
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Microsoft® SQL Server ® 2012
High-Performance T-SQL
Using Window Functions

Itzik Ben-Gan

www.allitebooks.com

http://www.allitebooks.org

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2012 by Itzik Ben-Gan
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-5836-3

1 2 3 4 5 6 7 8 9 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Ken Jones

Production Editor: Kristen Borg

Production Services: Curtis Philips

Technical Reviewer: Adam Machanic

Copyeditor: Roger LeBlanc

Indexer: Lucie Haskins

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrators: Robert Romano and Rebecca Demarest

www.allitebooks.com

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.allitebooks.org

To the Quartet.
 —Q1

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

Foreword xi

Introduction xiii

CHaPTer 1 SQL Windowing 1
CHaPTer 2 a Detailed Look at Window Functions 33
CHaPTer 3 Ordered Set Functions 81
CHaPTer 4 Optimization of Window Functions 101
CHaPTer 5 T-SQL Solutions Using Window Functions 133

Index 211

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

 vii

Contents

Foreword . xi

Introduction . xiii

Chapter 1 SQL Windowing 1
Background of Window Functions . 2

Window Functions Described . 2

Set-Based vs. Iterative/Cursor Programming . 6

Drawbacks of Alternatives to Window Functions11

A Glimpse of Solutions Using Window Functions .15

Elements of Window Functions .19

Partitioning .20

Ordering .21

Framing .22

Query Elements Supporting Window Functions .23

Logical Query Processing .23

Clauses Supporting Window Functions .25

Circumventing the Limitations .28

Potential for Additional Filters .30

Reuse of Window Definitions .31

Summary. .32

Chapter 2 A Detailed Look at Window Functions 33
Window Aggregate Functions .33

Window Aggregate Functions Described .33

Supported Windowing Elements .34

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Further Filtering Ideas .49

Distinct Aggregates . 51

Nested Aggregates .53

Ranking Functions .57

Supported Windowing Elements .58

ROW_NUMBER .58

NTILE .63

RANK and DENSE_RANK .66

Distribution Functions .68

Supported Windowing Elements .68

Rank Distribution Functions .68

Inverse Distribution Functions .71

Offset Functions . 74

Supported Windowing Elements . 74

LAG and LEAD. 74

FIRST_VALUE, LAST_VALUE, and NTH_VALUE 76

Summary. .79

Chapter 3 Ordered Set Functions 81
Hypothetical Set Functions .82

RANK .82

DENSE_RANK .84

PERCENT_RANK .85

CUME_DIST .86

General Solution .87

Inverse Distribution Functions .90

Offset Functions .94

String Concatenation .98

Summary. .100

www.allitebooks.com

http://www.allitebooks.org

 Contents ix

Chapter 4 Optimization of Window Functions 101
Sample Data .101

Indexing Guidelines .103

POC Index .104

Backward Scans .105

Columnstore Indexes .108

Ranking Functions .108

ROW_NUMBER .109

NTILE .110

RANK and DENSE_RANK .111

Improved Parallelism with APPLY .112

Aggregate and Offset Functions .116

Without Ordering and Framing .116

With Ordering and Framing .119

Distribution Functions .128

Rank Distribution Functions .128

Inverse Distribution Functions .129

Summary. .132

Chapter 5 T-SQL Solutions Using Window Functions 133
Virtual Auxiliary Table of Numbers .133

Sequences of Date and Time Values .137

Sequences of Keys .138

Update a Column with Unique Values .138

Applying a Range of Sequence Values .139

Paging .143

Removing Duplicates .145

Pivoting .148

TOP N per Group .151

Mode .154

x Contents

Running Totals .158

Set-Based Solution Using Window Functions 160

Set-Based Solutions Using Subqueries or Joins 161

Cursor-Based Solution .162

CLR-Based Solution .164

Nested Iterations .166

Multirow UPDATE with Variables .167

Performance Benchmark .169

Max Concurrent Intervals .171

Traditional Set-Based Solution .173

Cursor-Based Solution .175

Solutions Based on Window Functions .178

Performance Benchmark .180

Packing Intervals .181

Traditional Set-Based Solution .183

Solutions Based on Window Functions .184

Gaps and Islands .193

Gaps .194

Islands. .195

Median .202

Conditional Aggregate .204

Sorting Hierarchies .206

Summary. .210

Index 211

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xi

Foreword

SQL is a very interesting programming language. When meeting with customers, I am
constantly reminded of the language’s dual nature with regard to complexity. Many

people getting started with SQL see it as a simple programming language that supports
four basic verbs: SELECT, INSERT, UPDATE, and DELETE. Some people never get much
further than this. Maybe a few more figure out how to filter rows in a query using the
WHERE clause and perhaps do the occasional JOIN. However, those who spend more
time with SQL and learn about its declarative, relational, and set-based model will find a
rich programming language that keeps you coming back for more.

One of the most fundamental additions to the SQL language, back in Microsoft
SQL Server 2005, was the introduction of window functions with syntactic constructs
such as the OVER clause and a new set of functions known as ranking functions
(ROW_ NUMBER, RANK, and so on). This addition enabled solving common problems
in an easier, more intuitive, and often better-performing way than what was previously
possible. A few years later, the single most-requested language feature was for Micro-
soft to extend its support for window functions—with a set of new functions and, more
importantly, with the concept of frames. As a result of these requests from a wide range
of customers, Microsoft decided to continue investing in window functions extensions
in SQL Server 2012.

Today, when I talk to customers about new language functionality in SQL Server
2012, I always recommend they spend extra time with the new window functions and
really understand the new dimension that this brings to the SQL language. I am happy
that you are reading this book and thus taking what I am sure is precious time to learn
how to use this rich functionality. I am confident that the combination of using SQL
Server 2012 and reading this book will help you become an even more efficient SQL
Server user, and help you solve both simple as well as complex problems significantly
faster than before.

Enjoy!

Tobias Ternström
Lead Program Ma nager,

Microsoft SQL Server Engine team

 xiii

Introduction

Window functions, to me, are the most profound feature supported by both stan-
dard SQL and Microsoft SQL Server’s dialect—T-SQL. They allow you to perform

calculations against sets of rows in a flexible, clear, and efficient manner. The design of
window functions is ingenious, overcoming a number of shortcomings of the traditional
alternatives. The range of problems that window functions help solve is so wide that it
is well worth investing your time in learning those. SQL Server 2005 was the version in
which window functions were introduced initially. SQL Server 2012 then added more
complete support by enhancing some of the existing functions, as well as adding new
ones. This book covers both the SQL Server–specific support for window functions, as
well as standard SQL’s support, including elements that were not yet implemented in
SQL Server.

Who Should Read This Book

This book is intended for SQL Server developers and database administrators (DBAs);
those who need to write queries and develop code using T-SQL. The book assumes that
you already have at least half a year to a year of experience writing and tuning T-SQL
queries.

Organization of This Book

The book covers both the logical aspects of window functions as well as their optimi-
zation and practical usage aspects. The logical aspects are covered in the first three
chapters. The first chapter explains SQL windowing concepts, the second provides a
breakdown of window functions, and the third covers ordered set functions. The fourth
chapter covers optimization of window functions in SQL Server 2012. Finally, the fifth
and last chapter covers practical uses of window functions.

Chapter 1, “SQL Windowing,” covers standard SQL windowing concepts. It describes
the design of window functions, the types of window functions, and the elements
 involved in a window specification, such as partitioning, ordering, and framing.

Chapter 2, “A Detailed Look at Window Functions,” gets into the details and specif-
ics of the different window functions. It describes window aggregate functions, window
ranking functions, window offset functions, and window distribution functions.

xiv Introduction

Chapter 3, “Ordered Set Functions,” describes the support standard SQL has for or-
dered set functions, including hypothetical set functions, inverse distribution functions,
and others. The chapter also explains how to achieve similar calculations in SQL Server.

Chapter 4, “Optimization of Window Functions,” covers in detail the optimization of
window functions in SQL Server 2012. It provides indexing guidelines for optimal per-
formance, explains how parallelism is handled and how to improve it, discusses the new
Window Spool iterator, and more.

Chapter 5, “T-SQL Solutions Using Window Functions,” covers practical uses of win-
dow functions to address common business tasks.

System Requirements

Window functions are part of the core database engine of Microsoft SQL Server
2012; hence, all editions of the product support this feature. To run the code samples
in this book, you need access to an instance of the SQL Server 2012 database en-
gine (any edition), and you need to have the sample database installed. If you don’t
have access to an existing instance, Microsoft provides trial versions. You can find
details at: http://www.microsoft.com/sql. For hardware and software requirements,
please consult SQL Server Books Online at: http://msdn.microsoft.com/en-us/library/
ms143506(v=sql.110).aspx.

Code Samples

This book features a companion website that makes available to you all the code used
in the book, sample data, the errata, additional resources, and more, at the following
page:

http://www.insidetsql.com

In this website, go to the Books section and select the main page for the book in
question. The book’s page has a link to download a compressed file with the book’s
source code, including a file called TSQL2012.sql that creates and populates the book’s
sample database, TSQL2012.

http://www.microsoft.com/sql
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx
http://www.insidetsql.com

 Introduction xv

Acknowledgments

A number of people contributed to making this book a reality, whether directly or indi-
rectly, and deserve thanks and recognition.

To Lilach, for giving reason to everything I do, for tolerating me, and for helping
review the text.

To my parents, Mila and Gabi, and to my siblings, Mickey and Ina, for the constant
support and for accepting the fact that I’m away.

To members of the Microsoft SQL Server development team: Tobias Ternström,
Lubor Kollar, Umachandar Jayachandran, Marc Friedman, Milan Stojic, and I’m sure
many others. I know it wasn’t a trivial effort to add support for window functions in SQL
Server. Thanks for the great effort, and thanks for all the time you spent meeting with
me and responding to my emails, addressing my questions, and answering my requests
for clarification.

To the editorial team at O’Reilly and MSPress. Ken Jones, you spent the most Itzik
hours of all, and it’s a real pleasure working with you. Also thanks to Ben Ryan, Kristen
Borg, Curtis Philips, and Roger LeBlanc.

To Adam Machanic. Thanks for agreeing to be the technical editor of the book.
There aren’t many people who understand SQL Server development as well as you do.
You were the natural choice for me to fill this role for this book.

To “Q2,” “Q3,” and “Q4.” It’s great to be able to share ideas with people who under-
stand SQL as well as you do, and are such good friends and take life lightly. I feel that
I can share everything with you without worrying about any boundaries or conse-
quences. Thanks for your early review of the text.

To SolidQ, my company for the last decade. It’s gratifying to be part of such a great
company that evolved to what it is today. The members of this company are much
more than colleagues to me; they are partners, friends, and family. Thanks to Fernando
G. Guerrero, Douglas McDowell, Herbert Albert, Dejan Sarka, Gianluca Hotz, Jeanne
Reeves, Glenn McCoin, Fritz Lechnitz, Eric Van Soldt, Joelle Budd, Jan Taylor, Marilyn
Templeton, Berry Walker, Alberto Martin, Lorena Jimenez, Ron Talmage, Andy Kelly,
Rushabh Mehta, Eladio Rincón, Erik Veerman, Johan Richard Waymire, Carl Rabeler,
Chris Randall, Åhlén, Raoul Illyés, Peter Larsson, Peter Myers, Paul Turley, and so many
others.

To members of the SQL Server Pro editorial team: Megan Keller, Lavon Peters,
 Michele Crockett, Mike Otey, and I’m sure many others. I’ve been writing for the

xvi Introduction

 magazine for over a decade and am grateful for the opportunity to share my knowl-
edge with the magazine’s readers.

To SQL Server MVPs—Alejandro Mesa, Erland Sommarskog, Aaron Bertrand, Paul
White, and many others—and to the MVP lead, Simon Tien. This is a great program that
I’m grateful and proud to be part of. The level of expertise of this group is amazing, and
I’m always excited when we all get to meet, both to share ideas and just to catch up at
a personal level over beer. I believe that, in great part, Microsoft’s decision to provide
more complete support for window functions in SQL Server 2012 is thanks to the ef-
forts of SQL Server MVPs and, more generally, the SQL Server community. It is great to
see this synergy yielding such meaningful and important results.

Finally, to my students: teaching SQL is what drives me. It’s my passion. Thanks for
allowing me to fulfill my calling, and for all the great questions that make me seek more
knowledge.

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=246707

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

http://go.microsoft.com/FWLink/?Linkid=246707
mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey

 Introduction xvii

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

If you have comments, questions, or ideas regarding the book, or questions that are
not answered by visiting the sites above, please send them to me via e-mail at:

itzik@SolidQ.com

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://twitter.com/MicrosoftPress

 1

C H A P T E R 1

SQL Windowing

Window functions are functions applied to sets of rows defined by a clause called OVER. They are
used mainly for analytical purposes allowing you to calculate running totals, calculate moving

averages, identify gaps and islands in your data, and perform many other computations. These func-
tions are based on an amazingly profound concept in standard SQL (which is both an ISO and ANSI
standard)—the concept of windowing. The idea behind this concept is to allow you to apply various
calculations to a set, or window, of rows and return a single value. Window functions can help to solve
a wide variety of querying tasks by helping you express set calculations more easily, intuitively, and
efficiently than ever before.

There are two major milestones in Microsoft SQL Server support for the standard window func-
tions: SQL Server 2005 introduced partial support for the standard functionality, and SQL Server 2012
added more. There’s still some standard functionality missing, but with the enhancements added in
SQL Server 2012, the support is quite extensive. In this book, I cover both the functionality SQL Server
implements as well as standard functionality that is still missing. Whenever I describe a feature for the
first time in the book, I also mention whether it is supported in SQL Server, and if it is, in which version
of the product it was added.

From the time SQL Server 2005 first introduced support for window functions, I found myself using
those functions more and more to improve my solutions. I keep replacing older solutions that rely on
more classic, traditional language constructs with the newer window functions. And the results I’m
getting are usually simpler and more efficient. This happens to such an extent that the majority of my
querying solutions nowadays make use of window functions. Also, standard SQL and relational data-
base management systems (RDBMSs) in general are moving toward analytical solutions, and window
functions are an important part of this trend. Therefore, I feel that window functions are the future in
terms of SQL querying solutions, and that the time you take to learn them is time well spent.

This book provides extensive coverage of window functions, their optimization, and querying solu-
tions implementing them. This chapter starts by explaining the concept. It provides the background
of window functions, a glimpse of solutions using them, coverage of the elements involved in window
specifications, an account of the query elements supporting window functions, and a description of
the standard’s solution for reusing window definitions.

2 CHAPTER 1 SQL Windowing

Background of Window Functions

Before you learn the specifics of window functions, it can be helpful to understand the context and
background of those functions. This section provides such background. It explains the difference
between set-based and cursor/iterative approaches to addressing querying tasks and how window
functions bridge the gap between the two. Finally, this section explains the drawbacks of alternatives
to window functions and why window functions are often a better choice than the alternatives. Note
that although window functions can solve many problems very efficiently, there are cases where there
are better alternatives. Chapter 4, “Optimization of Window Functions,” goes into details about opti-
mizing window functions, explaining when you get optimal treatment of the computations and when
treatment is nonoptimal.

Window Functions Described
A window function is a function applied to a set of rows. A window is the term standard SQL uses to
describe the context for the function to operate in. SQL uses a clause called OVER in which you pro-
vide the window specification. Consider the following query as an example:

See Also See the book’s Introduction for information about the sample database TSQL2012 and companion
content.

USE TSQL2012;

SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues
ORDER BY rnk;

Here’s abbreviated output for this query:

orderid orderdate val rnk
-------- ----------------------- --------- ---
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5
10817 2008-01-06 00:00:00.000 10952.85 6
10897 2008-02-19 00:00:00.000 10835.24 7
10479 2007-03-19 00:00:00.000 10495.60 8
10540 2007-05-19 00:00:00.000 10191.70 9
10691 2007-10-03 00:00:00.000 10164.80 10
...

The OVER clause is where you provide the window specification that defines the exact set of rows
that the current row relates to, the ordering specification, if relevant, and other elements. Absent any
elements that restrict the set of rows in the window—as is the case in this example—the set of rows in
the window is the final result set of the query.

 Background of Window Functions 3

Note More precisely, the window is the set of rows, or relation, given as input to the logical
query processing phase where the window function appears. But this explanation probably
doesn’t make much sense yet. So to keep things simple, for now I’ll just refer to the final
result set of the query, and I’ll provide the more precise explanation later.

For ranking purposes, ordering is naturally required. In this example, it is based on the column val
ranked in descending order.

The function used in this example is RANK. This function calculates the rank of the current row
with respect to a specific set of rows and a sort order. When using descending order in the ordering
specification—as in this case—the rank of a given row is computed as one more than the number
of rows in the relevant set that have a greater ordering value than the current row. So pick a row in
the output of the sample query—say, the one that got rank 5. This rank was computed as 5 because
based on the indicated ordering (by val descending), there are 4 rows in the final result set of the
query that have a greater value in the val attribute than the current value (11188.40), and the rank is
that number plus 1.

What’s most important to note is that conceptually the OVER clause defines a window for the
function with respect to the current row. And this is true for all rows in the result set of the query. In
other words, with respect to each row, the OVER clause defines a window independent of the other
rows. This idea is really profound and takes some getting used to. Once you get this, you get closer
to a true understanding of the windowing concept, its magnitude, and its depth. If this doesn’t mean
much to you yet, don’t worry about it for now—I wanted to throw it out there to plant the seed.

The first time standard SQL introduced support for window functions was in an extension docu-
ment to SQL:1999 that covered, what they called “OLAP functions” back then. Since then, the revisions
to the standard continued to enhance support for window functions. So far the revisions have been
SQL:2003, SQL:2008, and SQL:2011. The latest SQL standard has very rich and extensive coverage of
window functions, showing the standard committee’s belief in the concept, and the trend seems to be
to keep enhancing the standard’s support with more window functions and more functionality.

Note You can purchase the standards documents from ISO or ANSI. For example, from
the following URL, you can purchase from ANSI the foundation document of the SQL:2011
standard, which covers the language constructs: http://webstore.ansi.org/RecordDetail.aspx?
sku=ISO%2fIEC+9075-2%3a2011.

Standard SQL supports several types of window functions: aggregate, ranking, distribution, and
offset. But remember that windowing is a concept; therefore, we might see new types emerging in
future revisions of the standard.

Aggregate window functions are the all-familiar aggregate functions you already know—like SUM,
COUNT, MIN, MAX, and others—though traditionally, you’re probably used to using them in the
context of grouped queries. An aggregate function needs to operate on a set, be it a set defined by

http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+9075-2%3a2011.
http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+9075-2%3a2011.

4 CHAPTER 1 SQL Windowing

a grouped query or a window specification. SQL Server 2005 introduced partial support for window
aggregate functions, and SQL Server 2012 added more functionality.

Ranking functions are RANK, DENSE_RANK, ROW_NUMBER, and NTILE. The standard actually puts
the first two and the last two in different categories, and I’ll explain why later. I prefer to put all four
functions in the same category for simplicity, just like the official SQL Server documentation does. SQL
Server 2005 introduced these four ranking functions, with already complete functionality.

Distribution functions are PERCENT_RANK, CUME_DIST, PERCENTILE_CONT, and PERCENTILE_DISC.
SQL Server 2012 introduces support for these four functions.

Offset functions are LAG, LEAD, FIRST_VALUE, LAST_VALUE, and NTH_VALUE. SQL Server 2012
introduces support for the first four. There’s no support for the NTH_VALUE function yet in SQL Server
as of SQL Server 2012.

Chapter 2, “A Detailed Look at Window Functions,” provides the meaning, the purpose, and details
about the different functions.

With every new idea, device, and tool—even if the tool is better and simpler to use and imple-
ment than what you’re used to—typically, there’s a barrier. New stuff often seems hard. So if win-
dow functions are new to you and you’re looking for motivation to justify making the investment in
learning about them and making the leap to using them, here are a few things I can mention from my
experience:

■■ Window functions help address a wide variety of querying tasks. I can’t emphasize this
enough. As mentioned, nowadays I use window functions in most of my query solutions. After
you’ve had a chance to learn about the concept and the optimization of the functions, the last
chapter in the book (Chapter 5) shows some practical applications of window functions. But
just to give you a sense of how they are used, querying tasks that can be solved with window
functions include:

• Paging

• De-duplicating data

• Returning top n rows per group

• Computing running totals

• Performing operations on intervals such as packing intervals, and calculating the maximum
number of concurrent sessions

• Identifying gaps and islands

• Computing percentiles

• Computing the mode of the distribution

• Sorting hierarchies

• Pivoting

• Computing recency

 Background of Window Functions 5

■■ I’ve been writing SQL queries for close to two decades and have been using window functions
extensively for several years now. I can say that even though it took a bit of getting used to
the concept of windowing, today I find window functions both simpler and more intuitive in
many cases than alternative methods.

■■ Window functions lend themselves to good optimization. You’ll see exactly why this is so in
later chapters.

Declarative Language and Optimization
You might wonder why in a declarative language such as SQL, where you logically just declare
your request as opposed to describing how to achieve it, two different forms of the same
request—say, one with window functions and the other without—can get different perfor-
mance? Why is it that an implementation of SQL such as SQL Server, with its T-SQL dialect,
doesn’t always figure out that the two forms really represent the same thing, and hence pro-
duce the same query execution plan for both?

There are several reasons for this. For one, SQL Server’s optimizer is not perfect. I don’t want
to sound unappreciative—SQL Server’s optimizer is truly a marvel when you think of what this
software component can achieve. But it’s a fact that it doesn’t have all possible optimization
rules encoded within it. Two, the optimizer has to limit the amount of time spent on optimiza-
tion; otherwise, it could spend a much longer time optimizing a query than the amount of time
the optimization shaves off from the run time of the query. The situation could be as absurd
as producing a plan in a matter of several dozen milliseconds without going over all possible
plans and getting a run time of only seconds, but producing all possible plans in hopes of shav-
ing off a couple of seconds might take a year or even several. You can see that, for practical
reasons, the optimizer needs to limit the time spent on optimization. Based on factors like the
sizes of the tables involved in the query, SQL Server calculates two values: one is a cost consid-
ered good enough for the query, and the other is the maximum amount of time to spend on
optimization before stopping. If either threshold is reached, optimization stops, and SQL Server
uses the best plan found at that point.

The design of window functions, which we will get to later, often lends itself to better opti-
mization than alternative methods of achieving the same thing.

What’s important to understand from all this is that you need to make a conscious effort to make
the switch to using SQL windowing because it’s a new idea, and as such it takes some getting used to.
But once the switch is made, SQL windowing is simple and intuitive to use; think of any gadget you
can’t live without today and how it seemed like a difficult thing to learn at first.

6 CHAPTER 1 SQL Windowing

Set-Based vs. Iterative/Cursor Programming
People often characterize T-SQL solutions to querying tasks as either set-based or iterative/cursor-
based solutions. The general consensus among T-SQL developers is to try and stick to the former
approach, but still, there’s wide use of the latter. There are several interesting questions here. Why is
the set-based approach the recommended one? And if it is the recommended one, why do so many
developers use the iterative approach? What are the obstacles that prevent people from adopting the
recommended approach?

To get to the bottom of this, one first needs to understand the foundations of T-SQL, and what
the set-based approach truly is. When you do, you realize that the set-based approach is non intuitive
for most people, whereas the iterative approach is. It’s just the way our brains are programmed, and
I will try to clarify this shortly. The gap between iterative and set-based thinking is quite big. The
gap can be closed, though it certainly isn’t easy to do so. And this is where window functions can
play an important role; I find them to be a great tool that can help bridge the gap between the two
approaches and allow a more gradual transition to set-based thinking.

So first, I’ll explain what the set-based approach to addressing T-SQL querying tasks is. T-SQL is
a dialect of standard SQL (both ISO and ANSI standards). SQL is based (or attempts to be based) on
the relational model, which is a mathematical model for data management formulated and proposed
initially by E. F. Codd in the late 1960s. The relational model is based on two mathematical founda-
tions: set-theory and predicate logic. Many aspects of computing were developed based on intuition,
and they keep changing very rapidly—to a degree that sometimes makes you feel that you’re chasing
your tail. The relational model is an island in this world of computing because it is based on much
stronger foundations—mathematics. Some think of mathematics as the ultimate truth. Being based
on such strong mathematical foundations, the relational model is very sound and stable. It keeps
evolving, but not as fast as many other aspects of computing. For several decades now, the rela-
tional model has held strong, and it’s still the basis for the leading database platforms—what we call
 relational database management systems (RDBMSs).

SQL is an attempt to create a language based on the relational model. SQL is not perfect and actu-
ally deviates from the relational model in a number of ways, but at the same time it provides enough
tools that, if you understand the relational model, you can use SQL relationally. It is doubtless the
leading, de facto language used by today’s RDBMSs.

However, as mentioned, thinking in a relational way is not intuitive for many. Part of what makes it
hard for people to think in relational terms is the key differences between the iterative and set-based
approaches. It is especially difficult for people who have a procedural programming background,
where interaction with data in files is handled in an iterative way, as the following pseudocode
demonstrates:

open file
fetch first record
while not end of file
begin
 process record
 fetch next record
end

 Background of Window Functions 7

Data in files (or, more precisely, in indexed sequential access method, or ISAM, files) is stored in a
specific order. And you are guaranteed to fetch the records from the file in that order. Also, you fetch
the records one at a time. So your mind is programmed to think of data in such terms: ordered, and
manipulated one record at a time. This is similar to cursor manipulation in T-SQL; hence, for develop-
ers with a procedural programming background, using cursors or any other form of iterative process-
ing feels like an extension to what they already know.

A relational, set-based approach to data manipulation is quite different. To try and get a sense of
this, let’s start with the definition of a set by the creator of set theory—Georg Cantor:

By a “set” we mean any collection M into a whole of definite, distinct objects m
(which are called the “elements” of M) of our perception or of our thought.

—Joseph W. Dauben, Georg Cantor (Princeton University Press, 1990)

There’s so much in this definition of a set that I could spend pages and pages just trying to
interpret the meaning of this sentence. But for the purposes of our discussion, I’ll focus on two key
aspects—one that appears explicitly in this definition and one that is implied:

■■ Whole Observe the use of the term whole. A set should be perceived and manipulated as a
whole. Your attention should focus on the set as a whole, and not on the individual elements
of the set. With iterative processing, this idea is violated because records of a file or a cursor
are manipulated one at a time. A table in SQL represents (albeit not completely successfully)
a relation from the relational model, and a relation is a set of elements that are alike (that is,
have the same attributes). When you interact with tables using set-based queries, you interact
with tables as whole, as opposed to interacting with the individual rows (the tuples of the rela-
tions)—both in terms of how you phrase your declarative SQL requests and in terms of your
mindset and attention. This type of thinking is what’s very hard for many to truly adopt.

■■ Order Observe that nowhere in the definition of a set is there any mention of the order
of the elements. That’s for a good reason—there is no order to the elements of a set. That’s
another thing that many have a hard time getting used to. Files and cursors do have a specific
order to their records, and when you fetch the records one at a time, you can rely on this
order. A table has no order to its rows because a table is a set. People who don’t realize this
often confuse the logical layer of the data model and the language with the physical layer
of the implementation. They assume that if there’s a certain index on the table, you get an
implied guarantee that, when querying the table, the data will always be accessed in index
order. And sometimes even the correctness of the solution will rely on this assumption. Of
course, SQL Server doesn’t provide any such guarantees. For example, the only way to guar-
antee that the rows in a result will be presented in a certain order is to add a presentation
ORDER BY clause to the query. And if you do add one, you need to realize that what you get
back is not relational because the result has a guaranteed order.

If you need to write SQL queries and you want to understand the language you’re dealing with,
you need to think in set-based terms. And this is where window functions can help bridge the gap
between iterative thinking (one row at a time, in a certain order) and set-based thinking (seeing the

8 CHAPTER 1 SQL Windowing

set as a whole, with no order). What can help you transition from one type of thinking to the other is
the ingenious design of window functions.

For one, window functions support an ORDER BY clause when relevant, where you specify the
order. But note that just because the function has an order specified doesn’t mean it violates any rela-
tional concepts. The input to the query is relational with no ordering expectations, and the output of
the query is relational with no ordering guarantees. It’s just that there’s ordering as part of the speci-
fication of the calculation, producing a result attribute in the resulting relation. There’s no assurance
that the result rows will be returned in the same order used by the window function; in fact, different
window functions in the same query can specify different ordering. This kind of ordering has noth-
ing to do—at least conceptually—with the query’s presentation ordering. Figure 1-1 tries to illustrate
the idea that both the input to a query with a window function and the output are relational, even
though the window function has ordering as part of its specification. By using ovals in the illustration,
and having the positions of the rows look different in the input and the output, I’m trying to express
the fact that the order of the rows does not matter.

OrderValues (orderid, orderdate, val)

Result Set (orderid, orderdate, val, rnk)

(10889, 2008-02-16 00:00:00.000, 11380.00, 4)
(10417, 2007-01-16 00:00:00.000, 11188.40, 5)
(10981, 2008-03-27 00:00:00.000, 15810.00, 2)
(10865, 2008-02-02 00:00:00.000, 16387.50, 1)
(11030, 2008-04-17 00:00:00.000, 12615.05, 3)

(10417, 2007-01-16 00:00:00.000, 11188.40)
(11030, 2008-04-17 00:00:00.000, 12615.05)
(10981, 2008-03-27 00:00:00.000, 15810.00)
(10865, 2008-02-02 00:00:00.000, 16387.50)
(10889, 2008-02-16 00:00:00.000, 11380.00)

SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues;

FIgURE 1-1 Input and output of a query with a window function.

There’s another aspect of window functions that helps you gradually transition from thinking
in iterative, ordered terms to thinking in set-based terms. When teaching a new topic, teachers

 Background of Window Functions 9

sometimes have to “lie” when explaining it. Suppose that you, as a teacher, know the student’s mind
is not ready to comprehend a certain idea if you explain it in full depth. You can sometimes get better
results if you initially explain the idea in simpler, albeit not completely correct, terms to allow the stu-
dent’s mind to start processing the idea. Later, when the student’s mind is ready for the “truth,” you
can provide the deeper, more correct meaning.

Such is the case with understanding how window functions are conceptually calculated. There’s a
basic way to explain the idea, although it’s not really conceptually correct, but it’s one that leads to
the correct result! The basic way uses a row-at-a-time, ordered approach. And then there’s the deep,
conceptually correct way to explain the idea, but one’s mind needs to be in a state of maturity to
comprehend it. The deep way uses a set-based approach.

To demonstrate what I mean, consider the following query:

SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues;

Here’s an abbreviated output of this query (note there’s no guarantee of presentation ordering
here):

orderid orderdate val rnk
-------- ----------------------- --------- ---
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5
...

The basic way to think of how the rank values are calculated conceptually is the following example
(expressed as pseudocode):

arrange the rows sorted by val
iterate through the rows
for each row
 if the current row is the first row in the partition emit 1
 else if val is equal to previous val emit previous rank
 else emit count of rows so far

Figure 1-2 is a graphical depiction of this type of thinking.

orderid orderdate val rnk
----------- --------------------------- ---------- ----
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5
...

FIgURE 1-2 Basic understanding of the calculation of rank values.

10 CHAPTER 1 SQL Windowing

Again, although this type of thinking leads to the correct result, it’s not entirely correct. In fact,
making my point is even more difficult because the process just described is actually very similar to
how SQL Server physically handles the rank calculation. But my focus at this point is not the physical
implementation, but rather the conceptual layer—the language and the logical model. What I meant
by “incorrect type of thinking” is that conceptually, from a language perspective, the calculation is
thought of differently, in a set-based manner—not iterative. Remember that the language is not
concerned with the physical implementation in the database engine. The physical layer’s responsibility
is to figure out how to handle the logical request and both produce a correct result and produce it as
fast as possible.

So let me attempt to explain what I mean by the deeper, more correct understanding of how the
language thinks of window functions. The function logically defines—for each row in the result set
of the query—a separate, independent window. Absent any restrictions in the window specification,
each window consists of the set of all rows from the result set of the query as the starting point. But
you can add elements to the window specification (for example, partitioning, framing, and so on,
which I’ll say more about later) that will further restrict the set of rows in each window. Figure 1-3 is a
graphical depiction of this idea as it applies to our query with the RANK function.

orderid orderdate val rnk
----------- --------------------------- ---------- ----
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5
...

FIgURE 1-3 Deep understanding of the calculation of rank values.

With respect to each window function and row in the result set of the query, the OVER clause
conceptually creates a separate window. In our query, we have not restricted the window specification
in any way; we just defined the ordering specification for the calculation. So in our case, all windows
are made of all rows in the result set. And they all coexist at the same time. And in each, the rank is
calculated as one more than the number of rows that have a greater value in the val attribute than
the current value.

As you might realize, it’s more intuitive for many to think in the basic terms of the data being in an
order and a process iterating through the rows one at a time. And that’s okay when you’re starting
out with window functions because you get to write your queries—or at least the simple ones—
correctly. As time goes by, you can gradually transition to the deeper understanding of the window
functions’ conceptual design and start thinking in a set-based manner.

www.allitebooks.com

http://www.allitebooks.org

 Background of Window Functions 11

Drawbacks of alternatives to Window Functions
Window functions have several advantages compared to alternative, more traditional, ways to achieve
the same calculations—for example, grouped queries, subqueries, and others. Here I’ll provide a
couple of straightforward examples. There are several other important differences beyond the advan-
tages I’ll show here, but it’s premature to discuss those now.

I’ll start with traditional grouped queries. Those do give you insight into new information in the
form of aggregates, but you also lose something—the detail.

Once you group data, you’re forced to apply all calculations in the context of the group. But what
if you need to apply calculations that involve both detail and aggregates? For example, suppose that
you need to query the Sales.OrderValues view and calculate for each order the percentage of the
 current order value of the customer total, as well as the difference from the customer average. The
current order value is a detail element, and the customer total and average are aggregates. If you
group the data by customer, you don’t have access to the individual order values. One way to handle
this need with traditional grouped queries is to have a query that groups the data by customer, define
a table expression based on this query, and then join the table expression with the base table to
match the detail with the aggregates. Here’s a query that implements this approach:

WITH Aggregates AS
(
 SELECT custid, SUM(val) AS sumval, AVG(val) AS avgval
 FROM Sales.OrderValues
 GROUP BY custid
)
SELECT O.orderid, O.custid, O.val,
 CAST(100. * O.val / A.sumval AS NUMERIC(5, 2)) AS pctcust,
 O.val - A.avgval AS diffcust
FROM Sales.OrderValues AS O
 JOIN Aggregates AS A
 ON O.custid = A.custid;

Here’s the abbreviated output generated by this query:

orderid custid val pctcust diffcust
-------- ------- ------- -------- ------------
10835 1 845.80 19.79 133.633334
10643 1 814.50 19.06 102.333334
10952 1 471.20 11.03 -240.966666
10692 1 878.00 20.55 165.833334
11011 1 933.50 21.85 221.333334
10702 1 330.00 7.72 -382.166666
10625 2 479.75 34.20 129.012500
10759 2 320.00 22.81 -30.737500
10926 2 514.40 36.67 163.662500
10308 2 88.80 6.33 -261.937500
...

12 CHAPTER 1 SQL Windowing

Now imagine needing to also involve the percentage from the grand total and the difference from
the grand average. To do this, you need to add another table expression, like so:

WITH CustAggregates AS
(
 SELECT custid, SUM(val) AS sumval, AVG(val) AS avgval
 FROM Sales.OrderValues
 GROUP BY custid
),
GrandAggregates AS
(
 SELECT SUM(val) AS sumval, AVG(val) AS avgval
 FROM Sales.OrderValues
)
SELECT O.orderid, O.custid, O.val,
 CAST(100. * O.val / CA.sumval AS NUMERIC(5, 2)) AS pctcust,
 O.val - CA.avgval AS diffcust,
 CAST(100. * O.val / GA.sumval AS NUMERIC(5, 2)) AS pctall,
 O.val - GA.avgval AS diffall
FROM Sales.OrderValues AS O
 JOIN CustAggregates AS CA
 ON O.custid = CA.custid
 CROSS JOIN GrandAggregates AS GA;

Here’s the output of this query:

orderid custid val pctcust diffcust pctall diffall
-------- ------- ------- -------- ------------ ------- -------------
10835 1 845.80 19.79 133.633334 0.07 -679.252072
10643 1 814.50 19.06 102.333334 0.06 -710.552072
10952 1 471.20 11.03 -240.966666 0.04 -1053.852072
10692 1 878.00 20.55 165.833334 0.07 -647.052072
11011 1 933.50 21.85 221.333334 0.07 -591.552072
10702 1 330.00 7.72 -382.166666 0.03 -1195.052072
10625 2 479.75 34.20 129.012500 0.04 -1045.302072
10759 2 320.00 22.81 -30.737500 0.03 -1205.052072
10926 2 514.40 36.67 163.662500 0.04 -1010.652072
10308 2 88.80 6.33 -261.937500 0.01 -1436.252072
...

You can see how the query gets more and more complicated, involving more table expressions
and more joins.

Another way to perform similar calculations is to use a separate subquery for each calculation.
Here are the alternatives, using subqueries to the last two grouped queries:

-- subqueries with detail and customer aggregates
SELECT orderid, custid, val,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid) AS NUMERIC(5, 2)) AS pctcust,
 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid) AS diffcust
FROM Sales.OrderValues AS O1;

 Background of Window Functions 13

-- subqueries with detail, customer and grand aggregates
SELECT orderid, custid, val,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid) AS NUMERIC(5, 2)) AS pctcust,
 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid) AS diffcust,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2) AS NUMERIC(5, 2)) AS pctall,
 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2) AS diffall
FROM Sales.OrderValues AS O1;

There are two main problems with the subquery approach. One, you end up with lengthy com-
plex code. Two, SQL Server’s optimizer is not coded at the moment to identify cases where multiple
subqueries need to access the exact same set of rows; hence, it will use separate visits to the data for
each subquery. This means that the more subqueries you have, the more visits to the data you get.
Unlike the previous problem, this one is not a problem with the language, but rather with the specific
optimization you get for subqueries in SQL Server.

Remember that the idea behind a window function is to define a window, or a set, of rows for the
function to operate on. Aggregate functions are supposed to be applied to a set of rows; therefore,
the concept of windowing can work well with those as an alternative to using grouping or subqueries.
And when calculating the aggregate window function, you don’t lose the detail. You use the OVER
clause to define the window for the function. For example, to calculate the sum of all values from the
result set of the query, simply use the following:

SUM(val) OVER()

If you do not restrict the window (empty parentheses), your starting point is the result set of the
query.

To calculate the sum of all values from the result set of the query where the customer ID is the
same as in the current row, use the partitioning capabilities of window functions (which I’ll say more
about later), and partition the window by custid, as follows:

SUM(val) OVER(PARTITION BY custid)

Note that the term partitioning suggests filtering rather than grouping.

Using window functions, here’s how you address the request involving the detail and customer
aggregates, returning the percentage of the current order value of the customer total as well as the
difference from the average (with window functions in bold):

SELECT orderid, custid, val,
 CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust,
 val - AVG(val) OVER(PARTITION BY custid) AS diffcust
FROM Sales.OrderValues;

14 CHAPTER 1 SQL Windowing

And here’s another query where you also add the percentage of the grand total and the difference
from the grand average:

SELECT orderid, custid, val,
 CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust,
 val - AVG(val) OVER(PARTITION BY custid) AS diffcust,
 CAST(100. * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pctall,
 val - AVG(val) OVER() AS diffall
FROM Sales.OrderValues;

Observe how much simpler and more concise the versions with the window functions are. Also, in
terms of optimization, note that SQL Server’s optimizer was coded with the logic to look for mul-
tiple functions with the same window specification. If any are found, SQL Server will use the same
visit (whichever kind of scan was chosen) to the data for those. For example, in the last query, SQL
Server will use one visit to the data to calculate the first two functions (the sum and average that are
partitioned by custid), and it will use one other visit to calculate the last two functions (the sum and
average that are nonpartitioned). I will demonstrate this concept of optimization in Chapter 4, “Opti-
mization of Window Functions.”

Another advantage window functions have over subqueries is that the initial window prior to
applying restrictions is the result set of the query. This means that it’s the result set after applying
table operators (for example, joins), filters, grouping, and so on. You get this result set because of the
phase of logical query processing in which window functions get evaluated. (I’ll say more about this
later in this chapter.) Conversely, a subquery starts from scratch—not from the result set of the outer
query. This means that if you want the subquery to operate on the same set as the result of the outer
query, it will need to repeat all query constructs used by the outer query. As an example, suppose that
you want our calculations of the percentage of the total and the difference from the average to apply
only to orders placed in the year 2007. With the solution using window functions, all you need to do is
add one filter to the query, like so:

SELECT orderid, custid, val,
 CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust,
 val - AVG(val) OVER(PARTITION BY custid) AS diffcust,
 CAST(100. * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pctall,
 val - AVG(val) OVER() AS diffall
FROM Sales.OrderValues
WHERE orderdate >= '20070101'
 AND orderdate < '20080101';

The starting point for all window functions is the set after applying the filter. But with subqueries,
you start from scratch; therefore, you need to repeat the filter in all of your subqueries, like so:

SELECT orderid, custid, val,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid
 AND orderdate >= '20070101'
 AND orderdate < '20080101') AS NUMERIC(5, 2)) AS pctcust,

 A Glimpse of Solutions Using Window Functions 15

 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid
 AND orderdate >= '20070101'
 AND orderdate < '20080101') AS diffcust,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE orderdate >= '20070101'
 AND orderdate < '20080101') AS NUMERIC(5, 2)) AS pctall,
 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE orderdate >= '20070101'
 AND orderdate < '20080101') AS diffall
FROM Sales.OrderValues AS O1
WHERE orderdate >= '20070101'
 AND orderdate < '20080101';

Of course, you could use workarounds, such as first defining a common table expression (CTE)
based on a query that performs the filter, and then have both the outer query and the subqueries
refer to the CTE. However, my point is that with window functions, you don’t need any workarounds
because they operate on the result of the query. I will provide more details about this aspect in the
design of window functions later in the chapter, in the “Query Elements Supporting Window Func-
tions” section.

As mentioned earlier, window functions also lend themselves to good optimization, and often,
alternatives to window functions don’t get optimized as well, to say the least. Of course, there are
cases where the inverse is also true. I explain the optimization of window functions in Chapter 4 and
provide plenty of examples for using them efficiently in Chapter 5.

A glimpse of Solutions Using Window Functions

The first four chapters of the book describe window functions and their optimization. The material
is very technical, and even though I find it fascinating, I can see how some might find it a bit boring.
What’s usually much more interesting for people to read about is the use of the functions to solve
practical problems, which is what this book gets to in the final chapter. When you see how window
functions are used in problem solving, you truly realize their value. So how can I convince you it’s
worth your while to go through the more technical parts and not give up reading before you get to
the more interesting part later? What if I give you a glimpse of a solution using window functions
right now?

The querying task I will address here involves querying a table holding a sequence of values in
some column and identifying the consecutive ranges of existing values. This problem is also known as
the islands problem. The sequence can be a numeric one, a temporal one (which is more common), or
any data type that supports total ordering. The sequence can have unique values or allow duplicates.
The interval can be any fixed interval that complies with the column’s type (for example, the integer
1, the integer 7, the temporal interval 1 day, the temporal interval 2 weeks, and so on). In Chapter 5, I
will get to the different variations of the problem. Here, I’ll just use a simple case to give you a sense

16 CHAPTER 1 SQL Windowing

of how it works—using a numeric sequence with the integer 1 as the interval. Use the following code
to generate the sample data for this task:

SET NOCOUNT ON;
USE TSQL2012;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1
(
 col1 INT NOT NULL
 CONSTRAINT PK_T1 PRIMARY KEY
);

INSERT INTO dbo.T1(col1)
 VALUES(2),(3),(11),(12),(13),(27),(33),(34),(35),(42);
GO

As you can see, there are some gaps in the col1 sequence in T1. Your task is to identify the con-
secutive ranges of existing values (also known as islands) and return the start and end of each island.
Here’s what the desired result should look like:

start_range end_range
----------- -----------
2 3
11 13
27 27
33 35
42 42

If you’re curious as to the practicality of this problem, there are numerous production examples.
Examples include producing availability reports, identifying periods of activity (for example, sales),
identifying consecutive periods in which a certain criterion is met (for example, periods where a stock
value was above or below a certain threshold), identifying ranges of license plates in use, and so on.
The current example is very simplistic on purpose so that we can focus on the techniques used to
solve it. The technique you will use to solve a more complicated case requires minor adjustments to
the one you use to address the simple case. So consider it a challenge to come up with an efficient,
set-based solution to this task. Try to first come up with a solution that works. Then repopulate the
table with a decent number of rows—say, 10,000,000—and try your technique again. See how it per-
forms. Only then take a look at my solutions.

Before showing the solution using window functions, I’ll show one of the many possible solutions
that use more traditional language constructs. In particular, I’ll show one that uses subqueries. To
explain the strategy of the first solution, examine the values in the T1.col1 sequence, where I added a
conceptual attribute that doesn’t exist at the moment and that I think of as a group identifier:

col1 grp
----- ---
2 a
3 a
11 b

 A Glimpse of Solutions Using Window Functions 17

12 b
13 b
27 c
33 d
34 d
35 d
42 e

The grp attribute doesn’t exist yet. Conceptually, it is a value that uniquely identifies an island. This
means that it has to be the same for all members of the same island and different then the values
generated for other islands. If you manage to calculate such a group identifier, you can then group
the result by this grp attribute and return the minimum and maximum col1 values in each group
(island). One way to produce this group identifier using traditional language constructs is to calculate,
for each current col1 value, the minimum col1 value that is greater than or equal to the current one,
and that has no following value.

As an example, following this logic, try to identify with respect to the value 2 what the minimum
col1 value is that is greater than or equal to 2 and that appears before a missing value? It’s 3. Now try
to do the same with respect to 3. You also get 3. So 3 is the group identifier of the island that starts
with 2 and ends with 3. For the island that starts with 11 and ends with 13, the group identifier for all
members is 13. As you can see, the group identifier for all members of a given island is actually the
last member of that island.

Here’s the T-SQL code required to implement this concept:

SELECT col1,
 (SELECT MIN(B.col1)
 FROM dbo.T1 AS B
 WHERE B.col1 >= A.col1
 -- is this row the last in its group?
 AND NOT EXISTS
 (SELECT *
 FROM dbo.T1 AS C
 WHERE C.col1 = B.col1 + 1)) AS grp
FROM dbo.T1 AS A;

This query generates the following output:

col1 grp
----------- -----------
2 3
3 3
11 13
12 13
13 13
27 27
33 35
34 35
35 35
42 42

18 CHAPTER 1 SQL Windowing

The next part is pretty straightforward—define a table expression based on the last query, and in
the outer query, group by the group identifier and return the minimum and maximum col1 values for
each group, like so:

SELECT MIN(col1) AS start_range, MAX(col1) AS end_range
FROM (SELECT col1,
 (SELECT MIN(B.col1)
 FROM dbo.T1 AS B
 WHERE B.col1 >= A.col1
 AND NOT EXISTS
 (SELECT *
 FROM dbo.T1 AS C
 WHERE C.col1 = B.col1 + 1)) AS grp
 FROM dbo.T1 AS A) AS D
GROUP BY grp;

There are two main problems with this solution. One, it’s a bit complicated to follow the logic here.
Two, it’s horribly slow. I don’t want to start going over query execution plans yet—there will be plenty
of this later in the book—but I can tell you that for each row in the table, SQL Server will perform
almost two complete scans of the data. Now think of a sequence of 10,000,000 rows, and try to
translate it to the amount of work involved. The total number of rows that will need to be processed is
simply enormous.

The next solution is also one that calculates a group identifier, but using window functions. The
first step in the solution is to use the ROW_NUMBER function to calculate row numbers based on col1
ordering. I will provide the gory details about the ROW_NUMBER function later in the book; for now,
it suffices to say that it computes unique integers within the partition starting with 1 and increment-
ing by 1 based on the given ordering.

With this in mind, the following query returns the col1 values and row numbers based on col1
ordering:

SELECT col1, ROW_NUMBER() OVER(ORDER BY col1) AS rownum
FROM dbo.T1;

col1 rownum
----------- --------------------
2 1
3 2
11 3
12 4
13 5
27 6
33 7
34 8
35 9
42 10

Now focus your attention on the two sequences. One (col1) is a sequence with gaps, and the
other (rownum) is a sequence without gaps. With this in mind, try to figure out what’s unique to the
relationship between the two sequences in the context of an island. Within an island, both sequences
keep incrementing by a fixed interval. Therefore, the difference between the two is constant. For

 Elements of Window Functions 19

the next island, col1 increases by more than 1, whereas rownum increases just by 1, so the difference
keeps growing. In other words, the difference between the two is constant and unique for each island.
Run the following query to calculate this difference:

SELECT col1, col1 - ROW_NUMBER() OVER(ORDER BY col1) AS diff
FROM dbo.T1;

col1 diff
----------- --------------------
2 1
3 1
11 8
12 8
13 8
27 21
33 26
34 26
35 26
42 32

You can see that this difference satisfies the two requirements of our group identifier; therefore,
you can use it as such. The rest is the same as in the previous solution; namely, you group the rows by
the group identifier and return the minimum and maximum col1 values in each group, like so:

SELECT MIN(col1) AS start_range, MAX(col1) AS end_range
FROM (SELECT col1,
 -- the difference is constant and unique per island
 col1 - ROW_NUMBER() OVER(ORDER BY col1) AS grp
 FROM dbo.T1) AS D
GROUP BY grp;

Observe how concise and simple the solution is. Of course, it’s always a good idea to add com-
ments to help those who see the solution for the first time better understand it.

The solution is also highly efficient. The work involved in assigning the row numbers is negligible
compared to the previous solution. It’s just a single ordered scan of the index on col1 and an iterator
that keeps incrementing a counter. In a performance test I ran with a sequence with 10,000,000 rows,
this query finished in 10 seconds. Other solutions ran for a much longer time.

I hope that this glimpse to solutions using window functions was enough to intrigue you and help
you see that they contain immense power. Now we’ll get back to studying the technicalities of win-
dow functions. Later in the book, you will have a chance to see many more examples.

Elements of Window Functions

The specification of a window function’s behavior appears in the function’s OVER clause and involves
multiple elements. The three core elements are partitioning, ordering, and framing. Not all window
functions support all elements. As I describe each element, I’ll also indicate which functions support it.

20 CHAPTER 1 SQL Windowing

Partitioning
The partitioning element is implemented with a PARTITION BY clause and is supported by all window
functions. It restricts the window of the current calculation to only those rows from the result set of
the query that have the same values in the partitioning columns as in the current row. For example, if
your function uses PARTITION BY custid and the custid value in the current row is 1, the window with
respect to the current row is all rows from the result set of the query that have a custid value of 1. If
the custid value of the current row is 2, the window with respect to the current row is all rows with a
custid of 2.

If a PARTITION BY clause is not specified, the window is not restricted. Another way to look at it
is that inf case explicit partitioning wasn’t specified, the default partitioning is to consider the entire
result set of the query as one partition.

If it wasn’t obvious, let me point out that different functions in the same query can have different
partitioning specifications. Consider the query in Listing 1-1 as an example.

LISTIng 1-1 Query with Two RANK Calculations

SELECT custid, orderid, val,
 RANK() OVER(ORDER BY val DESC) AS rnk_all,
 RANK() OVER(PARTITION BY custid
 ORDER BY val DESC) AS rnk_cust
FROM Sales.OrderValues;

Observe that the first RANK function (which generates the attribute rnk_all) relies on the default
partitioning, and the second RANK function (which generates rnk_cust) uses explicit partitioning by
custid. Figure 1-4 illustrates the partitions defined for a sample of three results of calculations in the
query: one rnk_all value and two rnk_cust values.

custid orderid val rnk_all rnk_cust
------- -------- ------- -------- ---------

 1 11011 933.50 419 1
 1 10692 878.00 440 2
 1 10835 845.80 457 3
 1 10643 814.50 469 4
 1 10952 471.20 615 5
 1 10702 330.00 686 6

 2 10926 514.40 592 1
 2 10625 479.75 608 2
 2 10759 320.00 691 3
 2 10308 88.80 797 4
 ...

FIgURE 1-4 Window partitioning.

 Elements of Window Functions 21

The arrows point from the result values of the functions to the window partitions that were used to
compute them.

Ordering
The ordering element defines the ordering for the calculation, if relevant, within the partition. In
standard SQL, all functions support an ordering element. As for SQL Server, initially it didn’t support
the ordering element with aggregate functions; rather, it only supported partitioning. Support for
ordering for aggregates was added in SQL Server 2012.

Interestingly, the ordering element has a slightly different meaning for different function catego-
ries. With ranking functions, ordering is intuitive. For example, when using descending ordering, the
RANK function returns one more than the number of rows in your respective partition that have a
greater ordering value than yours. When using ascending ordering, the function returns one more
than the number of rows in the pattern with a lower ordering value than yours. Figure 1-5 illustrates
the rank calculations from Listing 1-1 shown earlier—this time including the interpretation of the
ordering element.

custid orderid val rnk_all rnk_cust
------- -------- ------- -------- ---------
1 11011 933.50 419 1
1 10692 878.00 440 2
1 10835 845.80 457 3
1 10643 814.50 469 4
1 10952 471.20 615 5
1 10702 330.00 686 6
2 10926 514.40 592 1
2 10625 479.75 608 2
2 10759 320.00 691 3
2 10308 88.80 797 4
...

custid orderid val
------- -------- ---------
63 10865 16387.50
34 10981 15810.00
71 11030 12615.05
65 10889 11380.00
73 10417 11188.40 418 rows with
... val > 933.50
50 10529 946.00
83 10994 940.50
35 10901 934.50
55 10338 934.50
1 11011 933.50
...

custid orderid val
------- -------- -------
1 11011 933.50
1 10692 878.00
1 10835 845.80 3 rows with
1 10643 814.50 val > 814.50
1 10952 471.20
1 10702 330.00

custid orderid val
------- -------- -------
2 10926 514.40
2 10625 479.75 2 rows with
2 10759 320.00 val > 320.00
2 10308 88.80

FIgURE 1-5 Window ordering.

