
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Praise for Microinteractions

“Microinteractions is a book I’ve wanted for a very long time. I’ve needed a thoughtful,
insightful, and concise understanding of how to look at interaction design at the atomic

level. Dan’s delivered that in spades.”
—Jared Spool, User Interface Engineering

“Microinteractions is an essential guide to designing in today’s world where a typical person
touches a hundred different user experiences each day, and only the clearest interactions

will turn a new user experience into a cherished product.
“In this book, Dan Saffer turns the Cognitive Walkthrough on its head and takes it to the
next level, creating a new model for defining interactions and illustrating the strength of

designing for moments rather than systems.
“An easy, jargon-free read and an invaluable reference, Microinteractions is packed with

vital principles backed up by a wide spectrum of useful real-world examples of what to do
and what not to do. You’ll get something out of reading any two pages and even more out
of reading them again. The book is an example of its own teachings. Approachable, but with

deeper insights as needed.”
—Kevin Fox, designer, Gmail

“Saffer has written an excellent, compact, and eminently readable volume on a subject
under-valued and under-discussed in our industry: the art and science of creating small,

delightful moments in our daily interactions with technology. I recommend it to any
designer or programmer looking to enhance the desirability and polish the utility of their

apps, sites, or services, one interaction at a time.”
—Robert Reimann, Founding President, Interaction Design

Association (IxDA); Principal Interaction Designer,
PatientsLikeMe; co-author, About Face 3 (Wiley)

www.allitebooks.com

http://www.allitebooks.org

“Dariel Fitzkee, the famous magician’s magician, once stated, ‘Magic is both in the details
and in the performance.’ Interaction design is just like that. It is in reality creating a user
illusion out of many tiny, nuanced, interesting moments. Dan’s book, Microinteractions,

shines a magnifying glass on these moments and teases out how to go from a good to a great
‘user illusion.’ I highly recommend this book to every designer and implementer of user

experiences in any medium.”
—Bill Scott, Senior Director UIE, Paypal

“I have never before seen a book drill down to this level of detail into how interactions (let
alone microinteractions) actually work. It is one of the better books on interaction design
I’ve read. I’m going to give copies to my designers and product managers and require that

they read it and explain it back to me.”
—Christian Crumlish, Director of Product, CloudOn

www.allitebooks.com

http://www.allitebooks.org

Dan Saffer

Microinteractions

www.allitebooks.com

http://www.allitebooks.org

Microinteractions
by Dan Saffer

Copyright © 2013 Dan Saffer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Rachel Steely
Copyeditor: Kiel Van Horn
Proofreader: Rebecca Freed

Indexer: Angela Howard
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

May 2013: First Edition

Revision History for the First Edition:

2013-04-25: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449342685 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Microinteractions, the image of an English sparrow and a tree sparrow, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-34268-5

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449342685
http://www.allitebooks.org

Table of Contents

Foreword. v
Preface. ix

1. Designing Microinteractions. 1
Microinteractions Are Not Features ... But Still Matter 4

Microinteractions Can Be Big 5
The Secret History of Microinteractions 9
The Structure of Microinteractions 14
Microinteractions as a Philosophy 19
Summary 22

2. Triggers. 23
Manual Triggers 26

Bring the Data Forward 27
The Components of a Trigger 28

System Triggers 43
System Trigger Rules 46

Summary 48

3. Rules. 49
Designing Rules 52

Generating Rules 56
Verbs and Nouns 59
Screens and States 61
Constraints 62
Don’t Start from Zero 64
Absorb Complexity 67

Limited Options and Smart Defaults 69
Controls and User Input 72

iii

www.allitebooks.com

http://www.allitebooks.org

Preventing Errors 74
Microcopy 76
Algorithms 78
Summary 81

4. Feedback. 83
Feedback Illuminates the Rules 86

Feedback Is for Humans 90
Less Is More 92

Feedback as a Personality-Delivery Mechanism 93
Feedback Methods 96

Visual 96
Audio 101
Haptics 104

Feedback Rules 106
Summary 107

5. Loops and Modes. 109
Modes 111

Spring-Loaded and One-off Modes 113
Loops 114

Styles of Loops 114
Long Loops 117

Summary 121

6. Putting It All Together. 123
Example 1: Mobile App 126
Example 2: Online Shared Playlist 129
Example 3: Dishwasher Control Panel 132
Prototyping and Documenting Microinteractions 135
Orchestrating Microinteractions 137

Turning Microinteractions into Features 137
How to Fix a Dull Microinteraction 139

Think Small 140

A. Testing Microinteractions. 141

Index. 147

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Foreword

I first encountered Dan Saffer’s interest in microinteractions at a conference in Brazil.
I was immediately captivated. Dan started his talk with the story of the ringing cellphone
at a symphony concert that forms the opening pages of Chapter 1. It was very clear that
by focusing upon the small, Dan had discovered something very big.

I next encountered the importance of getting the details right through my own frustra‐
tions with Apple’s photo cataloging and editing application, Aperture. I was putting
together the illustrations for a book when suddenly my computer froze and I had to
force a reboot. But when I tried to open Aperture, it announced that the database was
corrupted and promptly shut down. Huh? What is the use of an error message that
provides no remedy? What was I supposed to do?

I searched the Aperture help files. No luck. I searched Apple’s support website. No luck.
I was annoyed and concerned: How could I get the photos back? The program wouldn’t
even launch. I keep a backup on another computer, but my synchronization program
was far too efficient: the corrupted file had been transferred to the other computer.

Finally, after much travail, an Internet search yielded the solution, described in a very
nicely formatted set of instructions from Apple. I followed the instructions and 15 mi‐
nutes later, all my photos were restored. (Note that I couldn’t find this from the Apple
site: I found a discussion group where someone had posted the link to the proper lo‐
cation at Apple.)

Why am I telling you this? Because if only Apple’s programmers had read this book, I
wouldn’t have had to go through any agony. Microinteraction. Get the details right.

Why didn’t that error message contain the solution as well as identifying the problem?
After all, Apple had a very nice message explaining the problem and saying just what
to do about it. Suppose the error message had said, “The database is corrupted: to correct
this, follow these steps” (with active buttons on the message dialog box that would
initiate the process). Why didn’t Apple do this? Was it because the programmers for this
part of the program didn’t consider it part of their responsibility? Was it because these

v

www.allitebooks.com

http://www.allitebooks.org

programmers came from a different group that maintained the database, so they only
knew there was a problem but not how to fix it? Or was it because it is not in the culture
of error-message writers to also provide the solution? (My best guess is that all three
factors played a role.) Whatever the reason, the result is an inferior user experience, one
that now has me extremely unhappy with Aperture, searching for a better alternative.
This can’t be the response Apple wants to produce in its customers. If only they had
been able to read this book.

Are microinteractions details? Damn right: the magic is all in the details.

The “micro” in “microinteractions” implies it is about the small things. Small? Yes. Un‐
important? Absolutely not! Microinteractions is about those critical details that make
the difference between a friendly experience and traumatic anxiety. As Dan Saffer points
out in his Preface, designers love to get the big picture right. It’s a wonderful feeling. No
problem is too large. But even if the big picture is done right, unless the details are also
handled properly, the solution fails: the details are what control the moment-to-moment
experience. It is timely details that lead to seamless interaction with our products. Al‐
ternatively, it is the lack of attention to those details that lead to frustration, irritation,
and eventually an intense dislike of the product. Yes, the big picture matters, but so too
does the detailed picture. It is attention to detail that creates a smooth feeling of ac‐
complishment.

There are several steps to great microinteractions. The first, and for many developers,
the hardest, is to identify the situation properly. This requires great observational skills:
watching people interact, watching yourself interact, identifying the pain points, iden‐
tifying logical sequences, and then determining which things make sense to bring to‐
gether. Obvious candidates can be found in error messages and dialog boxes. Each
presents some information, thus implying the next step to be performed. Why not make
that next step part of the present step?

Great microinteraction design requires understanding the people who use the product,
what they are trying to accomplish, and the steps they need to take. It requires under‐
standing the context of those interactions. It is essential to develop empathy with the
user, to develop the users’ observational skills, and to instill the knowledge of how to
combine different aspects of your product—perhaps the result of different program‐
ming teams or even different divisions—into a single, smooth microinteraction.
Chapter 1 does a great job of introducing the principles of how to do this. The numerous
examples throughout the book sensitize you to the opportunities that microinteractions
provide. After that it is up to you: it is your continual observation that leads to discovery
of new microinteraction opportunities. And it is essential not to be blocked, as Apple’s
developers apparently were, if the solutions require cutting across company organiza‐
tional structures. After all, doing things right for the user is what great products are all
about.

vi | Foreword

www.allitebooks.com

http://www.allitebooks.org

The second step to great microinteraction is the implementation. There are lots of design
issues here: triggers, rules, feedback, loops, and modes—all nicely described within the
chapters of this book.

Are microinteractions important? Well, let me tell you of my last major purchase: a new
automobile. When I walk up to it and put my hand around the door handle, the handles
light up and an interior light turns on. The door unlocks, and as I enter the car, the seat,
mirrors, and even the programming of the radio resets itself to my preferences. When
I open the door, the ceiling light for the seat comes on. If my passenger opens his door,
that light comes on. As my wife and I take turns driving, the car resets itself each time
to the settings each of us prefers. How did the car designers decide upon this sequence?
How did they decide which things to control or not control? By clever, intelligent mi‐
crodesign. Are these small things? Yes. Could we have manually done all of this? Yes.
But when the car does it for us, it provides a sense of delight in the car, a feeling of pride
of ownership. Isn’t that what all product manufacturers should want for their customers?

Hurrah for the small, which is where we spend most of our lives. Hurrah for those many
seconds and minutes spent seeking how to do the next step, the frustrations of inelegant
transitions. Hurrah for Dan Saffer and this book, where the friendly writing style is
enhanced through copious examples. I considered myself skilled at observing people
interacting with technology, but after reading this book, my skills have improved. Now
I look more closely at the details, at the missed opportunities. I also see where products
do things right. Learning to see is the first step toward making thing better.

Now it is your turn: go out and conquer. Make our lives simpler, more enjoyable. Put
microinteraction awareness into practice.

—Don Norman (don@jnd.org)
Norman group, Silicon Valley, California

Author of Design of Everyday Things, Revised and Expanded

Foreword | vii

mailto:don@jnd.org

Preface

What Is This Book About?
Microinteractions are all around us, from the turning on of an appliance to logging in
to an online service to getting the weather in a mobile app. They are the single use-case
features that do one thing only. They can be stand-alone apps or parts of larger features.
The best of them perform with efficiency, humor, style, and an understanding of user
needs and goals. The difference between a product we love and a product we just tolerate
are often the microinteractions we have with it.

This book dissects microinteractions in order to help readers design their own. Starting
with a model of microinteractions, each chapter closely examines each part of the model,
and provides guiding principles to get the most out of every microinteraction. By doing
so, your products will improve and your users will enjoy using them more, building
customer (and brand) loyalty.

Who Should Read This Book
This book is for anyone who cares about making better products, particularly digital
products. Designers of all stripes, developers, researchers, product managers, critics,
and entrepreneurs will hopefully find much to think about, use, and emulate here.

This book is especially for anyone who has struggled to convince their client, developers,
the product or project managers that this small thing is really worth doing, that it’ll make
the product so much better. Now that small thing has a name—microinteractions—and
can be argued for more effectively.

How This Book Is Organized
This is a small book about a small but important topic.

ix

Chapter 1, Designing Microinteractions
Introduces microinteractions and discusses why something seemingly so insignif‐
icant is so important. The structure of microinteractions is discussed, laying out
the overall pattern that all microinteractions follow. Lastly, this chapter looks at how
microinteractions can be incorporated into projects.

Chapter 2, Triggers
Introduces triggers, the moment that microinteractions begin. Both manual (user-
initiated) and system triggers are reviewed. The principle of Bring the Data Forward
is discussed.

Chapter 3, Rules
Presents a discussion of rules, the hidden parameters and characteristics that define
a microinteraction: how rules are created and what they should encompass, in‐
cluding the principle of Don’t Start from Zero.

Chapter 4, Feedback
Discusses feedback, or how the rules are understood by the user. When to use
feedback, as well as the three major types of feedback: visual, audio, and haptic. The
principles of Thinking Human and Using What Is Often Overlooked are
introduced.

Chapter 5, Loops and Modes
Discusses loops and modes, the “meta” parts of microinteractions. The types of
modes and loops are discussed, as well as how to use long loops.

Chapter 6, Putting It All Together
Puts together all the pieces of the microinteractions model to design three sample
microinteractions: one for a mobile app, another for an online app, and the third
for an appliance. This is also where we’ll discuss linking microinteractions together
to form features.

Appendix A
Touches on the process of testing microinteractions.

Why Write a Book About Microinteractions?
Over the last decade, designers have been encouraged to think big, to solve “wicked
problems,” to use “design thinking” to tackle massive, systemic issues in business and
in government. No problem is too large to not apply the tools of design to, and design
engagements can involve everything from organizational restructuring to urban
planning.

The results of this refocusing of design efforts are unclear. But by working at such a
macro scale, an important part of design is often lost: the details that delight. Products

x | Preface

that we love show an attention to detail: the beautiful curve, the satisfying click, the
understandable mental model.

This is another way to work: not through grand, top-down design projects, but from
the bottom up, by crafting—lovingly, with care—small things. This is something de‐
signers can do quite well, with immediate, tangible results. This is another way to change
the world: by making seemingly inconsequential moments into instances of pleasure.

There is a joy in tiny things that are beautiful and work well. This joy is both on the part
of the user and in the creator, even though it certainly takes skill, time, and thought to
make it so. It’s hard work, and as admirable in its own way as tackling the Big Problems.
After all, who doesn’t need more joy in their life?

Conventions Used in This Book
The following typographical convention is used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

Preface | xi

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Microinteractions by Dan Saffer (O’Reilly).
Copyright 2013 Dan Saffer, 978-1-449-34268-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Microinteractions.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

xii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Microinteractions
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I am extremely grateful for Floris Dekker and Andrew McCarthy, the editors and col‐
lectors of the tremendous blog Little Big Details, where most of the images in this book
are drawn. Without question, I don’t think this book would have been written without
the examples so readily available to me there. My thanks to them, and particularly to
the many contributors to their site. I have tried to credit them whenever I could track
down their names.

Jack Moffett, writer of the “Design A Day” blog, should also get a nod of appreciation.
Not only did I draw many examples from his “In the Details” section, but how he dis‐
sected those details has long been inspirational to me and led indirectly to this book.

My technical reviewers have greatly improved this book with their encouragement,
wisdom, and keen eyes: Robert Reimann, Christopher Fahey, Dani Malik, Nick Remis,
Dave Hoffer, Bill Scott, and Scott Jenson.

Despite the less-than-stellar performance of my last (before its time) O’Reilly book, I’m
grateful for my editor Mary Tresler and everyone at O’Reilly for giving me another shot
with this book, and being unfailingly supportive about a small book on a strange topic.

As always, the fortitude of the women (human and canine) I live with cannot be un‐
derestimated. This book in particular tested the patience of our house, as I could only
write it in the club chair that sits in the middle of our TV room. This book is dedicated
to them.

Lastly, a hat tip to the teachers and designers I have worked with and learned from, past
and present, who have taught me—sometimes forcibly—the value of focusing on the
details. Always, always, it has been some clever little bit they’ve imagined or have en‐
couraged me to invent that brings the product we’re working on to life. It’s that spark I
hoped to capture here.

—Dan Saffer
San Francisco, February 2013

Preface | xiii

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1. Daniel J. Wakin, “Ringing Finally Ended, but There’s No Button to Stop Shame.” The New York Times, January
12, 2012.

CHAPTER 1

Designing Microinteractions

“Nothing big works.”
—Victor Papanek

The furious shouting started after the conductor stopped the performance. The New
York Philharmonic had reached the very end of the slow, quiet Adagio movement that
finishes Mahler’s Symphony no. 9. The audience, many of whom had paid hundreds of
dollars for this privilege, sat attentive and rapt, listening to the still, sublime moments
that resolve over an hour of music.

And then it happened: from the front row, the unmistakable sound of an iPhone’s
“Marimba” sound—that high-pitched xylophone tinkle—going off over and over again.
An alarm. It kept going. And going. The conductor, Alan Gilbert, halted the orchestra.
But the alarm kept going off. By now, audience members were yelling at the phone’s
owner, an older executive the Philharmonic later dubbed “Patron X,” a long-time sym‐
phony patron. Avery Fisher Hall, which just moments before had been unearthly calm
and quiet, had erupted in chaos and anger.

As the New York Times reported in January 2012,1 Patron X had just gotten the iPhone
the day before; his company had replaced his Blackberry for it. Before the performance
began, he had flipped the mute switch, turning silent mode on. But what he didn’t know
was that one of the iPhone’s rules was that alarms still go off even when the phone is
silenced. So when the alarm went off, he didn’t even realize it was his phone for an
excruciatingly long time. By the time he knew it was his phone and had turned the alarm
off, it was too late: the performance was ruined.

The next day, as news spread, the Internet exploded with vitriol and wisecracks. Com‐
poser Daniel Dorff tweeted, “Changed my ringtone to play #Mahler 9 just in case.”

1

Arguments and discussions spanned across blogs, with some advocating that turning
the ringer off should turn every sound off. In his January 2012 Article “Daring Fireball:
On the Behavior of the iPhone Mute Switch” tech columnist Andy Ihnatko wrote, “My
philosophy is ‘It’s much better to be upset with yourself for having done something
stupid than to be upset with a device that made the wrong decision on its own
initiative.’ ”

While others made the (in my opinion, correct) case that alarms still need to sound even
when the ringer is turned off. As Apple pundit John Gruber pointed out, “If the mute
switch silenced everything, there’d be thousands of people oversleeping every single day
because they went to bed the night before unaware that the phone was still in silent
mode.”

Apple’s own iOS Human Interface Guidelines gives its rationale for why muting the
phone works the way it does:

For example, in a theater users switch their devices to silent to avoid bothering other
people in the theater. In this situation, users still want to be able to use apps on their
devices, but they don’t want to be surprised by sounds they don’t expect or explicitly
request, such as ringtones or new message sounds.
The Ring/Silent (or Silent) switch does not silence sounds that result from user actions
that are solely and explicitly intended to produce sound.

In other words, muting the phone does not silence the sounds that users have specifically
asked for, only those they have not (e.g., text messages, incoming phone calls). This is
the rule. Like many rules, it’s hidden, and it’s compounded by the fact that other than
the tiny orange mark on the switch, there is no onscreen indicator that the ringer is off.
If Apple was to change to a different rule—that the silent switch silences everything—
other rules and feedback would have to be designed. Would the phone vibrate when an
alarm went off? Would there be some persistent indicator that the phone was in silent
mode, either onscreen when you woke up the phone or a small LED indicator in the
hardware? There are many different ways silencing a phone could be designed.

Silencing a phone is an example of a microinteraction. A microinteraction is a contained
product moment that revolves around a single use case—a tiny piece of functionality
that only does one thing (see Figure 1-1 for an example). Microinteractions can power
an entire app or device, or (more often) exist alongside or inside a larger product. They
are the small moments that can be dull and forgettable, or pleasurable and engaging.
Every time you change a setting, sync your data or devices, set an alarm, pick a password,
turn on an appliance, log in, set a status message, or favorite or Like something, you are
engaging with a microinteraction. They are everywhere: in the devices we carry, the
appliances in our house, the apps on our phones and desktops, even embedded in the
environments we live and work in.

2 | Chapter 1: Designing Microinteractions

http://bit.ly/15n2aOp
http://bit.ly/15n2aOp
http://bit.ly/17wfVHo
http://bit.ly/YzDKdk

2. See 100 Quotes by Charles Eames, Charles Eames (Eames Office, 2007).

Figure 1-1. An example of a common microinteraction: signup. The Disqus sign-up
form cleverly guesses your name based on your email address. (Courtesy Jakob Skjern‐
ing and Little Big Details.)

Microinteractions are the functional, interactive details of a product, and details, as
Charles Eames famously said,2 aren’t just the details; they are the design. Details can
make engaging with the product easier, more pleasurable—even if we don’t consciously
remember them. Some microinteractions are practically or literally invisible, and few
are the reason that you buy a product; instead, they are usually pieces of features, or the
supporting or so-called “hygiene” functionality. For example, no one buys a mobile
phone for the ability to turn the ringer off, but it’s expected, and, as we’ve seen, that
microinteraction can create all sorts of experiences—for good and bad. Some micro‐
interactions can be frustrating, some dull and forgotten, while the best are engaging and
clever. It’s this last that this book will provide the tools to design.

The case of Patron X is one of the few examples of a microinteraction making news.
Even though we’re surrounded by microinteractions every day, we don’t usually notice
them until something goes horribly wrong, as it did for Patron X. But microinteractions
are, despite their small size and near-invisibility, incredibly important. The difference
between a product you love and a product you tolerate is often the microinteractions
you have with it. They can make our lives easier, more fun, and just more interesting if
done well. That’s what this book is all about: how to design microinteractions well.

Designing Microinteractions | 3

This chapter will teach you how to distinguish microinteractions from features,
and gives a brief history of microinteractions. Then, we’ll dive into the structure of
microinteractions, which also forms the structure of the rest of the book. The micro‐
interactions model will provide a means of discussing and dissecting every piece of a
microinteraction so that you can design or improve your own microinteractions. Finally,
we’ll talk about how to incorporate microinteractions into your process.

Microinteractions Are Not Features ... But Still Matter
The combination of well-designed micro- and macro- (feature) interactions is a pow‐
erful one. This is what experience design truly is: paying attention to the details as well
as the big picture so that users have a great experience using the product (see Figure 1-2).

Figure 1-2. Twitter’s password-selection form is a great variation on a common micro‐
interaction (picking a password), with very clear feedback. (Courtesy Little Big Details.)

4 | Chapter 1: Designing Microinteractions

Microinteractions differ from features in both their size and scope. Features tend to be
complex (multiuse case), time consuming, and cognitively engaging. Microinteractions
on the other hand are simple, brief, and should be nearly effortless (see Figure 1-3). A
music player is a feature; adjusting the volume is a microinteraction inside that feature.

Microinteractions are good for:

• Accomplishing a single task
• Connecting devices together
• Interacting with a single piece of data, such as a stock price or the temperature
• Controlling an ongoing process, such as changing the TV channel
• Adjusting a setting
• Viewing or creating a small piece of content, like a status message
• Turning a feature or function on or off

Figure 1-3. When someone posts on your Facebook page in a language that isn’t your
default, Facebook offers to translate. (Courtesy Marina Janeiko and Little Big Details.)

Microinteractions Can Be Big
Microinteractions can be part of a product—or even the entire product itself. Take a
toaster, for example. A toaster does one thing: toasts. It only has one use case: a user
puts item to toast into the toaster and presses start. Toaster toasts. Toast pops up when
done. That’s it. Now, of course, there are variations to this (toasting a bagel instead of
bread), but in general the whole device is powered by a single microinteraction.

Similarly, small apps can be made up of one microinteraction. Thousands of small apps
—desktop and mobile—do one small thing well, whether it’s converting measurements
like Convertbot (see Figure 1-4), being a calculator, or showing weather data.

Microinteractions Are Not Features ... But Still Matter | 5

Figure 1-4. Tapbot’s Convertbot is an app built around a single microinteraction: con‐
verting one value to another.

Microinteractions are frequently the last parts of a product to be designed and devel‐
oped, and as such they are often overlooked. But ignoring them is a mistake. The reason
the original (G1) version of Android felt so unpolished was because the microinterac‐
tions were clunky, especially in comparison to the iPhone; for example, deleting items
was inconsistently triggered, and in some applications pressing the search key did noth‐
ing at all. If the microinteractions are poor, the main features, no matter how nicely
done, are surrounded by pain and frustration. The design of your product is only as
good as its smallest part.

Consider that almost all operating systems, be they mobile or desktop, do basically the
same things: install and launch applications, manage files, connect software to hardware,
manage open applications and windows, etc. But the difference between operating sys‐
tems—at least from a user’s perspective—are the microinteractions you have with it on
a daily, even hourly, basis (see Figures 1-5 and 1-6).

6 | Chapter 1: Designing Microinteractions

Figure 1-5. The author’s menu bar in OS X is crammed full of icons, each of which
launches a microinteraction.

Of course, some features are so useful and/or powerful (or so highly protected by in‐
tellectual property laws) that the microinteractions don’t matter as much. Many medical
devices are examples of this, as is most early stage technology, when people are more
amazed something can be done rather than how it’s done. For instance, the first gener‐
ation of the Roomba (introduced in 2002) couldn’t calculate room size or detect obstacles
and dirt, but it was a novel technology nonetheless, and subsequent models (especially
now that there are competitors on the market) have focused more on the human–robot
microinteractions.

Figure 1-6. When trying to find a word on a page, Chrome indicates in the scrollbar
where instances of that word appear. (Courtesy Saul Cozens and Little Big Details.)

In competitive markets, microinteractions are even more important. When there is
feature parity, it is the experience using the product that increases adoption and brand
loyalty. The overall experience of a product relies heavily on its microinteractions. They
are the “feel” in look-and-feel. One reason Google+ fell so flat against Facebook was that
its microinteractions, such as sorting users into circles, while initially intriguing, quickly
became tiresome and gimmicky.

Another reason to pay attention to microinteractions is because they fit so well into our
multiplatform existence. Microinteractions are the glue that can tie together features
across mobile devices, TV, desktop and laptop computers, appliances, and the Web.
While the microinteractions could vary by platform, their small size allows for a con‐
sistency that you might not have with large features. In particular, appliances and mobile

Microinteractions Are Not Features ... But Still Matter | 7

devices with their small (or no) screens seem custom-made for microinteractions. Small
interactions work well on small devices.

Take Twitter for example. Twitter is built entirely around a single microinteraction:
sending a <140-character message. Users can do this from practically any device, any‐
where. Some objects even tweet independently, or for us. Twitter can be used to send
gossip or messages to coordinate a revolution. Well-designed microinteractions can
scale well across platforms and to millions of users (see Figure 1-7).

Figure 1-7. A nice piece of microcopy. When you go to ask for support at Harvest, it
shows the time at their office alongside their office hours. (Courtesy Nicolas Bouliane.)

Microinteractions also fit well into our already crowded, overcomplicated, and frag‐
mented lives. We need and even enjoy the fast glance at data, the rapid check-in at a
restaurant, the casual review of messages on the subway. (The “Casual Games” category
is really a set of stand-alone microinteractions for amusement.)

Microinteractions force designers to work simply, to focus on details. They challenge
designers to see how lightweight they can design, to reduce complexity and streamline
features that could otherwise be burdensome (Figure 1-8).

Figure 1-8. In Microsoft Office, when text is rotated, relevant styling buttons are rota‐
ted as well. (Courtesy Little Big Details.)

8 | Chapter 1: Designing Microinteractions

3. Detailed in Bravo Course Outline by Suzan Jerome, published by Xerox, 1976.

The Secret History of Microinteractions
In 1974, a young engineer named Larry Tesler began working on an application called
Gypsy for the Xerox Alto computer. Gypsy was one of the first word-processing appli‐
cations ever, and the successor to the groundbreaking Bravo, the first true WYSIWYG
word-processing program and the first program that could have the ability to change
fonts. Even though it was still a word-processing program, Gypsy was a different kind
of application altogether: it made use of a mouse and a graphical user interface (GUI).
Larry’s mission—and what would become his rallying cry for decades to come—was to
reduce the modality of the interface, so that users wouldn’t have to switch to a separate
mode to perform actions. (His website is http://www.nomodes.com, his Twitter handle
is @nomodes, and even his license plate reads NOMODES.) Larry wanted users, when
they typed a character key, to always have that character appear onscreen as text—not
an unreasonable expectation for a word-processing application. This wasn’t the case in
Bravo: typing only worked in a particular mode; other times it triggered a function.

One of those functions was moving text from one part of the document to another. In
Bravo (see Figure 1-9), users had to first select the destination, then press the “I” or “R”
keys to enter Insert or Replace modes, then find and select the text to move, then finally
press the Escape key to execute the copy.3 Larry knew there was a better way to perform
this action, so he designed one that not only made use of the mouse, but radically
simplified this microinteraction. In Gypsy, the user could select a piece of text, press the
“Copy” function key, then select the destination, and finally press the “Paste” function
key. No mode required. And thus, cut and paste was born.

