-L_.'\“'\ t . .
Quick answers commOon problems

Microsoft Tabular
Modeling Cookbook

Paul te Braak [PACKT] enterprise &

PUBLISHING

http://www.allitebooks.org

Microsoft Tabular
Modeling Cookbook

Over 50 tips and tricks for analytical modeling using
Business Intelligence Semantic Models with SQL Server
2012 and PowerPivot

Paul te Braak

enterprise &

professional expertise distilled

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Microsoft Tabular Modeling Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-088-4
www . packtpub.com

Cover Image by Neston Simeoes (nestonsimoes@ymail . com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author Copy Editors
Paul te Braak Alisha Aranha

Sayanee Mukherjee
Reviewers
Anindita Basak

Deepa Nambiar

Alfida Paiva

Steve Hughes Laxmi Subramanian

Cosmin loan
Stevo Smocilac Proofreader
Linda Morris

Acquisition Editors

Sam Birch Indexer

Edward Gordon Rekha Nair
Lead Technical Editor Graphics

Ankita Shashi Yuvraj Mannari
Technical Editors Production Coordinator

Pankaj Kadam Nilesh R. Mohite

Pramod Kumavat
Adrian Raposo Cover Work
Nilesh R. Mohite

Project Coordinator
Shiksha Chaturvedi

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Paul te Braak (ptebraake@abaxdata.com.au) is a leading Business Intelligence
Consultant based in Australia. He has been involved in Information Management for over 15
years, with the past 9 years focusing on the Microsoft Business Intelligence stack. His areas

of interest include data modeling, data mining, and visualization. He is an active participant in
the SQL Server community, speaks at various local and international events, and organizes a
regional SQL Server Saturday. His blog can be found at www.paultebraak.wordpress.com.

| would like to thank everyone who has contributed to this book. Like most
projects, there are many behind-the-scenes people who have assisted me,
and | am truly grateful to those people. The book would never have been
complete without your help!

Firstly, I'd like to thank my wife for her understanding and acceptance during
the project when | spent nights and weekends working. | am sure that my
responsibilities at home have decreased (well, they've been removed), and
this has afforded me the time to focus on writing.

I would also like to thank Cathy Dumas for recommending me to Packt
Publishing at the start of the project, and all the reviewers who have
provided their input along the way and looked over my work with an
objective view. | would like to thank the members of the community who
are always willing to participate in events and forums that help us improve
our knowledge.

Finally, I'd like to thank Packt Publishing and all the associated staff
(believe me, there have been quite a few) for the opportunity to write
for them.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Anindita Basak is currently working as a senior system analyst at Sonata Software

in the Windows Azure Pro Direct Delivery group of Microsoft. She has worked as a senior
software engineer on implementation of various enterprise applications on Windows Azure
and Windows phone. She started her journey with Windows Azure in the Microsoft Cloud
Integration Engineering (CIE) team and worked as a support engineer in Microsoft India
(R&D) Pvt. Ltd. With six years of experience in the Microsoft .NET technology stack, she is
solely focused on Cloud and Microsoft Mobility. As an MVB, she loves to share her technical
experience and expertise through her blog at http://anindita9.wordpress.com.

She recently worked as a technical reviewer for the books HDInsight Essentials and Microsoft
SQL Server 2012 with Hadoop by Packt Publishing.

She holds a B.E in Information Technology from West Bengal University of Technology
(formerly IIT Calcutta). She has attended various business conferences and technology
seminars of Microsoft.

I would like to thank my grandpapa Mr. Kanti Das Basak, mom, Anjana, dad,
Ajit Kumar Basak, and my affectionate brother, Aditya. Without their help, |
can't achieve any goals of my life.

[vww allitebooks.cond

http://www.allitebooks.org

Steve Hughes is a Practice Lead at Magenic. In his current role, he develops strategy and
helps guide data, Business Intelligence, collaboration, and data integration development
using Microsoft technologies, including SQL Server, SharePoint, and BizTalk. He continues

to deliver data and Business Intelligence solutions using these platforms. He has been
working with technology for over 15 years with much of that time spent on creating Business
Intelligence solutions. He is passionate about using data effectively and helping customers
understand that data is valuable and profitable. Steve can often be found at Professional
Association for SQL Server (PASS) events, where he serves as a regional mentor and is active
with the Minnesota SQL Server User Group (MNPASS). He shares his insights about the field
on his blog at http://dataonwheels.wordpress. com.

| would like to thank my family for their continued support on these projects.

Cosmin loan is a data warehouse and Business Intelligence architect with over 16 years'
experience in the Information Technology field, spanning development languages, systems
administration, RDBMS and OLAP design, architecture, troubleshooting, and scalability on
Microsoft, Oracle, and Sybase platforms. He has worked in consultancy and full-time roles for
companies, public and private companies alike, such as Motorola, Citrix, Aetna, and Sheridan
Healthcorp, chiefly building data warehouse and systems integration solutions, allowing
companies to better harness and give meaning to their data assets.

When not working, Cosmin enjoys scuba diving and racquet sports.

Writing a technical book and reviewing one are never easy tasks. Due to
inherent time constraints and ever-changing technology advancements,
keeping a delicate balance between product depth and breadth, as well
as a target audience for covering any one technical product is always a
challenging proposition. My thanks to Paul for taking up such a challenge
and allowing me to be part of the effort, as well as the nice team at Packt
Publishing for their endeavor in publishing quality technical books.

[vww allitebooks.cond

http://www.allitebooks.org

Stevo Smocilac is an associate principal consultant at Magenic, a Microsoft Gold Certified
Partner, who specializes in Business Intelligence solutions.

He has over 12 years' experience of working in software development, the last seven of which
have focused on designing, implementing, managing, and administrating technical solutions
developed using Microsoft SQL Server and the Microsoft Business Intelligence stack. He

has been involved in all phases of the Bl development lifecycle from envisioning through
operational support, and he is passionate about the field of Business Intelligence.

Stevo is currently a Virtual Technology Solutions Professional (V-TSP) for Business Intelligence,
a Microsoft Certified IT professional, and holds a B.Tech degree in Information Technology.

Originally from South Africa, he now resides in (the much colder) Northeastern United States
with his wife Talya.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . PacktPub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . Packt Pub. com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee
packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[a]PACKT ;

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Getting Started with Excel 7
Introduction 7
Creating the model 8
Managing the appearance of tables and fields 12
Using tabular relationships to filter data 18
Adding fields to tables 28
Linking fields between tables 30
Creating model calculations 32
Chapter 2: Importing Data 37
Introduction 37
Importing data as text 38
Importing data from databases 43
Managing connections and tables 50
Using data feeds 54
Chapter 3: Advanced Browsing Features 57
Introduction 57
Sorting data 58
Creating hierarchies for drilldown interaction 60
Summing aggregates and row iteration 62
Parent-child hierarchies 65
Creating and using Key Performance Indicators 74
Role playing dimensions and relationships 80
Building ratios 84
Chapter 4: Time Calculations and Date Functions 91
Introduction 91
Calculating running totals - totals to date 92

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Month, quarter, and year to date aggregations 96
445 dates and irregularities 98
Last year and prior period values 101
Relative Time - pivoting around measures 105
Moving averages and last n averages 109
Chapter 5: Applied Modeling 117
Introduction 117
Grouping by binning and sorting with ranks 118
Defining many-to-many relationships 127
Using the last non-empty function for stock data 132
Performing currency calculations 138
Allocating data at different levels 144
Chapter 6: Programmatic Access via Excel 151
Introduction 151
Connecting pivot tables and Slicers 153
Using cube functions 159
Working with worksheet events and VBA 163
Managing the Slicer through VBA 172
Chapter 7: Enterprise Design and Features 181
Introduction 181
Restoring a workbook to Analysis Services 182
Importing models into SQL Server Data Tools 186
Developing models in SQL Server Data Tools 189
Securing data with roles 193
Implementing dynamic security 198
Creating perspectives 201
Chapter 8: Enterprise Management 207
Introduction 207
Deploying models from SSDT 208
Deploying models with the Deployment Wizard 212
Creating and managing partitions 218
Processing the data 227
DirectQuery and real-time solutions 234
Chapter 9: Querying the Tabular Model with DAX 243
Introduction 243
Retrieving data from a single table 245
Using projection to combine data from different tables 248
Restricting data with filters and where conditions 251
Deriving tables and selecting top n records 253

Table of Contents

Chapter 10: Visualizing Data with Power View 261
Introduction 261
Creating a Power View report 263
Creating and manipulating charts 272
Using tiles (parameters) 276
Using and showing images 279
Automating the table fields with default field sets 281
Working with table behavior and card control 283
Using maps 287
Using multiples (Trellis Charts) 290

Appendix: Installing PowerPivot and Sample Databases 293
Installing PowerPivot 293
Creating the database 296

Index 299

Preface

In 2010, Microsoft announced a change to its Business Intelligence environment, and said it
will focus its development efforts on semantic modeling. At that time, the current technology
used for analysis was SQL Server Analysis Server (SSAS), a technology that relied on disk-
based storage and the distinct steps of model development, deployment, and processing—a
function usually under the control of IT. The new technology will house all its data in memory
and allow the user (or model designer) to change the model in real time and view those
changes instantaneously. In addition to this, the platform sought to remove many of the
barriers that had existed in the traditional Business Intelligence landscape. It offered a
uniform platform for data analysis across an entire organization. The same platform can now
be used by an individual user in Excel deployed to SharePoint (for team Business Intelligence)
or directly to a server (for corporate Business Intelligence). This will remove a large proportion
of the rework that was traditionally involved in Business Intelligence projects and lead to

the catchcry "Bl to the masses" (meaning that anyone can model a Business Intelligence
solution). A free add-in was released for Excel 2010, and the 2012 release of Analysis Server
(in SQL Server) included a new storage mode called tabular.

This was an interesting challenge to the traditional methods for implementing Business
Intelligence models. Under that structure, Business Intelligence was essentially controlled by
an IT department, which used a waterfall methodology and there were distinct phases in an
analytical project involving the separation of duties and more importantly, the separation of
people. Those that had to use data models were often involved with a back-and-forth battle to
make the model work as the business user required.

Tabular models were then introduced and overnight Excel users were able to consume
massive amounts of data and create their own analytical models without the need to involve
IT (other than access to the data of course!). The product extended the familiar pivot table
by allowing users to create pivot tables using many different data sources (and removed the
requirements for a pivot table to be sourced from a single data table). More importantly, the
ability to create models for the analysis of data was delivered directly to those who needed it
most—the analytical end user. The restrictions on analysis and data manipulation that they
had previously encountered were removed.

Preface

This book is primarily written for those users—individuals who need to answer questions based
on large amounts of data. For this reason, we focus on how these users can use that technology
to build models in Excel using PowerPivot. We simply don't want to exclude those users who
need it the most and do not have access to the more traditional tools developed for corporate
BI. Furthermore, these techniques are also directly applicable to corporate tabular models.

Finally, the book looks at how these models can be managed and incorporated into production
environments and corporate systems to provide robust and secure reporting systems.

What this book covers

Chapter 1, Getting Started with Excel, covers the basics of the tabular model, that is, how to
get started with modeling and summarizing the data. This chapter includes a basic overview
of how the tabular model works and how the model presents to an end user (we also look

at some general data modeling principles, so that you can better understand the underlying
structure of the datasets that you use). In doing so, we look at the basics of combining data
within the model, calculations, and the control (and formatting) of what an end user can see.

Chapter 2, Importing Data, examines how different forms of data can be incorporated and
managed within the model. In doing so, we examine some common sources of data which
are used (for example, text files) and examine ways that these sources can be controlled and
defined. We also examine some non-traditional sources (for example, data that is presented
in a report).

Chapter 3, Advanced Browsing Features, examines how the model can be structured to
provide an intuitive and desirable user experience. We examine a variety of techniques that
include model properties and configurations, data structures and design styles, which can
be used to control and present data within the model. We also examine how to create some
common analytical features (for example, calculation styles, value bounds, ratios, and key
performance indicators) and how these can be used.

Chapter 4, Time Calculations and Date Functions, explains how time and calendar
calculations are added and used within the model. This chapter looks at defining the
commonly used month-to-date and year-to-date calculations, as well as comparative
calculations (for example, the same period last year). We also look at alternate calendars
(for example, the 445 calendar) running averages and shell calculations.

Chapter 5, Applied Modeling, discusses some advanced modeling functionality and how

the model can be used to manipulate its own data thus presenting new information. For
example, we look at the dynamic generation of bins (that is, the grouping of data), currency
calculations, many-to-many relationships, and stock calculations over time. We also look at
how the model can be used to allocate its own data so that datasets that have been imported
into the model at various levels of aggregation can be presented under a consistent view.

Preface

Chapter 6, Programmatic Access via Excel, explains how the tabular model can open a new
world of possibilities for analysis in Excel by allowing the creation of interactive reports and
visualizations that combine massive amounts of data. This chapter looks at how Excel and the
tabular model can be used to provide an intuitive reporting environment through the use of
VBA—Visual Basic for Applications is the internal programming language of Excel.

Chapter 7, Enterprise Design and Features, examines the corporate considerations of the
tabular model design and the additional requirements of the model in that environment. We
look at the various methods of upgrading PowerPivot model, perspectives, and the application
of security.

Chapter 8, Enterprise Management, examines how the model is managed in a corporate
environment (that is on SQL Server Analysis Server). This chapter looks at various techniques
for deploying the tabular model to a SSAS server and the manipulation of objects once they
have been deployed (for example, the addition and reconfiguration of data sources). We look
at the addition of new data to the model through petitions and the processing of the model
data through SQL Server Agent Jobs.

Chapter 9, Querying the Tabular Model with DAX, shows how to query the model using the
language of the tabular model—DAX (Data Analysis Expressions). We look at how to retrieve
data from the model and then go on to combine data from different parts of the model, create
aggregate summaries and calculations, and finally filter data.

Chapter 10, Visualizing Data with Power View, explains how Power View can be used to
analyze data in tabular models. This chapter looks at how to use Power View and how to
configure and design a tabular model for use with Power View.

Appendix, Installing PowerPivot and Sample Databases, shows how to install PowerPivot in
Excel 2010 and install the sample data used in this book.

What you need for this book

As a book which covers many aspects of tabular modeling, the recipes can be followed using
a variety of software that incorporates tabular modeling. Although we focus on PowerPivot in
Excel 2010 (this is still the most prevalent installation in corporate environments), the recipes
can also be completed in Excel 2013. When recipes focus on server and corporate features,
SQL Server Analysis Services 2012 (in tabular storage mode) is used. The complete list of
software applications used in this book is:

» Excel 2010 (with the free PowerPivot add-in)
» Excel 2013

» SQL Server Data Tools (installed with SQL Server 2012)
» SQL Server 2012 (SQL Server Analysis Server Tabular Mode)

Preface

Who this book is for

This book is designed for two types of users. First and foremost, it is designed for those
users who wish to create tabular models for analysis regardless of whether they create the
model for personal use in Excel using PowerPivot or server-based models that are deployed
to Analysis Services. For those modelers, we show how to design, create, and manipulate
the model so that it can be used to answer the types of questions that appear in business.
For these users and consumers of model data, we also show how the model can be used to
provide an intuitive and interactive report (both in Excel and Power View). Our goal for these
users was to give them the skills so that they can build a model capable of answering their
business questions.

The second category of users are those who are responsible for the maintenance of models in
corporate environments. These are administrators who must ensure that the corporate model
data is up-to-date and secure. For these users we show tricks and techniques to deploy the
model and keep it running smoothly.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Each
product is identified by a product_id value."

A block of code is set as follows:

=LOOKUPVALUE
(Subcategory [Subcategory]
, Subcategory[product id], Products [Product ID]

Preface

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Then on the PowerPivot tab,
click on the Create Linked Table button."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
accountat http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http: //www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Getting Started
with Excel

In this chapter, we will cover:

Creating the model

Managing the appearance of tables and fields
Using tabular relationships to filter data
Adding fields to tables

Linking fields between tables

Creating model calculations

Introduction

This chapter is designed as an introduction to tabular modeling by using PowerPivot.
It shows the process by which a user imports data into PowerPivot for Excel, creates
relationships between the datasets, and then reports on it.

The data used in this chapter is based on the orders of the fictitious bicycle company (named
Adventure Works). Our data includes six datasets and they are:

>

Product list: This shows some generic information about the products being sold (for
example, the name, color, and size of the product). Each product is identified by a
product_id value.

Product subcategories list: This shows a subcategory that a product belongs to. The
list shows the product_id value and the associated subcategory (by ID and Name).

Product categories list: This shows the product category that a product belongs to.
The list shows the product_id value and the associated category (by ID and Name).

Getting Started with Excel

» Orders list: This shows what orders have been placed by customers. The list includes
an entry for each product that has been ordered. This data simulates a detailed
extract from an operational source system.

» Customer list: This gives us information about the customer (for example, their
names, countries, and states) by customer number.

» Dates list: This simply lists consecutive days defining information such as the month
name, year, and half-year period of the date.

The tabular modeling lifecycle revolves around three primary steps. These are:

» Getting the data into the model
» Defining the relationships among tables
» Defining calculations based on business logic

This chapter examines these steps and allows the reader to become familiar with the tabular
(PowerPivot) design environment.

Creating the model

An Excel workbook can only contain one tabular model and that one model contains tables of
data (which may or may not be related). The first step to create a model is to import data into
it. There are many techniques to do this—some techniques have advantages over others but
for now, let's only consider the fact that we want to load data that exists in an Excel worksheet
into the model.

M The installation instructions for PowerPivot in Excel 2010 are
Q covered in the Appendix, Installing PowerPivot and Sample
Databases, of this book.

Getting ready

Open the Excel workbook named SalesBook which is available from the Packt Publishing
website to examine the worksheets within the book. Each sheet contains a dataset for
Products, Subcategories, Categories, Customers, Dates, and Sales.

How to do it...

This recipe looks at importing data into the PowerPivot model through linked tables. These are
very convenient to use when the data is stored in Excel. Additionally, once the data has been
imported into PowerPivot, it retains a connection to the Excel table. This means that, when the
data is changed in Excel, it can also be changed in the PowerPivot model.

1. Let's start by importing the product list. Select the Product List sheet and
select cell Al.

—e1]

Chapter 1

2. Then, on the PowerPivot tab, click on the Create Linked Table button.

Q Excel will automatically highlight the data range.

FAIN™ B =
Home Insert Page Layout Formulas Data Review View Developer Add-Ins PowerPivot
=2 ¢ = = = =
FPowerPivot Bl otTable | Create Ec FI O e] Create Update | Settings Field Relationship
Window easure Measure Sett Setting inked Table All List Detection
Measures KPls Excel Data

3. A small window will open confirming the data range with a checkbox for table
headers. Select the checkbox and press OK.

4. The PowerPivot window will open and the data from the Product List sheet will be
imported. Note that the table appears as a tab which is similar to Excel and is called
Tablel. Also, note that the PowerPivot window is a separate window than the Excel
workbook, so that we can return to Excel.

SUNFIN™ B B Table Tools PowerPivot for Excel - Sales Book.xlsx
Home Design Linked Table

w Paste Append — —k ez) E From Data Feeds) e Data Typ
J I Paste Replace Lj; BT LT; j From Text JJ Format :
Paste _ From From From Azure Refresh | PivotTable .
=2 Copy Database ~ Report DataMarket (Ml From Other Sources - o
Clipboard Get External Data Far
[product_id] v| |
product_id [+ 2 v B v Add Column
FR-R92B-58 HL Road Frame - B... Black 54-58 CM 58
FR-R92R-58 HL Road Frame - R... Red 54-58 CM 28
HL-U509-R Sport-100 Helmet... Red NA NA
HL-U509 Sport-100 Helmet... Black NA NA
HL-U509-B Sport-100 Helmet... Blue NA MNA
CA-1098 AWC Logo Cap Multi NA NA
LJ-0192-5 Long-Sleeve Logo... Mult s s

== Tablel

Record: 4 4

1of 157 [

5. Repeat this process for all the remaining datasets except Customers.

Getting Started with Excel

When a linked table is created in PowerPivot, Excel creates a named range in the Excel
workbook. This is then linked to the PowerPivot model (note that there is a small chain symbol
before each of the tables). Also, note that the tables in Excel are formatted with alternate blue
coloring. The named ranges can be viewed in Excel by clicking on the Name Manager button
on the Formulas tab.

