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Foreword

SQL is a very interesting programming language. When meeting with customers, I am 
constantly reminded of the language’s dual nature with regard to complexity. Many 

people getting started with SQL see it as a simple programming language that supports 
four basic verbs: SELECT, INSERT, UPDATE, and DELETE. Some people never get much 
further than this. Maybe a few more figure out how to filter rows in a query using the 
WHERE clause and perhaps do the occasional JOIN. However, those who spend more 
time with SQL and learn about its declarative, relational, and set-based model will find a 
rich programming language that keeps you coming back for more. 

One of the most fundamental additions to the SQL language, back in Microsoft 
SQL Server 2005, was the introduction of window functions with syntactic constructs 
such as the OVER clause and a new set of functions known as ranking functions 
(ROW_ NUMBER, RANK, and so on). This addition enabled solving common problems 
in an easier, more intuitive, and often better-performing way than what was previously 
possible. A few years later, the single most-requested language feature was for Micro-
soft to extend its support for window functions—with a set of new functions and, more 
importantly, with the concept of frames. As a result of these requests from a wide range 
of customers, Microsoft decided to continue investing in window functions extensions 
in SQL Server 2012.  

Today, when I talk to customers about new language functionality in SQL Server 
2012, I always recommend they spend extra time with the new window functions and 
really understand the new dimension that this brings to the SQL language. I am happy 
that you are reading this book and thus taking what I am sure is precious time to learn 
how to use this rich functionality. I am confident that the combination of using SQL 
Server 2012 and reading this book will help you become an even more efficient SQL 
Server user, and help you solve both simple as well as complex problems significantly 
faster than before.

Enjoy!

Tobias Ternström 
Lead Program Ma nager,  

Microsoft SQL Server Engine team
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Introduction

Window functions, to me, are the most profound feature supported by both stan-
dard SQL and Microsoft SQL Server’s dialect—T-SQL. They allow you to perform 

calculations against sets of rows in a flexible, clear, and efficient manner. The design of 
window functions is ingenious, overcoming a number of shortcomings of the traditional 
alternatives. The range of problems that window functions help solve is so wide that it 
is well worth investing your time in learning those. SQL Server 2005 was the version in 
which window functions were introduced initially. SQL Server 2012 then added more 
complete support by enhancing some of the existing functions, as well as adding new 
ones. This book covers both the SQL Server–specific support for window functions, as 
well as standard SQL’s support, including elements that were not yet implemented in 
SQL Server.

Who Should Read This Book

This book is intended for SQL Server developers and database administrators (DBAs); 
those who need to write queries and develop code using T-SQL. The book assumes that 
you already have at least half a year to a year of experience writing and tuning T-SQL 
queries.

Organization of This Book

The book covers both the logical aspects of window functions as well as their optimi-
zation and practical usage aspects. The logical aspects are covered in the first three 
chapters. The first chapter explains SQL windowing concepts, the second provides a 
breakdown of window functions, and the third covers ordered set functions. The fourth 
chapter covers optimization of window functions in SQL Server 2012. Finally, the fifth 
and last chapter covers practical uses of window functions.

Chapter 1, “SQL Windowing,” covers standard SQL windowing concepts. It describes 
the design of window functions, the types of window functions, and the elements 
 involved in a window specification, such as partitioning, ordering, and framing.

Chapter 2, “A Detailed Look at Window Functions,” gets into the details and specif-
ics of the different window functions. It describes window aggregate functions, window 
ranking functions, window offset functions, and window distribution functions.
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Chapter 3, “Ordered Set Functions,” describes the support standard SQL has for or-
dered set functions, including hypothetical set functions, inverse distribution functions, 
and others. The chapter also explains how to achieve similar calculations in SQL Server.

Chapter 4, “Optimization of Window Functions,” covers in detail the optimization of 
window functions in SQL Server 2012. It provides indexing guidelines for optimal per-
formance, explains how parallelism is handled and how to improve it, discusses the new 
Window Spool iterator, and more.

Chapter 5, “T-SQL Solutions Using Window Functions,” covers practical uses of win-
dow functions to address common business tasks. 

System Requirements

Window functions are part of the core database engine of Microsoft SQL Server 
2012; hence, all editions of the product support this feature. To run the code samples 
in this book, you need access to an instance of the SQL Server 2012 database en-
gine (any edition), and you need to have the sample database installed. If you don’t 
have access to an existing instance, Microsoft provides trial versions. You can find 
details at: http://www.microsoft.com/sql. For hardware and software requirements, 
please consult SQL Server Books Online at: http://msdn.microsoft.com/en-us/library/
ms143506(v=sql.110).aspx.

Code Samples

This book features a companion website that makes available to you all the code used 
in the book, sample data, the errata, additional resources, and more, at the following 
page:

http://www.insidetsql.com

In this website, go to the Books section and select the main page for the book in 
question. The book’s page has a link to download a compressed file with the book’s 
source code, including a file called TSQL2012.sql that creates and populates the book’s 
sample database, TSQL2012.

http://www.microsoft.com/sql
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx
http://www.insidetsql.com
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see this synergy yielding such meaningful and important results.

Finally, to my students: teaching SQL is what drives me. It’s my passion. Thanks for 
allowing me to fulfill my calling, and for all the great questions that make me seek more 
knowledge.

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our 
Microsoft Press site at oreilly.com: 

http://go.microsoft.com/FWLink/?Linkid=246707

If you find an error that is not already listed, you can report it to us through the 
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the 
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset. Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

http://go.microsoft.com/FWLink/?Linkid=246707
mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
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The survey is short, and we read every one of your comments and ideas. Thanks in 
advance for your input!

If you have comments, questions, or ideas regarding the book, or questions that are 
not answered by visiting the sites above, please send them to me via e-mail at:

itzik@SolidQ.com

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://twitter.com/MicrosoftPress
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SQL Windowing

Window functions are functions applied to sets of rows defined by a clause called OVER. They are 
used mainly for analytical purposes allowing you to calculate running totals, calculate moving 

averages, identify gaps and islands in your data, and perform many other computations. These func-
tions are based on an amazingly profound concept in standard SQL (which is both an ISO and ANSI 
standard)—the concept of windowing. The idea behind this concept is to allow you to apply various 
calculations to a set, or window, of rows and return a single value. Window functions can help to solve 
a wide variety of querying tasks by helping you express set calculations more easily, intuitively, and 
efficiently than ever before.

There are two major milestones in Microsoft SQL Server support for the standard window func-
tions: SQL Server 2005 introduced partial support for the standard functionality, and SQL Server 2012 
added more. There’s still some standard functionality missing, but with the enhancements added in 
SQL Server 2012, the support is quite extensive. In this book, I cover both the functionality SQL Server 
implements as well as standard functionality that is still missing. Whenever I describe a feature for the 
first time in the book, I also mention whether it is supported in SQL Server, and if it is, in which version 
of the product it was added.

From the time SQL Server 2005 first introduced support for window functions, I found myself using 
those functions more and more to improve my solutions. I keep replacing older solutions that rely on 
more classic, traditional language constructs with the newer window functions. And the results I’m 
getting are usually simpler and more efficient. This happens to such an extent that the majority of my 
querying solutions nowadays make use of window functions. Also, standard SQL and relational data-
base management systems (RDBMSs) in general are moving toward analytical solutions, and window 
functions are an important part of this trend. Therefore, I feel that window functions are the future in 
terms of SQL querying solutions, and that the time you take to learn them is time well spent.

This book provides extensive coverage of window functions, their optimization, and querying solu-
tions implementing them. This chapter starts by explaining the concept. It provides the background 
of window functions, a glimpse of solutions using them, coverage of the elements involved in window 
specifications, an account of the query elements supporting window functions, and a description of 
the standard’s solution for reusing window definitions.
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Background of Window Functions

Before you learn the specifics of window functions, it can be helpful to understand the context and 
background of those functions. This section provides such background. It explains the difference 
between set-based and cursor/iterative approaches to addressing querying tasks and how window 
functions bridge the gap between the two. Finally, this section explains the drawbacks of alternatives 
to window functions and why window functions are often a better choice than the alternatives. Note 
that although window functions can solve many problems very efficiently, there are cases where there 
are better alternatives. Chapter 4, “Optimization of Window Functions,” goes into details about opti-
mizing window functions, explaining when you get optimal treatment of the computations and when 
treatment is nonoptimal.

Window Functions Described
A window function is a function applied to a set of rows. A window is the term standard SQL uses to 
describe the context for the function to operate in. SQL uses a clause called OVER in which you pro-
vide the window specification. Consider the following query as an example:

See Also See the book’s Introduction for information about the sample database TSQL2012 and companion 
content.

USE TSQL2012; 
 
SELECT orderid, orderdate, val, 
  RANK() OVER(ORDER BY val DESC) AS rnk 
FROM Sales.OrderValues 
ORDER BY rnk;

Here’s abbreviated output for this query:

orderid  orderdate               val       rnk 
-------- ----------------------- --------- --- 
10865    2008-02-02 00:00:00.000 16387.50  1 
10981    2008-03-27 00:00:00.000 15810.00  2 
11030    2008-04-17 00:00:00.000 12615.05  3 
10889    2008-02-16 00:00:00.000 11380.00  4 
10417    2007-01-16 00:00:00.000 11188.40  5 
10817    2008-01-06 00:00:00.000 10952.85  6 
10897    2008-02-19 00:00:00.000 10835.24  7 
10479    2007-03-19 00:00:00.000 10495.60  8 
10540    2007-05-19 00:00:00.000 10191.70  9 
10691    2007-10-03 00:00:00.000 10164.80  10 
...

The OVER clause is where you provide the window specification that defines the exact set of rows 
that the current row relates to, the ordering specification, if relevant, and other elements. Absent any 
elements that restrict the set of rows in the window—as is the case in this example—the set of rows in 
the window is the final result set of the query.



 Background of Window Functions  3

Note More precisely, the window is the set of rows, or relation, given as input to the logical 
query processing phase where the window function appears. But this explanation probably 
doesn’t make much sense yet. So to keep things simple, for now I’ll just refer to the final 
result set of the query, and I’ll provide the more precise explanation later.

For ranking purposes, ordering is naturally required. In this example, it is based on the column val 
ranked in descending order.

The function used in this example is RANK. This function calculates the rank of the current row 
with respect to a specific set of rows and a sort order. When using descending order in the ordering 
specification—as in this case—the rank of a given row is computed as one more than the number 
of rows in the relevant set that have a greater ordering value than the current row. So pick a row in 
the output of the sample query—say, the one that got rank 5. This rank was computed as 5 because 
based on the indicated ordering (by val descending), there are 4 rows in the final result set of the 
query that have a greater value in the val attribute than the current value (11188.40), and the rank is 
that number plus 1.

What’s most important to note is that conceptually the OVER clause defines a window for the 
function with respect to the current row. And this is true for all rows in the result set of the query. In 
other words, with respect to each row, the OVER clause defines a window independent of the other 
rows. This idea is really profound and takes some getting used to. Once you get this, you get closer 
to a true understanding of the windowing concept, its magnitude, and its depth. If this doesn’t mean 
much to you yet, don’t worry about it for now—I wanted to throw it out there to plant the seed.

The first time standard SQL introduced support for window functions was in an extension docu-
ment to SQL:1999 that covered, what they called “OLAP functions” back then. Since then, the revisions 
to the standard continued to enhance support for window functions. So far the revisions have been 
SQL:2003, SQL:2008, and SQL:2011. The latest SQL standard has very rich and extensive coverage of 
window functions, showing the standard committee’s belief in the concept, and the trend seems to be 
to keep enhancing the standard’s support with more window functions and more functionality.

Note You can purchase the standards documents from ISO or ANSI. For example, from 
the following URL, you can purchase from ANSI the foundation document of the SQL:2011 
standard, which covers the language constructs: http://webstore.ansi.org/RecordDetail.aspx? 
sku=ISO%2fIEC+9075-2%3a2011.

Standard SQL supports several types of window functions: aggregate, ranking, distribution, and 
offset. But remember that windowing is a concept; therefore, we might see new types emerging in 
future revisions of the standard.

Aggregate window functions are the all-familiar aggregate functions you already know—like SUM, 
COUNT, MIN, MAX, and others—though traditionally, you’re probably used to using them in the 
context of grouped queries. An aggregate function needs to operate on a set, be it a set defined by 

http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+9075-2%3a2011.
http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+9075-2%3a2011.
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a grouped query or a window specification. SQL Server 2005 introduced partial support for window 
aggregate functions, and SQL Server 2012 added more functionality.

Ranking functions are RANK, DENSE_RANK, ROW_NUMBER, and NTILE. The standard actually puts 
the first two and the last two in different categories, and I’ll explain why later. I prefer to put all four 
functions in the same category for simplicity, just like the official SQL Server documentation does. SQL 
Server 2005 introduced these four ranking functions, with already complete functionality.

Distribution functions are PERCENT_RANK, CUME_DIST, PERCENTILE_CONT, and PERCENTILE_DISC. 
SQL Server 2012 introduces support for these four functions.

Offset functions are LAG, LEAD, FIRST_VALUE, LAST_VALUE, and NTH_VALUE. SQL Server 2012 
introduces support for the first four. There’s no support for the NTH_VALUE function yet in SQL Server 
as of SQL Server 2012.

Chapter 2, “A Detailed Look at Window Functions,” provides the meaning, the purpose, and details 
about the different functions.

With every new idea, device, and tool—even if the tool is better and simpler to use and imple-
ment than what you’re used to—typically, there’s a barrier. New stuff often seems hard. So if win-
dow functions are new to you and you’re looking for motivation to justify making the investment in 
learning about them and making the leap to using them, here are a few things I can mention from my 
experience:

■■ Window functions help address a wide variety of querying tasks. I can’t emphasize this 
enough. As mentioned, nowadays I use window functions in most of my query solutions. After 
you’ve had a chance to learn about the concept and the optimization of the functions, the last 
chapter in the book (Chapter 5) shows some practical applications of window functions. But 
just to give you a sense of how they are used, querying tasks that can be solved with window 
functions include:

• Paging

• De-duplicating data

• Returning top n rows per group

• Computing running totals

• Performing operations on intervals such as packing intervals, and calculating the maximum 
number of concurrent sessions

• Identifying gaps and islands

• Computing percentiles

• Computing the mode of the distribution

• Sorting hierarchies

• Pivoting

• Computing recency
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■■ I’ve been writing SQL queries for close to two decades and have been using window functions 
extensively for several years now. I can say that even though it took a bit of getting used to 
the concept of windowing, today I find window functions both simpler and more intuitive in 
many cases than alternative methods.

■■ Window functions lend themselves to good optimization. You’ll see exactly why this is so in 
later chapters.

Declarative Language and Optimization 
You might wonder why in a declarative language such as SQL, where you logically just declare 
your request as opposed to describing how to achieve it, two different forms of the same 
request—say, one with window functions and the other without—can get different perfor-
mance? Why is it that an implementation of SQL such as SQL Server, with its T-SQL dialect, 
doesn’t always figure out that the two forms really represent the same thing, and hence pro-
duce the same query execution plan for both?

There are several reasons for this. For one, SQL Server’s optimizer is not perfect. I don’t want 
to sound unappreciative—SQL Server’s optimizer is truly a marvel when you think of what this 
software component can achieve. But it’s a fact that it doesn’t have all possible optimization 
rules encoded within it. Two, the optimizer has to limit the amount of time spent on optimiza-
tion; otherwise, it could spend a much longer time optimizing a query than the amount of time 
the optimization shaves off from the run time of the query. The situation could be as absurd 
as producing a plan in a matter of several dozen milliseconds without going over all possible 
plans and getting a run time of only seconds, but producing all possible plans in hopes of shav-
ing off a couple of seconds might take a year or even several. You can see that, for practical 
reasons, the optimizer needs to limit the time spent on optimization. Based on factors like the 
sizes of the tables involved in the query, SQL Server calculates two values: one is a cost consid-
ered good enough for the query, and the other is the maximum amount of time to spend on 
optimization before stopping. If either threshold is reached, optimization stops, and SQL Server 
uses the best plan found at that point.

The design of window functions, which we will get to later, often lends itself to better opti-
mization than alternative methods of achieving the same thing.

What’s important to understand from all this is that you need to make a conscious effort to make 
the switch to using SQL windowing because it’s a new idea, and as such it takes some getting used to. 
But once the switch is made, SQL windowing is simple and intuitive to use; think of any gadget you 
can’t live without today and how it seemed like a difficult thing to learn at first.
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Set-Based vs. Iterative/Cursor Programming
People often characterize T-SQL solutions to querying tasks as either set-based or iterative/cursor-
based solutions. The general consensus among T-SQL developers is to try and stick to the former 
approach, but still, there’s wide use of the latter. There are several interesting questions here. Why is 
the set-based approach the recommended one? And if it is the recommended one, why do so many 
developers use the iterative approach? What are the obstacles that prevent people from adopting the 
recommended approach?

To get to the bottom of this, one first needs to understand the foundations of T-SQL, and what 
the set-based approach truly is. When you do, you realize that the set-based approach is non intuitive 
for most people, whereas the iterative approach is. It’s just the way our brains are programmed, and 
I will try to clarify this shortly. The gap between iterative and set-based thinking is quite big. The 
gap can be closed, though it certainly isn’t easy to do so. And this is where window functions can 
play an important role; I find them to be a great tool that can help bridge the gap between the two 
approaches and allow a more gradual transition to set-based thinking.

So first, I’ll explain what the set-based approach to addressing T-SQL querying tasks is. T-SQL is 
a dialect of standard SQL (both ISO and ANSI standards). SQL is based (or attempts to be based) on 
the relational model, which is a mathematical model for data management formulated and proposed 
initially by E. F. Codd in the late 1960s. The relational model is based on two mathematical founda-
tions: set-theory and predicate logic. Many aspects of computing were developed based on intuition, 
and they keep changing very rapidly—to a degree that sometimes makes you feel that you’re chasing 
your tail. The relational model is an island in this world of computing because it is based on much 
stronger foundations—mathematics. Some think of mathematics as the ultimate truth. Being based 
on such strong mathematical foundations, the relational model is very sound and stable. It keeps 
evolving, but not as fast as many other aspects of computing. For several decades now, the rela-
tional model has held strong, and it’s still the basis for the leading database platforms—what we call 
 relational database management systems (RDBMSs).

SQL is an attempt to create a language based on the relational model. SQL is not perfect and actu-
ally deviates from the relational model in a number of ways, but at the same time it provides enough 
tools that, if you understand the relational model, you can use SQL relationally. It is doubtless the 
leading, de facto language used by today’s RDBMSs.

However, as mentioned, thinking in a relational way is not intuitive for many. Part of what makes it 
hard for people to think in relational terms is the key differences between the iterative and set-based 
approaches. It is especially difficult for people who have a procedural programming background, 
where interaction with data in files is handled in an iterative way, as the following pseudocode 
demonstrates:

open file 
fetch first record 
while not end of file 
begin 
  process record 
  fetch next record 
end
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Data in files (or, more precisely, in indexed sequential access method, or ISAM, files) is stored in a 
specific order. And you are guaranteed to fetch the records from the file in that order. Also, you fetch 
the records one at a time. So your mind is programmed to think of data in such terms: ordered, and 
manipulated one record at a time. This is similar to cursor manipulation in T-SQL; hence, for develop-
ers with a procedural programming background, using cursors or any other form of iterative process-
ing feels like an extension to what they already know.

A relational, set-based approach to data manipulation is quite different. To try and get a sense of 
this, let’s start with the definition of a set by the creator of set theory—Georg Cantor:

By a “set” we mean any collection M into a whole of definite, distinct objects m 
(which are called the “elements” of M) of our perception or of our thought.

—Joseph W. Dauben, Georg Cantor (Princeton University Press, 1990)

There’s so much in this definition of a set that I could spend pages and pages just trying to 
interpret the meaning of this sentence. But for the purposes of our discussion, I’ll focus on two key 
aspects—one that appears explicitly in this definition and one that is implied:

■■ Whole Observe the use of the term whole. A set should be perceived and manipulated as a 
whole. Your attention should focus on the set as a whole, and not on the individual elements 
of the set. With iterative processing, this idea is violated because records of a file or a cursor 
are manipulated one at a time. A table in SQL represents (albeit not completely successfully) 
a relation from the relational model, and a relation is a set of elements that are alike (that is, 
have the same attributes). When you interact with tables using set-based queries, you interact 
with tables as whole, as opposed to interacting with the individual rows (the tuples of the rela-
tions)—both in terms of how you phrase your declarative SQL requests and in terms of your 
mindset and attention. This type of thinking is what’s very hard for many to truly adopt.

■■ Order Observe that nowhere in the definition of a set is there any mention of the order 
of the elements. That’s for a good reason—there is no order to the elements of a set. That’s 
another thing that many have a hard time getting used to. Files and cursors do have a specific 
order to their records, and when you fetch the records one at a time, you can rely on this 
order. A table has no order to its rows because a table is a set. People who don’t realize this 
often confuse the logical layer of the data model and the language with the physical layer 
of the implementation. They assume that if there’s a certain index on the table, you get an 
implied guarantee that, when querying the table, the data will always be accessed in index 
order. And sometimes even the correctness of the solution will rely on this assumption. Of 
course, SQL Server doesn’t provide any such guarantees. For example, the only way to guar-
antee that the rows in a result will be presented in a certain order is to add a presentation 
ORDER BY clause to the query. And if you do add one, you need to realize that what you get 
back is not relational because the result has a guaranteed order.

If you need to write SQL queries and you want to understand the language you’re dealing with, 
you need to think in set-based terms. And this is where window functions can help bridge the gap 
between iterative thinking (one row at a time, in a certain order) and set-based thinking (seeing the 
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set as a whole, with no order). What can help you transition from one type of thinking to the other is 
the ingenious design of window functions.

For one, window functions support an ORDER BY clause when relevant, where you specify the 
order. But note that just because the function has an order specified doesn’t mean it violates any rela-
tional concepts. The input to the query is relational with no ordering expectations, and the output of 
the query is relational with no ordering guarantees. It’s just that there’s ordering as part of the speci-
fication of the calculation, producing a result attribute in the resulting relation. There’s no assurance 
that the result rows will be returned in the same order used by the window function; in fact, different 
window functions in the same query can specify different ordering. This kind of ordering has noth-
ing to do—at least conceptually—with the query’s presentation ordering. Figure 1-1 tries to illustrate 
the idea that both the input to a query with a window function and the output are relational, even 
though the window function has ordering as part of its specification. By using ovals in the illustration, 
and having the positions of the rows look different in the input and the output, I’m trying to express 
the fact that the order of the rows does not matter.

OrderValues (orderid, orderdate, val)

Result Set (orderid, orderdate, val, rnk)

(10889, 2008-02-16 00:00:00.000, 11380.00, 4)
(10417, 2007-01-16 00:00:00.000, 11188.40, 5)
(10981, 2008-03-27 00:00:00.000, 15810.00, 2)
(10865, 2008-02-02 00:00:00.000, 16387.50, 1)
(11030, 2008-04-17 00:00:00.000, 12615.05, 3)

(10417, 2007-01-16 00:00:00.000, 11188.40)
(11030, 2008-04-17 00:00:00.000, 12615.05)
(10981, 2008-03-27 00:00:00.000, 15810.00)
(10865, 2008-02-02 00:00:00.000, 16387.50)
(10889, 2008-02-16 00:00:00.000, 11380.00)

SELECT orderid, orderdate, val,
  RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues;

FIgURE 1-1 Input and output of a query with a window function.

There’s another aspect of window functions that helps you gradually transition from thinking 
in iterative, ordered terms to thinking in set-based terms. When teaching a new topic, teachers 
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sometimes have to “lie” when explaining it. Suppose that you, as a teacher, know the student’s mind 
is not ready to comprehend a certain idea if you explain it in full depth. You can sometimes get better 
results if you initially explain the idea in simpler, albeit not completely correct, terms to allow the stu-
dent’s mind to start processing the idea. Later, when the student’s mind is ready for the “truth,” you 
can provide the deeper, more correct meaning.

Such is the case with understanding how window functions are conceptually calculated. There’s a 
basic way to explain the idea, although it’s not really conceptually correct, but it’s one that leads to 
the correct result! The basic way uses a row-at-a-time, ordered approach. And then there’s the deep, 
conceptually correct way to explain the idea, but one’s mind needs to be in a state of maturity to 
comprehend it. The deep way uses a set-based approach.

To demonstrate what I mean, consider the following query:

SELECT orderid, orderdate, val, 
  RANK() OVER(ORDER BY val DESC) AS rnk 
FROM Sales.OrderValues;

Here’s an abbreviated output of this query (note there’s no guarantee of presentation ordering 
here):

orderid  orderdate               val       rnk 
-------- ----------------------- --------- --- 
10865    2008-02-02 00:00:00.000 16387.50  1 
10981    2008-03-27 00:00:00.000 15810.00  2 
11030    2008-04-17 00:00:00.000 12615.05  3 
10889    2008-02-16 00:00:00.000 11380.00  4 
10417    2007-01-16 00:00:00.000 11188.40  5 
...

The basic way to think of how the rank values are calculated conceptually is the following example 
(expressed as pseudocode):

arrange the rows sorted by val 
iterate through the rows 
for each row 
  if the current row is the first row in the partition emit 1 
  else if val is equal to previous val emit previous rank 
  else emit count of rows so far

Figure 1-2 is a graphical depiction of this type of thinking.

orderid     orderdate                         val          rnk
----------- --------------------------- ---------- ----
10865       2008-02-02 00:00:00.000 16387.50  1
10981       2008-03-27 00:00:00.000 15810.00  2
11030       2008-04-17 00:00:00.000 12615.05  3
10889       2008-02-16 00:00:00.000 11380.00  4
10417       2007-01-16 00:00:00.000 11188.40  5
...

FIgURE 1-2 Basic understanding of the calculation of rank values.
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Again, although this type of thinking leads to the correct result, it’s not entirely correct. In fact, 
making my point is even more difficult because the process just described is actually very similar to 
how SQL Server physically handles the rank calculation. But my focus at this point is not the physical 
implementation, but rather the conceptual layer—the language and the logical model. What I meant 
by “incorrect type of thinking” is that conceptually, from a language perspective, the calculation is 
thought of differently, in a set-based manner—not iterative. Remember that the language is not 
concerned with the physical implementation in the database engine. The physical layer’s responsibility 
is to figure out how to handle the logical request and both produce a correct result and produce it as 
fast as possible.

So let me attempt to explain what I mean by the deeper, more correct understanding of how the 
language thinks of window functions. The function logically defines—for each row in the result set 
of the query—a separate, independent window. Absent any restrictions in the window specification, 
each window consists of the set of all rows from the result set of the query as the starting point. But 
you can add elements to the window specification (for example, partitioning, framing, and so on, 
which I’ll say more about later) that will further restrict the set of rows in each window. Figure 1-3 is a 
graphical depiction of this idea as it applies to our query with the RANK function.

orderid     orderdate                         val          rnk
----------- --------------------------- ---------- ----
10865       2008-02-02 00:00:00.000 16387.50       1
10981       2008-03-27 00:00:00.000 15810.00          2
11030       2008-04-17 00:00:00.000 12615.05             3
10889       2008-02-16 00:00:00.000 11380.00                4
10417       2007-01-16 00:00:00.000 11188.40                   5
...

FIgURE 1-3 Deep understanding of the calculation of rank values.

With respect to each window function and row in the result set of the query, the OVER clause 
conceptually creates a separate window. In our query, we have not restricted the window specification 
in any way; we just defined the ordering specification for the calculation. So in our case, all windows 
are made of all rows in the result set. And they all coexist at the same time. And in each, the rank is 
calculated as one more than the number of rows that have a greater value in the val attribute than 
the current value.

As you might realize, it’s more intuitive for many to think in the basic terms of the data being in an 
order and a process iterating through the rows one at a time. And that’s okay when you’re starting 
out with window functions because you get to write your queries—or at least the simple ones— 
correctly. As time goes by, you can gradually transition to the deeper understanding of the window 
functions’ conceptual design and start thinking in a set-based manner.

www.allitebooks.com

http://www.allitebooks.org
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Drawbacks of alternatives to Window Functions
Window functions have several advantages compared to alternative, more traditional, ways to achieve 
the same calculations—for example, grouped queries, subqueries, and others. Here I’ll provide a 
couple of straightforward examples. There are several other important differences beyond the advan-
tages I’ll show here, but it’s premature to discuss those now.

I’ll start with traditional grouped queries. Those do give you insight into new information in the 
form of aggregates, but you also lose something—the detail.

Once you group data, you’re forced to apply all calculations in the context of the group. But what 
if you need to apply calculations that involve both detail and aggregates? For example, suppose that 
you need to query the Sales.OrderValues view and calculate for each order the percentage of the 
 current order value of the customer total, as well as the difference from the customer average. The 
current order value is a detail element, and the customer total and average are aggregates. If you 
group the data by customer, you don’t have access to the individual order values. One way to handle 
this need with traditional grouped queries is to have a query that groups the data by customer, define 
a table expression based on this query, and then join the table expression with the base table to 
match the detail with the aggregates. Here’s a query that implements this approach:

WITH Aggregates AS 
( 
  SELECT custid, SUM(val) AS sumval, AVG(val) AS avgval 
  FROM Sales.OrderValues 
  GROUP BY custid 
) 
SELECT O.orderid, O.custid, O.val, 
  CAST(100. * O.val / A.sumval AS NUMERIC(5, 2)) AS pctcust, 
  O.val - A.avgval AS diffcust 
FROM Sales.OrderValues AS O 
  JOIN Aggregates AS A 
    ON O.custid = A.custid;

Here’s the abbreviated output generated by this query:

orderid  custid  val     pctcust  diffcust 
-------- ------- ------- -------- ------------ 
10835    1       845.80  19.79    133.633334 
10643    1       814.50  19.06    102.333334 
10952    1       471.20  11.03    -240.966666 
10692    1       878.00  20.55    165.833334 
11011    1       933.50  21.85    221.333334 
10702    1       330.00  7.72     -382.166666 
10625    2       479.75  34.20    129.012500 
10759    2       320.00  22.81    -30.737500 
10926    2       514.40  36.67    163.662500 
10308    2       88.80   6.33     -261.937500 
...
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Now imagine needing to also involve the percentage from the grand total and the difference from 
the grand average. To do this, you need to add another table expression, like so:

WITH CustAggregates AS 
( 
  SELECT custid, SUM(val) AS sumval, AVG(val) AS avgval 
  FROM Sales.OrderValues 
  GROUP BY custid 
), 
GrandAggregates AS 
( 
  SELECT SUM(val) AS sumval, AVG(val) AS avgval 
  FROM Sales.OrderValues 
) 
SELECT O.orderid, O.custid, O.val, 
  CAST(100. * O.val / CA.sumval AS NUMERIC(5, 2)) AS pctcust, 
  O.val - CA.avgval AS diffcust, 
  CAST(100. * O.val / GA.sumval AS NUMERIC(5, 2)) AS pctall, 
  O.val - GA.avgval AS diffall 
FROM Sales.OrderValues AS O 
  JOIN CustAggregates AS CA 
    ON O.custid = CA.custid 
  CROSS JOIN GrandAggregates AS GA;

Here’s the output of this query:

orderid  custid  val     pctcust  diffcust     pctall  diffall 
-------- ------- ------- -------- ------------ ------- ------------- 
10835    1       845.80  19.79    133.633334   0.07    -679.252072 
10643    1       814.50  19.06    102.333334   0.06    -710.552072 
10952    1       471.20  11.03    -240.966666  0.04    -1053.852072 
10692    1       878.00  20.55    165.833334   0.07    -647.052072 
11011    1       933.50  21.85    221.333334   0.07    -591.552072 
10702    1       330.00  7.72     -382.166666  0.03    -1195.052072 
10625    2       479.75  34.20    129.012500   0.04    -1045.302072 
10759    2       320.00  22.81    -30.737500   0.03    -1205.052072 
10926    2       514.40  36.67    163.662500   0.04    -1010.652072 
10308    2       88.80   6.33     -261.937500  0.01    -1436.252072 
...

You can see how the query gets more and more complicated, involving more table expressions 
and more joins.

Another way to perform similar calculations is to use a separate subquery for each calculation. 
Here are the alternatives, using subqueries to the last two grouped queries:

-- subqueries with detail and customer aggregates 
SELECT orderid, custid, val, 
  CAST(100. * val / 
        (SELECT SUM(O2.val) 
         FROM Sales.OrderValues AS O2 
         WHERE O2.custid = O1.custid) AS NUMERIC(5, 2)) AS pctcust, 
  val - (SELECT AVG(O2.val) 
         FROM Sales.OrderValues AS O2 
         WHERE O2.custid = O1.custid) AS diffcust 
FROM Sales.OrderValues AS O1;
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-- subqueries with detail, customer and grand aggregates 
SELECT orderid, custid, val, 
  CAST(100. * val / 
        (SELECT SUM(O2.val) 
         FROM Sales.OrderValues AS O2 
         WHERE O2.custid = O1.custid) AS NUMERIC(5, 2)) AS pctcust, 
  val - (SELECT AVG(O2.val) 
         FROM Sales.OrderValues AS O2 
         WHERE O2.custid = O1.custid) AS diffcust, 
  CAST(100. * val / 
        (SELECT SUM(O2.val) 
         FROM Sales.OrderValues AS O2) AS NUMERIC(5, 2)) AS pctall, 
  val - (SELECT AVG(O2.val) 
         FROM Sales.OrderValues AS O2) AS diffall 
FROM Sales.OrderValues AS O1;

There are two main problems with the subquery approach. One, you end up with lengthy com-
plex code. Two, SQL Server’s optimizer is not coded at the moment to identify cases where multiple 
subqueries need to access the exact same set of rows; hence, it will use separate visits to the data for 
each subquery. This means that the more subqueries you have, the more visits to the data you get. 
Unlike the previous problem, this one is not a problem with the language, but rather with the specific 
optimization you get for subqueries in SQL Server.

Remember that the idea behind a window function is to define a window, or a set, of rows for the 
function to operate on. Aggregate functions are supposed to be applied to a set of rows; therefore, 
the concept of windowing can work well with those as an alternative to using grouping or subqueries. 
And when calculating the aggregate window function, you don’t lose the detail. You use the OVER 
clause to define the window for the function. For example, to calculate the sum of all values from the 
result set of the query, simply use the following:

SUM(val) OVER()

If you do not restrict the window (empty parentheses), your starting point is the result set of the 
query.

To calculate the sum of all values from the result set of the query where the customer ID is the 
same as in the current row, use the partitioning capabilities of window functions (which I’ll say more 
about later), and partition the window by custid, as follows:

SUM(val) OVER(PARTITION BY custid)

Note that the term partitioning suggests filtering rather than grouping.

Using window functions, here’s how you address the request involving the detail and customer 
aggregates, returning the percentage of the current order value of the customer total as well as the 
difference from the average (with window functions in bold):

SELECT orderid, custid, val, 
  CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust, 
  val - AVG(val) OVER(PARTITION BY custid) AS diffcust 
FROM Sales.OrderValues;
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And here’s another query where you also add the percentage of the grand total and the difference 
from the grand average:

SELECT orderid, custid, val, 
  CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust, 
  val - AVG(val) OVER(PARTITION BY custid) AS diffcust, 
  CAST(100. * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pctall, 
  val - AVG(val) OVER() AS diffall 
FROM Sales.OrderValues;

Observe how much simpler and more concise the versions with the window functions are. Also, in 
terms of optimization, note that SQL Server’s optimizer was coded with the logic to look for mul-
tiple functions with the same window specification. If any are found, SQL Server will use the same 
visit (whichever kind of scan was chosen) to the data for those. For example, in the last query, SQL 
Server will use one visit to the data to calculate the first two functions (the sum and average that are 
partitioned by custid), and it will use one other visit to calculate the last two functions (the sum and 
average that are nonpartitioned). I will demonstrate this concept of optimization in Chapter 4, “Opti-
mization of Window Functions.”

Another advantage window functions have over subqueries is that the initial window prior to 
applying restrictions is the result set of the query. This means that it’s the result set after applying 
table operators (for example, joins), filters, grouping, and so on. You get this result set because of the 
phase of logical query processing in which window functions get evaluated. (I’ll say more about this 
later in this chapter.) Conversely, a subquery starts from scratch—not from the result set of the outer 
query. This means that if you want the subquery to operate on the same set as the result of the outer 
query, it will need to repeat all query constructs used by the outer query. As an example, suppose that 
you want our calculations of the percentage of the total and the difference from the average to apply 
only to orders placed in the year 2007. With the solution using window functions, all you need to do is 
add one filter to the query, like so:

SELECT orderid, custid, val, 
  CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust, 
  val - AVG(val) OVER(PARTITION BY custid) AS diffcust, 
  CAST(100. * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pctall, 
  val - AVG(val) OVER() AS diffall 
FROM Sales.OrderValues 
WHERE orderdate >= '20070101' 
  AND orderdate < '20080101';

The starting point for all window functions is the set after applying the filter. But with subqueries, 
you start from scratch; therefore, you need to repeat the filter in all of your subqueries, like so:

SELECT orderid, custid, val, 
  CAST(100. * val / 
        (SELECT SUM(O2.val) 
         FROM Sales.OrderValues AS O2 
         WHERE O2.custid = O1.custid 
           AND orderdate >= '20070101' 
           AND orderdate < '20080101') AS NUMERIC(5, 2)) AS pctcust, 



 A Glimpse of Solutions Using Window Functions  15

  val - (SELECT AVG(O2.val) 
         FROM Sales.OrderValues AS O2 
         WHERE O2.custid = O1.custid 
           AND orderdate >= '20070101' 
           AND orderdate < '20080101') AS diffcust, 
  CAST(100. * val / 
        (SELECT SUM(O2.val) 
         FROM Sales.OrderValues AS O2 
         WHERE orderdate >= '20070101' 
           AND orderdate < '20080101') AS NUMERIC(5, 2)) AS pctall, 
  val - (SELECT AVG(O2.val) 
         FROM Sales.OrderValues AS O2 
         WHERE orderdate >= '20070101' 
           AND orderdate < '20080101') AS diffall 
FROM Sales.OrderValues AS O1 
WHERE orderdate >= '20070101' 
  AND orderdate < '20080101';

Of course, you could use workarounds, such as first defining a common table expression (CTE) 
based on a query that performs the filter, and then have both the outer query and the subqueries 
refer to the CTE. However, my point is that with window functions, you don’t need any workarounds 
because they operate on the result of the query. I will provide more details about this aspect in the 
design of window functions later in the chapter, in the “Query Elements Supporting Window Func-
tions” section.

As mentioned earlier, window functions also lend themselves to good optimization, and often, 
alternatives to window functions don’t get optimized as well, to say the least. Of course, there are 
cases where the inverse is also true. I explain the optimization of window functions in Chapter 4 and 
provide plenty of examples for using them efficiently in Chapter 5.

A glimpse of Solutions Using Window Functions

The first four chapters of the book describe window functions and their optimization. The material 
is very technical, and even though I find it fascinating, I can see how some might find it a bit boring. 
What’s usually much more interesting for people to read about is the use of the functions to solve 
practical problems, which is what this book gets to in the final chapter. When you see how window 
functions are used in problem solving, you truly realize their value. So how can I convince you it’s 
worth your while to go through the more technical parts and not give up reading before you get to 
the more interesting part later? What if I give you a glimpse of a solution using window functions 
right now?

The querying task I will address here involves querying a table holding a sequence of values in 
some column and identifying the consecutive ranges of existing values. This problem is also known as 
the islands problem. The sequence can be a numeric one, a temporal one (which is more common), or 
any data type that supports total ordering. The sequence can have unique values or allow duplicates. 
The interval can be any fixed interval that complies with the column’s type (for example, the integer 
1, the integer 7, the temporal interval 1 day, the temporal interval 2 weeks, and so on). In Chapter 5, I 
will get to the different variations of the problem. Here, I’ll just use a simple case to give you a sense 
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of how it works—using a numeric sequence with the integer 1 as the interval. Use the following code 
to generate the sample data for this task:

SET NOCOUNT ON; 
USE TSQL2012; 
 
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1; 
GO 
 
CREATE TABLE dbo.T1 
( 
  col1 INT NOT NULL 
    CONSTRAINT PK_T1 PRIMARY KEY 
); 
 
INSERT INTO dbo.T1(col1) 
  VALUES(2),(3),(11),(12),(13),(27),(33),(34),(35),(42); 
GO

As you can see, there are some gaps in the col1 sequence in T1. Your task is to identify the con-
secutive ranges of existing values (also known as islands) and return the start and end of each island. 
Here’s what the desired result should look like:

start_range end_range 
----------- ----------- 
2           3 
11          13 
27          27 
33          35 
42          42

If you’re curious as to the practicality of this problem, there are numerous production examples. 
Examples include producing availability reports, identifying periods of activity (for example, sales), 
identifying consecutive periods in which a certain criterion is met (for example, periods where a stock 
value was above or below a certain threshold), identifying ranges of license plates in use, and so on. 
The current example is very simplistic on purpose so that we can focus on the techniques used to 
solve it. The technique you will use to solve a more complicated case requires minor adjustments to 
the one you use to address the simple case. So consider it a challenge to come up with an efficient, 
set-based solution to this task. Try to first come up with a solution that works. Then repopulate the 
table with a decent number of rows—say, 10,000,000—and try your technique again. See how it per-
forms. Only then take a look at my solutions.

Before showing the solution using window functions, I’ll show one of the many possible solutions 
that use more traditional language constructs. In particular, I’ll show one that uses subqueries. To 
explain the strategy of the first solution, examine the values in the T1.col1 sequence, where I added a 
conceptual attribute that doesn’t exist at the moment and that I think of as a group identifier:

col1  grp 
----- --- 
2     a 
3     a 
11    b 
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12    b 
13    b 
27    c 
33    d 
34    d 
35    d 
42    e

The grp attribute doesn’t exist yet. Conceptually, it is a value that uniquely identifies an island. This 
means that it has to be the same for all members of the same island and different then the values 
generated for other islands. If you manage to calculate such a group identifier, you can then group 
the result by this grp attribute and return the minimum and maximum col1 values in each group 
(island). One way to produce this group identifier using traditional language constructs is to calculate, 
for each current col1 value, the minimum col1 value that is greater than or equal to the current one, 
and that has no following value.

As an example, following this logic, try to identify with respect to the value 2 what the minimum 
col1 value is that is greater than or equal to 2 and that appears before a missing value? It’s 3. Now try 
to do the same with respect to 3. You also get 3. So 3 is the group identifier of the island that starts 
with 2 and ends with 3. For the island that starts with 11 and ends with 13, the group identifier for all 
members is 13. As you can see, the group identifier for all members of a given island is actually the 
last member of that island.

Here’s the T-SQL code required to implement this concept:

SELECT col1, 
  (SELECT MIN(B.col1) 
    FROM dbo.T1 AS B 
    WHERE B.col1 >= A.col1 
      -- is this row the last in its group? 
      AND NOT EXISTS 
        (SELECT * 
         FROM dbo.T1 AS C 
         WHERE C.col1 = B.col1 + 1)) AS grp 
FROM dbo.T1 AS A;

This query generates the following output:

col1        grp 
----------- ----------- 
2           3 
3           3 
11          13 
12          13 
13          13 
27          27 
33          35 
34          35 
35          35 
42          42
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The next part is pretty straightforward—define a table expression based on the last query, and in 
the outer query, group by the group identifier and return the minimum and maximum col1 values for 
each group, like so:

SELECT MIN(col1) AS start_range, MAX(col1) AS end_range 
FROM (SELECT col1, 
        (SELECT MIN(B.col1) 
         FROM dbo.T1 AS B 
         WHERE B.col1 >= A.col1 
           AND NOT EXISTS 
             (SELECT * 
              FROM dbo.T1 AS C 
              WHERE C.col1 = B.col1 + 1)) AS grp 
      FROM dbo.T1 AS A) AS D 
GROUP BY grp;

There are two main problems with this solution. One, it’s a bit complicated to follow the logic here. 
Two, it’s horribly slow. I don’t want to start going over query execution plans yet—there will be plenty 
of this later in the book—but I can tell you that for each row in the table, SQL Server will perform 
almost two complete scans of the data. Now think of a sequence of 10,000,000 rows, and try to 
translate it to the amount of work involved. The total number of rows that will need to be processed is 
simply enormous.

The next solution is also one that calculates a group identifier, but using window functions. The 
first step in the solution is to use the ROW_NUMBER function to calculate row numbers based on col1 
ordering. I will provide the gory details about the ROW_NUMBER function later in the book; for now, 
it suffices to say that it computes unique integers within the partition starting with 1 and increment-
ing by 1 based on the given ordering.

With this in mind, the following query returns the col1 values and row numbers based on col1 
ordering:

SELECT col1, ROW_NUMBER() OVER(ORDER BY col1) AS rownum 
FROM dbo.T1; 
 
col1        rownum 
----------- -------------------- 
2           1 
3           2 
11          3 
12          4 
13          5 
27          6 
33          7 
34          8 
35          9 
42          10

Now focus your attention on the two sequences. One (col1) is a sequence with gaps, and the 
other (rownum) is a sequence without gaps. With this in mind, try to figure out what’s unique to the 
relationship between the two sequences in the context of an island. Within an island, both sequences 
keep incrementing by a fixed interval. Therefore, the difference between the two is constant. For 
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the next island, col1 increases by more than 1, whereas rownum increases just by 1, so the difference 
keeps growing. In other words, the difference between the two is constant and unique for each island. 
Run the following query to calculate this difference:

SELECT col1, col1 - ROW_NUMBER() OVER(ORDER BY col1) AS diff 
FROM dbo.T1; 
 
col1        diff 
----------- -------------------- 
2           1 
3           1 
11          8 
12          8 
13          8 
27          21 
33          26 
34          26 
35          26 
42          32

You can see that this difference satisfies the two requirements of our group identifier; therefore, 
you can use it as such. The rest is the same as in the previous solution; namely, you group the rows by 
the group identifier and return the minimum and maximum col1 values in each group, like so:

SELECT MIN(col1) AS start_range, MAX(col1) AS end_range 
FROM (SELECT col1,  
        -- the difference is constant and unique per island 
        col1 - ROW_NUMBER() OVER(ORDER BY col1) AS grp 
      FROM dbo.T1) AS D 
GROUP BY grp;

Observe how concise and simple the solution is. Of course, it’s always a good idea to add com-
ments to help those who see the solution for the first time better understand it.

The solution is also highly efficient. The work involved in assigning the row numbers is negligible 
compared to the previous solution. It’s just a single ordered scan of the index on col1 and an iterator 
that keeps incrementing a counter. In a performance test I ran with a sequence with 10,000,000 rows, 
this query finished in 10 seconds. Other solutions ran for a much longer time.

I hope that this glimpse to solutions using window functions was enough to intrigue you and help 
you see that they contain immense power. Now we’ll get back to studying the technicalities of win-
dow functions. Later in the book, you will have a chance to see many more examples.

Elements of Window Functions

The specification of a window function’s behavior appears in the function’s OVER clause and involves 
multiple elements. The three core elements are partitioning, ordering, and framing. Not all window 
functions support all elements. As I describe each element, I’ll also indicate which functions support it.
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Partitioning
The partitioning element is implemented with a PARTITION BY clause and is supported by all window 
functions. It restricts the window of the current calculation to only those rows from the result set of 
the query that have the same values in the partitioning columns as in the current row. For example, if 
your function uses PARTITION BY custid and the custid value in the current row is 1, the window with 
respect to the current row is all rows from the result set of the query that have a custid value of 1. If 
the custid value of the current row is 2, the window with respect to the current row is all rows with a 
custid of 2.

If a PARTITION BY clause is not specified, the window is not restricted. Another way to look at it 
is that inf case explicit partitioning wasn’t specified, the default partitioning is to consider the entire 
result set of the query as one partition.

If it wasn’t obvious, let me point out that different functions in the same query can have different 
partitioning specifications. Consider the query in Listing 1-1 as an example.

LISTIng 1-1 Query with Two RANK Calculations

SELECT custid, orderid, val, 
  RANK() OVER(ORDER BY val DESC) AS rnk_all, 
  RANK() OVER(PARTITION BY custid 
              ORDER BY val DESC) AS rnk_cust 
FROM Sales.OrderValues;

Observe that the first RANK function (which generates the attribute rnk_all) relies on the default 
partitioning, and the second RANK function (which generates rnk_cust) uses explicit partitioning by 
custid. Figure 1-4 illustrates the partitions defined for a sample of three results of calculations in the 
query: one rnk_all value and two rnk_cust values.

custid  orderid   val       rnk_all  rnk_cust
------- --------  -------  -------- ---------

  1       11011    933.50   419       1
  1       10692    878.00   440       2
  1       10835    845.80   457       3
  1       10643    814.50   469       4
  1       10952    471.20   615       5
  1       10702    330.00   686       6

  2       10926    514.40   592       1
  2       10625    479.75   608       2
  2       10759    320.00   691       3
  2       10308    88.80     797       4
  ...

FIgURE 1-4 Window partitioning.
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The arrows point from the result values of the functions to the window partitions that were used to 
compute them.

Ordering
The ordering element defines the ordering for the calculation, if relevant, within the partition. In 
standard SQL, all functions support an ordering element. As for SQL Server, initially it didn’t support 
the ordering element with aggregate functions; rather, it only supported partitioning. Support for 
ordering for aggregates was added in SQL Server 2012.

Interestingly, the ordering element has a slightly different meaning for different function catego-
ries. With ranking functions, ordering is intuitive. For example, when using descending ordering, the 
RANK function returns one more than the number of rows in your respective partition that have a 
greater ordering value than yours. When using ascending ordering, the function returns one more 
than the number of rows in the pattern with a lower ordering value than yours. Figure 1-5 illustrates 
the rank calculations from Listing 1-1 shown earlier—this time including the interpretation of the 
ordering element.

custid  orderid   val      rnk_all  rnk_cust
------- --------  ------- -------- ---------
1         11011    933.50  419      1
1         10692    878.00  440      2
1         10835    845.80  457      3
1         10643    814.50  469      4
1         10952    471.20  615      5
1         10702    330.00  686      6
2         10926    514.40  592      1
2         10625    479.75  608      2
2         10759    320.00  691      3
2         10308    88.80    797      4
...

custid  orderid  val
------- --------  ---------
63       10865    16387.50
34       10981    15810.00
71       11030    12615.05
65       10889    11380.00
73       10417    11188.40   418 rows with
...                                   val > 933.50
50       10529    946.00
83       10994    940.50
35       10901    934.50
55       10338    934.50
1         11011    933.50
...

custid  orderid  val
------- -------- -------
1         11011    933.50
1         10692    878.00
1         10835    845.80   3 rows with
1         10643    814.50   val > 814.50
1         10952    471.20
1         10702    330.00

custid  orderid  val
------- -------- -------
2         10926    514.40
2         10625    479.75   2 rows with
2         10759    320.00   val > 320.00
2         10308    88.80

FIgURE 1-5 Window ordering.
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Figure 1-5 depicts the windows of only three of the rank calculations. Of course, there are many 
more—1,660, to be precise. That’s because there are 830 rows involved, and for each row, two rank 
calculations are made. What’s interesting to note here is that conceptually it’s as if all those windows 
coexist simultaneously.

Aggregate window functions have a slightly different meaning for ordering compared to rank-
ing window functions. With aggregates, contrary to what some might think, ordering has nothing to 
do with the order in which the aggregate is applied; rather, the ordering element gives meaning to 
the framing options that I will describe next. In other words, the ordering element is an aid to define 
which rows to restrict in the window.