22 CHAPTER 1 SQL Windowing

Figure 1-5 depicts the windows of only three of the rank calculations. Of course, there are many
more—1,660, to be precise. That’s because there are 830 rows involved, and for each row, two rank
calculations are made. What’s interesting to note here is that conceptually it’s as if all those windows
coexist simultaneously.

Aggregate window functions have a slightly different meaning for ordering compared to rank-
ing window functions. With aggregates, contrary to what some might think, ordering has nothing to
do with the order in which the aggregate is applied; rather, the ordering element gives meaning to
the framing options that I will describe next. In other words, the ordering element is an aid to define
which rows to restrict in the window.

Framing
Framing is essentially another filter that further restricts the rows in the partition. It is applicable to
aggregate window functions as well as to three of the offset functions: FIRST_VALUE, LAST_VALUE,
and NTH_VALUE. Think of this windowing element as defining two points in the current row’s parti-
tion based on the given ordering, framing the rows that the calculation will apply to.

The framing specification in the standard includes a ROWS or RANGE option that defines the start-
ing row and ending row of the frame, as well as a window frame-exclusion option. SQL Server 2012
introduced support for framing, with full implementation of the ROWS option, partial implementation
of the RANGE option, and no implementation of the window frame-exclusion option.

The ROWS option allows you to indicate the points in the frame as an offset in terms of the
number of rows with respect to the current row. The RANGE option is more dynamic, defining the
offsets in terms of a difference between the value of the frame point and the current row’s value.
The window frame-exclusion option specifies what to do with the current row and its peers in case of
ties. This explanation might seem far from clear or sufficient, but I don’t want to get into the details
just yet. There will be plenty of that later. For now, I just want to introduce the concept and provide a
simple example. Following is a query against the EmpOrders view, calculating the running total quan-
tity for each employee and order month:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS runqty
FROM Sales.EmpOrders;

Observe that the window function applies the SUM aggregate to the qty attribute, partitions the
window by empid, orders the partition rows by ordermonth, and frames the partition rows based on
the given ordering between unbounded preceding (no low boundary point) and the current row. In
other words, the result will be the sum of all prior rows in the frame, inclusive of the current row. This
query generates the following output, shown here in abbreviated form:

 Query Elements Supporting Window Functions 23

empid ordermonth qty run_qty
------ ----------------------- ----------- -----------
1 2006-07-01 00:00:00.000 121 121
1 2006-08-01 00:00:00.000 247 368
1 2006-09-01 00:00:00.000 255 623
1 2006-10-01 00:00:00.000 143 766
1 2006-11-01 00:00:00.000 318 1084
...
2 2006-07-01 00:00:00.000 50 50
2 2006-08-01 00:00:00.000 94 144
2 2006-09-01 00:00:00.000 137 281
2 2006-10-01 00:00:00.000 248 529
2 2006-11-01 00:00:00.000 237 766
...

Observe how the window specification is as easy to read as plain English. I will provide much more
detail about the framing options in Chapter 2.

Query Elements Supporting Window Functions

Window functions aren’t supported in all query clauses; rather, they’re supported only in the SELECT
and ORDER BY clauses. To help you understand the reason for this restriction, I first need to explain a
concept called logical query processing. Then I’ll get to the clauses that support window functions, and
finally I’ll explain how to circumvent the restriction with the other clauses.

Logical Query Processing
Logical query processing describes the conceptual way in which a SELECT query is evaluated accord-
ing to the logical language design. It describes a process made of a series of steps, or phases, that
proceed from the query’s input tables to the query’s final result set. Note that by “logical query
processing,” I mean the conceptual way in which the query is evaluated—not necessarily the physi-
cal way SQL Server processes the query. As part of the optimization, SQL Server can make shortcuts,
re arrange the order of some steps, and pretty much do whatever it likes. But that’s as long as it guar-
antees that it will produce the same output as the one defined by logical query processing applied to
the declarative query request.

Each step in logical query processing operates on one or more tables (sets of rows) that serve as its
input and returns a table as its output. The output table of one step then becomes the input table for
the next step.

Figure 1-6 is a flow diagram illustrating the logical query processing flow in SQL Server 2012.

24 CHAPTER 1 SQL Windowing

1
Entering FROM

5
Entering SELECT

5-1
Evaluate Expressions

Set
Cursor

(if outermost query)

First
Table Operator

Exists?

WHERE
Exists?

GROUP BY
Exists?

HAVING
Exists?

DISTINCT
Exists?

ORDER BY
Exists?

TOP
Exists?

OFFSET/
FETCH or TOP

Exists?

1-J1
Cartesian Product

1-A1
Apply Table
Expression

1-P1
Group

1-U1
Generate Copies

1-J2
ON Filter

JOIN
Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

No

No

No

No

No

No

No

NoNo

CR
O

SS

O
U

TE
R

APPLY PIVOT UNPIVOT

1-A2
Add Outer Rows

1-P2
Spread

1-U2
Extract Element

1-J3
Add Outer Rows

2
Filter Rows

Group

4
Filter Groups

5-2
Remove Duplicates

Window
Functions

6
Order

7-b
Filter

7a
Filter

1-P3
Aggregate

1-U3
Remove NULLs

Start

Operator
Type?

Another
Table Operator

Exists?

End

CR
O

SS

IN
N

ER

O
U

TE
R

FIgURE 1-6 Logical query processing.

 Query Elements Supporting Window Functions 25

Note that when you write a query, the SELECT clause appears first in terms of the keyed-in order,
but observe that in terms of the logical query processing order, it appears almost last—just before the
ORDER BY clause is handled.

There’s much more to say about logical query processing, but the details are a topic for another
book. For the purposes of our discussion, what’s important to note is the order in which the various
clauses are evaluated. The following list shows the order (with the phases in which window functions
are allowed shown in bold):

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

5-1. Evaluate Expressions

5-2. Remove Duplicates

6. ORDER BY

7. OFFSET-FETCH/TOP

Understanding logical query processing and the logical query processing order enables you to
understand the motivation behind restricting window functions to only specific clauses.

Clauses Supporting Window Functions
As illustrated in Figure 1-6, only the query clauses SELECT and ORDER BY support window functions
directly. The reason for the limitation is to avoid ambiguity by operating on (almost) the final result
set of the query as the starting point for the window. If window functions are allowed in phases
previous to the SELECT phase, their initial window could be different than that in the SELECT phase,
and therefore, with some query forms, it could be very difficult to figure out the right result. I’ll try to
demonstrate the ambiguity problem through an example. First run the following code to create the
table T1 and populate it with sample data:

SET NOCOUNT ON;
USE TSQL2012;
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1
(
 col1 VARCHAR(10) NOT NULL
 CONSTRAINT PK_T1 PRIMARY KEY
);

INSERT INTO dbo.T1(col1)
 VALUES('A'),('B'),('C'),('D'),('E'),('F');

26 CHAPTER 1 SQL Windowing

Suppose that window functions were allowed in phases prior to the SELECT—for example, in the
WHERE phase. Consider then the following query, and try to figure out which col1 values should
appear in the result:

SELECT col1
FROM dbo.T1
WHERE col1 > 'B'
 AND ROW_NUMBER() OVER(ORDER BY col1) <= 3;

Before you assume that the answer should obviously be the values C, D, and E, consider the all-at-
once concept in SQL. The concept of all-at-once means that all expressions that appear in the same
logical phase are conceptually evaluated at the same point in time. This means that the order in which
the expressions are evaluated shouldn’t matter. With this in mind, the following query should be
semantically equivalent to the previous one:

SELECT col1
FROM dbo.T1
WHERE ROW_NUMBER() OVER(ORDER BY col1) <= 3
 AND col1 > 'B';

Now, can you figure out what the right answer is? Is it C, D, and E, or is it just C?

That’s an example of the ambiguity I was talking about. By restricting window functions to only the
SELECT and ORDER BY clauses of a query, this ambiguity is eliminated.

Looking at Figure 1-6, you might have noticed that within the SELECT phase, it’s step 5-1 (Evalu-
ate Expressions) that supports window functions, and this step is evaluated before step 5-2 (Remove
Duplicates). If you wonder why it is important to know such subtleties, I’ll demonstrate why.

Following is a query returning the empid and country attributes of all employees from the
Employees table:

SELECT empid, country
FROM HR.Employees;

empid country
----------- ---------------
1 USA
2 USA
3 USA
4 USA
5 UK
6 UK
7 UK
8 USA
9 UK

Next, examine the following query and see if you can guess what its output is before executing it:

SELECT DISTINCT country, ROW_NUMBER() OVER(ORDER BY country) AS rownum
FROM HR.Employees;

 Query Elements Supporting Window Functions 27

Some expect to get the following output:

country rownum
--------------- --------------------
UK 1
USA 2

But in reality you get this:

country rownum
--------------- --------------------
UK 1
UK 2
UK 3
UK 4
USA 5
USA 6
USA 7
USA 8
USA 9

Now consider that the ROW_NUMBER function in this query is evaluated in step 5-1 where
the SELECT list expressions are evaluated—prior to the removal of the duplicates in step 5-2. The
ROW_NUMBER function assigns nine unique row numbers to the nine employee rows, and then the
DISTINCT clause has no duplicates left to remove.

When you realize this and understand that it has to do with the logical query processing order
of the different elements, you can think of a solution. For example, you can have a table expression
defined based on a query that just returns distinct countries and have the outer query assign the row
numbers after duplicates are removed, like so:

WITH EmpCountries AS
(
 SELECT DISTINCT country FROM HR.Employees
)
SELECT country, ROW_NUMBER() OVER(ORDER BY country) AS rownum
FROM EmpCountries;

Can you think of other ways to solve the problem, perhaps even simpler ways than this one?

The fact that window functions are evaluated in the SELECT or ORDER BY phase means that the
window defined for the calculation—before applying further restrictions—is the intermediate form
of rows of the query after all previous phases—that is, after applying the FROM with all of its table
operators (for example, joins), and after the WHERE filtering, the grouping, and the filtering of the
groups. Consider the following query as an example:

SELECT O.empid,
 SUM(OD.qty) AS qty,
 RANK() OVER(ORDER BY SUM(OD.qty) DESC) AS rnk
FROM Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
WHERE O.orderdate >= '20070101'

28 CHAPTER 1 SQL Windowing

 AND O.orderdate < '20080101'
GROUP BY O.empid;

empid qty rnk
------ ----- ---
4 5273 1
3 4436 2
1 3877 3
8 2843 4
2 2604 5
7 2292 6
6 1738 7
5 1471 8
9 955 9

First the FROM clause is evaluated and the join is performed. Then only the rows where the order
year is 2007 are filtered. Then the remaining rows are grouped by employee ID. Only then are the
expressions in the SELECT list evaluated, including the RANK function, which is calculated based on
ordering by the total quantity descending. If there were other window functions in the SELECT list,
they would all use the same result set as their starting point. Recall from earlier discussions about
alternative options to window functions (for example, subqueries) that they start their view of the
data from scratch—meaning that you have to repeat all the logic you have in the outer query in each
of your subqueries, leading to much more verbose code.

Circumventing the Limitations
I explained the reasoning behind disallowing the use of window functions in logical query processing
phases that are evaluated prior to the SELECT clause. But what if you need to filter by or group by a
calculation based on window functions? The solution is to use a table expression such as a CTE or a
derived table. Have a query invoke the window function in its SELECT list, assigning the calculation an
alias. Define a table expression based on that query, and then have the outer query refer to that alias
where you need it.

Here’s an example showing how you can filter by the result of a window function using a CTE:

WITH C AS
(
 SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
 FROM Sales.OrderValues
)
SELECT *
FROM C
WHERE rnk <= 5;

orderid orderdate val rnk
-------- ----------------------- --------- ----
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5

 Query Elements Supporting Window Functions 29

With modification statements, window functions are disallowed altogether because those don’t
support SELECT and ORDER BY clauses. But there are cases where involving window functions in mod-
ification statements is needed. Table expressions can be used to address this need as well because
T-SQL supports modifying data through table expressions. I’ll demonstrate this capability with an
UPDATE example. First run the following code to create a table called T1 with columns col1 and col2
and populate it with sample data:

SET NOCOUNT ON;
USE TSQL2012;
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1
(
 col1 INT NULL,
 col2 VARCHAR(10) NOT NULL
);

INSERT INTO dbo.T1(col2)
 VALUES('C'),('A'),('B'),('A'),('C'),('B');

Explicit values were provided in col2, and NULLs were used as defaults in col1.

Suppose this table represents a situation with data-quality problems. A key wasn’t enforced in this
table, and therefore it is not possible to uniquely identify rows. You want to assign unique col1 values
in all rows. You’re thinking of using the ROW_NUMBER function in an UPDATE statement, like so:

UPDATE dbo.T1
 SET col1 = ROW_NUMBER() OVER(ORDER BY col2);

But remember that this is not allowed. The workaround is to write a query against T1 returning
col1 and an expression based on the ROW_NUMBER function (call it rownum); define a table expres-
sion based on this query; finally, have an outer UPDATE statement against the CTE assign rownum to
col1, like so:

WITH C AS
(
 SELECT col1, col2,
 ROW_NUMBER() OVER(ORDER BY col2) AS rownum
 FROM dbo.T1
)
UPDATE C
 SET col1 = rownum;

30 CHAPTER 1 SQL Windowing

Query T1, and observe that all rows got unique col1 values:

SELECT col1, col2
FROM dbo.T1;

col1 col2
----------- ----------
5 C
1 A
3 B
2 A
6 C
4 B

Potential for Additional Filters

I provided a workaround in T-SQL that allows you to use window functions indirectly in query ele-
ments that don’t support those directly. The workaround is a table expression in the form of a CTE or
derived table. It’s nice to have a workaround, but a table expression adds an extra layer to the query
and complicates it a bit. The examples I showed are quite simple, but think about long and complex
queries to begin with. Can you have a simpler solution that doesn’t require this extra layer?

With window functions, SQL Server doesn’t have a solution at the moment. It’s interesting, though,
to see how others coped with this problem. Teradata for example created a filtering clause it calls
QUALIFY that is conceptually evaluated after the SELECT clause. This means that it can refer to win-
dow functions directly, as in the following example:

SELECT orderid, orderdate, val
FROM Sales.OrderValues
QUALIFY RANK() OVER(ORDER BY val DESC) <= 5;

Furthermore, you can refer to column aliases defined in the SELECT list, like so:

SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues
QUALIFY rnk <= 5;

The QUALIFY clause isn’t defined in standard SQL; rather, it’s a Teradata-specific feature. However,
it seems like a very interesting solution, and it would be nice to see both the standard and SQL Server
providing a solution to this need.

www.allitebooks.com

http://www.allitebooks.org

 Reuse of Window Definitions 31

Reuse of Window Definitions

Suppose that you need to invoke multiple window functions in the same query and part of the win-
dow specification (or all of it) is common to multiple functions. If you indicate the complete window
specifications in all functions, the code can quickly get lengthy. Here’s an example illustrating the
problem:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS run_sum_qty,
 AVG(qty) OVER (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS run_avg_qty,
 MIN(qty) OVER (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS run_min_qty,
 MAX(qty) OVER (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS run_max_qty
FROM Sales.EmpOrders;

Standard SQL has an answer to this problem in the form of a clause called WINDOW that allows
naming a window specification or part of it; then you can refer to that name in other window defini-
tions—ones used by window functions or even by a definition of another window name. This clause is
conceptually evaluated after the HAVING clause and before the SELECT clause.

SQL Server doesn’t yet support the WINDOW clause. But according to standard SQL, you can
abbreviate the preceding query using the WINDOW clause like so:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER W1 AS run_sum_qty,
 AVG(qty) OVER W1 AS run_avg_qty,
 MIN(qty) OVER W1 AS run_min_qty,
 MAX(qty) OVER W1 AS run_max_qty
FROM Sales.EmpOrders
WINDOW W1 AS (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW);

That’s quite a difference, as you can see. In this case, the WINDOW clause assigns the name W1 to
a complete window specification with partitioning, ordering, and framing options. Then all four func-
tions refer to W1 as their window specification. The WINDOW clause is actually quite sophisticated. As
mentioned, it doesn’t have to name a complete window specification; rather, it can even name only
part of it. Then a window definition can include a mix of named parts plus explicit parts. As an aside,

32 CHAPTER 1 SQL Windowing

the coverage of standard SQL for the WINDOW clause is a striking length of 10 pages! And trying to
decipher the details is no picnic.

It would be great to see SQL Server add such support in the future, especially now that it has
extensive support for window functions and people are likely to end up with lengthy window
specifications.

Summary

This chapter introduced the concept of windowing in SQL. It provided the background to window
functions, explaining the motivation for their use. The chapter then provided a glimpse of solving
querying tasks using window functions by addressing the task of identifying ranges of existing values
in a sequence—a problem also known as identifying islands. The chapter then proceeded to explain
the design of window functions, covering the elements involved in window specifications: partition-
ing, ordering, and framing. Finally, this chapter explained how standard SQL addresses the need to
reuse a window specification or part of it. The next chapter provides a breakdown of window func-
tions, getting into more detail.

 33

C H A P T E R 2

a Detailed Look at Window
Functions

This chapter looks at the various types of window functions, getting into the details of each. Still,
the focus in this chapter is on the logical aspects of the functions. Optimization will be covered

separately in Chapter 4, “Optimization of Window Functions.”

The main reason for separating the discussion of the two layers into different chapters is that stan-
dard SQL deals only with the logical layer. And because Microsoft SQL Server implements the func-
tions based on the standard, the coverage of the logical aspects of the functions in this book could be
interesting for readers who use database platforms other than SQL Server as well. Chapter 4 focuses
on the optimization of the functions—namely, the physical layer, which is very platform-specific—and
will be of interest mainly to readers who use SQL Server.

This chapter is organized in sections based on the function categories: window aggregate func-
tions, rank functions, distribution functions, and offset functions. With each category of functions, I
first explain the windowing elements supported by the category, and then I explain the specifics of
each function. If the function was introduced or enhanced in SQL Server 2012, I usually provide alter-
natives available prior to SQL Server 2012 or point to a later section in the book where such alterna-
tives are discussed.

Window Aggregate Functions

This section covers window aggregate functions. I first explain how the windowing concept works
with aggregate functions; then I describe the supported elements in the specification of window
aggregate functions and their meaning in detail. And then I get to more specialized aspects such as
further filtering ideas, handling distinct aggregates, and handling nested aggregates.

Window aggregate Functions Described
Window aggregate functions are the same functions as grouped aggregate functions; only instead of
applying them to groups in grouped queries, you apply them to windows defined by the OVER clause.
An aggregate function is supposed to be applied to a set of rows, and it shouldn’t matter to the func-
tion which language mechanism defines the set.

34 CHAPTER 2 a Detailed Look at Window Functions

Supported Windowing elements
In standard SQL, window aggregate functions support three elements: partitioning, ordering, and
framing. The general form of a window aggregate function is as follows:

function_name(<arguments>) OVER(
 [<window partition clause>]
 [<window order clause> [<window frame clause>]])

The purpose of all three elements is to filter the rows in the window. SQL Server 2005 introduced
support for the partitioning element, including support for Common Language Runtime (CLR) aggre-
gates. SQL Server 2012 added the ordering and framing options, but support for CLR aggregates has
not yet been added.

When you don’t apply any restrictions to the window—namely, when you use empty parentheses
in the OVER clause—the window consists of all rows in the result set of the underlying query. More
precisely, the initial window consists of the set of rows in the virtual table provided as input to the
logical query processing phase where the window function appears. This means that if the window
function appears in the query’s SELECT list, it is the virtual table provided as input to phase 5-1. (See
Figure 1-6 in Chapter 1, “SQL Windowing.”) This phase appears after processing the FROM, WHERE,
GROUP BY, and HAVING clauses, and before the removal of duplicate rows if a DISTINCT clause was
specified (phase 5-2). But that’s the initial window prior to applying restrictions. The next sections
explain how to further restrict the window.

Partitioning
The partitioning element allows you to restrict the window to only those rows that have the same
values in the partitioning attributes as the current row. Some think of the partitioning element like
grouping and some think of it like correlated subqueries, but it’s actually different from both. Unlike
grouping, partitioning is specific to one function’s window and can be different for different functions
in the same query. Unlike correlated subqueries, partitioning filters rows from the virtual table pro-
vided to the SELECT phase as input, as opposed to starting with a fresh view of the data and needing
to repeat all constructs that appear in the outer query.

As the first partitioning example, the following query invokes two window SUM aggregate func-
tions—one without partitioning and another partitioned by custid:

USE TSQL2012;

SELECT orderid, custid, val,
 SUM(val) OVER() AS sumall,
 SUM(val) OVER(PARTITION BY custid) AS sumcust
FROM Sales.OrderValues AS O1;

orderid custid val sumall sumcust
-------- ------- ------- ----------- --------
10643 1 814.50 1265793.22 4273.00
10692 1 878.00 1265793.22 4273.00
10702 1 330.00 1265793.22 4273.00
10835 1 845.80 1265793.22 4273.00

 Window Aggregate Functions 35

10952 1 471.20 1265793.22 4273.00
11011 1 933.50 1265793.22 4273.00
10926 2 514.40 1265793.22 1402.95
10759 2 320.00 1265793.22 1402.95
10625 2 479.75 1265793.22 1402.95
10308 2 88.80 1265793.22 1402.95
...

The first window function calculates for each row the grand total val (the sumall attribute). The
second function calculates the customer total val (the sumcust attribute). Figure 2-1 calls out three
arbitrary sums and illustrates the windows used to calculate those.

orderid custid val sumall sumcust
-------- ------- -------- -------------- ---------

10643 1 814.50 1265793.22 4273.00
10692 1 878.00 1265793.22 4273.00
10702 1 330.00 1265793.22 4273.00
10835 1 845.80 1265793.22 4273.00
10952 1 471.20 1265793.22 4273.00
11011 1 933.50 1265793.22 4273.00
10926 2 514.40 1265793.22 1402.95
10759 2 320.00 1265793.22 1402.95
10625 2 479.75 1265793.22 1402.95
10308 2 88.80 1265793.22 1402.95
...

FIgURE 2-1 The first partitioning example.

Observe that in the case of the sumall attribute calculated for order 10692, the respective window
consists of all rows from the result set of the underlying query, because an explicit partitioning ele-
ment wasn’t specified. Therefore, the grand total val for the row that was called out is 1,265,793.22,
as is the case for all other rows. As for the sumcust attribute, the window function calculating it is
partitioned by custid; therefore, rows with different custid values have different, disjoint, subsets of
rows in their respective windows. That’s the case with the two orders that were called out: 10643 and
10926. The former was placed by customer 1; hence, the respective window consists of the rows with
customer ID 1, yielding 4,273.00 as the customer total. The latter was placed by customer 2; therefore,
its respective window consists of the rows with customer ID 2, yielding 1,402.95 as the customer total.

As the second partitioning example, the following query mixes detail elements and window aggre-
gate functions to calculate the percent of the current order value out of the grand total, as well as out
of the customer total:

SELECT orderid, custid, val,
 CAST(100. * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pctall,
 CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust
FROM Sales.OrderValues AS O1;

orderid custid val pctall pctcust
-------- ------- ------- ------- --------
10643 1 814.50 0.06 19.06
10692 1 878.00 0.07 20.55

36 CHAPTER 2 a Detailed Look at Window Functions

10702 1 330.00 0.03 7.72
10835 1 845.80 0.07 19.79
10952 1 471.20 0.04 11.03
11011 1 933.50 0.07 21.85
10926 2 514.40 0.04 36.67
10759 2 320.00 0.03 22.81
10625 2 479.75 0.04 34.20
10308 2 88.80 0.01 6.33
...

Figure 2-2 illustrates the applicable window partitions used by the three calculations that were
called out.

orderid custid val sumall sumcust
-------- ------- -------- -------------- ---------

10643 1 814.50 1265793.22 4273.00
10692 1 878.00 1265793.22 4273.00
10702 1 330.00 1265793.22 4273.00
10835 1 845.80 1265793.22 4273.00
10952 1 471.20 1265793.22 4273.00
11011 1 933.50 1265793.22 4273.00
10926 2 514.40 1265793.22 1402.95
10759 2 320.00 1265793.22 1402.95
10625 2 479.75 1265793.22 1402.95
10308 2 88.80 1265793.22 1402.95
...

orderid custid val
-------- ------- -------10643 1 814.50

10692 1 878.00
10702 1 330.00

10835 1 845.80
10952 1 471.20

11011 1 933.50
10926 2 514.40

10759 2 320.00
10625 2 479.75

10308 2 88.80
...

orderid custid val

-------- ------- -------
10643 1 814.50

10692 1 878.00

10702 1 330.00

10835 1 845.80

10952 1 471.20

11011 1 933.50

orderid custid val

--- -

- ---

10926 2
514.40

10759 2
320.00

10625 2
479.75

10308 2
88.80

FIgURE 2-2 The second partitioning example.

The figure also attempts to visually express the idea that all windows conceptually coexist at the
same time. Each rectangle calls out a window for one function for one specific underlying order. The
largest rectangle at the back is an example for a window generated for one of the orders when using
the OVER clause with empty parentheses. The two smaller rectangles call out the windows for two
sample orders when using the OVER clause with PARTITION BY custid. The top rectangle is generated
for an order with a custid value of 1, and the bottom rectangle for an order with a custid value of 2.

Ordering and Framing
Framing is another option that enables you to further restrict the rows in the window partition. The
ordering element plays a different role for window aggregate functions than for ranking, distribution,
and offset functions. With aggregate functions, ordering just gives meaning to the framing option.
Once ordering is defined, framing identifies two bounds in the window partition, and only the rows
between those two bounds are filtered.

 Window Aggregate Functions 37

Earlier, I provided the general form of a window aggregate function. Here it is again as a reminder:

function_name(<arguments>) OVER(
 [<window partition clause>]
 [<window order clause> [<window frame clause>]])

The window frame clause can include three parts and takes the following form:

<window frame units> <window frame extent> [<window frame exclusion>]

In the window frame units part, you indicate ROWS or RANGE. The former means that the bounds,
or endpoints, of the frame can be expressed as offsets in terms of the number of rows of difference
from the current row. The latter means that the offsets are more dynamic and expressed as a logical
value difference from the current row’s (only) ordering attribute value. This part will become clearer in
the upcoming examples.

The window frame extent part is where you indicate the offsets of the bounds with respect to the
current row.

SQL Server 2012 implements the ROWS option with all related window frame extent options, and
it implements the RANGE option with a partial implementation of the related window frame extent
options.

Finally, the window frame exclusion part allows you to specify whether to exclude the current row,
its peers, or both. The window frame exclusion part isn’t implemented in SQL Server 2012.

The ROWS window frame extent option I’ll start with examples for using the ROWS clause. As
mentioned, using ROWS as the window frame units part means that you indicate the frame bounds
as offsets in terms of the number of rows with respect to the current row. The standard ROWS clause
supports the following options, all of which are implemented in SQL Server 2012:

ROWS BETWEEN UNBOUNDED PRECEDING |
 <n> PRECEDING |
 <n> FOLLOWING |
 CURRENT ROW
 AND
 UNBOUNDED FOLLOWING |
 <n> PRECEDING |
 <n> FOLLOWING |
 CURRENT ROW

These options are probably straightforward, but just in case they’re not, I’ll provide a brief expla-
nation. For the low bound of the frame, UNBOUNDED PRECEDING means there is no low boundary
point; <n> preceding and <n> following specifies a number of rows before and after the current one,
respectively; and CURRENT ROW, obviously, means that the starting row is the current row.

As for the high bound of the frame, you can see the options are quite similar, except that if you
don’t want a high boundary point, you indicate UNBOUNDED FOLLOWING, naturally.

38 CHAPTER 2 a Detailed Look at Window Functions

As an example, consider the following frame:

PARTITION BY custid
ORDER BY ordermonth
ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW

The window frame created for each row contains all rows from the first order month through the
current row. Note that you can use ROWS UNBOUNDED PRECEDING as a shorthand way of saying
“ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.” But if you omit the window frame
extent part altogether, just leaving the partitioning and ordering parts, you get something a bit dif-
ferent by default. I’ll get to this later when discussing the RANGE option.

As the first example using the ROWS option, consider the following query against the Sales.Emp-
Orders view, followed by its output shown here in abbreviated form:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS runqty
FROM Sales.EmpOrders;

empid ordermonth qty runqty
----------- ----------------------- ----------- -----------
1 2006-07-01 00:00:00.000 121 121
1 2006-08-01 00:00:00.000 247 368
1 2006-09-01 00:00:00.000 255 623
1 2006-10-01 00:00:00.000 143 766
1 2006-11-01 00:00:00.000 318 1084
...
2 2006-07-01 00:00:00.000 50 50
2 2006-08-01 00:00:00.000 94 144
2 2006-09-01 00:00:00.000 137 281
2 2006-10-01 00:00:00.000 248 529
2 2006-11-01 00:00:00.000 237 766
...

This query uses the aforementioned frame specification to calculate a running total quantity for
each employee and order month. Recall that you can use a more concise form to indicate the frame
while retaining the same meaning:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 ROWS UNBOUNDED PRECEDING) AS runqty
FROM Sales.EmpOrders;

Figure 2-3 provides an illustration that depicts the applicable frame with respect to each row using
arrows.

 Window Aggregate Functions 39

empid ordermonth qty runqty
--------- ---------------------------- --------- --------

1 2006-07-01 00:00:00.000 121 121
1 2006-08-01 00:00:00.000 247 368
1 2006-09-01 00:00:00.000 255 623
1 2006-10-01 00:00:00.000 143 766
1 2006-11-01 00:00:00.000 318 1084
...
2 2006-07-01 00:00:00.000 50 50
2 2006-08-01 00:00:00.000 94 144
2 2006-09-01 00:00:00.000 137 281
2 2006-10-01 00:00:00.000 248 529
2 2006-11-01 00:00:00.000 237 766
...

FIgURE 2-3 Frame example: ROWS UNBOUNDED PRECEDING.

As a second example for using the ROWS option, the following query invokes three window func-
tions with three different frame specifications:

SELECT empid, ordermonth,
 MAX(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN 1 PRECEDING
 AND 1 PRECEDING) AS prvqty,
 qty AS curqty,
 MAX(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN 1 FOLLOWING
 AND 1 FOLLOWING) AS nxtqty,
 AVG(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING) AS avgqty
FROM Sales.EmpOrders;

empid ordermonth prvqty curqty nxtqty avgqty
------ ----------------------- ------- ------- ------- -------
1 2006-07-01 00:00:00.000 NULL 121 247 184
1 2006-08-01 00:00:00.000 121 247 255 207
1 2006-09-01 00:00:00.000 247 255 143 215
1 2006-10-01 00:00:00.000 255 143 318 238
1 2006-11-01 00:00:00.000 143 318 536 332
...
1 2008-01-01 00:00:00.000 583 397 566 515
1 2008-02-01 00:00:00.000 397 566 467 476
1 2008-03-01 00:00:00.000 566 467 586 539
1 2008-04-01 00:00:00.000 467 586 299 450
1 2008-05-01 00:00:00.000 586 299 NULL 442
...

The calculation that generates the attribute prvqty defines a frame in terms of rows between 1 pre-
ceding and 1 preceding. This means that the frame includes just the previous row in the partition. The
MAX aggregate applied to the qty attribute is artificial here because, at most, there will be just one

40 CHAPTER 2 a Detailed Look at Window Functions

row in the frame. The maximum qty value is the qty value from that row or NULL if there are no rows
in the frame (if the current row is the first one in the partition). Figure 2-4 illustrates the applicable
frame with respect to each row, containing at most just one row.

empid ordermonth prvqty curqty nxtqty avgqty
-------- ---------------------------- -------- ------- --------- -------
1 2006-07-01 00:00:00.000 NULL 121 247 184
1 2006-08-01 00:00:00.000 121 247 255 207
1 2006-09-01 00:00:00.000 247 255 143 215
1 2006-10-01 00:00:00.000 255 143 318 238
1 2006-11-01 00:00:00.000 143 318 536 332
...
1 2008-01-01 00:00:00.000 583 397 566 515
1 2008-02-01 00:00:00.000 397 566 467 476
1 2008-03-01 00:00:00.000 566 467 586 539
1 2008-04-01 00:00:00.000 467 586 299 450
1 2008-05-01 00:00:00.000 586 299 NULL 442
...

FIgURE 2-4 Frame example: ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING.

Note that there’s no previous row with respect to the first one in the partition; therefore, the
prvqty value in the first row in the partition is NULL.

Similarly, the calculation that generates the attribute nxtqty defines a frame in terms of rows
between 1 following and 1 following, meaning that the frame includes just the next row. Then the
MAX(qty) aggregate returns the qty value from the next row. Figure 2-5 illustrates the applicable
frame with respect to each row.

empid ordermonth prvqty curqty nxtqty avgqty
-------- ---------------------------- -------- ------- --------- -------
1 2006-07-01 00:00:00.000 NULL 121 247 184
1 2006-08-01 00:00:00.000 121 247 255 207
1 2006-09-01 00:00:00.000 247 255 143 215
1 2006-10-01 00:00:00.000 255 143 318 238
1 2006-11-01 00:00:00.000 143 318 536 332
...
1 2008-01-01 00:00:00.000 583 397 566 515
1 2008-02-01 00:00:00.000 397 566 467 476
1 2008-03-01 00:00:00.000 566 467 586 539
1 2008-04-01 00:00:00.000 467 586 299 450
1 2008-05-01 00:00:00.000 586 299 NULL 442
...

FIgURE 2-5 Frame example: ROWS BETWEEN 1 FOLLOWING AND 1 FOLLOWING.

Just like there’s no previous row with respect to the first one in the partition, there’s no next row
with respect to the last one in the partition; therefore, the nxtqty value in the last row in the partition
is NULL.

 Window Aggregate Functions 41

Note Later in this chapter in the section describing offset functions, you will see alterna-
tive, more concise ways to obtain a value from a single row that is in a certain offset from
the current one. For example, you will see how to get a value from the previous row using a
function called LAG and from the next row using a function called LEAD.

The calculation that generates the result attribute avgqty defines a frame of rows between 1 pre-
ceding and 1 following, meaning that the frame consists of up to three rows. Figure 2-6 illustrates the
applicable frame with respect to two arbitrary rows just as an example.

empid ordermonth prvqty curqty nxtqty avgqty
-------- ---------------------------- -------- ------- --------- -------
1 2006-07-01 00:00:00.000 NULL 121 247 184
1 2006-08-01 00:00:00.000 121 247 255 207
1 2006-09-01 00:00:00.000 247 255 143 215
1 2006-10-01 00:00:00.000 255 143 318 238
1 2006-11-01 00:00:00.000 143 318 536 332
...
1 2008-01-01 00:00:00.000 583 397 566 515
1 2008-02-01 00:00:00.000 397 566 467 476
1 2008-03-01 00:00:00.000 566 467 586 539
1 2008-04-01 00:00:00.000 467 586 299 450
1 2008-05-01 00:00:00.000 586 299 NULL 442
...

FIgURE 2-6 Frame example: ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING.

As with the other calculations, there’s no row preceding the first one in the partition and no row
following the last one; hence, the frame in this case can consist of fewer than, but no more than, three
rows. The AVG correctly divides the sum by the actual count of rows in the frame.

Combined, the partitioning and ordering elements in the EmpOrders view are unique. This means
that the same combination of empid and ordermonth values cannot repeat itself in the view. And this,
in turn, means that the three calculations used in our query are deterministic—in other words, the
query has only one possible correct result for a given state of the input.

Things are different, though, when the combination of partitioning and ordering elements isn’t
unique. Then calculations using the ROWS option might be nondeterministic. I’ll demonstrate this
with an example. Run the code in Listing 2-1 to create and populate a table called T1.

LISTIng 2-1 DDL and Sample Data for Table T1

SET NOCOUNT ON;
USE TSQL2012;
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;
GO
CREATE TABLE dbo.T1
(
 keycol INT NOT NULL CONSTRAINT PK_T1 PRIMARY KEY,
 col1 VARCHAR(10) NOT NULL
);

42 CHAPTER 2 a Detailed Look at Window Functions

INSERT INTO dbo.T1 VALUES
 (2, 'A'),(3, 'A'),
 (5, 'B'),(7, 'B'),(11, 'B'),
 (13, 'C'),(17, 'C'),(19, 'C'),(23, 'C');

Consider the following query, which is followed by its output:

SELECT keycol, col1,
 COUNT(*) OVER(ORDER BY col1
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cnt
FROM dbo.T1;

keycol col1 cnt
----------- ---------- -----------
2 A 1
3 A 2
5 B 3
7 B 4
11 B 5
13 C 6
17 C 7
19 C 8
23 C 9

Observe that different rows that share the same partitioning (inapplicable, in our case) and order-
ing values get different counts. That’s because ordering among peers (rows that share the same par-
titioning and explicit ordering) is arbitrary—in other words, left to the implementation. In SQL Server,
this simply depends on optimization. For example, I created the following index:

CREATE UNIQUE INDEX idx_col1D_keycol ON dbo.T1(col1 DESC, keycol);

Then I ran the query again, and the second time I got the following output:

keycol col1 cnt
----------- ---------- -----------
3 A 1
2 A 2
5 B 3
11 B 4
7 B 5
23 C 6
19 C 7
17 C 8
13 C 9

Technically, as far as the standard is concerned, this output is just as correct as the previous output.

If you need to guarantee a deterministic result, you should make sure that the combination of par-
titioning and ordering elements is unique. You can achieve this by adding a tiebreaker to the ordering
specification—in our case, by adding the primary key column, like so:

 Window Aggregate Functions 43

SELECT keycol, col1,
 COUNT(*) OVER(ORDER BY col1, keycol
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cnt
FROM dbo.T1;

keycol col1 cnt
----------- ---------- -----------
2 A 1
3 A 2
5 B 3
7 B 4
11 B 5
13 C 6
17 C 7
19 C 8
23 C 9

Now the query is deterministic, meaning that there’s only one correct result.

The RAngE window frame extent option Standard SQL also supports specifying the window
frame extent using the RANGE option. Here are the possibilities for the low and high bounds, or end-
points, of the frame:

RANGE BETWEEN UNBOUNDED PRECEDING |
 <val> PRECEDING |
 <val> FOLLOWING |
 CURRENT ROW
 AND
 UNBOUNDED FOLLOWING |
 <val> PRECEDING |
 <val> FOLLOWING |
 CURRENT ROW

This option is supposed to enable you to specify the low and high bounds of the frame more
dynamically—as a logical difference between the current row’s ordering value and the bound’s value.
Think about the difference between saying “Give me the total quantities for the last three periods of
activity,” versus saying “Give me the total quantities for the period starting two months before the
current period and until the current period.” The former concept is what ROWS was designed to pro-
vide, and the latter concept is what RANGE was designed to provide. (I’ll say more about this example
shortly.)

As of SQL Server 2012, RANGE is not implemented fully. It is currently supported only with
UNBOUNDED and CURRENT ROW window-frame delimiters. What’s also still missing is support for a
temporal INTERVAL type that, combined with full support for the RANGE option, would provide a lot
of flexibility in the frame definition. As an example, the following query defines a frame based on a
range between two months before the current month and the current month (and this query doesn’t
run in SQL Server 2012).

44 CHAPTER 2 a Detailed Look at Window Functions

SELECT empid, ordermonth, qty,
 SUM(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 RANGE BETWEEN INTERVAL '2' MONTH PRECEDING
 AND CURRENT ROW) AS sum3month
FROM Sales.EmpOrders;

This is different than using ROWS BETWEEN 2 PRECEDING AND CURRENT ROW even when the
order month is unique for each employee. Consider the possibility that an employee can be inac-
tive in certain months. With the ROWS option, the frame simply starts two rows before the current
one, which might be more than two months before the current one. With RANGE, the frame is more
dynamic, starting two months before the current one—whatever number of rows this translates to.
Figure 2-7 illustrates the applicable frame of rows for some of the rows in the underlying query.

empid ordermonth qty sum3month
-------- -------------- ---------------- ---------------
...
9 2006-07-01 294 294
9 2006-10-01 256 256
9 2006-12-01 25 281
9 2007-01-01 74 99
9 2007-03-01 137 211
9 2007-04-01 52 189
9 2007-05-01 8 197
9 2007-06-01 161 221
9 2007-07-01 4 173
9 2007-08-01 98 263
...

FIgURE 2-7 Frame example: RANGE INTERVAL '2' MONTH PRECEDING.

Observe that the number of rows in the different frames varies between 1, 2, and 3. This happens
because, in some cases, there aren’t three consecutive months of activity for the same employee.

Just like with the ROWS option, the RANGE option also supports more concise ways to express
what you want. If you don’t specify an upper bound, CURRENT ROW is assumed. So, in our example,
instead of using RANGE BETWEEN INTERVAL '2' MONTH PRECEDING AND CURRENT ROW, you can
use just RANGE INTERVAL '2' MONTH PRECEDING. But as mentioned, this query won’t run in SQL
Server 2012 because of the incomplete support for the RANGE option and the lack of support for the
INTERVAL type. For now, you need to use alternative methods. It’s still possible to handle the task with
the existing support for window functions, but the solutions are quite convoluted. Another option is
to rely on more traditional constructs such as subqueries, as the following example shows:

SELECT empid, ordermonth, qty,
 (SELECT SUM(qty)
 FROM Sales.EmpOrders AS O2
 WHERE O2.empid = O1.empid
 AND O2.ordermonth BETWEEN DATEADD(month, -2, O1.ordermonth)
 AND O1.ordermonth) AS sum3month
FROM Sales.EmpOrders AS O1;

 Window Aggregate Functions 45

As mentioned, SQL Server 2012 does support the RANGE option with UNBOUNDED and CURRENT
ROW as delimiters. For example, the window function in the following query calculates the running
total quantity from the beginning of the employee activity until the current month:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS runqty
FROM Sales.EmpOrders;

empid ordermonth qty runqty
----------- ----------------------- ----------- -----------
1 2006-07-01 00:00:00.000 121 121
1 2006-08-01 00:00:00.000 247 368
1 2006-09-01 00:00:00.000 255 623
1 2006-10-01 00:00:00.000 143 766
1 2006-11-01 00:00:00.000 318 1084
...
2 2006-07-01 00:00:00.000 50 50
2 2006-08-01 00:00:00.000 94 144
2 2006-09-01 00:00:00.000 137 281
2 2006-10-01 00:00:00.000 248 529
2 2006-11-01 00:00:00.000 237 766
...

Figure 2-8 illustrates the applicable frame with respect to each row in the underlying query.

empid ordermonth qty runqty
--------- ---------------------------- --------- --------

1 2006-07-01 00:00:00.000 121 121
1 2006-08-01 00:00:00.000 247 368
1 2006-09-01 00:00:00.000 255 623
1 2006-10-01 00:00:00.000 143 766
1 2006-11-01 00:00:00.000 318 1084
...
2 2006-07-01 00:00:00.000 50 50
2 2006-08-01 00:00:00.000 94 144
2 2006-09-01 00:00:00.000 137 281
2 2006-10-01 00:00:00.000 248 529
2 2006-11-01 00:00:00.000 237 766
...

FIgURE 2-8 Frame example: RANGE UNBOUNDED PRECEDING.

As mentioned, if you don’t indicate the upper bound, the default is CURRENT ROW. So instead of
using RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, you can use the shorter form
of RANGE UNBOUNDED PRECEDING, like so:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 RANGE UNBOUNDED PRECEDING) AS runqty
FROM Sales.EmpOrders;

46 CHAPTER 2 a Detailed Look at Window Functions

This window frame extent, as it turns out, is also the default when you indicate window ordering
without an explicit window frame extent specification. So the following query is logically equivalent to
the last two:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth) AS runqty
FROM Sales.EmpOrders;

That’s quite a significant savings in the amount of code.

If you carefully followed the examples with both the ROWS and RANGE options, at this point you
might wonder whether there’s any difference between the two when using only UNBOUNDED and
CURRENT ROW as delimiters. For example, when comparing Figure 2-3 (which shows the frames
defined with ROWS UNBOUNDED PRECEDING) and Figure 2-8 (which shows the frames defined with
RANGE UNBOUNDED PRECEDING), they seem identical. Indeed, the two frame extent specifica-
tions have the same logical meaning when the combination of partitioning plus ordering elements
is unique. Querying the EmpOrders view, with empid as the partitioning element and ordermonth as
the ordering element, you do get a unique combination. So, in this case, both options are logically
equivalent. There is a difference between the meanings of the two when the combination of parti-
tioning and ordering elements isn’t unique, meaning that there is potential for ties.

To demonstrate the difference, I’ll use the table T1 you created and populated earlier by running
the code in Listing 2-1. As a reminder, the option ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW (or the equivalent ROWS UNBOUNDED PRECEDING) ends the frame at the current
row and doesn’t include any further peers:

SELECT keycol, col1,
 COUNT(*) OVER(ORDER BY col1
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cnt
FROM dbo.T1;

keycol col1 cnt
----------- ---------- -----------
2 A 1
3 A 2
5 B 3
7 B 4
11 B 5
13 C 6
17 C 7
19 C 8
23 C 9

 Window Aggregate Functions 47

Here’s a similar query, only this one uses RANGE instead of ROWS:

SELECT keycol, col1,
 COUNT(*) OVER(ORDER BY col1
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cnt
FROM dbo.T1;

keycol col1 cnt
----------- ---------- -----------
2 A 2
3 A 2
5 B 5
7 B 5
11 B 5
13 C 9
17 C 9
19 C 9
23 C 9

With RANGE, when the upper bound is CURRENT_ROW, by default peers are included. Even
though the terminology is CURRENT ROW, it actually means current ordering value. Conceptually,
expressed as a predicate, it means <window_row>.ordermonth <= <current_row>.ordermonth.

Window Frame Exclusion Window functions in standard SQL support an option called window
frame exclusion that is part of the framing specification. This option controls whether to include the
current row and its peers in case of ties in the ordering element’s values. SQL Server 2012 doesn’t
support this option.

The standard supports four window frame exclusion possibilities, listed here with a short
description:

■■ EXCLUDE CURREnT ROW Exclude the current row.

■■ EXCLUDE gROUP Exclude the current row as well as its peers.

■■ EXCLUDE TIES Keep the current row, but exclude its peers.

■■ EXCLUDE nO OTHERS (default) Don’t exclude any further rows.

Note that the window frame exclusion option can only further remove rows from the frame; it
won’t return a row if the previous framing options (window frame unit and window frame extent)
removed it.

I’ll use the table T1 created and populated with the code provided earlier in Listing 2-1 to dem-
onstrate the concept of window frame exclusion through examples. Following are four queries with
the different window frame exclusion possibilities, each followed by what would be its desired output

48 CHAPTER 2 a Detailed Look at Window Functions

(according to my interpretation of the standard, because this code is not supported by SQL Server
2012 or any other platform that I know of):

-- EXCLUDE NO OTHERS (don't exclude rows)
SELECT keycol, col1,
 COUNT(*) OVER(ORDER BY col1
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW
 EXCLUDE NO OTHERS) AS cnt
FROM dbo.T1;

keycol col1 cnt
----------- ---------- -----------
2 A 1
3 A 2
5 B 3
7 B 4
11 B 5
13 C 6
17 C 7
19 C 8
23 C 9

-- EXCLUDE CURRENT ROW (exclude cur row)
SELECT keycol, col1,
 COUNT(*) OVER(ORDER BY col1
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW
 EXCLUDE CURRENT ROW) AS cnt
FROM dbo.T1;

keycol col1 cnt
----------- ---------- -----------
2 A 0
3 A 1
5 B 2
7 B 3
11 B 4
13 C 5
17 C 6
19 C 7
23 C 8

-- EXCLUDE GROUP (exclude cur row, exclude peers)
SELECT keycol, col1,
 COUNT(*) OVER(ORDER BY col1
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW
 EXCLUDE GROUP) AS cnt
FROM dbo.T1;

 Window Aggregate Functions 49

keycol col1 cnt
----------- ---------- -----------
2 A 0
3 A 0
5 B 2
7 B 2
11 B 2
13 C 5
17 C 5
19 C 5
23 C 5

-- EXCLUDE TIES (keep cur row, exclude peers)
SELECT keycol, col1,
 COUNT(*) OVER(ORDER BY col1
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW
 EXCLUDE TIES) AS cnt
FROM dbo.T1;

keycol col1 cnt
----------- ---------- -----------
2 A 1
3 A 1
5 B 3
7 B 3
11 B 3
13 C 6
17 C 6
19 C 6
23 C 6

Further Filtering Ideas
Recall that the various elements in the window specification (partitioning, ordering, and framing) are
essentially different filtering options. There are additional filtering needs that the aforementioned
options don’t address. Some of those needs are addressed by the standard with a clause called FILTER
that wasn’t implemented in SQL Server 2012. There are also attempts to address other filtering needs
with proposals to the standard that I hope will find their way, in some form, to both the standard and
SQL Server.

I’ll start with the FILTER clause. This is a clause that the standard defines for aggregate functions as
a way to filter the set of rows that the aggregate applies to using a predicate. The form of this clause
is as follows:

<aggregate_function>(<input_expression>) FILTER (WHERE <search_condition>)

50 CHAPTER 2 a Detailed Look at Window Functions

As an example, the following query calculates the difference between the current quantity and the
employee monthly average up to three months before the present date (not the current row’s month):

SELECT empid, ordermonth, qty,
 qty - AVG(qty)
 FILTER (WHERE ordermonth <= DATEADD(month, -3, CURRENT_TIMESTAMP))
 OVER(PARTITION BY empid) AS diff
FROM Sales.EmpOrders;

SQL Server 2012 doesn’t support the FILTER clause. In fact, I don’t know of any database platform
that implements it. If you need such capability, there’s a pretty simple workaround—using a CASE
expression as input to the aggregate function, like so:

<aggregate_function>(CASE WHEN <search_condition> THEN <input_expression> END)

Here’s the complete query that addresses the last example:

SELECT empid, ordermonth, qty,
 qty - AVG(CASE WHEN ordermonth <= DATEADD(month, -3, CURRENT_TIMESTAMP) THEN qty END)
 OVER(PARTITION BY empid) AS diff
FROM Sales.EmpOrders;

What is still missing in both the standard (as of SQL:2008) and SQL Server 2012 is the ability to
refer to elements from the current row for filtering purposes. This could be applicable to the FILTER
clause, to the workaround with the CASE expression, as well as to other filtering concepts.

To demonstrate this need, suppose for a moment that you could refer to an element from the
current row by prefixing it with $current_row. Then, say you needed to write a query against the
Sales.OrderValues view and calculate for each order the difference between the current order value
and the employee average for customers other than the current one. You use the following query to
achieve this task with the FILTER clause:

SELECT orderid, orderdate, empid, custid, val,
 val - AVG(val)
 FILTER (WHERE custid <> $current_row.custid)
 OVER(PARTITION BY empid) AS diff
FROM Sales.OrderValues;

And you can use the following query with the CASE expression as an alternative:

SELECT orderid, orderdate, empid, custid, val,
 val - AVG(CASE WHEN custid <> $current_row.custid THEN val END)
 OVER(PARTITION BY empid) AS diff
FROM Sales.OrderValues;

Again, I’m just inventing stuff now to illustrate what’s missing at the moment in the language, so
don’t try this at home.

 Window Aggregate Functions 51

Proposals for enhancements
There are very interesting proposals for additions to the standard to address this need and
more. One example is a proposal for a feature the authors refer to as comparative window
functions. You can find a blog entry by Tom Kyte about this proposal here:

http://tkyte.blogspot.com/2009/11/comparative-window-functions.html

And you can find the actual proposal document here:

http://asktom.oracle.com/pls/asktom/z?p_url=ASKTOM%2Edownload_file%3Fp_
file%3D7575682831744048130&p_cat=comparative_window_fns_proposal.pdf

The concept of comparative window functions looks interesting. It’s pretty straightforward
and solves the need to refer to elements from the current row. But what’s really going to get
your brain working is an insanely cool proposal to the standard called row pattern recognition,
which addresses the need to refer to elements from the current row, and so much more.

The concept allows for identifying patterns in sequences of rows using semantics based on
regular expressions. The idea can be applied to define a table expression, as well as to filter
rows in a window specification. It can be used for streaming technologies that work with a
stream of moving data, such as SQL Server’s StreamInsight, but also with queries that work with
nonmoving data, or data at rest. Here is a link to a publicly available document:

http://www.softwareworkshop.com/h2/SQL-RPR-review-paper.pdf

Before you read this document, I suggest you make sure you have a clear mind and, say, a
gallon thermos full of coffee (caffeinated). It’s not an easy read, but it’s a very, very interesting
idea that I sure hope will find its way into the standard and into SQL Server, with support also
for data at rest and not just moving data.