Ld9-v-|= Sales Bookadsx - Microsoft Excel
Home Insert Page Layout Formulas Data Review View Developer Add-Ins PowerPivot Data Explorer Jedox Data Mining

f‘t’ z 1 @ , f mq Cll l 8 § 5 Define Name ~ iaTrace Precedents 3] Show Formulas =
- J —'-'f = . #2 Use in Formula =% Trace Dependents <0 Erro cing
Insert Autosum Iy Financial Logical Text Date& Lc Math Morg . >
Function - Time & Trig = Funcs Managy B Create from Selection <. Remove Arrows ¥ (£} Eval nula i
Function Library Defined Names Formula Auditing
Al - fe | customer_id
—— |
A B
Edit... Delete -
j 8 customer_id H customer_name ﬂ col|
2 |AWO00000105 Volume Bike Sellers AU | Name Value Refers To Scope Comment
3 |AWO00000658 Mass Market Bikes Al {'FR-R928-58","HL ... =ProductList1$As... Workbook
4 |AWO0D000555 Twin Cycles AU | = Table2 [FR-R92B-58","14"... =ProductSubCate... Workbook
5 |AWO00000087 Rich Department Store Al T Table3 {FR-R928-58","2",... =Product Categori... Workbook
& |AW00000141 Rental Gallery ad = Table4 {"200501071" ,‘1‘.101.(..‘ =DatesISA$2:8G52... Workbook
= Tables {BK-T79Y-467,"1/0... =Sales|SAS2:8151714 Workbook
| S RN R H U =TS i AU | S rables [AWD00001057,"V... =Customers!$As2:... Workbook
8 [AWO00000033 Global Sports Outlet Al
9 |AW00000069 Online Bike Catalog Al

There's more...

A table (table range) is actually an Excel feature that PowerPivot utilizes. A table can be
defined in Excel, given a meaningful name and then imported into PowerPivot, so that the
name of the table in PowerPivot is the same as the named range in Excel.

Ensure that the Customers sheet is selected in Excel and also any cell in the Customers
data is selected. In the Home tab, click on the Format as Table button, and choose a table
style; the style chosen in the following screenshot is a relevant one:

% Home Insert Page Layout Formulas Data Review View Developer Add-Ins PowerPivot Data Explorer Jedox Data Mining
g cut Calibri - A S=[=] ® Sweptet General Normal
Paste =3 copy 7 - e M A EEE IE i= - . <0 ;08 Conditi Format
Fromatpainter| B L U e A- EEE EE EHMergeadenterw $ - % e)’“’ﬁ mable_
Clipboard = Font = Alignment = Humber ugm
9 - fe | AU
\

A B e D E E G
1 customer_id customer_name country_code state_code
2 |AW00000105 Volume Bike Sellers AU NSW
3 |AWO00000658 Mass Market Bikes AU NSW
4 | AWO00000555 Twin Cycles AU NSW
5 AWO0000087 Rich Department Store AU NSW
6 AWO00000141 Rental Gallery AU NSW
7 AWO00000015 Budget Toy Store AU NSW
8 | AW00000033 Global Sports Qutlet AU NSW
EIAWOOODOOSQ Online Bike Catalog IAU .INSW

]

Chapter 1

Note that the data is now formatted with alternating colors (based on the selected style).
Return to the Name Manager window and double-click the table that relates to the
Customers worksheet. A new window will open allowing you to edit the name, replace
the name Table6 with Customers, and click on OK. The Table6 name is replaced by
Customers in the Name Manager window.

Edit Name l ?

Mame: Customers]|

Scope: Workbook

Comment: |

Refers to: | _cystomers! $462: 606702 E3
oK.] [Cancel

Now, create a linked table in the same manner as we did before and note that the name of
the table imported into PowerPivot is Customers.

u If you want to select an entire table in Excel, simply choose
~ the table name from the Name Box drop-down list in the
Q formula bar in the upper-left corner. This is shown in the
following screenshot:

x| s
File Home Insert Page Layout Farmal
-_l“ *' Cut Calibei =11 -
z T <4 Copy = "
al:lr ffurr.u'. Paintes L A =" -
Clipboard s Fasrak
I A10 i | fe | S0D43667
Sales_Header omer_id| = 'emblnyeé;i-
Sales_Detail 5153
Products 514 399
Order_Date 278 9575

|13 SOR30T0, g SWOQIO0S . SIS

s

Getting Started with Excel

Managing the appearance of tables

and fields

A PowerPivot workbook contains two products that allow the user to analyze data. Firstly,
there is the xVelocity in-memory analytics engine (the tabular model) which is a columnar
database embedded in the workbook. Secondly, there is a client tool that allows the model to
be queried, it also displays the results to the user in the form of a pivot table or pivot chart. In
Excel 2010, the client tool was restricted to pivot table functionality (for example, a pivot table
or pivot chart). In Excel 2013, the tools set has been extended to include Power View. The
important distinction here is that the client tool is used to present the model to the user.

This recipe shows how to control the way the model is presented to the user.

Getting ready

This recipe uses the model that has already been created in the prior recipe Creating the
model. If this model has not been created, follow the recipe to ensure that the model has
been loaded with data.

How to do it...

Start from an existing model within PowerPivot.

1. Ensure that you are in the PowerPivot window (not Excel), then click on the PivotTable
button in the Home Tab.

| & = | Table Tools PowerPivot for Excel - Sales Booldsx
B~

Home Design Linked Table

ﬁPaste Append ‘-j; = “g, ES From Data Feeds y L_—J:
= salf L 7] From Text Mﬂ
Fesh | (P

Paste Replace

Paste From From From Azure ivotTable
| Copy Database = Report DataMarket | From Other Sources -
Clipboard Get External Data
[country _code] .,| ﬁr|
= b v * | Add Colu
AWO00000105 Volume Bike Sellers AU NSW

ALK P T O (W] B3 mzl AL BICVAT

Sk

Chapter 1

2. PowerPivot will switch back to the Excel window and a dialog will prompt for the
location of the new pivot table. Select New Worksheet and click on OK.

Create PivotTable B[]

@ Mew Worksheet

() Existing Worksheet

Location: |Sales'!3A51 |&

3. Excel will now show PowerPivot Field List and a pivot table work area. These are
identified by the arrows in the following screenshot. Note that PowerPivot Field List
shows tables from the model as nodes, with the fields from the model as children.

A B c D E F — | PowerPivot Field List v X
), = 2]

// = Customers

customer_id

1
2
3 [! country_code
4 | PivotTablel |
5 VOL olel customer_name
state_code
& Turn on the PivotTable —— Tablel
7 List to work with the Table2
8 PivotTable Table3
9 Tabled
Table5
10 =
11 I
12 = . 1] Slicers vertical [F) Slicers Horizantal
13 = e ———
14 - —
15 y—
1 - W Report Filter B Column Labels
17
18
19 | || & Row Labels = Values
20
21 i~
W 4 » v[Pproduct List .~ Product SubCatll] 4 | il r]

[}

Getting Started with Excel

4. Return to the PowerPivot application window and double-click on the Tablel tab. The
name Tablel will be in a blue background and rename it to Products. Repeat this
exercise for the other tables (Subcategory, Category, Dates, and Sales). The
table names in your PowerPivot window will now look like the following screenshot:

Products J Subcategn:rrv/I Categur-fj Dates J Sales J Custn:rmersJ

Record: 14 4 1af 1,713 FOH

5. Return to Excel and notice that PowerPivot Field List has detected a change in
the model and prompts the user to refresh. Click on the Refresh button and note
that the changes in the names of the tables are now reflected in the PowerPivot
Field List panel.

Before After
PowerPivot Field List - X PowerPivot Field List * M
PowerPivot data was ah
2 o dified Refresh |5€§'w |,D|
: Category
Search |,D| E Customers
=l Customers R country_code
country_code B customer_id
custum;r id customer_name
customer_name | state_code
state_code E Dates
Tablel Products
Table2 Sales
Table3 m Subcategory
Tabled .

6. Return to the PowerPivot application window and select the Products table. Double-
click on the product_id field and enter Product ID as the new name.
The field will have a blue background when its name can be changed.

product_id| K

FR-R92B-58 HL Road Fr
FR-R92R-58 L Road Fr
LIl 1IEAG Commed 10U

7. Return to the PowerPivot window and update the remaining columns to the

following names:

Chapter 1

Table Column New name
Products product id Product ID
Products product name Product Name
Products colour Colour
Products size range Size Range
Products size Size
Subcategory subcategory name Subcategory
Category category name Category
Dates date Day

Dates year Year

Dates month name Month

Dates half name Half

Sales order number SO Number
Customers customer_id Customer ID
Customers customer name Customer Name
Customers country code Country Code
Customers state_code State Code

display as those that were entered.

Al

Q

You can also rename fields by right-clicking on the field and
selecting Rename Column from the pop-up in PowerPivot.
Alternatively, you can double-click on the field name

(so that it changes the color of the field) and rename it.

Return to Excel and refresh PowerPivot Field List. The column names will now

9. Return to the PowerPivot window and select the Sales table. Right-click anywhere
on the order number line field and select Hide from Client Tools in the pop-up
window. Select all the fields product_id, order date, and customer_id by
clicking-and-dragging the mouse across the three fields and hide these fields too.

PowerPivot mimics Excel in the way that you can select multiple

fields by dragging your mouse across several columns (with the
M left button continually pressed). You can also select the first
Q column, hold the Shift key, and select the final column.

Unlike Excel, multiple columns cannot be selected by using the
Ctrl key and selecting multiple fields.

Getting Started with Excel

10. Return to the PowerPivot window, refresh PowerPivot Field List, and expand the
Sales table. Note that these fields no longer appear in the field list.

11. Add the Day field to the pivot by expanding the Dates table and selecting the
checkbox next to the Day field. The column will be automatically added to the
rows area of the pivot and will be displayed, as shown in the following screenshot:

A B C | PowerPivot Field List v X
1 (=] [search | 2]
: Category -~
3 IRow Labels '.I Customers I
.| 1/1/2005 =l Dates
5 1f2f2005 date_id

w| Day L
6 1/3/2005 Half E
7 1/4/2005 half_of_year
2 1/5/2005 Maonth
g 1f5f20'05 month_of_year 4
Year
10 1/7/2005 Products il
11 1/8/2005 e
12 1/9/2005 17 Slicers Vertical [Slicers Horiz...
13 1/10/2005
14 1/11/2005
15 1/12/2005 “F ReportFilter [Column Labels
16 1/13/2005
17 1/14/2005 1] Row Labels E Values
18 1/15/2005
Day b

19 1/16/2005
20 1/17/2005
21 1/18/2005 -
4 4 ¥ W[Product Lisfil4 [l p [l

1
~ You can achieve the same result by dragging the Day field
and dropping it in the Row Labels area of the pivot.

Chapter 1

12. Return to the PowerPivot window and select the Day column. From the format list,
select More Dates Formats..., and then select the dd-MMM-yy format from the list
of available formats. The value presented will show a formatted sample of the data.
Choose the item that shows 14-Mar-01.

Home Design
2 paste Append ;J:; = "!;/ 5 From Data Feeds s]4 Data Type : Date = 4] sortal
|54 Paste Replace l =22 L =] From Text |Format: Custom'| %) sort Ne
L Fram From From Azure Refresh | PivotTable
k3 Copy Database - Report DataMarket | From Other Sources - *14/03/2001 1:30:55 PM
lipboard Get External Data *14,03/2001 L
H - . o
V] | |1."'01f2005 12:00:00 AM ‘Wednesday, 14 March 2001 | |
lz)Day |z Lz B B 14 March 2001 1
0050101 J01-Jan-05 2005 January 1 H-2 14/03/2001
0050102 02-Jan-05 2005 January 1 H-2 14/03/01
0050103 03-Jan-05 2005 January 1 H-2
March 2001
0050104 04-Jan-05 2005 January 1 H-2
14 March
0050105 05-Jan-05 2005 January 1 H-2
1:30:55 PM
0050106 06-lan-05 2005 January 1 H-2
0050107 07-Jan-05 2005 January 1 H2 13:30:55
0050108 08-Jan-05 2005 January 1 H-2 1:30 FM
0050109 09-Jan-05 2005 January 1 H-2 13:30
0050110 10-Jan-05 2005 January il = I Mare Date Formats... I
INNEN111 11 lan NE INNE loniiarns 1 17)

13. Return to Excel and refresh the pivot table. Note that the PowerPivot Field List panel
may not indicate the change to the model. However, when the pivot table is refreshed,
the data displays the new format.

[TH Category

ROWL cajibri ~ 11« A" 4" $ ~ % o+ [|
01-lar w0 o0
072-Jar R
03-Jan o= [Wi
n f
23 Lo
04-Jar _'j =Ry f_of_vyear
05-Jar ﬁf" Eormat Cells... Ath
06-lar] [£] Refresh nth_of year :
r
07-lar Sort »
08-lar Filter 3
09-Jar

ical & Slicers Horiz.
10-Jar| ¥ | Subtotal "Day’ ical FF] Slicers Horiz
11-Jar Expand/Collapse y
12-lar ar [Column Labé]

.

[}

vww allitebooks.conl

http://www.allitebooks.org

Getting Started with Excel

14. In the Sales table, format the columns unit_price, unit_cost, tax, and
total price as a whole numeric number by selecting the columns and choosing
Currency from the Format drop-down list.

The semantic model defines the metadata structure of the model and includes information
such as table names, column names, and data presentation formats. The model designer
interacts with the semantic model through its presentation layer in a real-time manner (note
that the model did not have to be deployed to a server), so that the changes made in the
model are immediately available to the user.

The modeling environment behaves in a What You See Is What You Get (WYSIWYG) manner
which means that any changes made to the design environment are reflected in the model
that is presented to the user.

There are two methods that the model designer can use to examine the structure of the
model. So far, we have only examined the data view. The diagram view shows all tables and
columns (including hierarchies) that are used within the model and presents them on a
design surface. This is shown in the next recipe.

Using tabular relationships to filter data

In addition to table names, column names, and data formats, a semantic model defines how
tables within a model relate to each other. This relationship is important because it defines
the output of calculations (which are defined in the model). This recipe shows how to create
relationships and the effect that these relationships have on the model.

Getting ready

This recipe assumes that the model in the recipe Managing the appearance of tables and
fields has been created.

Chapter 1

The reader should recognize that the model is designed to show sales information by
product, date, and customer. This type of modeling scenario is commonly referred to as a
star schema and is shown in the following diagram. The Sales table is referred to as a fact
table (since it stores the data facts that we wish to analyze—sales amount, tax amount, and
so on) and the other tables are referred to as dimension (subject) tables because they hold
descriptive information.

% Customers (Order) Dates

Sales

v
Products

Extending the model further, the Products table is linked to the Subcategory table, and
the Subcategory table is linked to the Category table. This is shown in the following
diagram and is sometimes called a snowflake schema, since the dimension tables are not
directly connected to the fact table:

Customers (Order) Dates

N

Sales

\ 4

Products

Subcategory Category

v
v

An important point to note, is that each dimension table has a unique identifying field,
for example, a product can be uniquely identified in the Products table through the
product_id field. This is commonly referred to as the primary key for the table.

In contrast, the referring column (product_id in the Sales table) can have many
occurrences of the product_id field and is commonly referred to as the foreign key.

Getting Started with Excel

How to do it...

Start with the workbook that was developed in the prior recipe.

1. Dragthe product Name field onto the rows of the pivot table (under the Row

Labels column) and the Sales column total price onto values. Your screen
should look like the following screenshot:

A B c D E .| PowerPivot Field List v X
; b
3 Row Labels ~ | Sum of total_price Search [2]
4 All-Purpose Bike Stand $1,622,869.42 Colour -
5 AWC Logo Cap 41,622,869.42 Product 1D
6 Bike Wash - Dissolver $1,622,869.42 v ;:;:“':t Name
7 Chain $1,622,869.42 Size Ranze
8 Classic Vest, L $1,622,869.42 = Sales
9 Classic Vest, M $1,622,863.42 order_quantity =
10 Classic Vest, S $1,622,869.42 f:(““mber |
1 Fender Set - Mountain $1,622,869.42) total_price
12 Front Brakes $1,622,869.42 unit_cost X
13 Front Derailleur $1,622,869.42
14 Half-Finger Gloves, L $1,622,869.42 1§ Slicem V... f SlicersH..
15 Half-Finger Gloves, M $1,622,869.42
16 Half-Finger Gloves, S 51,622,869.42 7 Repott Fi.. B Column
17 Hitch Rack - 4-Bike $1,622,869.42
18 HL Bottom Bracket $1,622,869.42
19 HL Crankset $1,622,869.42 4 Rowlab.. X Values
20 HL Mountain Frame - Black, 38 51,622,869.42

) Product... ™ Surnoft.. ¥

21 HL Mountain Frame - Black, 42 $1,622,869.42
22 HL Mountain Frame - Black, 46 $1,622,869.42
23 HL Mountain Frame - Silver, 38 $1,622,869.42
24 HI Mnyntain Framea - Silvar A7 ul
H 4 M Dates . Sales | Sheet1 Customers {i]4 dfmmmum”ﬁ » 1]
Ready | 73 | |[E@E 100% (0

2. Return to the PowerPivot window and select the product_id field and then click on

the Create Relationship button (in the Design tab). A new window will open asking
you to define the related (lookup) table and column.

=]

Chapter 1

| |‘4_7“ =9 - = | PowerPivat for Excel - Sales Book.dsx
Home Design
Delete e [S| == o« ¥} Undo ~
Ij_l ZTFrEEzE = 'ft D —_‘;J?J EK%I EKEI J ﬁ Redo
Add L, Insert Calculation Existing Create Manage Table Mark as
1 Width Function Options = Connections | Relationship Relationships = Properties | Date Table =
Columns Calculations 1 Relationships Edit
loroduct id] +| [cH-0234 i
5051087 3 $953.63
5051094 1 $953.63
$334.06
Create Relationship @ 4$953.63
Create a lookup relationship belween two iables $54.89
Select the tables and columns you want to use to create the relationship. $1,430.44
= 1224
$728.91
Table: Column: $72.89
Sales - product_id - $334.06
$12.14
Related Lookup Table: Related Lookup Column $334.06
| - - $953.63
$1,430.44
$953.63
Create $32.39
$54.89
5051134 1 $242.99

3. Select the Products option from the Related Lookup Table drop-down list and
Product ID from the Related Lookup Column drop-down list. The Create button
is now enabled. Click on Create.

4. Return to the pivot table and refresh the model. The values for the Sum of

total_price field have updated to reflect the total for each product.

5. Now, create relationships between the following tables and columns:

Source table Source column Related table Related column
Sales customer_id Customers Customer ID
Sales order date Dates Day
B Downloading the example code .
1 You can download the example code files for all Packt
) books you have purchased from your account at
http://www.packtpub.con. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
L files e-mailed directly to you. -

s

Getting Started with Excel

6. Inthe PowerPivot window, click on the Manage Relationships button. A new window

will open showing all the relationships that have been built in the model.

—

Manage Relationships

[—::rgt':raate] [eg Edit] [3@:3,' Delete]

(7]

Active Table
Yes | Sales [product_id]
Yes | Sales [order_date]

Related Lookup Table
Products [Product 10]
Dates [Day]

Yes | Sales [customer_id]

Customers [Customer ID]

Relationships can be created using this window. When the Create

Q

the source table and columns.

button is clicked, the same Create Relationships window opens.
However, the Create Relationships window is not populated with

7. Click on the Diagram View button in the Home menu to switch to the diagram
modeling view. Your screen will now show tables and columns (rather than data) and
look like the following screenshot. Note that previously defined relationships appear
as lines that connect tables.

[cCustomer Mame
11 Country Code
1 state Cote

T Praduct 10
1 Product Name:
A colour

H sire Range
4 <ire

[date_id
M osy
[vear
1 Month

T manth of vaar

71 subcategory_id
= subeatagoey

[produet_id
[categuey_id
=] Catagary

Chapter 1

10.

M You can also switch between the data and diagram views
Q by toggling the two buttons at the bottom-right side of the
PowerPivot application status bar.

= il
]
WD

In the pivot table, replace the Product Name field with the Category field from the
category table. The total value ($1, 662, 869.42) is repeated for all categories
indicating that there is no relationship between the sales table and Category table.