Framing
Framing is essentially another filter that further restricts the rows in the partition. It is applicable to 
aggregate window functions as well as to three of the offset functions: FIRST_VALUE, LAST_VALUE, 
and NTH_VALUE. Think of this windowing element as defining two points in the current row’s parti-
tion based on the given ordering, framing the rows that the calculation will apply to.

The framing specification in the standard includes a ROWS or RANGE option that defines the start-
ing row and ending row of the frame, as well as a window frame-exclusion option. SQL Server 2012 
introduced support for framing, with full implementation of the ROWS option, partial implementation 
of the RANGE option, and no implementation of the window frame-exclusion option.

The ROWS option allows you to indicate the points in the frame as an offset in terms of the 
number of rows with respect to the current row. The RANGE option is more dynamic, defining the 
offsets in terms of a difference between the value of the frame point and the current row’s value. 
The window frame-exclusion option specifies what to do with the current row and its peers in case of 
ties. This explanation might seem far from clear or sufficient, but I don’t want to get into the details 
just yet. There will be plenty of that later. For now, I just want to introduce the concept and provide a 
simple example. Following is a query against the EmpOrders view, calculating the running total quan-
tity for each employee and order month:

SELECT empid, ordermonth, qty, 
  SUM(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW) AS runqty 
FROM Sales.EmpOrders;

Observe that the window function applies the SUM aggregate to the qty attribute, partitions the 
window by empid, orders the partition rows by ordermonth, and frames the partition rows based on 
the given ordering between unbounded preceding (no low boundary point) and the current row. In 
other words, the result will be the sum of all prior rows in the frame, inclusive of the current row. This 
query generates the following output, shown here in abbreviated form:
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empid  ordermonth              qty         run_qty 
------ ----------------------- ----------- ----------- 
1      2006-07-01 00:00:00.000 121         121 
1      2006-08-01 00:00:00.000 247         368 
1      2006-09-01 00:00:00.000 255         623 
1      2006-10-01 00:00:00.000 143         766 
1      2006-11-01 00:00:00.000 318         1084 
... 
2      2006-07-01 00:00:00.000 50          50 
2      2006-08-01 00:00:00.000 94          144 
2      2006-09-01 00:00:00.000 137         281 
2      2006-10-01 00:00:00.000 248         529 
2      2006-11-01 00:00:00.000 237         766 
...

Observe how the window specification is as easy to read as plain English. I will provide much more 
detail about the framing options in Chapter 2.

Query Elements Supporting Window Functions

Window functions aren’t supported in all query clauses; rather, they’re supported only in the SELECT 
and ORDER BY clauses. To help you understand the reason for this restriction, I first need to explain a 
concept called logical query processing. Then I’ll get to the clauses that support window functions, and 
finally I’ll explain how to circumvent the restriction with the other clauses.

Logical Query Processing
Logical query processing describes the conceptual way in which a SELECT query is evaluated accord-
ing to the logical language design. It describes a process made of a series of steps, or phases, that 
proceed from the query’s input tables to the query’s final result set. Note that by “logical query 
processing,” I mean the conceptual way in which the query is evaluated—not necessarily the physi-
cal way SQL Server processes the query. As part of the optimization, SQL Server can make shortcuts, 
re arrange the order of some steps, and pretty much do whatever it likes. But that’s as long as it guar-
antees that it will produce the same output as the one defined by logical query processing applied to 
the declarative query request.

Each step in logical query processing operates on one or more tables (sets of rows) that serve as its 
input and returns a table as its output. The output table of one step then becomes the input table for 
the next step.

Figure 1-6 is a flow diagram illustrating the logical query processing flow in SQL Server 2012.
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Note that when you write a query, the SELECT clause appears first in terms of the keyed-in order, 
but observe that in terms of the logical query processing order, it appears almost last—just before the 
ORDER BY clause is handled.

There’s much more to say about logical query processing, but the details are a topic for another 
book. For the purposes of our discussion, what’s important to note is the order in which the various 
clauses are evaluated. The following list shows the order (with the phases in which window functions 
are allowed shown in bold):

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

5-1. Evaluate Expressions

5-2.  Remove Duplicates

6. ORDER BY

7. OFFSET-FETCH/TOP

Understanding logical query processing and the logical query processing order enables you to 
understand the motivation behind restricting window functions to only specific clauses.

Clauses Supporting Window Functions
As illustrated in Figure 1-6, only the query clauses SELECT and ORDER BY support window functions 
directly. The reason for the limitation is to avoid ambiguity by operating on (almost) the final result 
set of the query as the starting point for the window. If window functions are allowed in phases 
previous to the SELECT phase, their initial window could be different than that in the SELECT phase, 
and therefore, with some query forms, it could be very difficult to figure out the right result. I’ll try to 
demonstrate the ambiguity problem through an example. First run the following code to create the 
table T1 and populate it with sample data:

SET NOCOUNT ON; 
USE TSQL2012; 
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1; 
GO 
 
CREATE TABLE dbo.T1 
( 
  col1 VARCHAR(10) NOT NULL 
    CONSTRAINT PK_T1 PRIMARY KEY 
); 
 
INSERT INTO dbo.T1(col1)  
  VALUES('A'),('B'),('C'),('D'),('E'),('F');
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Suppose that window functions were allowed in phases prior to the SELECT—for example, in the 
WHERE phase. Consider then the following query, and try to figure out which col1 values should 
appear in the result:

SELECT col1 
FROM dbo.T1 
WHERE col1 > 'B' 
  AND ROW_NUMBER() OVER(ORDER BY col1) <= 3;

Before you assume that the answer should obviously be the values C, D, and E, consider the all-at-
once concept in SQL. The concept of all-at-once means that all expressions that appear in the same 
logical phase are conceptually evaluated at the same point in time. This means that the order in which 
the expressions are evaluated shouldn’t matter. With this in mind, the following query should be 
semantically equivalent to the previous one:

SELECT col1 
FROM dbo.T1 
WHERE ROW_NUMBER() OVER(ORDER BY col1) <= 3 
  AND col1 > 'B';

Now, can you figure out what the right answer is? Is it C, D, and E, or is it just C?

That’s an example of the ambiguity I was talking about. By restricting window functions to only the 
SELECT and ORDER BY clauses of a query, this ambiguity is eliminated.

Looking at Figure 1-6, you might have noticed that within the SELECT phase, it’s step 5-1 (Evalu-
ate Expressions) that supports window functions, and this step is evaluated before step 5-2 (Remove 
Duplicates). If you wonder why it is important to know such subtleties, I’ll demonstrate why.

Following is a query returning the empid and country attributes of all employees from the 
Employees table:

SELECT empid, country 
FROM HR.Employees; 
 
empid       country 
----------- --------------- 
1           USA 
2           USA 
3           USA 
4           USA 
5           UK 
6           UK 
7           UK 
8           USA 
9           UK

Next, examine the following query and see if you can guess what its output is before executing it:

SELECT DISTINCT country, ROW_NUMBER() OVER(ORDER BY country) AS rownum 
FROM HR.Employees;
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Some expect to get the following output:

country         rownum 
--------------- -------------------- 
UK              1 
USA             2

But in reality you get this:

country         rownum 
--------------- -------------------- 
UK              1 
UK              2 
UK              3 
UK              4 
USA             5 
USA             6 
USA             7 
USA             8 
USA             9

Now consider that the ROW_NUMBER function in this query is evaluated in step 5-1 where 
the SELECT list expressions are evaluated—prior to the removal of the duplicates in step 5-2. The 
ROW_NUMBER function assigns nine unique row numbers to the nine employee rows, and then the 
DISTINCT clause has no duplicates left to remove.

When you realize this and understand that it has to do with the logical query processing order 
of the different elements, you can think of a solution. For example, you can have a table expression 
defined based on a query that just returns distinct countries and have the outer query assign the row 
numbers after duplicates are removed, like so:

WITH EmpCountries AS 
( 
  SELECT DISTINCT country FROM HR.Employees 
) 
SELECT country, ROW_NUMBER() OVER(ORDER BY country) AS rownum 
FROM EmpCountries;

Can you think of other ways to solve the problem, perhaps even simpler ways than this one?

The fact that window functions are evaluated in the SELECT or ORDER BY phase means that the 
window defined for the calculation—before applying further restrictions—is the intermediate form 
of rows of the query after all previous phases—that is, after applying the FROM with all of its table 
operators (for example, joins), and after the WHERE filtering, the grouping, and the filtering of the 
groups. Consider the following query as an example:

SELECT O.empid, 
  SUM(OD.qty) AS qty, 
  RANK() OVER(ORDER BY SUM(OD.qty) DESC) AS rnk 
FROM Sales.Orders AS O 
  JOIN Sales.OrderDetails AS OD 
    ON O.orderid = OD.orderid 
WHERE O.orderdate >= '20070101' 
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  AND O.orderdate < '20080101' 
GROUP BY O.empid; 
 
empid  qty   rnk 
------ ----- --- 
4      5273  1 
3      4436  2 
1      3877  3 
8      2843  4 
2      2604  5 
7      2292  6 
6      1738  7 
5      1471  8 
9      955   9

First the FROM clause is evaluated and the join is performed. Then only the rows where the order 
year is 2007 are filtered. Then the remaining rows are grouped by employee ID. Only then are the 
expressions in the SELECT list evaluated, including the RANK function, which is calculated based on 
ordering by the total quantity descending. If there were other window functions in the SELECT list, 
they would all use the same result set as their starting point. Recall from earlier discussions about 
alternative options to window functions (for example, subqueries) that they start their view of the 
data from scratch—meaning that you have to repeat all the logic you have in the outer query in each 
of your subqueries, leading to much more verbose code.

Circumventing the Limitations
I explained the reasoning behind disallowing the use of window functions in logical query processing 
phases that are evaluated prior to the SELECT clause. But what if you need to filter by or group by a 
calculation based on window functions? The solution is to use a table expression such as a CTE or a 
derived table. Have a query invoke the window function in its SELECT list, assigning the calculation an 
alias. Define a table expression based on that query, and then have the outer query refer to that alias 
where you need it.

Here’s an example showing how you can filter by the result of a window function using a CTE:

WITH C AS 
( 
  SELECT orderid, orderdate, val, 
    RANK() OVER(ORDER BY val DESC) AS rnk 
  FROM Sales.OrderValues 
) 
SELECT * 
FROM C 
WHERE rnk <= 5; 
 
orderid  orderdate               val       rnk 
-------- ----------------------- --------- ---- 
10865    2008-02-02 00:00:00.000 16387.50  1 
10981    2008-03-27 00:00:00.000 15810.00  2 
11030    2008-04-17 00:00:00.000 12615.05  3 
10889    2008-02-16 00:00:00.000 11380.00  4 
10417    2007-01-16 00:00:00.000 11188.40  5
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With modification statements, window functions are disallowed altogether because those don’t 
support SELECT and ORDER BY clauses. But there are cases where involving window functions in mod-
ification statements is needed. Table expressions can be used to address this need as well because 
T-SQL supports modifying data through table expressions. I’ll demonstrate this capability with an 
UPDATE example. First run the following code to create a table called T1 with columns col1 and col2 
and populate it with sample data:

SET NOCOUNT ON; 
USE TSQL2012; 
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1; 
GO 
 
CREATE TABLE dbo.T1 
( 
  col1 INT NULL, 
  col2 VARCHAR(10) NOT NULL 
); 
 
INSERT INTO dbo.T1(col2)  
  VALUES('C'),('A'),('B'),('A'),('C'),('B');

Explicit values were provided in col2, and NULLs were used as defaults in col1.

Suppose this table represents a situation with data-quality problems. A key wasn’t enforced in this 
table, and therefore it is not possible to uniquely identify rows. You want to assign unique col1 values 
in all rows. You’re thinking of using the ROW_NUMBER function in an UPDATE statement, like so:

UPDATE dbo.T1 
  SET col1 = ROW_NUMBER() OVER(ORDER BY col2);

But remember that this is not allowed. The workaround is to write a query against T1 returning 
col1 and an expression based on the ROW_NUMBER function (call it rownum); define a table expres-
sion based on this query; finally, have an outer UPDATE statement against the CTE assign rownum to 
col1, like so:

WITH C AS 
( 
  SELECT col1, col2, 
    ROW_NUMBER() OVER(ORDER BY col2) AS rownum 
  FROM dbo.T1 
) 
UPDATE C 
  SET col1 = rownum;
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Query T1, and observe that all rows got unique col1 values:

SELECT col1, col2 
FROM dbo.T1; 
 
col1        col2 
----------- ---------- 
5           C 
1           A 
3           B 
2           A 
6           C 
4           B

Potential for Additional Filters

I provided a workaround in T-SQL that allows you to use window functions indirectly in query ele-
ments that don’t support those directly. The workaround is a table expression in the form of a CTE or 
derived table. It’s nice to have a workaround, but a table expression adds an extra layer to the query 
and complicates it a bit. The examples I showed are quite simple, but think about long and complex 
queries to begin with. Can you have a simpler solution that doesn’t require this extra layer?

With window functions, SQL Server doesn’t have a solution at the moment. It’s interesting, though, 
to see how others coped with this problem. Teradata for example created a filtering clause it calls 
QUALIFY that is conceptually evaluated after the SELECT clause. This means that it can refer to win-
dow functions directly, as in the following example:

SELECT orderid, orderdate, val 
FROM Sales.OrderValues 
QUALIFY RANK() OVER(ORDER BY val DESC) <= 5;

Furthermore, you can refer to column aliases defined in the SELECT list, like so:

SELECT orderid, orderdate, val, 
  RANK() OVER(ORDER BY val DESC) AS rnk 
FROM Sales.OrderValues 
QUALIFY rnk <= 5;

The QUALIFY clause isn’t defined in standard SQL; rather, it’s a Teradata-specific feature. However, 
it seems like a very interesting solution, and it would be nice to see both the standard and SQL Server 
providing a solution to this need.

www.allitebooks.com

http://www.allitebooks.org
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Reuse of Window Definitions

Suppose that you need to invoke multiple window functions in the same query and part of the win-
dow specification (or all of it) is common to multiple functions. If you indicate the complete window 
specifications in all functions, the code can quickly get lengthy. Here’s an example illustrating the 
problem:

SELECT empid, ordermonth, qty, 
  SUM(qty) OVER (PARTITION BY empid 
                 ORDER BY ordermonth 
                 ROWS BETWEEN UNBOUNDED PRECEDING 
                          AND CURRENT ROW) AS run_sum_qty, 
  AVG(qty) OVER (PARTITION BY empid 
                 ORDER BY ordermonth 
                 ROWS BETWEEN UNBOUNDED PRECEDING 
                          AND CURRENT ROW) AS run_avg_qty, 
  MIN(qty) OVER (PARTITION BY empid 
                 ORDER BY ordermonth 
                 ROWS BETWEEN UNBOUNDED PRECEDING 
                          AND CURRENT ROW) AS run_min_qty, 
  MAX(qty) OVER (PARTITION BY empid 
                 ORDER BY ordermonth 
                 ROWS BETWEEN UNBOUNDED PRECEDING 
                          AND CURRENT ROW) AS run_max_qty 
FROM Sales.EmpOrders;

Standard SQL has an answer to this problem in the form of a clause called WINDOW that allows 
naming a window specification or part of it; then you can refer to that name in other window defini-
tions—ones used by window functions or even by a definition of another window name. This clause is 
conceptually evaluated after the HAVING clause and before the SELECT clause.

SQL Server doesn’t yet support the WINDOW clause. But according to standard SQL, you can 
abbreviate the preceding query using the WINDOW clause like so:

SELECT empid, ordermonth, qty, 
  SUM(qty) OVER W1 AS run_sum_qty, 
  AVG(qty) OVER W1 AS run_avg_qty, 
  MIN(qty) OVER W1 AS run_min_qty, 
  MAX(qty) OVER W1 AS run_max_qty 
FROM Sales.EmpOrders 
WINDOW W1 AS ( PARTITION BY empid 
               ORDER BY ordermonth 
               ROWS BETWEEN UNBOUNDED PRECEDING 
                        AND CURRENT ROW );

That’s quite a difference, as you can see. In this case, the WINDOW clause assigns the name W1 to 
a complete window specification with partitioning, ordering, and framing options. Then all four func-
tions refer to W1 as their window specification. The WINDOW clause is actually quite sophisticated. As 
mentioned, it doesn’t have to name a complete window specification; rather, it can even name only 
part of it. Then a window definition can include a mix of named parts plus explicit parts. As an aside, 
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the coverage of standard SQL for the WINDOW clause is a striking length of 10 pages! And trying to 
decipher the details is no picnic.

It would be great to see SQL Server add such support in the future, especially now that it has 
extensive support for window functions and people are likely to end up with lengthy window 
specifications.

Summary

This chapter introduced the concept of windowing in SQL. It provided the background to window 
functions, explaining the motivation for their use. The chapter then provided a glimpse of solving 
querying tasks using window functions by addressing the task of identifying ranges of existing values 
in a sequence—a problem also known as identifying islands. The chapter then proceeded to explain 
the design of window functions, covering the elements involved in window specifications: partition-
ing, ordering, and framing. Finally, this chapter explained how standard SQL addresses the need to 
reuse a window specification or part of it. The next chapter provides a breakdown of window func-
tions, getting into more detail.
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C H A P T E R  2

a Detailed Look at Window 
Functions

This chapter looks at the various types of window functions, getting into the details of each. Still, 
the focus in this chapter is on the logical aspects of the functions. Optimization will be covered 

separately in Chapter 4, “Optimization of Window Functions.” 

The main reason for separating the discussion of the two layers into different chapters is that stan-
dard SQL deals only with the logical layer. And because Microsoft SQL Server implements the func-
tions based on the standard, the coverage of the logical aspects of the functions in this book could be 
interesting for readers who use database platforms other than SQL Server as well. Chapter 4 focuses 
on the optimization of the functions—namely, the physical layer, which is very platform-specific—and 
will be of interest mainly to readers who use SQL Server.

This chapter is organized in sections based on the function categories: window aggregate func-
tions, rank functions, distribution functions, and offset functions. With each category of functions, I 
first explain the windowing elements supported by the category, and then I explain the specifics of 
each function. If the function was introduced or enhanced in SQL Server 2012, I usually provide alter-
natives available prior to SQL Server 2012 or point to a later section in the book where such alterna-
tives are discussed.

Window Aggregate Functions

This section covers window aggregate functions. I first explain how the windowing concept works 
with aggregate functions; then I describe the supported elements in the specification of window 
aggregate functions and their meaning in detail. And then I get to more specialized aspects such as 
further filtering ideas, handling distinct aggregates, and handling nested aggregates.

Window aggregate Functions Described
Window aggregate functions are the same functions as grouped aggregate functions; only instead of 
applying them to groups in grouped queries, you apply them to windows defined by the OVER clause. 
An aggregate function is supposed to be applied to a set of rows, and it shouldn’t matter to the func-
tion which language mechanism defines the set.
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Supported Windowing elements
In standard SQL, window aggregate functions support three elements: partitioning, ordering, and 
framing. The general form of a window aggregate function is as follows:

function_name(<arguments>) OVER( 
  [ <window partition clause> ] 
  [ <window order clause> [ <window frame clause> ] ] )

The purpose of all three elements is to filter the rows in the window. SQL Server 2005 introduced 
support for the partitioning element, including support for Common Language Runtime (CLR) aggre-
gates. SQL Server 2012 added the ordering and framing options, but support for CLR aggregates has 
not yet been added.

When you don’t apply any restrictions to the window—namely, when you use empty parentheses 
in the OVER clause—the window consists of all rows in the result set of the underlying query. More 
precisely, the initial window consists of the set of rows in the virtual table provided as input to the 
logical query processing phase where the window function appears. This means that if the window 
function appears in the query’s SELECT list, it is the virtual table provided as input to phase 5-1. (See 
Figure 1-6 in Chapter 1, “SQL Windowing.”) This phase appears after processing the FROM, WHERE, 
GROUP BY, and HAVING clauses, and before the removal of duplicate rows if a DISTINCT clause was 
specified (phase 5-2). But that’s the initial window prior to applying restrictions. The next sections 
explain how to further restrict the window.

Partitioning
The partitioning element allows you to restrict the window to only those rows that have the same 
values in the partitioning attributes as the current row. Some think of the partitioning element like 
grouping and some think of it like correlated subqueries, but it’s actually different from both. Unlike 
grouping, partitioning is specific to one function’s window and can be different for different functions 
in the same query. Unlike correlated subqueries, partitioning filters rows from the virtual table pro-
vided to the SELECT phase as input, as opposed to starting with a fresh view of the data and needing 
to repeat all constructs that appear in the outer query.

As the first partitioning example, the following query invokes two window SUM aggregate func-
tions—one without partitioning and another partitioned by custid:

USE TSQL2012; 
 
SELECT orderid, custid, val, 
  SUM(val) OVER() AS sumall, 
  SUM(val) OVER(PARTITION BY custid) AS sumcust 
FROM Sales.OrderValues AS O1; 
 
orderid  custid  val     sumall      sumcust 
-------- ------- ------- ----------- -------- 
10643    1       814.50  1265793.22  4273.00 
10692    1       878.00  1265793.22  4273.00 
10702    1       330.00  1265793.22  4273.00 
10835    1       845.80  1265793.22  4273.00 
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10952    1       471.20  1265793.22  4273.00 
11011    1       933.50  1265793.22  4273.00 
10926    2       514.40  1265793.22  1402.95 
10759    2       320.00  1265793.22  1402.95 
10625    2       479.75  1265793.22  1402.95 
10308    2       88.80   1265793.22  1402.95 
...

The first window function calculates for each row the grand total val (the sumall attribute). The 
second function calculates the customer total val (the sumcust attribute). Figure 2-1 calls out three 
arbitrary sums and illustrates the windows used to calculate those.

orderid  custid  val        sumall          sumcust
-------- ------- -------- -------------- ---------

10643    1        814.50   1265793.22  4273.00
10692    1        878.00   1265793.22  4273.00
10702    1        330.00   1265793.22  4273.00
10835    1        845.80   1265793.22  4273.00
10952    1        471.20   1265793.22  4273.00
11011    1        933.50   1265793.22  4273.00
10926    2        514.40   1265793.22  1402.95
10759    2        320.00   1265793.22  1402.95
10625    2        479.75   1265793.22  1402.95
10308    2        88.80     1265793.22  1402.95
...

FIgURE 2-1 The first partitioning example.

Observe that in the case of the sumall attribute calculated for order 10692, the respective window 
consists of all rows from the result set of the underlying query, because an explicit partitioning ele-
ment wasn’t specified. Therefore, the grand total val for the row that was called out is 1,265,793.22, 
as is the case for all other rows. As for the sumcust attribute, the window function calculating it is 
partitioned by custid; therefore, rows with different custid values have different, disjoint, subsets of 
rows in their respective windows. That’s the case with the two orders that were called out: 10643 and 
10926. The former was placed by customer 1; hence, the respective window consists of the rows with 
customer ID 1, yielding 4,273.00 as the customer total. The latter was placed by customer 2; therefore, 
its respective window consists of the rows with customer ID 2, yielding 1,402.95 as the customer total.

As the second partitioning example, the following query mixes detail elements and window aggre-
gate functions to calculate the percent of the current order value out of the grand total, as well as out 
of the customer total:

SELECT orderid, custid, val, 
  CAST(100. * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pctall, 
  CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust 
FROM Sales.OrderValues AS O1; 
 
orderid  custid  val     pctall  pctcust 
-------- ------- ------- ------- -------- 
10643    1       814.50  0.06    19.06 
10692    1       878.00  0.07    20.55 
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10702    1       330.00  0.03    7.72 
10835    1       845.80  0.07    19.79 
10952    1       471.20  0.04    11.03 
11011    1       933.50  0.07    21.85 
10926    2       514.40  0.04    36.67 
10759    2       320.00  0.03    22.81 
10625    2       479.75  0.04    34.20 
10308    2       88.80   0.01    6.33 
...

Figure 2-2 illustrates the applicable window partitions used by the three calculations that were 
called out.

orderid  custid  val        sumall          sumcust
-------- ------- -------- -------------- ---------

10643    1        814.50   1265793.22  4273.00
10692    1        878.00   1265793.22  4273.00
10702    1        330.00   1265793.22  4273.00
10835    1        845.80   1265793.22  4273.00
10952    1        471.20   1265793.22  4273.00
11011    1        933.50   1265793.22  4273.00
10926    2        514.40   1265793.22  1402.95
10759    2        320.00   1265793.22  1402.95
10625    2        479.75   1265793.22  1402.95
10308    2        88.80     1265793.22  1402.95
...

orderid  custid  val   
-------- ------- -------10643    1       814.50

10692    1       878.00
10702    1       330.00

10835    1       845.80
10952    1       471.20

11011    1       933.50
10926    2       514.40

10759    2       320.00
10625    2       479.75

10308    2       88.80 
...

orderid  custid  val   

-------- ------- -------
10643    1       814.50

10692    1       878.00

10702    1       330.00

10835    1       845.80

10952    1       471.20

11011    1       933.50

orderid  custid  val   

-----
--- -

-----
- ---

----

10926    2       
514.40

10759    2       
320.00

10625    2       
479.75

10308    2       
88.80

FIgURE 2-2 The second partitioning example.

The figure also attempts to visually express the idea that all windows conceptually coexist at the 
same time. Each rectangle calls out a window for one function for one specific underlying order. The 
largest rectangle at the back is an example for a window generated for one of the orders when using 
the OVER clause with empty parentheses. The two smaller rectangles call out the windows for two 
sample orders when using the OVER clause with PARTITION BY custid. The top rectangle is generated 
for an order with a custid value of 1, and the bottom rectangle for an order with a custid value of 2.

Ordering and Framing
Framing is another option that enables you to further restrict the rows in the window partition. The 
ordering element plays a different role for window aggregate functions than for ranking, distribution, 
and offset functions. With aggregate functions, ordering just gives meaning to the framing option. 
Once ordering is defined, framing identifies two bounds in the window partition, and only the rows 
between those two bounds are filtered.
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Earlier, I provided the general form of a window aggregate function. Here it is again as a reminder:

function_name(<arguments>) OVER( 
  [ <window partition clause> ] 
  [ <window order clause> [ <window frame clause> ] ] )

The window frame clause can include three parts and takes the following form:

<window frame units> <window frame extent> [ <window frame exclusion> ]

In the window frame units part, you indicate ROWS or RANGE. The former means that the bounds, 
or endpoints, of the frame can be expressed as offsets in terms of the number of rows of difference 
from the current row. The latter means that the offsets are more dynamic and expressed as a logical 
value difference from the current row’s (only) ordering attribute value. This part will become clearer in 
the upcoming examples.

The window frame extent part is where you indicate the offsets of the bounds with respect to the 
current row. 

SQL Server 2012 implements the ROWS option with all related window frame extent options, and 
it implements the RANGE option with a partial implementation of the related window frame extent 
options.

Finally, the window frame exclusion part allows you to specify whether to exclude the current row, 
its peers, or both. The window frame exclusion part isn’t implemented in SQL Server 2012.

The ROWS window frame extent option I’ll start with examples for using the ROWS clause. As 
mentioned, using ROWS as the window frame units part means that you indicate the frame bounds 
as offsets in terms of the number of rows with respect to the current row. The standard ROWS clause 
supports the following options, all of which are implemented in SQL Server 2012:

ROWS BETWEEN UNBOUNDED PRECEDING  | 
             <n> PRECEDING        | 
             <n> FOLLOWING        | 
             CURRENT ROW  
         AND   
             UNBOUNDED FOLLOWING  | 
             <n> PRECEDING        | 
             <n> FOLLOWING        | 
             CURRENT ROW

These options are probably straightforward, but just in case they’re not, I’ll provide a brief expla-
nation. For the low bound of the frame, UNBOUNDED PRECEDING means there is no low boundary 
point; <n> preceding and <n> following specifies a number of rows before and after the current one, 
respectively; and CURRENT ROW, obviously, means that the starting row is the current row.

As for the high bound of the frame, you can see the options are quite similar, except that if you 
don’t want a high boundary point, you indicate UNBOUNDED FOLLOWING, naturally.
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As an example, consider the following frame:

PARTITION BY custid 
ORDER BY ordermonth 
ROWS BETWEEN UNBOUNDED PRECEDING 
  AND CURRENT ROW 

The window frame created for each row contains all rows from the first order month through the 
current row. Note that you can use ROWS UNBOUNDED PRECEDING as a shorthand way of saying 
“ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.” But if you omit the window frame 
extent part altogether, just leaving the partitioning and ordering parts, you get something a bit dif-
ferent by default. I’ll get to this later when discussing the RANGE option. 

As the first example using the ROWS option, consider the following query against the  Sales.Emp-
Orders view, followed by its output shown here in abbreviated form:

SELECT empid, ordermonth, qty, 
  SUM(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW) AS runqty 
FROM Sales.EmpOrders; 
 
empid       ordermonth              qty         runqty 
----------- ----------------------- ----------- ----------- 
1           2006-07-01 00:00:00.000 121         121 
1           2006-08-01 00:00:00.000 247         368 
1           2006-09-01 00:00:00.000 255         623 
1           2006-10-01 00:00:00.000 143         766 
1           2006-11-01 00:00:00.000 318         1084 
... 
2           2006-07-01 00:00:00.000 50          50 
2           2006-08-01 00:00:00.000 94          144 
2           2006-09-01 00:00:00.000 137         281 
2           2006-10-01 00:00:00.000 248         529 
2           2006-11-01 00:00:00.000 237         766 
...

This query uses the aforementioned frame specification to calculate a running total quantity for 
each employee and order month. Recall that you can use a more concise form to indicate the frame 
while retaining the same meaning:

SELECT empid, ordermonth, qty, 
  SUM(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                ROWS UNBOUNDED PRECEDING) AS runqty 
FROM Sales.EmpOrders;

Figure 2-3 provides an illustration that depicts the applicable frame with respect to each row using 
arrows.
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empid     ordermonth                      qty         runqty
--------- ---------------------------- --------- --------

1             2006-07-01 00:00:00.000  121         121
1             2006-08-01 00:00:00.000  247         368
1             2006-09-01 00:00:00.000  255         623
1             2006-10-01 00:00:00.000  143         766
1             2006-11-01 00:00:00.000  318         1084
...
2             2006-07-01 00:00:00.000  50           50
2             2006-08-01 00:00:00.000  94           144
2             2006-09-01 00:00:00.000  137         281
2             2006-10-01 00:00:00.000  248         529
2             2006-11-01 00:00:00.000  237         766
...

FIgURE 2-3 Frame example: ROWS UNBOUNDED PRECEDING.

As a second example for using the ROWS option, the following query invokes three window func-
tions with three different frame specifications:

SELECT empid, ordermonth,  
  MAX(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                ROWS BETWEEN 1 PRECEDING 
                         AND 1 PRECEDING) AS prvqty, 
  qty AS curqty, 
  MAX(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                ROWS BETWEEN 1 FOLLOWING 
                         AND 1 FOLLOWING) AS nxtqty, 
  AVG(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                ROWS BETWEEN 1 PRECEDING 
                         AND 1 FOLLOWING) AS avgqty 
FROM Sales.EmpOrders; 
 
empid  ordermonth              prvqty  curqty  nxtqty  avgqty 
------ ----------------------- ------- ------- ------- ------- 
1      2006-07-01 00:00:00.000 NULL    121     247     184 
1      2006-08-01 00:00:00.000 121     247     255     207 
1      2006-09-01 00:00:00.000 247     255     143     215 
1      2006-10-01 00:00:00.000 255     143     318     238 
1      2006-11-01 00:00:00.000 143     318     536     332 
... 
1      2008-01-01 00:00:00.000 583     397     566     515 
1      2008-02-01 00:00:00.000 397     566     467     476 
1      2008-03-01 00:00:00.000 566     467     586     539 
1      2008-04-01 00:00:00.000 467     586     299     450 
1      2008-05-01 00:00:00.000 586     299     NULL    442 
...

The calculation that generates the attribute prvqty defines a frame in terms of rows between 1 pre-
ceding and 1 preceding. This means that the frame includes just the previous row in the partition. The 
MAX aggregate applied to the qty attribute is artificial here because, at most, there will be just one 
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row in the frame. The maximum qty value is the qty value from that row or NULL if there are no rows 
in the frame (if the current row is the first one in the partition). Figure 2-4 illustrates the applicable 
frame with respect to each row, containing at most just one row.

empid    ordermonth                      prvqty  curqty  nxtqty   avgqty
-------- ---------------------------- -------- ------- --------- -------
1           2006-07-01 00:00:00.000  NULL    121      247        184
1           2006-08-01 00:00:00.000  121       247      255        207
1           2006-09-01 00:00:00.000  247       255      143        215
1           2006-10-01 00:00:00.000  255       143      318        238
1           2006-11-01 00:00:00.000  143       318      536        332
...
1           2008-01-01 00:00:00.000  583       397      566        515
1           2008-02-01 00:00:00.000  397       566      467        476
1           2008-03-01 00:00:00.000  566       467      586        539
1           2008-04-01 00:00:00.000  467       586      299        450
1           2008-05-01 00:00:00.000  586       299      NULL     442
...

FIgURE 2-4 Frame example: ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING.

Note that there’s no previous row with respect to the first one in the partition; therefore, the 
prvqty value in the first row in the partition is NULL.

Similarly, the calculation that generates the attribute nxtqty defines a frame in terms of rows 
between 1 following and 1 following, meaning that the frame includes just the next row. Then the 
MAX(qty) aggregate returns the qty value from the next row. Figure 2-5 illustrates the applicable 
frame with respect to each row.

empid    ordermonth                      prvqty  curqty  nxtqty   avgqty
-------- ---------------------------- -------- ------- --------- -------
1           2006-07-01 00:00:00.000  NULL    121      247        184
1           2006-08-01 00:00:00.000  121       247      255        207
1           2006-09-01 00:00:00.000  247       255      143        215
1           2006-10-01 00:00:00.000  255       143      318        238
1           2006-11-01 00:00:00.000  143       318      536        332
...
1           2008-01-01 00:00:00.000  583       397      566        515
1           2008-02-01 00:00:00.000  397       566      467        476
1           2008-03-01 00:00:00.000  566       467      586        539
1           2008-04-01 00:00:00.000  467       586      299        450
1           2008-05-01 00:00:00.000  586       299      NULL     442
...

FIgURE 2-5 Frame example: ROWS BETWEEN 1 FOLLOWING AND 1 FOLLOWING.

Just like there’s no previous row with respect to the first one in the partition, there’s no next row 
with respect to the last one in the partition; therefore, the nxtqty value in the last row in the partition 
is NULL.
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Note Later in this chapter in the section describing offset functions, you will see alterna-
tive, more concise ways to obtain a value from a single row that is in a certain offset from 
the current one. For example, you will see how to get a value from the previous row using a 
function called LAG and from the next row using a function called LEAD.

The calculation that generates the result attribute avgqty defines a frame of rows between 1 pre-
ceding and 1 following, meaning that the frame consists of up to three rows. Figure 2-6 illustrates the 
applicable frame with respect to two arbitrary rows just as an example.

empid    ordermonth                      prvqty  curqty  nxtqty   avgqty
-------- ---------------------------- -------- ------- --------- -------
1           2006-07-01 00:00:00.000  NULL    121      247        184
1           2006-08-01 00:00:00.000  121       247      255        207
1           2006-09-01 00:00:00.000  247       255      143        215
1           2006-10-01 00:00:00.000  255       143      318        238
1           2006-11-01 00:00:00.000  143       318      536        332
...
1           2008-01-01 00:00:00.000  583       397      566        515
1           2008-02-01 00:00:00.000  397       566      467        476
1           2008-03-01 00:00:00.000  566       467      586        539
1           2008-04-01 00:00:00.000  467       586      299        450
1           2008-05-01 00:00:00.000  586       299      NULL     442
...

FIgURE 2-6 Frame example: ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING.

As with the other calculations, there’s no row preceding the first one in the partition and no row 
following the last one; hence, the frame in this case can consist of fewer than, but no more than, three 
rows. The AVG correctly divides the sum by the actual count of rows in the frame.

Combined, the partitioning and ordering elements in the EmpOrders view are unique. This means 
that the same combination of empid and ordermonth values cannot repeat itself in the view. And this, 
in turn, means that the three calculations used in our query are deterministic—in other words, the 
query has only one possible correct result for a given state of the input.

Things are different, though, when the combination of partitioning and ordering elements isn’t 
unique. Then calculations using the ROWS option might be nondeterministic. I’ll demonstrate this 
with an example. Run the code in Listing 2-1 to create and populate a table called T1.

LISTIng 2-1 DDL and Sample Data for Table T1

SET NOCOUNT ON; 
USE TSQL2012; 
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1; 
GO 
CREATE TABLE dbo.T1 
( 
  keycol INT         NOT NULL CONSTRAINT PK_T1 PRIMARY KEY, 
  col1   VARCHAR(10) NOT NULL 
); 
 



42  CHAPTER 2 a Detailed Look at Window Functions

INSERT INTO dbo.T1 VALUES 
  (2, 'A'),(3, 'A'), 
  (5, 'B'),(7, 'B'),(11, 'B'), 
  (13, 'C'),(17, 'C'),(19, 'C'),(23, 'C');

Consider the following query, which is followed by its output:

SELECT keycol, col1, 
  COUNT(*) OVER(ORDER BY col1 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW) AS cnt 
FROM dbo.T1; 
 
keycol      col1       cnt 
----------- ---------- ----------- 
2           A          1 
3           A          2 
5           B          3 
7           B          4 
11          B          5 
13          C          6 
17          C          7 
19          C          8 
23          C          9

Observe that different rows that share the same partitioning (inapplicable, in our case) and order-
ing values get different counts. That’s because ordering among peers (rows that share the same par-
titioning and explicit ordering) is arbitrary—in other words, left to the implementation. In SQL Server, 
this simply depends on optimization. For example, I created the following index:

CREATE UNIQUE INDEX idx_col1D_keycol ON dbo.T1(col1 DESC, keycol);

Then I ran the query again, and the second time I got the following output:

keycol      col1       cnt 
----------- ---------- ----------- 
3           A          1 
2           A          2 
5           B          3 
11          B          4 
7           B          5 
23          C          6 
19          C          7 
17          C          8 
13          C          9

Technically, as far as the standard is concerned, this output is just as correct as the previous output.

If you need to guarantee a deterministic result, you should make sure that the combination of par-
titioning and ordering elements is unique. You can achieve this by adding a tiebreaker to the ordering 
specification—in our case, by adding the primary key column, like so:
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SELECT keycol, col1, 
  COUNT(*) OVER(ORDER BY col1, keycol 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW) AS cnt 
FROM dbo.T1; 
 
keycol      col1       cnt 
----------- ---------- ----------- 
2           A          1 
3           A          2 
5           B          3 
7           B          4 
11          B          5 
13          C          6 
17          C          7 
19          C          8 
23          C          9

Now the query is deterministic, meaning that there’s only one correct result.

The RAngE window frame extent option Standard SQL also supports specifying the window 
frame extent using the RANGE option. Here are the possibilities for the low and high bounds, or end-
points, of the frame:

RANGE BETWEEN UNBOUNDED PRECEDING  | 
              <val> PRECEDING      | 
              <val> FOLLOWING      | 
              CURRENT ROW  
           AND   
              UNBOUNDED FOLLOWING  | 
              <val> PRECEDING      | 
              <val> FOLLOWING      | 
              CURRENT ROW

This option is supposed to enable you to specify the low and high bounds of the frame more 
dynamically—as a logical difference between the current row’s ordering value and the bound’s value. 
Think about the difference between saying “Give me the total quantities for the last three periods of 
activity,” versus saying “Give me the total quantities for the period starting two months before the 
current period and until the current period.” The former concept is what ROWS was designed to pro-
vide, and the latter concept is what RANGE was designed to provide. (I’ll say more about this example 
shortly.)

As of SQL Server 2012, RANGE is not implemented fully. It is currently supported only with 
UNBOUNDED and CURRENT ROW window-frame delimiters. What’s also still missing is support for a 
temporal INTERVAL type that, combined with full support for the RANGE option, would provide a lot 
of flexibility in the frame definition. As an example, the following query defines a frame based on a 
range between two months before the current month and the current month (and this query doesn’t 
run in SQL Server 2012).
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SELECT empid, ordermonth, qty, 
  SUM(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                RANGE BETWEEN INTERVAL '2' MONTH PRECEDING 
                          AND CURRENT ROW) AS sum3month 
FROM Sales.EmpOrders;

This is different than using ROWS BETWEEN 2 PRECEDING AND CURRENT ROW even when the 
order month is unique for each employee. Consider the possibility that an employee can be inac-
tive in certain months. With the ROWS option, the frame simply starts two rows before the current 
one, which might be more than two months before the current one. With RANGE, the frame is more 
dynamic, starting two months before the current one—whatever number of rows this translates to. 
Figure 2-7 illustrates the applicable frame of rows for some of the rows in the underlying query.

empid   ordermonth  qty                   sum3month
-------- -------------- ---------------- ---------------
...                           
9            2006-07-01   294                  294
9            2006-10-01   256                  256
9            2006-12-01   25                    281
9            2007-01-01   74                    99
9            2007-03-01   137                  211
9            2007-04-01   52                    189
9            2007-05-01   8                      197
9            2007-06-01   161                  221
9            2007-07-01   4                      173
9            2007-08-01   98                    263
...

FIgURE 2-7 Frame example: RANGE INTERVAL '2' MONTH PRECEDING.

Observe that the number of rows in the different frames varies between 1, 2, and 3. This happens 
because, in some cases, there aren’t three consecutive months of activity for the same employee.

Just like with the ROWS option, the RANGE option also supports more concise ways to express 
what you want. If you don’t specify an upper bound, CURRENT ROW is assumed. So, in our example, 
instead of using RANGE BETWEEN INTERVAL '2' MONTH PRECEDING AND CURRENT ROW, you can 
use just RANGE INTERVAL '2' MONTH PRECEDING. But as mentioned, this query won’t run in SQL 
Server 2012 because of the incomplete support for the RANGE option and the lack of support for the 
INTERVAL type. For now, you need to use alternative methods. It’s still possible to handle the task with 
the existing support for window functions, but the solutions are quite convoluted. Another option is 
to rely on more traditional constructs such as subqueries, as the following example shows:

SELECT empid, ordermonth, qty, 
  (SELECT SUM(qty) 
   FROM Sales.EmpOrders AS O2 
   WHERE O2.empid = O1.empid 
     AND O2.ordermonth BETWEEN DATEADD(month, -2, O1.ordermonth) 
                           AND O1.ordermonth) AS sum3month 
FROM Sales.EmpOrders AS O1;
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As mentioned, SQL Server 2012 does support the RANGE option with UNBOUNDED and CURRENT 
ROW as delimiters. For example, the window function in the following query calculates the running 
total quantity from the beginning of the employee activity until the current month:

SELECT empid, ordermonth, qty, 
  SUM(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                RANGE BETWEEN UNBOUNDED PRECEDING 
                          AND CURRENT ROW) AS runqty 
FROM Sales.EmpOrders; 
 
empid       ordermonth              qty         runqty 
----------- ----------------------- ----------- ----------- 
1           2006-07-01 00:00:00.000 121         121 
1           2006-08-01 00:00:00.000 247         368 
1           2006-09-01 00:00:00.000 255         623 
1           2006-10-01 00:00:00.000 143         766 
1           2006-11-01 00:00:00.000 318         1084 
... 
2           2006-07-01 00:00:00.000 50          50 
2           2006-08-01 00:00:00.000 94          144 
2           2006-09-01 00:00:00.000 137         281 
2           2006-10-01 00:00:00.000 248         529 
2           2006-11-01 00:00:00.000 237         766 
...

Figure 2-8 illustrates the applicable frame with respect to each row in the underlying query.

empid     ordermonth                      qty         runqty
--------- ---------------------------- --------- --------

1             2006-07-01 00:00:00.000  121         121
1             2006-08-01 00:00:00.000  247         368
1             2006-09-01 00:00:00.000  255         623
1             2006-10-01 00:00:00.000  143         766
1             2006-11-01 00:00:00.000  318         1084
...
2             2006-07-01 00:00:00.000  50           50
2             2006-08-01 00:00:00.000  94           144
2             2006-09-01 00:00:00.000  137         281
2             2006-10-01 00:00:00.000  248         529
2             2006-11-01 00:00:00.000  237         766
...

FIgURE 2-8 Frame example: RANGE UNBOUNDED PRECEDING.

As mentioned, if you don’t indicate the upper bound, the default is CURRENT ROW. So instead of 
using RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, you can use the shorter form 
of RANGE UNBOUNDED PRECEDING, like so:

SELECT empid, ordermonth, qty, 
  SUM(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth 
                RANGE UNBOUNDED PRECEDING) AS runqty 
FROM Sales.EmpOrders;
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This window frame extent, as it turns out, is also the default when you indicate window ordering 
without an explicit window frame extent specification. So the following query is logically equivalent to 
the last two:

SELECT empid, ordermonth, qty, 
  SUM(qty) OVER(PARTITION BY empid 
                ORDER BY ordermonth) AS runqty 
FROM Sales.EmpOrders;

That’s quite a significant savings in the amount of code.

If you carefully followed the examples with both the ROWS and RANGE options, at this point you 
might wonder whether there’s any difference between the two when using only UNBOUNDED and 
CURRENT ROW as delimiters. For example, when comparing Figure 2-3 (which shows the frames 
defined with ROWS UNBOUNDED PRECEDING) and Figure 2-8 (which shows the frames defined with 
RANGE UNBOUNDED PRECEDING), they seem identical. Indeed, the two frame extent specifica-
tions have the same logical meaning when the combination of partitioning plus ordering elements 
is unique. Querying the EmpOrders view, with empid as the partitioning element and ordermonth as 
the ordering element, you do get a unique combination. So, in this case, both options are logically 
equivalent. There is a difference between the meanings of the two when the combination of parti-
tioning and ordering elements isn’t unique, meaning that there is potential for ties.

To demonstrate the difference, I’ll use the table T1 you created and populated earlier by running 
the code in Listing 2-1. As a reminder, the option ROWS BETWEEN UNBOUNDED PRECEDING AND 
CURRENT ROW (or the equivalent ROWS UNBOUNDED PRECEDING) ends the frame at the current 
row and doesn’t include any further peers:

SELECT keycol, col1, 
  COUNT(*) OVER(ORDER BY col1 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW) AS cnt 
FROM dbo.T1; 
 
keycol      col1       cnt 
----------- ---------- ----------- 
2           A          1 
3           A          2 
5           B          3 
7           B          4 
11          B          5 
13          C          6 
17          C          7 
19          C          8 
23          C          9
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Here’s a similar query, only this one uses RANGE instead of ROWS:

SELECT keycol, col1, 
  COUNT(*) OVER(ORDER BY col1 
                RANGE BETWEEN UNBOUNDED PRECEDING 
                          AND CURRENT ROW) AS cnt 
FROM dbo.T1; 
 
keycol      col1       cnt 
----------- ---------- ----------- 
2           A          2 
3           A          2 
5           B          5 
7           B          5 
11          B          5 
13          C          9 
17          C          9 
19          C          9 
23          C          9

With RANGE, when the upper bound is CURRENT_ROW, by default peers are included. Even 
though the terminology is CURRENT ROW, it actually means current ordering value. Conceptually, 
expressed as a predicate, it means <window_row>.ordermonth <= <current_row>.ordermonth.

Window Frame Exclusion Window functions in standard SQL support an option called window 
frame exclusion that is part of the framing specification. This option controls whether to include the 
current row and its peers in case of ties in the ordering element’s values. SQL Server 2012 doesn’t 
support this option.

The standard supports four window frame exclusion possibilities, listed here with a short 
description:

■■ EXCLUDE CURREnT ROW Exclude the current row.

■■ EXCLUDE gROUP Exclude the current row as well as its peers.

■■ EXCLUDE TIES Keep the current row, but exclude its peers.

■■ EXCLUDE nO OTHERS (default) Don’t exclude any further rows.

Note that the window frame exclusion option can only further remove rows from the frame; it 
won’t return a row if the previous framing options (window frame unit and window frame extent) 
removed it.

I’ll use the table T1 created and populated with the code provided earlier in Listing 2-1 to dem-
onstrate the concept of window frame exclusion through examples. Following are four queries with 
the different window frame exclusion possibilities, each followed by what would be its desired output 
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(according to my interpretation of the standard, because this code is not supported by SQL Server 
2012 or any other platform that I know of):

-- EXCLUDE NO OTHERS (don't exclude rows) 
SELECT keycol, col1, 
  COUNT(*) OVER(ORDER BY col1 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW 
                EXCLUDE NO OTHERS) AS cnt 
FROM dbo.T1; 
 
keycol      col1       cnt 
----------- ---------- ----------- 
2           A          1 
3           A          2 
5           B          3 
7           B          4 
11          B          5 
13          C          6 
17          C          7 
19          C          8 
23          C          9 

-- EXCLUDE CURRENT ROW (exclude cur row) 
SELECT keycol, col1, 
  COUNT(*) OVER(ORDER BY col1 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW 
                EXCLUDE CURRENT ROW) AS cnt 
FROM dbo.T1; 
 
keycol      col1       cnt 
----------- ---------- ----------- 
2           A          0 
3           A          1 
5           B          2 
7           B          3 
11          B          4 
13          C          5 
17          C          6 
19          C          7 
23          C          8 

-- EXCLUDE GROUP (exclude cur row, exclude peers) 
SELECT keycol, col1, 
  COUNT(*) OVER(ORDER BY col1 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW 
                EXCLUDE GROUP) AS cnt 
FROM dbo.T1; 
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keycol      col1       cnt 
----------- ---------- ----------- 
2           A          0 
3           A          0 
5           B          2 
7           B          2 
11          B          2 
13          C          5 
17          C          5 
19          C          5 
23          C          5 

-- EXCLUDE TIES (keep cur row, exclude peers) 
SELECT keycol, col1, 
  COUNT(*) OVER(ORDER BY col1 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW 
                EXCLUDE TIES) AS cnt 
FROM dbo.T1; 
 
keycol      col1       cnt 
----------- ---------- ----------- 
2           A          1 
3           A          1 
5           B          3 
7           B          3 
11          B          3 
13          C          6 
17          C          6 
19          C          6 
23          C          6

Further Filtering Ideas
Recall that the various elements in the window specification (partitioning, ordering, and framing) are 
essentially different filtering options. There are additional filtering needs that the aforementioned 
options don’t address. Some of those needs are addressed by the standard with a clause called FILTER 
that wasn’t implemented in SQL Server 2012. There are also attempts to address other filtering needs 
with proposals to the standard that I hope will find their way, in some form, to both the standard and 
SQL Server.

I’ll start with the FILTER clause. This is a clause that the standard defines for aggregate functions as 
a way to filter the set of rows that the aggregate applies to using a predicate. The form of this clause 
is as follows:

<aggregate_function>(<input_expression>) FILTER (WHERE <search_condition>)
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As an example, the following query calculates the difference between the current quantity and the 
employee monthly average up to three months before the present date (not the current row’s month):

SELECT empid, ordermonth, qty, 
  qty - AVG(qty) 
          FILTER (WHERE ordermonth <= DATEADD(month, -3, CURRENT_TIMESTAMP)) 
          OVER(PARTITION BY empid) AS diff 
FROM Sales.EmpOrders;

SQL Server 2012 doesn’t support the FILTER clause. In fact, I don’t know of any database platform 
that implements it. If you need such capability, there’s a pretty simple workaround—using a CASE 
expression as input to the aggregate function, like so:

<aggregate_function>(CASE WHEN <search_condition> THEN <input_expression> END)

Here’s the complete query that addresses the last example:

SELECT empid, ordermonth, qty, 
  qty - AVG(CASE WHEN ordermonth <= DATEADD(month, -3, CURRENT_TIMESTAMP) THEN qty END) 
          OVER(PARTITION BY empid) AS diff 
FROM Sales.EmpOrders;

What is still missing in both the standard (as of SQL:2008) and SQL Server 2012 is the ability to 
refer to elements from the current row for filtering purposes. This could be applicable to the FILTER 
clause, to the workaround with the CASE expression, as well as to other filtering concepts.

