffic
Session	Initiation	Protocol	(SIP)	/	Session	Initiation	Protocol	and	Voice	Over
Internet	Protocol
Voice	Over	Internet	Protocol	(VOIP)	/	Session	Initiation	Protocol	and	Voice
Over	Internet	Protocol
Voice	Over	Internet	Protocol	(VOIP)	traffic,	analyzing	/	Analyzing	VOIP	traffic
unusual	traffic	patterns	/	Unusual	traffic	patterns
encrypted	traffic	(SSL/TLS),	decrypting	/	Decrypting	encrypted	traffic
(SSL/TLS)

Simple	Network	Management	Protocol	(SNMP)	/	The	layers	in	the	TCP/IP	model
slow	Internet

troubleshooting	/	Troubleshooting	slow	Internet	and	network	latencies
STA	/	WPA-Enterprise
standards,	IEEE	802.11

about	/	Understanding	IEEE	802.11
802.11	/	Understanding	IEEE	802.11
802.11b	/	Understanding	IEEE	802.11
802.11a	/	Understanding	IEEE	802.11
802.11g	/	Understanding	IEEE	802.11
802.11n	/	Understanding	IEEE	802.11

Statistics	menu
about	/	The	Statistics	menu
using	/	Using	the	Statistics	menu
Protocol	Hierarchy	/	Protocol	Hierarchy

switched	environment	/	The	switched	environment

T
	

TCP	/	The	layers	in	the	TCP/IP	model
about	/	The	transmission	control	protocol
header	/	Understanding	the	TCP	header	and	its	various	flags
flags	/	Understanding	the	TCP	header	and	its	various	flags
communicating	/	How	TCP	communicates
working	/	How	it	works
graceful	termination	/	Graceful	termination
RST	(reset)	packets	/	RST	(reset)	packets
relative,	verses	absolute	numbers	/	Relative	verses	Absolute	numbers
unusual	TCP	traffic	/	Unusual	TCP	traffic
analysis	flags,	checking	in	Wireshark	/	How	to	check	for	different	analysis	flags
in	Wireshark

TCP/IP	model
overview	/	A	brief	overview	of	the	TCP/IP	model
layers	/	The	layers	in	the	TCP/IP	model

TCP	sliding	window	mechanism	/	The	flow	control	mechanism
TCP	stream	graphs

about	/	TCP	stream	graphs
Round-trip	time	(RTT)	/	Round-trip	time	graphs
Throughput	graphs	/	Throughput	graphs
Time-Sequence	graph	(tcptrace)	/	The	Time-sequence	graph	(tcptrace)

TCP	streams
following	/	Follow	TCP	streams

/	TCP	streams
Temporal	Key	Integrity	Protocol	(TKIP)	/	WPA-Personal
three-way	handshake	/	The	transmission	control	protocol
translation	/	Translation
Transmission	Control	Protocol	(TCP)	/	How	it	works
Trivial	File	Transfer	Protocol	(TFTP)	/	The	TFTP

U
	

UDP	/	The	layers	in	the	TCP/IP	model
about	/	The	User	Datagram	Protocol
header	/	A	UDP	header
working	/	How	it	works
Dynamic	Host	Configuration	Protocol	(DHCP)	/	The	DHCP
Trivial	File	Transfer	Protocol	(TFTP)	/	The	TFTP
unusual	traffic	/	Unusual	UDP	traffic

UDP	header
about	/	A	UDP	header
source	port	field	/	A	UDP	header
destination	port	field	/	A	UDP	header
packet	length	field	/	A	UDP	header
checksum	field	/	A	UDP	header

Uniform	Resource	Locator	(URL)	/	Request
unusual	FTP	/	Unusual	FTP
USBPcap

about	/	USBPcap
usual	SMTP	traffic

versus	unusual	SMTP	traffic	/	Usual	versus	unusual	SMTP	traffic

V
	

VirusTotal
reference	link	/	Inspecting	malicious	traffic

Voice	Over	Internet	Protocol	(VOIP)
about	/	Session	Initiation	Protocol	and	Voice	Over	Internet	Protocol
traffic,	analyzing	/	Analyzing	VOIP	traffic
packets,	resembling	for	playback	/	Reassembling	packets	for	playback

VOIP	traffic
analyzing	/	Analyzing	VOIP	traffic
packets,	reassembling	for	playback	/	Reassembling	packets	for	playback