Distinct aggregates
SQL Server 2012 doesn’t support using the DISTINCT option with window aggregate functions. For
example, suppose that you need to query the Sales.OrderValues view and return with each order the
number of distinct customers that were handled by the current employee up to, and including, the
current date. What you want to run is the following query:

SELECT empid, orderdate, orderid, val,
 COUNT(DISTINCT custid) OVER(PARTITION BY empid
 ORDER BY orderdate) AS numcusts
FROM Sales.OrderValues;

http://tkyte.blogspot.com/2009/11/comparative-window-functions.html
http://asktom.oracle.com/pls/asktom/z?p_url=ASKTOM%2Edownload_file%3Fp_file%3D7575682831744048130&p_cat=comparative_window_fns_proposal.pdf
http://asktom.oracle.com/pls/asktom/z?p_url=ASKTOM%2Edownload_file%3Fp_file%3D7575682831744048130&p_cat=comparative_window_fns_proposal.pdf
http://www.softwareworkshop.com/h2/SQL-RPR-review-paper.pdf

52 CHAPTER 2 a Detailed Look at Window Functions

But because this query is not supported, you need a workaround. One way to address this need
is with the help of the ROW_NUMBER function. I will describe this function in more detail later in
this chapter. For now, it suffices to say that it returns a unique integer for each row in the partition,
starting with 1 and incrementing by 1 based on the window ordering specification. Using the ROW_
NUMBER function, you can assign row numbers partitioned by empid and custid, and ordered by
orderdate. This means that the rows marked with row number 1 represent the first occurrence of a
customer for each employee based on order-date ordering. Using a CASE expression, you can return
the custid value only when the row number is equal to 1 and use NULL otherwise. Here’s a query
implementing the logic described so far, followed by an abbreviated form of its output:

SELECT empid, orderdate, orderid, custid, val,
 CASE
 WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid
 ORDER BY orderdate) = 1
 THEN custid
 END AS distinct_custid
FROM Sales.OrderValues;

empid orderdate orderid custid val distinct_custid
------ ----------------------- -------- ------- -------- ---------------
1 2006-07-17 00:00:00.000 10258 20 1614.88 20
1 2006-08-01 00:00:00.000 10270 87 1376.00 87
1 2006-08-07 00:00:00.000 10275 49 291.84 49
1 2006-08-20 00:00:00.000 10285 63 1743.36 63
1 2006-08-28 00:00:00.000 10292 81 1296.00 81
1 2006-08-29 00:00:00.000 10293 80 848.70 80
1 2006-09-12 00:00:00.000 10304 80 954.40 NULL
1 2006-09-16 00:00:00.000 10306 69 498.50 69
1 2006-09-20 00:00:00.000 10311 18 268.80 18
1 2006-09-25 00:00:00.000 10314 65 2094.30 65
1 2006-09-27 00:00:00.000 10316 65 2835.00 NULL
1 2006-10-09 00:00:00.000 10325 39 1497.00 39
1 2006-10-29 00:00:00.000 10340 9 2436.18 9
1 2006-11-11 00:00:00.000 10351 20 5398.73 NULL
1 2006-11-19 00:00:00.000 10357 46 1167.68 46
1 2006-11-22 00:00:00.000 10361 63 2046.24 NULL
1 2006-11-26 00:00:00.000 10364 19 950.00 19
1 2006-12-03 00:00:00.000 10371 41 72.96 41
1 2006-12-05 00:00:00.000 10374 91 459.00 91
1 2006-12-09 00:00:00.000 10377 72 863.60 72
1 2006-12-09 00:00:00.000 10376 51 399.00 51
1 2006-12-17 00:00:00.000 10385 75 691.20 75
1 2006-12-18 00:00:00.000 10387 70 1058.40 70
1 2006-12-25 00:00:00.000 10393 71 2556.95 71
1 2006-12-25 00:00:00.000 10394 36 442.00 36
1 2006-12-27 00:00:00.000 10396 25 1903.80 25
1 2007-01-01 00:00:00.000 10400 19 3063.00 NULL
1 2007-01-01 00:00:00.000 10401 65 3868.60 NULL
...

Observe that only the first occurrence of each custid value for each employee based on order-date
ordering is returned, and NULLs are returned instead of the subsequent occurrences. The next step is
to define a CTE based on the previous query, and then apply a running count aggregate to the result
of the CASE expression, like so:

 Window Aggregate Functions 53

WITH C AS
(
 SELECT empid, orderdate, orderid, custid, val,
 CASE
 WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid
 ORDER BY orderdate) = 1
 THEN custid
 END AS distinct_custid
 FROM Sales.OrderValues
)
SELECT empid, orderdate, orderid, val,
 COUNT(distinct_custid) OVER(PARTITION BY empid
 ORDER BY orderdate) AS numcusts
FROM C;

empid orderdate orderid val numcusts
------ ----------------------- -------- -------- ---------
1 2006-07-17 00:00:00.000 10258 1614.88 1
1 2006-08-01 00:00:00.000 10270 1376.00 2
1 2006-08-07 00:00:00.000 10275 291.84 3
1 2006-08-20 00:00:00.000 10285 1743.36 4
1 2006-08-28 00:00:00.000 10292 1296.00 5
1 2006-08-29 00:00:00.000 10293 848.70 6
1 2006-09-12 00:00:00.000 10304 954.40 6
1 2006-09-16 00:00:00.000 10306 498.50 7
1 2006-09-20 00:00:00.000 10311 268.80 8
1 2006-09-25 00:00:00.000 10314 2094.30 9
1 2006-09-27 00:00:00.000 10316 2835.00 9
1 2006-10-09 00:00:00.000 10325 1497.00 10
1 2006-10-29 00:00:00.000 10340 2436.18 11
1 2006-11-11 00:00:00.000 10351 5398.73 11
1 2006-11-19 00:00:00.000 10357 1167.68 12
1 2006-11-22 00:00:00.000 10361 2046.24 12
1 2006-11-26 00:00:00.000 10364 950.00 13
1 2006-12-03 00:00:00.000 10371 72.96 14
1 2006-12-05 00:00:00.000 10374 459.00 15
1 2006-12-09 00:00:00.000 10377 863.60 17
1 2006-12-09 00:00:00.000 10376 399.00 17
1 2006-12-17 00:00:00.000 10385 691.20 18
1 2006-12-18 00:00:00.000 10387 1058.40 19
1 2006-12-25 00:00:00.000 10393 2556.95 21
1 2006-12-25 00:00:00.000 10394 442.00 21
1 2006-12-27 00:00:00.000 10396 1903.80 22
1 2007-01-01 00:00:00.000 10400 3063.00 22
1 2007-01-01 00:00:00.000 10401 3868.60 22
...

Nested aggregates
By now, you know that there are grouped aggregates and window aggregates. As mentioned, the
functions themselves are the same, but the context is different. Grouped aggregates operate on
groups of rows defined by the GROUP BY clause and return one value per group. Window aggregates
operate on windows of rows and return one value for each row in the underlying query. Recall the

54 CHAPTER 2 a Detailed Look at Window Functions

discussion about logical query processing from Chapter 1. As a reminder, here’s the order in which
the various query clauses are conceptually evaluated:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY

Grouped aggregates are used when the query is a grouped query, and they are allowed in phases
that are evaluated after the groups have been defined—namely, from phase 4 and on. Keep in mind
that each group is represented by only one row in the result. Window aggregates are allowed from
phase 5 and on because they are supposed to operate on rows from the underlying query—after the
HAVING phase.

The two types of aggregates—even though they share the same function names and calculation
logic—operate in different contexts. And to the point I want to make in this section: What if you
want to sum a value grouped by employee ID and, at the same time, aggregate those sums across all
employees?

It’s perfectly valid, albeit strange at first sight, to apply a window aggregate to a window that
contains rows with attributes produced by grouped aggregates. I say strange because at first sight an
expression like SUM(SUM(val)) in a query usually doesn’t seem right. But it could very well be. Con-
sider the following query, which addresses the task at hand, followed by its output:

SELECT empid,
 SUM(val) AS emptotal,
 SUM(val) / SUM(SUM(val)) OVER() * 100. AS pct
FROM Sales.OrderValues
GROUP BY empid;

empid emptotal pct
------ ---------- -----------
3 202812.88 16.022500
6 73913.15 5.839200
9 77308.08 6.107400
7 124568.24 9.841100
1 192107.65 15.176800
4 232890.87 18.398800
2 166537.76 13.156700
5 68792.30 5.434700
8 126862.29 10.022300

To distinguish between the two types of aggregates, the grouped SUM aggregate is italicized, and
the window SUM aggregate is bolded. The grouped aggregate SUM(val) calculates the total values of
all orders for each employee. This means that the result of the underlying query has a row for each

 Window Aggregate Functions 55

employee, with that total. Then the window aggregate calculates the total of all employee totals—in
other words, the grand total—and divides the grouped aggregate by the window aggregate to calcu-
late the percentage of the employee total out of the grand total.

It can be easier to see the logic behind the nested aggregates if you think of the query in two
steps. The first step calculates the grouped aggregate, like so:

SELECT empid,
 SUM(val) AS emptotal
FROM Sales.OrderValues
GROUP BY empid;

empid emptotal
------ -----------
3 202812.88
6 73913.15
9 77308.08
7 124568.24
1 192107.65
4 232890.87
2 166537.76
5 68792.30
8 126862.29

You can think of this result as being the starting point for further window aggregation. So you can
apply a window SUM aggregate to the expression that the alias emptotal represents. Unfortunately,
you cannot apply it directly to the alias for reasons discussed in Chapter 1. (Remember the all-at-once
concept?) But you can apply it to the underlying expression, as in SUM(SUM(val)) OVER(…), and in
your mind think of it as SUM(emptotal) OVER(…). And thus, you get the following:

SELECT empid,
 SUM(val) AS emptotal,
 SUM(val) / SUM(SUM(val)) OVER() * 100. AS pct
FROM Sales.OrderValues
GROUP BY empid;

Note that you can avoid the complexity of direct nesting of aggregates by using table expressions
such as CTEs. You can define a CTE based on the query that computes the grouped aggregate and
have the outer query compute the windowed aggregate, like so:

WITH C AS
(
 SELECT empid,
 SUM(val) AS emptotal
 FROM Sales.OrderValues
 GROUP BY empid
)
SELECT empid, emptotal,
 emptotal / SUM(emptotal) OVER() * 100. AS pct
FROM C;

Consider another example for complexities related to windowed and grouped functions. You get
a request that is a variation of an earlier request in this chapter. Query the Sales.Orders table, and

56 CHAPTER 2 a Detailed Look at Window Functions

return for each employee the distinct order dates, along with the count of distinct customers handled
by the current employee up to, and including, the current date. You make the following attempt:

WITH C AS
(
 SELECT empid, orderdate,
 CASE
 WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid
 ORDER BY orderdate) = 1
 THEN custid
 END AS distinct_custid
 FROM Sales.Orders
)
SELECT empid, orderdate,
 COUNT(distinct_custid) OVER(PARTITION BY empid
 ORDER BY orderdate) AS numcusts
FROM C
GROUP BY empid, orderdate;

But when you run this query, you get the following error:

Msg 8120, Level 16, State 1, Line 12
Column 'C.distinct_custid' is invalid in the select list because it is not contained in either
an aggregate function or the GROUP BY clause.

The outer COUNT isn’t a grouped aggregate; rather, it’s a window aggregate. As such, it can oper-
ate only on elements that would have been valid if they were specified alone—namely, not as input to
the window aggregate. Now ask yourself, absent the window aggregate, is the following a valid query
(with the CTE definition removed for brevity)?

SELECT empid, orderdate, distinct_custid
FROM C
GROUP BY empid, orderdate;

It’s clear that the answer is no. The attribute distinct_custid is invalid in the select list because it is
not contained in either an aggregate function or the GROUP BY clause, which is pretty much what the
error message says. What you need to do is apply a window SUM aggregate with a frame implement-
ing a running total concept to a grouped COUNT aggregate that counts distinct occurrences, like so:

WITH C AS
(
 SELECT empid, orderdate,
 CASE
 WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid
 ORDER BY orderdate) = 1
 THEN custid
 END AS distinct_custid
 FROM Sales.Orders
)
SELECT empid, orderdate,
 SUM(COUNT(distinct_custid)) OVER(PARTITION BY empid
 ORDER BY orderdate) AS numcusts
FROM C
GROUP BY empid, orderdate;

 Ranking Functions 57

empid orderdate numcusts
----------- ----------------------- -----------
1 2006-07-17 00:00:00.000 1
1 2006-08-01 00:00:00.000 2
1 2006-08-07 00:00:00.000 3
1 2006-08-20 00:00:00.000 4
1 2006-08-28 00:00:00.000 5
1 2006-08-29 00:00:00.000 6
1 2006-09-12 00:00:00.000 6
1 2006-09-16 00:00:00.000 7
1 2006-09-20 00:00:00.000 8
1 2006-09-25 00:00:00.000 9
1 2006-09-27 00:00:00.000 9
1 2006-10-09 00:00:00.000 10
1 2006-10-29 00:00:00.000 11
1 2006-11-11 00:00:00.000 11
1 2006-11-19 00:00:00.000 12
1 2006-11-22 00:00:00.000 12
1 2006-11-26 00:00:00.000 13
1 2006-12-03 00:00:00.000 14
1 2006-12-05 00:00:00.000 15
1 2006-12-09 00:00:00.000 17
1 2006-12-17 00:00:00.000 18
1 2006-12-18 00:00:00.000 19
1 2006-12-25 00:00:00.000 21
1 2006-12-27 00:00:00.000 22
1 2007-01-01 00:00:00.000 22
...

Of course, this is not the only way to achieve this desired result, but the point was to illustrate
examples for the concept of nesting a grouped aggregate within a window aggregate. Remember
that according to logical query processing, window functions are evaluated in the SELECT or ORDER
BY phase—after the GROUP BY phase. For this reason, grouped aggregates are visible as input
expressions to window aggregates. Also recall that if the code becomes complex to follow, you can
always use table expressions to avoid nesting the functions directly, and in this way make the code
more readable.

Ranking Functions

The standard supports four window functions that deal with ranking calculations. Those are ROW_
NUMBER, NTILE, RANK, and DENSE_RANK. The standard covers the first two as one category and
the last two as another, probably due to determinism-related differences. I will provide more details
shortly when describing the functions.

SQL Server 2005 already introduced full support for ranking functions. Still, I will show alternative
standard, set-based methods to achieve the same result for two reasons: one, because it can be an
interesting exercise; two, I believe that it can help you understand the functions and their subtleties
better. Note, though, that in practice it is strongly recommended that you stick to using the window
functions because they are both much simpler and more efficient than the alternatives. I will get to
the optimization details in Chapter 4.

58 CHAPTER 2 a Detailed Look at Window Functions

Supported Windowing elements
All four ranking functions support an optional window partition clause and a mandatory window
order clause. If a window partition clause is not specified, the entire result set of the underlying query
(recall the input to the SELECT phase) is considered one partition. As for the window ordering clause,
it provides the ordering meaning for the calculation. As you can imagine, ranking rows without defin-
ing ordering has little meaning. For ranking window functions, ordering serves a different purpose
than it does for functions that support framing, such as aggregate window functions. With the former,
ordering is what gives logical meaning to the calculation itself. With the latter, ordering is tied to
framing—namely, it serves a filtering purpose.

rOW_NUMBer
The ROW_NUMBER function computes a sequential row number starting with 1 within the respec-
tive window partition, based on the specified window ordering. Consider as an example the query in
Listing 2-2.

LISTIng 2-2 Query with ROW_NUMBER Function

SELECT orderid, val,
 ROW_NUMBER() OVER(ORDER BY orderid) AS rownum
FROM Sales.OrderValues;

Here’s an abbreviated form of the output of this query:

orderid val rownum
-------- -------- -------
10248 440.00 1
10249 1863.40 2
10250 1552.60 3
10251 654.06 4
10252 3597.90 5
10253 1444.80 6
10254 556.62 7
10255 2490.50 8
10256 517.80 9
10257 1119.90 10
...

This calculation probably seems like a trivial thing, but there are a few important things to note
here.

Because this query doesn’t have a presentation ORDER BY clause, presentation ordering is not
guaranteed. Therefore, you should consider presentation ordering here as arbitrary. In practice, SQL
Server optimizes the query with the knowledge that absent a presentation ORDER BY clause, it can
return the rows in any order. If you need to guarantee presentation ordering, make sure you add
a presentation ORDER BY clause. If you want presentation ordering to be based on the calculated
row number, you can specify the alias you assigned to the calculation in the presentation ORDER BY
clause, like so:

 Ranking Functions 59

SELECT orderid, val,
 ROW_NUMBER() OVER(ORDER BY orderid) AS rownum
FROM Sales.OrderValues
ORDER BY rownum;

But think of the row number calculation as simply generating another attribute in the result set of
the query. Of course, if you like, you can have presentation ordering that is different than the window
ordering, as in the following query:

SELECT orderid, val,
 ROW_NUMBER() OVER(ORDER BY orderid) AS rownum
FROM Sales.OrderValues
ORDER BY val DESC;

orderid val rownum
-------- --------- -------
10865 16387.50 618
10981 15810.00 734
11030 12615.05 783
10889 11380.00 642
10417 11188.40 170
10817 10952.85 570
10897 10835.24 650
10479 10495.60 232
10540 10191.70 293
10691 10164.80 444
...

You can use the COUNT window aggregate to produce a calculation that is logically equivalent to
the ROW_NUMBER function. Let WPO be the window partitioning and ordering specification used by
a ROW_NUMBER function. Then ROW_NUMBER OVER WPO is equivalent to COUNT(*) OVER(WPO
ROWS UNBOUNDED PRECEDING). As an example, following is a logical equivalent to the query pre-
sented earlier in Listing 2-2:

SELECT orderid, val,
 COUNT(*) OVER(ORDER BY orderid
 ROWS UNBOUNDED PRECEDING) AS rownum
FROM Sales.OrderValues;

As mentioned, it could be a good exercise to try and come up with alternatives to the use of win-
dow functions, never mind that the alternatives will tend to be more complicated and less efficient.
With the ROW_NUMBER function being the focus at the moment, here’s a set-based, standard alter-
native to the query in Listing 2-2 that doesn’t use window functions:

SELECT orderid, val,
 (SELECT COUNT(*)
 FROM Sales.OrderValues AS O2
 WHERE O2.orderid <= O1.orderid) AS rownum
FROM Sales.OrderValues AS O1;

60 CHAPTER 2 a Detailed Look at Window Functions

This alternative uses a COUNT aggregate in a subquery to count how many rows have an ordering
value (orderid in our case) that is less than or equal to the current one. It’s fairly simple when you have
unique ordering that is based on a single attribute. Things can get tricky, though, when the ordering
isn’t unique, as I will demonstrate shortly when discussing determinism.

Determinism
When the window ordering is unique, as in the query in Listing 2-2, the ROW_NUMBER calculation
is deterministic. This means that the query has only one correct result; hence, if you run it again
without changing the input, you’re guaranteed to get repeatable results. But if the window ordering
isn’t unique, the calculation is nondeterministic. The ROW_NUMBER function generates unique row
numbers within the partition, even for rows with the same values in the window ordering attributes.
Consider the following query as an example, which is followed by an abbreviated form of its output:

SELECT orderid, orderdate, val,
 ROW_NUMBER() OVER(ORDER BY orderdate DESC) AS rownum
FROM Sales.OrderValues;

orderid orderdate val rownum
-------- ----------------------- -------- -------
11074 2008-05-06 00:00:00.000 232.09 1
11075 2008-05-06 00:00:00.000 498.10 2
11076 2008-05-06 00:00:00.000 792.75 3
11077 2008-05-06 00:00:00.000 1255.72 4
11070 2008-05-05 00:00:00.000 1629.98 5
11071 2008-05-05 00:00:00.000 484.50 6
11072 2008-05-05 00:00:00.000 5218.00 7
11073 2008-05-05 00:00:00.000 300.00 8
11067 2008-05-04 00:00:00.000 86.85 9
11068 2008-05-04 00:00:00.000 2027.08 10
...

Because the orderdate attribute isn’t unique, the ordering among rows with the same orderdate
value should be considered arbitrary. Technically, there’s more than one correct result for this query.
Take the four rows with the order date 2008-05-06 as an example. Any arrangement of the row num-
bers 1 through 4 in those rows is considered valid. So if you run the query again, technically you can
get a different arrangement than the current one—never mind the likelihood for this to happen due
to implementation-specific aspects in SQL Server (optimization).

If you need to guarantee repeatable results, you need to make the query deterministic. This can
be achieved by adding a tiebreaker to the window ordering specification, making it unique within the
partition. As an example, the following query achieves unique window ordering by adding orderid
DESC to the list, like so:

SELECT orderid, orderdate, val,
 ROW_NUMBER() OVER(ORDER BY orderdate DESC, orderid DESC) AS rownum
FROM Sales.OrderValues;

 Ranking Functions 61

orderid orderdate val rownum
-------- ----------------------- -------- -------
11077 2008-05-06 00:00:00.000 1255.72 1
11076 2008-05-06 00:00:00.000 792.75 2
11075 2008-05-06 00:00:00.000 498.10 3
11074 2008-05-06 00:00:00.000 232.09 4
11073 2008-05-05 00:00:00.000 300.00 5
11072 2008-05-05 00:00:00.000 5218.00 6
11071 2008-05-05 00:00:00.000 484.50 7
11070 2008-05-05 00:00:00.000 1629.98 8
11069 2008-05-04 00:00:00.000 360.00 9
11068 2008-05-04 00:00:00.000 2027.08 10
...

With window functions, calculating row numbers in a deterministic way is a simple thing. Trying to
achieve the equivalent without window functions is trickier but doable:

SELECT orderdate, orderid, val,
 (SELECT COUNT(*)
 FROM Sales.OrderValues AS O2
 WHERE O2.orderdate >= O1.orderdate
 AND (O2.orderdate > O1.orderdate
 OR O2.orderid >= O1.orderid)) AS rownum
FROM Sales.OrderValues AS O1;

Back to the ROW_NUMBER function: you saw that it can be used to create nondeterministic calcu-
lations when using nonunique ordering. So nondeterminism is allowed, but what’s strange is that it’s
not allowed entirely. What I mean by this is that the ORDER BY clause is mandatory. But what if you
just want to produce unique row numbers within the partition, in no particular order? You want to
issue a query such as this:

SELECT orderid, orderdate, val,
 ROW_NUMBER() OVER() AS rownum
FROM Sales.OrderValues;

But as mentioned, the ORDER BY clause is mandatory in ranking functions, and SQL Server will
produce an error:

Msg 4112, Level 15, State 1, Line 2
The function 'ROW_NUMBER' must have an OVER clause with ORDER BY.

You can try to be smart and specify a constant in the ORDER BY list, like so:

SELECT orderid, orderdate, val,
 ROW_NUMBER() OVER(ORDER BY NULL) AS rownum
FROM Sales.OrderValues;

But then SQL Server will complain and generate the following error:

Msg 5309, Level 16, State 1, Line 2
Windowed functions and NEXT VALUE FOR functions do not support constants as ORDER BY clause
expressions.

62 CHAPTER 2 a Detailed Look at Window Functions

A solution exists, though, and I will present it shortly (after the “OVER Clause and Sequences”
sidebar).

OVer Clause and Sequences
You might wonder what the relevance is of the NEXT VALUE FOR function in the error message
you get when attempting to use a constant in the OVER clause. It’s related to SQL Server 2012’s
extended support for sequences compared to standard SQL. A sequence is an object in the
database used to autogenerate numbers, often to be used as keys. Here’s an example for code
creating a sequence object called dbo.Seq1:

CREATE SEQUENCE dbo.Seq1 AS INT START WITH 1 INCREMENT BY 1;

You use the NEXT VALUE FOR function to obtain new values from the sequence. Here’s an
example:

SELECT NEXT VALUE FOR dbo.Seq1;

You can invoke this function as part of a query that returns multiple rows, like so:

SELECT orderid, orderdate, val,
 NEXT VALUE FOR dbo.Seq1 AS seqval
FROM Sales.OrderValues;

This code is standard. SQL Server 2012 extends the capabilities of the NEXT VALUE FOR
function, thereby allowing you to provide ordering specification in an OVER clause similar to
the one used by window functions. This way, you can provide a guarantee that the sequence
values reflect the desired ordering. Here’s an example using the extended NEXT VALUE FOR
function:

SELECT orderid, orderdate, val,
 NEXT VALUE FOR dbo.Seq1 OVER(ORDER BY orderdate, orderid) AS seqval
FROM Sales.OrderValues;

The same aspects of determinism apply to the OVER clause of the NEXT VALUE FOR func-
tion as they do to window functions.

So there’s no direct way to get row numbers without ordering, but apparently SQL Server seems
to be happy when given a subquery returning a constant as a window ordering element. Here’s an
example:

SELECT orderid, orderdate, val,
 ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum
FROM Sales.OrderValues;

orderid orderdate val rownum
-------- ----------------------- -------- -------
10248 2006-07-04 00:00:00.000 440.00 1
10249 2006-07-05 00:00:00.000 1863.40 2
10250 2006-07-08 00:00:00.000 1552.60 3
10251 2006-07-08 00:00:00.000 654.06 4

 Ranking Functions 63

10252 2006-07-09 00:00:00.000 3597.90 5
10253 2006-07-10 00:00:00.000 1444.80 6
10254 2006-07-11 00:00:00.000 556.62 7
10255 2006-07-12 00:00:00.000 2490.50 8
10256 2006-07-15 00:00:00.000 517.80 9
10257 2006-07-16 00:00:00.000 1119.90 10
...

I’ll provide more detail about this form in Chapter 4 when discussing the optimization of window
functions.

NTILe
The NTILE function allows you to arrange the rows within the window partition in roughly equally
sized tiles, based on the input number of tiles and specified window ordering. For example, suppose
that you want to arrange the rows from the OrderValues view in 10 equally sized tiles based on val
ordering. There are 830 rows in the view; hence, with 10 requested tiles, the tile size is 83 (that’s 830
divided by 10). So the first 83 rows (the first tenth) based on val ordering will be assigned with tile
number 1, the next 83 with tile number 2, and so on. Here’s a query calculating both row numbers
and tile numbers, followed by an abbreviated form of its output:

SELECT orderid, val,
 ROW_NUMBER() OVER(ORDER BY val) AS rownum,
 NTILE(10) OVER(ORDER BY val) AS tile
FROM Sales.OrderValues;

orderid val rownum tile
-------- --------- ------- -----
10782 12.50 1 1
10807 18.40 2 1
10586 23.80 3 1
10767 28.00 4 1
10898 30.00 5 1
...
...
10708 180.40 78 1
10476 180.48 79 1
10313 182.40 80 1
10810 187.00 81 1
11065 189.42 82 1
10496 190.00 83 1
10793 191.10 84 2
10428 192.00 85 2
10520 200.00 86 2
11040 200.00 87 2
11043 210.00 88 2
...
...
10417 11188.40 826 10
10889 11380.00 827 10
11030 12615.05 828 10
10981 15810.00 829 10
10865 16387.50 830 10

64 CHAPTER 2 a Detailed Look at Window Functions

In case you’re thinking that tiling is similar to paging, let me warn you not to confuse the two. With
paging, the page size is a constant and the number of pages is dynamic—it’s a result of the count of
rows in the query result set divided by the page size. With tiling, the number of tiles is a constant, and
the tile size is dynamic—it’s a result of the count of rows divided by the requested number of tiles. It’s
obvious what the uses for paging are. Tiling is usually used for analytical purposes—ones that involve
the need to distribute data to a predetermined, equally sized number of buckets based on some
measure ordering.

Back to the result of the query that calculates both row numbers and tile numbers: as you can
see, the two are closely related. In fact, you could think of a tile number as a calculation that is based
on a row number. Recall from the previous section that if the window ordering is not unique, the
ROW_NUMBER function is nondeterministic. If tiling is a calculation that is conceptually based on
row numbers, this means that the NTILE calculation is also nondeterministic if the window ordering
is nonunique. This means that there can be multiple correct results for a given query. Another way to
look at it is that two rows with the same ordering values can end up with different tile numbers. If you
need to guarantee determinism, you can follow the same recommendation I gave to produce deter-
ministic row numbers—namely, add a tiebreaker to the window ordering, like so:

SELECT orderid, val,
 ROW_NUMBER() OVER(ORDER BY val, orderid) AS rownum,
 NTILE(10) OVER(ORDER BY val, orderid) AS tile
FROM Sales.OrderValues;

Now the query has only one correct result.

Earlier when describing the NTILE function, I explained that it allows you to arrange the rows
within the window partition in roughly equally sized tiles. The reason I used the term roughly is
because the count of rows in the underlying query might not be evenly divisible by the requested
number of tiles. For example, suppose that you wanted to arrange the rows from the OrderValues
view in 100 tiles. When you divide 830 by 100, you get a quotient of 8 and a remainder of 30. This
means that the base tile cardinality is 8, but a subset of the tiles will get an extra row. The NTILE func-
tion doesn’t attempt to evenly distribute the extra rows across the tiles with even spacing; rather, it
adds one row to the first set of tiles until the remainder is gone. With a remainder of 30, the cardinal-
ity of the first 30 tiles will be one greater than the base tile cardinality. So the first 30 tiles will have 9
rows and the last 70 tiles will have 8 rows, as the following query shows:

SELECT orderid, val,
 ROW_NUMBER() OVER(ORDER BY val, orderid) AS rownum,
 NTILE(100) OVER(ORDER BY val, orderid) AS tile
FROM Sales.OrderValues;

orderid val rownum tile
-------- --------- ------- -----
10782 12.50 1 1
10807 18.40 2 1
10586 23.80 3 1
10767 28.00 4 1
10898 30.00 5 1
10900 33.75 6 1
10883 36.00 7 1

 Ranking Functions 65

11051 36.00 8 1
10815 40.00 9 1
10674 45.00 10 2
11057 45.00 11 2
10271 48.00 12 2
10602 48.75 13 2
10422 49.80 14 2
10738 52.35 15 2
10754 55.20 16 2
10631 55.80 17 2
10620 57.50 18 2
10963 57.80 19 3
...
10816 8446.45 814 98
10353 8593.28 815 99
10514 8623.45 816 99
11032 8902.50 817 99
10424 9194.56 818 99
10372 9210.90 819 99
10515 9921.30 820 99
10691 10164.80 821 99
10540 10191.70 822 99
10479 10495.60 823 100
10897 10835.24 824 100
10817 10952.85 825 100
10417 11188.40 826 100
10889 11380.00 827 100
11030 12615.05 828 100
10981 15810.00 829 100
10865 16387.50 830 100

Continuing our custom, try to come up with an alternative to the NTILE function without using
window functions.

I’ll show one way to achieve the task. First, here’s code that calculates the tile number when given
the cardinality, number of tiles, and row number as inputs:

DECLARE @cnt AS INT = 830, @numtiles AS INT = 100, @rownum AS INT = 42;

WITH C1 AS
(
 SELECT
 @cnt / @numtiles AS basetilesize,
 @cnt / @numtiles + 1 AS extendedtilesize,
 @cnt % @numtiles AS remainder
),
C2 AS
(
 SELECT *, extendedtilesize * remainder AS cutoffrow
 FROM C1
)
SELECT
 CASE WHEN @rownum <= cutoffrow
 THEN (@rownum - 1) / extendedtilesize + 1
 ELSE remainder + ((@rownum - cutoffrow) - 1) / basetilesize + 1
 END AS tile
FROM C2;

66 CHAPTER 2 a Detailed Look at Window Functions

The calculation is pretty much self-explanatory. For the given inputs, this code returns 5 as the tile
number.

Next apply this calculation to the rows from the OrderValues view. Use the COUNT aggregate to
get the result set’s cardinality instead of the @cnt input, and use the logic presented earlier to calcu-
late row numbers without window functions instead of the @rownum input, like so:

DECLARE @numtiles AS INT = 100;

WITH C1 AS
(
 SELECT
 COUNT(*) / @numtiles AS basetilesize,
 COUNT(*) / @numtiles + 1 AS extendedtilesize,
 COUNT(*) % @numtiles AS remainder
 FROM Sales.OrderValues
),
C2 AS
(
 SELECT *, extendedtilesize * remainder AS cutoffrow
 FROM C1
),
C3 AS
(
 SELECT O1.orderid, O1.val,
 (SELECT COUNT(*)
 FROM Sales.OrderValues AS O2
 WHERE O2.val <= O1.val
 AND (O2.val < O1.val
 OR O2.orderid <= O1.orderid)) AS rownum
 FROM Sales.OrderValues AS O1
)
SELECT C3.*,
 CASE WHEN C3.rownum <= C2.cutoffrow
 THEN (C3.rownum - 1) / C2.extendedtilesize + 1
 ELSE C2.remainder + ((C3.rownum - C2.cutoffrow) - 1) / C2.basetilesize + 1
 END AS tile
FROM C3 CROSS JOIN C2;

As usual, don’t do this at home! This exercise is a teaching aid; the performance of this technique
in SQL Server is horrible compared with that of the NTILE function.

raNK and DeNSe_raNK
The RANK and DENSE_RANK functions are calculations similar to the ROW_NUMBER function, only
unlike the ROW_NUMBER function they don’t have to produce unique values within the window parti-
tion. When the window ordering direction is ascending, RANK calculates one more than the number
of rows with an ordering value less than the current one in the partition. DENSE_RANK calculates one
more than the number of distinct ordering values that are less than the current one in the partition.
When the window ordering direction is descending, RANK calculates one more than the number of
rows with an ordering value greater than the current one in the partition. DENSE_RANK calculates one
more than the number of distinct ordering values greater than the current one in the partition. As an

 Ranking Functions 67

example, here’s a query calculating row numbers, rank, and dense rank values, all using the default
window partitioning and orderdate DESC ordering:

SELECT orderid, orderdate, val,
 ROW_NUMBER() OVER(ORDER BY orderdate DESC) AS rownum,
 RANK() OVER(ORDER BY orderdate DESC) AS rnk,
 DENSE_RANK() OVER(ORDER BY orderdate DESC) AS drnk
FROM Sales.OrderValues;

orderid orderdate val rownum rnk drnk
-------- ----------------------- -------- ------- ---- ----
11077 2008-05-06 00:00:00.000 232.09 1 1 1
11076 2008-05-06 00:00:00.000 498.10 2 1 1
11075 2008-05-06 00:00:00.000 792.75 3 1 1
11074 2008-05-06 00:00:00.000 1255.72 4 1 1
11073 2008-05-05 00:00:00.000 1629.98 5 5 2
11072 2008-05-05 00:00:00.000 484.50 6 5 2
11071 2008-05-05 00:00:00.000 5218.00 7 5 2
11070 2008-05-05 00:00:00.000 300.00 8 5 2
11069 2008-05-04 00:00:00.000 86.85 9 9 3
11068 2008-05-04 00:00:00.000 2027.08 10 9 3
...

The orderdate attribute is not unique. Still, observe that row numbers are unique. The rank and
dense rank values aren’t unique. All rows with the same order date—for example, 2008-05-05—got
the same rank 5 and dense rank 2. Rank 5 means that there are four rows with greater order dates
(notice the ordering direction is descending), and dense rank 2 means that there’s one greater distinct
order date.

The alternative to the RANK and DENSE_RANK functions that doesn’t use window functions is
pretty straightforward:

SELECT orderid, orderdate, val,
 (SELECT COUNT(*)
 FROM Sales.OrderValues AS O2
 WHERE O2.orderdate > O1.orderdate) + 1 AS rnk,
 (SELECT COUNT(DISTINCT orderdate)
 FROM Sales.OrderValues AS O2
 WHERE O2.orderdate > O1.orderdate) + 1 AS drnk
FROM Sales.OrderValues AS O1;

To calculate rank, you count the number of rows with a greater ordering value (remember, our
example uses descending ordering) and add one. To calculate dense rank, you count the distinct
greater ordering values and add one.

Determinism
As you might have figured out yourself, both the RANK and DENSE_RANK functions are determin-
istic by definition. Given the same ordering value—never mind whether they are nonunique—they
produce the same ranking value. In fact, the two functions are usually interesting when the ordering
is nonunique. When the ordering is unique, both produce the same results as the ROW_NUMBER
function.

68 CHAPTER 2 a Detailed Look at Window Functions

Distribution Functions

Window distribution functions provide information about the distribution of data and are used
mostly for statistical analysis. SQL Server 2012 introduces support for two kinds of window distribu-
tion functions: rank distribution and inverse distribution. There are two rank distribution functions:
PERCENT_RANK and CUME_DIST. And there are two inverse distribution functions: PERCENTILE_CONT
and PERCENTILE_DISC.

In my examples, I will use a table called Scores that holds student test scores. Run the following
code to present the contents of the Scores table:

SELECT * FROM Stats.Scores;

testid studentid score
---------- ---------- -----
Test ABC Student A 95
Test ABC Student B 80
Test ABC Student C 55
Test ABC Student D 55
Test ABC Student E 50
Test ABC Student F 80
Test ABC Student G 95
Test ABC Student H 65
Test ABC Student I 75
Test XYZ Student A 95
Test XYZ Student B 80
Test XYZ Student C 55
Test XYZ Student D 55
Test XYZ Student E 50
Test XYZ Student F 80
Test XYZ Student G 95
Test XYZ Student H 65
Test XYZ Student I 75
Test XYZ Student J 95

Supported Windowing elements
Window rank distribution functions support an optional window partition clause and a mandatory
window order clause. Window inverse distribution functions support an optional window partition
clause. There is also ordering relevance to inverse distribution functions, but it’s not part of the win-
dow specification. Rather, it’s in a separate clause called WITHIN GROUP, which I’ll describe when I get
to the details of the functions.

rank Distribution Functions
According to standard SQL, distribution functions compute the relative rank of a row in the window
partition, expressed as a ratio between 0 and 1—what most of us think of as a percentage. The two
variants—PERCENT_RANK and CUME_DIST—perform the computation slightly differently.

 Distribution Functions 69

Let rk be the RANK of the row using the same window specification as the distribution function’s
window specification.

Let nr be the count of rows in the window partition.

Let np be the number of rows that precede or are peers of the current one (the same as the mini-
mum rk that is greater than the current rk minus 1, or nr if the current rk is the maximum).

Then PERCENT_RANK is calculated as follows: (rk – 1) / (nr – 1). And CUME_DIST is calculated as fol-
lows: np / nr. The query in Listing 2-3 computes both the percentile rank and cumulative distribution
of student test scores, partitioned by testid and ordered by score.

LISTIng 2-3 Query Computing PERCENT_RANK and CUME_DIST

SELECT testid, studentid, score,
 PERCENT_RANK() OVER(PARTITION BY testid ORDER BY score) AS percentrank,
 CUME_DIST() OVER(PARTITION BY testid ORDER BY score) AS cumedist
FROM Stats.Scores;

Here is the tabular output resulting from this query:

testid studentid score percentrank cumedist
---------- ---------- ----- ------------ ---------
Test ABC Student E 50 0.000 0.111
Test ABC Student C 55 0.125 0.333
Test ABC Student D 55 0.125 0.333
Test ABC Student H 65 0.375 0.444
Test ABC Student I 75 0.500 0.556
Test ABC Student F 80 0.625 0.778
Test ABC Student B 80 0.625 0.778
Test ABC Student A 95 0.875 1.000
Test ABC Student G 95 0.875 1.000
Test XYZ Student E 50 0.000 0.100
Test XYZ Student C 55 0.111 0.300
Test XYZ Student D 55 0.111 0.300
Test XYZ Student H 65 0.333 0.400
Test XYZ Student I 75 0.444 0.500
Test XYZ Student B 80 0.556 0.700
Test XYZ Student F 80 0.556 0.700
Test XYZ Student G 95 0.778 1.000
Test XYZ Student J 95 0.778 1.000
Test XYZ Student A 95 0.778 1.000

The output of this query was formatted for clarity.

Unless you have a statistical background, it’s probably hard to make sense of the computations.
Loosely speaking, try to think of the percentile rank in our example as indicating the percent of
students who have a lower test score than the current score, and think of cumulative distribution as
indicating the percentage of students who have a lower score or the same test score as the current
score. Just remember that when calculating the two, the divisor in the former case is (nr – 1) and in
the latter case it’s nr.

70 CHAPTER 2 a Detailed Look at Window Functions

Calculating the percentile rank prior to SQL Server 2012 is pretty straightforward because rk can
be computed with the RANK window function and nr can be calculated with the COUNT window
aggregate function—both are available starting with SQL Server 2005. Computing cumulative distri-
bution is a bit trickier because the computation for the current row requires the rk value associated
with a different row. The computation is supposed to return the minimum rk that is greater than the
current rk, or nr if the current rk is the maximum one. You can use a correlated subquery to achieve
this task.

Here’s a query that’s compatible with SQL Server 2005 or later, computing both percentile rank
and cumulative distribution:

WITH C AS
(
 SELECT testid, studentid, score,
 RANK() OVER(PARTITION BY testid ORDER BY score) AS rk,
 COUNT(*) OVER(PARTITION BY testid) AS nr
 FROM Stats.Scores
)
SELECT testid, studentid, score,
 1.0 * (rk - 1) / (nr - 1) AS percentrank,
 1.0 * (SELECT COALESCE(MIN(C2.rk) - 1, C1.nr)
 FROM C AS C2
 WHERE C2.rk > C1.rk) / nr AS cumedist
FROM C AS C1;

The reason for multiplying the numeric value 1.0 by the rest of the computation is to force implicit
conversion of the integer operands to numeric ones; otherwise, you will get integer division.

As another example, the following query computes the percentile rank and cumulative distribution
of employee order counts:

SELECT empid, COUNT(*) AS numorders,
 PERCENT_RANK() OVER(ORDER BY COUNT(*)) AS percentrank,
 CUME_DIST() OVER(ORDER BY COUNT(*)) AS cumedist
FROM Sales.Orders
GROUP BY empid;

empid numorders percentrank cumedist
------ ---------- ------------ ---------
5 42 0.000 0.111
9 43 0.125 0.222
6 67 0.250 0.333
7 72 0.375 0.444
2 96 0.500 0.556
8 104 0.625 0.667
1 123 0.750 0.778
3 127 0.875 0.889
4 156 1.000 1.000

Note the mixed use of grouped aggregate functions and window rank distribution functions—
that’s very similar to the previously discussed mixed use of grouped aggregate functions and window
aggregate functions.

 Distribution Functions 71

Inverse Distribution Functions
Inverse distribution functions, more commonly known as percentiles, perform a computation you can
think of as the inverse of rank distribution functions. Recall that rank distribution functions compute
the relative rank of the current row in the window partition and are expressed as a ratio between
0 and 1 (percent). Inverse distribution functions accept a percentage as input and return the value
from the group (or an interpolated value) that this percentage represents. Loosely speaking, given a
percentage p as input and ordering in the group based on ordcol, the returned percentile is the ordcol
value with respect to which p percent of the ordcol values are less than it. Perhaps the most known
percentile is 0.5 (the fiftieth percentile), more commonly known as the median. As an example, given
a group of values 2, 3, 7, 1759, 43112609, the percentile 0.5 is 7.

Recall that rank distribution functions are window functions, and it makes a lot of sense for them
to be designed as such. Each row can get a different percentile rank than the others in the same
partition. But inverse distribution functions are supposed to accept one input percentage, as well as
ordering specification in the group, and compute a single result value per group. So you can see that,
in terms of design, it makes more sense for them to be used like grouped functions—that is, apply
them to groups in the context of grouped queries. You can do something like this:

SELECT groupcol, PERCENTILE_FUNCTION(0.5) WITHIN GROUP(ORDER BY ordcol) AS median
FROM T1
GROUP BY groupcol;

Observe the WITHIN GROUP clause, where you define the ordering specification within the group
because this is not a window function.

Sure enough, standard SQL defines inverse distribution functions as a type of what they call an
ordered set function, which is a type of an aggregate function and can be used as grouped aggregate
functions. Alas, in SQL Server 2012, inverse distribution functions are actually implemented only as
window functions that compute the same result value for all rows in the same partition. The grouped
version wasn’t implemented.

In this section, I will describe the supported inverse distribution functions and provide a couple of
examples for using them as window functions. However, because the more common need is to calcu-
late those per group, I will postpone part of the coverage of the topic, including alternative methods,
to Chapter 3, “Ordered Set Functions.”

There are two variants of inverse distribution functions: PERCENTILE_DISC and PERCENTILE_CONT.

The PERCENTILE_DISC function (DISC for discrete distribution model) returns the first value in the
group whose cumulative distribution (see the CUME_DIST function discussed earlier) is greater than or
equal to the input, assuming you treat the group as a window partition with the same ordering as that
defined within the group. Consider, for example, the query in Listing 2-3 from the previous section
calculating the percentile rank and cumulative distribution of student test scores, and its output. Then
the function PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid)
will return the score 75 for test Test ABC because that’s the score associated with the cumulative

72 CHAPTER 2 a Detailed Look at Window Functions

 distribution 0.556, which is the first cumulative distribution that is greater than or equal to the input
0.5. Here’s the previous output with the relevant row bolded:

testid studentid score percentrank cumedist
---------- ---------- ----- ------------ ---------
Test ABC Student E 50 0.000 0.111
Test ABC Student C 55 0.125 0.333
Test ABC Student D 55 0.125 0.333
Test ABC Student H 65 0.375 0.444
Test ABC Student I 75 0.500 0.556
Test ABC Student F 80 0.625 0.778
Test ABC Student B 80 0.625 0.778
Test ABC Student A 95 0.875 1.000
Test ABC Student G 95 0.875 1.000
Test XYZ Student E 50 0.000 0.100
Test XYZ Student C 55 0.111 0.300
Test XYZ Student D 55 0.111 0.300
Test XYZ Student H 65 0.333 0.400
Test XYZ Student I 75 0.444 0.500
Test XYZ Student B 80 0.556 0.700
Test XYZ Student F 80 0.556 0.700
Test XYZ Student G 95 0.778 1.000
Test XYZ Student J 95 0.778 1.000
Test XYZ Student A 95 0.778 1.000

The PERCENTILE_CONT function (CONT for continuous distribution model) is a bit trickier to
explain. Consider the function PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score).

Let n be the count of rows in the group.

Let a be @pct*(n – 1), let i be the integer part of a, and let f be the fraction part of a.

Let row0 and row1 be the rows whose zero-based row numbers are in FLOOR(a), CEILING(a). Here
I’m assuming the row numbers are calculated using the same window partitioning and ordering as
the group and order of the PERCENTILE_CONT function.

Then PERCENTILE_CONT is computed as row0.score + f * (row1.score – row0.score). This is an
 interpolation of the values in the two rows assuming continuous distribution (based on the fraction
part of a).

As a simple, plain-English example, think of a median calculation when there is an even number of
rows. You interpolate the values assuming continuous distribution. The interpolated value falls right in
the middle between the two middle points, meaning that it’s the average of the two middle points.

Here’s an example computing the median test scores using both inverse distribution functions as
window functions:

DECLARE @pct AS FLOAT = 0.5;

SELECT testid, score,
 PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS
percentiledisc,
 PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS percentilecont
FROM Stats.Scores;

 Distribution Functions 73

testid score percentiledisc percentilecont
---------- ----- -------------- ----------------------
Test ABC 50 75 75
Test ABC 55 75 75
Test ABC 55 75 75
Test ABC 65 75 75
Test ABC 75 75 75
Test ABC 80 75 75
Test ABC 80 75 75
Test ABC 95 75 75
Test ABC 95 75 75
Test XYZ 50 75 77.5
Test XYZ 55 75 77.5
Test XYZ 55 75 77.5
Test XYZ 65 75 77.5
Test XYZ 75 75 77.5
Test XYZ 80 75 77.5
Test XYZ 80 75 77.5
Test XYZ 95 75 77.5
Test XYZ 95 75 77.5
Test XYZ 95 75 77.5

Here’s another example computing the tenth percentile (0.1):

DECLARE @pct AS FLOAT = 0.1;

SELECT testid, score,
 PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS
percentiledisc,
 PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS percentilecont
FROM Stats.Scores;

testid score percentiledisc percentilecont
---------- ----- -------------- ----------------------
Test ABC 50 50 54
Test ABC 55 50 54
Test ABC 55 50 54
Test ABC 65 50 54
Test ABC 75 50 54
Test ABC 80 50 54
Test ABC 80 50 54
Test ABC 95 50 54
Test ABC 95 50 54
Test XYZ 50 50 54.5
Test XYZ 55 50 54.5
Test XYZ 55 50 54.5
Test XYZ 65 50 54.5
Test XYZ 75 50 54.5
Test XYZ 80 50 54.5
Test XYZ 80 50 54.5
Test XYZ 95 50 54.5
Test XYZ 95 50 54.5
Test XYZ 95 50 54.5

As mentioned, I will provide more details in Chapter 3 about inverse distribution functions, includ-
ing alternative methods to calculate those, as part of the discussion about ordered set functions.

74 CHAPTER 2 a Detailed Look at Window Functions

Offset Functions

Window offset functions include two categories of functions. One category is functions whose offset
is relative to the current row; this category includes the LAG and LEAD functions. Another category is
functions whose offset is relative to the start or end of the window frame; this category includes the
functions FIRST_VALUE, LAST_VALUE, and NTH_VALUE. SQL Server 2012 supports LAG, LEAD, FIRST_
VALUE, and LAST_VALUE, but not NTH_VALUE.

Supported Windowing elements
The functions in the first category (LAG and LEAD) support a window partition clause as well as a
window order clause. The latter is the one that gives meaning to the offset, of course. The functions
in the second category (FIRST_VALUE, LAST_VALUE, and NTH_VALUE) also support a window frame
clause in addition to the window partition and window order clauses.

LaG and LeaD
The LAG and LEAD functions allow you to return a value expression from a row in the window parti-
tion that is in a given offset before (LAG) or after (LEAD) the current row. The default offset if one is
not specified is 1.

As an example, the following query returns the current order value for each customer order, as well
as the values of the previous and next orders by the same customer:

SELECT custid, orderdate, orderid, val,
 LAG(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS prevval,
 LEAD(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS nextval
FROM Sales.OrderValues;

custid orderdate orderid val prevval nextval
------- ----------- -------- -------- -------- --------
1 2007-08-25 10643 814.50 NULL 878.00
1 2007-10-03 10692 878.00 814.50 330.00
1 2007-10-13 10702 330.00 878.00 845.80
1 2008-01-15 10835 845.80 330.00 471.20
1 2008-03-16 10952 471.20 845.80 933.50
1 2008-04-09 11011 933.50 471.20 NULL
2 2006-09-18 10308 88.80 NULL 479.75
2 2007-08-08 10625 479.75 88.80 320.00
2 2007-11-28 10759 320.00 479.75 514.40
2 2008-03-04 10926 514.40 320.00 NULL
3 2006-11-27 10365 403.20 NULL 749.06
3 2007-04-15 10507 749.06 403.20 1940.85
3 2007-05-13 10535 1940.85 749.06 2082.00
3 2007-06-19 10573 2082.00 1940.85 813.37
3 2007-09-22 10677 813.37 2082.00 375.50
3 2007-09-25 10682 375.50 813.37 660.00
3 2008-01-28 10856 660.00 375.50 NULL
...

 Offset Functions 75

The output is shown here abbreviated and formatted for clarity.

Because explicit offsets weren’t indicated here, the query assumes an offset of 1 by default.
Because the functions partition the data by custid, the calculations look for relative rows only within
the same customer partition. As for the window ordering, what “previous” and “next” mean is deter-
mined by orderdate ordering, and by orderid as a tiebreaker. Observe in the query output that LAG
returns NULL for the first row in the window partition because there’s no row before the first one and,
similarly, LEAD returns NULL for the last row.

If you want to use an offset other than 1, you need to specify it after the input value expression, as
in the following query:

SELECT custid, orderdate, orderid,
 LAG(val, 3) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS prev3val
FROM Sales.OrderValues;

custid orderdate orderid prev3val
------- ----------- -------- ---------
1 2007-08-25 10643 NULL
1 2007-10-03 10692 NULL
1 2007-10-13 10702 NULL
1 2008-01-15 10835 814.50
1 2008-03-16 10952 878.00
1 2008-04-09 11011 330.00
2 2006-09-18 10308 NULL
2 2007-08-08 10625 NULL
2 2007-11-28 10759 NULL
2 2008-03-04 10926 88.80
3 2006-11-27 10365 NULL
3 2007-04-15 10507 NULL
3 2007-05-13 10535 NULL
3 2007-06-19 10573 403.20
3 2007-09-22 10677 749.06
3 2007-09-25 10682 1940.85
3 2008-01-28 10856 2082.00
...

As mentioned, LAG and LEAD return a NULL by default when there’s no row in the specified offset.
If you want to return something else instead, you can indicate what you want to return as the third
argument to the function. For example, LAG(val, 3, 0.00) returns the value 0.00 if the row in offset 3
before the current one doesn’t exist.

To implement similar calculations with LAG and LEAD prior to SQL Server 2012, you can use the
following strategy:

■■ Write a query that produces row numbers based on the same partitioning and ordering as
needed for your calculations, and define a table expression based on this query.

■■ Join multiple instances of the table expression as needed, representing the current, previous,
and next rows.

76 CHAPTER 2 a Detailed Look at Window Functions

■■ In the join predicate, match the partitioning columns of the different instances (current with
previous/next). Also in the join predicate, compute the difference between the row numbers
of the current and previous/next instances, and filter based on the offset value that you need
in your calculations.

Here’s a query implementing this approach, returning for each order the current, previous, and
next customers’ order values:

WITH OrdersRN AS
(
 SELECT custid, orderdate, orderid, val,
 ROW_NUMBER() OVER(ORDER BY custid, orderdate, orderid) AS rn
 FROM Sales.OrderValues
)
SELECT C.custid, C.orderdate, C.orderid, C.val,
 P.val AS prevval,
 N.val AS nextval
FROM OrdersRN AS C
 LEFT OUTER JOIN OrdersRN AS P
 ON C.custid = P.custid
 AND C.rn = P.rn + 1
 LEFT OUTER JOIN OrdersRN AS N
 ON C.custid = N.custid
 AND C.rn = N.rn - 1;

Of course, you could address this task using simple subqueries as well.

FIrST_VaLUe, LaST_VaLUe, and NTH_VaLUe
In the previous section, I discussed the offset functions LAG and LEAD, which allow you to specify
the offset relative to the current row. This section focuses on functions that allow you to indicate the
offset relative to the beginning or end of the window frame. These functions are FIRST_VALUE, LAST_
VALUE, and NTH_VALUE, the last of which wasn’t implemented in SQL Server 2012.