To demonstrate this need, suppose for a moment that you could refer to an element from the 
current row by prefixing it with $current_row. Then, say you needed to write a query against the 
Sales.OrderValues view and calculate for each order the difference between the current order value 
and the employee average for customers other than the current one. You use the following query to 
achieve this task with the FILTER clause:

SELECT orderid, orderdate, empid, custid, val, 
  val - AVG(val) 
          FILTER (WHERE custid <> $current_row.custid) 
          OVER(PARTITION BY empid) AS diff 
FROM Sales.OrderValues;

And you can use the following query with the CASE expression as an alternative:

SELECT orderid, orderdate, empid, custid, val, 
  val - AVG(CASE WHEN custid <> $current_row.custid THEN val END) 
          OVER(PARTITION BY empid) AS diff 
FROM Sales.OrderValues;

Again, I’m just inventing stuff now to illustrate what’s missing at the moment in the language, so 
don’t try this at home.



 Window Aggregate Functions  51

Proposals for enhancements
There are very interesting proposals for additions to the standard to address this need and 
more. One example is a proposal for a feature the authors refer to as comparative window 
functions. You can find a blog entry by Tom Kyte about this proposal here:

http://tkyte.blogspot.com/2009/11/comparative-window-functions.html

And you can find the actual proposal document here:

http://asktom.oracle.com/pls/asktom/z?p_url=ASKTOM%2Edownload_file%3Fp_
file%3D7575682831744048130&p_cat=comparative_window_fns_proposal.pdf

The concept of comparative window functions looks interesting. It’s pretty straightforward 
and solves the need to refer to elements from the current row. But what’s really going to get 
your brain working is an insanely cool proposal to the standard called row pattern recognition, 
which addresses the need to refer to elements from the current row, and so much more.

The concept allows for identifying patterns in sequences of rows using semantics based on 
regular expressions. The idea can be applied to define a table expression, as well as to filter 
rows in a window specification. It can be used for streaming technologies that work with a 
stream of moving data, such as SQL Server’s StreamInsight, but also with queries that work with 
nonmoving data, or data at rest. Here is a link to a publicly available document:

http://www.softwareworkshop.com/h2/SQL-RPR-review-paper.pdf

Before you read this document, I suggest you make sure you have a clear mind and, say, a 
gallon thermos full of coffee (caffeinated). It’s not an easy read, but it’s a very, very interesting 
idea that I sure hope will find its way into the standard and into SQL Server, with support also 
for data at rest and not just moving data.

Distinct aggregates
SQL Server 2012 doesn’t support using the DISTINCT option with window aggregate functions. For 
example, suppose that you need to query the Sales.OrderValues view and return with each order the 
number of distinct customers that were handled by the current employee up to, and including, the 
current date. What you want to run is the following query:

SELECT empid, orderdate, orderid, val, 
  COUNT(DISTINCT custid) OVER(PARTITION BY empid 
                              ORDER BY orderdate) AS numcusts 
FROM Sales.OrderValues;

http://tkyte.blogspot.com/2009/11/comparative-window-functions.html
http://asktom.oracle.com/pls/asktom/z?p_url=ASKTOM%2Edownload_file%3Fp_file%3D7575682831744048130&p_cat=comparative_window_fns_proposal.pdf
http://asktom.oracle.com/pls/asktom/z?p_url=ASKTOM%2Edownload_file%3Fp_file%3D7575682831744048130&p_cat=comparative_window_fns_proposal.pdf
http://www.softwareworkshop.com/h2/SQL-RPR-review-paper.pdf
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But because this query is not supported, you need a workaround. One way to address this need 
is with the help of the ROW_NUMBER function. I will describe this function in more detail later in 
this chapter. For now, it suffices to say that it returns a unique integer for each row in the partition, 
starting with 1 and incrementing by 1 based on the window ordering specification. Using the ROW_ 
NUMBER function, you can assign row numbers partitioned by empid and custid, and ordered by 
orderdate. This means that the rows marked with row number 1 represent the first occurrence of a 
customer for each employee based on order-date ordering. Using a CASE expression, you can return 
the custid value only when the row number is equal to 1 and use NULL otherwise. Here’s a query 
implementing the logic described so far, followed by an abbreviated form of its output:

SELECT empid, orderdate, orderid, custid, val, 
  CASE  
    WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid 
                           ORDER BY orderdate) = 1 
      THEN custid 
  END AS distinct_custid 
FROM Sales.OrderValues; 
 
empid  orderdate               orderid  custid  val      distinct_custid 
------ ----------------------- -------- ------- -------- --------------- 
1      2006-07-17 00:00:00.000 10258    20      1614.88  20 
1      2006-08-01 00:00:00.000 10270    87      1376.00  87 
1      2006-08-07 00:00:00.000 10275    49      291.84   49 
1      2006-08-20 00:00:00.000 10285    63      1743.36  63 
1      2006-08-28 00:00:00.000 10292    81      1296.00  81 
1      2006-08-29 00:00:00.000 10293    80      848.70   80 
1      2006-09-12 00:00:00.000 10304    80      954.40   NULL 
1      2006-09-16 00:00:00.000 10306    69      498.50   69 
1      2006-09-20 00:00:00.000 10311    18      268.80   18 
1      2006-09-25 00:00:00.000 10314    65      2094.30  65 
1      2006-09-27 00:00:00.000 10316    65      2835.00  NULL 
1      2006-10-09 00:00:00.000 10325    39      1497.00  39 
1      2006-10-29 00:00:00.000 10340    9       2436.18  9 
1      2006-11-11 00:00:00.000 10351    20      5398.73  NULL 
1      2006-11-19 00:00:00.000 10357    46      1167.68  46 
1      2006-11-22 00:00:00.000 10361    63      2046.24  NULL 
1      2006-11-26 00:00:00.000 10364    19      950.00   19 
1      2006-12-03 00:00:00.000 10371    41      72.96    41 
1      2006-12-05 00:00:00.000 10374    91      459.00   91 
1      2006-12-09 00:00:00.000 10377    72      863.60   72 
1      2006-12-09 00:00:00.000 10376    51      399.00   51 
1      2006-12-17 00:00:00.000 10385    75      691.20   75 
1      2006-12-18 00:00:00.000 10387    70      1058.40  70 
1      2006-12-25 00:00:00.000 10393    71      2556.95  71 
1      2006-12-25 00:00:00.000 10394    36      442.00   36 
1      2006-12-27 00:00:00.000 10396    25      1903.80  25 
1      2007-01-01 00:00:00.000 10400    19      3063.00  NULL 
1      2007-01-01 00:00:00.000 10401    65      3868.60  NULL 
...

Observe that only the first occurrence of each custid value for each employee based on order-date 
ordering is returned, and NULLs are returned instead of the subsequent occurrences. The next step is 
to define a CTE based on the previous query, and then apply a running count aggregate to the result 
of the CASE expression, like so:
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WITH C AS 
( 
  SELECT empid, orderdate, orderid, custid, val, 
    CASE  
      WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid 
                             ORDER BY orderdate) = 1 
        THEN custid 
    END AS distinct_custid 
  FROM Sales.OrderValues 
) 
SELECT empid, orderdate, orderid, val, 
  COUNT(distinct_custid) OVER(PARTITION BY empid 
                              ORDER BY orderdate) AS numcusts 
FROM C; 
 
empid  orderdate               orderid  val      numcusts 
------ ----------------------- -------- -------- --------- 
1      2006-07-17 00:00:00.000 10258    1614.88  1 
1      2006-08-01 00:00:00.000 10270    1376.00  2 
1      2006-08-07 00:00:00.000 10275    291.84   3 
1      2006-08-20 00:00:00.000 10285    1743.36  4 
1      2006-08-28 00:00:00.000 10292    1296.00  5 
1      2006-08-29 00:00:00.000 10293    848.70   6 
1      2006-09-12 00:00:00.000 10304    954.40   6 
1      2006-09-16 00:00:00.000 10306    498.50   7 
1      2006-09-20 00:00:00.000 10311    268.80   8 
1      2006-09-25 00:00:00.000 10314    2094.30  9 
1      2006-09-27 00:00:00.000 10316    2835.00  9 
1      2006-10-09 00:00:00.000 10325    1497.00  10 
1      2006-10-29 00:00:00.000 10340    2436.18  11 
1      2006-11-11 00:00:00.000 10351    5398.73  11 
1      2006-11-19 00:00:00.000 10357    1167.68  12 
1      2006-11-22 00:00:00.000 10361    2046.24  12 
1      2006-11-26 00:00:00.000 10364    950.00   13 
1      2006-12-03 00:00:00.000 10371    72.96    14 
1      2006-12-05 00:00:00.000 10374    459.00   15 
1      2006-12-09 00:00:00.000 10377    863.60   17 
1      2006-12-09 00:00:00.000 10376    399.00   17 
1      2006-12-17 00:00:00.000 10385    691.20   18 
1      2006-12-18 00:00:00.000 10387    1058.40  19 
1      2006-12-25 00:00:00.000 10393    2556.95  21 
1      2006-12-25 00:00:00.000 10394    442.00   21 
1      2006-12-27 00:00:00.000 10396    1903.80  22 
1      2007-01-01 00:00:00.000 10400    3063.00  22 
1      2007-01-01 00:00:00.000 10401    3868.60  22 
...

Nested aggregates
By now, you know that there are grouped aggregates and window aggregates. As mentioned, the 
functions themselves are the same, but the context is different. Grouped aggregates operate on 
groups of rows defined by the GROUP BY clause and return one value per group. Window aggregates 
operate on windows of rows and return one value for each row in the underlying query. Recall the 
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discussion about logical query processing from Chapter 1. As a reminder, here’s the order in which 
the various query clauses are conceptually evaluated:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY

Grouped aggregates are used when the query is a grouped query, and they are allowed in phases 
that are evaluated after the groups have been defined—namely, from phase 4 and on. Keep in mind 
that each group is represented by only one row in the result. Window aggregates are allowed from 
phase 5 and on because they are supposed to operate on rows from the underlying query—after the 
HAVING phase. 

The two types of aggregates—even though they share the same function names and calculation 
logic—operate in different contexts. And to the point I want to make in this section: What if you 
want to sum a value grouped by employee ID and, at the same time, aggregate those sums across all 
employees?

It’s perfectly valid, albeit strange at first sight, to apply a window aggregate to a window that 
contains rows with attributes produced by grouped aggregates. I say strange because at first sight an 
expression like SUM(SUM(val)) in a query usually doesn’t seem right. But it could very well be. Con-
sider the following query, which addresses the task at hand, followed by its output:

SELECT empid, 
  SUM(val) AS emptotal, 
  SUM(val) / SUM(SUM(val)) OVER() * 100. AS pct 
FROM Sales.OrderValues 
GROUP BY empid; 
 
empid  emptotal   pct 
------ ---------- ----------- 
3      202812.88  16.022500 
6      73913.15   5.839200 
9      77308.08   6.107400 
7      124568.24  9.841100 
1      192107.65  15.176800 
4      232890.87  18.398800 
2      166537.76  13.156700 
5      68792.30   5.434700 
8      126862.29  10.022300

To distinguish between the two types of aggregates, the grouped SUM aggregate is italicized, and 
the window SUM aggregate is bolded. The grouped aggregate SUM(val) calculates the total values of 
all orders for each employee. This means that the result of the underlying query has a row for each 
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employee, with that total. Then the window aggregate calculates the total of all employee totals—in 
other words, the grand total—and divides the grouped aggregate by the window aggregate to calcu-
late the percentage of the employee total out of the grand total. 

It can be easier to see the logic behind the nested aggregates if you think of the query in two 
steps. The first step calculates the grouped aggregate, like so:

SELECT empid, 
  SUM(val) AS emptotal 
FROM Sales.OrderValues 
GROUP BY empid; 
 
empid  emptotal 
------ ----------- 
3      202812.88 
6      73913.15 
9      77308.08 
7      124568.24 
1      192107.65 
4      232890.87 
2      166537.76 
5      68792.30 
8      126862.29

You can think of this result as being the starting point for further window aggregation. So you can 
apply a window SUM aggregate to the expression that the alias emptotal represents. Unfortunately, 
you cannot apply it directly to the alias for reasons discussed in Chapter 1. (Remember the all-at-once 
concept?) But you can apply it to the underlying expression, as in SUM(SUM(val)) OVER(…), and in 
your mind think of it as SUM(emptotal) OVER(…). And thus, you get the following:

SELECT empid, 
  SUM(val) AS emptotal, 
  SUM(val) / SUM(SUM(val)) OVER() * 100. AS pct 
FROM Sales.OrderValues 
GROUP BY empid;

Note that you can avoid the complexity of direct nesting of aggregates by using table expressions 
such as CTEs. You can define a CTE based on the query that computes the grouped aggregate and 
have the outer query compute the windowed aggregate, like so:

WITH C AS 
( 
  SELECT empid, 
    SUM(val) AS emptotal 
  FROM Sales.OrderValues 
  GROUP BY empid 
) 
SELECT empid, emptotal, 
  emptotal / SUM(emptotal) OVER() * 100. AS pct 
FROM C;

Consider another example for complexities related to windowed and grouped functions. You get 
a request that is a variation of an earlier request in this chapter. Query the Sales.Orders table, and 
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return for each employee the distinct order dates, along with the count of distinct customers handled 
by the current employee up to, and including, the current date. You make the following attempt:

WITH C AS 
( 
  SELECT empid, orderdate, 
    CASE  
      WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid 
                             ORDER BY orderdate) = 1 
        THEN custid 
    END AS distinct_custid 
  FROM Sales.Orders 
) 
SELECT empid, orderdate, 
  COUNT(distinct_custid) OVER(PARTITION BY empid 
                              ORDER BY orderdate) AS numcusts 
FROM C 
GROUP BY empid, orderdate;

But when you run this query, you get the following error:

Msg 8120, Level 16, State 1, Line 12 
Column 'C.distinct_custid' is invalid in the select list because it is not contained in either 
an aggregate function or the GROUP BY clause.

The outer COUNT isn’t a grouped aggregate; rather, it’s a window aggregate. As such, it can oper-
ate only on elements that would have been valid if they were specified alone—namely, not as input to 
the window aggregate. Now ask yourself, absent the window aggregate, is the following a valid query 
(with the CTE definition removed for brevity)?

SELECT empid, orderdate, distinct_custid  
FROM C 
GROUP BY empid, orderdate;

It’s clear that the answer is no. The attribute distinct_custid is invalid in the select list because it is 
not contained in either an aggregate function or the GROUP BY clause, which is pretty much what the 
error message says. What you need to do is apply a window SUM aggregate with a frame implement-
ing a running total concept to a grouped COUNT aggregate that counts distinct occurrences, like so:

WITH C AS 
( 
  SELECT empid, orderdate, 
    CASE  
      WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid 
                             ORDER BY orderdate) = 1 
        THEN custid 
    END AS distinct_custid 
  FROM Sales.Orders 
) 
SELECT empid, orderdate, 
  SUM(COUNT(distinct_custid)) OVER(PARTITION BY empid 
                                   ORDER BY orderdate) AS numcusts 
FROM C 
GROUP BY empid, orderdate; 
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empid       orderdate               numcusts 
----------- ----------------------- ----------- 
1           2006-07-17 00:00:00.000 1 
1           2006-08-01 00:00:00.000 2 
1           2006-08-07 00:00:00.000 3 
1           2006-08-20 00:00:00.000 4 
1           2006-08-28 00:00:00.000 5 
1           2006-08-29 00:00:00.000 6 
1           2006-09-12 00:00:00.000 6 
1           2006-09-16 00:00:00.000 7 
1           2006-09-20 00:00:00.000 8 
1           2006-09-25 00:00:00.000 9 
1           2006-09-27 00:00:00.000 9 
1           2006-10-09 00:00:00.000 10 
1           2006-10-29 00:00:00.000 11 
1           2006-11-11 00:00:00.000 11 
1           2006-11-19 00:00:00.000 12 
1           2006-11-22 00:00:00.000 12 
1           2006-11-26 00:00:00.000 13 
1           2006-12-03 00:00:00.000 14 
1           2006-12-05 00:00:00.000 15 
1           2006-12-09 00:00:00.000 17 
1           2006-12-17 00:00:00.000 18 
1           2006-12-18 00:00:00.000 19 
1           2006-12-25 00:00:00.000 21 
1           2006-12-27 00:00:00.000 22 
1           2007-01-01 00:00:00.000 22 
...

Of course, this is not the only way to achieve this desired result, but the point was to illustrate 
examples for the concept of nesting a grouped aggregate within a window aggregate. Remember 
that according to logical query processing, window functions are evaluated in the SELECT or ORDER 
BY phase—after the GROUP BY phase. For this reason, grouped aggregates are visible as input 
expressions to window aggregates. Also recall that if the code becomes complex to follow, you can 
always use table expressions to avoid nesting the functions directly, and in this way make the code 
more readable.

Ranking Functions

The standard supports four window functions that deal with ranking calculations. Those are ROW_
NUMBER, NTILE, RANK, and DENSE_RANK. The standard covers the first two as one category and 
the last two as another, probably due to determinism-related differences. I will provide more details 
shortly when describing the functions.

SQL Server 2005 already introduced full support for ranking functions. Still, I will show alternative 
standard, set-based methods to achieve the same result for two reasons: one, because it can be an 
interesting exercise; two, I believe that it can help you understand the functions and their subtleties 
better. Note, though, that in practice it is strongly recommended that you stick to using the window 
functions because they are both much simpler and more efficient than the alternatives. I will get to 
the optimization details in Chapter 4.
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Supported Windowing elements
All four ranking functions support an optional window partition clause and a mandatory window 
order clause. If a window partition clause is not specified, the entire result set of the underlying query 
(recall the input to the SELECT phase) is considered one partition. As for the window ordering clause, 
it provides the ordering meaning for the calculation. As you can imagine, ranking rows without defin-
ing ordering has little meaning. For ranking window functions, ordering serves a different purpose 
than it does for functions that support framing, such as aggregate window functions. With the former, 
ordering is what gives logical meaning to the calculation itself. With the latter, ordering is tied to 
framing—namely, it serves a filtering purpose. 

rOW_NUMBer
The ROW_NUMBER function computes a sequential row number starting with 1 within the respec-
tive window partition, based on the specified window ordering. Consider as an example the query in 
Listing 2-2.

LISTIng 2-2 Query with ROW_NUMBER Function

SELECT orderid, val, 
  ROW_NUMBER() OVER(ORDER BY orderid) AS rownum 
FROM Sales.OrderValues;

Here’s an abbreviated form of the output of this query:

orderid  val      rownum 
-------- -------- ------- 
10248    440.00   1 
10249    1863.40  2 
10250    1552.60  3 
10251    654.06   4 
10252    3597.90  5 
10253    1444.80  6 
10254    556.62   7 
10255    2490.50  8 
10256    517.80   9 
10257    1119.90  10 
...

This calculation probably seems like a trivial thing, but there are a few important things to note 
here.

Because this query doesn’t have a presentation ORDER BY clause, presentation ordering is not 
guaranteed. Therefore, you should consider presentation ordering here as arbitrary. In practice, SQL 
Server optimizes the query with the knowledge that absent a presentation ORDER BY clause, it can 
return the rows in any order. If you need to guarantee presentation ordering, make sure you add 
a presentation ORDER BY clause. If you want presentation ordering to be based on the calculated 
row number, you can specify the alias you assigned to the calculation in the presentation ORDER BY 
clause, like so:
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SELECT orderid, val, 
  ROW_NUMBER() OVER(ORDER BY orderid) AS rownum 
FROM Sales.OrderValues 
ORDER BY rownum;

But think of the row number calculation as simply generating another attribute in the result set of 
the query. Of course, if you like, you can have presentation ordering that is different than the window 
ordering, as in the following query:

SELECT orderid, val, 
  ROW_NUMBER() OVER(ORDER BY orderid) AS rownum 
FROM Sales.OrderValues 
ORDER BY val DESC; 
 
orderid  val       rownum 
-------- --------- ------- 
10865    16387.50  618 
10981    15810.00  734 
11030    12615.05  783 
10889    11380.00  642 
10417    11188.40  170 
10817    10952.85  570 
10897    10835.24  650 
10479    10495.60  232 
10540    10191.70  293 
10691    10164.80  444 
...

You can use the COUNT window aggregate to produce a calculation that is logically equivalent to 
the ROW_NUMBER function. Let WPO be the window partitioning and ordering specification used by 
a ROW_NUMBER function. Then ROW_NUMBER OVER WPO is equivalent to COUNT(*) OVER(WPO 
ROWS UNBOUNDED PRECEDING). As an example, following is a logical equivalent to the query pre-
sented earlier in Listing 2-2:

SELECT orderid, val, 
  COUNT(*) OVER(ORDER BY orderid 
                ROWS UNBOUNDED PRECEDING) AS rownum 
FROM Sales.OrderValues;

As mentioned, it could be a good exercise to try and come up with alternatives to the use of win-
dow functions, never mind that the alternatives will tend to be more complicated and less efficient. 
With the ROW_NUMBER function being the focus at the moment, here’s a set-based, standard alter-
native to the query in Listing 2-2 that doesn’t use window functions:

SELECT orderid, val, 
  (SELECT COUNT(*) 
   FROM Sales.OrderValues AS O2 
   WHERE O2.orderid <= O1.orderid) AS rownum 
FROM Sales.OrderValues AS O1;
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This alternative uses a COUNT aggregate in a subquery to count how many rows have an ordering 
value (orderid in our case) that is less than or equal to the current one. It’s fairly simple when you have 
unique ordering that is based on a single attribute. Things can get tricky, though, when the ordering 
isn’t unique, as I will demonstrate shortly when discussing determinism.

Determinism
When the window ordering is unique, as in the query in Listing 2-2, the ROW_NUMBER calculation 
is deterministic. This means that the query has only one correct result; hence, if you run it again 
without changing the input, you’re guaranteed to get repeatable results. But if the window ordering 
isn’t unique, the calculation is nondeterministic. The ROW_NUMBER function generates unique row 
numbers within the partition, even for rows with the same values in the window ordering attributes. 
Consider the following query as an example, which is followed by an abbreviated form of its output:

SELECT orderid, orderdate, val, 
  ROW_NUMBER() OVER(ORDER BY orderdate DESC) AS rownum 
FROM Sales.OrderValues; 
 
orderid  orderdate               val      rownum 
-------- ----------------------- -------- ------- 
11074    2008-05-06 00:00:00.000 232.09   1 
11075    2008-05-06 00:00:00.000 498.10   2 
11076    2008-05-06 00:00:00.000 792.75   3 
11077    2008-05-06 00:00:00.000 1255.72  4 
11070    2008-05-05 00:00:00.000 1629.98  5 
11071    2008-05-05 00:00:00.000 484.50   6 
11072    2008-05-05 00:00:00.000 5218.00  7 
11073    2008-05-05 00:00:00.000 300.00   8 
11067    2008-05-04 00:00:00.000 86.85    9 
11068    2008-05-04 00:00:00.000 2027.08  10 
...

Because the orderdate attribute isn’t unique, the ordering among rows with the same orderdate 
value should be considered arbitrary. Technically, there’s more than one correct result for this query. 
Take the four rows with the order date 2008-05-06 as an example. Any arrangement of the row num-
bers 1 through 4 in those rows is considered valid. So if you run the query again, technically you can 
get a different arrangement than the current one—never mind the likelihood for this to happen due 
to implementation-specific aspects in SQL Server (optimization).

If you need to guarantee repeatable results, you need to make the query deterministic. This can 
be achieved by adding a tiebreaker to the window ordering specification, making it unique within the 
partition. As an example, the following query achieves unique window ordering by adding orderid 
DESC to the list, like so:

SELECT orderid, orderdate, val, 
  ROW_NUMBER() OVER(ORDER BY orderdate DESC, orderid DESC) AS rownum 
FROM Sales.OrderValues; 
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orderid  orderdate               val      rownum 
-------- ----------------------- -------- ------- 
11077    2008-05-06 00:00:00.000 1255.72  1 
11076    2008-05-06 00:00:00.000 792.75   2 
11075    2008-05-06 00:00:00.000 498.10   3 
11074    2008-05-06 00:00:00.000 232.09   4 
11073    2008-05-05 00:00:00.000 300.00   5 
11072    2008-05-05 00:00:00.000 5218.00  6 
11071    2008-05-05 00:00:00.000 484.50   7 
11070    2008-05-05 00:00:00.000 1629.98  8 
11069    2008-05-04 00:00:00.000 360.00   9 
11068    2008-05-04 00:00:00.000 2027.08  10 
...

With window functions, calculating row numbers in a deterministic way is a simple thing. Trying to 
achieve the equivalent without window functions is trickier but doable:

SELECT orderdate, orderid, val, 
  (SELECT COUNT(*) 
   FROM Sales.OrderValues AS O2 
   WHERE O2.orderdate >= O1.orderdate 
     AND (O2.orderdate > O1.orderdate 
          OR O2.orderid >= O1.orderid)) AS rownum 
FROM Sales.OrderValues AS O1;

Back to the ROW_NUMBER function: you saw that it can be used to create nondeterministic calcu-
lations when using nonunique ordering. So nondeterminism is allowed, but what’s strange is that it’s 
not allowed entirely. What I mean by this is that the ORDER BY clause is mandatory. But what if you 
just want to produce unique row numbers within the partition, in no particular order? You want to 
issue a query such as this:

SELECT orderid, orderdate, val, 
  ROW_NUMBER() OVER() AS rownum 
FROM Sales.OrderValues;

But as mentioned, the ORDER BY clause is mandatory in ranking functions, and SQL Server will 
produce an error:

Msg 4112, Level 15, State 1, Line 2 
The function 'ROW_NUMBER' must have an OVER clause with ORDER BY.

You can try to be smart and specify a constant in the ORDER BY list, like so:

SELECT orderid, orderdate, val, 
  ROW_NUMBER() OVER(ORDER BY NULL) AS rownum 
FROM Sales.OrderValues;

But then SQL Server will complain and generate the following error:

Msg 5309, Level 16, State 1, Line 2 
Windowed functions and NEXT VALUE FOR functions do not support constants as ORDER BY clause 
expressions.
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A solution exists, though, and I will present it shortly (after the “OVER Clause and Sequences” 
sidebar).

OVer Clause and Sequences
You might wonder what the relevance is of the NEXT VALUE FOR function in the error message 
you get when attempting to use a constant in the OVER clause. It’s related to SQL Server 2012’s 
extended support for sequences compared to standard SQL. A sequence is an object in the 
database used to autogenerate numbers, often to be used as keys. Here’s an example for code 
creating a sequence object called dbo.Seq1:

CREATE SEQUENCE dbo.Seq1 AS INT START WITH 1 INCREMENT BY 1;

You use the NEXT VALUE FOR function to obtain new values from the sequence. Here’s an 
example:

SELECT NEXT VALUE FOR dbo.Seq1;

You can invoke this function as part of a query that returns multiple rows, like so:

SELECT orderid, orderdate, val, 
  NEXT VALUE FOR dbo.Seq1 AS seqval 
FROM Sales.OrderValues;

This code is standard. SQL Server 2012 extends the capabilities of the NEXT VALUE FOR 
function, thereby allowing you to provide ordering specification in an OVER clause similar to 
the one used by window functions. This way, you can provide a guarantee that the sequence 
values reflect the desired ordering. Here’s an example using the extended NEXT VALUE FOR 
function:

SELECT orderid, orderdate, val, 
  NEXT VALUE FOR dbo.Seq1 OVER(ORDER BY orderdate, orderid) AS seqval 
FROM Sales.OrderValues;

The same aspects of determinism apply to the OVER clause of the NEXT VALUE FOR func-
tion as they do to window functions.

So there’s no direct way to get row numbers without ordering, but apparently SQL Server seems 
to be happy when given a subquery returning a constant as a window ordering element. Here’s an 
example:

SELECT orderid, orderdate, val, 
  ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum 
FROM Sales.OrderValues; 
 
orderid  orderdate               val      rownum 
-------- ----------------------- -------- ------- 
10248    2006-07-04 00:00:00.000 440.00   1 
10249    2006-07-05 00:00:00.000 1863.40  2 
10250    2006-07-08 00:00:00.000 1552.60  3 
10251    2006-07-08 00:00:00.000 654.06   4 
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10252    2006-07-09 00:00:00.000 3597.90  5 
10253    2006-07-10 00:00:00.000 1444.80  6 
10254    2006-07-11 00:00:00.000 556.62   7 
10255    2006-07-12 00:00:00.000 2490.50  8 
10256    2006-07-15 00:00:00.000 517.80   9 
10257    2006-07-16 00:00:00.000 1119.90  10 
...

I’ll provide more detail about this form in Chapter 4 when discussing the optimization of window 
functions.

NTILe
The NTILE function allows you to arrange the rows within the window partition in roughly equally 
sized tiles, based on the input number of tiles and specified window ordering. For example, suppose 
that you want to arrange the rows from the OrderValues view in 10 equally sized tiles based on val 
ordering. There are 830 rows in the view; hence, with 10 requested tiles, the tile size is 83 (that’s 830 
divided by 10). So the first 83 rows (the first tenth) based on val ordering will be assigned with tile 
number 1, the next 83 with tile number 2, and so on. Here’s a query calculating both row numbers 
and tile numbers, followed by an abbreviated form of its output:

SELECT orderid, val, 
  ROW_NUMBER() OVER(ORDER BY val) AS rownum, 
  NTILE(10) OVER(ORDER BY val) AS tile 
FROM Sales.OrderValues; 
 
orderid  val       rownum  tile 
-------- --------- ------- ----- 
10782    12.50     1       1 
10807    18.40     2       1 
10586    23.80     3       1 
10767    28.00     4       1 
10898    30.00     5       1 
... 
... 
10708    180.40    78      1 
10476    180.48    79      1 
10313    182.40    80      1 
10810    187.00    81      1 
11065    189.42    82      1 
10496    190.00    83      1 
10793    191.10    84      2 
10428    192.00    85      2 
10520    200.00    86      2 
11040    200.00    87      2 
11043    210.00    88      2 
... 
... 
10417    11188.40  826     10 
10889    11380.00  827     10 
11030    12615.05  828     10 
10981    15810.00  829     10 
10865    16387.50  830     10
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In case you’re thinking that tiling is similar to paging, let me warn you not to confuse the two. With 
paging, the page size is a constant and the number of pages is dynamic—it’s a result of the count of 
rows in the query result set divided by the page size. With tiling, the number of tiles is a constant, and 
the tile size is dynamic—it’s a result of the count of rows divided by the requested number of tiles. It’s 
obvious what the uses for paging are. Tiling is usually used for analytical purposes—ones that involve 
the need to distribute data to a predetermined, equally sized number of buckets based on some 
measure ordering.

Back to the result of the query that calculates both row numbers and tile numbers: as you can 
see, the two are closely related. In fact, you could think of a tile number as a calculation that is based 
on a row number. Recall from the previous section that if the window ordering is not unique, the 
ROW_NUMBER function is nondeterministic. If tiling is a calculation that is conceptually based on 
row numbers, this means that the NTILE calculation is also nondeterministic if the window ordering 
is nonunique. This means that there can be multiple correct results for a given query. Another way to 
look at it is that two rows with the same ordering values can end up with different tile numbers. If you 
need to guarantee determinism, you can follow the same recommendation I gave to produce deter-
ministic row numbers—namely, add a tiebreaker to the window ordering, like so:

SELECT orderid, val, 
  ROW_NUMBER() OVER(ORDER BY val, orderid) AS rownum, 
  NTILE(10) OVER(ORDER BY val, orderid) AS tile 
FROM Sales.OrderValues;

Now the query has only one correct result.

Earlier when describing the NTILE function, I explained that it allows you to arrange the rows 
within the window partition in roughly equally sized tiles. The reason I used the term roughly is 
because the count of rows in the underlying query might not be evenly divisible by the requested 
number of tiles. For example, suppose that you wanted to arrange the rows from the OrderValues 
view in 100 tiles. When you divide 830 by 100, you get a quotient of 8 and a remainder of 30. This 
means that the base tile cardinality is 8, but a subset of the tiles will get an extra row. The NTILE func-
tion doesn’t attempt to evenly distribute the extra rows across the tiles with even spacing; rather, it 
adds one row to the first set of tiles until the remainder is gone. With a remainder of 30, the cardinal-
ity of the first 30 tiles will be one greater than the base tile cardinality. So the first 30 tiles will have 9 
rows and the last 70 tiles will have 8 rows, as the following query shows:

SELECT orderid, val, 
  ROW_NUMBER() OVER(ORDER BY val, orderid) AS rownum, 
  NTILE(100) OVER(ORDER BY val, orderid) AS tile 
FROM Sales.OrderValues; 
 
orderid  val       rownum  tile 
-------- --------- ------- ----- 
10782    12.50     1       1 
10807    18.40     2       1 
10586    23.80     3       1 
10767    28.00     4       1 
10898    30.00     5       1 
10900    33.75     6       1 
10883    36.00     7       1 
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11051    36.00     8       1 
10815    40.00     9       1 
10674    45.00     10      2 
11057    45.00     11      2 
10271    48.00     12      2 
10602    48.75     13      2 
10422    49.80     14      2 
10738    52.35     15      2 
10754    55.20     16      2 
10631    55.80     17      2 
10620    57.50     18      2 
10963    57.80     19      3 
... 
10816    8446.45   814     98 
10353    8593.28   815     99 
10514    8623.45   816     99 
11032    8902.50   817     99 
10424    9194.56   818     99 
10372    9210.90   819     99 
10515    9921.30   820     99 
10691    10164.80  821     99 
10540    10191.70  822     99 
10479    10495.60  823     100 
10897    10835.24  824     100 
10817    10952.85  825     100 
10417    11188.40  826     100 
10889    11380.00  827     100 
11030    12615.05  828     100 
10981    15810.00  829     100 
10865    16387.50  830     100

Continuing our custom, try to come up with an alternative to the NTILE function without using 
window functions.

I’ll show one way to achieve the task. First, here’s code that calculates the tile number when given 
the cardinality, number of tiles, and row number as inputs:

DECLARE @cnt AS INT = 830, @numtiles AS INT = 100, @rownum AS INT = 42; 
 
WITH C1 AS 
( 
  SELECT  
    @cnt / @numtiles     AS basetilesize, 
    @cnt / @numtiles + 1 AS extendedtilesize, 
    @cnt % @numtiles     AS remainder 
), 
C2 AS 
( 
  SELECT *, extendedtilesize * remainder AS cutoffrow 
  FROM C1 
) 
SELECT 
  CASE WHEN @rownum <= cutoffrow 
    THEN (@rownum - 1) / extendedtilesize + 1 
    ELSE remainder + ((@rownum - cutoffrow) - 1) / basetilesize + 1 
  END AS tile 
FROM C2;
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The calculation is pretty much self-explanatory. For the given inputs, this code returns 5 as the tile 
number. 

Next apply this calculation to the rows from the OrderValues view. Use the COUNT aggregate to 
get the result set’s cardinality instead of the @cnt input, and use the logic presented earlier to calcu-
late row numbers without window functions instead of the @rownum input, like so:

DECLARE @numtiles AS INT = 100; 
 
WITH C1 AS 
( 
  SELECT  
    COUNT(*) / @numtiles AS basetilesize, 
    COUNT(*) / @numtiles + 1 AS extendedtilesize, 
    COUNT(*) % @numtiles AS remainder 
  FROM Sales.OrderValues 
), 
C2 AS 
( 
  SELECT *, extendedtilesize * remainder AS cutoffrow 
  FROM C1 
), 
C3 AS 
( 
  SELECT O1.orderid, O1.val, 
    (SELECT COUNT(*) 
     FROM Sales.OrderValues AS O2 
     WHERE O2.val <= O1.val 
       AND (O2.val < O1.val 
            OR O2.orderid <= O1.orderid)) AS rownum 
  FROM Sales.OrderValues AS O1 
) 
SELECT C3.*, 
  CASE WHEN C3.rownum <= C2.cutoffrow 
    THEN (C3.rownum - 1) / C2.extendedtilesize + 1 
    ELSE C2.remainder + ((C3.rownum - C2.cutoffrow) - 1) / C2.basetilesize + 1 
  END AS tile 
FROM C3 CROSS JOIN C2;

As usual, don’t do this at home! This exercise is a teaching aid; the performance of this technique 
in SQL Server is horrible compared with that of the NTILE function.

raNK and DeNSe_raNK
The RANK and DENSE_RANK functions are calculations similar to the ROW_NUMBER function, only 
unlike the ROW_NUMBER function they don’t have to produce unique values within the window parti-
tion. When the window ordering direction is ascending, RANK calculates one more than the number 
of rows with an ordering value less than the current one in the partition. DENSE_RANK calculates one 
more than the number of distinct ordering values that are less than the current one in the partition. 
When the window ordering direction is descending, RANK calculates one more than the number of 
rows with an ordering value greater than the current one in the partition. DENSE_RANK calculates one 
more than the number of distinct ordering values greater than the current one in the partition. As an 
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example, here’s a query calculating row numbers, rank, and dense rank values, all using the default 
window partitioning and orderdate DESC ordering:

SELECT orderid, orderdate, val, 
  ROW_NUMBER() OVER(ORDER BY orderdate DESC) AS rownum, 
  RANK()       OVER(ORDER BY orderdate DESC) AS rnk, 
  DENSE_RANK() OVER(ORDER BY orderdate DESC) AS drnk 
FROM Sales.OrderValues; 
 
orderid  orderdate               val      rownum  rnk  drnk 
-------- ----------------------- -------- ------- ---- ---- 
11077    2008-05-06 00:00:00.000 232.09   1       1    1 
11076    2008-05-06 00:00:00.000 498.10   2       1    1 
11075    2008-05-06 00:00:00.000 792.75   3       1    1 
11074    2008-05-06 00:00:00.000 1255.72  4       1    1 
11073    2008-05-05 00:00:00.000 1629.98  5       5    2 
11072    2008-05-05 00:00:00.000 484.50   6       5    2 
11071    2008-05-05 00:00:00.000 5218.00  7       5    2 
11070    2008-05-05 00:00:00.000 300.00   8       5    2 
11069    2008-05-04 00:00:00.000 86.85    9       9    3 
11068    2008-05-04 00:00:00.000 2027.08  10      9    3 
...

The orderdate attribute is not unique. Still, observe that row numbers are unique. The rank and 
dense rank values aren’t unique. All rows with the same order date—for example, 2008-05-05—got 
the same rank 5 and dense rank 2. Rank 5 means that there are four rows with greater order dates 
(notice the ordering direction is descending), and dense rank 2 means that there’s one greater distinct 
order date.

The alternative to the RANK and DENSE_RANK functions that doesn’t use window functions is 
pretty straightforward:

SELECT orderid, orderdate, val, 
  (SELECT COUNT(*) 
   FROM Sales.OrderValues AS O2 
   WHERE O2.orderdate > O1.orderdate) + 1 AS rnk, 
  (SELECT COUNT(DISTINCT orderdate) 
   FROM Sales.OrderValues AS O2 
   WHERE O2.orderdate > O1.orderdate) + 1 AS drnk 
FROM Sales.OrderValues AS O1;

To calculate rank, you count the number of rows with a greater ordering value (remember, our 
example uses descending ordering) and add one. To calculate dense rank, you count the distinct 
greater ordering values and add one.

Determinism
As you might have figured out yourself, both the RANK and DENSE_RANK functions are determin-
istic by definition. Given the same ordering value—never mind whether they are nonunique—they 
produce the same ranking value. In fact, the two functions are usually interesting when the ordering 
is nonunique. When the ordering is unique, both produce the same results as the ROW_NUMBER 
function.
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Distribution Functions

Window distribution functions provide information about the distribution of data and are used 
mostly for statistical analysis. SQL Server 2012 introduces support for two kinds of window distribu-
tion functions: rank distribution and inverse distribution. There are two rank distribution functions: 
PERCENT_RANK and CUME_DIST. And there are two inverse distribution functions: PERCENTILE_CONT 
and PERCENTILE_DISC. 

In my examples, I will use a table called Scores that holds student test scores. Run the following 
code to present the contents of the Scores table:

SELECT * FROM Stats.Scores; 
 
testid     studentid  score 
---------- ---------- ----- 
Test ABC   Student A  95 
Test ABC   Student B  80 
Test ABC   Student C  55 
Test ABC   Student D  55 
Test ABC   Student E  50 
Test ABC   Student F  80 
Test ABC   Student G  95 
Test ABC   Student H  65 
Test ABC   Student I  75 
Test XYZ   Student A  95 
Test XYZ   Student B  80 
Test XYZ   Student C  55 
Test XYZ   Student D  55 
Test XYZ   Student E  50 
Test XYZ   Student F  80 
Test XYZ   Student G  95 
Test XYZ   Student H  65 
Test XYZ   Student I  75 
Test XYZ   Student J  95

Supported Windowing elements
Window rank distribution functions support an optional window partition clause and a mandatory 
window order clause. Window inverse distribution functions support an optional window partition 
clause. There is also ordering relevance to inverse distribution functions, but it’s not part of the win-
dow specification. Rather, it’s in a separate clause called WITHIN GROUP, which I’ll describe when I get 
to the details of the functions.

rank Distribution Functions
According to standard SQL, distribution functions compute the relative rank of a row in the window 
partition, expressed as a ratio between 0 and 1—what most of us think of as a percentage. The two 
variants—PERCENT_RANK and CUME_DIST—perform the computation slightly differently.
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Let rk be the RANK of the row using the same window specification as the distribution function’s 
window specification. 

Let nr be the count of rows in the window partition. 

Let np be the number of rows that precede or are peers of the current one (the same as the mini-
mum rk that is greater than the current rk minus 1, or nr if the current rk is the maximum).

Then PERCENT_RANK is calculated as follows: (rk – 1) / (nr – 1). And CUME_DIST is calculated as fol-
lows: np / nr. The query in Listing 2-3 computes both the percentile rank and cumulative distribution 
of student test scores, partitioned by testid and ordered by score.

LISTIng 2-3 Query Computing PERCENT_RANK and CUME_DIST

SELECT testid, studentid, score, 
  PERCENT_RANK() OVER(PARTITION BY testid ORDER BY score) AS percentrank, 
  CUME_DIST()    OVER(PARTITION BY testid ORDER BY score) AS cumedist 
FROM Stats.Scores;

Here is the tabular output resulting from this query:

testid     studentid  score percentrank  cumedist 
---------- ---------- ----- ------------ --------- 
Test ABC   Student E  50    0.000        0.111 
Test ABC   Student C  55    0.125        0.333 
Test ABC   Student D  55    0.125        0.333 
Test ABC   Student H  65    0.375        0.444 
Test ABC   Student I  75    0.500        0.556 
Test ABC   Student F  80    0.625        0.778 
Test ABC   Student B  80    0.625        0.778 
Test ABC   Student A  95    0.875        1.000 
Test ABC   Student G  95    0.875        1.000 
Test XYZ   Student E  50    0.000        0.100 
Test XYZ   Student C  55    0.111        0.300 
Test XYZ   Student D  55    0.111        0.300 
Test XYZ   Student H  65    0.333        0.400 
Test XYZ   Student I  75    0.444        0.500 
Test XYZ   Student B  80    0.556        0.700 
Test XYZ   Student F  80    0.556        0.700 
Test XYZ   Student G  95    0.778        1.000 
Test XYZ   Student J  95    0.778        1.000 
Test XYZ   Student A  95    0.778        1.000

The output of this query was formatted for clarity.

Unless you have a statistical background, it’s probably hard to make sense of the computations. 
Loosely speaking, try to think of the percentile rank in our example as indicating the percent of 
students who have a lower test score than the current score, and think of cumulative distribution as 
indicating the percentage of students who have a lower score or the same test score as the current 
score. Just remember that when calculating the two, the divisor in the former case is (nr – 1) and in 
the latter case it’s nr.
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Calculating the percentile rank prior to SQL Server 2012 is pretty straightforward because rk can 
be computed with the RANK window function and nr can be calculated with the COUNT window 
aggregate function—both are available starting with SQL Server 2005. Computing cumulative distri-
bution is a bit trickier because the computation for the current row requires the rk value associated 
with a different row. The computation is supposed to return the minimum rk that is greater than the 
current rk, or nr if the current rk is the maximum one. You can use a correlated subquery to achieve 
this task. 

Here’s a query that’s compatible with SQL Server 2005 or later, computing both percentile rank 
and cumulative distribution:

WITH C AS 
( 
  SELECT testid, studentid, score, 
    RANK() OVER(PARTITION BY testid ORDER BY score) AS rk, 
    COUNT(*) OVER(PARTITION BY testid) AS nr 
  FROM Stats.Scores 
) 
SELECT testid, studentid, score, 
  1.0 * (rk - 1) / (nr - 1) AS percentrank, 
  1.0 * (SELECT COALESCE(MIN(C2.rk) - 1, C1.nr) 
         FROM C AS C2 
         WHERE C2.rk > C1.rk) / nr AS cumedist 
FROM C AS C1;

The reason for multiplying the numeric value 1.0 by the rest of the computation is to force implicit 
conversion of the integer operands to numeric ones; otherwise, you will get integer division.

As another example, the following query computes the percentile rank and cumulative distribution 
of employee order counts:

SELECT empid, COUNT(*) AS numorders, 
  PERCENT_RANK() OVER(ORDER BY COUNT(*)) AS percentrank, 
  CUME_DIST() OVER(ORDER BY COUNT(*)) AS cumedist 
FROM Sales.Orders 
GROUP BY empid; 
 
empid  numorders  percentrank  cumedist 
------ ---------- ------------ --------- 
5      42         0.000        0.111 
9      43         0.125        0.222 
6      67         0.250        0.333 
7      72         0.375        0.444 
2      96         0.500        0.556 
8      104        0.625        0.667 
1      123        0.750        0.778 
3      127        0.875        0.889 
4      156        1.000        1.000

Note the mixed use of grouped aggregate functions and window rank distribution functions—
that’s very similar to the previously discussed mixed use of grouped aggregate functions and window 
aggregate functions.
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Inverse Distribution Functions
Inverse distribution functions, more commonly known as percentiles, perform a computation you can 
think of as the inverse of rank distribution functions. Recall that rank distribution functions compute 
the relative rank of the current row in the window partition and are expressed as a ratio between 
0 and 1 (percent). Inverse distribution functions accept a percentage as input and return the value 
from the group (or an interpolated value) that this percentage represents. Loosely speaking, given a 
percentage p as input and ordering in the group based on ordcol, the returned percentile is the ordcol 
value with respect to which p percent of the ordcol values are less than it. Perhaps the most known 
percentile is 0.5 (the fiftieth percentile), more commonly known as the median. As an example, given 
a group of values 2, 3, 7, 1759, 43112609, the percentile 0.5 is 7.

Recall that rank distribution functions are window functions, and it makes a lot of sense for them 
to be designed as such. Each row can get a different percentile rank than the others in the same 
partition. But inverse distribution functions are supposed to accept one input percentage, as well as 
ordering specification in the group, and compute a single result value per group. So you can see that, 
in terms of design, it makes more sense for them to be used like grouped functions—that is, apply 
them to groups in the context of grouped queries. You can do something like this:

SELECT groupcol, PERCENTILE_FUNCTION(0.5) WITHIN GROUP(ORDER BY ordcol) AS median 
FROM T1 
GROUP BY groupcol;

Observe the WITHIN GROUP clause, where you define the ordering specification within the group 
because this is not a window function.

Sure enough, standard SQL defines inverse distribution functions as a type of what they call an 
ordered set function, which is a type of an aggregate function and can be used as grouped aggregate 
functions. Alas, in SQL Server 2012, inverse distribution functions are actually implemented only as 
window functions that compute the same result value for all rows in the same partition. The grouped 
version wasn’t implemented. 

In this section, I will describe the supported inverse distribution functions and provide a couple of 
examples for using them as window functions. However, because the more common need is to calcu-
late those per group, I will postpone part of the coverage of the topic, including alternative methods, 
to Chapter 3, “Ordered Set Functions.” 

There are two variants of inverse distribution functions: PERCENTILE_DISC and PERCENTILE_CONT. 

The PERCENTILE_DISC function (DISC for discrete distribution model) returns the first value in the 
group whose cumulative distribution (see the CUME_DIST function discussed earlier) is greater than or 
equal to the input, assuming you treat the group as a window partition with the same ordering as that 
defined within the group. Consider, for example, the query in Listing 2-3 from the previous section 
calculating the percentile rank and cumulative distribution of student test scores, and its output. Then 
the function PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY  testid) 
will return the score 75 for test Test ABC because that’s the score associated with the  cumulative 
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 distribution 0.556, which is the first cumulative distribution that is greater than or equal to the input 
0.5. Here’s the previous output with the relevant row bolded:

testid     studentid  score percentrank  cumedist 
---------- ---------- ----- ------------ --------- 
Test ABC   Student E  50    0.000        0.111 
Test ABC   Student C  55    0.125        0.333 
Test ABC   Student D  55    0.125        0.333 
Test ABC   Student H  65    0.375        0.444 
Test ABC   Student I  75    0.500        0.556 
Test ABC   Student F  80    0.625        0.778 
Test ABC   Student B  80    0.625        0.778 
Test ABC   Student A  95    0.875        1.000 
Test ABC   Student G  95    0.875        1.000 
Test XYZ   Student E  50    0.000        0.100 
Test XYZ   Student C  55    0.111        0.300 
Test XYZ   Student D  55    0.111        0.300 
Test XYZ   Student H  65    0.333        0.400 
Test XYZ   Student I  75    0.444        0.500 
Test XYZ   Student B  80    0.556        0.700 
Test XYZ   Student F  80    0.556        0.700 
Test XYZ   Student G  95    0.778        1.000 
Test XYZ   Student J  95    0.778        1.000 
Test XYZ   Student A  95    0.778        1.000

The PERCENTILE_CONT function (CONT for continuous distribution model) is a bit trickier to 
explain. Consider the function PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score).

Let n be the count of rows in the group.

Let a be @pct*(n – 1), let i be the integer part of a, and let f be the fraction part of a.

Let row0 and row1 be the rows whose zero-based row numbers are in FLOOR(a), CEILING(a). Here 
I’m assuming the row numbers are calculated using the same window partitioning and ordering as 
the group and order of the PERCENTILE_CONT function.

Then PERCENTILE_CONT is computed as row0.score + f * (row1.score – row0.score). This is an 
 interpolation of the values in the two rows assuming continuous distribution (based on the fraction 
part of a).

As a simple, plain-English example, think of a median calculation when there is an even number of 
rows. You interpolate the values assuming continuous distribution. The interpolated value falls right in 
the middle between the two middle points, meaning that it’s the average of the two middle points. 

