
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Maven	for	Eclipse

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Maven	for	Eclipse

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Apache	Maven	–	Introduction	and	Installation

Introduction	to	Maven

Maven’s	origin

Maven’s	principles

Maven’s	component	architecture

The	Plexus	container

Wagon

Maven	Doxia

Modello

Maven	SCM

www.allitebooks.com

http://www.allitebooks.org

Maven	versus	Ant

Downloading	Maven

Installing	Maven

Installing	Maven	on	Windows

Installing	Maven	on	Linux	and	Mac	OS

Verifying	the	installation	of	Maven

Summary

2.	Installing	m2eclipse

Introduction	to	m2eclipse

Downloading	Eclipse

Installing	and	launching	Eclipse

Methods	to	install	m2eclipse

Using	Eclipse	Marketplace

Using	Update	Site

Setting	up	Maven	for	use

Summary

3.	Creating	and	Importing	Projects

The	Maven	project	structure

POM	(Project	Object	Model)

Maven	coordinates

POM	relationships

A	simple	POM

A	super	POM

The	Maven	project	build	architecture

Other	essential	concepts

Repository

The	local	repository

The	central	repository

The	remote	repository

Search	sequence	in	repositories

Project	dependencies

www.allitebooks.com

http://www.allitebooks.org

Dependency	scopes

Transitive	dependencies

Plugins	and	goals

Site	generation	and	reporting

Creating	a	Maven	project

Using	an	archetype

Using	no	archetypes

Checking	out	a	Maven	project

Importing	a	Maven	project

Summary

4.	Building	and	Running	a	Project

The	build	lifecycle

The	default	lifecycle

The	clean	lifecycle

The	site	lifecycle

The	package-specific	lifecycle

The	Maven	console

Building	and	packaging	projects

Running	hello-project

Summary

5.	Spicing	Up	a	Maven	Project

Creating	the	MyDistance	project

Changing	the	project	information

Adding	dependencies

Adding	resources

The	application	code

Adding	a	form	to	get	an	input

Adding	a	servlet

Adding	a	utility	class

Running	an	application

Writing	unit	tests

www.allitebooks.com

http://www.allitebooks.org

Running	unit	tests

Generating	site	documentation

Generating	unit	tests	–	HTML	reports

Generating	javadocs

Summary

6.	Creating	a	Multimodule	Project

Introduction

Creating	a	parent	project	–	POM

Creating	a	core	module

Creating	a	webapp	module

Building	a	multimodule	project

Running	the	application

Summary

7.	Peeking	into	m2eclipse

Other	features	in	m2eclipse

Add	Dependency

Add	Plugin

New	Maven	Module	Project

Download	JavaDoc

Download	Source

Open	Javadoc

Open	POM

Update	Project

Disable	Workspace	Resolution

Disable	Maven	Nature

Import	Project(s)	from	SCM

A	form-based	POM	editor

An	overview

Analyzing	project	dependencies

Working	with	repositories

Local	Repositories

www.allitebooks.com

http://www.allitebooks.org

Global	Repositories

Project	Repositories

m2eclipse	preferences

Maven

Discovery

Archetypes

User	Interface	and	User	Settings

Installations

Warnings

Templates

Lifecycle	Mappings

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Maven	for	Eclipse

www.allitebooks.com

http://www.allitebooks.org

Maven	for	Eclipse
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2014

Production	reference:	1190814

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-712-2

www.packtpub.com

Cover	image	by	Asher	Wishkerman	(<wishkerman@hotmail.com>)

http://www.packtpub.com
mailto:wishkerman@hotmail.com

Credits
Author

Sanjay	Shah

Reviewers

Patrick	Forhan

Peter	Johnson

Luca	Masini

Maurizio	Pillitu

Bhavani	P	Polimetla

Commissioning	Editor

Amarabha	Banerjee

Acquisition	Editor

Vinay	Argekar

Content	Development	Editor

Shali	Sasidharan

Technical	Editors

Shruti	Rawool

Aman	Preet	Singh

Copy	Editors

Mradula	Hegde

Gladson	Monteiro

Project	Coordinator

Neha	Bhatnagar

Proofreaders

Simran	Bhogal

Maria	Gould

Ameesha	Green

Indexer

Tejal	Soni

Graphics

Abhinash	Sahu

Production	Coordinator

Melwyn	D’sa

Cover	Work

Melwyn	D’sa

About	the	Author
Sanjay	Shah	has	more	than	9	years	of	experience	of	working	in	diverse	areas	of
application	development	across	mobile	and	web	platforms.	He	is	currently	working	as	a
software	architect	and	has	a	number	of	enterprise	applications	to	his	name.

He	is	the	co-author	of	the	book	Android	Development	Tools	for	Eclipse,	Packt	Publishing,
also	co-authored	by	Khirulnizam	Abd	Rahman.

Along	with	being	a	literature	enthusiast,	he	is	fond	of	philosophy	and	enjoys	life	in	Nepal,
the	land	of	the	highest	peak	in	the	world,	Mt.	Everest.

I	would	like	to	thank	each	and	everyone	who	knows	me	and	has	supported	me	at	different
stages	of	my	life.	Special	thanks	to	my	parents	without	whom	I	wouldn’t	have	been	what	I
am	today.

About	the	Reviewers
Patrick	Forhan	is	a	grizzled	Java	developer	and	an	occasional	accidental	snake	handler.
He	posts	ideas	and	articles	at	http://muddyhorse.com.

Peter	Johnson	has	over	34	years	of	experience	in	enterprise	computing.	He	has	been
working	with	Java	for	17	years	and	has	been	heavily	involved	in	Java	performance	tuning
for	the	past	12	years.	He	is	a	frequent	speaker	on	Java	performance	topics	at	various
conferences,	including	the	Computer	Measurement	Group	annual	conference,	JBoss
World,	and	Linux	World.	He	is	a	moderator	for	the	IDE	and	WildFly/JBoss	forums	at
JavaRanch.	He	is	the	co-author	of	the	book	JBoss	in	Action,	Manning	Publications,	also
authored	by	Javid	Jamae,	and	has	been	a	reviewer	on	numerous	books	on	topics	that	range
from	Java	to	Windows	PowerShell.

Luca	Masini	is	a	senior	software	engineer	and	an	architect,	born	as	a	game	developer	for
Commodore	64	(Football	Manager)	and	Commodore	Amiga	(Ken	il	guerriero).	He	soon
switched	to	object-oriented	programming	and	after	that,	from	its	beginning	in	1995,	he
was	fascinated	by	the	Java	language.

He	worked	on	this	passion	as	a	consultant	for	major	Italian	banks,	developing	and
integrating	the	main	software	projects	for	which	he	usually	was	the	technical	lead.	He
adopted	Java	Enterprise	in	environments,	where	COBOL	was	the	flagship	platform,	and
converted	them	from	mainframe-centric	to	distributed	environments.

He	then	shifted	his	attention	toward	open	source,	starting	from	Linux	and	then	to
enterprise	frameworks.	With	enterprise	frameworks,	he	was	able	to	introduce	concepts
such	as	IoC,	ORM,	and	MVC	with	low	impact.	For	that,	he	was	an	early	adopter	of
Spring,	Hibernate,	Struts,	and	a	whole	host	of	other	technologies,	which	in	the	long	run,
have	given	his	customers	a	technological	advantage	and	therefore,	reduced	development
costs.

After	introducing	a	new	technology,	he	decided	that	it	was	time	for	simplification	and
standardization	of	development	with	Java	EE,	and	for	this,	he’s	now	working	at	the	ICT	of
a	large	Italian	company	where	he	introduced	build	tools	(Maven	and	Continuous
Integration),	archetypes	of	projects,	and	Agile	Development	with	plain	standards.

Finally,	he	focused	his	attention	on	mobilizing	the	enterprise,	and	now	he	is	working	on	a
whole	set	of	standard	and	development	processes	to	introduce	mobile	concepts	and
applications	for	sales	force	and	management.

He	has	worked	on	the	following	books	from	Packt	Publishing:

Securing	WebLogic	Server	12c,	co-authored	by	Rinaldi	Vincenzo
Google	Web	Toolkit	GWT	Java	AJAX	Programming,	Prabhakar	Chaganti
Spring	Web	Flow	2	Web	Development,	Sven	Lüppken	and	Markus	Stäuble
Spring	Persistence	with	Hibernate,	Ahmad	Reza	Seddighi
JavaFX	1.2	Application	Development	Cookbook,	Vladimir	Vivien

Maurizio	Pillitu	has	over	12	years	of	experience	in	the	ICT	industry,	mostly	related	to

http://muddyhorse.com

open	source	technologies.	In	these	12	years,	he	has	held	different	positions:	Software
Developer	/	Designer	/	Architect,	Sales	Engineer,	Technical	Trainer,	and	Project	and	Team
Leader.

Through	experience	and	education,	he	tried	to	push	the	Agile	approach,	thus	providing	a
smooth	path	for	change	to	the	customer,	incentivizing	strong	collaboration,	and	carefully
managing	the	expectations	of	both	parties.

He	is	passionate	about	application	lifecycle	management	and	frequently	advises	teams	on
how	to	structure	software	releases	and	deliveries	in	an	automated	and	sustainable	way.

He	has	wide	knowledge	of	J2EE	technologies	and	related	open	source	frameworks,
especially	of	Enterprise	Content	Management	frameworks/products	and	large-scale	web
publishing	platforms.

He	is	always	keen	on	contributing	code	and	ideas	to	the	open	source	communities.

The	following	are	his	specialties:

Team	behavior	and	dynamics	(Certified	Scrum	Master)
Application	Lifecycle	Management	and	build	tools	(Maven	and	Puppet	trainer)
ECM/CMS	open	source	solutions	(ACA	and	ACE	certifications)

You	can	contact	him	at	http://www.linkedin.com/in/mpillitu.

Bhavani	P	Polimetla	has	been	learning	and	working	in	the	IT	Industry	since	1990.	He
graduated	with	a	Bachelor’s	degree	in	Computer	Science	and	a	Master’s	degree	in
Computer	Applications	from	Andhra	University,	India.	He	has	worked	on	standalone
Swing	applications	to	grid	computing	and	multi-tier	architecture.	He	has	worked	with	top
clients	of	the	world,	including	three	from	Fortune	50	companies.	At	present,	he	is	working
as	a	software	architect	in	Mountain	View,	California,	USA.

To	demonstrate	his	skills,	he	has	completed	over	25	certifications	in	the	subjects	of
spectrum	of	Java,	Database,	Project	Management,	and	Architecture.	He	has	also	achieved
lots	of	awards	for	many	of	his	projects.	He	spends	his	free	time	indulging	in	social	service
activities.	To	learn	more	about	him,	you	can	visit	his	website	at	www.polimetla.com.

http://www.linkedin.com/in/mpillitu
http://www.polimetla.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Maven	for	Eclipse	is	an	indispensable	guide	to	help	you	understand	and	use	Maven	from
within	Eclipse	IDE	using	the	m2eclipse	plugin.	By	no	means	is	it	an	in-depth	and
comprehensive	resource.	Rather,	it’s	a	quick	and	handy	guide	toward	Maven	project’s
development.	It	starts	with	the	basics	of	Apache	Maven;	covers	core	concepts;	and	shows
you	how	to	create,	import,	build,	run,	package,	and	customize	to	generate	project	artifacts
of	Maven	projects	using	the	m2eclipse	plugin	inside	the	Eclipse	IDE.

What	this	book	covers
Chapter	1,	Apache	Maven	–	Introduction	and	Installation,	provides	users	with	a	quick
introduction	and	installation	reference	to	Apache	Maven.	By	the	end	of	this	chapter,	users
will	have	a	Maven	project	running	on	their	systems.

Chapter	2,	Installing	m2eclipse,	serves	as	a	reference	for	users	to	install	the	m2eclipse
plugin	and	also	provides	Maven	integration	for	Eclipse.	By	the	end	of	this	chapter,	users
will	have	m2eclipse	installed	on	their	systems	and	ready	to	be	used.

Chapter	3,	Creating	and	Importing	Projects,	starts	with	the	Maven	project	structure,
introduces	core	aspects	and	concepts,	and	guides	you	toward	creating	and	importing
Maven	projects	using	the	m2eclipse	plugin.	By	the	end	of	this	chapter,	users	will	be
familiar	with	the	core	concepts	of	the	Maven	project	structure,	and	they’ll	be	able	to	create
and	import	Maven	projects.

Chapter	4,	Building	and	Running	a	Project,	introduces	users	to	different	build	lifecycles
and	teaches	them	how	to	view	the	m2eclipse	console	and	build	and	run	projects.	By	the
end	of	this	chapter,	users	will	be	familiar	with	the	build	lifecycle	and	will	be	competent	at
building	and	running	projects	using	m2eclipse.

Chapter	5,	Spicing	Up	a	Maven	Project,	teaches	users	to	create	a	simple	web	application,
shows	ways	to	customize	it,	and	provides	guides	on	how	to	write	and	run	unit	tests.	By
end	of	this	chapter,	users	will	learn	to	create	web	applications	using	m2eclipse	and	change
the	POM	file	to	generate	reports	against	unit	tests.

Chapter	6,	Creating	a	Multimodule	Project,	intends	to	introduce	the	concept	of
multimodule	projects	and	teaches	users	to	create,	build,	and	run	the	project.	At	the	end	of
this	chapter,	users	will	know	how	to	create	and	run	a	multimodule	Maven	project	using	the
m2eclipse	plugin.

Chapter	7,	Peeking	into	m2eclipse,	dives	into	the	m2eclipse	plugin	and	introduces
different	features	and	aspects	that	makes	life	easier.	By	the	end	of	this	chapter,	users	will
be	familiar	with	every	aspect	of	m2eclipse	and	will	be	able	to	use	it	efficiently	and	with
ease.

What	you	need	for	this	book
It	is	recommended	that	you	have	a	laptop	or	a	desktop	with	the	following	specifications
for	the	best	performance	during	development:

4	GB	RAM
Windows	OS	7	/	Ubuntu	12.04	/	Mac	OS	Maverick
Dual	core	/	iSeries	processor
Internet	connection

www.allitebooks.com

http://www.allitebooks.org

Who	this	book	is	for
This	book	is	aimed	at	beginners	and	existing	developers	who	want	to	learn	how	to	use
Maven	for	Java	projects.	It	is	assumed	that	you	have	experience	in	Java	programming	and
that	you	have	used	an	IDE	for	development.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Plugins
and	goals	can	be	included	declaratively	in	the	pom	file	to	customize	the	execution	of	a
project.”

A	block	of	code	is	set	as	follows:

<project>

				<modelVersion>4.0.0</modelVersion>

				<groupId>com.packt.mvneclipse</groupId>

				<artifactId>mvneclipse</artifactId>

				<version>1.2</version>

</project>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

<!--General	project	Information	-->

		<modelVersion>4.0.0</modelVersion>

		<groupId>com.packt.mvneclipse</groupId>

		<artifactId>hello-project</artifactId>

		<version>0.0.1-SNAPSHOT</version>

		<name>hello-project</name>

		<url>http://maven.apache.org</url>

		<properties>1

		<project.build.sourceEncoding>UTF8</project.build.sourceEncoding>

</properties>

<repositories>

		<repository>

				<snapshots>

						<enabled>false</enabled>

				</snapshots>

				<id>central</id>

				<name>Maven	Repository	Switchboard</name>

				<url>http://repo1.maven.org/maven2</url>

		</repository>

</repositories>

Any	command-line	input	or	output	is	written	as	follows:

set	PATH	=%PATH%;%M2_HOME%\bin

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“To	make	m2eclipse	use
the	external	Maven,	navigate	to	Window	|	Preference	in	Eclipse,	and	the	Preference
window	appears.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Apache	Maven	–	Introduction
and	Installation
“A	journey	of	a	thousand	miles	starts	with	a	single	step”,	Lao	Tzu.	Rightly	so,	if	you	are
reading	this	sentence	here,	you	have	taken	a	step	towards	a	journey	of	Maven	with
Eclipse.	As	part	of	this	journey,	in	the	very	first	chapter,	we	will	introduce	you	to	Maven
and	its	basic	architecture	and	then	guide	you	through	the	installation	process	through	the
following	subtopics:

Introduction	to	Maven
Maven’s	origin
Maven’s	principles
Maven’s	component	architecture
Maven	versus	Ant
Downloading	Maven
Installing	Maven
Installing	Maven	on	Windows
Installing	Maven	on	Linux	and	Mac	OS
Verifying	the	installation	of	Maven

Introduction	to	Maven
Apache	Maven’s	official	site	states	that	Apache	Maven,	which	is	also	known	as	Maven,
is	a	software	project	management	and	comprehension	tool.	Generally,	software	project
management	comprises	planning,	organizing,	managing	resource	pools,	and	developing
resource	estimates;	hence,	it	is	a	meaningless	abstraction	to	justify	Maven	offerings.	To
put	it	in	simple	words,	Maven	is	a	comprehensive	approach	towards	the	process	of
applying	patterns	to	a	build	infrastructure	with	primary	goals	as	follows:

Easing	the	build	process
Providing	a	uniform	build	system
Providing	quality	project	information
Providing	guidelines	for	best	practice	development
Allowing	transparent	migration	to	new	features

In	order	to	achieve	the	preceding	goals,	Maven	provides	a	set	of	build	standards,	an
artifact	repository	model,	an	engine	that	describes	projects,	and	a	standard	lifecycle	to
build,	test,	and	deploy	project	artifacts.

Maven’s	origin
Maven,	a	Yiddish	word	that	means	accumulator	of	knowledge,	was	initially	started	as	an
attempt	to	simplify	the	build	processes	in	the	Jakarta	Turbine	project.	Prior	to	Maven,	Ant
was	the	build	tool	used	across	projects,	and	there	were	different	Ant	build	files	across
different	projects.	Also,	there	were	no	standard	or	consistent	Ant	build	files	for	projects,
and	JARs	were	also	required	to	be	checked	in	subversion.	Hence,	there	was	a	growing
necessity	to	standardize	the	project’s	build	process	and	its	structure,	publish	project
information,	and	reuse	JARs	across	projects,	which	resulted	in	the	formation	of	a	new
tool,	Maven.	Maven	has	made	the	day-to-day	work	of	developers	easy,	and	it	provides
comprehension	of	any	Java	project.

Maven’s	principles
Maven’s	principles	can	be	stated	in	the	following	points:

Convention	over	configuration:	Maven	defines	the	default	project	structure	and
builds	a	life	cycle	that	eases	the	burden	during	development.	By	specifying	a	publicly
defined	model,	it	makes	the	project	more	understandable.
Declarative	execution:	Maven	defines	a	build	life	cycle	that	comprises	phases,
which	in	turn	are	made	up	of	plugin	goals.	Plugins	and	goals	can	be	included
declaratively	in	the	pom	file	to	customize	the	execution	of	a	project.
Reusability:	Maven	was	built	with	reusability	in	mind.	The	build	and	execution
declaration	in	one	project	can	be	used	across	different	projects.	Maven	also	makes	it
easier	to	create	a	component	and	integrate	it	into	a	multiproject	build	system.	Also,
with	Maven	Best	Practices,	development	across	the	industry	is	encouraged.
Coherent	organization	of	dependency:	Maven	takes	care	of	dependency
management,	thus	reducing	the	burden	on	the	part	of	developers.	Different	conflicts
across	dependencies	are	also	handled	beautifully.
Focus	on	writing	applications:	With	a	standard	project	layout	and	build	lifecycle,
there	is	no	need	to	develop	the	build;	the	focus	should	primarily	be	on	building	the
application.