The intertwined history of interaction design and human–computer interaction is really
the history of microinteractions. The tiny things we unthinkingly interact with every
day on desktops, laptops, and mobile devices were once novel microinteractions: ev‐
erything from saving a document to organizing files into folders to connecting to a WiFi
network were all microinteractions that needed to be designed. Even “basics” like scroll‐
ing and opening multiple windows needed to be designed and engineered. The forward
march of technology has provided a continuous need for new microinteractions. We
use them unquestioningly now, and only really pay attention to them when someone
designs a better way, or the technology changes and allows for or forces a new way of
performing the microinteraction.

The Secret History of Microinteractions | 9

http://www.nomodes.com
http://bit.ly/11KzyKV

Figure 1-9. A “screenshot” (Polaroid[!]) of Bravo. The bottom window is being used to
make a form in the top window. (Courtesy DigiBarn Computer Museum.)

Indeed, as technologies have changed, the microinteractions that support them have
also changed. Take scrolling, for instance. Bravo had a primitive version of scrolling,
but scrolling really became more refined when Alan Kay, Adele Goldberg, and Dan
Ingalls introduced scrollbars in another Xerox PARC product, SmallTalk, sometime
between 1973 and 1976. SmallTalk’s scrolling could be smooth, pixel-by-pixel, instead
of line-by-line. (This was famously one of the UI elements demoed to Steve Jobs and

10 | Chapter 1: Designing Microinteractions

4. As recounted in Dealers of Lightning: Xerox PARC and the Dawn of the Computer Age by Michael A. Hiltzik
(HarperBusiness, 2005).

his engineers, which they then built into Apple’s Lisa (Figure 1-10)—and subsequently
the Macintosh.)4

As documents got longer, scrollbars added arrows to jump to the end without scrolling.
Tooltip-style indicators would appear to indicate where you were in the document. But
the real change came with touchscreen technology on trackpads and mobile devices.
Do you slide up or down to scroll down? Apple famously changed directions (from
down to up) in OS X Lion after the introduction of its iPhones in order to align its
laptops and mobile devices to “natural scrolling.” [See, for example, “Apple’s Mousetrap:
Why did Apple reverse the way we scroll up and down?” by Michael Agger in Slate.]
Apple has also (to the ire of many) hidden scrollbars except when scrolling is in process
or the cursor nears the right edge of a scrollable window. The microinteraction keeps
evolving.

Figure 1-10. Apple’s Lisa (1982) featured dozens of “new” (for the market) microinter‐
actions. (Source: Lisa Graphical User Interface Gallery Guidebook.)

The Secret History of Microinteractions | 11

http://slate.me/10nnZN8

But it’s not just digital products that have microinteractions; a case can be made that
microinteractions originated with the first electric devices, such as the radio (1893), the
flashlight (1986), and the washing machine (1900). As designer Bill DeRouchey points
out in his talk “The History of The Button,” in the (pre-electric) mechanical era, users
could follow their actions directly from the control to the output. You could pull a lever,
watch the gears move and finally see the wheels turn. It was easy to connect the input
to the output. Electricity changed all that. You could press a button on the wall and
nearly instantly a light on the other side of the room turned on. Sure, the feedback was
instant, but the method of execution was not. As DeRouchey says in “The History of
the Button”, “The button meant for the first time the result of the human motion could
be completely different from the motion [it creates] itself.” Action became abstracted.

In the digital age, particularly before the GUI, action became even more abstract. In‐
serting a stack of punchcards or flipping a series of switches produced output that was
equally obtuse. For a time, the GUI cleared up and simplified microinteractions. But
then Moore’s Law (processor speed doubles every 18 months), Koomey’s Law (power
consumption for hardware decreases 50% every 18 months), Kryder’s Law (exponential
increase in storage space), and increasing bandwidth and network connectivity (LANs
first, then wireless networks, both local and mobile) created the need for more micro‐
interactions, and those microinteractions needed to control actions far more abstract
than turning on a light. Just as one example, syncing data across devices is a conceptually
abstract idea, for which there’s no readily available physical analog.

Input methods are also drastically changing microinteractions. Not only do we have
physical controls like buttons, switches, keyboards, and mice, we also have touchscreens,
sensors, voice, and gestural means of triggering microinteractions. In the not-too-
distant past, the only way to interact with the physical environment was to adjust it
manually via a physical control. This changed in 1956 when Robert Adler invented the
Zenith Space Commander, the first TV remote control (Figure 1-11). For the first time,
users could control an object from a distance, invisibly.

Today, to trigger a microinteraction, you don’t even need to be in the same room. With
the right equipment, you can adjust the temperature in your house from the other side
of the world (see Figure 1-12). Or you only need to be in the right location; just by being
in a certain block, your mobile phone can remind you of a to-do item, or your GPS
device can tell you where to turn left. In public restrooms, you can turn on sinks just
by putting your hands into them. You can tell your phone to find you a nearby restaurant,
or flick your finger down a touchscreen list to reveal a search bar, or tap your phone on
a counter to pay for your coffee. The list goes on.

The history of technology is also the secret history of the microinteractions that, like
symbiotic organisms, live alongside them to frame, manage, and control them.

12 | Chapter 1: Designing Microinteractions

www.allitebooks.com

http://slidesha.re/1049o1K
http://slidesha.re/1049o1K
http://www.allitebooks.org

Figure 1-11. Although there had been remote-control planes and boats previously
(mostly for military use), the Space Commander television remote removed proximity
from control for consumers. (Courtesy Peter Ha.)

Figure 1-12. The Nest Learning Thermostat uses proximity sensors to know when some‐
one walks into the room, then lights up and shows the temperature in a way that’s visi‐
ble at a glance from across the room. No touching required. (Courtesy of Nest.)

The Secret History of Microinteractions | 13

The Structure of Microinteractions
What makes effective microinteractions is not only their contained size, but also their
form. A beautifully crafted microinteraction gracefully handles four different parts,
which will be described next (see Figure 1-13).

Figure 1-13. The structure of microinteractions.

These four parts—the trigger that initiates the microinteraction, the rules that determine
how the microinteraction works, the feedback that illuminates the rules, and loops and
modes, the meta rules that affect the microinteraction—are a way to design and dissect
microinteractions.

The first part of any microinteraction is the trigger. With turning off the ringer on an
iPhone, the trigger is user-initiated, meaning that the user has to do something—in this
case, flip a switch—to begin the microinteraction. Thus, many microinteractions begin
with an understanding of user need: what the user wants to accomplish, when they want
to do it, and how often. This determines the affordances, accessibility, and persistence
of the trigger. In our silencing-the-phone example, turning off the ringer is a very com‐
mon action that users want to perform all the time, rapidly. Thus the trigger (the Ringer/
Silent switch) is available all the time, instantly able to be turned on and off no matter
what application is running. It was so important, it’s one of only five physical controls
on the iPhone. Controls—digital and/or physical—are the most important part of user-
initiated triggers. They provide not only the ability to engage with a microinteraction
(and sometimes the ability to adjust it while in progress), but also usually the visual
affordance that the microinteraction is even there (see Figure 1-14). If there were no
ringer on/off switch on the iPhone, you might expect the phone had that functionality,
but have to guess at where to find it. In many older mobile phones (and even in some
phones still), silencing the phone was buried under several layers of a settings menu.
Even for users who knew where the setting was, it took as much as 10 seconds to turn
the ringer on or off. It takes less than a second to flip the physical Ringer/Silent switch.

Of course, the physical control doesn’t have to be a switch either. Although the best
designs feel inevitable, there is almost nothing designed that could not be designed
differently. On Windows Phones, the trigger is a pressable rocker button (which also
controls volume) that, when pressed, presents users with a screen overlay that lets users
choose ringer status as “vibrate” or “ring + vibrate.”

14 | Chapter 1: Designing Microinteractions

Figure 1-14. An example of a trigger. In iOS (as in Windows Mobile), you can use the
camera even on a locked phone. Pressing the camera icon bounces the bottom bar up a
little, indicating that you swipe up to get the camera functionality. Of course, slide to
unlock is its own trigger as well.

But triggers need not be user-initiated. Increasingly, triggers are system-initiated—
when the device or application itself detects that certain conditions have been met and
begins a microinteraction. The triggering condition could be anything from detecting
that a new email arrived, to the time of day, to the price of a particular stock, to the
location of the user in the world. For silencing the phone, one could easily imagine that
function integrating with your calendar, so that it automatically silences the phone
whenever you’re in a meeting. Or by knowing your location, it automatically goes silent
whenever you’re in a movie theater or symphony hall. As our applications and devices
become more sensor-full and context-aware, the more ability they could have to make
decisions on their own about how they operate.

The Structure of Microinteractions | 15

Triggers are covered in Chapter 2.

Understandably, users may want, if not the ability to adjust these system-initiated trig‐
gers, then at least the understanding of how they operate, just as Patron X probably
would have liked to know how silencing his phone worked. In other words, they want
to know the rules of the microinteraction.

Once a microinteraction has been initiated, it engages a sequence of behavior. In other
words: something happens (see Figure 1-15). This usually means turning some piece of
functionality or interactivity on, but it might just show the current state of the applica‐
tion or device. It might use data to guess what the user wants to do. In whatever case, it
turns on at least one rule, and rules can usually be defined by a designer.

Figure 1-15. An example of a rule. When you’re using the music-streaming service Spo‐
tify and then turn it on on another platform, the first instance of Spotify pauses. If you
resume playing on the first instance, the second platform will pause. This creates a very
frictionless, cross-platform service. (Courtesy Sebastian Hall.)

Take what is probably the simplest microinteraction there is: turning on a light. Once
you use the trigger (a light switch), the light turns on. In a basic light setup, there is a
single rule: the light stays on and fully lit until the switch is turned off. You can change

16 | Chapter 1: Designing Microinteractions

that rule, however, by adding a dimmer or a motion detector that turns the light off
when no motion is detected. But the basic turn on switch/turn on light rule is very
simple, and one that becomes apparent to anyone who uses a light, even a child.

With applications or electro-digital devices, the rules can be much, much more nuanced
and hard to understand, even for small microinteractions. In the case of Patron X, it
was the interaction with silencing the phone that caused the symphony incident, because
unless there is a specific piece of feedback (and we’ll get to that next), rules are themselves
invisible. Unlike the mechanical devices of the 19th century, users generally cannot see
the activity the trigger has initiated. (This “feature” has been used to tremendous effect
by hackers, whose victims launch a program that unbeknownst to them installs a virus
onto their computers.)

Rules are covered in Chapter 3.

Everything we see or hear while using digital devices is an abstraction. Very few of us
really know what’s happening when we use any kind of software or device. Just as ex‐
amples, you’re not really putting a “file” into a “folder” and “email” isn’t really arriving
into your “inbox.” Those are all metaphors that allow us to understand the interactions
that are going on. Anything you see, hear, or feel that helps you to understand the rules
of the system is feedback, the third part of microinteractions.

Feedback can take many forms: visual, aural, haptic (vibrations). Sometimes it can be
prominent and unmistakable, like the light bulb glowing when you flip the switch.
Sometimes it can be subtle and ambient, like the unread badges that appear on email
applications and mobile apps. It can be as descriptive as a voice telling you exactly where
to turn while doing turn-by-turn directions, or it can be as ambiguous as an LED light
blinking in a complicated pattern. It can be as disruptive as the fart-like buzz of your
phone in your pocket announcing a message, or a whisper as a digital panel opens. What
is important is to match feedback to the action, to convey information in the most
appropriate channel possible.

In our turning off the ringer on the iPhone example, silencing the phone has two pieces
of feedback: a screen overlay when the switch is turned on or off, and a tiny, visible strip
of orange on the actual switch when the phone is silent. What doesn’t appear—and what
was the downfall of Patron X—is any indication that even though the ringer is off, set
alarms will still sound. There is also no onscreen indicator (other than the temporary
overlay, which vanishes after a few seconds) that the ringer is off. These are design
choices.

The Structure of Microinteractions | 17

Even more than with triggers, feedback is the place to express the personality of the
product. Indeed, feedback could be said, along with the overall form, to completely
define the product’s personality.

Feedback is not only graphics, sounds, and vibrations; it’s also animation (see
Figure 1-16). How does a microinteraction appear and disappear? What happens when
an item moves: how fast does it go? Does the direction it moves in matter?

Figure 1-16. An example of feedback. In Coda2, the Process My Order button becomes
a progress bar when pressed. The text should change to Processing Order and Order
Processed!, however. (Courtesy Christophe Hermann and Little Big Details.)

Feedback can have its own rules as well, such as when to appear, how to change colors,
how to rotate the screen when the user turns a tablet on its side. These rules may them‐
selves become their own microinteractions, as users might want to adjust them manually
as a setting.

Feedback is discussed in Chapter 4.

The last part of microinteractions are the loops and modes that make up its meta rules.
What happens over time with the microinteraction: do the interactions remain until
manually turned off (as is the case with the Ringer/Silence switch) or do they expire
after a while? What happens during an interruption or when conditions change? See
Figure 1-17 for an example.

18 | Chapter 1: Designing Microinteractions

Although it’s often undesirable, some microinteractions have different modes. For in‐
stance, take the example of a weather app. Its main (default) mode is all about displaying
the weather. But perhaps users have to enter another mode to enter the locations they’d
like weather data from.

Figure 1-17. An example of a loop. On eBay, if you’ve bought the same item in the past,
the button changes from “Buy it now” to “Buy another.” (Courtesy Jason Seney and Lit‐
tle Big Details.)

Loops and modes are discussed in Chapter 5.

Microinteractions as a Philosophy
There are three ways of incorporating microinteractions into products. The first is to
think about them on a case-by-case basis. During the course of a design project or when
simply refining your product, try to identify any possible microinteractions. Make a list
of them, then treat each as such. For each one, deliberately consider the structure as
outlined in this book, and see if you can polish each individual component. You’ll wind
up with elegant microinteractions—and possibly Signature Moments.

Signature Moments are those microinteractions that are product differentiators. A cus‐
tom trigger control (such as the original iPod’s scroll wheel) or an elegant “loading”
animation or a catchy sound (“You’ve Got Mail!”) can be marketed as though they are
features and used cross-platform or in other products by the same organization. A
Signature Moment will help create customer loyalty and recognition. The Like button
on Facebook is now so well known that it’s part of the brand.

The challenge in working this way is keeping the scope of the microinteraction limited.
The tendency is to turn them into features, because that is the way most designers are
used to working. We want to tackle big problems and solve everything. Microinterac‐
tions are an exercise in restraint, in doing as much as possible with as little as possible.

Microinteractions as a Philosophy | 19

5. Dieter Rams in conversation with Rido Busse (1980), reprinted in Design: Dieter Rams & (1981).

Embrace the constraints and focus your attention on doing one thing well. Mies van
der Rohe’s mantra of “less is more” should be the microinteraction designer’s mantra as
well.

A second way to think about microinteractions is to reduce more complex applications
to individual products that are each built around one microinteraction. This is micro‐
interactions as product strategy: your product does one thing and one thing well. Reduce
the product to its essence, its Buddha nature. If you find you want to add another feature
to your product, that other feature should be its own product. Many appliances, apps,
and devices, including the original iPod, follow this model. This is how many startups
work (or at least began), from Instagram to Nest: they did one thing well. The “minimum
viable product” can be one microinteraction. Working this way justifies and provokes
a radical simplicity to your product, which allows you to say no to feature requests as
they arise. Of course, this is also a difficult stance to take, particularly in corporations
where the inclination is to sell one product that does everything their customers might
need. Imagine breaking up Microsoft Word into individual products! And yet this is
what some competitors have done. For example, apps like WriteApp are optimized just
for writing, with most of the functionality of a word-processing program stripped away,
so that the focus is only on writing, for writers. Evernote began with a simple microin‐
teraction: write notes that are available across platforms.

But there is a third way to think about microinteractions, and that is that most complex
digital products, broken down, are made up of dozens, if not hundreds, of microinter‐
actions. You can view a product as the result of all these microinteractions working in
harmony. This is what Charles Eames meant when he said the details are the design.
Everything’s a detail, everything’s a microinteraction: a chance to delight, a chance to
exceed users’ expectations. As Dieter Rams said:

I have always had a soft spot in my heart for the details. I consider details more important
than a great draft. Nothing works without details. Details are the essentials. The standard
to measure quality by.5

In short, treat every piece of functionality—the entire product—as a set of microinter‐
actions. The beauty of designing products this way is that it mirrors the smaller, more
agile way of working that many companies are embracing (Figure 1-18). Of course, the
pitfall is that you can get lost in the microinteractions and not see the big picture, that
all the details won’t fit together into a coherent whole when you’re finished. And working
this way takes extra time and effort.

20 | Chapter 1: Designing Microinteractions

Figure 1-18. Whether viewing the Standard (“Plain”) or Satellite view of Google Maps,
the widget for changing the view shows the map and a preview of the other view behind
it. (Courtesy Hugo Bouquard and Little Big Details.)

This is also a difficult way for agencies—with their notoriously fast project schedules—
to work. It’s honestly a challenging way for any designer to work, as often the attention
of clients and stakeholders is focused on the big features, not the small details that would
enhance those features or improve the overall experience. Indeed, it can be difficult to
get enough time to focus on microinteractions at all. Convincing business and devel‐
opment team members that microinteractions are worth spending time on can be a
challenge. It will likely mean extra time for design and development, after all. But it’s
worth it.

The disastrous story of Patron X reminds us that microinteractions matter, that the
designer’s job is to take the tasks that could otherwise be frustrating and difficult and
make them otherwise. Larry Tesler knew this when he decided there had to be a better
way to move text inside a document, and thus cut and paste were born. Microinterac‐
tions can improve the world, one tiny piece at a time. And they all start with a trigger.

Microinteractions as a Philosophy | 21

Summary
Microinteractions are the small pieces of functionality that are all around us. Focusing
on them is the way to create a superior user experience.

The history of microinteractions stretches back to the first electric devices. Most of the
digital standards we’re used to now were once novel microinteractions.

A microinteraction is made up of four parts: triggers that initiates it, rules that determine
how it functions, feedback that the rules generate, and the loops and modes that make
up its meta-rules.

There are three ways of working with microinteractions: look for them and focus on
each individually, reduce a complicated feature to a core microinteraction, or treat every
feature as a set of linked microinteraction.

22 | Chapter 1: Designing Microinteractions

1. “Ethnic Press Booms In New York City.” Editor & Publisher. July 10, 2002.

CHAPTER 2

Triggers

In the 1990s, New York City Transit began converting its seven million daily bus-and-
subway passengers from paying fares with tokens—which had been in use since 1904—
to paying with a MetroCard, a thin, paper-like plastic card. One of the key pieces of the
city’s conversion plan was the installation of hundreds of vending machines all over the
five boroughs for riders to purchase and fund these new MetroCards. This was no easy
task. New York City is home to over eight million people, and tens of millions more live
in the surrounding tristate area. According to a report by the Department of City
Planning, in 2000, 36% of New York City residents were foreign born; there were enough
people speaking a language other than English in 2002 to support 40 magazines and
newspapers in another language.1 Tens of thousands of residents are visually impaired,
physically disabled, have little or no schooling, or are illiterate—or some combination

23

2. The full story is told in her 2008 talk “Intervention-Interaction” at Interaction08.

thereof. The official guide to New York City reports that over 35 million tourists visit
every year (in some years as many as 50 million), many of whom will ride the subway,
but few of whom are familiar with it or know how to buy a MetroCard. In fact, the
Metropolitan Transit Authority (MTA) had done studies of early MetroCard vending
machine prototypes and had found that users were intimidated by the physical form
and found the user interface to be incomprehensible.

Stepping into this challenge were designers Masamichi Udagawa, Sigi Moeslinger, and
their team at Antenna Design, who were tasked with designing the MetroCard Vending
Machine.

As Moeslinger recounts,2 one assumption they had to dispel for themselves was that
their users had experience using touchscreen-style kiosks. In the mid-1990s, few people
outside of the service industry (where touchscreens were behind bars and fast-food
restaurant counters) had much interaction with touchscreens, with one exception: au‐
tomatic teller machines (ATMs). The designers assumed that even for the lowest com‐
mon denominator, they would have at least some experience using an ATM. This turned
out not to be the case—at the time, anecdotally up to 50% of the MTA riders didn’t have
a bank account, and thus didn’t own an ATM card. They’d likely never used a machine
like the MetroCard dispenser. “The concept of a touchscreen was really alien to them,”
said Moeslinger. Just getting these users—millions of them—to approach and start using
the new, unfamiliar machines was a real issue.

Antenna decided to make each screen of the machine only do one task. “It simulates a
dialog and asks one question per screen,” said Moeslinger. (In other words, they made
every screen a microinteraction.) There was some concern by the MTA that by doing
so, it would make the transaction too slow. With millions of people using the machines,
additional seconds in the transaction could cause lines and rider complaints. But the
opposite proved to be the case. “Having quickly graspable bits of information made the
transaction much faster than trying to save screens in the steps of the process.”

Antenna explored two interaction models: one in which you put your money in first,
then you select what you want (like a soda machine) and a second in which you select
what you want first, then pay. Users much preferred the second model, but there was
still the problem of getting them to start using the new machines in the first place.

Their solution: turn the entire touchscreen into one huge trigger (see Figure 2-1). As
discussed in Chapter 1, a trigger is the physical or digital control or condition(s) that
begins a microinteraction. In this case the idle screen—the screen that appears after a
transaction is completed or when a machine is sitting idle—became a giant call to action:
TOUCH ME. As you can see in Figure 2-1, Antenna did everything short of lighting off
signal flares to attract users to the trigger. The word “start” appears three times and

24 | Chapter 2: Triggers

“touch” twice. The hand animates, pointing towards the Start button. But here’s the
thing: the whole screen is the trigger. You can touch anywhere to begin using the ma‐
chine. The Start button is just a visual cue—a faux affordance—so that people know to
“push” (when they will actually just tap) it to start. Although it seems like the button is
the trigger, really it’s the whole screen. It’s a great solution to a very hard challenge—
and one that is still in use over a decade later.

Figure 2-1. The idle screen from the MetroCard Vending Machine. Antenna Design de‐
liberately overemphasized the trigger, which was not, as one might suspect, the button
in the top right. It’s actually the whole screen. (Courtesy Antenna Design.)

The MetroCard Vending Machine introduces the first principle of triggers: make the
trigger something the target users will recognize as a trigger in context. This might mean
a physical (or seemingly physical, as with the fake Start button on the MetroCard
Vending Machine) control like a button or a switch, or it could be an icon in the task
or menu bar. Make it look like you can do something, and make it engaging. And while
having a large, animated glowing finger pointing up to a Start button isn’t the right
affordance for most microinteractions, it was appropriate—and wildly successful—for
this context.

Triggers | 25

3. “A Tablet Straining to Do It All”, The New York Times, August 15, 2012.

Manual Triggers
Where do microinteractions begin? Often they are the very first thing a user encounters
as they turn a device on or launch an app. The on/off switch (or its digital equivalent)
is the first trigger they encounter. On/off switches are, like the Start screen on the Met‐
roCard, examples of manual triggers. (Automatic, system-initiated triggers are covered
later.)

Manual triggers usually spring from a user want or need: “I want to turn the TV on.” “I
want to turn the ringer off on this phone.” “I need to move this text from one place to
another.” “I want to buy a MetroCard.” From a strategic point of view, it is critically
important to understand what a user wants (or needs) to do, when they want to do it,
and in what context(s) they want to do it. This determines when and where your manual
trigger should instantiate. It might need to be globally available, like an on/off switch,
or it might be very contextual, only appearing when certain conditions are met, such as
being in a particular mode or when the user is in a particular functional area of the app.
For example, Microsoft Office’s “minibar” formatting menu only appears when text has
been highlighted. You can find out these user needs the usual ways: either through design
research (observations, interviews, exercises) or through intuition and understanding
of the subject area. Or you find out the hard way: in product testing or when the product
is launched or out in the field. The point is to match the user need (when and where)
with the location of the trigger. (See “Making manual triggers discoverable” on page 29.)

The second principle of triggers, although it seems incredible to even have to say this,
is have the trigger initiate the same action every time. This is so users can create an
accurate mental model of how the microinteraction works. This is violated more fre‐
quently than one might imagine. Tech reviewer David Pogue on the Samsung S Note:

Some of the icons in S Note actually display a different menu every other time you tap
them. I’m not making this up.3

Another example is the Home button on iPhone and iPad, which either takes you to the
home screen or, if you’re on the home screen, to Search. (Not to mention all the other
functions that it does when you press it twice or press and hold. See “Spring-Loaded
and One-off Modes” on page 113 in Chapter 5.) While bundling functionality under the
home button is a great way to reuse limited hardware, the single press that takes you to
Search instead of doing nothing (or giving some kind of “Hey! You’re already there!”
feedback) if you’re on the home screen is probably a step too far.

Possibly the least effective visible triggers are those that are only items in a drop-down
menu. As a menu item, the trigger is effectively invisible; if the microinteraction isn’t
frequently used, having it buried in a menu requires users to do a lot of searching to

26 | Chapter 2: Triggers

http://nyti.ms/17Szx8y

find it. Of course, the alternative is to have a visible trigger onscreen for a microinter‐
action that is infrequently used, which might not be the best solution either. Settings,
such as those for the desktop in Figure 2-2, are a perfect example of this; users only use
them infrequently, yet they can be essential for certain apps, so it can be a design chal‐
lenge to figure out how visible the trigger for them needs to be.

Figure 2-2. On the Gnome desktop, rather than a static text file icon, the icon shows the
first three rows of text. (Courtesy Drazen Peric and Little Big Details.)

Bring the Data Forward
The third principle of manual triggers is to bring the data forward. The trigger itself can
reflect the data contained inside the microinteraction. Ask yourself, what can I show
about the internal state of the microinteraction before it is even engaged or while a
process is ongoing? What are the most valuable pieces of information I can show? This
requires knowing what most people will use the microinteraction for, but you should
know that key piece of information before you even begin. A simple example is a stock
market app. Perhaps it indicates (via color or an arrow) the current state of the market
or a stock portfolio, which could prompt the user to launch the microinteraction—or
not. The trigger becomes a piece of ambient information available at a glance that might
lead to using the trigger.

Manual Triggers | 27

The trigger can also indicate where in a process a product is (see Figure 2-3 for an
example). The button you use to start a process (making toast, for example) could in‐
dicate how long it is until the toast is ready.

Figure 2-3. Google’s Chrome browser icon (the trigger to launch it) also indicates active
downloads and the download’s progress.

The Components of a Trigger
Manual triggers can have three components: the control itself, the states of the control,
and any text or iconographic label.

Controls

For manual triggers, the least you can have is a control (see Figure 2-4). The kind of
control you choose can be determined by how much control you want to give:

• For a single action (e.g., fast-forward), a button or a simple gesture is a good choice.
The “button” in some cases could be an icon or menu item, while the gesture could
be a movement like a tap, swipe, or wave. A button could also be (or be paired with)
a key command or a gesture.

• For an action with two states (e.g., on or off), a toggle switch makes sense. Alter‐
natively, a toggle button could be used, although it is often hard to tell at a glance
what state the button is in—or even that it might have another state. A third (and
perhaps worst) choice is that of a regular button where a single press changes the
state. If you choose this method, the state the button controls should be absolutely
clear. A lamp is clearly on or off, so a regular (nontoggle) button could be used to
turn it on and off.

• For an action with several defined states, a dial is a good choice. Aside from having
detents, dials can have a push/pull toggle state as well. Alternatively, a set of buttons
could be used, one for each choice.

28 | Chapter 2: Triggers

• For an action along a continuum (e.g., adjusting volume) with a defined range, a
slide or dial (particularly a jog dial, which can spin quickly) are the best choices.
Alternatively, and particularly if there is no defined range, a pair of buttons could
be used to change the value up/down or high/low.

• Some manual triggers are made up of multiple controls or elements such as form
fields (radio buttons, checkboxes, text-entry fields, etc.). For example, a microin‐
teraction such as logging in might have text-entry fields to put in a username and
password. These should be used sparingly and, whenever possible, prepopulated
with either previously entered values or smart defaults.

Figure 2-4. The parts of a control.

There are also custom controls that fall outside the traditional buttons, switches, and
dials—an example being the scroll wheel from the original (nontouch) iPods. Custom
controls will bring a distinct emphasis to your microinteraction, perhaps even making
it a Signature Moment. Custom controls can also be gestures or touches (see “Invisible
triggers” on page 32).