W
	

WEP
open	key	/	Usual	and	unusual	WEP	–	open/shared	key	communication,	WEP-
open	key
shared	key	/	Usual	and	unusual	WEP	–	open/shared	key	communication,	The
shared	key
about	/	Usual	and	unusual	WEP	–	open/shared	key	communication
personal	/	WPA-Personal
traffic,	decrypting	/	Decrypting	WEP	and	WPA	traffic

Wi-Fi	Protected	Access	(WPA)
about	/	WPA-Personal
enterprise	/	WPA-Enterprise
traffic,	decrypting	/	Decrypting	WEP	and	WPA	traffic

Wireshark
about	/	Introduction	to	Wireshark,	What	is	Wireshark?
packet	analysis	/	An	introduction	to	packet	analysis	with	Wireshark
reference	link	/	What	is	Wireshark?,	Passing	through	routers,	Summary
working	/	How	it	works
advantages	/	Why	use	Wireshark?
Statistics	menu	/	The	Statistics	menu
analysis	flags,	checking	/	How	to	check	for	different	analysis	flags	in	Wireshark

Wireshark	GUI
about	/	The	Wireshark	GUI
installation	process	/	The	installation	process

Wireshark	profiles
creating	/	Create	new	Wireshark	profiles

Wireshark	v2
translation	/	Translation
graph	improvements	/	Graph	improvements
TCP	streams	/	TCP	streams
USBPcap	/	USBPcap

Z
	

Zero	window	notification	/	The	flow	control	mechanism

Table	of	Contents
Mastering	Wireshark

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Welcome	to	the	World	of	Packet	Analysis	with	Wireshark

Introduction	to	Wireshark

A	brief	overview	of	the	TCP/IP	model

The	layers	in	the	TCP/IP	model

An	introduction	to	packet	analysis	with	Wireshark

How	to	do	packet	analysis

What	is	Wireshark?

How	it	works

Capturing	methodologies

Hub-based	networks

The	switched	environment

ARP	poisoning

Passing	through	routers

Why	use	Wireshark?

The	Wireshark	GUI

The	installation	process

Starting	our	first	capture

Summary

Practice	questions

2.	Filtering	Our	Way	in	Wireshark

An	introduction	to	filters

Capture	filters

Why	use	capture	filters

How	to	use	capture	filters

An	example	capture	filter

Capture	filters	that	use	protocol	header	values

Display	filters

Retaining	filters	for	later	use

Searching	for	packets	using	the	Find	dialog

Colorize	traffic

Create	new	Wireshark	profiles

Summary

Practice	questions

3.	Mastering	the	Advanced	Features	of	Wireshark

The	Statistics	menu

Using	the	Statistics	menu

Protocol	Hierarchy

Conversations

Endpoints

Working	with	IO,	Flow,	and	TCP	stream	graphs

IO	graphs

Flow	graphs

TCP	stream	graphs

Round-trip	time	graphs

Throughput	graphs

The	Time-sequence	graph	(tcptrace)

Follow	TCP	streams

Expert	Infos

Command	Line-fu

Summary

Exercise

4.	Inspecting	Application	Layer	Protocols

Domain	name	system

Dissecting	a	DNS	packet

Dissecting	DNS	query/response

Unusual	DNS	traffic

File	transfer	protocol

Dissecting	FTP	communications

Passive	mode

Active	mode

Dissecting	FTP	packets

Unusual	FTP

Hyper	Text	Transfer	Protocol

How	it	works	–	request/response

Request

Response

Unusual	HTTP	traffic

Simple	Mail	Transfer	Protocol

Usual	versus	unusual	SMTP	traffic

Session	Initiation	Protocol	and	Voice	Over	Internet	Protocol

Analyzing	VOIP	traffic

Reassembling	packets	for	playback

Unusual	traffic	patterns

Decrypting	encrypted	traffic	(SSL/TLS)

Summary

Practice	questions:

5.	Analyzing	Transport	Layer	Protocols

The	transmission	control	protocol

Understanding	the	TCP	header	and	its	various	flags

How	TCP	communicates

How	it	works

Graceful	termination

RST	(reset)	packets

Relative	verses	Absolute	numbers

Unusual	TCP	traffic

How	to	check	for	different	analysis	flags	in	Wireshark

The	User	Datagram	Protocol

A	UDP	header

How	it	works

The	DHCP

The	TFTP

Unusual	UDP	traffic

Summary

Practice	questions

6.	Analyzing	Traffic	in	Thin	Air

Understanding	IEEE	802.11

Various	modes	in	wireless	communications

Wireless	interference	and	strength

The	IEEE	802.11	packet	structure

RTS/CTS

Usual	and	unusual	WEP	–	open/shared	key	communication

WEP-open	key

The	shared	key

WPA-Personal

WPA-Enterprise

Decrypting	WEP	and	WPA	traffic

Summary

Practice	questions

7.	Network	Security	Analysis

Information	gathering

PING	sweep

Half-open	scan	(SYN)