Here’s an example computing the median test scores using both inverse distribution functions as 
window functions:

DECLARE @pct AS FLOAT = 0.5; 
 
SELECT testid, score, 
  PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS 
percentiledisc, 
  PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS percentilecont 
FROM Stats.Scores; 
 



 Distribution Functions  73

testid     score percentiledisc percentilecont 
---------- ----- -------------- ---------------------- 
Test ABC   50    75             75 
Test ABC   55    75             75 
Test ABC   55    75             75 
Test ABC   65    75             75 
Test ABC   75    75             75 
Test ABC   80    75             75 
Test ABC   80    75             75 
Test ABC   95    75             75 
Test ABC   95    75             75 
Test XYZ   50    75             77.5 
Test XYZ   55    75             77.5 
Test XYZ   55    75             77.5 
Test XYZ   65    75             77.5 
Test XYZ   75    75             77.5 
Test XYZ   80    75             77.5 
Test XYZ   80    75             77.5 
Test XYZ   95    75             77.5 
Test XYZ   95    75             77.5 
Test XYZ   95    75             77.5

Here’s another example computing the tenth percentile (0.1):

DECLARE @pct AS FLOAT = 0.1; 
 
SELECT testid, score, 
  PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS 
percentiledisc, 
  PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS percentilecont 
FROM Stats.Scores; 
 
testid     score percentiledisc percentilecont 
---------- ----- -------------- ---------------------- 
Test ABC   50    50             54 
Test ABC   55    50             54 
Test ABC   55    50             54 
Test ABC   65    50             54 
Test ABC   75    50             54 
Test ABC   80    50             54 
Test ABC   80    50             54 
Test ABC   95    50             54 
Test ABC   95    50             54 
Test XYZ   50    50             54.5 
Test XYZ   55    50             54.5 
Test XYZ   55    50             54.5 
Test XYZ   65    50             54.5 
Test XYZ   75    50             54.5 
Test XYZ   80    50             54.5 
Test XYZ   80    50             54.5 
Test XYZ   95    50             54.5 
Test XYZ   95    50             54.5 
Test XYZ   95    50             54.5

As mentioned, I will provide more details in Chapter 3 about inverse distribution functions, includ-
ing alternative methods to calculate those, as part of the discussion about ordered set functions.
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Offset Functions

Window offset functions include two categories of functions. One category is functions whose offset 
is relative to the current row; this category includes the LAG and LEAD functions. Another category is 
functions whose offset is relative to the start or end of the window frame; this category includes the 
functions FIRST_VALUE, LAST_VALUE, and NTH_VALUE. SQL Server 2012 supports LAG, LEAD, FIRST_
VALUE, and LAST_VALUE, but not NTH_VALUE.

Supported Windowing elements
The functions in the first category (LAG and LEAD) support a window partition clause as well as a 
window order clause. The latter is the one that gives meaning to the offset, of course. The functions 
in the second category (FIRST_VALUE, LAST_VALUE, and NTH_VALUE) also support a window frame 
clause in addition to the window partition and window order clauses. 

LaG and LeaD
The LAG and LEAD functions allow you to return a value expression from a row in the window parti-
tion that is in a given offset before (LAG) or after (LEAD) the current row. The default offset if one is 
not specified is 1. 

As an example, the following query returns the current order value for each customer order, as well 
as the values of the previous and next orders by the same customer:

SELECT custid, orderdate, orderid, val, 
  LAG(val)  OVER(PARTITION BY custid 
                 ORDER BY orderdate, orderid) AS prevval, 
  LEAD(val) OVER(PARTITION BY custid 
                 ORDER BY orderdate, orderid) AS nextval 
FROM Sales.OrderValues; 
 
custid  orderdate   orderid  val      prevval  nextval 
------- ----------- -------- -------- -------- -------- 
1       2007-08-25  10643    814.50   NULL     878.00 
1       2007-10-03  10692    878.00   814.50   330.00 
1       2007-10-13  10702    330.00   878.00   845.80 
1       2008-01-15  10835    845.80   330.00   471.20 
1       2008-03-16  10952    471.20   845.80   933.50 
1       2008-04-09  11011    933.50   471.20   NULL 
2       2006-09-18  10308    88.80    NULL     479.75 
2       2007-08-08  10625    479.75   88.80    320.00 
2       2007-11-28  10759    320.00   479.75   514.40 
2       2008-03-04  10926    514.40   320.00   NULL 
3       2006-11-27  10365    403.20   NULL     749.06 
3       2007-04-15  10507    749.06   403.20   1940.85 
3       2007-05-13  10535    1940.85  749.06   2082.00 
3       2007-06-19  10573    2082.00  1940.85  813.37 
3       2007-09-22  10677    813.37   2082.00  375.50 
3       2007-09-25  10682    375.50   813.37   660.00 
3       2008-01-28  10856    660.00   375.50   NULL 
...



 Offset Functions  75

The output is shown here abbreviated and formatted for clarity.

Because explicit offsets weren’t indicated here, the query assumes an offset of 1 by default. 
Because the functions partition the data by custid, the calculations look for relative rows only within 
the same customer partition. As for the window ordering, what “previous” and “next” mean is deter-
mined by orderdate ordering, and by orderid as a tiebreaker. Observe in the query output that LAG 
returns NULL for the first row in the window partition because there’s no row before the first one and, 
similarly, LEAD returns NULL for the last row. 

If you want to use an offset other than 1, you need to specify it after the input value expression, as 
in the following query:

SELECT custid, orderdate, orderid, 
  LAG(val, 3) OVER(PARTITION BY custid 
                   ORDER BY orderdate, orderid) AS prev3val 
FROM Sales.OrderValues; 
 
custid  orderdate   orderid  prev3val 
------- ----------- -------- --------- 
1       2007-08-25  10643    NULL 
1       2007-10-03  10692    NULL 
1       2007-10-13  10702    NULL 
1       2008-01-15  10835    814.50 
1       2008-03-16  10952    878.00 
1       2008-04-09  11011    330.00 
2       2006-09-18  10308    NULL 
2       2007-08-08  10625    NULL 
2       2007-11-28  10759    NULL 
2       2008-03-04  10926    88.80 
3       2006-11-27  10365    NULL 
3       2007-04-15  10507    NULL 
3       2007-05-13  10535    NULL 
3       2007-06-19  10573    403.20 
3       2007-09-22  10677    749.06 
3       2007-09-25  10682    1940.85 
3       2008-01-28  10856    2082.00 
...

As mentioned, LAG and LEAD return a NULL by default when there’s no row in the specified offset. 
If you want to return something else instead, you can indicate what you want to return as the third 
argument to the function. For example, LAG(val, 3, 0.00) returns the value 0.00 if the row in offset 3 
before the current one doesn’t exist.

To implement similar calculations with LAG and LEAD prior to SQL Server 2012, you can use the 
following strategy: 

■■ Write a query that produces row numbers based on the same partitioning and ordering as 
needed for your calculations, and define a table expression based on this query.

■■ Join multiple instances of the table expression as needed, representing the current, previous, 
and next rows. 
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■■ In the join predicate, match the partitioning columns of the different instances (current with 
previous/next). Also in the join predicate, compute the difference between the row numbers 
of the current and previous/next instances, and filter based on the offset value that you need 
in your calculations.

Here’s a query implementing this approach, returning for each order the current, previous, and 
next customers’ order values:

WITH OrdersRN AS 
( 
  SELECT custid, orderdate, orderid, val, 
    ROW_NUMBER() OVER(ORDER BY custid, orderdate, orderid) AS rn 
  FROM Sales.OrderValues 
) 
SELECT C.custid, C.orderdate, C.orderid, C.val, 
  P.val AS prevval, 
  N.val AS nextval 
FROM OrdersRN AS C 
  LEFT OUTER JOIN OrdersRN AS P 
    ON C.custid = P.custid 
    AND C.rn = P.rn + 1 
  LEFT OUTER JOIN OrdersRN AS N 
    ON C.custid = N.custid 
    AND C.rn = N.rn - 1;

Of course, you could address this task using simple subqueries as well.

FIrST_VaLUe, LaST_VaLUe, and NTH_VaLUe
In the previous section, I discussed the offset functions LAG and LEAD, which allow you to specify 
the offset relative to the current row. This section focuses on functions that allow you to indicate the 
offset relative to the beginning or end of the window frame. These functions are FIRST_VALUE, LAST_
VALUE, and NTH_VALUE, the last of which wasn’t implemented in SQL Server 2012. 

Recall that LAG and LEAD support window partition and window order clauses but not a window 
frame clause. This makes sense when the offset is relative to the current row. But with functions that 
specify the offset with respect to the beginning or end of the window, framing also becomes relevant. 
The FIRST_VALUE and LAST_VALUE functions return the requested value expression from the first and 
last rows in the frame, respectively. Here’s a query demonstrating how to return, along with each 
customer’s order, the current order value as well as the order values from the customer’s first and last 
orders:

SELECT custid, orderdate, orderid, val, 
  FIRST_VALUE(val) OVER(PARTITION BY custid 
                        ORDER BY orderdate, orderid) AS val_firstorder, 
  LAST_VALUE(val)  OVER(PARTITION BY custid 
                        ORDER BY orderdate, orderid 
                        ROWS BETWEEN CURRENT ROW 
                                 AND UNBOUNDED FOLLOWING) AS val_lastorder 
FROM Sales.OrderValues; 
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custid  orderdate   orderid  val      val_firstorder  val_lastorder 
------- ----------- -------- -------- --------------- -------------- 
1       2007-08-25  10643    814.50   814.50          933.50 
1       2007-10-03  10692    878.00   814.50          933.50 
1       2007-10-13  10702    330.00   814.50          933.50 
1       2008-01-15  10835    845.80   814.50          933.50 
1       2008-03-16  10952    471.20   814.50          933.50 
1       2008-04-09  11011    933.50   814.50          933.50 
2       2006-09-18  10308    88.80    88.80           514.40 
2       2007-08-08  10625    479.75   88.80           514.40 
2       2007-11-28  10759    320.00   88.80           514.40 
2       2008-03-04  10926    514.40   88.80           514.40 
3       2006-11-27  10365    403.20   403.20          660.00 
3       2007-04-15  10507    749.06   403.20          660.00 
3       2007-05-13  10535    1940.85  403.20          660.00 
3       2007-06-19  10573    2082.00  403.20          660.00 
3       2007-09-22  10677    813.37   403.20          660.00 
3       2007-09-25  10682    375.50   403.20          660.00 
3       2008-01-28  10856    660.00   403.20          660.00 
...

Technically, you’re after values from the first and last rows in the partition. With FIRST_VALUE, it’s 
easy because you can simply rely on the default framing. Recall that if framing is applicable and you 
don’t indicate a window frame clause, the default is RANGE BETWEEN UNBOUNDED PRECEDING 
AND CURRENT ROW. But with LAST_VALUE, you realize that relying on the default framing is pointless 
because the last row is the current row. Hence, this example uses an explicit frame specification with 
UNBOUNDED FOLLOWING as the upper boundary point in the frame.

Typically, you would not just return the first or last value along with all detail rows like in the last 
example; rather, you would apply some calculation involving a detail element and the value returned 
by the window function. As a simple example, the following query returns, along with each customer’s 
order, the current order value as well as the difference between the current value and the values of 
the customer’s first and last orders:

SELECT custid, orderdate, orderid, val, 
  val - FIRST_VALUE(val) OVER(PARTITION BY custid 
                              ORDER BY orderdate, orderid) AS difffirst, 
  val - LAST_VALUE(val)  OVER(PARTITION BY custid 
                              ORDER BY orderdate, orderid 
                              ROWS BETWEEN CURRENT ROW 
                                       AND UNBOUNDED FOLLOWING) AS difflast 
FROM Sales.OrderValues; 
 
custid  orderdate   orderid  val     difffirst  difflast 
------- ----------- -------- ------- ---------- --------- 
1       2007-08-25  10643    814.50  0.00       -119.00 
1       2007-10-03  10692    878.00  63.50      -55.50 
1       2007-10-13  10702    330.00  -484.50    -603.50 
1       2008-01-15  10835    845.80  31.30      -87.70 
1       2008-03-16  10952    471.20  -343.30    -462.30 
1       2008-04-09  11011    933.50  119.00     0.00 
2       2006-09-18  10308    88.80   0.00       -425.60 
2       2007-08-08  10625    479.75  390.95     -34.65 
2       2007-11-28  10759    320.00  231.20     -194.40 
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2       2008-03-04  10926    514.40  425.60     0.00 
3       2006-11-27  10365    403.20  0.00       -256.80 
3       2007-04-15  10507    749.06  345.86     89.06 
3       2007-05-13  10535    1940.8  1537.65    1280.85 
3       2007-06-19  10573    2082.0  1678.80    1422.00 
3       2007-09-22  10677    813.37  410.17     153.37 
3       2007-09-25  10682    375.50  -27.70     -284.50 
3       2008-01-28  10856    660.00  256.80     0.00 
...

As mentioned, the standard NTH_VALUE function wasn’t implemented in SQL Server 2012. What 
this function allows you to do is ask for a value expression that is in a given offset in terms of a num-
ber of rows from the first or last row in the window frame. You specify the offset as a second input in 
addition to the value expression and FROM FIRST or FROM LAST, depending on whether you need 
the offset to be relative to the first row or last row in the frame, respectively. For example, the follow-
ing expression returns the value from the third row from the last in the partition:

NTH_VALUE(val, 3) FROM LAST OVER(ROWS BETWEEN CURRENT ROW 
                                          AND UNBOUNDED FOLLOWING)

Suppose you want to create calculations similar to the FIRST_VALUE, LAST_VALUE, and NTH_VALUE 
prior to SQL Server 2012. You can achieve this by using constructs such as CTEs, the ROW_NUMBER 
function, a CASE expression, grouping, and joining, like so:

WITH OrdersRN AS 
( 
  SELECT custid, val, 
    ROW_NUMBER() OVER(PARTITION BY custid 
                      ORDER BY orderdate, orderid) AS rna, 
    ROW_NUMBER() OVER(PARTITION BY custid 
                      ORDER BY orderdate DESC, orderid DESC) AS rnd 
  FROM Sales.OrderValues 
), 
Agg AS 
( 
  SELECT custid, 
    MAX(CASE WHEN rna = 1 THEN val END) AS firstorderval, 
    MAX(CASE WHEN rnd = 1 THEN val END) AS lastorderval, 
    MAX(CASE WHEN rna = 3 THEN val END) AS thirdorderval 
  FROM OrdersRN 
  GROUP BY custid 
) 
SELECT O.custid, O.orderdate, O.orderid, O.val, 
  A.firstorderval, A.lastorderval, A.thirdorderval 
FROM Sales.OrderValues AS O 
  JOIN Agg AS A 
    ON O.custid = A.custid 
ORDER BY custid, orderdate, orderid; 
 
custid  orderdate   orderid  val      firstorderval  lastorderval  thirdorderval 
------- ----------- -------- -------- -------------- ------------- -------------- 
1       2007-08-25  10643    814.50   814.50         933.50        330.00 
1       2007-10-03  10692    878.00   814.50         933.50        330.00 
1       2007-10-13  10702    330.00   814.50         933.50        330.00 
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1       2008-01-15  10835    845.80   814.50         933.50        330.00 
1       2008-03-16  10952    471.20   814.50         933.50        330.00 
1       2008-04-09  11011    933.50   814.50         933.50        330.00 
2       2006-09-18  10308    88.80    88.80          514.40        320.00 
2       2007-08-08  10625    479.75   88.80          514.40        320.00 
2       2007-11-28  10759    320.00   88.80          514.40        320.00 
2       2008-03-04  10926    514.40   88.80          514.40        320.00 
3       2006-11-27  10365    403.20   403.20         660.00        1940.85 
3       2007-04-15  10507    749.06   403.20         660.00        1940.85 
3       2007-05-13  10535    1940.85  403.20         660.00        1940.85 
3       2007-06-19  10573    2082.00  403.20         660.00        1940.85 
3       2007-09-22  10677    813.37   403.20         660.00        1940.85 
3       2007-09-25  10682    375.50   403.20         660.00        1940.85 
3       2008-01-28  10856    660.00   403.20         660.00        1940.85 
...

In the first CTE, called OrdersRN, you define row numbers in both ascending and descending order 
to mark the positions of the rows with respect to the first and last rows in the partition. In the second 
CTE, called Agg, you use a CASE expression, filter only the interesting row numbers, group the data 
by the partitioning element (custid), and apply an aggregate to the result of the CASE expression 
to return the requested value for each group. Finally, in the outer query, you join the result of the 
grouped query with the original table to match the detail with the aggregates.

Summary

This chapter delved into the details of the various window functions, focusing on their logical aspects. 
I showed both the functionality defined by standard SQL and indicated what SQL Server 2012 sup-
ports. In cases where SQL Server 2012 doesn’t support certain functionality, I provided supported 
alternatives.
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C H A P T E R  3

Ordered Set Functions

Have you ever needed to concatenate elements of a group into one string based on some order? 
That’s a scenario that an ordered set function could help address. An ordered set function is a 

type of aggregate function. What distinguishes it from a general set function (like SUM, MIN, MAX, 
and so on) is that there’s ordering relevance to the calculation, such as the order in which you want to 
concatenate the elements. 

In this chapter, I will discuss ordered set functions and then describe the kinds of solutions they 
help with. Because they’re not yet supported in Microsoft SQL Server, I will show how to simulate 
them using what’s provided in SQL Server 2012. 

You use ordered set functions in grouped queries much like you do general set functions. As for 
syntax, standard SQL defines a special clause called WITHIN GROUP where you indicate the ordering, 
like so:

<ordered set function> WITHIN GROUP ( ORDER BY <sort specification list> )

Standard SQL defines two types of ordered set functions with very fancy, yet appropriate, names: 
hypothetical set functions and inverse distribution functions. When providing the specifics of each 
type, I will explain why they are called the way they are. Before I get to the details, I want to note 
that the concept of an ordered set function isn’t limited to the two types of functions defined by the 
standard—rather, it can be extended to any aggregate function that has ordering relevance to the 
calculation.

As an example, a string-concatenation aggregate can let users specify alphabetical ordering as 
ascending or descending, or it can let them specify some ordering based on an external key. Also, it 
would be great if SQL Server supported the concept with Common Language Runtime (CLR) user-
defined aggregates (UDAs) in the future. If the UDA has ordering relevance to the calculation, natu-
rally Microsoft should follow the standard syntax using the WITHIN GROUP clause. 

I’ll start the chapter by describing the standard ordered set functions and the alternatives available 
in SQL Server. Then I’ll describe additional calculations that fit the concept but aren’t defined by the 
standard, and, finally, I’ll provide information about supported solutions in SQL Server.
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Hypothetical Set Functions

Hypothetical set functions include ranking and rank-distribution functions that you’re already familiar 
with as window functions, but they are applied to groups for an input value in a hypothetical manner. 
I’m sure that this description doesn’t make any sense yet, but soon it will.

There are two ranking ordered set functions: RANK and DENSE_RANK. There are also two rank-
distribution ordered set functions: PERCENT_RANK and CUME_DIST. There’s a difference in the order-
ing relevance between a window function and an ordered set function. With the former, the ordering 
is within the window partition, and with the latter, the ordering is within the group. When used as a 
window function, the current row’s ordering value is evaluated with respect to the ordering values in 
the window partition. When used as an ordered set function, the input value is evaluated with respect 
to the ordering values in the group. When an ordered set function is given an input value, you’re ask-
ing “What would be the result of the function for this input value if I added it as another element to 
the set?” Note that the use of “would be” indicates that this is hypothetical.

This is one of those topics that is best explained through examples, and this chapter provides 
plenty. I’ll start with the RANK function.

raNK
Consider the following query, which uses the RANK window function, and its output, which is shown 
here in abbreviated form:

USE TSQL2012; 
 
SELECT custid, val, 
  RANK() OVER(PARTITION BY custid ORDER BY val) AS rnk 
FROM Sales.OrderValues; 
 
custid  val      rnk 
------- -------- ---- 
1       330.00   1 
1       471.20   2 
1       814.50   3 
1       845.80   4 
1       878.00   5 
1       933.50   6 
2       88.80    1 
2       320.00   2 
2       479.75   3 
2       514.40   4 
3       375.50   1 
3       403.20   2 
3       660.00   3 
3       749.06   4 
3       813.37   5 
3       1940.85  6 
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3       2082.00  7 
4       191.10   1 
4       228.00   2 
4       282.00   3 
4       319.20   4 
4       390.00   5 
4       407.70   6 
4       480.00   7 
4       491.50   8 
4       899.00   9 
4       1477.00  10 
4       1641.00  11 
4       2142.90  12 
4       4441.25  13 
...

The function ranks each customer’s orders based on the order values. Can you rationalize why the 
rows that got rank 5, say, got that rank? If you recall from Chapter 2, “A Detailed Look at Window 
Functions,” RANK, when using ascending ordering, calculates one more than the number of rows 
in the window partition with an ordering value that is less than the current one. Take, for example, 
customer 3. The row that got rank 5 for customer 3 has the ordering value 813.37. The rank was 
computed as 5 because there are 4 rows in the same partition with ordering values that are less than 
813.37 (375.50, 403.20, 660.00, and 749.06). 

Now suppose you want to do a kind of “what if” analysis and ask “How would an input value @val 
rank in each customer group with respect to the other values in the val column?” It’s as if you did the 
following:

1. Considered each customer group as a window partition, with window ordering based on the 
val column.

2. Added a row to each partition with the input value @val.

3. Calculated the RANK window function for that row in each partition.

4. Returned just that row for each partition.

For example, suppose that the input value @val is equal to 1000.00. How would this value rank in 
each customer group with respect to the other values in the val column using ascending ordering? 
The result would be one more than the number of rows in each customer group that have a value 
that is less than 1000.00. For example, for customer 3 you should get the rank 6, because there are 
five rows with values in the val column that are less than 1000.00 (375.50, 403.20, 660.00, 749.06, and 
813.37).

The standard defines the following form for the RANK ordered set function:

RANK(<input>) WITHIN GROUP ( ORDER BY <sort specification list> )
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And here’s how you use it as a grouped aggregate function to address the request at hand 
(remember this syntax is not supported by SQL Server 2012):

DECLARE @val AS NUMERIC(12, 2) = 1000.00; 
 
SELECT custid, 
  RANK(@val) WITHIN GROUP(ORDER BY val) AS rnk 
FROM Sales.OrderValues 
GROUP BY custid; 
 
custid      rnk 
----------- ----------- 
1           7 
2           5 
3           6 
4           10 
5           7 
6           8 
7           6 
8           3 
9           9 
10          7 
...

At this point, the concept of an ordered set function should make much more sense to you. 

The last example I showed demonstrates the use of the standard RANK ordered set function, but 
as mentioned, SQL Server doesn’t support this syntax. It is quite simple, though, to implement the 
calculation without a built-in function. Use a CASE expression that returns some constant when the 
ordering value is less than the input value, and use NULL otherwise (which is the default when an 
ELSE clause isn’t specified). Apply a COUNT aggregate to the result of the CASE expression, and add 1. 
Here’s the complete query:

DECLARE @val AS NUMERIC(12, 2) = 1000.00; 
 
SELECT custid, 
  COUNT(CASE WHEN val < @val THEN 1 END) + 1 AS rnk 
FROM Sales.OrderValues 
GROUP BY custid;

DeNSe_raNK
Recall that DENSE_RANK, as a window function, is similar to RANK, only it returns one more than 
the number of distinct ordering values (as opposed to number of rows) in the partition that are less 
than the current one. Similarly, as an ordered set function, given an input value @val, DENSE_RANK 
returns one more than the number of distinct ordering values in the group that are less than @val. 
Here’s what the code should look like according to the standard (again, this is not supported by SQL 
Server 2012):
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DECLARE @val AS NUMERIC(12, 2) = 1000.00; 
 
SELECT custid, 
  DENSE_RANK(@val) WITHIN GROUP(ORDER BY val) AS densernk 
FROM Sales.OrderValues 
GROUP BY custid; 
 
custid      densernk 
----------- -------------- 
1           7 
2           5 
3           6 
4           10 
5           7 
6           8 
7           6 
8           3 
9           8 
10          7 
...

The alternative that is supported in SQL Server is similar to the technique used to implement 
RANK. Only instead of returning a constant when the ordering value is less than @val, you return val 
and apply a DISTINCT clause to the aggregated expression, like so:

DECLARE @val AS NUMERIC(12, 2) = 1000.00; 
 
SELECT custid, 
  COUNT(DISTINCT CASE WHEN val < @val THEN val END) + 1 AS densernk 
FROM Sales.OrderValues 
GROUP BY custid;

PerCeNT_raNK
Very similar to ranking functions, rank distribution functions, specifically PERCENT_RANK and CUME_
DIST, are also supported by the standard as hypothetical set functions. I’ll start with PERCENT_RANK 
in this section and describe CUME_DIST in the next section.

As a reminder, PERCENT_RANK as a window function computes the relative rank of a row in the 
window partition and expresses it as a ratio between 0 and 1 (a percent). The rank is calculated as 
follows:

■■ Let rk be the RANK of the row using the same window specification as the distribution function’s 
window specification. 

■■ Let nr be the count of rows in the window partition. 

■■ Then PERCENT_RANK is calculated as follows: (rk – 1) / (nr – 1).

Now think in terms of hypothetical set functions. Suppose you want to know for a given input 
value what its percentile rank would be in each group if it’s added to all groups. For example, consider 
the Scores table, which holds test scores. Given an input test score (call it @score), you want to know 
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what the percentile rank of the input score would be in each test if it’s added as another score to all 
tests. According to standard SQL, you use the PERCENT_RANK ordered set function as an aggregate 
function, like so:

DECLARE @score AS TINYINT = 80; 
 
SELECT testid, 
  PERCENT_RANK(@score) WITHIN GROUP(ORDER BY score) AS pctrank 
FROM Stats.Scores 
GROUP BY testid; 
 
testid     pctrank 
---------- --------------- 
Test ABC   0.556        
Test XYZ   0.500       

To produce a percentile rank as a hypothetical set function in SQL Server, you need your own solu-
tion. One option is to generate rk and nr with COUNT aggregates and then compute the percentile 
rank as follows: (rk – 1) / (nr – 1). For rk, you need to count the number of rows with a lower score 
than the input. For nr, simply count the number of rows and add one (for the input to be taken into 
consideration as part of the group). Here’s the complete solution:

DECLARE @score AS TINYINT = 80; 
 
WITH C AS 
( 
  SELECT testid, 
    COUNT(CASE WHEN score < @score THEN 1 END) + 1 AS rk, 
    COUNT(*) + 1 AS nr 
  FROM Stats.Scores 
  GROUP BY testid 
) 
SELECT testid, 1.0 * (rk - 1) / (nr - 1) AS pctrank 
FROM C;

CUMe_DIST
The CUME_DIST calculation is similar to PERCENT_RANK, only it’s calculated slightly differently. As a 
window function, it is calculated as follows:

■■ Let nr be the count of rows in the window partition. 

■■ Let np be the number of rows that precede or are peers of the current one.

■■ Then CUME_DIST is calculated as follows: np / nr.

As a hypothetical set function, CUME_DIST tells you what cumulative distribution an input value 
would get in each group if it’s added to all groups. The standard version of the CUME_DIST function 
as an ordered set function applied to our Scores scenario looks like this:
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DECLARE @score AS TINYINT = 80; 
 
SELECT testid, 
  CUME_DIST(@score) WITHIN GROUP(ORDER BY score) AS cumedist 
FROM Stats.Scores 
GROUP BY testid; 
 
testid     cumedist 
---------- ------------ 
Test ABC   0.800 
Test XYZ   0.727

As for the version supported by SQL Server, it’s quite similar to the alternative you used for the 
PERCENT_RANK function. You compute np as the count of rows in the group that have a score that 
is lower than the input, plus one to account for the input. You compute nr as a count of rows in the 
group, plus one—again, to account for the input. Finally, you compute the cumulative distribution as 
follows: np / nr. Here’s the complete solution:

DECLARE @score AS TINYINT = 80; 
 
WITH C AS 
( 
  SELECT testid, 
    COUNT(CASE WHEN score <= @score THEN 1 END) + 1 AS np, 
    COUNT(*) + 1 AS nr 
  FROM Stats.Scores 
  GROUP BY testid 
) 
SELECT testid, 1.0 * np / nr AS cumedist 
FROM C;

General Solution
Because SQL Server 2012 doesn’t support the standard hypothetical set functions, I provided alterna-
tive methods to achieve the same calculations. The methods I provided for the different calculations 
were quite different from one another. In this section, I will present a more generalized solution. 

All four unsupported hypothetical set functions have supported window-function counterparts. 
That is, SQL Server 2012 does support RANK, DENSE_RANK, PERCENT_RANK, and CUME_DIST as win-
dow functions. Remember that a hypothetical set function is supposed to return for a given input the 
result that the corresponding window function would return if the input value was added to the set. 
With this in mind, you can create a solution that works the same for all calculations. The generalized 
solution might not be as optimized as the specialized ones, but it is still interesting to see. The steps 
involved in the solution are as follows:

1. Unify the existing set with the input value.

2. Apply the window function.

3. Filter the row representing the input value to return the result. 
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Here’s the code form of the solution:

SELECT <partition_col>, wf AS osf 
FROM <partitions_table> AS P 
  CROSS APPLY (SELECT <window_function>() OVER(ORDER BY <ord_col>) AS wf, return_flag 
               FROM (SELECT <ord_col>, 0 AS return_flag 
                     FROM <details_table> AS D 
                     WHERE D.<partition_col> = P.<partition_col> 
                
                     UNION ALL 
                
                     SELECT @input_val, 1) AS D) AS A 
WHERE return_flag = 1;

The outer query is issued against the table holding the distinct partition values. Then with a CROSS 
APPLY operator, the code handles each partition separately. The innermost-derived table U handles 
the unification of the current partition’s rows, which are marked with return_flag 0, with a row made 
of the input value, marked with return_flag 1. Then the query against U computes the window func-
tion, generating the derived table A. Finally, the outer query filters only the rows with return_flag 1. 
Those are the rows that have the computation for the input value in each partition; in other words, 
the hypothetical set calculation. 

If this general form isn’t clear yet, see if you can follow the logic through specific examples. The 
following code queries the table Customers (partitions) and the view Sales.OrderValues (details). It 
calculates both RANK and DENSE_RANK as hypothetical set calculations for an input value @val, with 
custid being the partitioning element and val being the ordering element:

DECLARE @val AS NUMERIC(12, 2) = 1000.00; 
 
SELECT custid, rnk, densernk 
FROM Sales.Customers AS P 
  CROSS APPLY (SELECT  
                 RANK() OVER(ORDER BY val) AS rnk, 
                 DENSE_RANK() OVER(ORDER BY val) AS densernk, 
                 return_flag 
               FROM (SELECT val, 0 AS return_flag 
                     FROM Sales.OrderValues AS D 
                     WHERE D.custid = P.custid 
                
                     UNION ALL 
                
                     SELECT @val, 1) AS U) AS A 
WHERE return_flag = 1; 
 
custid      rnk                  densernk 
----------- -------------------- -------------------- 
1           7                    7 
2           5                    5 
3           6                    6 
4           10                   10 
5           7                    7 
6           8                    8 
7           6                    6 



 Hypothetical Set Functions  89

8           3                    3 
9           9                    8 
11          9                    9 
...

Similarly, the following code is issued against the tables Tests (partitions) and Scores (details). It 
calculates PERCENT_RANK and CUME_DIST as hypothetical set calculations for the input value @score, 
with testid being the partitioning element and score being the ordering element:

DECLARE @score AS TINYINT = 80; 
 
SELECT testid, pctrank, cumedist 
FROM Stats.Tests AS P 
  CROSS APPLY (SELECT  
                 PERCENT_RANK() OVER(ORDER BY score) AS pctrank, 
                 CUME_DIST() OVER(ORDER BY score) AS cumedist, 
                 return_flag 
               FROM (SELECT score, 0 AS return_flag 
                     FROM Stats.Scores AS D 
                     WHERE D.testid = P.testid 
                
                     UNION ALL 
                
                     SELECT @score, 1) AS U) AS A 
WHERE return_flag = 1; 
 
testid     pctrank                cumedist 
---------- ---------------------- ---------------------- 
Test ABC   0.555555555555556      0.8 
Test XYZ   0.5                    0.727272727272727

Of course, there are other ways to generalize a solution for hypothetical set calculations. Here I 
showed just one method.

I should note that this method returns rows that appear in the partitions table even if there are no 
related rows in the details table. If you are not interested in those, you need to add logic to exclude 
them—for example, by including a NOT EXISTS predicate. As an example, to exclude customers with 
no related orders from the query that calculates the RANK and DENSE_RANK hypothetical set calcula-
tions, you use the following code:

DECLARE @val AS NUMERIC(12, 2) = 1000.00; 
 
SELECT custid, rnk, densernk 
FROM Sales.Customers AS P 
  CROSS APPLY (SELECT  
                 RANK() OVER(ORDER BY val) AS rnk, 
                 DENSE_RANK() OVER(ORDER BY val) AS densernk, 
                 return_flag 
               FROM (SELECT val, 0 AS return_flag 
                     FROM Sales.OrderValues AS D 
                     WHERE D.custid = P.custid 
                
                     UNION ALL 
                
                     SELECT @val, 1) AS U) AS A 
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WHERE return_flag = 1 
  AND EXISTS 
    (SELECT * FROM Sales.OrderValues AS D 
     WHERE D.custid = P.custid);

This query returns 89 rows and not 91, because only 89 out of the 91 existing customers placed 
orders.

Inverse Distribution Functions

Inverse distribution functions perform calculations that you can think of as the inverse of the rank 
distribution functions PERCENT_RANK and CUME_DIST. Rank distribution functions compute a rank of 
a value with respect to others in a partition or a group, expressed as a ratio in the range of 0 through 
1 (a percent). Inverse distribution functions pretty much do the inverse. Given a certain percent, @pct, 
they return a value from the partition or group that the @pct represents. That is, in loose terms, they 
return a calculated value with respect to which @pct percent of the values are less than. Chances are 
that this sentence doesn’t make much sense yet, but it should be clearer after you see some examples. 
Inverse distribution functions are more commonly known as percentiles. 

The standard defines two variants of inverse distribution functions: PERCENTILE_DISC, which 
returns an existing value from the population using a discrete distribution model, and PERCENTILE_
CONT, which returns an interpolated value assuming a continuous distribution model. I explained 
the specifics of the two calculations in Chapter 2. As a quick reminder, PERCENTILE_DISC returns 
the first value in the group whose cumulative distribution is greater than or equal to the input. The 
 PERCENTILE_CONT function identifies two rows in between which the input percent falls, and it com-
putes an interpolation of the two ordering values assuming a continuous distribution model.

SQL Server 2012 supports only a windowed version of the functions, which I described in detail 
in Chapter 2. It doesn’t support the more natural ordered set function versions that can be used 
in grouped queries. But I will provide alternatives to the ordered set function versions both in SQL 
Server 2012 and in prior versions of SQL Server.

First, as a reminder, here’s a query against the Scores table calculating the fiftieth percentile 
(median) of test scores, using both function variants as well as window functions:

DECLARE @pct AS FLOAT = 0.5; 
 
SELECT testid, score, 
  PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) 
    OVER(PARTITION BY testid) AS percentiledisc, 
  PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) 
    OVER(PARTITION BY testid) AS percentilecont 
FROM Stats.Scores; 
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testid     score percentiledisc percentilecont 
---------- ----- -------------- ---------------------- 
Test ABC   50    75             75 
Test ABC   55    75             75 
Test ABC   55    75             75 
Test ABC   65    75             75 
Test ABC   75    75             75 
Test ABC   80    75             75 
Test ABC   80    75             75 
Test ABC   95    75             75 
Test ABC   95    75             75 
Test XYZ   50    75             77.5 
Test XYZ   55    75             77.5 
Test XYZ   55    75             77.5 
Test XYZ   65    75             77.5 
Test XYZ   75    75             77.5 
Test XYZ   80    75             77.5 
Test XYZ   80    75             77.5 
Test XYZ   95    75             77.5 
Test XYZ   95    75             77.5 
Test XYZ   95    75             77.5

Observe that the same result percentiles are simply repeated for all members of the same partition 
(test, in our case), which is completely redundant for our purposes. You need to return the percentiles 
only once per group. According to the standard, you are supposed to achieve this using the ordered 
set versions of the functions in a grouped query, like so:

DECLARE @pct AS FLOAT = 0.5; 
 
SELECT testid,  
  PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) AS percentiledisc, 
  PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) AS percentilecont 
FROM Stats.Scores 
GROUP BY testid;

But these versions weren’t implemented in SQL Server 2012, so you need to figure out alternative 
methods to achieve this. 

Because the windowed versions of the functions were implemented, one simple approach to han-
dling the task is to use the DISTINCT option, like so:

DECLARE @pct AS FLOAT = 0.5; 
 
SELECT DISTINCT testid, 
  PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) 
    OVER(PARTITION BY testid) AS percentiledisc, 
  PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) 
    OVER(PARTITION BY testid) AS percentilecont 
FROM Stats.Scores; 
 
testid     percentiledisc percentilecont 
---------- -------------- ---------------------- 
Test ABC   75             75 
Test XYZ   75             77.5
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Another option is to assign unique row numbers to the rows in each partition, and then filter just 
the rows with row number 1, like so:

DECLARE @pct AS FLOAT = 0.5; 
 
WITH C AS 
( 
  SELECT testid, 
    PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) 
      OVER(PARTITION BY testid) AS percentiledisc, 
    PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) 
      OVER(PARTITION BY testid) AS percentilecont, 
    ROW_NUMBER() OVER(PARTITION BY testid ORDER BY (SELECT NULL)) AS rownum 
  FROM Stats.Scores 
) 
SELECT testid, percentiledisc, percentilecont 
FROM C 
WHERE rownum = 1;

Another option is to use TOP (1) WITH TIES, with ordering based on similar row numbers, which 
also results in returning only rows with row number 1, like so:

DECLARE @pct AS FLOAT = 0.5; 
 
SELECT TOP (1) WITH TIES testid, 
  PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) 
    OVER(PARTITION BY testid) AS percentiledisc, 
  PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) 
    OVER(PARTITION BY testid) AS percentilecont 
FROM Stats.Scores 
ORDER BY ROW_NUMBER() OVER(PARTITION BY testid ORDER BY (SELECT NULL));

Note that even though the last technique might be creative and intellectually intriguing, it is not as 
efficient as the previous one.

If you need to calculate percentiles in versions prior to SQL Server 2012, you need to implement 
the logic of the computation yourself. With PERCENTILE_DISC, you are supposed to return the first 
value in the group whose cumulative distribution is greater than or equal to the input percent. To 
calculate the cumulative distribution of each value, you need to know how many rows precede or are 
peers of that value (np) and how many rows there are in the group (nr). Then the cumulative distribu-
tion is np / nr. 

Normally, to calculate np, you need to return one less than the minimum rank that is greater than 
the current one. This could involve expensive use of subqueries and the RANK function. Courtesy of 
Adam Machanic, you can achieve what you need with less effort. When peers cannot exist (that is, 
the ordering is unique), the ROW_NUMBER function returns a number that is equal to np for all rows. 
When peers can exist (the ordering isn’t unique) the function returns a number that is equal to np 
for one of the peers and less than np for all others. Because we are talking about peers, by defini-
tion, in cases where the row number is less than np, the sort value is the same as the one where the 
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row  number is equal to np. This fact makes the ROW_NUMBER function sufficient for our very specific 
need of representing np. As for calculating nr, you can use a simple COUNT window function. Here’s 
the code that implements this logic, followed by its output:

DECLARE @pct AS FLOAT = 0.5; 
 
WITH C AS 
( 
  SELECT testid, score, 
    ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score) AS np, 
    COUNT(*) OVER(PARTITION BY testid) AS nr 
  FROM Stats.Scores 
) 
SELECT testid, MIN(score) AS percentiledisc 
FROM C 
WHERE 1.0 * np / nr >= @pct 
GROUP BY testid; 
 
testid     percentiledisc 
---------- -------------- 
Test ABC   75 
Test XYZ   75

As for a pre–SQL Server 2012 alternative to PERCENTILE_CONT, here’s a reminder from Chapter 2 
for the logic behind the computation:

■■ Consider the function PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score).

■■ Let n be the count of rows in the group.

■■ Let a be @pct*(n – 1), let i be the integer part of a, and let f be the fraction part of a.

■■ Let row0 and row1 be the rows whose zero-based row numbers are in FLOOR(a), CEILING(a). 
Here I’m assuming the row numbers are calculated using the same window partitioning and 
ordering as the group and order of the PERCENTILE_CONT function.

Then PERCENTILE_CONT is computed as row0.score + f * (row1.score – row0.score). This is an inter-
polation of the values in the two rows assuming continuous distribution (based on the fraction part 
of a).

The following code implements this logic:

DECLARE @pct AS FLOAT = 0.5; 
 
WITH C1 AS 
( 
  SELECT testid, score, 
    ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score) - 1 AS rownum, 
    @pct * (COUNT(*) OVER(PARTITION BY testid) - 1) AS a 
  FROM Stats.Scores 
), 
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C2 AS 
( 
  SELECT testid, score, a-FLOOR(a) AS factor 
  FROM C1 
  WHERE rownum IN (FLOOR(a), CEILING(a)) 
) 
SELECT testid, MIN(score) + factor * (MAX(score) - MIN(score)) AS percentilecont 
FROM C2 
GROUP BY testid, factor; 
 
testid     percentilecont 
---------- ---------------------- 
Test ABC   75 
Test XYZ   77.5

Offset Functions

Standard SQL doesn’t define ordered set function versions of the functions FIRST_VALUE, LAST_VALUE, 
and NTH_VALUE; rather, it defines only windowed versions, and that’s also the implementation in SQL 
Server 2012. As an example, the following query returns with each order the current order value, as 
well as the values of the first and last orders by the same customer:

SELECT custid, orderdate, orderid, val, 
  FIRST_VALUE(val) OVER(PARTITION BY custid 
                        ORDER BY orderdate, orderid) AS val_firstorder, 
  LAST_VALUE(val)  OVER(PARTITION BY custid 
                        ORDER BY orderdate, orderid 
                        ROWS BETWEEN CURRENT ROW 
                                 AND UNBOUNDED FOLLOWING) AS val_lastorder 
FROM Sales.OrderValues; 
 
custid  orderdate   orderid  val      val_firstorder  val_lastorder 
------- ----------- -------- -------- --------------- -------------- 
1       2007-08-25  10643    814.50   814.50          933.50 
1       2007-10-03  10692    878.00   814.50          933.50 
1       2007-10-13  10702    330.00   814.50          933.50 
1       2008-01-15  10835    845.80   814.50          933.50 
1       2008-03-16  10952    471.20   814.50          933.50 
1       2008-04-09  11011    933.50   814.50          933.50 
2       2006-09-18  10308    88.80    88.80           514.40 
2       2007-08-08  10625    479.75   88.80           514.40 
2       2007-11-28  10759    320.00   88.80           514.40 
2       2008-03-04  10926    514.40   88.80           514.40 
3       2006-11-27  10365    403.20   403.20          660.00 
3       2007-04-15  10507    749.06   403.20          660.00 
3       2007-05-13  10535    1940.85  403.20          660.00 
3       2007-06-19  10573    2082.00  403.20          660.00 
3       2007-09-22  10677    813.37   403.20          660.00 
3       2007-09-25  10682    375.50   403.20          660.00 
3       2008-01-28  10856    660.00   403.20          660.00 
...
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Observe the duplication of the information in all rows by the same customer. Often that’s what you 
want if you need to involve in the same expression both detail elements and the first, last, and nth 
values from the partition. But what if you don’t? What if you need the first, last, and nth values only 
once per group?

If you think about it, there’s no reason not to support grouped-aggregate, ordered-set function 
versions of the functions. After all, in a given group of rows, each of those functions is supposed to 
return only one value. It’s true that in the windowed version these functions support a window frame 
clause so that, for each row in the partition, there can be a different applicable frame and, therefore, a 
different result. But often you just want the calculation applied to the entire partition or group. 

You can think of ordered-set-function forms of the FIRST_VALUE and LAST_VALUE functions as 
being more flexible versions of the MIN and MAX functions, respectively. They’re more flexible in 
the sense that the MIN and MAX functions treat the input as both the ordering element and the 
value expression to return, plus they don’t support multiple ordering elements. The FIRST_VALUE and 
LAST_VALUE functions allow you to return one element as the value expression based on the order-
ing of another element, or elements. So why not support those as grouped-aggregate, ordered-set 
functions?

I hope this will happen in the future. In the meanwhile, you need to use alternative methods. One 
method, similar to what I showed with inverse distribution functions, is to invoke the windowed ver-
sion of the functions, along with calculating unique row numbers within each partition. And then filter 
only the rows where the row number is equal to 1, like so:

WITH C AS 
( 
  SELECT custid,  
    FIRST_VALUE(val) OVER(PARTITION BY custid 
                          ORDER BY orderdate, orderid) AS val_firstorder, 
    LAST_VALUE(val)  OVER(PARTITION BY custid 
                          ORDER BY orderdate, orderid 
                          ROWS BETWEEN CURRENT ROW 
                                   AND UNBOUNDED FOLLOWING) AS val_lastorder, 
    ROW_NUMBER() OVER(PARTITION BY custid ORDER BY (SELECT NULL)) AS rownum 
  FROM Sales.OrderValues 
) 
SELECT custid, val_firstorder, val_lastorder 
FROM C 
WHERE rownum = 1; 
 
custid  val_firstorder  val_lastorder 
------- --------------- -------------- 
1       814.50          933.50 
2       88.80           514.40 
3       403.20          660.00 
4       480.00          491.50 
5       1488.80         1835.70 
6       149.00          858.00 
7       1176.00         730.00 
8       982.00          224.00 
9       88.50           792.75 
10      1832.80         525.00 
...
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But the functions FIRST_VALUE and LAST_VALUE (the windowed version) are available only in SQL 
Server 2012. In addition, the NTH_VALUE function is not available in any form in SQL Server 2012. 
There are a number of ways to handle these calculations in previous versions of SQL Server, relying 
on the ROW_NUMBER function alone. By calculating an ascending row number and filtering only the 
rows with row number 1, you get the equivalent of FIRST_VALUE. Filtering the rows with row number 
n, you get the equivalent of NTH_VALUE FROM FIRST. Similarly, using a row number with descending 
order, you produce the equivalents of LAST_VALUE and NTH_VALUE FROM LAST. Here’s an example 
implementing this logic, returning the first, last, and third order values per customer, with ordering 
based on orderdate, orderid:

WITH OrdersRN AS 
( 
  SELECT custid, val, 
    ROW_NUMBER() OVER(PARTITION BY custid 
                      ORDER BY orderdate, orderid) AS rna, 
    ROW_NUMBER() OVER(PARTITION BY custid 
                      ORDER BY orderdate DESC, orderid DESC) AS rnd 
  FROM Sales.OrderValues 
) 
SELECT custid, 
  MAX(CASE WHEN rna = 1 THEN val END) AS firstorderval, 
  MAX(CASE WHEN rnd = 1 THEN val END) AS lastorderval, 
  MAX(CASE WHEN rna = 3 THEN val END) AS thirdorderval 
FROM OrdersRN 
GROUP BY custid; 
 
custid  firstorderval  lastorderval  thirdorderval 
------- -------------- ------------- -------------- 
1       814.50         933.50        330.00 
2       88.80          514.40        320.00 
3       403.20         660.00        1940.85 
4       480.00         491.50        407.70 
5       1488.80        1835.70       2222.40 
6       149.00         858.00        330.00 
7       1176.00        730.00        7390.20 
8       982.00         224.00        224.00 
9       88.50          792.75        1549.60 
10      1832.80        525.00        966.80 
...

There’s another technique to handle the first-value and last-value calculations based on a carry-
along-sort concept. The idea is to generate one string that concatenates first the ordering elements 
(orderdate and orderid, in our case), and then whichever elements you need to return. Then, by 
applying MIN or MAX aggregates, you get back the string holding within it the first or last value, 
respectively. The trick is to make sure that when you convert the original values to strings, you format 
them in such a way that preserves the original ordering behavior. In our case, this means converting 
the orderdate values to a CHAR(8) string using style 112, which produces the form YYYYMMDD. As for 
the orderid values, which are positive integers, you want to convert them to a fixed-sized form with 
leading spaces or zeros.

The following query shows the first step of the solution, where you just generate the concatenated 
strings:
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SELECT custid, 
  CONVERT(CHAR(8), orderdate, 112) 
    + STR(orderid, 10) 
    + STR(val, 14, 2) 
    COLLATE Latin1_General_BIN2 AS s 
FROM Sales.OrderValues; 
 
custid      s 
----------- -------------------------------- 
85          20060704     10248        440.00 
79          20060705     10249       1863.40 
34          20060708     10250       1552.60 
84          20060708     10251        654.06 
76          20060709     10252       3597.90 
34          20060710     10253       1444.80 
14          20060711     10254        556.62 
68          20060712     10255       2490.50 
88          20060715     10256        517.80 
35          20060716     10257       1119.90 
...

Observe the use of the binary collation, which helps speed up the comparisons a bit. As for the 
second step, you define a CTE based on the previous query. Then, in the outer query, you apply the 
MIN and MAX aggregates to the string, extract the part representing the value from the result, and 
convert it to the original type. Here’s the complete solution, followed by an abbreviated form of its 
output:

WITH C AS 
( 
  SELECT custid, 
    CONVERT(CHAR(8), orderdate, 112) 
      + STR(orderid, 10) 
      + STR(val, 14, 2) 
      COLLATE Latin1_General_BIN2 AS s 
  FROM Sales.OrderValues 
) 
SELECT custid, 
  CAST(SUBSTRING(MIN(s), 19, 14) AS NUMERIC(12, 2)) AS firstorderval, 
  CAST(SUBSTRING(MAX(s), 19, 14) AS NUMERIC(12, 2)) AS lastorderval 
FROM C 
GROUP BY custid; 
 
custid  firstorderval  lastorderval 
------- -------------- ------------- 
1       814.50         933.50 
2       88.80          514.40 
3       403.20         660.00 
4       480.00         491.50 
5       1488.80        1835.70 
6       149.00         858.00 
7       1176.00        730.00 
8       982.00         224.00 
9       88.50          792.75 
10      1832.80        525.00 
...
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Note that I relied on the fact that the integer orderid values are non-negative. If you have a 
numeric ordering element that supports negative values, you need to add logic to make it sort cor-
rectly. This is tricky yet doable. For example, suppose that orderid values can be negative. To ensure 
that negative values sort before positive ones, you could add the letter 0 in the string before a nega-
tive value and the letter 1 before a non-negative value. Then, to ensure that negative values sort cor-
rectly (for example, –2 before –1), you could add 2147483648 (the absolute of the minimum possible 
negative integer of –2147483648) to the value before converting it to a character string. Here’s what 
the complete query would look like:

WITH C AS 
( 
  SELECT custid, 
    CONVERT(CHAR(8), orderdate, 112) 
      + CASE SIGN(orderid) WHEN -1 THEN '0' ELSE '1' END -- negative sorts before nonnegative 
      + STR(CASE SIGN(orderid)  
              WHEN -1 THEN 2147483648 -- if negative add abs(minnegative) 
              ELSE 0  
            END + orderid, 10) 
      + STR(val, 14, 2) 
      COLLATE Latin1_General_BIN2 AS s 
  FROM Sales.OrderValues 
) 
SELECT custid, 
  CAST(SUBSTRING(MIN(s), 20, 14) AS NUMERIC(12, 2)) AS firstorderval, 
  CAST(SUBSTRING(MAX(s), 20, 14) AS NUMERIC(12, 2)) AS lastorderval 
FROM C 
GROUP BY custid;

When using this technique in production code, make sure you thoroughly comment the code 
because it isn’t trivial.