Recall that LAG and LEAD support window partition and window order clauses but not a window
frame clause. This makes sense when the offset is relative to the current row. But with functions that
specify the offset with respect to the beginning or end of the window, framing also becomes relevant.
The FIRST_VALUE and LAST_VALUE functions return the requested value expression from the first and
last rows in the frame, respectively. Here’s a query demonstrating how to return, along with each
customer’s order, the current order value as well as the order values from the customer’s first and last
orders:

SELECT custid, orderdate, orderid, val,
 FIRST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS val_firstorder,
 LAST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid
 ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING) AS val_lastorder
FROM Sales.OrderValues;

 Offset Functions 77

custid orderdate orderid val val_firstorder val_lastorder
------- ----------- -------- -------- --------------- --------------
1 2007-08-25 10643 814.50 814.50 933.50
1 2007-10-03 10692 878.00 814.50 933.50
1 2007-10-13 10702 330.00 814.50 933.50
1 2008-01-15 10835 845.80 814.50 933.50
1 2008-03-16 10952 471.20 814.50 933.50
1 2008-04-09 11011 933.50 814.50 933.50
2 2006-09-18 10308 88.80 88.80 514.40
2 2007-08-08 10625 479.75 88.80 514.40
2 2007-11-28 10759 320.00 88.80 514.40
2 2008-03-04 10926 514.40 88.80 514.40
3 2006-11-27 10365 403.20 403.20 660.00
3 2007-04-15 10507 749.06 403.20 660.00
3 2007-05-13 10535 1940.85 403.20 660.00
3 2007-06-19 10573 2082.00 403.20 660.00
3 2007-09-22 10677 813.37 403.20 660.00
3 2007-09-25 10682 375.50 403.20 660.00
3 2008-01-28 10856 660.00 403.20 660.00
...

Technically, you’re after values from the first and last rows in the partition. With FIRST_VALUE, it’s
easy because you can simply rely on the default framing. Recall that if framing is applicable and you
don’t indicate a window frame clause, the default is RANGE BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW. But with LAST_VALUE, you realize that relying on the default framing is pointless
because the last row is the current row. Hence, this example uses an explicit frame specification with
UNBOUNDED FOLLOWING as the upper boundary point in the frame.

Typically, you would not just return the first or last value along with all detail rows like in the last
example; rather, you would apply some calculation involving a detail element and the value returned
by the window function. As a simple example, the following query returns, along with each customer’s
order, the current order value as well as the difference between the current value and the values of
the customer’s first and last orders:

SELECT custid, orderdate, orderid, val,
 val - FIRST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS difffirst,
 val - LAST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid
 ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING) AS difflast
FROM Sales.OrderValues;

custid orderdate orderid val difffirst difflast
------- ----------- -------- ------- ---------- ---------
1 2007-08-25 10643 814.50 0.00 -119.00
1 2007-10-03 10692 878.00 63.50 -55.50
1 2007-10-13 10702 330.00 -484.50 -603.50
1 2008-01-15 10835 845.80 31.30 -87.70
1 2008-03-16 10952 471.20 -343.30 -462.30
1 2008-04-09 11011 933.50 119.00 0.00
2 2006-09-18 10308 88.80 0.00 -425.60
2 2007-08-08 10625 479.75 390.95 -34.65
2 2007-11-28 10759 320.00 231.20 -194.40

78 CHAPTER 2 a Detailed Look at Window Functions

2 2008-03-04 10926 514.40 425.60 0.00
3 2006-11-27 10365 403.20 0.00 -256.80
3 2007-04-15 10507 749.06 345.86 89.06
3 2007-05-13 10535 1940.8 1537.65 1280.85
3 2007-06-19 10573 2082.0 1678.80 1422.00
3 2007-09-22 10677 813.37 410.17 153.37
3 2007-09-25 10682 375.50 -27.70 -284.50
3 2008-01-28 10856 660.00 256.80 0.00
...

As mentioned, the standard NTH_VALUE function wasn’t implemented in SQL Server 2012. What
this function allows you to do is ask for a value expression that is in a given offset in terms of a num-
ber of rows from the first or last row in the window frame. You specify the offset as a second input in
addition to the value expression and FROM FIRST or FROM LAST, depending on whether you need
the offset to be relative to the first row or last row in the frame, respectively. For example, the follow-
ing expression returns the value from the third row from the last in the partition:

NTH_VALUE(val, 3) FROM LAST OVER(ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING)

Suppose you want to create calculations similar to the FIRST_VALUE, LAST_VALUE, and NTH_VALUE
prior to SQL Server 2012. You can achieve this by using constructs such as CTEs, the ROW_NUMBER
function, a CASE expression, grouping, and joining, like so:

WITH OrdersRN AS
(
 SELECT custid, val,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS rna,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY orderdate DESC, orderid DESC) AS rnd
 FROM Sales.OrderValues
),
Agg AS
(
 SELECT custid,
 MAX(CASE WHEN rna = 1 THEN val END) AS firstorderval,
 MAX(CASE WHEN rnd = 1 THEN val END) AS lastorderval,
 MAX(CASE WHEN rna = 3 THEN val END) AS thirdorderval
 FROM OrdersRN
 GROUP BY custid
)
SELECT O.custid, O.orderdate, O.orderid, O.val,
 A.firstorderval, A.lastorderval, A.thirdorderval
FROM Sales.OrderValues AS O
 JOIN Agg AS A
 ON O.custid = A.custid
ORDER BY custid, orderdate, orderid;

custid orderdate orderid val firstorderval lastorderval thirdorderval
------- ----------- -------- -------- -------------- ------------- --------------
1 2007-08-25 10643 814.50 814.50 933.50 330.00
1 2007-10-03 10692 878.00 814.50 933.50 330.00
1 2007-10-13 10702 330.00 814.50 933.50 330.00

 Summary 79

1 2008-01-15 10835 845.80 814.50 933.50 330.00
1 2008-03-16 10952 471.20 814.50 933.50 330.00
1 2008-04-09 11011 933.50 814.50 933.50 330.00
2 2006-09-18 10308 88.80 88.80 514.40 320.00
2 2007-08-08 10625 479.75 88.80 514.40 320.00
2 2007-11-28 10759 320.00 88.80 514.40 320.00
2 2008-03-04 10926 514.40 88.80 514.40 320.00
3 2006-11-27 10365 403.20 403.20 660.00 1940.85
3 2007-04-15 10507 749.06 403.20 660.00 1940.85
3 2007-05-13 10535 1940.85 403.20 660.00 1940.85
3 2007-06-19 10573 2082.00 403.20 660.00 1940.85
3 2007-09-22 10677 813.37 403.20 660.00 1940.85
3 2007-09-25 10682 375.50 403.20 660.00 1940.85
3 2008-01-28 10856 660.00 403.20 660.00 1940.85
...

In the first CTE, called OrdersRN, you define row numbers in both ascending and descending order
to mark the positions of the rows with respect to the first and last rows in the partition. In the second
CTE, called Agg, you use a CASE expression, filter only the interesting row numbers, group the data
by the partitioning element (custid), and apply an aggregate to the result of the CASE expression
to return the requested value for each group. Finally, in the outer query, you join the result of the
grouped query with the original table to match the detail with the aggregates.

Summary

This chapter delved into the details of the various window functions, focusing on their logical aspects.
I showed both the functionality defined by standard SQL and indicated what SQL Server 2012 sup-
ports. In cases where SQL Server 2012 doesn’t support certain functionality, I provided supported
alternatives.

www.allitebooks.com

http://www.allitebooks.org

 81

C H A P T E R 3

Ordered Set Functions

Have you ever needed to concatenate elements of a group into one string based on some order?
That’s a scenario that an ordered set function could help address. An ordered set function is a

type of aggregate function. What distinguishes it from a general set function (like SUM, MIN, MAX,
and so on) is that there’s ordering relevance to the calculation, such as the order in which you want to
concatenate the elements.

In this chapter, I will discuss ordered set functions and then describe the kinds of solutions they
help with. Because they’re not yet supported in Microsoft SQL Server, I will show how to simulate
them using what’s provided in SQL Server 2012.

You use ordered set functions in grouped queries much like you do general set functions. As for
syntax, standard SQL defines a special clause called WITHIN GROUP where you indicate the ordering,
like so:

<ordered set function> WITHIN GROUP (ORDER BY <sort specification list>)

Standard SQL defines two types of ordered set functions with very fancy, yet appropriate, names:
hypothetical set functions and inverse distribution functions. When providing the specifics of each
type, I will explain why they are called the way they are. Before I get to the details, I want to note
that the concept of an ordered set function isn’t limited to the two types of functions defined by the
standard—rather, it can be extended to any aggregate function that has ordering relevance to the
calculation.

As an example, a string-concatenation aggregate can let users specify alphabetical ordering as
ascending or descending, or it can let them specify some ordering based on an external key. Also, it
would be great if SQL Server supported the concept with Common Language Runtime (CLR) user-
defined aggregates (UDAs) in the future. If the UDA has ordering relevance to the calculation, natu-
rally Microsoft should follow the standard syntax using the WITHIN GROUP clause.

I’ll start the chapter by describing the standard ordered set functions and the alternatives available
in SQL Server. Then I’ll describe additional calculations that fit the concept but aren’t defined by the
standard, and, finally, I’ll provide information about supported solutions in SQL Server.

82 CHAPTER 3 Ordered Set Functions

Hypothetical Set Functions

Hypothetical set functions include ranking and rank-distribution functions that you’re already familiar
with as window functions, but they are applied to groups for an input value in a hypothetical manner.
I’m sure that this description doesn’t make any sense yet, but soon it will.

There are two ranking ordered set functions: RANK and DENSE_RANK. There are also two rank-
distribution ordered set functions: PERCENT_RANK and CUME_DIST. There’s a difference in the order-
ing relevance between a window function and an ordered set function. With the former, the ordering
is within the window partition, and with the latter, the ordering is within the group. When used as a
window function, the current row’s ordering value is evaluated with respect to the ordering values in
the window partition. When used as an ordered set function, the input value is evaluated with respect
to the ordering values in the group. When an ordered set function is given an input value, you’re ask-
ing “What would be the result of the function for this input value if I added it as another element to
the set?” Note that the use of “would be” indicates that this is hypothetical.

This is one of those topics that is best explained through examples, and this chapter provides
plenty. I’ll start with the RANK function.

raNK
Consider the following query, which uses the RANK window function, and its output, which is shown
here in abbreviated form:

USE TSQL2012;

SELECT custid, val,
 RANK() OVER(PARTITION BY custid ORDER BY val) AS rnk
FROM Sales.OrderValues;

custid val rnk
------- -------- ----
1 330.00 1
1 471.20 2
1 814.50 3
1 845.80 4
1 878.00 5
1 933.50 6
2 88.80 1
2 320.00 2
2 479.75 3
2 514.40 4
3 375.50 1
3 403.20 2
3 660.00 3
3 749.06 4
3 813.37 5
3 1940.85 6

 Hypothetical Set Functions 83

3 2082.00 7
4 191.10 1
4 228.00 2
4 282.00 3
4 319.20 4
4 390.00 5
4 407.70 6
4 480.00 7
4 491.50 8
4 899.00 9
4 1477.00 10
4 1641.00 11
4 2142.90 12
4 4441.25 13
...

The function ranks each customer’s orders based on the order values. Can you rationalize why the
rows that got rank 5, say, got that rank? If you recall from Chapter 2, “A Detailed Look at Window
Functions,” RANK, when using ascending ordering, calculates one more than the number of rows
in the window partition with an ordering value that is less than the current one. Take, for example,
customer 3. The row that got rank 5 for customer 3 has the ordering value 813.37. The rank was
computed as 5 because there are 4 rows in the same partition with ordering values that are less than
813.37 (375.50, 403.20, 660.00, and 749.06).

Now suppose you want to do a kind of “what if” analysis and ask “How would an input value @val
rank in each customer group with respect to the other values in the val column?” It’s as if you did the
following:

1. Considered each customer group as a window partition, with window ordering based on the
val column.

2. Added a row to each partition with the input value @val.

3. Calculated the RANK window function for that row in each partition.

4. Returned just that row for each partition.

For example, suppose that the input value @val is equal to 1000.00. How would this value rank in
each customer group with respect to the other values in the val column using ascending ordering?
The result would be one more than the number of rows in each customer group that have a value
that is less than 1000.00. For example, for customer 3 you should get the rank 6, because there are
five rows with values in the val column that are less than 1000.00 (375.50, 403.20, 660.00, 749.06, and
813.37).

The standard defines the following form for the RANK ordered set function:

RANK(<input>) WITHIN GROUP (ORDER BY <sort specification list>)

84 CHAPTER 3 Ordered Set Functions

And here’s how you use it as a grouped aggregate function to address the request at hand
(remember this syntax is not supported by SQL Server 2012):

DECLARE @val AS NUMERIC(12, 2) = 1000.00;

SELECT custid,
 RANK(@val) WITHIN GROUP(ORDER BY val) AS rnk
FROM Sales.OrderValues
GROUP BY custid;

custid rnk
----------- -----------
1 7
2 5
3 6
4 10
5 7
6 8
7 6
8 3
9 9
10 7
...

At this point, the concept of an ordered set function should make much more sense to you.

The last example I showed demonstrates the use of the standard RANK ordered set function, but
as mentioned, SQL Server doesn’t support this syntax. It is quite simple, though, to implement the
calculation without a built-in function. Use a CASE expression that returns some constant when the
ordering value is less than the input value, and use NULL otherwise (which is the default when an
ELSE clause isn’t specified). Apply a COUNT aggregate to the result of the CASE expression, and add 1.
Here’s the complete query:

DECLARE @val AS NUMERIC(12, 2) = 1000.00;

SELECT custid,
 COUNT(CASE WHEN val < @val THEN 1 END) + 1 AS rnk
FROM Sales.OrderValues
GROUP BY custid;

DeNSe_raNK
Recall that DENSE_RANK, as a window function, is similar to RANK, only it returns one more than
the number of distinct ordering values (as opposed to number of rows) in the partition that are less
than the current one. Similarly, as an ordered set function, given an input value @val, DENSE_RANK
returns one more than the number of distinct ordering values in the group that are less than @val.
Here’s what the code should look like according to the standard (again, this is not supported by SQL
Server 2012):

 Hypothetical Set Functions 85

DECLARE @val AS NUMERIC(12, 2) = 1000.00;

SELECT custid,
 DENSE_RANK(@val) WITHIN GROUP(ORDER BY val) AS densernk
FROM Sales.OrderValues
GROUP BY custid;

custid densernk
----------- --------------
1 7
2 5
3 6
4 10
5 7
6 8
7 6
8 3
9 8
10 7
...

The alternative that is supported in SQL Server is similar to the technique used to implement
RANK. Only instead of returning a constant when the ordering value is less than @val, you return val
and apply a DISTINCT clause to the aggregated expression, like so:

DECLARE @val AS NUMERIC(12, 2) = 1000.00;

SELECT custid,
 COUNT(DISTINCT CASE WHEN val < @val THEN val END) + 1 AS densernk
FROM Sales.OrderValues
GROUP BY custid;

PerCeNT_raNK
Very similar to ranking functions, rank distribution functions, specifically PERCENT_RANK and CUME_
DIST, are also supported by the standard as hypothetical set functions. I’ll start with PERCENT_RANK
in this section and describe CUME_DIST in the next section.

As a reminder, PERCENT_RANK as a window function computes the relative rank of a row in the
window partition and expresses it as a ratio between 0 and 1 (a percent). The rank is calculated as
follows:

■■ Let rk be the RANK of the row using the same window specification as the distribution function’s
window specification.

■■ Let nr be the count of rows in the window partition.

■■ Then PERCENT_RANK is calculated as follows: (rk – 1) / (nr – 1).

Now think in terms of hypothetical set functions. Suppose you want to know for a given input
value what its percentile rank would be in each group if it’s added to all groups. For example, consider
the Scores table, which holds test scores. Given an input test score (call it @score), you want to know

86 CHAPTER 3 Ordered Set Functions

what the percentile rank of the input score would be in each test if it’s added as another score to all
tests. According to standard SQL, you use the PERCENT_RANK ordered set function as an aggregate
function, like so:

DECLARE @score AS TINYINT = 80;

SELECT testid,
 PERCENT_RANK(@score) WITHIN GROUP(ORDER BY score) AS pctrank
FROM Stats.Scores
GROUP BY testid;

testid pctrank
---------- ---------------
Test ABC 0.556
Test XYZ 0.500

To produce a percentile rank as a hypothetical set function in SQL Server, you need your own solu-
tion. One option is to generate rk and nr with COUNT aggregates and then compute the percentile
rank as follows: (rk – 1) / (nr – 1). For rk, you need to count the number of rows with a lower score
than the input. For nr, simply count the number of rows and add one (for the input to be taken into
consideration as part of the group). Here’s the complete solution:

DECLARE @score AS TINYINT = 80;

WITH C AS
(
 SELECT testid,
 COUNT(CASE WHEN score < @score THEN 1 END) + 1 AS rk,
 COUNT(*) + 1 AS nr
 FROM Stats.Scores
 GROUP BY testid
)
SELECT testid, 1.0 * (rk - 1) / (nr - 1) AS pctrank
FROM C;

CUMe_DIST
The CUME_DIST calculation is similar to PERCENT_RANK, only it’s calculated slightly differently. As a
window function, it is calculated as follows:

■■ Let nr be the count of rows in the window partition.

■■ Let np be the number of rows that precede or are peers of the current one.

■■ Then CUME_DIST is calculated as follows: np / nr.

As a hypothetical set function, CUME_DIST tells you what cumulative distribution an input value
would get in each group if it’s added to all groups. The standard version of the CUME_DIST function
as an ordered set function applied to our Scores scenario looks like this:

 Hypothetical Set Functions 87

DECLARE @score AS TINYINT = 80;

SELECT testid,
 CUME_DIST(@score) WITHIN GROUP(ORDER BY score) AS cumedist
FROM Stats.Scores
GROUP BY testid;

testid cumedist
---------- ------------
Test ABC 0.800
Test XYZ 0.727

As for the version supported by SQL Server, it’s quite similar to the alternative you used for the
PERCENT_RANK function. You compute np as the count of rows in the group that have a score that
is lower than the input, plus one to account for the input. You compute nr as a count of rows in the
group, plus one—again, to account for the input. Finally, you compute the cumulative distribution as
follows: np / nr. Here’s the complete solution:

DECLARE @score AS TINYINT = 80;

WITH C AS
(
 SELECT testid,
 COUNT(CASE WHEN score <= @score THEN 1 END) + 1 AS np,
 COUNT(*) + 1 AS nr
 FROM Stats.Scores
 GROUP BY testid
)
SELECT testid, 1.0 * np / nr AS cumedist
FROM C;

General Solution
Because SQL Server 2012 doesn’t support the standard hypothetical set functions, I provided alterna-
tive methods to achieve the same calculations. The methods I provided for the different calculations
were quite different from one another. In this section, I will present a more generalized solution.

All four unsupported hypothetical set functions have supported window-function counterparts.
That is, SQL Server 2012 does support RANK, DENSE_RANK, PERCENT_RANK, and CUME_DIST as win-
dow functions. Remember that a hypothetical set function is supposed to return for a given input the
result that the corresponding window function would return if the input value was added to the set.
With this in mind, you can create a solution that works the same for all calculations. The generalized
solution might not be as optimized as the specialized ones, but it is still interesting to see. The steps
involved in the solution are as follows:

1. Unify the existing set with the input value.

2. Apply the window function.

3. Filter the row representing the input value to return the result.

88 CHAPTER 3 Ordered Set Functions

Here’s the code form of the solution:

SELECT <partition_col>, wf AS osf
FROM <partitions_table> AS P
 CROSS APPLY (SELECT <window_function>() OVER(ORDER BY <ord_col>) AS wf, return_flag
 FROM (SELECT <ord_col>, 0 AS return_flag
 FROM <details_table> AS D
 WHERE D.<partition_col> = P.<partition_col>

 UNION ALL

 SELECT @input_val, 1) AS D) AS A
WHERE return_flag = 1;

The outer query is issued against the table holding the distinct partition values. Then with a CROSS
APPLY operator, the code handles each partition separately. The innermost-derived table U handles
the unification of the current partition’s rows, which are marked with return_flag 0, with a row made
of the input value, marked with return_flag 1. Then the query against U computes the window func-
tion, generating the derived table A. Finally, the outer query filters only the rows with return_flag 1.
Those are the rows that have the computation for the input value in each partition; in other words,
the hypothetical set calculation.

If this general form isn’t clear yet, see if you can follow the logic through specific examples. The
following code queries the table Customers (partitions) and the view Sales.OrderValues (details). It
calculates both RANK and DENSE_RANK as hypothetical set calculations for an input value @val, with
custid being the partitioning element and val being the ordering element:

DECLARE @val AS NUMERIC(12, 2) = 1000.00;

SELECT custid, rnk, densernk
FROM Sales.Customers AS P
 CROSS APPLY (SELECT
 RANK() OVER(ORDER BY val) AS rnk,
 DENSE_RANK() OVER(ORDER BY val) AS densernk,
 return_flag
 FROM (SELECT val, 0 AS return_flag
 FROM Sales.OrderValues AS D
 WHERE D.custid = P.custid

 UNION ALL

 SELECT @val, 1) AS U) AS A
WHERE return_flag = 1;

custid rnk densernk
----------- -------------------- --------------------
1 7 7
2 5 5
3 6 6
4 10 10
5 7 7
6 8 8
7 6 6

 Hypothetical Set Functions 89

8 3 3
9 9 8
11 9 9
...

Similarly, the following code is issued against the tables Tests (partitions) and Scores (details). It
calculates PERCENT_RANK and CUME_DIST as hypothetical set calculations for the input value @score,
with testid being the partitioning element and score being the ordering element:

DECLARE @score AS TINYINT = 80;

SELECT testid, pctrank, cumedist
FROM Stats.Tests AS P
 CROSS APPLY (SELECT
 PERCENT_RANK() OVER(ORDER BY score) AS pctrank,
 CUME_DIST() OVER(ORDER BY score) AS cumedist,
 return_flag
 FROM (SELECT score, 0 AS return_flag
 FROM Stats.Scores AS D
 WHERE D.testid = P.testid

 UNION ALL

 SELECT @score, 1) AS U) AS A
WHERE return_flag = 1;

testid pctrank cumedist
---------- ---------------------- ----------------------
Test ABC 0.555555555555556 0.8
Test XYZ 0.5 0.727272727272727

Of course, there are other ways to generalize a solution for hypothetical set calculations. Here I
showed just one method.

I should note that this method returns rows that appear in the partitions table even if there are no
related rows in the details table. If you are not interested in those, you need to add logic to exclude
them—for example, by including a NOT EXISTS predicate. As an example, to exclude customers with
no related orders from the query that calculates the RANK and DENSE_RANK hypothetical set calcula-
tions, you use the following code:

DECLARE @val AS NUMERIC(12, 2) = 1000.00;

SELECT custid, rnk, densernk
FROM Sales.Customers AS P
 CROSS APPLY (SELECT
 RANK() OVER(ORDER BY val) AS rnk,
 DENSE_RANK() OVER(ORDER BY val) AS densernk,
 return_flag
 FROM (SELECT val, 0 AS return_flag
 FROM Sales.OrderValues AS D
 WHERE D.custid = P.custid

 UNION ALL

 SELECT @val, 1) AS U) AS A

90 CHAPTER 3 Ordered Set Functions

WHERE return_flag = 1
 AND EXISTS
 (SELECT * FROM Sales.OrderValues AS D
 WHERE D.custid = P.custid);

This query returns 89 rows and not 91, because only 89 out of the 91 existing customers placed
orders.

Inverse Distribution Functions

Inverse distribution functions perform calculations that you can think of as the inverse of the rank
distribution functions PERCENT_RANK and CUME_DIST. Rank distribution functions compute a rank of
a value with respect to others in a partition or a group, expressed as a ratio in the range of 0 through
1 (a percent). Inverse distribution functions pretty much do the inverse. Given a certain percent, @pct,
they return a value from the partition or group that the @pct represents. That is, in loose terms, they
return a calculated value with respect to which @pct percent of the values are less than. Chances are
that this sentence doesn’t make much sense yet, but it should be clearer after you see some examples.
Inverse distribution functions are more commonly known as percentiles.

The standard defines two variants of inverse distribution functions: PERCENTILE_DISC, which
returns an existing value from the population using a discrete distribution model, and PERCENTILE_
CONT, which returns an interpolated value assuming a continuous distribution model. I explained
the specifics of the two calculations in Chapter 2. As a quick reminder, PERCENTILE_DISC returns
the first value in the group whose cumulative distribution is greater than or equal to the input. The
 PERCENTILE_CONT function identifies two rows in between which the input percent falls, and it com-
putes an interpolation of the two ordering values assuming a continuous distribution model.

SQL Server 2012 supports only a windowed version of the functions, which I described in detail
in Chapter 2. It doesn’t support the more natural ordered set function versions that can be used
in grouped queries. But I will provide alternatives to the ordered set function versions both in SQL
Server 2012 and in prior versions of SQL Server.

First, as a reminder, here’s a query against the Scores table calculating the fiftieth percentile
(median) of test scores, using both function variants as well as window functions:

DECLARE @pct AS FLOAT = 0.5;

SELECT testid, score,
 PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentiledisc,
 PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentilecont
FROM Stats.Scores;

 Inverse Distribution Functions 91

testid score percentiledisc percentilecont
---------- ----- -------------- ----------------------
Test ABC 50 75 75
Test ABC 55 75 75
Test ABC 55 75 75
Test ABC 65 75 75
Test ABC 75 75 75
Test ABC 80 75 75
Test ABC 80 75 75
Test ABC 95 75 75
Test ABC 95 75 75
Test XYZ 50 75 77.5
Test XYZ 55 75 77.5
Test XYZ 55 75 77.5
Test XYZ 65 75 77.5
Test XYZ 75 75 77.5
Test XYZ 80 75 77.5
Test XYZ 80 75 77.5
Test XYZ 95 75 77.5
Test XYZ 95 75 77.5
Test XYZ 95 75 77.5

Observe that the same result percentiles are simply repeated for all members of the same partition
(test, in our case), which is completely redundant for our purposes. You need to return the percentiles
only once per group. According to the standard, you are supposed to achieve this using the ordered
set versions of the functions in a grouped query, like so:

DECLARE @pct AS FLOAT = 0.5;

SELECT testid,
 PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score) AS percentiledisc,
 PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score) AS percentilecont
FROM Stats.Scores
GROUP BY testid;

But these versions weren’t implemented in SQL Server 2012, so you need to figure out alternative
methods to achieve this.

Because the windowed versions of the functions were implemented, one simple approach to han-
dling the task is to use the DISTINCT option, like so:

DECLARE @pct AS FLOAT = 0.5;

SELECT DISTINCT testid,
 PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentiledisc,
 PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentilecont
FROM Stats.Scores;

testid percentiledisc percentilecont
---------- -------------- ----------------------
Test ABC 75 75
Test XYZ 75 77.5

92 CHAPTER 3 Ordered Set Functions

Another option is to assign unique row numbers to the rows in each partition, and then filter just
the rows with row number 1, like so:

DECLARE @pct AS FLOAT = 0.5;

WITH C AS
(
 SELECT testid,
 PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentiledisc,
 PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentilecont,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY (SELECT NULL)) AS rownum
 FROM Stats.Scores
)
SELECT testid, percentiledisc, percentilecont
FROM C
WHERE rownum = 1;

Another option is to use TOP (1) WITH TIES, with ordering based on similar row numbers, which
also results in returning only rows with row number 1, like so:

DECLARE @pct AS FLOAT = 0.5;

SELECT TOP (1) WITH TIES testid,
 PERCENTILE_DISC(@pct) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentiledisc,
 PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentilecont
FROM Stats.Scores
ORDER BY ROW_NUMBER() OVER(PARTITION BY testid ORDER BY (SELECT NULL));

Note that even though the last technique might be creative and intellectually intriguing, it is not as
efficient as the previous one.

If you need to calculate percentiles in versions prior to SQL Server 2012, you need to implement
the logic of the computation yourself. With PERCENTILE_DISC, you are supposed to return the first
value in the group whose cumulative distribution is greater than or equal to the input percent. To
calculate the cumulative distribution of each value, you need to know how many rows precede or are
peers of that value (np) and how many rows there are in the group (nr). Then the cumulative distribu-
tion is np / nr.

Normally, to calculate np, you need to return one less than the minimum rank that is greater than
the current one. This could involve expensive use of subqueries and the RANK function. Courtesy of
Adam Machanic, you can achieve what you need with less effort. When peers cannot exist (that is,
the ordering is unique), the ROW_NUMBER function returns a number that is equal to np for all rows.
When peers can exist (the ordering isn’t unique) the function returns a number that is equal to np
for one of the peers and less than np for all others. Because we are talking about peers, by defini-
tion, in cases where the row number is less than np, the sort value is the same as the one where the

 Inverse Distribution Functions 93

row number is equal to np. This fact makes the ROW_NUMBER function sufficient for our very specific
need of representing np. As for calculating nr, you can use a simple COUNT window function. Here’s
the code that implements this logic, followed by its output:

DECLARE @pct AS FLOAT = 0.5;

WITH C AS
(
 SELECT testid, score,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score) AS np,
 COUNT(*) OVER(PARTITION BY testid) AS nr
 FROM Stats.Scores
)
SELECT testid, MIN(score) AS percentiledisc
FROM C
WHERE 1.0 * np / nr >= @pct
GROUP BY testid;

testid percentiledisc
---------- --------------
Test ABC 75
Test XYZ 75

As for a pre–SQL Server 2012 alternative to PERCENTILE_CONT, here’s a reminder from Chapter 2
for the logic behind the computation:

■■ Consider the function PERCENTILE_CONT(@pct) WITHIN GROUP(ORDER BY score).

■■ Let n be the count of rows in the group.

■■ Let a be @pct*(n – 1), let i be the integer part of a, and let f be the fraction part of a.

■■ Let row0 and row1 be the rows whose zero-based row numbers are in FLOOR(a), CEILING(a).
Here I’m assuming the row numbers are calculated using the same window partitioning and
ordering as the group and order of the PERCENTILE_CONT function.

Then PERCENTILE_CONT is computed as row0.score + f * (row1.score – row0.score). This is an inter-
polation of the values in the two rows assuming continuous distribution (based on the fraction part
of a).

The following code implements this logic:

DECLARE @pct AS FLOAT = 0.5;

WITH C1 AS
(
 SELECT testid, score,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score) - 1 AS rownum,
 @pct * (COUNT(*) OVER(PARTITION BY testid) - 1) AS a
 FROM Stats.Scores
),

94 CHAPTER 3 Ordered Set Functions

C2 AS
(
 SELECT testid, score, a-FLOOR(a) AS factor
 FROM C1
 WHERE rownum IN (FLOOR(a), CEILING(a))
)
SELECT testid, MIN(score) + factor * (MAX(score) - MIN(score)) AS percentilecont
FROM C2
GROUP BY testid, factor;

testid percentilecont
---------- ----------------------
Test ABC 75
Test XYZ 77.5

Offset Functions

Standard SQL doesn’t define ordered set function versions of the functions FIRST_VALUE, LAST_VALUE,
and NTH_VALUE; rather, it defines only windowed versions, and that’s also the implementation in SQL
Server 2012. As an example, the following query returns with each order the current order value, as
well as the values of the first and last orders by the same customer:

SELECT custid, orderdate, orderid, val,
 FIRST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS val_firstorder,
 LAST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid
 ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING) AS val_lastorder
FROM Sales.OrderValues;

custid orderdate orderid val val_firstorder val_lastorder
------- ----------- -------- -------- --------------- --------------
1 2007-08-25 10643 814.50 814.50 933.50
1 2007-10-03 10692 878.00 814.50 933.50
1 2007-10-13 10702 330.00 814.50 933.50
1 2008-01-15 10835 845.80 814.50 933.50
1 2008-03-16 10952 471.20 814.50 933.50
1 2008-04-09 11011 933.50 814.50 933.50
2 2006-09-18 10308 88.80 88.80 514.40
2 2007-08-08 10625 479.75 88.80 514.40
2 2007-11-28 10759 320.00 88.80 514.40
2 2008-03-04 10926 514.40 88.80 514.40
3 2006-11-27 10365 403.20 403.20 660.00
3 2007-04-15 10507 749.06 403.20 660.00
3 2007-05-13 10535 1940.85 403.20 660.00
3 2007-06-19 10573 2082.00 403.20 660.00
3 2007-09-22 10677 813.37 403.20 660.00
3 2007-09-25 10682 375.50 403.20 660.00
3 2008-01-28 10856 660.00 403.20 660.00
...

 Offset Functions 95

Observe the duplication of the information in all rows by the same customer. Often that’s what you
want if you need to involve in the same expression both detail elements and the first, last, and nth
values from the partition. But what if you don’t? What if you need the first, last, and nth values only
once per group?

If you think about it, there’s no reason not to support grouped-aggregate, ordered-set function
versions of the functions. After all, in a given group of rows, each of those functions is supposed to
return only one value. It’s true that in the windowed version these functions support a window frame
clause so that, for each row in the partition, there can be a different applicable frame and, therefore, a
different result. But often you just want the calculation applied to the entire partition or group.

You can think of ordered-set-function forms of the FIRST_VALUE and LAST_VALUE functions as
being more flexible versions of the MIN and MAX functions, respectively. They’re more flexible in
the sense that the MIN and MAX functions treat the input as both the ordering element and the
value expression to return, plus they don’t support multiple ordering elements. The FIRST_VALUE and
LAST_VALUE functions allow you to return one element as the value expression based on the order-
ing of another element, or elements. So why not support those as grouped-aggregate, ordered-set
functions?

I hope this will happen in the future. In the meanwhile, you need to use alternative methods. One
method, similar to what I showed with inverse distribution functions, is to invoke the windowed ver-
sion of the functions, along with calculating unique row numbers within each partition. And then filter
only the rows where the row number is equal to 1, like so:

WITH C AS
(
 SELECT custid,
 FIRST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS val_firstorder,
 LAST_VALUE(val) OVER(PARTITION BY custid
 ORDER BY orderdate, orderid
 ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING) AS val_lastorder,
 ROW_NUMBER() OVER(PARTITION BY custid ORDER BY (SELECT NULL)) AS rownum
 FROM Sales.OrderValues
)
SELECT custid, val_firstorder, val_lastorder
FROM C
WHERE rownum = 1;

custid val_firstorder val_lastorder
------- --------------- --------------
1 814.50 933.50
2 88.80 514.40
3 403.20 660.00
4 480.00 491.50
5 1488.80 1835.70
6 149.00 858.00
7 1176.00 730.00
8 982.00 224.00
9 88.50 792.75
10 1832.80 525.00
...

96 CHAPTER 3 Ordered Set Functions

But the functions FIRST_VALUE and LAST_VALUE (the windowed version) are available only in SQL
Server 2012. In addition, the NTH_VALUE function is not available in any form in SQL Server 2012.
There are a number of ways to handle these calculations in previous versions of SQL Server, relying
on the ROW_NUMBER function alone. By calculating an ascending row number and filtering only the
rows with row number 1, you get the equivalent of FIRST_VALUE. Filtering the rows with row number
n, you get the equivalent of NTH_VALUE FROM FIRST. Similarly, using a row number with descending
order, you produce the equivalents of LAST_VALUE and NTH_VALUE FROM LAST. Here’s an example
implementing this logic, returning the first, last, and third order values per customer, with ordering
based on orderdate, orderid:

WITH OrdersRN AS
(
 SELECT custid, val,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY orderdate, orderid) AS rna,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY orderdate DESC, orderid DESC) AS rnd
 FROM Sales.OrderValues
)
SELECT custid,
 MAX(CASE WHEN rna = 1 THEN val END) AS firstorderval,
 MAX(CASE WHEN rnd = 1 THEN val END) AS lastorderval,
 MAX(CASE WHEN rna = 3 THEN val END) AS thirdorderval
FROM OrdersRN
GROUP BY custid;

custid firstorderval lastorderval thirdorderval
------- -------------- ------------- --------------
1 814.50 933.50 330.00
2 88.80 514.40 320.00
3 403.20 660.00 1940.85
4 480.00 491.50 407.70
5 1488.80 1835.70 2222.40
6 149.00 858.00 330.00
7 1176.00 730.00 7390.20
8 982.00 224.00 224.00
9 88.50 792.75 1549.60
10 1832.80 525.00 966.80
...

There’s another technique to handle the first-value and last-value calculations based on a carry-
along-sort concept. The idea is to generate one string that concatenates first the ordering elements
(orderdate and orderid, in our case), and then whichever elements you need to return. Then, by
applying MIN or MAX aggregates, you get back the string holding within it the first or last value,
respectively. The trick is to make sure that when you convert the original values to strings, you format
them in such a way that preserves the original ordering behavior. In our case, this means converting
the orderdate values to a CHAR(8) string using style 112, which produces the form YYYYMMDD. As for
the orderid values, which are positive integers, you want to convert them to a fixed-sized form with
leading spaces or zeros.

The following query shows the first step of the solution, where you just generate the concatenated
strings:

 Offset Functions 97

SELECT custid,
 CONVERT(CHAR(8), orderdate, 112)
 + STR(orderid, 10)
 + STR(val, 14, 2)
 COLLATE Latin1_General_BIN2 AS s
FROM Sales.OrderValues;

custid s
----------- --------------------------------
85 20060704 10248 440.00
79 20060705 10249 1863.40
34 20060708 10250 1552.60
84 20060708 10251 654.06
76 20060709 10252 3597.90
34 20060710 10253 1444.80
14 20060711 10254 556.62
68 20060712 10255 2490.50
88 20060715 10256 517.80
35 20060716 10257 1119.90
...

Observe the use of the binary collation, which helps speed up the comparisons a bit. As for the
second step, you define a CTE based on the previous query. Then, in the outer query, you apply the
MIN and MAX aggregates to the string, extract the part representing the value from the result, and
convert it to the original type. Here’s the complete solution, followed by an abbreviated form of its
output:

WITH C AS
(
 SELECT custid,
 CONVERT(CHAR(8), orderdate, 112)
 + STR(orderid, 10)
 + STR(val, 14, 2)
 COLLATE Latin1_General_BIN2 AS s
 FROM Sales.OrderValues
)
SELECT custid,
 CAST(SUBSTRING(MIN(s), 19, 14) AS NUMERIC(12, 2)) AS firstorderval,
 CAST(SUBSTRING(MAX(s), 19, 14) AS NUMERIC(12, 2)) AS lastorderval
FROM C
GROUP BY custid;

custid firstorderval lastorderval
------- -------------- -------------
1 814.50 933.50
2 88.80 514.40
3 403.20 660.00
4 480.00 491.50
5 1488.80 1835.70
6 149.00 858.00
7 1176.00 730.00
8 982.00 224.00
9 88.50 792.75
10 1832.80 525.00
...

98 CHAPTER 3 Ordered Set Functions

Note that I relied on the fact that the integer orderid values are non-negative. If you have a
numeric ordering element that supports negative values, you need to add logic to make it sort cor-
rectly. This is tricky yet doable. For example, suppose that orderid values can be negative. To ensure
that negative values sort before positive ones, you could add the letter 0 in the string before a nega-
tive value and the letter 1 before a non-negative value. Then, to ensure that negative values sort cor-
rectly (for example, –2 before –1), you could add 2147483648 (the absolute of the minimum possible
negative integer of –2147483648) to the value before converting it to a character string. Here’s what
the complete query would look like:

WITH C AS
(
 SELECT custid,
 CONVERT(CHAR(8), orderdate, 112)
 + CASE SIGN(orderid) WHEN -1 THEN '0' ELSE '1' END -- negative sorts before nonnegative
 + STR(CASE SIGN(orderid)
 WHEN -1 THEN 2147483648 -- if negative add abs(minnegative)
 ELSE 0
 END + orderid, 10)
 + STR(val, 14, 2)
 COLLATE Latin1_General_BIN2 AS s
 FROM Sales.OrderValues
)
SELECT custid,
 CAST(SUBSTRING(MIN(s), 20, 14) AS NUMERIC(12, 2)) AS firstorderval,
 CAST(SUBSTRING(MAX(s), 20, 14) AS NUMERIC(12, 2)) AS lastorderval
FROM C
GROUP BY custid;

When using this technique in production code, make sure you thoroughly comment the code
because it isn’t trivial.

String Concatenation

As mentioned, the standard defines only two kinds of ordered set functions: hypothetical set func-
tions (RANK, DENSE_RANK, PERCENT_RANK, and CUME_DIST) and inverse distribution functions
(PERCENTILE_DISC, and PERCENTILE_CONT). As I already demonstrated with offset functions, there’s
no reason why the concept wouldn’t work for other functions as well. The basic idea is that if it’s an
aggregate function that has ordering relevance to the computation, it’s a potential candidate for an
ordered set function. Take a classic example such as string concatenation. At the moment, unfor-
tunately, there’s no built-in aggregate string concatenation function that concatenates strings in a
group. But say there was one. Of course, you might need to concatenate the strings in the group in
some order; therefore, it would make perfect sense to implement the function as an ordered set func-
tion with a WITHIN GROUP clause that allows you to indicate the ordering specification.

Oracle, for example, implemented such a function (called LISTAGG), as an ordered set function.
So, to query a table called Sales.Orders returning for each customer a string with all orderid values
concatenated in orderid ordering, you use the following code:

 String Concatenation 99

SELECT custid,
 LISTAGG(orderid, ',') WITHIN GROUP(ORDER BY orderid) AS custorders
FROM Sales.Orders
GROUP BY custid;

custid custorders
------- --
1 10643,10692,10702,10835,10952,11011
2 10308,10625,10759,10926
3 10365,10507,10535,10573,10677,10682,10856
4 10355,10383,10453,10558,10707,10741,10743,10768,10793,10864,10920,10953,11016
5 10278,10280,10384,10444,10445,10524,10572,10626,10654,10672,10689,10733,10778,...
6 10501,10509,10582,10614,10853,10956,11058
7 10265,10297,10360,10436,10449,10559,10566,10584,10628,10679,10826
8 10326,10801,10970
9 10331,10340,10362,10470,10511,10525,10663,10715,10730,10732,10755,10827,10871,...
11 10289,10471,10484,10538,10539,10578,10599,10943,10947,11023
...

People use all kinds of alternative solutions in SQL Server to achieve ordered string concatenation.
One of the more efficient techniques is based on XML manipulation using the FOR XML option with
the PATH mode, like so:

SELECT custid,
 COALESCE(
 STUFF(
 (SELECT ',' + CAST(orderid AS VARCHAR(10)) AS [text()]
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 ORDER BY orderid
 FOR XML PATH(''), TYPE).value('.', 'VARCHAR(MAX)'),
 1, 1, ''),
 '') AS custorders
FROM Sales.Customers AS C;

The innermost correlated subquery filters only the orderid values from the Orders table (aliased
as O) that are associated with the current customer from the Customers table (aliased as C). With
the FOR XML PATH('') option, you ask to generate a single XML string out of all of the values. Using
the empty string as input to the PATH mode means that you don’t want the wrapping elements to
be produced, effectively giving you a concatenation of the values without any added tags. Because
the subquery specifies ORDER BY orderid, the orderid values in the string are ordered. Note that you
can order by anything at all—not necessarily by the values you’re concatenating. The code also adds
a comma as a separator before each orderid value, and then the STUFF function removes the first
comma. Finally, the COALESCE function converts a NULL result to an empty string. So, it is possible to
achieve ordered string concatenation in SQL Server, but it isn’t pretty.

100 CHAPTER 3 Ordered Set Functions

Summary

Ordered set functions are aggregate functions that have ordering relevance to the calculation. The
standard defines some specific functions, but the concept is, in fact, general and can work for all kinds
of aggregate calculations. I gave a few examples beyond what the standard supports, such as offset
functions and string concatenation. SQL Server 2012 does not support ordered set functions, but I
provided alternative methods to achieve similar calculations. I do hope very much to see SQL Server
introducing support for such functions in the future—perhaps implementing the standard WITHIN
GROUP clause and making it available to CLR user-defined aggregate functions that have ordering
relevance.

 101

C H A P T E R 4

Optimization of Window Functions

This chapter describes the optimization of window functions in Microsoft SQL Server 2012. It
assumes that you are familiar with analyzing graphical query-execution plans and with the core

iterators such as Index Scan, Index Seek, Sort, Nested Loops, Parallelism, Compute Scalar, Filter,
Stream Aggregate, and so on.

The chapter starts by introducing the data that will be used in the code samples. It then covers
general indexing guidelines to support window functions of all kinds. Then I discuss the optimization
of window ranking functions, which is followed by a discussion on improving parallel processing of
window functions in general. The chapter then discusses optimization of aggregate and offset func-
tions, first without window ordering and framing options and then with them. You will be introduced
to the new Window Spool operator and discover how it does its magic. Finally, the chapter describes
the optimization of distribution functions.

Note I’d like to thank Marc Friedman, Umachandar Jayachandran, Tobias Ternström, and
Milan Stojic from the SQL Server development team for their help in understanding the
 optimization of window functions. It is much appreciated.

Sample Data

Most of the examples in the chapter query tables called Accounts and Transactions, which hold infor-
mation about bank accounts and transactions within those accounts. For deposits, the transactions
have a positive amount associated with them, and for withdrawals, they have a negative one. Run the
following code to create the Accounts and Transactions tables in the TSQL2012 sample database:

SET NOCOUNT ON;
USE TSQL2012;

IF OBJECT_ID('dbo.Transactions', 'U') IS NOT NULL DROP TABLE dbo.Transactions;
IF OBJECT_ID('dbo.Accounts', 'U') IS NOT NULL DROP TABLE dbo.Accounts;

CREATE TABLE dbo.Accounts
(
 actid INT NOT NULL,
 actname VARCHAR(50) NOT NULL,
 CONSTRAINT PK_Accounts PRIMARY KEY(actid)
);

102 CHAPTER 4 Optimization of Window Functions

CREATE TABLE dbo.Transactions
(
 actid INT NOT NULL,
 tranid INT NOT NULL,
 val MONEY NOT NULL,
 CONSTRAINT PK_Transactions PRIMARY KEY(actid, tranid),
 CONSTRAINT FK_Transactions_Accounts
 FOREIGN KEY(actid)
 REFERENCES dbo.Accounts(actid)
);

The code samples and performance measures I provide in the chapter assume that the tables are
populated with a large set of sample data. But if you need a small set of sample data just to test the
logic of the solutions, you can use the following code to fill the tables:

INSERT INTO dbo.Accounts(actid, actname) VALUES
 (1, 'account 1'),
 (2, 'account 2'),
 (3, 'account 3');

INSERT INTO dbo.Transactions(actid, tranid, val) VALUES
 (1, 1, 4.00),
 (1, 2, -2.00),
 (1, 3, 5.00),
 (1, 4, 2.00),
 (1, 5, 1.00),
 (1, 6, 3.00),
 (1, 7, -4.00),
 (1, 8, -1.00),
 (1, 9, -2.00),
 (1, 10, -3.00),
 (2, 1, 2.00),
 (2, 2, 1.00),
 (2, 3, 5.00),
 (2, 4, 1.00),
 (2, 5, -5.00),
 (2, 6, 4.00),
 (2, 7, 2.00),
 (2, 8, -4.00),
 (2, 9, -5.00),
 (2, 10, 4.00),
 (3, 1, -3.00),
 (3, 2, 3.00),
 (3, 3, -2.00),
 (3, 4, 1.00),
 (3, 5, 4.00),
 (3, 6, -1.00),
 (3, 7, 5.00),
 (3, 8, 3.00),
 (3, 9, 5.00),
 (3, 10, -3.00);

As for producing a large set of sample data, first run the following code to create a helper function
called GetNums (which you can get details about in Chapter 5, “T-SQL Solutions Using Window Func-
tions”), which generates a sequence of integers in the requested range:

 Indexing Guidelines 103

IF OBJECT_ID('dbo.GetNums', 'IF') IS NOT NULL DROP FUNCTION dbo.GetNums;
GO
CREATE FUNCTION dbo.GetNums(@low AS BIGINT, @high AS BIGINT) RETURNS TABLE
AS
RETURN
 WITH
 L0 AS (SELECT c FROM (VALUES(1),(1)) AS D(c)),
 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),
 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),
 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),
 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),
 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),
 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum
 FROM L5)
 SELECT @low + rownum - 1 AS n
 FROM Nums
 ORDER BY rownum
 OFFSET 0 ROWS FETCH FIRST @high - @low + 1 ROWS ONLY;
GO

And then use the following code to fill the Accounts table with 100 accounts and the Transactions
table with 20,000 transactions per account—a total of 2,000,000 transactions:

DECLARE
 @num_partitions AS INT = 100,
 @rows_per_partition AS INT = 20000;

TRUNCATE TABLE dbo.Transactions;
DELETE FROM dbo.Accounts;

INSERT INTO dbo.Accounts WITH (TABLOCK) (actid, actname)
 SELECT n AS actid, 'account ' + CAST(n AS VARCHAR(10)) AS actname
 FROM dbo.GetNums(1, @num_partitions) AS P;

INSERT INTO dbo.Transactions WITH (TABLOCK) (actid, tranid, val)
 SELECT NP.n, RPP.n,
 (ABS(CHECKSUM(NEWID())%2)*2-1) * (1 + ABS(CHECKSUM(NEWID())%5))
 FROM dbo.GetNums(1, @num_partitions) AS NP
 CROSS JOIN dbo.GetNums(1, @rows_per_partition) AS RPP;

Feel free to adjust the number of partitions (accounts) and rows per partition (transactions per
account) as needed, but keep in mind that I used the preceding inputs in my tests.

Indexing guidelines

The plan iterators that compute the result of a window function will be described in detail later in
the chapter. For now, it suffices to say that they need the input rows to be sorted by the partitioning
columns (if a window partition clause exists), followed by the ordering columns (assuming a window
order clause is relevant). If no index exists that holds the data in the required order, a sort operation
will be required before the window function iterators can do their jobs.

104 CHAPTER 4 Optimization of Window Functions

POC Index
The general indexing guidelines to support window functions follow a concept I like to think of as
POC, which is short for Partitioning, Ordering, and Covering. It’s also sometimes referred to as POCo.
A POC index’s keys should be the window partition columns followed by the window order columns,
and the index should include in the leaf the rest of the columns that the query refers to. The inclusion
can be achieved either with an explicit INCLUDE clause of a nonclustered index or by means of the
index being clustered—in which case, it needs to include all table columns in the leaf rows.

Absent a POC index, the plan includes a Sort iterator, and with large input sets, it can be quite
expensive. Sorting has N * LOG(N) complexity, which is worse than linear. This means that with more
rows, you pay more per row. For example 1000 * LOG(1000) = 3000 and 10000 * LOG(10000) =
40000. This means that 10 times more rows results in 13 times more work, and it gets worse the fur-
ther you go. As an example, consider the following query:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownum
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-1.

FIgURE 4-1 Plan with a Sort iterator.

At the moment, there’s no POC index in place. The clustered index is scanned without an ordering
requirement (that is, the Ordered property of the scan is False), and then an expensive Sort iterator
is used to sort the data. The query ran for four seconds on my system against hot cache, with results
discarded. (To discard results, open the Query Options context menu, choose Grid under Results, and
select the Discard Results After Execution option.) Next, run the following code to create a POC index:

CREATE INDEX idx_actid_val_i_tranid
 ON dbo.Transactions(actid /* P */, val /* O */)
 INCLUDE(tranid /* C */);

As you can see, the first part of the key list is the window partition column (actid in our case), fol-
lowed by the window order columns (val in our case), and then the rest of the columns referenced by
the query (tranid in our case). Rerun the following query:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownum
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-2.

 Indexing Guidelines 105

FIgURE 4-2 Plan without a Sort iterator.

The Sort iterator is removed. The plan performs an ordered scan of the POC index to satisfy the
ordering requirement of the iterators that compute the window function’s result. This time the query
ran for two seconds even though a serial plan was used, compared with four seconds for the previous
parallel plan with the sort. With larger sets, the difference can be greater.

If the query also involves equality filters—for example, WHERE col1 = 5 AND col2 = 'ABC'—you
can address both the filtering needs and the window function’s ordering needs with the same index
by putting the filtered columns first in the index key list. You can then think of the index as an FPOC
index, with FPO as the key list and C as the include list.

If you have multiple window functions in the query, as long as they have the same window speci-
fication, they can usually rely on the same ordered data without the need to add a Sort iterator for
each. Note also that when specifying multiple window functions with different window ordering (and
possibly also presentation ordering), their order of appearance in the SELECT list can affect the num-
ber of sorts that will take place in the plan.

Backward Scans
The pages in each level of an index, including the leaf, are connected with a doubly linked list; so
technically, the index can be scanned either ordered forward or ordered backward. When rows need
to be consumed in index key order, but in the exact reverse direction to that of the index, often the
optimizer will have the logic to perform an ordered backward scan. But there are curious aspects of
backward scans and the ability to rely on those to compute window functions that are interesting to
know and that can affect your choices.

The first curious aspect is that ordered forward scans can benefit from parallelism, whereas
ordered backward scans cannot. Parallel backward scans are just not implemented in the storage
engine at the moment. To demonstrate that forward scans can be parallelized, run the following
query and request the actual execution plan:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(ORDER BY actid, val) AS rownum
FROM dbo.Transactions
WHERE tranid < 1000;

Figure 4-3 has the plan for this query, showing that a parallel scan was used.

106 CHAPTER 4 Optimization of Window Functions

FIgURE 4-3 Parallel plan.

Next, run the following query, where the direction of the window order columns is reversed:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(ORDER BY actid DESC, val DESC) AS rownum
FROM dbo.Transactions
WHERE tranid < 1000;

The execution plan for the query is shown in Figure 4-4.

FIgURE 4-4 Serial plan.

The optimizer did choose to use an ordered scan of the same index used before, in a backward
fashion, and thus the plan is serial.

You might have noticed that the last two queries have only a window ordering clause but are miss-
ing a window partition clause. Still, the index created earlier satisfies the aforementioned POC guide-
lines, only the P is irrelevant here. It’s not by chance that I chose not to include a window partition
clause in these examples. And this leads me to the second curious aspect of optimization of window
functions.

It turns out that if the function has a window partition clause, to perform an ordered scan of an
index and avoid a sort, the partitioning values must be read in ascending order even though there’s
no logical reasoning behind it. There’s an exception to this rule, but I’ll get to that later.

Consider the following query, which was already used in a previous example:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownum
FROM dbo.Transactions;

The plan for this query was shown earlier in Figure 4-2, where you saw that the POC index was
scanned in an ordered fashion and a sort was avoided.