The goal for microinteractions is to minimize choice and instead provide a smart default
and a very limited number of choices. The control you select for the trigger should
reflect this philosophy.

Controls are tightly coupled with visual affordances—what users expect can be done,
based on sight. The fourth principle of triggers is don’t break the visual affordance: if
your trigger looks like a button, it should work like a button and be able to be pushed.

Making manual triggers discoverable. An important first question to ask is: how noticeable
should this trigger be? The fifth principle of triggers is that the more frequently the
microinteraction is used, the more visible it should be. Author Scott Berkun has a golden
rule for discoverability that I’ve adapted for microinteractions. It’s this:

Manual Triggers | 29

4. Adapted from Scott Berkun, “The Myth of Discoverability”.

5. Marshall, W. H., S. A. Talbot, and H. W. Ades. “Cortical response of the anaesthesized cat to gross photic and
electrical afferent stimulation.” Journal of Neurophysiology 6: 1–15. (1943).

6. Welford, A. T. “Choice reaction time: Basic concepts.” In A. T. Welford (Ed.), Reaction Times. Academic Press,
New York, pp. 73–128. (1980).

Microinteractions that most people do, most often, should be highly discoverable.
Microinteractions that some people do, somewhat often, should be easily discoverable.
Microinteractions that few people do, infrequently, should take some searching to find.4

This golden rule will serve you well when determining how discoverable your trigger
should be.

But how do we discover anything?

There are two ways we as humans become aware of anything in our environment. The
first is that the item, either through movement or sound, causes our attention to invol‐
untarily attune to it. This stimulus-driven attention is what kept our ancestors alive,
drawing their attention to charging rhinos and other dangers in the environment. De‐
signers can use this same device to draw attention to a trigger by having it move or make
noise. Doing this, particularly on a desktop or web environment, can be incredibly
obnoxious. Because we involuntarily focus our attention on movement and sound,
having a trigger move or make a sound should be reserved for high-priority microin‐
teractions—and to have it repetitively do so should be reserved for the highest priority
microinteractions, such as errors and alerts.

The second way we pay attention to anything is when we’re actively seeking to find
something—when we’re goal-based. We actively turn our attention on items/areas to
see if we can find something that meets our current needs. This attention, unless we are
impaired or blind, is mostly visual. We turn our bodies, heads, or just eyes to visually
search for what we’re looking for.

However, it should be noted that our reaction time to sound is faster
than visual; auditory stimulus takes 8–10 milliseconds to reach the
brain but visual stimulus takes 20–40 milliseconds.5 Reaction time to
sound is also faster: 140–160 milliseconds for sound versus 180–200
milliseconds for visual.6 Again, this makes evolutionary sense. The
human eye is limited to about 180 degrees horizontal and 100 degrees
vertical, while hearing is 360 degrees. A predator coming up from
behind wouldn’t be seen, but could be heard. (Some reptiles and birds
actually have 360-degree vision.) But while you could (in theory) use
sound as a kind of sonar to find a trigger, in nearly every instance this
is impractical.

30 | Chapter 2: Triggers

http://bit.ly/13uE4NP

7. Eriksen, C; Hoffman, J. “Temporal and spatial characteristics of selective encoding from visual displays”.
Perception & Psychophysics 12 (2B): 201–204. (1972).

8. Ibid.

9. Eriksen, C; St James, J. “Visual attention within and around the field of focal attention: A zoom lens model.”
Perception & Psychophysics 40 (4): 225–240. (1986).

10. Geons were first espoused in “Recognition-by-components: A theory of human image understanding” by
Irving Biederman in Psychological Review 94 (2): 115–47. (1987).

11. Treisman, A. “Features and objects in visual processing.” Scientific American, 255, 114B–125. (1986).

When we’re searching for something, our field of vision can narrow to as little as 1
degree7 or less than 1% of what we typically see. This narrowing of our field of vision
has been compared to a spotlight8 or zoom-in lens.9 We engage in a process of object
recognition, wherein we identify and categorize items in the environment.

When we’re engaged in object recognition, our eyes are looking for familiar shapes,
known as geons. Geons are simple shapes such as squares, triangles, cubes, and cylinders
that our brains combine together to figure out what an object is.10

Because of geons, it’s especially good practice to make triggers, particularly iconic ones,
geometric. In general, it’s easier to find a target when we’re looking for a single charac‐
teristic rather than a combination of characteristics,11 so it’s best to keep your triggers
visually simple—especially if they are going to live in a crowded environment such as
among other icons.

Once we identify an item (“That’s a button”), we can associate an affordance to it (“I
can push a button”), unless there is another visual cue such as it being grayed out or
having a big red X over it that negates the affordance. The sixth principle of manual
triggers is don’t make a false affordance. If an item looks like a button, it should act like
a button. With microinteractions, the least amount of cognitive effort is the goal. Don’t
make users guess how a trigger works. Use standard controls as much as possible. As
Charles Eames said, “Innovate as a last resort.”

The most discoverable triggers are (from most discoverable to least):

• An object that is moving, like a pulsing icon
• An object with an affordance and a label, such as a labeled button
• An object with a label, such as a labeled icon
• An object alone, such as an icon
• A label only, such as a menu item
• Nothing: an invisible trigger

Manual Triggers | 31

http://bit.ly/11i6pFy

Invisible triggers. Manual triggers can also be invisible—there might be no label or af‐
fordance to let the user know there’s a microinteraction to be triggered. Invisible triggers
are often sensor-based, made possible via touchscreens, cameras, microphones, and
other sensors such as accelerometers (as in Figure 2-5). However, you could also have
an invisible trigger that is only a command key (Figure 2-6) or a mouse movement (to
the corner of the screen, for example).

Figure 2-5. Swiping the button to the left on the Tumblr iPhone app (instead of pressing
it) is an invisible trigger for creating a new text blog post. You can also swipe upwards
to make a new photo post. (Courtesy Robin van’t Slot and Little Big Details.)

32 | Chapter 2: Triggers

www.allitebooks.com

http://www.allitebooks.org

Figure 2-6. In Alfred’s settings, if you disable the visible triggers, the invisible one be‐
comes highlighted. (Courtesy Hans Petter Eikemo and Little Big Details.)

Touchscreen UIs currently contain the most common invisible controls. Many multi‐
touch gestures have no visual affordance to indicate their presence, and custom gestures
beyond the usual taps and swipes are often found through a process of trial and error
(see Figure 2-7).

Voice input is another example of an invisible control. There are three kinds of voice
controls:
Always listening

The product’s microphone is always on and users only need to address it (usually
by name) to issue a command. Microsoft’s Kinect for Xbox works in this manner.
“Xbox, play!” is an example of this kind of control.

Dialogue
The product’s microphone turns on at specific times to listen for a response to a
prompt. (“Say ‘yes’ to continue in English.”) Most automated customer call inter‐
faces work thus.

Combined with a control
In order to initiate a voice command, a physical control has to be engaged first.
Apple’s Siri works like this: users press and hold the Home button in order to issue
voice commands.

Gestural controls such as hand waves to turn something on, or a shake to shuffle are
also often invisible. Like voice controls, sometimes there is an initial action (like a wave)

Manual Triggers | 33

Figure 2-7. In Google Maps for iOS, shaking is an invisible trigger for sending feedback.
(Courtesy Little Big Details.)

or a physical control to get the device ready for other gestural commands. With Google
Glass, tilting your head upwards or touching the side of the frame turns on the screen.
Touching or being close to a device can be an invisible trigger, such as turning on a
bathroom sink when hands are put under the faucet. Similarly, moving away from an
object can be a trigger as well, such as automatically flushing a toilet when the person
has moved away.

Why ever have an invisible trigger? The truth is, no matter what the interface, not every
item is going to be immediately discoverable. Making everything visible and discover‐
able will often mean an incredibly cluttered, complicated, and not easily scannable
screen. Hiding items makes the screen or object visually simpler, while not jettisoning

34 | Chapter 2: Triggers

functionality (Figure 2-8). Invisible controls allow for an emphasis on what is visible,
and creates a hierarchy of what’s important. But it is important to note that invisibility
should not be an explicit goal for microinteraction (or any kind of interaction) design;
rather it should be a byproduct of context and technology: what makes sense to hide,
given this environment? Or what must we hide because there is no place to display a
visible control with this technology? The best microinteractions have just enough in‐
terface, but no more.

Figure 2-8. Akismet has a clever invisible trigger. When someone right-clicks the logo
(presumably to save it), Akismet shows a window with several different resolutions.
(Courtesy Fabian Beiner.)

Invisible triggers should be learnable. Once discovered (either through accident, word-
of-mouth, or help), users often only have their (faulty) memories to rely on to initiate
the microinteraction again. Being learnable means the invisible trigger should be nearly

Manual Triggers | 35

universally available, or alternatively, only available under particular conditions
(Figure 2-9). Invisible triggers should be guessable, or, ideally, stumbled upon as the
user performs other actions. For example, scrolling up past the top of a list reveals a
reload microinteraction.

Figure 2-9. KanaSwirl’s settings allow for disabling what would otherwise be an invisi‐
ble trigger (Shake to Pause). (Courtesy Shawn M. Moore and Little Big Details.)

Unless it’s impossible—there is no screen or place to put a physical control, such as with
Google Glass—never make an invisible trigger for a high-priority microinteraction. Try
to, at least, create a visible trigger for the microinteraction. For example, a command
key and menu items.

36 | Chapter 2: Triggers

Control states

Some manual triggers have multiple states. Although in most cases you won’t have all
of these states, when designing a trigger, you should consider them:
Default

The idle state when there is no activity.

Active
If there is an activity working in the background—for example, downloading an
update or syncing—the trigger could be used to indicate that.

Hover
Can be used to bring up a tool-tip-style description, expand the size of the trigger
to reveal more controls or form fields, or simply indicate that an item is clickable.
Even more useful, a hover can display a piece of data that is contained within the
microinteraction (see Figure 2-10). For example, hovering over an icon that launch‐
es a weather app could show you today’s weather without ever having to launch the
app. Bring the data forward.

Figure 2-10. In the Rdio player, hovering over the fast-forward and rewind buttons
display the upcoming or previous track. (Courtesy Nicholas Kreidberg and Little
Big Details.)

Rollover
Often used to indicate presence or activity, or just an added indicator that the cursor
is positioned correctly to engage (see Figure 2-11).

On click/tap/in process
What happens when the trigger is clicked, tapped, or begun. This can mean the
trigger disappears, opens, changes color, or becomes a progress indicator as the
microinteraction loads (see Figures 2-12 and 2-14). One variation is that the trigger
does not launch the microinteraction immediately, but expands the trigger to reveal
more controls. For example, a Save button could open up a panel that asks whether
to Overwrite or Save As.

Toggle
Switches and buttons can indicate their current setting (left/right, up/down, or
pressed/unpressed, respectively). On physical devices, switches often make this

Manual Triggers | 37

Figure 2-11. If you aren’t logged in and roll over the Comment field, YouTube prompts
you to sign in or sign up. (Courtesy Marian Buhnici and Little Big Details.)

Figure 2-12. Path’s Sign Up button smiles when clicked. (Courtesy Little Big Details.)

easier to determine this at a glance, unless the button has some accompanying
indicator, such as an LED that glows when in a pressed state.

Setting
Dials, switches, and sliders can show what setting or stage the microinteraction is
currently at (see Figure 2-13).

These indicators of state are usually the trigger itself—the trigger changes its appearance
or animates—but it can also be an indicator light such as an LED positioned near the
trigger. For example, a glowing red LED near an on/off switch could indicate its off
setting. It’s good practice to keep any state indicator that isn’t attached to the trigger near
the trigger. The same applies for any “expanded” version of the trigger: don’t open up a
window elsewhere. Keep the focus on the trigger itself.

38 | Chapter 2: Triggers

Figure 2-13. The play/pause control on Xiami.com indicates the playing time of a song.
(Courtesy Little Big Details.)

Figure 2-14. In CloudApp, the Log In button changes state after being clicked to let
users know an action is happening in the background. (Courtesy Little Big Details.)

Labels

An important part of some triggers are their labels. Labels can name the whole micro‐
interaction (e.g., the menu item or Microsoft Ribbon item name) or they can be indi‐
cators of state, such as a name at each detent on a dial. Labels are interface.

Manual Triggers | 39

12. For more on feedforward, see “But how, Donald, tell us how?: On the creation of meaning in interaction
design through feedforward and inherent feedback,” by Tom Djajadiningrat, Kees Overbeeke, and Stephan
Wensveen, Proceedings of the 4th conference on Designing interactive systems: processes, practices, methods,
and techniques, ACM, New York, NY, USA (2002).

The purpose of a label is clarity: is what I’m about to do the thing I want to be doing?
Labels put a name on an action and create understanding where there could otherwise
be ambiguity. But because a label becomes one more item to scan and parse, only provide
a label if there could be ambiguity. The better practice is to design the control so it has
no inherent ambiguity (Figure 2-15).

Figure 2-15. Vimeo’s cancel/dismiss/not now button is humorously labeled “I hate
change.” (Courtesy Joe Ortenzi and Little Big Details.)

The seventh principle of manual triggers is to add a label only if it provides information
that the trigger itself cannot. Consider how you could represent the label visually instead
of by adding text. For instance, imagine a rating system of 1–5 stars. You could design
a slider with numeric labels of 1–5 or you could have the trigger be just the five stars
that light up one by one on hover.

This is obviously not possible or desirable in some cases. A missing label on a button
can mean that that button is indistinguishable from every other button around it and
thus is never pushed.

Unlike other kinds of product copy (i.e., instructional, marketing), microinteraction
labels are not typically the place for brand creativity; they are utilitarian, to create clarity
(see Figures 2-16 and 2-17). This is not to say to ignore whimsy or personality, but to
do so only when the label remains clear. Google’s “I’m Feeling Lucky” button label might
be amusing, but tells you absolutely nothing about what is going to happen when you
press the button. There is no feedforward—an understanding of what is going to happen
before it happens.12

40 | Chapter 2: Triggers

Figure 2-16. Barnes & Noble’s website has a label that visually indicates case sensitivi‐
ty. (Courtesy Paul Clip and Little Big Details.)

Figure 2-17. Apple’s iOS Speak Selection setting has an example of a whimsical but
clear iconic label, using the fable of “The Tortoise and the Hare.” Although, in cultures
where this analogy is unknown, this would certainly be puzzling. (Courtesy Victor
Boaretto and Little Big Details.)

In general, labels need to be short yet descriptive and in clear language (Figure 2-18).
“Submit” as a button label may be short, but it doesn’t clearly indicate in nontechnical
language what action the user is about to take. In microinteractions, specificity matters.

Manual Triggers | 41

Being vague is the enemy of a good label. Be specific. (For more on this topic, see
Microcopy in Chapter 3.)

Figure 2-18. The label on the iPhone’s Slide to Unlock Trigger vanishes as you slide.
(Courtesy Little Big Details.)

Consistency is also important. Since labels can be names, be sure you title anything
you’re labeling (the microinteraction, a state, a setting, a piece of data) the same name
throughout the microinteraction. Don’t call it an “alert” in one part of the microinter‐
action and a “warning” in another part.

The best way to ensure that your labels are successful is to write them in the language
of those who will use it. If you’re using technical terms, your audience had best be
technical as well; otherwise, use casual, plain language. Secondly, test the labels with the
target users (see Appendix A). It’s not an exaggeration that a majority of usability prob‐
lems are caused by poor (or no) labeling.

42 | Chapter 2: Triggers

System Triggers
Not all triggers are manual. In fact, we’re likely in the era when most triggers aren’t
human initiated at all, but instead are system initiated. System triggers are those that
engage when certain condition(s) are met without any conscious intervention by the
user, as in Figures 2-19 and 2-20.

Figure 2-19. The deliveries app checks if there is a tracking number in the clipboard on
launch, and if so, a system trigger launches this microinteraction. It’s also smart enough
to indicate from which courier the number is from. (Courtesy Patrick Patience and Lit‐
tle Big Details.)

System Triggers | 43

Figure 2-20. An example of a system trigger caused by another person. When someone
you follow re-blogs someone you don’t on Tumblr, a follow button appears. (Courtesy
Brian Jacobs and Little Big Details.)

These common conditions that can initiate a trigger:
Errors

When a system encounters an error, it often addresses the problem via a microin‐
teraction, such as asking what to do or simply indicating something untoward has
happened (see Figure 2-21).

Location
Location can be on many scales: from within a country, to a particular city or
neighborhood, to a particular part of a room. A user in any of these settings can
cause a microinteraction to fire.

Incoming data
Email, status messages, software updates, weather, brightness, and a host of other
data that enter networked devices and apps can be triggers for microinteractions
such as “You’ve Got Mail!” alerts.

Internal data
Likewise internal data such as time and system resources can be triggers (see
Figure 2-22). An example is dimming the screen after a set amount of time.

Other microinteractions
One particular kind of system trigger is when one microinteraction triggers another.
A simple example of this is a wizard-style interface. The end of step one (a micro‐
interaction) is the trigger for step two (another microinteraction), and so on. (See
“Orchestrating Microinteractions” on page 137 in Chapter 6)

Other people
In many social interactions, what another person does (e.g., reply to a chat, post a
picture or message, send a friend request) can be the basis for a trigger.

44 | Chapter 2: Triggers

Figure 2-21. In Windows Phone, the messaging icon (a trigger) changes to a sad face if
there was an error sending a message. (Courtesy Wojtek Siudzinski and Little Big
Details.)

Figure 2-22. In Ubuntu, if the screen has timed out and locked, another trigger appears
that lets a visitor leave a message for the device’s owner. (Courtesy Herman Koos
Scheele and Little Big Details.)

Users might not manually initiate these triggers, but it is good practice to provide some
means (e.g., a setting) of adjusting them. Every system-initiated trigger should have
some manual means of managing or disabling them. Ideally, this is at the point of in‐
stantiation, when the microinteraction has been triggered (“Stop showing me these
alerts”), but at a minimum in a settings area.

Additionally, users may want a manual control even when there is a system trigger (See
Figure 2-23). For example, a user might want to manually sync a document instead of
waiting for it to automatically happen. A manual control can provide assurance, as well
as the ability to trigger the microinteraction in case there is something wrong with the
system (e.g., the network connection is down, or the sensor didn’t register).

System Triggers | 45

Figure 2-23. In the Instapaper iPhone app, if you accidentally rotate the phone between
portrait and landscape mode and then quickly rotate it back, the Rotation lock setting
appears. (Courtesy Richard Harrison and Little Big Details.)

System Trigger Rules
Some system triggers themselves need their own rules, the most common of which are
when and how often to initiate (Figure 2-24). It can be system-resource intensive—
draining battery life, or using bandwidth or processing power—for a product to be
constantly pinging remote servers or reading data from sensors.

System trigger rules should answer the following questions:

• How frequently should this trigger initiate?
• What data about the user is already known? How could that be used to make this

trigger more effective, more pleasurable, or more customized? For example, know‐
ing it is the middle of the night could reduce the number of times the system trigger
initiates. (See “Don’t Start from Zero” on page 64 in Chapter 3 for more.)

46 | Chapter 2: Triggers

• Is there any indicator the trigger has initiated? Is there a visible state change while
this is happening? After it’s happened? When it is about to happen?

• What happens when there is a system error (e.g., no network connection, no data
available)? Stop trying, or try again? If the latter, what is the delay until trying again?
(Loops are covered more thoroughly in Chapter 5.)

System trigger rules are closely related to the overall rules, which are covered next in
Chapter 3.

Figure 2-24. Navigation app Waze knows when I open the app in the late afternoon,
I’m probably driving home and presents this as an option.

The best triggers are those that, like the Start screen on the MetroCard Vending Machine,
fit the context of use and the people who’ll use it. The trigger’s control matches the states
it has to communicate and is appropriately discoverable for how often it will be used.
Its labels are clear and written in casual language. And most importantly, it launches
users into the actual interaction—the rules.

System Triggers | 47

Summary
A trigger is whatever initiates a microinteraction. Manual triggers are user initiated, and
can be a control, an icon, a form, or a voice, touch, or gestural command. System-
initiated triggers happen when a certain set of conditions are met.

Make the trigger something the user will recognize as a trigger in context. Have the
trigger perform the same action every time.

Bring the data forward. Show essential information from inside the microinteraction
on the trigger when possible, such as unread messages or ongoing processes.

If the trigger looks like a button, it should act like a button. Don’t break visual
affordances.

The more used a microinteraction is, the more visible the trigger should be. Inside a
menu is the least visible place for a trigger.

Add labels when there is a need for clarity, when the trigger alone cannot convey all the
necessary information. Labels should be brief and in clear language.

System triggers need rules for defining when and how often they appear.

48 | Chapter 2: Triggers

CHAPTER 3

Rules

In October of 2010 at Apple’s “Back to the Mac” event, Apple announced the then-latest
version of its desktop operating system, Mac OS X Lion (version 10.7), which was re‐
leased nine months later in July 2011. It sold one million copies on its first day, and over
six million copies afterwards. In it, Apple unveiled new versions of Calendar, Mail, and
Address Book apps. But there was one microinteraction that garnered a lot of attention,
mostly because Apple deemed it unnecessary and removed it. That microinteraction?
Save As.

49

In the early 1980s, Save used to be Save and Put Away (Xerox Star), or Save and Continue
alongside Save and Put Away (Apple Lisa). (Put Away meaning close.) Save and Con‐
tinue eventually just became Save, while Save and Put Away vanished, probably once
more RAM allowed for multiple documents to be open at the same time without pro‐
cessor issues. Save As seems to have begun in the 1980s as Save a Copy as, which let
users save a version as a new file without renaming. Eventually some applications had
all three: Save, Save As, and Save a Copy as. Over time, as people understood the Save
As paradigm, and with the broad adoption of the Undo command, Save a Copy as has
mostly vanished.

At the time Apple decided to get rid of Save As, the rules of the microinteraction had
been fairly stable for about 30 years:

• Make changes to a file.
• Save the file with a new name.
• Subsequent changes happen to the newly created file. The previous file remains as

it was the last time it was saved.

With Lion, Apple seemed to feel that Autosave, which allows users to return to previous
versions, would obviate the need for Save As. Lion’s rules for saving go something like
this:

• Make changes to a file.
• Those changes are autosaved every five minutes.
• Subsequent changes happen to the latest version of the file.
• You can rewind to earlier version of the file using the Revert to Last command.
• You can also Browse All Versions, which triggers another microinteraction: the

versions browser.
• After two weeks, the file becomes locked and no changes can be made to it without

first unlocking it or duplicating it.

If you want to create a separate file, you have to access Duplicate, an entirely different
microinteraction:

• Use the Duplicate command to make another (cloned) file.
• The new file appears alongside the current file.

50 | Chapter 3: Rules

• Rename the new (duplicated) file.
• Subsequent changes happen to the newly created file. The previous file remains as

it was the last time it was (auto)saved.

The new rules were practically the inverse of the previous rules: users had to decide
before they made changes if they wanted the changes to be in a different file. Unfortu‐
nately, this is not how most people work (or, more precisely, not how we’ve been trained
to work over the last 30 years). This change severely broke an established mental model
and replaced it, not with a better microinteraction but with two microinteractions that
together were difficult to understand and misaligned with how most users work. Most
people don’t need the previous version of their document open at the same time as the
altered version. Versioning is what programmers do, not what most people do. When
users (infrequently) need an earlier version of a document, they’ll manually open it.

Response to the change ranged from puzzlement to outright anger: “The elimination
of the Save As... command in applications such as Pages ’09 and TextEdit is, in my view,
a downright stupid move. It completely breaks a very common workflow for creating a
new file, which consists of opening an existing file and saving it under a new name,”
fumed Macintosh blogger Pierre Igot in “Mac OS X 10.7 (Lion): Why ditch the ‘Save As’
command?”. “I really tried to make myself believe that was an OK decision, but after
several months, it was clear that it wasn’t,” wrote web developer Chris Shiflett in his
article “Apple botches ‘Save As’ ”.

Apple responded by quietly returning Save As in the 10.8 version of their OS, Mountain
Lion, in 2012—although not to the menu, it should be noted, but as a hidden command
—an invisible trigger. But it still didn’t work as before: the rules changed again. Lloyd
Chambers, author of the Mac Performance Guide, summed up the changes and prob‐
lems in “OS X Mountain Lion: Data Loss via ‘Save As’ ”:

If one edits a document, then chooses Save As, then BOTH the edited original document
and the copy are saved, thus not only saving a new copy, but silently saving the original
with the same changes, thus overwriting the original. If you notice this auto-whack, you
can “Revert To” the older version (manually), but if you don’t notice, then at some later
date you’ll be in for a confusing surprise. And maybe an OMG-what-happened (consider
a customer invoice that was overwritten).

So in Mountain Lion, the rules for Save As work like this:

• Make changes to a file.
• Save the file with a new name.

Rules | 51

http://bit.ly/11rqVSM
http://bit.ly/11rqVSM
http://bit.ly/10nsnf0
http://macperformanceguide.com/
http://bit.ly/13mpUOU

1. Supposedly said in 1993, and quoted by Klaus Kemp in Dieter Rams: As Little Design as Possible, Phaidon
Press, 2011. Rams may have unknowingly been paraphrasing 18th century German philosopher Georg
Christoph Lichtenberg, who said, “Ich weiss nicht, ob es besser wird, wenn es anders wird. Aber es muss
anders werden, wenn es besser werden soll.” (“I do not know if it is better if it is different. But it has to be
different if it is to be better.”)

• Subsequent changes happen to the newly created file. Any changes made to the
original file are also saved.

• You can rewind to an earlier version of the original file using the “Revert to Last”
command.

This is in addition to the rules for Saving and Duplicating above. So a simple, well-
understood microinteraction was replaced by three difficult-to-understand microin‐
teractions, with no feedback as to what the rules are doing in the background. Finally,
in an update to Mountain Lion, Apple added a “Keep changes in original document”
checkbox in the Save dialog. What a mess.

There are some lessons to be learned. If you can’t easily write out or diagram the rules
of a microinteraction, users are going to have difficulty figuring out the mental model
of the microinteraction, unless you provide feedback to create a “false” model that
nonetheless allows users to figure out what is going on. Secondly, unless it’s radically
new, users likely come to a microinteraction with a set of expectations about how it will
work. You can violate those expectations (and in fact the best microinteractions do so
by offering an unexpected moment of delight, often by subverting those very expecta‐
tions), but only if the microinteraction is offering something significantly better, where
the value to the user is apparent—and, ideally, instantly apparent. Apple is often amazing
at this: just as one example, changing the iOS keyboard based on context, so that @
symbols are available on the main keyboard when filling in an email address field. But
if the value isn’t instantly apparent, your microinteraction could come off as needlessly
different, a gimmick. “Things which are different in order simply to be different are
seldom better, but that which is made to be better is almost always different,” said Dieter
Rams.1

Designing Rules
At the heart of every microinteraction—just as at the center of every game—are a set of
rules that govern how the microinteraction can be used (“played”). What you’re trying
to create with rules is a simplified, nontechnical model of how the microinteraction
operates.

Perhaps the most important part of the rules is the goal. Before designing the rules, you
need to determine in the simplest, clearest terms what the goal of the microinteraction
is. The best goals are those that are understandable (I know why I’m doing this) and

52 | Chapter 3: Rules

achievable (I know I can do this). Make sure the goal you’re defining isn’t just a step in
the process; it’s the end state. For example, the goal of a login microinteraction isn’t to
get users to enter their password; the goal is to get them logged in and into the appli‐
cation. The more the microinteraction is focused on the goal rather than the steps, the
more successful the microinteraction is likely to be. The goal is the engine of the rules;
everything must be in service toward it (Figure 3-1).

Figure 3-1. The goal of this microinteraction on Amazon is to prevent users from buy‐
ing something off their wish list that someone may have purchased already—to prevent
a situation...without spoiling the surprise (sort of). (Courtesy Artur Pokusin and Little
Big Details.)

While the purpose of rules is to limit user actions, it’s important that the rules not feel
like, well, rules. Users shouldn’t feel like they have to follow—or worse, memorize—a
strict set of instructions to achieve the goal. Instead, what you’re striving for is a feeling
of naturalness, an inevitability, a flow. The rules should gently guide users through the
“interaction” of the microinteraction (Figure 3-2).