Maven’s	component	architecture
Maven	is	built	around	different	components	as	shown	in	the	following	diagram:

Maven	component	architecture	(Reference	Apache	Team	Presentation)

The	Plexus	container
Plexus	is	an	IOC	container	that	provides	component-oriented	programming	to	build
modular,	reusable	components	that	can	be	easily	assembled	and	reused.	Some	of	the
features	supported	are	as	follows:

Component	lifecycles
Component	instantiation	strategies
Nested	containers
Component	configuration
Auto-wiring
Component	dependencies
Various	dependency	injection	techniques,	including	constructor	injection,	setter
injection,	and	private	field	injection

Note
More	information	on	this	can	be	found	at	http://plexus.codehaus.org/.

Wagon
Maven	Wagon	is	a	transport	abstraction	used	in	the	Maven	artifact	and	repository-

http://plexus.codehaus.org/

handling	code.	Wagon	defines	a	unified	API,	and	it	currently	has	the	following	providers:

File
HTTP
HTTP	lightweight
FTP
SSH/SCP
WebDAV

Note
More	information	on	this	can	be	found	at	https://maven.apache.org/wagon/.

Maven	Doxia
Doxia	is	a	content	generation	framework	that	provides	users	with	powerful	techniques	to
generate	static	and	dynamic	content.	Doxia	is	also	used	in	a	web-based	publishing	context
to	generate	static	sites,	in	addition	to	being	incorporated	into	dynamic	content	generation
systems	such	as	blogs,	wikis,	and	content	management	systems.

Note
For	more	information	on	Maven	Doxia,	refer	to	https://maven.apache.org/doxia/.

Modello
The	Modello	component	in	Maven	can	be	used	to	generate	the	following	types	of	artifacts
at	build	time	with	reference	to	the	data	model:

Java	POJOs	of	the	data	model
Java	POJOs	to	XML
XML	to	Java	POJOs
Xdoc	documentation	of	the	data	model
XML	schema	to	validate	that	XML	content	matches	the	data	model

Note
For	more	information,	refer	to	http://maven.apache.org/maven-1.x/plugins/modello/.

Maven	SCM
This	component	provides	a	common	API	to	perform	Source	Code	Management	(SCM)
operations.	The	following	type	of	SCMs	are	supported:

Bazaar
CVS
Git
Jazz
Mercurial
Perforce
StarTeam
Subversion

www.allitebooks.com

https://maven.apache.org/wagon/
https://maven.apache.org/doxia/
http://maven.apache.org/maven-1.x/plugins/modello/
http://www.allitebooks.org

CM	energy

Note
More	information	is	available	at	http://maven.apache.org/scm/.

http://maven.apache.org/scm/

Maven	versus	Ant
Before	the	emergence	of	Maven,	Ant	was	the	most	widely	used	build	tool	across	Java
projects.	Ant	emerged	from	the	concept	of	creating	files	in	C/C++	programming	to	a
platform-independent	build	tool.	Ant	used	XML	files	to	define	the	build	process	and	its
corresponding	dependencies.

Another	Neat	Tool	(Ant)	was	conceived	by	James	Duncan	Davidson	while	preparing
Sun’s	reference	JSP/Servlet	engine,	Apache	Tomcat.	The	following	is	a	simple	sample	of
an	Ant	build	file	(http://ant.apache.org/manual/using.html):

<project	name="MyProject"	default="dist"	basedir=".">

				<description>

								simple	example	build	file

				</description>

		<!--	set	global	properties	for	this	build	-->

		<property	name="src"	location="src"/>

		<property	name="build"	location="build"/>

		<property	name="dist"		location="dist"/>

		<target	name="init">

				<!--	Create	the	time	stamp	-->

				<tstamp/>

				<!--	Create	the	build	directory	structure	used	by	compile	-->

				<mkdir	dir="${build}"/>

		</target>

		<target	name="compile"	depends="init"

								description="compile	the	source	"	>

				<!--	Compile	the	java	code	from	${src}	into	${build}	-->

				<javac	srcdir="${src}"	destdir="${build}"/>

		</target>

		<target	name="dist"	depends="compile"

								description="generate	the	distribution"	>

				<!--	Create	the	distribution	directory	-->

				<mkdir	dir="${dist}/lib"/>

<!--	Put	everything	in	${build}	into	the	MyProject-${DSTAMP}.jar	file	-->

				<jar	jarfile="${dist}/lib/MyProject-${DSTAMP}.jar"	basedir="${build}"/>

		</target>

		<target	name="clean"

								description="clean	up"	>

				<!--	Delete	the	${build}	and	${dist}	directory	trees	-->

				<delete	dir="${build}"/>

				<delete	dir="${dist}"/>

		</target>

</project>

Tip
Downloading	the	sample	code

http://ant.apache.org/manual/using.html

You	can	download	the	sample	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

This	example	shows	how	to	build	a	simple	JAR	file.	Note	how	all	the	details
corresponding	to	source	files,	class	files,	and	JAR	files	have	to	be	specified.	Even	the
sequence	of	steps	must	be	specified.	This	results	in	a	complex	build	file	and	often	a	lot	of
duplicated	XML.

Let’s	look	at	the	simplest	Maven	build	file,	the	pom	file,	which	will	be	discussed	in	more
detail	in	Chapter	3,	Creating	and	Importing	Projects.

A	simple	pom	file	will	look	as	shown	in	the	following	code	snippet:

<project>

				<modelVersion>4.0.0</modelVersion>

				<groupId>com.packt.mvneclipse</groupId>

				<artifactId>mvneclipse</artifactId>

				<version>1.2</version>

</project>

This	is	all	we	need	to	build	and	package	as	a	JAR	from	a	Java	project.	Some	of	the
differences	between	Ant	and	Maven	in	the	preceding	examples	are	as	follows:

Convention	over	configuration:	Ant	requires	a	developer	to	configure	everything
right	from	the	source	code’s	location	to	the	storage	of	a	JAR	file.	Maven,	on	the	other
hand,	follows	conventions,	has	a	well-defined	project	structure,	and	knows	where	to
reference	source,	resource	files,	and	place	the	output.
Lifecycle:	Ant	does	not	have	a	lifecycle	and	requires	defining	goals	and	their
dependencies.	Also,	in	Ant,	the	sequence	of	tasks	needs	to	be	specified.	Maven	has
defined	a	lifecycle	that	consists	of	build	phases	and	goals;	hence,	no	configuration	is
required.

Apart	from	the	preceding	differences	that	can	be	cited	from	the	preceding	simple	example,
Maven	is	superior	to	Ant	in	the	following	aspects:

Higher	level	of	reusability:	The	build	logic	can	be	reused	with	Maven	across
different	projects	in	Maven.
Less	maintenance:	With	a	standardized	structure	and	the	reusability	option,	it
requires	less	effort	towards	maintenance.
Dependency	management:	One	of	the	most	superior	aspects	of	Maven	over	Ant	is
its	ability	to	manage	the	corresponding	dependencies.	Though,	lately,	Ant	in
combination	with	Apache	Ivy	does	ease	dependency	management;	however,	Maven
has	other	aspects	that	outdo	this	combo	offering.
Automatic	downloads:	Maven	downloads	the	dependencies	automatically;	however,
Ant	lacks	this.	While	Ant	can	use	Ivy	to	replicate	this	behavior,	it	requires	additional
behavior.
Repository	management:	Maven	repositories	are	arbitrary	and	accessible	locations
that	are	designed	to	store	the	artifacts	that	Maven	builds.	They	manage	repositories	as

http://www.packtpub.com
http://www.packtpub.com/support

local	versus	remote	(will	be	discussed	in	detail	in	the	Repository	section	of	Chapter	3,
Creating	and	Importing	Projects).	Ant	does	not	have	this	aspect	built.

Downloading	Maven
To	download	Maven,	please	visit	http://maven.apache.org/download.cgi.	Click	on	the
latest	version,	apache-maven-x.x.x-bin.zip;	at	the	time	of	writing	this,	the	current
version	is	apache-maven-3.2.1-bin.zip.	Download	the	latest	version	as	shown	in	the
following	screenshot:

Once	the	ZIP	file	is	downloaded,	extract	the	files	to,	let’s	say,	maven3.	After	extraction,	the
contents	of	the	maven3	folder	will	have	another	folder	named	apache-maven-3.2.1	and
the	contents	of	that	folder	will	be	as	shown	in	the	following	screenshot:

http://maven.apache.org/download.cgi

Installing	Maven
Before	we	install	Maven,	we	need	to	have	JDK	installed.	Check	out	the	Java	installation
with	the	following	command:

>javac	-version

For	Windows,	open	the	command	prompt,	and	for	Linux/Mac	OS,	open	the	terminal	and
use	the	preceding	command	to	see	the	version	of	the	JDK	that	is	installed.

If	JDK	is	not	installed,	please	refer	to	following	link	and	install	it:

http://www.oracle.com/technetwork/java/javase/index-137561.html

Once	Java	is	in	place,	let’s	move	towards	Maven’s	installation.

Maven’s	installation	is	a	simple	two-step	process:

Setting	up	Maven	home,	that	is,	the	M2_HOME	variable
Adding	Maven	home	to	the	PATH	variable

http://www.oracle.com/technetwork/java/javase/index-137561.html

Installing	Maven	on	Windows
The	installation	of	Maven	is	just	setting	up	Maven	home	in	the	extracted	Maven	folder.
For	ease,	let’s	assume	the	maven3	folder	resides	in	C:\Program	Files.	Now,	set	Maven
home	with	the	following	command	in	the	command	prompt:

set	M2_HOME="c:\Program	Files\maven3\apache-maven-3.2.1"

Update	the	PATH	variable	as	follows:

set	PATH	=%PATH%;%M2_HOME%\bin

Alternatively,	the	variables	can	be	set	permanently	by	navigating	to	Desktop	|	My
Computer	|	Properties.	Visit	http://www.computerhope.com/issues/ch000549.htm	for
more	information.

http://www.computerhope.com/issues/ch000549.htm

Installing	Maven	on	Linux	and	Mac	OS
Let’s	assume	the	maven3	folder	resides	in	the	/opt	folder.	As	Mac	OS	does	not	have	the
/opt	folder,	let’s	create	a	folder	opt	in	root,	that	is,	/opt.	Now,	let’s	assume	we	have
maven3,	the	extracted	folder	in	it.	Then,	set	the	Maven	home	by	issuing	the	following
command	via	the	terminal:

export		M2_HOME=/opt/maven3/apache-maven-3.2.1

Add	Maven	to	the	PATH	variable	as	follows:

export	PATH=${M2_HOME}/bin:${PATH}

To	add	it	permanently,	add	it	to	the	bash	file	as	follows:

cd	$HOME

vi	.bash_profile

Add	the	preceding	variable,	that	is,	two	lines	to	the	file,	save	it,	and	execute	the	following
command:

source		.bash_profile

Verifying	the	installation	of	Maven
After	performing	the	previous	steps,	its	time	to	verify	the	installation	of	Maven.	To	verify
the	installation,	perform	the	following:

For	Windows,	open	the	command	prompt	and	type	the	following:

mvn	-version

For	Linux	and	Mac	OS,	open	the	terminal	and	type	the	following:

mvn	-version

It	should	show	the	corresponding	version	of	Maven	installed,	as	shown	in	the	following
screenshot:

Summary
Congratulations!	By	the	end	of	this	chapter,	you	have	got	yourselves	acquainted	with
Maven	and	have	installed	Maven	in	your	system.	Now	you	are	ready	to	take	a	sprint
towards	the	journey.	In	the	next	chapter,	you	will	learn	about	installing	and	setting	up	the
m2eclipse	plugin	for	Eclipse.

Chapter	2.	Installing	m2eclipse
We	set	out	on	our	journey	by	taking	the	first	step	in	the	previous	chapter;	here,	we	will
take	another	step	forward.	In	this	chapter,	we	will	start	with	the	installation	of	an	IDE,	that
is,	Eclipse,	and	then	get	into	the	details	of	installation	of	Maven	integration	into	the
Eclipse	plugin,	that	is,	m2eclipse.	The	topics	covered	in	this	chapter	are:

Introduction	to	m2eclipse
Downloading	Eclipse
Installing	and	launching	Eclipse
Methods	to	install	m2eclipse
Setting	up	Maven	for	use

Introduction	to	m2eclipse
m2eclipse	is	a	plugin	that	provides	Maven	integration	with	Eclipse.	It	intends	to	bridge	the
gap	between	Eclipse	and	Maven,	help	to	create	projects	using	simple	intuitive	interfaces
from	Maven	Archetypes,	and	launch	and	manage	the	projects	build	using	a	simple	editor.
It	makes	the	use	of	Maven	right	from	the	IDE	so	much	easier.	Some	of	the	features
provided	by	m2eclipse	are	as	follows:

Creating	and	importing	Maven	projects
Launching	the	Maven	build	from	within	Eclipse
Dependency	management	for	the	Eclipse	build	path
Automatic	dependency	downloads	and	updates
Materializing	a	project
Browsing	and	searching	remote	Maven	repositories
Providing	support	for	multimodule	Maven	projects

Apart	from	the	preceding	features,	in	conjunction	with	different	m2e	connectors	and	the
Mylyn	plugin,	it	provides	the	ability	to	communicate	with	code	versioning	repositories
and	task-based	interfaces.

m2eclipse	has	been	around	since	2006	and	is	credited	to	Eugene	Kuleshov.	It	was
developed	under	the	Codehaus	community	for	2	years	before	it	was	moved	to	the	Eclipse
Foundation	in	2008.

Downloading	Eclipse
If	you	have	Eclipse	installed,	you	can	skip	this	and	the	next	section	and	right	away
proceed	to	the	Installing	m2eclipse	section.

To	download	Eclipse,	please	visit	the	following	URL:

https://www.eclipse.org/downloads/

The	next	screenshot	can	be	visualized.	At	the	time	of	writing	this	book,	the	latest	version
of	Eclipse	is	Eclipse	Kepler	4.3.2	SR2,	and	we	will	be	downloading	this	and	using	it	for
the	rest	of	the	book.

Choose	an	appropriate	OS	from	the	dropdown	and	download	the	Eclipse	IDE	for	Java
Developers	package	for	the	corresponding	architecture,	that	is,	32	or	64	bit	(which	is
shown	in	the	following	screenshot).	Choose	32	bit	for	32-bit	Java	or	64	bit	for	64-bit	Java
installed	in	the	system.

In	the	next	step,	choose	the	appropriate	mirror	close	to	your	location	and	the	download
will	begin.	The	mirror	screen	may	look	like	the	following	screenshot:

https://www.eclipse.org/downloads/

Installing	and	launching	Eclipse
Go	to	the	location	of	the	downloaded	file,	as	shown	in	the	preceding	screenshot,	and
extract	it	to	a	desired	location	of	your	choice.	The	extraction	will	result	in	a	folder	named
eclipse.	The	contents	of	the	eclipse	folder	are	shown	in	the	following	screenshot:

We	can	see	there	is	an	application	or	executable	file	named	eclipse,	which	on	double-
clicking,	launches	the	Eclipse	IDE.	When	Eclipse	is	launched,	it	will	prompt	you	for	a
workspace	location.	Provide	an	appropriate	location	where	the	projects	are	to	be	stored
and	click	on	OK.	Now,	we	are	right	in	the	Eclipse	space	and	ready	for	action.	You	see
something	similar	to	the	following	screenshot:

Methods	to	install	m2eclipse
Installing	m2eclipse	is	fairly	simple.	Primarily,	there	are	two	ways	to	install	the	m2eclipse
plugin	in	Eclipse:

Using	Eclipse	Marketplace:	Use	Eclipse	Marketplace	to	find	and	install	the	plugin
Using	update	site:	Add	the	m2eclipse	update	site	and	install

Using	Eclipse	Marketplace
The	installation	of	m2eclipse	using	Eclipse	Marketplace	involves	the	following	steps:

1.	 Navigate	to	Help	|	Eclipse	Marketplace	as	shown	in	the	following	screenshot:

2.	 Then,	search	for	m2eclipse	in	the	search	box,	and	click	on	the	Install	button	for
Maven	integration	for	the	Eclipse	package,	as	shown	in	the	following	screenshot:

3.	 On	the	next	window,	confirm	the	package	to	be	installed	as	follows:

4.	 Accept	the	terms	and	conditions	and	click	on	Finish.	After	the	installation	is	done,
the	following	prompt	appears:

5.	 Click	on	Yes	to	restart	Eclipse	and	to	have	the	changes	reflected.
6.	 For	Mac	users,	choose	the	Restart	Now	option,	and	for	other	OSes,	choose	Yes.

Using	Update	Site
The	installation	of	m2eclipse	using	update	site	involves	the	following	steps:

1.	 Navigate	to	Help	|	Install	New	Software	and	your	screen	will	look	similar	to	the
following	screenshot:

2.	 Click	on	the	Add…	button.	Add	the
http://download.eclipse.org/technology/m2e/releases	site	as	the	m2eclipse	update
site,	as	shown	in	the	following	screenshot	and	click	on	OK:

3.	 Choose	the	packages	as	shown	in	the	following	screenshot:

http://download.eclipse.org/technology/m2e/releases

4.	 Click	on	Next,	agree	to	the	terms,	and	finally	click	on	Finish	to	start	installing.	Once
the	installation	is	done,	the	following	prompt	appears:

5.	 Click	on	Yes	to	restart	Eclipse	and	to	have	the	changes	reflected.	For	Mac	users,
choose	the	Restart	Now	option	and	for	users	with	other	OSes,	choose	Yes.

Note
Eclipse	Kepler	4.3.2	SR2	has	m2eclipse	installed	and	hence	the	preceding	step	of
installation	would	update	the	plugin	to	the	latest	one.	Regardless	of	any	of	the
preceding	methods	of	installation,	m2eclipse	that	comes	packaged	with	Eclipse
Kepler	is	still	going	to	be	updated.

So,	midway,	you	will	see	something	similar	to	the	following	screen:

6.	 Click	on	Next	and	accept	the	terms,	click	on	Finish	to	start	the	installation,	and	you
will	have	to	restart	to	have	the	changes	reflected.

Setting	up	Maven	for	use
m2eclipse	comes	with	an	embedded	Maven	component	in	it,	so	the	external	Maven
installation	discussed	in	Chapter	1,	Apache	Maven	–	Introduction	and	Installation,	is
optional.	However,	to	use	the	latest	version	of	Maven,	we	are	required	to	install	Maven
externally,	as	discussed	in	the	previous	chapter.	We	also	need	to	make	sure	our	m2eclipse
plugin	uses	it.	Also,	the	use	of	continuous	integration	servers	nowadays	requires	us	to
have	a	common	Maven	version	across	servers,	thus	making	use	of	the	externally	installed
Maven.

To	make	m2eclipse	use	the	external	Maven	version,	navigate	to	Window	|	Preference	in
Eclipse	and	the	Preference	window	appears.	Search	for	maven	in	the	search	box	in	the	left
pane	and	click	on	Installations	as	shown	in	the	following	screenshot:

Click	on	the	Add…	button	and	select	the	location	of	the	Maven	directory.	From	the
previous	chapter,	our	location	was	/opt/maven3/apache-maven-3.2.1.	Check	the
corresponding	external	Maven	checkbox,	as	shown	in	the	following	screenshot,	and	click
on	Apply	followed	by	OK:

Now,	m2eclipse	will	make	use	of	this	Maven.

Summary
By	the	end	of	this	chapter,	you	have	learned	about	installing	Eclipse	and	m2eclipse	as	well
as	setting	up	m2eclipse	to	use	the	externally	installed	Maven.	In	the	next	chapter,	we	will
look	at	the	important	concepts	of	Maven	and	you	will	learn	to	create	and	import	Maven
projects	and	familiarize	yourself	with	the	structure	of	Maven	projects.