Next, try a similar query, only this time reverse the direction of the ordering column, like so:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val DESC) AS rownum
FROM dbo.Transactions;

 Indexing Guidelines 107

The plan for this query is shown in Figure 4-5, where you will find a Sort iterator.

FIgURE 4-5 Plan with a Sort iterator for descending order.

The index that was used in the previous example is used here as well because it does cover this
query, but its ordering is not relied on here. You can verify this by looking at the Ordered property of
the Index Scan iterator, and you will find that in this case it is False, whereas in the previous case it was
True. That’s an optimization shortcoming. The order in which the distinct partition column values are
scanned shouldn’t matter. What matters is that the values within each partition need to be scanned
in exactly the order defined by the window order clause. So scanning the index in backward order
should provide the values to the window function in the right order. But alas, the optimizer doesn’t
realize this.

There are two indexes that can prevent the need to sort: one with the key list (actid, val DESC) and
another with the exact inverse directions (actid DESC, val), both with the same include list as before
(tranid). In the former case, an ordered forward scan will be used; in the latter case, an ordered back-
ward one will be used.

But what’s even more curious—and thanks to Brad Schulz for this tip—is what happens if you
add a presentation ORDER BY clause that requests to order the rows by the partitioning column in
descending order. Suddenly, the iterators that compute the window function are willing to consume
the partitioning values in descending order and can rely on index ordering for this. So simply adding
a presentation ORDER BY clause with tranid DESC to our last query removes the need for a Sort itera-
tor. Here’s the revised query:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val DESC) AS rownum
FROM dbo.Transactions
ORDER BY actid DESC;

The plan for this query is shown in Figure 4-6.

FIgURE 4-6 Plan without a Sort iterator for descending order.

Observe that the Sort iterator was removed. The plan performs an ordered backward scan of
the index. Remember that a backward scan will not be parallelized in cases where a forward scan

108 CHAPTER 4 Optimization of Window Functions

 normally would. Still, it’s remarkable to identify a case where adding a presentation ORDER BY clause
to a query improves performance!

Columnstore Indexes
Columnstore indexes are new in SQL Server 2012. They group and store the data for each column (as
opposed to doing it by row as the traditional indexes do), and then join the columns to provide the
related data. They can achieve a high level of compression using a technology called VertiPaq. For
certain types of queries, especially in data warehouses, columnstore indexes can provide significant
performance improvements compared with the traditional indexes. The performance benefits are due
to the compression (reduced I/O) and a new batch-mode processing of the data, as opposed to the
traditional row-mode processing.

Queries that can benefit from columnstore indexes are, for example, queries that involve filtering,
grouping, and star joins. However, there are no special benefits in columnstore indexes that can pro-
duce faster computation of window functions. Some queries with window functions might perform
better (for example, due to the compression that results in reduced I/O); however, the processing of
the iterators involved in the window functions usually will still be done in row mode. In other words,
to get good performance for your window functions, you typically want to focus on creating tradi-
tional, POC indexes, which will help you avoid the need to sort the data.

Ranking Functions

This section describes the optimization of the ranking functions: ROW_NUMBER, NTILE, RANK, and
DENSE_RANK. The iterators computing the ranking functions need to consume the rows one parti-
tion at a time, and in order based on the window order clause. Therefore, you need to follow the POC
guidelines described earlier if you want to avoid unnecessary sorts. In my examples I’ll assume that
the index idx_actid_val_i_tranid, which you created in the previous section, still exists. If it doesn’t,
make sure you create it first so that you get similar results to mine.

The two key iterators that help compute the ranking functions are Segment and Sequence Project.
Segment is used to send one segment of rows at a time to the next iterator. It has a Group By prop-
erty that defines the list of expressions to segment by. Its output in each row is a flag called Seg-
mentN (with N representing some number of the expression—for example, Segment1004), indicating
whether the row is the first in the segment or not.

The Sequence Project iterator is responsible for the actual computation of the ranking function. By
evaluating the flags produced by the preceding Segment iterators, it will reset, keep, or increment the
ranking value produced for the previous row. The output of the Sequence Project iterator holding the
ranking value is named ExpressionN (again, with N representing some number of the expression—for
example, Expr1003).

 Ranking Functions 109

rOW_NUMBer
I’ll use the following query to describe the optimization of the ROW_NUMBER function:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownum
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-7.

FIgURE 4-7 Plan for ROW_NUMBER.

Because there is a POC index in place, it is scanned in an ordered fashion. Without such an index,
remember that an expensive Sort iterator would be added. Next, the Segment iterator creates groups
of rows based on the partitioning column actid, producing a flag (SegmentN) that indicates whether a
new partition starts. Whenever SegmentN indicates that a new partition starts, the Sequence Project
iterator generates the row number value 1 (and calls it ExprN); otherwise, it increments the previous
value by 1.

There’s an interesting aspect of the window ordering of ranking functions that can be an obstacle
in certain cases. The window order clause of ranking functions is mandatory, and it cannot be based
on a constant. Usually it’s not a problem because normally you do need to produce ranking values
based on some ordering requirements that map to some table attributes or expressions based on
them. However, sometimes you just need to produce unique values in no particular order. You could
argue that if ordering makes no difference, it shouldn’t matter if you specify some attribute just to
satisfy the requirement. But then you need to remember that the plan will involve a Sort iterator if a
POC index doesn’t exist, or it will be forced to use an ordered index scan if one does exist. You want
to allow a scan of the data that is not required to be done in index order for potential performance
improvement, and certainly you want to avoid sorting.

As mentioned, a window order clause is mandatory, and SQL Server doesn’t allow the ordering to
be based on a constant—for example, ORDER BY NULL. But surprisingly, when passing an expression
based on a subquery that returns a constant—for example, ORDER BY (SELECT NULL)—SQL Server
will accept it. At the same time, the optimizer un-nests, or expands, the expression and realizes that
the ordering is the same for all rows. Therefore, it removes the ordering requirement from the input
data. Here’s a complete query demonstrating this technique:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum
FROM dbo.Transactions;

The execution plan for this query is shown in Figure 4-8.

110 CHAPTER 4 Optimization of Window Functions

FIgURE 4-8 Plan for ROW_NUMBER with arbitrary ordering.

Observe in the properties of the Index Scan iterator that the Ordered property is False, meaning
that the iterator is not required to return the data in index key order.

NTILe
As a reminder from the discussions in Chapter 2, “A Detailed Look at Window Functions,” NTILE is a
computation that is conceptually based on two elements: the row number and the count of rows in
the partition. If both are known for any given row, you can then apply a formula to compute the tile
number. From the previous section, you already know how a row number is computed and optimized.
The tricky part is to compute the count of rows in the respective partition. I say “tricky” because a
single pass over the data cannot be sufficient. This is because the partition’s row count is needed for
each individual row, and this count cannot be known until the scanning of all partition rows has been
completed. To see how the optimizer handles this problem, consider the following query:

SELECT actid, tranid, val,
 NTILE(100) OVER(PARTITION BY actid ORDER BY val) AS rownum
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-9.

FIgURE 4-9 Plan for NTILE.

 Ranking Functions 111

The optimizer’s answer to our problem is to perform the following steps:

■■ Read the rows from a POC index if one exists. (One does exist in our case.)

■■ Segment the rows by the partitioning element (actid in our case).

■■ Store one partition’s rows at a time in a work table (represented by the upper Table Spool
iterator in the plan).

■■ Read the spool twice (see the two bottom Table Spool iterators in the plan)—once to compute
the count with a Stream Aggregate iterator, and another to get the detail rows.

■■ Join the aggregate and detail rows to get the count and detail in the same target row.

■■ Segment the data again by the partitioning element (actid in our case).

■■ Use the Sequence Project iterator to compute the tile number.

Note that the Table Spool iterator represents a work table in tempdb. Even though the percent-
ages associated with it in the plan seem to be low, it actually has quite high overhead. To give you a
sense, the same query with a ROW_NUMBER function runs on my system for two seconds, whereas
the one with the NTILE function runs for 45 seconds. Later in this chapter when I discuss aggregate
functions without ordering and framing, I explain ways to avoid expensive spooling.

raNK and DeNSe_raNK
The RANK and DENSE_RANK functions perform computations very similar to ROW_NUMBER, only
they are sensitive to ties in the ordering values. Recall that RANK computes one more than the num-
ber of rows that have a lower ordering value than the current one, and DENSE_RANK computes one
more than the number of distinct ordering values that are lower than the current one. So in addi-
tion to needing the segment flag that indicates whether a new partition starts, the Sequence Project
operator also needs to know whether the ordering value has changed. Recall that the plan shown
earlier for the ROW_NUMBER function has a single Segment iterator that is grouped by the partition-
ing element. The plans for RANK and DENSE_RANK are similar, but they require a second Segment
iterator that is grouped by both the partitioning and ordering elements.

As an example, the following query invokes the RANK function:

SELECT actid, tranid, val,
 RANK() OVER(PARTITION BY actid ORDER BY val) AS rownum
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-10.

112 CHAPTER 4 Optimization of Window Functions

FIgURE 4-10 Plan for RANK.

The first Segment iterator is grouped by actid, returning the flag Segment1004, and the second is
grouped by actid, val, returning the flag Segment1005. When Segment1004 indicates that the row is
the first in the partition, Sequence Project returns a 1. Otherwise, when Segment1005 indicates that
the ordering value has changed, Sequence Project returns the respective row number. If the ordering
value hasn’t changed, Sequence Project returns the same value as the previous rank.

The DENSE_RANK function is computed in a similar way. Here’s a query you can use as an example:

SELECT actid, tranid, val,
 DENSE_RANK() OVER(PARTITION BY actid ORDER BY val) AS rownum
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-11.

FIgURE 4-11 Plan for DENSE_RANK.

The main difference here is in what the Sequence Project iterator computes. When Segment1005
indicates that the ordering value has changed, Sequence Project adds 1 to the previous dense rank
value.

Because the plans for RANK and DENSE_RANK are so similar to the plan for ROW_NUMBER, the
performance you get is also very similar. In my system, all three queries ran for two seconds.

Improved Parallelism with APPLY

This section describes a technique I learned from Adam Machanic—the book’s technical editor—that
can improve, sometimes dramatically, the way parallelism is handled when optimizing queries with
window functions.

Before I describe the technique, I should note that I ran the examples in this book against a system
with eight logical CPUs. SQL Server does consider, among other things, the number of logical CPUs
when deciding between a parallel plan and a serial plan. So if you have fewer logical CPUs in your
environment than eight, you might not get parallel plans in all the cases I did.

 Improved Parallelism with APPLY 113

Tip If for test purposes you want to mimic an environment with a different number of CPUs
than the actual one, there are a couple of ways to go about doing this. One option is to
use the startup parameter –Pn, where n represents the number of schedulers you want SQL
Server to start with. Say you have four logical CPUs in your machine and you start the SQL
Server Service with the startup parameter –P8. SQL Server will start with eight schedulers,
and the optimizer will produce plans based on this number, as if it were running in an en-
vironment with eight logical CPUs. The degree of parallelism (DOP) for execution will typi-
cally be eight for parallel plans.

The second method is one I learned from Eladio Rincón. You can use an undocumented
DBCC command called DBCC OPTIMIZER_WHATIF. As a first argument indicate 1, and as a
second argument use the number of CPUs you want the optimizer to assume when creat-
ing the plan. For example, DBCC OPTIMIZER_WHATIF(1, 8) makes the optimizer assume
eight CPUs when creating the plan. Note that this command will not change the number of
schedulers that SQL Server starts with; hence, it also won’t change the DOP for execution
from the actual number of schedulers. But it will create a plan as if there were eight CPUs in
the machine. You might also need to add OPTION(RECOMPILE) to force SQL Server to cre-
ate a new plan after running this command.

Say that, for some query Q, SQL Server normally generates a serial plan when there are four
CPUs in the machine and a parallel plan when there are eight. At the moment, you have
four CPUs in the machine. Normally, SQL Server generates a serial plan in that system for
Q. Using the startup parameter –P8, SQL Server will generate a parallel plan with DOP for
execution 8. With DBCC OPTIMIZER_WHATIF(1, 8), SQL Server will generate a parallel plan
with DOP for execution 4. Also, the startup parameter has a global impact on the entire
instance, whereas the DBCC command has a local impact only on the current session. Either
way, remember that these options aren’t documented officially and hence should be used
only for test purposes.

Back to the parallel APPLY technique: it is mainly useful when there’s a window partition clause
involved and the built-in parallelism doesn’t produce an optimal result, or simply isn’t used. A good
example where the built-in parallel processing of window functions isn’t always optimal is when Sort
iterators are involved. Consider the following query as an example:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val) AS rownumasc,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY val DESC) AS rownumdesc
FROM dbo.Transactions;

This query ran for seven seconds on my system. The plan for this query is shown in Figure 4-12.

114 CHAPTER 4 Optimization of Window Functions

FIgURE 4-12 Plan without APPLY.

Because two ROW_NUMBER functions are invoked, with different window specifications, they
cannot both rely on POC indexes even if both existed. Only one function can benefit from an ordered
scan of a POC index; the other function will require a Sort iterator to arrange the data in the desired
order. Because a sort is involved here and the number of rows is quite large, the optimizer decides to
use a parallel plan.

Parallel plans for queries with window functions need to partition the rows by the same elements
as the window partitioning elements if the Segment and Sequence Project iterators are in a paral-
lel zone. If you look at the properties of the Parallelism (Redistribute Streams) exchange iterator, it
uses Hash partitioning and partitions the rows by actid. This iterator redistributes the rows from the
source threads used for the parallel scan of the data to the target threads that actually compute the
first window function’s result. Then the rows are sorted based on the ordering requirements of the
second window function. A Parallelism (Gather Streams) exchange iterator handles the gathering of
the streams. Finally, the second window function’s result is computed.

There are a number of bottlenecks in such a plan:

■■ The repartitioning of the streams Moving data between threads is an expensive opera-
tion. In this case, it might have even been better if the storage engine used a serial scan and
then distributed the streams directly thereafter.

■■ The sort Currently, the DOP determines how many rows each thread will process. For exam-
ple, on a DOP 8 query, each thread will process about 250,000 rows. Conversely, letting each
thread work on only rows related to one account would mean 20,000 rows per sort. (Remem-
ber, there are 100 accounts, each with about 20,000 transactions.) This makes the existing
sorts approximately 20 percent less efficient than they could be: (((20000 * log(20000)) * 100) /
((250000 * log(250000)) * 8)).

■■ The second Segment and Sequence Project iterators These iterators are in a serial zone.
Although these are not extremely expensive iterators, they do have a cost, and Amdahl’s Law
applies quite well. (This law states that the overall speed-up of a parallel algorithm will be
limited by serial sections.)

All of these bottlenecks are eliminated by the solution using the parallel APPLY technique, which is
implemented as follows:

1. Query the table that holds the distinct partitioning values (Accounts in our case).

2. Use the APPLY operator to apply to each left row the logic of the original query (against Trans-
actions in our case), filtered by the current distinct partitioning value.

 Improved Parallelism with APPLY 115

As an example, the previous query should be rewritten as shown in Listing 4-1.

LISTIng 4-1 Parallel APPLY Technique

SELECT C.actid, A.*
FROM dbo.Accounts AS C
 CROSS APPLY (SELECT tranid, val,
 ROW_NUMBER() OVER(ORDER BY val) AS rownumasc,
 ROW_NUMBER() OVER(ORDER BY val DESC) AS rownumdesc
 FROM dbo.Transactions AS T
 WHERE T.actid = C.actid) AS A;

Observe that because the derived table A handles only one partition’s rows, the window partition
clause was removed from the window specification.

This query ran for three seconds on my system—less than half the run time of the previous query.
The plan for the new query is shown in Figure 4-13.

FIgURE 4-13 Plan with APPLY.

The plan starts by scanning the clustered index of the Accounts table. Then a Parallelism (Distrib-
ute Streams) exchange iterator is used to distribute the rows to multiple threads using a basic round-
robin partitioning type (next packet to next thread). So each thread at the bottom part of the Nested
Loops join iterator gets to work on a subset of one partition’s rows only, but without the bottlenecks
described earlier. The tradeoff is the number of index seek operations (and their associated logical
reads) required to satisfy the query. When the partitioning column has very low density (for example,
200,000 partitions, each with 10 rows), you end up with a large number of seek operations, and the
APPLY technique is not that efficient anymore.

I will use the parallel APPLY technique in a number of cases later in the chapter as well, and I rec-
ommend you consider it whenever you do not get optimal results from the built-in parallel treatment
of window functions.

116 CHAPTER 4 Optimization of Window Functions

Aggregate and Offset Functions

The optimization of aggregate and offset functions varies significantly depending on whether order-
ing and framing are applicable or not. Therefore, I cover the two cases separately, starting with win-
dow aggregate functions without ordering and framing options.

Without Ordering and Framing
When a window aggregate function doesn’t indicate ordering and framing options, the applicable
frame of rows is basically the entire partition. For example, consider the following query:

SELECT actid, tranid, val,
 MAX(val) OVER(PARTITION BY actid) AS mx
FROM dbo.Transactions;

The query is asking for detail elements from each transaction (actid, tranid, and val) to be returned,
as well as the maximum value of the current account. Both detail and aggregate elements are sup-
posed to be returned in the same target row. As explained earlier in the “NTILE” section, a single scan
of the data cannot be sufficient in this case. As you scan the detail rows, you don’t know what the
result of the aggregate of the partition is going to be until you finish scanning the partition. The opti-
mizer’s answer to this problem is to spool each partition’s rows in a work table in tempdb and then
read the spool twice—once for the aggregate computation and another for the detail rows.

The plan for this query is shown in Figure 4-14.

FIgURE 4-14 Plan for a window aggregate with just partitioning.

The plan performs the following steps:

■■ Read the rows from the POC index.

■■ Segment the rows by the partitioning element (actid).

■■ Store one partition’s rows at a time in a work table. (This step is represented by the upper
Table Spool iterator in the plan.)

 Aggregate and Offset Functions 117

■■ Read the spool twice (represented by the two bottom Table Spool iterators in the plan)—once
to compute the MAX aggregate with a Stream Aggregate iterator, and another to get the
detail rows.

■■ Join the aggregate and detail rows to get both in the same target row.

The spooling part doesn’t use some kind of an optimized in-memory work table; rather, it uses an
on-disk one in tempdb. The writes to and reads from the spool have a high overhead. This query ran
for 10 seconds on my system.

If you need to filter the rows based on the result of the window function, recall that you cannot do
this directly in the query’s WHERE clause. You have to define a table expression based on the original
query, and then handle the filtering in the outer query, like so:

WITH C AS
(
 SELECT actid, tranid, val,
 MAX(val) OVER(PARTITION BY actid) AS mx
 FROM dbo.Transactions
)
SELECT actid, tranid, val
FROM C
WHERE val = mx;

The plan for this query is shown in Figure 4-15.

FIgURE 4-15 Plan for a window aggregate with just partitioning, plus filter.

Compared to the previous plan, this one adds a Filter iterator prior to the gathering of the streams.
This query ran for 12 seconds on my system.

Due to the high overhead of the on-disk spooling in these plans, you can actually achieve much
better performance if you use a grouped query that computes the aggregate and then join its result
with the base table, like so:

WITH Aggs AS
(
 SELECT actid, MAX(val) AS mx
 FROM dbo.Transactions
 GROUP BY actid
)

118 CHAPTER 4 Optimization of Window Functions

SELECT T.actid, T.tranid, T.val, A.mx
FROM dbo.Transactions AS T
 JOIN Aggs AS A
 ON T.actid = A.actid;

The plan for this query is shown in Figure 4-16.

FIgURE 4-16 Plan for a grouped aggregate.

Observe that the covering index is scanned twice directly—once to compute the aggregate and
another for the detail—and the results are joined using a Hash join iterator. No spooling takes place,
and this translates to a query that finishes in two seconds.

Next, like before, add a filter based on the aggregate:

WITH Aggs AS
(
 SELECT actid, MAX(val) AS mx
 FROM dbo.Transactions
 GROUP BY actid
)
SELECT T.actid, T.tranid, T.val
FROM dbo.Transactions AS T
 JOIN Aggs AS A
 ON T.actid = A.actid
 AND T.val = A.mx;

The plan for this query is shown in Figure 4-17.

FIgURE 4-17 Plan for a grouped aggregate, plus filter.

Now a Nested Loops join iterator is used to match the related detail rows to each aggregated
account group. This query finishes in less than one second.

 Aggregate and Offset Functions 119

With Ordering and Framing
Window aggregate and offset functions with ordering and framing options are new in SQL Server
2012, and the optimization of those involves new and enhanced iterators—specifically, a new, magical
Window Spool iterator and an enhanced Stream Aggregate iterator.

I’ll discuss three cases of optimization with ordering and framing: using a window frame extent
with a lower bound UNBOUNDED PRECEDING, expanding all frame rows, and computing two cumu-
lative values.

UNBOUNDeD PreCeDING: The Fast-Track Case
When you use a window frame extent with UNBOUNDED PRECEDING as the lower bound, the opti-
mizer uses a highly optimized strategy. I refer to this case as the fast-track case. But I’ll get to that
shortly. Let me first describe the roles of the Window Spool and Stream Aggregate iterators. By the
way, internally the two iterators are implemented as one iterator, but they are presented in the plan
as two.

The purpose of the Window Spool iterator is to expand each source row to its applicable frame
rows—that’s at least what happens in the worst-case scenario. The iterator generates an attribute
identifying the window frame and calls it WindowCountN. The Stream Aggregate iterator groups the
rows by WindowCountN and computes the aggregate. Now there’s a problem of where to obtain the
detail row’s elements once the data has been grouped; for this, the current row is always added to the
Window Spool, and the Stream Aggregate iterator has the logic to return the detail elements from
that row.

As mentioned, each source row is expanded to all of its applicable frame rows only in the worst-
case scenario, and I’ll get to that later. In this section, I want to discuss special optimization for cases
in which the low bound of the window frame is UNBOUNDED PRECEDING. In such a case, instead
of expanding each source row to all applicable frame rows and then grouping and aggregating, the
two iterators were coded with logic to just keep accumulating the values. So for each source row, the
Window Spool iterator will have two rows—one with the cumulative information so far, and another
with the current row. (Remember, this is needed for the detail elements.)

As an example, consider the following query:

SELECT actid, tranid, val,
 SUM(val) OVER(PARTITION BY actid
 ORDER BY tranid
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS balance
FROM dbo.Transactions;

The plan is shown in Figure 4-18.

120 CHAPTER 4 Optimization of Window Functions

FIgURE 4-18 Plan for ROWS.

The numbers below the arrows are row counts. The rows are scanned from the POC index in order.
Then Segment and Sequence Project iterators compute a row number (call it RowNumberN). This
row number is used for filtering of the right frame rows. Our case is a straightforward one, but think
of cases that aren’t (for example, ROWS BETWEEN 5 PRECEDING AND 2 FOLLOWING). Then another
Segment iterator segments the data by actid for the computation of the window aggregate function.
The Window Spool and Stream Aggregate iterators then just keep accumulating the values within
each segment. Remember that the Transactions table has 2,000,000 rows. That’s the number of rows
you see streaming into the Window Spool iterator, as well as the number streaming out of the Stream
Aggregate iterator. As explained earlier, the Window Spool iterator generates two rows for each
source row in our special optimized case of UNBOUNDED PRECEDING—one for the cumulative value
so far, and another for the current row to get the detail elements. Therefore you see 4,000,000 rows
streaming from the Window Spool iterator to the Stream Aggregate iterator.

Also, if the conditions are right—and I’ll get to the specifics later—the Window Spool iterator uses
a highly optimized, in-memory work table, without all of the usual overhead that exists with work
tables in tempdb, such as I/O, locks, latches, and so forth. Our query did benefit from the in-memory
work table, plus the query used UNBOUNDED PRECEDING; therefore, it wasn’t required to expand
all frame rows. The two optimization aspects combined resulted in only nine seconds of run time for
the query on my system and 6,208 logical reads. This is not bad at all compared to any other reliable
method to compute running totals. (See Chapter 5 for more details on running totals.)

A number of conditions will prevent the Window Spool iterator from using the in-memory work
table and cause it to use the far more expensive on-disk work table, with a B-tree indexed by the row
number. I’ll describe those conditions in detail in the next section, as well as how to check which kind
of work table was used. For now, I want to mention that one of those conditions is when SQL Server
cannot compute ahead of time the number of rows in the frame. An example of this is when using the
RANGE window frame units instead of ROWS.

Recall from Chapter 2 that when using RANGE BETWEEN UNBOUNDED PRECEDING AND CUR-
RENT ROW, the frame of a given row can involve additional rows ahead of the current one. That’s the
case when the ordering values are not unique within the partition. Currently, the optimizer doesn’t
check whether there’s uniqueness—in which case, it can technically convert the RANGE option to an
equivalent ROWS. It just defaults to using an on-disk work table. This translates to significant perfor-
mance degradation compared to the ROWS option.

The following query is the same as the last one, only I replaced the ROWS option with RANGE:

 Aggregate and Offset Functions 121

SELECT actid, tranid, val,
 SUM(val) OVER(PARTITION BY actid
 ORDER BY tranid
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS balance
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-19.

FIgURE 4-19 Plan for RANGE.

Nothing in the plan gives away the fact that an on-disk work table was used. In fact, it looks the
same as the previous plan (minus the Sequence Project iterator), and the same number of rows stream
between the iterators. The STATISTICS IO option is one way to tell that an on-disk work table was
used. For the ROWS option, it reported zero reads against 'Worktable' because it was an in-memory
one. For the RANGE option, it reports millions of reads. A trace shows a total of 18,063,511 logical
reads and 5,800 writes. This translates to 60 seconds of run time, compared with the nine seconds
for ROWS.

The unfortunate part is that if you indicate a window order clause without an explicit window
frame clause, the default according to the standard is RANGE BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW, as in the following query:

SELECT actid, tranid, val,
 SUM(val) OVER(PARTITION BY actid
 ORDER BY tranid) AS balance
FROM dbo.Transactions;

It is highly likely that many people will use this form thinking it means by default ROWS BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW, and they will not realize it actually translates to
RANGE. This will incur the performance penalty, not to mention incorrect results if there are dupli-
cates. I hope that in the future, at least in cases where there’s uniqueness of the ordering values within
each partition, that the optimizer will first translate the RANGE option to ROWS in this fast-track case.

Based on the details of the preceding discussions, you can improve the parallel processing of the
RANGE query by using the parallel APPLY technique, like so:

SELECT C.actid, A.*
FROM dbo.Accounts AS C
 CROSS APPLY (SELECT tranid, val,
 SUM(val) OVER(ORDER BY tranid
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS balance
 FROM dbo.Transactions AS T
 WHERE T.actid = C.actid) AS A;

122 CHAPTER 4 Optimization of Window Functions

This query now gets a parallel plan that runs for 21 seconds—a third of the time of the query with-
out APPLY. Still, it’s much slower than the version with ROWS. So you can consider it a best practice to
use the ROWS option whenever possible—certainly when there’s uniqueness and the two are concep-
tually equivalent in the fast-track case.

expanding all Frame rows
In the previous section, I described a fast-track case that is used when the low bound of the frame
is UNBOUNDED PRECEDING. In that case, SQL Server doesn’t expand all frame rows for each source
row; rather, it just keeps accumulating the values. As mentioned, the Window Spool iterator produces
only two rows for each source row—one with the accumulation of values so far, and another with the
base row for the detail elements.

When the low bound of the frame isn’t UNBOUNDED PRECEDING, the fast-track case doesn’t apply.
In these cases, the optimizer will choose between one of two strategies. One strategy, which is the focus
of this section, is to expand all frame rows for each source row. Another strategy, which is the focus of
the next section, is to compute two cumulative values—CumulativeBottom and CumulativeTop—and
derive the result based on the two.

To use the second strategy, the aggregate has to be a cumulative one (SUM, COUNT, COUNT_BIG,
AVG, STDEV, STDEVP, VAR, or VARP), and there needs to be more than four rows in the frame to jus-
tify it. If the aggregate isn’t a cumulative one (MIN, MAX, FIRST_VALUE, LAST_VALUE, or CHECKSUM_
AGG) or the number of rows in the frame is four or less, the first strategy (in which all frame rows are
expanded for each source row) will be used.

Note Internally LAG and LEAD are converted to the LAST_VALUE function with only one
row in the frame; therefore, I won’t discuss LAG and LEAD separately. As an example,
LAG(x, 6) OVER(ORDER BY y) is translated to LAST_VALUE(x) OVER(ORDER BY y ROWS
BETWEEN 6 PRECEDING AND 6 PRECEDING).

Consider the following example:

SELECT actid, tranid, val,
 SUM(val) OVER(PARTITION BY actid
 ORDER BY tranid
 ROWS BETWEEN 5 PRECEDING
 AND 2 PRECEDING) AS sumval
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-20. It took 14 seconds for the query to complete.

 Aggregate and Offset Functions 123

FIgURE 4-20 Plan expanding all frame rows.

The query uses a cumulative aggregate (SUM), but the frame has only four rows. Therefore, all
frame rows are expanded. With four rows in each frame, plus the current row that is added for the
detail elements, the Window Spool will produce five rows for each source row. Therefore, the plan
shows that the Window Spool iterator generates almost 10,000,000 rows out of the 2,000,000 source
rows. The frames for the first few rows in each partition have fewer than four rows; hence, the plan
shows that the Window Spool iterator generates a bit less than 10,000,000 rows.

The Window Spool iterator needs to know which target rows to store in its work table for each
source row, as well as generate a frame identifier in the target rows so that the Stream Aggregate
iterator has something to group the rows by.

To figure out which rows to produce in each frame, the plan starts by computing a row number
to each source row (using the first Segment and Sequence Project iterators). The row number is
computed using the same partitioning and ordering as those of the original window function. The
plan then uses a Compute Scalar iterator to compute for each source row the two row numbers—
BottomRowNumberN and TopRowNumberN—that are supposed to bind the frame. For example, sup-
pose that the current row has row number 10. The row numbers of the respective frame bounds are
TopRowNumberN = 10 – 5 = 5 and BottomRowNumber = 10 – 2 = 8. The work table that the Window
Spool creates is indexed by that row number. So if the rows with the row numbers 5 through 8 already
exist in the work table, they will be queried and added to the work table associated with the new
frame. If some rows are missing, the plan will keep requesting more rows and feed the spool until the
bottom row number is reached. The Window Spool iterator generates for each target row an attribute
it calls WindowCountN that identifies the frame. That’s the attribute that the Stream Aggregate itera-
tor groups the rows by.

In addition to computing the aggregate of interest, the Stream Aggregate iterator computes the
count of rows in the frame, and then the Compute Scalar iterator that follows will return a NULL if the
frame is empty.

As long as the number of rows in the frame is four or less, regardless of which window function
you use, all frame rows will be expanded. Additional examples that will be treated in this manner are
the following: 2 PRECEDING AND 1 FOLLOWING, 2 FOLLOWING AND 5 FOLLOWING, and so on.

If the current row is one of the boundary points of the frame, the plan won’t need to compute
both the top and bottom row numbers. It will compute only one row number–based boundary in
addition to the existing RowNumberN. For example, for the frame 3 PRECEDING AND CURRENT ROW,
it will compute only TopRowNumberN (RowNumberN – 3), and for the frame CURRENT ROW AND 3

124 CHAPTER 4 Optimization of Window Functions

FOLLOWING, it will compute BottomRowNumberN (RowNumberN + 3). The other boundary point will
simply be RowNumberN.

When the window function you’re using isn’t a cumulative one (MIN, MAX, FIRST_VALUE, LAST_
VALUE, or CHECKSUM_AGG), regardless of the number of rows in the frame, all frame rows will be
expanded. Consider the following example:

SELECT actid, tranid, val,
 MAX(val) OVER(PARTITION BY actid
 ORDER BY tranid
 ROWS BETWEEN 100 PRECEDING
 AND 2 PRECEDING) AS maxval
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-21.

FIgURE 4-21 Plan for MAX aggregate.

Because the MAX aggregate is used, all frame rows get expanded. That’s 99 rows per frame;
multiply that by the number of rows in the table, and you end up with quite a large number of rows
returned by the Window Spool iterator (close to 200,000,000 rows). It took this query 75 seconds to
complete.

You can see that SQL Server decided to use a parallel plan. I explained earlier the issues with the
way parallelism is handled natively for window functions and suggested that you try using the parallel
APPLY technique instead. Here’s the parallel APPLY version:

SELECT C.actid, A.*
FROM dbo.Accounts AS C
 CROSS APPLY (SELECT tranid, val,
 MAX(val) OVER(ORDER BY tranid
 ROWS BETWEEN 100 PRECEDING
 AND 2 PRECEDING) AS maxval
 FROM dbo.Transactions AS T
 WHERE T.actid = C.actid) AS A;

On my machine, this query finishes in 31 seconds.

The Window Spool iterator prefers to use a new optimized in-memory work table. However, if
any of the following conditions is met, it will have no choice but to resort to the much slower on-disk
work table with all of the associated overhead (for example, locking, latches, and I/O):

■■ If the distance between the two extreme points among the current, top, and bottom row
numbers exceeds 10,000

■■ If it can’t compute the number of rows in the frame—for example, when using RANGE

■■ When using LAG or LEAD with an expression as the offset

 Aggregate and Offset Functions 125

There are a couple of techniques you can use to test whether in practice SQL Server used an
on-disk work table or an in-memory one. The first technique is to use the STATISTICS IO option; the
second technique is to use an Extended Event designed exactly for this purpose.

Using the STATISTICS IO option, you know that the in-memory work table was used when the
number of reads reported against the work table is 0. When it’s greater than 0, the on-disk one was
used. As an example, the following code turns STATISTICS IO ON and runs two queries using the MAX
window aggregate function:

SET STATISTICS IO ON;

SELECT actid, tranid, val,
 MAX(val) OVER(PARTITION BY actid
 ORDER BY tranid
 ROWS BETWEEN 9999 PRECEDING
 AND 9999 PRECEDING) AS maxval
FROM dbo.Transactions;

SELECT actid, tranid, val,
 MAX(val) OVER(PARTITION BY actid
 ORDER BY tranid
 ROWS BETWEEN 10000 PRECEDING
 AND 10000 PRECEDING) AS maxval
FROM dbo.Transactions;

The first query uses the following frame:

ROWS BETWEEN 9999 PRECEDING AND 9999 PRECEDING

The distance in terms of number of rows between the extreme points (remember, the current row
is also considered for this purpose) is 10,000; hence, the in-memory work table can be used. This
query finished in six seconds.

The second query uses the following frame:

ROWS BETWEEN 10000 PRECEDING AND 10000 PRECEDING

This time, the distance between the extreme points is 10,001; hence, the on-disk work table is
used. This query finished in 33 seconds.

Here’s the output of STATISTICS IO for the two queries:

-- 9999 PRECEDING AND 9999 PRECEDING, 6 seconds
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'Transactions'. Scan count 1, logical reads 6208, physical reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

-- 10000 PRECEDING AND 10000 PRECEDING, 33 seconds
Table 'Worktable'. Scan count 2000100, logical reads 12086700, physical reads 0, read-ahead
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'Transactions'. Scan count 1, logical reads 6208, physical reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

126 CHAPTER 4 Optimization of Window Functions

Observe that for the first query, 0 reads are reported, whereas for the second query, 12,086,700
reads are reported.

Before I describe the second technique, run the following code to turn the STATISTICS IO option
to OFF:

SET STATISTICS IO OFF;

The second technique to identify whether an on-disk work table was used is with an Extended
Event called window_spool_ondisk_warning. Run the following code to create an event session using
an asynchronous file target and start the session:

CREATE EVENT SESSION xe_window_spool ON SERVER
ADD EVENT sqlserver.window_spool_ondisk_warning
 (ACTION (sqlserver.plan_handle, sqlserver.sql_text))
ADD TARGET package0.asynchronous_file_target
 (SET FILENAME = N'c:\temp\xe_xe_window_spool.xel',
 metadatafile = N'c:\temp\xe_xe_window_spool.xem');

ALTER EVENT SESSION xe_window_spool ON SERVER STATE = START;

Rerun the preceding queries, and then open the file c:\temp\xe_xe_window_spool.xel from SQL
Server Management Studio (SSMS). You will find information about the queries for which an on-disk
work table was used, including the plan handle and the query text.

When you’re done, run the following code for cleanup:

DROP EVENT SESSION xe_window_spool ON SERVER;

Computing Two Cumulative Values
When the window function is a cumulative one (SUM, COUNT, COUNT_BIG, AVG, STDEV, STDEVP,
VAR, or VARP) and there are more than four rows in the frame, the optimizer uses a specialized
strategy that doesn’t involve expanding all frame rows. It computes two cumulative values, and then
derives the result from the two. Consider the following query as an example:

SELECT actid, tranid, val,
 SUM(val) OVER(PARTITION BY actid
 ORDER BY tranid
 ROWS BETWEEN 100 PRECEDING
 AND 2 PRECEDING) AS sumval
FROM dbo.Transactions;

The plan for this query is shown in Figure 4-22. The query took 14 seconds to complete.

 Aggregate and Offset Functions 127

FIgURE 4-22 Plan computing two cumulative values.

The optimizer decided to use a parallel plan. The plan uses a parallel scan of the POC index fol-
lowed by an exchange iterator that repartitions the streams by the window-partitioning element
(actid in our case). Then the plan uses a sequence of iterators (Segment, Sequence Project, Compute
Scalar, Segment, Window Spool, and Stream Aggregate) to compute the cumulative bottom SUM
and COUNT aggregate values (which we’ll call CumulativeBottomSum and CumulativeBottomCount).
The rows that were accumulated to compute the cumulative bottom aggregates are those from the
beginning of the partition up to the row with the current row number minus 2. The technique used
to compute the cumulative aggregates is the one I described in the “UNBOUNDED PRECEDING: The
Fast-Track Case” section. Hence, you see that the Window Spool iterator generates only two rows for
each source row—one with the accumulated values, and the current row for the detail elements.

Next, the plan uses another sequence of iterators (Segment, Sequence Project, Compute Scalar,
Segment, Window Spool, and Stream Aggregate) to compute the cumulative top SUM and COUNT
aggregate values (which we’ll call CumulativeTopSum and CumulativeTopCount). The rows that were
accumulated to compute those values are those from the beginning of the partition up to the row
with the current row number minus 101.

Then a Compute Scalar iterator computes the window frame SUM as CumulativeBottomSum –
CumulativeTopSum and the window frame COUNT as CumulativeBottomCount – CumulativeTopCount.
Finally, the last Compute Scalar iterator evaluates the count of rows in the window frame, and if the
count is 0, it returns a NULL.

As mentioned, this query took 14 seconds to complete on my system. That’s using the built-in
parallel handling of window functions. Here, as well, you can try using the parallel APPLY technique,
as shown next.

128 CHAPTER 4 Optimization of Window Functions

SELECT C.actid, A.*
FROM dbo.Accounts AS C
 CROSS APPLY (SELECT tranid, val,
 SUM(val) OVER(ORDER BY tranid
 ROWS BETWEEN 100 PRECEDING
 AND 2 PRECEDING) AS sumval
 FROM dbo.Transactions AS T
 WHERE T.actid = C.actid) AS A;

The run time on my system decreased to eight seconds.

Distribution Functions

This section describes the optimization of distribution functions. I’ll start with rank distribution
functions and then continue with inverse distribution functions. If you don’t remember the logic
behind these computations, make sure you first review the section covering distribution functions in
Chapter 2.

rank Distribution Functions
Rank distribution functions are PERCENT_RANK and CUME_DIST. Recall that the PERCENT_RANK
function is computed as (rk – 1) / (nr – 1), where rk is the rank of the row and nr is the count of rows
in the partition. Computing the count of rows in the respective partition involves using a Table Spool
iterator as described earlier in the chapter. Computing the rank involves using the Sequence Project
iterator. The plan that computes PERCENT_RANK simply incorporates both techniques.

Consider the following query as an example:

SELECT testid, studentid, score,
 PERCENT_RANK() OVER(PARTITION BY testid ORDER BY score) AS percentrank
FROM Stats.Scores;

The plan for this query is shown in Figure 4-23.

FIgURE 4-23 Plan for PERCENT_RANK.

 Distribution Functions 129

The first part is scanning the data and segmenting it by testid. Then, one partition at a time, the
partition rows are written to a spool, and the spool is read twice—once to compute the count (nr),
and a second time to obtain the detail rows. Then the detail rows and the aggregates are joined.
Next, the Segment and the Sequence Project iterators are used to compute the rank (rk). Finally, the
Compute Scalar iterator computes the result of the PERCENT_RANK function as (rk – 1) / (nr – 1).

As for CUME_DIST, the computation is np / nr, where nr is the same as before (the count of rows in
the partition) and np is the count of rows that precede or are peers of the current row.

Consider the following query as an example:

SELECT testid, studentid, score,
 CUME_DIST() OVER(PARTITION BY testid ORDER BY score) AS cumedist
FROM Stats.Scores;

The plan for this query is shown in Figure 4-24.

FIgURE 4-24 Plan for CUME_DIST.

The first part, which computes nr, is the same as in the plan for PERCENT_RANK. The second part
is a bit trickier. To calculate np, SQL Server might need to look ahead of the current row. Also, here
the plan uses two Segment iterators—the first iterator segments the rows by the partitioning element
(testid), and the second iterator segments the rows by the partitioning plus ordering elements (testid
and score). However, instead of using a Sequence Project iterator, it uses the new Window Spool
and Stream Aggregate iterators in the fast-track mode to count the number of rows that precede
or are peer of the current one. Finally, the Compute Scalar iterator computes the CUME_DIST value
as np / nr.

Inverse Distribution Functions
The optimization of inverse distribution functions, PERCENTILE_CONT and PERCENTILE_DISC, is more
involved than that of rank distribution functions. I’ll start with PERCENTILE_DISC. Consider the follow-
ing query:

SELECT testid, score,
 PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentiledisc
FROM Stats.Scores;

The plan for this query appears in Figure 4-25.

130 CHAPTER 4 Optimization of Window Functions

FIgURE 4-25 Plan for PERCENTILE_DISC.

The plan involves the following steps:

■■ The first set of eight iterators that appear in the bottom-right section of Figure 4-25 are
responsible for computing the count of rows for each row in the respective testid partition.
The plan names this count PartitionSizeN.

■■ The Segment and Sequence Project iterators that follow compute a row number within the
testid partition, based on score ordering. The plan calls this row number RowNumberN.

■■ The first Compute Scalar iterator computes the row number of the row that holds the per-
centile for the partition. It does so with the expression (simplified): CeilingTargetRowN =
 ceiling(@pct * PartitionSize1013), where @pct is the input percent to the function (0.5 in
our case).

■■ The second Compute Scalar iterator computes an expression called PartialSumN. This expres-
sion returns the desired percentile score if the current row’s row number (RowNumberN) is
equal to MIN(1, CeilingTargetRowN); otherwise, it returns a NULL. In simplified terms, Partial-
SumN will have the score only if it is the desired percentile; otherwise, it returns a NULL.

■■ The last part needs to pull from each partition the non-NULL percentile (PartialSumN) and
associate it with each detail row. For this, the plan again uses a Table Spool iterator. The plan
segments the data by testid and, one partition at a time, stores the current partition’s rows in
a spool. Then the plan reads the spool twice—once to retrieve the non-NULL percentile using
a MAX(PartialSumN) aggregate (call the result PercentileResultN), and another time to retrieve
the detail. The plan then joins the detail and the aggregates.

■■ The last part is checking the partition size. If it’s 0, it returns NULL; otherwise, it returns
PercentileResultN.

 Distribution Functions 131

As for the PERCENTILE_CONT function, I’ll use the following query to discuss the plan:

SELECT testid, score,
 PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY score)
 OVER(PARTITION BY testid) AS percentilecont
FROM Stats.Scores;

The plan for this query is shown in Figure 4-26.

FIgURE 4-26 Plan for PERCENTILE_CONT.

As you can see, the general layout of the plan is similar to that for the PERCENTILE_DISC function.
There are a couple of main differences, though. One difference is in the Compute Scalar iterators
that appear right after the computation of the row number, and the other difference is in the second
Stream Aggregate iterator. I’ll start with the Compute Scalar iterators:

■■ The first Compute Scalar iterator computes the target row number, including the fraction:
TargetRowN = 1 + @pct * (PartitionSizeN – 1).

■■ The second Compute Scalar iterator computes the floor and ceiling of TargetRowN, naming
them FloorTargetRowN and CeilingTargetRowN, respectively.

■■ The third Compute Scalar iterator computes an expression called PartialSumN. If no interpola-
tion is needed, PartialSumN returns the percentile score if the current row is the target row
and 0 otherwise. If an interpolation is needed, PartialSumN returns the parts of the interpo-
lated score if the current row is either the floor or the ceiling of the target row; otherwise,
it returns 0. The full computation of PartialSumN is quite convoluted; in case you have the
stomach for it, here it is (simplified):

CASE
 -- when no interpolation is needed:
 -- return the current score if current row is target row, else 0
 WHEN CeilingTargetRowN = FloorTargetRowN AND CeilingTargetRowN = TargetRowN

132 CHAPTER 4 Optimization of Window Functions

 THEN CASE
 WHEN RowNumberN = TargetRowN
 THEN score
 ELSE 0
 END
 -- when interpolation is needed:
 -- return the parts of the interpolated value if current row
 -- is either the floor or the ceiling of the target row
 ELSE
 CASE
 WHEN RowNumberN = FloorTargetRowN
 THEN score * (CeilingTargetRowN - TargetRowN)
 ELSE
 CASE
 WHEN RowNumberN = CeilingTargetRowN
 THEN score * (TargetRowN - FloorTargetRowN)
 ELSE 0
 END
 END
END

The second difference from the plan for PERCENTILE_DISC is that the second Stream Aggregate
iterator in the plan uses the SUM aggregate instead of MAX. It does so because this time more
than one element could be relevant, and the parts that make the interpolated value need to be
summed up.

Summary

This chapter covered SQL Server’s optimization of window functions. There were a lot of details to
cover, and I hope you didn’t get lost in those. What are especially interesting are the new optimized
Window Spool iterator and the enhanced Stream Aggregate iterator, as well as the optimized in-
memory work table they use. There are still some glitches in optimization, especially ones that have to
do with seemingly unnecessary sorts, but I expect those will be improved in the future. It’s hard to get
perfection, but it’s important to strive for it. At any rate, when compared with alternative methods to
compute the same calculations, SQL Server handles window functions very efficiently.

The next chapter gets into practical uses of window functions and, in some cases, compares solu-
tions based on those with more traditional alternatives, demonstrating how much more efficient the
new functions and functionality are.

 133

C H A P T E R 5

T-SQL Solutions Using Window
Functions

The first four chapters of this book described window functions in detail, including both their logi-
cal aspects and their optimization aspects. In this fifth and last chapter of the book, I’m going

to show how to solve a wide range of querying problems using window functions. What could be
surprising to some is the large number of solutions that rely on the ROW_NUMBER function—by far
the most commonly used of the bunch.

The solutions covered in this chapter are Virtual Auxiliary Table of Numbers, Sequences of Date
and Time Values, Sequences of Keys, Paging, Removing Duplicates, Pivoting, Top N Per Group, Mode,
Running Totals, Max Concurrent Intervals, Packing Intervals, Gaps and Islands, Median, Conditional
Aggregate, and Sorting Hierarchies.

Note This chapter covers only a sample of solutions to show the usefulness and practicality
of window functions. You will probably find many other ways to use window functions to
solve problems more elegantly and efficiently than with alternative methods.

Virtual Auxiliary Table of numbers

An auxiliary table of numbers is a helper table filled with a sequence of integers you can use to
address many different querying tasks. There are many uses for such a numbers table, such as gener-
ating a sequence of date and time values and splitting separated lists of values. Normally, it is recom-
mended to keep such a permanent table in your database, fill it with as many numbers as you will
ever need, and then query it as needed. However, in some environments you don’t have an option to
create and populate new tables, and you need to get by with just querying logic.

To generate a large sequence of integers efficiently using querying logic, you can use cross joins.
You start off with a query that generates a result set with two rows using a table value constructor,
like so:

SELECT c FROM (VALUES(1),(1)) AS D(c);

134 CHAPTER 5 T-SQL Solutions Using Window Functions

This code generates the following output:

C

1
1

Next, define a common table expression (CTE)—call it L0 for level 0—based on the previous query,
and then cross two instances of the CTE to square the number of rows, getting four rows, like so:

WITH
 L0 AS(SELECT c FROM (VALUES(1),(1)) AS D(c))
SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B;

c

1
1
1
1

In a similar way, you can define a CTE (call it L1 for level 1) based on the last query, and cross two
instances of the new CTE to again square the number of rows, getting 16 rows, like so:

WITH
 L0 AS (SELECT c FROM (VALUES(1),(1)) AS D(c)),
 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B)
SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B;

c

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

You can keep adding CTEs, each crossing two instances of the last CTE, squaring the number of
rows. With L levels (starting the count with 0), the total number of rows you get is 2 2̂^L (read, two to
the power of two to the power of L). For instance, with five levels, you get 4,294,967,296 rows. So with
five levels of CTEs besides level 0, this method gives you over four billion rows. You will hardly ever
need that many rows in a numbers table, but using the OFFSET/FETCH option in Microsoft SQL Server
2012, or TOP in previous versions of SQL Server, you can cap the number of rows based on user

 Virtual Auxiliary Table of Numbers 135

input. Using the ROW_NUMBER function with ORDER BY (SELECT NULL), you can generate the actual
numbers without worrying about any sorting cost. Putting it all together, to generate a sequence of
numbers in the range @low to @high, you can use the following code in SQL Server 2012:

WITH
 L0 AS (SELECT c FROM (VALUES(1),(1)) AS D(c)),
 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),
 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),
 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),
 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),
 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),
 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum
 FROM L5)
SELECT @low + rownum - 1 AS n
FROM Nums
ORDER BY rownum
OFFSET 0 ROWS FETCH FIRST @high - @low + 1 ROWS ONLY;

The beauty in this approach is that SQL Server’s optimizer realizes that there’s no need to actu-
ally generate more rows than @high – @low + 1, so the query processor simply stops as soon as this
number is reached. So if you need a sequence of only 10 numbers, it will generate only 10 and stop. If
you want avoid repeating this code every time you need a sequence of numbers, you can encapsulate
it in an inline table-valued function, like so:

USE TSQL2012;
IF OBJECT_ID('dbo.GetNums', 'IF') IS NOT NULL DROP FUNCTION dbo.GetNums;
GO
CREATE FUNCTION dbo.GetNums(@low AS BIGINT, @high AS BIGINT) RETURNS TABLE
AS
RETURN
 WITH
 L0 AS (SELECT c FROM (VALUES(1),(1)) AS D(c)),
 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),
 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),
 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),
 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),
 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),
 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum
 FROM L5)
 SELECT @low + rownum - 1 AS n
 FROM Nums
 ORDER BY rownum
 OFFSET 0 ROWS FETCH FIRST @high - @low + 1 ROWS ONLY;
GO

Remember that the OFFSET/FETCH option was added in SQL Server 2012. If you need to define
such a function in previous versions of SQL Server, use the TOP option instead, like so:

IF OBJECT_ID('dbo.GetNums', 'IF') IS NOT NULL
 DROP FUNCTION dbo.GetNums;
GO
CREATE FUNCTION dbo.GetNums(@low AS BIGINT, @high AS BIGINT) RETURNS TABLE
AS
RETURN

136 CHAPTER 5 T-SQL Solutions Using Window Functions

 WITH
 L0 AS (SELECT c FROM (VALUES(1),(1)) AS D(c)),
 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),
 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),
 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),
 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),
 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),
 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum
 FROM L5)
 SELECT TOP(@high - @low + 1) @low + rownum - 1 AS n
 FROM Nums
 ORDER BY rownum;
GO

Both functions are optimized the same way, so performance is not a factor in determining which
of the two is better to use. One factor that might matter to you is compatibility with systems running
SQL Server versions prior to 2012—in which case, you might prefer to use the version with TOP. Then
again, TOP isn’t standard, whereas OFFSET-FETCH is; so, if using standard code when possible is a
priority, you might prefer to use the latter in systems running SQL Server 2012.

As an example for using the GetNums function, the following code generates a sequence of num-
bers in the range 11 through 20:

SELECT n FROM dbo.GetNums(11, 20);

n

11
12
13
14
15
16
17
18
19
20

To get a sense of how fast this method is, I tested it on a moderately equipped laptop after choos-
ing the Discard Results After Execution query option from the Query Options dialog. It took only six
seconds for the following request to generate a sequence of 10,000,000 numbers:

SELECT n FROM dbo.GetNums(1, 10000000);

The downside of the function is that plans for queries that use it are elaborate and can be a bit
hard to follow. That’s especially the case when multiple sequences are involved. Plans for queries
against a real table of numbers, naturally, produce much simpler plans.

In this chapter, you will see a number of solutions that rely on the GetNums function.

 Sequences of Date and Time Values 137

Sequences of Date and Time Values

Various scenarios related to data manipulation require you to generate a sequence of date and time
values between some input @start and @end points, with some interval (for example, 1 day, 12 hours,
and so on). Examples for such scenarios include populating a time dimension in a data warehouse,
scheduling applications, and others. An efficient tool that can be used for this purpose is the GetNums
function described in the previous section. You accept the @start and @end date and time values as
inputs, and using the DATEDIFF function, calculate how many intervals of the unit of interest there are
between the two. Invoke the GetNums function with inputs 0 as @low and the aforementioned differ-
ence as @high. Finally, to generate the result date and time values, add n times the temporal interval
to @start.