From the Products table, select the Product 1ID field, and drag it to the
product_id field of the Subcateogry table. A new relationship will be created
between Products and Subcategory. Use this method to create a relationship
between the Products table and the Category table. Refresh the pivot table to
ensure that the total value is not duplicated.

In the pivot table, drag the Product 1ID field from the Products table into the
Values pane. The pivot table will now show the price and number of products for each
category and will look like the following screenshot:

Wi~ oW p e

W e e b [
SEEEELGRERES

M4k M

Ready | P | | @& 100% (=) L) (+)

B c D E | PowerPivot Field List v X

-

E| |5§§m‘.- ‘ p|
date_id A

Row Labels| ~ | Sum of total_price Count of Product ID Day
Accessories $23,973.92 22 Half
Bikes $1,351,872.84 60 half_of_year

i Month
Clothing $43,231.61 20 manth_of_year

Components $203,791.05 95 Year
Grand Total $1,622,869.42 197 B Products L
Colour
v Product ID
Prodict Mame

m

1 Slicers Vertical :I Slicers Horizantal

“F Report Filter i Column Labels

ZWalues T

1] Row Labels 3 Values

Categony b Surnof total _price T
Count of Product 1D bl

Dates . Sales | Sheet1 . Customdi] 4 | [» 1]

Getting Started with Excel

The model has been extended to show two things. Firstly, by defining relationships between
tables within the model, we have defined the filtering path for the data. This path is used to
restrict rows between tables that have a relationship. Secondly, by adding a calculation (Sum

of total_price and Count of Product ID), we have created measures that apply an aggregation
function to the model fields. These are special types of measures within PowerPivot and are
referred to as implicit measures (because the model implicitly defines a calculation for the field).

Relationships define how one table relates to another. In order to define a relationship, the
join must occur on a field that has unique values in one of the tables (this is commonly called
a primary key). The table that has the field with unique values is commonly called the related
table. This can be seen in the diagram view, as shown in the following screenshot with the
direction of the arrows on the relationships. Consider the Products table (which has a
unique field product_id) that is related to the Sales table (through the product_id field
in that table), but only the Products table needs to have a unique product_id. Itis also
said that the product_id field relates to many records in the Sales table. This can be seen
by the direction of the arrow between Sales and Products, the related table has the arrow
pointing towards it.

Relationships are important because they define how data is filtered and calculated when it is
presented to the user.

- ’J e g S e d et e e g e T T T
H .
Il product_id

R | TP TRRPTE

=

e IS AR I s AR s

E HHl subcategory_id
1l product_id = ﬂ] Subcategory
| order_date H i
1l customer_id fH product ID =
i so Number 1 fH product Name

| nrdar nnmbar line 7 #H colour
7 size Range]
LS [product_id
ﬁ] category_id
i [category
FH date_id

Chapter 1

Relationships are the primary mechanisms with the model that are used to filter data and
perform calculations. That is, the relationship defines how data is filtered when values are
shown to the user. Although this is a new concept, the concept of relationships is important
because they have important implications with the way that the model determines what data to
show to the user. Consider the pivot table shown in the following screenshot—Subcategory on
rows and Sum of total price, Count of Product ID,and Count of category id
as measures:

A B C D E

1

p

3 Row Labels - Sum of total price Count of Product ID Count of category_id
4| Bike Racks | $12,424.20| 1 197

5 Bike Stands 1 197

6 Bottles and Cages 5362.27 3 157

T Bottom Brackets 54,397.84 3 197

8 Brakes £5,559.30 2 197

9 Caps £1,029.36 1 197

10 Chains 5850.08 1 197

11 rlasnare ¢ET7 17 1 107

Now, consider the relationship defined in the model. This is summarized in the
following screenshot:

] =

Getting Started with Excel

The rows in the pivot show the subcategory which defines a filter for each row (that is a filter
for each subcategory). This filter can then be applied to the Products table, which in turn

is applied to the sales table. It might be better to say that the rows of the Sales table are
filtered by the Products table and then those rows are filtered by the Subcategory table.
This is why the calculations Sum of total price and Count of Product ID show the
correct values. The filter on rows of the Sales table and rows of the Products table can be
applied in the direction of the arrows of the relationships.

However, this is not the case when Subcategory is shown with data from the Category
table—a filter will only be applied in the direction that a relationship is created. This is why the
calculation Count of category_ id shows the same number for each subcategory. With
the subcategory on rows, a filter is created which can filter the Products table but this filter
cannot then applied in an upstream manner to the Category table.

The application of filters may seem unintuitive at first, especially with a relationship design
such as the one among Products, Category, and Subcategory, but in reality the model
should be designed so that the filters can be applied in a single direction. There is also, the
question of unmatched values between fields used in the relationship and how they are
treated by the model. For example, what would happen if we had a product_id field in the
Sales table that did not have a match in the Products table? Would this even be allowed

in the model? The tabular model handles this situation very elegantly. The model allows this
situation (without error), and unmatched values are assigned to a blank placeholder. For
example, if there was a product in the Sales table and no product in the Products table, it
would be shown as blank when Products, Category, Or Subcategory is used in the pivot.

We have also indicated that the model automatically created implicit measures. The term
measure is common in business intelligence tools to specify that a calculated value is returned.
Often, this can be a simple calculation, for example, the count of rows or the sum of a field.

The important thing to remember is that measure is a single value that is returned from the
model (when the model is filtered). Usually, measures are defined by a model designer, but
they need not be. This is the case with an implicit measure. An implicit measure is defined
automatically, depending on the data type of the column that is being used. Numeric columns
are automatically summed, whereas text columns are automatically counted.

There's more...

The aggregation function of an implicit measure is initially set by the underlying data type.
However, the user can change this within the pivot table by editing the measure in the pivot
table. This can be done in the following manner:

1. Alter the pivot table so that it shows subcategory on rows and total profit as
values. By default, the measure will show Sum of total profit. Right-click on
the measure and select Edit Measure... from the pop-up window.

=]

A B e D | PowerPivot Field List v X
B |Seam‘1 |p|
= Customers 1
Row Labels ~ | Sum of total_profit [Country Code Mave Up
Bike Racks $9,996.10 [} Customer 1D Move Down
Bottles and Cages 5277.30 O Customer Nam Move to Beginning
]] State Code
Bottom Brackets $2,3En}'.8?_ Dates Move to End
Brakes $3,033.97 —| = Products : :
Caps $719.56 [Category “F Moveto Report Filter
Chains $530.45 [] Colour i Movete Slicers Horizontal
Cleaners $456.66 E g:sgﬁi :\JDan'lE t# Move to Slicers Vertical
Cranksets $9,774.13 I S J] Move to Row Labels
Derailleurs $4,348.90 18] Slicers Vertical] Mowveto Column Labels
Glaves $1,598.39 E Moveto Values
Handlebars $1,584.02 I)
Helmets $5,497.63 7 Report Filter Summarize By
Hydration Packs 53,006.24 X Remove Field
Jerseys $14,104.38 7 Row Labels (D5 Edit Measure...
Mountain Bikes $70,430.09
) Subcategory bt Surn oftotal _profit ™
Mountain Frames $16,737.40
Pedals $1,035.20
Road Bikes -5412.44 -
W » | Product List Product gi] 4 [» 1]

2. A new window will open, displaying the aggregation function with the measure. Select
Average from the function list and change the measure name to Average Profit.

The Measure Settings window should look like the following screenshot:

Table Mame:
Source Name:

Custom Name:

Measure Settings

Sales

total_profit

7 =]

Pverage Profi|

Choose how you want the selected field to be aggregated:

Sum
Court
Min
Man:

Average

Measure will use this formula:
=AVERAGE(Sales ftotal_profit])

m | w

1

| oK

J [cancel]

Chapter 1

e

Getting Started with Excel

3. Also, notice that a formula is used to define the measure, for Average Profit, the
formula is =AVERAGE ('Sales' [total profit]). Click on the OK button and note
that the pivot table now contains the new measure Average Profit.

Implicit measures that have been created in the model can be seen by exposing the measures
in the Advanced tab of the PowerPivot window (the Advanced tab must be activated). This is
shown in the following screenshot:

2| |z| = = | PowerPivot for Excel - Sales Book.xlsx
Home Design Advanced
g = N BE =E= 1
ﬁ ErTeh l ELE “ld ImagelURL
Perspectives | |Show Implicit| | Summarize Default Table
Measures By Field Set Behavior
Reporting Propertias
L]
[<Default> v| [Reset Layout E
L
l Hi
] o (&E][=] 7 product_id
. —
1l product_id 2 Colour ‘ 1| subcategory_id
- order_date - £l size Range 7| subcategory
-l customer_id b [sie ::
1 so Number fH Product Name WC - i
| order_number_line £ category) product_id
order_guantity - £ subcategory - | category_id
—r | Category
’ o
. L!

Adding fields to tables

The model designer is often required to add additional fields to tables, so that the information
presented to the user is better suited for decision-making purposes. This can include creating
new fields that are combinations of other fields within the same table or a calculation that is
dependent on data in another table. This recipe looks at the first of these options to create
new fields that use other fields within the same table.

Getting ready

The model used in this recipe starts with the model that was created in the previous recipe
Using tabular relationships to filter data.

=]

Chapter 1

How to do it...

1. Switch to the data view in the PowerPivot window and select the Products table.
Select the Colour column by right-clicking on the column header and selecting
Insert Column from the pop-up menu (note that the entire column must be selected).
The new column is inserted to the left of the Colour column. Change the name of
the CalculatedColumnl to Product Name WC (product name with code).

(4]~ | CalculatedColumnl |~ > & >
FR-R92B-58 HL Road Frame - Black, 58 | | Black 54-58 CM 58
FR-R92R-58 HL Road Frame - Red, 58 Red 54-58 CM 58
HL-U509-R Sport-100 Helmet, Red Red NA NA
HL-U509 Sport-100 Helmet, Black Black NA NA
HL-U509-B Sport-100 Helmet, Blue Blue NA NA
CA-1098 AWC Logo Cap Muld NA NA
L-0192-5 Long-Sleeve Logo Jersey, S Multi 5 S

2. Enter the following formula into any cell of the new column.
=[Product Name]&" (" & [Product ID] & ")"

All rows of the table will be automatically populated.

3. Switch to the Sales table. Double-click on the header row of the last column
(the current header is Add Column) and change the name of the column to
total profit. Enterthe following formula into any cell of the Profit column
with the format of the column as currency.

=[total price]-[unit_cost]-[tax]

The designer has two built-in functions that enable the easy

creation of formulas. If the formula is being typed, an intellisense

window will open in the formula bar, and show a list of objects

~ that match what is being typed. Simply navigate to the desired
column (or cell in the measure grid) and start typing, then press
return to use the provided intellisense option (you can use arrow
keys to select a function, table and column). Alternatively, a
column or table name can be included in the formula by clicking
on the column or table while the formula is being typed.

This recipe introduces Data Analysis Expressions (DAX) as the language that is used in
tabular modeling. From this recipe, we can see that the DAX language is very similar to an
Excel calculation (there are some noticeable differences which are addressed in chapters).
Also, note that in DAX, columns are referred to instead of cells. Furthermore, many Excel
functions work exactly the same in DAX as they do in Excel.

s

Getting Started with Excel

In calculating the value for each row, a special filter is applied in the calculation. In these
examples where the fields being used in the formula reside on a single row, the filter
automatically restricts the value to that of the row. The application of filtering in this manner
is commonly referred to as a row filter or a row filter context.

Linking fields between tables

There may be a requirement to create fields in a table that contain data from a separate table.
In Excel, this would usually be achieved with a VLLOOKUP function.

The sales model that has been developed in this chapter contains three tables which define
Products, Subcategory, and Category. When the user browses the model in a pivot
table, each of these tables appear as tables in the PowerPivot Field List pane. However, in
this model, the category and subcategory directly relate to the product and it is our intent to
show these fields in the Products table.

Getting ready

This recipe assumes that the sales model created in the Adding fields to tables recipe is
available and that the appropriate relationships exist among the Product, Subcategory,
and Category tables.

How to do it...

Start by opening the PowerPivot window and then perform the following steps:

1. Switch to the data view and create two new columns in the Products table titled
Category and Subcategory. In the Category column enter the following formula:

=RELATED (Category [Category])

2. Inthe Subcategory column enter the following formula:

=LOOKUPVALUE
(Subcategory [Subcategory]
, Subcategory[product_id], Products [Product ID]

1
~ Formulas can be multiline (just like in Excel). To move to
the next line when typing simply press Alt + Enter.

Hide the Subcategory and Category tables in the model by right-clicking on the tables tab
and selecting Hide from Client Tools from the pop-up menu. Note that the hidden tables are
still visible in the data view and diagram view, although they are now more transparent.

NED

Chapter 1

These two formulas achieve the same result but in different ways.

The related function returns the specified column, based on the relationship within the
data model. This can span more than one table (for example, a related table to the Category
table could be referenced from the Products table), however, a relationship must be defined
between all the linking tables that are spanned by the formula. Furthermore, because the
formula relies on these relationships (that is, those defined within the model), the formula will
not result in an error since the model enforces the integrity defined by model relationships.

The LOOKUPVALUE function is quite different from the related function because it does not
utilize or rely on a relationship within the model. That is, LOOKUPVALUE would still return the
same results had the relationship not be defined between the Products and Subcategory
tables. Furthermore, the LOOKUPVALUE function can use multiple columns as its reference
(to lookup) which may be beneficial when a desired value in another table cannot be related
to the source data through a single field. Note that relationships can only be defined on single
columns. However, unlike the RELATED function, the LOOKUPVALUE function may return an
error when more than one match can be found in the lookup table.

Both formulas return results by creating a row context filter for each row in the source table.

It is considered best to utilize the relationship wherever possible. Therefore, the use of the
RELATED function is preferred over the LOOKUPVALUE function. Furthermore, the RELATED
function makes the model simpler for others to understand. However, the LOOKUPVALUE
function does have some benefits. It allows the value to be determined, based on multiple
search conditions. The syntax for LOOKUPVALUE is defined as:

LOOKUPVALUE (<result columnName>
, <search columnName>, <search value>
[, <search columnName>, <search values]

..)

Here, a result columnName column is returned from a target table where search
conditions are satisfied. These conditions are defined by a search columnName parameter
and a search_value parameter. This means that we specify the column (in the lookup table)
and the value that should be searched for—this is the field in the current table.

Getting Started with Excel

Creating model calculations

The sales model that has been developed in this chapter allows the user to interrogate data
from the order list by products, customers, and dates. In doing so, the user can create an
implicit measure so that the underlying data is aggregated according to the current filter
context. The aggregation function of implicit measures is determined by the underlying data
type of the column that is used for the measure. This method offers the user the ability

to create and show simple calculations from the model data. However, it does not create

a robust model because the calculations aren't readily selectable by the user and the
calculation definition is not conformed within the model.

This recipe introduces calculations which are contained within the model and presented to
the user as measures. DAX (the tabular model language introduced in Adding fields to tables
recipe) is used to define measures, so that it can explicitly use these measures in the model.
Furthermore, the ability to create measures through a complex DAX allows the model designer
a larger degree of flexibility than is involved with implicit measures.

Getting ready

This recipe assumes that the sales model created in Linking fields between tables recipe is
available and that the appropriate relationships exist among the Product, Subcategory,
and Category tables.

By default, a table in Data View will have a horizontal line that does not show any data. This
is referred to as the calculation area. If this is not visible, ensure that the Calculation Area
button is selected in the Home menu.

B - = | PowerPivot for Excel - Sales Bookadsx = e
Home Design @
FEEEIDEEa e ===
- = Lal E Format : 2 ’ ¥ = Create KPI 4
Paste From From FromAzure — Refresh | PivotTable Cle Sort by Data |Diagram | Show |Calculation
| | Database~ Report DataMarket - $ % 9 Gl S| alumn View | View |Hidden| Area
a Get External Data Formatting So iiter leasures iew ﬂ,_
[unit_cost] .l £ ‘ / |;
- 3~ - - - v ’f- -
5051087 3 $953.63 $1,481.¢
5051094 1 $953.63 $1,481.¢
5051094 1 $334.06 $461.¢
S051094 2 $953.63 $1,481.¢
5051094 1 $54.89 $40.€
5051094 1 $1,430.44 $1,481.¢
5051094 1 $12.14 $8.¢
5051094 2 $728.91 $755.1
5051134 3 $72.89 $53.
5051134 1 $334.06 $461.
5051134 1 $12.14 $8.
1111111 a2 @224 N6 P T
Calculation Area —
£ .. = -2 "I. = 4
[Products [subcategory | catezory | customers | ates | sates |
Record: M4 4 10of 1,713 PoH 'Ejm.ﬁ‘

=

Chapter 1

How to do it...

There are many ways to create simple measures. Let's start with the automatic creation
of measures.

1.

Select any cell in the order guantity field. Then, from the ribbon, select the
SUM function from the AutoSum drop-down. A new calculation will be created in
the calculation area as:

Sum of order quantity:=SUM([order quantity])

In the formula bar, select the name of the measure (Sum of order gquantity)and
rename itto Total Order Quantity. The calculation should now look like this:
Total Order Quantity:=SUM([order quantity])

84 .

. Clear All Sort by
#7) Filters Column~ Average

Sum

Sort and Filter Count

Distinct Count

'~ order, Max
Min

B S SR T e

Right-click on the calculation, select Format Cells... from the pop-up menu, and
specify the format as a number format—(decimal number) with zero decimal places
and click on the User 1000 separator (,) checkbox.

Select this group of columns: unit_cost, tax, total price, and total profit,
by selecting the unit_cost column and dragging the mouse across to the
total profit column.

Click on the AutoSum button to create your calculations for these columns.

Rename the measures to Total Cost, Total Tax, Total Price, and Total
Profit respectively with the same format as Total Order Quantity. Note that
the format of the number is inherited as currency.

Select the cell in the calculation area under the unit price column and type
the formula:

Average Price:=AVERAGE ([unit price])

s

Getting Started with Excel

Intellisence provides a list of formulas available (based on the expression that is
entered) and a description of the function, as shown in the following screenshot:

Average Price::AVERAGl
[~ o) Ik

;f_'r_] .&VEHAGE.&.MS?
Je) AWVERASGEY naa

| Retums the average (arthmetic mean) of all the numbers in a column |

8. Hide the following fields of the Sales table: order quantity, unit price, tax,
total price,and total profit.

9. Return to the PowerPivot Field List pane (in Excel) and refresh the model. Existing
implicit calculations that were based on existing fields are removed from the model
and the Sales table now includes the additional measures which were created.
These measures can now be placed in the pivot tables (value) field list.

sl .) . .
‘Q Explicit measure cannot be used in a slicer, filter, or as

row or column labels.

PowerPivot Field List - X
|,5¢=.§.-w'? | o |

Customers

Dates

Products

El Sales
30 Number
Average Price |2
Total Cost |55
Total Order Quantity ()
Total Price (&)
Total Profit [ZF
Total Tax (&)

Chapter 1

Measures that are created in the calculation area operate in the same manner as implicit
measures. That is, the aggregation function is applied to the filtered data specified by the
row and filter context within the client tool.

Because the measures are explicitly defined in the model they are called explicit measures
and interpreted by the client tool as measures (many client tools detect an explicit measure as
a special type of field and treat it differently than a table's standard field or dimension field).

There's more...

By default, the tabular model created in PowerPivot will display the model through a
PowerPivot pivot table. This shows the model in its tabular form where measures and columns
are shown with respect to the tables that they relate to. For example, the measures created

in the Creating model calculations recipe appear under the Sales table node. In order to
compare this (tabular) view with that of a traditional OLAP client, simply do the following:

1. Ensure that a cell within the pivot table is selected.

2. Activate PivotTable Field List by clicking on the Field List button from the Options
tab of the PivotTable Tools menu.

Options | Design

s B B
%= 2
ms, PivotChart OLAP What Field

= Tools = Anal List
Tools

s

Getting Started with Excel

3. The PivotTable Field List window opens, which shows the tabular model in the

multidimensional (client) format.