Chapter	3.	Creating	and	Importing
Projects
Let’s	proceed	on	our	journey.	In	this	chapter,	we	will	start	with	the	Maven	project
structure	followed	by	the	build	architecture,	then	we	will	cover	some	essential	concepts,
and	finally	learn	how	to	create	simple	Maven	projects.	The	chapter	is	divided	into	the
following	sections:

The	Maven	project	structure
POM	(Project	Object	Model)

Maven	coordinates
POM	relationships
Simple	POM
Super	POM

The	Maven	project	build	architecture
Other	essential	concepts

Repository
Project	dependencies
Plugins	and	goals
Site	generation	and	reporting

Creating	a	Maven	project

Using	an	archetype
Using	no	archetypes
Checking	out	a	Maven	project

Importing	Maven	projects

The	Maven	project	structure
Maven,	as	stated	in	earlier	chapters,	follows	convention	over	configuration.	This	makes	us
believe	that	there	is	a	standard	layout	of	the	Maven	project	structure.	Before	we	get	into
creating	and	playing	with	Maven	projects,	let’s	first	understand	the	basic	common	layout
of	Maven	projects,	as	follows:

Folder/Files Description

src/main/java This	contains	an	application’s	Java	source	files

src/main/resources This	contains	files	of	an	application’s	resources	such	as	images,	sounds,	templates,	and	so	on

src/main/filters This	contains	the	resource’s	filter	files

src/main/config This	contains	the	configuration	files	of	the	application

src/main/scripts This	has	files	of	application-specific	scripts

src/main/webapp This	has	sources	files	for	web	applications

src/test/java This	contains	unit	test	files	of	Java

src/test/resources This	has	unit	testing-specific	resources	used	in	an	application

src/filters This	has	files	of	the	test-specific	filter	for	resources

src/it This	has	integration	tests	files	(primarily	for	plugins)

src/assembly This	contains	files	of	the	assembly	descriptors

src/site This	contains	site	artifacts

LICENSE.txt This	denotes	the	projects	license

NOTICE.txt This	includes	the	notice	and	attributions	that	the	project	depends	on

README.txt This	denotes	the	project’s	readme	information

target This	houses	all	the	output	of	the	build

pom.xml This	is	the	project’s	pom	file	(which	will	be	discussed	in	detail	in	the	forthcoming	sections)

Though	the	previously	mentioned	layout	is	the	standard	recommended	convention,	this
can	always	be	overridden	in	the	project	descriptor	file	(pom	file).

POM	(Project	Object	Model)
POM	stands	for	Project	Object	Model.	It	is	primarily	an	XML	representation	of	a	project
in	a	file	named	pom.xml.	POM	is	the	identity	of	a	Maven	project	and	without	it,	the	project
has	no	existence.	It	is	analogous	to	a	Make	file	or	a	build.xml	file	of	Ant.

A	project	in	a	broad	sense	should	contain	more	than	just	mere	code	files	and	should	act	as
a	one-stop	shop	for	all	the	things	concerning	it.	Maven	fulfills	this	need	using	the	pom	file.
POM	tends	to	answer	questions	such	as:	Where	is	the	source	code?	Where	are	the
resources?	How	is	the	packaging	done?	Where	are	the	unit	tests?	Where	are	the	artifacts?
What	is	the	build	environment	like?	Who	are	the	actors	of	the	project?	and	so	on.

In	a	nutshell,	the	contents	of	POM	fall	under	the	following	four	categories:

Project	information:	This	provides	general	information	of	the	project	such	as	the
project	name,	URL,	organization,	list	of	developers	and	contributors,	license,	and	so
on.
POM	relationships:	In	rare	cases,	a	project	can	be	a	single	entity	and	does	not
depend	on	other	projects.	This	section	provides	information	about	its	dependency,
inheritance	from	the	parent	project,	its	sub	modules,	and	so	on.
Build	settings:	These	settings	provide	information	about	the	build	configuration	of
Maven.	Usually,	behavior	customization	such	as	the	location	of	the	source,	tests,
report	generation,	build	plugins,	and	so	on	is	done.
Build	environment:	This	specifies	and	activates	the	build	settings	for	different
environments.	It	also	uses	profiles	to	differentiate	between	development,	testing,	and
production	environments.

A	POM	file	with	all	the	categories	discussed	is	shown	as	follows:

<project>

		<!--	The	Basics	Project	Information-->

		<groupId>...</groupId>

		<artifactId>...</artifactId>

		<version>...</version>

		<packaging>...</packaging>

		<dependencies>...</dependencies>

		<parent>...</parent>

		<dependencyManagement>...</dependencyManagement>

		<modules>...</modules>

		<properties>...</properties>

		<!--	Build	Settings	-->

		<build>...</build>

		<reporting>...</reporting>

		<properties>...</properties>

		<packaging>...</packaging>

		<!--	More	Project	Information	-->

		<name>...</name>

		<description>...</description>

		<url>...</url>

		<inceptionYear>...</inceptionYear>

		<licenses>...</licenses>

		<organization>...</organization>

		<developers>...</developers>

		<contributors>...</contributors>

			<!--	POM	Relationships	-->

		<groupId>...</groupId>

		<artifactId>...</artifactId>

		<version>...</version>

		<parent>...</parent>

		<dependencyManagement>...</dependencyManagement>

		<dependencies>...</dependencies>

		<modules>...</modules>

<!--	Environment	Settings	-->

		<issueManagement>...</issueManagement>

		<ciManagement>...</ciManagement>

		<mailingLists>...</mailingLists>

		<scm>...</scm>

		<prerequisites>...</prerequisites>

		<repositories>...</repositories>

		<pluginRepositories>...</pluginRepositories>

		<distributionManagement>...</distributionManagement>

		<profiles>...</profiles>

</project>

Maven	coordinates
Maven	coordinates	define	a	set	of	identifiers	that	can	be	used	to	uniquely	identify	a
project,	a	dependency,	or	a	plugin	in	a	Maven	POM.	Analogous	to	algebra	where	a	point	is
identified	by	its	coordinate	in	space,	the	Maven	coordinates	mark	a	specific	place	in	a
repository,	acting	like	a	coordinate	system	for	Maven	projects.	The	Maven	coordinates’
constituents	are	as	follows:

groupId:	This	represents	a	group,	company,	team,	organization,	or	project.	A	general
convention	for	a	group	ID	is	it	begins	with	a	reverse	domain	name	of	the	organization
that	creates	the	project.	However,	it	may	not	necessarily	use	the	dot	notation	as	it
does	in	the	junit	project.	The	group	forms	the	basis	for	storage	in	the	repository	and
acts	much	like	a	Java	packaging	structure	does	in	OS.	The	corresponding	dots	are
replaced	with	OS-specific	directory	separators	(such	as	/	in	Unix),	which	forms	the
relative	directory	structure	from	the	base	repository.	For	example,	if	groupId	is
com.packt.mvneclipse,	it	lives	in	the	$M2_REPO/com/packt/mvneclipse	directory.
artifactId:	This	is	a	unique	identifier	under	groupId	that	represents	a	single
project/the	project	known	by.	Along	with	the	groupId	coordinate,	the	artifactId
coordinate	fully	defines	the	artifact’s	living	quarters	within	the	repository.	For
example,	continuing	with	the	preceding	example,	the	artifact	ID	with	hello-project
resides	at	the	$M2_REPO/com/packt/mvneclipse/hello-project	path.
project	version:	This	denotes	a	specific	release	of	a	project.	It	is	also	used	within	an
artifact’s	repository	to	separate	versions	from	each	other.	For	example,	hello-
project	with	version	1.0	resides	in	the	$M2_REPO/com/packt/mvneclipse/hello-
project/1.0/	directory.
packaging:	This	describes	the	packaged	output	produced	by	a	project.	If	no
packaging	is	declared,	Maven	assumes	the	artifact	is	the	default	jar	file.	The	core
packaging	values	available	in	Maven	are:	pom,	jar,	maven-plugin,	ejb,	war,	ear,
rar,	and	par.	The	following	figure	illustrates	an	example	of	Maven	coordinates:

Note
As	the	local	repository,	$M2_REPO	signifies	the	%USER_HOME%	/.m2	directory	in	the	user’s
machine.

POM	relationships
POM	relationships	identify	the	relationship	they	possess	with	respect	to	other	modules,
projects,	and	other	POMs.	This	relationship	could	be	in	the	form	of	dependencies,
multimodule	projects,	parent-child	also	known	as	inheritance,	and	aggregation.	The
elements	of	POM	relationships	are	represented	graphically	as	shown	in	the	following
figure:

Similarly,	the	elements	of	POM	relationships	in	the	XML	file	can	be	specified	as	shown	in
the	following	code:

				<!--	POM	Relationships	-->

		<groupId>...</groupId>

		<artifactId>...</artifactId>

		<version>...</version>

		<parent>...</parent>

		<dependencyManagement>...</dependencyManagement>

		<dependencies>...</dependencies>

		<modules>...</modules>

A	simple	POM
The	most	basic	POM	consists	of	just	the	Maven	coordinates	and	is	sufficient	to	build	and
generate	a	jar	file	for	the	project.	A	simple	POM	file	may	look	like	the	following	code:

<project	xmlns="http://maven.apache.org/POM/4.0.0"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

		http://maven.apache.org/xsd/maven-4.0.0.xsd">

		<modelVersion>4.0.0</modelVersion>

		<groupId>com.packt.mvneclipse</groupId>

		<artifactId>hello-project</artifactId>

		<version>1.0</version>

</project>

The	following	points	will	explain	these	elements:

The	modelVersion	value	is	4.0.0.	Maven	supports	this	version	of	POM	model.
There	is	a	single	POM	file	for	every	project.
All	POM	files	require	the	project	element	and	three	mandatory	fields:	groupId,
artifactId,	and	version.
The	root	element	of	pom.xml	is	project,	and	it	has	three	major	subnodes.

A	simple	POM	(as	shown	in	the	previous	code	snippet)	is	hardly	enough	in	real-world
projects.

A	super	POM
Like	Java,	where	every	object	inherits	from	java.lang.Object,	every	POM	inherits	from
a	base	POM	known	as	Super	POM.	Implicitly,	every	POM	inherits	the	default	value	from
the	base	POM.	It	eases	the	developer’s	effort	toward	minimal	configuration	in	his/her
pom.xml	file.	However,	default	values	can	be	overridden	easily	when	they	are	specified	in
the	projects’	corresponding	pom	file.	The	default	configuration	of	the	super	POM	can	be
made	available	by	issuing	the	following	command	inside	the	respective	project:

mvn	help:effective-pom

The	super	POM	is	a	part	of	the	Maven	installation	and	can	be	found	in	the	maven-x.y.z-
uber.jar	or	maven-model-builder-x.y.z.jar	file	at	$M2_HOME/lib,	where	x.y.z
denotes	the	version.	In	the	corresponding	JAR	file,	there	is	a	file	named	pom-4.0.0.xml
under	the	org.apache.maven.model	package.

The	default	configuration	of	the	super	POM	inherited	in	a	sample	project	is	given	as
follows;	for	the	sake	of	brevity,	only	some	important	aspects	are	shown:

<!--General	project	Information	-->

		<modelVersion>4.0.0</modelVersion>

		<groupId>com.packt.mvneclipse</groupId>

		<artifactId>hello-project</artifactId>

		<version>0.0.1-SNAPSHOT</version>

		<name>hello-project</name>

		<url>http://maven.apache.org</url>

		<properties>1

		<project.build.sourceEncoding>UTF8</project.build.sourceEncoding>

</properties>

<repositories>

		<repository>

				<snapshots>

						<enabled>false</enabled>

				</snapshots>

				<id>central</id>

				<name>Maven	Repository	Switchboard</name>

				<url>http://repo1.maven.org/maven2</url>

		</repository>

</repositories>

<pluginRepositories>

		<pluginRepository>

				<releases>

						<updatePolicy>never</updatePolicy>

				</releases>

				<snapshots>

						<enabled>false</enabled>

				</snapshots>

				<id>central</id>

				<name>Maven	Plugin	Repository</name>

				<url>http://repo1.maven.org/maven2</url>

		</pluginRepository>

</pluginRepositories>

<!--	Build	source	directory	and	details>

		<build>

…

		<sourceDirectory>	...</sourceDirectory>

		<scriptSourceDirectory>..</scriptSourceDirectory>

		<testOutputDirectory>..</testOutputDirectory>

		<outputDirectory>...<outputDirectory>

…

<finalName>hello-project-0.0.1-SNAPSHOT</finalName>

		<pluginManagement>

				<plugins>

						<plugin>

								<artifactId>maven-antrun-plugin</artifactId>

								<version>1.3</version>

						</plugin>

						<plugin>

								<artifactId>maven-assembly-plugin</artifactId>

								<version>2.2-beta-5</version>

						</plugin>

								<plugin>

										<artifactId>maven-dependency-plugin</artifactId>

										<version>2.1</version>

								</plugin>

								<plugin>

										<artifactId>maven-release-plugin</artifactId>

										<version>2.0</version>

								</plugin>

						</plugins>

				</pluginManagement>

				<plugins>

<!--	Plugins,	phases	and	goals	-->

				<plugin>

						<artifactId>maven-clean-plugin</artifactId>

						<version>2.4.1</version>

						<executions>

								<execution>

										<id>default-clean</id>

										<phase>clean</phase>

										<goals>

												<goal>clean</goal>

										</goals>

								</execution>

						</executions>

				</plugin>

				<plugin>

						<artifactId>maven-surefire-plugin</artifactId>

						<version>2.7.2</version>

						<executions>

								<execution>

										<id>default-test</id>

										<phase>test</phase>

										<goals>

												<goal>test</goal>

										</goals>

								</execution>

						</executions>

				</plugin>

				<plugin>

						<artifactId>maven-compiler-plugin</artifactId>

						<version>2.3.2</version>

						<executions>

								<execution>

										<id>default-testCompile</id>

										<phase>test-compile</phase>

										<goals>

												<goal>testCompile</goal>

										</goals>

								</execution>

								<execution>

										<id>default-compile</id>

										<phase>compile</phase>

										<goals>

												<goal>compile</goal>

										</goals>

								</execution>

						</executions>

				</plugin>

				<plugin>

						<artifactId>maven-jar-plugin</artifactId>

						<version>2.3.1</version>

						<executions>

								<execution>

										<id>default-jar</id>

										<phase>package</phase>

										<goals>

												<goal>jar</goal>

										</goals>

								</execution>

						</executions>

				</plugin>

				<plugin>

						<artifactId>maven-deploy-plugin</artifactId>

						<version>2.5</version>

						<executions>

								<execution>

										<id>default-deploy</id>

										<phase>deploy</phase>

										<goals>

												<goal>deploy</goal>

										</goals>

								</execution>

						</executions>

				</plugin>

				<plugin>

						<artifactId>maven-site-plugin</artifactId>

						<version>2.0.1</version>

						<executions>

								<execution>

										<id>default-site</id>

										<phase>site</phase>

										<goals>

												<goal>site</goal>

										</goals>

										<configuration>

				</project>

The	Maven	project	build	architecture
The	following	figure	shows	the	common	build	architecture	for	Maven	projects.
Essentially,	every	Maven	project	contains	a	POM	file	that	defines	every	aspect	of	the
project	essentials.	Maven	uses	the	POM	details	to	decide	upon	different	actions	and
artifact	generation.	The	dependencies	specified	are	first	searched	for	in	the	local	repository
and	then	in	the	central	repository.	There	is	also	a	notion	that	the	remote	repository	is
searched	if	it	is	specified	in	the	POM.	We	will	talk	about	repositories	in	the	next	section.
In	addition,	POM	defines	details	to	be	included	during	site	generation.

Have	a	look	at	the	following	diagram:

Other	essential	concepts
The	other	essential	concepts	of	Maven	are	discussed	in	the	following	sections.

www.allitebooks.com

http://www.allitebooks.org

Repository
Maven	repositories	are	accessible	locations	designed	to	store	the	artifacts	that	Maven
builds	produce.	To	be	more	precise,	a	repository	is	a	location	to	store	a	project’s	artifacts
that	is	designed	to	match	the	Maven	coordinates.

A	Maven	repository	can	be	one	of	the	following	types:

Local
Central
Remote

The	local	repository
A	local	repository	is	one	that	resides	in	the	same	machine	where	a	Maven	build	runs.	It	is
a	.m2	folder	located	in	the	$USER_HOME	directory	of	the	user’s	machine.	It	is	created	when
the	mvn	command	is	run	for	the	very	first	time.	However,	to	override	the	default	location,
open	the	settings.xml	file	if	it	exists;	else,	create	one	in	the	$M2_HOME\conf	(for
windows:	%M2_HOME%\conf)	folder	and	respective	location	as	in	the	following	code:

<settings	xmlns="http://maven.apache.org/SETTINGS/1.0.0"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

		http://maven.apache.org/xsd/settings-1.0.0.xsd">

		<localRepository>/opt/m2repos</localRepository>

</settings>

When	we	run	the	Maven	command,	Maven	will	download	dependencies	to	a	custom	path.

The	central	repository
The	central	repository	is	the	repository	provided	by	the	Maven	community.	It	contains	a
large	repository	of	commonly	used	libraries.	This	repository	comes	into	play	when	Maven
does	not	find	libraries	in	the	local	repository.	The	central	repository	can	be	found	at:
http://search.maven.org/#browse.

The	remote	repository
Enterprises	usually	maintain	their	own	repositories	for	the	libraries	that	are	being	used	for
the	project.	These	differ	from	the	local	repository;	a	repository	is	maintained	on	a	separate
server,	different	from	the	developer’s	machine	and	is	accessible	within	the	organization.
Also,	sometimes,	there	are	cases	where	the	availability	of	the	libraries	in	central
repositories	is	not	certain,	thus	giving	rise	to	the	need	for	a	remote	repository.

For	example,	the	following	POM	file	mentions	the	remote	repositories,	where	the
dependency	is	not	available	in	the	central	repository:

<project	xmlns="http://maven.apache.org/POM/4.0.0"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

		http://maven.apache.org/xsd/maven-4.0.0.xsd">

		<modelVersion>4.0.0</modelVersion>

		<groupId>com.packt.mvneclipse</groupId>

http://search.maven.org/#browse

		<artifactId>hello-project</artifactId>

		<version>1.0</version>

		<dependencies>

				<dependency>

						<groupId>com.packt.commons</groupId>

						<artifactId>utility-lib</artifactId>

						<version>1.0.0</version>

				</dependency>

		<dependencies>

		<repositories>

				<repository>

							<id>packt.ser1</id>

							<url>http://download.packt.net/maven2/1</url>

				</repository>

				<repository>

						<id>packt.ser2</id>

						<url>http://download.packt.net/maven2/2</url>

				</repository>

		</repositories>

</project>

Search	sequence	in	repositories
The	following	figure	illustrates	the	sequence	in	which	the	search	operation	is	carried	out
in	the	repositories	on	execution	of	the	Maven	build:

Maven	follows	the	ensuing	sequence	to	search	dependent	libraries	in	repositories,	and	the
sequence	is	explained	as	follows:

1.	 In	step	1,	Maven	searches	for	dependencies	in	the	local	repository;	if	found,	it
proceeds	further,	else	it	goes	to	the	central	repository.

2.	 In	step	2,	the	search	continues	in	the	central	repository;	if	found,	it	proceeds	to

download	the	dependent	libraries	to	the	local	repository	and	continues	the	processing.
If	the	search	fails	in	the	central	repository	and	if	there	is	a	mention	of	a	remote
repository	in	the	POM	file,	it	continues	with	step	3	or	else	throws	an	error	and	stops.

3.	 In	step	3,	the	search	continues	in	the	remote	repositories.	If	found,	it	proceeds	to
download	the	dependent	libraries	to	the	local	repository	and	continues	processing.	If
search	encounters	a	failure,	it	throws	an	error	and	stops	at	that	juncture.