The rules determine:

• How the microinteraction responds to the trigger being activated. What happens
when the icon is clicked? (See “Don’t Start from Zero” on page 64 later in the chapter.)

• What control the user has (if any) over a microinteraction in process. Can the user
cancel a download, change the volume, or manually initiate what is usually an au‐
tomatic process like checking for email?

• The sequence in which actions take place and the timing thereof. For example, before
the Search button becomes active, users have to enter text into the search field.

• What data is being used and from where. Does the microinteraction rely on geolo‐
cation? The weather? The time of day? A stock price? And if so, where is this in‐
formation coming from?

Designing Rules | 53

Figure 3-2. In Apple’s Mountain Lion OS, when you turn on Speech and Dictation, the
fans in the machine slow down so the background noise doesn’t interfere. (Courtesy Ar‐
tur Pokusin and Little Big Details.)

• The configuration and parameters of any algorithms. While the rules in their entirety
can be thought of algorithmically, often certain parts of a microinteraction are
driven by algorithms. (See the section on “Algorithms” on page 78 later in the
chapter.)

• What feedback is delivered and when. The rules could indicate which “steps” should
get feedback and which operate behind the scenes.

• What mode the microinteraction is in. A mode is a fork in the rules that, when
possible, should be avoided. But sometimes it’s necessary. For example, in many
weather apps, entering the cities you want to know the weather for is a separate
entry mode from the default mode of viewing the weather. See Chapter 5 for more
on modes.

• If the microinteraction repeats and how often. Is the microinteraction a one-time
activity, or does it loop? See Chapter 5 for more on loops.

• What happens when the microinteraction ends. Does the microinteraction switch
to another microinteraction? Does it vanish? Or does it never end?

The set of rules may or may not be entirely known to the user, and they reveal themselves
in two ways: by what can be done and by what cannot (see Figure 3-3). Both of these
can be an occasion for feedback (see Chapter 4), although as the story of Patron X in

54 | Chapter 3: Rules

2. Of course, this isn’t exactly physically how a light switch works. Flipping the switch completes an electric
circuit—a circular path—which allows electrons to flow to the lightbulb. Flipping the switch again breaks the
circuit. But users don’t need to know this; they only need to understand the rule.

Chapter 1 demonstrates, sometimes the user’s mental model does not match up with
the conceptual model that the rules create.

Figure 3-3. MailChimp shows you what can’t be done, by having the poor chimp’s arm
stretch so far that it pops off when you try to make an email too wide. (Courtesy Little
Big Details.)

Let’s take perhaps the simplest microinteraction there is: turning on a light. The rules
are these:

• When the switch is thrown, the light turns on and stays on.
• If the switch is thrown again, turn the light off.

Very simple.2 But if we put a motion sensor on that light, the rules become a lot more
complicated:

• Check for motion every three seconds.
• If anything is moving, is it human sized? (You don’t want the light to go on because

a cat ran by.)
• If so, turn on the light.
• Check for motion every three seconds.
• Is anything moving?
• If no, wait for 10 seconds, then turn off the lights.

Of course, all of these rules are debatable. Is three seconds too long to check? Or too
much: will it use too much power checking that often? Maybe you want the light to turn
on when a cat runs by. And I think many of us have a story about being in a bathroom
stall and having the lights go out because the sensor didn’t detect any motion—maybe
10 seconds is too brief. Needless to say, the rules affect user experience by determining
what happens and in what order.

Designing Rules | 55

Generating Rules
The easiest way to get started with rules is to simply write down all the general rules you
know. These are usually the main actions the microinteraction has to perform, in order.
For example for adding an item to a shopping cart, the initial rules might be:

1. On an item page, user clicks Add to Cart button.
2. The item is added to the Shopping Cart.

Very straightforward. But as you continue designing, nuance gets added to the rules.
For example:

1. On an item page, check to see if the user has purchased this item before. If so, change
the button label from Add to Cart to Add Again to Cart.

2. Does the user already have this item in the cart? If so, change Add to Cart to Add
Another to Cart.

3. The user clicks button.
4. The item is added to the Shopping Cart.

And so on. And that’s just for a button like the one shown in Figure 3-4. There could
be many more rules here.

Figure 3-4. A simple button rule. If someone is already following you in Mixcloud, the
Follow button becomes Follow back. (Courtesy Murat Mutlu and Little Big Details.)

56 | Chapter 3: Rules

Of course, rules can also benefit from being visualized. Sometimes a logic diagram can
be useful (see Figure 3-5).

Figure 3-5. An example of a rules logic diagram.

A rules diagram can help you see the rules in a visual way, which can allow you to notice
where actions get (overly) complex. It can also show errors in logic that might be hidden
by text alone. You can see the effect of nuanced rules in Figure 3-6.

Designing Rules | 57

Figure 3-6. Apple’s Pages will automatically add smaller heading styles, but only after
you’ve used the smallest displayed style. Heading 3 will only appear as an option once
you’ve used Heading 2. (Courtesy Little Big Details.)

58 | Chapter 3: Rules

Verbs and Nouns
It can be helpful to think of your entire microinteraction as a sentence. The verbs are
the actions that a user can engage in, while the nouns are the objects that enable those
actions (Figure 3-7). For example, a slider enables the raising or lowering of volume.
Verbs are what the users can do (raise or lower the volume), and nouns are what they
do them with (the slider).

Figure 3-7. When friends Like your run on Facebook, you hear cheers in your head‐
phones while using the Nike+ app. (Courtesy Little Big Details.)

Every object in your microinteraction—every piece of UI chrome, every form element,
every control, every LED—is a noun with characteristics and states. The rules define
what those characteristics and states are (Figure 3-8). Take a simple drop-down menu.
It generally has two states: open and closed. When open, it reveals its options, which
are some of its characteristics. It could have other characteristics, such as the maximum
number of options and the maximum length of any option label. It could also have other
states, such as opened with hovers, wherein tool tips appear when a user hovers over
options. All of these details should be defined by the rules. (Verbs, too, have character‐
istics; for example, how fast something is accomplished and how long an action takes.
These too should be defined in rules.)

Every noun in your microinteraction should be unique. If you have two of the same
nouns, consider combining them. Also make sure that any two (or more) nouns that
look the same also behave the same (Figure 3-9). Don’t have two similar buttons that
act completely different. Objects that behave differently should look differently. Like‐
wise, don’t have the same noun work differently in different places. The Back button in
Android is famous for being seemingly arbitrary about where it takes the user back to:

Designing Rules | 59

sometimes previous modes, sometimes entirely different applications [see Ron Ama‐
deo’s article, “Stock Android Isn’t Perfect”].

Figure 3-8. When changing your Apple ID password, must-have items are checked off
as the user enters them. It reveals the constraints of the microinteraction in a very liter‐
al way. (Courtesy Stephen Lewis and Little Big Details.)

Figure 3-9. GitHub doesn’t make users select a credit card. Instead it automatically se‐
lects it for them by using the number they type into the field to detect what card type it
is. (Courtesy of Little Big Details.)

The best, most elegant microinteractions are often those that allow users a variety of
verbs with the fewest possible nouns.

60 | Chapter 3: Rules

http://bit.ly/17LuYQp

Screens and States
It might be tempting to turn each step of the rules into its own screen; that is, to turn
every microinteraction into a wizard-like UI. This works for specific kinds of microin‐
teractions—namely those with defined, discrete steps that are not done often, or are
done only once. But for most microinteractions, this would be disruptive and unnec‐
essarily break up the flow of the activity. It’s much better to make use of state changes
instead. In this way, we use progressive disclosure to reveal only what is necessary at
that moment to make a decision or manipulate a control without loading an entirely
new screen (see Figure 3-10 for an example).

Figure 3-10. When it comes time to enter the CVV number on the Square iOS app, the
image of the credit card flips over so that you can immediately see where the number
would be. (Courtesy Dion Almaer.)

As the user steps through the rules, the objects (nouns) inside the microinteraction can
(and likely will) change to reflect those changes in time. Each of these is a state that
should be designed (Figure 3-11).

Figure 3-11. If multiple friends have their birthdays on the same day, Facebook’s birth‐
day microinteraction lets you write on both of their walls at the same time. (Courtesy
Marina Janeiko and Little Big Details.)

Any objects the user can interact with can have (at least) three states:

Designing Rules | 61

An invitation/default state
This is when the user first finds the object. This is also where prepopulated data can
be deployed.

Activated state
What is the object doing while the user is interacting with it?

Updated state
What happens when the user stops interacting with the object?

Let’s take a simple drag-and-drop as an example. An object’s initial/default state should
look draggable. Or, barring that, the object (and/or the cursor) should have a hover state
that indicates the object can be dragged. Then the object should likely have another state
while being dragged. (It’s also possible the screen itself [another noun] at this point has
a different state, indicating where the object could be dropped.) And finally, a state when
it is at last dropped, which might be simply to return to the default state (Figure 3-12).

Figure 3-12. On Twitter, the button to share a link has two idle states: signed in and
not signed in. If not signed in, the button allows users to do both at once. (Courtesy
Rich Dooley and Little Big Details.)

A designer of microinteractions pays attention to each state, namely because each state
can convey information to the user about what is happening—even if what is happening
is nothing.

Constraints
The rules have to take into account business, environmental, and technical constraints
(Figure 3-13). These can include, but certainly aren’t limited to:

62 | Chapter 3: Rules

Figure 3-13. Yahoo! has a sign up microinteraction that won’t let you put in a future
date. Making that field a drop-down with only acceptable years would prevent this er‐
ror entirely. (Courtesy Little Big Details.)

• What input and output methods are available. Is there a keyboard? A speaker?
• What is the type or range of any input. For example, the number of characters

allowed in a password, or the maximum volume a user can turn the sound up to.
• What is expensive. Not just what costs money (such as access to certain data services,

as in Figure 3-14), but also what is expensive from a resources standpoint. Perhaps
doing a call to the server every 10 seconds would be a massive hit to the server load
and drain the device battery too quickly.

• What kind of data is available. What can be collected from sensors? What services/
APIs can we access to get information about location, news, weather, time, etc.

• What kind of data can be collected. What personal (behavioral) data can be collected
and used?

Figure 3-14. When trying to add a free item to a Wish List, iTunes lets you know you
can just download it for free instead. (Courtesy Little Big Details.)

These last two constraints allow you to not start from zero.

Designing Rules | 63

Don’t Start from Zero
After the trigger has been initiated, the first question for any microinteraction should
be: what do I know about the user and the context? You almost always know something,
and that something can be used to improve the microinteraction (Figure 3-15).

Figure 3-15. The Eventbrite iOS app increases the brightness of the Mobile Ticket screen
for easier scanning of the QR code. Useful for the context. The alert is probably unnec‐
essary, however. (Courtesy Phil Metcalfe and Little Big Details.)

Some examples of data that could be used:

• What platform/device is being used
• The time of day
• The noise in the room
• How long since the microinteraction was last used
• Is the user in a meeting

64 | Chapter 3: Rules

• Is the user alone
• The battery life
• The location and/or direction
• What the user has done in the past

Data can even be useful when it doesn’t come directly from the user (Figure 3-16).

Figure 3-16. Google+ guesses where you work based on your friends’ employment.
(Courtesy Artem Gassan and Little Big Details.)

That last piece of data—which may be the most important one—relies on collecting
information about user behavior, but we’re long since past the point where this should
be an issue from a system resources point of view; even low-powered appliances have
enough memory and processing power to do it. It’s just whether or not human resources
(developers) can be convinced it’s worthwhile. (It is.) Of course, designers should be
cognizant of privacy; if the microinteraction deals with sensitive subject matter such as
medical information, you might reconsider collecting personal behavior. Ask: could the
information that the microinteraction collects be used to embarrass, shame, or endanger
users? If so, don’t collect it. It’s better to have a depersonalized experience than one that
is fraught with fear of exposure (Figure 3-17).

Figure 3-17. Pro Flowers uses the date to show you the next big holiday when selecting
a delivery date. (Courtesy Gabriel Henrique and Little Big Details.)

Many of these pieces of data can be used in combination: at 10:00 every day, the user
does X, so perhaps when the microinteraction is triggered at that time, offer her X. Or
every time the user is in a particular location that he hasn’t been to in a while, he does

Designing Rules | 65

X. Or every time the user logs in from her mobile device, she’s interested in seeing Y.
You can see an example of this in Figure 3-18.

Figure 3-18. Threadless lets you know when you first land on the site whether it can
ship to the country you’re in or not. (Courtesy Little Big Details.)

The point is to use the context and previous behavior (if any) to predict or enhance the
microinteraction (Figure 3-19). This data collection can be thought of as ongoing user
research; with some analysis you can see how people are using the microinteraction and
adjust accordingly. For example, by collecting behavioral data, you might discover that
power users could employ an invisible trigger to get them to a certain point in the rules.
Navigation app Waze lets power users slide (instead of push) a button to get directly to
Navigation, saving two taps.

Figure 3-19. Dropbox changes the download instructions based on which browser
you’re using. (Courtesy Mikko Leino and Little Big Details.)

66 | Chapter 3: Rules

Absorb Complexity
Larry Tesler, the inventor of cut and paste whom we met back in Chapter 1, came up
with an axiom that is important to keep in mind when designing rules: Tesler’s Law of
the Conservation of Complexity. Tesler’s Law, briefly stated, says that all activities have
an inherent complexity; there is a point beyond which you cannot simplify a process
any further. The only question then becomes what to do with that complexity. Either
the system handles it and thus removes control from the user, or else the user handles
it, pushing more decisions—yet more control—onto the user (Figure 3-20).

Figure 3-20. Even in the clunky iCal, there is a nice rule in the selection of a time mi‐
crointeraction. Rather than have you do the math to figure out how long an event
would be, iCal shows you event duration when selecting the end time. It’s an effective
use of microcopy. (Courtesy Jack Moffett.)

For microinteractions, you’re going to want to err on the side of removing control and
having the microinteraction handle most of the decision making. One caveat to this is
that some microinteractions are completely about giving control to the user, but even
then there is likely to be complexity that the system should handle (Figure 3-21).

Start by figuring out where the core complexity lies, then decide which parts of that the
user might like to have, and when in the overall process. Then, if control is absolutely
necessary, provide it at that time (Figure 3-22).

Computers are simply much better at handling some kinds of complexity than humans.
If any of these are in your microinteraction, have the system handle it:

Designing Rules | 67

Figure 3-21. When you add a new family member on Facebook, Facebook automatical‐
ly recognizes the chosen family member’s gender and adjusts the list of possible familial
relationships in the list box accordingly. (Courtesy Stefan Asemota and Little Big De‐
tails.)

Figure 3-22. When hovering over the translation in Google Translate, it highlights the
translated phrase in the original text. You can get alternate translations, but only by
clicking on the original text. (Courtesy Shruti Ramiah and Little Big Details.)

• Rapidly performing computation and calculations
• Doing multiple tasks simultaneously
• Unfailingly remembering things
• Detecting complicated patterns
• Searching through large datasets for particular item(s)

68 | Chapter 3: Rules

Of course, removing complexity means you must be smart about the choices you do
offer and the defaults you have.

Limited Options and Smart Defaults
The more options that you give a user, the more rules a microinteraction has to have,
and in general, fewer rules make for better, more understandable microinteractions.
This means limiting the choices you give to the user and instead presenting smart
defaults.

With microinteractions, a good practice is to emphasize (or perform automatically) the
next action the user is most likely to take. This emphasis can be can be done by removing
any other options, or just by visual means (making the button large, for instance). As
game designer Jesse Schell put it in his book The Art of Game Design (CRC Press), “If
you can control where someone is going to look, you can control where they are going
to go.”

Knowing the next likely step is also valuable in that you can perform or present that
step automatically, without the user having to do anything else (see Figures 3-23 and
3-24). This is one way to link microinteractions together (see the section “Orchestrating
Microinteractions” on page 137 in Chapter 6).

Figure 3-23. Clicking the Report button on YouTube automatically stops the video
you’re about to report. It performs the next likely action for you. (Courtesy Aaron Laib‐
son and Little Big Details.)

Every option a user has is at least another rule, so the best way to keep your rules to a
minimum is to limit options. In short, be ruthless in eliminating options. Microinter‐
actions do one thing well, so ideally the user would have no options, just smart defaults
throughout the entire microinteraction. Everyone does one action, and that action plays
out: from Rule 1 to Rule 2 to Rule 3. This is what made Google’s search box the most
effective (or at least the most used online) microinteraction of the early 21st century.
Everyone followed the same rules:

• Enter text and press (the emphasized) search button.
• Show search results.

Limited Options and Smart Defaults | 69

3. Nicholas Carlson, “Google Just Killed The ‘I’m Feeling Lucky Button,’” Business Insider, September 8, 2010.

Figure 3-24. Any selected text on a page will prepopulate the caption field when adding
it to Pinterest. (Courtesy Louisa Fosco and Little Big Details.)

Of course, even here Google added an option: the I’m Feeling Lucky button, which took
you directly to the top search result. I’m Feeling Lucky was only used by 1% of users...and
reportedly cost Google $100 million a year in lost ad revenues. In 2010, Google effec‐
tively killed I’m Feeling Lucky when it introduced Google Instant, which immediately
started showing search results as you type, so there is no chance to press the I’m Feeling
Lucky button.3 Now the rules look like this:

• Enter text.
• Show search results.

It literally cannot get any simpler, unless at some point in the future Google is able to
guess what you want to search on and immediately shows you results.

For microinteractions, more than one major option is probably too many. This is not
to say you cannot have choices, such as a temperature setting (hot, warm, cold), but
rather more than one option that radically changes the rules is ill advised. It’s likely that
this kind of change puts the microinteraction into a different mode (see Chapter 5). One
common example of this is the Forgot Your Password? Mode that many login micro‐
interactions have. Clicking that link takes the user into a different mode that hopefully,
eventually takes the user back to the main mode to enter the remembered password.

If you are going to make a default decision for a user, in some instances there should be
some indication of what that decision is. One example is Apple’s Calendar notifications.
When a calendar notification appears (e.g., “Meeting in 15 minutes”) there is a Snooze
button the user can press. However, there is no indication of the duration of that snooze
(as it turns out, it’s, in my opinion, an overly long 15-minute snooze) and there’s no way

70 | Chapter 3: Rules

4. “Abundance of Choice and Its Effect on Decision Making,” UX Matters, December 6, 2010.

to change this default. “Snooze 15 Minutes” would be a better button label: one that
indicates what the rule is.

The most prominent default should be the action that most people do most of the time.
Even if you decide that this shouldn’t be automatically done for the user, it should be
visually prominent. The most common example of this are OK/Cancel buttons. Cancel
is likely pressed considerably less often than OK, so OK should be more easily seen
(larger and/or colored). And don’t forget the Return key (if there is one). Pressing Return
should perform the default action.

If you have to present a choice to the user, remember that how you present that choice
can affect what is chosen. Items at the top and bottom of a list are better recalled than
those in the middle. A highlighted option is more often selected than one that is not.
And if the user has to make a series of decisions, start with simpler, broader decisions,
and move toward more detailed options. Colleen Roller, Vice President of Usability for
Bank of America Merrill Lynch, rightly says that, “People feel most confident in their
decisions when they understand the available options and can comfortably compare
and evaluate each one. It’s easiest to evaluate the options when there are only a few of
them, and they are easily distinguishable from each other.”4

Since every option means (at least) one other rule (and remember we’re trying to keep
rules to as few as possible), the options you present to a user have to be meaningful.
Meaningful choices affect how the user achieves the goal of the microinteraction—or
even what the goal is. An example of a meaningful choice might be to sign in via Face‐
book or to enter a username/password. Nonmeaningful choices are those that don’t
affect the outcome no matter what is chosen. Amazon’s Kindle app makes users select
what color highlight they want to highlight passages in, even though you can’t search
or export by highlight color; it’s only marginally meaningful and should probably have
been left out of the default microinteraction of highlighting. Ask: is giving this choice
to a user going to make the experience more interesting, valuable, or pleasurable? If the
answer is no, leave it out.

The elimination of choice should have one beneficial side effect: the removal of many
possible edge cases. Edges cases are those challenging-to-resolve problems that occur
only occasionally, typically for a small minority of (power) users. Edge cases can cause
your microinteraction to warp so that you are designing to accommodate unusual use
cases, not the most common. Edge cases are kryptonite for microinteractions, and ev‐
erything possible should be done to avoid them, including revising rules to make
them impossible. For example, if a Year of Birth form field is a text box, it’s easy to put
in invalid dates, such as those in the future. Remove this edge case by making the field
a drop-down menu.

Limited Options and Smart Defaults | 71

Controls and User Input
Most microinteractions have some place for manual user input. What has to be decided
is which controls, and how they manifest. Take something as simple as a volume mi‐
crointeraction. Volume can have three states: louder, quieter, and muted. These could
appear as three buttons, a slider, a dial, two buttons, a scroll wheel, a slider and a button,
and probably several other variations as well.

With controls, the choice is between operational simplicity and perceived simplicity
(Figure 3-25). Operational simplicity gives every command its own control. In our vol‐
ume example, this is the three-button solution: one button for Make Louder, one button
to Make Quieter, one button for Mute. With perceived simplicity, a single control does
multiple actions. For volume, this would mean selecting the slider or scroll-wheel
options.

Figure 3-25. Google Drive’s Insert Table microinteraction has an expanding hover win‐
dow that lets users visually determine the size of the table. (Courtesy Kjetil Holmefjord
and Little Big Details.)

For microinteractions that will be done repeatedly, err on the side of perceived simplicity,
unless it is an action that needs to be done quickly and with no chance of error—for
example, the Mute button on a conference phone; combining it with the Make Quieter
action would probably be a disaster. For microinteractions that will only be done once
or occasionally, err on the side of operational simplicity; display all the options so that
little to no foreknowledge is required.

Text fields should be forgiving of what is placed in them and assume that the text could
be coming from any number of places, particularly from the clipboard or the user’s
memory. For example, a form for a telephone number should support users putting in
any of the following: (415) 555-1212, 4155551212, or 415-555-1212. Text fields in par‐
ticular need what system designers call requisite variety—the ability to survive under

72 | Chapter 3: Rules

varied conditions. Often this means “fixing” input behind the scenes in code so that all
the varied inputs conform to the format that the code/database needs (see Figure 3-26
for a poor example and Figure 3-27 for a positive one).

Figure 3-26. Adobe Photoshop’s Color Picker microinteraction has a place to enter a
hex value. However, it’s not smart enough to strip out the # if one is pasted into it.
(Courtesy Jack Moffett.)

Figure 3-27. 37signals’ Basecamp gets it right. When you paste an email ID like “Jane
Smith <myemail@gmail.com>,” it automatically strips out everything extraneous and
leaves just the email address. (Courtesy Harpal Singe and Little Big Details.)

Limited Options and Smart Defaults | 73

Ordering of lists, such as in a drop-down menu, should be carefully thought out. Some‐
times it makes sense to have a predetermined scheme, such as alphabetical or last used.
Other times, it might make more sense to be seemingly illogical. For example, if most
of your users come from the United States, it makes no sense to have them scroll through
the previous 20 letters of the alphabet to reach the U countries—be seemingly irrational
and put it at the top of the list or else just make it the default.

Sometimes it makes sense to have redundant controls. Particularly if your microinter‐
action is going to be used frequently by the same user, it may be wise to design in
shortcuts. In desktop software, these have traditionally been keyboard shortcuts such
as Command-Q for Quit, while on touchscreen devices and trackpads they have been
a gesture (usually multitouch). Just make sure that no significant (to the activity flow)
control is buried under a shortcut. For any important action, there should be a visible,
manual way to engage with it.

Preventing Errors
One of the main tasks for rules should be error prevention (see Figures 3-28 and 3-29).
Microinteractions should follow the Poka-Yoke (“mistake proofing”) Principle, which
was created in the 1960s by Toyota’s legendary industrial engineer Shigeo Shingo. Poka-
Yoke says that products and processes should be designed so that it’s impossible for users
to commit an error because the product/process simply won’t allow one. One quick
example of Poka-Yoke in action is Apple’s Lightning cable. Unlike their previous 30-pin
connector (and every USB cord), the Lightning cable can be plugged in to the iPhone’s
or iPad’s port in any orientation. Unlike with a USB cable, you can’t try to put it in upside
down (where it won’t fit) because it fits either way.

Figure 3-28. Gmail gives you a notification before sending the mail to see if you’ve for‐
gotten to attach a file. (Courtesy Little Big Details.)

74 | Chapter 3: Rules

Figure 3-29. If you press the search button on Make Me a Cocktail with nothing in the
search field, instead of displaying an error message or nothing, it shows a random cock‐
tail. (Courtesy Nick Wilkins and Little Big Details.)

Similarly, you want to design your microinteraction so that the rules don’t allow for
mistakes to be made (Figure 3-30). This may mean reducing user control and input, but
for microinteractions reducing choice is seldom a bad practice.

Figure 3-30. Dropbox for iOS pauses uploads when there is a low battery. (Courtesy
Little Big Details.)

Ideally, your microinteraction should be designed so that it does not present an error
message when the user has done everything right (because the user shouldn’t be able to
do anything wrong), and only presents an error message when the system itself cannot
respond properly. Pop-up error alerts are the tool of the lazy. If an error does occur, the
microinteraction should do everything in its power to fix it first (see Figure 3-31).

Limited Options and Smart Defaults | 75

Figure 3-31. Meetup.com adjusts your search results to attempt to correct the error of
no found results. (Courtesy Michael J. Morgan and Little Big Details.)

Using the rules, you can also prevent people from using your microinteraction in ways
it wasn’t intended to be used (see Figures 3-32 and 3-33). For example, you could dis‐
allow expletives in comments.

Figure 3-32. What do you love? won’t let you enter expletives. It just changes the word
to “kittens” and shows those results instead. (Courtesy Zachary Reese.)

Microcopy
Microcopy—labels, instructions, and other tiny pieces of text—is part of understanding
the rules. Microcopy is a kind of fixed feedback or feedforward. The entirety of a mi‐
crointeraction can be a single piece of microcopy: look at Facebook’s Like “button,”
which is based entirely on the word Like in blue text.

A system trigger could cause an essential piece of microcopy to appear when it would
be most helpful. For example, on a store’s Contact page, a “Sorry, we’re closed” message

76 | Chapter 3: Rules

Figure 3-33. Twitter won’t let you tweet the same message twice, mostly to protect its
service from abuse. Detecting a duplicate before the user presses Send would be better,
although more system-resource intense. (Courtesy Sindre Sorhus and Little Big Details.)

could appear beside the phone number during off hours. And that would be the entire
microinteraction right there!

With almost all microinteractions, you want to first make sure any text is absolutely
necessary for understanding; instructional copy for microinteractions often isn’t. You
don’t usually have to put “Please log in” at the top of a login form for users to understand
that is what they should do. If you do need to include text, make sure it is as short as
possible. As Winston Churchill so aptly put it, “The short words are the best, and the
old words best of all.”

Never use instructional copy when a label will suffice. Tap Next to Continue is unneces‐
sary if there is a button labeled Next or Continue. If a label, such as the name of an
album, has to be truncated (for space), there should be a way to see the full title on hover
or rollover (desktop/web apps) or tap/click (mobile). Sometimes, particularly with
physical buttons, there isn’t enough space for a word and manufacturers try to put part
of the word on the control, ending up with a letter jumble that resembles a customized
license plate. This is not recommended. If a word doesn’t fit, consider an icon instead.

Avoid labels that could be misinterpreted. On photo-sharing service Flickr, for instance,
the two choices to navigate photos are ← Previous and Next →. However, Previous takes
you to the next newer photo, while Next takes you to the next older photo (Figure 3-34).

Figure 3-34. Microsoft’s Powerpoint transparency slider in the Ribbon. There is no label
to indicate if you’re making it more or less transparent, and the change doesn’t occur
until after you release the slider. (Courtesy Jack Moffett.)

Microcopy | 77

5. For more on eye fixations, see J. Edward Russo, “Eye Fixations Can Save the World: A Critical Evaluation”
and “A Comparison Between Eye Fixations and Other Information Processing Methodologies,” in Advances
in Consumer Research Volume 05. 561–570 (1978).

The best place for most labels is above what is going to be manipulated. The second best
place is on or in the object to be manipulated, as Luke Wroblewski notes in “Top, Right,
or Left-Aligned Form Labels” and “Web Form Design: Labels Within Inputs” . This is
because it only requires a single-eye fixation to take in both the label and the object. In
other words, the eye doesn’t have to spend time moving between two objects, which the
mind then has to connect.5 However, the tradition with icons is the label goes below the
icon.