PowerPivot Field List - A
Searnh |p|

[+

Customers

Dates

Products

E Sales
30 Number
Ayerage Price |5
Total Cost (5
Total Order Quantity (5
Total Price (5
Total Profit (55

vl Total Tax (&

1] Slicers Vertical :j Slicers Horizontal

“ Report Filter

5 Column Labels

{] Row Labels

Subcategony -

= Values

Total Tax -

PivotTable Field List

Show fields related to:

|a
= X Sales
["|Average Price

[|Total Cest
[|Total Order Quantity
[|Total Price
[|Total Profit
[V| Total Tax

| j Customers
H j Dates
[Products

] j Sales

E‘ W ReportFilter

 column Labels

1 Row Labels
Subcategory

X Values
Total Tax

DDE... Updat

o]
m

The client tool (PivotTable Field List) shows the model in a different format and represents

how a client tool interpretation of the model would be shown. Here, the measures are shown

in measure groups and are not included as table objects.

NEQ

Importing Data

In this chapter we will cover ways to import data from different types of data sources.
This includes:

» Importing data as text
» Importing data from databases
» Managing connections and tables

» Using data feeds

Introduction

Prior to the introduction of tabular modeling, which is now commonly known as Business
Intelligence Semantic Models (BISM), Microsoft relied on its multidimensional storage
model (MOLAP) for Analysis Services (analytical) database. In fact, multidimensional refers to
a method of storage, which is still a viable option for enterprise business intelligence through
SQL Server Analysis Services (SSAS). The term BISM is not unique to tabular modeling—it
also relates to the semantic abstraction of a data model within the MOLAP engine. However,
whenever BISM is discussed, it usually relates to tabular modeling (whether that be in
PowerPivot or SSAS with a tabular storage mode). The storage engine for tabular modeling is
also referred to as xVelocity.

Unlike the xVelocity engine of tabular models, the multidimensional model was basically
designed to use a relational source (preferably a SQL Server) as its data source. Additionally,
the multidimensional engine assumed that data would be provided through a relational and
conformed data structure.

[vww allitebooks.cond

http://www.allitebooks.org

Importing Data

In contrast to this requirement for a single source of data, tabular modeling is designed to
support many different data sources which can then be combined in the model as a part of
the modeling process. This offers the modeler the ability to combine multiple forms of data
within a model, and therefore provides a richer modeling experience. By including additional
data sources, model development time can also be greatly reduced, because there is no
requirement to source the data from a traditional data mart (or data warehouse).

This chapter examines importing of data from various sources, and managing that data once
it has been imported.

The previously discussed statement is not meant to imply
that highly optimized models do not require well-structured
and conformed databases—they may, when processing times
»and calculations do not perform satisfactorily. However, one

%\ of the benefits of tabular modeling is the ability to apply it at
many different levels within an organization. A departmental
or subject area solution may be built from an OLTP database,
with some information coming from text files, spreadsheets,
and other non-traditional (and non-enterprise) sources.

Although there are many data sources available for import (including many different relational
database engines), this chapter focuses on some of the more ad hoc ones used by analysts,
including text files, reports from reporting services, and data feeds. We also examine how the
connection to the database can be managed once it has been created in the tabular model.

Importing data as text

Tabular modeling natively supports the import of files with extensions of text (. txt), comma
separated values (. csv), and tab separated values (. tab). Once a file to import has been
defined, the user can specify the delimiter (column separator), and the importing interface
scans the file to estimate the underlying data types for each column. Finally, the interface
finishes the import process by loading the data according to this specification.

NED

Chapter 2

Getting ready

A text file to simulate the output file for the sales record header has been created and is
available from the online resources for this chapter. This file includes the sales order id,
customer_ id, employee id, currency id, customer po id, sales territory id,
order_dt (order date), due dt (due date), ship dt (ship date), and sales amount fields.

The file will be imported as a table into PowerPivot (and the tabular model). A screenshot of
the file is shown as follows:

Z2 B5OT1774,AW00000609,191644724,05D, PO348186287,4,01-06-2008,10-0
3 BOT177%,AW0000014%,502097814,U05D,PO19633118218,3,01-06-2008,10
4 5071783,mW00000024,191644724,U5D, F01593431136059,4,01-06-2008,10
5 5OT1787,AW00000508,139397894,05D, PO18038111279,4,01-06-2008,10
& 50T71794,AW00000678,668991357,CAD, PO1T7574111985,6,01-06-2008,10

I B |

10 ES? SOG,AWOOOOOQOS,23%4?4252,CAD,P014?61198 2,6,01-06-2008

sales_arder_id,custamer_id,emplayee_id,currency_id,custamer_pa”

5071756, AW00000420,1591644724,U5D, PO1705215%664,4,01-06-2008,10
50717987, AW00000142,35959771412, GBF, PO16501134889, 10, 01-06-2008,
5071807 ,AW00000443, 668991357, CAD, PO14935135211,6,01-06-2008,10

R o s

How to do It...

Most data imports can be managed from the PowerPivot window:

1.

2.
3.
4

Launch the PowerPivot window.
In the Home tab, click on the From Text button from the Get External Data grouping.
Call the Ssales Header TXT connection.

Ensure that the file type Comma Separated Files (. csv) is selected from the
drop-down box.

Navigate to the resources listed in Chapter 2, Importing Data and select the
02_master.csv file.

Click on Open.

A new window will open showing the file structure. Ensure that Comma (,) is selected
from the Column Separator drop-down list, and that the Use first row as column
headers checkbox is ticked.

s

Importing Data

8. Confirm the import by clicking on Finish, as shown in the following screenshot:

Table Impert Wizard LB)

Connect to Flat File
Enter the information required to get data from flat files.

Friendly connection name: Text 02_master

File Path: 3o\ Book \DBE4EN\00B4EN_012_code\02_master csv

Column Separator: [Comma () v] Advanced

Use first row as column headers

V| ¥ sales_order_id | 14 v [V * [V ~
5071774 AWO00000609 191644724 USL =
SO71779 AW00000149 502097814 USL
5071783 AWO00000024 191644724 USL
SQ71787 AW00000509 139397894 USL
5071754 AWO00000673 668991357 CAL
S071796 AW00000420 191644724 USL
SQ71797 AWO00000142 399771412 GBF
SQ71807 AW00000443 668991357 CAIL
5071808 AWO00000408 234474252 CAIL
5071809 AWO00000483 758596752 AUI il

o4 e T— et ﬂ;'

Clear Row Filters

< Back Mext = Finish l [Cancel]

9. The data will load (click on Close to exit the Table Import Wizard window).

The Table Import Wizard displays the data that will be imported
in columns and rows. Generally, it may be said that this grid
is shared across all types of imports. You can choose not to
import a particular column by deselecting the column from the
Ql header field selection (note that in the preceding screenshot,
all columns are selected). Additionally, the amount of data
to be imported can be filtered by selecting the drop-down
arrow next to a field and applying a filter through the graphical
interface. It is considered best practice to import only those
columns which are needed in the model, because the extra
columns or rows will increase the size of the model.

=)

Chapter 2

Once the file name has been provided, the Table Import Wizard window uses a text driver to
scan the first 200 rows of the file and determine the data type of each column. The text driver
then uses this definition to import all the data for the file. The columns order dt, due_ dt,
and ship_dt have been defined as dates, even though the file did not explicitly specify a date
type (after all it is text).

Once the wizard has determined the data types for columns, it will use these types for the
entire load. This may create issues where the value within the file does not conform to the
data type specifications. In such a situation, the specific value will be discarded from the load.
The row will be imported even if all the values are discarded. This type of situation can occur
when a numeric value is expected, and a text value is found in the file, or the expected date
format for the import cannot be derived from the underlying date value. For example, when
the column format is DD-MM-YY, and the value follows the format MM-DD-YY.

The wizard can be defined for different delimiters. Tab, Comma, Semicolon, Space, Colon, and
Vertical Bar (Pipe) are supported. This is regardless of the file extension (so you could import
a . csv file with a Tab delimiter). However, the importer only allows you to import files that
have extensions of .csv, .tab, or . txt. Additionally, you can specify if the first row of the file
contains headings (and these are also imported).

There's more...

Although you can specify standard delimiters, the file may contain an unsupported character
as its delimiter, and the data format chosen by the wizard may simply be the wrong type for the
file. To overcome these issues (or the issues they may create), the text driver defaults (which
are defined by the Wizard) can be overridden, so that the input file can be fully defined as

load time. This is done by using a defining file titled schema . ini. This file needs to be saved

in the same location as the file being imported. This offers the modeler full control over the
specification of the import file. Consider the previous text import file with the following changes;

» The delimiter is now a tilde (~)

» The date format is MM-DD-YYYY (note that the local for the machine used in this book
specified DD-MM-YYYY)

Importing Data

Repeat the recipe using the 02_master_ tilde.csv file ensuring that the schema. ini file
exists in the same directory. When the Wizard loads, an information box at the bottom of the
window will indicate the presence of a schema . ini file, and this file will be used to specify
import settings, as shown in the following screenshot:

,_ﬂ, A Schema ini file has been detected in the cument import falder "CA\Users Paul®Dropbox®.Book:
WOBB4END0B4EN_02_code”. Settings from this file will ovemide your cument import settings.

The schema . ini file is a text file and can therefore be examined in notepad—a sample of our
file is shown in the next screenshot. In order for it to be used, it must reside in the same folder
as the file(s) being imported. The following are some universal notes about the structure of
the file that should be mentioned:

» The name of the file for which the schema is to be applied is specified as the first
line. Note that the import is specified for a 02 _master tilde.csv file

» The date format is specified (see the row DateTimeFormat) and is applied to
each date field

» The delimiter is specified as a tilde

» Each column (by number) can specify a name different from the file's header row

[02 master tilde.csv]
ColNameHeader=True
Format=Delimited (~)
DateTimeFormat=MM-DD-YYYY
MaxS5canRows=0

Coll=sales order id Text
Col2=customer id Text
Col3=employee_ id Text
Col4=currency id Integer
Coli=customer po_ id Text
Colé=sales territory id Integer
Col7=prder dt DateTime
Colg8=due dt DateTime
Col3=ship dt DateTime
CollO==sales amount Double

Chapter 2

Naturally, there can only be one schema. ini file in a directory. However, the same file can
be used to specify the format of individual files. This is achieved by simply extending the next
specification with the name of the file, as has been done for 02 master tilde.csv.

Further information about the format of the schema . ini file
% can be found at http://msdn.microsoft.com/en-us/
e library/windows/desktop/ms709353 (v=vs.85) .aspx.

Importing data from databases

Although tabular models support the import of data from a variety of sources, a relational
database is still considered to be one of the primary methods of obtaining data. Unlike other
sources (such as text files), where the structure may change from time to time, the data
from a database is preferred because it conforms to a schema which is expected to remain
constant. Furthermore, most operational systems store their data in a relational database
format, and therefore, the database becomes a suitable source of data.

Tabular models may extract relational data through a generic connection on the machine, for
example, Open DataBase Connectivity (ODBC), which is a standard method of data access,
or by a connection based on a native driver (specific driver) stored in the model.

W An ODBC connection also stores a connection within the
~ model. However, the actual connection to the database is
Q managed by the ODBC connection on the machine (rather
than the tabular model).

Wherever possible, the native driver should be used, since the driver supports the underlying
Database Management System (DBMS) rather than the generic ODBC standard.

This recipe extracts data from a SQL Server database.

Importing Data

Getting ready

This recipe simulates the loading of the sales data from an operational database, commonly

referred to as Online Transactional Processing (OLTP), based on the following schema:

et - - et gt

currency (chap2
¥ currency_id

currency

i

e e T e
1

Y

{
¢
L
i

:

;; customer (chap2)
Y| % customer_id
.< title
< .

F first_name

¢

(; last_name

{ birth_date

‘>’ marital_status
,} gender

;_;’ education
< occupation
H

h

]

¢

¢

5,

§

¢

i

L

H

II

4

;

f

sales_header (ch sales_detail (chap2)
¥ so_number product_id
custemer_id % so_number
territory._id % order_line
currency_id e=sl quantity
order_date unit_price
due d_ate extended_amount
shipidate standard_cost_amount
sales_amount
tax_amount
freight_amount
0
territory (chap2)
? teritory_id -
region |E|
country il
Qe

products (chap2)

% product_id
subcategory_id
product_name
colour
safety_stock
reorder_point
price
size
size_range
EndDate

Status

§

products_subcategory
¥ subcategory_id

subcategory_name

category_id
¢
products_category
¥ category_id

category_name

N \".““"‘"M._AT_AW\ A PP A g s I s e s BB, B g et g

This schema implements a standard invoicing structure where a header record (sales_header)
contains generic information about the sale, and the detailed records (found in sales detail)
collect the line items for the sales. The database implements foreign key constraints to enforce

referential integrity.

=

Chapter 2

Our goal for the recipe is to only import all sales (and related information) that occurred in
Australian dollars. Australian dollar sales are determined by currency id of AUD in the

sales_header table.

How to do It...

In order to complete this recipe, the (SQL Server) database should be restored. The
information on how to do this is available from the online resources with instructions in the
Appendix, Installing PowerPivot and Sample Databases. Once this has been completed, we

start from the PowerPivot window.

1. Open a new workbook and launch the PowerPivot window.

2. Inthe Home tab, select From SQL Server from the From Database drop-down list in
the Get External Data group, as shown in the following screenshot:

Home Design

= Paste Append

J I Paste Replace

Paste
53 Copy

Clipboard

e

From From From Azure
Database = Report DataMarket | From Other

"!:"'L, E3 From Data R

-]

ﬂ From Text

L__j From QL Server
[A] From Access

[:a From Analysis Services or PowerPivot

3. The Table Import Wizard window opens to create a new connection within the model.
Populate the wizard's options with the following values:

Server name

Database name

Friendly connection name

the name of your server
tabular modelling

Sales Data - SQL

=]

Importing Data

u To help with the selection of Servers of Databases, the drop-down
Ny boxes can be used. However, while selecting a server, the response
Q of the dropdown may be slow, as all available servers on the
network are polled.

Table Import Wizard @

Connect to a Microsoft SQL Server Database
Enter the information reguired to connect to the Microsoft SAL Server database.

Friendly connection name: Sales Data - SQL
Server name: MERCURY\SQL2012
Log on to the server
@ Use Windows Authentication
) Use 50QL Server Authentication

|lser name:

Password:

Diatabase name: tabular_modelling -

Advanced I ITest Connection

4. Ensure that you can create a connection to the database by clicking on the
Test Connection button (a message box should return with the message
Test Connection Succeeded).

Chapter 2

While connecting to a SQL Server, we have two authentication

methods to choose from (Windows or a SQL Server). Windows

authentication requires your user account to have access to

=~ the database (since the database is restored from the online
resources, we assume that you have the appropriate permissions),
whereas a SQL Server authentication requires a SQL Account (an
account on a SQL Server with its own username and password).
The preferred method of authentication is always Windows.

5. Click on the Next button to specify how to define the data that will be imported.
Ensure that the Select from a list of tables and views to choose the data to import
radio button is selected and click on Next.

6. Activate the sales_detail field from the Chap2 schema table by checking the
checkbox for the sales detail table. Rename the table to Sales Detail by
changing the name in the Friendly Name column.

7. Withthe sales detail table row still selected, click on the Select Related Tables
button. This will check the products and sales header tables. Rename these
tables to Products and Sales Header.

] Source Table Schema Friendhy Name Fitter Details
13 | cumency chapd

713 | customer chap?

13 | dates chap2

O | products chap2 Products

|:| .j products_categony chap2

products_subcategony chap?

1o E R P R T S I

AR sales_header chap2 Sales Header
R temitary chap

8. Ensure that the sales header table row is active (the active row is dark blue)
and click on the Preview & Filter button. A new window will open, which shows the
available columns and filters on the table (as a grid). A column can be removed from
the import by deselecting it.

@1

Importing Data

9. Restrict the sales header table to import only AUD sales by selecting the AUD
currency_id from the column's drop-down box and clicking on the OK button.

Table Import Wizard e=
Preview Selecisd Table

Use the checkbax to select specific columns. To filter the data in a column, use the drop-down arrow fior the column to select values that
shauld be incliuded

Table Name: sales_header

[7] ¥ so_number [~ |9 d__ B territory id & order_date K| due_dafia
| 5046676 AWOD0018047 | 5| sortAto? 07/2006 12:00:0... 13/07/2006

SO46677 AWD001S460 | £| sortZtoA 1/07/2006 12:00:0... 13/07/2006 =
| 5046679 AWD00013062 | ClearSort From "currency_id” 1/07/2006 12:00:0... 13/07/2006
| 5046680 awooo11s3 | L S—— 1/07/2006 12:00:0... 13/07/2006

SO46681 AW00012349 - 1/07/2006 12:00:0... 13/07/2006
| | so4s682 AW00012355 Text Filters * || 1/07/2006 12:00:0... 13/07/2006
I 5046683 AWO00012571 [(select All) 7 || 1/07/2006 12:00:0... 13/07/2006

S046684 AWD0018125 ¥ AUD 2/07/2006 12:00:0... 14/07/2006
| soas6ss AWD0012947 [1 CAD 2/07/2006 12:00:0... 14/07/2006
.| 5046687 AWD0015457 |1 GBP 3/07/2006 12:00:0... 15/07/2006
1 5046693 AWD0013210 |0 usD 3/07/2006 12:00:0... 15/07/2006
I soas694 AWD0013220 3/07/2006 12:00:0... 15/07/2006
| 5046695 AW00020208 ! - ~ || 3/07/2006 12:00:0... 15/07/2006
y e] |5 =

:_C_Io-r Raw Fi:Es_' | ok][Concel |

10. Click on OK to return to the Select Tables and Views dialog box of the Table Import
Wizard window.

11. Click on the Finish button to import the data, and then on Clese to exit the Table
Import Wizard window.

12. Switch to Diagram View to confirm that relationships have been created between the
Sales Detail, Products and Sales Header tables.

13. Create a pivot table which shows currency id from the Sales Header table on
rows and (the implicit measure) Sum of quantity as values.

Row Labels | = | Sum of quantity

AUD 11886
45274
Grand Total 57160

Chapter 2

The Table Import Wizard window does two things each time it is invoked. Firstly, it creates a
connection (which is a definition) within the model to define how the database is connected.
Secondly, it creates a table definition for each table that was defined by the Wizard.

We can see that there are two distinct steps. However, since the first step in this process
creates a connection when the Wizard is invoked again, and the same connection name is
used, an error will be shown. This is because each connection name must be unique. We
can demonstrate this by trying to reproduce the steps in this recipe (in the same workbook).
Before the Table Import Wizard window allows you to select available tables from the
connection, the Wizard will prompt you with a message that a data source with the same
name already exists (and a different name must be specified in order to continue).

a A data source connection with the name: "Sales Data - SQL" already exists. Use another name.

The Select Tables and Views window of the import allows you to define the table name within
the model (note that the table will be called Friendly Name within the model) and filter the
data that will be imported. Further, by using the Select Related Tables button, the Wizard

will include any table that has a foreign key relationship with the selected table. This can be a
very useful feature; however, one potential downside of relying on the Select Related Tables
button for the identification of related objects is that the functionality is non-recursive, and

it will apply only to the immediately selected object. This means that the related tables will
not be identified. A generic ODBC driver does not allow for the recognition of relationships
between tables.

The Preview Selected Table window allows you to define new column names and filter the
data that is imported for a specific table. However, when a filter is applied to a table, the
filter is only applied on the table that is imported—it is not applied to tables related to the
table being imported. This means that the data in a table that is related to a filtered table
is not filtered simply because its related table is filtered. This is the reason why the pivot of
currency_idincludes a blank row.

B Tabular models do not allow as much flexibility for defining .
missing data as multidimensional models do. If the data
in one table is missing from another, a missing value

. (a blank) is substituted into the other table. Unlike the

% multidimensional model, the label cannot be changed.

A

In contrast, there is no requirement to explicitly define error
handling in tabular modeling. All the data is imported into

the model (regardless of any requirement for a related value

L in another table). -

@]

Importing Data

The connections that have been created in the tabular model can be seen by clicking on the
Existing Connections button in the Design tab. All connections that exist in the model will be
shown under the Power Pivot Data Connections group.

Existing Connections -7 [

Select an Existing Connechion
Select a connection to a data source that contains the data that you want to import.