Project	dependencies
The	powerful	feature	of	Maven	is	its	dependency	management	for	any	project.
Dependencies	may	be	external	libraries	or	internal	(in-house)	libraries/project.
Dependencies	in	POM	can	be	stated	under	the	following	tags	with	the	following	attributes
as	shown:

<dependencies>

		<dependency>

				<groupId>org.testng	</groupId>

				<artifactId>testng</artifactId>

				<version>6.1.1</version>

				<type>jar</type>

				<scope>test</scope>

				<optional>true</optional>

		</dependency>

...

		</dependencies>

The	attributes	used	in	the	preceding	code	snippet	are	as	follows:

groupId,	artifactId,	and	version:	These	are	the	Maven	coordinates	for
dependency.
type:	This	is	a	dependency	packaging	type.	The	default	type	is	JAR.	We	have	already
discussed	this	in	an	earlier	section.
scope:	This	provides	a	mechanism	of	control	over	the	inclusion	of	dependencies	in
the	class	path	and	with	an	application.	We	will	talk	about	this	scope	in	the	next
section.
optional:	This	indicates	the	dependency	as	optional	when	the	project	is	a
dependency.	To	put	this	in	simple	terms,	consider	that	project	A	has	the	optional
dependency,	which	means	it	needs	this	library	at	build	time.	Now,	project	B	has	this
project	A	that	is	dependency	defined,	so	this	implies	B	may	not	need	A’s	dependency
for	its	build	and	is	a	part	of	transitive	dependencies.

Dependency	scopes
Dependency	scopes	control	the	availability	of	dependencies	in	a	classpath	and	are
packaged	along	with	an	application.	There	are	six	dependency	scopes,	which	are	described
in	detail	as	follows:

Compile:	This	is	the	default	scope	if	not	specified.	Dependencies	with	this	scope	are
available	in	all	classpaths	and	are	packaged.
Provided:	Similar	to	the	compile	scope,	however,	this	indicates	JDK	or	the	container
to	provide	them.	It	is	available	only	in	compilation	and	test	classpaths	and	is	not
transitive.
Runtime:	This	scope	indicates	that	the	dependency	is	not	required	for	compilation	but
is	available	for	execution.	For	example,	a	JDBC	driver	is	required	only	at	runtime,
however	the	JDBC	API	is	required	during	compile	time.
Test:	This	scope	indicates	that	the	dependency	is	not	required	for	normal	use	of	the
application,	and	it	is	only	available	for	the	test	compilation	and	execution	phases.

System:	This	is	similar	to	the	provided	scope	but	the	explicit	path	to	JARs	on	the
local	filesystem	is	mentioned.	The	path	must	be	absolute	such	as	$JAVA_HOME/lib.
Maven	will	not	check	the	repositories;	instead	it	will	check	the	existence	of	the	file.

Transitive	dependencies
Project	A	depends	on	project	B	and	project	B	depends	on	C—now	C	is	a	transitive
dependency	for	A.	Maven’s	strength	lies	in	the	fact	that	it	can	handle	transitive
dependencies	and	hide	the	chain	of	dependencies	under	the	hood	from	a	developer’s
knowledge.	As	a	developer,	the	direct	dependency	of	the	project	is	defined,	and	all	other
dependencies’	chain	nuisance	is	dealt	by	Maven	with	effective	version	conflict
management.	Scope	limits	the	transitivity	of	a	dependency	as	discussed	in	the	preceding
section	by	allowing	the	inclusion	of	dependencies	appropriate	for	the	current	stage	of	the
build.

For	more	information,	please	visit
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html.

Transitive	dependency	is	illustrated	in	the	following	figure:

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Plugins	and	goals
Maven,	essentially,	is	a	plugin	framework	where	every	action	is	the	result	of	some	plugin.
Each	plugin	consists	of	goals	(also	called	Mojos)	that	define	the	action	to	be	taken.	To	put
it	in	simple	words,	a	goal	is	a	unit	of	work.	For	example,	a	compiler	plugin	has	compile
as	the	goal	that	compiles	the	source	of	the	project.	An	illustration	is	as	follows:

A	plugin	with	set	of	goals	can	be	executed	using	the	following	command:

mvn	[pluginID:goalID]

Typically,	the	following	are	the	types	of	plugins:

Type Description

Build	plugins These	are	executed	during	the	build	and	are	specified	in	the	<build>	<build/>	element	in	the	pom
file.

Reporting	Plugins These	are	executed	during	site	generation	and	are	configured	in	the	<reporting>	<reporting/>element	in	the	pom	file.

Core	plugins These	plugins	correspond	to	the	default	core	phases.

Packaging
types/tools These	relate	to	the	respective	artifact	types	for	packaging.

The	following	table	consists	of	some	of	the	common	plugins:

Plugin Description

compiler This	is	used	to	compile	the	source	code.

jar This	builds	the	jar	file	from	the	project.

war This	builds	the	war	file	from	the	project.

install This	installs	the	build	artifact	into	the	local	repository.

site This	generates	the	site	for	the	current	project.

surefire This	runs	unit	tests	and	generates	reports.

clean This	cleans	up	the	target	after	the	build.

javadoc This	generates	a	Javadoc	for	the	project.

pdf This	generates	the	PDF	version	of	the	project	documentation.

For	more	plugins,	navigate	to	http://maven.apache.org/plugins/.

http://maven.apache.org/plugins/

Site	generation	and	reporting
Seldom	are	projects	a	single	developer’s	asset.	A	project	contains	stakeholders,	and
collaboration	among	them	is	essential.	Often,	a	lack	of	effective	documentation	has
paralyzed	the	project,	its	maintenance,	and	its	usage.	Maven	with	its	site	plugin	has	eased
this	process	of	having	effective	project	documentation	by	generating	a	site	and	reports
related	to	project.	A	site	can	be	generated	using	the	following	command:

mvn	site

The	site	is	generated	at	the	target/site	directory.	Maven	uses	the	Doxia	component
(discussed	in	the	Maven	Component	Architecture	section	of	Chapter	1,	Apache	Maven	–
Introduction	and	Installation)	to	generate	documentation.	The	site	also	contains	all	the
configured	reports	such	as	the	unit	test	coverage,	PMD	report,	and	others.	We	will	cover
site	and	report	generation	in	more	detail	in	the	Generating	site	documentation	section	of
Chapter	5,	Spicing	Up	a	Maven	Project.

Creating	a	Maven	project
m2eclipse	makes	the	creation	of	Maven	projects	simple.	Maven	projects	can	be	created	in
the	following	two	ways:

Using	an	archetype
Without	using	an	archetype

Now,	we	will	discuss	how	to	go	about	creating	projects	using	these	methods.

Using	an	archetype
An	archetype	is	a	plugin	that	allows	a	user	to	create	Maven	projects	using	a	defined
template	known	as	archetype.	There	are	different	archetypes	for	different	types	of	projects.

Archetypes	are	primarily	available	to	create	the	following:

Maven	plugins
Simple	web	applications
Simple	projects

We	will	now	see	how	to	create	a	simple	Hello	World!	project	using	an	archetype:

1.	 Navigate	to	File	|	New	and	click	on	Other.	The	project	wizard	appears	and	expands
the	Maven	folder.	Select	Maven	Project	as	shown	in	the	following	screenshot	and
click	on	Next:

2.	 The	New	Maven	Project	wizard	appears.	Use	the	default	workspace	and	click	on
Next	as	shown	in	the	following	screenshot:

3.	 The	Select	an	Archetype	wizard	appears.	This	shows	a	list	of	archetypes	available	in
the	Maven	repository.	New	archetypes	can	be	added	using	the	Add	Archetypes
button.	For	our	case	here,	let’s	choose	maven-archetype-quickstart	as	shown	in	the
following	screenshot	and	click	on	Next:

4.	 A	wizard	to	specify	the	Maven	coordinates	appears.	Please	fill	in	the	details	given	in
the	following	table	in	the	screenshot	that	follows	the	table	and	click	on	Finish:

Field Value

Group	Id com.packt.mvneclipse

Artifact	Id hello-project

Version Default	–	0.0.1-SNAPSHOT

Package com.packt.mvneclipse.hello

A	sample	Maven	project	has	now	been	created,	and	it	contains	a	Java	file	that	prints	Hello
World!.	The	project	has	the	following	structure:

Using	no	archetypes
You	can	create	a	Maven	project	without	archetypes	using	the	following	steps:

1.	 Navigate	to	File	|	New	and	click	on	Other.	The	project	wizard	appears	and	expands
the	Maven	folder.	Select	Maven	Project	and	click	on	Next.

2.	 The	New	Maven	Project	wizard	appears.	Use	the	default	workspace	and	check	the
Skip	archetype	checkbox	as	shown	in	the	following	screenshot	and	click	on	Next:

3.	 The	wizard	to	specify	the	Maven	coordinates	appears.	Please	fill	in	the	details,	as
shown	in	the	following	screenshot,	and	click	on	Finish:

4.	 A	skeleton	structure,	as	shown	in	the	following	screenshot,	will	be	created,	and	we
have	customized	it	according	to	the	type	of	application	we	are	building:

Checking	out	a	Maven	project
Checking	out	a	Maven	project	means	checking	out	from	the	source	code	versioning
system.	Before	we	process	this,	we	need	to	make	sure	we	have	the	Maven	connector
installed	for	the	corresponding	SCM	we	plan	to	use.	Use	the	following	steps	to	check	out	a
Maven	project:

1.	 Navigate	to	Eclipse	|	Preferences	in	Mac,	else	Windows	|	Preference	search	in
other	OS,	and	search	for	Maven,	expand	it,	and	click	on	Discovery.

2.	 Then,	click	on	Open	Catalog.	This	lists	all	the	m2connectors	available	in	the
marketplace.	In	our	case,	we	are	going	to	use	SVN,	so	choose	m2-Subversive,	as
shown	in	the	following	screenshot,	and	click	on	Finish.	In	the	screens	to	follow,	click
on	Next,	accept	the	license,	and	finally	click	on	Finish	to	install	it.	Similarly,	we	can
choose	any	connector	we	intend	to	use	for	SCM.

3.	 Like	how	you	create	projects,	navigate	to	File	|	New	and	click	on	Other.	The	project
wizard	appears.	Expand	the	Maven	folder.	Click	on	Checkout	Maven	Projects	from
SCM	and	click	on	Next.

4.	 In	the	next	screen,	choose	the	SCM	connector	SVN	and	provide	the	corresponding
SVN	URL,	as	shown	in	the	following	screenshot,	and	click	on	Finish.	If	you	click	on
Next,	it	will	show	the	repository	structure.

Importing	a	Maven	project
Importing	a	Maven	project	is	like	importing	any	other	Java	project.	The	steps	to	import	a
Maven	project	are	as	follows:

1.	 From	the	File	menu,	click	on	Import.	Choose	Import,	a	source	window	appears,
expand	Maven	and	click	on	Existing	Maven	Projects	as	shown	in	the	following
screenshot:

2.	 In	the	next	wizard,	we	have	to	choose	the	Maven	project’s	location.	Navigate	to	the
corresponding	location	using	the	Browse…	button,	and	click	on	Finish	to	finish	the
import	as	shown	in	the	following	screenshot;	the	project	will	be	imported	in	the
workspace:

Summary
Congratulations!	In	this	chapter,	you	got	acquainted	with	the	Maven	project	structure,	the
POM	file,	other	essential	concepts	of	the	Maven	realm,	and	finally	you	ended	up	learning
how	to	create	and	import	Maven	projects.	For	more	information,	you	can	refer	to	Maven:
The	Complete	Reference	by	Tim	O’Brien,	published	by	Sonatype,	Inc.,	and	the	Apache
Maven	site.	In	the	next	chapter,	we	will	look	at	the	build	cycle	and	you	will	learn	how	to
run	Maven	projects.

Chapter	4.	Building	and	Running	a
Project
Congratulations!	You	are	halfway	through	the	book.	As	discussed	in	earlier	chapters,
Maven	follows	convention	over	configuration;	this	implies	there	is	a	default	build
mechanism	in	place.	The	build	mechanism,	often	termed	as	the	build	lifecycle,	forms	a
sequence	of	steps	grouped	together	in	phases	(also	known	as	stages).	Each	phase	is
accompanied	with	a	set	of	goals	that	define	the	unit	of	task.	In	this	chapter,	we	will	look	at
three	standard	lifecycles—clean,	default,	and	site—and	get	acquainted	with	other	common
lifecycles.	You	will	also	get	to	know	about	building	and	running	the	hello-project,
which	was	created	in	Chapter	3,	Creating	and	Importing	Projects.	This	chapter	covers	the
following	sections:

Build	lifecycle

Default	lifecycle
Clean	lifecycle
Site	lifecycle

Package-specific	lifecycle
The	Maven	console
Building	and	packaging	projects
Running	hello-project

The	build	lifecycle
Building	a	Maven	project	results	in	the	execution	of	set	goals	grouped	in	phases.	Though
there	is	a	default	build	cycle	of	Maven,	it	can	be	customized	to	suit	our	needs;	that’s	the
beauty	Maven	inherits.	To	ascertain,	it	is	essential	to	have	knowledge	of	the	build’s
lifecycle.	Essentially,	the	following	are	the	three	standard	lifecycles	in	Maven:

Default
Clean
Site

The	default	lifecycle
The	default	lifecycle	handles	the	build	of	the	project	and	its	deployment.	It	is	the	primary
lifecycle	of	Maven	and	is	also	known	as	the	build	lifecycle.	In	general,	it	provides	the
build	process	model	for	Java	applications.	There	are	23	phases	for	the	default	lifecycle
that	starts	with	validation	and	ends	with	deploy.	For	details	on	all	23	phases,	please	refer
to	http://maven.apache.org/guides/introduction/introduction-to-the-
lifecycle.html#Lifecycle_Reference.

However,	here	we	will	see	some	of	the	phases	and	the	default	associated	goals	that	need
attention	for	common	application	development,	which	are	as	follows:

Lifecycle
phases Description Plugin:goals

validate This	validates	that	the	project	is	correct	and	contains	all	the	necessary
information	to	perform	the	build	operation -

compile This	compiles	the	source	code compiler:compile

test-
compile This	compiles	the	test	source	code	in	the	test	destination	directory compiler:testCompile

test This	runs	the	test	using	suitable	unit	testing	framework	as	configured	in	the	pom
file

surefire:test

package This	packages	the	compiled	source	code	in	the	corresponding	distributable
format	such	as	JAR,	WAR,	EAR,	and	so	on

jar:jar	(for	JAR
packaging)

install This	installs	the	package	in	the	local	repository,	which	can	act	as	a	dependency
for	other	projects

install:install

deploy This	copies	the	final	package	to	a	remote	repository	to	share	with	other
developers	and	projects

deploy:deploy

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

The	clean	lifecycle
The	clean	lifecycle	is	the	simplest	lifecycle	in	Maven,	and	it	consists	of	the	following
phases:

pre-clean:	This	phase	executes	the	process	needed	before	a	project’s	clean	up
clean:	This	phase	removes	all	files	built	by	an	earlier	build	(the	target	directory)
post-clean:	This	phase	executes	the	process	required	after	a	project’s	cleanup

Out	of	these	phases,	the	one	that	gathers	our	interest	is	the	clean	phase.	The	Maven
“clean:clean”	goal	is	bound	to	the	clean	phase.	It	cleans	the	project’s	build	(usually
target)	directory.	Executing	any	one	phase	result	in	execution	of	all	phases	up	to	it	and
the	phase	itself,	for	example,	a	call	of	a	clean	phase	would	execute	the	first	pre-clean
phase	and	then	the	clean	phase;	similarly,	a	call	of	post-clean	results	in	the	calling	of	pre-
clean,	clean,	and	post-clean	phases.	The	following	diagram	illustrates	the	execution	of	the
clean	lifecycle	phases	(reference:	the	Apache	Maven	site):

We	can	bind	other	goals	to	the	phases	of	the	clean	lifecycle.	Suppose	we	want	to	echo
some	message	on	the	pre-clean	phase;	we	can	achieve	this	by	binding	the	maven-antrun-
plugin:run	goal	to	this	phase,	which	can	be	done	as	follows:

</project>

	

<build>

		<plugins>

				<plugin>

						<groupId>org.apache.maven.plugins</groupId>

						<artifactId>maven-antrun-plugin</artifactId>

						<executions>

								<execution>

										<id>precleanid</id>

										<phase>pre-clean</phase>

										<goals>

												<goal>run</goal>

										</goals>

										<configuration>

												<tasks>

														<echo>Hello	am	in	pre-clean	phase</echo>

																</tasks>

										</configuration>

								</execution>

The	site	lifecycle
The	site	lifecycle	handles	the	creation	of	the	project	site	documentation.	The	phases	of	a
site	lifecycle	are	shown	in	the	following	diagram:

The	following	table	describes	the	site	lifecycle	phases	in	the	order	of	execution.
(reference:	Apache	Maven	website)

Phases Description

pre-site This	phase	executes	processes	needed	before	the	generation	of	a	project	site.

site This	phase	generates	documentation	of	a	project	site

post-site This	phase	executes	a	process	required	after	a	site’s	generation	and	to	prepare	for	site	deployment

site-deploy This	phase	deploys	the	generated	site	documentation	to	the	specified	web	server

Executing	any	one	phase	results	in	the	execution	of	all	phases	up	to	it	and	the	phase	itself.
For	example,	calling	post-site	results	in	the	execution	of	pre-site,	site,	and	post-site	phases.
Similar	to	the	clean	lifecycle,	we	can	bind	other	goals	to	the	site’s	lifecycle.

The	package-specific	lifecycle
Each	type	of	packaging	has	its	own	set	of	default	goals.	The	default	goals	for	JAR
packaging	is	different	from	WAR	packaging.	Maven	provides	a	lifecycle	for	the	following
built-in	packaging	types:

JAR
WAR
EAR
POM
EJB
Maven	plugins

The	lifecycle	and	goal	binding	for	WAR	packaging	is	described	here.	For	other	packaging
lifecycle	and	goal	binding,	please	refer	to
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Built-
in_Lifecycle_Bindings.

Phases plugin:goals

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package war:war

install install:install

deploy deploy:deploy

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Built-in_Lifecycle_Bindings

The	Maven	console
Before	we	get	our	hands	dirty	with	building	and	executing	Maven	projects,	we	need	to
enable	the	Maven	console.	The	Maven	console	can	be	enabled	with	the	following	steps:

1.	 Navigate	to	Window	|	Show	View	|	Console.	This	shows	the	console	view.
2.	 Next,	click	on	the	little	arrow	of	Open	Console	as	shown	in	the	following	screen	and

click	on	Maven	Console:

The	Maven	console	shows	all	the	output	of	the	Maven	build	process.	It	shows	all	the
details	that	Maven	processes	and	is	really	helpful	in	getting	to	know	what	is	happening
underneath	and	you	can	also	see	the	debug	messages.

Building	and	packaging	projects
Building	and	packaging	Maven	projects	needs	execution	of	required	phases,	which	we
discussed	in	the	preceding	sections.	Let’s	build	and	package	hello-project	from	Chapter
3,	Creating	and	Importing	Projects,	which	we	generated	using	archetypes.	In	the	Default
Lifecycle	section,	the	phase	package	executes	the	following	phases	in	order:	compile,	test,
and	package	phases.	Now,	we	will	see	how	to	invoke	the	package	phase	from	m2eclipse.
The	following	steps	will	ascertain	this:

1.	 Right-click	on	hello-project	and	select	Run	As.	Click	on	Run	Configurations	and
the	Run	Configurations	window	will	appear.