Here’s an example for generating a sequence of dates in the range February 1, 2012 to February
12, 2012:

DECLARE
 @start AS DATE = '20120201',
 @end AS DATE = '20120212';

SELECT DATEADD(day, n, @start) AS dt
FROM dbo.GetNums(0, DATEDIFF(day, @start, @end)) AS Nums;

dt

2012-02-01
2012-02-02
2012-02-03
2012-02-04
2012-02-05
2012-02-06
2012-02-07
2012-02-08
2012-02-09
2012-02-10
2012-02-11
2012-02-12

If the interval is a product of some temporal unit—for example, 12 hours—use that unit (hour in
this case) when calculating the difference between @start and @end, and divide the result by 12 to
calculate @high; then multiply n by 12 to get the number of hours that need to be added to @start
when calculating the result date and time values. As an example, the following code generates a
sequence of date and time values between February 12, 2012 and February 18, 2012, with 12-hour
intervals between the sequence values:

DECLARE
 @start AS DATETIME2 = '2012-02-12 00:00:00.0000000',
 @end AS DATETIME2 = '2012-02-18 12:00:00.0000000';

SELECT DATEADD(hour, n*12, @start) AS dt
FROM dbo.GetNums(0, DATEDIFF(hour, @start, @end)/12) AS Nums;

138 CHAPTER 5 T-SQL Solutions Using Window Functions

dt

2012-02-12 00:00:00.0000000
2012-02-12 12:00:00.0000000
2012-02-13 00:00:00.0000000
2012-02-13 12:00:00.0000000
2012-02-14 00:00:00.0000000
2012-02-14 12:00:00.0000000
2012-02-15 00:00:00.0000000
2012-02-15 12:00:00.0000000
2012-02-16 00:00:00.0000000
2012-02-16 12:00:00.0000000
2012-02-17 00:00:00.0000000
2012-02-17 12:00:00.0000000
2012-02-18 00:00:00.0000000
2012-02-18 12:00:00.0000000

Sequences of Keys

In various scenarios you might need to generate a sequence of unique integer keys when updating
or inserting data in a table. SQL Server 2012 introduces support for sequence objects, enabling you
to create solutions for some of those needs. However, sequence objects are not available in versions
prior to SQL Server 2012. Furthermore, SQL Server will not undo the generation of sequence values if
the transaction where new sequence values were generated fails, meaning that you can end up with
gaps between sequence values. (This is the same situation with IDENTITY.) If you need to guarantee
there will be no gaps between the generated keys, you cannot use sequence objects. In this section,
I will show you how to address a number of needs for sequence values without the new sequence
objects.

Update a Column with Unique Values
The first scenario I’ll describe involves the need to deal with data-quality issues. Run the following
code to create and populate a table called MyOrders that I will use as sample data:

IF OBJECT_ID('Sales.MyOrders', 'U') IS NOT NULL
 DROP TABLE Sales.MyOrders;
GO

SELECT 0 AS orderid, custid, empid, orderdate
INTO Sales.MyOrders
FROM Sales.Orders;

SELECT * FROM Sales.MyOrders;

orderid custid empid orderdate
----------- ----------- ----------- -----------------------
0 85 5 2006-07-04 00:00:00.000
0 79 6 2006-07-05 00:00:00.000
0 34 4 2006-07-08 00:00:00.000
0 84 3 2006-07-08 00:00:00.000

 Sequences of Keys 139

0 76 4 2006-07-09 00:00:00.000
0 34 3 2006-07-10 00:00:00.000
0 14 5 2006-07-11 00:00:00.000
0 68 9 2006-07-12 00:00:00.000
0 88 3 2006-07-15 00:00:00.000
0 35 4 2006-07-16 00:00:00.000
...

Suppose that due to data-quality issues the table MyOrders doesn’t have unique values in the
orderid attribute. You are tasked with updating all rows with unique integers starting with 1 in arbi-
trary order. To address this need, you can define a CTE based on a query against MyOrders, returning
the orderid attribute as well as a ROW_NUMBER calculation. If there’s no ordering requirement for the
calculation of row numbers, you can use (SELECT NULL) in the window order clause. Then, in the outer
query against the CTE, use an UPDATE statement that sets orderid to the result of the ROW_NUMBER
calculation, like so:

WITH C AS
(
 SELECT orderid, ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum
 FROM Sales.MyOrders
)
UPDATE C
 SET orderid = rownum;

Query MyOrders after the update, and observe that the orderid values are now unique:

SELECT * FROM Sales.MyOrders;

orderid custid empid orderdate
----------- ----------- ----------- -----------------------
1 85 5 2006-07-04 00:00:00.000
2 79 6 2006-07-05 00:00:00.000
3 34 4 2006-07-08 00:00:00.000
4 84 3 2006-07-08 00:00:00.000
5 76 4 2006-07-09 00:00:00.000
6 34 3 2006-07-10 00:00:00.000
7 14 5 2006-07-11 00:00:00.000
8 68 9 2006-07-12 00:00:00.000
9 88 3 2006-07-15 00:00:00.000
10 35 4 2006-07-16 00:00:00.000
...

At this point, it’s a good idea to add a primary key constraint to enforce uniqueness in the table.

applying a range of Sequence Values
Suppose that you need a sequencing mechanism that guarantees no gaps. You can’t rely on the
identity column property or the sequence object because both mechanisms will have gaps when the
operation that generates the sequence value fails or just doesn’t commit. One of the common ways
to implement a sequencing mechanism that guarantees there will be no gaps is to store the last-
used value in a table, and whenever you need a new value, increment the stored value and use the
new one.

140 CHAPTER 5 T-SQL Solutions Using Window Functions

As an example, the following code creates a table called MySequence and populates it with one
row with the value 0 in the val column:

IF OBJECT_ID('dbo.MySequence', 'U') IS NOT NULL DROP TABLE dbo.MySequence;
CREATE TABLE dbo.MySequence(val INT);
INSERT INTO dbo.MySequence VALUES(0);

You can then use a stored procedure such as the following whenever you need to generate and
use a new sequence value:

IF OBJECT_ID('dbo.GetSequence', 'P') IS NOT NULL DROP PROC dbo.GetSequence;
GO

CREATE PROC dbo.GetSequence
 @val AS INT OUTPUT
AS
UPDATE dbo.MySequence
 SET @val = val += 1;
GO

The procedure updates the row in MySequence, incrementing the current value by 1, and stores
the incremented value in the output parameter @val. Whenever you need a new sequence value, you
execute the procedure and collect the new value from the output parameter, like so:

DECLARE @key AS INT;
EXEC dbo.GetSequence @val = @key OUTPUT;
SELECT @key;

If you run this code twice (in the same transaction, of course), you will get the sequence value 1
first and 2 second.

Suppose that sometimes you need to allocate a whole range of sequence values—for example, for
use in a multirow insertion into some table. First, you need to alter the procedure to accept an input
parameter (call it @n) that indicates the range size. Then the procedure can increment the val column
in MySequence by @n and return the first value in the new range as the output parameter. Here’s the
altered definition of the procedure:

ALTER PROC dbo.GetSequence
 @val AS INT OUTPUT,
 @n AS INT = 1
AS
UPDATE dbo.MySequence
 SET @val = val + 1,
 val += @n;
GO

You still need to figure out how to associate the individual sequence values in the range with rows
in the result set of the query. Suppose that the following query returning customers from the UK
represents the set you need to insert into the target table:

 Sequences of Keys 141

SELECT custid
FROM Sales.Customers
WHERE country = N'UK';

custid

4
11
16
19
38
53
72

You are supposed to generate surrogate keys for these customers and, ultimately, insert those
into a customer dimension in your data warehouse. You can first populate a table variable with this
result set along with the result of a ROW_NUMBER function that will generate unique integers start-
ing with 1. (Call this column rownum.) Then you can collect the number of affected rows from the
@@rowcount function into a local variable (call it @rc). Then you can invoke the procedure, pass-
ing @rc as the size of the range to allocate, and collect the first key in the range and put it into a
local variable (call it @firstkey). Finally, you can query the table variable and compute the individual
sequence values with the expression @firstkey + rownum – 1. Here’s the T-SQL code with the com-
plete solution:

DECLARE @firstkey AS INT, @rc AS INT;

DECLARE @CustsStage AS TABLE
(
 custid INT,
 rownum INT
);

INSERT INTO @CustsStage(custid, rownum)
 SELECT custid, ROW_NUMBER() OVER(ORDER BY (SELECT NULL))
 FROM Sales.Customers
 WHERE country = N'UK';

SET @rc = @@rowcount;

EXEC dbo.GetSequence @val = @firstkey OUTPUT, @n = @rc;

SELECT custid, @firstkey + rownum - 1 AS keycol
FROM @CustsStage;

custid keycol
----------- -----------
4 3
11 4
16 5
19 6
38 7
53 8
72 9

142 CHAPTER 5 T-SQL Solutions Using Window Functions

Of course, normally the last part inserts the result of this query into the target table. Also, observe
that I use ORDER BY (SELECT NULL) in the window order clause of the ROW_NUMBER function to get
an arbitrary order for the row numbers. If you need the sequence values to be assigned in a certain
order (for example, custid ordering), make sure you revise the window order clause accordingly.

Next run a similar process, this time querying source customers from France:

DECLARE @firstkey AS INT, @rc AS INT;

DECLARE @CustsStage AS TABLE
(
 custid INT,
 rownum INT
);

INSERT INTO @CustsStage(custid, rownum)
 SELECT custid, ROW_NUMBER() OVER(ORDER BY (SELECT NULL))
 FROM Sales.Customers
 WHERE country = N'France';

SET @rc = @@rowcount;

EXEC dbo.GetSequence @val = @firstkey OUTPUT, @n = @rc;

SELECT custid, @firstkey + rownum - 1 AS keycol
FROM @CustsStage;

custid keycol
----------- -----------
7 10
9 11
18 12
23 13
26 14
40 15
41 16
57 17
74 18
84 19
85 20

Notice in the result that the sequence values generated simply continued right after the end of the
previously allocated range.

When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.GetSequence', 'P') IS NOT NULL DROP PROC dbo.GetSequence;
IF OBJECT_ID('dbo.MySequence', 'U') IS NOT NULL DROP TABLE dbo.MySequence;

 Paging 143

Paging

Paging is a common need in applications. You want to allow the user to get one portion of rows at a
time from a result set of a query so that the result can more easily fit in the target web page, UI, or
screen. The ROW_NUMBER function can be used for paging purposes. You assign row numbers to the
result rows based on the desired ordering, and then filter the right range of row numbers based on
given page-number and page-size arguments. For optimal performance, you want to have an index
defined on the window ordering elements as the index keys and include in the index the rest of the
attributes that appear in the query for coverage purposes.

As an example, suppose you want to allow paging through orders from the Sales.Orders table
based on orderdate, orderid ordering (from least to most recent), and return in the result set the attri-
butes orderid, orderdate, custid, and empid. Following the indexing guidelines I just mentioned, you
arrange the following index:

CREATE UNIQUE INDEX idx_od_oid_i_cid_eid
 ON Sales.Orders(orderdate, orderid)
 INCLUDE(custid, empid);

Then, given a page number and a page size as inputs, you use the following code to filter the cor-
rect page of rows. For example, the following code returns the third page with a page size of 25 rows,
meaning the rows with row numbers 51 through 75:

DECLARE
 @pagenum AS INT = 3,
 @pagesize AS INT = 25;

WITH C AS
(
 SELECT ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum,
 orderid, orderdate, custid, empid
 FROM Sales.Orders
)
SELECT orderid, orderdate, custid, empid
FROM C
WHERE rownum BETWEEN (@pagenum - 1) * @pagesize + 1
 AND @pagenum * @pagesize
ORDER BY rownum;

orderid orderdate custid empid
----------- ----------------------- ----------- -----------
10298 2006-09-05 00:00:00.000 37 6
10299 2006-09-06 00:00:00.000 67 4
10300 2006-09-09 00:00:00.000 49 2
10301 2006-09-09 00:00:00.000 86 8
10302 2006-09-10 00:00:00.000 76 4
10303 2006-09-11 00:00:00.000 30 7
10304 2006-09-12 00:00:00.000 80 1
10305 2006-09-13 00:00:00.000 55 8
10306 2006-09-16 00:00:00.000 69 1
10307 2006-09-17 00:00:00.000 48 2
10308 2006-09-18 00:00:00.000 2 7

144 CHAPTER 5 T-SQL Solutions Using Window Functions

10309 2006-09-19 00:00:00.000 37 3
10310 2006-09-20 00:00:00.000 77 8
10311 2006-09-20 00:00:00.000 18 1
10312 2006-09-23 00:00:00.000 86 2
10313 2006-09-24 00:00:00.000 63 2
10314 2006-09-25 00:00:00.000 65 1
10315 2006-09-26 00:00:00.000 38 4
10316 2006-09-27 00:00:00.000 65 1
10317 2006-09-30 00:00:00.000 48 6
10318 2006-10-01 00:00:00.000 38 8
10319 2006-10-02 00:00:00.000 80 7
10320 2006-10-03 00:00:00.000 87 5
10321 2006-10-03 00:00:00.000 38 3
10322 2006-10-04 00:00:00.000 58 7

Figure 5-1 shows the execution plan for this query.

FIgURE 5-1 Execution plan for a query with ROW_NUMBER.

Observe that because there was an index to support the ROW_NUMBER calculation, SQL Server
didn’t really need to scan all rows from the table. Rather, it scanned only the first 75 rows in the index
and then filtered the rows with row numbers 51 through 75. As you can imagine, without such an
index in place, SQL Server would have no choice but to scan all rows, sort, assign row numbers, and
then filter. So indexing here is critical for good performance.

You can use the aforementioned technique based on row numbers in SQL Server 2005 and later.
If you’re using SQL Server 2012, an alternative solution to paging is to use the new OFFSET/FETCH
filtering option. This option is similar to TOP, except that it’s standard, it supports skipping rows, and
it’s part of the ORDER BY clause. Here’s the code you use to filter the right page of rows using the
OFFSET/FETCH option given the page number and page size as inputs:

DECLARE
 @pagenum AS INT = 3,
 @pagesize AS INT = 25;

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
ORDER BY orderdate, orderid
OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY;

The execution plan for this query is shown in Figure 5-2.

 Removing Duplicates 145

FIgURE 5-2 Execution plan for a query with OFFSET/FETCH.

Observe in the execution plan that the optimization is similar to that of the technique based on
row numbers—in the sense that SQL Server scans only the first 75 rows in the index and filters the last
25. As a result, the work, in terms of number of reads, is similar in both cases.

When you’re done, run the following code for cleanup:

DROP INDEX idx_od_oid_i_cid_eid ON Sales.Orders;

Removing Duplicates

De-duplication of data is a common need, especially when dealing with data-quality issues in envi-
ronments that end up with duplicate rows due to lack of enforcement of uniqueness with constraints.
As an example, the following code prepares sample data with duplicate orders in a table called
MyOrders:

IF OBJECT_ID('Sales.MyOrders') IS NOT NULL DROP TABLE Sales.MyOrders;
GO

SELECT * INTO Sales.MyOrders FROM Sales.Orders
UNION ALL
SELECT * FROM Sales.Orders
UNION ALL
SELECT * FROM Sales.Orders;

Suppose that you need to de-duplicate the data, keeping only one occurrence of each unique
orderid value. You mark the duplicate number using the ROW_NUMBER function, partitioned by
what’s supposed to be unique (orderid in our case), and using arbitrary ordering if you don’t care

146 CHAPTER 5 T-SQL Solutions Using Window Functions

which row is kept and which is removed. Here’s the code with the ROW_NUMBER function marking
the duplicates:

SELECT orderid,
 ROW_NUMBER() OVER(PARTITION BY orderid
 ORDER BY (SELECT NULL)) AS n
FROM Sales.MyOrders;

orderid n
----------- --------------------
10248 1
10248 2
10248 3
10249 1
10249 2
10249 3
10250 1
10250 2
10250 3

Next, you consider different options depending on the number of rows that need to be deleted,
the percent of table cardinality that number represents, the production activity, and so on. When a
small number of the rows need to be deleted, it’s usually OK to use a fully logged delete operation
that removes all occurrences where the row number is greater than 1, like so:

WITH C AS
(
 SELECT orderid,
 ROW_NUMBER() OVER(PARTITION BY orderid
 ORDER BY (SELECT NULL)) AS n
 FROM Sales.MyOrders
)
DELETE FROM C
WHERE n > 1;

If, however, you have a large number of rows that need to be deleted—especially when this num-
ber represents a large percentage of the rows in the table—the fully logged delete can prove too
slow. In such a case, one of the options to consider is using a minimally logged operation, like SELECT
INTO, to copy distinct rows (rows with row number 1) into a different table name; drop the original
table; rename the new table to the original table name; then re-create constraints, indexes, and trig-
gers on the target table. Here’s the code with the complete solution:

WITH C AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY orderid
 ORDER BY (SELECT NULL)) AS n
 FROM Sales.MyOrders
)
SELECT orderid, custid, empid, orderdate, requireddate, shippeddate,
 shipperid, freight, shipname, shipaddress, shipcity, shipregion,
 shippostalcode, shipcountry
INTO Sales.OrdersTmp
FROM C

 Removing Duplicates 147

WHERE n = 1;

DROP TABLE Sales.MyOrders;
EXEC sp_rename 'Sales.OrdersTmp', 'MyOrders';
-- recreate indexes, constraints, triggers

To keep things simple, I didn’t include any transaction control in this example, but you should
always remember that multiple users can interact with the data. If you implement this technique in
production you should be sure to do the following:

1. Open a transaction.

2. Take a lock on the table.

3. Perform the SELECT INTO.

4. Drop and rename the objects.

5. Re-create indexes, constraints, and triggers.

6. Commit the transaction.

There’s another option that I learned from Javier Loria to filter either just the distinct rows or all
but the distinct rows. You compute both ROW_NUMBER and RANK based on orderid ordering, like so:

SELECT orderid,
 ROW_NUMBER() OVER(ORDER BY orderid) AS rownum,
 RANK() OVER(ORDER BY orderid) AS rnk
FROM Sales.MyOrders;

orderid rownum rnk
----------- -------------------- --------------------
10248 1 1
10248 2 1
10248 3 1
10249 4 4
10249 5 4
10249 6 4
10250 7 7
10250 8 7
10250 9 7

Observe in the result that only in one row for each unique orderid value are the row number and
rank the same. For example, if you have a small percentage of rows to delete, you encapsulate the
previous query in a CTE definition and, in the outer statement, issue a DELETE where the row number
is different than the rank, like so:

WITH C AS
(
 SELECT orderid,
 ROW_NUMBER() OVER(ORDER BY orderid) AS rownum,
 RANK() OVER(ORDER BY orderid) AS rnk
 FROM Sales.MyOrders
)
DELETE FROM C
WHERE rownum <> rnk;

148 CHAPTER 5 T-SQL Solutions Using Window Functions

The preceding solutions are not the only ones. For example, there are scenarios where you will
want to split a large delete into batches using the TOP option. But here I wanted to focus on solutions
using window functions.

When you’re done, run the following code for cleanup:

IF OBJECT_ID('Sales.MyOrders') IS NOT NULL DROP TABLE Sales.MyOrders;

Pivoting

Pivoting is a technique to aggregate and rotate data from a state of rows to columns. When pivoting
data, you need to identify three elements: the element you want to see on rows (the grouping ele-
ment), the element you want to see on columns (the spreading element), and the element you want
to see in the data portion (the aggregation element).

As an example, suppose that you need to query the Sales.OrderValues view and return a row
for each order year, a column for each order month, and the sum of order values for each year and
month intersection. In this request, the on rows, or grouping, element is YEAR(orderdate); the on cols,
or spreading, element is MONTH(orderdate); the distinct spreading values are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, and 12; and the data, or aggregation, element is SUM(val).

To achieve pivoting, you first want to prepare a table expression such as a CTE, where you return
only the three elements that are involved in your pivoting task. Then, in the outer statement, you
query the table expression and use the PIVOT operator to handle the pivoting logic, like so (output
wrapped):

WITH C AS
(
 SELECT YEAR(orderdate) AS orderyear, MONTH(orderdate) AS ordermonth, val
 FROM Sales.OrderValues
)
SELECT *
FROM C
 PIVOT(SUM(val)
 FOR ordermonth IN ([1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12])) AS P;

orderyear 1 2 3 4 5 6
---------- --------- --------- ---------- ----------- --------- ---------
2007 61258.08 38483.64 38547.23 53032.95 53781.30 36362.82
2008 94222.12 99415.29 104854.18 123798.70 18333.64 NULL
2006 NULL NULL NULL NULL NULL NULL

orderyear 7 8 9 10 11 12
---------- --------- --------- --------- --------- --------- ---------
2007 51020.86 47287.68 55629.27 66749.23 43533.80 71398.44
2008 NULL NULL NULL NULL NULL NULL
2006 27861.90 25485.28 26381.40 37515.73 45600.05 45239.63

In this case, all three pivoting elements are known, including the distinct values in the spreading
element (the months). But there are certain pivoting tasks where the spreading element doesn’t exist

 Pivoting 149

in the source and needs to be computed. For example, consider a request to return, for each cus-
tomer, the order IDs of its five most recent orders. You want to see the customer IDs on rows and the
order IDs in the data part, but there’s nothing common to the order IDs across customers that you
can use as your spreading element.

The solution is to use a ROW_NUMBER function that assigns ordinals to the order IDs within each
customer partition, based on the desired ordering—orderdate DESC, orderid DESC in our case. Then
the attribute representing that row number can be used as the spreading element and the ordinals
can be calculated as the spreading values.

So first, here’s the code that generates the row numbers for each customer’s orders from most
recent to least recent:

SELECT custid, val,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY orderdate DESC, orderid DESC) AS rownum
FROM Sales.OrderValues;

custid val rownum
------- -------- -------
1 933.50 1
1 471.20 2
1 845.80 3
1 330.00 4
1 878.00 5
1 814.50 6
2 514.40 1
2 320.00 2
2 479.75 3
2 88.80 4
3 660.00 1
3 375.50 2
3 813.37 3
3 2082.00 4
3 1940.85 5
3 749.06 6
3 403.20 7
...

Now you can define a CTE based on the previous query, and then in the outer query handle the
pivoting logic, with rownum being used as the spreading element:

WITH C AS
(
 SELECT custid, val,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY orderdate DESC, orderid DESC) AS rownum
 FROM Sales.OrderValues
)
SELECT *
FROM C
 PIVOT(MAX(val) FOR rownum IN ([1],[2],[3],[4],[5])) AS P;

150 CHAPTER 5 T-SQL Solutions Using Window Functions

custid 1 2 3 4 5
------- -------- -------- -------- -------- ---------
1 933.50 471.20 845.80 330.00 878.00
2 514.40 320.00 479.75 88.80 NULL
3 660.00 375.50 813.37 2082.00 1940.85
4 491.50 4441.25 390.00 282.00 191.10
5 1835.70 709.55 1096.20 2048.21 1064.50
6 858.00 677.00 625.00 464.00 330.00
7 730.00 660.00 450.00 593.75 1761.00
8 224.00 3026.85 982.00 NULL NULL
9 792.75 360.00 1788.63 917.00 1979.23
10 525.00 1309.50 877.73 1014.00 717.50
...

If you need to concatenate into one string the order IDs of the five most recent orders for each
customer, you can use SQL Server 2012’s new CONCAT function, like so:

WITH C AS
(
 SELECT custid, CAST(orderid AS VARCHAR(11)) AS sorderid,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY orderdate DESC, orderid DESC) AS rownum
 FROM Sales.OrderValues
)
SELECT custid, CONCAT([1], ','+[2], ','+[3], ','+[4], ','+[5]) AS orderids
FROM C
 PIVOT(MAX(sorderid) FOR rownum IN ([1],[2],[3],[4],[5])) AS P;

custid orderids
----------- ---
1 11011,10952,10835,10702,10692
2 10926,10759,10625,10308
3 10856,10682,10677,10573,10535
4 11016,10953,10920,10864,10793
5 10924,10875,10866,10857,10837
6 11058,10956,10853,10614,10582
7 10826,10679,10628,10584,10566
8 10970,10801,10326
9 11076,10940,10932,10876,10871
10 11048,11045,11027,10982,10975
...

The CONCAT function automatically replaces a NULL with an empty string. To achieve the same
thing in versions prior to SQL Server 2012, you need to use the + concatenation operator and the
COALESCE function to replace a NULL with an empty string, like so:

WITH C AS
(
 SELECT custid, CAST(orderid AS VARCHAR(11)) AS sorderid,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY orderdate DESC, orderid DESC) AS rownum
 FROM Sales.OrderValues
)

 TOP N Per Group 151

SELECT custid,
 [1] + COALESCE(','+[2], '')
 + COALESCE(','+[3], '')
 + COALESCE(','+[4], '')
 + COALESCE(','+[5], '') AS orderids
FROM C
 PIVOT(MAX(sorderid) FOR rownum IN ([1],[2],[3],[4],[5])) AS P;

TOP n Per group

The Top-N-per-Group problem is a common querying problem that involves filtering a requested
number of rows from each group, or partition, of rows, based on some defined ordering. A request
to query the Sales.Orders table and return, for each customer, the three most recent orders is an
example for the Top-N-per-Group problem. In this case, the partitioning element is custid; the order-
ing specification is orderdate DESC, orderid DESC (most recent); and N is 3. Both TOP and the newer
OFFSET/FETCH filtering options do support indicating the number of rows to filter and ordering speci-
fication, but they don’t support a partition clause. Imagine how nice it would be if you could indicate
both a partition clause and an order clause as part of the filter specification—something like this:

SELECT
 TOP (3) OVER(
 PARTITION BY custid
 ORDER BY orderdate DESC, orderid DESC)
 custid, orderdate, orderid, empid
FROM Sales.Orders;

Unfortunately, such syntax doesn’t exist, and you have to figure out other solutions to this need.

Note I submitted a request to Microsoft to support the TOP OVER syntax. You can find the
request here: http://connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-
enhancement-request-top-over.

Indexing guidelines, regardless of the solution you use, follow the POC concept. (POC stands for
Partioning, Ordering, Covering; see Chapter 4, “Optimization of Window Functions,” for more infor-
mation.) The index key list is defined based on the partitioning columns (custid in our case) followed
by the ordering columns (orderdate DESC, orderid DESC in our case), and it includes the rest of the
columns that appear in the query for coverage purposes. Of course, if the index is a clustered index,
all table columns are covered anyway, so you don’t need to worry about the C part of the POC index.
Here’s the code to generate the POC index for our task, assuming empid is the only remaining column
you need to return from the query other than custid, orderdate, and orderid:

CREATE UNIQUE INDEX idx_cid_odD_oidD_i_empid
 ON Sales.Orders(custid, orderdate DESC, orderid DESC)
 INCLUDE(empid);

http://connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-enhancement-request-top-over
http://connect.microsoft.com/SQLServer/feedback/details/254390/over-clause-enhancement-request-top-over

152 CHAPTER 5 T-SQL Solutions Using Window Functions

Assuming you have a POC index in place, there are two strategies to address the task: one using
the ROW_NUMBER function, and another using the APPLY operator and OFFSET/FETCH or TOP. What
determines which of the two is most efficient is the density of the partitioning column (custid in our
case). With low density—namely, a large number of distinct customers, each with a small number of
orders—a solution based on the ROW_NUMBER function is optimal. You assign row numbers based
on the same partitioning and ordering requirements as those in the request, and then filter only the
rows with row numbers that are less than or equal to the number of rows you need to filter for each
group. Here’s the complete solution implementing this approach:

WITH C AS
(
 SELECT custid, orderdate, orderid, empid,
 ROW_NUMBER() OVER(
 PARTITION BY custid
 ORDER BY orderdate DESC, orderid DESC) AS rownum
 FROM Sales.Orders
)
SELECT *
FROM C
WHERE rownum <= 3
ORDER BY custid, rownum;

Figure 5-3 shows the execution plan for this query.

FIgURE 5-3 Execution plan for a query with low density.

What makes this strategy so efficient when the partitioning column has low density (remember,
that’s a large number of distinct customers, each with a small number of orders) is that the plan
involves only one ordered scan of the POC index. In such a case, you do not want a plan that per-
forms a seek operation in the index for each distinct partitioning value (customer). However, when the
partitioning column has high density (a small number of distinct customers, each with a large number
of orders), a plan that performs a seek in the index for each customer becomes a more efficient strat-
egy than a full scan of the index leaf. The way to achieve such a plan is to query the table that holds
the distinct partitioning values (Sales.Customers in our case) and use the APPLY operator to invoke a
query with OFFSET/FETCH or TOP for each customer, like so:

SELECT C.custid, A.*
FROM Sales.Customers AS C
 CROSS APPLY (SELECT orderdate, orderid, empid
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 ORDER BY orderdate DESC, orderid DESC
 OFFSET 0 ROWS FETCH FIRST 3 ROWS ONLY) AS A;

The plan for this query is shown in Figure 5-4.

 TOP N Per Group 153

FIgURE 5-4 Execution plan for a query with high density.

Observe in the plan that an index on the Customers table is scanned to retrieve all customer IDs.
Then, for each customer, the plan performs a seek operation in our POC index (going to the begin-
ning of the current customer’s section in the index leaf), and then scans three rows in the leaf for the
three most recent orders.

Remember that the OFFSET/FETCH was added in SQL Server 2012. In earlier versions of SQL Server,
you can use the TOP option instead:

SELECT C.custid, A.*
FROM Sales.Customers AS C
 CROSS APPLY (SELECT TOP (3) orderdate, orderid, empid
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 ORDER BY orderdate DESC, orderid DESC) AS A;

Note that to perform well, both strategies require a POC index. If you don’t have an index in place
and either cannot or do not want to create one, there’s a third strategy that tends to perform better
than the other two. However, this third strategy works only when N equals 1.

At this point, you can drop the POC index:

DROP INDEX idx_cid_odD_oidD_i_empid ON Sales.Orders;

The third strategy implements a technique you can think of as a carry-along sort. I introduced this
technique earlier in the book in Chapter 3, “Ordered Set Functions,” when discussing offset functions.
The idea is to form a single string for each partition where you concatenate first the ordering attri-
butes and then all of the nonkey attributes you need in the result. It’s important to use a concatena-
tion technique that results in a string that sorts the same as the ordering elements are supposed to
sort. For example, in our case the ordering is based on orderdate DESC and orderid DESC.

The first element is a date. To get a charter string representation of a date that sorts the same
as the original date, you need to convert the date to the form YYYYMMDD. To achieve this, use the
CONVERT function with style 112. As for the orderid element, it’s a positive integer. To have a charac-
ter string form of the number sort the same as the original integer, you need to format the value as a
fixed-length string with leading spaces or zeros. You can format the value as a fixed-length string with
leading spaces using the STR function.

154 CHAPTER 5 T-SQL Solutions Using Window Functions

The solution involves grouping the rows by the partitioning column and calculating the maximum
concatenated string per group. That maximum string represents the concatenated elements from
the row you need to return. Next, you define a CTE based on the last query. Then, in the outer query,
use SUBSTRING functions to extract the individual elements you originally concatenated and convert
them back to their original types. Here’s what the complete solution looks like:

WITH C AS
(
 SELECT custid,
 MAX(CONVERT(CHAR(8), orderdate, 112)
 + STR(orderid, 10)
 + STR(empid, 10) COLLATE Latin1_General_BIN2) AS mx
 FROM Sales.Orders
 GROUP BY custid
)
SELECT custid,
 CAST(SUBSTRING(mx, 1, 8) AS DATETIME) AS orderdate,
 CAST(SUBSTRING(mx, 9, 10) AS INT) AS custid,
 CAST(SUBSTRING(mx, 19, 10) AS INT) AS empid
FROM C;

The query isn’t pretty, but its plan involves only one scan of the data, and it tends to outperform
the other solutions when the POC index doesn’t exist. Remember that if you can afford such an index,
you don’t want to use this solution; rather, you should use one of the other two strategies, depending
on the density of the partitioning column.

Mode

Mode is a statistical calculation that returns the most frequently occurring value in the population.
Consider, for example, the Sales.Orders table, which holds order information. Each order was placed
by some customer and handled by some employee. Suppose you want to know, for each customer,
which employee handled the most orders. That employee is the mode because she appears most
frequently in the customer’s orders.

Naturally there is the potential for ties if there are multiple employees who handled the most
orders for a given customer. Depending on your needs, you either return all ties or break the ties.
I will cover solutions to both cases. If you do want to break the ties, suppose the tiebreaker is the
highest employee ID number—if multiple employees handled the most orders for a given customer,
return the one with the highest employee ID number among those.

Indexing is straightforward here; you want an index defined on (custid, empid):

CREATE INDEX idx_custid_empid ON Sales.Orders(custid, empid);

I’ll start with a solution that relies on the ROW_NUMBER function. The first step is to group the
orders by custid and empid, and then return for each group the count of orders, like so:

 Mode 155

SELECT custid, empid, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY custid, empid;

custid empid cnt
----------- ----------- -----------
1 1 2
3 1 1
4 1 3
5 1 4
9 1 3
10 1 2
11 1 1
14 1 1
15 1 1
17 1 2
...

The next step is to add a ROW_NUMBER calculation partitioned by custid and ordered by
COUNT(*) DESC, empid DESC. For each customer, the row with the highest count (and, in the case of
ties, the highest employee ID number) will be assigned row number 1:

SELECT custid, empid, COUNT(*) AS cnt,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY COUNT(*) DESC, empid DESC) AS rn
FROM Sales.Orders
GROUP BY custid, empid;

custid empid cnt rn
----------- ----------- ----------- --------------------
1 4 2 1
1 1 2 2
1 6 1 3
1 3 1 4
2 3 2 1
2 7 1 2
2 4 1 3
3 3 3 1
3 7 2 2
3 4 1 3
3 1 1 4
...

Finally, you need to filter only the rows where the row number is equal to 1 using a CTE, like so:

WITH C AS
(
 SELECT custid, empid, COUNT(*) AS cnt,
 ROW_NUMBER() OVER(PARTITION BY custid
 ORDER BY COUNT(*) DESC, empid DESC) AS rn
 FROM Sales.Orders
 GROUP BY custid, empid
)
SELECT custid, empid, cnt
FROM C
WHERE rn = 1;

156 CHAPTER 5 T-SQL Solutions Using Window Functions

custid empid cnt
----------- ----------- -----------
1 4 2
2 3 2
3 3 3
4 4 4
5 3 6
6 9 3
7 4 3
8 4 2
9 4 4
10 3 4
...

Because the window-ordering specification includes empid DESC as a tiebreaker, you get to return
only one row per customer when implementing the tiebreaker requirements of the task. If you do not
want to break the ties, use the RANK function instead of ROW_NUMBER and remove empid from the
window order clause, like so:

WITH C AS
(
 SELECT custid, empid, COUNT(*) AS cnt,
 RANK() OVER(PARTITION BY custid
 ORDER BY COUNT(*) DESC) AS rn
 FROM Sales.Orders
 GROUP BY custid, empid
)
SELECT custid, empid, cnt
FROM C
WHERE rn = 1;

custid empid cnt
----------- ----------- -----------
1 1 2
1 4 2
2 3 2
3 3 3
4 4 4
5 3 6
6 9 3
7 4 3
8 4 2
9 4 4
10 3 4
11 6 2
11 4 2
11 3 2
...

Remember that the RANK function is sensitive to ties, unlike the ROW_NUMBER function. This
means that given the same ordering value—COUNT(*) in our case—you get the same rank. So all
rows with the greatest count per customer get rank 1, and hence all are kept. Observe, for example,
that in the case of customer 1, two different employees—with IDs 1 and 4—handled the most
orders—two in number—and hence both were returned.

 Mode 157

Perhaps you realized that the Mode problem is a version of the previously discussed Top-N-per-
Group problem. And recall that in addition to the solution that is based on window functions, you can
also use a solution based on the carry-along-sort concept. But this concept works only as long as N
equals 1, which in our case means you do want to implement a tiebreaker.

To implement the carry-along-sort concept in this case, you need to form a concatenated string
with the count as the first part and the employee ID as the second part, like so:

SELECT custid,
 STR(COUNT(*), 10) + STR(empid, 10) COLLATE Latin1_General_BIN2 AS cntemp
FROM Sales.Orders
GROUP BY custid, empid;

custid cntemp
----------- --------------------
1 2 1
3 1 1
4 3 1
5 4 1
9 3 1
10 2 1
11 1 1
14 1 1
15 1 1
17 2 1
...

Observe that I used fixed-length segments for the count and the empid with leading spaces so that
the strings would sort the same as the original integer values. The conversion to a binary collation will
allow more efficient comparisons between the strings.

The next step is to define a CTE based on this query, and then, in the outer query, group the rows
by customer and calculate the maximum concatenated string per group. Finally, extract the different
parts from the maximum concatenated string and convert back to the original types, like so:

WITH C AS
(
 SELECT custid,
 STR(COUNT(*), 10) + STR(empid, 10) COLLATE Latin1_General_BIN2 AS cntemp
 FROM Sales.Orders
 GROUP BY custid, empid
)
SELECT custid,
 CAST(SUBSTRING(MAX(cntemp), 11, 10) AS INT) AS empid,
 CAST(SUBSTRING(MAX(cntemp), 1, 10) AS INT) AS cnt
FROM C
GROUP BY custid;

custid empid cnt
----------- ----------- -----------
1 4 2
2 3 2
3 3 3
4 4 4
5 3 6

158 CHAPTER 5 T-SQL Solutions Using Window Functions

6 9 3
7 4 3
8 4 2
9 4 4
10 3 4
...

As mentioned in the “TOP N Per Group” section, the solution based on window functions performs
well when there is an index in place, so there’s no reason to use the more complicated carry-along-
sort one. But when there’s no index to support the solution, the latter tends to perform better.

When you’re done, run the following code for cleanup:

DROP INDEX idx_custid_empid ON Sales.Orders;

Running Totals

Calculating running totals is a very common need. The basic idea is to keep accumulating the values
in one attribute (the aggregated element) based on ordering defined by another attribute or attri-
butes (the ordering element), possibly within partitions of rows defined by yet another attribute or
attributes (the partitioning element). There are many examples in life for calculating running totals,
including calculating bank account balances, tracking product stock levels in a warehouse, tracking
cumulative sales values, and so on.

Prior to SQL Server 2012, the set-based solutions used to calculate running totals were extremely
expensive. Therefore, people often resorted to iterative solutions that weren’t very fast but in certain
data distribution scenarios were faster than the set-based solutions. With the enhanced support for
window functions in SQL Server 2012, you can now calculate running totals with simple set-based
code that performs much better than all of the older T-SQL solutions—which were set-based and
iterative. I could have just showed you the new solution here and moved on to the next section in the
chapter, but to help you really appreciate the greatness of the new solution, I will describe the older
ones and compare their performance. Feel free, of course, to read only the first section covering the
new solution and skip the rest if that’s what you prefer.

I will use the bank account balances in my examples to demonstrate the different solutions. Here’s
code you can use to create and populate the Transactions table with a small set of sample data:

SET NOCOUNT ON;
USE TSQL2012;

IF OBJECT_ID('dbo.Transactions', 'U') IS NOT NULL DROP TABLE dbo.Transactions;

CREATE TABLE dbo.Transactions
(
 actid INT NOT NULL, -- partitioning column
 tranid INT NOT NULL, -- ordering column
 val MONEY NOT NULL, -- measure
 CONSTRAINT PK_Transactions PRIMARY KEY(actid, tranid)
);

 Running Totals 159

GO

-- small set of sample data
INSERT INTO dbo.Transactions(actid, tranid, val) VALUES
 (1, 1, 4.00),
 (1, 2, -2.00),
 (1, 3, 5.00),
 (1, 4, 2.00),
 (1, 5, 1.00),
 (1, 6, 3.00),
 (1, 7, -4.00),
 (1, 8, -1.00),
 (1, 9, -2.00),
 (1, 10, -3.00),
 (2, 1, 2.00),
 (2, 2, 1.00),
 (2, 3, 5.00),
 (2, 4, 1.00),
 (2, 5, -5.00),
 (2, 6, 4.00),
 (2, 7, 2.00),
 (2, 8, -4.00),
 (2, 9, -5.00),
 (2, 10, 4.00),
 (3, 1, -3.00),
 (3, 2, 3.00),
 (3, 3, -2.00),
 (3, 4, 1.00),
 (3, 5, 4.00),
 (3, 6, -1.00),
 (3, 7, 5.00),
 (3, 8, 3.00),
 (3, 9, 5.00),
 (3, 10, -3.00);

Each row in the table represents a transaction in some bank account. When the transaction is a
deposit, the amount in the val column is positive; when it’s a withdrawal, the amount is negative. Your
task is to compute the account balance at each point by accumulating the amounts in the val column
based on ordering defined by the tranid column, within each account independently. The desired
results should look like this for the small set of sample data:

actid tranid val balance
----------- ----------- --------------------- ---------------------
1 1 4.00 4.00
1 2 -2.00 2.00
1 3 5.00 7.00
1 4 2.00 9.00
1 5 1.00 10.00
1 6 3.00 13.00
1 7 -4.00 9.00
1 8 -1.00 8.00
1 9 -2.00 6.00
1 10 -3.00 3.00
2 1 2.00 2.00
2 2 1.00 3.00

160 CHAPTER 5 T-SQL Solutions Using Window Functions

2 3 5.00 8.00
2 4 1.00 9.00
2 5 -5.00 4.00
2 6 4.00 8.00
2 7 2.00 10.00
2 8 -4.00 6.00
2 9 -5.00 1.00
2 10 4.00 5.00
3 1 -3.00 -3.00
3 2 3.00 0.00
3 3 -2.00 -2.00
3 4 1.00 -1.00
3 5 4.00 3.00
3 6 -1.00 2.00
3 7 5.00 7.00
3 8 3.00 10.00
3 9 5.00 15.00
3 10 -3.00 12.00

To test the performance of the solutions, you need a larger set of sample data. You can use the
following code to achieve this:

DECLARE
 @num_partitions AS INT = 10,
 @rows_per_partition AS INT = 10000;

TRUNCATE TABLE dbo.Transactions;

INSERT INTO dbo.Transactions WITH (TABLOCK) (actid, tranid, val)
 SELECT NP.n, RPP.n,
 (ABS(CHECKSUM(NEWID())%2)*2-1) * (1 + ABS(CHECKSUM(NEWID())%5))
 FROM dbo.GetNums(1, @num_partitions) AS NP
 CROSS JOIN dbo.GetNums(1, @rows_per_partition) AS RPP;

Feel free to change the inputs as needed to control the number of partitions (accounts) and num-
ber of rows per partition (transactions).

Set-Based Solution Using Window Functions
I’ll start with the new set-based solution that uses the SUM window aggregate function. The window
specification is intuitive here; you need to partition the window by actid, order by tranid, and filter
the frame of rows between no low boundary point (UNBOUNDED PRECEDING) and the current row.
Here’s the solution query:

SELECT actid, tranid, val,
 SUM(val) OVER(PARTITION BY actid
 ORDER BY tranid
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS balance
FROM dbo.Transactions;

Not only is the code is simple and straightforward, it also performs very well. The plan for this
query is shown in Figure 5-5.

 Running Totals 161

FIgURE 5-5 Execution plan for a query using window functions.

The table has a clustered index that follows the POC guidelines that window functions can benefit
from. Namely, the index key list is based on the partitioning element (actid) followed by the ordering
element (tranid), and it includes for coverage purposes all the rest of the columns in the query (val).
The plan shows an ordered scan of the index, followed by a computation of a row number for internal
purposes, and then the window aggregate. Because you arranged a POC index, the optimizer didn’t
need to add a sort operator in the plan. That’s a very efficient plan. What’s more, this plan scales
linearly. Later, when I show the results of a benchmark I did, you’ll see how much more efficient this
solution is than the older ones.

Set-Based Solutions Using Subqueries or Joins
Traditional set-based solutions to running totals that were available prior to SQL Server 2012 used
either subqueries or joins. Using a subquery, you can calculate the running total by filtering all rows
that have the same actid value as in the outer row, and a tranid value that is less than or equal to the
one in the outer row. Then you apply the aggregate to the filtered rows. Here’s the solution query:

SELECT actid, tranid, val,
 (SELECT SUM(T2.val)
 FROM dbo.Transactions AS T2
 WHERE T2.actid = T1.actid
 AND T2.tranid <= T1.tranid) AS balance
FROM dbo.Transactions AS T1;

A similar approach can be implemented using joins. You use the same predicate as the one used
in the WHERE clause of the subquery in the ON clause of the join. This way, for the Nth transaction
of some account A in the instance you refer to as T1, you will find N matches in the instance T2, with
transactions 1 through N. The row in T1 is repeated in the result for each of its matches, so you need
to group the rows by all elements from T1 to get the current transaction info and apply the aggregate
to the val attribute from T2 to calculate the running total. The solution query looks like this:

SELECT T1.actid, T1.tranid, T1.val,
 SUM(T2.val) AS balance
FROM dbo.Transactions AS T1
 JOIN dbo.Transactions AS T2
 ON T2.actid = T1.actid
 AND T2.tranid <= T1.tranid
GROUP BY T1.actid, T1.tranid, T1.val;

Figure 5-6 shows the plans for both solutions.

162 CHAPTER 5 T-SQL Solutions Using Window Functions

FIgURE 5-6 Execution plans for queries using subqueries and joins.

Observe that in both cases the clustered index is scanned in full representing the instance T1.
Then, for each row, the plan performs a seek operation in the index to get to the beginning of the
current account’s section in the index leaf, and then it scans all transactions where T2.tranid is less
than or equal to T1.tranid. Then the point where the aggregate of those rows takes place is a bit dif-
ferent in the two plans, but the number of rows scanned is the same.

To realize how many rows get scanned, consider the elements involved in the data. Let p be the
number of partitions (accounts), and let r be the number of rows per partition (transactions). Then the
number of rows in the table is roughly pr, assuming an even distribution of transactions per account.
So the upper scan of the clustered index involves scanning pr rows. But the work at the inner part of
the Nested Loops iterator is what we’re most concerned with. For each partition, the plan scans 1 + 2
+ … + r rows, which is equal to (r + r 2) / 2. In total, the number of rows processed in these plans is pr
+ p(r + r 2) / 2. This means that with respect to partition size, the scaling of this plan is quadratic; that
is, if you increase the partition size by a factor of f, the work involved increases by a factor of close
to f 2. That’s bad. As examples, 100 rows have a “cost” of 10,000 rows, 1,000 rows have a “cost” of
1,000,000, and so on. Simply put, it translates to very slow queries when the partition size is not tiny
because the squared effect is very dramatic. It’s OK to use these solutions for up to a few dozen rows
per partition, but not many more.

Cursor-Based Solution
Using a cursor-based solution to running totals is straightforward. You declare a cursor based on a
query that orders the data by actid and tranid. You then iterate through the cursor records. Whenever
you hit a new account, you reset the variable holding the aggregate. In each iteration, you add to
the variable the value of the new transaction; you then store a row in a table variable with the cur-
rent transaction information plus the running total so far. When you’re done iterating, you return the
result to the caller by querying the table variable. Here’s the complete solution code:

 Running Totals 163

DECLARE @Result AS TABLE
(
 actid INT,
 tranid INT,
 val MONEY,
 balance MONEY
);

DECLARE
 @actid AS INT,
 @prvactid AS INT,
 @tranid AS INT,
 @val AS MONEY,
 @balance AS MONEY;

DECLARE C CURSOR FAST_FORWARD FOR
 SELECT actid, tranid, val
 FROM dbo.Transactions
 ORDER BY actid, tranid;

OPEN C

FETCH NEXT FROM C INTO @actid, @tranid, @val;

SELECT @prvactid = @actid, @balance = 0;

WHILE @@fetch_status = 0
BEGIN
 IF @actid <> @prvactid
 SELECT @prvactid = @actid, @balance = 0;

 SET @balance = @balance + @val;

 INSERT INTO @Result VALUES(@actid, @tranid, @val, @balance);

 FETCH NEXT FROM C INTO @actid, @tranid, @val;
END

CLOSE C;

DEALLOCATE C;

SELECT * FROM @Result;

The plan for the query that the cursor is based on is shown in Figure 5-7.

FIgURE 5-7 Execution plan for the query used by the cursor.

164 CHAPTER 5 T-SQL Solutions Using Window Functions

This plan has linear scaling because the data from the index is scanned only once, in order. Also,
each fetching of a row from the cursor has a constant cost per row. If you call the cursor overhead per
row o, you can express the cost of this solution as pr + pro (keeping in mind that p is the number of
partitions and r is the number of rows per partition). So you can see that if you increase the number
of rows per partition by a factor of f, the work involved becomes prf + prfo, meaning that you get
linear scaling. The overhead per row is high; however, because the scaling is linear, from a certain par-
tition size on, this solution will perform better than the solutions based on subqueries and joins due
to their quadratic scaling. Benchmark studies that I did show that the point where the cursor solution
becomes faster is around a few hundred rows per partition.

Despite the performance gains cursor solutions provide, in general you should avoid using them
because they are not relational.

CLr-Based Solution
One possible Common Language Runtime (CLR) solution is basically another form of a cursor-based
solution. The difference is that instead of using a T-SQL cursor that involves a high amount of over-
head for each fetch and slow iterations, you use a .NET SQLDataReader and .NET iterations, which
are much faster. One of the things that make the CLR option faster is that you don’t need to store the
result rows in a temporary table—the results are streamed right back to the caller. The logic of the
CLR-based solution is similar to that of the T-SQL cursor-based solution. Here’s the .NET code defining
the solution’s stored procedure:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

public partial class StoredProcedures
{
 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void AccountBalances()
 {
 using (SqlConnection conn = new SqlConnection("context connection=true;"))
 {
 SqlCommand comm = new SqlCommand();
 comm.Connection = conn;
 comm.CommandText = @"" +
 "SELECT actid, tranid, val " +
 "FROM dbo.Transactions " +
 "ORDER BY actid, tranid;";

 SqlMetaData[] columns = new SqlMetaData[4];
 columns[0] = new SqlMetaData("actid" , SqlDbType.Int);
 columns[1] = new SqlMetaData("tranid" , SqlDbType.Int);
 columns[2] = new SqlMetaData("val" , SqlDbType.Money);
 columns[3] = new SqlMetaData("balance", SqlDbType.Money);

 SqlDataRecord record = new SqlDataRecord(columns);

 Running Totals 165

 SqlContext.Pipe.SendResultsStart(record);

 conn.Open();

 SqlDataReader reader = comm.ExecuteReader();

 SqlInt32 prvactid = 0;
 SqlMoney balance = 0;

 while (reader.Read())
 {
 SqlInt32 actid = reader.GetSqlInt32(0);
 SqlMoney val = reader.GetSqlMoney(2);

 if (actid == prvactid)
 {
 balance += val;
 }
 else
 {
 balance = val;
 }

 prvactid = actid;

 record.SetSqlInt32(0, reader.GetSqlInt32(0));
 record.SetSqlInt32(1, reader.GetSqlInt32(1));
 record.SetSqlMoney(2, val);
 record.SetSqlMoney(3, balance);

 SqlContext.Pipe.SendResultsRow(record);
 }

 SqlContext.Pipe.SendResultsEnd();
 }
 }
};

To be able to execute the stored procedure in SQL Server, you first need to build an assembly
called AccountBalances that is based on this code and deploy it in the TSQL2012 database. If you’re
not familiar with deployment of assemblies in SQL Server, you can read an article in Books Online
titled “Deploying CLR Database Objects,” which describes the process. You can find this article at
http://technet.microsoft.com/en-us/library/ms345099(SQL.110).aspx.

Assuming you called the assembly AccountBalances, and the path to the assembly file is
C:\AccountBalances\AccountBalances.dll, you can use the following code to load the assembly to the
database and then register the stored procedure:

CREATE ASSEMBLY AccountBalances FROM 'C:\AccountBalances\AccountBalances.dll';
GO

CREATE PROCEDURE dbo.AccountBalances
AS EXTERNAL NAME AccountBalances.StoredProcedures.AccountBalances;

http://technet.microsoft.com/en-us/library/ms345099(SQL.110).aspx

166 CHAPTER 5 T-SQL Solutions Using Window Functions

After the assembly has been deployed and the procedure has been registered, you can execute
the procedure using the following code:

EXEC dbo.AccountBalances;

As mentioned, a SQLDataReader is just another form of a cursor, only the overhead of each fetch
is less than that of a T-SQL cursor. Also, iterations in .NET are much faster than iterations in T-SQL. So
the CLR-based solution also has linear scaling. In my benchmarks, this solution started performing
better than the solutions using subqueries and joins at around 15 rows per partition.

When you’re done, run the following code for cleanup:

DROP PROCEDURE dbo.AccountBalances;
DROP ASSEMBLY AccountBalances;

Nested Iterations
So far, I have shown you solutions that are either set based or iterative. The next solution, known as
nested iterations, is a hybrid of iterative and set-based logic. The idea is to first copy into a tempo-
rary table the rows from the source table (bank account transactions in our case), along with a new
attribute called rownum that is calculated by using the ROW_NUMBER function. The row numbers are
partitioned by actid and ordered by tranid, so the first transaction in each account is assigned the row
number 1, the second transaction is assigned row number 2, and so on. You then create a clustered
index on the temporary table with the key list (rownum, actid). Then you use either a recursive CTE or
your own loop to handle one row number at a time across all accounts in each iteration. The running
total is then computed by adding the value associated with the current row number to the value asso-
ciated with the previous row number.