Select a data source connection:

" SalesData-50L

— — . —~ - E - oo = .
Data Source = MERCU 202; Initial Catalog = tabular_modeling

Managing connections and tables

The goal of the model designer should be to produce succinct models that are easily
maintainable. This implies the re-use of objects (and structures) wherever possible. We have
seen that it is relatively easy to import data into the model; however, the designer should also
think about the maintenance of the model in the future. This recipe looks at how an existing
model can be extended by adding additional data, and how a table can be altered once inside
the model. This recipe is motivated by the maintenance of an existing table—that is, how do

we change the import of a table which has already been specified? Additionally, as a point of
practice, the modeler should re-use an existing connection that has been created, rather than
create additional connections by continually importing tables using the same database settings.

SNED

Chapter 2

Getting ready

This recipe uses the model that has been created in the prior recipe Importing data
from databases.

How to do it...

1.

Open the workbook that was developed in the recipe Importing data from databases,
and launch the PowerPivot window.

In the Design tab, click on the Existing Connections button to show the connections
in the model.

Double-click on the connection Sales Data - SQL, ensure that the Select from a list
of tables and views to choose the data to import radio button is selected, and click
on Next.

1
~ You can also invoke the Table Import Wizard window by
clicking on the Open button when the connection is selected.

Select the sales _header table by checking the checkbox next to the table name
and click on the Select Related Tables button to select all tables that relate to the
sales header table.

Deselect the sales_detail table and click on the Finish button to import the
remaining tables.

Click on the Close button to close the Table Import Wizard window.

Switch to Diagram View to ensure that relationships have been created between the
sales header, territory, currency, and customer tables.

Create a relationship between the sales header and Sales Detail tables,
and delete the sales Header table that was created in the recipe Importing data
from databases.

It is not necessary to correctly identify the source and related tables
\ while defining a relationship. The model makes an estimation about
~ which table is the reference table based on the cardinality of data
Q in both the tables. While defining relationships in the Diagram
View, PowerPivot will correct an invalid relationship (one which
points in the wrong direction) based on this inference.

i

Importing Data

10.

The currency table shows the currency ID in the currency name (as shown in the
next screenshot). As the designer, we would like to suffix the currency id field to the
name, so that it includes the code within the name. For example, the name Emirati
Dirham should appear as Emirati Dirham (AED). While we could create a formula

for this within the model (see the Adding fields to tables recipe in Chapter 1, Getting
Started with Excel), we want the model to be succinct and only show a single name.

In order to do this, we can change the underlying table definition to include a custom
calculation. Prior to the change, the table looks as shown in the following screenshot:

currenc... o[-

AED Emirati Dirham

AFA Afghani

ALL Lek

AMD Armenian Dram

ANG Metherlands Antillian Guilder
AOA Kwanza

ARS Argentine Peso

o L

Select the currency table and click on the Table Properties button in the Design tab.
A new Edit Table Properties window will open.

Change Table Preview to a SQL view by selecting Query Editor from the view
drop-down box.

Edit Table Properties 7= |

Edit Table Properties

Table Name: cumency Switch to: | Table Preview -

Connection Name: Sales Data - SGL

Source Name: chap2.cumency + | Refresh Preview

Use this page to change the table, column, or row filter mappings

Column names from: @ Source 71 Model
v ¥ currenc... HH[=]iv = T
AED Emirati Dirham £
AFA Afghani
ALL Lek
AMD Armenian Dram
ANG Metherlands A...
AOA Kwanza
ARS3 Argentine Peso
ATS shilling
AUD Australian Dollar
AWG Aruban Guilder 2

Clear Row Filters Last Refreshed: 8/05/2013 1:48:42 PM

Save Cancel
=

=

Chapter 2

11. Replace the existing query with the following code:

SELECT currency_ id, currency + ' (' + currency id + ')' as
currency FROM [chap2] . [currency]

12. Click on the Validate button to ensure that the SQL statement is valid.
13. Click on the Save button to reload the data and return to the currency table.

Importing data through the Get External Data group of menu items is done by first creating

a new connection and then creating table definitions on the connection. Importing data with
these buttons is suitable when there are no existing connections in the model and when

new data is required. However, when an existing connection in the model can be used to add
additional data sources which use the existing connection, it makes more sense to re-use

that connection (rather than creating a new one). This improves model manageability since

the number of connections in the model is reduced. If the connection properties change (for
example referencing a different server), the property only has to be changed in one connection.

The definition (query) used to define the table can also be edited through its Table Properties.

The Table Properties editor includes a query designer which can be used in lieu of writing SQL.
In order to use this, click on the Design button in the Edit Table Properties window. This will
invoke the editor (which usually defaults to a text view). However, the developer can click on
the Edit as Text button in the designer to switch to a visual designer.

M Selecting the visual designer may lead to the loss of the
Q query definition. If this is the case, the user is prompted
that this will occur.

-

Importing Data

The definition of tables within the model holds information about the Source and Model
definitions. Source refers to the underlying object (its physical structure), whereas Model
refers to the semantic definition (what the end user sees). An example of the application

of this can be seen when a column is renamed within the model (see the Managing the
appearance of tables and fields recipe, in Chapter 1, Getting Started with Excel). The Edit
Table Properties window allows us to toggle between these two views of data, by selecting
either the Source or Model radio buttons, as shown in the following screenshot. This is only
available for tables that have not been altered by defining a custom SQL.

Edit Table Properties @

Edit Table Properties
Use this page to change the table, column, or row filter mappings

Table Name: Products| Switch to: | Table Preview hd

Connection MName: Sales Data - SQL

Source Name: chap2 products w | Refresh Preview

Column names from: @ Source ~) Model
7| ¥ produ... ™V i | i | £ 4| Ei v -
AR-5381 Adjustable Race MA 1000/ =
BA-8327 Bearing Ball NA 100C
BBE-7421 5 LLBottom Bracket NA 50C
BB-8107 5 ML Bottom Bracket MNA 50C

Using data feeds

Data feeds allow a tabular model to consume XML data through an HTTP service—these are
called the OData and .atomsvc feeds. The feed(s) can be defined to the model through either
an OData service (which also can provide data) or a data service document (the .atomsvc
file) that specifies the URL to the service.

The Open Data Protocol (OData) is a standard protocol for creating and consuming data over
existing technologies such as HTTP. This means that data can be imported into the model as
a web service. The ability to use data which is not generated from the corporate environment
extends the possible data sources that can be used for analysis. Data may be available for
free or purchased from vendors (see http://datamarket.azure.com/ for both).

Getting ready

This recipe imports some data from an online database called Northwind. Northwind is a
well-known sample database (actually, the data is not that important to us—only the technique
used to import it is). We also examine importing data from a reporting services report (which
is imported as an .atomsvc file).

=

Chapter 2

How to do it...

We firstly examine how to import data using OData and then we examine how to obtain data
from a reporting services report.

1.

10.

11.

12.
13.
14.

Open a new Workbook and launch the PowerPivot window.
Click on the From Data Feeds button from the Get External Data group.
Name the connection NorthWind, and use the following data feed URL:

http://services.odata.org/Northwind/Northwind. svc/.

Click on Test to test the connection, and then click on the Next button.

The Table Import Wizard window will open, here we can select which tables we
would like to import.

Note that the Select Related Tables button is inactive and cannot be used.
Highlight the Products table and select the Preview & Filter button.

The Wizard changes to a grid view; however, the table cannot be filtered (there are
no filter dropdowns).

Click on Finish to import the Products table.

Open a reporting services report and select the Export to Data Feed button. This
button is identified in the following screenshot:

P
b

A Find | Next uEL* () @ Fd E

Py
4

Unfortunately, we cannot provide specifics about the reporting

services report that is required for this recipe. The configuration
~\l of reporting services and the associated creation of the report is

outside the scope of this book. We do discuss the steps involved
Q which are common to all reporting services reports.

These steps can also be applied to SharePoint lists (which have

b the same export button). -

A warning message will prompt to save or open a file with the name of your
report and an . atomsvc extension.

Click on Save.
Open PowerPivot and import data by clicking on the From Data Feeds button.

Click on the Browse button and navigate to the file which was saved in the previous
step. In this case, there is no need to provide the data feed URL.

s

Importing Data

15. Select the file and click on the Open button.

16. This time, the Table Import Wizard window lists report objects (Tablix's, lists and
charts) as tables that can be imported to PowerPivot.

17. Just like OData feed, there is no ability to filter the data or detect relationships
between tables.

The OData feed provides a web service which is essentially exposed to the tabular model as
an XML feed, and may contain information about the data source, including tables within the
source. This file can then be imported to the tabular model.

As a web service, the OData feed can provide additional information to the service (such as a
requested table, or a record within the table). For example, to specify a connection which only
imports the customer's table, we could use the following data feed URL:

http://services.odata.org/Northwind/Northwind.svc/Customers

Additionally, we may provide the ability to filter and return a specific record. For example, to
return a customer record by customer ID, we could use the following data feed URL:

http://services.odata.org/Northwind/Northwind.svc/
Customers ('ALFKI')

When data is imported through an . atomsvec file, all data objects within the report are
exposed as tables to the Wizard (data objects in the report are controls that present data,
that is, Tablix's, lists and charts). The name shown in the Table Import Wizard is the name
of the object within the SSRS report.

When exported, the . atomsvec file contains a list of objects that existed in the report at the
time the file was exported. If the report is changed, and another object is added to the report,
the .atomsvc file will not be aware that the new dataset has been included, and re-using the
file would only show the dataset that existed at the time of export.

Purchased data from the Azure marketplace may require authentication. In this case, the
Azure DataMarket Dataset driver should be used.

5]

Advanced Browsing
Features

This chapter looks at extending the model to provide a positive experience for the user. In this
chapter, we will cover:

>

>

Sorting data

Creating hierarchies for drilldown interaction
Summing aggregates and row iteration
Parent-child hierarchies

Creating and using Key Performance Indicators
Role playing dimensions and relationships

Building ratios

Introduction

The first two chapters of this book focused on the basic modeling principles of relationships
and how to import data into the model. This chapter extends those concepts by focusing on
the development of the end-user experience. That is, how the user interacts with the model
and the experience they have when doing so.

This chapter also examines a fundamental decision that the designer should make when
designing the model, that is, the use of role playing dimensions. The choices available through
role playing dimensions should be considered by the modeler as part of the initial design.

Advanced Browsing Features

Sorting data

When data is presented to the user, there is often a requirement to present the members

(the individual data values) in a predefined order. Consider months of the year, when the user
drills down from a year, they generally expect to see months ordered according to the calendar
that they are working with. For example, a natural calendar runs from January to December,
whereas a financial calendar may run from October to September.

In tabular modeling, this arrangement is controlled by sorting within column properties.

Getting ready

The workbook used in this recipe is available on the Packt Publishing website
(http://www.packtpub.com/).

How to do it...

1. Openthe Sorting Data & Hierarchies.xlsx workbook and launch the
PowerPivot window.

2. Create a linked table that imports the dates worksheet into the PowerPivot model.

3. Hide (hide from Client Tools) the columns day of week, day of week name,
month of year, quarter name, and semester.

4. Rename the month name field to Month Name.

5. Create a pivot that shows Month Name on rows. Note that the members (Months)
are sorted alphabetically by default.

A B ; PowerPivot Field List v X
1 []| [Seaws ‘p|
2 [l dates
3 Row Labels - date_id
4 April ¥ Month Name
5 August year_name
6 December
7 February
3 January
9 July
10 June =
11 March
12 May 1] Slicers Vertical) Slicers Horizo...
13 MNovember
14 October
1’2 SGerapfljn;z:arl “f Report Filter [Column Labels
17
18
19 ||| EZ RowLabels = Values
20 onth Mame ¥
21 - l
M v | Sheet4 fil4 [ul p [

NED

Chapter 3

6. Return to the PowerPivot window. Ensure that the Month Name column is selected
and then select the Sort by Column button from the Home tab (this is found in the

Sort and Filter group).

| Home Design
& Paste Append __j; =5 T, FromDataFeeds ﬂj]3 Data Type : Text ~ 4l sotAtoz & I Autos
=3 . L= o
22 % Paste Replace ‘ — Lot | From Text Format : Text ~ Zlsonzton ¥ = Create
Paste From From From Azure Refresh | PivotTable e0 00 | & Clear All Sort by
=3 Copy Database ~ Report DataMarket | From OtherSources + - o +.0 | # ClearSort Fiers Column =

Clipboard Get External Data Formatting Sort and Filter & Measur

L'Unw..-pl,..,__*-‘\ J...,,".n--, 4_‘___.,.\'-..--‘\‘____,_...\,’.‘_‘_’.#-% st g A ‘ ,‘__?'..J

7. A new window opens (Sort by Column), which specifies a column (the Sort column)
that will be sorted by the values of another column (that is, the By column). Ensure
that the Sort column has the value Month Name and the By column has the value

month_of_year.

Sort by Column @
Select the column to be sorted and the column by which it is sorted (for example, sort the month
name by the month number). Click the link below to learn how to sort by a column from a different
table.
Sort By
Column Column
Morth Name - -
How to sort by & column from & different table™ [Ok] [Cancel
M The field chosen (that is, the field that is being sorted) will be

Q automatically populated based on the field that is selected
(or active) in the grid when the Sort by Column button is selected.

8. Select OK to exit the window.

9. Return to the pivot table in Excel and refresh the model in the pivot table.
Month Name will now be sorted in calendar month order (January to December).

The By column defines the order in which the values of the Sort column will be displayed. This
is a straightforward sort, and may be thought of as attaching a property to the sort column.

s

Advanced Browsing Features

The only caveat to this is that the By column must be in the same table as the column
that is being sorted. If this is not the case, and you wish to sort by a column in another
table, the sort order column must be imported (and materialized) in the table (through
the RELATED function).

Creating hierarchies for drilldown

interaction

Hierarchies allow the model designer to specify navigation paths for the user. Usually, this
is done in order to group members of a particular type together. A simple example of this is
grouping months of a year together.

Getting ready

This recipe assumes a continuation from the recipe Sorting data.

How to do It...

1. Switch to the Diagram View of the model.
2. Change the year name column to Year.

3. Selectthe Month Name and Year columns by holding down the Ctrl key while
selecting each column.

4. Right-click the Year column and select the Create Hierarchy option, so that a new
hierarchy is created within the view.

5. Rename the hierarchy to Month By Year by right-clicking the hierarchy name and
selecting Rename from the pop-up menu.

iiii ElE)

7 date_id

|| day_of_week

|| day_of_week_name

£ month Name

|| month_of_year

ol guarter_nams

:ﬁ] Year

| semester

4 5 Month By Year

Year (Year)
Month Mame (Month Name)
Date (date_id)

&)

Chapter 3

6. Return to Excel and refresh the PowerPivot field list to show the new hierarchy in the
dates table.

7. Remove the Months member from the existing Pivot and add the Month By Year
hierarchy. Note that all years are shown (since these are the values of the first level).

8. Expand the year (by clicking on the + sign next to a year value).

The creation of a hierarchy within the model is a metadata definition and not a structural
creation within the model. This means that the model does not actually materialize the
hierarchy as an object with the tabular database. When a request is made (by the client tool)
for members of the hierarchy, the request is effectively the same as a query made against the
members of that level (which is subject to restrictions imposed by the parent level).

In this recipe, the levels of the hierarchies were automatically detected based on the data
within the model and provided the drill path from year to month. Both year and month refer to
the levels of the hierarchy and imply the grouping order. If this order is not correct, the levels
can be rearranged by selecting the field within the hierarchy and dragging it to a new level. For
example, suppose | want to first see months and then years. | can select the Month Name
field in the hierarchy and drag it to the required position in the hierarchy. While doing this, the
new position is shown by a dark line in the hierarchy.

4 % Month By Year

Year (Year) Month Name

Month Name [Month Name)

The levels of the hierarchy do not have to be entirely defined when the hierarchy is created.
In fact, you could create an empty hierarchy if you wish to, just by right-clicking on the table
name (in Design View) and selecting Create hierarchy from the pop-up menu. Then, to add
levels, simply drag the levels into the hierarchy from the table.

The level names in your hierarchy can also be renamed by right-clicking the level (within the
hierarchy) and selecting Rename from the pop-up menu. The Design View will show the
hierarchy as the level name followed by the source field (which are enclosed in parentheses),
as shown in the following screenshot:

4 75 Month By Year
Year (Year)

Meonth Name (Month Name)

Date [date_id)

Advanced Browsing Features

For readers familiar with Analysis Services (OLAP), the addition of hierarchies to dimensions
creates performance improvements because the storage engine will use the hierarchical
structure in the aggregation of data at higher levels in the hierarchy. For example, the storage
engine could provide a yearly total by adding up the months within the year. Of course, this is
conditional on the correct design of dimensions and appropriate relationships being defined
between hierarchy levels. For a tabular model, there is no such requirement, and there is no
performance benefit for creating hierarchies in this way. The choice of hierarchies within the
model is a decision of usability for the end user.

Summing aggregates and row iteration

In the recipes so far, we have looked at creating measures based on a simple summation.
With these types of calculations, we simply define a measure as the sum of the respective
columns. The calculations can then be used by other calculations and the result would be the
same as if the calculation had been done within the row and aggregated. For example, if we
define a measure of [Sales] and a measure of [COGS] (cost of sales), we could define a
new measure as [Profit] :=[Sales] - [COGS]. Alternatively, we could add a column to the
Sales table as 1ine profit with a column formula (SALES-COGS) and sum that column
to create the new calculation.

However, in some situations, creating measures based on other measures does not provide
the correct result, and it is necessary to determine the result of the calculation for each row
and then perform a function on the results. DAX includes some handy functions for achieving
this outcome without the need for intermediary columns.

Getting ready

Open the workbook Summing Aggregates and Row Iteration and examine the Sales Detail
worksheet. This shows the line items for sales but does not include a sales value (selling
price) for each line (this amount has been used in previous recipes to determine the sales
value but has been removed from this recipe). The unit price amount value for each
product is shown; however, the sales amount per line is dependent on other fields of the
quantity sold and discount given. The sales amount value for each line is determined by
the formula:

order quantity x (1 - discount percent) x unit price_ amount

Our goal is to create this formula without adding additional columns.

&

Chapter 3

How to do it...

Now that we have an understanding of the calculations that we want to create, let's do them
in the tabular model. The workbook is available from the online resources.

1. Import the worksheet into the PowerPivot model and create a sales amount
calculation as follows:

Sales Amount:=

sumx (

Sales Detail

, [unit price amount]* (1-[discount percent]) * [order gty]

)

2. Create a check measure by performing the calculation manually. Add a column
sales_amount to the table with the formula:
=[unit price amount]* (1-[discount percent]) * [order gty]
Then, create a measure by summing the sales_amount column

Sales Amount Check:=SUM([sales_ amount])

3. Create a Variance measure with the following formula:
Variance:=[Sales Amount] - [Sales Amount Check]

4. Add the Variance to a pivot table with sales_order on rows and confirm whether all
values are zero.

The DAX X functions (SUMX, COUNTX, AVERAGEX, MAXX, and MINX) iterate an expression over
a table to determine the result. The syntax for each of these functions is:

Function (<table > , <expressions)

In this syntax, the <table> parameter is the data that the function is applied to and the
<expressions> parameter is the formula that must be determined for each row (of the
<tables). As a sidebar, the <table> parameter of the function is not restricted to table
names within the model; it can be derived through a function that returns a table.

The aggregate functions (SUM, COUNT, AVERAGE, MAX, and MIN) are performed after the
expression has been evaluated (on a row-by-row basis).

(&5}

Advanced Browsing Features

Therefore, in this recipe, the use of SUMX simulates the addition of a column (with a formula
<expressions>) and then performs a SUM on that column after the expression has been
evaluated. The expression is:

[unit price_ amount]* (1-[discount percent]) * [order gty]

This formula is applied to each row of the table and then summed to achieve the same result,
as if a column was added to the table.

It was stated earlier that the <table> parameter within the function is not restricted to table
names within the model, and the <table> parameter can be any function that returns a
table. This includes filtering functions that restrict table results. For the data that is returned
in such a case, the <expressions> parameter is still applied against that result.

Consider a situation where we would like to create a measure to show the lowest selling price
for Bikes.

1. Extend the model by importing the Products table and creating a relationship
between product_idinthe Sales Detail and the Products table.

2. Addthe measure Min Sales Price (Bikes) as follows:
Min Sales Price (Bikes):=
Minx
(
FILTER (Sales_Detail
, RELATED (Products [category]) ="Bikes"
)

, [unit_price amount]

)

3. To verify the calculation, create a measure Min Sales Price (Bikes) check
that relies on the previous calculations in the model.