2.	 Right-click	on	Maven	Build	and	choose	New	as	shown	in	the	following	screenshot:

3.	 Once	the	launch	configurations	window	appears,	fill	in	the	details	as	shown	in	the
following	screenshot.	For	Base	Directory,	click	on	Browse	Workspace…	and
choose	hello-project	from	the	pop-up	list:

4.	 Next,	click	on	Apply	and	close	it	using	the	Close	button.
5.	 Again	right-click	on	the	project	and	select	Run	As,	and	click	on	Maven	build	as

shown	in	the	following	screenshot:

6.	 A	window,	as	shown	in	the	following	screenshot,	will	appear	with	all	the	run
configurations	available:

7.	 Choose	the	hello-package	launch	configuration	and	click	on	OK.	It	should	compile,
run	tests,	generate	site	documentation,	and	package	in	the	target	directory,	as	shown
in	following	screenshot:

Running	hello-project
Since	hello-project	from	the	previous	chapter	is	a	Java	application,	running	it	is	similar
to	any	other	Java	application.	Right-click	on	the	project,	select	Run	As,	and	click	on	Java
Application,	select	the	main	JAVA	class,	and	click	on	OK.	It	will	print	Hello	World!	in
the	console.

Running	a	web	application	requires	some	extra	steps,	which	we	will	discuss	in	Chapter	5,
Spicing	Up	a	Maven	Project.

Summary
In	this	chapter,	you	learned	about	the	clean,	site,	and	default	build	lifecycles	of	the	Maven
project,	and	later	used	this	knowledge	to	get	the	application	to	package	and	run.

In	the	next	chapter,	we	will	build	a	web	application	and	you	will	learn	to	customize	the
pom	file	to	suit	our	needs.

Chapter	5.	Spicing	Up	a	Maven	Project
So	far	we	have	built	the	base,	and	now	we	are	finally	ready	to	launch	the	rocket.	Rocket!
Exciting,	isn’t	it?	Let’s	put	our	knowledge	from	previous	chapters	to	practice;	we	will	use
Maven	to	create	a	simple	web	application,	MyDistance,	which	lets	the	user	convert
distance	between	different	units.	In	the	process	of	building	this	application,	we	will	also
learn	to	customize	the	project’s	information	and	generate	different	artifacts.	The	topics
that	will	be	covered	in	this	chapter	are	categorized	as	follows:

Creating	the	MyDistance	project
Changing	the	project	information
Adding	dependencies
Adding	resources
The	application	code

Adding	a	form	to	obtain	an	input
Adding	the	servlet
Adding	a	utility	class

Running	an	application
Writing	unit	tests
Running	unit	tests
Generating	site	documentation
Generating	unit	tests—HTML	reports
Generating	javadocs

Creating	the	MyDistance	project
To	create	the	MyDistance	application,	we	need	to	perform	the	following	steps:

1.	 From	the	menu,	navigate	to	File	|	New	|	Other….	A	new	project	wizard	window
appears.	Search	for	maven	in	the	textbox,	select	Maven	Project,	and	click	on	the
Next	button,	as	shown	in	the	following	screenshot:

2.	 A	New	Maven	Project	wizard	appears;	select	the	Use	default	Workspace	location
checkbox,	and	ensure	the	Create	a	simple	project	(skip	archetype	selection)
checkbox	is	unchecked,	as	shown	in	the	following	screenshot:

3.	 Next,	choose	an	archetype	from	the	new	archetype	wizard.	Since	we	are	building	a
web	application,	in	Filter,	search	for	webapp,	choose	maven-archetype-webapp,
and	click	on	Next,	as	shown	in	the	following	screenshot:

4.	 Specify	the	Maven	coordinates,	also	termed	as	Group-Artifact-Version	(GAV)	in
technical	parlance,	with	the	following	values,	and	click	on	Finish:

Field Value

Group	Id com.packt.mvneclipse

Artifact	Id MyDistance

Version 0.0.1-SNAPSHOT

Package com.packt.chpt5.mydistance

Your	screen	will	look	like	the	following	screenshot	once	you	perform	the	previous
step:

Note
A	snapshot	in	Maven	indicates	the	current	development	copy,	that	is,	the	current
snapshot	of	the	code.	Maven	checks	for	a	new	SNAPSHOT	version	in	a	remote
repository	at	a	configured	interval,	for	a	default	time	of	24	hours.	For	more
information	on	Maven	versions,	refer	to
http://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.htm.

5.	 The	web	application	skeleton	gets	created	and	the	structure	would	look	like	the
following	screenshot:

http://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.htm

Don’t	worry	if	you	see	a	red	cross	that	indicates	an	error	in	the	project;	we	will	learn	more
about	it	in	the	upcoming	section,	Application	code.

Changing	the	project	information
Before	we	venture	into	further	details	of	the	code,	let’s	customize	the	project	information.
Let’s	add	information	about	the	organization,	license,	and	developers	associated	with	it.
To	do	this,	let’s	open	the	pom	file	and	add	the	following	code:

<project	>

…....

		<!--	Organization	information	-->

				<organization>	

						<name>Packt	Publishing</name>

						<url>www.packtpub.com</url>

				</organization>	

		<!--	License	information		-->

		<licenses>

				<license>

							<name>Apache	2</name>

						<url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>

						<distribution>manual</distribution>

								<comments>A	Friendly	license</comments>

				</license>

		</licenses>

		<!--	Developers	Information	-->

		<developers>

				<developer>

						<id>foo</id>

								<name>Foo	foo</name>

								<email>foo@foo.com</email>

								<url>http://www.foofoo.net</url>

								<organization>Packt</organization>

								<organizationUrl>http://packtpub.com</organizationUrl>

												<roles>

														<role>developer</role>

												</roles>

												<timezone>-8</timezone>

				</developer>

		</developers>

.......

</project>

Note
For	detailed	information	on	the	Maven	model,	visit
http://maven.apache.org/ref/3.2.1/maven-model/maven.html.

http://maven.apache.org/ref/3.2.1/maven-model/maven.html

Adding	dependencies
Our	project	is	a	simple	web	application,	and	to	begin,	it	will	need	JUnit	as	a	dependency
for	testing	and	log4j	for	logging	purposes.	As	we	progress	further,	we	will	add	more
dependencies	progressively;	the	idea	of	this	section	is	to	show	how	to	add	dependencies	in
the	pom	file.	If	we	see	our	pom	file,	we	can	see	that	JUnit	is	already	present	as	a
dependency;	so,	let’s	add	log4j	as	a	dependency	by	adding	the	following	code	snippet:

<project>

…....

<dependencies>

…

<!--	For	logging	purpose	-->

				<dependency>

						<groupId>log4j</groupId>

						<artifactId>log4j</artifactId>

						<version>1.2.17</version>

				</dependency>

</dependencies>

…....

</project>

The	complete	resultant	pom	file	would	look	like	the	following:

<project	xmlns="http://maven.apache.org/POM/4.0.0"	

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	

http://maven.apache.org/maven-v4_0_0.xsd">

		<modelVersion>4.0.0</modelVersion>

		<groupId>com.packt.mvneclipse</groupId>

		<artifactId>MyDistance</artifactId>

		<packaging>war</packaging>

		<version>0.0.1-SNAPSHOT</version>

		<name>MyDistance	Maven	Webapp</name>

		<url>http://maven.apache.org</url>

		<!--	Organization	information	-->

		<organization>

				<name>Packt	Publishing</name>

				<url>www.packtpub.com</url>

		</organization>

		

		<!--	License	information		-->

		<licenses>

				<license>

							<name>Apache	2</name>

							<url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>

							<distribution>manual</distribution>

							<comments>A	Friendly	license</comments>

				</license>

		</licenses>

		<!--	Developers	Information	-->

		<developers>

				<developer>

				<id>foo</id>

						<name>Foo	foo</name>

						<email>foo@foo.com</email>

						<url>http://www.foofoo.net</url>

						<organization>Packt</organization>

						<organizationUrl>http://packtpub.com</organizationUrl>

						<roles>

								<role>developer</role>

										</roles>

												<timezone>-8</timezone>

				</developer>

				</developers>

		<dependencies>

				<dependency>

						<groupId>junit</groupId>

						<artifactId>junit</artifactId>

						<version>3.8.1</version>

						<scope>test</scope>

				</dependency>

				<!--	For	logging	purpose	-->

				<dependency>

						<groupId>log4j</groupId>

						<artifactId>log4j</artifactId>

						<version>1.2.17</version>

				</dependency>

		</dependencies>

		<build>

				<finalName>MyDistance</finalName>

		</build>

</project>

Adding	resources
We	are	going	to	use	log4j	to	log	in	to	the	file	or	console.	Log4j	is	configured	via	the
log4j	properties	file.	Now	let’s	create	the	properties	file.	To	do	so,	navigate	to
src/main/resources,	right-click	on	resources	and	select	New	|	Other…;	a	new	wizard
appears.	Search	for	file	in	the	Filter	section,	select	File,	and	click	on	Next,	as	shown	in
the	following	screenshot:

Next,	a	File	resource	window	appears;	enter	the	filename	as	log4j.properties	and	make
sure	the	parent	folder	is	MyDistance/src/main/resources	and	click	on	Finish,	as	shown
in	the	following	screenshot:

Note
Resources	are	placed	in	the	src/main/resources	folder.

Once	the	file	is	created,	add	the	following	piece	of	code	to	set	the	different	properties	of
log4j.	It	attaches	the	pattern	layout	to	split	out	information	on	the	console,	writes	a	log	to
the	Mydistance.log	file,	and	is	set	to	the	DEBUG	level,	as	shown	in	the	following	code:

#log4j	Properties	

		log4j.rootLogger=DEBUG,	consoleAppender,	fileAppender

		log4j.appender.consoleAppender=org.apache.log4j.ConsoleAppender

		log4j.appender.consoleAppender.layout=org.apache.log4j.PatternLayout

		log4j.appender.consoleAppender.layout.ConversionPattern=[%t]	%-5p		%c{1}	

%x	-	%m%n

		log4j.appender.fileAppender=org.apache.log4j.RollingFileAppender

		log4j.appender.fileAppender.layout=org.apache.log4j.PatternLayout

		log4j.appender.fileAppender.layout.ConversionPattern=[%t]	%-5p		%c{1}	%x	

-	%m%n

		log4j.appender.fileAppender.File=Mydistance.log

For	more	information	on	log4j,	refer	to	http://logging.apache.org/log4j/1.2/.

http://logging.apache.org/log4j/1.2/

The	application	code
The	application	is	deliberately	created	in	JSP	or	servlets	to	keep	it	simple	and	to	avoid
having	familiarity	with	other	frameworks	to	understand	the	example.	Before	we	get	into
the	basics	of	the	application	code,	let’s	solve	the	error	that	Eclipse	complains	of	in	step	5
of	the	Creating	a	MyDistance	Project	section.	Add	the	following	dependency	in	the	pom
file	and	the	error	should	vanish:

<!--	Include	servlet		API	-->

		<dependency>

				<groupId>javax.servlet</groupId>

				<artifactId>javax.servlet-api</artifactId>

				<version>3.1.0</version>

				<scope>provided</scope>

		</dependency>

The	preceding	dependency	will	also	be	required	for	writing	servlets	later	in	the	Adding	a
Servlet	section.

Note
The	scope	is	provided,	which	means	that	the	container	will	provide	this	dependency,	and
Maven	will	not	include	it	in	this	project’s	output	or	war	file.	We	discussed	scopes	in	more
detail	in	Chapter	4,	Building	and	Running	a	Project.

The	application	will	require	the	following	additional	files:

index.jsp:	This	is	a	JSP	file	with	a	form	that	allows	users	to	enter	a	distance,	its	unit,
and	the	desired	conversion	unit
DistanceServlet:	This	is	a	servlet	that	processes	the	inputs	from	the	form
ConversionUtil:	This	is	a	utility	class	that	has	a	method	to	perform	conversion
between	different	units

Adding	a	form	to	get	an	input
Under	src/main/webapp,	open	the	index.jsp	file,	and	add	the	following	code	to	get	the
distance,	its	unit,	and	conversion	unit	as	input.	The	form	consists	of	an	input	box,	two
radio	buttons	to	choose	units,	and	a	button	to	initiate	the	conversion,	as	shown	in	the
following	code:

<body>

<h2>MyDistance	Utility</h2>

		<form>

				<table>

						<tr>

								<td><input	type="text"	id="mydistance"	name='distance'	

placeholder="My	Distance	In"></td>

								<td>	<input	type="radio"	name="distin"	id="distin"	

value="km">KM

								<input	type="radio"	name="distin"	id="distin"	value="m">Metre</td>

						</tr>

						<tr></tr>

						<tr></tr>

						<tr></tr>

						<tr>	

								<td>	<label	for="convert">Convert	To</label></td>

								<td>	<input	type="radio"	name="convertto"	id="convertto"	

value="yd">Yard

								<input	type="radio"	name="convertto"	id="convertto"	

value="mi">Miles</td>

						</tr>

						<tr>

								<td><input	type="button"	id="submit"	value='Convert'></td>

						</tr>

						

				</table>

				<div	id="convertvalue">	</div>

		</form>

</body>

If	you	like,	you	can	add	CSS	styles	to	make	the	UI	more	pleasing.	The	preceding	bare
bones	file	results	in	something	like	this:

We	want	to	calculate	the	value	and	show	the	corresponding	result	beneath	it	using	Ajax
(jQuery	Ajax).	To	achieve	this,	add	the	following	piece	of	code:

<head>

		<script	src="http://code.jquery.com/jquery-latest.js">

		</script>

		<script>

				$(document).ready(function()	{

				$('#submit').click(function(event)	{

						var	mydistance=$('#mydistance').val();

		

						var	mydistanceIn=$('[name=distin]:checked').val();

						var	convertTo=$('[name=convertto]:checked').val();

						if(mydistanceIn==convertTo){

								alert("Cannot	have	same	unit");

								return	false;

						}

						console.log(mydistance+mydistanceIn+convertTo);

						$.get('mydistance',

{distance:mydistance,distIn:mydistanceIn,convert:convertTo},function(respon

seText)	{	

										$('#convertvalue').text(responseText);

								});

						});

				});

		</script>

</head>

Adding	a	servlet
Before	we	add	any	Java	files,	create	a	folder,	java,	under	src/main	as	Maven	looks	for
Java	files	in	this	directory	(all	Java	files	should	reside	under	it).	Add	the	DistanceServlet
servlet	in	the	com.packt.chpt5.mydistance	package.	The	servlet	gets	the	request
parameters,	extracts	it,	and	calls	the	corresponding	conversion	method	in	the	utility	class.
The	servlet	would	look	like	the	following:

public	class	DistanceServlet	extends	HttpServlet	{

		private	static	final	long	serialVersionUID	=	1L;

		static	Logger	log=Logger.getLogger(DistanceServlet.class);

		public	void	doGet(HttpServletRequest	req,	HttpServletResponse	resp)

								throws	ServletException,	IOException	{

								double	convertVal	=	0;

								double	distanceProvided	

=Double.parseDouble(req.getParameter("distance"));

				String	distanceIn=req.getParameter("distIn");

				String	convertTo=req.getParameter("convert");

				log.debug("Request	Parameters	==>"+"Distance-

"+distanceProvided+distanceIn+"	Conversion	Unit-	"+convertTo);

				ConversionUtil	conversion=	new	ConversionUtil();

				if(distanceIn.equals("km")	&&	convertTo.equals("yd")){

						convertVal=conversion.convertkmToYard(distanceProvided);

				}

				if(distanceIn.equals("m")	&&	convertTo.equals("yd")){

								convertVal=conversion.convertMtoYard(distanceProvided);

				}

				if(distanceIn.equals("km")	&&	convertTo.equals("mi")){

								convertVal=conversion.convertKMToMile(distanceProvided);

				}

				if(distanceIn.equals("m")	&&	convertTo.equals("mi")){

						convertVal=conversion.convertMToMile(distanceProvided);

				}

				resp.setContentType("text/html");

						PrintWriter	out	=	resp.getWriter();

						out.print("The	converted	value	is	"+convertVal);

						out.flush();

						out.close();

				}

}

Add	the	following	lines	in	the	web.xml	file	under	src/main/webapp/WEB-INF:

<web-app>

		<display-name>MyDistance	Calculator</display-name>

		<servlet>

								<servlet-name>mydistance</servlet-name>

								<servlet-class>com.packt.chpt5.mydistance.DistanceServlet</servlet-

class>

								<load-on-startup>1</load-on-startup>

				</servlet>

				<servlet-mapping>

								<servlet-name>mydistance</servlet-name>	

								<url-pattern>/mydistance</url-pattern>

				</servlet-mapping>

</web-app>

Adding	a	utility	class
Add	a	utility	class	ConversionUtil	in	the	com.packt.chpt5.mydistance.util	package.
A	utility	class	contains	methods	to	perform	conversion	across	different	distance	units.	Add
the	following	code	to	the	utility	class:

public	double	convertKMToMile(double	distance){

		return	(distance*0.62137);

}

public	double	convertkmToYard(double	distance){

		return	distance*1093.6;

}

public	double	convertMToMile(double	distance){

		return	(distance/1000)*0.62137	;

}

public	double	convertMtoYard(double	distance){

		return	(distance/1000)*1093.6;

}

Running	an	application
Now	we	are	done	with	coding.	Let’s	run	the	coding	and	see	how	it	works.	The	project	is	a
web	application,	so	it	requires	a	servlet	container	to	run.	We	will	use	the	Tomcat	container
here.	Add	the	following	build	plugin	for	the	Tomcat	that	can	actually	host	a	Tomcat
instance	right	from	Maven	and	no	installation	is	required:

				<build>

….

		<plugins>

		<plugin>

				<groupId>org.apache.tomcat.maven</groupId>

				<artifactId>tomcat7-maven-plugin</artifactId>

				<version>2.1</version>

		</plugin>

		</plugins>

				</build>

This	will	download	all	the	dependencies	from	the	repository.	After	the	download	is
complete,	right-click	on	the	project,	choose	Run	As	|	Run	Configurations…,	create	the
configuration	in	the	configuration	window	specifying	Goals	as	tomcat7:run,	and	click	on
Run,	as	shown	in	the	following	screenshot:

Note
The	Tomcat	plugin	has	the	run	goal,	which	compiles	and	runs	the	application.

Similarly,	we	can	add	any	other	container	and	run	the	application	in	it.	The	running
application	will	be	available	at	http://localhost:8080/MyDistance/	and	would	look
like	the	following	screenshot	(shown	with	a	sample	conversion):

Writing	unit	tests
Writing	unit	tests	is	a	part	of	good	practice	in	software	development.	Maven’s	test	phase
executes	unit	tests	and	generates	the	corresponding	report.	In	this	section,	we	will	learn
about	writing	a	simple	unit	test	for	our	utility	class	ConversionUtil,	and	in	the	next
section,	we	will	see	how	to	execute	it	and	generate	reports.