Be careful putting a label inside a text form field. When it disappears (as it must because
the user clicks into it to put text there), the user can forget what the field is for, and there
is no easy way of going back short of clicking out of the text field. It’s better in some
cases to put the label above (Toy Search) or on a button (Search for Toys) alongside,
with examples (e.g., “board games, Lego, or dolls”) in the text form field itself.

Be sure that any instructional copy matches the control exactly. For example, don’t have
the instructions read, “Add items to your shopping cart,” then have the button say, Pur‐
chase Objects instead of Add Items.

When possible, make text relational instead of exact, particularly dates and times.
“Three hours ago” is much easier to understand than showing a date and time stamp,
which causes users to make translations and calculations in their head as to when that
was. (Of course, sometimes an exact date or time is necessary and shouldn’t be obscured,
as in Figure 3-35.)

Avoid double (or more!) negatives, unless your intention is to confuse or deliberately
mislead people. “If you don’t want to unsubscribe to our email newsletter, don’t uncheck
this box.”

Algorithms
In 1832, a 17-year-old self-taught son of a shoemaker had a vision of how “a mind most
readily accumulates knowledge ... that man’s mind works by means of some mechanism.”
Twenty-two years later, as a university professor, this former child prodigy published
his masterpiece: An Investigation of the Laws of Thought, On Which Are Founded the
Mathematical Theories of Logic and Probability. (Like many masterpieces, it was criti‐
cized, dismissed, or simply ignored when it was first published.) That professor’s name
was George Boole, and he was the father of what we now know of as Boolean logic.

78 | Chapter 3: Rules

http://bit.ly/ZCfWG0
http://bit.ly/ZCfWG0
http://bit.ly/13mqT1x

Figure 3-35. Budge’s setting screen for To Do Reminders uses clear copy and choices to
make what could have been a boring form interesting. (Courtesy Paula Te and Little
Big Details.)

Boole devised a kind of linguistic algebra, in which the three basic operations are AND,
OR, and NOT. These operations form the basis for generating algorithms. Algorithms
are, in the words of Christopher Steiner in Automate This: How Algorithms Came to
Rule Our World (Portfolio Hardcover):

Giant decision trees composed of one binary decision after another. Almost everything
we do, from driving a car to trading a stock to picking a spouse, can be broken down to
a string of binary decisions based on binary input.
[...]
At its core, an algorithm is a set of instructions to be carried out perfunctorily to achieve
an ideal result. Information goes into a given algorithm, answers come out.

Although the rules could, in a meta fashion, be thought of algorithmically, some mi‐
crointeractions depend on algorithms to run. For example, take search. What appears
in autofill—not to mention the order of the results themselves—is all generated by an
algorithm (Figure 3-36). Recommendations, driving directions, and most emailed/read

Algorithms | 79

6. See “The Magical Tech Behind Paper For iPad’s Color-Mixing Perfection,” by Chris Dannen in Fast Compa‐
ny, November 8, 2012.

are all generated algorithmically. Some branded elements, such as Nike FuelBand’s
NikeFuel points, are based on an algorithm, as is the custom color picker in FiftyThree’s
outstanding iPad app, Paper.6

Traditionally, these algorithms have all been generated by engineers, but as more and
more products come to rely on algorithms, it behooves designers to get involved in their
design. After all, a beautiful search microinteraction is meaningless without valuable
search results.

Figure 3-36. If you’re watching a music video on YouTube, it algorithmically matches
your location to the artist’s touring schedule. (Courtesy of Nanakoe and Little Big
Details.)

While the code behind algorithms is far too complex to get into here, defining the
algorithm is. There are four major parts to any algorithm:
Sequence

What are the steps in the process? What item comes before what? Are there any
conditionals, where an action is dependent on a particular condition? For a device
like the Nike FuelBand, this might be something like: for every two steps (as meas‐
ured by an accelerometer in the hardware), add one to NikeFuel.

Decisions
These are usually in the form of if ... then statements. For example, if the time is
00:00, then reset.

Repetitions
How does the algorithm loop? This can be the whole algorithm, or just a particular
sequence. For example, while the user is typing in the search field, update search
results every time there is a new letter.

80 | Chapter 3: Rules

Variables
Variables are containers for the data that powers algorithms. Defining these will
allow you to tweak the algorithm without having to rewrite it entirely. Number of
Search Results could be a variable, as could Number of Steps Taken. Variables are
numeric, alphabetic (text), or logical (true/false).

To put this all together, let’s say a microinteraction involves displaying music recom‐
mendations. The steps in the sequence are the kinds of music you want to show, and in
what order. Are they all from one genre? Does new music take priority over old? Deci‐
sions might include: has the user ever listened to this artist before? If so, do not recom‐
mend. The algorithm might loop until all the recommendations are filled. And variables
could be genre, artist, album, listened to, similar to, tempo, and a whole host of possible
characteristics one could use to match music. Variables could also include values such
as the percentage of new music to old, and the total number of recommendations to
show.

It can be helpful for users to know what data/variables are being acted upon in an
algorithm, so that they can manually adjust them if possible. For example, knowing how
your FuelBand adds FuelPoints would be valuable so that users could increase their
activity appropriately. As it is now, it’s a bit of a mystery. Of course, some algorithms,
such as Google’s search algorithm, are deeply complex and could not be easily explained,
especially in microcopy.

What is important to keep in mind from a microinteraction design standpoint is what
the user is intending to do, and what data/content is going to be the most valuable, then
ensure that those human values get baked into the algorithm. Too often, and too easily,
algorithms can be designed solely for efficiency, not for value.

The trouble with rules is that, in the end, they are invisible. Users can only figure them
out when something drastic happens, like Apple’s change to Save As, or from the feed‐
back the system provides, which is the subject of Chapter 4.

Summary
Rules create a nontechnical model of the microinteraction. They define what can and
cannot be done, and in what order.

Rules must reflect constraints. Business, contextual, and technical constraints must be
handled.

Don’t start from zero. Use what you know about the user, the platform, or the environ‐
ment to improve the microinteraction.

Remove complexity. Reduce controls to a minimum.

Reduce options and make smart defaults. More options means more rules.

Summary | 81

Define states for each object. How do the items change over time or with interactivity?

Err on the side of perceived simplicity. Do more with less.

Use the rules to prevent errors. Make human errors impossible.

Keep copy short. Never use instructional text where a label will suffice.

Help define algorithms. Keep human values in coded decision making.

82 | Chapter 3: Rules

www.allitebooks.com

http://www.allitebooks.org

1. Nir, Sarah Maslin, “Failing to Hit Jackpot, and Hitting Machine Instead,” The New York Times, July 13, 2012.

2. “Man charged with shooting slot machine,” Associated Press, February 13, 2012.

CHAPTER 4

Feedback

A 56-year-old man punched his fist through the glass and into the electronics of the
machine. “Yes, I broke the machine and I’d do it again,” he told the security guards. (He
was sentenced to 90 days in jail.) Another man, 59-year-old Douglas Batiste, was also
arrested for assaulting a machine—by urinating on it. A woman caused $1,800 in dam‐
ages to another machine by slapping it three times.1 And 67-year-old Albert Lee Clark,
after complaining to an employee and getting no satisfaction, went to his car and got
his gun. He came back inside and shot the machine several times.2

What device is causing so much rage? Slot machines.

Slot machines are a multi-billion-dollar business. Slot machines take in $7 out of every
$10 spent on gambling. Collectively, the money they generate is in the tens of billions,

83

3. Rivlin, Gary, “The Tug of the Newfangled Slot Machines,” The New York Times, May 9, 2004.

4. Richtel, Matt, “From the Back Office, a Casino Can Change the Slot Machine in Seconds,” The New York
Times, April 12, 2006.

5. All from Kevin Harrigan’s “The Design of Slot Machine Games,” 2009.

far surpassing the revenue of other forms of entertainment, such as movies, video games,
and even pornography.3 The reason that slot machines—microinteraction devices for
sure—work so well at taking money from people is because of the feedback they provide.
Most (read: all) of this feedback is insidious, designed specifically to keep people playing
for as long as possible.

If you are the statistical anomaly who has never seen or played a slot machine, they work
like this: you put coins, bills, or (in newer machines) paper tickets with barcodes into
the machine. Pushing a button, tapping the touchscreen, or pulling a lever (the trigger)
causes three (or more) seemingly independent “tumblers” to spin. When they stop
spinning after a few seconds, if they are aligned in particular ways (if the symbols are
the same on all three tumblers, for example), the player is a winner and money drops
out of the slot machine. A committed player can do a few hundred (!) spins in an hour.

What really happens is that the rules are rigged in the slot machine’s favor; statistically,
the slot machine will never pay out more than 90%, so the tumblers never “randomly”
do anything, although the feedback makes it seem that way. If the tumblers actually
worked the way they appear to work, the payback percentage would be 185% to 297%
—obviously an undesirable outcome for casino owners. The outcome is “random but
weighted.” Blank spaces and low-paying symbols appear more frequently than jackpot
symbols—that is, less frequently than they would if the tumbler were actually (instead
of just seemingly) random. Thanks to the feedback they get, players have no idea what
the actual weighting is; an identical model can be weighted differently than the machine
next to it. Since modern slot machines are networked devices, the weighting can even
be adjusted from afar, on the fly.4

No matter how players trigger the tumblers—by pulling the lever harder, for example
—players cannot influence or change the outcome. Some slot machines also have a stop
button to stop the tumbler “manually” while they spin. This too doesn’t affect the out‐
come; it only provides an illusion of control.5

Not only are the tumblers weighted to prevent winning, but they are designed to incite
what gambling researcher Kevin Harrigan calls the Aww Shucks Effect by frequently
halting on a “near win,” or a failure that’s close to a success (see Figure 4-1). For example,
the first two tumblers show the same symbol, but the third is blank. These near wins
occur 12 times more often than they would by chance alone. Research has shown that

84 | Chapter 4: Feedback

6. Clark, L, Laurence, A., Astley-Jones, F., Gray, N., “Gambling near-misses enhance motivation to gamble and
recruit brain-related circuitry,” Neuron 61, 2009.

7. Rivlin, Gary, “The Tug of the Newfangled Slot Machines.” The New York Times.

near wins make people want to gamble more by activating the parts of the brain that
are associated by wins—even though they didn’t win!6

Figure 4-1. An example of a “near win.” (Courtesy Marco Verch.)

When a player does win, the win is usually small, although the feedback is dispropor‐
tionate to the winning, so that players think they’ve won big. Lights flash, sounds play.
And the sounds! In the New York Times profile of slot machine designer Joe Kaminkow,
it notes:

Before Kaminkow’s arrival, [slot machine manufacturer] I.G.T.’s games weren’t quiet—
hardly—but they didn’t take full advantage of the power of special effects like “smart
sounds”—bright bursts of music. So Kaminkow decreed that every action, every spin of
the wheel, every outcome, would have its own unique sound. The typical slot machine
featured maybe 15 “sound events” when Kaminkow first arrived at I.G.T. [in 1999]; now
that average is closer to 400. And the deeper a player gets into a game, the quicker and
usually louder the music.7

Feedback | 85

The slot machine microinteraction is so addictive because it provides, via feedback,
intermittent reinforcement of behavior. Slot machine players keep performing the same
behavior until they are eventually rewarded. With slot machines, if payout was predict‐
able—if the player won every other time, for example—players would quickly get bored
or annoyed. What keeps people playing is the very unpredictability of the payouts, plus
the promise that very rarely there will be a big jackpot. In general, this is not the kind
of reinforcement you want for most microinteractions, where you want consistent
feedback with positive reinforcement (via feedback) of desirable behavior. Predictability
is desirable.

Slot machines teach us that feedback is extremely powerful and can make or break a
microinteraction. Visuals and sound combine to make an engaging experience out of
what could be a repetitive, dull activity of pulling a lever over and over. Obviously, they
do this to their mind-blowingly lucrative benefit and you certainly don’t want every
microinteraction being like a flashing, noisy slot machine, but the lesson is the same:
feedback provides the character, the personality, of the microinteraction.

Feedback Illuminates the Rules
Unlike slot machines, which are designed to deliberately obscure the rules, with mi‐
crointeractions the true purpose of feedback is to help users understand how the rules
of the microinteraction work. If a user pushes a button, something should happen that
indicates two things: that the button has been pushed, and what has happened as a result
of that button being pushed (Figure 4-2). Slot machines will certainly tell you the first
half (that the lever was pulled), just not the second half (what is happening behind the
scenes) because if they did, people probably wouldn’t play—or at least not as much. But
since feedback doesn’t have to tell users how the microinteraction actually works—what
the rules actually are—the feedback should be just enough for users to make a working
mental model of the microinteraction. Along with the affordances of the trigger, feed‐
back should let users know what they can and cannot do with the microinteraction.

One caveat: you can have legitimate, nondeceitful reasons for not wanting users to know
how the rules work; for example, users may not need to know every time a sensor is
triggered or every time the device goes out to fetch data, only if something significant
changes. For example, you don’t often need to know when there is no new email message,
only when there is a new one. The first principle of feedback for microinteractions is to
not overburden users with feedback. Ask: what is the least amount of feedback that can
be delivered to convey what is going on (Figure 4-3)?

86 | Chapter 4: Feedback

Figure 4-2. In Batch, when the flash is on, the camera icon on the shutter button gets a
white flash indicator. (Courtesy Little Big Details.)

Figure 4-3. Google Docs slants the cursor when you’re typing in italics. Microsoft Word
does this as well. (Courtesy Gregg Bernstein and Little Big Details.)

Feedback Illuminates the Rules | 87

Feedback should be driven by need: what does the user need to know and when (how
often)? Then it is up to the designer to determine what format that feedback should
take: visual, audible, or haptic, or some combination thereof (see Figures 4-4 and 4-5).

Figure 4-4. Amazon puts the item counter inside the shopping cart button. (Courtesy
Matthew Solle and Little Big Details.)

Figure 4-5. Sometimes it’s important to indicate what didn’t happen. When recom‐
mending an app via email, Apple’s App Store tells you that you haven’t been added to
any email lists. (Courtesy Little Big Details.)

Feedback should occur:

• Immediately after a manual trigger or following/during a manual adjustment of a
rule. All user-initiated actions should be accompanied by a system acknowledgment
(see Figure 4-6). Pushing a button should indicate what happened.

• On any system-initiated triggers in which the state of the microinteraction (or the
surrounding feature) has changed significantly. The significance will vary by context
and will have to be determined on a case-by-case basis by the designer. Some mi‐
crointeractions will (and should) run in the background. An example is an email
client checking to see if there are new messages. Users might not need to know every
time it checks, but will want to know when there are new messages.

• Whenever a user reaches the edge (or beyond) of a rule. This would be the case of an
error about to occur. Ideally, this state would never occur, but it’s sometimes nec‐
essary, such as when a user enters a wrong value (e.g., a password) into a field.
Another example is reaching the bottom of a scrolling list when there are no more
items to display.

• Whenever the system cannot execute a command. For instance, if the microinter‐
action cannot send a message because the device is offline. One caveat to this is that
multiple attempts to execute the command could occur before the feedback that

88 | Chapter 4: Feedback

something is amiss. It might take several tries to connect to a network, for example,
and knowing this, you might wait to show an error message until after several
attempts have been made.

• Showing progress on any critical process, particularly if that process will take a long
time. If your microinteraction is about uploading or downloading, for example, it
would be appropriate to estimate duration of the process (see Figure 4-7).

Figure 4-6. Pixelmator’s eyedropper tool shows you the color you’ve chosen inside the
pipette. (Courtesy Little Big Details.)

Feedback could occur:

• At the beginning or end of a process. For example, after an item has finished down‐
loading.

• At the beginning or end of a mode or when switching between modes (Figure 4-8).

Figure 4-7. Transmit 4 shows in one progress bar both the total transfer and individual
transfers. (Courtesy Stef van der Feen and Little Big Details.)

Figure 4-8. On Quora, you can see if someone is answering the question you’re looking
at. (Courtesy Allison Ko and Little Big Details.)

Feedback Illuminates the Rules | 89

Always look for moments where the feedback can demystify what the microinteraction
is doing; without feedback, the user will never understand the rules.

Feedback Is for Humans
While there is certainly machine-to-machine feedback, the feedback we’re most con‐
cerned with is communicating to the human beings using the product. For microin‐
teractions, that message is usually one of the following:

• Something has happened
• You did something
• A process has started
• A process has ended
• A process is ongoing
• You can’t do that

Once you know what message you want to send, the only decisions remaining are how
these messages manifest, as in Figures 4-9 through 4-11. The kind of feedback you can
provide depends entirely upon the type of hardware the microinteraction is on. On a
mobile phone, you might have visual, audible, and haptic feedback possible. On a piece
of consumer electronics, feedback could only be visual, in the form of LEDs.

Figure 4-9. Humans respond to faces. The Boxee logo turns orange and “goes to sleep”
when there is no Internet connection. (Courtesy Emil Tullstedt and Little Big Details.)

Figure 4-10. The Threadless shopping cart face turns from frowning to happy when you
put items in it. (Courtesy Ahmed Alley and Little Big Details.)

90 | Chapter 4: Feedback

Figure 4-11. The Gmail iPhone app shows what not to do: randomly put a smiley face
for a message that isn’t necessarily a happy one. (Courtesy Steve Portigal.)

Let’s take a microinteraction appliance like a dishwasher as an example. The dishwasher
process goes something like this: a user selects a setting, turns the dishwasher on, the
dishwasher washes the dishes and stops. If someone opens the dishwasher midprocess,
it complains. Now, if the dishwasher has a screen, each of these actions could be ac‐
companied by a message on the screen (“Washing Dishes. 20 minutes until complete.”).
If there is no screen, there might be only LEDs and sounds to convey these messages.
One option might be that an LED blinks while the dishwasher is running, and a chime
sounds when the washing cycle is completed.

Text (written) feedback is not always an option (for example, if there is no screen or
simply no screen real estate). Once we move past actual words—and let’s not forget that
a substantial portion of the planet’s population is illiterate: 793 million adults, according
to the Central Intelligence Agency—we have to convey messages via other means: sound,
iconography, images, light, and haptics. Since they are not text (and even words can be
vague and slippery), they can be open to interpretation. What does that blinking LED
mean? When the icon changes color, what is it trying to convey? Some feedback is clearly

Feedback Illuminates the Rules | 91

http://1.usa.gov/117Thmr

learned over time: when that icon lights up and I click it, I see there is a new message.
The “penalty” for clicking (or acting on) any feedback that might be misinterpreted
should be none. If I can’t guess that the blinking LED means the dishwasher is in use,
opening the dishwasher shouldn’t spray me with scalding hot water. In fact, neurolog‐
ically, errors improve performance; how humans learn is when our expectation doesn’t
match the outcome.

The second principle of feedback is that the best feedback is never arbitrary: it always
exists to convey a message that helps users, and there is a deep connection between the
action causing the feedback and the feedback itself. Pressing a button to turn on a device
and hearing a beep is practically meaningless, as there is no relationship between the
trigger (pressing the button) or the resulting action (the device turning on) and the
resulting sound. It would be much better to either have a click (the sound of a button
being pushed) or some visual/sound cue of the device powering up, such as a note that
increases in pitch. Arbitrary feedback makes it harder to connect actions to results, and
thus harder for users to understand what is happening. The best microinteractions
couple the trigger to the rule to the feedback, so that each feels like a “natural” extension
of the other.

Less Is More
The more methods of feedback you use, the more intrusive the feedback is. An anima‐
tion accompanied by a sound and a haptic buzz is far more attention getting than any
of those alone. The third principle for microinteractions feedback is to convey the most
with the least. Decide what message you wish to convey (“Downloading has begun”)
then determine what is the least amount of feedback you could provide to convey that
message. The more important the feedback is, the more prominent (and multichannel)
it should be (Figure 4-12).

Figure 4-12. In Cornerstone, the number of segments in the spinning activity wheel are
equal to the number of processes happening in the background. (Courtesy Yusuf Miles
and Little Big Details.)

The fourth principle of feedback is to use the overlooked as a means of message delivery.
Many microinteractions contain conventional parts of any interface—as they should.
These overlooked parts of the UI—scrollbars, cursors, progress bars, tooltips/hovers,
etc.—can be used for feedback delivery. This way, nothing that isn’t already there will
get added to the screen, but it can communicate slightly more than is usual

92 | Chapter 4: Feedback

(Figure 4-13). For example, a cursor could change color to gray if the user is rolling over
an inactive button.

Figure 4-13. OS X Lion’s cursor changes to tell you when you can’t resize a window in a
particular direction. (Courtesy Little Big Details.)

Feedback as a Personality-Delivery Mechanism
Unlike the more utilitarian trigger and any controls for the rules, feedback can be a
means of creating a personality for your microinteraction—and for your product as a
whole. Feedback can be the moment to inject a little edge or a touch of humor into your
microinteraction (see Figures 4-14 and 4-15).

Figure 4-14. When there is a long upload time, Dropbox suggests you eat a candy bar
while waiting. (Courtesy John Darke and Little Big Details.)

The reason you’d want to do that is that, as pointed out previously, feedback is for
humans. We respond well to human responses to situations, even from machines. Hu‐
mans anthropomorphize our products already, attributing them motivations and char‐
acteristics that they do not possess. Your laptop didn’t deliberately crash and your phone
isn’t mad at you. Designers can use this human tendency to our advantage by deliberately
adding personality to products. This works particularly well for microinteractions;

Feedback as a Personality-Delivery Mechanism | 93

because of their brevity, moments of personality are more likely to be endearing, not
intrusive or annoying.

Figure 4-15. If your SMS gets too long, Google Voice stops counting characters and says,
“Really?” (Courtesy Zoli Honig and Little Big Details.)

Take Apple’s natural-language software agent Siri, for example. Siri easily could have
been extremely utilitarian, and indeed, for most answers, “she”—it—is. But for questions
with ambiguous or no possible factual responses like “What is the meaning of life?” Siri
offers up responses such as “I don’t know. But I think there’s an app for that.” In other
words, what could have been potentially an error message (“I’m sorry. I can’t answer
that.”) became something humorous and engaging. Indeed, errors or moments that
could be frustrating for users such as a long download are the perfect place to show
personality to relieve tension (see Figure 4-16).

Figure 4-16. For the Internet Movie Database (IMDb), the 500 error message is based
on a movie quote. (Courtesy Factor.us and Little Big Details.)

Feedback with personality can, of course, be annoying if not done well or overdone.
You probably don’t want the login microinteraction giving you attitude every time you

94 | Chapter 4: Feedback

8. For a more complete definition and analysis of the uncanny valley, see “The Truth About Robotic’s Uncanny
Valley: Human-Like Robots and the Uncanny Valley,” Popular Mechanics. January 20, 2010.

want to log in. And you might not want an app to chastise you if you forget your pass‐
word: “Forgot your password again? FAIL!” What you should strive for is a veneer of
personality. In the same way that being too human is creepy for robots—the so-called
“uncanny valley”8—so too is too much personality detrimental for microinteractions.
A little personality goes a long way (Figure 4-17). Making them too human-like not
only sets expectations high—users will assume the microinteraction is smarter than it
probably is—but can also come across as tone-deaf, creepy, or obnoxious.

Figure 4-17. Twitter for mobile acknowledges typing on a phone is difficult and may
cause errors when logging in. (Courtesy Joris Bruijnzeels and Little Big Details.)

Feedback as a Personality-Delivery Mechanism | 95

Speaking of creepy, while you want to collect and use behavioral data (and be transparent
about what data you’re collecting) to improve (or create) the microinteraction over time,
being obvious (providing feedback) about collecting that data is a fast way to appear
intrusive and predatory. You want people to be delighted with the personalization that
data collection can provide, without being disgusted that data collection is going on.

Feedback Methods
We experience feedback through our five senses, but mostly through the three main
ways we’ll examine here: sight, hearing, and touch.

Visual
Let’s face it: most feedback is visual. There’s a reason for that, of course, in that we’re
often looking directly at what we’re interacting with, so it is logical to make the feedback
visual. Visual feedback can take many forms, from the blinking cursor that indicates
where text should go, to text on a screen, to a glowing LED, to a transition between
screens (Figure 4-18).

Figure 4-18. Nike+ App shows your slowest and fastest pace on its route map. (Courtesy
David Knepprath and Little Big Details.)

96 | Chapter 4: Feedback

Unless no screen or LED is available, assume that your default feedback is visual. Almost
every user-initiated action (with the exception of actions users cannot do, such as click‐
ing where there is no target) should be accompanied by visual feedback. With system-
initiated triggers and rules, only some should have accompanying visual feedback—
namely those that would require human intervention (e.g., an error indicator) or those
that provide information a user may want to act upon (e.g., a badge indicating a new
voicemail has arrived). Ask what the user needs to see to make a decision, then show
that in as subtle a way as possible. Often what the user needs to be aware of is resources:
time, effort, unread messages, etc. (Figure 4-19).

Figure 4-19. Navigon app changes its background when you go into a tunnel, as well as
indicating how long before you reach the tunnel’s end. (Courtesy Little Big Details.)

Don’t show redundant visual feedback. For instance, never have a tooltip that mirrors
the button label. Any visual feedback must add to clarity, not to clutter. Similarly, don’t
overdo a visual effect; the more frequent the feedback is, the less intrusive it should be.
Don’t make something blink unless it must be paid attention to (Figure 4-20).

Feedback Methods | 97

Figure 4-20. Github uses a tooltip to show the absolute timestamp. (Courtesy Scott W.
Bradley and Little Big Details.)

Visual feedback should also ideally occur near or at the point of user input. Don’t have
an error message appear at the top of the screen when the Submit button is on the
bottom. As noted in Chapter 2, when we’re attentive to something, our field of vision
narrows. Anything outside of that field of vision can be overlooked (Figure 4-21). If you
need to place visual feedback away from the locus of attention, adding movement to it
(e.g., having it fade in) can draw attention to it.

Figure 4-21. SoundCloud places the download size into a tooltip. This only works if the
majority of users don’t care about download size. (Courtesy David L. Miller and Little
Big Details.)

Animation

Our brains respond powerfully to movement, so use animation sparingly. If you can do
without animation, avoid it. Your microinteraction will be faster and less cognitively
challenging without it. That being said, tiny, brief animations can add interest and con‐
vey meaning if done well (Figure 4-22).

Figure 4-22. On iPhones, the spinner next to the network speed spins faster or slower
depending on the network speed. For instance, Edge networks spin slower than 3G ones.
(Courtesy Little Big Details.)

98 | Chapter 4: Feedback

9. “Anti-Pattern: Animation Gone Wild - Borders.com,” July 16, 2008.

The most important part of animation in microinteractions is that it indicates—
accurately—a behavioral model of how the microinteraction works. Don’t have a panel
slide in from the left if it isn’t going to slide out to the right, or if the user accesses it by
swiping down. Animation for animation’s sake is deadly. The best animations commu‐
nicate something to the user: about the structure of the microinteraction, what to look
at, what process is happening, etc.

Google’s Android engineers Chet Haase and Romain Guy have devised a set of UI char‐
acteristics for animation (Figure 4-23). Animations should be:
Fast

Do not delay the activity

Smooth
Stuttering or choppy movements ruin the effect and make the microinteraction
seem broken

Natural
They seemingly obey natural laws, such as gravity and inertia

Simple
Meaningful, understandable

Purposeful
Not just as eye candy

On this last point, designer and engineer Bill Scott outlines the reasons for using
animation:9

• Maintaining context while changing views. Scrolling a list or a flipping through a
carousel allows you see the previous and next items.

• Explaining what just happened. That poof of smoke means the item was deleted.
• Showing relationships between objects. For example, animating one item going into

another at the end of a drag-and-drop.
• Focusing attention. As an item changes value, an animation can make that change

more obvious.
• Improving perceived performance. Progress bars don’t decrease the time needed for

a download to happen, but they do make the time seem less grating.

Feedback Methods | 99

http://bit.ly/10dkku4

Figure 4-23. In Android (Ice Cream Sandwich versions), the screen skews if you try to
scroll past where there are items. (Courtesy Tony Mooch and Little Big Details.)

• Creating an illusion of virtual space. How (and where) panels slide in and out, for
example. Transitions can be an important part of microinteraction animations as
users move from one state to another, or from one mode to another. Transitions
help give a sense of location and navigation, letting users know where they are and
where they are going to.