Min Sales Price (Bikes) check:=Min([unit price amount])

4. Create a measure variance between the two calculated columns as follows:

Min Sales Price (Bikes) Variance:=
[Min Sales Price (Bikes) check]-[Min Sales Price (Bikes)]

5. Create a pivot table with a filter on the bikes category and all three measures.

Chapter 3

Regardless of what items are placed in the rows and columns, the two calculations for Min
Sales Price will give the same result, and the variance will be zero.

category Bikes -1

Row Labels | ~|Min Sales Price (Bikes) Min Sales Price (Bikes) check Min Sales Price (Bikes) Variance

Mountain Bikes 113.00 113.00 1]
Road Bikes 296.99 296.99 0
Touring Bikes 334.06 334.06 0
Grand Total 113.00 113.00 0

In this case, the measure Min Sales Price (Bikes) works by applying a filter to the
Sales Detail table for all products that have a category of bikes (note the use of the
RELATED function, which has been examined in a previous recipe). Further, by restricting
the table to Bikes in the calculation, the calculation is not reliant on a PivotTable filter
(the FILTER function is examined in later recipes).

In order for the calculation Min Sales Price (Bikes) check to work asintended (and
only show the lowest price for a bike), the pivot table must be filtered by Bikes. Therefore, the
entire logic of the pivot outcome obtained by creating an additional column, a calculation over
that column, and a filter on the pivot table, all of these can be contained in a single formula.

Parent-child hierarchies

Systems often store data in tables that store hierarchical information in a self-referencing
(parent-child) relationship. With this design, a field in the table is used to reference the
primary key (identifying record) within the same table. A common example of this type of
relationship can be found in organizational structures where an employee has a manager field
that specifies another employee's record. Another example includes a bill of materials, which
defines a product made from subproducts, which may in turn be made up of other products,
and so on.

This type of structure is very efficient for storage because the same table can be used for all
items within the hierarchy; this allows for easy updates, insertions, and deletions. However,
one issue with this type of structure is that the tree of items within the structure is not
immediately visible to an end user. A common method to expose the structure is to flatten the
relationship into a table, so that each level is exposed as a field within the table. This recipe
examines this within the tabular model.

]

Advanced Browsing Features

Getting ready

Review the table Employees, which shows the manager-employee relationship. The General
Manager of the organization (Ken Sanchez) is the person who has no manager (manager_id
is blank). Ken's direct reports have a manager id value equal to Ken's employee id
(295847284). This reporting relationship can be continued, as in the following diagram:

General Manager }
Mangges
A 4
{Regional Manager(sD
Manfages
A 4
(Area Manager(s) >
Mangges
A 4
C Manager(s) >
Mana'nges
A\ 4
(Employee(s) >

How to do It...

Download the workbook (Employee . x1sx) from the online resources.

Open the Employee.x1s workbook and launch the PowerPivot window.

Import the table Employee worksheet into the PowerPivot model by creating
a linked table.

3. Create a calculated column as employee name with the formula:

=[first_name] & " " & [last_name]

4. Create a calculated column (hierarchy path) with the formula:
=PATH ([employee id], [manager_ id])

The formula builds a pipe-delimited representation of the hierarchy showing each
position from the top level of the hierarchy to the current (row).

(&)

Chapter 3

5. Add a column to the table titled General Manager to store the name of
the employee at the first level of the hierarchy. Show the employees name
(the highest level of employee) by using the following formula:

=LOOKUPVALUE ([employee name]
, employee [employee id]

’

PATHITEM ([hierarchy path],1))

6. Add a column to the table titled Regional Manager to store the name of
employees who report to the General Manager. Populate this column with the
following formula:

=IF (ISBLANK (
LOOKUPVALUE ([employee name], employee[employee id]

)

7

)

, PATHITEM ([hierarchy path], 2)
)

[General Manager]

, LOOKUPVALUE ([employee name]
, employee [employee id]

, PATHITEM ([hierarchy path], 2)
)

7. Add columns for Area Manager, Manager, and Employee. Populate the columns
using the same formula as in step 6, increasing the PATHITEM value by one each
time and referring to the prior column. The formulas are listed in the following table:

Column

Formula

Area Manager

Manager

Employee

=IF (ISBLANK (LOOKUPVALUE ([employee name],

employee [employee id], PATHITEM([hierarchy path],3))),
[Region Manager] , LOOKUPVALUE ([employee name],
employee [employee id], PATHITEM([hierarchy path],3)))

=IF (ISBLANK (LOOKUPVALUE ([employee name],

employee [employee id], PATHITEM([hierarchy path],4))),
[Area Manager] , LOOKUPVALUE ([employee name],

employee [employee id], PATHITEM([hierarchy path],h4)))
=IF (ISBLANK (LOOKUPVALUE ([employee name],

employee [employee id], PATHITEM([hierarchy
path],5))), [Manager] , LOOKUPVALUE ([employee name],
employee [employee id], PATHITEM([hierarchy path],5)))

8. Switch to Diagram View to create a hierarchy titled Organisation with the levels
General Manager, Region Manager, Area Manager, Manager, and Employee
and then hide all the fields in the table.

&7}

Advanced Browsing Features

9.

Create a pivot table from the model, add the Organisation hierarchy to rows, and
expand the nodes. Expanding the level will show what employees report through to
the expanded employee. Observe that each member in the hierarchy has a value and
that the hierarchy is balanced (there are five levels). Also, note that the hierarchy is
balanced through the repetition of employee names. For example, there is a general
manager, Ken Sanchez, and a regional manager with the same name.

Row Labels -

='Ken Sanchez
#Brian Welcker
+ David Bradley

Row Labels -

|:llcen Sanchez |
= Brian Welcker
Hamy Alberts

#James Hamilton
#lean Trenary
HKen Sénchez
Hlaura Norman
Peter Krebs
#HTerri Duffy

Brian Welcker

+Stephen Jiang

#Syed Abbas
+'David Bradley
+ James Hamilton
+Jean Trenary

Grand Total *Ken Sdnchez
+/Laura Morman
Peter Krebs
+Terri Duffy

Grand Total

The creation of the parent-child hierarchy involves three steps. They are as follows:

1.

The normalization of the self-referencing structure, so that all recursive relationships
are merged into a single pipe-delimited field. This defines the path from the
upper-most level to the current row in the structure (including the current row
identifier). This is achieved by using the PATH function (field hierarchy path), as
shown in the following screenshot. Note that the root manager (the person with an
empty manager_id field) has only one level in their hierarchy path (themselves)
and the second employee (the one who reports to the root manager) lists the root
manager and then themselves:

295847284
112432117
431044538
758596752

502097814 Stephen Jianﬁ
> et i, . s R \-\.__#'“_‘P.*‘w—-‘\.“-\- e e

&)

ud| employee_name

Ad| hierarchy_path

Ken Sdnchez 295847284

295847284|112432117

295847284 |112432117|481044938
295847284|112432117| 481044938 | 758596752

295847284|112432117| 502097814
B

Brian Welcker
Syed Abbas
Lynn Tsoflias

295847284
112432117
481044938
112432117

[w—

Chapter 3

Next, we determine the name of each employee along the path or, each employee in
the hierarchy path field based on a position within the field.

This is achieved through the use of a nested formula. Firstly, the hierarchy path
field is stripped into individual positions within the path; this allows each employee
id value to be determined by its position. This is done with the following formula:

PATHITEM ([hierarchy path],h n)

Here, n refers to the index position within the path.

The PATHITEM function also includes an optional third
M parameter, [TYPE] . This specifies the return value as either
Q being text or an integer. The allowable values are eithera 0
(which is the default) for text, or a 1 for an integer. Since our
values are of text type, we have omitted this from the formula.

Next, given the employee id value is returned from the path, the LOOKUPVALUE
returns the employee's name. This function was examined in the Linking fields between
tables recipe in Chapter 1, Getting Started with Excel. Given a particular employee id
value (???), the LOOKUPVALUE formula returns the employee's name when it is used as:

=LOOKUPVALUE ([employee name], employee[employee id], ???)

The method also checks that each column in the hierarchy (or level) has an
employee name associated with it. This is done by nesting the LOOKUP value in the
IF (ISBLANK ()) function. When encompassed by the IF function in this manner, the
formula ensures that the name appears on every level in the hierarchy. If there is no
employee name found, the employee name of the previous levels is used.

4 | hierarchy path 1] - - -
295847284 Ken Sdnchez

295847284 295847284|112432117 Brian Welcker

112432117 295847284|112432117|4810... Brian Welcker

431044938 295847284|112432117|4810... Brian Welcker 3
112432117 295847284|112432117 Bri |

AAZAT ., o ZOUTEATRTI020. 0 Q0,508 | gRuEpaNEGsr JSiSghen one, Sieen ’

3. Finally, with the parent-child structure broken down to individual columns that show

the employee's name on each level, and a hierarchy is created from the fields that
allow the user to drilldown in the client tool (PivotTable).

When viewed through a client tool, the de-normalization of the self-referencing structure gives
the illusion of a parent-child hierarchy (that is, a structure that is drillable by the user, which

is based on the self-referencing relationship). This technique is often used in this SAS (OLAP)
dimension design to improve performance. While this is not a true parent-child hierarchy (the
depth of the hierarchy must be specified by the model designer and not by the self-referencing
relationship), the method exposes the parent-child structure through a flattened hierarchy.

[}

Advanced Browsing Features

As a model designer, you must determine the depth of the hierarchy when designing the
hierarchy rather than relying on the self-referencing relationship to specify it. Therefore, you
need to determine the maximum depth of the current structure. To do this, add a column to
the employee table titled path_depth using the following formula:

=PATHLENGTH ([hierarchy path])

This shows the number of elements in the hierarchy, or the number of employees within the
current (row) employee's reporting path (including themselves). In order to determine the
maximum depth of the hierarchy, simply determine the maximum reporting depth by creating
a measure as follows:

max path depth:=MAX([path_depthl])

This will show that there needs to be five levels.

Since the determination of the hierarchy depth is only required at

design time, you can also sort the column in a descending order

to find the maximum value (and therefore, the number of levels
~\l needed). Simply select the path_depth column and click on
Q the Sort Largest to Smallest button from the Home menu.

Alternatively, you could simply create a measure without the need
for additional columns in the table. Simply use the formula:
max_required depth:=
MAXX (employee, PATHLENGTH ([hierarchy path]))

There's more...

The creation of a flattened hierarchy to expose a self-referencing relationship provides the
modeler with an easy technique to flatten the hierarchy and show it to the user. However, the
hierarchy is exposed with balanced levels, where the actual structure may not be balanced.

Consider the situation where we want to show the number of employees within the structure
(the count of employees). For example, the structure that shows direct reports as a measure.
Add the measure to the model:

Number Of Employees (native) :=COUNTROWS (employee)

Chapter 3

The COUNTROWS function simply returns the number of rows that
are present in the table (employee in this case). When used

in a pivot, the filtering applied by the pivot shows the number of
rows in each cell.

~ We could achieve the same result (in a slightly long-winded
fashion) by adding an additional column (employee count)
to the table and specifying its formula as =1 (1 to represent
each employee in the table). Then, the measure Number Of
Employees (native) will be:

:=SUM (employee count)

When the measure is added to the pivot table, and Brian Welcker's hierarchy is expanded, we
can see, as an employee, Brian only reports to Ken Sanchez (the General Manger). Therefore,
Brian holds all positions from the Regional Manager to the Employee.

Row Labels - | Number Of Employees (native)
-'Ken Sanchez 200
= Brian Welcker ‘(— 18
HAmy Alberts
='Brian Welcker 1
=/ Brian Welcker\ 1
Brian Welcker 1
#5tephen liang 11
+Syed Abbas 2
+ David Bradley
+James Hamilton 8
+lean Trenary 10

This is exactly how the hierarchy is designed to act. Note that the table shows this structure.

hierarchy path | = - : - T

295847284
295847284 112432117
295847284 | 184188301

“REaaReA | JasTiroaT i .y w.a—h-ﬁ-ﬂ‘u-- e i A o it L2 T .w"‘h»\— s e LU SR T e

There is no out of the box method to hide the duplicated names at lower levels of the
hierarchy. In the traditional OLAP dimension design, hierarchy levels can be hidden if their
name is the same as the parent using the level's HideMemberlf property. This property does
not exist in tabular modeling. However, the same outcome can be simulated by allowing the
client tool to hide empty rows and specifying an empty value for the hierarchy members that
are duplicates of their parent.

7}

Advanced Browsing Features

By default, pivot tables hide rows with no data (that is, where
M the data is blank). This can be verified by right-clicking on the
Q pivot table and selecting PivotTable Options from the pop-up
menu and ensuring that the Show items with no data on rows
checkbox is deselected.

PivotTable Options -7 |23l

Mame: | PivotTable2

| Layout & Format | Totals & Filters | Printing | Data I Alt Text |

Display
Show expandcollapse buttons

Show contextual tooltips
Show properties in tooltips

Display field captions and filter drop downs
[Classic PivotTable layout (enables dragaing of figlds in the grid)
[show the Values row

¥ [Show items with no data on rows

\g;sh—ou:i__tems with no data on columns

Display item labels when no fields are in the values area
Show calculated members from OLAP server

F 4

Field List
@ SortAtoZ

Sort in data source order

[OK] [Cancel

Return to the PowerPivot window and make the following changes:

1. Addthe measure current browse depth to show what level is currently being
filtered in the hierarchy:
current browse_ depth:=
IF (ISFILTERED ([Employee])

, 5
, IF(ISFILTERED ([Manager])
, 4
, IF(ISFILTERED ([Area Manager])
, 3
, IF(ISFILTERED ([Region Manager])
, 2
, 1

Chapter 3

Add a new measure min_browse_depth to show the minimum visible depth
that is shown by the hierarchy within the Pivot as follows:

min_browse_depth:=
MINX (employee

, PATHLENGTH (employee [hierarchy path])
)

Add a new measure to show the employee count as blank where the
current browse_ depth measure is greater than the exposed browse
depth (min browse_ depth):

Number of Employees (user design) :=
IF (employee [current browse depth]>
employee [min_ browse depth]

, BLANK ()

, COUNTROWS (employee)
)

For illustration purposes, also add the following measure:

show_yn:=
IF (employee [current browse depth]>
employee [min browse depth]

"dont show"

"show"

)

5. Add all these new measures to the pivot.

Here, we can see the interaction of the current browse depth and the min_browse
depth measures within the application of the hierarchy. The current browse depth
measure shows what level of the hierarchy is being viewed in the pivot. The min_ browse
depth measure shows the highest level of all employees that is encompassed by

a hierarchy value.

M Remember that when the hierarchy is placed on rows, each row
Q in the hierarchy is really just grouping employees. The grouping is
identified by an employee's name.

Row Labels - | current_browse_depth min_browse_depth show_yn

= Ken Sanchez 1 1 show
=/ Brian Welcker -G—L.__ 2 2 show
HAmy Alberts 3 3 show

=/Brian Welcker < 3 2 dont show

=/Brian Welcker a4 2 dont show

Brian Welcker 5 2 dont show
+Stephen Jiang 3 3 show
#Syed Abbas 3 3 show
+ Nawvid Bradlew 2 2 showw

(75}

Advanced Browsing Features

When we view the pivot with these fields, we can say that we want to hide those employees
within the hierarchy that appear at higher levels in the structure.

Now, replace all the measures shown with the measure Number of Employees (user
design). All rows (previously indicated with a Don't show flag) are hidden from the pivot.

Row Labels ~ | Mumber of Employees (user design)
= Ken Sanchez 200
- Brian Welcker | 18
HAmy Alberts 4
#Stephen Jiang 11
+Syed Abbas 2
+ David Bradley

This method of hiding rows will only work when all the measures for the row are empty. If the
native measure (Number of Employees (native))is reintroduced to the pivot, all lower
levels of Brian will be shown.

Creating and using Key Performance

Indicators

Key Performance Indicators (KPIs) allow the model to implement a logic layer, so that a value
can be monitored according to a rule. The outcome of the rule is a simple set of results that
indicates how the value is comparing to the expectations, and usually equates to one of the
three simple conditions: bad, moderate, or good.

By summarizing logic into the model in this way, the KPI improves model usability as the
user is not required to interpret the value in the context of a business situation (or some
layer of logic that is applied to the values); this is all managed by the KPI. Furthermore, since
the KPI is represented by a state (for example, bad, moderate, or good), the KPI can cover
boundary ranges of data. This effectively discretizes data into a conditional state based on
the business logic.

7

Chapter 3

Getting ready

This recipe creates a KPI that compares actual sales to budgeted performance. The

KPI should indicate an unfavorable outcome if the sales are more than 5 percent from the
budget (unfavorable), a warning if the sales are between this and the budget, and a positive
indicator if the sales are reported equal to, or greater than the budget. Set up the model by
following these steps:

1. Openthe KPIs.x1sx workbook and create (PowerPivot) linked tables for the
worksheets Budget, Sales Header, Dates, and Employees.

2. Onthe Dates table, hide all columns from client tools except for the columns
Year and Month of Year. Set the month of the year column to be sorted by the
column month of year sort

3. Hide all of the columns from the Sales_ Header and Budgets table.

4. Create relationships between the following tables and columns:

Table Column Related Table Related Column
Sales Header employee id Employees employee id
Sales Header order_dt Dates date_ id
Budgets employee id Employees employee id
Budgets budget date Dates date_id

5. Create the following measures in the Sales Header table:

Measure Name Calculation
Sales Amount Sales Amount:=
SUM (Sales Header[sales amount])
Budget Amount Budget Amount:=
SUM (Budgets [budget amount])
Sales Variance Sales Variance:=
[Sales Amount] - [Budget Amount]
Sales Variance % Sales Variance %:=
if (ISBLANK (Sales_ Header [Budget Amount])
, BLANK ()

, Sales Header[Sales Amount]/Sales Header [Budget
Amount] -1

)
Sales KPI Sales KPI:=
SUM (Sales Header [sales_amount])

(7]

Advanced Browsing Features

6. Create a pivot that shows the month of the year as row labels with the measures
(Sales Amount, Budget Amount, Sales Variance, and Sales Variance %).
The Pivot should look like the table in the following screenshot:

Row Labels ~ | Sales Amount Budget Amount Sales Variance Sales Variance %
2005 Jul 452,761 486,839 -34,078 -7.00%
2005 Aug 1,435,864 1,527,515 -91,651 -6.00 %
2005 Sep 1,102,077 1,160,082 -58,005 -5.00%
2005 Oct 771,018 803,144 -32,126 -4.00 %
2005 Mov 2,201,515 2,269,602 -68,087 -3.00%
2005 Dec 1,619,718 1,652,775 -33,057 -2.00%
2006 Jan 659,508 666,170 -6,662 -1.00%
2006 Feb 1,812,586 1,812,584 2 0.00 %
2006 Mar 1,345,666 1,332,342 13,324 1.00 %
2006 Apr 808,351 792,501 15,850 2.00 %
2006 May 2,143,854 2,081,452 62,442 3.00 %
2006 Jun 941,854 905,667 36,227 4.00 %
2006 Jul 2,197,996 2,093,329 104,667 5.00 %
2006 Aug 3,461,906 3,205,947 195,959 6.00 %
2006 Sep 2,796,662 2,613,703 182,959 7.00 %
2006 Oct 1,693,161 1,693,161

20000V pgin o nZaB23 0 o #_r‘m%%.@?__.a.q.twa_“

f

Note that the variance between Actual Sales and Budget Sales has constantly been improving
and that Sales Variance % ranges from -7.00% in July 2005 to 7.00% in September 2006.
This coincidence is intended, in order to illustrate how the KPI changes over a value range.

How to do It...

In order to add the KPI to the model, perform the following steps:
1. Open the PowerPivot window and right-click on the Sales KPI measure in the
Sales_Header table. Select Create KPL... from the pop-up menu.

2. Specify the target value as Budget Amount by selecting it from the drop-down
box (where the measure radio button is selected).

3. Ensure that the first icon's style set is selected (a border will indicate the
selected style).

Chapter 3

4. Select the text from the first indicator and type 94 . 9. Move the other indicator until it
reaches 100%. The KPI dialogue should look like the following screenshot:

Key Performance Indicator (KPT)
KPI base measure (valug): Sales KFI

KP| Status

7]

Define target value:

@ Measure: Budget Amourt

(7 Absclute value:

Define status thresholds:

Selecticon style:

Q@ Ayl a 4 ’ ll = O O
Q X @ a v AN ol all s o8 >0
Q Ayl V] a ' Q { il -1} O
Descriptions
oK | [cancel |

1
~> The indicator bars can be slid across the status threshold bar or
have values entered directly into the textboxes.