String Concatenation

As mentioned, the standard defines only two kinds of ordered set functions: hypothetical set func-
tions (RANK, DENSE_RANK, PERCENT_RANK, and CUME_DIST) and inverse distribution functions 
(PERCENTILE_DISC, and PERCENTILE_CONT). As I already demonstrated with offset functions, there’s 
no reason why the concept wouldn’t work for other functions as well. The basic idea is that if it’s an 
aggregate function that has ordering relevance to the computation, it’s a potential candidate for an 
ordered set function. Take a classic example such as string concatenation. At the moment, unfor-
tunately, there’s no built-in aggregate string concatenation function that concatenates strings in a 
group. But say there was one. Of course, you might need to concatenate the strings in the group in 
some order; therefore, it would make perfect sense to implement the function as an ordered set func-
tion with a WITHIN GROUP clause that allows you to indicate the ordering specification.

Oracle, for example, implemented such a function (called LISTAGG), as an ordered set function. 
So, to query a table called Sales.Orders returning for each customer a string with all orderid values 
concatenated in orderid ordering, you use the following code:
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SELECT custid, 
  LISTAGG(orderid, ',') WITHIN GROUP(ORDER BY orderid) AS custorders 
FROM Sales.Orders 
GROUP BY custid; 
 
custid  custorders 
------- ---------------------------------------------------------------------------------- 
1       10643,10692,10702,10835,10952,11011 
2       10308,10625,10759,10926 
3       10365,10507,10535,10573,10677,10682,10856 
4       10355,10383,10453,10558,10707,10741,10743,10768,10793,10864,10920,10953,11016 
5       10278,10280,10384,10444,10445,10524,10572,10626,10654,10672,10689,10733,10778,... 
6       10501,10509,10582,10614,10853,10956,11058 
7       10265,10297,10360,10436,10449,10559,10566,10584,10628,10679,10826 
8       10326,10801,10970 
9       10331,10340,10362,10470,10511,10525,10663,10715,10730,10732,10755,10827,10871,... 
11      10289,10471,10484,10538,10539,10578,10599,10943,10947,11023 
...

People use all kinds of alternative solutions in SQL Server to achieve ordered string concatenation. 
One of the more efficient techniques is based on XML manipulation using the FOR XML option with 
the PATH mode, like so:

SELECT custid, 
  COALESCE( 
    STUFF( 
      (SELECT ',' + CAST(orderid AS VARCHAR(10)) AS [text()] 
       FROM Sales.Orders AS O 
       WHERE O.custid = C.custid 
       ORDER BY orderid 
       FOR XML PATH(''), TYPE).value('.', 'VARCHAR(MAX)'), 
      1, 1, ''), 
    '') AS custorders 
FROM Sales.Customers AS C; 

The innermost correlated subquery filters only the orderid values from the Orders table (aliased 
as O) that are associated with the current customer from the Customers table (aliased as C). With 
the FOR XML PATH('') option, you ask to generate a single XML string out of all of the values. Using 
the empty string as input to the PATH mode means that you don’t want the wrapping elements to 
be produced, effectively giving you a concatenation of the values without any added tags. Because 
the subquery specifies ORDER BY orderid, the orderid values in the string are ordered. Note that you 
can order by anything at all—not necessarily by the values you’re concatenating. The code also adds 
a comma as a separator before each orderid value, and then the STUFF function removes the first 
comma. Finally, the COALESCE function converts a NULL result to an empty string. So, it is possible to 
achieve ordered string concatenation in SQL Server, but it isn’t pretty. 
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Summary

Ordered set functions are aggregate functions that have ordering relevance to the calculation. The 
standard defines some specific functions, but the concept is, in fact, general and can work for all kinds 
of aggregate calculations. I gave a few examples beyond what the standard supports, such as offset 
functions and string concatenation. SQL Server 2012 does not support ordered set functions, but I 
provided alternative methods to achieve similar calculations. I do hope very much to see SQL Server 
introducing support for such functions in the future—perhaps implementing the standard WITHIN 
GROUP clause and making it available to CLR user-defined aggregate functions that have ordering 
relevance.
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C H A P T E R  4

Optimization of Window Functions

This chapter describes the optimization of window functions in Microsoft SQL Server 2012. It 
assumes that you are familiar with analyzing graphical query-execution plans and with the core 

iterators such as Index Scan, Index Seek, Sort, Nested Loops, Parallelism, Compute Scalar, Filter, 
Stream Aggregate, and so on. 

The chapter starts by introducing the data that will be used in the code samples. It then covers 
general indexing guidelines to support window functions of all kinds. Then I discuss the optimization 
of window ranking functions, which is followed by a discussion on improving parallel processing of 
window functions in general. The chapter then discusses optimization of aggregate and offset func-
tions, first without window ordering and framing options and then with them. You will be introduced 
to the new Window Spool operator and discover how it does its magic. Finally, the chapter describes 
the optimization of distribution functions.

Note I’d like to thank Marc Friedman, Umachandar Jayachandran, Tobias Ternström, and 
Milan Stojic from the SQL Server development team for their help in understanding the 
 optimization of window functions. It is much appreciated.

Sample Data

Most of the examples in the chapter query tables called Accounts and Transactions, which hold infor-
mation about bank accounts and transactions within those accounts. For deposits, the transactions 
have a positive amount associated with them, and for withdrawals, they have a negative one. Run the 
following code to create the Accounts and Transactions tables in the TSQL2012 sample database:

SET NOCOUNT ON; 
USE TSQL2012; 
 
IF OBJECT_ID('dbo.Transactions', 'U') IS NOT NULL DROP TABLE dbo.Transactions; 
IF OBJECT_ID('dbo.Accounts', 'U') IS NOT NULL DROP TABLE dbo.Accounts; 
 
CREATE TABLE dbo.Accounts 
( 
  actid   INT         NOT NULL, 
  actname VARCHAR(50) NOT NULL, 
  CONSTRAINT PK_Accounts PRIMARY KEY(actid) 
); 
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CREATE TABLE dbo.Transactions 
( 
  actid  INT   NOT NULL, 
  tranid INT   NOT NULL, 
  val    MONEY NOT NULL, 
  CONSTRAINT PK_Transactions PRIMARY KEY(actid, tranid), 
  CONSTRAINT FK_Transactions_Accounts 
    FOREIGN KEY(actid) 
    REFERENCES dbo.Accounts(actid) 
);

The code samples and performance measures I provide in the chapter assume that the tables are 
populated with a large set of sample data. But if you need a small set of sample data just to test the 
logic of the solutions, you can use the following code to fill the tables:

INSERT INTO dbo.Accounts(actid, actname) VALUES 
  (1,  'account 1'), 
  (2,  'account 2'), 
  (3,  'account 3'); 
 
INSERT INTO dbo.Transactions(actid, tranid, val) VALUES 
  (1,  1,  4.00), 
  (1,  2, -2.00), 
  (1,  3,  5.00), 
  (1,  4,  2.00), 
  (1,  5,  1.00), 
  (1,  6,  3.00), 
  (1,  7, -4.00), 
  (1,  8, -1.00), 
  (1,  9, -2.00), 
  (1, 10, -3.00), 
  (2,  1,  2.00), 
  (2,  2,  1.00), 
  (2,  3,  5.00), 
  (2,  4,  1.00), 
  (2,  5, -5.00), 
  (2,  6,  4.00), 
  (2,  7,  2.00), 
  (2,  8, -4.00), 
  (2,  9, -5.00), 
  (2, 10,  4.00), 
  (3,  1, -3.00), 
  (3,  2,  3.00), 
  (3,  3, -2.00), 
  (3,  4,  1.00), 
  (3,  5,  4.00), 
  (3,  6, -1.00), 
  (3,  7,  5.00), 
  (3,  8,  3.00), 
  (3,  9,  5.00), 
  (3, 10, -3.00);

As for producing a large set of sample data, first run the following code to create a helper function 
called GetNums (which you can get details about in Chapter 5, “T-SQL Solutions Using Window Func-
tions”), which generates a sequence of integers in the requested range:
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IF OBJECT_ID('dbo.GetNums', 'IF') IS NOT NULL DROP FUNCTION dbo.GetNums; 
GO 
CREATE FUNCTION dbo.GetNums(@low AS BIGINT, @high AS BIGINT) RETURNS TABLE 
AS 
RETURN 
  WITH 
    L0   AS (SELECT c FROM (VALUES(1),(1)) AS D(c)), 
    L1   AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), 
    L2   AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), 
    L3   AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), 
    L4   AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), 
    L5   AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), 
    Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum 
            FROM L5) 
  SELECT @low + rownum - 1 AS n 
  FROM Nums 
  ORDER BY rownum 
  OFFSET 0 ROWS FETCH FIRST @high - @low + 1 ROWS ONLY; 
GO

And then use the following code to fill the Accounts table with 100 accounts and the Transactions 
table with 20,000 transactions per account—a total of 2,000,000 transactions:

DECLARE 
  @num_partitions     AS INT = 100, 
  @rows_per_partition AS INT = 20000; 
 
TRUNCATE TABLE dbo.Transactions; 
DELETE FROM dbo.Accounts; 
 
INSERT INTO dbo.Accounts WITH (TABLOCK) (actid, actname) 
  SELECT n AS actid, 'account ' + CAST(n AS VARCHAR(10)) AS actname 
  FROM dbo.GetNums(1, @num_partitions) AS P; 
 
INSERT INTO dbo.Transactions WITH (TABLOCK) (actid, tranid, val) 
  SELECT NP.n, RPP.n, 
    (ABS(CHECKSUM(NEWID())%2)*2-1) * (1 + ABS(CHECKSUM(NEWID())%5)) 
  FROM dbo.GetNums(1, @num_partitions) AS NP 
    CROSS JOIN dbo.GetNums(1, @rows_per_partition) AS RPP;

Feel free to adjust the number of partitions (accounts) and rows per partition (transactions per 
account) as needed, but keep in mind that I used the preceding inputs in my tests.

Indexing guidelines

The plan iterators that compute the result of a window function will be described in detail later in 
the chapter. For now, it suffices to say that they need the input rows to be sorted by the partitioning 
columns (if a window partition clause exists), followed by the ordering columns (assuming a window 
order clause is relevant). If no index exists that holds the data in the required order, a sort operation 
will be required before the window function iterators can do their jobs. 
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POC Index
The general indexing guidelines to support window functions follow a concept I like to think of as 
POC, which is short for Partitioning, Ordering, and Covering. It’s also sometimes referred to as POCo. 
A POC index’s keys should be the window partition columns followed by the window order columns, 
and the index should include in the leaf the rest of the columns that the query refers to. The inclusion 
can be achieved either with an explicit INCLUDE clause of a nonclustered index or by means of the 
index being clustered—in which case, it needs to include all table columns in the leaf rows.

Absent a POC index, the plan includes a Sort iterator, and with large input sets, it can be quite 
expensive. Sorting has N * LOG(N) complexity, which is worse than linear. This means that with more 
rows, you pay more per row. For example 1000 * LOG(1000) = 3000 and 10000 * LOG(10000) = 
40000. This means that 10 times more rows results in 13 times more work, and it gets worse the fur-
ther you go. As an example, consider the following query:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownum 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-1. 

FIgURE 4-1 Plan with a Sort iterator.

At the moment, there’s no POC index in place. The clustered index is scanned without an ordering 
requirement (that is, the Ordered property of the scan is False), and then an expensive Sort iterator 
is used to sort the data. The query ran for four seconds on my system against hot cache, with results 
discarded. (To discard results, open the Query Options context menu, choose Grid under Results, and 
select the Discard Results After Execution option.) Next, run the following code to create a POC index:

CREATE INDEX idx_actid_val_i_tranid 
  ON dbo.Transactions(actid /* P */, val /* O */) 
  INCLUDE(tranid /* C */);

As you can see, the first part of the key list is the window partition column (actid in our case), fol-
lowed by the window order columns (val in our case), and then the rest of the columns referenced by 
the query (tranid in our case). Rerun the following query:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownum 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-2. 
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FIgURE 4-2 Plan without a Sort iterator.

The Sort iterator is removed. The plan performs an ordered scan of the POC index to satisfy the 
ordering requirement of the iterators that compute the window function’s result. This time the query 
ran for two seconds even though a serial plan was used, compared with four seconds for the previous 
parallel plan with the sort. With larger sets, the difference can be greater.

If the query also involves equality filters—for example, WHERE col1 = 5 AND col2 = 'ABC'—you 
can address both the filtering needs and the window function’s ordering needs with the same index 
by putting the filtered columns first in the index key list. You can then think of the index as an FPOC 
index, with FPO as the key list and C as the include list.

If you have multiple window functions in the query, as long as they have the same window speci-
fication, they can usually rely on the same ordered data without the need to add a Sort iterator for 
each. Note also that when specifying multiple window functions with different window ordering (and 
possibly also presentation ordering), their order of appearance in the SELECT list can affect the num-
ber of sorts that will take place in the plan.

Backward Scans
The pages in each level of an index, including the leaf, are connected with a doubly linked list; so 
technically, the index can be scanned either ordered forward or ordered backward. When rows need 
to be consumed in index key order, but in the exact reverse direction to that of the index, often the 
optimizer will have the logic to perform an ordered backward scan. But there are curious aspects of 
backward scans and the ability to rely on those to compute window functions that are interesting to 
know and that can affect your choices.

The first curious aspect is that ordered forward scans can benefit from parallelism, whereas 
ordered backward scans cannot. Parallel backward scans are just not implemented in the storage 
engine at the moment. To demonstrate that forward scans can be parallelized, run the following 
query and request the actual execution plan:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(ORDER BY actid, val) AS rownum 
FROM dbo.Transactions 
WHERE tranid < 1000;

Figure 4-3 has the plan for this query, showing that a parallel scan was used.
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FIgURE 4-3 Parallel plan.

Next, run the following query, where the direction of the window order columns is reversed:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(ORDER BY actid DESC, val DESC) AS rownum 
FROM dbo.Transactions 
WHERE tranid < 1000;

The execution plan for the query is shown in Figure 4-4.

FIgURE 4-4 Serial plan.

The optimizer did choose to use an ordered scan of the same index used before, in a backward 
fashion, and thus the plan is serial.

You might have noticed that the last two queries have only a window ordering clause but are miss-
ing a window partition clause. Still, the index created earlier satisfies the aforementioned POC guide-
lines, only the P is irrelevant here. It’s not by chance that I chose not to include a window partition 
clause in these examples. And this leads me to the second curious aspect of optimization of window 
functions.

It turns out that if the function has a window partition clause, to perform an ordered scan of an 
index and avoid a sort, the partitioning values must be read in ascending order even though there’s 
no logical reasoning behind it. There’s an exception to this rule, but I’ll get to that later.

Consider the following query, which was already used in a previous example:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownum 
FROM dbo.Transactions;

The plan for this query was shown earlier in Figure 4-2, where you saw that the POC index was 
scanned in an ordered fashion and a sort was avoided.

Next, try a similar query, only this time reverse the direction of the ordering column, like so:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val DESC) AS rownum 
FROM dbo.Transactions;
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The plan for this query is shown in Figure 4-5, where you will find a Sort iterator.

FIgURE 4-5 Plan with a Sort iterator for descending order.

The index that was used in the previous example is used here as well because it does cover this 
query, but its ordering is not relied on here. You can verify this by looking at the Ordered property of 
the Index Scan iterator, and you will find that in this case it is False, whereas in the previous case it was 
True. That’s an optimization shortcoming. The order in which the distinct partition column values are 
scanned shouldn’t matter. What matters is that the values within each partition need to be scanned 
in exactly the order defined by the window order clause. So scanning the index in backward order 
should provide the values to the window function in the right order. But alas, the optimizer doesn’t 
realize this.

There are two indexes that can prevent the need to sort: one with the key list (actid, val DESC) and 
another with the exact inverse directions (actid DESC, val), both with the same include list as before 
(tranid). In the former case, an ordered forward scan will be used; in the latter case, an ordered back-
ward one will be used.

But what’s even more curious—and thanks to Brad Schulz for this tip—is what happens if you 
add a presentation ORDER BY clause that requests to order the rows by the partitioning column in 
descending order. Suddenly, the iterators that compute the window function are willing to consume 
the partitioning values in descending order and can rely on index ordering for this. So simply adding 
a presentation ORDER BY clause with tranid DESC to our last query removes the need for a Sort itera-
tor. Here’s the revised query:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val DESC) AS rownum 
FROM dbo.Transactions 
ORDER BY actid DESC;

The plan for this query is shown in Figure 4-6.

FIgURE 4-6 Plan without a Sort iterator for descending order.

Observe that the Sort iterator was removed. The plan performs an ordered backward scan of 
the index. Remember that a backward scan will not be parallelized in cases where a forward scan 
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 normally would. Still, it’s remarkable to identify a case where adding a presentation ORDER BY clause 
to a query improves performance!

Columnstore Indexes
Columnstore indexes are new in SQL Server 2012. They group and store the data for each column (as 
opposed to doing it by row as the traditional indexes do), and then join the columns to provide the 
related data. They can achieve a high level of compression using a technology called VertiPaq. For 
certain types of queries, especially in data warehouses, columnstore indexes can provide significant 
performance improvements compared with the traditional indexes. The performance benefits are due 
to the compression (reduced I/O) and a new batch-mode processing of the data, as opposed to the 
traditional row-mode processing. 

Queries that can benefit from columnstore indexes are, for example, queries that involve filtering, 
grouping, and star joins. However, there are no special benefits in columnstore indexes that can pro-
duce faster computation of window functions. Some queries with window functions might perform 
better (for example, due to the compression that results in reduced I/O); however, the processing of 
the iterators involved in the window functions usually will still be done in row mode. In other words, 
to get good performance for your window functions, you typically want to focus on creating tradi-
tional, POC indexes, which will help you avoid the need to sort the data.

Ranking Functions

This section describes the optimization of the ranking functions: ROW_NUMBER, NTILE, RANK, and 
DENSE_RANK. The iterators computing the ranking functions need to consume the rows one parti-
tion at a time, and in order based on the window order clause. Therefore, you need to follow the POC 
guidelines described earlier if you want to avoid unnecessary sorts. In my examples I’ll assume that 
the index idx_actid_val_i_tranid, which you created in the previous section, still exists. If it doesn’t, 
make sure you create it first so that you get similar results to mine.

The two key iterators that help compute the ranking functions are Segment and Sequence Project. 
Segment is used to send one segment of rows at a time to the next iterator. It has a Group By prop-
erty that defines the list of expressions to segment by. Its output in each row is a flag called Seg-
mentN (with N representing some number of the expression—for example, Segment1004), indicating 
whether the row is the first in the segment or not.

The Sequence Project iterator is responsible for the actual computation of the ranking function. By 
evaluating the flags produced by the preceding Segment iterators, it will reset, keep, or increment the 
ranking value produced for the previous row. The output of the Sequence Project iterator holding the 
ranking value is named ExpressionN (again, with N representing some number of the expression—for 
example, Expr1003).
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rOW_NUMBer
I’ll use the following query to describe the optimization of the ROW_NUMBER function:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownum 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-7.

FIgURE 4-7 Plan for ROW_NUMBER.

Because there is a POC index in place, it is scanned in an ordered fashion. Without such an index, 
remember that an expensive Sort iterator would be added. Next, the Segment iterator creates groups 
of rows based on the partitioning column actid, producing a flag (SegmentN) that indicates whether a 
new partition starts. Whenever SegmentN indicates that a new partition starts, the Sequence Project 
iterator generates the row number value 1 (and calls it ExprN); otherwise, it increments the previous 
value by 1.

There’s an interesting aspect of the window ordering of ranking functions that can be an obstacle 
in certain cases. The window order clause of ranking functions is mandatory, and it cannot be based 
on a constant. Usually it’s not a problem because normally you do need to produce ranking values 
based on some ordering requirements that map to some table attributes or expressions based on 
them. However, sometimes you just need to produce unique values in no particular order. You could 
argue that if ordering makes no difference, it shouldn’t matter if you specify some attribute just to 
satisfy the requirement. But then you need to remember that the plan will involve a Sort iterator if a 
POC index doesn’t exist, or it will be forced to use an ordered index scan if one does exist. You want 
to allow a scan of the data that is not required to be done in index order for potential performance 
improvement, and certainly you want to avoid sorting. 

As mentioned, a window order clause is mandatory, and SQL Server doesn’t allow the ordering to 
be based on a constant—for example, ORDER BY NULL. But surprisingly, when passing an expression 
based on a subquery that returns a constant—for example, ORDER BY (SELECT NULL)—SQL Server 
will accept it. At the same time, the optimizer un-nests, or expands, the expression and realizes that 
the ordering is the same for all rows. Therefore, it removes the ordering requirement from the input 
data. Here’s a complete query demonstrating this technique: 

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum 
FROM dbo.Transactions;

The execution plan for this query is shown in Figure 4-8.
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FIgURE 4-8 Plan for ROW_NUMBER with arbitrary ordering.

Observe in the properties of the Index Scan iterator that the Ordered property is False, meaning 
that the iterator is not required to return the data in index key order.

NTILe
As a reminder from the discussions in Chapter 2, “A Detailed Look at Window Functions,” NTILE is a 
computation that is conceptually based on two elements: the row number and the count of rows in 
the partition. If both are known for any given row, you can then apply a formula to compute the tile 
number. From the previous section, you already know how a row number is computed and optimized. 
The tricky part is to compute the count of rows in the respective partition. I say “tricky” because a 
single pass over the data cannot be sufficient. This is because the partition’s row count is needed for 
each individual row, and this count cannot be known until the scanning of all partition rows has been 
completed. To see how the optimizer handles this problem, consider the following query:

SELECT actid, tranid, val, 
  NTILE(100) OVER(PARTITION BY actid ORDER BY val) AS rownum 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-9.

FIgURE 4-9 Plan for NTILE.
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The optimizer’s answer to our problem is to perform the following steps:

■■ Read the rows from a POC index if one exists. (One does exist in our case.)

■■ Segment the rows by the partitioning element (actid in our case).

■■ Store one partition’s rows at a time in a work table (represented by the upper Table Spool 
iterator in the plan).

■■ Read the spool twice (see the two bottom Table Spool iterators in the plan)—once to compute 
the count with a Stream Aggregate iterator, and another to get the detail rows.

■■ Join the aggregate and detail rows to get the count and detail in the same target row.

■■ Segment the data again by the partitioning element (actid in our case).

■■ Use the Sequence Project iterator to compute the tile number.

Note that the Table Spool iterator represents a work table in tempdb. Even though the percent-
ages associated with it in the plan seem to be low, it actually has quite high overhead. To give you a 
sense, the same query with a ROW_NUMBER function runs on my system for two seconds, whereas 
the one with the NTILE function runs for 45 seconds. Later in this chapter when I discuss aggregate 
functions without ordering and framing, I explain ways to avoid expensive spooling.

raNK and DeNSe_raNK
The RANK and DENSE_RANK functions perform computations very similar to ROW_NUMBER, only 
they are sensitive to ties in the ordering values. Recall that RANK computes one more than the num-
ber of rows that have a lower ordering value than the current one, and DENSE_RANK computes one 
more than the number of distinct ordering values that are lower than the current one. So in addi-
tion to needing the segment flag that indicates whether a new partition starts, the Sequence Project 
operator also needs to know whether the ordering value has changed. Recall that the plan shown 
earlier for the ROW_NUMBER function has a single Segment iterator that is grouped by the partition-
ing element. The plans for RANK and DENSE_RANK are similar, but they require a second Segment 
iterator that is grouped by both the partitioning and ordering elements.

As an example, the following query invokes the RANK function:

SELECT actid, tranid, val, 
  RANK() OVER(PARTITION BY actid ORDER BY val) AS rownum 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-10.
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FIgURE 4-10 Plan for RANK.

The first Segment iterator is grouped by actid, returning the flag Segment1004, and the second is 
grouped by actid, val, returning the flag Segment1005. When Segment1004 indicates that the row is 
the first in the partition, Sequence Project returns a 1. Otherwise, when Segment1005 indicates that 
the ordering value has changed, Sequence Project returns the respective row number. If the ordering 
value hasn’t changed, Sequence Project returns the same value as the previous rank. 

The DENSE_RANK function is computed in a similar way. Here’s a query you can use as an example:

SELECT actid, tranid, val, 
  DENSE_RANK() OVER(PARTITION BY actid ORDER BY val) AS rownum 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-11.

FIgURE 4-11 Plan for DENSE_RANK.

The main difference here is in what the Sequence Project iterator computes. When Segment1005 
indicates that the ordering value has changed, Sequence Project adds 1 to the previous dense rank 
value. 

Because the plans for RANK and DENSE_RANK are so similar to the plan for ROW_NUMBER, the 
performance you get is also very similar. In my system, all three queries ran for two seconds.

Improved Parallelism with APPLY

This section describes a technique I learned from Adam Machanic—the book’s technical editor—that 
can improve, sometimes dramatically, the way parallelism is handled when optimizing queries with 
window functions. 

Before I describe the technique, I should note that I ran the examples in this book against a system 
with eight logical CPUs. SQL Server does consider, among other things, the number of logical CPUs 
when deciding between a parallel plan and a serial plan. So if you have fewer logical CPUs in your 
environment than eight, you might not get parallel plans in all the cases I did.
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Tip If for test purposes you want to mimic an environment with a different number of CPUs 
than the actual one, there are a couple of ways to go about doing this. One option is to 
use the startup parameter –Pn, where n represents the number of schedulers you want SQL 
Server to start with. Say you have four logical CPUs in your machine and you start the SQL 
Server Service with the startup parameter –P8. SQL Server will start with eight schedulers, 
and the optimizer will produce plans based on this number, as if it were running in an en-
vironment with eight logical CPUs. The degree of parallelism (DOP) for execution will typi-
cally be eight for parallel plans.

The second method is one I learned from Eladio Rincón. You can use an undocumented 
DBCC command called DBCC OPTIMIZER_WHATIF. As a first argument indicate 1, and as a 
second argument use the number of CPUs you want the optimizer to assume when creat-
ing the plan. For example, DBCC OPTIMIZER_WHATIF(1, 8) makes the optimizer assume 
eight CPUs when creating the plan. Note that this command will not change the number of 
schedulers that SQL Server starts with; hence, it also won’t change the DOP for execution 
from the actual number of schedulers. But it will create a plan as if there were eight CPUs in 
the machine. You might also need to add OPTION(RECOMPILE) to force SQL Server to cre-
ate a new plan after running this command.

Say that, for some query Q, SQL Server normally generates a serial plan when there are four 
CPUs in the machine and a parallel plan when there are eight. At the moment, you have 
four CPUs in the machine. Normally, SQL Server generates a serial plan in that system for 
Q. Using the startup parameter –P8, SQL Server will generate a parallel plan with DOP for 
execution 8. With DBCC OPTIMIZER_WHATIF(1, 8), SQL Server will generate a parallel plan 
with DOP for execution 4. Also, the startup parameter has a global impact on the entire 
instance, whereas the DBCC command has a local impact only on the current session. Either 
way, remember that these options aren’t documented officially and hence should be used 
only for test purposes.

Back to the parallel APPLY technique: it is mainly useful when there’s a window partition clause 
involved and the built-in parallelism doesn’t produce an optimal result, or simply isn’t used. A good 
example where the built-in parallel processing of window functions isn’t always optimal is when Sort 
iterators are involved. Consider the following query as an example:

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownumasc, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val DESC) AS rownumdesc 
FROM dbo.Transactions;

This query ran for seven seconds on my system. The plan for this query is shown in Figure 4-12.
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FIgURE 4-12 Plan without APPLY.

Because two ROW_NUMBER functions are invoked, with different window specifications, they 
cannot both rely on POC indexes even if both existed. Only one function can benefit from an ordered 
scan of a POC index; the other function will require a Sort iterator to arrange the data in the desired 
order. Because a sort is involved here and the number of rows is quite large, the optimizer decides to 
use a parallel plan.

Parallel plans for queries with window functions need to partition the rows by the same elements 
as the window partitioning elements if the Segment and Sequence Project iterators are in a paral-
lel zone. If you look at the properties of the Parallelism (Redistribute Streams) exchange iterator, it 
uses Hash partitioning and partitions the rows by actid. This iterator redistributes the rows from the 
source threads used for the parallel scan of the data to the target threads that actually compute the 
first window function’s result. Then the rows are sorted based on the ordering requirements of the 
second window function. A Parallelism (Gather Streams) exchange iterator handles the gathering of 
the streams. Finally, the second window function’s result is computed. 

There are a number of bottlenecks in such a plan:

■■ The repartitioning of the streams Moving data between threads is an expensive opera-
tion. In this case, it might have even been better if the storage engine used a serial scan and 
then distributed the streams directly thereafter.

■■ The sort Currently, the DOP determines how many rows each thread will process. For exam-
ple, on a DOP 8 query, each thread will process about 250,000 rows. Conversely, letting each 
thread work on only rows related to one account would mean 20,000 rows per sort. (Remem-
ber, there are 100 accounts, each with about 20,000 transactions.) This makes the existing 
sorts approximately 20 percent less efficient than they could be: (((20000 * log(20000)) * 100) / 
((250000 * log(250000)) * 8)).

■■ The second Segment and Sequence Project iterators These iterators are in a serial zone. 
Although these are not extremely expensive iterators, they do have a cost, and Amdahl’s Law 
applies quite well. (This law states that the overall speed-up of a parallel algorithm will be 
limited by serial sections.)

All of these bottlenecks are eliminated by the solution using the parallel APPLY technique, which is 
implemented as follows:

1. Query the table that holds the distinct partitioning values (Accounts in our case).

2. Use the APPLY operator to apply to each left row the logic of the original query (against Trans-
actions in our case), filtered by the current distinct partitioning value.
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As an example, the previous query should be rewritten as shown in Listing 4-1.

LISTIng 4-1 Parallel APPLY Technique

SELECT C.actid, A.* 
FROM dbo.Accounts AS C 
  CROSS APPLY (SELECT tranid, val, 
                 ROW_NUMBER() OVER(ORDER BY val) AS rownumasc, 
                 ROW_NUMBER() OVER(ORDER BY val DESC) AS rownumdesc 
               FROM dbo.Transactions AS T 
               WHERE T.actid = C.actid) AS A;

Observe that because the derived table A handles only one partition’s rows, the window partition 
clause was removed from the window specification.

This query ran for three seconds on my system—less than half the run time of the previous query. 
The plan for the new query is shown in Figure 4-13.

FIgURE 4-13 Plan with APPLY.

The plan starts by scanning the clustered index of the Accounts table. Then a Parallelism (Distrib-
ute Streams) exchange iterator is used to distribute the rows to multiple threads using a basic round-
robin partitioning type (next packet to next thread). So each thread at the bottom part of the Nested 
Loops join iterator gets to work on a subset of one partition’s rows only, but without the bottlenecks 
described earlier. The tradeoff is the number of index seek operations (and their associated logical 
reads) required to satisfy the query. When the partitioning column has very low density (for example, 
200,000 partitions, each with 10 rows), you end up with a large number of seek operations, and the 
APPLY technique is not that efficient anymore.

I will use the parallel APPLY technique in a number of cases later in the chapter as well, and I rec-
ommend you consider it whenever you do not get optimal results from the built-in parallel treatment 
of window functions.
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Aggregate and Offset Functions

The optimization of aggregate and offset functions varies significantly depending on whether order-
ing and framing are applicable or not. Therefore, I cover the two cases separately, starting with win-
dow aggregate functions without ordering and framing options.

Without Ordering and Framing
When a window aggregate function doesn’t indicate ordering and framing options, the applicable 
frame of rows is basically the entire partition. For example, consider the following query:

SELECT actid, tranid, val, 
   MAX(val) OVER(PARTITION BY actid) AS mx 
FROM dbo.Transactions;

The query is asking for detail elements from each transaction (actid, tranid, and val) to be returned, 
as well as the maximum value of the current account. Both detail and aggregate elements are sup-
posed to be returned in the same target row. As explained earlier in the “NTILE” section, a single scan 
of the data cannot be sufficient in this case. As you scan the detail rows, you don’t know what the 
result of the aggregate of the partition is going to be until you finish scanning the partition. The opti-
mizer’s answer to this problem is to spool each partition’s rows in a work table in tempdb and then 
read the spool twice—once for the aggregate computation and another for the detail rows.

The plan for this query is shown in Figure 4-14.

FIgURE 4-14 Plan for a window aggregate with just partitioning.

The plan performs the following steps:

■■ Read the rows from the POC index.

■■ Segment the rows by the partitioning element (actid).

■■ Store one partition’s rows at a time in a work table. (This step is represented by the upper 
Table Spool iterator in the plan.)
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■■ Read the spool twice (represented by the two bottom Table Spool iterators in the plan)—once 
to compute the MAX aggregate with a Stream Aggregate iterator, and another to get the 
detail rows.

■■ Join the aggregate and detail rows to get both in the same target row.

The spooling part doesn’t use some kind of an optimized in-memory work table; rather, it uses an 
on-disk one in tempdb. The writes to and reads from the spool have a high overhead. This query ran 
for 10 seconds on my system.

If you need to filter the rows based on the result of the window function, recall that you cannot do 
this directly in the query’s WHERE clause. You have to define a table expression based on the original 
query, and then handle the filtering in the outer query, like so:

WITH C AS 
( 
  SELECT actid, tranid, val, 
     MAX(val) OVER(PARTITION BY actid) AS mx 
  FROM dbo.Transactions 
) 
SELECT actid, tranid, val 
FROM C 
WHERE val = mx;

The plan for this query is shown in Figure 4-15.

FIgURE 4-15 Plan for a window aggregate with just partitioning, plus filter.

Compared to the previous plan, this one adds a Filter iterator prior to the gathering of the streams. 
This query ran for 12 seconds on my system.

Due to the high overhead of the on-disk spooling in these plans, you can actually achieve much 
better performance if you use a grouped query that computes the aggregate and then join its result 
with the base table, like so:

WITH Aggs AS 
( 
  SELECT actid, MAX(val) AS mx 
  FROM dbo.Transactions 
  GROUP BY actid 
) 
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SELECT T.actid, T.tranid, T.val, A.mx 
FROM dbo.Transactions AS T 
  JOIN Aggs AS A 
    ON T.actid = A.actid;

The plan for this query is shown in Figure 4-16.

FIgURE 4-16 Plan for a grouped aggregate.

Observe that the covering index is scanned twice directly—once to compute the aggregate and 
another for the detail—and the results are joined using a Hash join iterator. No spooling takes place, 
and this translates to a query that finishes in two seconds.

Next, like before, add a filter based on the aggregate:

WITH Aggs AS 
( 
  SELECT actid, MAX(val) AS mx 
  FROM dbo.Transactions 
  GROUP BY actid 
) 
SELECT T.actid, T.tranid, T.val 
FROM dbo.Transactions AS T 
  JOIN Aggs AS A 
    ON T.actid = A.actid 
   AND T.val = A.mx;

The plan for this query is shown in Figure 4-17.

FIgURE 4-17 Plan for a grouped aggregate, plus filter.

Now a Nested Loops join iterator is used to match the related detail rows to each aggregated 
account group. This query finishes in less than one second.
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With Ordering and Framing
Window aggregate and offset functions with ordering and framing options are new in SQL Server 
2012, and the optimization of those involves new and enhanced iterators—specifically, a new, magical 
Window Spool iterator and an enhanced Stream Aggregate iterator.

I’ll discuss three cases of optimization with ordering and framing: using a window frame extent 
with a lower bound UNBOUNDED PRECEDING, expanding all frame rows, and computing two cumu-
lative values.

UNBOUNDeD PreCeDING: The Fast-Track Case
When you use a window frame extent with UNBOUNDED PRECEDING as the lower bound, the opti-
mizer uses a highly optimized strategy. I refer to this case as the fast-track case. But I’ll get to that 
shortly. Let me first describe the roles of the Window Spool and Stream Aggregate iterators. By the 
way, internally the two iterators are implemented as one iterator, but they are presented in the plan 
as two. 

The purpose of the Window Spool iterator is to expand each source row to its applicable frame 
rows—that’s at least what happens in the worst-case scenario. The iterator generates an attribute 
identifying the window frame and calls it WindowCountN. The Stream Aggregate iterator groups the 
rows by WindowCountN and computes the aggregate. Now there’s a problem of where to obtain the 
detail row’s elements once the data has been grouped; for this, the current row is always added to the 
Window Spool, and the Stream Aggregate iterator has the logic to return the detail elements from 
that row.

As mentioned, each source row is expanded to all of its applicable frame rows only in the worst-
case scenario, and I’ll get to that later. In this section, I want to discuss special optimization for cases 
in which the low bound of the window frame is UNBOUNDED PRECEDING. In such a case, instead 
of expanding each source row to all applicable frame rows and then grouping and aggregating, the 
two iterators were coded with logic to just keep accumulating the values. So for each source row, the 
Window Spool iterator will have two rows—one with the cumulative information so far, and another 
with the current row. (Remember, this is needed for the detail elements.)

As an example, consider the following query: 

SELECT actid, tranid, val, 
  SUM(val) OVER(PARTITION BY actid 
                ORDER BY tranid 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW) AS balance 
FROM dbo.Transactions;

The plan is shown in Figure 4-18.
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FIgURE 4-18 Plan for ROWS.

The numbers below the arrows are row counts. The rows are scanned from the POC index in order. 
Then Segment and Sequence Project iterators compute a row number (call it RowNumberN). This 
row number is used for filtering of the right frame rows. Our case is a straightforward one, but think 
of cases that aren’t (for example, ROWS BETWEEN 5 PRECEDING AND 2 FOLLOWING). Then another 
Segment iterator segments the data by actid for the computation of the window aggregate function. 
The Window Spool and Stream Aggregate iterators then just keep accumulating the values within 
each segment. Remember that the Transactions table has 2,000,000 rows. That’s the number of rows 
you see streaming into the Window Spool iterator, as well as the number streaming out of the Stream 
Aggregate iterator. As explained earlier, the Window Spool iterator generates two rows for each 
source row in our special optimized case of UNBOUNDED PRECEDING—one for the cumulative value 
so far, and another for the current row to get the detail elements. Therefore you see 4,000,000 rows 
streaming from the Window Spool iterator to the Stream Aggregate iterator. 

Also, if the conditions are right—and I’ll get to the specifics later—the Window Spool iterator uses 
a highly optimized, in-memory work table, without all of the usual overhead that exists with work 
tables in tempdb, such as I/O, locks, latches, and so forth. Our query did benefit from the in-memory 
work table, plus the query used UNBOUNDED PRECEDING; therefore, it wasn’t required to expand 
all frame rows. The two optimization aspects combined resulted in only nine seconds of run time for 
the query on my system and 6,208 logical reads. This is not bad at all compared to any other reliable 
method to compute running totals. (See Chapter 5 for more details on running totals.)

A number of conditions will prevent the Window Spool iterator from using the in-memory work 
table and cause it to use the far more expensive on-disk work table, with a B-tree indexed by the row 
number. I’ll describe those conditions in detail in the next section, as well as how to check which kind 
of work table was used. For now, I want to mention that one of those conditions is when SQL Server 
cannot compute ahead of time the number of rows in the frame. An example of this is when using the 
RANGE window frame units instead of ROWS. 

Recall from Chapter 2 that when using RANGE BETWEEN UNBOUNDED PRECEDING AND CUR-
RENT ROW, the frame of a given row can involve additional rows ahead of the current one. That’s the 
case when the ordering values are not unique within the partition. Currently, the optimizer doesn’t 
check whether there’s uniqueness—in which case, it can technically convert the RANGE option to an 
equivalent ROWS. It just defaults to using an on-disk work table. This translates to significant perfor-
mance degradation compared to the ROWS option. 

The following query is the same as the last one, only I replaced the ROWS option with RANGE:
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SELECT actid, tranid, val, 
  SUM(val) OVER(PARTITION BY actid 
                ORDER BY tranid 
                RANGE BETWEEN UNBOUNDED PRECEDING 
                          AND CURRENT ROW) AS balance 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-19.

FIgURE 4-19 Plan for RANGE.

Nothing in the plan gives away the fact that an on-disk work table was used. In fact, it looks the 
same as the previous plan (minus the Sequence Project iterator), and the same number of rows stream 
between the iterators. The STATISTICS IO option is one way to tell that an on-disk work table was 
used. For the ROWS option, it reported zero reads against 'Worktable' because it was an in-memory 
one. For the RANGE option, it reports millions of reads. A trace shows a total of 18,063,511 logical 
reads and 5,800 writes. This translates to 60 seconds of run time, compared with the nine seconds 
for ROWS.

The unfortunate part is that if you indicate a window order clause without an explicit window 
frame clause, the default according to the standard is RANGE BETWEEN UNBOUNDED PRECEDING 
AND CURRENT ROW, as in the following query:

SELECT actid, tranid, val, 
  SUM(val) OVER(PARTITION BY actid 
                ORDER BY tranid) AS balance 
FROM dbo.Transactions;

It is highly likely that many people will use this form thinking it means by default ROWS BETWEEN 
UNBOUNDED PRECEDING AND CURRENT ROW, and they will not realize it actually translates to 
RANGE. This will incur the performance penalty, not to mention incorrect results if there are dupli-
cates. I hope that in the future, at least in cases where there’s uniqueness of the ordering values within 
each partition, that the optimizer will first translate the RANGE option to ROWS in this fast-track case.

Based on the details of the preceding discussions, you can improve the parallel processing of the 
RANGE query by using the parallel APPLY technique, like so:

SELECT C.actid, A.* 
FROM dbo.Accounts AS C 
  CROSS APPLY (SELECT tranid, val, 
                 SUM(val) OVER(ORDER BY tranid 
                               RANGE BETWEEN UNBOUNDED PRECEDING 
                                         AND CURRENT ROW) AS balance 
               FROM dbo.Transactions AS T 
               WHERE T.actid = C.actid) AS A;
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This query now gets a parallel plan that runs for 21 seconds—a third of the time of the query with-
out APPLY. Still, it’s much slower than the version with ROWS. So you can consider it a best practice to 
use the ROWS option whenever possible—certainly when there’s uniqueness and the two are concep-
tually equivalent in the fast-track case.

expanding all Frame rows
In the previous section, I described a fast-track case that is used when the low bound of the frame 
is UNBOUNDED PRECEDING. In that case, SQL Server doesn’t expand all frame rows for each source 
row; rather, it just keeps accumulating the values. As mentioned, the Window Spool iterator produces 
only two rows for each source row—one with the accumulation of values so far, and another with the 
base row for the detail elements. 

When the low bound of the frame isn’t UNBOUNDED PRECEDING, the fast-track case doesn’t apply. 
In these cases, the optimizer will choose between one of two strategies. One strategy, which is the focus 
of this section, is to expand all frame rows for each source row. Another strategy, which is the focus of 
the next section, is to compute two cumulative values—CumulativeBottom and CumulativeTop—and 
derive the result based on the two. 

To use the second strategy, the aggregate has to be a cumulative one (SUM, COUNT, COUNT_BIG, 
AVG, STDEV, STDEVP, VAR, or VARP), and there needs to be more than four rows in the frame to jus-
tify it. If the aggregate isn’t a cumulative one (MIN, MAX, FIRST_VALUE, LAST_VALUE, or CHECKSUM_
AGG) or the number of rows in the frame is four or less, the first strategy (in which all frame rows are 
expanded for each source row) will be used.

Note Internally LAG and LEAD are converted to the LAST_VALUE function with only one 
row in the frame; therefore, I won’t discuss LAG and LEAD separately. As an example, 
LAG(x, 6) OVER(ORDER BY y) is translated to LAST_VALUE(x) OVER(ORDER BY y ROWS 
BETWEEN 6 PRECEDING AND 6 PRECEDING).

Consider the following example:

SELECT actid, tranid, val, 
  SUM(val) OVER(PARTITION BY actid 
                ORDER BY tranid 
                ROWS BETWEEN 5 PRECEDING 
                         AND 2 PRECEDING) AS sumval 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-20. It took 14 seconds for the query to complete.
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FIgURE 4-20 Plan expanding all frame rows.

The query uses a cumulative aggregate (SUM), but the frame has only four rows. Therefore, all 
frame rows are expanded. With four rows in each frame, plus the current row that is added for the 
detail elements, the Window Spool will produce five rows for each source row. Therefore, the plan 
shows that the Window Spool iterator generates almost 10,000,000 rows out of the 2,000,000 source 
rows. The frames for the first few rows in each partition have fewer than four rows; hence, the plan 
shows that the Window Spool iterator generates a bit less than 10,000,000 rows.

The Window Spool iterator needs to know which target rows to store in its work table for each 
source row, as well as generate a frame identifier in the target rows so that the Stream Aggregate 
iterator has something to group the rows by.

To figure out which rows to produce in each frame, the plan starts by computing a row number 
to each source row (using the first Segment and Sequence Project iterators). The row number is 
computed using the same partitioning and ordering as those of the original window function. The 
plan then uses a Compute Scalar iterator to compute for each source row the two row numbers— 
BottomRowNumberN and TopRowNumberN—that are supposed to bind the frame. For example, sup-
pose that the current row has row number 10. The row numbers of the respective frame bounds are 
TopRowNumberN = 10 – 5 = 5 and BottomRowNumber = 10 – 2 = 8. The work table that the Window 
Spool creates is indexed by that row number. So if the rows with the row numbers 5 through 8 already 
exist in the work table, they will be queried and added to the work table associated with the new 
frame. If some rows are missing, the plan will keep requesting more rows and feed the spool until the 
bottom row number is reached. The Window Spool iterator generates for each target row an attribute 
it calls WindowCountN that identifies the frame. That’s the attribute that the Stream Aggregate itera-
tor groups the rows by. 

In addition to computing the aggregate of interest, the Stream Aggregate iterator computes the 
count of rows in the frame, and then the Compute Scalar iterator that follows will return a NULL if the 
frame is empty.

As long as the number of rows in the frame is four or less, regardless of which window function 
you use, all frame rows will be expanded. Additional examples that will be treated in this manner are 
the following: 2 PRECEDING AND 1 FOLLOWING, 2 FOLLOWING AND 5 FOLLOWING, and so on.

If the current row is one of the boundary points of the frame, the plan won’t need to compute 
both the top and bottom row numbers. It will compute only one row number–based boundary in 
addition to the existing RowNumberN. For example, for the frame 3 PRECEDING AND CURRENT ROW, 
it will compute only TopRowNumberN (RowNumberN – 3), and for the frame CURRENT ROW AND 3 
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FOLLOWING, it will compute BottomRowNumberN (RowNumberN + 3). The other boundary point will 
simply be RowNumberN.

When the window function you’re using isn’t a cumulative one (MIN, MAX, FIRST_VALUE, LAST_
VALUE, or CHECKSUM_AGG), regardless of the number of rows in the frame, all frame rows will be 
expanded. Consider the following example:

SELECT actid, tranid, val, 
  MAX(val) OVER(PARTITION BY actid 
                ORDER BY tranid 
                ROWS BETWEEN 100 PRECEDING 
                          AND  2 PRECEDING) AS maxval 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-21.

FIgURE 4-21 Plan for MAX aggregate.

Because the MAX aggregate is used, all frame rows get expanded. That’s 99 rows per frame; 
multiply that by the number of rows in the table, and you end up with quite a large number of rows 
returned by the Window Spool iterator (close to 200,000,000 rows). It took this query 75 seconds to 
complete.

You can see that SQL Server decided to use a parallel plan. I explained earlier the issues with the 
way parallelism is handled natively for window functions and suggested that you try using the parallel 
APPLY technique instead. Here’s the parallel APPLY version:

SELECT C.actid, A.* 
FROM dbo.Accounts AS C 
  CROSS APPLY (SELECT tranid, val, 
                 MAX(val) OVER(ORDER BY tranid 
                               ROWS BETWEEN 100 PRECEDING 
                                        AND  2 PRECEDING) AS maxval 
               FROM dbo.Transactions AS T 
               WHERE T.actid = C.actid) AS A;

On my machine, this query finishes in 31 seconds.

The Window Spool iterator prefers to use a new optimized in-memory work table. However, if 
any of the following conditions is met, it will have no choice but to resort to the much slower on-disk 
work table with all of the associated overhead (for example, locking, latches, and I/O):

■■ If the distance between the two extreme points among the current, top, and bottom row 
numbers exceeds 10,000

■■ If it can’t compute the number of rows in the frame—for example, when using RANGE

■■ When using LAG or LEAD with an expression as the offset
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There are a couple of techniques you can use to test whether in practice SQL Server used an 
on-disk work table or an in-memory one. The first technique is to use the STATISTICS IO option; the 
second technique is to use an Extended Event designed exactly for this purpose.

Using the STATISTICS IO option, you know that the in-memory work table was used when the 
number of reads reported against the work table is 0. When it’s greater than 0, the on-disk one was 
used. As an example, the following code turns STATISTICS IO ON and runs two queries using the MAX 
window aggregate function:

SET STATISTICS IO ON; 
 
SELECT actid, tranid, val, 
  MAX(val) OVER(PARTITION BY actid 
                ORDER BY tranid 
                ROWS BETWEEN 9999 PRECEDING 
                         AND 9999 PRECEDING) AS maxval 
FROM dbo.Transactions; 
 
SELECT actid, tranid, val, 
  MAX(val) OVER(PARTITION BY actid 
                ORDER BY tranid 
                ROWS BETWEEN 10000 PRECEDING 
                         AND 10000 PRECEDING) AS maxval 
FROM dbo.Transactions;

The first query uses the following frame:

ROWS BETWEEN 9999 PRECEDING AND 9999 PRECEDING

The distance in terms of number of rows between the extreme points (remember, the current row 
is also considered for this purpose) is 10,000; hence, the in-memory work table can be used. This 
query finished in six seconds.

The second query uses the following frame:

ROWS BETWEEN 10000 PRECEDING AND 10000 PRECEDING

This time, the distance between the extreme points is 10,001; hence, the on-disk work table is 
used. This query finished in 33 seconds. 

Here’s the output of STATISTICS IO for the two queries:

-- 9999 PRECEDING AND 9999 PRECEDING, 6 seconds 
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob  
logical reads 0, lob physical reads 0, lob read-ahead reads 0. 
Table 'Transactions'. Scan count 1, logical reads 6208, physical reads 0, read-ahead reads 0,  
lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. 
 
-- 10000 PRECEDING AND 10000 PRECEDING, 33 seconds 
Table 'Worktable'. Scan count 2000100, logical reads 12086700, physical reads 0, read-ahead  
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. 
Table 'Transactions'. Scan count 1, logical reads 6208, physical reads 0, read-ahead reads 0,  
lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
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Observe that for the first query, 0 reads are reported, whereas for the second query, 12,086,700 
reads are reported.

Before I describe the second technique, run the following code to turn the STATISTICS IO option 
to OFF:

SET STATISTICS IO OFF;

The second technique to identify whether an on-disk work table was used is with an Extended 
Event called window_spool_ondisk_warning. Run the following code to create an event session using 
an asynchronous file target and start the session:

CREATE EVENT SESSION xe_window_spool ON SERVER 
ADD EVENT sqlserver.window_spool_ondisk_warning 
  ( ACTION (sqlserver.plan_handle, sqlserver.sql_text) ) 
ADD TARGET package0.asynchronous_file_target 
  ( SET FILENAME  = N'c:\temp\xe_xe_window_spool.xel',  
    metadatafile  = N'c:\temp\xe_xe_window_spool.xem' ); 
 
ALTER EVENT SESSION xe_window_spool ON SERVER STATE = START;

Rerun the preceding queries, and then open the file c:\temp\xe_xe_window_spool.xel from SQL 
Server Management Studio (SSMS). You will find information about the queries for which an on-disk 
work table was used, including the plan handle and the query text.