• Encouraging deeper engagement. Interesting animations invite interaction.

Scott has a valuable rule for animation timing: make any animation half as long as you
think it should be. And then possibly halve the timing again (as detailed in Designing
Web Interfaces, O’Reilly). Animation should make the microinteraction more efficient

100 | Chapter 4: Feedback

http://shop.oreilly.com/product/9780596516253.do
http://shop.oreilly.com/product/9780596516253.do

10. “UX principles in action: Feedback systems and Ford SYNC”, July 11, 2011.

(by illuminating the mental model or providing a means of directing attention) or at
least seem more efficient, not less.

Messages

Designer Catriona Cornett tells of her experience updating the in-car Ford SYNC sys‐
tem. After putting the update on a USB drive to plug in to the car, she read these
instructions:

“Follow your printed out instructions exactly with your vehicle running. Approximately
60 seconds after you begin the installation, you will hear an ‘Installation Complete’ mes‐
sage. DO NOT REMOVE your USB drive or turn off your vehicle. You must wait an
additional 4–18 minutes until you hear a second ‘Installation Complete’ message before
you can remove your USB drive.”
OK, so, even though it will give me a message saying it’s complete, it’s really not, and if I
didn’t read this little note about the process, it makes it sound like I could cause some
form of irreversible damage. Great.10

“Installation Complete” is clear enough as a message, in the above described case, un‐
fortunately it’s misleading. Any messages delivered as feedback to an action should—at
a minimum—be accurate. As with instructional copy, any text as feedback should be
short and clear. Avoid words like “error” and “warning” that provide no information
and serve to only increase anxiety. Feedback text for any error messages should not only
indicate what the error was, but also how to correct it. Ideally, it would even provide a
mechanism for correcting the error alongside the message. For example, don’t tell a user
only that an entered password is wrong, provide the form field to re-enter it and/or a
means of retrieving it (Figure 4-24).

While any text should be direct (and human), it’s best to avoid using personal pronouns
such as “you.” “You entered the wrong password” is far more accusatory and off-putting
than “Password incorrect.” Likewise, avoid using “I,” “me,” or “my,” as these are the
uncanny valley of feedback copy. Although they can have human-like responses, mi‐
crointeractions aren’t human. Some voice interfaces like Siri can get away with using
first-person pronouns, but in written form it can be jarring.

The ideal microinteraction text is measured in words, not lines, and certainly not para‐
graphs or even a single paragraph (Figure 4-25). Keep copy short and choose verbs
carefully, focusing on actions that could or need to be taken: “Re-enter your password.”

Audio
As noted in Chapter 2, sound can be a powerful cue that arrives quickly in our brains
—more quickly than visual feedback. We’re wired to respond to sound (and, as noted
above, movement). Since it provides such a strong reaction, audio should be used

Feedback Methods | 101

http://bit.ly/ZIF1SV

11. Brown, Newsome, and Glinert, “An experiment into the use of auditory cues to reduce visual workload,” 1989.

Figure 4-24. When you try to view your stats right away on Feedburner, you get this
message. It would be better if it gave a more definite time to return.

Figure 4-25. Banking service Simple explains in one pithy line exactly what is going to
happen in the future. (Courtesy Little Big Details.)

sparingly. However, audio can be particularly useful on devices with no screens, or as
part of microinteractions that work in the background when the user isn’t fully paying
attention to them. It can also be useful in situations where looking at a screen can be
unsafe, such as while driving.

In general, there are two ways to use audible feedback: for emphasis and for alerts. Audio
for emphasis is typically for reinforcing a user-initiated action, as a confirmation that
what the user thought happened actually did. Clicking a button and hearing a click is
an example. These are often combined with visual feedback, and audio combined with
visuals has been shown to be more effective than visuals alone.11 The other kind of audio
feedback—alerts—are typically indicators of system-initiated actions: a process has
ended, a condition has changed, or something is wrong. A voice telling you to turn left
in a navigation app is an example of an audio alert.

Any audio cue for a microinteraction should pass the Foghorn Test: is this action im‐
portant enough that users would want to become aware of it when they cannot see it?

102 | Chapter 4: Feedback

12. See “Guidelines for Designing with Audio,” Smashing Magazine.

13. Blattner, Meera M., Sumikawa, Denise A., and Greenberg, Robert M., “Earcons and Icons: Their Structure
and Common Design Principles,” Journal of Human-Computer Interaction, Volume 4, Issue 1, 1989.

Even if you think the answer is yes, you should possibly provide a mechanism to turn
the sound off.

Like other feedback, audio can be adjusted if there is an understanding of the context
of use. Some HTC phones buzz and ring loudly in their user’s pockets or purses (the
phone knows it is there via sensor data) and diminish in volume as the user removes
them. Some automobiles increase the volume of music to compensate as the engine gets
louder. Similarly, if the user isn’t in the room with a device (detected via a proximity
sensor) or the noise in the room is loud (detected by a microphone), volume and pitch
could increase. And sound cues could also turn on (or increase in volume) if the device
knows you are in a situation where visual cues are compromised, such as while driving
(detected via GPS).

Sound designer Karen Kaushansky also cautions designers to consider the “non-use-
case” when designing audio: when does audio not make sense? Broadcasting a sound—
particularly voices—into an empty room in the middle of the night can be both startling
and annoying.12

Earcons

There are two kinds of audio feedback: earcons and words. Earcons—a play on the word
“icons” (“eye-cons”)—are short, distinct sounds meant to convey information.13 The
amount of information that earcons can convey is limited, however, and sometimes
words are necessary. Words are recorded (spoken) or computer-generated text. Words
are particularly useful for instructions or directions, although if your product has to be
in many languages, localization of the text could be nontrivial. Speech is also much
slower than earcons; what can be conveyed in a fraction of a second with an earcon
could take several seconds in speech—a ping versus “You’ve got mail!”

Earcons are, by their very nature, abstract, so care should be taken to select a sound that
could indicate the message being conveyed. For microinteractions, the best earcons are
those that users (consciously or unconsciously) can relate to other sounds they have
heard and make associations. For example, the click of a latch closing can be the earcon
for the microinteraction ending, or an upward whoosh can accompany an item moving
to the top of a list. Avoid earcons that are too shrill (except for critical warnings) or too
soft (“Did I just hear that?”). As with animation, the best earcons are brief: under one
second in duration, and usually a fraction of a second. One exception is an ambient
sound to indicate an ongoing process, such as a drone to indicate a file being synced.

Feedback Methods | 103

http://bit.ly/XLqBAz

14. See previous footnote, and Kerman, Joseph, Listen, Bedford/St. Martin’s, 1980.

Any earcon should also match the emotional content being conveyed. Is the feedback
urgent or just utilitarian? A warning or an announcement? The qualities of the earcon
(timbre, pitch, duration, volume) should match what is being communicated.

If you want your earcon to be iconic and memorable (a Signature Sound), it should
contain two to four pitches (notes) played in succession.14 As you don’t necessarily want
your microinteraction to be memorable, this trick should be used only once per mi‐
crointeraction, if at all. Most microinteraction earcons should be a single-pitch sound,
played once. Beware of playing any earcon in a loop, as even the softest, gentlest sound
can be irritating played over and over and over.

Earcons should be unique to an action. Just as you want to avoid using the same visual
feedback for different actions, you shouldn’t use the same—or even similar-sounding
—earcons for dissimilar events. This is especially true for alert sounds that could be
triggered independent of user actions. If the user is looking away from (or isn’t close to)
the device, the user won’t be sure of which action just happened.

Speech

If you’re going to use words as audio feedback, keep the spoken message brief and clear.
If there is a prompt for a response, make the choices clear, short, and few. Ideally with
microinteractions, any voice responses would be “Yes” or “No,” or at worst a single word.
As noted in Chapter 3, microinteractions are the place for smart defaults, not multiple
choice. Any word prompt should be at the end of the message. Use “To turn sound off,
say yes” instead of “Say yes to turn sound off.” Always end with the action.

With speech, your choice is to use actors to record the messages, or to use text-to-speech
(TTS). Recorded messages have the advantage of feeling more human and can have
more texture and nuance, although care has to be taken to make sure the actors convey
the right message and tone via their inflections and pauses. The minus is that any time
you change the message, it has to be rerecorded.

If the messages are dynamic (for example, turn-by-turn directions), TTS is probably
your only option, as you would unlikely be able to record every street name. Although
TTS has improved in recent years, it can still feel inhuman and impersonal, and some
people actively dislike it, so use with care.

Haptics
Haptics, or as they are technically known, “vibrotactile feedback.” Haptics are vibrations,
usually generated by tiny motors, which can create a strong, tactile buzz or more delicate
tremors that can simulate texture on flat surfaces. Compared to the decades of visual

104 | Chapter 4: Feedback

15. R. T. Verrillo, A. J. Fraioli, and R. L. Smith, “Sensation magnitude of vibrotactile stimuli,” Perception & Psy‐
chophysics, vol. 6, pp. 366–372, 1969.

16. Gill, John, “Guidelines for the design of accessible information and communication technology systems”.
Royal Institute of the Blind, 2004, and F. A. Geldard and C. E. Sherrick, “Princeton cutaneous research project,
report no. 38,” Princeton University, Princeton, NJ, 1974.

and audio feedback, haptics is relatively new, with the majority of people only having
experienced it with the advent of pagers and mobile phones.

Haptics, since they are mostly felt (although the vibration can make noise against a hard
surface like a tabletop), are best utilized on devices the user will be in close proximity
to (by holding, touching, wearing, or carrying), although they can also be embedded in
objects like furniture to enhance entertainment like movies and games. Faces and hands
(particularly fingertips) are the most sensitive to haptics, while legs and torso are much
less so.

Even more than vision and hearing, our sense of touch (technically our cutaneous sense)
is limited. Not by our skin, which is extensive (although of varying sensitivity to touch),
but by our brains. There are four kinds of fibers known as mechanoreceptors that convey
cutaneous sense, each of which can detect different frequencies. The different mecha‐
noreceptors engage in crosstalk with each other, the result of which determines what
we can feel—which, as it turns out, isn’t much. One researcher claims the amount of
information we can get from touch is 1% that of hearing.15 Most people can only easily
detect three or four levels of vibration.16 Thus, complex messages are not readily con‐
veyed with haptics.

Luckily, complex messages are usually unnecessary with microinteractions. Haptics
have three main uses for microinteraction feedback. The first is to enhance a physical
action, such as by simulating the press of a button on a touchscreen, or by giving an
added jolt when the ringer of your phone is turned off. The second (and currently most
common) use of haptics is as an alert when audio isn’t available or is undesirable. The
vehicle-initiated vibration of the steering wheel to wake a sleepy driver is an example
of this use. The third (and thus far rarest) use is to create an artificial texture or friction
on surfaces such as touchscreens. This can be used to slow down scrolling, for instance.

Because of humans’ limited ability to detect differences in haptics, they are currently
best used in microinteractions for either subtle, ambient communication or for a dis‐
ruptive alert. There’s very little middle ground, except perhaps in specialty devices, like
those for musicians and surgeons, where varying levels of haptics can provide more
physical feedback while doing an action like making music or performing surgery.

Feedback Methods | 105

http://bit.ly/11kpcQz

Feedback Rules
Feedback can also have its own set of rules that dictate its instantiation (Figure 4-26).
Feedback rules define:
Contextual Changes

Does the feedback change based on the known context? For instance, if it is night,
does the volume increase? Decrease?

Duration
How long does the feedback last? What dismisses it?

Intensity
How bright/fast/loud/vibrating is the effect? Is it ambient or noticeable? Does the
intensity grow in time, or remain constant?

Repetition
Does the feedback repeat? How often? Does the effect remain forever, or just for a
few seconds?

Figure 4-26. Foursquare makes a plea for help when you pull down too far to refresh.
(Courtesy Tory Briggs.)

106 | Chapter 4: Feedback

These rules can determine much of the character of the feedback.

If you don’t want your users feeling cheated and putting their fists through the screen
as they do with slot machines, look to your feedback. Make the rules understandable,
and inform them of changes in state when appropriate. Make the feedback consistent,
rewarding positive behavior.

Sometimes it’s not just a piece of feedback that repeats, it’s the whole microinteraction.
In Chapter 5, next, we’ll discuss how to use loops and modes to extend your microin‐
teraction.

Summary
Understand what information the user needs to know and when. All feedback relies on
this understanding.

Feedback is for understanding the rules of the microinteraction. Figure out which rules
deserve feedback.

Determine what message you want to convey with feedback, then select the correct
channel(s) for that message.

Look at context and see if the feedback can (or should) be altered by it.

Be human. Feedback can use a veneer of humanity to provide personality to the mi‐
crointeraction.

Use preexisting UI elements to convey feedback messages. Add to what is already there
if you can before adding another element.

Don’t make feedback arbitrary. Link the feedback to the control and/or the resulting
behavior.

Whenever possible, have visual feedback for every user-initiated action. Add sound and
haptics for emphasis and alerts.

Summary | 107

CHAPTER 5

Loops and Modes

On January 4, 2004, a 400-pound, six-wheeled, solar-powered robot landed on Mars,
in the massive impact crater Gusev. The robot was the $400-million-dollar Spirit rover
that had taken over a year to build. As Passport to Knowledge reported, Spirit had just
survived the six-month journey to the Red Planet and a perilous landing, including
bouncing as high as a four-story building on first impact with the surface. The Jet Pro‐
pulsion Laboratory (JPL) team that built and commanded the rover thought the worst
was behind them. They were wrong.

Once the (literal) dust—red—had settled, Spirit began its mission of taking pictures and
performing scientific experiments, rolling toward a nearby destination (“Sleepy Hol‐
low”). But then on January 21, less than three weeks into the mission, something hap‐
pened. NASA’s Deep Space Network lost contact with Spirit.

At first, the rover’s disappearance was blamed on a thunderstorm in Australia disrupting
the network, but no, there was something wrong with Spirit itself. The next day, a

109

http://bit.ly/Z9ewWT

transmission arrived from Spirit: a single beep that indicated the rover was still there,
but that was all. This was seriously bad. If the problem was a critical hardware failure,
the robot was dead and its mission was effectively over.

Trying a number of methods, JPL finally coaxed the rover to send diagnostic data, which
it did on January 23. Much of the data was just repeated nonsense, but it did give them
some insight into what was happening. The news wasn’t good: higher internal temper‐
ature than was expected, and lower battery voltage. Normally, the rover’s computer is
only on five or six hours a day to save battery power and to prevent it from overheating,
but the data showed the rover wasn’t going into sleep mode, and thus burning battery
power and overheating. If this condition continued, the rover would destroy itself. As
Mark Adler, one of the tactical mission managers, put it, “What we had on our hands
was one sick rover. Spirit had insomnia, a fever, was getting weaker all the time, was
babbling incoherently, and was largely unresponsive to commands.”

Adler’s gripping first-person account can be read in full in “Spirit Sol
18 Anomaly,” by the Planetary Society Blog at this link.

Frantic, the command team sent Spirit a SHUTDWN_DMN_TIL (“shutdown dammit until”)
command, which puts the rover to sleep. Spirit accepted the command and the JPL team
breathed a sigh of relief. Just to make sure, they sent a beep to the rover; if Spirit was
really asleep, it wouldn’t respond.

It did.

Spirit wasn’t responding to commands, and because the Earth was “setting” inside the
crater, the JPL didn’t have another chance to try something else until the next day.
Meanwhile, Spirit was overheating and running out of power. Time was running out.

The JPL team regrouped to figure out what exactly was happening. They came up with
a working theory: that Spirit was in fault mode, meaning it was trying to reboot itself
after encountering a problem that it couldn’t solve—basically just like all of us do with
our gadgets when they become unresponsive. The problem was that Spirit seemed to
be trapped in fault mode, rebooting itself over and over. It was encountering a problem
while rebooting.

Later, it would be figured out the problem was with a software update that had happened
while the rover was en route to Mars. During the update, a utility to delete the old
software files was uploaded, but the upload failed and no one noticed—or else it was
ignored. The result was that there was less file space available because it was being taken
up by the older files. So when Spirit started running experiments and saving data, the
file system overflowed. To try to fix it, Spirit rebooted itself. (This was what it was
supposed to do.) The problem was that the reboot couldn’t complete due to insufficient

110 | Chapter 5: Loops and Modes

http://bit.ly/11oJiJR

1. For the full details, see “The trouble with rover is revealed” by Ronald Wilson, EE Times, February 20, 2004.

available file space, which Spirit tried to fix by rebooting. And thus an infinite loop of
reboots was entered.1

The command team didn’t know this at the time; they just guessed Spirit was repeatedly
rebooting and had to figure out how to stop it before the rover was irreparably damaged.
JPL suspected that, since the problem persisted through reboots, the issue was either
the flash memory, the EEPROM, or a hardware fault. (If it had been hardware, the rover
would be irreparable.) Fortunately, the rover engineers had anticipated problems with
the flash memory and EEPROM, so they’d designed a way the rover could be booted
without ever touching the flash memory: the radio that received commands from Earth
could also execute a limited number of commands itself, one of which was telling the
computer to reboot without using flash memory. The JPL team sent the command to
the radio several times before it finally worked and the loop was broken. Relieved, JPL
retrieved some data, and put Spirit into a long-overdue sleep.

Luckily, this story has a happy ending, in that Spirit returned to full operation on Feb‐
ruary 5, 2004, and continued operating for years, even though its solar panels were
designed only to last three months and even after getting stuck in a sand trap for two
years. The last successful communication with Spirit was in March 22, 2010—nearly
seven years longer than JPL expected—and NASA officially ended Spirit’s mission on
May 25, 2011 after “a stressful Martian winter without much sunlight. With inadequate
energy to run its survival heaters, the rover likely experienced colder internal temper‐
atures last year than in any of its prior six years on Mars.” As of this writing (March
2013), Spirit’s twin rover, Opportunity, which arrived three weeks after Spirit, is still
exploring the surface of Mars.

A mode, like Spirit’s fault mode, is a special part of an application in which the app
operates differently than usual. Often, this means actions like pressing a key does some‐
thing else when in a particular mode. A loop, like the reboot one Spirit was stuck in, is
traditionally a command or series of commands that is repeated. (As we’ll see, it’s defined
slightly differently for microinteractions.) As the near disaster with Spirit reveals, loops
and modes can be tricky things, even for the conservative, thorough NASA.

Modes
A mode is a fork in the rules, and for microinteractions, modes should be used very,
very sparingly. Most microinteractions should be mode-free, but sometimes they are
necessary. The best reason to have a mode is when there is an infrequent action that
would otherwise clutter the microinteraction’s main purpose. One common mode is a
settings mode, wherein the user specifies something about the microinteraction. When
you’re in settings mode, you’re not usually performing the major task, just modifying

Modes | 111

http://1.usa.gov/11oJzMX

it. It’s separate from the rest of the interaction. Examples of this are in weather (see
Figure 5-1) or stock market apps, when you select cities or stock ticker symbols to get
data on them. You’re not performing the main action of the microinteraction; it’s a
deviation in the rules that takes you away to do one subtask, then return.

Figure 5-1. An example of a mode from Apple’s Weather App for iOS.

The reason to avoid modes in general is that they can cause errors, especially if the mode
is just an invisible state the screen is in. Turning on an edit mode, for example, makes
a once-familiar screen something the user has to relearn. An action, such as clicking an
item, could do drastically different tasks: selecting the item in default mode, deleting it
in delete mode. The fewer modes—and in microinteractions, there should be no more
than one, and zero if possible—the less chance of users being confused about what mode
they are in, and the less they have to learn about how the microinteraction works.

If you must have a mode, a good practice for microinteractions is to make it its own
screen whenever possible (or whenever there is even a screen). (This is the one exception
to the “don’t make a screen for every rule” principle discussed in Chapter 3.) This will
help reduce errors and frustration, because it will hopefully make it clearer to the user

112 | Chapter 5: Loops and Modes

2. Quasimodes were introduced in the late Jef Raskin’s seminal book The Humane Interface (Addison-Wesley
Professional).

they are in a different mode, not just an unfamiliar state. A transition to the new mode—
and back to the previous (default) mode—can be a useful cue here as well, indicating to
the user they are going somewhere else to do something specific.

When a user goes to one mode and comes back to the previous mode, they expect the
original mode to be in the same state as they left it, although perhaps any changes
performed while in the other mode will be reflected in the default mode. When a user
exits to a special mode and then returns to the main interaction, she expects the main
interaction to be in the same state as she left it—with the addition of any changes made
while in the special mode. For example, in a weather app, if I add another city in the
Add a City mode, when I return to looking at weather data, I should see the new city
there.

Spring-Loaded and One-off Modes
It’s annoying to have to switch to a different mode to perform one simple action. Two
variations of modes that could be used in microinteractions in addition to (or in place
of) traditional modes are spring-loaded modes and one-off modes. With either of these
variations, the user can’t get trapped in an unknown mode.

Spring-loaded modes (sometimes called quasimodes2) are only active when a physical
action such as pressing a key or holding down a mouse button is occurring. As soon as
the action stops, so does the mode. The classic example is pressing the Shift key on your
keyboard, which turns on caps lock mode, but only while pressing the Shift key. The
Alt, Option, and Command keys also often turn on a spring-loaded mode.

The value of a spring-loaded mode is that the user seldom forgets that they are in a
different mode, because they are doing something physical to make that mode possible,
and it doesn’t require switching to a different screen. The drawback is that it doesn’t
work well for actions that take some time to execute or require complex input.

For microinteractions, spring-loaded modes are best used sparingly, and probably
mostly on devices and appliances. Pressing and holding a Start key can cause a reboot
or reset, for example.

Spring-loaded modes can also be an invisible trigger that brings users to a microinter‐
action. Autofill in a search field is an example of this. Autofill only appears when there
is text in the field, so it’s a type of spring-loaded mode.

The same is mostly true with one-off modes. One-off modes are when a user initiates a
mode that lasts for the duration of a single action, then the mode turns off. For example,
double-tapping on text in iOS brings up its cut-and-paste features, which disappear

Modes | 113

3. Developers may take issue with this definition, as a traditional loop (in computer science terms) would not
be employed to make this possible. Instead something like a “Wait” or “Sleep” command would likely be used.

after one command has been selected. Newer versions of Microsoft Office have a so-
called “minibar” of formatting tools that appears only when a user highlights some text.
And in OmniGraffle, after a single use, a selected tool (such as the line tool) reverts back
to its default state (the pointer). One-off modes are most useful for rapid task switching
(as in OmniGraffle) or for contextual use (as in Office and iOS).

One-off modes can also be helpful for gestural and voice microinteractions. For exam‐
ple, in some voice interfaces, such as on the Xbox with Kinect, a command word (in
this case “Xbox” being it), could be the trigger, which initiates a one-off mode in which
another command could be issued. “Lights! Dim!” or “TV! Off!” (A fictional version
of this is in Star Trek: “Computer, Locate Commander Riker!”) Similarly, with gestural
interfaces, one gesture such as a wave could trigger the microinteraction, putting it into
one-off mode in which another gestural command could be issued. In both these cases,
one-off modes prevent accidental triggering. In both these examples, the one-off mode
would have to time out after a certain period of time, and for that, you need a loop.

Loops
A loop (in microinteraction parlance) is a cycle that repeats, usually for a set duration.
The cycle can be microseconds, minutes, days, or even years. Loops are all about timing,
determining the pace and the overall lifespan of the microinteraction. Although most
microinteractions are generally short in duration, they or parts of them can repeat, and
thus have a longer “life” than just a brief moment.

A loop is something indicated (directly or indirectly) via the rules. “Get data every 30
seconds” or “Run for three minutes, then stop” or “Send a reminder in 10 days” are all
example indicators that a loop is involved.3

Styles of Loops
We’re concerned with four kinds of loops:
Count-Controlled (For) Loop

This repeats for a set number of times before ending. For example, check if there is
network connectivity 10 times before giving an error message.

Condition-Controlled (While) Loop
This repeats while a certain set of conditions is met. If the conditions change or
end, so does the loop. If there is a network connection, check for new Twitter mes‐
sages every minute.

114 | Chapter 5: Loops and Modes

Collection-Controlled Loop
Similar to a Count-Controlled loop, this loop runs through everything in a set, then
stops. Example: for each unread email, add one to the unread counter.

Infinite Loop
A loop that begins and never ends until there is an error or someone shuts it down.
As with the story of the Spirit rover, these are generally to be avoided, but a micro‐
interaction like turning on a light basically starts an infinite loop: the light doesn’t
turn off again until the whole microinteraction is turned off or the light bulb burns
out.

Additionally, there are two kinds of loops: open or closed. Microinteractions make use
of both for different purposes. Open loops do not respond to feedback; they execute and
end. (“Every day at 10pm, turn on a light.”) Closed loops have a feedback mechanism
built in and are thus self-adjusting. For example, a closed loop could be one that, while
the car is running, checks the engine noise level and adjusts the car stereo volume
accordingly.

As with the algorithms we discussed in Chapter 2, defining the parameters of loops can
contribute mightily to the user experience. Too few cycles in a loop can make the ex‐
perience feel rushed or intrusive; too long a loop could make the experience sluggish
and nonresponsive. Figure 5-2 shows an example of a timing loop.

Figure 5-2. Moo starts a timing loop after an order has been placed, to show users how
long they have to edit a recently placed order. (Courtesy Matt Donovan and Little Big
Details.)

Loops can be used to make sure an action doesn’t go on too long or end a process or
even the entire microinteraction. This could be done for security reasons, for instance
when a banking site automatically logs you out after a few minutes of inactivity. This
kind of automatic ending can be annoying, so use with care (Figure 5-3).

Loops | 115

Figure 5-3. If a user clicks too many Add Friend buttons too quickly, Facebook gives the
user a warning. (Courtesy Alfie Flores Nollora and Little Big Details.)

Loops can be used to recognize behavior as well. For example, if a user has paused at
one part of the microinteraction for too long, the microinteraction could prompt them
with help (Figure 5-4).

Figure 5-4. If a video has been buffering for too long, the TED site offers users the
option to download it for later. (Courtesy Justin Dorfman and Little Big Details.)

116 | Chapter 5: Loops and Modes

Sometimes just the repeating (an open loop) is enough. But the most powerful loops
are those that take place over long durations and/or are closed loops that adapt over
time to behavioral feedback. These are long loops.

Long Loops
“Something in design has gone wrong when objects
don’t mature in a way that makes them more
desirable.”
—Deyan Sudjic

Let’s talk about hammers for a moment. Hammers, like most tools, are very good for a
few discreet activities—just like microinteractions. In the case of hammers, this is
pounding or removing nails, as well as occasionally smashing something. But micro‐
interactions aren’t hammers. They can have memory. They can use data. They can loop,
sometimes endlessly. When designing microinteractions, you can use what I’m calling
long loops and focus not only on doing an individual task, but also on a longer timescale.
What can be done to make the microinteraction better the second time it’s used? The
tenth? The ten thousandth? Figures 5-5 and 5-6 are examples of microinteractions that
have undergone recent improvements.

Figure 5-5. The songs in the “Added” column on Spotify fade over time. (Courtesy Jorge
Nohara and Little Big Details.)

Loops | 117

Figure 5-6. YouTube indicates recently made searches in purple. (Courtesy Davide Det‐
tori and Little Big Details.)

Loops can deliver what design strategist and CEO of design consultancy Adaptive Path
Brandon Schauer calls The Long Wow. The Long Wow is about delivering new expe‐
riences or features over time instead of all at once, and by doing so building customer
loyalty (see Figures 5-7 and 5-8). For the purpose of microinteractions, The Long Wow
is about adapting the microinteraction over time so that it feels customized or even
brand-new. This requires a long loop, perhaps one that lasts the duration of the device
the microinteraction is contained in or even beyond, if behavioral data can be stored
remotely or transferred to a new device.

Figure 5-7. Threadless sends users an email when items in their cart are about to sell
out. (Courtesy Little Big Details.)

118 | Chapter 5: Loops and Modes

http://bit.ly/YzYXE6

Figure 5-8. Remember Me is the great broken loop of the Internet. What even happens
when you check the box? Does it automatically log you in? (Unlikely.) Most times, it
doesn’t even remember you checked the box, leaving it unchecked. (Courtesy Jack
Moffett.)