OS	fingerprinting

ARP	poisoning

Analyzing	brute	force	attacks

Inspecting	malicious	traffic

Solving	real-world	CTF	challenges

Summary

Practice	questions

8.	Troubleshooting

Recovery	features

The	flow	control	mechanism

Troubleshooting	slow	Internet	and	network	latencies

Client-	and	server-side	latencies

Troubleshooting	bottleneck	issues

Troubleshooting	application-based	issues

Summary

Practice	questions

9.	Introduction	to	Wireshark	v2

The	intelligent	scroll	bar

Translation

Graph	improvements

TCP	streams

USBPcap

Summary

Practice	questions

Index

	Mastering Wireshark
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Welcome to the World of Packet Analysis with Wireshark
	Introduction to Wireshark
	A brief overview of the TCP/IP model
	The layers in the TCP/IP model
	An introduction to packet analysis with Wireshark
	How to do packet analysis
	What is Wireshark?
	How it works
	Capturing methodologies
	Hub-based networks
	The switched environment
	ARP poisoning
	Passing through routers
	Why use Wireshark?
	The Wireshark GUI
	The installation process
	Starting our first capture
	Summary
	Practice questions
	2. Filtering Our Way in Wireshark
	An introduction to filters
	Capture filters
	Why use capture filters
	How to use capture filters
	An example capture filter
	Capture filters that use protocol header values
	Display filters
	Retaining filters for later use
	Searching for packets using the Find dialog
	Colorize traffic
	Create new Wireshark profiles
	Summary
	Practice questions
	3. Mastering the Advanced Features of Wireshark
	The Statistics menu
	Using the Statistics menu
	Protocol Hierarchy
	Conversations
	Endpoints
	Working with IO, Flow, and TCP stream graphs
	IO graphs
	Flow graphs
	TCP stream graphs
	Round-trip time graphs
	Throughput graphs
	The Time-sequence graph (tcptrace)
	Follow TCP streams
	Expert Infos
	Command Line-fu
	Summary
	Exercise
	4. Inspecting Application Layer Protocols
	Domain name system
	Dissecting a DNS packet
	Dissecting DNS query/response
	Unusual DNS traffic
	File transfer protocol
	Dissecting FTP communications
	Passive mode
	Active mode
	Dissecting FTP packets
	Unusual FTP
	Hyper Text Transfer Protocol
	How it works – request/response
	Request
	Response
	Unusual HTTP traffic
	Simple Mail Transfer Protocol
	Usual versus unusual SMTP traffic
	Session Initiation Protocol and Voice Over Internet Protocol
	Analyzing VOIP traffic
	Reassembling packets for playback
	Unusual traffic patterns
	Decrypting encrypted traffic (SSL/TLS)
	Summary
	Practice questions:
	5. Analyzing Transport Layer Protocols
	The transmission control protocol
	Understanding the TCP header and its various flags
	How TCP communicates
	How it works
	Graceful termination
	RST (reset) packets
	Relative verses Absolute numbers
	Unusual TCP traffic
	How to check for different analysis flags in Wireshark
	The User Datagram Protocol
	A UDP header
	How it works
	The DHCP
	The TFTP
	Unusual UDP traffic
	Summary
	Practice questions
	6. Analyzing Traffic in Thin Air
	Understanding IEEE 802.11
	Various modes in wireless communications
	Wireless interference and strength
	The IEEE 802.11 packet structure
	RTS/CTS
	Usual and unusual WEP – open/shared key communication
	WEP-open key
	The shared key
	WPA-Personal
	WPA-Enterprise
	Decrypting WEP and WPA traffic
	Summary
	Practice questions
	7. Network Security Analysis
	Information gathering
	PING sweep
	Half-open scan (SYN)
	OS fingerprinting
	ARP poisoning
	Analyzing brute force attacks
	Inspecting malicious traffic
	Solving real-world CTF challenges
	Summary
	Practice questions
	8. Troubleshooting
	Recovery features
	The flow control mechanism
	Troubleshooting slow Internet and network latencies
	Client- and server-side latencies
	Troubleshooting bottleneck issues
	Troubleshooting application-based issues
	Summary
	Practice questions
	9. Introduction to Wireshark v2
	The intelligent scroll bar
	Translation
	Graph improvements
	TCP streams
	USBPcap
	Summary
	Practice questions
	Index