All	the	unit	test	classes	should	go	under	src/test/java.	Create	the	corresponding	folder
in	the	MyDistance	project.	Once	the	folder	is	in	place,	right-click	on	it	and	navigate	to
New	|	Other….	Once	the	wizard	window	appears,	type	in	junit	in	the	Filter	section,
select	JUnit	Test	Case,	and	click	on	Next,	as	shown	in	the	following	screenshot:

In	the	window	to	follow,	define	the	unit	test	class	by	filling	in	the	following	details	and
click	on	Next,	as	shown	in	the	preceding	screenshot:

Fields Values

Source	folder MyDistance/src/test/java

Package com.packt.chpt5.mydistance.util

Name ConvertionUtilTest

Class	under	test com.packt.chpt5.mydistance.util.ConversionUtil

A	window	to	choose	test	methods	will	be	shown,	for	which	stubs	will	be	generated	as
shown	in	the	following	screenshot.	Make	sure	that	all	methods	of	the	ConversionUtil
class	are	checked	and	click	on	Finish	as	follows:

The	ConversionUtilTest	test	class	with	the	test	method	stubs	will	be	generated.	Edit	the
code	of	the	class	as	follows:

private	ConversionUtil	conversion;

		@Override

		protected	void	setUp()	throws	Exception	{

				super.setUp();

				conversion=	new	ConversionUtil();

		}

		public	void	testConvertKmToMile()	{

				double	actual=conversion.convertKMToMile(4);

				assertEquals(2.48548,actual,0.001);

		}

		public	void	testConvertkmToYard()	{

				double	actual=conversion.convertkmToYard(4);

				assertEquals(4374.45,actual,0.10);

		}

		public	void	testConvertMToMile()	{

				double	actual=conversion.convertMToMile(4000);

				assertEquals(2.48548,actual,0.001);

		}

		public	void	testConvertMtoYard()	{

				double	actual=conversion.convertMtoYard(4000);

				assertEquals(4374.45,actual,0.10);

		}

		@Override

		protected	void	tearDown()	throws	Exception	{

				super.tearDown();

				conversion	=	null;

		}

For	more	information	on	JUnit	test	cases,	refer	to	http://junit.org/.

http://junit.org/

Running	unit	tests
Running	the	unit	test	in	Maven	is	just	specifying	the	phase	test.	To	execute	the	unit	test	we
wrote	in	the	preceding	section,	right-click	on	the	MyDistance	project,	select	Run	As,	and
click	on	Maven	Test.	It	will	run	the	unit	tests	against	the	class	and	generate	the	report	in
the	/target/surefire-reports/	folder,	as	shown	in	the	following	screenshot:

You	can	see	the	results	of	unit	test	execution	in	the	txt	and	xml	format.

Generating	site	documentation
One	of	the	integral	features	of	Maven	is	that	it	eases	artifacts	and	site	documentation
generation.	To	generate	site	documentation,	add	the	following	dependency	in	the	pom	file:

<reporting>

				<plugins>

				<!--		Reporting	-document	generation	-->

						<plugin>

								<groupId>org.apache.maven.plugins</groupId>

								<artifactId>maven-plugin-plugin</artifactId>

								<version>3.3</version>

						</plugin>

								<plugin>

						<groupId>org.apache.maven.plugins</groupId>

		<artifactId>maven-project-info-reports-plugin</artifactId>

		<version>2.7</version>

						</plugin>

				</plugins>

				

		</reporting>

After	adding	the	preceding	dependencies,	run	the	project	with	the	goal	as	site,	that	is,	in
the	Run	Configurations	window,	specify	Goals	as	site,	as	shown	in	following
screenshot:

Click	on	the	Run	button	and	the	documentation	will	be	generated.	The	excerpts	of	the
output	in	Maven	Console	would	look	like	the	following:

[INFO]	Generating	"About"	report				---	maven-project-info-reports-

plugin:2.7

[INFO]	Generating	"Plugin	Management"	report				---	maven-project-info-

reports-plugin:2.7

[INFO]	Generating	"Distribution	Management"	report				---	maven-project-

info-reports-plugin:2.7

[INFO]	Generating	"Dependency	Information"	report				---	maven-project-

info-reports-plugin:2.7

[INFO]	Generating	"Source	Repository"	report				---	maven-project-info-

reports-plugin:2.7

[INFO]	Generating	"Mailing	Lists"	report				---	maven-project-info-reports-

plugin:2.7

[INFO]	Generating	"Issue	Tracking"	report				---	maven-project-info-

reports-plugin:2.7

[INFO]	Generating	"Continuous	Integration"	report				---	maven-project-

info-reports-plugin:2.7

[INFO]	Generating	"Project	Plugins"	report				---	maven-project-info-

reports-plugin:2.7

[INFO]	Generating	"Project	License"	report				---	maven-project-info-

reports-plugin:2.7

[INFO]	Generating	"Project	Team"	report				---	maven-project-info-reports-

plugin:2.7

[INFO]	Generating	"Project	Summary"	report				---	maven-project-info-

reports-plugin:2.7

[INFO]	Generating	"Dependencies"	report				---	maven-project-info-reports-

plugin:2.7

[INFO]	--

[INFO]	BUILD	SUCCESS

[INFO]	--

The	documentation	would	be	generated	in	the	target/site	folder	and	the	expansion	of
the	folder	would	look	like	the	following:

There	is	an	HTML	file	for	each	type	of	detail	ranging	from	project-info,	project
reports,	project	summary,	license,	plugin,	and	so	on,	and	index.html	being	the	start
point	that	links	every	document.	The	Project	Summary	page	is	shown	in	the	following
screenshot:

For	more	information	on	site	and	site	plugins,	please	refer	to

http://maven.apache.org/guides/mini/guide-site.html	and
http://maven.apache.org/plugins/maven-site-plugin/.

http://maven.apache.org/guides/mini/guide-site.html
http://maven.apache.org/plugins/maven-site-plugin/

Generating	unit	tests	–	HTML	reports
In	the	preceding	section,	we	ran	the	unit	tests,	and	the	results	were	generated	in	the	txt
and	xml	format.	Often,	developers	need	to	generate	more	readable	reports.	Also,	as	a
matter	of	fact,	the	reports	should	be	a	part	of	site	documentation	for	better	collaboration
and	information	available	in	one	place.	To	generate	an	HTML	report	and	make	it	a	part	of
site	documentation,	add	the	dependency	under	the	reporting	element	as	plugin	in	the
pom	file	as	follows:

<reporting>

				<plugins>

…...

<!--	For	HTML	test	report	generation	-->

						<plugin>

								<groupId>org.apache.maven.plugins</groupId>

								<artifactId>maven-surefire-report-plugin</artifactId>

								<version>2.17</version>

						</plugin>

…...

				</plugins>

</reporting>

After	the	addition	shown	in	the	preceding	code,	run	the	site	phase	from	the	previous
section.	The	test	reports	would	be	available	by	navigating	to	Project	Documentation	|
Project	Reports	|	Surefire	Report	of	the	navigation	in	index.html,	as	shown	in	the
following	screenshot:

Generating	javadocs
We	often	need	to	generate	API	documentation	of	our	code	base.	Having	an	API
documentation	increases	collaboration,	understanding,	migration,	and	the	transfer	of
knowledge	becomes	handy.	To	generate	javadocs,	add	the	following	dependency	in	the
reporting	element	as	follows:

<reporting>

				<plugins>

		…...

		<!--	For	Javadoc	generation-->

								<plugin>

								<groupId>org.apache.maven.plugins</groupId>

								<artifactId>maven-javadoc-plugin</artifactId>

								<version>2.9.1</version>

							</plugin>	

		</plugins>

</reporting>

After	making	the	preceding	changes	to	the	pom	file,	run	the	site	phase	from	the	previous
section.	The	APIs	will	be	generated	in	the	apidocs	and	testapidocs	folders	under
target/site.	This	can	be	navigated	in	the	index.html	file,	under	the	Project	Reports
head	with	JavaDocs	and	the	Test	JavaDocs	label,	along	with	Surefire-Reports	as	shown
in	the	following	screenshot:

Summary
Well	done!	We	have	developed	MyDistance,	a	distance	conversion	utility	web	application.
During	the	course	of	development,	we	learned	adding	dependencies,	writing	unit	tests,
executing	them,	generating	site	documentation,	and	generating	javadocs	for	them.	In	the
next	chapter,	we	will	learn	about	multimodule	projects	with	Maven.

Chapter	6.	Creating	a	Multimodule
Project
Now	that	we	have	already	launched	the	rocket,	let’s	explore	more	of	it.	In	this	chapter,	we
will	develop	a	MyDistance	application	from	the	previous	chapter	as	a	multimodule	Maven
project	and	learn	how	to	create	multimodule	projects,	build,	and	run	them.	The	topics
covered	in	this	chapter	are	as	follows:

Introduction
Creating	a	parent	project—POM
Creating	a	core	module
Creating	a	webapp	module
Building	a	multimodule	project

Introduction
Software	architecture	states	modularity	as	the	degree	to	which	a	system’s	components	may
be	separated	and	recombined.	In	software	engineering,	modularity	refers	to	the	extent	to
which	a	software/application	can	be	divided	into	multiple	modules	to	achieve	the	business
goal.	Modularity	enhances	manageability	and	reusability.	The	growing	days	has	seen
software	getting	more	complex,	and	modularity	is	the	need	of	the	hour.

Multimodule	projects	consist	of	many	modules	that	adapt	to	modularity.	A	multimodule
project	is	identified	by	a	parent/master	POM	referencing	one	or	more	.sub	modules.

A	multimodule	project	constitutes	of	the	following:

Parent	project	POM:	This	glues	and	references	all	the	other	modules	of	a	project
Modules:	This	includes	submodules	that	serve	different	functions	of	the	application
and	constitute	the	application

Parent	POM	is	where	you	can	put	common	dependencies	in	a	single	place	and	let	other
modules	inherit	it,	that	is,	POM	inheritance	in	modules.	Usually,	universal	dependencies
such	as	JUnit	or	log4j	are	the	candidates	of	POM	inheritance.

The	mechanism	by	which	Maven	handles	multimodule	projects	is	referred	to	as	reactor.
The	reactor	of	Maven’s	core	has	the	following	functions:

Collects	all	the	modules	to	build
Sorts	the	projects	(modules)	into	the	current	build	order
Builds	the	sorted	projects	in	order

The	modules	of	the	project	are	enclosed	inside	the	<modules>	</modules>	tag	by
specifying	each	module	with	the	<module>	</module>	tag.	Similarly,	the	parents	are
enclosed	inside	the	<parent>	</parent>	tag	by	specifying	Maven	coordinates.

Now,	for	illustration,	we	will	take	the	MyDistance	application	from	Chapter	5,	Spicing	Up
a	Maven	Project,	and	develop	it	as	a	multimodule	project.	The	modules	of	the	project
would	be	as	follows:

Distance-main:	This	is	the	parent	project,	also	known	as	parent	POM,	that	glues	and
references	different	modules	of	the	project,	that	is,	distance-core	and	distance-
webapp

distance-core:	This	module	provides	a	simple	distance	conversion	utility	class
distance-webapp:	This	is	a	web	interface	in	which	you	can	input	the	units	that
depend	on	the	distance-core	module	to	perform	a	conversion	and	respond	to	the
results

In	the	subsequent	sections,	we	will	get	into	the	details	of	the	preceding	modules.

Creating	a	parent	project	–	POM
The	first	step	towards	building	a	multimodule	project	is	setting	up	a	parent	POM.	To	do
this,	follow	the	ensuing	steps:

1.	 Navigate	to	File	|	New	and	click	on	Maven	Project.	Alternatively,	navigate	to	File	|
New	and	click	on	Other….	In	the	Select	a	wizard	screen,	search	for	maven	via	the
search	box,	select	Maven	Project,	and	click	on	the	Next	button,	as	shown	in	the
following	screenshot:

2.	 The	New	Maven	Project	wizard	appears;	make	sure	that	you	tick	the	checkbox
Create	a	simple	project	(skip	archetype	selection),	as	shown	in	the	following
screenshot,	and	click	on	Next:

3.	 The	New	Maven	project	configuration	wizard	appears;	fill	in	the	details	as	shown	in
the	screenshot	and	click	on	Finish:

Make	sure	that	you	choose	the	packaging	as	POM	from	the	dropdown:

Field Value

Group	Id com.packt.mvneclipse

Artifact	Id Distance-main

Version 0.0.1-SNAPSHOT

Packaging pom

4.	 The	corresponding	project	will	get	created,	and	the	resulting	screen	would	look	as
follows:

We	have	the	parent	POM	in	place	now.

Creating	a	core	module
The	core	module	of	MyDistance	will	contain	a	class	that	can	be	converted	across	different
units,	that	is,	from	km/meter	to	yard/miles.	Let’s	name	this	core	module	distance-core.
To	create	a	core	module,	perform	the	following	steps:

1.	 Navigate	to	File	|	New	and	click	on	Other….	In	the	Select	a	wizard	screen,	search
for	maven	via	the	search	box,	select	Maven	Module,	and	click	on	the	Next	button,	as
shown	in	the	following	screenshot:

2.	 The	New	Maven	Module	wizard	appears;	make	sure	to	tick	the	checkbox	Create	a
simple	project	(skip	archetype	selection),	provide	the	module	name	as	distance-
core,	and	browse	to	select	the	parent	as	Distance-main,	as	shown	in	the	following
screenshot:

3.	 In	the	Configure	project	Maven	module	wizard,	fill	in	the	details	provided	in	the
table	after	the	following	screenshot	and	click	on	Finish:

Field Value

Group	Id com.packt.mvneclipse

Version 0.0.1-SNAPSHOT

Packaging jar

Since	the	core	module	just	contains	a	Java	class	and	is	available	to	be	used	as	a
library	for	a	web	module	of	an	application,	the	packaging	type	is	jar.

4.	 The	distance-core	module	gets	created	and	the	contents	of	the	POM	will	look	as
follows:

<project	xmlns="http://maven.apache.org/POM/4.0.0"	

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	

http://maven.apache.org/xsd/maven-4.0.0.xsd">

			<modelVersion>4.0.0</modelVersion>

				<parent>

				<groupId>com.packt.mvneclipse</groupId>

								<artifactId>Distance-main</artifactId>

								<version>0.0.1-SNAPSHOT</version>

				</parent>

				<artifactId>distance-core</artifactId>

				</project>

Note
Please	note	that	the	parent	of	the	module	is	enclosed	in	the	<parent></parent>	tag.
Also,	the	groupId	and	version	tags	will	not	be	present	for	a	module	since	we
specified	the	same	groupId	and	version	as	the	parent	in	the	Configure	Maven
Module	wizard.	We	did	this	in	the	preceding	code	while	creating	a	module.

At	any	point,	if	we	wish	to	change	or	add	groupId/version/artifactId,	we	can
always	edit	the	pom.xml	file	since	it’s	an	XML	file.

5.	 The	core	module	consists	of	a	class	file	that	performs	the	conversion	across	distance
units.	Now	let’s	add	a	class;	right-click	on	the	project,	navigate	to	New,	select
Package,	and	specify	the	package	name	as	com.packt.chpt6.mydistance.util.

6.	 Create	a	class	named	ConversionUtil	in	the	preceding	package.	If	you	remember,
we	created	this	class	in	Chapter	5,	Spicing	Up	a	Maven	Project.	So,	copy	the	contents
of	this	class	and	save	it.

7.	 Now	let’s	put	a	unit	test	class	in	place.	Create	a	package,
com.packt.chpt6.mydistance.util,	in	src/test/java.	Add	the	class
ConversionUtilTest	to	the	corresponding	package.	Refer	to	Chapter	5,	Spicing	Up	a
Maven	Project,	where	we	created	this	test	class;	copy	the	contents	of	this	class	and
save	it.	The	resulting	src	structure	will	look	as	follows:

You	might	notice	that	we	have	some	errors,	and	the	errors	are	due	to	the	TestCase	class
not	being	resolved.	To	solve	this	error,	add	jUnit	as	a	dependency	to	the	parent	module,
the	pom.xml	file,	as	shown	in	the	following	code:

				<dependency>

						<groupId>junit</groupId>

						<artifactId>junit</artifactId>

						<version>3.8.1</version>

						<scope>test</scope>

				</dependency>	

Note
Usually,	JUnit	and	log4j	dependencies,	that	is,	common	dependencies	across	modules,	are
put	in	one	place	in	the	parent	POM	and	the	modules	inherit	them.

Creating	a	webapp	module
The	webapp	module	has	a	JSP	file	that	has	a	form	to	accept	the	input.	It	also	has	a	servlet
that	accepts	the	request	parameters	and	performs	the	conversion	using	a	core	module	and
provides	the	response.	Now	let’s	see	how	to	get	the	webapp	module	in	place	by
performing	the	following	steps:

1.	 Navigate	to	File	|	New	and	click	on	Other…;	in	the	Select	a	wizard	screen,	search
for	maven	via	the	search	box,	select	Maven	Module,	and	click	on	the	Next	button	as
shown	in	the	following	screenshot:

2.	 In	the	New	Maven	Module	window	that	will	follow,	provide	the	module	name	as
distance-webapp	and	browse	to	select	the	parent	as	Distance-main.

3.	 In	the	Select	an	Archetype	window,	search	for	webapp	via	the	search	box,	select
maven-archetype-webapp,	and	click	on	Next	to	proceed,	as	shown	in	the	following
screenshot:

4.	 In	the	New	Maven	module	window,	fill	in	the	details	provided	in	the	following	table

and	click	on	Finish	as	shown	in	the	screenshot	that	follows	this	table:

Field Value

Group	Id com.packt.mvneclipse

Version 0.0.1-SNAPSHOT

Package com.packt.chpt6.mydistance

5.	 The	webapp	module	will	be	created,	and	the	resulting	structure	will	look	like	the
following	screenshot:

6.	 Now	if	we	look	at	the	parent	project’s	structure,	we	might	notice	that	it	has	a
reference	to	each	of	the	modules,	as	shown	in	the	following	screenshot:

7.	 Also,	if	we	take	note	of	the	pom.xml	file	of	the	parent	project,	we	will	see	how
modules	are	being	added	to	the	<module>	tag	as	follows:

<modules>

		<module>distance-core</module>

		<module>distance-webapp</module>

</modules>

8.	 Open	the	webapp	module’s	pom.xml	file	and	add	the	dependencies	for	log4j,	servlet,
and	Tomcat,	as	shown	in	the	following	code;	this	is	also	discussed	in	Chapter	5,
Spicing	Up	a	Maven	Project,	in	more	detail:

				<!--	Include	servlet		API	-->

		<dependency>

				<groupId>javax.servlet</groupId>

				<artifactId>javax.servlet-api</artifactId>

				<version>3.1.0</version>

				<scope>provided</scope>

		</dependency>

		<!--	For	logging	purpose	could	be	put	in	parent	POM	for	modules	to	

inherit		-->

				<dependency>

				<groupId>log4j</groupId>

				<artifactId>log4j</artifactId>

				<version>1.2.17</version>

		</dependency>

<!--		For	tomcat		

<plugins>

				<plugin>

										<groupId>org.apache.tomcat.maven</groupId>

										<artifactId>tomcat7-maven-plugin</artifactId>

										<version>2.1</version>

				</plugin>

				</plugins>

9.	 Also,	add	distance-core	as	a	dependency	since	it	is	used	by	the	webapp	to	perform
the	conversion,	as	shown	in	the	following	code:

		<dependency>

		<groupId>com.packt.mvneclipse</groupId>

				<artifactId>distance-core</artifactId>

				<version>0.0.1-SNAPSHOT</version>

				<scope>compile</scope>

		</dependency>

10.	 Add	the	log4j.properties	file	to	the	resources	folder.	Refer	to	the	Adding
Resources	section	in	Chapter	5,	Spicing	Up	a	Maven	Project.

11.	 Add	the	form	to	get	input	and	add	servlets	(refer	to	sections	Adding	a	form	for	getting
input	and	Adding	Servlet	of	Chapter	5,	Spicing	Up	a	Maven	Project).