One use of these long loops is to extend the microinteraction far beyond a single instance
of use. A weekly reminder of items placed on a wish list is one example, or the “Re‐
member Me” checkbox that no website seems to remember is another. When a user
returns to the microinteraction, ideally there is some memory of previous use. A user
who likes to play her music loud may have different volume settings than someone who
doesn’t (Figure 5-9).

Figure 5-9. ThinkGeek allows users to temporarily unsubscribe while the holidays are
ongoing. (Courtesy Kayle Armstrong and Little Big Details.)

Progressive disclosure or reduction

Another use of long loops is progressive disclosure over long periods of time. As users
become used to a product, they don’t need as much handholding, and instead can be
treated as a more skilled user. For example, shortcuts could be added to a microinter‐
action after it’s been used a few times, or more advanced features added.

Another option is progressive reduction, where the microinteraction becomes simpler
over time, as the user becomes skilled and doesn’t need items such as labels for guidance
(see Figure 5-10 for an example). However, care must be taken; if the user doesn’t engage
with the product for a while, the microinteraction might have to become more robust

Loops | 119

http://bit.ly/17x4pLM

and obvious again. The benefit to users is a cleaner interface, one that rewards and makes
use of a user’s familiarity with a product.

Figure 5-10. An example of progressive reduction from LayerVault. The signpost but‐
ton’s default is a large icon with a label. As the user becomes proficient, the label disap‐
pears. And eventually for experienced users, the button is de-emphasized altogether.
(Courtesy LayerVault.)

As the near-disastrous story of the Spirit rover on Mars reminds us, loops and modes
can be tricky to implement and maintain. However, their use can make a microinter‐
action cleaner (by moving infrequent actions like settings to a mode) and richer, by
having the microinteraction adapt to use over time.

This completes the structure of microinteractions. Now it’s time to put everything to‐
gether that we’ve learned.

120 | Chapter 5: Loops and Modes

Summary
Only have a mode when there is an infrequent action that might otherwise clutter the
microinteraction.

If you must have a mode, make it its own screen when possible.

For rapid actions, consider using a spring-loaded or one-off mode instead of a tradi‐
tional mode.

Use loops to extend the life of a microinteraction.

Carefully consider the parameters of loops to ensure the best user experience.

Use long loops to give the microinteraction memory or to progressively disclose or
reduce aspects of the microinteraction over time.

Summary | 121

1. As told to Alyson Shontell in “Founder Q&A: Make A Boatload Of Money Doing Your Neighbor’s Chores
On TaskRabbit,” Business Insider, October 27, 2011.

CHAPTER 6

Putting It All Together

On a cold Boston night in February 2008, Leah Busque and her husband realized their
dog Kobe was out of dog food. They were headed out to dinner and a cab was even on
its way, but the dog needed to be fed. She thought, “Wouldn’t it be nice to go somewhere
online and say, ‘We need dog food,’ name a price we’d be willing to pay, and find someone
in our neighborhood, maybe at the store that very moment, who could help us?” Before
the cab had even arrived, she’d bought the domain name RunMyErrand.com.1

RunMyErrand eventually became the startup TaskRabbit, with Busque as its founder
and CEO. TaskRabbit lets people locally outsource the small chores they don’t want to
do like donating old clothes or buying dog food. By 2011, TaskRabbit had millions in
funding, 35 employees, and was generating $4 million USD in business every month.

At the heart of TaskRabbit is a microinteraction: telling potential “TaskRabbits” what
task needs doing so that the TaskRabbits can bid on the fee for doing it. Specifying the
task that needs to be done is the microinteraction. The entire service rests on this one
crucial, yet potentially unexciting, step. At first, this microinteraction was a very text-
heavy form, where users would have to write out their tasks in some detail (see
Figure 6-1). But in 2011, after the team had designed their simpler mobile app, they
realized there was a better way: by making a set of Smart Defaults, Bringing the Data

123

http://runmyerrand.com

Forward, and breaking the task up into chunks. As detailed in “TaskRabbit Task posting
forms”, then director of UX Sarah Harrison explained: “As time went on, we got more
data about our Tasks, our software got more sophisticated, and we were able to catego‐
rize Tasks into main Task types. This allowed us to create specific forms for common
Task types, simplifying by asking for relevant details, setting smart defaults, and hiding
irrelevant questions.”

Figure 6-1. An early version of the TaskRabbit task-posting form. (Courtesy Sarah
Harrison.)

The result is the (admittedly large) microinteraction in Figures 6-2 and 6-3. The user
only has to pick a main task (Figure 6-2), then the next step of the microinteraction
(Figure 6-3) is tailored based on that main task. Users were delighted. “They made the
entire task a no-brainer,” said one. “They answer all the questions I have before I even
ask them.” This is the sign of a great microinteraction (Figure 6-4).

124 | Chapter 6: Putting It All Together

http://bit.ly/178y67D
http://bit.ly/178y67D
http://bit.ly/13mDsK9

Figure 6-2. Step 1 of the redesigned TaskRabbit task microinteraction. (Courtesy Sarah
Harrison.)

Figure 6-3. Step 2 of the form. Once the user picks a main task, the rest of the microin‐
teraction is customized around it. (Courtesy Sarah Harrison.)

Putting It All Together | 125

Figure 6-4. TaskRabbit brings the data forward here, answering the question, “How
much should I offer?” (Courtesy Rishi Shah.)

In this chapter, we’re going to put everything we’ve discussed together to make three
example microinteractions: a mobile app for setting an alarm, a web widget for a shared
playlist, and the control panel for a dishwasher.

Example 1: Mobile App
In this first example, we’re going to look at an iPhone mobile app for setting an alarm.
The microinteraction here is the entire app; all the app does is allow the user to set a
time for an alarm to go off.

The first thing to think about is what the goal is: it’s to be alerted (usually woken up) at
a particular time. It’s not to set an alarm: that’s just a rule. So let’s write out the rules we
know we need at this point:

1. User selects a time for an alarm to go off.
2. The alarm goes off at the specified time.
3. The user turns off the alarm.

We’ll fill out the rules more later. Let’s now look at the trigger.

Since we’ve said the microinteraction is an iPhone app, the trigger is a given: it will be
a standard icon that lives on the iPhone home screens. Since that’s solved for us, let’s see
if we can Bring the Data Forward in any way.

What is the one piece of information that users would like to see before starting the
microinteraction? In this case, it’s whether or not an alarm has been set, and what time
the alarm is set for. The mechanism Apple has for showing information inside an app
are badges. Here we run into a snag. In another OS, like Windows Mobile using live
tiles, we might be able to indicate in text and time whether there is an alarm and what

126 | Chapter 6: Putting It All Together

time it’s set for, but as of this writing (March 2013) with iOS 6, only numbers are allowed
in iOS badges, and only four of them at that. So what do we do? If the alarm was set to
6:30 you could possibly do a badge that was 630, but what if the alarm was 12:30? Does
1230 convey the message? This is an atypical use of badges, which are normally for
indicators such as unread messages, so that gives us pause. Also, if we do a badge that
indicates the time, we’re limiting ourselves to only one alarm; you can’t show multiple
alarm times given these constraints! This isn’t necessarily a bad thing: only one alarm
makes the rules much simpler. There is a way around showing multiple times in a badge,
in that you would only show the next alarm in the badge. But this too could cause
confusion, and confusion is the enemy of microinteractions. When in doubt, make it
simpler. So until this constraint is changed (if ever) or we put our app on a different
platform, the only data we’ll bring forward is the number of alarms set and active. It’s
not as useful as knowing the time, but there is still some value in knowing at a glance if
an alarm is set.

Our trigger needs a label, which in this case is the name of our app. Let’s call it AlarmD.

What happens when AlarmD is triggered? The app launches, but then what does it
show? If the goal is to be alerted at a particular time, it should either be showing when
the alarm(s) are going to go off, or else prompting the user to set an alarm.

At this point, we should pause and ask what we know about the user so that we Don’t
Start from Zero. We know what platform the user is on and what device, so we also know
what sensors are available to us (camera, microphone, accelerometer, compass). We
know the time (obviously) and the location. If the app has been used before, we could
know what previous alarms had been set, and how often. Does the user set the same
alarm(s) every day, or just every weekday? We might also know what happened once
those alarms went off: did the user press snooze at all? If so, for how many times? Let’s
add in some rules to account for some of this data:

1. If the user has set the same alarm for three days in a row and the alarm isn’t set,
prompt to set the same alarm when AlarmD is launched. If the user does set the
prompted time, prompt whenever launched until the user does not select, then reset.

2. If the country the phone is in uses 24-hour format, use that.
3. Display any set alarms. Show the time until it goes off (e.g., “8 hours away”).
4. User selects a time for an alarm to go off.
5. The alarm goes off at the specified time.
6. If the user presses the snooze button, repeat the alarm in five minutes. All subse‐

quent snoozes come one minute earlier until they are one minute apart.
7. If after a week of use, the user has never pressed snooze, remove it from the alert.
8. The user turns off the alarm.

Example 1: Mobile App | 127

Notice there is already a long loop in there (“three days in a row”) that engages a system
trigger as well as some shorter loops (the snooze countdown). The display of “8 hours
away” is a way to Prevent Human Error for setting an alarm too far in the future, by
selecting P.M. instead of A.M., for example. The removal of the snooze button, while
limiting options, could be controversial. We might need to be able to restore it via a
setting somewhere. If our app weren’t on iOS, we could do some other tricks with snooze,
like make the alarm louder each time the alarm goes off after a snooze, but iOS doesn’t
allow apps to control the overall volume, so we’re stuck with that constraint.

Next, let’s take a look at the controls. The user has to be able to set an alarm, cancel an
alarm, turn off an alarm, and snooze. These will all need visible controls of some sort
in the UI, unless any of them could be hidden under a multitouch gesture. Almost all
of them except for snooze are essential, and with snooze, you have users who are half
asleep, so you cannot expect them to perform anything more complex than tapping a
button. Setting an alarm time is the most complicated of these; everything else can be
done via simple button taps. Setting the time could be done in various ways: using the
built-in tumblers (as Apple’s Clock app does) or via a custom control, such as selecting
a time on an analog clock.

This is where we should pause and consider whether we want setting the alarm time to
be a Signature Moment for the microinteraction, or just accomplished quickly. Since
there are about 1,000 alarm apps on the market, setting the alarm might be a good place
to do something custom and interesting. I’ve always been a fan of those old-fashioned
train tickers, so this app will make use of them. Since, honestly, who needs to set an
alarm for particular minutes, the minutes flipper will move in five-minute increments.
Optimize for what most people do most of the time.

What will really make this custom control come to life is the feedback while adjusting
it. It has to have a very satisfying clack as the tiles flip, and the way the tiles visually flip
has to look like they obey gravity. Another important piece of feedback is the alarm
itself. You could let users use the standard iPhone sounds or pick songs from their iTunes
library, but a default, custom sound would be memorable here. Other places for custom
sounds would be when canceling an alarm or when turning it off: something like a very
definitive mechanical click, such as those when turning off a gas stove. Perhaps the alarm
itself fades away instead of an abrupt cutting off as well.

The last thing to consider are loops and modes. An obvious mode here would be the
setting of the alarm time, although since it’s a single action, it could probably be ac‐
complished in an One-off mode: tap it from a list of alarms, it opens up, the user sets
the alarm, and it closes. A more traditional mode would be Settings, if we wanted to
give users an option to set actions like the duration of snooze. I would advocate for not
having settings. Make the defaults good enough to ship—at least in the first release.

As far as loops go, there are several. The alarm is several kinds of loops at once: the
snooze is a count-controlled loop (make the alarm go off in five minutes, then four, then

128 | Chapter 6: Putting It All Together

three, etc.) that turns into a condition-controlled loop (have the alarm go off once a
minute). In fact, the whole alarm is one long condition-controlled loop, as the alarm
goes off once the alarm time (the condition) is met, and continues to go off until man‐
ually stopped. Of course, we could—and probably should—put in a timer in the rules,
so that if no one turns the alarm off for, say, 10 minutes, the alarm turns itself off.

Once again, the platform constrains us from using loops to their full potential. One nice
addition would be for the app, two minutes before the alarm goes off, to check the light
in the room via the phone camera. Then, if the room is dark, over the next two minutes
gradually increase the light coming from the phone so that when the alarm does go off,
the room is brighter. But on iOS, an app can’t open itself. (There’s certainly good reason
behind this system rule, as it could be easily abused.) Only an alert can appear, which
isn’t even close to the same thing.

There are some long loops built in: the prompt for an alarm the user does repeatedly,
and the hiding of the snooze button. One thing we (deliberately) didn’t include is a way
for the user to create a repeating alarm—that is, create their own loop. This adds a lot
of complexity to the app, some of which we’ve moved to the microinteraction itself in
the form of the initial long loop that checks to see if the user has set the same alarm
repeatedly. We could add more nuance to the loop, to check to see if it is a weekday or
a weekend and prompt accordingly, but to keep the rule simple, let’s end there.

So there we have our first example of a microinteraction designed using the principles
outlined in this book. Let’s try another.

Example 2: Online Shared Playlist
The second example we’re going to use is for an online music service (albeit fake). Let’s
say that as part of this music service’s offerings, there is a shared playlist, where users
and their friends can drop songs for each other. Let’s also assume the service is sophis‐
ticated enough that you can use songs from other services or even a desktop app like
iTunes. And finally, let’s say our playlist lives among other microinteractions like adding
friends and playing music.

We can start with the goal. The reason people would want to use this microinteraction
is twofold: to discover new music and to share music. Of course, the secret motivations
to use this microinteraction might be to tell friends your emotional state or to demon‐
strate how good your musical taste is. Underlying motivations are important, too.

Let’s sketch out the basic rules first:

1. If a new song arrives, add it to the playlist.
2. The user can add a song to the playlist.
3. New songs are added to the end of the playlist.

Example 2: Online Shared Playlist | 129

Our microinteraction has two triggers: adding a song (a manual trigger), and a friend
adding a song remotely (a system trigger). Let’s talk about manual first. If we assume
there is a visual display of the songs in the playlist, how do users know they can add a
song to it? Since you can add songs from anywhere and the system is smart enough to
find a version of the song everyone can listen to, being able to drag a song to the playlist
seems like one way to do that. Making that discoverable might mean putting an empty
slot at the top of the playlist, saying Drop a Song Here. We can change the label after
the user has successfully put a song in the playlist, to something like “What are you
listening to?” Perhaps we could even rotate the label options occasionally, prompting
the user with labels such as “What’s today’s tune?” or “What does today sound like?”

Are there other manual triggers? If our music service has a menu bar, you could put a
menu item there: Add to Shared Playlist, although that would only work with selected
songs from within the service itself, except if there was nothing selected, we opened a
dialog box for users to search for a (music) file. It seems clunky—and too much like a
chore—for what’s supposed to be a fun microinteraction. So let’s keep Add to Playlist
as a menu item, but only for selected items from within the service. For anything outside
the service, it has to be dragged to the playlist. Let’s also add a key command so frequent
users can just select a song and use the command to add without fumbling around with
menus or drag-and-drop.

We could also allow users to add songs by typing in a song title (and perhaps an artist
name). But the more different kinds of triggers we have, the more complicated the
microinteraction becomes. And besides, typing a song isn’t really a very standard way
to add a song to a playlist.

Adding a song to the playlist, or especially when a song appears from a friend, is a great
place for some feedback, particularly some animation. The whole playlist should slide
down one slot, and the new song drops in from the top, sliding in with a musical
plink. Since it’s an app about music, audible feedback makes some sense.

There is also the system trigger of your friends adding songs to the playlist. If you have
the browser tab open to the service, you’ll certainly see (and hear) the song arrive. But
if you don’t, it could be fun to change the browser tab slightly, just as an indicator
something has happened. Let’s make our “badge” a musical note with a smile inside it.
We’ll call it Notesy.

When the user does drag a song into the playlist, it might take a while for the system to
match the song. We could just use a regular spinning icon, but why? Feedback is a place
to add some personality. We’ll Use the Overlooked and use the loader to make use of
Notesy again. We can have Notesy “looking around” for a match, then smiling as some
are found.

The system might have to offer multiple choices if there are variations or it’s unsure. If
there is only one match, and/or it matches both Artist and Song Name exactly, it should

130 | Chapter 6: Putting It All Together

add the song directly to the playlist. Otherwise, it should offer possible matches. Pre‐
senting possible matches is where an algorithm comes into play. Since we don’t want to
overwhelm the user, we’ll present no more than three possible matches for the song.
Since it is more likely that the artist name will be correct than the song title, we can use
that as an ordering factor in our algorithm: matches from that artist are first. If none of
the three are correct, we can provide a mechanism to go get three more selections. If it
can’t find any matches, Notesy can appear and look sad.

At this point, we could ask whether or not users can delete songs from the shared playlist.
Let’s assume no, since in the worst case, users can always use the controls to skip over
any tracks they don’t like. Let’s also assume that users can’t rearrange songs in the playlist.
We might find in testing or after launch that these are deal-breakers for adopting and
using the service, but for now, it keeps our rules simpler.

Let’s see what the rules look like now:

1. If a new song arrives, add it to the playlist. Show Notesy in the browser tab.
2. The user can add a song to the playlist by dragging it to the top of the playlist or by

selecting a song and using the Add to Playlist menu item or by using a key command.
3. When new songs are added, search for a match. If matches are found, show them

in groups of three and let the user select the correct one. If (or when) there is no
match, show sad Notesy.

4. New songs are added to the end (top) of the playlist ordered by the time they are
added.

Is there any way to get more depth from our microinteraction? What data is worth
bringing forward? Well, it’s certainly nice to know whose song is in the playlist and when
it was added. Playlist duration and the number of songs in it are also useful tidbits. Being
able to send a brief comment to the song adder about that particular song (“Not an‐
other ’80s song!”) would also be a nice microinteraction to attach here as well.

Adding a long loop to encourage users to contribute songs would be a way to encourage
engagement. You could show the last day/time the user contributed, just as a mild re‐
minder, or do some actual nagging via the dropbox label: “Feed me!”

How does the microinteraction end? It really doesn’t as long as the user is logged in to
the service, although we should probably put a cap on the number of songs in the playlist
before a song drops off. Thirty songs seems reasonable.

And so ends this microinteraction. The next example moves us into the world of mi‐
crointeraction devices.

Example 2: Online Shared Playlist | 131

Example 3: Dishwasher Control Panel
For our last example, we’re going to design a low-cost dishwasher control panel—but
with the added challenge of the dishwasher being screenless. Let’s assume this very basic
dishwasher has a speaker for sound and several settings for different washing cycles.
Let’s also assume we know what cycles most users need and want, and that this is a small
number of cycle options—let’s say four.

The goal for dishwashing is to clean dishes, glasses, and silverware. The basic rules are
these:

1. The user loads the dishes and detergent into the dishwasher, then shuts the dish‐
washer door.

2. The user selects the washing cycle and turns on the dishwasher.
3. The dishwasher washes the dishes.

The trigger is so important here that we’ll revisit it in a moment. First, let’s figure out
what we know so we Don’t Start from Zero. We should be able to know time (duration),
the last setting the user selected, and historic data on what the user has selected and
when. Since this is a low-cost dishwasher, other sensors (except perhaps those inside
the device) are probably unlikely. It’s a very dumb appliance. We might not be starting
from zero, but we’re barely at one.

The pieces of data that we can bring forward are whether or not the dishwasher is
running, where it is in the cycle, and how long until it’s done. Most people probably
don’t care where the dishwasher is in the cycle, except to know when the dishes will be
done. Since we have no screen, we’ll have to come up with other feedback to indicate
this. Perhaps we’ll be able to Use the Overlooked.

So let’s figure out the controls. We know we have (at least) two possible controls: turning
the dishwasher on and setting the washing cycle. Turning the dishwasher on could easily
be a button. And each washing cycle could also be a button. This would certainly be
operationally simple: one button for everything, with perhaps an LED on or around the
button to indicate what cycle has been selected and another on or around the on button
to indicate the dishwasher is in operation. This set of controls doesn’t really help us
Bring the Data Forward though. We’d have to add in another kind of display to indicate
when the dishes will be done—perhaps a thin strip of LEDs that are lit at the beginning
and extinguish as the cycles complete.

Another way to do the controls would be as a dial, similar to what washing machines
have. Users turn the dial to the setting they want, then pull the dial out or push in to
start. The dial would move as it goes through cycles until it stops. As an added bonus
we could use the seam between the dial and the case or even inside the dial as an LED
timer. A dial would certainly be more visually simple than a row of buttons.

132 | Chapter 6: Putting It All Together

However, dials are often ugly, and although our dishwasher is low-cost, we don’t want
it to be ugly. Dials also protrude, and on a dishwasher, you might want a flatter surface
so people don’t bump into a dial. And, unlike a washing machine where users may care
about where the machine is in the cycle, the data users really value with a dishwasher is
when the dishwasher will be done, not the cycles. Don’t show feedback for what the user
doesn’t care about. So let’s do a row of buttons—perhaps nice capacitive buttons—one
for each cycle, lined up from longest duration (Pots and Pans) on the left to the shortest
(Quick Rinse) on the right, followed by (although separated from the cycles) a Start
button. On the buttons: a label with the cycle name (or Start). Underneath the cycle
buttons let’s put our thin strip of LEDs.

Let’s now look at our microinteraction as a sentence—both to make sure it makes sense
and to figure out where the nouns and verbs are. The User selects a Cycle Button that
turns on the LED Strip, and then presses the Start button that starts the countdown on
the LED Strip. Examining our microinteraction nouns, each button has two possible
states: selected or not. Objects that look the same should act the same, so let’s make a
soft glow around each when selected, although perhaps a different color for the cycles
than for the start. Each cycle could have its own color, but that’s probably overkill. Using
the principle of Emphasize the Next Action, the Start button should also draw attention
to itself once a cycle button has been pushed because that is the next action a user has
to take in the process.

Since the LED is counting down the time until the dishwasher stops (it’s a Count-
Controlled loop), its color should probably match that of the Start button. Our LED
progress bar could be broken up into segments, each roughly 15 minutes—we probably
don’t know exact time, because a cycle like Auto Wash makes use of internal sensors to
determine how long to wash the dishes. If the water is still dirty, it will run another cycle.

A rule and crucial piece of feedback we’re missing is what happens when the dishwasher
is done. After all, the goal is to have clean dishes, and the user wants to know when that
goal is accomplished. We have a speaker, so one means of feedback could be a Signature
Sound (a “Ta da!”) on finishing. But you can’t count on the user being within hearing
range, and you definitely do not want to repeat the sound until the dishwasher is opened
or reset. (Hey, what about Reset? We’ll get to that in a moment.) So let’s make the Start
button and LED Strip red until the dishwashing cycle ends, then the LED strip turns off
and the Start button glows green (or perhaps blue, so it’s easier read by the color blind)
to indicate the dishes are now clean. So the Start button now has four states: Off, Push
Me, Working, and Clean. Once the dishwasher is opened, it should reset itself to Off.

Oh, and let’s talk about Reset. There may be times our simple sentence doesn’t work as
smoothly as we like. Users might open the dishwasher in the middle of the cycle—and
leave it open. We could be Poka-Yoke and simply lock the dishwasher when it was
running, but that seems overly restrictive. Thus, we need some rules around opening
the dishwasher and a means to reset the dishwasher as well. We could have a separate

Example 3: Dishwasher Control Panel | 133

button for reset, although since it would work differently than the other buttons (be‐
cause it’s not a toggle—you can’t select it; there is no selected state) we’d have to have a
different kind of button, since we don’t want an object that looks the same but acts
differently. Another way is to simply use a Spring-Loaded mode on the Start button.
Pressing and holding the Start button triggers a reset. I like that solution better, if for
no other reason than it removes a button that would be used infrequently. We’re using
fewer nouns to do more verbs. But the reset action isn’t particularly discoverable, so we
probably need a label underneath: Hold to Reset. We might have to add a loop to do an
automatic reset if the door is left open for too long.

The only remaining question is if we can use Don’t Start from Zero. We can collect data
about the last cycle used and when, but it’s unclear if any of this information would
actually be helpful. Yes, we could have the dishwasher display the last cycle the user
requested, and with four options, this might save the user pressing the cycle button 25%
of the time (if all the cycles are used equally, which is unlikely). We could put a long
loop in there to see if we can’t save a button press occasionally, but it might make the
microinteraction feel inconsistent: sometimes a cycle would light up automatically,
sometimes not. Either we have to have it on the last cycle selected, or nothing at all.

Here are our final rules, once everything is put together:

1. The user loads the dishes and detergent into the dishwasher, then shuts the dish‐
washer door.

2. Unless Reset has been used, the last cycle used and accompanied estimated duration
on the Progress Bar should be lit up and the Start button should pulse (Push Me
state) until pressed.

3. The user can change the washing cycle, which changes the duration on the Progress
Bar.

4. The user presses the Start button. The Start button glows red (Working).
5. The dishwasher starts washing the dishes. The LED progress bar counts down.
6. If the dishwasher is opened, pause the cycle. When re-closed, resume. If the door

remains open for more than an hour, reset.
7. When the dishwasher is done, the cycle button and progress indicator turn off. The

Start button glows green.
8. When the dishwasher door is opened, the Start button switches to off.
9. At any time, if the user presses and holds the Start button for three seconds, the

microinteraction resets and dishwashing stops. All buttons go to the off state and
the Progress Bar is cleared.

We never did make use of the speaker we have available for additional feedback. (If this
was a higher-end appliance, we could possibly also make use of haptics, too.) We

134 | Chapter 6: Putting It All Together

certainly have several moments to reinforce actions with sound. Especially if we’re using
capacitive buttons, we could use sound to create button-press clicks. Pressing Start could
certainly be a time to use an earcon for a Signature Sound. Although it seems obvious
to create an earcon for when dishwashing has ended, broadcasting it in the middle of
the night into an empty room could be anxiety-producing. If we were designing a more
expensive dishwasher that could algorithmically check the time (via the network), the
brightness of the room (via light sensor), and maybe even activity in the room (via
motion sensor) it could only broadcast its earcon when it suspects people are awake and
nearby. But alas, not on this model.

And so ends our example microinteractions. Hopefully, this provides a sense of how
the structure and principles outlined in this book can be brought together to create well-
crafted microinteractions.

Prototyping and Documenting Microinteractions
The reason to document and prototype any product is to communicate an idea: this is
how it could (or should) work. With microinteractions, the most difficult idea to convey
is the overall flow: how all the pieces fit together. It’s this overall flow that communicates
how the microinteraction should feel.

There are a number of ways to accomplish this goal:
Prototype on the platform.

If you have technical skills or access to them, prototyping on the platform where
the microinteraction will live is probably the best way to really understand how the
microinteraction will work. However, it is also likely the most time-consuming way
as well.

Make a movie.
Movies are fast ways to convey timing and flow. They can be actual movies with
video (see Figure 6-5) and a post-production tool such as AfterEffects, or they can
be animations, such as those created with HTML5.

Create frame-by-frame storyboards.
You can also show the microinteraction as a set of linked storyboards (see
Figure 6-6). While this doesn’t show timing exactly, it at least demonstrates a sense
of movement and shows the different states in context.

Prototyping and Documenting Microinteractions | 135

Figure 6-5. A still from a prototype movie. The physical pause button on the left
“shoots” a pause indicator out onto the screen. (Courtesy BERG London)

Figure 6-6. An example of a frame-by-frame storyboard

Probably the worst way to document a microinteraction is as static screenshots. Screen‐
shots convey little of the microinteraction’s flow, while often removing states from any
context that would make them understandable. The best documentation tells a story
about what is happening and why.

To learn more about story-centered design documentation, see “Why
good storytelling helps you design great products”, by Braden Kowitz.

If you have to use static screenshots or wireframes, include keyframes into the docu‐
mentation. Keyframes are a concept that originated with animation, in which the senior

136 | Chapter 6: Putting It All Together

http://bit.ly/12te7iP
http://bit.ly/12te7iP

animator would draw the essential frames of an animation (the “keyframes”), leaving
the parts in between for junior animators to fill in. For microinteractions, keyframes
might include the trigger, an essential moment in the rules, and how the microinterac‐
tion ends.

It often makes sense to use multiple methods to convey a microinteraction: a prototype
or movie to show timing, frame-by-frame storyboards for detail and context, and wire‐
frames with keyframes to call out any complicated rules.

Orchestrating Microinteractions
Unless it’s a distinct app or device, microinteractions seldom exist alone. More typically,
they are found around, inside, or at the center of a larger feature, such as with
TaskRabbit’s “Post a Task” microinteraction at the beginning of this chapter.