When you’re done, run the following code for cleanup:

DROP EVENT SESSION xe_window_spool ON SERVER;

Computing Two Cumulative Values
When the window function is a cumulative one (SUM, COUNT, COUNT_BIG, AVG, STDEV, STDEVP, 
VAR, or VARP) and there are more than four rows in the frame, the optimizer uses a specialized 
strategy that doesn’t involve expanding all frame rows. It computes two cumulative values, and then 
derives the result from the two. Consider the following query as an example:

SELECT actid, tranid, val, 
  SUM(val) OVER(PARTITION BY actid 
                ORDER BY tranid 
                ROWS BETWEEN 100 PRECEDING 
                          AND  2 PRECEDING) AS sumval 
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-22. The query took 14 seconds to complete.
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FIgURE 4-22 Plan computing two cumulative values.

The optimizer decided to use a parallel plan. The plan uses a parallel scan of the POC index fol-
lowed by an exchange iterator that repartitions the streams by the window-partitioning element 
(actid in our case). Then the plan uses a sequence of iterators (Segment, Sequence Project, Compute 
Scalar, Segment, Window Spool, and Stream Aggregate) to compute the cumulative bottom SUM 
and COUNT aggregate values (which we’ll call CumulativeBottomSum and CumulativeBottomCount). 
The rows that were accumulated to compute the cumulative bottom aggregates are those from the 
beginning of the partition up to the row with the current row number minus 2. The technique used 
to compute the cumulative aggregates is the one I described in the “UNBOUNDED PRECEDING: The 
Fast-Track Case” section. Hence, you see that the Window Spool iterator generates only two rows for 
each source row—one with the accumulated values, and the current row for the detail elements.

Next, the plan uses another sequence of iterators (Segment, Sequence Project, Compute Scalar, 
Segment, Window Spool, and Stream Aggregate) to compute the cumulative top SUM and COUNT 
aggregate values (which we’ll call CumulativeTopSum and CumulativeTopCount). The rows that were 
accumulated to compute those values are those from the beginning of the partition up to the row 
with the current row number minus 101. 

Then a Compute Scalar iterator computes the window frame SUM as CumulativeBottomSum – 
CumulativeTopSum and the window frame COUNT as CumulativeBottomCount – CumulativeTopCount. 
Finally, the last Compute Scalar iterator evaluates the count of rows in the window frame, and if the 
count is 0, it returns a NULL.

As mentioned, this query took 14 seconds to complete on my system. That’s using the built-in 
parallel handling of window functions. Here, as well, you can try using the parallel APPLY technique, 
as shown next.
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SELECT C.actid, A.* 
FROM dbo.Accounts AS C 
  CROSS APPLY (SELECT tranid, val, 
                 SUM(val) OVER(ORDER BY tranid 
                               ROWS BETWEEN 100 PRECEDING 
                                         AND  2 PRECEDING) AS sumval 
               FROM dbo.Transactions AS T 
               WHERE T.actid = C.actid) AS A;

The run time on my system decreased to eight seconds.

Distribution Functions

This section describes the optimization of distribution functions. I’ll start with rank distribution 
functions and then continue with inverse distribution functions. If you don’t remember the logic 
behind these computations, make sure you first review the section covering distribution functions in 
Chapter 2.

rank Distribution Functions
Rank distribution functions are PERCENT_RANK and CUME_DIST. Recall that the PERCENT_RANK 
function is computed as (rk – 1) / (nr – 1), where rk is the rank of the row and nr is the count of rows 
in the partition. Computing the count of rows in the respective partition involves using a Table Spool 
iterator as described earlier in the chapter. Computing the rank involves using the Sequence Project 
iterator. The plan that computes PERCENT_RANK simply incorporates both techniques.

Consider the following query as an example:

SELECT testid, studentid, score, 
  PERCENT_RANK() OVER(PARTITION BY testid ORDER BY score) AS percentrank 
FROM Stats.Scores;

The plan for this query is shown in Figure 4-23.

FIgURE 4-23 Plan for PERCENT_RANK.
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The first part is scanning the data and segmenting it by testid. Then, one partition at a time, the 
partition rows are written to a spool, and the spool is read twice—once to compute the count (nr), 
and a second time to obtain the detail rows. Then the detail rows and the aggregates are joined. 
Next, the Segment and the Sequence Project iterators are used to compute the rank (rk). Finally, the 
Compute Scalar iterator computes the result of the PERCENT_RANK function as (rk – 1) / (nr – 1).

As for CUME_DIST, the computation is np / nr, where nr is the same as before (the count of rows in 
the partition) and np is the count of rows that precede or are peers of the current row.

Consider the following query as an example:

SELECT testid, studentid, score, 
  CUME_DIST()    OVER(PARTITION BY testid ORDER BY score) AS cumedist 
FROM Stats.Scores;

The plan for this query is shown in Figure 4-24.

FIgURE 4-24 Plan for CUME_DIST.

The first part, which computes nr, is the same as in the plan for PERCENT_RANK. The second part 
is a bit trickier. To calculate np, SQL Server might need to look ahead of the current row. Also, here 
the plan uses two Segment iterators—the first iterator segments the rows by the partitioning element 
(testid), and the second iterator segments the rows by the partitioning plus ordering elements (testid 
and score). However, instead of using a Sequence Project iterator, it uses the new Window Spool 
and Stream Aggregate iterators in the fast-track mode to count the number of rows that precede 
or are peer of the current one. Finally, the Compute Scalar iterator computes the CUME_DIST value 
as np / nr.

Inverse Distribution Functions
The optimization of inverse distribution functions, PERCENTILE_CONT and PERCENTILE_DISC, is more 
involved than that of rank distribution functions. I’ll start with PERCENTILE_DISC. Consider the follow-
ing query: 

SELECT testid, score, 
  PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY score)  
    OVER(PARTITION BY testid) AS percentiledisc 
FROM Stats.Scores;

The plan for this query appears in Figure 4-25.
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FIgURE 4-25 Plan for PERCENTILE_DISC.

The plan involves the following steps:

■■ The first set of eight iterators that appear in the bottom-right section of Figure 4-25 are 
responsible for computing the count of rows for each row in the respective testid partition. 
The plan names this count PartitionSizeN.

■■ The Segment and Sequence Project iterators that follow compute a row number within the 
testid partition, based on score ordering. The plan calls this row number RowNumberN.

■■ The first Compute Scalar iterator computes the row number of the row that holds the per-
centile for the partition. It does so with the expression (simplified): CeilingTargetRowN = 
 ceiling(@pct * PartitionSize1013), where @pct is the input percent to the function (0.5 in 
our case).

■■ The second Compute Scalar iterator computes an expression called PartialSumN. This expres-
sion returns the desired percentile score if the current row’s row number (RowNumberN) is 
equal to MIN(1, CeilingTargetRowN); otherwise, it returns a NULL. In simplified terms, Partial-
SumN will have the score only if it is the desired percentile; otherwise, it returns a NULL.

■■ The last part needs to pull from each partition the non-NULL percentile (PartialSumN) and 
associate it with each detail row. For this, the plan again uses a Table Spool iterator. The plan 
segments the data by testid and, one partition at a time, stores the current partition’s rows in 
a spool. Then the plan reads the spool twice—once to retrieve the non-NULL percentile using 
a MAX(PartialSumN) aggregate (call the result PercentileResultN), and another time to retrieve 
the detail. The plan then joins the detail and the aggregates.

■■ The last part is checking the partition size. If it’s 0, it returns NULL; otherwise, it returns 
PercentileResultN.
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As for the PERCENTILE_CONT function, I’ll use the following query to discuss the plan:

SELECT testid, score, 
  PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY score)  
    OVER(PARTITION BY testid) AS percentilecont 
FROM Stats.Scores;

The plan for this query is shown in Figure 4-26.

FIgURE 4-26 Plan for PERCENTILE_CONT.

As you can see, the general layout of the plan is similar to that for the PERCENTILE_DISC function. 
There are a couple of main differences, though. One difference is in the Compute Scalar iterators 
that appear right after the computation of the row number, and the other difference is in the second 
Stream Aggregate iterator. I’ll start with the Compute Scalar iterators:

■■ The first Compute Scalar iterator computes the target row number, including the fraction: 
TargetRowN = 1 + @pct * (PartitionSizeN – 1).

■■ The second Compute Scalar iterator computes the floor and ceiling of TargetRowN, naming 
them FloorTargetRowN and CeilingTargetRowN, respectively.

■■ The third Compute Scalar iterator computes an expression called PartialSumN. If no interpola-
tion is needed, PartialSumN returns the percentile score if the current row is the target row 
and 0 otherwise. If an interpolation is needed, PartialSumN returns the parts of the interpo-
lated score if the current row is either the floor or the ceiling of the target row; otherwise, 
it returns 0. The full computation of PartialSumN is quite convoluted; in case you have the 
stomach for it, here it is (simplified):

CASE  
  -- when no interpolation is needed: 
  --   return the current score if current row is target row, else 0 
  WHEN CeilingTargetRowN = FloorTargetRowN AND CeilingTargetRowN = TargetRowN 
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    THEN CASE 
           WHEN RowNumberN = TargetRowN 
             THEN score 
           ELSE 0 
         END  
  -- when interpolation is needed: 
  --   return the parts of the interpolated value if current row 
  --   is either the floor or the ceiling of the target row 
  ELSE  
    CASE 
      WHEN RowNumberN = FloorTargetRowN 
        THEN score * (CeilingTargetRowN - TargetRowN) 
      ELSE 
        CASE 
          WHEN RowNumberN = CeilingTargetRowN 
            THEN score * (TargetRowN - FloorTargetRowN) 
          ELSE 0 
        END 
    END 
END

The second difference from the plan for PERCENTILE_DISC is that the second Stream Aggregate 
iterator in the plan uses the SUM aggregate instead of MAX. It does so because this time more 
than one element could be relevant, and the parts that make the interpolated value need to be 
summed up.

Summary

This chapter covered SQL Server’s optimization of window functions. There were a lot of details to 
cover, and I hope you didn’t get lost in those. What are especially interesting are the new optimized 
Window Spool iterator and the enhanced Stream Aggregate iterator, as well as the optimized in-
memory work table they use. There are still some glitches in optimization, especially ones that have to 
do with seemingly unnecessary sorts, but I expect those will be improved in the future. It’s hard to get 
perfection, but it’s important to strive for it. At any rate, when compared with alternative methods to 
compute the same calculations, SQL Server handles window functions very efficiently. 

The next chapter gets into practical uses of window functions and, in some cases, compares solu-
tions based on those with more traditional alternatives, demonstrating how much more efficient the 
new functions and functionality are.
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C H A P T E R  5

T-SQL Solutions Using Window 
Functions

The first four chapters of this book described window functions in detail, including both their logi-
cal aspects and their optimization aspects. In this fifth and last chapter of the book, I’m going 

to show how to solve a wide range of querying problems using window functions. What could be 
surprising to some is the large number of solutions that rely on the ROW_NUMBER function—by far 
the most commonly used of the bunch.

The solutions covered in this chapter are Virtual Auxiliary Table of Numbers, Sequences of Date 
and Time Values, Sequences of Keys, Paging, Removing Duplicates, Pivoting, Top N Per Group, Mode, 
Running Totals, Max Concurrent Intervals, Packing Intervals, Gaps and Islands, Median, Conditional 
Aggregate, and Sorting Hierarchies.

Note This chapter covers only a sample of solutions to show the usefulness and practicality 
of window functions. You will probably find many other ways to use window functions to 
solve problems more elegantly and efficiently than with alternative methods.

Virtual Auxiliary Table of numbers

An auxiliary table of numbers is a helper table filled with a sequence of integers you can use to 
address many different querying tasks. There are many uses for such a numbers table, such as gener-
ating a sequence of date and time values and splitting separated lists of values. Normally, it is recom-
mended to keep such a permanent table in your database, fill it with as many numbers as you will 
ever need, and then query it as needed. However, in some environments you don’t have an option to 
create and populate new tables, and you need to get by with just querying logic. 

To generate a large sequence of integers efficiently using querying logic, you can use cross joins. 
You start off with a query that generates a result set with two rows using a table value constructor, 
like so:

SELECT c FROM (VALUES(1),(1)) AS D(c);
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This code generates the following output:

C 
----------- 
1 
1

Next, define a common table expression (CTE)—call it L0 for level 0—based on the previous query, 
and then cross two instances of the CTE to square the number of rows, getting four rows, like so:

WITH 
  L0   AS(SELECT c FROM (VALUES(1),(1)) AS D(c)) 
SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B; 
 
c 
----------- 
1 
1 
1 
1

In a similar way, you can define a CTE (call it L1 for level 1) based on the last query, and cross two 
instances of the new CTE to again square the number of rows, getting 16 rows, like so:

WITH 
  L0   AS (SELECT c FROM (VALUES(1),(1)) AS D(c)), 
  L1   AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B) 
SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B; 
 
c 
----------- 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1

You can keep adding CTEs, each crossing two instances of the last CTE, squaring the number of 
rows. With L levels (starting the count with 0), the total number of rows you get is 2 2̂^L (read, two to 
the power of two to the power of L). For instance, with five levels, you get 4,294,967,296 rows. So with 
five levels of CTEs besides level 0, this method gives you over four billion rows. You will hardly ever 
need that many rows in a numbers table, but using the OFFSET/FETCH option in Microsoft SQL Server 
2012, or TOP in previous versions of SQL Server, you can cap the number of rows based on user 
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input. Using the ROW_NUMBER function with ORDER BY (SELECT NULL), you can generate the actual 
numbers without worrying about any sorting cost. Putting it all together, to generate a sequence of 
numbers in the range @low to @high, you can use the following code in SQL Server 2012:

WITH 
  L0   AS (SELECT c FROM (VALUES(1),(1)) AS D(c)), 
  L1   AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), 
  L2   AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), 
  L3   AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), 
  L4   AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), 
  L5   AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), 
  Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum 
          FROM L5) 
SELECT @low + rownum - 1 AS n 
FROM Nums 
ORDER BY rownum 
OFFSET 0 ROWS FETCH FIRST @high - @low + 1 ROWS ONLY; 

The beauty in this approach is that SQL Server’s optimizer realizes that there’s no need to actu-
ally generate more rows than @high – @low + 1, so the query processor simply stops as soon as this 
number is reached. So if you need a sequence of only 10 numbers, it will generate only 10 and stop. If 
you want avoid repeating this code every time you need a sequence of numbers, you can encapsulate 
it in an inline table-valued function, like so:

USE TSQL2012; 
IF OBJECT_ID('dbo.GetNums', 'IF') IS NOT NULL DROP FUNCTION dbo.GetNums; 
GO 
CREATE FUNCTION dbo.GetNums(@low AS BIGINT, @high AS BIGINT) RETURNS TABLE 
AS 
RETURN 
  WITH 
    L0   AS (SELECT c FROM (VALUES(1),(1)) AS D(c)), 
    L1   AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), 
    L2   AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), 
    L3   AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), 
    L4   AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), 
    L5   AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), 
    Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum 
            FROM L5) 
  SELECT @low + rownum - 1 AS n 
  FROM Nums 
  ORDER BY rownum 
  OFFSET 0 ROWS FETCH FIRST @high - @low + 1 ROWS ONLY; 
GO

Remember that the OFFSET/FETCH option was added in SQL Server 2012. If you need to define 
such a function in previous versions of SQL Server, use the TOP option instead, like so:

IF OBJECT_ID('dbo.GetNums', 'IF') IS NOT NULL 
  DROP FUNCTION dbo.GetNums; 
GO 
CREATE FUNCTION dbo.GetNums(@low AS BIGINT, @high AS BIGINT) RETURNS TABLE 
AS 
RETURN 
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  WITH 
    L0   AS (SELECT c FROM (VALUES(1),(1)) AS D(c)), 
    L1   AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), 
    L2   AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), 
    L3   AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), 
    L4   AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), 
    L5   AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), 
    Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum 
            FROM L5) 
  SELECT TOP(@high - @low + 1) @low + rownum - 1 AS n 
  FROM Nums 
  ORDER BY rownum; 
GO

Both functions are optimized the same way, so performance is not a factor in determining which 
of the two is better to use. One factor that might matter to you is compatibility with systems running 
SQL Server versions prior to 2012—in which case, you might prefer to use the version with TOP. Then 
again, TOP isn’t standard, whereas OFFSET-FETCH is; so, if using standard code when possible is a 
priority, you might prefer to use the latter in systems running SQL Server 2012.

As an example for using the GetNums function, the following code generates a sequence of num-
bers in the range 11 through 20:

SELECT n FROM dbo.GetNums(11, 20); 
 
n 
-------------------- 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20

To get a sense of how fast this method is, I tested it on a moderately equipped laptop after choos-
ing the Discard Results After Execution query option from the Query Options dialog. It took only six 
seconds for the following request to generate a sequence of 10,000,000 numbers:

SELECT n FROM dbo.GetNums(1, 10000000);

The downside of the function is that plans for queries that use it are elaborate and can be a bit 
hard to follow. That’s especially the case when multiple sequences are involved. Plans for queries 
against a real table of numbers, naturally, produce much simpler plans.

In this chapter, you will see a number of solutions that rely on the GetNums function.
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Sequences of Date and Time Values

Various scenarios related to data manipulation require you to generate a sequence of date and time 
values between some input @start and @end points, with some interval (for example, 1 day, 12 hours, 
and so on). Examples for such scenarios include populating a time dimension in a data warehouse, 
scheduling applications, and others. An efficient tool that can be used for this purpose is the GetNums 
function described in the previous section. You accept the @start and @end date and time values as 
inputs, and using the DATEDIFF function, calculate how many intervals of the unit of interest there are 
between the two. Invoke the GetNums function with inputs 0 as @low and the aforementioned differ-
ence as @high. Finally, to generate the result date and time values, add n times the temporal interval 
to @start.

Here’s an example for generating a sequence of dates in the range February 1, 2012 to February 
12, 2012:

DECLARE  
  @start AS DATE = '20120201', 
  @end   AS DATE = '20120212'; 
 
SELECT DATEADD(day, n, @start) AS dt 
FROM dbo.GetNums(0, DATEDIFF(day, @start, @end)) AS Nums; 
 
dt 
---------- 
2012-02-01 
2012-02-02 
2012-02-03 
2012-02-04 
2012-02-05 
2012-02-06 
2012-02-07 
2012-02-08 
2012-02-09 
2012-02-10 
2012-02-11 
2012-02-12

If the interval is a product of some temporal unit—for example, 12 hours—use that unit (hour in 
this case) when calculating the difference between @start and @end, and divide the result by 12 to 
calculate @high; then multiply n by 12 to get the number of hours that need to be added to @start 
when calculating the result date and time values. As an example, the following code generates a 
sequence of date and time values between February 12, 2012 and February 18, 2012, with 12-hour 
intervals between the sequence values:

DECLARE  
  @start AS DATETIME2 = '2012-02-12 00:00:00.0000000', 
  @end   AS DATETIME2 = '2012-02-18 12:00:00.0000000'; 
 
SELECT DATEADD(hour, n*12, @start) AS dt 
FROM dbo.GetNums(0, DATEDIFF(hour, @start, @end)/12) AS Nums; 
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dt 
--------------------------- 
2012-02-12 00:00:00.0000000 
2012-02-12 12:00:00.0000000 
2012-02-13 00:00:00.0000000 
2012-02-13 12:00:00.0000000 
2012-02-14 00:00:00.0000000 
2012-02-14 12:00:00.0000000 
2012-02-15 00:00:00.0000000 
2012-02-15 12:00:00.0000000 
2012-02-16 00:00:00.0000000 
2012-02-16 12:00:00.0000000 
2012-02-17 00:00:00.0000000 
2012-02-17 12:00:00.0000000 
2012-02-18 00:00:00.0000000 
2012-02-18 12:00:00.0000000

Sequences of Keys

In various scenarios you might need to generate a sequence of unique integer keys when updating 
or inserting data in a table. SQL Server 2012 introduces support for sequence objects, enabling you 
to create solutions for some of those needs. However, sequence objects are not available in versions 
prior to SQL Server 2012. Furthermore, SQL Server will not undo the generation of sequence values if 
the transaction where new sequence values were generated fails, meaning that you can end up with 
gaps between sequence values. (This is the same situation with IDENTITY.) If you need to guarantee 
there will be no gaps between the generated keys, you cannot use sequence objects. In this section, 
I will show you how to address a number of needs for sequence values without the new sequence 
objects.

Update a Column with Unique Values
The first scenario I’ll describe involves the need to deal with data-quality issues. Run the following 
code to create and populate a table called MyOrders that I will use as sample data:

IF OBJECT_ID('Sales.MyOrders', 'U') IS NOT NULL 
  DROP TABLE Sales.MyOrders; 
GO 
 
SELECT 0 AS orderid, custid, empid, orderdate 
INTO Sales.MyOrders 
FROM Sales.Orders; 
 
SELECT * FROM Sales.MyOrders; 
 
orderid     custid      empid       orderdate 
----------- ----------- ----------- ----------------------- 
0           85          5           2006-07-04 00:00:00.000 
0           79          6           2006-07-05 00:00:00.000 
0           34          4           2006-07-08 00:00:00.000 
0           84          3           2006-07-08 00:00:00.000 
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0           76          4           2006-07-09 00:00:00.000 
0           34          3           2006-07-10 00:00:00.000 
0           14          5           2006-07-11 00:00:00.000 
0           68          9           2006-07-12 00:00:00.000 
0           88          3           2006-07-15 00:00:00.000 
0           35          4           2006-07-16 00:00:00.000 
...

Suppose that due to data-quality issues the table MyOrders doesn’t have unique values in the 
orderid attribute. You are tasked with updating all rows with unique integers starting with 1 in arbi-
trary order. To address this need, you can define a CTE based on a query against MyOrders, returning 
the orderid attribute as well as a ROW_NUMBER calculation. If there’s no ordering requirement for the 
calculation of row numbers, you can use (SELECT NULL) in the window order clause. Then, in the outer 
query against the CTE, use an UPDATE statement that sets orderid to the result of the ROW_NUMBER 
calculation, like so:

WITH C AS 
( 
  SELECT orderid, ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum 
  FROM Sales.MyOrders 
) 
UPDATE C 
  SET orderid = rownum;

Query MyOrders after the update, and observe that the orderid values are now unique:

SELECT * FROM Sales.MyOrders; 
 
orderid     custid      empid       orderdate 
----------- ----------- ----------- ----------------------- 
1           85          5           2006-07-04 00:00:00.000 
2           79          6           2006-07-05 00:00:00.000 
3           34          4           2006-07-08 00:00:00.000 
4           84          3           2006-07-08 00:00:00.000 
5           76          4           2006-07-09 00:00:00.000 
6           34          3           2006-07-10 00:00:00.000 
7           14          5           2006-07-11 00:00:00.000 
8           68          9           2006-07-12 00:00:00.000 
9           88          3           2006-07-15 00:00:00.000 
10          35          4           2006-07-16 00:00:00.000 
...

At this point, it’s a good idea to add a primary key constraint to enforce uniqueness in the table.

applying a range of Sequence Values
Suppose that you need a sequencing mechanism that guarantees no gaps. You can’t rely on the 
identity column property or the sequence object because both mechanisms will have gaps when the 
operation that generates the sequence value fails or just doesn’t commit. One of the common ways 
to implement a sequencing mechanism that guarantees there will be no gaps is to store the last-
used value in a table, and whenever you need a new value, increment the stored value and use the 
new one.
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As an example, the following code creates a table called MySequence and populates it with one 
row with the value 0 in the val column:

IF OBJECT_ID('dbo.MySequence', 'U') IS NOT NULL DROP TABLE dbo.MySequence; 
CREATE TABLE dbo.MySequence(val INT); 
INSERT INTO dbo.MySequence VALUES(0);

You can then use a stored procedure such as the following whenever you need to generate and 
use a new sequence value:

IF OBJECT_ID('dbo.GetSequence', 'P') IS NOT NULL DROP PROC dbo.GetSequence; 
GO 
 
CREATE PROC dbo.GetSequence 
  @val AS INT OUTPUT 
AS 
UPDATE dbo.MySequence 
  SET @val = val += 1; 
GO

The procedure updates the row in MySequence, incrementing the current value by 1, and stores 
the incremented value in the output parameter @val. Whenever you need a new sequence value, you 
execute the procedure and collect the new value from the output parameter, like so:

DECLARE @key AS INT; 
EXEC dbo.GetSequence @val = @key OUTPUT; 
SELECT @key;

If you run this code twice (in the same transaction, of course), you will get the sequence value 1 
first and 2 second. 

Suppose that sometimes you need to allocate a whole range of sequence values—for example, for 
use in a multirow insertion into some table. First, you need to alter the procedure to accept an input 
parameter (call it @n) that indicates the range size. Then the procedure can increment the val column 
in MySequence by @n and return the first value in the new range as the output parameter. Here’s the 
altered definition of the procedure:

ALTER PROC dbo.GetSequence 
  @val AS INT OUTPUT, 
  @n   AS INT = 1 
AS 
UPDATE dbo.MySequence 
  SET @val = val + 1, 
       val += @n; 
GO

You still need to figure out how to associate the individual sequence values in the range with rows 
in the result set of the query. Suppose that the following query returning customers from the UK 
represents the set you need to insert into the target table:
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SELECT custid 
FROM Sales.Customers 
WHERE country = N'UK'; 
 
custid 
----------- 
4 
11 
16 
19 
38 
53 
72

You are supposed to generate surrogate keys for these customers and, ultimately, insert those 
into a customer dimension in your data warehouse. You can first populate a table variable with this 
result set along with the result of a ROW_NUMBER function that will generate unique integers start-
ing with 1. (Call this column rownum.) Then you can collect the number of affected rows from the 
@@rowcount function into a local variable (call it @rc). Then you can invoke the procedure, pass-
ing @rc as the size of the range to allocate, and collect the first key in the range and put it into a 
local variable (call it @firstkey). Finally, you can query the table variable and compute the individual 
sequence values with the expression @firstkey + rownum – 1. Here’s the T-SQL code with the com-
plete solution: 

DECLARE @firstkey AS INT, @rc AS INT; 
 
DECLARE @CustsStage AS TABLE 
( 
  custid INT, 
  rownum INT 
); 
 
INSERT INTO @CustsStage(custid, rownum) 
  SELECT custid, ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) 
  FROM Sales.Customers 
  WHERE country = N'UK'; 
 
SET @rc = @@rowcount; 
 
EXEC dbo.GetSequence @val = @firstkey OUTPUT, @n = @rc; 
 
SELECT custid, @firstkey + rownum - 1 AS keycol 
FROM @CustsStage; 
 
custid      keycol 
----------- ----------- 
4           3 
11          4 
16          5 
19          6 
38          7 
53          8 
72          9
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Of course, normally the last part inserts the result of this query into the target table. Also, observe 
that I use ORDER BY (SELECT NULL) in the window order clause of the ROW_NUMBER function to get 
an arbitrary order for the row numbers. If you need the sequence values to be assigned in a certain 
order (for example, custid ordering), make sure you revise the window order clause accordingly.

Next run a similar process, this time querying source customers from France:

DECLARE @firstkey AS INT, @rc AS INT; 
 
DECLARE @CustsStage AS TABLE 
( 
  custid INT, 
  rownum INT 
); 
 
INSERT INTO @CustsStage(custid, rownum) 
  SELECT custid, ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) 
  FROM Sales.Customers 
  WHERE country = N'France'; 
 
SET @rc = @@rowcount; 
 
EXEC dbo.GetSequence @val = @firstkey OUTPUT, @n = @rc; 
 
SELECT custid, @firstkey + rownum - 1 AS keycol 
FROM @CustsStage; 
 
custid      keycol 
----------- ----------- 
7           10 
9           11 
18          12 
23          13 
26          14 
40          15 
41          16 
57          17 
74          18 
84          19 
85          20

Notice in the result that the sequence values generated simply continued right after the end of the 
previously allocated range.

When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.GetSequence', 'P') IS NOT NULL DROP PROC dbo.GetSequence; 
IF OBJECT_ID('dbo.MySequence', 'U') IS NOT NULL DROP TABLE dbo.MySequence;
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Paging

Paging is a common need in applications. You want to allow the user to get one portion of rows at a 
time from a result set of a query so that the result can more easily fit in the target web page, UI, or 
screen. The ROW_NUMBER function can be used for paging purposes. You assign row numbers to the 
result rows based on the desired ordering, and then filter the right range of row numbers based on 
given page-number and page-size arguments. For optimal performance, you want to have an index 
defined on the window ordering elements as the index keys and include in the index the rest of the 
attributes that appear in the query for coverage purposes.

As an example, suppose you want to allow paging through orders from the Sales.Orders table 
based on orderdate, orderid ordering (from least to most recent), and return in the result set the attri-
butes orderid, orderdate, custid, and empid. Following the indexing guidelines I just mentioned, you 
arrange the following index:

CREATE UNIQUE INDEX idx_od_oid_i_cid_eid 
  ON Sales.Orders(orderdate, orderid) 
  INCLUDE(custid, empid);

Then, given a page number and a page size as inputs, you use the following code to filter the cor-
rect page of rows. For example, the following code returns the third page with a page size of 25 rows, 
meaning the rows with row numbers 51 through 75:

DECLARE 
  @pagenum  AS INT = 3, 
  @pagesize AS INT = 25; 
 
WITH C AS 
( 
  SELECT ROW_NUMBER() OVER( ORDER BY orderdate, orderid ) AS rownum, 
    orderid, orderdate, custid, empid 
  FROM Sales.Orders 
) 
SELECT orderid, orderdate, custid, empid 
FROM C 
WHERE rownum BETWEEN (@pagenum - 1) * @pagesize + 1 
                 AND @pagenum * @pagesize 
ORDER BY rownum; 
 
orderid     orderdate               custid      empid 
----------- ----------------------- ----------- ----------- 
10298       2006-09-05 00:00:00.000 37          6 
10299       2006-09-06 00:00:00.000 67          4 
10300       2006-09-09 00:00:00.000 49          2 
10301       2006-09-09 00:00:00.000 86          8 
10302       2006-09-10 00:00:00.000 76          4 
10303       2006-09-11 00:00:00.000 30          7 
10304       2006-09-12 00:00:00.000 80          1 
10305       2006-09-13 00:00:00.000 55          8 
10306       2006-09-16 00:00:00.000 69          1 
10307       2006-09-17 00:00:00.000 48          2 
10308       2006-09-18 00:00:00.000 2           7 
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10309       2006-09-19 00:00:00.000 37          3 
10310       2006-09-20 00:00:00.000 77          8 
10311       2006-09-20 00:00:00.000 18          1 
10312       2006-09-23 00:00:00.000 86          2 
10313       2006-09-24 00:00:00.000 63          2 
10314       2006-09-25 00:00:00.000 65          1 
10315       2006-09-26 00:00:00.000 38          4 
10316       2006-09-27 00:00:00.000 65          1 
10317       2006-09-30 00:00:00.000 48          6 
10318       2006-10-01 00:00:00.000 38          8 
10319       2006-10-02 00:00:00.000 80          7 
10320       2006-10-03 00:00:00.000 87          5 
10321       2006-10-03 00:00:00.000 38          3 
10322       2006-10-04 00:00:00.000 58          7

Figure 5-1 shows the execution plan for this query.

FIgURE 5-1 Execution plan for a query with ROW_NUMBER.

Observe that because there was an index to support the ROW_NUMBER calculation, SQL Server 
didn’t really need to scan all rows from the table. Rather, it scanned only the first 75 rows in the index 
and then filtered the rows with row numbers 51 through 75. As you can imagine, without such an 
index in place, SQL Server would have no choice but to scan all rows, sort, assign row numbers, and 
then filter. So indexing here is critical for good performance.

You can use the aforementioned technique based on row numbers in SQL Server 2005 and later. 
If you’re using SQL Server 2012, an alternative solution to paging is to use the new OFFSET/FETCH 
filtering option. This option is similar to TOP, except that it’s standard, it supports skipping rows, and 
it’s part of the ORDER BY clause. Here’s the code you use to filter the right page of rows using the 
OFFSET/FETCH option given the page number and page size as inputs:

DECLARE 
  @pagenum  AS INT = 3, 
  @pagesize AS INT = 25; 
 
SELECT orderid, orderdate, custid, empid 
FROM Sales.Orders 
ORDER BY orderdate, orderid 
OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY;

The execution plan for this query is shown in Figure 5-2.
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FIgURE 5-2 Execution plan for a query with OFFSET/FETCH.

Observe in the execution plan that the optimization is similar to that of the technique based on 
row numbers—in the sense that SQL Server scans only the first 75 rows in the index and filters the last 
25. As a result, the work, in terms of number of reads, is similar in both cases.

When you’re done, run the following code for cleanup:

DROP INDEX idx_od_oid_i_cid_eid ON Sales.Orders;

Removing Duplicates

De-duplication of data is a common need, especially when dealing with data-quality issues in envi-
ronments that end up with duplicate rows due to lack of enforcement of uniqueness with constraints. 
As an example, the following code prepares sample data with duplicate orders in a table called 
MyOrders:

IF OBJECT_ID('Sales.MyOrders') IS NOT NULL DROP TABLE Sales.MyOrders; 
GO 
 
SELECT * INTO Sales.MyOrders FROM Sales.Orders 
UNION ALL 
SELECT * FROM Sales.Orders 
UNION ALL 
SELECT * FROM Sales.Orders;

Suppose that you need to de-duplicate the data, keeping only one occurrence of each unique 
orderid value. You mark the duplicate number using the ROW_NUMBER function, partitioned by 
what’s supposed to be unique (orderid in our case), and using arbitrary ordering if you don’t care 
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which row is kept and which is removed. Here’s the code with the ROW_NUMBER function marking 
the duplicates:

SELECT orderid, 
  ROW_NUMBER() OVER(PARTITION BY orderid 
                    ORDER BY (SELECT NULL)) AS n 
FROM Sales.MyOrders; 
 
orderid     n 
----------- -------------------- 
10248       1 
10248       2 
10248       3 
10249       1 
10249       2 
10249       3 
10250       1 
10250       2 
10250       3

Next, you consider different options depending on the number of rows that need to be deleted, 
the percent of table cardinality that number represents, the production activity, and so on. When a 
small number of the rows need to be deleted, it’s usually OK to use a fully logged delete operation 
that removes all occurrences where the row number is greater than 1, like so:

WITH C AS 
( 
  SELECT orderid, 
    ROW_NUMBER() OVER(PARTITION BY orderid 
                      ORDER BY (SELECT NULL)) AS n 
  FROM Sales.MyOrders 
) 
DELETE FROM C 
WHERE n > 1;

If, however, you have a large number of rows that need to be deleted—especially when this num-
ber represents a large percentage of the rows in the table—the fully logged delete can prove too 
slow. In such a case, one of the options to consider is using a minimally logged operation, like SELECT 
INTO, to copy distinct rows (rows with row number 1) into a different table name; drop the original 
table; rename the new table to the original table name; then re-create constraints, indexes, and trig-
gers on the target table. Here’s the code with the complete solution:

WITH C AS 
( 
  SELECT *, 
    ROW_NUMBER() OVER(PARTITION BY orderid 
                      ORDER BY (SELECT NULL)) AS n 
  FROM Sales.MyOrders 
) 
SELECT orderid, custid, empid, orderdate, requireddate, shippeddate,  
  shipperid, freight, shipname, shipaddress, shipcity, shipregion,  
  shippostalcode, shipcountry 
INTO Sales.OrdersTmp 
FROM C 
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WHERE n = 1; 
 
DROP TABLE Sales.MyOrders; 
EXEC sp_rename 'Sales.OrdersTmp', 'MyOrders'; 
-- recreate indexes, constraints, triggers

To keep things simple, I didn’t include any transaction control in this example, but you should 
always remember that multiple users can interact with the data. If you implement this technique in 
production you should be sure to do the following:

1. Open a transaction.

2. Take a lock on the table.

3. Perform the SELECT INTO.

4. Drop and rename the objects.

5. Re-create indexes, constraints, and triggers.

6. Commit the transaction.

There’s another option that I learned from Javier Loria to filter either just the distinct rows or all 
but the distinct rows. You compute both ROW_NUMBER and RANK based on orderid ordering, like so:

SELECT orderid, 
  ROW_NUMBER() OVER(ORDER BY orderid) AS rownum, 
  RANK() OVER(ORDER BY orderid) AS rnk 
FROM Sales.MyOrders; 
 
orderid     rownum               rnk 
----------- -------------------- -------------------- 
10248       1                    1 
10248       2                    1 
10248       3                    1 
10249       4                    4 
10249       5                    4 
10249       6                    4 
10250       7                    7 
10250       8                    7 
10250       9                    7

Observe in the result that only in one row for each unique orderid value are the row number and 
rank the same. For example, if you have a small percentage of rows to delete, you encapsulate the 
previous query in a CTE definition and, in the outer statement, issue a DELETE where the row number 
is different than the rank, like so:

WITH C AS 
( 
  SELECT orderid, 
    ROW_NUMBER() OVER(ORDER BY orderid) AS rownum, 
    RANK() OVER(ORDER BY orderid) AS rnk 
  FROM Sales.MyOrders 
) 
DELETE FROM C 
WHERE rownum <> rnk;
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The preceding solutions are not the only ones. For example, there are scenarios where you will 
want to split a large delete into batches using the TOP option. But here I wanted to focus on solutions 
using window functions.

When you’re done, run the following code for cleanup:

IF OBJECT_ID('Sales.MyOrders') IS NOT NULL DROP TABLE Sales.MyOrders;

Pivoting

Pivoting is a technique to aggregate and rotate data from a state of rows to columns. When pivoting 
data, you need to identify three elements: the element you want to see on rows (the grouping ele-
ment), the element you want to see on columns (the spreading element), and the element you want 
to see in the data portion (the aggregation element). 

As an example, suppose that you need to query the Sales.OrderValues view and return a row 
for each order year, a column for each order month, and the sum of order values for each year and 
month intersection. In this request, the on rows, or grouping, element is YEAR(orderdate); the on cols, 
or spreading, element is MONTH(orderdate); the distinct spreading values are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, and 12; and the data, or aggregation, element is SUM(val). 

To achieve pivoting, you first want to prepare a table expression such as a CTE, where you return 
only the three elements that are involved in your pivoting task. Then, in the outer statement, you 
query the table expression and use the PIVOT operator to handle the pivoting logic, like so (output 
wrapped):

WITH C AS 
( 
  SELECT YEAR(orderdate) AS orderyear, MONTH(orderdate) AS ordermonth, val 
  FROM Sales.OrderValues 
) 
SELECT * 
FROM C 
  PIVOT(SUM(val)  
    FOR ordermonth IN ([1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12])) AS P; 
 
orderyear  1         2         3          4           5         6          
---------- --------- --------- ---------- ----------- --------- ---------  
2007       61258.08  38483.64  38547.23   53032.95    53781.30  36362.82   
2008       94222.12  99415.29  104854.18  123798.70   18333.64  NULL       
2006       NULL      NULL      NULL       NULL        NULL      NULL       
 
orderyear  7         8         9         10        11        12 
---------- --------- --------- --------- --------- --------- --------- 
2007       51020.86  47287.68  55629.27  66749.23  43533.80  71398.44 
2008       NULL      NULL      NULL      NULL      NULL      NULL 
2006       27861.90  25485.28  26381.40  37515.73  45600.05  45239.63

In this case, all three pivoting elements are known, including the distinct values in the spreading 
element (the months). But there are certain pivoting tasks where the spreading element doesn’t exist 
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in the source and needs to be computed. For example, consider a request to return, for each cus-
tomer, the order IDs of its five most recent orders. You want to see the customer IDs on rows and the 
order IDs in the data part, but there’s nothing common to the order IDs across customers that you 
can use as your spreading element. 

The solution is to use a ROW_NUMBER function that assigns ordinals to the order IDs within each 
customer partition, based on the desired ordering—orderdate DESC, orderid DESC in our case. Then 
the attribute representing that row number can be used as the spreading element and the ordinals 
can be calculated as the spreading values.

So first, here’s the code that generates the row numbers for each customer’s orders from most 
recent to least recent:

SELECT custid, val, 
  ROW_NUMBER() OVER(PARTITION BY custid 
                    ORDER BY orderdate DESC, orderid DESC) AS rownum 
FROM Sales.OrderValues; 
 
custid  val      rownum 
------- -------- ------- 
1       933.50   1 
1       471.20   2 
1       845.80   3 
1       330.00   4 
1       878.00   5 
1       814.50   6 
2       514.40   1 
2       320.00   2 
2       479.75   3 
2       88.80    4 
3       660.00   1 
3       375.50   2 
3       813.37   3 
3       2082.00  4 
3       1940.85  5 
3       749.06   6 
3       403.20   7 
...

Now you can define a CTE based on the previous query, and then in the outer query handle the 
pivoting logic, with rownum being used as the spreading element:

WITH C AS 
( 
  SELECT custid, val, 
    ROW_NUMBER() OVER(PARTITION BY custid 
                      ORDER BY orderdate DESC, orderid DESC) AS rownum 
  FROM Sales.OrderValues 
) 
SELECT * 
FROM C 
  PIVOT(MAX(val) FOR rownum IN ([1],[2],[3],[4],[5])) AS P; 
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custid  1        2        3        4        5 
------- -------- -------- -------- -------- --------- 
1       933.50   471.20   845.80   330.00   878.00 
2       514.40   320.00   479.75   88.80    NULL 
3       660.00   375.50   813.37   2082.00  1940.85 
4       491.50   4441.25  390.00   282.00   191.10 
5       1835.70  709.55   1096.20  2048.21  1064.50 
6       858.00   677.00   625.00   464.00   330.00 
7       730.00   660.00   450.00   593.75   1761.00 
8       224.00   3026.85  982.00   NULL     NULL 
9       792.75   360.00   1788.63  917.00   1979.23 
10      525.00   1309.50  877.73   1014.00  717.50 
...

If you need to concatenate into one string the order IDs of the five most recent orders for each 
customer, you can use SQL Server 2012’s new CONCAT function, like so:

WITH C AS 
( 
  SELECT custid, CAST(orderid AS VARCHAR(11)) AS sorderid, 
    ROW_NUMBER() OVER(PARTITION BY custid 
                      ORDER BY orderdate DESC, orderid DESC) AS rownum 
  FROM Sales.OrderValues 
) 
SELECT custid, CONCAT([1], ','+[2], ','+[3], ','+[4], ','+[5]) AS orderids 
FROM C 
  PIVOT(MAX(sorderid) FOR rownum IN ([1],[2],[3],[4],[5])) AS P; 
 
custid      orderids 
----------- ----------------------------------------------------------- 
1           11011,10952,10835,10702,10692 
2           10926,10759,10625,10308 
3           10856,10682,10677,10573,10535 
4           11016,10953,10920,10864,10793 
5           10924,10875,10866,10857,10837 
6           11058,10956,10853,10614,10582 
7           10826,10679,10628,10584,10566 
8           10970,10801,10326 
9           11076,10940,10932,10876,10871 
10          11048,11045,11027,10982,10975 
...

The CONCAT function automatically replaces a NULL with an empty string. To achieve the same 
thing in versions prior to SQL Server 2012, you need to use the + concatenation operator and the 
COALESCE function to replace a NULL with an empty string, like so:

WITH C AS 
( 
  SELECT custid, CAST(orderid AS VARCHAR(11)) AS sorderid, 
    ROW_NUMBER() OVER(PARTITION BY custid 
                      ORDER BY orderdate DESC, orderid DESC) AS rownum 
  FROM Sales.OrderValues 
) 
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SELECT custid,  
  [1] + COALESCE(','+[2], '') 
      + COALESCE(','+[3], '') 
      + COALESCE(','+[4], '') 
      + COALESCE(','+[5], '') AS orderids 
FROM C 
  PIVOT(MAX(sorderid) FOR rownum IN ([1],[2],[3],[4],[5])) AS P; 

TOP n Per group

The Top-N-per-Group problem is a common querying problem that involves filtering a requested 
number of rows from each group, or partition, of rows, based on some defined ordering. A request 
to query the Sales.Orders table and return, for each customer, the three most recent orders is an 
example for the Top-N-per-Group problem. In this case, the partitioning element is custid; the order-
ing specification is orderdate DESC, orderid DESC (most recent); and N is 3. Both TOP and the newer 
OFFSET/FETCH filtering options do support indicating the number of rows to filter and ordering speci-
fication, but they don’t support a partition clause. Imagine how nice it would be if you could indicate 
both a partition clause and an order clause as part of the filter specification—something like this:

SELECT 
  TOP (3) OVER( 
    PARTITION BY custid 
    ORDER BY orderdate DESC, orderid DESC) 
  custid, orderdate, orderid, empid 
FROM Sales.Orders;

Unfortunately, such syntax doesn’t exist, and you have to figure out other solutions to this need. 

Note I submitted a request to Microsoft to support the TOP OVER syntax. You can find the 
request here: http://connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-
enhancement-request-top-over.

Indexing guidelines, regardless of the solution you use, follow the POC concept. (POC stands for 
Partioning, Ordering, Covering; see Chapter 4, “Optimization of Window Functions,” for more infor-
mation.) The index key list is defined based on the partitioning columns (custid in our case) followed 
by the ordering columns (orderdate DESC, orderid DESC in our case), and it includes the rest of the 
columns that appear in the query for coverage purposes. Of course, if the index is a clustered index, 
all table columns are covered anyway, so you don’t need to worry about the C part of the POC index. 
Here’s the code to generate the POC index for our task, assuming empid is the only remaining column 
you need to return from the query other than custid, orderdate, and orderid:

CREATE UNIQUE INDEX idx_cid_odD_oidD_i_empid 
  ON Sales.Orders(custid, orderdate DESC, orderid DESC) 
  INCLUDE(empid);

http://connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-enhancement-request-top-over
http://connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-enhancement-request-top-over
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Assuming you have a POC index in place, there are two strategies to address the task: one using 
the ROW_NUMBER function, and another using the APPLY operator and OFFSET/FETCH or TOP. What 
determines which of the two is most efficient is the density of the partitioning column (custid in our 
case). With low density—namely, a large number of distinct customers, each with a small number of 
orders—a solution based on the ROW_NUMBER function is optimal. You assign row numbers based 
on the same partitioning and ordering requirements as those in the request, and then filter only the 
rows with row numbers that are less than or equal to the number of rows you need to filter for each 
group. Here’s the complete solution implementing this approach:

WITH C AS 
( 
  SELECT custid, orderdate, orderid, empid, 
    ROW_NUMBER() OVER( 
      PARTITION BY custid 
      ORDER BY orderdate DESC, orderid DESC) AS rownum 
  FROM Sales.Orders 
) 
SELECT * 
FROM C 
WHERE rownum <= 3 
ORDER BY custid, rownum;

Figure 5-3 shows the execution plan for this query.

FIgURE 5-3 Execution plan for a query with low density.

What makes this strategy so efficient when the partitioning column has low density (remember, 
that’s a large number of distinct customers, each with a small number of orders) is that the plan 
involves only one ordered scan of the POC index. In such a case, you do not want a plan that per-
forms a seek operation in the index for each distinct partitioning value (customer). However, when the 
partitioning column has high density (a small number of distinct customers, each with a large number 
of orders), a plan that performs a seek in the index for each customer becomes a more efficient strat-
egy than a full scan of the index leaf. The way to achieve such a plan is to query the table that holds 
the distinct partitioning values (Sales.Customers in our case) and use the APPLY operator to invoke a 
query with OFFSET/FETCH or TOP for each customer, like so:

SELECT C.custid, A.* 
FROM Sales.Customers AS C 
  CROSS APPLY (SELECT orderdate, orderid, empid 
               FROM Sales.Orders AS O 
               WHERE O.custid = C.custid 
               ORDER BY orderdate DESC, orderid DESC 
               OFFSET 0 ROWS FETCH FIRST 3 ROWS ONLY) AS A;

The plan for this query is shown in Figure 5-4.
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FIgURE 5-4 Execution plan for a query with high density.

Observe in the plan that an index on the Customers table is scanned to retrieve all customer IDs. 
Then, for each customer, the plan performs a seek operation in our POC index (going to the begin-
ning of the current customer’s section in the index leaf), and then scans three rows in the leaf for the 
three most recent orders.

Remember that the OFFSET/FETCH was added in SQL Server 2012. In earlier versions of SQL Server, 
you can use the TOP option instead:

SELECT C.custid, A.* 
FROM Sales.Customers AS C 
  CROSS APPLY (SELECT TOP (3) orderdate, orderid, empid 
               FROM Sales.Orders AS O 
               WHERE O.custid = C.custid 
               ORDER BY orderdate DESC, orderid DESC) AS A;

Note that to perform well, both strategies require a POC index. If you don’t have an index in place 
and either cannot or do not want to create one, there’s a third strategy that tends to perform better 
than the other two. However, this third strategy works only when N equals 1. 

At this point, you can drop the POC index:

DROP INDEX idx_cid_odD_oidD_i_empid ON Sales.Orders;

The third strategy implements a technique you can think of as a carry-along sort. I introduced this 
technique earlier in the book in Chapter 3, “Ordered Set Functions,” when discussing offset functions. 
The idea is to form a single string for each partition where you concatenate first the ordering attri-
butes and then all of the nonkey attributes you need in the result. It’s important to use a concatena-
tion technique that results in a string that sorts the same as the ordering elements are supposed to 
sort. For example, in our case the ordering is based on orderdate DESC and orderid DESC. 

The first element is a date. To get a charter string representation of a date that sorts the same 
as the original date, you need to convert the date to the form YYYYMMDD. To achieve this, use the 
CONVERT function with style 112. As for the orderid element, it’s a positive integer. To have a charac-
ter string form of the number sort the same as the original integer, you need to format the value as a 
fixed-length string with leading spaces or zeros. You can format the value as a fixed-length string with 
leading spaces using the STR function.
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The solution involves grouping the rows by the partitioning column and calculating the maximum 
concatenated string per group. That maximum string represents the concatenated elements from 
the row you need to return. Next, you define a CTE based on the last query. Then, in the outer query, 
use SUBSTRING functions to extract the individual elements you originally concatenated and convert 
them back to their original types. Here’s what the complete solution looks like:

WITH C AS 
( 
  SELECT custid,  
    MAX(CONVERT(CHAR(8), orderdate, 112) 
        + STR(orderid, 10) 
        + STR(empid, 10) COLLATE Latin1_General_BIN2) AS mx 
  FROM Sales.Orders 
  GROUP BY custid 
) 
SELECT custid, 
  CAST(SUBSTRING(mx,  1,  8) AS DATETIME) AS orderdate, 
  CAST(SUBSTRING(mx,  9, 10) AS INT)      AS custid, 
  CAST(SUBSTRING(mx, 19, 10) AS INT)      AS empid 
FROM C;

The query isn’t pretty, but its plan involves only one scan of the data, and it tends to outperform 
the other solutions when the POC index doesn’t exist. Remember that if you can afford such an index, 
you don’t want to use this solution; rather, you should use one of the other two strategies, depending 
on the density of the partitioning column.

Mode

Mode is a statistical calculation that returns the most frequently occurring value in the population. 
Consider, for example, the Sales.Orders table, which holds order information. Each order was placed 
by some customer and handled by some employee. Suppose you want to know, for each customer, 
which employee handled the most orders. That employee is the mode because she appears most 
frequently in the customer’s orders. 