Here’s the implementation of this logic using a recursive CTE:

SELECT actid, tranid, val,
 ROW_NUMBER() OVER(PARTITION BY actid ORDER BY tranid) AS rownum
INTO #Transactions
FROM dbo.Transactions;

CREATE UNIQUE CLUSTERED INDEX idx_rownum_actid ON #Transactions(rownum, actid);

WITH C AS
(
 SELECT 1 AS rownum, actid, tranid, val, val AS sumqty
 FROM #Transactions
 WHERE rownum = 1

 UNION ALL

 SELECT PRV.rownum + 1, PRV.actid, PRV.tranid, CUR.val, PRV.sumqty + CUR.val
 FROM C AS PRV
 JOIN #Transactions AS CUR
 ON CUR.rownum = PRV.rownum + 1
 AND CUR.actid = PRV.actid
)

 Running Totals 167

SELECT actid, tranid, val, sumqty
FROM C
OPTION (MAXRECURSION 0);

DROP TABLE #Transactions;

And here’s the implementation of the same logic using an explicit loop:

SELECT ROW_NUMBER() OVER(PARTITION BY actid ORDER BY tranid) AS rownum,
 actid, tranid, val, CAST(val AS BIGINT) AS sumqty
INTO #Transactions
FROM dbo.Transactions;

CREATE UNIQUE CLUSTERED INDEX idx_rownum_actid ON #Transactions(rownum, actid);

DECLARE @rownum AS INT;
SET @rownum = 1;

WHILE 1 = 1
BEGIN
 SET @rownum = @rownum + 1;

 UPDATE CUR
 SET sumqty = PRV.sumqty + CUR.val
 FROM #Transactions AS CUR
 JOIN #Transactions AS PRV
 ON CUR.rownum = @rownum
 AND PRV.rownum = @rownum - 1
 AND CUR.actid = PRV.actid;

 IF @@rowcount = 0 BREAK;
END

SELECT actid, tranid, val, sumqty
FROM #Transactions;

DROP TABLE #Transactions;

This solution tends to perform well when there are a lot of partitions with a small number of rows
per partition. This way, the number of iterations is small. And most of the work is handled by the set-
based part of the solution that joins the rows associated with one row number with the rows associ-
ated with the previous row number.

Multirow UPDaTe with Variables
The various techniques I showed so far for handling running totals are guaranteed to produce the
correct result. The technique that is the focus of this section is a controversial one because it relies on
observed behavior as opposed to documented behavior, and it also violates relational concepts. What
makes it so appealing to some is that it is very fast.

The technique involves using an UPDATE statement with variables. An UPDATE statement can set
a variable to an expression based on a column value, as well as set a column value to an expression
based on a variable. The solution starts by creating a temporary table called #Transactions with the

168 CHAPTER 5 T-SQL Solutions Using Window Functions

actid, tranid, val, and balance attributes and a clustered index based on the key list (actid, tranid).
Then the solution populates the temp table with all rows from the source Transactions table, setting
the balance column to 0.00 in all rows. The solution then invokes an UPDATE statement with variables
against the temporary table to calculate the running totals and assign those to the balance column.
It uses variables called @prevaccount and @prevbalance, and it sets the balance using the following
expression:

 SET @prevbalance = balance = CASE
 WHEN actid = @prevaccount
 THEN @prevbalance + val
 ELSE val
 END

The CASE expression checks whether the current account ID is equal to the previous account ID;
if the account IDs are equivalent, it returns the previous balance plus the current transaction value. If
the account IDs are different, it returns the current transaction value. The balance is then set to the
result of the CASE expression and also assigned to the @prevbalance variable. In a separate expres-
sion, the @prevaccount variable is set to the current account ID.

After the UPDATE statement, the solution presents the rows from the temporary table and then
drops the table. Here’s the complete solution code:

CREATE TABLE #Transactions
(
 actid INT,
 tranid INT,
 val MONEY,
 balance MONEY
);

CREATE CLUSTERED INDEX idx_actid_tranid ON #Transactions(actid, tranid);

INSERT INTO #Transactions WITH (TABLOCK) (actid, tranid, val, balance)
 SELECT actid, tranid, val, 0.00
 FROM dbo.Transactions
 ORDER BY actid, tranid;

DECLARE @prevaccount AS INT, @prevbalance AS MONEY;

UPDATE #Transactions
 SET @prevbalance = balance = CASE
 WHEN actid = @prevaccount
 THEN @prevbalance + val
 ELSE val
 END,
 @prevaccount = actid
FROM #Transactions WITH(INDEX(1), TABLOCKX)
OPTION (MAXDOP 1);

SELECT * FROM #Transactions;

DROP TABLE #Transactions;

 Running Totals 169

The plan for this solution is shown in Figure 5-8. The first part is the INSERT, the second part is the
UPDATE, and the third part is the SELECT.

FIgURE 5-8 Execution plan for a solution using UPDATE with variables.

This solution makes an assumption that the UPDATE will always be optimized with an ordered
scan of the clustered index, and it even uses a number of hints in an attempt to avoid situations that
might prevent that—for example, parallelism. The problem is that there is no official guarantee that
the optimizer will always scan the data in clustered index order. You’re not supposed to make assump-
tions about physical processing aspects when trying to ensure the logical correctness of your code,
unless there are logical elements in the code that are defined to guarantee such behavior. There’s
nothing in the logical aspects of the code that give any such guarantees. Of course, it’s up to you to
decide whether or not you want to use this technique. I think it’s irresponsible to use it even if you run
it a thousand times and the observed behavior is “It seems to work.” The onus is not on people to find
a case where it doesn’t work; rather, it’s on people to prove that it will never fail—of course, that’s
impossible because Microsoft doesn’t guarantee that.

Fortunately in SQL Server 2012, the controversy around this technique becomes moot. With the
extremely efficient solution of using a window aggregate function available, you don’t need to worry
about any other solutions.

Performance Benchmark
I ran a performance benchmark comparing the different techniques. Figures 5-9 and 5-10 show the
results of that benchmark.

170 CHAPTER 5 T-SQL Solutions Using Window Functions

FIgURE 5-9 Benchmark of the running totals solutions, part I.

FIgURE 5-10 Benchmark of the running totals solutions, part II.

The reason for separating the results into two graphs was that the technique based on a subquery
or join was so slow compared to the rest that I wanted to use a different scale for it. Regardless of
the reason for doing it this way, observe that with respect to partition size, most solutions have linear
scaling and only the one based on a subquery or join has quadratic scaling. Also, you can clearly see

 Max Concurrent Intervals 171

how efficient the new solution based on a window aggregate function is. The solution based on an
UPDATE with variables is also very fast, but for the aforementioned reasons I recommended that you
avoid it. The solution based on the CLR is also quite fast, but it involves writing all that .NET code and
deploying an assembly in the database. From all perspectives, the set-based solution using a window
aggregate is by far the most preferable one.

Max Concurrent Intervals

Consider a set of intervals representing things such as sessions, projects, calls, and so on. There’s a
classic problem known as maximum concurrent intervals where your task is to calculate the maximum
number of intervals that were effective simultaneously. As an example, suppose that you’re given a
table called Sessions that holds data about user sessions for different applications. Your task is to write
a solution that calculates, for each application, the maximum number of sessions that were active
simultaneously. If one session ends exactly when another starts, assume that you’re not supposed to
consider them concurrent.

Here’s the code to create the Sessions table and a couple of indexes to support your solutions:

SET NOCOUNT ON;
USE TSQL2012;

IF OBJECT_ID('dbo.Sessions', 'U') IS NOT NULL DROP TABLE dbo.Sessions;

CREATE TABLE dbo.Sessions
(
 keycol INT NOT NULL,
 app VARCHAR(10) NOT NULL,
 usr VARCHAR(10) NOT NULL,
 host VARCHAR(10) NOT NULL,
 starttime DATETIME NOT NULL,
 endtime DATETIME NOT NULL,
 CONSTRAINT PK_Sessions PRIMARY KEY(keycol),
 CHECK(endtime > starttime)
);
GO

CREATE UNIQUE INDEX idx_nc_app_st_et
 ON dbo.Sessions(app, starttime, keycol) INCLUDE(endtime);

CREATE UNIQUE INDEX idx_nc_app_et_st
 ON dbo.Sessions(app, endtime, keycol) INCLUDE(starttime);

Use the following code to populate the Sessions table with a small set of sample data to test the
validity of your solution:

TRUNCATE TABLE dbo.Sessions;

172 CHAPTER 5 T-SQL Solutions Using Window Functions

INSERT INTO dbo.Sessions(keycol, app, usr, host, starttime, endtime) VALUES
 (2, 'app1', 'user1', 'host1', '20120212 08:30', '20120212 10:30'),
 (3, 'app1', 'user2', 'host1', '20120212 08:30', '20120212 08:45'),
 (5, 'app1', 'user3', 'host2', '20120212 09:00', '20120212 09:30'),
 (7, 'app1', 'user4', 'host2', '20120212 09:15', '20120212 10:30'),
 (11, 'app1', 'user5', 'host3', '20120212 09:15', '20120212 09:30'),
 (13, 'app1', 'user6', 'host3', '20120212 10:30', '20120212 14:30'),
 (17, 'app1', 'user7', 'host4', '20120212 10:45', '20120212 11:30'),
 (19, 'app1', 'user8', 'host4', '20120212 11:00', '20120212 12:30'),
 (23, 'app2', 'user8', 'host1', '20120212 08:30', '20120212 08:45'),
 (29, 'app2', 'user7', 'host1', '20120212 09:00', '20120212 09:30'),
 (31, 'app2', 'user6', 'host2', '20120212 11:45', '20120212 12:00'),
 (37, 'app2', 'user5', 'host2', '20120212 12:30', '20120212 14:00'),
 (41, 'app2', 'user4', 'host3', '20120212 12:45', '20120212 13:30'),
 (43, 'app2', 'user3', 'host3', '20120212 13:00', '20120212 14:00'),
 (47, 'app2', 'user2', 'host4', '20120212 14:00', '20120212 16:30'),
 (53, 'app2', 'user1', 'host4', '20120212 15:30', '20120212 17:00');

Here’s the desired result for this small set of sample data:

app mx
---------- -----------
app1 3
app2 4

To test the performance of your solution, you need a larger set of sample data, of course. The fol-
lowing code populates the table with 100,000 sessions with 10 distinct applications:

TRUNCATE TABLE dbo.Sessions;

DECLARE
 @numrows AS INT = 100000, -- total number of rows
 @numapps AS INT = 10; -- number of applications

INSERT INTO dbo.Sessions WITH(TABLOCK)
 (keycol, app, usr, host, starttime, endtime)
 SELECT
 ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS keycol,
 D.*,
 DATEADD(
 second,
 1 + ABS(CHECKSUM(NEWID())) % (20*60),
 starttime) AS endtime
 FROM
 (
 SELECT
 'app' + CAST(1 + ABS(CHECKSUM(NEWID())) % @numapps AS VARCHAR(10)) AS app,
 'user1' AS usr,
 'host1' AS host,
 DATEADD(
 second,
 1 + ABS(CHECKSUM(NEWID())) % (30*24*60*60),
 '20120101') AS starttime
 FROM dbo.GetNums(1, @numrows) AS Nums
) AS D;

 Max Concurrent Intervals 173

Feel free to adjust the number of rows to populate the table with and the number of distinct appli-
cations according to your needs.

Before I show the efficient solutions that are based on window functions, I’ll show a couple of
solutions that do not use window functions and talk about their shortcomings. I’ll first describe the
traditional set-based solution.

Traditional Set-Based Solution
You can think of each session as being made of two events—a start event, which increases the count
of active sessions, and an end event, which decreases that count. If you look at the timeline, the count
of active sessions remains constant in sections between consecutive events where a session either
starts or ends. What’s more, because a start event increases the count of active sessions, the maxi-
mum count must fall on a start event. As an example, suppose that there were two sessions with a
certain application named App1: one session started at point P1 and ended at point P3, and another
session started at point P2 and ended at point P4. Here’s the chronological order of events and the
number of active sessions after each event:

■■ P1, start, 1 active session

■■ P2, start, 2 active sessions

■■ P3, end, 1 active session

■■ P4, end, 0 active sessions

The number of active sessions between two consecutive points remains constant. The maximum
number falls on a start point—P2 in this example.

The approach that the traditional set-based solution takes relies on this logic. The solution imple-
ments the following steps:

1. Define a table expression called TimePoints based on a query against the Sessions table that
returns app and starttime (aliased as ts for timestamp).

2. Use a second table expression called Counts to query TimePoints (aliased as P).

3. In the second table expression, use a subquery to count how many sessions you can find in the
Sessions table (aliased as S), where P.app is equal to S.app, and P.ts is on or after S.starttime
and before S.endtime. The subquery counts how many sessions are active during each applica-
tion session’s start point in time.

4. Finally, in the outer query against Counts, group the rows by app and return for each applica-
tion the maximum count.

174 CHAPTER 5 T-SQL Solutions Using Window Functions

Here’s the complete solution code:

WITH TimePoints AS
(
 SELECT app, starttime AS ts FROM dbo.Sessions
),
Counts AS
(
 SELECT app, ts,
 (SELECT COUNT(*)
 FROM dbo.Sessions AS S
 WHERE P.app = S.app
 AND P.ts >= S.starttime
 AND P.ts < S.endtime) AS concurrent
 FROM TimePoints AS P
)
SELECT app, MAX(concurrent) AS mx
FROM Counts
GROUP BY app;

The solution seems straightforward, and it’s not immediately apparent there’s a performance
problem with it. But when you run it against the large set of sample data, it takes a long time to com-
plete. To understand why it’s so slow, examine the query’s execution plan, shown in Figure 5-11.

FIgURE 5-11 Execution plan for a traditional set-based solution.

The Index Scan iterator in the top-right part of the plan (the outer input of the Nested Loops join)
scans one of the covering indexes created earlier (idx_nc_app_et_st) to obtain all start points in time
for each application. Using the symbols p for the number of partitions (applications) and r for the
number of rows per partition (sessions per application), this part involves scanning roughly pr rows.
Then the inner part of the Nested Loops join is an Index Seek iterator against idx_nc_app_st_et that
gets executed for each row returned from the upper input. Its task is to identify the rows represent-
ing the sessions that were active for the current application during the current point in time in the
outer row.

Now focus your attention on the work involved in each execution of the Index Seek iterator. For
the current outer row’s elements P.app (call it myapp) and P.ts (call it myts), it is looking for all rows
where S.app = myapp, S.starttime <= myts, and S.endtime > myts. Because the first index key is app,
the seek predicate can efficiently handle the filtering of the first part: S.app = myapp. The problem
is with the other two parts: S.starttime <= myts and S.endtime > myts. There’s no one index that can
enable a seek predicate to scan only the rows that satisfy both conditions. This predicate is supposed
to filter rows where a value is between two columns. That’s very different than needing to filter rows

 Max Concurrent Intervals 175

where a column is between two values. The former can rely on an index on the filtered column to
filter only the qualifying rows. The latter, however, can rely on index ordering only for one of the con-
ditions. As mentioned, the optimizer chose to apply the Index Seek iterator to the index idx_nc_app_
st_et. The seek is performed based on the seek predicate S.starttime <= myts, so only rows that satisfy
this predicate are actually accessed. However, all remaining rows are scanned and, using the predicate
S.endtime > myts, only the ones that satisfy this condition are returned.

You can see which part of the predicate was evaluated as a Seek Predicate versus Predicate in the
properties of the Index Seek iterator. The Seek Predicate property is shown here:

Seek Keys[1]: Prefix: [TSQL2012].[dbo].[Sessions].app =
Scalar Operator([TSQL2012].[dbo].[Sessions].[app]), End: [TSQL2012].[dbo].[Sessions].starttime
<= Scalar Operator([TSQL2012].[dbo].[Sessions].[starttime])

And the Predicate property is the following:

[TSQL2012].[dbo].[Sessions].[starttime]<[TSQL2012].[dbo].[Sessions].[endtime] as [S].[endtime]

If it isn’t clear by now, that’s bad news. The seek predicate prevents reading nonqualifying rows,
but the scan predicate doesn’t. The rows must be read before the scan predicate can be applied. I
already mentioned that the Index Scan iterator scans approximately pr rows. The Index Seek iterator
scans, for each row, on average about half the rows in the partition. This means that for r rows in a
partition, it scans r 2 / 2 rows per partition. In total, the number of rows being processed is pr + pr 2 / 2.
This means that with respect to partition size, this plan has quadratic complexity. So if the number of
rows per partition increases by a factor of f, the work increases by a factor of close to f 2. So beyond
very small partition sizes, the query will perform very badly.

Cursor-Based Solution
The cursor-based solution relies on the following query, which organizes the session start and end
events as one chronological sequence of events:

SELECT app, starttime AS ts, +1 AS type
FROM dbo.Sessions

UNION ALL

SELECT app, endtime, -1
FROM dbo.Sessions

ORDER BY app, ts, type;

app ts type
---------- ----------------------- -----------
app1 2012-02-12 08:30:00.000 1
app1 2012-02-12 08:30:00.000 1
app1 2012-02-12 08:45:00.000 -1
app1 2012-02-12 09:00:00.000 1
app1 2012-02-12 09:15:00.000 1
app1 2012-02-12 09:15:00.000 1
app1 2012-02-12 09:30:00.000 -1

176 CHAPTER 5 T-SQL Solutions Using Window Functions

app1 2012-02-12 09:30:00.000 -1
app1 2012-02-12 10:30:00.000 -1
app1 2012-02-12 10:30:00.000 -1
...

As you can see, the query marks start events with a +1 event type because they increase the count
of active sessions, and it marks end events with a –1 event type because they decrease the count. The
query sorts the events chronologically by app, ts, and type. The reason to add the type to the ORDER
BY list is to ensure that if a start event and an end event happen at the same time, the end event will
be considered first. (Remember, in such a case, you’re not supposed to consider the two sessions as
concurrent.)

The plan for this query is shown in Figure 5-12.

FIgURE 5-12 Execution plan for a cursor-based solution.

Observe that the plan is very efficient. It performs ordered scans of the two indexes created earlier,
and it uses a Merge Join iterator to concatenate the results, thereby preserving index ordering and
avoiding a sort operation.

The rest of the work is essentially calculating a running total of the type, within each application,
based on this chronological order. The running total of the type is, in fact, the number of active ses-
sions during each point. The cursor code performs just that, and in each application group, it keeps
the maximum count found in a variable. When it’s done with the group, it stores that maximum along
with the application in a table variable. When done, the code just queries the table variable to present
the result. Here’s the complete solution code:

DECLARE
 @app AS varchar(10),
 @prevapp AS varchar (10),
 @ts AS datetime,
 @type AS int,
 @concurrent AS int,
 @mx AS int;

DECLARE @AppsMx TABLE
(
 app varchar (10) NOT NULL PRIMARY KEY,
 mx int NOT NULL
);

 Max Concurrent Intervals 177

DECLARE sessions_cur CURSOR FAST_FORWARD FOR
 SELECT app, starttime AS ts, +1 AS type
 FROM dbo.Sessions

 UNION ALL

 SELECT app, endtime, -1
 FROM dbo.Sessions

 ORDER BY app, ts, type;

OPEN sessions_cur;

FETCH NEXT FROM sessions_cur
 INTO @app, @ts, @type;

SET @prevapp = @app;
SET @concurrent = 0;
SET @mx = 0;

WHILE @@FETCH_STATUS = 0
BEGIN
 IF @app <> @prevapp
 BEGIN
 INSERT INTO @AppsMx VALUES(@prevapp, @mx);
 SET @concurrent = 0;
 SET @mx = 0;
 SET @prevapp = @app;
 END

 SET @concurrent = @concurrent + @type;
 IF @concurrent > @mx SET @mx = @concurrent;

 FETCH NEXT FROM sessions_cur
 INTO @app, @ts, @type;
END

IF @prevapp IS NOT NULL
 INSERT INTO @AppsMx VALUES(@prevapp, @mx);

CLOSE sessions_cur;

DEALLOCATE sessions_cur;

SELECT * FROM @AppsMx;

The solution has the usual downsides of cursor-based solutions. In terms of performance, you pay
extra for each row processing, but the scaling of the solution is linear. If the number of rows in the
table is roughly pr, the cursor solution scans 2pr rows. In addition, with the per-row overhead of each
cursor fetch (call it o), the total cost can be considered as 2pr + 2pro. If the volume of data increases
by a factor of f, the cost becomes 2prf + 2prfo. So this solution is faster than the traditional set-based
solution even from a very small partition size.

178 CHAPTER 5 T-SQL Solutions Using Window Functions

Solutions Based on Window Functions
I’ll present two solutions based on window functions—the first is available only in SQL Server 2012
because it relies on new window aggregate capabilities, and the second has been available since SQL
Server 2005 because it relies on the ROW_NUMBER function.

Consider the query used by the cursor in the previous solution. It arranges the start and end events
as one sequence of events and marks start and end events with event types of +1 and –1. And then
the calculation of the number of concurrent sessions during each point is done by a running total cal-
culation. Prior to SQL Server 2012, a cursor was one of the more efficient solutions to running totals.
But now that you have support for ordering and framing options in window aggregate functions, you
can achieve a running total calculation far more efficiently.

The initial query and general principals of the solution that uses a window aggregate function are
similar to those used by the cursor solution—only without the cursor and without the cursor over-
head. Here’s the complete solution code:

WITH C1 AS
(
 SELECT app, starttime AS ts, +1 AS type
 FROM dbo.Sessions

 UNION ALL

 SELECT app, endtime, -1
 FROM dbo.Sessions
),
C2 AS
(
 SELECT *,
 SUM(type) OVER(PARTITION BY app ORDER BY ts, type
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cnt
 FROM C1
)
SELECT app, MAX(cnt) AS mx
FROM C2
GROUP BY app;

The query in the CTE C1 generates the unified sequence of start and end events. The query in the
CTE C2 computes the running total of the type, partitioned by app and ordered by ts and type. That’s
the count of active sessions during each point. Finally, the outer query groups the rows from C2 by
app and returns the maximum count for each app.

Observe how simple and elegant the solution ultimately is. It is also highly efficient and has linear
scaling. Figure 5-13 shows the execution plan for this solution.

The first part is identical to the work in the plan for the query used by the cursor solution—namely,
ordered scans of the indexes and a Merge Join (Concatenation) that preserves index ordering. Then
this preserved ordering property is relied on when computing the window aggregate, so not even
one sort operation is required in this plan.

 Max Concurrent Intervals 179

FIgURE 5-13 Execution plan for a solution using a window aggregate function.

The second solution based on window functions is available in versions of SQL Server prior to SQL
Server 2012, relying mainly on the ROW_NUMBER function. I learned this elegant solution from Ben
Flanaghan. Like the previous solution, it also unifies start and end events in a chronological sequence
of events, marking start events as a +1 event type and end events as a –1 event type. Only the part
that calculates how many intervals are active at any given point is handled differently. Here’s the
complete solution code:

WITH C1 AS
(
 SELECT app, starttime AS ts, +1 AS type, keycol,
 ROW_NUMBER() OVER(PARTITION BY app ORDER BY starttime, keycol) AS start_ordinal
 FROM dbo.Sessions

 UNION ALL

 SELECT app, endtime, -1, keycol, NULL
 FROM dbo.Sessions
),
C2 AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY app ORDER BY ts, type, keycol) AS start_or_end_ordinal
 FROM C1
)
SELECT app, MAX(start_ordinal - (start_or_end_ordinal - start_ordinal)) AS mx
FROM C2
GROUP BY app;

The query defining the CTE C1 generates the chronological sequence of events. It also uses the
ROW_NUMBER function to compute start ordinals for start events (with an attribute called start_
ordinal). The start_ordinal attribute represents for each start event how many intervals have started so
far. For end events, the second query uses a NULL as a placeholder for start_ordinal to allow unifying
the start and end events.

The query defining the CTE C2 queries C1, and it uses the ROW_NUMBER function to compute the
start_or_end_ordinal attribute on top of the unified events, representing how many events—start or
end—happened so far.

The magic happens in the outer query, which queries C2. Let end_ordinal be start_or_end_ordinal
– start_ordinal. Then the count of active intervals is start_ordinal – end_ordinal. In other words, the
count of active intervals is start_ordinal – (start_or_end_ordinal – start_ordinal). As you can see, the

180 CHAPTER 5 T-SQL Solutions Using Window Functions

outer query is left to group the rows from C2 by app and return, for each app, the maximum number
of active intervals.

The plan for this solution is shown in Figure 5-14.

FIgURE 5-14 Execution plan for a solution using ROW_NUMBER.

Also in this plan, you can see that both ROW_NUMBER calculations—the one computing start
ordinals, as well as the one computing start or end ordinals—rely on index ordering. The same applies
to the aggregate operation. Hence, not even one sort operation is required in this plan.

Performance Benchmark
I ran a performance benchmark to compare the performance of the different solutions, and the
results are shown in Figure 5-15.

FIgURE 5-15 Max concurrent intervals benchmark results.

Observe how slow the traditional set-based solution is. You can see clearly its quadratic scaling.
The cursor solution has linear scaling and is much better than the traditional set-based solution. The
solutions based on window functions are by far the most efficient and also have linear scaling.

 Packing Intervals 181

Packing Intervals

Packing intervals means grouping each set of contiguous intervals with which no other interval over-
laps or is adjacent to (abutting), and returning the minimum start and maximum end for each group.
Often, packing problems in SQL also involve a partitioning element (for example, a user, an applica-
tion), where the packing is done for each partition independently.

The scenario I’ll use to demonstrate solutions to the packing intervals problem involves user ses-
sions for some application or service. Use the following code to create the Users and Sessions tables
and to populate them with sample data to test the solution’s validity:

SET NOCOUNT ON;
USE TSQL2012;

IF OBJECT_ID('dbo.Sessions') IS NOT NULL DROP TABLE dbo.Sessions;
IF OBJECT_ID('dbo.Users') IS NOT NULL DROP TABLE dbo.Users;

CREATE TABLE dbo.Users
(
 username VARCHAR(14) NOT NULL,
 CONSTRAINT PK_Users PRIMARY KEY(username)
);

INSERT INTO dbo.Users(username) VALUES('User1'), ('User2'), ('User3');

CREATE TABLE dbo.Sessions
(
 id INT NOT NULL IDENTITY(1, 1),
 username VARCHAR(14) NOT NULL,
 starttime DATETIME2(3) NOT NULL,
 endtime DATETIME2(3) NOT NULL,
 CONSTRAINT PK_Sessions PRIMARY KEY(id),
 CONSTRAINT CHK_endtime_gteq_starttime
 CHECK (endtime >= starttime)
);

INSERT INTO dbo.Sessions(username, starttime, endtime) VALUES
 ('User1', '20121201 08:00:00.000', '20121201 08:30:00.000'),
 ('User1', '20121201 08:30:00.000', '20121201 09:00:00.000'),
 ('User1', '20121201 09:00:00.000', '20121201 09:30:00.000'),
 ('User1', '20121201 10:00:00.000', '20121201 11:00:00.000'),
 ('User1', '20121201 10:30:00.000', '20121201 12:00:00.000'),
 ('User1', '20121201 11:30:00.000', '20121201 12:30:00.000'),
 ('User2', '20121201 08:00:00.000', '20121201 10:30:00.000'),
 ('User2', '20121201 08:30:00.000', '20121201 10:00:00.000'),
 ('User2', '20121201 09:00:00.000', '20121201 09:30:00.000'),
 ('User2', '20121201 11:00:00.000', '20121201 11:30:00.000'),
 ('User2', '20121201 11:32:00.000', '20121201 12:00:00.000'),
 ('User2', '20121201 12:04:00.000', '20121201 12:30:00.000'),
 ('User3', '20121201 08:00:00.000', '20121201 09:00:00.000'),
 ('User3', '20121201 08:00:00.000', '20121201 08:30:00.000'),
 ('User3', '20121201 08:30:00.000', '20121201 09:00:00.000'),
 ('User3', '20121201 09:30:00.000', '20121201 09:30:00.000');

182 CHAPTER 5 T-SQL Solutions Using Window Functions

Here’s the desired result for the small set of sample data:

username starttime endtime
--------- ----------------------- -----------------------
User1 2012-12-01 08:00:00.000 2012-12-01 09:30:00.000
User1 2012-12-01 10:00:00.000 2012-12-01 12:30:00.000
User2 2012-12-01 08:00:00.000 2012-12-01 10:30:00.000
User2 2012-12-01 11:00:00.000 2012-12-01 11:30:00.000
User2 2012-12-01 11:32:00.000 2012-12-01 12:00:00.000
User2 2012-12-01 12:04:00.000 2012-12-01 12:30:00.000
User3 2012-12-01 08:00:00.000 2012-12-01 09:00:00.000
User3 2012-12-01 09:30:00.000 2012-12-01 09:30:00.000

Figure 5-16 is a graphical depiction of both the original intervals from the Sessions table (orange
bars), as well as the packed intervals (red arrows).

User1

Unpacked and Packed Intervals

User2

User3

Interval

Packed Interval

8:
00

8:
30

9:
00

9:
30

10
:0

0

10
:3

0

11
:0

0

11
:3

0

12
:0

0

12
:3

0

FIgURE 5-16 Unpacked and packed intervals.

You can use the following code to populate the Sessions table with a large set of sample data to
test the performance of the solutions:

DECLARE
 @num_users AS INT = 2000,
 @intervals_per_user AS INT = 2500,
 @start_period AS DATETIME2(3) = '20120101',
 @end_period AS DATETIME2(3) = '20120107',
 @max_duration_in_ms AS INT = 3600000; -- 60 minutes

TRUNCATE TABLE dbo.Sessions;
TRUNCATE TABLE dbo.Users;

 Packing Intervals 183

INSERT INTO dbo.Users(username)
 SELECT 'User' + RIGHT('000000000' + CAST(U.n AS VARCHAR(10)), 10) AS username
 FROM dbo.GetNums(1, @num_users) AS U;

WITH C AS
(
 SELECT 'User' + RIGHT('000000000' + CAST(U.n AS VARCHAR(10)), 10) AS username,
 DATEADD(ms, ABS(CHECKSUM(NEWID())) % 86400000,
 DATEADD(day, ABS(CHECKSUM(NEWID())) % DATEDIFF(day, @start_period, @end_period),
@start_period)) AS starttime
 FROM dbo.GetNums(1, @num_users) AS U
 CROSS JOIN dbo.GetNums(1, @intervals_per_user) AS I
)
INSERT INTO dbo.Sessions WITH (TABLOCK) (username, starttime, endtime)
 SELECT username, starttime,
 DATEADD(ms, ABS(CHECKSUM(NEWID())) % (@max_duration_in_ms + 1), starttime) AS endtime
 FROM C;

This code populates the Sessions table with 5,000,000 rows. I filled it with data for 2,000 users,
each with 2,500 sessions during a period of a week, with each session lasting up to one hour. But the
code allows you to change any element that you like to test the scaling of the solutions.

Traditional Set-Based Solution
The first solution I will cover is a classic solution that does the job, but very inefficiently. It will benefit
from the following two indexes:

CREATE INDEX idx_user_start_end ON dbo.Sessions(username, starttime, endtime);
CREATE INDEX idx_user_end_start ON dbo.Sessions(username, endtime, starttime);

Here’s the solution’s code:

WITH StartTimes AS
(
 SELECT DISTINCT username, starttime
 FROM dbo.Sessions AS S1
 WHERE NOT EXISTS
 (SELECT * FROM dbo.Sessions AS S2
 WHERE S2.username = S1.username
 AND S2.starttime < S1.starttime
 AND S2.endtime >= S1.starttime)
),
EndTimes AS
(
 SELECT DISTINCT username, endtime
 FROM dbo.Sessions AS S1
 WHERE NOT EXISTS
 (SELECT * FROM dbo.Sessions AS S2
 WHERE S2.username = S1.username
 AND S2.endtime > S1.endtime
 AND S2.starttime <= S1.endtime)
)

184 CHAPTER 5 T-SQL Solutions Using Window Functions

SELECT username, starttime,
 (SELECT MIN(endtime) FROM EndTimes AS E
 WHERE E.username = S.username
 AND endtime >= starttime) AS endtime
FROM StartTimes AS S;

The CTE StartTimes isolates packed interval start times using a query that returns all interval start
times for which you cannot find any interval by the same user that started before the current interval
start and ended on or after the current interval start. The EndTimes CTE isolates packed interval end
times using a query that returns all interval end times for which you cannot find any interval by the
same user that ended after the current interval end and started on or before the current interval end.
The outer query then matches to each packed interval start the nearest packed interval end and goes
forward by returning the minimum end that is greater than or equal to the current start.

As mentioned, this solution is very inefficient. It took several hours to complete when run against
the sample data with the 5,000,000 rows in the Sessions table.

Before continuing, run the following code to drop the indexes you created to support the last
solution:

DROP INDEX idx_user_start_end ON dbo.Sessions;
DROP INDEX idx_user_end_start ON dbo.Sessions;

Solutions Based on Window Functions
Next, I’m going to cover two fairly new strategies based on window functions that are much faster
than the traditional solution. You will want to create the following indexes to support the new
solutions:

CREATE UNIQUE INDEX idx_user_start_id ON dbo.Sessions(username, starttime, id);
CREATE UNIQUE INDEX idx_user_end_id ON dbo.Sessions(username, endtime, id);

The first of the two new strategies relies mainly on the ROW_NUMBER function. The complete
solution is shown in Listing 5-1. It runs for 47 seconds on my laptop when run against the sample data
provided earlier with the 5,000,000 rows.

LISTIng 5-1 Packing Intervals Using Row Numbers

WITH C1 AS
-- let e = end ordinals, let s = start ordinals
(
 SELECT id, username, starttime AS ts, +1 AS type, NULL AS e,
 ROW_NUMBER() OVER(PARTITION BY username ORDER BY starttime, id) AS s
 FROM dbo.Sessions

 UNION ALL

 Packing Intervals 185

 SELECT id, username, endtime AS ts, -1 AS type,
 ROW_NUMBER() OVER(PARTITION BY username ORDER BY endtime, id) AS e,
 NULL AS s
 FROM dbo.Sessions
),
C2 AS
-- let se = start or end ordinal, namely, how many events (start or end) happened so far
(
 SELECT C1.*, ROW_NUMBER() OVER(PARTITION BY username ORDER BY ts, type DESC, id) AS se
 FROM C1
),
C3 AS
-- For start events, the expression s - (se - s) - 1 represents how many sessions were active
-- just before the current (hence - 1)
--
-- For end events, the expression (se - e) - e represents how many sessions are active
-- right after this one
--
-- The above two expressions are 0 exactly when a group of packed intervals
-- either starts or ends, respectively
--
-- After filtering only events when a group of packed intervals either starts or ends,
-- group each pair of adjacent start/end events
(
 SELECT username, ts,
 FLOOR((ROW_NUMBER() OVER(PARTITION BY username ORDER BY ts) - 1) / 2 + 1) AS grpnum
 FROM C2
 WHERE COALESCE(s - (se - s) - 1, (se - e) - e) = 0
)
SELECT username, MIN(ts) AS starttime, max(ts) AS endtime
FROM C3
GROUP BY username, grpnum;

The code in the CTE called C1 unifies start events with end events in one chronological sequence
of events (start or end). Start events are marked with a +1 event type because they increase the count
of active sessions, and end events are marked with a –1 event type because they decrease the count
of active sessions. Figure 5-17 shows the chronological sequence of unified events sorted by user-
name, ts, type DESC, id, with green bars representing how many sessions are active before and after
each event.

Observe that a packed interval always starts when the number of active sessions prior to a start
event is zero, and it ends when the number of active sessions after an end event is zero. Therefore,
with respect to each start event, you need to know how many sessions were active prior to it, and
with respect to each end event, you need to know how many sessions are active after it. This informa-
tion is calculated in steps.

186 CHAPTER 5 T-SQL Solutions Using Window Functions

FIgURE 5-17 Start and end events ordered chronologically.

Observe that the code in the CTE C1 calculates start ordinals for start events (an attribute called
s), with NULLs used as placeholders in that attribute for end events, and it calculates end ordinals for
end events (an attribute called e), with NULLs used as placeholders in that attribute for start events.
The code in the CTE C2 then simply adds an ordinal for start or end events (an attribute called se),
partitioned by username and sorted by ts, type DESC, id. Following is the output of the code in C2,
sorted by username, ts, type DESC, id (for readability, I marked the start event types as +1 instead of
just 1 and replaced NULLs with blanks):

 Packing Intervals 187

id username ts type e s se
--- --------- ----------------- ----- -- -- ---
1 User1 2012-12-01 08:00 +1 1 1
2 User1 2012-12-01 08:30 +1 2 2
1 User1 2012-12-01 08:30 -1 1 3
3 User1 2012-12-01 09:00 +1 3 4
2 User1 2012-12-01 09:00 -1 2 5
3 User1 2012-12-01 09:30 -1 3 6
4 User1 2012-12-01 10:00 +1 4 7
5 User1 2012-12-01 10:30 +1 5 8
4 User1 2012-12-01 11:00 -1 4 9
6 User1 2012-12-01 11:30 +1 6 10
5 User1 2012-12-01 12:00 -1 5 11
6 User1 2012-12-01 12:30 -1 6 12
7 User2 2012-12-01 08:00 +1 1 1
8 User2 2012-12-01 08:30 +1 2 2
9 User2 2012-12-01 09:00 +1 3 3
9 User2 2012-12-01 09:30 -1 1 4
8 User2 2012-12-01 10:00 -1 2 5
7 User2 2012-12-01 10:30 -1 3 6
10 User2 2012-12-01 11:00 +1 4 7
10 User2 2012-12-01 11:30 -1 4 8
11 User2 2012-12-01 11:32 +1 5 9
11 User2 2012-12-01 12:00 -1 5 10
12 User2 2012-12-01 12:04 +1 6 11
12 User2 2012-12-01 12:30 -1 6 12
13 User3 2012-12-01 08:00 +1 1 1
14 User3 2012-12-01 08:00 +1 2 2
15 User3 2012-12-01 08:30 +1 3 3
14 User3 2012-12-01 08:30 -1 1 4
13 User3 2012-12-01 09:00 -1 2 5
15 User3 2012-12-01 09:00 -1 3 6
16 User3 2012-12-01 09:30 +1 4 7
16 User3 2012-12-01 09:30 -1 4 8

The code in the CTE C3 is where most of the magic is done. For each start event, you know how
many sessions started so far (s), and you know how many sessions either started or ended so far
(se). Therefore, you can easily calculate how many sessions ended so far (se – s). Now that you know
how many sessions started and how many sessions ended, you can calculate how many sessions are
active after the start event: s – (se – s). Think of it just like calculating how many people are in a room
if x people enter the room and y people leave the room. Finally, to find out how many sessions were
active prior to the start event, simply subtract 1 from the calculation: s – (se – s) – 1.

In a similar way, you can calculate the number of active sessions after each end event. Having
both the number of sessions that ended thus far (e) and the number of sessions that either started or
ended (se), you can calculate how many sessions started as se – e. Then the number of active sessions
is (se – e) – e.

Now, remember that you want to filter only start events where the number of active sessions prior
to the event was zero, and end events where the number of active sessions after the event was zero.
You can generalize the two filters into one:

WHERE COALESCE(s - (se - s) - 1, (se - e) - e) = 0

188 CHAPTER 5 T-SQL Solutions Using Window Functions

What you have left after filtering are pairs of adjacent start-end events, each representing the start
and end of a packed interval. So you need to assign a group identifier to each pair to be able to later
pivot each pair into one row. This can be achieved by assigning row numbers (call it n) and applying
the calculation (n – 1) / 2 + 1, where / represents integer division. For n values 1, 2, 3, 4, …, you get a
result of 1, 1, 2, 2, … .

In SQL Server, the arithmetic operator / represents integer division when the operands are inte-
gers, but in Oracle you get a decimal division if you use this operator. I added a FLOOR function so
that the code would run correctly on both platforms. So the code in the CTE C3 generates the follow-
ing output:

username ts grpnum
--------- ---------------- --------
User1 2012-12-01 08:00 1
User1 2012-12-01 09:30 1
User1 2012-12-01 10:00 2
User1 2012-12-01 12:30 2
User2 2012-12-01 08:00 1
User2 2012-12-01 10:30 1
User2 2012-12-01 11:00 2
User2 2012-12-01 11:30 2
User2 2012-12-01 11:32 3
User2 2012-12-01 12:00 3
User2 2012-12-01 12:04 4
User2 2012-12-01 12:30 4
User3 2012-12-01 08:00 1
User3 2012-12-01 09:00 1
User3 2012-12-01 09:30 2
User3 2012-12-01 09:30 2

What’s left to the outer query to do is group the rows from C3 by username and grpnum, and
return the minimum ts as the packed interval’s start time and the maximum ts as the end time.

The plan generated by SQL Server’s optimizer for this query is highly efficient, given that you
 create the aforementioned indexes: idx_user_start_id and idx_user_end_id. The plan is shown in
Figure 5-18.

FIgURE 5-18 Plan for a solution using row numbers.

 Packing Intervals 189

What’s amazing about this plan is that it applies two ordered scans of the indexes created to sup-
port this solution (idx_user_start_id and idx_user_end_id), and it relies on the ordered scans to (take a
deep breath now) do the following:

■■ Calculate the row numbers for start ordinals (s)

■■ Calculate row numbers for end ordinals (e)

■■ Perform a merge join to unify the results

■■ Calculate the start or end ordinals (se) on the unified sets

■■ Calculate the row numbers that are used to produce grpnum after filtering

And it does all this without requiring even one sort operator! It’s truly remarkable to see an opti-
mizer that so beautifully understands the concept of order preservation. Finally, a hash aggregate
is used to group the data by grpnum (only the remaining rows after filtering). Because most of the
operations used in this plan have linear complexity, this solution should scale close to linearly.

In total, this plan performs only two scans of the data (one of each index), in index order. As men-
tioned, this solution runs on my laptop for 47 seconds. The one thing that this solution doesn’t exploit
well is parallelism. That’s where the second solution excels.

To exploit parallelism well, what you want is to encapsulate the logic from the solution in Listing
5-1 in a table expression that operates on a single customer and then apply that table expression to
each user. I’m assuming here that you have a table holding the distinct users, which is a fair assump-
tion to make. It is convenient, then, to encapsulate the logic from the solution in Listing 5-1 for a
single user in an inline table function, as the following code shows:

IF OBJECT_ID('dbo.UserIntervals', 'IF') IS NOT NULL DROP FUNCTION dbo.UserIntervals;
GO

CREATE FUNCTION dbo.UserIntervals(@user AS VARCHAR(14)) RETURNS TABLE
AS
RETURN
 WITH C1 AS
 (
 SELECT id, starttime AS ts, +1 AS type, NULL AS e,
 ROW_NUMBER() OVER(ORDER BY starttime, id) AS s
 FROM dbo.Sessions
 WHERE username = @user

 UNION ALL

 SELECT id, endtime AS ts, -1 AS type,
 ROW_NUMBER() OVER(ORDER BY endtime, id) AS e,
 NULL AS s
 FROM dbo.Sessions
 WHERE username = @user
),

190 CHAPTER 5 T-SQL Solutions Using Window Functions

 C2 AS
 (
 SELECT C1.*, ROW_NUMBER() OVER(ORDER BY ts, type DESC, id) AS se
 FROM C1
),
 C3 AS
 (
 SELECT ts,
 FLOOR((ROW_NUMBER() OVER(ORDER BY ts) - 1) / 2 + 1) AS grpnum
 FROM C2
 WHERE COALESCE(s - (se - s) - 1, (se - e) - e) = 0
)
 SELECT MIN(ts) AS starttime, max(ts) AS endtime
 FROM C3
 GROUP BY grpnum;
GO

And then finally, use the CROSS APPLY operator to apply the function to each user from the Users
table, like so:

SELECT U.username, A.starttime, A.endtime
FROM dbo.Users AS U
 CROSS APPLY dbo.UserIntervals(U.username) AS A;

SQL Server generates the parallel plan shown in Figure 5-19 for this query.

FIgURE 5-19 Plan for a solution using APPLY and row numbers.

As you can see, the plan uses a parallel scan of the clustered index on the Users table, and then it
performs the work for each user in the inner branch of the Nested Loops join. The work done in this
inner branch should look familiar—it’s similar to the work done in the plan shown in Figure 5-18, only
this time it’s done for the data associated with one user. This inner branch, of course, is executed in
parallel by multiple threads. This solution runs for six seconds on my laptop.

 Packing Intervals 191

The second new solution that is based on window functions is shown in Listing 5-2. It uses the SUM
window aggregate function, relying on elements in the window specifications that were introduced in
SQL Server 2012.

LISTIng 5-2 Solution Using Window Aggregate

WITH C1 AS
(
 SELECT username, starttime AS ts, +1 AS type, 1 AS sub
 FROM dbo.Sessions

 UNION ALL

 SELECT username, endtime AS ts, -1 AS type, 0 AS sub
 FROM dbo.Sessions
),
C2 AS
(
 SELECT C1.*,
 SUM(type) OVER(PARTITION BY username ORDER BY ts, type DESC
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) - sub AS cnt
 FROM C1
),
C3 AS
(
 SELECT username, ts,
 FLOOR((ROW_NUMBER() OVER(PARTITION BY username ORDER BY ts) - 1) / 2 + 1) AS grpnum
 FROM C2
 WHERE cnt = 0
)
SELECT username, MIN(ts) AS starttime, max(ts) AS endtime
FROM C3
GROUP BY username, grpnum;

This solution uses principles similar to those used by the previous solution, only instead of using
row numbers to calculate the number of active sessions at any given point, it uses a window SUM
aggregate. A running sum of the type (recall that +1 represents a start event and –1 represents an
end event), partitioned by username, in chronological order, is the number of active sessions at any
given point. Now, remember that for start events you need the number of active sessions prior to
the event, and for end events you need the number after the event. Therefore, you need to subtract
1 from the count with start events and subtract nothing with end events. The solution generates an
attribute called sub, with 1 for start events and 0 for end events, and it then subtracts that value from
the running total, using the following expression:

 SUM(type) OVER(PARTITION BY username ORDER BY ts, type DESC
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) - sub AS cnt

The rest is similar to the logic of the previous solution. This solution generates the plan shown in
Figure 5-20 and runs for 87 seconds on my laptop.

192 CHAPTER 5 T-SQL Solutions Using Window Functions

FIgURE 5-20 Plan for a solution using a window aggregate.

Just like you encapsulated the logic of the solution based on row numbers in an inline table func-
tion for a single user, and used the APPLY operator to invoke the function for each user from the
Users table, you can do the same with the solution that uses the SUM window aggregate. Here’s the
code for the inline function’s definition:

IF OBJECT_ID('dbo.UserIntervals', 'IF') IS NOT NULL DROP FUNCTION dbo.UserIntervals;
GO

CREATE FUNCTION dbo.UserIntervals(@user AS VARCHAR(14)) RETURNS TABLE
AS
RETURN
 WITH C1 AS
 (
 SELECT starttime AS ts, +1 AS type, 1 AS sub
 FROM dbo.Sessions
 WHERE username = @user

 UNION ALL

 SELECT endtime AS ts, -1 AS type, 0 AS sub
 FROM dbo.Sessions
 WHERE username = @user
),
 C2 AS
 (
 SELECT C1.*,
 SUM(type) OVER(ORDER BY ts, type DESC
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) - sub AS cnt
 FROM C1
),
 C3 AS
 (
 SELECT ts,
 FLOOR((ROW_NUMBER() OVER(ORDER BY ts) - 1) / 2 + 1) AS grpnum
 FROM C2
 WHERE cnt = 0
)

 Gaps and Islands 193

 SELECT MIN(ts) AS starttime, max(ts) AS endtime
 FROM C3
 GROUP BY grpnum;
GO

And here’s the query that applies the function to each user:

SELECT U.username, A.starttime, A.endtime
FROM dbo.Users AS U
 CROSS APPLY dbo.UserIntervals(U.username) AS A;

This code generates the plan shown in Figure 5-21 and runs for 13 seconds on my laptop.

FIgURE 5-21 Plan for a solution using APPLY and a window aggregate.

gaps and Islands

Gaps and Islands are classic problems in SQL that manifest themselves in practice in many forms.
The basic concept is that you have some sort of sequence of numbers or date and time values where
there’s supposed to be a fixed interval between the entries, but some entries could be missing. Then
the gaps problem involves identifying all ranges of missing values in the sequence, and the islands
problem involves identifying all ranges of existing values. To demonstrate techniques to identify gaps
and islands, I’ll use a table called T1 with a numeric sequence in a column called col1 with an inter-
val of 1 integer, and a table called T2 with a date and time sequence in a column called col1 with an
interval of 1 day. Here’s code to create T1 and T2 and fill them with some sample data:

SET NOCOUNT ON;
USE TSQL2012;

-- dbo.T1 (numeric sequence with unique values, interval: 1)
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

194 CHAPTER 5 T-SQL Solutions Using Window Functions

(
 col1 INT NOT NULL
 CONSTRAINT PK_T1 PRIMARY KEY
);
GO

INSERT INTO dbo.T1(col1)
 VALUES(2),(3),(7),(8),(9),(11),(15),(16),(17),(28);

-- dbo.T2 (temporal sequence with unique values, interval: 1 day)
IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2;

CREATE TABLE dbo.T2
(
 col1 DATE NOT NULL
 CONSTRAINT PK_T2 PRIMARY KEY
);
GO

INSERT INTO dbo.T2(col1) VALUES
 ('20120202'),
 ('20120203'),
 ('20120207'),
 ('20120208'),
 ('20120209'),
 ('20120211'),
 ('20120215'),
 ('20120216'),
 ('20120217'),
 ('20120228');

Gaps
As mentioned, the gaps problem involves identifying the ranges of missing values in the sequence.
Using our sample data, here are the desired results for the numeric sequence in T1:

rangestart rangeend
----------- -----------
4 6
10 10
12 14
18 27

And here are the desired results for the temporal sequence in T2:

rangestart rangeend
---------- ----------
2012-02-04 2012-02-06
2012-02-10 2012-02-10
2012-02-12 2012-02-14
2012-02-18 2012-02-27

In versions of SQL Server prior to SQL Server 2012, the techniques to handle gaps were quite
expensive and sometimes complicated. But with the introduction of the LAG and LEAD functions, you
can now handle this need simply and efficiently. Using the LEAD function, you can return for each

 Gaps and Islands 195

current col1 value (call it cur) the next value in the sequence (call it nxt). Then you can filter only pairs
where the difference between the two is greater than the interval. Then add one interval to cur and
subtract one interval from nxt to produce the actual gap information. Here’s the complete solution
with the numeric sequence followed by its execution plan (in Figure 5-22):

WITH C AS
(
 SELECT col1 AS cur, LEAD(col1) OVER(ORDER BY col1) AS nxt
 FROM dbo.T1
)
SELECT cur + 1 AS rangestart, nxt - 1 AS rangeend
FROM C
WHERE nxt - cur > 1;

FIgURE 5-22 Plan for a solution to the gaps problem.

Observe how efficient the plan is, performing only one ordered scan of the index defined on col1.
To apply the same technique to the temporal sequence, you simply use the DATEDIFF function to
compute the difference between cur and nxt, and you use DATEADD to add or subtract an interval,
like so:

WITH C AS
(
 SELECT col1 AS cur, LEAD(col1) OVER(ORDER BY col1) AS nxt
 FROM dbo.T2
)
SELECT DATEADD(day, 1, cur) AS rangestart, DATEADD(day, -1, nxt) rangeend
FROM C
WHERE DATEDIFF(day, cur, nxt) > 1;

Islands
The islands problem involves identifying ranges of existing values. Here’s the desired output against
the numeric sequence:

start_range end_range
----------- -----------
2 3
7 9
11 11
15 17
28 28

196 CHAPTER 5 T-SQL Solutions Using Window Functions

And here’s the desired output against the temporal sequence:

start_range end_range
----------- ----------
2012-02-02 2012-02-03
2012-02-07 2012-02-09
2012-02-11 2012-02-11
2012-02-15 2012-02-17
2012-02-28 2012-02-28

One of the most efficient solutions to the islands problem involves using ranking calculations. You
use the DENSE_RANK function to create a sequence of integers in col1 ordering, and you calculate the
difference between col1 and the dense rank (drnk), like so:

SELECT col1,
 DENSE_RANK() OVER(ORDER BY col1) AS drnk,
 col1 - DENSE_RANK() OVER(ORDER BY col1) AS diff
FROM dbo.T1;

col1 drnk diff
----- ----- -----
2 1 1
3 2 1
7 3 4
8 4 4
9 5 4
11 6 5
15 7 8
16 8 8
17 9 8
28 10 18

Observe that within an island the difference is the same, and that difference is unique for each
island. That’s because within an island, both col1 and drnk keep advancing by the same interval. As
soon as you jump to the next island, col1 increases by more than one interval, whereas drnk keeps
increasing by one. Therefore, the difference in each island is greater than the previous island’s differ-
ence. Because this difference is the same within an island and unique for each island, you can use it as
a group identifier. So what’s left is just to group the rows by this difference and return the minimum
and maximum col1 values in each group, like so:

WITH C AS
(
 SELECT col1, col1 - DENSE_RANK() OVER(ORDER BY col1) AS grp
 FROM dbo.T1
)
SELECT MIN(col1) AS start_range, MAX(col1) AS end_range
FROM C
GROUP BY grp;

The plan for this solution is shown in Figure 5-23.

 Gaps and Islands 197

FIgURE 5-23 Plan for a solution to the islands problem.

The plan is very efficient because the computation of the dense rank value can rely on the order-
ing of the index on col1.

You might be wondering why we use the DENSE_RANK function and not ROW_NUMBER. This has
to do with needing support for cases where the sequence values are not guaranteed to be unique.
Using the ROW_NUMBER function, the technique works only when the sequence values are unique
(which happens to be the case in our sample data), but it fails when duplicates are allowed. Using the
DENSE_RANK function, the technique works both with unique and nonunique values; hence, I prefer
to always use DENSE_RANK.

The technique can even work with temporal intervals, but it might not immediately be apparent.
Remember that the technique involves producing a group identifier—namely, a value that is the same
for all members of the same island and different than the values produced for other islands. With the
temporal sequence, the col1 values and dense rank values use different intervals—one uses an inter-
val of 1 integer, and the other uses an interval of 1 day. To make the technique work, simply subtract
from the col1 value as many of the temporal interval as the dense rank value. You need to use the
DATEADD function to achieve this. Then you will get a date and time value as a result that is the same
for all members of the same island and different than the values produced for other islands. Here’s
the complete solution code:

WITH C AS
(
 SELECT col1, DATEADD(day, -1 * DENSE_RANK() OVER(ORDER BY col1), col1) AS grp
 FROM dbo.T2
)
SELECT MIN(col1) AS start_range, MAX(col1) AS end_range
FROM C
GROUP BY grp;

As you can see, instead of directly subtracting the result of the dense rank function from col1, you
use DATEADD to subtract the dense rank multiplied by one day from col1.