Building	a	multimodule	project
Now	that	we	are	done	with	writing	the	code	for	modules,	let’s	build	the	project.	Right-
click	on	the	parent	project—in	this	case,	Distance-main—select	Run	As,	and	click	on
Maven	test.	This	should	compile	and	run	the	unit	tests.	An	excerpt	of	the	output	in	the
console	is	as	follows:

[INFO]	Scanning	for	projects…

[INFO]	--

[INFO]	Reactor	Build	Order:

[INFO]	

[INFO]	Distance-main

[INFO]	distance-core

[INFO]	distance-webapp	Maven	Webapp

[INFO]	

[INFO]	Using	the	builder	

org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThreadedBu

ilder	with	a	thread	count	of	1

[INFO]																																																														

[INFO]	--

[INFO]	Building	Distance-main	0.0.1-SNAPSHOT

[INFO]	---

[INFO]	--

[INFO]	Building	distance-core	0.0.1-SNAPSHOT

[INFO]	--

--

	T	E	S	T	S

Running	com.packt.chpt6.mydistance.util.ConversionUtilTest

Tests	run:	4,	Failures:	0,	Errors:	0,	Skipped:	0,	Time	elapsed:	0.009	sec

Results	:

Tests	run:	4,	Failures:	0,	Errors:	0,	Skipped:	0

[INFO]																																																										

[INFO]	--

[INFO]	Building	distance-webapp	Maven	Webapp	0.0.1-SNAPSHOT

[INFO]	---

[INFO]	--

[INFO]	Reactor	Summary:

[INFO]	

[INFO]	Distance-main…..................................	SUCCESS	[0.002	s]

[INFO]	distance-core…..................................	SUCCESS	[2.250	s]

[INFO]	distance-webapp	Maven	Webapp…...................	SUCCESS	[0.161	s]

[INFO]	--

[INFO]	BUILD	SUCCESS

[INFO]	--

The	mechanism	referred	to	as	a	reactor	knows	the	order	of	building	a	project.	Now	again,
right-click	on	Distance-main,	select	Run	As,	and	click	on	Maven	install	to	install	the
modules	in	a	local	repository.

Note
Always	make	sure	to	clean	the	project	by	running	Maven	clean	via	the	Run	As	option	if
any	changes	occur;	alternatively,	you	can	reinstall	the	project	using	Maven	install.

Running	the	application
To	run	the	application,	right-click	on	the	webapp	module	of	the	parent	project	highlighted
in	the	following	screenshot,	select	Run	As,	and	then	click	on	Run	Configurations….	In
the	Run	configuration	window,	specify	the	goal	as	tomcat7:run	and	click	on	the	Run
button.	The	web	application	will	run	at	http://localhost:8080/distance-webapp/;
point	the	browser	to	this	location	and	perform	the	conversion:

Summary
In	this	chapter,	we	learned	how	to	create	a	multimodule	project	and	then	build	and	run	the
application.	In	the	next	chapter,	we	will	take	a	sneak	peek	into	m2eclipse	and	learn	how	to
customize	it.

Chapter	7.	Peeking	into	m2eclipse
We	are	toward	the	end	of	the	journey;	now	in	this	chapter,	we	will	look	into	other
additional	features	in	m2eclipse,	getting	familiar	with	the	form-based	POM	editor,	and
learn	about	repositories.

The	topics	covered	in	this	chapter	are	as	follows:

Other	features	in	m2eclipse
A	form-based	POM	editor
Analyzing	project	dependencies
Working	with	repositories
m2eclipse	preferences

Other	features	in	m2eclipse
The	following	steps	have	to	be	performed	in	order	to	understand	the	other	features	of
m2eclipse.	Right-click	on	the	Maven	project	and	navigate	to	the	Maven	menu	item.	Then,
you	can	see	the	available	features	as	shown	in	the	following	screenshot:

If	you	see	the	screenshot,	the	available	features	are	as	follows:

Add	Dependency
Add	Plugin
New	Maven	Module	Project
Download	JavaDoc
Download	Sources
Update	Project
Disable	Workspace	Resolution
Disable	Maven	Nature

Similarly,	right-click	on	Maven	Dependencies	and	navigate	to	the	Maven	menu	item.
The	available	features	seen	are	shown	in	the	following	screenshot:

The	available	features	are	as	follows:

Download	JavaDoc
Download	Sources
Exclude	Maven	Artifact
Open	POM
Open	JavaDoc
Import	Project(s)	from	SCM

In	the	sections	to	follow,	we	will	collectively	discuss	these	features.

Add	Dependency
It	allows	us	to	add	dependencies	to	the	Maven	project.	The	screenshot	for	this	is	shown	as
follows:

Up	until	now,	we	have	been	editing	the	pom.xml	file	and	adding	dependencies	to	it.
Adding	dependencies	is	another	way	to	achieve	the	same	objective	using	the	graphical
interface.	When	you	use	this	option,	the	information	you	need	to	know	is	less,	that	is,
knowing	artifactId/groupId	is	enough	to	search	across	repositories	and	select	the
appropriate	one.	In	the	previous	method,	you	need	to	know	complete	Maven	coordinates
to	add	the	dependencies;	hence,	the	latter	is	a	time	saver.

Add	Plugin
Similar	to	Add	Dependency,	Add	Plugin	allows	you	to	add	plugins	via	the	graphical
interface.	This	requires	us	to	have	minimal	information	to	search	through	the	repository
and	add	plugins.	The	screenshot	for	this	is	as	follows:

New	Maven	Module	Project
In	Chapter	6,	Creating	a	Multimodule	Project,	we	created	a	multimodule	project	and
learned	about	creating	module	projects.	This	is	another	way	to	invoke	the	same	Add
module	wizard	to	create	modules.	The	screenshot	of	the	window	is	shown	as	follows,
which	is	the	same	as	the	screenshot	obtained	when	you	navigate	to	New	|	Other	|	Maven
Module	and	right-click	on	the	project	(as	we	saw	in	the	previous	chapter):

Download	JavaDoc
Download	JavaDoc	is	used	to	download	the	javadoc	of	the	project	if	present	in	the	central
repository	to	the	local	repository.	For	example,	right-click	on	the	log4j-1.2.17.jar	file
under	Maven	Dependencies	and	click	on	Download	JavaDoc,	as	shown	in	the	following
screenshot.	The	javadoc	will	be	downloaded	to	the	local	repository	along	with	other
artifacts	at	the	$HOME/.m2/repository/log4j/log4j/1.2.17/	as	log4j-1.2.17-
javadoc.jar	location:

Download	Source
If	the	central	repository	has	a	source	artifact	for	the	corresponding	project,	we	can	use	this
option	to	download	it	to	the	local	repository	and	use	it	with	the	Eclipse	environment.	This
is	a	life	saver,	particularly	when	we	are	debugging	a	complex	issue	and	there	is	need	to
drill	down	the	code	of	dependencies.	For	example,	the	source	code	of	log4j	will	be
downloaded	at	the	$HOME/.m2/repository/log4j/log4j/1.2.17/	as	log4j-1.2.17-
javadoc.jar	location.	After	downloading	the	source	code,	right-click	on	the	log4j-
1.2.17.jar	file	and	click	on	Properties,	as	shown	in	the	following	screenshot:

The	Properties	window	appears;	the	Java	Source	Attachment	navigation	button	shows
the	attached	source	code	location,	as	shown	in	the	following	screenshot:

Note	that	we	can	also	find	the	javadoc	location	by	clicking	on	the	Javadoc	Location
navigation	button	on	the	left	pane.

Open	Javadoc
When	we	want	to	browse	through	the	javadoc	of	the	corresponding	project,	we	use	this
option.	The	javadoc	opens	in	the	editor	area	as	a	separate	tab	as	shown	in	the	following
screenshot	for	log4j	docs:

Open	POM
At	any	point,	if	there	is	a	need	to	look	at	the	POM	file	of	the	dependencies,	we	can	use
this	option.	The	respective	POM	file	of	the	dependency	opens	in	the	editor	area	of	the
workspace.	The	following	screenshot	depicts	the	POM	file	in	the	editor	area	for	log4j,
which	has	been	the	dependency	in	the	MyDistance	application	we	built	in	Chapter	4,
Building	and	Running	a	Project:

Update	Project
There	are	instances	where	we	have	a	Java	project	and	we	want	to	convert	it	to	a	Maven
project.	We	can	do	this	by	right-clicking	on	the	project,	navigating	to	Configure	|
Convert	to	Maven	Project,	and	adding	a	POM	file.	Now,	Update	Project	is	used	to
update	the	project	from	its	dependencies	and	resources.	Update	Project	is	also	handy	if
you	have	multiple	Maven	projects	in	your	workspace,	and	the	projects	depend	on	each
other.	Then,	after	you	build	(mvn	install)	one	project,	you	can	perform	Update	Project
on	other	projects	to	pick	up	the	new	artifact.	The	update	option	is	shown	in	the	following
screenshot:

Note
Choosing	Offline	will	not	check	the	central	repository	for	updates.

Disable	Workspace	Resolution
Imagine	a	case	where	a	project	A	depends	on	project	B	and	they	reside	in	the	same
workspace,	mostly	in	multimodule	projects.	Now,	if	workspace	resolution	is	disabled,	to
have	project	A,	a	successful	build	and	a	project	B	artifact	are	needed	in	the	local
repository.	However,	if	the	workspace	resolution	is	enabled,	the	dependencies	are	resolved
using	an	Eclipse	workspace,	and	there	is	no	need	for	an	artifact	in	the	local	repository.

Disable	Maven	Nature
It	disables	the	Maven	aspect	of	the	project,	that	is,	the	Maven	dependencies	are	removed
from	the	build	path.	In	that	case,	we	may	need	to	include	the	JARs	manually	in	the
classpath	from	the	build	window.

Import	Project(s)	from	SCM
It	allows	you	to	pull	the	source	code	to	your	Eclipse	workspace	for	the	dependency.	In
other	words,	it	enables	you	to	create	a	new	Maven	project	for	a	dependency	based	on	the
sources	for	that	dependency.	The	sources	are	pulled	from	the	Source	Code	Management
(SCM)	system	as	defined	in	the	POM	for	the	dependency.	If	the	dependency	POM	fails	to
mention	the	SCM,	then	this	option	does	nothing.	Make	sure	you	have	a	proper	m2e
connector	installed	for	the	corresponding	SCMs.	We	discussed	importing	and	installing
Subversion	m2e	connector	in	Chapter	3,	Creating	and	Importing	Projects.

A	form-based	POM	editor
m2eclipse	provides	the	option	of	editing	the	pom	file	using	a	form-based	POM	editor.	In
earlier	chapters,	we	played	with	XML	tags	and	edited	the	pom	file.	While	directly	editing
an	XML	file,	the	knowledge	of	tags	is	required,	and	there	is	a	high	chance	that	the	user
will	make	some	errors.	However,	a	form-based	editor	reduces	the	chance	of	a	simple	error
and	eases	the	editing	of	a	pom	file	without	or	very	minimal	XML	knowledge	behind	the
scene.	I	would	prefer	playing	around	with	XML	tags	and	use	that	option,	but	you	are	open
to	choose	your	option.	The	form-based	editor	is	shown	in	the	following	screenshot	and	has
five	tabs:	Overview,	Dependencies,	Dependency	Hierarchy,	Effective	POM,	and
pom.xml:

An	overview
Overview	provides	general	information	of	the	project.	It	consists	of	the	following	sections
and	provides	information	about	them	as	shown	in	the	preceding	screenshot:

Artifact
Parent
Project
Modules
Properties
Organization
SCM
Issue	Management
Continuous	Integration

You	can	change	any	information	in	this	form,	and	this	will	be	reflected	in	the	XML	file.
We	will	discuss	the	Dependencies	and	the	Dependencies	Hierarchy	tab	in	the	next
section.

Analyzing	project	dependencies
A	POM	editor	has	a	Dependencies	tab	that	provides	a	glance	of	dependencies	and	an
option	to	manage	dependencies	of	the	project.	The	Dependencies	tab	has	two	sections	as
shown	in	the	following	screenshot:

It	shows	all	the	dependencies	of	the	project	on	the	left	side.	We	can	also	add	dependencies
to	the	project	using	the	Add	button	of	the	Dependencies	section.	The	Manage	button
allows	you	to	choose	the	POM	that	will	manage	the	corresponding	dependencies,	and	the
screenshot	for	this	is	shown	as	follows:

As	stated	very	clearly	on	the	top	of	the	window,	the	managed	dependencies	version
information	will	move	to	the	POM	that	manages	it.	For	example,	let’s	choose	to	manage

the	log4j	dependency	of	distance-webapp	by	the	Distance-main	POM.	Select	log4j	on
the	list	to	the	and	select	Distance-main	in	the	list	to	the	right,	and	click	on	OK	as	shown
in	the	following	screenshot:

After	the	log4j	file	is	managed,	the	word	“managed”	appears	to	its	right,	as	shown	in	the
following	screenshot:

If	we	happen	to	see	its	effect	in	the	XML	file,	we	can	see	that	the	version	information
from	the	distance-webapp	POM	is	moved	and	is	added	as	a	dependency	in	the	Distance-
main	POM,	as	shown	in	the	following	code:

<dependencyManagement>

		<dependencies>

				<dependency>

						<groupId>log4j</groupId>

						<artifactId>log4j</artifactId>

						<version>1.2.17</version>

				</dependency>

		</dependencies>

</dependencyManagement>

Another	way	to	achieve	the	same	functionality	is	via	the	Dependency	Management
section	to	the	right	across	the	parent-child	POM.	The	Dependency	Hierarchy	tab
contains	two	sections:	Dependency	Hierarchy	and	Resolved	Dependencies	as	follows:

The	Dependency	Hierarchy	section	on	the	left	provides	the	tree	view	of	the
dependencies.	The	first	level	of	the	tree	is	direct	dependency	of	the	project	and	then	each
subsequent	level	shows	the	dependencies	of	each	dependency.	The	preceding	screenshot	is
for	the	distance-webapp	module,	where	we	have	four	direct	dependencies,	and	these
dependencies	have	no	further	dependency,	so	the	tree	structure	is	not	visible.	However,	for
large	projects	and	large	direct	dependencies,	we	can	easily	visualize	it.	The	jar	icon
indicates	that	it	is	referenced	from	the	Maven	repository	and	the	open	folder	icon	indicates
its	presence	in	the	Eclipse	workspace.

The	Resolved	Dependencies	section	on	the	right	shows	the	list	of	all	resolved
dependencies,	that	is,	resulting	dependencies	after	all	conflicts	and	scopes	applied.	It	gives
a	general	idea	of	resolution	chain	propagation	and	route	to	Resolved	Dependencies.	Click
on	any	resolved	dependency	and	its	shows	the	dependency	chain	in	the	Dependency
Hierarchy	section.

For	more	information	on	dependencies,	refer	to	http://books.sonatype.com/m2eclipse-
book/reference/dependencies-sect-analyze-depend.html.

http://books.sonatype.com/m2eclipse-book/reference/dependencies-sect-analyze-depend.html

Working	with	repositories
To	browse	through	the	repository,	navigate	to	Window	|	Show	View	and	click	on
Other…	as	follows:

Next,	the	Show	View	window	appears.	Search	for	maven	repository,	as	shown	in	the
following	screenshot,	and	click	on	Maven	Repositories:

The	Maven	Repositories	view	constitutes	of	the	following	types:

Local	Repositories

Global	Repositories
Project	Repositories
Custom	Repositories

The	repositories	that	are	of	interest	are	local,	global,	and	project	repositories.

Local	Repositories
It	shows	the	artifacts	of	the	local	repository,	and	we	can	drill	down	to	see	its	POM
contents.	It	also	consists	of	Eclipse	workspace	projects.	The	following	is	the	screenshot	of
the	local	repository:

Global	Repositories
It	references	the	artifacts	of	the	central	repository.	We	can	browse	through	the	artifacts	of
the	central	repository	and	view	its	POM.	Right-click	on	Global	repositories,	which
provides	the	ability	to	re-index,	build	full	index,	minimum	index,	and	update	index	from
the	central	repository.	The	following	screenshot	illustrates	the	global	repository:

Project	Repositories
This	repository	shows	the	project-based	repositories.	Maven	discourages	the	inclusion	of
repositories	mentioned	in	the	project	POM	file;	however,	we	tend	to	disobey	it	when	we
have	to	reference	local	custom	artifacts	not	available	in	the	central	repository,	or	where	we
may	have	to	package	repositories	along	with	distribution.	For	example,	let’s	take	a
scenario	where	we	have	to	reference	the	artifacts	from	a	libs	folder	in	the	Eclipse
workspace.	To	achieve	this,	add	the	following	snippet	in	the	pom.xml	file:

<repositories>

				<repository>

						<id>project-based-repository</id>

						<name>Project-specific	jars</name>

						<url>file:///${basedir}/libs</url>

				</repository>

<repositories>

Refresh	the	Maven	Repositories	window	by	clicking	on	the	two	cyclic	arrows	on	the	top-
right	side	of	the	window.	We	can	see	the	corresponding	reference	in	Project	Repositories
as	follows:

m2eclipse	preferences
To	open	m2eclipse	preferences,	navigate	to	Window	|	Preferences.	In	the	Preferences
window	and	search	for	maven	in	the	filter	textbox	as	follows:

Maven
Click	on	Maven	as	shown	in	the	screenshot	that	follows	later;	it	allows	us	to	set	the
following	options	for	Maven:

Offline:	This	option	will	not	check	the	central	repository	for	updates
Debug	Output:	This	option	sets	Maven	in	the	debug	mode
Download	Artifact	Sources:	This	option	downloads	sources	to	local	repositories
such	as	JAR
Download	Artifact	Javadoc:	This	option	downloads	the	javadoc	to	the	local
repository
Update	Maven	projects	on	startup:	This	option	updates	the	dependencies	of	the
Maven	project
Hide	folders	of	physically	nested	modules	(experimental):	This	option	is	in	the
experimental	mode,	which	hides	the	nested	folders	of	a	multimodule	project

Discovery
Discovery	is	used	to	discover	the	m2e	connectors	available	for	use.	Please	refer	to	the
Checking	out	a	Maven	project	section	in	Chapter	3,	Creating	and	Importing	Projects,	on
how	we	used	this	feature.

Archetypes
Archetypes	allows	us	to	add,	remove,	and	edit	the	Maven	archetype	catalog,	as	shown	in
the	following	screenshot:

For	more	information	on	archetypes,	please	refer	to
http://maven.apache.org/archetype/index.html.

http://maven.apache.org/archetype/index.html

User	Interface	and	User	Settings
User	Interface	allows	us	to	set	XML	file	options,	as	shown	in	the	following	screenshot:

The	settings.xml	file	contains	elements	used	to	define	values	that	configure	Maven
execution	in	various	ways,	such	as	the	pom.xml	file.	The	settings	file	is	at	$
{M2_HOME}/settings.xml,	where	M2_HOME	is	{USER_HOME}/.m2.	In	the	Local	Repository
section	of	Chapter	3,	Creating	and	Importing	Projects,	we	use	this	file	to	set	the	alternate
local	repository	other	than	the	default	one.

User	Settings	allows	us	to	use	the	custom	settings	file	and	re-index	the	local	repository,	as
shown	in	the	following	screenshot:

For	more	information	on	settings,	please	refer	to
http://maven.apache.org/settings.html#Servers.

http://maven.apache.org/settings.html#Servers

Installations
Installations	shows	Maven	installations	and	allows	us	to	choose	the	Maven	to	use.	We
used	it	to	set	the	external	Maven	installation	in	the	Setting	Maven	to	Use	section	of
Chapter	2,	Installing	m2Eclipse;	please	refer	to	it	for	more	details.

Warnings
Warnings	allows	us	to	enable/disable	the	warning	for	a	duplicate	group	ID	and	version
across	the	parent-child	POM.	At	the	time	of	writing	this,	though	this	option	is	enabled,
m2eclipse	still	complains	about	duplicates;	hopefully,	this	feature	will	work	in	days	to
come	with	other	new	releases.

Templates
Templates	shows	the	list	of	all	the	templates	used	by	Maven.	It	also	provides	an	option	to
add	new	templates,	edit,	remove,	import,	and	export	the	templates,	as	shown	in	the
following	screenshot:

Lifecycle	Mappings
Lifecycle	Mappings	allows	us	to	customize	the	project	build	lifecycle	for	Maven	projects
used	by	m2eclipse.	This	feature	is	still	experimental	at	the	time	of	writing	this	book;
hence,	we	will	limit	its	discussion.