Naturally there is the potential for ties if there are multiple employees who handled the most 
orders for a given customer. Depending on your needs, you either return all ties or break the ties. 
I will cover solutions to both cases. If you do want to break the ties, suppose the tiebreaker is the 
highest employee ID number—if multiple employees handled the most orders for a given customer, 
return the one with the highest employee ID number among those.

Indexing is straightforward here; you want an index defined on (custid, empid):

CREATE INDEX idx_custid_empid ON Sales.Orders(custid, empid);

I’ll start with a solution that relies on the ROW_NUMBER function. The first step is to group the 
orders by custid and empid, and then return for each group the count of orders, like so:
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SELECT custid, empid, COUNT(*) AS cnt 
FROM Sales.Orders 
GROUP BY custid, empid; 
 
custid      empid       cnt 
----------- ----------- ----------- 
1           1           2 
3           1           1 
4           1           3 
5           1           4 
9           1           3 
10          1           2 
11          1           1 
14          1           1 
15          1           1 
17          1           2 
...

The next step is to add a ROW_NUMBER calculation partitioned by custid and ordered by 
COUNT(*) DESC, empid DESC. For each customer, the row with the highest count (and, in the case of 
ties, the highest employee ID number) will be assigned row number 1:

SELECT custid, empid, COUNT(*) AS cnt, 
  ROW_NUMBER() OVER(PARTITION BY custid 
                    ORDER BY COUNT(*) DESC, empid DESC) AS rn 
FROM Sales.Orders 
GROUP BY custid, empid; 
 
custid      empid       cnt         rn 
----------- ----------- ----------- -------------------- 
1           4           2           1 
1           1           2           2 
1           6           1           3 
1           3           1           4 
2           3           2           1 
2           7           1           2 
2           4           1           3 
3           3           3           1 
3           7           2           2 
3           4           1           3 
3           1           1           4 
...

Finally, you need to filter only the rows where the row number is equal to 1 using a CTE, like so:

WITH C AS 
( 
  SELECT custid, empid, COUNT(*) AS cnt, 
    ROW_NUMBER() OVER(PARTITION BY custid 
                      ORDER BY COUNT(*) DESC, empid DESC) AS rn 
  FROM Sales.Orders 
  GROUP BY custid, empid 
) 
SELECT custid, empid, cnt 
FROM C 
WHERE rn = 1; 
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custid      empid       cnt 
----------- ----------- ----------- 
1           4           2 
2           3           2 
3           3           3 
4           4           4 
5           3           6 
6           9           3 
7           4           3 
8           4           2 
9           4           4 
10          3           4 
...

Because the window-ordering specification includes empid DESC as a tiebreaker, you get to return 
only one row per customer when implementing the tiebreaker requirements of the task. If you do not 
want to break the ties, use the RANK function instead of ROW_NUMBER and remove empid from the 
window order clause, like so:

WITH C AS 
( 
  SELECT custid, empid, COUNT(*) AS cnt, 
    RANK() OVER(PARTITION BY custid 
                ORDER BY COUNT(*) DESC) AS rn 
  FROM Sales.Orders 
  GROUP BY custid, empid 
) 
SELECT custid, empid, cnt 
FROM C 
WHERE rn = 1; 
 
custid      empid       cnt 
----------- ----------- ----------- 
1           1           2 
1           4           2 
2           3           2 
3           3           3 
4           4           4 
5           3           6 
6           9           3 
7           4           3 
8           4           2 
9           4           4 
10          3           4 
11          6           2 
11          4           2 
11          3           2 
...

Remember that the RANK function is sensitive to ties, unlike the ROW_NUMBER function. This 
means that given the same ordering value—COUNT(*) in our case—you get the same rank. So all 
rows with the greatest count per customer get rank 1, and hence all are kept. Observe, for example, 
that in the case of customer 1, two different employees—with IDs 1 and 4—handled the most 
orders—two in number—and hence both were returned.
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Perhaps you realized that the Mode problem is a version of the previously discussed Top-N-per-
Group problem. And recall that in addition to the solution that is based on window functions, you can 
also use a solution based on the carry-along-sort concept. But this concept works only as long as N 
equals 1, which in our case means you do want to implement a tiebreaker. 

To implement the carry-along-sort concept in this case, you need to form a concatenated string 
with the count as the first part and the employee ID as the second part, like so:

SELECT custid, 
  STR(COUNT(*), 10) + STR(empid, 10) COLLATE Latin1_General_BIN2 AS cntemp 
FROM Sales.Orders 
GROUP BY custid, empid; 
 
custid      cntemp 
----------- -------------------- 
1                    2         1 
3                    1         1 
4                    3         1 
5                    4         1 
9                    3         1 
10                   2         1 
11                   1         1 
14                   1         1 
15                   1         1 
17                   2         1 
...

Observe that I used fixed-length segments for the count and the empid with leading spaces so that 
the strings would sort the same as the original integer values. The conversion to a binary collation will 
allow more efficient comparisons between the strings.

The next step is to define a CTE based on this query, and then, in the outer query, group the rows 
by customer and calculate the maximum concatenated string per group. Finally, extract the different 
parts from the maximum concatenated string and convert back to the original types, like so:

WITH C AS 
( 
  SELECT custid, 
    STR(COUNT(*), 10) + STR(empid, 10) COLLATE Latin1_General_BIN2 AS cntemp 
  FROM Sales.Orders 
  GROUP BY custid, empid 
) 
SELECT custid, 
  CAST(SUBSTRING(MAX(cntemp), 11, 10) AS INT) AS empid, 
  CAST(SUBSTRING(MAX(cntemp),  1, 10) AS INT) AS cnt 
FROM C 
GROUP BY custid; 
 
custid      empid       cnt 
----------- ----------- ----------- 
1           4           2 
2           3           2 
3           3           3 
4           4           4 
5           3           6 



158  CHAPTER 5 T-SQL Solutions Using Window Functions

6           9           3 
7           4           3 
8           4           2 
9           4           4 
10          3           4 
...

As mentioned in the “TOP N Per Group” section, the solution based on window functions performs 
well when there is an index in place, so there’s no reason to use the more complicated carry-along-
sort one. But when there’s no index to support the solution, the latter tends to perform better.

When you’re done, run the following code for cleanup:

DROP INDEX idx_custid_empid ON Sales.Orders;

Running Totals

Calculating running totals is a very common need. The basic idea is to keep accumulating the values 
in one attribute (the aggregated element) based on ordering defined by another attribute or attri-
butes (the ordering element), possibly within partitions of rows defined by yet another attribute or 
attributes (the partitioning element). There are many examples in life for calculating running totals, 
including calculating bank account balances, tracking product stock levels in a warehouse, tracking 
cumulative sales values, and so on. 

Prior to SQL Server 2012, the set-based solutions used to calculate running totals were extremely 
expensive. Therefore, people often resorted to iterative solutions that weren’t very fast but in certain 
data distribution scenarios were faster than the set-based solutions. With the enhanced support for 
window functions in SQL Server 2012, you can now calculate running totals with simple set-based 
code that performs much better than all of the older T-SQL solutions—which were set-based and 
iterative. I could have just showed you the new solution here and moved on to the next section in the 
chapter, but to help you really appreciate the greatness of the new solution, I will describe the older 
ones and compare their performance. Feel free, of course, to read only the first section covering the 
new solution and skip the rest if that’s what you prefer.

I will use the bank account balances in my examples to demonstrate the different solutions. Here’s 
code you can use to create and populate the Transactions table with a small set of sample data:

SET NOCOUNT ON; 
USE TSQL2012; 
 
IF OBJECT_ID('dbo.Transactions', 'U') IS NOT NULL DROP TABLE dbo.Transactions; 
 
CREATE TABLE dbo.Transactions 
( 
  actid  INT   NOT NULL,                -- partitioning column 
  tranid INT   NOT NULL,                -- ordering column 
  val    MONEY NOT NULL,                -- measure 
  CONSTRAINT PK_Transactions PRIMARY KEY(actid, tranid) 
); 
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GO 
 
-- small set of sample data 
INSERT INTO dbo.Transactions(actid, tranid, val) VALUES 
  (1,  1,  4.00), 
  (1,  2, -2.00), 
  (1,  3,  5.00), 
  (1,  4,  2.00), 
  (1,  5,  1.00), 
  (1,  6,  3.00), 
  (1,  7, -4.00), 
  (1,  8, -1.00), 
  (1,  9, -2.00), 
  (1, 10, -3.00), 
  (2,  1,  2.00), 
  (2,  2,  1.00), 
  (2,  3,  5.00), 
  (2,  4,  1.00), 
  (2,  5, -5.00), 
  (2,  6,  4.00), 
  (2,  7,  2.00), 
  (2,  8, -4.00), 
  (2,  9, -5.00), 
  (2, 10,  4.00), 
  (3,  1, -3.00), 
  (3,  2,  3.00), 
  (3,  3, -2.00), 
  (3,  4,  1.00), 
  (3,  5,  4.00), 
  (3,  6, -1.00), 
  (3,  7,  5.00), 
  (3,  8,  3.00), 
  (3,  9,  5.00), 
  (3, 10, -3.00);

Each row in the table represents a transaction in some bank account. When the transaction is a 
deposit, the amount in the val column is positive; when it’s a withdrawal, the amount is negative. Your 
task is to compute the account balance at each point by accumulating the amounts in the val column 
based on ordering defined by the tranid column, within each account independently. The desired 
results should look like this for the small set of sample data:

actid       tranid      val                   balance 
----------- ----------- --------------------- --------------------- 
1           1           4.00                  4.00 
1           2           -2.00                 2.00 
1           3           5.00                  7.00 
1           4           2.00                  9.00 
1           5           1.00                  10.00 
1           6           3.00                  13.00 
1           7           -4.00                 9.00 
1           8           -1.00                 8.00 
1           9           -2.00                 6.00 
1           10          -3.00                 3.00 
2           1           2.00                  2.00 
2           2           1.00                  3.00 
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2           3           5.00                  8.00 
2           4           1.00                  9.00 
2           5           -5.00                 4.00 
2           6           4.00                  8.00 
2           7           2.00                  10.00 
2           8           -4.00                 6.00 
2           9           -5.00                 1.00 
2           10          4.00                  5.00 
3           1           -3.00                 -3.00 
3           2           3.00                  0.00 
3           3           -2.00                 -2.00 
3           4           1.00                  -1.00 
3           5           4.00                  3.00 
3           6           -1.00                 2.00 
3           7           5.00                  7.00 
3           8           3.00                  10.00 
3           9           5.00                  15.00 
3           10          -3.00                 12.00

To test the performance of the solutions, you need a larger set of sample data. You can use the 
following code to achieve this:

DECLARE 
  @num_partitions     AS INT = 10, 
  @rows_per_partition AS INT = 10000; 
 
TRUNCATE TABLE dbo.Transactions; 
 
INSERT INTO dbo.Transactions WITH (TABLOCK) (actid, tranid, val) 
  SELECT NP.n, RPP.n, 
    (ABS(CHECKSUM(NEWID())%2)*2-1) * (1 + ABS(CHECKSUM(NEWID())%5)) 
  FROM dbo.GetNums(1, @num_partitions) AS NP 
    CROSS JOIN dbo.GetNums(1, @rows_per_partition) AS RPP;

Feel free to change the inputs as needed to control the number of partitions (accounts) and num-
ber of rows per partition (transactions).

Set-Based Solution Using Window Functions 
I’ll start with the new set-based solution that uses the SUM window aggregate function. The window 
specification is intuitive here; you need to partition the window by actid, order by tranid, and filter 
the frame of rows between no low boundary point (UNBOUNDED PRECEDING) and the current row. 
Here’s the solution query:

SELECT actid, tranid, val, 
  SUM(val) OVER(PARTITION BY actid 
                ORDER BY tranid 
                ROWS BETWEEN UNBOUNDED PRECEDING 
                         AND CURRENT ROW) AS balance 
FROM dbo.Transactions;

Not only is the code is simple and straightforward, it also performs very well. The plan for this 
query is shown in Figure 5-5.
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FIgURE 5-5 Execution plan for a query using window functions.

The table has a clustered index that follows the POC guidelines that window functions can benefit 
from. Namely, the index key list is based on the partitioning element (actid) followed by the ordering 
element (tranid), and it includes for coverage purposes all the rest of the columns in the query (val). 
The plan shows an ordered scan of the index, followed by a computation of a row number for internal 
purposes, and then the window aggregate. Because you arranged a POC index, the optimizer didn’t 
need to add a sort operator in the plan. That’s a very efficient plan. What’s more, this plan scales 
linearly. Later, when I show the results of a benchmark I did, you’ll see how much more efficient this 
solution is than the older ones.

Set-Based Solutions Using Subqueries or Joins
Traditional set-based solutions to running totals that were available prior to SQL Server 2012 used 
either subqueries or joins. Using a subquery, you can calculate the running total by filtering all rows 
that have the same actid value as in the outer row, and a tranid value that is less than or equal to the 
one in the outer row. Then you apply the aggregate to the filtered rows. Here’s the solution query:

SELECT actid, tranid, val, 
  (SELECT SUM(T2.val) 
   FROM dbo.Transactions AS T2 
   WHERE T2.actid = T1.actid 
     AND T2.tranid <= T1.tranid) AS balance 
FROM dbo.Transactions AS T1;

A similar approach can be implemented using joins. You use the same predicate as the one used 
in the WHERE clause of the subquery in the ON clause of the join. This way, for the Nth transaction 
of some account A in the instance you refer to as T1, you will find N matches in the instance T2, with 
transactions 1 through N. The row in T1 is repeated in the result for each of its matches, so you need 
to group the rows by all elements from T1 to get the current transaction info and apply the aggregate 
to the val attribute from T2 to calculate the running total. The solution query looks like this:

SELECT T1.actid, T1.tranid, T1.val, 
  SUM(T2.val) AS balance 
FROM dbo.Transactions AS T1 
  JOIN dbo.Transactions AS T2 
    ON T2.actid = T1.actid 
   AND T2.tranid <= T1.tranid 
GROUP BY T1.actid, T1.tranid, T1.val;

Figure 5-6 shows the plans for both solutions.
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FIgURE 5-6 Execution plans for queries using subqueries and joins.

Observe that in both cases the clustered index is scanned in full representing the instance T1. 
Then, for each row, the plan performs a seek operation in the index to get to the beginning of the 
current account’s section in the index leaf, and then it scans all transactions where T2.tranid is less 
than or equal to T1.tranid. Then the point where the aggregate of those rows takes place is a bit dif-
ferent in the two plans, but the number of rows scanned is the same. 

To realize how many rows get scanned, consider the elements involved in the data. Let p be the 
number of partitions (accounts), and let r be the number of rows per partition (transactions). Then the 
number of rows in the table is roughly pr, assuming an even distribution of transactions per account. 
So the upper scan of the clustered index involves scanning pr rows. But the work at the inner part of 
the Nested Loops iterator is what we’re most concerned with. For each partition, the plan scans 1 + 2 
+ … + r rows, which is equal to (r + r 2) / 2. In total, the number of rows processed in these plans is pr 
+ p(r + r 2) / 2. This means that with respect to partition size, the scaling of this plan is quadratic; that 
is, if you increase the partition size by a factor of f, the work involved increases by a factor of close 
to f  2. That’s bad. As examples, 100 rows have a “cost” of 10,000 rows, 1,000 rows have a “cost” of 
1,000,000, and so on. Simply put, it translates to very slow queries when the partition size is not tiny 
because the squared effect is very dramatic. It’s OK to use these solutions for up to a few dozen rows 
per partition, but not many more.

Cursor-Based Solution
Using a cursor-based solution to running totals is straightforward. You declare a cursor based on a 
query that orders the data by actid and tranid. You then iterate through the cursor records. Whenever 
you hit a new account, you reset the variable holding the aggregate. In each iteration, you add to 
the variable the value of the new transaction; you then store a row in a table variable with the cur-
rent transaction information plus the running total so far. When you’re done iterating, you return the 
result to the caller by querying the table variable. Here’s the complete solution code: 
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DECLARE @Result AS TABLE 
( 
  actid   INT, 
  tranid  INT, 
  val     MONEY, 
  balance MONEY 
); 
 
DECLARE 
  @actid    AS INT, 
  @prvactid AS INT, 
  @tranid   AS INT, 
  @val      AS MONEY, 
  @balance  AS MONEY; 
 
DECLARE C CURSOR FAST_FORWARD FOR 
  SELECT actid, tranid, val 
  FROM dbo.Transactions 
  ORDER BY actid, tranid; 
 
OPEN C 
 
FETCH NEXT FROM C INTO @actid, @tranid, @val; 
 
SELECT @prvactid = @actid, @balance = 0; 
 
WHILE @@fetch_status = 0 
BEGIN 
  IF @actid <> @prvactid 
    SELECT @prvactid = @actid, @balance = 0; 
 
  SET @balance = @balance + @val; 
 
  INSERT INTO @Result VALUES(@actid, @tranid, @val, @balance); 
   
  FETCH NEXT FROM C INTO @actid, @tranid, @val; 
END 
 
CLOSE C; 
 
DEALLOCATE C; 
 
SELECT * FROM @Result;

The plan for the query that the cursor is based on is shown in Figure 5-7.

FIgURE 5-7 Execution plan for the query used by the cursor.
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This plan has linear scaling because the data from the index is scanned only once, in order. Also, 
each fetching of a row from the cursor has a constant cost per row. If you call the cursor overhead per 
row o, you can express the cost of this solution as pr + pro (keeping in mind that p is the number of 
partitions and r is the number of rows per partition). So you can see that if you increase the number 
of rows per partition by a factor of f, the work involved becomes prf + prfo, meaning that you get 
linear scaling. The overhead per row is high; however, because the scaling is linear, from a certain par-
tition size on, this solution will perform better than the solutions based on subqueries and joins due 
to their quadratic scaling. Benchmark studies that I did show that the point where the cursor solution 
becomes faster is around a few hundred rows per partition.

Despite the performance gains cursor solutions provide, in general you should avoid using them 
because they are not relational.

CLr-Based Solution
One possible Common Language Runtime (CLR) solution is basically another form of a cursor-based 
solution. The difference is that instead of using a T-SQL cursor that involves a high amount of over-
head for each fetch and slow iterations, you use a .NET SQLDataReader and .NET iterations, which 
are much faster. One of the things that make the CLR option faster is that you don’t need to store the 
result rows in a temporary table—the results are streamed right back to the caller. The logic of the 
CLR-based solution is similar to that of the T-SQL cursor-based solution. Here’s the .NET code defining 
the solution’s stored procedure:

using System; 
using System.Data; 
using System.Data.SqlClient; 
using System.Data.SqlTypes; 
using Microsoft.SqlServer.Server; 
 
public partial class StoredProcedures 
{ 
    [Microsoft.SqlServer.Server.SqlProcedure] 
    public static void AccountBalances() 
    { 
        using (SqlConnection conn = new SqlConnection("context connection=true;")) 
        { 
            SqlCommand comm = new SqlCommand(); 
            comm.Connection = conn; 
            comm.CommandText = @"" + 
                "SELECT actid, tranid, val " + 
                "FROM dbo.Transactions " + 
                "ORDER BY actid, tranid;"; 
 
            SqlMetaData[] columns = new SqlMetaData[4]; 
            columns[0] = new SqlMetaData("actid"  , SqlDbType.Int); 
            columns[1] = new SqlMetaData("tranid" , SqlDbType.Int); 
            columns[2] = new SqlMetaData("val"    , SqlDbType.Money); 
            columns[3] = new SqlMetaData("balance", SqlDbType.Money); 
 
            SqlDataRecord record = new SqlDataRecord(columns); 
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            SqlContext.Pipe.SendResultsStart(record); 
 
            conn.Open(); 
 
            SqlDataReader reader = comm.ExecuteReader(); 
 
            SqlInt32 prvactid = 0; 
            SqlMoney balance = 0; 
 
            while (reader.Read()) 
            { 
                SqlInt32 actid = reader.GetSqlInt32(0); 
                SqlMoney val = reader.GetSqlMoney(2); 
 
                if (actid == prvactid) 
                { 
                    balance += val; 
                } 
                else 
                { 
                    balance = val; 
                } 
 
                prvactid = actid; 
 
                record.SetSqlInt32(0, reader.GetSqlInt32(0)); 
                record.SetSqlInt32(1, reader.GetSqlInt32(1)); 
                record.SetSqlMoney(2, val); 
                record.SetSqlMoney(3, balance); 
 
                SqlContext.Pipe.SendResultsRow(record); 
            } 
 
            SqlContext.Pipe.SendResultsEnd(); 
        } 
    } 
};

To be able to execute the stored procedure in SQL Server, you first need to build an assembly 
called AccountBalances that is based on this code and deploy it in the TSQL2012 database. If you’re 
not familiar with deployment of assemblies in SQL Server, you can read an article in Books Online 
titled “Deploying CLR Database Objects,” which describes the process. You can find this article at 
http://technet.microsoft.com/en-us/library/ms345099(SQL.110).aspx.

Assuming you called the assembly AccountBalances, and the path to the assembly file is 
C:\AccountBalances\AccountBalances.dll, you can use the following code to load the assembly to the 
database and then register the stored procedure:

CREATE ASSEMBLY AccountBalances FROM 'C:\AccountBalances\AccountBalances.dll'; 
GO 
 
CREATE PROCEDURE dbo.AccountBalances 
AS EXTERNAL NAME AccountBalances.StoredProcedures.AccountBalances;

http://technet.microsoft.com/en-us/library/ms345099(SQL.110).aspx
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After the assembly has been deployed and the procedure has been registered, you can execute 
the procedure using the following code:

EXEC dbo.AccountBalances;

As mentioned, a SQLDataReader is just another form of a cursor, only the overhead of each fetch 
is less than that of a T-SQL cursor. Also, iterations in .NET are much faster than iterations in T-SQL. So 
the CLR-based solution also has linear scaling. In my benchmarks, this solution started performing 
better than the solutions using subqueries and joins at around 15 rows per partition.

When you’re done, run the following code for cleanup:

DROP PROCEDURE dbo.AccountBalances; 
DROP ASSEMBLY AccountBalances;

Nested Iterations
So far, I have shown you solutions that are either set based or iterative. The next solution, known as 
nested iterations, is a hybrid of iterative and set-based logic. The idea is to first copy into a tempo-
rary table the rows from the source table (bank account transactions in our case), along with a new 
attribute called rownum that is calculated by using the ROW_NUMBER function. The row numbers are 
partitioned by actid and ordered by tranid, so the first transaction in each account is assigned the row 
number 1, the second transaction is assigned row number 2, and so on. You then create a clustered 
index on the temporary table with the key list (rownum, actid). Then you use either a recursive CTE or 
your own loop to handle one row number at a time across all accounts in each iteration. The running 
total is then computed by adding the value associated with the current row number to the value asso-
ciated with the previous row number.

Here’s the implementation of this logic using a recursive CTE: 

SELECT actid, tranid, val, 
  ROW_NUMBER() OVER(PARTITION BY actid ORDER BY tranid) AS rownum 
INTO #Transactions 
FROM dbo.Transactions; 
 
CREATE UNIQUE CLUSTERED INDEX idx_rownum_actid ON #Transactions(rownum, actid); 
 
WITH C AS 
( 
  SELECT 1 AS rownum, actid, tranid, val, val AS sumqty 
  FROM #Transactions 
  WHERE rownum = 1 
   
  UNION ALL 
   
  SELECT PRV.rownum + 1, PRV.actid, PRV.tranid, CUR.val, PRV.sumqty + CUR.val 
  FROM C AS PRV 
    JOIN #Transactions AS CUR 
      ON CUR.rownum = PRV.rownum + 1 
      AND CUR.actid = PRV.actid 
) 



 Running Totals  167

SELECT actid, tranid, val, sumqty 
FROM C 
OPTION (MAXRECURSION 0); 
 
DROP TABLE #Transactions;

And here’s the implementation of the same logic using an explicit loop:

SELECT ROW_NUMBER() OVER(PARTITION BY actid ORDER BY tranid) AS rownum, 
  actid, tranid, val, CAST(val AS BIGINT) AS sumqty 
INTO #Transactions 
FROM dbo.Transactions; 
 
CREATE UNIQUE CLUSTERED INDEX idx_rownum_actid ON #Transactions(rownum, actid); 
 
DECLARE @rownum AS INT; 
SET @rownum = 1; 
 
WHILE 1 = 1 
BEGIN 
  SET @rownum = @rownum + 1; 
   
  UPDATE CUR 
    SET sumqty = PRV.sumqty + CUR.val 
  FROM #Transactions AS CUR 
    JOIN #Transactions AS PRV 
      ON CUR.rownum = @rownum 
     AND PRV.rownum = @rownum - 1 
     AND CUR.actid = PRV.actid; 
 
  IF @@rowcount = 0 BREAK; 
END 
 
SELECT actid, tranid, val, sumqty 
FROM #Transactions; 
 
DROP TABLE #Transactions;

This solution tends to perform well when there are a lot of partitions with a small number of rows 
per partition. This way, the number of iterations is small. And most of the work is handled by the set-
based part of the solution that joins the rows associated with one row number with the rows associ-
ated with the previous row number. 

Multirow UPDaTe with Variables
The various techniques I showed so far for handling running totals are guaranteed to produce the 
correct result. The technique that is the focus of this section is a controversial one because it relies on 
observed behavior as opposed to documented behavior, and it also violates relational concepts. What 
makes it so appealing to some is that it is very fast. 

The technique involves using an UPDATE statement with variables. An UPDATE statement can set 
a variable to an expression based on a column value, as well as set a column value to an expression 
based on a variable. The solution starts by creating a temporary table called #Transactions with the 
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actid, tranid, val, and balance attributes and a clustered index based on the key list (actid, tranid). 
Then the solution populates the temp table with all rows from the source Transactions table, setting 
the balance column to 0.00 in all rows. The solution then invokes an UPDATE statement with variables 
against the temporary table to calculate the running totals and assign those to the balance column. 
It uses variables called @prevaccount and @prevbalance, and it sets the balance using the following 
expression:

  SET @prevbalance = balance = CASE 
                                 WHEN actid = @prevaccount 
                                   THEN @prevbalance + val 
                                 ELSE val 
                               END

The CASE expression checks whether the current account ID is equal to the previous account ID; 
if the account IDs are equivalent, it returns the previous balance plus the current transaction value. If 
the account IDs are different, it returns the current transaction value. The balance is then set to the 
result of the CASE expression and also assigned to the @prevbalance variable. In a separate expres-
sion, the @prevaccount variable is set to the current account ID.

After the UPDATE statement, the solution presents the rows from the temporary table and then 
drops the table. Here’s the complete solution code: 

CREATE TABLE #Transactions 
( 
  actid          INT, 
  tranid         INT, 
  val            MONEY, 
  balance        MONEY 
); 
 
CREATE CLUSTERED INDEX idx_actid_tranid ON #Transactions(actid, tranid); 
 
INSERT INTO #Transactions WITH (TABLOCK) (actid, tranid, val, balance) 
  SELECT actid, tranid, val, 0.00 
  FROM dbo.Transactions 
  ORDER BY actid, tranid; 
 
DECLARE @prevaccount AS INT, @prevbalance AS MONEY; 
 
UPDATE #Transactions 
  SET @prevbalance = balance = CASE 
                                 WHEN actid = @prevaccount 
                                   THEN @prevbalance + val 
                                 ELSE val 
                               END, 
      @prevaccount = actid 
FROM #Transactions WITH(INDEX(1), TABLOCKX) 
OPTION (MAXDOP 1); 
 
SELECT * FROM #Transactions; 
 
DROP TABLE #Transactions;
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The plan for this solution is shown in Figure 5-8. The first part is the INSERT, the second part is the 
UPDATE, and the third part is the SELECT.

FIgURE 5-8 Execution plan for a solution using UPDATE with variables.

This solution makes an assumption that the UPDATE will always be optimized with an ordered 
scan of the clustered index, and it even uses a number of hints in an attempt to avoid situations that 
might prevent that—for example, parallelism. The problem is that there is no official guarantee that 
the optimizer will always scan the data in clustered index order. You’re not supposed to make assump-
tions about physical processing aspects when trying to ensure the logical correctness of your code, 
unless there are logical elements in the code that are defined to guarantee such behavior. There’s 
nothing in the logical aspects of the code that give any such guarantees. Of course, it’s up to you to 
decide whether or not you want to use this technique. I think it’s irresponsible to use it even if you run 
it a thousand times and the observed behavior is “It seems to work.” The onus is not on people to find 
a case where it doesn’t work; rather, it’s on people to prove that it will never fail—of course, that’s 
impossible because Microsoft doesn’t guarantee that.

Fortunately in SQL Server 2012, the controversy around this technique becomes moot. With the 
extremely efficient solution of using a window aggregate function available, you don’t need to worry 
about any other solutions.

Performance Benchmark
I ran a performance benchmark comparing the different techniques. Figures 5-9 and 5-10 show the 
results of that benchmark. 
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FIgURE 5-9 Benchmark of the running totals solutions, part I.

FIgURE 5-10 Benchmark of the running totals solutions, part II.

The reason for separating the results into two graphs was that the technique based on a subquery 
or join was so slow compared to the rest that I wanted to use a different scale for it. Regardless of 
the reason for doing it this way, observe that with respect to partition size, most solutions have linear 
scaling and only the one based on a subquery or join has quadratic scaling. Also, you can clearly see 
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how efficient the new solution based on a window aggregate function is. The solution based on an 
UPDATE with variables is also very fast, but for the aforementioned reasons I recommended that you 
avoid it. The solution based on the CLR is also quite fast, but it involves writing all that .NET code and 
deploying an assembly in the database. From all perspectives, the set-based solution using a window 
aggregate is by far the most preferable one.

Max Concurrent Intervals

Consider a set of intervals representing things such as sessions, projects, calls, and so on. There’s a 
classic problem known as maximum concurrent intervals where your task is to calculate the maximum 
number of intervals that were effective simultaneously. As an example, suppose that you’re given a 
table called Sessions that holds data about user sessions for different applications. Your task is to write 
a solution that calculates, for each application, the maximum number of sessions that were active 
simultaneously. If one session ends exactly when another starts, assume that you’re not supposed to 
consider them concurrent.

Here’s the code to create the Sessions table and a couple of indexes to support your solutions:

SET NOCOUNT ON; 
USE TSQL2012; 
 
IF OBJECT_ID('dbo.Sessions', 'U') IS NOT NULL DROP TABLE dbo.Sessions; 
 
CREATE TABLE dbo.Sessions 
( 
  keycol    INT         NOT NULL, 
  app       VARCHAR(10) NOT NULL, 
  usr       VARCHAR(10) NOT NULL, 
  host      VARCHAR(10) NOT NULL, 
  starttime DATETIME    NOT NULL, 
  endtime   DATETIME    NOT NULL, 
  CONSTRAINT PK_Sessions PRIMARY KEY(keycol), 
  CHECK(endtime > starttime) 
); 
GO 
 
CREATE UNIQUE INDEX idx_nc_app_st_et 
  ON dbo.Sessions(app, starttime, keycol) INCLUDE(endtime); 
 
CREATE UNIQUE INDEX idx_nc_app_et_st 
  ON dbo.Sessions(app, endtime, keycol) INCLUDE(starttime);

Use the following code to populate the Sessions table with a small set of sample data to test the 
validity of your solution:

TRUNCATE TABLE dbo.Sessions; 
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INSERT INTO dbo.Sessions(keycol, app, usr, host, starttime, endtime) VALUES 
  (2,  'app1', 'user1', 'host1', '20120212 08:30', '20120212 10:30'), 
  (3,  'app1', 'user2', 'host1', '20120212 08:30', '20120212 08:45'), 
  (5,  'app1', 'user3', 'host2', '20120212 09:00', '20120212 09:30'), 
  (7,  'app1', 'user4', 'host2', '20120212 09:15', '20120212 10:30'), 
  (11, 'app1', 'user5', 'host3', '20120212 09:15', '20120212 09:30'), 
  (13, 'app1', 'user6', 'host3', '20120212 10:30', '20120212 14:30'), 
  (17, 'app1', 'user7', 'host4', '20120212 10:45', '20120212 11:30'), 
  (19, 'app1', 'user8', 'host4', '20120212 11:00', '20120212 12:30'), 
  (23, 'app2', 'user8', 'host1', '20120212 08:30', '20120212 08:45'), 
  (29, 'app2', 'user7', 'host1', '20120212 09:00', '20120212 09:30'), 
  (31, 'app2', 'user6', 'host2', '20120212 11:45', '20120212 12:00'), 
  (37, 'app2', 'user5', 'host2', '20120212 12:30', '20120212 14:00'), 
  (41, 'app2', 'user4', 'host3', '20120212 12:45', '20120212 13:30'), 
  (43, 'app2', 'user3', 'host3', '20120212 13:00', '20120212 14:00'), 
  (47, 'app2', 'user2', 'host4', '20120212 14:00', '20120212 16:30'), 
  (53, 'app2', 'user1', 'host4', '20120212 15:30', '20120212 17:00');

Here’s the desired result for this small set of sample data:

app        mx 
---------- ----------- 
app1       3 
app2       4

To test the performance of your solution, you need a larger set of sample data, of course. The fol-
lowing code populates the table with 100,000 sessions with 10 distinct applications:

TRUNCATE TABLE dbo.Sessions; 
 
DECLARE  
  @numrows AS INT = 100000, -- total number of rows  
  @numapps AS INT = 10;     -- number of applications 
 
INSERT INTO dbo.Sessions WITH(TABLOCK) 
    (keycol, app, usr, host, starttime, endtime) 
  SELECT 
    ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS keycol,  
    D.*, 
    DATEADD( 
      second, 
      1 + ABS(CHECKSUM(NEWID())) % (20*60), 
      starttime) AS endtime 
  FROM 
  ( 
    SELECT  
      'app' + CAST(1 + ABS(CHECKSUM(NEWID())) % @numapps AS VARCHAR(10)) AS app, 
      'user1' AS usr, 
      'host1' AS host, 
      DATEADD( 
        second, 
        1 + ABS(CHECKSUM(NEWID())) % (30*24*60*60), 
        '20120101') AS starttime 
    FROM dbo.GetNums(1, @numrows) AS Nums 
  ) AS D;
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Feel free to adjust the number of rows to populate the table with and the number of distinct appli-
cations according to your needs. 

Before I show the efficient solutions that are based on window functions, I’ll show a couple of 
solutions that do not use window functions and talk about their shortcomings. I’ll first describe the 
traditional set-based solution.

Traditional Set-Based Solution
You can think of each session as being made of two events—a start event, which increases the count 
of active sessions, and an end event, which decreases that count. If you look at the timeline, the count 
of active sessions remains constant in sections between consecutive events where a session either 
starts or ends. What’s more, because a start event increases the count of active sessions, the maxi-
mum count must fall on a start event. As an example, suppose that there were two sessions with a 
certain application named App1: one session started at point P1 and ended at point P3, and another 
session started at point P2 and ended at point P4. Here’s the chronological order of events and the 
number of active sessions after each event:

■■ P1, start, 1 active session

■■ P2, start, 2 active sessions

■■ P3, end, 1 active session

■■ P4, end, 0 active sessions

The number of active sessions between two consecutive points remains constant. The maximum 
number falls on a start point—P2 in this example.

The approach that the traditional set-based solution takes relies on this logic. The solution imple-
ments the following steps:

1. Define a table expression called TimePoints based on a query against the Sessions table that 
returns app and starttime (aliased as ts for timestamp).

2. Use a second table expression called Counts to query TimePoints (aliased as P).

3. In the second table expression, use a subquery to count how many sessions you can find in the 
Sessions table (aliased as S), where P.app is equal to S.app, and P.ts is on or after S.starttime 
and before S.endtime. The subquery counts how many sessions are active during each applica-
tion session’s start point in time.

4. Finally, in the outer query against Counts, group the rows by app and return for each applica-
tion the maximum count.
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Here’s the complete solution code:

WITH TimePoints AS  
( 
  SELECT app, starttime AS ts FROM dbo.Sessions 
), 
Counts AS 
( 
  SELECT app, ts, 
    (SELECT COUNT(*) 
     FROM dbo.Sessions AS S 
     WHERE P.app = S.app 
       AND P.ts >= S.starttime 
       AND P.ts < S.endtime) AS concurrent 
  FROM TimePoints AS P 
)       
SELECT app, MAX(concurrent) AS mx 
FROM Counts 
GROUP BY app;

The solution seems straightforward, and it’s not immediately apparent there’s a performance 
problem with it. But when you run it against the large set of sample data, it takes a long time to com-
plete. To understand why it’s so slow, examine the query’s execution plan, shown in Figure 5-11.

FIgURE 5-11 Execution plan for a traditional set-based solution.

The Index Scan iterator in the top-right part of the plan (the outer input of the Nested Loops join) 
scans one of the covering indexes created earlier (idx_nc_app_et_st) to obtain all start points in time 
for each application. Using the symbols p for the number of partitions (applications) and r for the 
number of rows per partition (sessions per application), this part involves scanning roughly pr rows. 
Then the inner part of the Nested Loops join is an Index Seek iterator against idx_nc_app_st_et that 
gets executed for each row returned from the upper input. Its task is to identify the rows represent-
ing the sessions that were active for the current application during the current point in time in the 
outer row. 

Now focus your attention on the work involved in each execution of the Index Seek iterator. For 
the current outer row’s elements P.app (call it myapp) and P.ts (call it myts), it is looking for all rows 
where S.app = myapp, S.starttime <= myts, and S.endtime > myts. Because the first index key is app, 
the seek predicate can efficiently handle the filtering of the first part: S.app = myapp. The problem 
is with the other two parts: S.starttime <= myts and S.endtime > myts. There’s no one index that can 
enable a seek predicate to scan only the rows that satisfy both conditions. This predicate is supposed 
to filter rows where a value is between two columns. That’s very different than needing to filter rows 
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where a column is between two values. The former can rely on an index on the filtered column to 
filter only the qualifying rows. The latter, however, can rely on index ordering only for one of the con-
ditions. As mentioned, the optimizer chose to apply the Index Seek iterator to the index idx_nc_app_
st_et. The seek is performed based on the seek predicate S.starttime <= myts, so only rows that satisfy 
this predicate are actually accessed. However, all remaining rows are scanned and, using the predicate 
S.endtime > myts, only the ones that satisfy this condition are returned.

You can see which part of the predicate was evaluated as a Seek Predicate versus Predicate in the 
properties of the Index Seek iterator. The Seek Predicate property is shown here: 

Seek Keys[1]: Prefix: [TSQL2012].[dbo].[Sessions].app =  
Scalar Operator([TSQL2012].[dbo].[Sessions].[app]), End: [TSQL2012].[dbo].[Sessions].starttime  
<= Scalar Operator([TSQL2012].[dbo].[Sessions].[starttime])

And the Predicate property is the following: 

[TSQL2012].[dbo].[Sessions].[starttime]<[TSQL2012].[dbo].[Sessions].[endtime] as [S].[endtime]

If it isn’t clear by now, that’s bad news. The seek predicate prevents reading nonqualifying rows, 
but the scan predicate doesn’t. The rows must be read before the scan predicate can be applied. I 
already mentioned that the Index Scan iterator scans approximately pr rows. The Index Seek iterator 
scans, for each row, on average about half the rows in the partition. This means that for r rows in a 
partition, it scans r 2 / 2 rows per partition. In total, the number of rows being processed is pr + pr 2 / 2. 
This means that with respect to partition size, this plan has quadratic complexity. So if the number of 
rows per partition increases by a factor of f, the work increases by a factor of close to f 2. So beyond 
very small partition sizes, the query will perform very badly.

Cursor-Based Solution
The cursor-based solution relies on the following query, which organizes the session start and end 
events as one chronological sequence of events:

SELECT app, starttime AS ts, +1 AS type 
FROM dbo.Sessions 
   
UNION ALL 
   
SELECT app, endtime, -1 
FROM dbo.Sessions 
   
ORDER BY app, ts, type; 
 
app        ts                      type 
---------- ----------------------- ----------- 
app1       2012-02-12 08:30:00.000 1 
app1       2012-02-12 08:30:00.000 1 
app1       2012-02-12 08:45:00.000 -1 
app1       2012-02-12 09:00:00.000 1 
app1       2012-02-12 09:15:00.000 1 
app1       2012-02-12 09:15:00.000 1 
app1       2012-02-12 09:30:00.000 -1 
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app1       2012-02-12 09:30:00.000 -1 
app1       2012-02-12 10:30:00.000 -1 
app1       2012-02-12 10:30:00.000 -1 
...

As you can see, the query marks start events with a +1 event type because they increase the count 
of active sessions, and it marks end events with a –1 event type because they decrease the count. The 
query sorts the events chronologically by app, ts, and type. The reason to add the type to the ORDER 
BY list is to ensure that if a start event and an end event happen at the same time, the end event will 
be considered first. (Remember, in such a case, you’re not supposed to consider the two sessions as 
concurrent.)

The plan for this query is shown in Figure 5-12.

FIgURE 5-12 Execution plan for a cursor-based solution.

Observe that the plan is very efficient. It performs ordered scans of the two indexes created earlier, 
and it uses a Merge Join iterator to concatenate the results, thereby preserving index ordering and 
avoiding a sort operation.

The rest of the work is essentially calculating a running total of the type, within each application, 
based on this chronological order. The running total of the type is, in fact, the number of active ses-
sions during each point. The cursor code performs just that, and in each application group, it keeps 
the maximum count found in a variable. When it’s done with the group, it stores that maximum along 
with the application in a table variable. When done, the code just queries the table variable to present 
the result. Here’s the complete solution code:

DECLARE 
  @app AS varchar(10),  
  @prevapp AS varchar (10), 
  @ts AS datetime, 
  @type AS int, 
  @concurrent AS int,  
  @mx AS int; 
 
DECLARE @AppsMx TABLE 
( 
  app varchar (10) NOT NULL PRIMARY KEY, 
  mx int NOT NULL 
); 
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DECLARE sessions_cur CURSOR FAST_FORWARD FOR 
  SELECT app, starttime AS ts, +1 AS type 
  FROM dbo.Sessions 
   
  UNION ALL 
   
  SELECT app, endtime, -1 
  FROM dbo.Sessions 
   
  ORDER BY app, ts, type; 
 
OPEN sessions_cur; 
 
FETCH NEXT FROM sessions_cur 
  INTO @app, @ts, @type; 
 
SET @prevapp = @app; 
SET @concurrent = 0; 
SET @mx = 0; 
 
WHILE @@FETCH_STATUS = 0 
BEGIN 
  IF @app <> @prevapp 
  BEGIN 
    INSERT INTO @AppsMx VALUES(@prevapp, @mx); 
    SET @concurrent = 0; 
    SET @mx = 0; 
    SET @prevapp = @app; 
  END 
 
  SET @concurrent = @concurrent + @type; 
  IF @concurrent > @mx SET @mx = @concurrent; 
   
  FETCH NEXT FROM sessions_cur 
    INTO @app, @ts, @type; 
END 
 
IF @prevapp IS NOT NULL 
  INSERT INTO @AppsMx VALUES(@prevapp, @mx); 
 
CLOSE sessions_cur; 
 
DEALLOCATE sessions_cur; 
 
SELECT * FROM @AppsMx;

The solution has the usual downsides of cursor-based solutions. In terms of performance, you pay 
extra for each row processing, but the scaling of the solution is linear. If the number of rows in the 
table is roughly pr, the cursor solution scans 2pr rows. In addition, with the per-row overhead of each 
cursor fetch (call it o), the total cost can be considered as 2pr + 2pro. If the volume of data increases 
by a factor of f, the cost becomes 2prf + 2prfo. So this solution is faster than the traditional set-based 
solution even from a very small partition size.
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Solutions Based on Window Functions
I’ll present two solutions based on window functions—the first is available only in SQL Server 2012 
because it relies on new window aggregate capabilities, and the second has been available since SQL 
Server 2005 because it relies on the ROW_NUMBER function.

Consider the query used by the cursor in the previous solution. It arranges the start and end events 
as one sequence of events and marks start and end events with event types of +1 and –1. And then 
the calculation of the number of concurrent sessions during each point is done by a running total cal-
culation. Prior to SQL Server 2012, a cursor was one of the more efficient solutions to running totals. 
But now that you have support for ordering and framing options in window aggregate functions, you 
can achieve a running total calculation far more efficiently.

The initial query and general principals of the solution that uses a window aggregate function are 
similar to those used by the cursor solution—only without the cursor and without the cursor over-
head. Here’s the complete solution code:

WITH C1 AS 
( 
  SELECT app, starttime AS ts, +1 AS type 
  FROM dbo.Sessions 
 
  UNION ALL 
 
  SELECT app, endtime, -1 
  FROM dbo.Sessions 
), 
C2 AS 
( 
  SELECT *, 
    SUM(type) OVER(PARTITION BY app ORDER BY ts, type 
                   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cnt 
  FROM C1 
) 
SELECT app, MAX(cnt) AS mx 
FROM C2 
GROUP BY app;

The query in the CTE C1 generates the unified sequence of start and end events. The query in the 
CTE C2 computes the running total of the type, partitioned by app and ordered by ts and type. That’s 
the count of active sessions during each point. Finally, the outer query groups the rows from C2 by 
app and returns the maximum count for each app.

Observe how simple and elegant the solution ultimately is. It is also highly efficient and has linear 
scaling. Figure 5-13 shows the execution plan for this solution.

The first part is identical to the work in the plan for the query used by the cursor solution—namely, 
ordered scans of the indexes and a Merge Join (Concatenation) that preserves index ordering. Then 
this preserved ordering property is relied on when computing the window aggregate, so not even 
one sort operation is required in this plan.
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FIgURE 5-13 Execution plan for a solution using a window aggregate function.

The second solution based on window functions is available in versions of SQL Server prior to SQL 
Server 2012, relying mainly on the ROW_NUMBER function. I learned this elegant solution from Ben 
Flanaghan. Like the previous solution, it also unifies start and end events in a chronological sequence 
of events, marking start events as a +1 event type and end events as a –1 event type. Only the part 
that calculates how many intervals are active at any given point is handled differently. Here’s the 
complete solution code:

WITH C1 AS 
( 
  SELECT app, starttime AS ts, +1 AS type, keycol, 
    ROW_NUMBER() OVER(PARTITION BY app ORDER BY starttime, keycol) AS start_ordinal 
  FROM dbo.Sessions 
 
  UNION ALL 
 
  SELECT app, endtime, -1, keycol, NULL 
  FROM dbo.Sessions 
), 
C2 AS 
( 
  SELECT *, 
    ROW_NUMBER() OVER(PARTITION BY app ORDER BY ts, type, keycol) AS start_or_end_ordinal 
  FROM C1 
) 
SELECT app, MAX(start_ordinal - (start_or_end_ordinal - start_ordinal)) AS mx 
FROM C2 
GROUP BY app;

The query defining the CTE C1 generates the chronological sequence of events. It also uses the 
ROW_NUMBER function to compute start ordinals for start events (with an attribute called start_
ordinal). The start_ordinal attribute represents for each start event how many intervals have started so 
far. For end events, the second query uses a NULL as a placeholder for start_ordinal to allow unifying 
the start and end events.

The query defining the CTE C2 queries C1, and it uses the ROW_NUMBER function to compute the 
start_or_end_ordinal attribute on top of the unified events, representing how many events—start or 
end—happened so far.

The magic happens in the outer query, which queries C2. Let end_ordinal be start_or_end_ordinal 
– start_ordinal. Then the count of active intervals is start_ordinal – end_ordinal. In other words, the 
count of active intervals is start_ordinal – (start_or_end_ordinal – start_ordinal). As you can see, the 
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outer query is left to group the rows from C2 by app and return, for each app, the maximum number 
of active intervals.

The plan for this solution is shown in Figure 5-14.

FIgURE 5-14 Execution plan for a solution using ROW_NUMBER.

Also in this plan, you can see that both ROW_NUMBER calculations—the one computing start 
ordinals, as well as the one computing start or end ordinals—rely on index ordering. The same applies 
to the aggregate operation. Hence, not even one sort operation is required in this plan.

Performance Benchmark
I ran a performance benchmark to compare the performance of the different solutions, and the 
results are shown in Figure 5-15.

FIgURE 5-15 Max concurrent intervals benchmark results.

Observe how slow the traditional set-based solution is. You can see clearly its quadratic scaling. 
The cursor solution has linear scaling and is much better than the traditional set-based solution. The 
solutions based on window functions are by far the most efficient and also have linear scaling. 



 Packing Intervals  181

Packing Intervals

Packing intervals means grouping each set of contiguous intervals with which no other interval over-
laps or is adjacent to (abutting), and returning the minimum start and maximum end for each group. 
Often, packing problems in SQL also involve a partitioning element (for example, a user, an applica-
tion), where the packing is done for each partition independently. 

The scenario I’ll use to demonstrate solutions to the packing intervals problem involves user ses-
sions for some application or service. Use the following code to create the Users and Sessions tables 
and to populate them with sample data to test the solution’s validity:

SET NOCOUNT ON; 
USE TSQL2012; 
 
IF OBJECT_ID('dbo.Sessions') IS NOT NULL DROP TABLE dbo.Sessions; 
IF OBJECT_ID('dbo.Users') IS NOT NULL DROP TABLE dbo.Users; 
 
CREATE TABLE dbo.Users 
( 
  username  VARCHAR(14)  NOT NULL, 
  CONSTRAINT PK_Users PRIMARY KEY(username) 
); 
 
INSERT INTO dbo.Users(username) VALUES('User1'), ('User2'), ('User3'); 
 
CREATE TABLE dbo.Sessions 
( 
  id        INT          NOT NULL IDENTITY(1, 1), 
  username  VARCHAR(14)  NOT NULL, 
  starttime DATETIME2(3) NOT NULL, 
  endtime   DATETIME2(3) NOT NULL, 
  CONSTRAINT PK_Sessions PRIMARY KEY(id), 
  CONSTRAINT CHK_endtime_gteq_starttime 
    CHECK (endtime >= starttime) 
); 
 
INSERT INTO dbo.Sessions(username, starttime, endtime) VALUES 
  ('User1', '20121201 08:00:00.000', '20121201 08:30:00.000'), 
  ('User1', '20121201 08:30:00.000', '20121201 09:00:00.000'), 
  ('User1', '20121201 09:00:00.000', '20121201 09:30:00.000'), 
  ('User1', '20121201 10:00:00.000', '20121201 11:00:00.000'), 
  ('User1', '20121201 10:30:00.000', '20121201 12:00:00.000'), 
  ('User1', '20121201 11:30:00.000', '20121201 12:30:00.000'), 
  ('User2', '20121201 08:00:00.000', '20121201 10:30:00.000'), 
  ('User2', '20121201 08:30:00.000', '20121201 10:00:00.000'), 
  ('User2', '20121201 09:00:00.000', '20121201 09:30:00.000'), 
  ('User2', '20121201 11:00:00.000', '20121201 11:30:00.000'), 
  ('User2', '20121201 11:32:00.000', '20121201 12:00:00.000'), 
  ('User2', '20121201 12:04:00.000', '20121201 12:30:00.000'), 
  ('User3', '20121201 08:00:00.000', '20121201 09:00:00.000'), 
  ('User3', '20121201 08:00:00.000', '20121201 08:30:00.000'), 
  ('User3', '20121201 08:30:00.000', '20121201 09:00:00.000'), 
  ('User3', '20121201 09:30:00.000', '20121201 09:30:00.000');
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Here’s the desired result for the small set of sample data:

username  starttime               endtime 
--------- ----------------------- ----------------------- 
User1     2012-12-01 08:00:00.000 2012-12-01 09:30:00.000 
User1     2012-12-01 10:00:00.000 2012-12-01 12:30:00.000 
User2     2012-12-01 08:00:00.000 2012-12-01 10:30:00.000 
User2     2012-12-01 11:00:00.000 2012-12-01 11:30:00.000 
User2     2012-12-01 11:32:00.000 2012-12-01 12:00:00.000 
User2     2012-12-01 12:04:00.000 2012-12-01 12:30:00.000 
User3     2012-12-01 08:00:00.000 2012-12-01 09:00:00.000 
User3     2012-12-01 09:30:00.000 2012-12-01 09:30:00.000

Figure 5-16 is a graphical depiction of both the original intervals from the Sessions table (orange 
bars), as well as the packed intervals (red arrows).
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FIgURE 5-16 Unpacked and packed intervals.