There are querying problems where you need to use the islands technique, including availability
reports, periods of activity, and others. You can even use the islands technique to handle a classic
problem involving packing date intervals. Consider the following table that holds information about
date intervals.

198 CHAPTER 5 T-SQL Solutions Using Window Functions

IF OBJECT_ID('dbo.Intervals', 'U') IS NOT NULL DROP TABLE dbo.Intervals;

CREATE TABLE dbo.Intervals
(
 id INT NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE NOT NULL
);

INSERT INTO dbo.Intervals(id, startdate, enddate) VALUES
 (1, '20120212', '20120220'),
 (2, '20120214', '20120312'),
 (3, '20120124', '20120201');

These date intervals could represent periods of activity, periods of validity, and many other types
of date periods. Given some input period (the @from and @to parameters), your task is to pack the
intervals within that period. In other words, you’re supposed to merge intervals that overlap or are
adjacent. Here’s the desired result for the given sample data, assuming the input period is from Janu-
ary 1, 2012 to December 31, 2012:

rangestart rangeend
---------- ----------
2012-01-24 2012-02-01
2012-02-12 2012-03-12

The solution uses the GetNums function covered earlier in this chapter to generate a sequence of
the dates that fall within the input period. The code defines a CTE called Dates representing this set of
dates. The code then joins the CTE Dates (aliased as D) with the table Intervals (aliased as I), match-
ing each date with the intervals that contain it using the following join predicate: D.dt BETWEEN
I.startdate AND I.enddate. The code then uses the technique shown previously to compute a group
identifier (call it grp) that identifies islands. The code defines a CTE called Groups that is based on this
query. Finally, the outer query groups the rows by grp and returns the minimum and maximum dates
within each island as the boundaries of the packed intervals. Here’s the complete solution code:

DECLARE
 @from AS DATE = '20120101',
 @to AS DATE = '20121231';

WITH Dates AS
(
 SELECT DATEADD(day, n-1, @from) AS dt
 FROM dbo.GetNums(1, DATEDIFF(day, @from, @to) + 1) AS Nums
),
Groups AS
(
 SELECT D.dt,
 DATEADD(day, -1 * DENSE_RANK() OVER(ORDER BY D.dt), D.dt) AS grp
 FROM dbo.Intervals AS I
 JOIN Dates AS D
 ON D.dt BETWEEN I.startdate AND I.enddate
)
SELECT MIN(dt) AS rangestart, MAX(dt) AS rangeend
FROM Groups
GROUP BY grp;

 Gaps and Islands 199

Note that this solution doesn’t perform well when the intervals span long periods of time. That’s
understandable given that the solution unpacks each period to the individual dates involved.

There are versions of the islands problem that are more complicated than the fundamental
one. For example, say you are supposed to ignore gaps of up to a certain size—for example, in our
numeric sequence, say you are supposed to ignore gaps of up to 2. Then the desired output would be
the following:

rangestart rangeend
----------- -----------
2 3
7 11
15 17
28 28

Observe that the values 7, 8, 9, and 11 are all part of one island starting with 7 and ending with 11.
The gap between 9 and 11 is ignored because it isn’t greater than 2.

You can use the LAG and LEAD functions to handle this task. You first define a CTE called C1 based
on a query against T1 computing the following two attributes: isstart and isend. The isstart attribute
is a flag whose value is 1 when the sequence value is the first in the island and 0 when it isn’t. A value
is not the first value in the island if the difference between col1 and the previous value (obtained
using the LAG function) is less than or equal to 2; otherwise, it is the first value in the island. Similarly,
a value is not the last value in the island if the difference between the next value (obtained using the
LEAD function) and col1 is less than or equal to 2; otherwise, it is the last value in the island.

Next, the code defines a CTE called C2 that filters only rows where the sequence value is either a
start or an end of an island. Using the LEAD function, the code matches to each island start value the
island end value. This is achieved by using the expression 1-isend as the offset for the LEAD function.
This means that if the current row representing the start of an island also happens to represent its
end, the offset will be 0; otherwise, it will be 1. Finally the outer query simply filters from C2 only the
rows where isstart is 1. Here’s the complete solution code:

WITH C1 AS
(
 SELECT col1,
 CASE WHEN col1 - LAG(col1) OVER(ORDER BY col1) <= 2 THEN 0 ELSE 1 END AS isstart,
 CASE WHEN LEAD(col1) OVER(ORDER BY col1) - col1 <= 2 THEN 0 ELSE 1 END AS isend
 FROM dbo.T1
),
C2 AS
(
 SELECT col1 AS rangestart, LEAD(col1, 1-isend) OVER(ORDER BY col1) AS rangeend, isstart
 FROM C1
 WHERE isstart = 1 OR isend = 1
)
SELECT rangestart, rangeend
FROM C2
WHERE isstart = 1;

The execution plan for this query is shown in Figure 5-24.

200 CHAPTER 5 T-SQL Solutions Using Window Functions

FIgURE 5-24 Plan for a solution to the islands problem ignoring gaps up to 2.

For the next version of the islands problem, use the sample data generated by the following code:

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1
(
 id INT NOT NULL PRIMARY KEY,
 val VARCHAR(10) NOT NULL
);
GO

INSERT INTO dbo.T1(id, val) VALUES
 (2, 'a'),
 (3, 'a'),
 (5, 'a'),
 (7, 'b'),
 (11, 'b'),
 (13, 'a'),
 (17, 'a'),
 (19, 'a'),
 (23, 'c'),
 (29, 'c'),
 (31, 'a'),
 (37, 'a'),
 (41, 'a'),
 (43, 'a'),
 (47, 'c'),
 (53, 'c'),
 (59, 'c');

This version of the islands problem involves identifying ranges of IDs where the value in the val
attribute remains the same. Observe that there can be multiple islands associated with the same value
in val. Here’s the desired output for the given sample data:

 Gaps and Islands 201

mn mx val
----------- ----------- ----------
2 5 a
7 11 b
13 19 a
23 29 c
31 43 a
47 59 c

The first step in the solution is to compute the difference between a row number based on id
ordering and a row number based on val, id ordering (call it grp):

SELECT id, val,
 ROW_NUMBER() OVER(ORDER BY id)
 - ROW_NUMBER() OVER(ORDER BY val, id) AS grp
FROM dbo.T1;

id val grp
----------- ---------- --------------------
2 a 0
3 a 0
5 a 0
13 a 2
17 a 2
19 a 2
31 a 4
37 a 4
41 a 4
43 a 4
7 b -7
11 b -7
23 c -4
29 c -4
47 c 0
53 c 0
59 c 0

Observe that for each distinct value in the val attribute, grp is unique for each island. That’s
because the row numbers based on id ordering have gaps between the different islands, and row
numbers based on val, id ordering don’t. So for the same value in val, as you move from one island to
the next, the difference becomes greater, while within an island it remains constant. To complete the
solution, define a CTE based on the previous query and then, in the outer query, group the rows by
val, grp, and return the minimum and maximum IDs for each val, like so:

WITH C AS
(
 SELECT id, val,
 ROW_NUMBER() OVER(ORDER BY id)
 - ROW_NUMBER() OVER(ORDER BY val, id) AS grp
 FROM dbo.T1
)
SELECT MIN(id) AS mn, MAX(id) AS mx, val
FROM C
GROUP BY val, grp
ORDER BY mn;

202 CHAPTER 5 T-SQL Solutions Using Window Functions

Median

In Chapters 2 and 3, I discussed how to compute percentiles. I mentioned that the 50th percentile—
commonly known as the median—represents, loosely speaking, the value in the population that 50
percent of the values are less than. I provided solutions to calculating any percentile in both SQL
Server 2012 and in previous versions of SQL Server. Here, I’ll just remind you of the solution in SQL
Server 2012 using the PERCENTILE_CONT function (CONT for the continuous distribution model) and
then show interesting solutions specific to the median calculation used prior to SQL Server 2012.

For sample data, I’ll use the Stats.Scores table, which holds student test scores. Suppose your task
was to compute, for each test, the median score assuming continuous distribution model. If there’s
an odd number of student test scores for a given test, you’re supposed to return the middle score. If
there’s an even number, you’re supposed to return the average of the two middle scores. Here’s the
desired output for the given sample data:

testid median
---------- -------
Test ABC 75
Test XYZ 77.5

As already mentioned in the book, the function PERCENTILE_CONT introduced in SQL Server 2012
is used to compute percentiles assuming a continuous distribution model. However, this function
wasn’t implemented as a grouped ordered set function; rather, it was implemented as a window
function. This means that you can use it to return a percentile along with all detail rows, but to return
it only once per group, you need to add some filtering logic. For example, you can compute a row
number with the same window-partitioning specification as that of the PERCENTILE_CONT function
and arbitrary ordering, and then filter only the rows where the row number is equal to 1. Here’s the
complete solution code computing the median score per test:

WITH C AS
(
 SELECT testid,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY (SELECT NULL)) AS rownum,
 PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY score) OVER(PARTITION BY testid) AS median
 FROM Stats.Scores
)
SELECT testid, median
FROM C
WHERE rownum = 1;

It’s a little bit awkward, but it works.

Prior to SQL Server 2012, you had to be more creative, but you could still use window functions to
achieve the task. One solution was to compute, for each row, a position within the test based on score
ordering (call it pos) and the count of scores in the respective test (call it cnt). To compute pos, you use
the ROW_NUMBER function, and to compute cnt, you use the COUNT window aggregate function.
Then you filter only the rows that are supposed to participate in the median calculation—namely, the
rows where pos is either equal to (cnt + 1) / 2 or (cnt + 2) / 2. Note that the expressions use integer
division, so any fraction is truncated. When there is an odd number of elements, both expressions

 Median 203

return the same middle point. For example, when there are 9 elements in the group, both expressions
return 5. When there is an even number of elements, the expressions return the two middle points.
For example, when there are 10 elements in the group, the expressions return 5 and 6. After you filter
the right rows, what’s left is to group the rows by the test ID and return for each test the average
score. Here’s the complete solution query:

WITH C AS
(
 SELECT testid, score,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score) AS pos,
 COUNT(*) OVER(PARTITION BY testid) AS cnt
 FROM Stats.Scores
)
SELECT testid, AVG(1. * score) AS median
FROM C
WHERE pos IN((cnt + 1) / 2, (cnt + 2) / 2)
GROUP BY testid;

Another interesting solution available prior to SQL Server 2012 involves computing two row num-
bers—one in ascending score, studentid ordering (studentid added for determinism), and another in
descending ordering. Here’s the code to compute the two row numbers followed by its output:

SELECT testid, score,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score, studentid) AS rna,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score DESC, studentid DESC) AS rnd
FROM Stats.Scores;

testid score rna rnd
---------- ----- ---- ----
Test ABC 95 9 1
Test ABC 95 8 2
Test ABC 80 7 3
Test ABC 80 6 4
Test ABC 75 5 5
Test ABC 65 4 6
Test ABC 55 3 7
Test ABC 55 2 8
Test ABC 50 1 9
Test XYZ 95 10 1
Test XYZ 95 9 2
Test XYZ 95 8 3
Test XYZ 80 7 4
Test XYZ 80 6 5
Test XYZ 75 5 6
Test XYZ 65 4 7
Test XYZ 55 3 8
Test XYZ 55 2 9
Test XYZ 50 1 10

Can you generalize a rule that identifies the rows that need to participate in the median
calculation?

Observe that when there’s an odd number of elements, the median is where the two row num-
bers are the same. When there’s an even number of elements, the median elements are where the

204 CHAPTER 5 T-SQL Solutions Using Window Functions

absolute difference between the two row numbers is equal to 1. To merge the two rules, the median
elements are in the rows where the absolute difference between the two row numbers is less than or
equal to 1. Here’s the complete solution code that relies on this rule:

WITH C AS
(
 SELECT testid, score,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score, studentid) AS rna,
 ROW_NUMBER() OVER(PARTITION BY testid ORDER BY score DESC, studentid DESC) AS rnd
 FROM Stats.Scores
)
SELECT testid, AVG(1. * score) AS median
FROM C
WHERE ABS(rna - rnd) <= 1
GROUP BY testid;

Conditional Aggregate

Our next task involves computing a running total that always returns a non-negative value. That is, if
the running total is negative at a point, return zero instead. Then, when you move to the next item in
the sequence, you proceed from 0. For sample data, use the following code, which creates and popu-
lates a table called T1:

USE TSQL2012;

IF OBJECT_ID('dbo.T1') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1
(
 ordcol INT NOT NULL PRIMARY KEY,
 datacol INT NOT NULL
);

INSERT INTO dbo.T1 VALUES
 (1, 10),
 (4, -15),
 (5, 5),
 (6, -10),
 (8, -15),
 (10, 20),
 (17, 10),
 (18, -10),
 (20, -30),
 (31, 20);

According to the description of the task, here’s the desired output for the given sample data, com-
puting a non-negative sum of datacol based on ordcol ordering:

 Conditional Aggregate 205

ordcol datacol nonnegativesum
----------- ----------- --------------
1 10 10
4 -15 0
5 5 5
6 -10 0
8 -15 0
10 20 20
17 10 30
18 -10 20
20 -30 0
31 20 20

I’ll present an elegant solution devised by Gordon Linoff that uses window functions. Here’s the
complete solution code, followed by its output (adding the intermediate computations partsum and
adjust to help explain the solution):

WITH C1 AS
(
 SELECT ordcol, datacol,
 SUM(datacol) OVER (ORDER BY ordcol
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS partsum
 FROM dbo.T1
),
C2 AS
(
 SELECT *,
 MIN(partsum) OVER (ORDER BY ordcol
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as adjust
 FROM C1
)
SELECT *,
 partsum - CASE WHEN adjust < 0 THEN adjust ELSE 0 END
 AS nonnegativesum
FROM C2;

ordcol datacol partsum adjust nonnegativesum
----------- ----------- ----------- ----------- --------------
1 10 10 10 10
4 -15 -5 -5 0
5 5 0 -5 5
6 -10 -10 -10 0
8 -15 -25 -25 0
10 20 -5 -25 20
17 10 5 -25 30
18 -10 -5 -25 20
20 -30 -35 -35 0
31 20 -15 -35 20

The code defining the CTE C1 creates an attribute called partsum that computes a plain running
total of datacol based on ordcol ordering and calls it. This partsum attribute can be negative because
the values in datacol can be negative. Then the code defining the CTE C2 queries C1, creating an
attribute called adjust that computes the minimum partsum value up to the current point. Finally,
the outer query checks whether partsum needs to be adjusted to compute the non-negative sum.

206 CHAPTER 5 T-SQL Solutions Using Window Functions

If adjust (the minimum partsum so far) isn’t negative, there’s nothing to adjust. If it is negative, adjust
needs to be subtracted from partsum.

It can take a few rounds of going over this output to see that the logic works, but it does!

Sorting Hierarchies

Suppose that you need to present information from some hierarchy in a sorted fashion. You’re sup-
posed to present a parent before its child elements. Also, you need to be able to control the order
among siblings. For sample data, use the following code, which creates and populates a table called
dbo.Employees (not to be confused with the existing HR.Employees table that has different data):

USE TSQL2012;

IF OBJECT_ID('dbo.Employees') IS NOT NULL DROP TABLE dbo.Employees;
GO
CREATE TABLE dbo.Employees
(
 empid INT NOT NULL PRIMARY KEY,
 mgrid INT NULL REFERENCES dbo.Employees,
 empname VARCHAR(25) NOT NULL,
 salary MONEY NOT NULL,
 CHECK (empid <> mgrid)
);

INSERT INTO dbo.Employees(empid, mgrid, empname, salary) VALUES
 (1, NULL, 'David' , $10000.00),
 (2, 1, 'Eitan' , $7000.00),
 (3, 1, 'Ina' , $7500.00),
 (4, 2, 'Seraph' , $5000.00),
 (5, 2, 'Jiru' , $5500.00),
 (6, 2, 'Steve' , $4500.00),
 (7, 3, 'Aaron' , $5000.00),
 (8, 5, 'Lilach' , $3500.00),
 (9, 7, 'Rita' , $3000.00),
 (10, 5, 'Sean' , $3000.00),
 (11, 7, 'Gabriel', $3000.00),
 (12, 9, 'Emilia' , $2000.00),
 (13, 9, 'Michael', $2000.00),
 (14, 9, 'Didi' , $1500.00);

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid);

Suppose you need to present employees in hierarchical order—always presenting the manager
before subordinates—and sort siblings by empname. To achieve this task, you can use two main tools:
the ROW_NUMBER function and a recursive CTE. You define a regular CTE called EmpsRN first, where
you compute an attribute called n representing a row number partitioned by mgrid and ordered by
empname, empid (empid added for determinism if needed):

 Sorting Hierarchies 207

WITH EmpsRN AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n
 FROM dbo.Employees
)
SELECT * FROM EmpsRN;

empid mgrid empname salary n
------ ------ -------- --------- ---
1 NULL David 10000.00 1
2 1 Eitan 7000.00 1
3 1 Ina 7500.00 2
5 2 Jiru 5500.00 1
4 2 Seraph 5000.00 2
6 2 Steve 4500.00 3
7 3 Aaron 5000.00 1
8 5 Lilach 3500.00 1
10 5 Sean 3000.00 2
11 7 Gabriel 3000.00 1
9 7 Rita 3000.00 2
14 9 Didi 1500.00 1
12 9 Emilia 2000.00 2
13 9 Michael 2000.00 3

Next, you define a recursive CTE called EmpsPath, where you iterate through the employees one
level at a time, starting with the root (CEO), then to direct subordinates, then to subordinates of
subordinates, and so on. You construct a binary path for each employee that starts as an empty path
for the root, and in each level of subordinates, you concatenate the manager’s path with the binary
form of n (the row number). Note that to minimize the size of the path you need only enough bytes
to cover the maximum number of direct subordinates a single manager can have. For example, for up
to 255 direct subordinates, a single byte is sufficient; for up to 32,767 direct subordinates, two bytes
are sufficient; and so on. Let’s assume that we need two bytes in our case. You can also compute the
level of the employee in the tree (the distance from the root) by assigning the level 0 to the root, and
for a subordinate, you add 1 to the manager’s level. Here’s the code that computes both the sort path
and the level:

WITH EmpsRN AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n
 FROM dbo.Employees
),
EmpsPath
AS
(
 SELECT empid, empname, salary, 0 AS lvl,
 CAST(0x AS VARBINARY(MAX)) AS sortpath
 FROM dbo.Employees
 WHERE mgrid IS NULL

 UNION ALL

208 CHAPTER 5 T-SQL Solutions Using Window Functions

 SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2))
 FROM EmpsPath AS P
 JOIN EmpsRN AS C
 ON C.mgrid = P.empid
)
SELECT *
FROM EmpsPath;

empid empname salary lvl sortpath
------ -------- --------- ---- -------------------
1 David 10000.00 0 0x
2 Eitan 7000.00 1 0x0001
3 Ina 7500.00 1 0x0002
7 Aaron 5000.00 2 0x00020001
11 Gabriel 3000.00 3 0x000200010001
9 Rita 3000.00 3 0x000200010002
14 Didi 1500.00 4 0x0002000100020001
12 Emilia 2000.00 4 0x0002000100020002
13 Michael 2000.00 4 0x0002000100020003
5 Jiru 5500.00 2 0x00010001
4 Seraph 5000.00 2 0x00010002
6 Steve 4500.00 2 0x00010003
8 Lilach 3500.00 3 0x000100010001
10 Sean 3000.00 3 0x000100010002

What’s left to do to guarantee that the employees are presented in the desired order is to order
the rows by sortpath. You can also achieve indentation in the output based on the employee’s level in
the hierarchy by replicating a string lvl times. Here’s the complete solution code:

WITH EmpsRN AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empname, empid) AS n
 FROM dbo.Employees
),
EmpsPath
AS
(
 SELECT empid, empname, salary, 0 AS lvl,
 CAST(0x AS VARBINARY(MAX)) AS sortpath
 FROM dbo.Employees
 WHERE mgrid IS NULL

 UNION ALL

 SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2))
 FROM EmpsPath AS P
 JOIN EmpsRN AS C
 ON C.mgrid = P.empid
)
SELECT empid, salary, REPLICATE(' | ', lvl) + empname AS empname
FROM EmpsPath
ORDER BY sortpath;

 Sorting Hierarchies 209

Observe in the output of this solution that a manager always appears before his subordinates and
that siblings are sorted by empname:

empid salary empname
----------- --------------------- --------------------
1 10000.00 David
2 7000.00 | Eitan
5 5500.00 | | Jiru
8 3500.00 | | | Lilach
10 3000.00 | | | Sean
4 5000.00 | | Seraph
6 4500.00 | | Steve
3 7500.00 | Ina
7 5000.00 | | Aaron
11 3000.00 | | | Gabriel
9 3000.00 | | | Rita
14 1500.00 | | | | Didi
12 2000.00 | | | | Emilia
13 2000.00 | | | | Michael

If you need siblings to be sorted differently—say, by salary—simply change the ROW_NUMBER
function’s window ordering clause accordingly:

WITH EmpsRN AS
(
 SELECT *,
 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY salary, empid) AS n
 FROM dbo.Employees
),
EmpsPath
AS
(
 SELECT empid, empname, salary, 0 AS lvl,
 CAST(0x AS VARBINARY(MAX)) AS sortpath
 FROM dbo.Employees
 WHERE mgrid IS NULL

 UNION ALL

 SELECT C.empid, C.empname, C.salary, P.lvl + 1, P.sortpath + CAST(n AS BINARY(2))
 FROM EmpsPath AS P
 JOIN EmpsRN AS C
 ON C.mgrid = P.empid
)
SELECT empid, salary, REPLICATE(' | ', lvl) + empname AS empname
FROM EmpsPath
ORDER BY sortpath;

210 CHAPTER 5 T-SQL Solutions Using Window Functions

Here’s the output of this query:

empid salary empname
----------- --------------------- --------------------
1 10000.00 David
2 7000.00 | Eitan
6 4500.00 | | Steve
4 5000.00 | | Seraph
5 5500.00 | | Jiru
10 3000.00 | | | Sean
8 3500.00 | | | Lilach
3 7500.00 | Ina
7 5000.00 | | Aaron
9 3000.00 | | | Rita
14 1500.00 | | | | Didi
12 2000.00 | | | | Emilia
13 2000.00 | | | | Michael
11 3000.00 | | | Gabriel

Summary

I can’t keep myself from admiring the beautiful design of window functions. They’re engineered to
overcome a number of shortcomings of more traditional SQL constructs, and they lend themselves to
good optimization. You saw in this book that there are so many querying tasks that can be handled
both elegantly and efficiently with window functions. I hope you will think of what you saw as just the
start and find interesting and creative ways of your own to use them.

Standard SQL sees the great value in window functions and therefore keeps adding more and
more functions and functionality. Microsoft made an important investment in adding some of the
missing support for window functions in SQL Server 2012, and I think that for many implementations,
this will make a big difference. I hope very much that Microsoft will follow the standard and keep
adding more support with each new version of SQL Server.

 211

B
backward scans, indexes and, 105–108

C
calculating running totals. See Running Totals solution

(T-SQL)
Cantor, Georg, 7
carry-along-sort technique, 153, 157
CASE expression

distinct aggregates and, 52
FILTER clause workaround, 50
hypothetical set functions and, 84
Running Totals T-SQL solution, 168
usage example, 78–79

CHECKSUM_AGG function, 122, 124
CLR (Common Language Runtime)

Running Totals T-SQL solution, 164–166, 171
SQL Server support, 34
user-defined aggregates, 81

COALESCE function, 99, 150
Codd, E. F., 6
columnstore indexes, 108
Common Language Runtime (CLR)

Running Totals T-SQL solution, 164–166, 171
SQL Server support, 34
user-defined aggregates, 81

common table expressions (CTEs)
distinct aggregates and, 52
filtering and, 15, 28–30
Gaps and Islands T-SQL solution, 199–201
grouped aggregates and, 55
Max Concurrent Intervals T-SQL solution, 178–180
Median T-SQL solution, 205
Mode T-SQL solution, 155–157
ordered set functions and, 97

Index

Symbols
+ (concatenation operator), 150

A
aggregate functions. See also COUNT function; MAX

function; MIN function; SUM function
described, 3–4, 13, 33–34
distinct, 51–53
DISTINCT clause and, 85
expanding all frame rows, 122
filtering, 49–51
framing and, 22, 36–49, 119–128
general form, 37
nested, 53–57
optimizing, 116–128
ordered set functions and, 81
ordering and, 22, 36–49, 119–128
partitioning and, 13–14, 34–36
SQL Server support, 4
SQL standard support, 3
without framing, 116–118
without ordering, 116–118

aggregation element (pivoting technique), 148
all-at-once concept, 26
Amdahl’s Law, 114
APPLY operator

Packing Intervals T-SQL solution, 192
parallel APPLY technique, 112–115, 121–122, 127
Top-N-per-Group T-SQL solution, 152

autogenerating numbers, 62
auxiliary table of numbers, virtual, 133–136
AVG function

computing cumulative values, 126
expanding all frame rows, 122
usage example, 41

common table expressions

212 Index

common table expressions, continued
Packing Intervals T-SQL solution, 184–188
Pivoting T-SQL solution, 148–149
Removing Duplicates T-SQL solution, 147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139
Sorting Hierarchies T-SQL solution, 206–210
Top-N-Per-Group T-SQL solution, 154
usage example, 78–79
Virtual Auxiliary Table of Numbers T-SQL

solution, 134
Compute Scalar iterator

computing cumulative values, 127
distribution functions and, 129–131
expanding all frame rows, 123

concatenating strings
carry-along-sort technique and, 153
concatenation operator (+), 150
CONCAT function, 150
ordered set functions and, 81, 98–99

CONCAT function, 150
Conditional Aggregate solution (T-SQL), 204–206
constants

ordering based on, 109
OVER clause and, 62

CONVERT function, 153
COUNT function

about, 3
calculating percentile rank, 70
computing cumulative values, 126–127
expanding all frame rows, 122
grouped aggregates and, 56
Median T-SQL solution, 202
Mode T-SQL solution, 156
ROW_NUMBER function and, 59–60
usage example, 84, 86

COUNT_BIG function
computing cumulative values, 126
expanding all frame rows, 122

CROSS APPLY operator
about, 88
Packing Intervals T-SQL solution, 190

cross joining tables, 133–136
CTEs (common table expressions)

distinct aggregates and, 52
filtering and, 15, 28–30
Gaps and Islands T-SQL solution, 199–201
grouped aggregates and, 55

Max Concurrent Intervals T-SQL solution, 178–
180

Median T-SQL solution, 205
Mode T-SQL solution, 155–157
ordered set functions and, 97
Packing Intervals T-SQL solution, 184–188
Pivoting T-SQL solution, 148–149
Removing Duplicates T-SQL solution, 147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139
Sorting Hierarchies T-SQL solution, 206–210
Top-N-Per-Group T-SQL solution, 154
usage example, 78–79
Virtual Auxiliary Table of Numbers T-SQL

solution, 134
CUME_DIST function

about, 4, 68–69
hypothetical-set-function form of, 82, 86–87, 89
optimizing, 129

cumulative values, computing, 126–128
CURRENT ROW option

RANGE clause, 43–47, 77
ROWS clause, 37–38

cursor/iterative programming
Max Concurrent Intervals T-SQL solution, 175–

177
Running Totals T-SQL solution, 158, 162–164
set-based versus, 6–10

D
data-quality issues solution, 138–139
data warehouses, populating time dimension in, 137
DATEADD function, 195, 197
date and time values

Gaps and Islands T-SQL solution, 193–201
Sequences of Date and Time Values T-SQL

solution, 137–138
DATEDIFF function

Gaps and Islands T-SQL solution, 195
Sequences of Date and Time Values T-SQL

solution, 137
Dauben, Joseph W., 7
DBCC OPTIMIZER_WHATIF command, 113
degree of parallelism (DOP), 113–114
DELETE clause, 147
DENSE_RANK function

about, 4, 57, 66–67
determinism and, 67

 grouping element (pivoting technique)

 Index 213

Gaps and Islands T-SQL solution, 196–197
hypothetical-set-function form of, 82, 84–85,

87–89
optimizing, 111–112

determinism
DENSE_RANK function and, 67
RANK function and, 67
ROW_NUMBER function and, 60–64

Discard Results After Execution query option, 136
DISTINCT option

aggregate functions and, 51, 85
usage example, 27, 91

distribution functions. See also CUME_DIST function;
PERCENTILE_CONT function; PERCENTILE_
DISC function; PERCENT_RANK function

about, 4, 68
inverse distribution, 68, 71–73, 90–94, 129–132
optimization of, 128–132
ordering and, 68
partitioning and, 68
rank distribution, 68–71, 82–90, 128–129
SQL Server support, 4, 68
SQL standard support, 3

DOP (degree of parallelism), 113–114
duplicate data, removing, 145–148

E
equality filters, 105
EXCLUDE CURRENT ROW option, 47
EXCLUDE GROUP option, 47
EXCLUDE NO OTHERS option, 47
EXCLUDE TIES option, 47
Extended Event, 126

F
fast-track case, 119–122
FILTER clause, 49–51
filtering

CTEs and, 15, 28–30
equality filters, 105
FILTER clause and, 49–51
Max Concurrent Intervals T-SQL solution, 174–

175
OFFSET/FETCH option, 134–136, 144–145,

151–153
Packing Intervals T-SQL solution, 187

Paging T-SQL solution, 143–145
QUALIFY clause and, 30
Running Totals T-SQL solution, 160–162
Top-N-per-Group T-SQL solution, 151–154
TOP option, 134–136, 148, 151–153
WHERE clause and, 117

Filter iterator, 117
FIRST_VALUE function

about, 4, 76–79
expanding all frame rows, 122, 124
framing element and, 22
ordered-set-function form of, 94–96

Flanaghan, Ben, 179
FLOOR function, 188
forward scans, indexes and, 105
FOR XML PATH('') option, 99
frame rows, expanding, 122–126
framing

about, 22–23
aggregate functions and, 22, 36–49, 119–128
offset functions and, 22, 119–128
ordering and, 36
RANGE option, 22, 37, 43–47
ROWS option, 22, 37–43

FROM clause
processing order, 54
usage example, 27–28

g
gaps

Gaps and Islands T-SQL solution, 193–201
Sequences of Keys T-SQL solution, 138–142

GetNums function
creating, 102–103
Gaps and Islands T-SQL solution, 198
Sequences of Date and Time Values T-SQL

solution, 137
Virtual Auxiliary Table of Numbers T-SQL

solution, 136
GROUP BY clause

nested aggregates, 53
processing order, 54

grouped queries
drawbacks of, 11–12
grouped aggregates and, 54
ordered set functions and, 81

grouping element (pivoting technique), 148

Hash partitioning

214 Index

H
Hash partitioning, 114
HAVING clause, 54
hypothetical set functions

CUME_DIST, 82, 86–87, 89
DENSE_RANK, 82, 84–85, 87–89
general solution for, 87–90
as ordered set functions, 82–90
PERCENT_RANK, 82, 85–87, 89
RANK, 82–84, 87–89

I
identifying islands problem, 15–19, 195–201
INCLUDE clause, 104
indexed sequential access method (ISAM), 7
indexes

backward scans, 105–108
columnstore indexes, 108
indexing guidelines, 103
Max Concurrent Intervals T-SQL solution, 171–

180
Mode T-SQL solution, 154–158
Packing Intervals T-SQL solution, 183–184,

188–189
Paging T-SQL solution, 143–145
POC indexes, 104–105, 151–152, 161
Running Totals T-SQL solution, 161, 168
Top-N-per-Group T-SQL solution, 151–152, 158

Index Scan iterator
backward scans, 107
Max Concurrent Intervals T-SQL solution, 174
ROW_NUMBER function optimization and, 110

Index Seek iterator, 174–175
inverse distribution functions (percentiles).

See also PERCENTILE_COUNT function;
PERCENTILE_DISC function

about, 68, 71–73
Median T-SQL solution, 202–204
optimization of, 129–132
as ordered set functions, 81, 90–94

ISAM (indexed sequential access method), 7
islands

Gaps and Islands T-SQL solution, 193–201
identifying islands problem, 15–19, 195–201

iterative/cursor programming
Max Concurrent Intervals T-SQL solution, 175–

177
Running Totals T-SQL solution, 158, 162–164
set-based versus, 6–10

J
joins

cross, 133–136
Max Concurrent Intervals T-SQL solution, 174
ON clause, 161
Running Totals T-SQL solution, 161–162, 170

K
keys

Sequences of Keys T-SQL solution, 138–142
surrogate, 141

Kyte, Tom, 51

L
LAG function

about, 4, 74–76
converting to LAST_VALUE function, 122
expanding all frame rows, 124
Gaps and Islands T-SQL solution, 194, 199
NULL return value, 75

LAST_VALUE function
about, 4, 76–79
expanding all frame rows, 122, 124
framing element and, 22
ordered-set-function form of, 94–96

LEAD function
about, 4, 74–76
converting to LAST_VALUE function, 122
expanding all frame rows, 124
Gaps and Islands T-SQL solution, 194–195, 199
NULL return value, 75

Linoff, Gordon, 205
logical query processing

about, 23–25
clause ordering and, 57

 ORDER BY clause

 Index 215

M
Machanic, Adam, 92, 112
Max Concurrent Intervals solution (T-SQL)

about, 171–173
cursor-based solution, 175–177
performance benchmark, 180
solutions based on window functions, 178–180
traditional set-based solution, 173–175

MAX function
about, 3
expanding all frame rows, 122, 124
usage example, 39, 96–97, 117

Median solution (T-SQL), 202–204
Merge Join iterator, 176, 178
Microsoft SQL Server

hypothetical set functions and, 84–86
logical query processing and, 23
optimization and, 5, 14
ordered set functions and, 81
ordering element support, 21
parallelism considerations, 112–113
StreamInsight feature, 51
TOP option, 134–136, 148, 151–153
WINDOW clause and, 31–32

Microsoft SQL Server 2005
aggregate functions support, 4
ranking functions support, 4, 57
window functions support, 1

Microsoft SQL Server 2012
aggregate functions support, 4
DISTINCT option and, 51
distribution functions support, 4, 68
FILTER clause and, 49
hypothetical set functions and, 84, 87
indexing support, 108
logical query processing and, 23–24
NEXT VALUE FOR function and, 62
OFFSET/FETCH option, 134–136, 144–145,

151–153
offset functions support, 4, 74, 76, 78, 94
RANGE option, 45
rank distribution functions and, 70
window frame-exclusion option, 22, 47
window functions support, 1

MIN function
about, 3
expanding all frame rows, 122, 124
usage example, 96–97

Mode solution (T-SQL), 154–158

n
nested aggregates, 53–57
nested iterations, 166–167
Nested Loops join, 174, 190
Nested Loops join iterator, 115, 118
NEXT VALUE FOR function, 62
NOT EXISTS predicate, 89
NTH_VALUE function

about, 4, 76–79
framing element and, 22
ordered-set-function form of, 94, 96

NTILE function
about, 4, 57, 63–66
optimizing, 110–111

O
OFFSET/FETCH option

Paging T-SQL solution, 144–145
Top-N-per-Group T-SQL solution, 151–153
Virtual Auxiliary Table of Numbers T-SQL

solution, 134–136
offset functions. See also FIRST_VALUE function;

LAG function; LAST_VALUE function; LEAD
function; NTH_VALUE function

about, 4, 74–79
carry-along-sort technique, 153, 157
framing and, 22, 119–128
optimizing, 116–128
ordered set functions and, 94–98
ordering and, 74, 119–128
partitioning and, 74
SQL Server support, 4, 74, 76, 78, 94
SQL standard support, 3

OLAP functions, 3
ON clause, 161
optimization of window functions

aggregate functions, 116–128
distribution functions, 128–132
indexing guidelines, 103–108
logical query processing and, 23
offset functions, 116–128
parallel APPLY technique and, 112–115
ranking functions, 108–112
sample data, 101–103
SQL and, 5, 14

ORDER BY clause
about, 7
backward scans and, 107–108

ORDER BY clause

216 Index

ORDER BY clause, continued
Max Concurrent Intervals T-SQL solution, 176
modification statements and, 29
Paging T-SQL solution, 144
presentation ordering and, 58
processing order, 54
ranking functions and, 61
Sequences of Keys T-SQL solution, 142
Virtual Auxiliary Table of Numbers T-SQL

solution, 135
window functions support, 8, 23, 25–28

ordered set functions
about, 71, 81
hypothetical set functions, 81–90
inverse distribution functions, 68, 71–73, 81,

90–94
offset functions, 94–98
SQL Server and, 81
string concatenation, 98–99

ordering (sort order)
about, 21–22
aggregate functions and, 22, 36–49, 119–128
based on constants, 109
distribution functions and, 68
elements of sets and, 7
framing and, 36
logical query processing and, 25
Max Concurrent Intervals T-SQL solution, 176
Median T-SQL solution, 203–204
offset functions and, 74, 119–128
POC concept and, 104–106
RANK function, 3
ranking functions and, 21, 58, 109
Running Totals T-SQL solution, 161
Sorting Hierarchies T-SQL solution, 206–210
total ordering, 15

OVER clause
about, 1–3, 10
constants and, 62
usage example, 2, 13, 36

P
Packing Intervals solution (T-SQL)

about, 181–183
solutions based on window functions, 184–193
traditional set-based solution, 183–184

paging
Paging T-SQL solution, 143–145
tiling versus, 64

parallelism
backward scans and, 105
Packing Intervals T-SQL solution, 189
parallel APPLY technique, 112–115, 121–122, 127,

152
Top-N-per-Group T-SQL solution, 152

Parallelism (Distribute Streams) exchange
iterator, 115

Parallelism (Gather Streams) exchange iterator, 114
Parallelism (Redistribute Streams) exchange

iterator, 114
PARTITION BY clause

about, 20
usage example, 36

partitioning
about, 13–14, 20–21
aggregate functions and, 13–14, 34–36
distribution functions and, 68
offset functions and, 74
Packing Intervals T-SQL solution, 181
parallel APPLY technique and, 113
POC concept and, 104–106
ranking functions and, 58
Running Totals T-SQL solution, 160–161

PERCENTILE_CONT function
about, 72–73
distribution-function form of, 68
Median T-SQL solution, 202
optimizing, 129–131
ordered-set-function form of, 90–94
SQL Server support, 4

PERCENTILE_DISC function
about, 71–72
distribution-function form of, 68
optimizing, 129–132
ordered-set-function form of, 90–92
SQL Server support, 4

percentiles (inverse distribution functions).
See also PERCENTILE_COUNT function;
PERCENTILE_DISC function

about, 68, 71–73
Median T-SQL solution, 202–204
optimization of, 129–132
as ordered set functions, 81, 90–94

PERCENT_RANK function
about, 4, 68–69
hypothetical-set-function form of, 82, 85–87, 89
optimizing, 128–129

 Running Totals solution (T-SQL)

 Index 217

performance benchmarks
Max Concurrent Intervals T-SQL solution, 180
Running Totals T-SQL solution, 169–171

Pivoting solution (T-SQL), 148–151
POC indexes

about, 104–105
Running Totals T-SQL solution, 161
Sort iterator and, 109
Top-N-per-Group T-SQL solution, 151–152

Q
QUALIFY clause, 30
Query Options dialog box, 136

R
RANGE clause

about, 22
aggregate functions and, 37
CURRENT ROW option, 43–47, 77
UNBOUNDED option, 43–46, 77
window frame extent part and, 43–47
window frame units part and, 120

rank distribution functions. See also CUME_DIST
function; PERCENT_RANK function

about, 68–71, 90
as hypothetical set functions, 82–90
optimization of, 128–129

RANK function
about, 4, 57, 66–67
calculating percentile rank, 70
determinism and, 67
hypothetical-set-function form of, 82–84, 87–89
Mode T-SQL solution, 156
optimizing, 111–112
ordering element and, 21
partitioning element and, 20
Removing Duplicates T-SQL solution, 147
usage example, 3, 9, 28

ranking functions. See also DENSE_RANK function;
NTILE function; RANK function; ROW_
NUMBER function

about, 4, 57
as hypothetical set functions, 82–90
optimization of, 108–112
ordering and, 21, 58, 109

partitioning and, 58
SQL Server support, 4, 57
SQL standard support, 3

RDBMSs (relational database management
systems), 6

relational database management systems
(RDBMSs), 6

relational model
about, 6–7
ordering and, 8

Removing Duplicates solution (T-SQL), 145–148
Rincón, Eladio, 113
ROW_NUMBER function

about, 4, 57, 58–63
COUNT function and, 59–60
determinism and, 60–64
distinct aggregates and, 52
Gaps and Islands T-SQL solution, 197
islands problem, 18–19
Max Concurrent Intervals T-SQL solution, 178–

180
Median T-SQL solution, 202
Mode T-SQL solution, 154–156
modification statements and, 29
optimizing, 109–110
Packing Intervals T-SQL solution, 184
Paging T-SQL solution, 143–145
Pivoting T-SQL solution, 149
Removing Duplicates T-SQL solution, 145–147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139, 141–142
Sorting Hierarchies T-SQL solution, 206–210
Top-N-per-Group T-SQL solution, 152
usage example, 27, 92–93
Virtual Auxiliary Table of Numbers T-SQL

solution, 135
row pattern recognition, 51
ROWS clause

about, 22
converting RANGE option to, 120–121
CURRENT ROW option, 37–38
UNBOUNDED FOLLOWING option, 37–38, 77
UNBOUNDED PRECEDING option, 37–38
window frame extent part and, 37–43

Running Totals solution (T-SQL)
about, 158–160
CLR-based solution, 164–166
cursor-based solution, 162–164
multirow UPDATE with variables, 167–169

Running Totals solution (T-SQL)

218 Index

Running Totals solution (T-SQL), continued
nested iterations, 166–167
performance benchmark, 169–171
set-based solutions using subqueries or

joins, 161–162
set-based solution using window functions, 160–

161

S
scheduling applications, 137
Schulz, Brad, 107
Segment iterator

computing cumulative values, 127
computing ranking functions, 108
distribution functions and, 129–130
expanding all frame rows, 123
fast-track case, 120
parallel APPLY technique, 114

SELECT clause
CTE filtering example, 28–30
logical query processing and, 23–25
modification statements and, 29
processing order, 54
Removing Duplicates T-SQL solution, 146–147
Running Totals T-SQL solution, 169
window functions support, 23, 25–28

Sequence Project iterator
computing cumulative values, 127
computing ranking functions, 108, 111, 112
distribution functions and, 129–130
expanding all frame rows, 123
fast-track case, 120
parallel APPLY technique, 114

sequences
about, 62
Date and Time Values T-SQL solution, 137–138
Gaps and Islands T-SQL solution, 193–201
Sequences of Date and Time Values T-SQL

solution, 137–138
Sequences of Keys T-SQL solution, 138–142

set-based programming
iterative/cursor versus, 6–10
Max Concurrent Intervals T-SQL solution, 173–

175
Packing Intervals T-SQL solution, 183–184
Running Totals T-SQL solution, 158–162

sets. See also ordered set functions
about, 7
logical query processing and, 23
ordering elements of, 7, 81

Sorting Hierarchies solution (T-SQL), 206–210
Sort iterator

about, 104–105
parallel APPLY technique and, 114
POC index and, 109

sort order (ordering)
about, 21–22
aggregate functions and, 22, 36–49, 119–128
based on constants, 109
distribution functions and, 68
elements of sets and, 7
framing and, 36
logical query processing and, 25
Max Concurrent Intervals T-SQL solution, 176
Median T-SQL solution, 203–204
offset functions and, 74, 119–128
POC concept and, 104–106
RANK function, 3
ranking functions and, 21, 58, 109
Running Totals T-SQL solution, 161
Sorting Hierarchies T-SQL solution, 206–210
total ordering, 15

spreading element (pivoting technique), 148
SQL standard

about, 3
additional resources, 3
all-at-once concept, 26
optimization and, 5
relational model and, 6
row pattern recognition, 51

SQL:1999 standard, 3
SQL:2003 standard, 3
SQL:2008 standard

filtering and, 50
window functions support, 3

SQL:2011 standard, 3
SQLDataReader class, 164, 166
SQL Server (Microsoft)

hypothetical set functions and, 84–86
logical query processing and, 23
optimization and, 5, 14
ordered set functions and, 81
ordering element support, 21
parallelism considerations, 112–113
StreamInsight feature, 51

 Table Spool iterator

 Index 219

TOP option, 134–136, 148, 151–153
WINDOW clause and, 31–32

SQL Server 2005 (Microsoft)
aggregate functions support, 4
ranking functions support, 4, 57
window functions support, 1

SQL Server 2012 (Microsoft)
aggregate functions support, 4
DISTINCT option and, 51
distribution functions support, 4, 68
FILTER clause and, 49
hypothetical set functions and, 84, 87
indexing support, 108
logical query processing and, 23–24
NEXT VALUE FOR function and, 62
OFFSET/FETCH option, 134–136, 144–145,

151–153
offset functions support, 4, 74, 76, 78, 94
RANGE option, 45
rank distribution functions and, 70
window frame-exclusion option, 22, 47
window functions support, 1

SQL Server Management Studio (SSMS), 126
SQL windowing

about, 1
background of window functions, 2–15
elements of window functions, 19
QUALIFY clause and, 30
query elements supporting window

functions, 23–30
reusing window definitions, 31–32
solutions using window functions, 15–19

SSMS (SQL Server Management Studio), 126
STATISTICS IO option, 121, 125–126
STDEV function

computing cumulative values, 126
expanding all frame rows, 122

STDEVP function
computing cumulative values, 126
expanding all frame rows, 122

stored procedures
Running Totals T-SQL solution, 164–165
Sequences of Keys T-SQL solution, 140

Stream Aggregate iterator
about, 119
computing cumulative values, 127
distribution functions and, 129, 131–132
expanding all frame rows, 123
fast-track case, 120
MAX function and, 117

string concatenation
carry-along-sort technique and, 153
concatenation operator (+), 150
CONCAT function, 150
ordered set functions and, 81, 98–99

STUFF function, 99
subqueries

islands problem, 16–17
Running Totals T-SQL solution, 161–162, 170
as window function alternative, 12–14

SUM function
about, 3
computing cumulative values, 126–127
expanding all frame rows, 122–123
framing element and, 22
grouped aggregates and, 54–55
optimizing, 132
Packing Intervals T-SQL solution, 191–192
RANGE option, 22
ROWS option, 22
Running Totals T-SQL solution, 160

surrogate keys, 141

T
tables

applying operators, 14
cross joining, 133–136
Gaps and Islands T-SQL solution, 193–201
logical query processing and, 23
Max Concurrent Intervals T-SQL solution, 171–

180
Median T-SQL solution, 202–204
Mode T-SQL solution, 154–158
modification statements and, 29
Packing Intervals T-SQL solution, 181–193
Pivoting T-SQL solution, 148–151
Removing Duplicates T-SQL solution, 145–148
Running Totals T-SQL solution, 158–171
Sequences of Keys T-SQL solution, 138–142
sets and, 7
Sorting Hierarchies T-SQL solution, 206–210
Top-N-per-Group T-SQL solution, 151–154, 157
Virtual Auxiliary Table of Numbers T-SQL

solution, 133–136
Table Spool iterator

distribution functions and, 130
ranking functions and, 111

threads

220 Index

threads
DOP considerations, 114
moving data between, 114

tiling versus paging, 64
time and date values

Gaps and Islands T-SQL solution, 193–201
Sequences of Date and Time Values T-SQL

solution, 137–138
Top-N-per-Group solution (T-SQL), 151–154, 157
TOP option

Removing Duplicates T-SQL solution, 148
Top-N-per-Group T-SQL solution, 151–153
Virtual Auxiliary Table of Numbers T-SQL

solution, 134–136
total ordering, 15
totals, calculating. See Running Totals solution

(T-SQL)
T-SQL

approach to querying tasks, 6–10
Conditional Aggregate solution, 204–206
Gaps and Islands solution, 193–201
islands problem, 17–18
Max Concurrent Intervals solution, 171–180
Median solution, 202–204
Mode solution, 154–158
modification statements and, 29
Packing Intervals solution, 181–193
Paging solution, 143–145
Pivoting solution, 148–151
Removing Duplicates solution, 145–148
Running Totals solution, 158–171
Sequences of Date and Time Values

solution, 137–138
Sequences of Keys solution, 138–142
Sorting Hierarchies solution, 206–210
Top-N-per-Group solution, 151–154, 157
Virtual Auxiliary Table of Numbers solution, 133–

136

U
UDAs (user-defined aggregates), 81
UNBOUNDED option

RANGE clause, 43–46, 77
ROWS clause, 37–38, 77

UNBOUNDED FOLLOWING option, 37–38, 77
UNBOUNDED PRECEDING option

RANGE clause, 77
ROWS clause, 37–38

Running Totals T-SQL solution, 160
window frame extent part, 119–123

UPDATE clause
modification statements and, 29
Running Totals T-SQL solution, 167–169
Sequences of Keys T-SQL solution, 139

user-defined aggregates (UDAs), 81

V
VAR function

computing cumulative values, 126
expanding all frame rows, 122

VARP function
computing cumulative values, 126
expanding all frame rows, 122

VertiPaq technology, 108
Virtual Auxiliary Table of Numbers solution

(T-SQL), 133–136

W
WHERE clause

filtering and, 117
processing order, 54
Running Totals T-SQL solution, 161
usage example, 27

window
about, 2
defined by OVER clause, 3
frame-exclusion option, 22

WINDOW clause, 31–32
window-frame-exclusion option, 22, 37, 47–49
window frame extent part

about, 37
RANGE clause and, 43–47
ROWS clause and, 37–43
UNBOUNDED PRECEDING option, 119–122

window frame units part
about, 37
RANGE clause, 120

window functions. See also specific window functions
about, 1–2
background of, 2–5
drawbacks of alternatives to, 11–15
elements of, 19
Max Concurrent Intervals T-SQL solution, 178–

180

 WITHIn gROUP clause

 Index 221

optimization of, 5
Packing Intervals T-SQL solution, 184–193
QUALIFY clause and, 30
query elements supporting, 23–30
reusing window definitions, 31–32
Running Totals T-SQL solution, 160–161
solutions using, 15–19
T-SQL approach to, 6–10

windowing (SQL)
about, 1
background of window functions, 2–15
elements of window functions, 19

QUALIFY clause and, 30
query elements supporting window

functions, 23–30
reusing window definitions, 31–32
solutions using window functions, 15–19

Window Spool iterator
computing cumulative values, 127
distribution functions and, 129
expanding all frame rows, 122–124
fast-track case, 119–120

window_spool_ondisk_warning extended event, 126
WITHIN GROUP clause, 68, 71

about the author

ITzIK BEn-gAn is a mentor with and co-founder of SolidQ. A SQL Server
Microsoft MVP since 1999, Itzik has taught numerous training events around
the world focused on T-SQL querying, query tuning, and programming. Itzik
is the author of several books about T-SQL. He has written many articles for
SQL Server Pro as well as articles and white papers for MSDN and The SolidQ
Journal. Itzik’s speaking engagements include Tech-Ed, SQL PASS, SQL Server

Connections, presentations to various SQL Server user groups, and SolidQ events. Itzik
is a subject-matter expert within SolidQ for its T-SQL related activities. He authored
SolidQ’s Advanced T-SQL and T-SQL Fundamentals courses and delivers them regularly
worldwide.

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Foreword
	Introduction
	SQL Windowing
	Background of Window Functions
	Window Functions Described
	Set-Based vs. Iterative/Cursor Programming
	Drawbacks of Alternatives to Window Functions

	A Glimpse of Solutions Using Window Functions
	Elements of Window Functions
	Partitioning
	Ordering
	Framing

	Query Elements Supporting Window Functions
	Logical Query Processing
	Clauses Supporting Window Functions
	Circumventing the Limitations

	Potential for Additional Filters
	Reuse of Window Definitions
	Summary

	A Detailed Look at Window Functions
	Window Aggregate Functions
	Window Aggregate Functions Described
	Supported Windowing Elements
	Further Filtering Ideas
	Distinct Aggregates
	Nested Aggregates

	Ranking Functions
	Supported Windowing Elements
	ROW_NUMBER
	NTILE
	RANK and DENSE_RANK

	Distribution Functions
	Supported Windowing Elements
	Rank Distribution Functions
	Inverse Distribution Functions

	Offset Functions
	Supported Windowing Elements
	LAG and LEAD
	FIRST_VALUE, LAST_VALUE, and NTH_VALUE

	Summary

	Ordered Set Functions
	Hypothetical Set Functions
	RANK
	DENSE_RANK
	PERCENT_RANK
	CUME_DIST
	General Solution

	Inverse Distribution Functions
	Offset Functions
	String Concatenation
	Summary

	Optimization of Window Functions
	Sample Data
	Indexing Guidelines
	POC Index
	Backward Scans
	Columnstore Indexes

	Ranking Functions
	ROW_NUMBER
	NTILE
	RANK and DENSE_RANK

	Improved Parallelism with APPLY
	Aggregate and Offset Functions
	Without Ordering and Framing
	With Ordering and Framing

	Distribution Functions
	Rank Distribution Functions
	Inverse Distribution Functions

	Summary

	T-SQL Solutions Using Window Functions
	Virtual Auxiliary Table of Numbers
	Sequences of Date and Time Values
	Sequences of Keys
	Update a Column with Unique Values
	Applying a Range of Sequence Values

	Paging
	Removing Duplicates
	Pivoting
	TOP N per Group
	Mode
	Running Totals
	Set-Based Solution Using Window Functions
	Set-Based Solutions Using Subqueries or Joins
	Cursor-Based Solution
	CLR-Based Solution
	Nested Iterations
	Multirow UPDATE with Variables
	Performance Benchmark

	Max Concurrent Intervals
	Traditional Set-Based Solution
	Cursor-Based Solution
	Solutions Based on Window Functions
	Performance Benchmark

	Packing Intervals
	Traditional Set-Based Solution
	Solutions Based on Window Functions

	Gaps and Islands
	Gaps
	Islands

	Median
	Conditional Aggregate
	Sorting Hierarchies
	Summary

	Index