5. Select the OK button to complete the process.

Advanced Browsing Features

6. Return to the Pivot and refresh the model, a new node in the Sales_Header table tree
will be created titled Sales KPI. It has three choices Value, Status, and Target.

PowerPivot Field List * n
Search |p
Fl Dates

v| Nonth of Year
Year

Employees
El Sales_Header
w| Budget Amount [ZF
v| Sales Amount 2
E vl SaleskPl = o
v Value
v Status
vw| Target
v Sales Variance [
v| Sales Variance % |2

7. Add these three measures to the pivot table. The Sales KPI Status column will show
as a red cross for sales that have a variance of more than -5 percent, a warning
indicator for sales with a variance between -5 percent and O percent, and an agreed
indicator for the sales that are over budget.

The creation of a KPI adds three new measures to the model. These are:

» Value: It holds the value the KPI is based on.
» Target: It holds the value that the value measure is compared to.

» Status: It holds a value that shows how the value measure compares to the Target
measure (according to the KPI logic). This is an important consideration because the
KPI status can also be thought of as a simple condition, which indicates -1 (for bad),
0 (for moderate), and 1 (for good). The Status measure is then converted into an
image by the client tool.

@

Chapter 3

We can verify how the KPI status has been translated by the client tool. Outside the pivot
table, add a formula that references the Sales KPI Status column. The value returned

will be either -1, 0, 1.

A B G H
1 Row Labels | ~ Sales KPl Value Sales KPI Target Sales KPI Status
2 2005 Jul 452,761 486,839
3 2005 Aug 1,435,864 1,527,515
4 2005Sep 1,102,077 1,160,082
3 2005 Oct 771,018 803,144
6 | 2005 MNov 2,201,515 2,269,602
7 2005 Dec 1,019,718 1,652,775
8 2006 Jan 659,508 666,170
9 2006 Feb 1,812,586 1,812,584
10 2006 Mar 1,345,666 1,332,342
11 2006 Apr 808,351 792,501
12 2006 May 2,143,894 2,081,452
13 2006 Jun 941,894 905,667
14 2006 Jul 2,197,996 2,093,329
15 2006 Aug 3,461,906 3,265,947

0000000

1 K

Formula
-1 =l2
=13
=l4
=I5
S

[
=

e il i === ==
s
s}

The KPI status can be extremely useful when used as a value to filter data. For example,
consider the situation where we only want to show data that is considered a bad state
(red KPI status). Select the drop-down arrow on the Row Labels, then select Value Filter,

and then Equals.

4] sortatoz
2] sortztoa
Maore Sort Options..,

Label Filters
Value Filters

Search Month of Year
----- . {Select All)

|2

PB

[

r
W

Row Labels | ~ | Sales KPI Value Sales KPI Targ
452,761

1,435,864

1,102,077

771,018

2,201,515

1AR10 7182

!nes I ot Equal...

Uj,l@”w«-— Ju-u-d-hl..-n—hdu. ki g A,

486,8

Advanced Browsing Features

A Value Filter window will open. Set the conditions of the window to filter on Sales KPI Status
for a value of -1. Then, click on OK.

=]

Value Filter (Month of Year) ERIE
Show items for which

Sales KPI Status |Z| equals |Z| -1

Once this is done, the pivot table will only show the rows with a red KPI indicator.

There's more...

In addition to editing the KPI from the PowerPivot window (right-clicking the Calculation Area
cell with the KPI formula in it and then selecting Edit KPI Settings), the KPI can be edited
directly from the workbook by selecting the KPI in the pivot table and selecting Edit KPI
Settings from the PowerPivot tab.

Descriptive information can be added to the KPI by expanding the Descriptions section of the
Edit KPI dialogue. However, the text entered here is not visible from Excel.

The structure of the KPI (for example, what is considered good or bad) can be managed by
selecting the appropriate conditional rules under the threshold bar. This also determines the
number of threshold indicators that are shown; for example, the following graphic shows the
thresholds for an acceptable value (where the KPI value should not deviate too far from a
target range):

C Q G Q
— Y s) T
Tarlget

Role playing dimensions and relationships

Role playing dimensions are dimensional structures that are re-used throughout the model.
The use of a role playing dimension can simplify model maintenance because only one
physical structure is created and it is used many times.

(&)

Chapter 3

Consider the Sales Header table that has been used in this chapter. It includes three
date fields (for Order Date, Due Date, and Ship Date). One date table can be used to
reference all three columns.

Getting ready

This workbook model continues with the sales data that has been used so far in this chapter.
However, unlike previous models, which focused only on the Sales Amount values that were
ordered, we show the value of products that were shipped and delivered.

How to do it...

1. Open the workbook Role Playing.xlsx andimportthe Sales Header,
Sales Detail, Products, and Dates tables to a new tabular model.

2. Create relationships between the following tables and fields:

Table Column Related Table Related Column
Sales Detail sales_order_id Sales_ Header sales_order_id
Sales Detail product_id Products product_id
Sales_Header order_dt Dates date_id

Sales Header due_ dt Dates date_ id

Sales Header ship dt Dates date_ id

3. Indesign mode, additional relationships between two tables will be shown as
dashed lines:

11| employee_id

__________ i1 currency_id

B month_of_year 1 customer_po_id

FH Year

T sales_territory_id
f order_dt

Advanced Browsing Features

4. Hide the Ssales Header table and all the Sales Detail columns from client tools.
Then, add the measures Ordered Amount, Shipped Amount, and Due Amount
to the model, formatted with no decimal places and comma separation:

Ordered Amount:=
CALCULATE (
SUM ([sales_amount]),
USERELATIONSHIP (Sales_ Header [order dt], Dates[date_ id])
)
Shipped Amount:=
CALCULATE (
SUM ([sales_amount]),
USERELATIONSHIP (Sales_Header [ship dt], Dates[date_id])
)
Due Amount:=
CALCULATE (
SUM ([sales_amount]),
USERELATIONSHIP (Sales_Header [due dt], Dates[date_ id])
)
Default Amount:=
SUM ([sales_amount])

5. Inthe Dates table:
1. Sortthe Month column by the month of year column.
2. Create a hierarchy (Day by Year)that shows Year, Month, and date id.
3. Rename date_idto Date (within the hierarchy).
4. Hide all columns in the Dates table.
5. Formatthe date idcolumnas 14 March 2001.
6. Create a pivot table that shows the hierarchy Day by Year on rows and the
measures Ordered Amount, Shipped Amount, Due Amount, and Default

Amount on rows. Expand the years and months, so that the dates are shown for
July and August 2005. The Pivot will ook like:

Row Labels - | Ordered Amount Shipped Amount Due Amount Default Amount
12005 8,065,425 8,065,435 8,065,435 8,065,435
= July 489,320 489,329 489,329 480,329
1 July 2005 439,329 439,329
8 July 2005 489,329
13 July 2005 489,329
= August 1,538,408 1,538,408 1,538,408 1,538,408
1 August 2005 1,538,408 1,538,408
8 August 2005 1,538,408
13 August 2005 1,538,408
_September . .. 11658 65807 1165897 o | 165,807

[

Chapter 3

The creation of more than one relationship between tables creates a primary (Active)
relationship and secondary relationship(s). By default, the Active relationship is used in
calculations that are filtered between the two tables.

This can be seen in the pivot table in a way that the default calculation (Default Amount)
mimics the measure Ordered Amount. This occurs because the first relationship between
the Sales Header table and the Dates table was between order dt and date_id
(hence, the relationship assumes an Active role).

In order to specify that another relationship should be used in a calculation, we must
specify the relationship within that calculation and change the filtering context by including
a CALCULATE function. The syntax for USERELATIONSHIP is very simple and automatically
determines the lookup table (column) without the need to specify it (as ColumnName1l or
ColumnName2). To include USERELATIONSHIP in a formula, simply specify two column
names as arguments for the function.

USERELATIONSHIP (<columnNamel>, <columnName2>)

u In order to use the USERELATIONSHIP function, a
~ relationship must be defined between the two columns.
Q The function does not create a relationship, or create a
pseudo-relationship, if there is no existing relationship.

There's more...

The Active relationship in the model is indicated in the diagram view by a solid line between
two tables. Secondary relationships are shown as a dashed line. This is also visible within the
Manage Relationships dialogue by the Active indicator in the grid.

Manage Relationships | ® 2
[-3_;' Create [333,' Edit] [3‘5‘ Delete
Active Wlable Related Lookup Table
! zles_Detail [sales_onder_id] Sales_Header [zales_order_id]
Yes @les_Detail [product_id] Products [product_id]
Yes lales_Header [order_dt] Dates [date_id]
No les_Header [due_dt] Dates [date_id]
No les_Header [ship_dt] Dates [date_id]

&)

Advanced Browsing Features

In order to change the Active relationship, you must first deactivate the current Active
relationship and then specify the new Active relationship. In order to do this, edit the
relationship and check (or uncheck the Active option).

Edit Relationship 7| K

Edit a lookup relationship between two tables
Change the attributes of the existing relationship.

Table: Column:

Sales_Header - due_dt -
Related Lookup Table: Related Lookup Column:

Dates - date_id -

There is no requirement to have an Active relationship between tables in the model. If this is
the case and there are no Active relationships defined, any (default) calculations that would
otherwise rely on the Active relationship will show duplicated values as if no relationship had
existed (see Linking fields between tables recipe in Chapter 1, Getting Started with Excel).

oKk || Cancel

When editing the model in the Design view, the fields that are active in the relationship are
highlighted when the mouse hovers over the relationship. This makes it easy to identify
participating fields when browsing the model. Additionally, the relationship can be edited
(indicating whether it is active or not) by double-clicking on the relationship line.

Building ratios

We often like to determine the significance of an item within its group, based on its value
when compared to the group total. To do that, we use a ratio that indicates the item's
importance as a percent age (portion of 100). This recipe examines various techniques for
building ratios, based on value data and the presentation of that ratio within the data.

Getting ready

This model continues with the sales data that is being used in previous chapters. Open the
Ratios workbook and import the Sales Header, Sales Detail, Products, and Dates
tables to a new tabular model.

=

Create relationships between the following tables and fields:

Chapter 3

Table Column Related Table Related Column
Sales Detail sales order id | Sales Header sales order_ id
Sales Header order dt Dates date_id

Sales Detail product_id Products product_id

Hide the Sales Header table and all the Sales Detail columns from client tools. Then
add the measure Sales Amount tothe sales detail table:

Sales Amount:=SUM([sales amount])

Finally, rename the fields product name to Product, subcategory name to
Subcategory, and category name to Category. Then, create a hierarchy (Product
by Category) that has the levels Category, Subcategory, and Product.

How to do It...

1. Create a measure inthe Sales Detail table (Sales Amount (All
Products)), which shows the value of all product sales. Add the following code:

Sales Amount

(A1l Products) :=

CALCULATE (Sales Detail [Sales Amount]
, ALL (Products))

2. Add ameasure to the Sales Detail table (Sales Ratio), which shows the ratio of
the sales against all product sales. Add the measure and format it as a percent age:

Sales Ratio:=

[Sales Amount]/[Sales Amount

3. Create a pivot with all the three measures as column values and the Product
by Category hierarchy on rows. Note that the measure Sales Amount

(A1l Products)]

(A1l

Products) is 80,450,597, which equals the Sales Amount (Grand Total) value.
Finally, note that the Sales Ratio column correctly shows the value (ratio or mix)

for each line.

Row Labels |~ |Sales Amount Sales Amount (All Products) Sales Ratio
T 80,450,597

I Accessories 541,558 80,450,597 0.67 %
+ Bikes 41,360,080 80,450,597 51.41%
Clothing 1,191,949 80,450,597 1.48%
tComponents 9,468,393 80,450,597 11.77 %
+ 27,888,617 80,450,597 34.67%
Grand Total 80,450,597 80,450,597 100.00 %

&1

Advanced Browsing Features

4. Create a row filter that only shows the category of Accessories, Bikes, Clothing,
and Components. Click on the Row Labels drop-down arrow and deselect the other
categories. Note that the measure Sales Amount (All Products) still shows
80,450,597 and that the sales Ratio column does not total to 100 percent.

Row Labels -T Sales Amount Sales Amount (All Products) Sales Ratio
HAccessaries 541,558 80,450,597 0.67 %
+ Bikes 41,360,080 80,450,597 5141%
Clothing 1,191,549 80,450,597 1.48 %
Components 9,468,393 80,450,597 11L.77%
Grand Total 52,561,980 80,450,597 65.33 %

5. Return to the PowerPivot window and create the following measures. Sales Amount
(Filtered Products) that should be formatted as numeric and
Sales Ratio (Filtered) should be formatted as a percent age.

Sales Amount (Filtered Products) :=
CALCULATE ([Sales Amount]
, ALLSELECTED (Products))

Sales Ratio (Filtered) :=
[Sales Amount]/[Sales Amount (Filtered Products)]

6. Add these measures to the pivot table. The two new measures show totals for visible
cells with the ratio summing to 100 percent.

Row Labels -T Sales Amount Sales Amount (All F Sales Ratio Sales Amount (Filtere Sales Ratio (Filtered)

+ Accessories 541,558 80,450,397 0.67 % 52,561,980 1.03 %
+ Bikes 41,360,080 80,450,397 51.41% 52,561,980 73.69 %
#Clathing 1,191,549 80,450,397 1.48% 52,561,980 2.27%
+ Components 9,468,393 80,450,397 11.77 % 52,561,980 13.01 %
Grand Total 52,561,980 80,450,597 65.33 % 52,561,980 100.00 %

The calculation of the ratio requires no explanation, as it is simply a numerator divided by a
denominator. However, it is worthwhile noting that there is no requirement to check division
by zero errors (that is, there is no requirement to check that the denominator equals zero
before the division). Expanding the Accessories category will show that there are some
accessories without sales. These items do not have a sales ratio and do not show an error
as one might expect.

~[ee]

Chapter 3

The measure which acts as the denominator in the ratio calculations introduces table filtering,
which requires further explanation. The normal operation of a measure value in a pivot

table is to perform the calculation function at the intersection of the pivot table axis (or the
query axis). For example, consider the cell at the intersection of Accessories and Sales
Amount. The value of this cell is effectively obtained by reducing the Sales Detail table to
those products that have a category of Accessories. Then, a sum calculation is performed
on the sales_amount column to return the value. When the Accessories member is
expanded in the pivot table (to show measures for Bike Racks), the filter is applied so that
only sales lines for Products, with a Category of Accessories and a Subcategory of Bikes
and Racks is included in the calculation.

The calculation Sales Amount (A1l Products) alters the way this native filtering
works. This is done through the use of the CALCULATE statement (which specifies that the
expression should be evaluated in another context) and subsequent changes to that context.
The syntax for the CALCULATE function is:

CALCULATE (<expression>,<filterls>,<filter2s..)

When used within the Sales Amount (All Products) formula, the <filters, which is
applied (ALL (Products)) changes the existing application of the filter created by the row
restrictions in the pivot table to ALL Products. Therefore, any filter that is applied through the
query (or the client tool) is removed when the calculation is evaluated and the calculation is
applied to all the products.

The ALL function, when used in this manner, simply returns all rows from the Products
table, thus effectively removing the filter created by the pivot table.

Similarly, the function ALLSELECTED is used to restrict the Products table to products that
are explicitly selected in the pivot.

There's more...

The ability to manipulate how the filter is applied is one of the most powerful features of DAX.

Consider the situation where we would like to provide a nested ratio (as shown in the following
screenshot). These types of ratios are often called ratios to parent because they show
proportional ratios of their parent in a hierarchy. In this situation, the ratio shows as a percent
age of its parent and sums to 100 percent. Here, the measure Sales Ratio (Nested) shows
the proportion of sales compared to the parent attribute.

7}

vww allitebooks.conl

http://www.allitebooks.org

Advanced Browsing Features

For the purposes of this recipe, we will not show the ratio for the products' level of
the hierarchy.

Row Labels -T| Sales Amount Sales Ratio Sales Ratio (Filtered) Sales Ratio (Mested)
=l Accessories 541,558 0.67 % 1.03% 1.03%
+ Bike Racks 197,736 0.25 % 0.38 % 36.51%
+ Bike Stands
+ Bottles and Cages 7477 0.01 % 0.01% 1.38 %
+Cleaners 11,138 0.01% 0.02 % 2.07%
* Fenders 100 %
+Helmets 258,713 0.32% 0.49 % A7.77 %
+ Hydration Packs 65,519 0.08 % 0.12 % 12.10%
#Tires and Tubes 925 0.00 % 0.00 % 0.17 %
-IBikes 41,360,080 51.41 % 78.60% 78.69%
+ Mountain Bikes 16,016,477 19.91 % 30.47 % 38.72%
*IRoad Bikes 14,892,113 18.51 % 28.33 % 36.01%
+Touring Bikes 10,451,490 12.99 % 19.88 % 25.27%
+ Clothing 1,191,949 1.48 % 2.27% 227%
+ Components 9,468,393 11.77 % 18.01% 18.01%
Grand Total 52,561,980 65.33 % 100.00 % 100.00 %

Here, we create another set of measures to show what the sales ratio is for the selected
subcategories. Add the following measures:

Sales Amount (All Selected Subcategory) :=
CALCULATE (
Sales Detail[Sales Amount]
, ALLSELECTED (Products [Subcategory])
)
Sales Ratio (Subcategory) :=
[Sales Amount]/[Sales Amount (All Selected Subcategory)]

By specifying the Subcategory field within ALLSELECTED, the filter context for Products
is forced to the current subcategory (rather than the previous ALL Products). When the items
shown in the pivot are related to multiple subcategories, as would be the case when the row
shows a category, ALLSELECTED (Products [Subcategory]) returns all Products.

Now, our model contains two ratios, which are expected to be returned depending on the level

of the hierarchy that the user is viewing. Firstly, the measure Sales Ratio (Filtered)
should be shown when the Accessories level is being viewed and secondly, Sales Ratio
(Subcategory) should be shown when the user is at the Subcategory level. If the user
navigates to Products, nothing should be shown.

(e

Chapter 3

Unlike MDX (Multidimensional Expressions), DAX does not include the notion of hierarchies
(and hierarchy-aware functionality) within calculations; everything must be based on tables
and columns. In order to determine which level the user is viewing the hierarchy (or the
Products table) at, we can check for filtering through the ISFILTERED function. For
example, to determine if the user is viewing a subcategory, we could simply use ISFILTERED
(Products [Subcategory].

The formula for Sales Ratio (Nested) is therefore:

Sales Ratio (Nested) :=
if (ISFILTERED (Products [Product])
, BLANK ()
, if (ISFILTERED (Products [Subcategoryl])
, [Sales Ratio (Subcategory)]
, [Sales Ratio (Filtered)]
)

Time Calculations
and Date Functions

Often, our models need to display data within the context of time relationships. Therefore, in
this chapter, we'll be covering:

» Calculating running totals-totals to date

» Month, quarter, and year to date aggregations
» 445 dates and irregularities

» Last year and prior period values

» Relative Time-pivoting around measures

» Moving averages and last n averages

Introduction

The chapters that have been examined so far treat calculations as a point in time data.
That is, some event or occurrence that occurs at a given point in time. Further, the modeling
that we have looked at aggregates this data by other tables, which may be thought of as
dimensions for analyzing the data.

The ability to manipulate this type of data by dates and date-derived types is one of the most
common forms of analysis, and includes a variety of different types of calculations. The
most basic form of this analysis is the concepts of trending, and the comparative questions
that arise regarding performance against prior periods. This type of analysis always includes
the concept of date, and the business implications of a date aggregation (such as month

to date value, year to date value, balance to date value, and running balances). Common
performance metrics includes trending by time and comparatives to prior periods.

Time Calculations and Date Functions

The recipes in this chapter examine how to manipulate and create measures (and define the
model) across a date dimension so that this type of analysis can be performed.

Pivotal to date calculations is the concept of the current date. The current date is nothing
more than a reference point to which a calculation can be based and performed against.
Consider the calculation of month to date, this requires a date (current date), otherwise the
calculation is meaningless because we cannot calculate a month to date value without a date
context. The same current date can then be used to provide year to date, month to date and
the like.