For	more	information,	please	refer	to
http://wiki.eclipse.org/M2E_plugin_execution_not_covered.

http://wiki.eclipse.org/M2E_plugin_execution_not_covered

Summary
In	this	chapter,	you	learned	about	other	additional	features	available	in	m2eclipse,	and	got
familiar	with	the	repositories,	form-based	POM	editor,	and	m2eclipse	preferences.	So,	in
this	book,	you	learned	Maven	concepts;	m2eclipse	and	features;	and	its	ease	in	creating,
building,	and	running	Maven	projects.

Index
A

Add	Dependency,	m2eclipse	feature	/	Add	Dependency
Add	Plugin,	m2eclipse	feature	/	Add	Plugin
And	build	file

reference	/	Maven	versus	Ant
Ant

about	/	Maven	versus	Ant
application

running	/	Running	the	application
archetype

used,	for	creating	Maven	project	/	Using	an	archetype
Archetypes,	m2eclipse	preferences	/	Archetypes
artifactId	coordinate,	Maven	/	Maven	coordinates
attributes,	dependency	scopes

Compile	/	Dependency	scopes
Provided	/	Dependency	scopes
Runtime	/	Dependency	scopes
Test	/	Dependency	scopes
System	/	Dependency	scopes

attributes,	project	dependencies
groupId	/	Project	dependencies
artifacttId	/	Project	dependencies
version	/	Project	dependencies
type	/	Project	dependencies
scope	/	Project	dependencies
optional	/	Project	dependencies

B
build.xml	file,	Ant	/	POM	(Project	Object	Model)
build	architecture,	Maven	project

about	/	The	Maven	project	build	architecture
build	environment

about	/	POM	(Project	Object	Model)
build	lifecycle

about	/	The	build	lifecycle
default	lifecycle	/	The	default	lifecycle
clean	lifecycle	/	The	clean	lifecycle
site	lifecycle	/	The	site	lifecycle

build	plugins
about	/	Plugins	and	goals

build	settings
about	/	POM	(Project	Object	Model)

C
central	repository

about	/	The	central	repository
URL	/	The	central	repository

clean	lifecycle
about	/	The	clean	lifecycle
phases	/	The	clean	lifecycle

clean	lifecycle,	phases
pre-clean	/	The	clean	lifecycle
clean	/	The	clean	lifecycle
post-clean	/	The	clean	lifecycle

clean	phase,	clean	lifecycle	/	The	clean	lifecycle
clean	plugin	/	Plugins	and	goals
code,	MyDistance	application

about	/	The	application	code
form,	adding	/	Adding	a	form	to	get	an	input
servlet,	adding	/	Adding	a	servlet
utility	class,	adding	/	Adding	a	utility	class

compile	phase,	default	lifecycle	/	The	default	lifecycle
compile	phase,	package-specific	lifecycle	/	The	Maven	console
compiler	plugin	/	Plugins	and	goals
components,	Maven

Plexus	/	The	Plexus	container
Wagon	/	Wagon
Doxia	/	Maven	Doxia
Modello	/	Modello
SCM	/	Maven	SCM

contents,	POM
project	information	/	POM	(Project	Object	Model)
POM	relationships	/	POM	(Project	Object	Model),	POM	relationships
build	settings	/	POM	(Project	Object	Model)
build	environment	/	POM	(Project	Object	Model)

ConversionUtilTest	class	/	Writing	unit	tests
coordinates,	Maven

groupId	/	Maven	coordinates
artifactId	/	Maven	coordinates
project	version	/	Maven	coordinates
packaging	/	Maven	coordinates

core	module,	multimodule	project
creating	/	Creating	a	core	module

core	plugins
about	/	Plugins	and	goals

D
default	configuration,	super	POM	/	A	super	POM
default	lifecycle

about	/	The	default	lifecycle
URL,	for	phases	/	The	default	lifecycle
phases	/	The	default	lifecycle

default	lifecycle,	phases
validate	/	The	default	lifecycle
compile	/	The	default	lifecycle
test-compile	/	The	default	lifecycle
test	/	The	default	lifecycle
package	/	The	default	lifecycle
install	/	The	default	lifecycle
deploy	/	The	default	lifecycle

dependencies
adding,	to	Maven	project	/	Add	Dependency

dependencies,	MyDistance	application
adding	/	Adding	dependencies

dependency	mechanism
URL	/	Transitive	dependencies

dependency	scopes,	project	/	Dependency	scopes
deploy	phase,	default	lifecycle	/	The	default	lifecycle
deploy	phase,	package-specific	lifecycle	/	The	Maven	console
Disable	Maven	Nature,	m2eclipse	feature	/	Disable	Maven	Nature
Disable	Workspace	Resolution,	m2eclipse	feature	/	Disable	Workspace	Resolution
Discovery,	m2eclipse	preferences	/	Discovery
Download	JavaDoc,	m2eclipse	feature	/	Download	JavaDoc
Download	Source,	m2eclipse	feature	/	Download	Source
Doxia

about	/	Maven	Doxia
URL	/	Maven	Doxia

Doxia	component	/	Site	generation	and	reporting

E
Eclipse

downloading	/	Downloading	Eclipse
URL,	for	downloading	/	Downloading	Eclipse
installing	/	Installing	and	launching	Eclipse
launching	/	Installing	and	launching	Eclipse

Eclipse	Marketplace
about	/	Methods	to	install	m2eclipse
used,	for	installing	m2eclipse	/	Using	Eclipse	Marketplace

essential	concepts,	Maven
repository	/	Repository
project	dependencies	/	Project	dependencies
plugins	/	Plugins	and	goals
site	generation	/	Site	generation	and	reporting
reporting	/	Site	generation	and	reporting

F
features,	m2eclipse	/	Introduction	to	m2eclipse

about	/	Other	features	in	m2eclipse
Add	Dependency	/	Add	Dependency
Add	Plugin	/	Add	Plugin
New	Maven	Module	Project	/	New	Maven	Module	Project
Download	JavaDoc	/	Download	JavaDoc
Download	Source	/	Download	Source
Open	Javadoc	/	Open	Javadoc
Open	POM	/	Open	POM
Update	Project	/	Update	Project
Disable	Workspace	Resolution	/	Disable	Workspace	Resolution
Disable	Maven	Nature	/	Disable	Maven	Nature
Import	Project(s)	from	SCM	/	Import	Project(s)	from	SCM

form-based	POM	editor
overview	/	A	form-based	POM	editor,	An	overview

G
global	repositories

about	/	Global	Repositories
goals	binding

URL	/	The	package-specific	lifecycle
Group-Artifact-Version	(GAV)	/	Creating	the	MyDistance	project
groupId	coordinate,	Maven	/	Maven	coordinates

H
hello-project

running	/	Running	hello-project

I
Import	Project(s)	from	SCM,	m2eclipse	feature	/	Import	Project(s)	from	SCM
installation,	m2eclipse

about	/	Methods	to	install	m2eclipse
Eclipse	Marketplace	used	/	Using	Eclipse	Marketplace
update	site	used	/	Using	Update	Site

installation,	Maven
about	/	Installing	Maven
on	Windows	/	Installing	Maven	on	Windows
on	Linux	/	Installing	Maven	on	Linux	and	Mac	OS
on	Mac	OS	/	Installing	Maven	on	Linux	and	Mac	OS
verifying	/	Verifying	the	installation	of	Maven

Installations,	m2eclipse	preferences	/	Installations
install	phase,	default	lifecycle	/	The	default	lifecycle
install	phase,	package-specific	lifecycle	/	The	Maven	console
install	plugin	/	Plugins	and	goals

J
jar	plugin	/	Plugins	and	goals
JavaDoc

generating	/	Generating	javadocs
javadoc	plugin	/	Plugins	and	goals
JUnit	test	cases

URL	/	Writing	unit	tests

L
Lifecycle	Mappings,	m2eclipse	preferences	/	Lifecycle	Mappings
Linux

Maven,	installing	on	/	Installing	Maven	on	Linux	and	Mac	OS
local	repositories

about	/	Local	Repositories
local	repository

about	/	The	local	repository
log4j

about	/	Adding	resources
URL	/	Adding	resources

M
m2eclipse

about	/	Introduction	to	m2eclipse
features	/	Introduction	to	m2eclipse,	Other	features	in	m2eclipse
history	/	Introduction	to	m2eclipse
installing	/	Methods	to	install	m2eclipse
installing,	Eclipse	Marketplace	used	/	Using	Eclipse	Marketplace
installing,	update	site	used	/	Using	Update	Site

m2eclipse	preferences
about	/	m2eclipse	preferences
Maven	/	Maven
Discovery	/	Discovery
Archetypes	/	Archetypes
User	Interface	/	User	Interface	and	User	Settings
User	Settings	/	User	Interface	and	User	Settings
Installations	/	Installations
Warnings	/	Warnings
Templates	/	Templates
Lifecycle	Mappings	/	Lifecycle	Mappings

Mac	OS
Maven,	installing	on	/	Installing	Maven	on	Linux	and	Mac	OS

Make	file	/	POM	(Project	Object	Model)
Maven

about	/	Introduction	to	Maven
goals	/	Introduction	to	Maven
origin	/	Maven’s	origin
principles	/	Maven’s	principles
component	architecture	/	Maven’s	component	architecture
URL,	for	downloading	/	Downloading	Maven
downloading	/	Downloading	Maven
installing	/	Installing	Maven
URL,	for	installing	JDK	/	Installing	Maven
installing,	on	Windows	/	Installing	Maven	on	Windows
installing,	on	Linux	/	Installing	Maven	on	Linux	and	Mac	OS
installing,	on	Mac	OS	/	Installing	Maven	on	Linux	and	Mac	OS
installation,	verifying	/	Verifying	the	installation	of	Maven
setting,	for	usage	/	Setting	up	Maven	for	use
coordinates	/	Maven	coordinates
essential	concepts	/	Other	essential	concepts
URL,	for	site	plugins	/	Generating	site	documentation

Maven,	m2eclipse	preferences	/	Maven
Maven,	versus	Ant

convention	over	configuration	/	Maven	versus	Ant

lifecycle	/	Maven	versus	Ant
higher	level	of	reusability	/	Maven	versus	Ant
less	maintenance	/	Maven	versus	Ant
dependency	management	/	Maven	versus	Ant
automatic	downloads	/	Maven	versus	Ant
repository	management	/	Maven	versus	Ant

Maven	console
about	/	The	Maven	console

Maven	model
URL	/	Changing	the	project	information

Maven	project
structure	/	The	Maven	project	structure
build	architecture	/	The	Maven	project	build	architecture
creating	/	Creating	a	Maven	project
creating,	archetype	used	/	Using	an	archetype
creating,	without	archetypes	/	Using	no	archetypes
checking	out	/	Checking	out	a	Maven	project
importing	/	Importing	a	Maven	project
dependencies,	adding	to	/	Add	Dependency

Maven	projects
building	/	Building	and	packaging	projects
packaging	/	Building	and	packaging	projects

Maven	versions
URL	/	Creating	the	MyDistance	project

Modello
about	/	Modello
URL	/	Modello

modules,	multimodule	project
about	/	Introduction
Distance-main	/	Introduction
distance-core	/	Introduction
distance-webpp	/	Introduction

multimodule	project
about	/	Introduction
parent	project	POM	/	Introduction
modules	/	Introduction
parent	project	POM,	creating	/	Creating	a	parent	project	–	POM
core	module,	creating	/	Creating	a	core	module
webapp	module,	creating	/	Creating	a	webapp	module
building	/	Building	a	multimodule	project

MyDistance	application
creating	/	Creating	the	MyDistance	project
project	information,	modifying	/	Changing	the	project	information
dependencies,	adding	/	Adding	dependencies

resources,	adding	/	Adding	resources
code	/	The	application	code
requisites	/	The	application	code
running	/	Running	an	application

N
New	Maven	Module	Project,	m2eclipse	feature	/	New	Maven	Module	Project

O
Open	Javadoc,	m2eclipse	feature	/	Open	Javadoc
Open	POM,	m2eclipse	feature	/	Open	POM

P
package-specific	lifecycle

about	/	The	package-specific	lifecycle
phases	/	The	Maven	console

package-specific	lifecycle,	phases
process-resources	/	The	package-specific	lifecycle
compile	/	The	package-specific	lifecycle
process-test-resources	/	The	package-specific	lifecycle
test-compile	/	The	package-specific	lifecycle
test	/	The	package-specific	lifecycle
package	/	The	package-specific	lifecycle
install	/	The	package-specific	lifecycle
deploy	/	The	package-specific	lifecycle

package	phase,	default	lifecycle	/	The	default	lifecycle
package	phase,	package-specific	lifecycle	/	The	Maven	console
packaging	coordinate,	Maven	/	Maven	coordinates
packaging	lifecycle

URL	/	The	package-specific	lifecycle
packaging	types/tools

about	/	Plugins	and	goals
parent	project	POM,	multimodule	project

about	/	Introduction
creating	/	Creating	a	parent	project	–	POM

pdf	plugin	/	Plugins	and	goals
Plexus

about	/	The	Plexus	container
URL	/	The	Plexus	container

plugins
about	/	Plugins	and	goals
URL	/	Plugins	and	goals

plugins,	with	set	of	goals
executing	/	Plugins	and	goals

POM
about	/	POM	(Project	Object	Model)
simple	POM	/	A	simple	POM
super	POM	/	A	super	POM

pom.xml	file	/	POM	(Project	Object	Model)
POM	file

about	/	POM	(Project	Object	Model)
POM	relationships

about	/	POM	(Project	Object	Model),	POM	relationships
post-clean	phase,	clean	lifecycle	/	The	clean	lifecycle
post-site	phase,	clean	lifecycle	/	The	site	lifecycle

pre-clean	phase,	clean	lifecycle	/	The	clean	lifecycle
pre-site	phase,	clean	lifecycle	/	The	site	lifecycle
process-resources	phase,	package-specific	lifecycle	/	The	Maven	console
process-test-resources	phase,	package-specific	lifecycle	/	The	Maven	console
project	dependencies

about	/	Project	dependencies
dependency	scopes	/	Dependency	scopes
transitive	dependencies	/	Transitive	dependencies
analyzing	/	Analyzing	project	dependencies
URL	/	Analyzing	project	dependencies

project	information	/	POM	(Project	Object	Model)
project	repositories

about	/	Project	Repositories
project	version	coordinate,	Maven	/	Maven	coordinates

R
reactor

functions	/	Introduction
remote	repository

about	/	The	remote	repository
reporting

about	/	Site	generation	and	reporting
reporting	plugins

about	/	Plugins	and	goals
repositories,	Maven

about	/	Repository
local	/	The	local	repository,	Local	Repositories
central	/	The	central	repository
remote	/	The	remote	repository
search	sequence	/	Search	sequence	in	repositories
working	with	/	Working	with	repositories
global	/	Global	Repositories
project	/	Project	Repositories

requisites,	MyDistance	application
index.jsp	/	The	application	code
DistanceServlet	/	The	application	code
ConversionUtil	/	The	application	code

resources,	MyDistance	application
adding	/	Adding	resources

S
SCM

about	/	Maven	SCM,	Import	Project(s)	from	SCM
types	/	Maven	SCM
URL	/	Maven	SCM,	Maven	versus	Ant

search	sequence,	in	repositories
about	/	Search	sequence	in	repositories

simple	POM
about	/	A	simple	POM

site-deploy	phase,	clean	lifecycle	/	The	site	lifecycle
site	documentation

generating	/	Generating	site	documentation
site	generation

about	/	Site	generation	and	reporting
site	lifecycle

about	/	The	site	lifecycle
phases	/	The	site	lifecycle

site	lifecycle,	phases
pre-site	/	The	site	lifecycle
site	/	The	site	lifecycle
post-site	/	The	site	lifecycle
site-deploy	/	The	site	lifecycle

site	phase,	clean	lifecycle	/	The	site	lifecycle
site	plugin	/	Plugins	and	goals
snapshot

about	/	Creating	the	MyDistance	project
structure,	Maven	project	/	The	Maven	project	structure
super	POM

about	/	A	super	POM
default	configuration	/	A	super	POM

surefire	plugin	/	Plugins	and	goals

T
Templates,	m2eclipse	preferences	/	Templates
test-compile	phase,	default	lifecycle	/	The	default	lifecycle
test-compile	phase,	package-specific	lifecycle	/	The	Maven	console
test	phase,	default	lifecycle	/	The	default	lifecycle
test	phase,	package-specific	lifecycle	/	The	Maven	console
transitive	dependencies

about	/	Transitive	dependencies

U
unit	tests

writing	/	Writing	unit	tests
running	/	Running	unit	tests
generating	/	Generating	unit	tests	–	HTML	reports

Update	Project,	m2eclipse	feature	/	Update	Project
update	site

about	/	Methods	to	install	m2eclipse
used,	for	installing	m2eclipse	/	Using	Update	Site

User	Interface,	m2eclipse	preferences	/	User	Interface	and	User	Settings
User	Settings,	m2eclipse	preferences	/	User	Interface	and	User	Settings

V
validate	phase,	default	lifecycle	/	The	default	lifecycle

W
Wagon

about	/	Wagon
URL	/	Wagon

Warnings,	m2eclipse	preferences	/	Warnings
war	plugin	/	Plugins	and	goals
webapp	module,	multimodule	project

creating	/	Creating	a	webapp	module
Windows

Maven,	installing	on	/	Installing	Maven	on	Windows

	Maven for Eclipse
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Apache Maven – Introduction and Installation
	Introduction to Maven
	Maven's origin
	Maven's principles
	Maven's component architecture
	The Plexus container
	Wagon
	Maven Doxia
	Modello
	Maven SCM
	Maven versus Ant
	Downloading Maven
	Installing Maven
	Installing Maven on Windows
	Installing Maven on Linux and Mac OS
	Verifying the installation of Maven
	Summary
	2. Installing m2eclipse
	Introduction to m2eclipse
	Downloading Eclipse
	Installing and launching Eclipse
	Methods to install m2eclipse
	Using Eclipse Marketplace
	Using Update Site
	Setting up Maven for use
	Summary
	3. Creating and Importing Projects
	The Maven project structure
	POM (Project Object Model)
	Maven coordinates
	POM relationships
	A simple POM
	A super POM
	The Maven project build architecture
	Other essential concepts
	Repository
	The local repository
	The central repository
	The remote repository
	Search sequence in repositories
	Project dependencies
	Dependency scopes
	Transitive dependencies
	Plugins and goals
	Site generation and reporting
	Creating a Maven project
	Using an archetype
	Using no archetypes
	Checking out a Maven project
	Importing a Maven project
	Summary
	4. Building and Running a Project
	The build lifecycle
	The default lifecycle
	The clean lifecycle
	The site lifecycle
	The package-specific lifecycle
	The Maven console
	Building and packaging projects
	Running hello-project
	Summary
	5. Spicing Up a Maven Project
	Creating the MyDistance project
	Changing the project information
	Adding dependencies
	Adding resources
	The application code
	Adding a form to get an input
	Adding a servlet
	Adding a utility class
	Running an application
	Writing unit tests
	Running unit tests
	Generating site documentation
	Generating unit tests – HTML reports
	Generating javadocs
	Summary
	6. Creating a Multimodule Project
	Introduction
	Creating a parent project – POM
	Creating a core module
	Creating a webapp module
	Building a multimodule project
	Running the application
	Summary
	7. Peeking into m2eclipse
	Other features in m2eclipse
	Add Dependency
	Add Plugin
	New Maven Module Project
	Download JavaDoc
	Download Source
	Open Javadoc
	Open POM
	Update Project
	Disable Workspace Resolution
	Disable Maven Nature
	Import Project(s) from SCM
	A form-based POM editor
	An overview
	Analyzing project dependencies
	Working with repositories
	Local Repositories
	Global Repositories
	Project Repositories
	m2eclipse preferences
	Maven
	Discovery
	Archetypes
	User Interface and User Settings
	Installations
	Warnings
	Templates
	Lifecycle Mappings
	Summary
	Index