You can use the following code to populate the Sessions table with a large set of sample data to 
test the performance of the solutions:

DECLARE  
  @num_users          AS INT          = 2000, 
  @intervals_per_user AS INT          = 2500, 
  @start_period       AS DATETIME2(3) = '20120101', 
  @end_period         AS DATETIME2(3) = '20120107', 
  @max_duration_in_ms AS INT  = 3600000; -- 60 minutes 
   
TRUNCATE TABLE dbo.Sessions; 
TRUNCATE TABLE dbo.Users; 
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INSERT INTO dbo.Users(username) 
  SELECT 'User' + RIGHT('000000000' + CAST(U.n AS VARCHAR(10)), 10) AS username 
  FROM dbo.GetNums(1, @num_users) AS U; 
 
WITH C AS 
( 
  SELECT 'User' + RIGHT('000000000' + CAST(U.n AS VARCHAR(10)), 10) AS username, 
      DATEADD(ms, ABS(CHECKSUM(NEWID())) % 86400000, 
        DATEADD(day, ABS(CHECKSUM(NEWID())) % DATEDIFF(day, @start_period, @end_period),  
@start_period)) AS starttime 
  FROM dbo.GetNums(1, @num_users) AS U 
    CROSS JOIN dbo.GetNums(1, @intervals_per_user) AS I 
) 
INSERT INTO dbo.Sessions WITH (TABLOCK) (username, starttime, endtime) 
  SELECT username, starttime, 
    DATEADD(ms, ABS(CHECKSUM(NEWID())) % (@max_duration_in_ms + 1), starttime) AS endtime 
  FROM C;

This code populates the Sessions table with 5,000,000 rows. I filled it with data for 2,000 users, 
each with 2,500 sessions during a period of a week, with each session lasting up to one hour. But the 
code allows you to change any element that you like to test the scaling of the solutions. 

Traditional Set-Based Solution
The first solution I will cover is a classic solution that does the job, but very inefficiently. It will benefit 
from the following two indexes:

CREATE INDEX idx_user_start_end ON dbo.Sessions(username, starttime, endtime); 
CREATE INDEX idx_user_end_start ON dbo.Sessions(username, endtime, starttime);

Here’s the solution’s code:

WITH StartTimes AS 
( 
  SELECT DISTINCT username, starttime 
  FROM dbo.Sessions AS S1 
  WHERE NOT EXISTS 
    (SELECT * FROM dbo.Sessions AS S2 
     WHERE S2.username = S1.username 
       AND S2.starttime < S1.starttime 
       AND S2.endtime >= S1.starttime) 
), 
EndTimes AS 
( 
  SELECT DISTINCT username, endtime 
  FROM dbo.Sessions AS S1 
  WHERE NOT EXISTS 
    (SELECT * FROM dbo.Sessions AS S2 
     WHERE S2.username = S1.username 
       AND S2.endtime > S1.endtime 
       AND S2.starttime <= S1.endtime) 
) 
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SELECT username, starttime, 
  (SELECT MIN(endtime) FROM EndTimes AS E 
   WHERE E.username = S.username 
     AND endtime >= starttime) AS endtime 
FROM StartTimes AS S;

The CTE StartTimes isolates packed interval start times using a query that returns all interval start 
times for which you cannot find any interval by the same user that started before the current interval 
start and ended on or after the current interval start. The EndTimes CTE isolates packed interval end 
times using a query that returns all interval end times for which you cannot find any interval by the 
same user that ended after the current interval end and started on or before the current interval end. 
The outer query then matches to each packed interval start the nearest packed interval end and goes 
forward by returning the minimum end that is greater than or equal to the current start.

As mentioned, this solution is very inefficient. It took several hours to complete when run against 
the sample data with the 5,000,000 rows in the Sessions table.

Before continuing, run the following code to drop the indexes you created to support the last 
solution:

DROP INDEX idx_user_start_end ON dbo.Sessions; 
DROP INDEX idx_user_end_start ON dbo.Sessions;

Solutions Based on Window Functions
Next, I’m going to cover two fairly new strategies based on window functions that are much faster 
than the traditional solution. You will want to create the following indexes to support the new 
solutions:

CREATE UNIQUE INDEX idx_user_start_id ON dbo.Sessions(username, starttime, id); 
CREATE UNIQUE INDEX idx_user_end_id ON dbo.Sessions(username, endtime, id);

The first of the two new strategies relies mainly on the ROW_NUMBER function. The complete 
solution is shown in Listing 5-1. It runs for 47 seconds on my laptop when run against the sample data 
provided earlier with the 5,000,000 rows.

LISTIng 5-1 Packing Intervals Using Row Numbers

WITH C1 AS 
-- let e = end ordinals, let s = start ordinals 
( 
  SELECT id, username, starttime AS ts, +1 AS type, NULL AS e, 
    ROW_NUMBER() OVER(PARTITION BY username ORDER BY starttime, id) AS s 
  FROM dbo.Sessions 
 
  UNION ALL 
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  SELECT id, username, endtime AS ts, -1 AS type,  
    ROW_NUMBER() OVER(PARTITION BY username ORDER BY endtime, id) AS e, 
    NULL AS s 
  FROM dbo.Sessions 
), 
C2 AS 
-- let se = start or end ordinal, namely, how many events (start or end) happened so far 
( 
  SELECT C1.*, ROW_NUMBER() OVER(PARTITION BY username ORDER BY ts, type DESC, id) AS se 
  FROM C1 
), 
C3 AS 
-- For start events, the expression s - (se - s) - 1 represents how many sessions were active 
-- just before the current (hence - 1) 
-- 
-- For end events, the expression (se - e) - e represents how many sessions are active 
-- right after this one 
-- 
-- The above two expressions are 0 exactly when a group of packed intervals  
-- either starts or ends, respectively 
-- 
-- After filtering only events when a group of packed intervals either starts or ends, 
-- group each pair of adjacent start/end events 
( 
  SELECT username, ts,  
    FLOOR((ROW_NUMBER() OVER(PARTITION BY username ORDER BY ts) - 1) / 2 + 1) AS grpnum 
  FROM C2 
  WHERE COALESCE(s - (se - s) - 1, (se - e) - e) = 0 
) 
SELECT username, MIN(ts) AS starttime, max(ts) AS endtime 
FROM C3 
GROUP BY username, grpnum;

The code in the CTE called C1 unifies start events with end events in one chronological sequence 
of events (start or end). Start events are marked with a +1 event type because they increase the count 
of active sessions, and end events are marked with a –1 event type because they decrease the count 
of active sessions. Figure 5-17 shows the chronological sequence of unified events sorted by user-
name, ts, type DESC, id, with green bars representing how many sessions are active before and after 
each event.

Observe that a packed interval always starts when the number of active sessions prior to a start 
event is zero, and it ends when the number of active sessions after an end event is zero. Therefore, 
with respect to each start event, you need to know how many sessions were active prior to it, and 
with respect to each end event, you need to know how many sessions are active after it. This informa-
tion is calculated in steps. 
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FIgURE 5-17 Start and end events ordered chronologically.

Observe that the code in the CTE C1 calculates start ordinals for start events (an attribute called 
s), with NULLs used as placeholders in that attribute for end events, and it calculates end ordinals for 
end events (an attribute called e), with NULLs used as placeholders in that attribute for start events. 
The code in the CTE C2 then simply adds an ordinal for start or end events (an attribute called se), 
partitioned by username and sorted by ts, type DESC, id. Following is the output of the code in C2, 
sorted by username, ts, type DESC, id (for readability, I marked the start event types as +1 instead of 
just 1 and replaced NULLs with blanks):
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id  username  ts                type  e  s  se 
--- --------- ----------------- ----- -- -- --- 
1   User1     2012-12-01 08:00  +1       1   1 
2   User1     2012-12-01 08:30  +1       2   2 
1   User1     2012-12-01 08:30  -1    1      3 
3   User1     2012-12-01 09:00  +1       3   4 
2   User1     2012-12-01 09:00  -1    2      5 
3   User1     2012-12-01 09:30  -1    3      6 
4   User1     2012-12-01 10:00  +1       4   7 
5   User1     2012-12-01 10:30  +1       5   8 
4   User1     2012-12-01 11:00  -1    4      9 
6   User1     2012-12-01 11:30  +1       6  10 
5   User1     2012-12-01 12:00  -1    5     11 
6   User1     2012-12-01 12:30  -1    6     12 
7   User2     2012-12-01 08:00  +1       1   1 
8   User2     2012-12-01 08:30  +1       2   2 
9   User2     2012-12-01 09:00  +1       3   3 
9   User2     2012-12-01 09:30  -1    1      4 
8   User2     2012-12-01 10:00  -1    2      5 
7   User2     2012-12-01 10:30  -1    3      6 
10  User2     2012-12-01 11:00  +1       4   7 
10  User2     2012-12-01 11:30  -1    4      8 
11  User2     2012-12-01 11:32  +1       5   9 
11  User2     2012-12-01 12:00  -1    5     10 
12  User2     2012-12-01 12:04  +1       6  11 
12  User2     2012-12-01 12:30  -1    6     12 
13  User3     2012-12-01 08:00  +1       1   1 
14  User3     2012-12-01 08:00  +1       2   2 
15  User3     2012-12-01 08:30  +1       3   3 
14  User3     2012-12-01 08:30  -1    1      4 
13  User3     2012-12-01 09:00  -1    2      5 
15  User3     2012-12-01 09:00  -1    3      6 
16  User3     2012-12-01 09:30  +1       4   7 
16  User3     2012-12-01 09:30  -1    4      8

The code in the CTE C3 is where most of the magic is done. For each start event, you know how 
many sessions started so far (s), and you know how many sessions either started or ended so far 
(se). Therefore, you can easily calculate how many sessions ended so far (se – s). Now that you know 
how many sessions started and how many sessions ended, you can calculate how many sessions are 
active after the start event: s – (se – s). Think of it just like calculating how many people are in a room 
if x people enter the room and y people leave the room. Finally, to find out how many sessions were 
active prior to the start event, simply subtract 1 from the calculation: s – (se – s) – 1.

In a similar way, you can calculate the number of active sessions after each end event. Having 
both the number of sessions that ended thus far (e) and the number of sessions that either started or 
ended (se), you can calculate how many sessions started as se – e. Then the number of active sessions 
is (se – e) – e.

Now, remember that you want to filter only start events where the number of active sessions prior 
to the event was zero, and end events where the number of active sessions after the event was zero. 
You can generalize the two filters into one: 

WHERE COALESCE(s - (se - s) - 1, (se - e) - e) = 0
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What you have left after filtering are pairs of adjacent start-end events, each representing the start 
and end of a packed interval. So you need to assign a group identifier to each pair to be able to later 
pivot each pair into one row. This can be achieved by assigning row numbers (call it n) and applying 
the calculation (n – 1) / 2 + 1, where / represents integer division. For n values 1, 2, 3, 4, …, you get a 
result of 1, 1, 2, 2, … .

In SQL Server, the arithmetic operator / represents integer division when the operands are inte-
gers, but in Oracle you get a decimal division if you use this operator. I added a FLOOR function so 
that the code would run correctly on both platforms. So the code in the CTE C3 generates the follow-
ing output:

username  ts               grpnum 
--------- ---------------- -------- 
User1     2012-12-01 08:00 1 
User1     2012-12-01 09:30 1 
User1     2012-12-01 10:00 2 
User1     2012-12-01 12:30 2 
User2     2012-12-01 08:00 1 
User2     2012-12-01 10:30 1 
User2     2012-12-01 11:00 2 
User2     2012-12-01 11:30 2 
User2     2012-12-01 11:32 3 
User2     2012-12-01 12:00 3 
User2     2012-12-01 12:04 4 
User2     2012-12-01 12:30 4 
User3     2012-12-01 08:00 1 
User3     2012-12-01 09:00 1 
User3     2012-12-01 09:30 2 
User3     2012-12-01 09:30 2

What’s left to the outer query to do is group the rows from C3 by username and grpnum, and 
return the minimum ts as the packed interval’s start time and the maximum ts as the end time.

The plan generated by SQL Server’s optimizer for this query is highly efficient, given that you 
 create the aforementioned indexes: idx_user_start_id and idx_user_end_id. The plan is shown in 
Figure 5-18.

FIgURE 5-18 Plan for a solution using row numbers.
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What’s amazing about this plan is that it applies two ordered scans of the indexes created to sup-
port this solution (idx_user_start_id and idx_user_end_id), and it relies on the ordered scans to (take a 
deep breath now) do the following: 

■■ Calculate the row numbers for start ordinals (s)

■■ Calculate row numbers for end ordinals (e)

■■ Perform a merge join to unify the results

■■ Calculate the start or end ordinals (se) on the unified sets

■■ Calculate the row numbers that are used to produce grpnum after filtering

And it does all this without requiring even one sort operator! It’s truly remarkable to see an opti-
mizer that so beautifully understands the concept of order preservation. Finally, a hash aggregate 
is used to group the data by grpnum (only the remaining rows after filtering). Because most of the 
operations used in this plan have linear complexity, this solution should scale close to linearly. 

In total, this plan performs only two scans of the data (one of each index), in index order. As men-
tioned, this solution runs on my laptop for 47 seconds. The one thing that this solution doesn’t exploit 
well is parallelism. That’s where the second solution excels.

To exploit parallelism well, what you want is to encapsulate the logic from the solution in Listing 
5-1 in a table expression that operates on a single customer and then apply that table expression to 
each user. I’m assuming here that you have a table holding the distinct users, which is a fair assump-
tion to make. It is convenient, then, to encapsulate the logic from the solution in Listing 5-1 for a 
single user in an inline table function, as the following code shows:

IF OBJECT_ID('dbo.UserIntervals', 'IF') IS NOT NULL DROP FUNCTION dbo.UserIntervals; 
GO 
 
CREATE FUNCTION dbo.UserIntervals(@user AS VARCHAR(14)) RETURNS TABLE 
AS 
RETURN 
  WITH C1 AS 
  ( 
    SELECT id, starttime AS ts, +1 AS type, NULL AS e, 
      ROW_NUMBER() OVER(ORDER BY starttime, id) AS s 
    FROM dbo.Sessions 
    WHERE username = @user 
 
    UNION ALL 
 
    SELECT id, endtime AS ts, -1 AS type,  
      ROW_NUMBER() OVER(ORDER BY endtime, id) AS e, 
      NULL AS s 
    FROM dbo.Sessions 
    WHERE username = @user 
  ), 
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  C2 AS 
  ( 
    SELECT C1.*, ROW_NUMBER() OVER(ORDER BY ts, type DESC, id) AS se 
    FROM C1 
  ), 
  C3 AS 
  ( 
    SELECT ts,  
      FLOOR((ROW_NUMBER() OVER(ORDER BY ts) - 1) / 2 + 1) AS grpnum 
    FROM C2 
    WHERE COALESCE(s - (se - s) - 1, (se - e) - e) = 0 
  ) 
  SELECT MIN(ts) AS starttime, max(ts) AS endtime 
  FROM C3 
  GROUP BY grpnum; 
GO

And then finally, use the CROSS APPLY operator to apply the function to each user from the Users 
table, like so:

SELECT U.username, A.starttime, A.endtime 
FROM dbo.Users AS U 
  CROSS APPLY dbo.UserIntervals(U.username) AS A;

SQL Server generates the parallel plan shown in Figure 5-19 for this query.

FIgURE 5-19 Plan for a solution using APPLY and row numbers.

As you can see, the plan uses a parallel scan of the clustered index on the Users table, and then it 
performs the work for each user in the inner branch of the Nested Loops join. The work done in this 
inner branch should look familiar—it’s similar to the work done in the plan shown in Figure 5-18, only 
this time it’s done for the data associated with one user. This inner branch, of course, is executed in 
parallel by multiple threads. This solution runs for six seconds on my laptop.
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The second new solution that is based on window functions is shown in Listing 5-2. It uses the SUM 
window aggregate function, relying on elements in the window specifications that were introduced in 
SQL Server 2012. 

LISTIng 5-2 Solution Using Window Aggregate

WITH C1 AS 
( 
  SELECT username, starttime AS ts, +1 AS type, 1 AS sub 
  FROM dbo.Sessions 
 
  UNION ALL 
 
  SELECT username, endtime AS ts, -1 AS type, 0 AS sub 
  FROM dbo.Sessions 
), 
C2 AS 
( 
  SELECT C1.*, 
    SUM(type) OVER(PARTITION BY username ORDER BY ts, type DESC 
                   ROWS BETWEEN UNBOUNDED PRECEDING 
                            AND CURRENT ROW) - sub AS cnt 
  FROM C1 
), 
C3 AS 
( 
  SELECT username, ts,  
    FLOOR((ROW_NUMBER() OVER(PARTITION BY username ORDER BY ts) - 1) / 2 + 1) AS grpnum 
  FROM C2 
  WHERE cnt = 0 
) 
SELECT username, MIN(ts) AS starttime, max(ts) AS endtime 
FROM C3 
GROUP BY username, grpnum;

This solution uses principles similar to those used by the previous solution, only instead of using 
row numbers to calculate the number of active sessions at any given point, it uses a window SUM 
aggregate. A running sum of the type (recall that +1 represents a start event and –1 represents an 
end event), partitioned by username, in chronological order, is the number of active sessions at any 
given point. Now, remember that for start events you need the number of active sessions prior to 
the event, and for end events you need the number after the event. Therefore, you need to subtract 
1 from the count with start events and subtract nothing with end events. The solution generates an 
attribute called sub, with 1 for start events and 0 for end events, and it then subtracts that value from 
the running total, using the following expression:

    SUM(type) OVER(PARTITION BY username ORDER BY ts, type DESC 
                   ROWS BETWEEN UNBOUNDED PRECEDING 
                            AND CURRENT ROW) - sub AS cnt

The rest is similar to the logic of the previous solution. This solution generates the plan shown in 
Figure 5-20 and runs for 87 seconds on my laptop.
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FIgURE 5-20 Plan for a solution using a window aggregate.

Just like you encapsulated the logic of the solution based on row numbers in an inline table func-
tion for a single user, and used the APPLY operator to invoke the function for each user from the 
Users table, you can do the same with the solution that uses the SUM window aggregate. Here’s the 
code for the inline function’s definition:

IF OBJECT_ID('dbo.UserIntervals', 'IF') IS NOT NULL DROP FUNCTION dbo.UserIntervals; 
GO 
 
CREATE FUNCTION dbo.UserIntervals(@user AS VARCHAR(14)) RETURNS TABLE 
AS 
RETURN 
  WITH C1 AS 
  ( 
    SELECT starttime AS ts, +1 AS type, 1 AS sub 
    FROM dbo.Sessions 
    WHERE username = @user 
 
    UNION ALL 
 
    SELECT endtime AS ts, -1 AS type, 0 AS sub 
    FROM dbo.Sessions 
    WHERE username = @user 
  ), 
  C2 AS 
  ( 
    SELECT C1.*, 
      SUM(type) OVER(ORDER BY ts, type DESC 
                     ROWS BETWEEN UNBOUNDED PRECEDING 
                              AND CURRENT ROW) - sub AS cnt 
    FROM C1 
  ), 
  C3 AS 
  ( 
    SELECT ts,  
      FLOOR((ROW_NUMBER() OVER(ORDER BY ts) - 1) / 2 + 1) AS grpnum 
    FROM C2 
    WHERE cnt = 0 
  ) 
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  SELECT MIN(ts) AS starttime, max(ts) AS endtime 
  FROM C3 
  GROUP BY grpnum; 
GO

And here’s the query that applies the function to each user:

SELECT U.username, A.starttime, A.endtime 
FROM dbo.Users AS U 
  CROSS APPLY dbo.UserIntervals(U.username) AS A;

This code generates the plan shown in Figure 5-21 and runs for 13 seconds on my laptop.

FIgURE 5-21 Plan for a solution using APPLY and a window aggregate.

gaps and Islands

Gaps and Islands are classic problems in SQL that manifest themselves in practice in many forms. 
The basic concept is that you have some sort of sequence of numbers or date and time values where 
there’s supposed to be a fixed interval between the entries, but some entries could be missing. Then 
the gaps problem involves identifying all ranges of missing values in the sequence, and the islands 
problem involves identifying all ranges of existing values. To demonstrate techniques to identify gaps 
and islands, I’ll use a table called T1 with a numeric sequence in a column called col1 with an inter-
val of 1 integer, and a table called T2 with a date and time sequence in a column called col1 with an 
interval of 1 day. Here’s code to create T1 and T2 and fill them with some sample data:

SET NOCOUNT ON; 
USE TSQL2012; 
 
-- dbo.T1 (numeric sequence with unique values, interval: 1) 
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1; 
 
CREATE TABLE dbo.T1 
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( 
  col1 INT NOT NULL 
    CONSTRAINT PK_T1 PRIMARY KEY 
); 
GO 
 
INSERT INTO dbo.T1(col1) 
  VALUES(2),(3),(7),(8),(9),(11),(15),(16),(17),(28); 
 
-- dbo.T2 (temporal sequence with unique values, interval: 1 day) 
IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2; 
 
CREATE TABLE dbo.T2 
( 
  col1 DATE NOT NULL 
    CONSTRAINT PK_T2 PRIMARY KEY 
); 
GO 
 
INSERT INTO dbo.T2(col1) VALUES 
  ('20120202'), 
  ('20120203'), 
  ('20120207'), 
  ('20120208'), 
  ('20120209'), 
  ('20120211'), 
  ('20120215'), 
  ('20120216'), 
  ('20120217'), 
  ('20120228');

Gaps
As mentioned, the gaps problem involves identifying the ranges of missing values in the sequence. 
Using our sample data, here are the desired results for the numeric sequence in T1:

rangestart  rangeend 
----------- ----------- 
4           6 
10          10 
12          14 
18          27

And here are the desired results for the temporal sequence in T2:

rangestart rangeend 
---------- ---------- 
2012-02-04 2012-02-06 
2012-02-10 2012-02-10 
2012-02-12 2012-02-14 
2012-02-18 2012-02-27

In versions of SQL Server prior to SQL Server 2012, the techniques to handle gaps were quite 
expensive and sometimes complicated. But with the introduction of the LAG and LEAD functions, you 
can now handle this need simply and efficiently. Using the LEAD function, you can return for each 
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current col1 value (call it cur) the next value in the sequence (call it nxt). Then you can filter only pairs 
where the difference between the two is greater than the interval. Then add one interval to cur and 
subtract one interval from nxt to produce the actual gap information. Here’s the complete solution 
with the numeric sequence followed by its execution plan (in Figure 5-22):

WITH C AS 
( 
  SELECT col1 AS cur, LEAD(col1) OVER(ORDER BY col1) AS nxt 
  FROM dbo.T1 
) 
SELECT cur + 1 AS rangestart, nxt - 1 AS rangeend 
FROM C 
WHERE nxt - cur > 1;

FIgURE 5-22 Plan for a solution to the gaps problem.

Observe how efficient the plan is, performing only one ordered scan of the index defined on col1. 
To apply the same technique to the temporal sequence, you simply use the DATEDIFF function to 
compute the difference between cur and nxt, and you use DATEADD to add or subtract an interval, 
like so:

WITH C AS 
( 
  SELECT col1 AS cur, LEAD(col1) OVER(ORDER BY col1) AS nxt 
  FROM dbo.T2 
) 
SELECT DATEADD(day, 1, cur) AS rangestart, DATEADD(day, -1, nxt) rangeend 
FROM C 
WHERE DATEDIFF(day, cur, nxt) > 1;

Islands
The islands problem involves identifying ranges of existing values. Here’s the desired output against 
the numeric sequence:

start_range end_range 
----------- ----------- 
2           3 
7           9 
11          11 
15          17 
28          28
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And here’s the desired output against the temporal sequence:

start_range end_range 
----------- ---------- 
2012-02-02  2012-02-03 
2012-02-07  2012-02-09 
2012-02-11  2012-02-11 
2012-02-15  2012-02-17 
2012-02-28  2012-02-28

One of the most efficient solutions to the islands problem involves using ranking calculations. You 
use the DENSE_RANK function to create a sequence of integers in col1 ordering, and you calculate the 
difference between col1 and the dense rank (drnk), like so:

SELECT col1, 
  DENSE_RANK() OVER(ORDER BY col1) AS drnk, 
  col1 - DENSE_RANK() OVER(ORDER BY col1) AS diff 
FROM dbo.T1; 
 
col1  drnk  diff 
----- ----- ----- 
2     1     1 
3     2     1 
7     3     4 
8     4     4 
9     5     4 
11    6     5 
15    7     8 
16    8     8 
17    9     8 
28    10    18

Observe that within an island the difference is the same, and that difference is unique for each 
island. That’s because within an island, both col1 and drnk keep advancing by the same interval. As 
soon as you jump to the next island, col1 increases by more than one interval, whereas drnk keeps 
increasing by one. Therefore, the difference in each island is greater than the previous island’s differ-
ence. Because this difference is the same within an island and unique for each island, you can use it as 
a group identifier. So what’s left is just to group the rows by this difference and return the minimum 
and maximum col1 values in each group, like so:

WITH C AS 
( 
  SELECT col1, col1 - DENSE_RANK() OVER(ORDER BY col1) AS grp 
  FROM dbo.T1 
) 
SELECT MIN(col1) AS start_range, MAX(col1) AS end_range 
FROM C 
GROUP BY grp;

The plan for this solution is shown in Figure 5-23.
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FIgURE 5-23 Plan for a solution to the islands problem.

The plan is very efficient because the computation of the dense rank value can rely on the order-
ing of the index on col1. 

You might be wondering why we use the DENSE_RANK function and not ROW_NUMBER. This has 
to do with needing support for cases where the sequence values are not guaranteed to be unique. 
Using the ROW_NUMBER function, the technique works only when the sequence values are unique 
(which happens to be the case in our sample data), but it fails when duplicates are allowed. Using the 
DENSE_RANK function, the technique works both with unique and nonunique values; hence, I prefer 
to always use DENSE_RANK.

The technique can even work with temporal intervals, but it might not immediately be apparent. 
Remember that the technique involves producing a group identifier—namely, a value that is the same 
for all members of the same island and different than the values produced for other islands. With the 
temporal sequence, the col1 values and dense rank values use different intervals—one uses an inter-
val of 1 integer, and the other uses an interval of 1 day. To make the technique work, simply subtract 
from the col1 value as many of the temporal interval as the dense rank value. You need to use the 
DATEADD function to achieve this. Then you will get a date and time value as a result that is the same 
for all members of the same island and different than the values produced for other islands. Here’s 
the complete solution code:

WITH C AS 
( 
  SELECT col1, DATEADD(day, -1 * DENSE_RANK() OVER(ORDER BY col1), col1) AS grp 
  FROM dbo.T2 
) 
SELECT MIN(col1) AS start_range, MAX(col1) AS end_range 
FROM C 
GROUP BY grp;

As you can see, instead of directly subtracting the result of the dense rank function from col1, you 
use DATEADD to subtract the dense rank multiplied by one day from col1.

There are querying problems where you need to use the islands technique, including availability 
reports, periods of activity, and others. You can even use the islands technique to handle a classic 
problem involving packing date intervals. Consider the following table that holds information about 
date intervals.
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IF OBJECT_ID('dbo.Intervals', 'U') IS NOT NULL DROP TABLE dbo.Intervals; 
 
CREATE TABLE dbo.Intervals 
( 
  id        INT  NOT NULL, 
  startdate DATE NOT NULL, 
  enddate   DATE NOT NULL 
); 
 
INSERT INTO dbo.Intervals(id, startdate, enddate) VALUES 
  (1, '20120212', '20120220'), 
  (2, '20120214', '20120312'), 
  (3, '20120124', '20120201');

These date intervals could represent periods of activity, periods of validity, and many other types 
of date periods. Given some input period (the @from and @to parameters), your task is to pack the 
intervals within that period. In other words, you’re supposed to merge intervals that overlap or are 
adjacent. Here’s the desired result for the given sample data, assuming the input period is from Janu-
ary 1, 2012 to December 31, 2012:

rangestart rangeend 
---------- ---------- 
2012-01-24 2012-02-01 
2012-02-12 2012-03-12

The solution uses the GetNums function covered earlier in this chapter to generate a sequence of 
the dates that fall within the input period. The code defines a CTE called Dates representing this set of 
dates. The code then joins the CTE Dates (aliased as D) with the table Intervals (aliased as I), match-
ing each date with the intervals that contain it using the following join predicate: D.dt BETWEEN 
I.startdate AND I.enddate. The code then uses the technique shown previously to compute a group 
identifier (call it grp) that identifies islands. The code defines a CTE called Groups that is based on this 
query. Finally, the outer query groups the rows by grp and returns the minimum and maximum dates 
within each island as the boundaries of the packed intervals. Here’s the complete solution code:

DECLARE 
  @from AS DATE = '20120101', 
  @to   AS DATE = '20121231'; 
 
WITH Dates AS 
( 
  SELECT DATEADD(day, n-1, @from) AS dt 
  FROM dbo.GetNums(1, DATEDIFF(day, @from, @to) + 1) AS Nums 
), 
Groups AS 
( 
  SELECT D.dt,  
    DATEADD(day, -1 * DENSE_RANK() OVER(ORDER BY D.dt), D.dt) AS grp 
  FROM dbo.Intervals AS I 
    JOIN Dates AS D 
      ON D.dt BETWEEN I.startdate AND I.enddate 
) 
SELECT MIN(dt) AS rangestart, MAX(dt) AS rangeend 
FROM Groups 
GROUP BY grp;
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Note that this solution doesn’t perform well when the intervals span long periods of time. That’s 
understandable given that the solution unpacks each period to the individual dates involved.

There are versions of the islands problem that are more complicated than the fundamental 
one. For example, say you are supposed to ignore gaps of up to a certain size—for example, in our 
numeric sequence, say you are supposed to ignore gaps of up to 2. Then the desired output would be 
the following:

rangestart  rangeend 
----------- ----------- 
2           3 
7           11 
15          17 
28          28

Observe that the values 7, 8, 9, and 11 are all part of one island starting with 7 and ending with 11. 
The gap between 9 and 11 is ignored because it isn’t greater than 2.

You can use the LAG and LEAD functions to handle this task. You first define a CTE called C1 based 
on a query against T1 computing the following two attributes: isstart and isend. The isstart attribute 
is a flag whose value is 1 when the sequence value is the first in the island and 0 when it isn’t. A value 
is not the first value in the island if the difference between col1 and the previous value (obtained 
using the LAG function) is less than or equal to 2; otherwise, it is the first value in the island. Similarly, 
a value is not the last value in the island if the difference between the next value (obtained using the 
LEAD function) and col1 is less than or equal to 2; otherwise, it is the last value in the island.

Next, the code defines a CTE called C2 that filters only rows where the sequence value is either a 
start or an end of an island. Using the LEAD function, the code matches to each island start value the 
island end value. This is achieved by using the expression 1-isend as the offset for the LEAD function. 
This means that if the current row representing the start of an island also happens to represent its 
end, the offset will be 0; otherwise, it will be 1. Finally the outer query simply filters from C2 only the 
rows where isstart is 1. Here’s the complete solution code:

WITH C1 AS 
( 
  SELECT col1, 
    CASE WHEN col1 - LAG(col1) OVER(ORDER BY col1)  <= 2 THEN 0 ELSE 1 END AS isstart,  
    CASE WHEN LEAD(col1) OVER(ORDER BY col1) - col1 <= 2 THEN 0 ELSE 1 END AS isend 
  FROM dbo.T1 
), 
C2 AS 
( 
  SELECT col1 AS rangestart, LEAD(col1, 1-isend) OVER(ORDER BY col1) AS rangeend, isstart 
  FROM C1 
  WHERE isstart = 1 OR isend = 1 
) 
SELECT rangestart, rangeend 
FROM C2 
WHERE isstart = 1;

The execution plan for this query is shown in Figure 5-24.
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FIgURE 5-24 Plan for a solution to the islands problem ignoring gaps up to 2.

For the next version of the islands problem, use the sample data generated by the following code:

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1; 
 
CREATE TABLE dbo.T1 
( 
  id  INT         NOT NULL PRIMARY KEY, 
  val VARCHAR(10) NOT NULL 
); 
GO 
 
INSERT INTO dbo.T1(id, val) VALUES 
  (2, 'a'), 
  (3, 'a'), 
  (5, 'a'), 
  (7, 'b'), 
  (11, 'b'), 
  (13, 'a'), 
  (17, 'a'), 
  (19, 'a'), 
  (23, 'c'), 
  (29, 'c'), 
  (31, 'a'), 
  (37, 'a'), 
  (41, 'a'), 
  (43, 'a'), 
  (47, 'c'), 
  (53, 'c'), 
  (59, 'c');

This version of the islands problem involves identifying ranges of IDs where the value in the val 
attribute remains the same. Observe that there can be multiple islands associated with the same value 
in val. Here’s the desired output for the given sample data:
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mn          mx          val 
----------- ----------- ---------- 
2           5           a 
7           11          b 
13          19          a 
23          29          c 
31          43          a 
47          59          c

The first step in the solution is to compute the difference between a row number based on id 
ordering and a row number based on val, id ordering (call it grp):

SELECT id, val, 
  ROW_NUMBER() OVER(ORDER BY id) 
    - ROW_NUMBER() OVER(ORDER BY val, id) AS grp 
FROM dbo.T1; 
 
id          val        grp 
----------- ---------- -------------------- 
2           a          0 
3           a          0 
5           a          0 
13          a          2 
17          a          2 
19          a          2 
31          a          4 
37          a          4 
41          a          4 
43          a          4 
7           b          -7 
11          b          -7 
23          c          -4 
29          c          -4 
47          c          0 
53          c          0 
59          c          0

Observe that for each distinct value in the val attribute, grp is unique for each island. That’s 
because the row numbers based on id ordering have gaps between the different islands, and row 
numbers based on val, id ordering don’t. So for the same value in val, as you move from one island to 
the next, the difference becomes greater, while within an island it remains constant. To complete the 
solution, define a CTE based on the previous query and then, in the outer query, group the rows by 
val, grp, and return the minimum and maximum IDs for each val, like so:

WITH C AS 
( 
  SELECT id, val, 
    ROW_NUMBER() OVER(ORDER BY id) 
      - ROW_NUMBER() OVER(ORDER BY val, id) AS grp 
  FROM dbo.T1 
) 
SELECT MIN(id) AS mn, MAX(id) AS mx, val 
FROM C 
GROUP BY val, grp 
ORDER BY mn;
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Median

In Chapters 2 and 3, I discussed how to compute percentiles. I mentioned that the 50th percentile—
commonly known as the median—represents, loosely speaking, the value in the population that 50 
percent of the values are less than. I provided solutions to calculating any percentile in both SQL 
Server 2012 and in previous versions of SQL Server. Here, I’ll just remind you of the solution in SQL 
Server 2012 using the PERCENTILE_CONT function (CONT for the continuous distribution model) and 
then show interesting solutions specific to the median calculation used prior to SQL Server 2012.

For sample data, I’ll use the Stats.Scores table, which holds student test scores. Suppose your task 
was to compute, for each test, the median score assuming continuous distribution model. If there’s 
an odd number of student test scores for a given test, you’re supposed to return the middle score. If 
there’s an even number, you’re supposed to return the average of the two middle scores. Here’s the 
desired output for the given sample data:

testid     median 
---------- ------- 
Test ABC   75 
Test XYZ   77.5

As already mentioned in the book, the function PERCENTILE_CONT introduced in SQL Server 2012 
is used to compute percentiles assuming a continuous distribution model. However, this function 
wasn’t implemented as a grouped ordered set function; rather, it was implemented as a window 
function. This means that you can use it to return a percentile along with all detail rows, but to return 
it only once per group, you need to add some filtering logic. For example, you can compute a row 
number with the same window-partitioning specification as that of the PERCENTILE_CONT function 
and arbitrary ordering, and then filter only the rows where the row number is equal to 1. Here’s the 
complete solution code computing the median score per test:

WITH C AS 
( 
  SELECT testid, 
    ROW_NUMBER() OVER(PARTITION BY testid ORDER BY (SELECT NULL)) AS rownum, 
    PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS median 
  FROM Stats.Scores 
) 
SELECT testid, median 
FROM C 
WHERE rownum = 1;

It’s a little bit awkward, but it works.

Prior to SQL Server 2012, you had to be more creative, but you could still use window functions to 
achieve the task. One solution was to compute, for each row, a position within the test based on score 
ordering (call it pos) and the count of scores in the respective test (call it cnt). To compute pos, you use 
the ROW_NUMBER function, and to compute cnt, you use the COUNT window aggregate function. 
Then you filter only the rows that are supposed to participate in the median calculation—namely, the 
rows where pos is either equal to (cnt + 1) / 2 or (cnt  + 2) / 2. Note that the expressions use integer 
division, so any fraction is truncated. When there is an odd number of elements, both expressions 
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return the same middle point. For example, when there are 9 elements in the group, both expressions 
return 5. When there is an even number of elements, the expressions return the two middle points. 
For example, when there are 10 elements in the group, the expressions return 5 and 6. After you filter 
the right rows, what’s left is to group the rows by the test ID and return for each test the average 
score. Here’s the complete solution query:

WITH C AS 
( 
  SELECT testid, score, 
    ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score) AS pos, 
    COUNT(*) OVER(PARTITION BY testid) AS cnt 
  FROM Stats.Scores 
) 
SELECT testid, AVG(1. * score) AS median 
FROM C 
WHERE pos IN( (cnt + 1) / 2, (cnt + 2) / 2 ) 
GROUP BY testid;

Another interesting solution available prior to SQL Server 2012 involves computing two row num-
bers—one in ascending score, studentid ordering (studentid added for determinism), and another in 
descending ordering. Here’s the code to compute the two row numbers followed by its output:

SELECT testid, score, 
  ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score, studentid) AS rna, 
  ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score DESC, studentid DESC) AS rnd 
FROM Stats.Scores; 
 
testid     score rna  rnd 
---------- ----- ---- ---- 
Test ABC   95    9    1 
Test ABC   95    8    2 
Test ABC   80    7    3 
Test ABC   80    6    4 
Test ABC   75    5    5 
Test ABC   65    4    6 
Test ABC   55    3    7 
Test ABC   55    2    8 
Test ABC   50    1    9 
Test XYZ   95    10   1 
Test XYZ   95    9    2 
Test XYZ   95    8    3 
Test XYZ   80    7    4 
Test XYZ   80    6    5 
Test XYZ   75    5    6 
Test XYZ   65    4    7 
Test XYZ   55    3    8 
Test XYZ   55    2    9 
Test XYZ   50    1    10

Can you generalize a rule that identifies the rows that need to participate in the median 
calculation?

Observe that when there’s an odd number of elements, the median is where the two row num-
bers are the same. When there’s an even number of elements, the median elements are where the 
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absolute difference between the two row numbers is equal to 1. To merge the two rules, the median 
elements are in the rows where the absolute difference between the two row numbers is less than or 
equal to 1. Here’s the complete solution code that relies on this rule:

WITH C AS 
( 
  SELECT testid, score, 
    ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score, studentid) AS rna, 
    ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score DESC, studentid DESC) AS rnd 
  FROM Stats.Scores 
) 
SELECT testid, AVG(1. * score) AS median 
FROM C 
WHERE ABS(rna - rnd) <= 1 
GROUP BY testid;

Conditional Aggregate

Our next task involves computing a running total that always returns a non-negative value. That is, if 
the running total is negative at a point, return zero instead. Then, when you move to the next item in 
the sequence, you proceed from 0. For sample data, use the following code, which creates and popu-
lates a table called T1:

USE TSQL2012; 
 
IF OBJECT_ID('dbo.T1') IS NOT NULL DROP TABLE dbo.T1; 
GO 
 
CREATE TABLE dbo.T1 
( 
  ordcol  INT NOT NULL PRIMARY KEY, 
  datacol INT NOT NULL 
); 
 
INSERT INTO dbo.T1 VALUES 
  (1,   10), 
  (4,  -15), 
  (5,    5), 
  (6,  -10), 
  (8,  -15), 
  (10,  20), 
  (17,  10), 
  (18, -10), 
  (20, -30), 
  (31,  20); 

According to the description of the task, here’s the desired output for the given sample data, com-
puting a non-negative sum of datacol based on ordcol ordering:
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ordcol      datacol     nonnegativesum 
----------- ----------- -------------- 
1           10          10 
4           -15         0 
5           5           5 
6           -10         0 
8           -15         0 
10          20          20 
17          10          30 
18          -10         20 
20          -30         0 
31          20          20

I’ll present an elegant solution devised by Gordon Linoff that uses window functions. Here’s the 
complete solution code, followed by its output (adding the intermediate computations partsum and 
adjust to help explain the solution):

WITH C1 AS 
( 
  SELECT ordcol, datacol, 
    SUM(datacol) OVER (ORDER BY ordcol 
                       ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS partsum 
  FROM dbo.T1 
), 
C2 AS 
( 
  SELECT *, 
    MIN(partsum) OVER (ORDER BY ordcol 
                       ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as adjust 
  FROM C1 
) 
SELECT *, 
  partsum - CASE WHEN adjust < 0 THEN adjust ELSE 0 END 
    AS nonnegativesum 
FROM C2; 
 
ordcol      datacol     partsum     adjust      nonnegativesum 
----------- ----------- ----------- ----------- -------------- 
1           10          10          10          10 
4           -15         -5          -5          0 
5           5           0           -5          5 
6           -10         -10         -10         0 
8           -15         -25         -25         0 
10          20          -5          -25         20 
17          10          5           -25         30 
18          -10         -5          -25         20 
20          -30         -35         -35         0 
31          20          -15         -35         20

The code defining the CTE C1 creates an attribute called partsum that computes a plain running 
total of datacol based on ordcol ordering and calls it. This partsum attribute can be negative because 
the values in datacol can be negative. Then the code defining the CTE C2 queries C1, creating an 
attribute called adjust that computes the minimum partsum value up to the current point. Finally, 
the outer query checks whether partsum needs to be adjusted to compute the non-negative sum. 
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If adjust (the minimum partsum so far) isn’t negative, there’s nothing to adjust. If it is negative, adjust 
needs to be subtracted from partsum.

It can take a few rounds of going over this output to see that the logic works, but it does!

Sorting Hierarchies

Suppose that you need to present information from some hierarchy in a sorted fashion. You’re sup-
posed to present a parent before its child elements. Also, you need to be able to control the order 
among siblings. For sample data, use the following code, which creates and populates a table called 
dbo.Employees (not to be confused with the existing HR.Employees table that has different data):

USE TSQL2012; 
 
IF OBJECT_ID('dbo.Employees') IS NOT NULL DROP TABLE dbo.Employees; 
GO 
CREATE TABLE dbo.Employees 
( 
  empid   INT         NOT NULL PRIMARY KEY, 
  mgrid   INT         NULL     REFERENCES dbo.Employees, 
  empname VARCHAR(25) NOT NULL, 
  salary  MONEY       NOT NULL, 
  CHECK (empid <> mgrid) 
); 
 
INSERT INTO dbo.Employees(empid, mgrid, empname, salary) VALUES 
  (1,  NULL, 'David'  , $10000.00), 
  (2,  1,    'Eitan'  ,  $7000.00), 
  (3,  1,    'Ina'    ,  $7500.00), 
  (4,  2,    'Seraph' ,  $5000.00), 
  (5,  2,    'Jiru'   ,  $5500.00), 
  (6,  2,    'Steve'  ,  $4500.00), 
  (7,  3,    'Aaron'  ,  $5000.00), 
  (8,  5,    'Lilach' ,  $3500.00), 
  (9,  7,    'Rita'   ,  $3000.00), 
  (10, 5,    'Sean'   ,  $3000.00), 
  (11, 7,    'Gabriel',  $3000.00), 
  (12, 9,    'Emilia' ,  $2000.00), 
  (13, 9,    'Michael',  $2000.00), 
  (14, 9,    'Didi'   ,  $1500.00); 
 
CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid);

Suppose you need to present employees in hierarchical order—always presenting the manager 
before subordinates—and sort siblings by empname. To achieve this task, you can use two main tools: 
the ROW_NUMBER function and a recursive CTE. You define a regular CTE called EmpsRN first, where 
you compute an attribute called n representing a row number partitioned by mgrid and ordered by 
empname, empid (empid added for determinism if needed): 
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WITH EmpsRN AS 
( 
  SELECT *, 
    ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n 
  FROM dbo.Employees 
) 
SELECT * FROM EmpsRN; 
 
empid  mgrid  empname  salary    n 
------ ------ -------- --------- --- 
1      NULL   David    10000.00  1 
2      1      Eitan    7000.00   1 
3      1      Ina      7500.00   2 
5      2      Jiru     5500.00   1 
4      2      Seraph   5000.00   2 
6      2      Steve    4500.00   3 
7      3      Aaron    5000.00   1 
8      5      Lilach   3500.00   1 
10     5      Sean     3000.00   2 
11     7      Gabriel  3000.00   1 
9      7      Rita     3000.00   2 
14     9      Didi     1500.00   1 
12     9      Emilia   2000.00   2 
13     9      Michael  2000.00   3

Next, you define a recursive CTE called EmpsPath, where you iterate through the employees one 
level at a time, starting with the root (CEO), then to direct subordinates, then to subordinates of 
subordinates, and so on. You construct a binary path for each employee that starts as an empty path 
for the root, and in each level of subordinates, you concatenate the manager’s path with the binary 
form of n (the row number). Note that to minimize the size of the path you need only enough bytes 
to cover the maximum number of direct subordinates a single manager can have. For example, for up 
to 255 direct subordinates, a single byte is sufficient; for up to 32,767 direct subordinates, two bytes 
are sufficient; and so on. Let’s assume that we need two bytes in our case. You can also compute the 
level of the employee in the tree (the distance from the root) by assigning the level 0 to the root, and 
for a subordinate, you add 1 to the manager’s level. Here’s the code that computes both the sort path 
and the level:

WITH EmpsRN AS 
( 
  SELECT *, 
    ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n 
  FROM dbo.Employees 
), 
EmpsPath 
AS 
( 
  SELECT empid, empname, salary, 0 AS lvl, 
    CAST(0x AS VARBINARY(MAX)) AS sortpath 
  FROM dbo.Employees 
  WHERE mgrid IS NULL 
 
  UNION ALL 
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  SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2)) 
  FROM EmpsPath AS P 
    JOIN EmpsRN AS C 
      ON C.mgrid = P.empid 
) 
SELECT * 
FROM EmpsPath; 
 
empid  empname  salary    lvl  sortpath 
------ -------- --------- ---- ------------------- 
1      David    10000.00  0    0x 
2      Eitan    7000.00   1    0x0001 
3      Ina      7500.00   1    0x0002 
7      Aaron    5000.00   2    0x00020001 
11     Gabriel  3000.00   3    0x000200010001 
9      Rita     3000.00   3    0x000200010002 
14     Didi     1500.00   4    0x0002000100020001 
12     Emilia   2000.00   4    0x0002000100020002 
13     Michael  2000.00   4    0x0002000100020003 
5      Jiru     5500.00   2    0x00010001 
4      Seraph   5000.00   2    0x00010002 
6      Steve    4500.00   2    0x00010003 
8      Lilach   3500.00   3    0x000100010001 
10     Sean     3000.00   3    0x000100010002

What’s left to do to guarantee that the employees are presented in the desired order is to order 
the rows by sortpath. You can also achieve indentation in the output based on the employee’s level in 
the hierarchy by replicating a string lvl times. Here’s the complete solution code:

WITH EmpsRN AS 
( 
  SELECT *, 
    ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n 
  FROM dbo.Employees 
), 
EmpsPath 
AS 
( 
  SELECT empid, empname, salary, 0 AS lvl, 
    CAST(0x AS VARBINARY(MAX)) AS sortpath 
  FROM dbo.Employees 
  WHERE mgrid IS NULL 
 
  UNION ALL 
 
  SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2)) 
  FROM EmpsPath AS P 
    JOIN EmpsRN AS C 
      ON C.mgrid = P.empid 
) 
SELECT empid, salary, REPLICATE(' | ', lvl) + empname AS empname 
FROM EmpsPath 
ORDER BY sortpath;
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Observe in the output of this solution that a manager always appears before his subordinates and 
that siblings are sorted by empname:

empid       salary                empname 
----------- --------------------- -------------------- 
1           10000.00              David 
2           7000.00                | Eitan 
5           5500.00                |  | Jiru 
8           3500.00                |  |  | Lilach 
10          3000.00                |  |  | Sean 
4           5000.00                |  | Seraph 
6           4500.00                |  | Steve 
3           7500.00                | Ina 
7           5000.00                |  | Aaron 
11          3000.00                |  |  | Gabriel 
9           3000.00                |  |  | Rita 
14          1500.00                |  |  |  | Didi 
12          2000.00                |  |  |  | Emilia 
13          2000.00                |  |  |  | Michael

If you need siblings to be sorted differently—say, by salary—simply change the ROW_NUMBER 
function’s window ordering clause accordingly:

WITH EmpsRN AS 
( 
  SELECT *, 
    ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY salary, empid) AS n 
  FROM dbo.Employees 
), 
EmpsPath 
AS 
( 
  SELECT empid, empname, salary, 0 AS lvl, 
    CAST(0x AS VARBINARY(MAX)) AS sortpath 
  FROM dbo.Employees 
  WHERE mgrid IS NULL 
 
  UNION ALL 
 
  SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2)) 
  FROM EmpsPath AS P 
    JOIN EmpsRN AS C 
      ON C.mgrid = P.empid 
) 
SELECT empid, salary, REPLICATE(' | ', lvl) + empname AS empname 
FROM EmpsPath 
ORDER BY sortpath;
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Here’s the output of this query:

empid       salary                empname 
----------- --------------------- -------------------- 
1           10000.00              David 
2           7000.00                | Eitan 
6           4500.00                |  | Steve 
4           5000.00                |  | Seraph 
5           5500.00                |  | Jiru 
10          3000.00                |  |  | Sean 
8           3500.00                |  |  | Lilach 
3           7500.00                | Ina 
7           5000.00                |  | Aaron 
9           3000.00                |  |  | Rita 
14          1500.00                |  |  |  | Didi 
12          2000.00                |  |  |  | Emilia 
13          2000.00                |  |  |  | Michael 
11          3000.00                |  |  | Gabriel

Summary

I can’t keep myself from admiring the beautiful design of window functions. They’re engineered to 
overcome a number of shortcomings of more traditional SQL constructs, and they lend themselves to 
good optimization. You saw in this book that there are so many querying tasks that can be handled 
both elegantly and efficiently with window functions. I hope you will think of what you saw as just the 
start and find interesting and creative ways of your own to use them. 

Standard SQL sees the great value in window functions and therefore keeps adding more and 
more functions and functionality. Microsoft made an important investment in adding some of the 
missing support for window functions in SQL Server 2012, and I think that for many implementations, 
this will make a big difference. I hope very much that Microsoft will follow the standard and keep 
adding more support with each new version of SQL Server.
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