When designing interactions that are not stand-alone, the first action to take is to figure
out what the relationship is between the microinteraction and the feature. Does it launch
it (logging in), control it (the pause button on a video player), appear inside it (a for‐
matting tool), or end it (the off switch)? Each of these will likely have a very different
trigger, and the next thing to determine is how persistent the microinteraction is. That
pause button might be there the whole time the app is open, but the formatting tool
only appears when the user does something very specific.

What is essential to then determine is if the microinteraction should be a Signature
Moment or not; that is, should it be something memorable. In most cases, the answer
is no, it should not. It should be pleasing, of course, (which is the point of this book),
but rapidity and effortlessness should be the goal, particularly when the microinterac‐
tion stands in the way of the overall goal of the product (such as a login microinteraction
before the user can actually use the rest of the app).

Turning Microinteractions into Features
Microinteractions can also trigger other microinteractions, so that there is a kind of
“daisy chain” effect, where one microinteraction can be the trigger for another, which
is itself a trigger for another. For example, turning on a device or launching an app (a
microinteraction) could be the system trigger to check to see when the user last used
the app. If it’s been a while, it could launch another microinteraction (“Welcome back,
here’s what’s new since you last used [App]”).

This is how you can build features from microinteractions: by orchestrating them so
that where one microinteraction leaves off, another picks up. The details are the design.

The trick when working this way, just as with instruments in an orchestra, is to
figure out which microinteractions inside the feature get prominence. Not all

Orchestrating Microinteractions | 137

http://bit.ly/15odwSq

microinteractions are created equal. Some are important; some should be subtle. Feed‐
back needs to be coordinated to give the right emphasis and to keep the tone consistent.

When designing this way, it can be helpful to have a master list of all the microinterac‐
tions that need to be designed to make the feature work properly. This can often be
generated from a task list or flow or from functional requirements. From there, you can
make a microinteraction map (see Figure 6-7) that shows how the microinteractions all
fit together.

Figure 6-7. A simple example of a microinteractions map for a newsreader.

Pay attention to the handoffs: what microinteraction triggers what microinteraction,
and where one microinteraction leaves off and another begins. This might not—in fact,
in many cases probably should not—be obvious to the user. You don’t want your feature
or your overall product to feel like a disjointed collection of tiny moments, but rather
like an integrated whole.

It is easy to forget the whole when working this way. After crafting each microinterac‐
tion, step back and make sure the piece you just made fits with the other microinter‐
actions. Particularly in sketches or wireframes, it’s easy to make a microinteraction that
unintentionally conflicts with another microinteraction. For example, working on how
a list displays may conflict with how scrolling works. A method to guard against this
happening is to note before starting to design a microinteraction which other micro‐
interactions touch it.

138 | Chapter 6: Putting It All Together

Although most of the time we should be concerned that our microinteractions are too
much, too intrusive, sometimes they’re too dull and need more pizazz.

How to Fix a Dull Microinteraction
We don’t always get to start from a clean slate; sometimes there are existing microin‐
teractions in the product we’re working on that are just ... there. Or sometimes we’ve
focused on major features and are just now getting around to making our microinter‐
actions shine. But where to begin?

Ask yourself a series of questions based on the principles outlined in this book:

• Should this be a Signature Moment? In other words, how memorable should it be?
The more memorable, the richer it can be in terms of controls (including custom
controls) and feedback.

• Am I starting from zero? What do I know about the user or the context that would
improve this microinteraction?

• What is the most important piece of data inside this microinteraction, and can I bring
it forward? What does the user need to know at a glance?

• Would a custom control be appropriate? A custom piece of UI practically guarantees
the microinteraction will become more prominent.

• Am I preventing human errors? If there are any situations where a user can cause
an error, what can you do to prevent that automatically?

• Am I using what is overlooked? Are there pieces of UI chrome or hardware that
could be doing more?

• Can I make an invisible trigger for advanced users? Is there a place to make a hidden
shortcut (via a gesture or a command key) to get deeper into the rules faster?

• Are the text and icons human? Does the microcopy sound like something another
human would say out loud? Can you add a touch of humor?

• Can you add animation to make it less static? Could you have transitions between
screens or states, or an (nonintrusive) indicator of what the next step would be?

• Can you add additional channels of feedback? Sound or haptics?
• Ask what happens when the user returns to the microinteraction the second time.

And the hundredth time. Figure out what the long loop could be.

By answering these questions and applying them to an existing microinteraction, you
can’t help but make it more engaging. And that’s the whole purpose of this book.

Orchestrating Microinteractions | 139

Think Small
We’ve discussed many different microinteractions: the alarm that ruined Mahler’s Ninth
Symphony, the touchscreen trigger that allows millions to start buying MetroCards for
the New York subway, Apple’s bungled changes to the rules of Save As, the addictive
feedback of slot machines, the loop and mode that almost destroyed a robot on Mars,
and how being out of dog food led to a multimillion-dollar business. The small things
matter. They always have, and they always will: now perhaps more than ever.

The problems of the 21st century come in all shapes and sizes. Some are massive, systemic
problems with no easy solution. Some are small, discrete problems, the solutions to
which can offer a brief respite of peace, of humor, or of success. We need people who
can work on both kind of problems, big and small, and especially people who can work
on both at the same time, making sure the large systems we design—our cities, our
governments, our companies, our products—are built for humans. And it’s the tiny
moments, the microinteractions, that can make these large systems humane. In an era
of algorithms and self-driving cars, we need all the humaneness we can get.

Details demonstrate that some care, some thought, some attention has been paid. And
this is ultimately what we all want to feel: that some attention has been paid to us and
our needs. This is the gift we can give through microinteractions.

Think small, and change the world.

140 | Chapter 6: Putting It All Together

1. “What color should the bike shed be?” is from developer lore. See this link for the whole story.

2. See the book Lean UX by Jeff Gothelf (O’Reilly).

APPENDIX A

Testing Microinteractions

There are many who would advise you not to bother testing microinteractions, saying
they are the equivalent of asking “What color should the bike shed be?” That is: unim‐
portant.1 Let’s assume if you’ve made it this far into the book, you feel microinteractions
have value and can be improved by being validated, tested, and refined via user input.

Microinteractions can benefit from using a Lean UX–style methodology of Build >
Measure > Learn: build the microinteraction to test it; measure the design with a variety
of quantitative and qualitative methods; learn from an analysis of those findings. Then
iterate.2

Unlike a true Lean UX process, where you’re testing a “Minimum Viable Product” to
see if the concepts (“hypotheses”) are valuable, with microinteractions we can mostly
assume the overall concept is valuable—or at least necessary to the proper functioning
of the app or device. You are more testing the flow and structure than testing the con‐
cept. Also dissimilar to Lean UX is the fidelity of the prototype. Rather than prototyping
the least you can test (often a paper prototype), with microinteractions, because the
structure of microinteractions is important, you need as high a fidelity prototype as you
can develop in order to test them effectively. The links between trigger to rules to feed‐
back to loop are tight and not easily separated.

Most microinteractions probably aren’t tested alone for desktop software. The effort
and expense of setting up and running a testing session (not to mention the effort of
building a prototype for testing) are typically too great to test a microinteraction alone
for desktop, so they are often lumped together with other items to test. This is not
necessarily true for web applications, where prototyping is faster, A/B testing easier to
try, and analytics more readily available. Mobile applications, too, are getting easier to

141

http://bit.ly/YA0l9B
http://shop.oreilly.com/product/0636920021827.do

prototype. If the microinteraction is the whole mobile app, testing is essential; the same
is true with devices, although the prototyping for them can be more time-consuming
as well.

If statistical relevance is your thing, the bad news is that because microinteractions are
small (and thus most changes to them are likewise small), they require more test par‐
ticipants to be relevant. This can mean hundreds (if not thousands) of participants, and
it definitely means more than the usual 5–8 participants that many testing sessions have.
At the barest minimum, you’ll need to aim for at least 20 participants for slightly better
data. For the best quantitative data, you need hundreds, thousands, even tens of thou‐
sands of users, as is typical for testing on many online sites. If 5% of users open a drop-
down, but only 4.75% successfully make a selection, that’s very difficult to detect even
with thousands of users—and yet it can make a huge difference in sales and adoption.

Unless a microinteraction is terrible or wonderful, determining the statistical effective‐
ness of its nuances is nigh impossible through qualitative testing. Quantitative is the
only real option. For example, adding Google Analytics “Events” to a web microinter‐
action can give a designer insights into the precise weak points of the microinteraction
in a way that could only be done qualitatively by tracking many users over many weeks.
That being said, if statistical relevance isn’t important to you, even testing with few
participants can be illuminating—as always.

As with all product testing, you want to watch out for so-called “scenario errors” that
are caused by the test itself. Since testing is an artificial, constructed situation, the setup
and guided path the tester takes the user down can cause users to make errors or reveal
problems that normal use would not. As just one example, pausing to ask or answer a
question can cause crucial feedback to be missed.

What to Look for During Testing
The four most important things to validate with testing are these:

• That you truly understand the goal of the microinteraction, and not just a step in the
process. The point of setting a status message isn’t to type, it’s to communicate.
Knowing this allows you to fix any emphasis problems, either in the microinter‐
action itself or in the overall product—how important is this microinteraction to
the overall user experience?

• That you understand what data is important. This lets you know what data to bring
forward and what behavioral-contextual information is valuable to the microin‐
teraction and could be used over time.

• That any microcopy is necessary, and if so, that it’s clear and understood. This means
both instructional copy and, especially, labels.

142 | Appendix A: Testing Microinteractions

• Timing and flow. Does the microinteraction take too long to perform? Are the loops
too long? Too short? Note that long loops that happen over extended periods of
time are difficult to test, unless you are doing a longitudinal study, which most
developers do not.

The first two are often gleaned from conversation and interviews, the third by obser‐
vation. But there are many more things to be learned by observation as well, such as:

• Are there too many clicks/taps/control presses? In other words, is what the user’s
trying to do requiring too much effort? This is not necessarily saying count clicks,
although that is one measure of effort.

• Any confusion as to why. If a user ever says (aloud or via frowning/puzzled looks)
“Why am I doing this?” then something is wrong. Usually a label is misnamed, or
instructional copy is missing or too vague.

• What just happened? This is an indicator of unclear feedback, possibly paired with
an unclear label.

• Did anything just happen? There is either missing feedback or else the feedback is
too subtle.

• I can’t find what I’m looking for. There is a gap between what the user expects to
find and what is there. This is probably a labeling problem, but it could also be that
a crucial piece of the microinteraction is missing.

• I don’t know where I am. This can be a problem with transitions or modes.
• You just did what to my data/content/input? This is another case where expectations

didn’t match the outcome. Either adjust the label or copy, or else this is a deeper,
overall problem with the microinteraction in that it might not match what users
are trying to accomplish, or else users are uncomfortable with what it does
accomplish.

• If I click/push/tap this, what happens? This is a case of an unclear label or poor
instructional copy.

• I didn’t see that button. This is a problem with visual hierarchy. The path through
the microinteraction isn’t visually clear.

• I didn’t know I could do that. An action is too hidden. This often happens with any
multitouch gestures or an invisible trigger such as a key command.

• What do I do now? This is the same problem as above: the path isn’t clear, especially
the next step.

• What am I seeing there? This is the result of unclear feedback, usually on a process.
Add or clarify with a label, perhaps on a tooltip. This could also mean the data you’re
showing isn’t important.

What to Look for During Testing | 143

3. See “8 Core Concepts for Quantifying The User Experience,” by Jeff Sauro, Measuring Usability, December
11, 2012.

4. For more on slips and mistakes, see Norman, Donald, “Design Rules Based on Analyses of Human Error,”
Communications of the ACM, 26, 1983, and Human Error by James Reason, 1990.

These are all examples of qualitative data, but quantitative can be useful as well.

Using Quantitative Data
There is an adage (coined by Lord Kelvin) that what can’t be measured, can’t be im‐
proved, and there is some truth to it. Having a baseline—a starting point—and/or
something to compare changes to is immeasurably helpful. These are some data points
you can test:
Completion rate

What percent of users were able to complete the microinteraction?

Overall duration of the microinteraction
How long did it take to complete the microinteraction? (It’s often the case that the
slowest users can take five to ten times longer to complete tasks than the fastest, so
use a geometric mean instead of the median to lessen the effect of this type of
extreme value.3

Duration of specific steps

Number of steps

Number of clicks/taps/selects
This is not always instructive but can let you know if something is inefficient.

Number of system errors
Are there places where the microinteraction fails through no fault of the user?
(These are often found when testing on live microinteractions with actual data/
connectivity.)

Number of human errors
These fall into two categories: slips and mistakes. Slips are when the user under‐
stands the goal of the action but does something improperly, such as making a typo
when entering an email address. A mistake is when a user does not understand the
rules and tries something the rules won’t allow, such as clicking a header that isn’t
interactive.4

You can also attempt to quantify qualitative data such as by having users rate charac‐
teristics like:

144 | Appendix A: Testing Microinteractions

http://measuringusability.com

5. See, for example, “So Many Ads, So Few Clicks,” BusinessWeek, November 11, 2007.

• Satisfaction
• Difficulty
• Confidence
• Usefulness

on a rated scale (e.g., 1–7, 1 being low, 7 high). However, especially with a small sample
size, this can be far from definitive.

This assumes, however, that you will be revising the microinteraction and testing it again
to see if there have been improvements, or that you have an alternate version of the same
microinteraction to compare with (A/B testing). Again: beware of sample size. A small
number of users could make something like an error or a preference seem more (or
less) significant than it is.

And even if there is statistical significance, it doesn’t mean there is practical significance.
The most important lesson about using data to help design is this: it can’t design for
you. Data requires a human being to interpret it, and then place it into context. Data
will seldom tell you why something is happening.

The data needs to be made meaningful, which sometimes means ignoring it. Why would
you ever ignore data? Here’s the simplest example: most online advertising isn’t clicked.
If you get a 0.5% clickthrough rate, you’re often doing very well.5 So should we remove
all online ads, since they are so seldom used? 99.9% of users think so (the other 0.1% of
people work for advertising agencies). But getting rid of advertising would essentially
mean getting rid of the site itself, as there would be no money to operate it. Would you
like Google to go away? You can’t listen to the data entirely because the data doesn’t
understand the overall context: the business and organizational environment and the
user base that are more than just numbers on a spreadsheet. Data should be an input to
your decision making, not the decider alone.

A Process for Testing Microinteractions
The following is one possible process for testing microinteractions that could be fol‐
lowed. It is certainly not the only process, but it could be a starting point:

1. Before showing participants any prototypes, ask them how they expect the micro‐
interaction to work. Ask if they’ve ever used anything similar in the past. Ask what
the one thing is that they want to accomplish by using this microinteraction. Check
if there is anything they would want to know before using the microinteraction—

A Process for Testing Microinteractions | 145

if there is one piece of information that would make using the microinteraction
unnecessary.

2. Have them use the microinteraction unaided. Any quantitative data should be col‐
lected at this point, and/or immediately after.

3. Go through the microinteraction with the user step by step, having the participant
talk out loud about any impressions and decisions. See if participants can explain
how the microinteraction works (the rules). Note any discrepancies.

4. Ask if they came back tomorrow, what would they want the microinteraction to
remember about them.

5. End by asking what one thing should be fixed.

With this process, you should be able to uncover and diagnose any issues with the
microinteraction, as well as validate any of the overall goals and needs. I recommend
doing this process at least twice, with two sets of participants, revising the microinter‐
action based on user feedback and findings analysis between sets.

146 | Appendix A: Testing Microinteractions

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
activated state, of screen object, 62
active state, of manual trigger, 37
Adler, Robert (inventor)

TV remote control, 12
affordance (see visual affordance)
alarm app example, 126–129
algorithms for rules, 78–81
animation, for feedback, 98–101
Antenna Design, MetroCard Vending Machine,

24
audio feedback, 101–104
auditory stimulus, recognition of, 30

B
Boolean Logic, 78
buttons, 28

C
checkboxes, 29
closed loops, 115
code examples, permission to use, xi
collection-controlled loops, 115
command keys, as invisible triggers, 32
complexity, Tesler’s Law regarding, 67
condition-controlled loops, 114
contact information for this bok, xii

controls, 28–36, 72–74
(see also screen objects)

conventions used in this book, xi
Convertbot app example, 5
count-controlled loops, 114

D
data collection

context provided by, 65, 66
contraints regarding, 63
privacy issues regarding, 65, 96

default state
of manual trigger, 37
of screen object, 62

default values for user options, 70–71
delivery method, for feedback, 90–92

audio, 101–104
haptics, 104–105
visual, 96–101

diagramming rules, 57–59
dials, 28
disclosure, progressive, 119
discoverability of manual triggers, 29–31
dishwasher control panel example, 132–135

E
earcons, as feedback, 103
edge cases, 71

147

errors
feedback regarding, 88, 94, 101
initiating system triggers, 44
preventing, 74
quantitative data regarding, 144

F
features

compared to microinteractions, 4–5
microinteractions becoming, 137–139
relationship to microinteractions, 137

feedback, 14, 17–18
alarm app example of, 128
amount of, 86–88, 92
dishwasher control panel example of, 133,

134
for errors, 88, 94, 101
method of delivery, 90–92

audio, 101–104
haptics, 104–105
visual, 96–101

personality conveyed by, 18, 93–96
relevance to situation, 92
rules communicated by, 54, 86–86
rules for, 54, 106–107
shared playlist example of, 130
Siri example of, 94
situations requiring, 88–90
slot machine example of, 85–86

finger motions (see gestures)
fonts used in this book, xi
For loops, 114
form fields, 29

G
geons, 31
gestures, 28

as invisible triggers, 33
tap state, of manual trigger, 37

Goldberg, Adele (developer)
scrollbars, 10

Gypsy application example, 9

H
haptic feedback, 104–105
hover state, of manual trigger, 37

I
in process state, of manual trigger, 37
incoming data, initiating system triggers, 44
infinite loops, 115
Ingalls, Dan (developer)

scrollbars, 10
internal data, initiating system triggers, 44
invisible manual triggers, 32–36, 74
invitation state, of screen object, 62
iPhone mobile app example, 126–129

K
Kay, Alan (developer)

scrollbars, 10
keyboard shortcuts, as redundant triggers, 74
Koomey’s Law, 12
Kryder’s Law, 12

L
labels, 39–42, 77
Law of the Conservation of Complexity, 67
Lean UX process, for testing, 141
location, geographic, initiating system triggers,

44
long loops, 117–120
The Long Wow, 118
loops, 14, 18, 114–120

alarm app example of, 128
dishwasher control panel example of, 134
length of, 115
long loops, 117–120
Mars Spirit rover example of, 110
rules for, 54
shared playlist example of, 131
types of, 114

M
manual triggers, 26–42

components of, 28–42
consistent action taken by, 26
controls for, 28–36
corresponding to system triggers, 45
discoverability of, 29–31
information shown by, 27–28
invisible, 32–36, 74
labels for, 39–42, 77
states of, 37–38

148 | Index

visibility of, 26, 26
visual affordance of, 29, 31

Mars Spirit rover example, 109–111
meta rules (see loops; rules)
MetroCard example, 23–25
microcopy, 76–78

(see also labels)
microinteractions, 2–3

becoming features, 137–139
compared to features, 4–5
feedback for (see feedback)
history of, 9–12
importance of, 1–4, 6–8
improving, 139–139
including in product design, 19–21
loops for (see loops)
as minimum viable product, 20
modes for (see modes)
relationship to features, 137
relationship to other microinteractions, 137
rules for (see rules)
scope of, 5, 19
as Signature Moments, 19, 137
structure of, 14–19
testing, 141–146

process for, 145–146
qualitative data for, 142–144
quantitative data for, 144–145

triggers for (see triggers)
minimum viable product, 20
mobile app example, 126–129
modes, 14, 18, 111–114

alarm app example of, 128
avoiding, reasons for, 9, 112
dishwasher control panel example of, 134
Mars Spirit rover example of, 110
one-off modes, 113
rules for, 54
separate screen for, 112
spring-loaded modes, 113
when to use, 111

Moeslinger, Sigi (designer)
MetroCard Vending Machine, 24

Moore’s Law, 12
mouse movements, as invisible triggers, 32
music service example, 129–131
mute button example, 1–4, 17

N
nouns, for rules, 59–60

O
objects (see screen objects)
on click state, of manual trigger, 37
one-off modes, 113
online shared playlist example, 129–131
open loops, 115
options (see user options)

P
personality, conveyed by feedback, 18, 93–96
playlist example, 129–131
Poka-Yoke Principle, 74
power consumption, Koomey’s Law regarding,

12
privacy issues, with data collection, 65, 96
processor speed, Moore’s Law regarding, 12
product design, microinteractions included in,

19–21
progressive disclosure, 119
progressive reduction, 119

R
radio buttons, 29
reduction, progressive, 119
remote control example, 12
rollover state, of manual trigger, 37
Roomba example, 7
rules, 14, 16–17, 52–55

alarm app example of, 126
algorithms for, 78–81
complexity of, 67–69
constraints on, 62–63
context for, 64–66
controls implementing, 72–74
diagramming, 57–59
dishwasher control panel example of, 132,

134
error prevention by, 74
feedback communicating, 54, 86–86
for feedback, 106–107
goal of, determining, 52
limited user options for, 69–71
microcopy for, 76–78
mute button example of, 2

Index | 149

nouns used in, 59–60
Save As example of, 49–52
screen objects affected by, 61–62
shared playlist example of, 129, 131
slot machine example of, 84
smart defaults for, 70–71
for system triggers, 46–47
verbs used in, 59–60
writing, 56–60

S
Save As example, 49–52
scope of microinteractions, 5, 19
screen objects

controls, 28–36, 72–74
nouns for, 59–60
states of, 61–62

scroll wheels, 29
scrollbars example, 10
setting state, of manual trigger, 38
settings

mode for, 111, 114, 128
trigger for, 27, 45

shared playlist example, 129–131
Shingo, Shigeo (engineer)

Poka-Yoke Principle, 74
Signature Moments, 19, 137
Siri example, 94
sliders, 29
slot machine example, 83–86
smart defaults, for rules, 70–71
social interactions, initiating system triggers, 44
speech, as feedback, 104
Spirit rover example, 109–111
spring-loaded modes, 113
states

of manual triggers, 37–38
of screen objects, 61–62

storage space, Kryder’s Law regarding, 12
system triggers, 43–47

conditions initiating, 44, 46
corresponding manual controls for, 45
rules for, 46–47
user’s ability to adjust, 45

T
tactile feedback (see haptic feedback)
tap state, of manual trigger, 37

taps (see gestures)
TaskRabbit example, 123–126
Tesler, Larry (developer)

Gypsy application, 9
Law of the Conservation of Complexity, 67

testing microinteractions, 141–146
process for, 145–146
qualitative data for, 142–144
quantitative data for, 144–145

text fields, 29
textual feedback, 101
toaster example, 5
toggle state, of manual trigger, 37
toggle switches, 28
touchscreen gestures (see gestures)
triggers, 14–15

alarm app example of, 126
dishwasher control panel example of, 132
manual triggers, 26–42

components of, 28–42
consistent action taken by, 26
controls for, 28–36
corresponding to system triggers, 45
discoverability of, 29–31
information shown by, 27–28
invisible, 32–36, 74
labels for, 39–42, 77
states of, 37–38
visibility of, 26, 26
visual affordance of, 29, 31

MetroCard example of, 23–25
mute button example of, 17
personality conveyed by, 18
shared playlist example of, 130
system triggers, 43–47

conditions initiating, 44, 46
corresponding manual controls for, 45
rules for, 46–47
user’s ability to adjust, 45

TV remote control example, 12
Twitter example, 8

U
Udagawa, Masamichi (designer)

MetroCard Vending Machine, 24
updated state, of screen object, 62
user options

controls for, 28–36, 72–74
limiting, 69–71

150 | Index

predicting, 69
settings

mode for, 111, 114, 128
trigger for, 27, 45

smart defaults for, 70–71

V
verbs, for rules, 59–60
vibrations (see haptic feedback)

visibility, of manual triggers, 26, 26
visual affordance, of manual triggers, 29, 31
visual feedback, 96–101
visual stimulus, recognition of, 30–31
voice input, as invisible trigger, 33

W
website for this book, xii
While loops, 114

Index | 151

About the Author
Dan Saffer is a director of interaction design at Smart Design. He is the author of
Designing for Interaction: Creating Innovative Applications and Devices (New Riders),
Designing Gestural Interfaces (O’Reilly), and the Amazon ebook Designing Devices.
Since 1995, he has designed appliances, devices, software, websites, robots, and services
that are used by millions of people every day.

Colophon
There are two species of sparrow on the cover of Microinteractions: the English sparrow
(Passer domesticus) and the American tree sparrow (Spizella arborea). Although these
two sparrows look alike, they come from different genera.

The English sparrow, or House sparrow, is more closely related to the Eurasian tree
sparrow (Passer montanus) than it is to the American tree sparrow. The English sparrow
has a round head, a plump body, short legs, and averages 16 cm in length. While it is
native to Europe, Asia, and North Africa, it has the widest geographical spread of any
non-domestic bird, in large part due to its introduction to North America in 1851.

Far from being an endangered species, the English sparrow is considered a pest in many
places. It is commonly found in settled areas and will flock to bird feeders, displacing
rarer birds that the feeders are intended to attract. English sparrows mate in monoga‐
mous pairs, although not every sparrow chooses a mate upon maturity. Instead, some
sparrows serve as helpers for a breeding pair, increasing the likelihood of there being a
replacement mate if one of the pair dies. English sparrows make their nests in and
around human dwellings, and will sometimes evict other birds in order to occupy their
nests.

The American tree sparrow resembles the English sparrow, but is more closely related
to other American sparrows, such as the Chipping sparrow and Brewer’s sparrow. It is
about the same size as the English sparrow and has a rust-colored cap and eyeline, as
opposed to the Eurasian tree sparrow, which has a black throat and eyeline. The Amer‐
ican tree sparrow’s layers of fat protect it from its frigid tundra environment, where it
spends the summer months in northern Canada and Alaska. In the winter, it migrates
to southern Canada and the northern United States.

Ironically, the American tree sparrow does not generally inhabit trees, which are un‐
common on the tundra, preferring shrubs and even open grassland during migrations.
The American tree sparrow will shake seeds loose from a plant by flapping its wings, as
well as pecking at the ground to find insects and berries. It is a social bird, congregating
in small flocks, but makes less noise than the vociferous English sparrow.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Ga‐
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://shop.oreilly.com/product/9780596518394.do
http://amzn.to/11nqV7K

	Copyright
	Table of Contents
	Foreword
	Preface
	What Is This Book About?
	Who Should Read This Book
	How This Book Is Organized
	Why Write a Book About Microinteractions?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Designing Microinteractions
	Microinteractions Are Not Features ... But Still Matter
	Microinteractions Can Be Big

	The Secret History of Microinteractions
	The Structure of Microinteractions
	Microinteractions as a Philosophy
	Summary

	Chapter 2. Triggers
	Manual Triggers
	Bring the Data Forward
	The Components of a Trigger

	System Triggers
	System Trigger Rules

	Summary

	Chapter 3. Rules
	Designing Rules
	Generating Rules
	Verbs and Nouns
	Screens and States
	Constraints
	Don’t Start from Zero
	Absorb Complexity

	Limited Options and Smart Defaults
	Controls and User Input
	Preventing Errors

	Microcopy
	Algorithms
	Summary

	Chapter 4. Feedback
	Feedback Illuminates the Rules
	Feedback Is for Humans
	Less Is More

	Feedback as a Personality-Delivery Mechanism
	Feedback Methods
	Visual
	Audio
	Haptics

	Feedback Rules
	Summary

	Chapter 5. Loops and Modes
	Modes
	Spring-Loaded and One-off Modes

	Loops
	Styles of Loops
	Long Loops

	Summary

	Chapter 6. Putting It All Together
	Example 1: Mobile App
	Example 2: Online Shared Playlist
	Example 3: Dishwasher Control Panel
	Prototyping and Documenting Microinteractions
	Orchestrating Microinteractions
	Turning Microinteractions into Features
	How to Fix a Dull Microinteraction

	Think Small

	Appendix A. Testing Microinteractions
	What to Look for During Testing
	Using Quantitative Data
	A Process for Testing Microinteractions

	Index
	About the Author