Further, the current date as used in a query can be introduced to the tabular filter context

in two ways. Firstly, the current date can be set by the report axis (rows or columns) with the
current date changing for each row or column for the query. A simple example of this will

be the month of the year as columns, where each column represents a change to the filter
context. Secondly, the current date can be specified as a report filter where the same value is
defined for all the data in the report.

Calculating running totals - totals to date

Running totals are used to provide point-in-time balances where the source data is
transactional, and the balance is determined by performing an aggregate on all the values
that exist before the current date.

Traditionally, the aggregation of data from the start of the transactional activity has been
burdened with performance problems, and model designers have used point-in-time
snapshots to reduce the number of calculations required. However, the xVelocity engine in
tabular models is very efficient at managing this type of transaction and a simple calculation
based on all prior data, could be a viable option when determining totals to date in your
model. This recipe shows you how to add a running total to a model.

Getting ready

This recipe determines balances to date for data, and continues with the same type of

sales data that has been used in prior chapters. Open the workbook Sales Book - Time
Calcs.xls and import the Sales Header, Sales Detail, Products, and Dates
worksheets into a new PowerPivot model. Create the following relationships within the model:

Table Column Related Table Related Column
Sales Header order dt Dates date_ id

Sales Detail sales_order id Sales Header sales_order id
Sales Detail product_id Products product_id

Hide the sales Header table from the client tools and all the columns from the
Sales Detail table.

[

Chapter 4

In the Products table hide all fields except for Product, Category, and Subcategory.
Create a hierarchy called Product by Category and include the levels Category,
Subcategory, and Product.

In the Dates table, rename the fields year cal, month name cal, and date_idto Year,
Cal Month, and Date. Then, create a hierarchy titled Calendar Dates and include those
columns (in that order) as levels. Set the Sort by Column of Cal Monthtomonth id cal
and then, hide the column from the client tools.

Finally, rename the field Cal Month in the calendar day's hierarchy to Month. Hide the fields
date_id, month id 445, month id cal,month name 445,gtr id 445, gtr 445,
and year 445 from the client tools. The Dates table should appear as shown in the
following screenshot:

i
| date_id
1 cal Manth

-] month_id_cal

Eﬂ Year

1| month_id_445

| month_name_445
| year_445

1l gtr_id_445

| gtr_445

4 5 Calendar Dates

1

Year (Year)
Month (Cal Month)
Date (date_id)

How to do it...

Our recipe starts by creating a generic sales calculation. This can then be used by another
calculation that alters the query context to provide a running total.

1. Inthe Sales Detail table, add the formula Sales Amount measure, which sums
the Sales Detail.sales amount column.

Sales Amount:=SUM([sales amount])

55}

Time Calculations and Date Functions

2. Add another measure to show the accumulating balance of the sales amount
as follows:

Sales Amount (To Date) :=
CALCULATE (Sales_Detail [Sales Amount]
, FILTER (all (dates)
, Dates[date_id] <=MAX (Dates [date_id]))
)
3. Add a new measure to the Sales_Detail table to show the expected result of the
MAX (DATE) component of the Sales Amount (To Date) calculation:

Max Date:=MAX (Dates [date_id])

4. Create a pivot with the Calendar Dates hierarchy on rows and the Sales
Amount, Sales Amount (To Date), and Max Date measures. Expand the
Years 2005 and 2006 to the Months level. Your pivot should look something
like the following screenshot:

Row Labels |-T| Sales Amount Sales Amount (To Date] Max Date

=1 2005 8,005,435 8,065,435 31-Dec-05
+ Jul 489,329 489,329 31-Jul-05
HAug 1,538,408 2,027,737 31-Aug-05
*Sep 1,165,897 3,193,634 30-Sep-05
+Oct 844,721 4,038,355 31-Oct-05
+HMNov 2,324,136 6,302,491 30-Mov-05
+Dec 1,702,945 8,085,435 31-Dec-05

=1 20006 24,144,430 32,209,805 31-Dec-06
t]an 713,117 8,778,552 31-Jan-06
*Feb 1,900,789 10,679,341 28-Feb-06
I Mar 1,455,280 12,134,621 31-Mar-06

The calculation for Sales Amount (To Date) is a good example to demonstrate how

a DAX measure can contort the filter context, which is created by the query. Further, the
concepts of a current date that were discussed in the introduction are shown through the
creation and use of the measure Max Date. In this scenario, the current date is materialized
to the user as Max Date.

We can rationalize that the current date should be the maximum date of the filter context. If we
have selected a month (an entire month as an attribute), we would rationalize that the current
date should be the last day of the month. The expected result of MAX (Dates ([date id])) as
part of the calculation returns the maximum date from the applied (date) filter—the filter in this
case is applied as a result of the row values. When the filter context controlled by the query is a
Year (as in the 2005 value of the pivot), the formula simply returns the last date of that year.

=

Chapter 4

It may also be beneficial to recognize that because of the use of the hierarchy, the Month level
of the hierarchy automatically got filtered by Years in the preceding level of the hierarchy.

If we were to replace the Pivots row hierarchy with the Cal Months attribute, we would see
the last date for all months of the filter context (for example, the last date in January, or all
January months). This is important because months (as far as running totals are concerned)
should be considered within a year—and this is exactly what the hierarchy provides. The
following screenshot illustrates the previously discussed feature:

Row Labels - !Max Date

Jan 31-Jan-10
Feb 28-Feb-10
Mar 31-Mar-10
Apr 30-Apr-10
May 31-May-10
Jun 30-Jun-10
Jul 31-Jul-10
Aug 31-Aug-10
Sep 30-5ep-10
Oct 31-Oct-10
MNowv 30-Mov-10
Dec 31-Dec-10
Grand Total 31-Dec-10

The CALCULATE function is used to alter the filter context, which is natively provided by the
query. What we want to do, is firstly remove any date filter from the SUM calculation, and then
reapply it so that the new filter context includes the current date and all dates prior to it. This
is achieved through the use of the FILTER function within the calculate command, as shown
in the following code:

FILTER (ALL (dates), Dates[date id]<=MAX (Dates[date id]))

The FILTER function that restricts rows returned by a table according to the <filter>
predicate and follows the syntax is as follows:

FILTER (<table>,<filter>)

When used within our CALCULATE statement, the result of the FILTER function is all rows
from the Dates table that are less than (or equal to) the current date. This is achieved by
removing any filters on the Dates table (that is selecting ALL (Dates) as the <table>
argument) and then applying a new filter that enforces the predicate whereby the Dates.
date_idis less than or equal to the current date.

Time Calculations and Date Functions

Month, quarter, and year to date

aggregations

Month to Date (MTD), Quarter to Date (QTD), and Year to Date (YTD) aggregations are
arguably the most common aggregation functions performed on transactional data over time
periods. The calculations implicitly include a business context to the end user because the
user understands the start and end of the period that is used within the calculation. Consider
the phrase Year to Date. Within this term, we assume an aggregation of periods in the current
year to the current date. But without an understanding of when the year starts (or ends), the
term is meaningless.

This recipe looks at how to build these to-date measures within a tabular model.

Getting ready

This recipe follows from the prior recipe Calculating running totals - totals to date, and
assumes that the workbook from that recipe is completed.

How to do it...

Period to date calculations require that the model has a Dates table. This is simply a table
that the tabular model can use to reference as a range of dates.

1. Mark the Dates table as a date table by selecting the Mark as Date Table button
from the Design tab and specifying the date (column) as the date_id field, as
shown in the following screenshot:

(Emr——

Home Design Advanced

'jJ 5if Delete ﬁ et 7] ﬁ ﬁl Undo
| Freeze ~) - Redo

Add

P Insert Calculation Existing Create Manage Tabl Mark as
1 Width Function Options~ | Connections | Relationship Relationships | Pr ies | |Date Table ~
Columns Calculations Relationships ——-) Mark as Date Table

2. Addthe Sales Amount (QTD) and Sales Amount (YTD) measures for
the accumulating Sales Amount (QTD and YTD). These should be added in the
Sales Detail table, as shown in the following code:

Sales Amount QTD:=TOTALQTD([Sales Amount], Dates[date id])
Sales Amount YTD:=TOTALYTD([Sales Amount], Dates[date id])

Chapter 4

3. Create a pivot table from the model, which shows the Calendar Dates
hierarchy on rows, and the measures Sales Amount and Sales Amount YTD on
columns. Expand the Years 2005 and 2006 so that the pivot table looks like the
following screenshot:

Row Labels -T| Sales Amount Sales Amount YTD
= 2005 8,065,435 8,065,435
* Jul 489,329 489,329
HAug 1,538,408 2,027,737
HSep 1,165,897 3,193,634
+ Oct 844,721 4,038,355
HMNov 2,324,136 6,362,491
+ Dec 1,702,945 8,065,435
=1 2000 24,144,430 24,144,430
Hlan 713,117 713,117
HFeb 1,900,789 2,613,906
Har 1,455,280 4,069,186
= Apr 832,900 4,952,086
= May 2,269,117 7,221,203
H lun 1,001,804 8,223,000
+ Jul 2,393,690 10,616,696

The sales Amount YTD holds the cumulative balance of the transaction values.
The accumulated value restarts in January each year.

The totals to date functions (which includes TOTALYTD, TOTALQTD, and TOTALMTD) evaluate
a calculation over the range of dates according to the requirements of the function (where
requirements are presented as an <expressions). That s, if the function is TOTALYTD, the
function will accumulate dates according to the current date, and perform a calculation for all
dates that occur up to, and including the current date. It is not necessary to define the current
date for this formula because it is implied by the relationship within the model. The syntax for
these functions follows the same format:

TOTALYTD
(<expression>,<dates>[,<filter>] [,<year end date>])

Since <year end_ dates is not required for the month to date calculations, the function
TOTALMTD excludes this parameter.

o7}

Time Calculations and Date Functions

In just the same way as the other calculations have used an existing measure as the

basis of the calculation, the use of [Sales Amount] in this calculation is equivalent to
including the qualified measure in place of <expressions>. Therefore, the two calculations
TOTALYTD ([Sales Amount], Dates[date id]) and TOTALYTD (sum(sales_amount),
Dates [date id]) are the same.

There's more...

If there is no <year end dates supplied (as in the previous code), the function defaults to
an end date of December 31. It is relatively simple to replace this with another date using the
example (for a year end of June 30) as:

Sales Amount YTD (30 Jun):=
TOTALYTD ([Sales Amount], Dates[date_ id],"30 Jun")

445 dates and irregularities

Manufacturing and retail companies often use a special type of calendar, which ensures that
all months have an equal number of days. This is commonly called a 445 calendar, which
indicates that a month is made of 4 weeks, with the next month comprising 4 weeks, and the
final month (in the quarter) comprising of 5 weeks. The next quarter follows the same pattern
of 2 x 4 weeks and then a 5-week month.

Month names in the 445 calendar do not always equate to the calendar month. The 445
calendar month of January may run into February, and December may run into January (in fact
this is frequently the case). Further, the week can start on any day of the calendar week, and
a 445 calendar's month never end on the same calendar day of a month.

Although there are variations of this pattern (454 and 544), the concepts and implications of
the calendar are the same. It poses a challenge in the model because a year does not start
or end on the same date, and the months do not align with the calendar months. This recipe
examines month to date, quarter to date, and year to date calculations under a 445 calendar.

Getting ready

This recipe builds on the workbook used in the prior recipe (Month, quarter, and year to date
aggregations). Examine the Dates table; the table aligns each day to a month and year in the
445 calendar.

5]

Chapter 4

How to do it...

Unlike the period to date calculations that were addressed in the previous recipe, the 445
calendar cannot rely on end dates. Our method must rely on the metadata of the calendar.

1. Launch the PowerPivot window.

2. Onthe Dates table, set the Sort by Column of month name 445 to
month id 445.

3. Create a hierarchy titled 445 Dates and include the fields year 445,
month name 445, and date_id. Rename the hierarchy levels to Year, Month,
and Date. The Dates table should look something like the following screenshot:

fH date_id
7 cal Month
7 month_id_cal
ﬂﬂ Year
FH month_id_445
i month_name_445
j year_445
4 73 Calendar Dates
Year (Year)
Month (Cal Month)
Date (date_id)
4 73 445 Dates
Year (year_445)
Meonth (month_name_445)
Date (date_id)

4. Add the following measures to the Sales Detail table:

First Date of Period:=FIRSTDATE (Dates[date id])
Last Date of Period:=LASTDATE (Dates [date id])
Sales Amount 445 YTD:=CALCULATE ([Sales Amount]

, Filter (ALL (Dates)

, Dates[year 445]=MAX (Dates[year 445])

&& Dates[date id]<=MAX (Dates[date id])

)

s

Time Calculations and Date Functions

The placement of measures within tables is at the discretion of
the modeler. Measures such as First Date of Periodand
Last Date of Period may be better placed in the Dates
table in larger models (since they are natively associated with a
Dates subject area). Placing measures in tables that they are
associated with may make sense from a tabular modeling point
of view (since the measures will appear in the appropriate subject
area); however, the multidimensional representation of this will
create many measure groups, which may be overwhelming for the
user. However, measure names must be unique within the model.

Alternatively, the modeler may choose to create an empty table
and then create all measures there. This will only expose one
measure group to the client tool, which may provide a simpler
interface for the end user.

5. Format the measure Sales Amount 445 YTD as a numeric type (comma
separated at no decimal places) and the short date dd-mm-yy.

6. Create a pivot table with the hierarchy 445 Dates on rows and expand the 2006
year to the Month level. Add the following measures to columns: Sales Amount,
Sales Amount 445 YTD, First Date of Period, and Last Date of

Period. The pivot table will look as shown in the following screenshot:

Row Labels ~
+ 2004
+ 2005
=1 2006
tlan
+ Feb
+Mar
+HApr
+May
Jun
Jul
HAaug
+5ep
+Oct
+ Nov
*Dec
+ 2007
+ 2008

Sales Amount Sales Amount 445 YTD First Date of Period Last Date of Period

01-Jan-05 02-Jan-05

8,778,552 8,778,552 03-Jan-05 01-Jan-06
23,431,313 23,431,313 02-Jan-06 31-Dec-06
02-Jan-06 29-Jan-06

1,900,789 1,900,789 30-Jan-06 26-Feb-06
2,338,180 4,238,969 27-Feb-06 02-Apr-06
4,238,969 03-Apr-06 30-Apr-O6

2,269,117 6,508,086 01-May-06 28-May-06
3,395,493 9,903,579 29-May-06 02-Jul-06
9,903,579 03-Jul-06 30-Jul-06

3,601,191 13,504,770 31-Jul-08 27-Aug-06
4,687,513 18,192,283 28-Aug-06 01-Oct-06
18,192,283 02-Oct-06 29-0Oct-06

3,053,816 21,246,100 30-Oct-06 26-Nov-06
2,185,213 23,431,313 27-Nov-06 31-Dec-06
32,202,669 32,202,669 01-Jan-07 30-Dec-07
16,038,063 16,038,063 31-Dec-07 28-Dec-08

100

Chapter 4

The addition of the measures First Date of Periodand Last Date of Period
demonstrates the issues that are associated with 445 calendars. Namely, the inconsistent
ending dates for months and years. Because there is no defining end date, it would not be
possible to achieve the YTD aggregation through the TotalYTD function.

The FIRSTDATE and LASTDATE functions have a simple syntax, with the output being the
expected first and last date for the dates that are passed through the <dates> argument.
Since each cell in the pivot applies a different (date) filter (that is a filter, based on the dates
held at the consolidated (row) levels), the function simply returns the first (and last) date for all
dates within the bounds of the row items. Remember that the rows are filtered by both Years
and Months. This is conceptually the same as the use of MIN and MAX functions.

FIRSTDATE (<dates>) , LASTDATE (<dates>)

The measure Sales Amount 445 YTD works by adjusting the Dates filter context in the
same way that we would logically rationalize the aggregation problem. That is, give me all dates
within the current year which are before (or equal to) the current date. Note that the current
year is implied by its association to the current date within the 445 hierarchy. Therefore, we
must remove the existing filter from the Dates table (that is, the one created by the query) and
reapply it according to the 445 chosen year. This is achieved with the following code:

Filter (ALL (Dates)
, Dates[year 445]=MAX (Dates[year 445])
&& Dates[date id]<=MAX (Dates[date id])
)

Last year and prior period values

One of the most common forms of comparison for a value is that of a base value to prior
periods. The idea of a prior period generally takes either of the following two forms:

» Comparison to a different period which relates to the current period—for example,
comparison with the last month

» Comparison to the same period with a year offset—for example, this month last year

Both forms of this calculation are conceptually the same—it is only the offset that is applied
in the calculation that is different. Consider the situation of determining a value for the last
month. Here, we perform a base calculation with a monthly offset from the current date. For
the last year value, we perform the same base calculation with a 12-month offset. Of course,
the 12-month offset can be simplified as one year, but the calculation is the same.

Time Calculations and Date Functions

Furthermore, by considering a base calculation in the context of a current date, the

logic of prior period calculations can be applied to any base calculation. The calculation is
generally irrelevant—we are only adapting the filter context used in the measure, so that the
current date used by the base calculation (or base measure) is relative to the date supplied
by the client (query).

Getting ready

This recipe continues from the 445 dates and irregularities recipe.

How to do it...

We will create measures for Sales Amount LM (Sales Amount Last Month), Sales Amount
LY (Sales Amount Last Year), and Sales Amount YTD LY (Sales Amount YTD Last Year).

1. Openthe workbook Sales Book - Time Calcs.xls. Since the model in this book
has been used in a previous recipe, the tables are imported, formatted, and have
hierarchies defined. The model also includes the base measure Sales Amount.

2. Create the following measures in the Sales Detail table with a numeric, comma
separated with no decimal places:

Sales Amount LM:=CALCULATE ([Sales Amount]
, DATEADD(DateS[date_id], -1, MONTH)

Sales Amount LY:=CALCULATE ([Sales Amount]
, DATEADD(DateS[date_id], -1, YEAR)

Sales Amount YTD LY:=
CALCULATE (Sales_Detail [Sales Amount YTD]
, DATEADD (Dates [date id], -1, YEAR)

The benefits of a reusable shell measure should be apparent.
All these measures are based on the [Sales Amount]

Q‘ measure. If our model requires a change so that [Sales
Amount] is be calculated in a different way, a change will
only be required in one measure. Since all other (sales-based)
measures rely on [Sales Amount], all changes would be
propagated throughout the model.

102

Chapter 4

3. Create a pivot with the Calendar Dates hierarchy on rows and the measures (Sales
Amount, Sales Amount LM, Sales Amount LY, Sales Amount YTD, and Sales
Amount YTD LY)on columns. Expand the Years for 2005 and 2006 so that the
Months level is shown. The pivot should look as shown in the following screenshot:

Row Labels -T Sales Amount Sales Amount LM Sales AmountLY Sales Amount YTD Sales Amount YTD LY
12005 8,065,435 6,362,491 8,065,435
Jul 489,329 489,329
HAug 1,538,408 \..* 489,329 2,027,737
+Sep 1,165,897 1,538,408 3,193,634
+0ct 244,721 1,165,897 4,038,355
I MNov 2,324,136 244,721 6,362,491
+Dec 1,702,945 2,324,136 8,085,435
= 2006 24,144,430 23,662,161 8,065,435 24,144,430 8,065,435
tJan 713,117 1,702,945 713,117
HFeb 1,900,789 713,117 2,613,906
I Mar 1,455,280 1,900,789 4,069,186
HApr 882,500 1,455,280 4,952,086
HMay 2,269,117 882,500 7,221,203
+Jun 1,001,204 2,269,117 3,223,006
Jul 2,393,690 1,001,204 489,329 10,616,696 489,329
+HAug 3,601,191 2,393,690 1,538,408 14,217,887 2,027,737
#5ep 2,885,359 3,601,191 1,165,897 17,103,246 3,193,634

It is easy to see that our calculations work. In August 2005, the Sales Amount LM value
($489,329) is the July amount (last month amount). In July 20086, the value also appears as
the Ssales Amount LY value. This is repeated for comparisons of measures Sales Amount
YTD and Sales Amount YTD LY.

For the measures Sales Amount LMand Sales Amount LY, the base measure used
was Sales Amount. Remember that this measure is simply the sum of sales amount,
and represents the sum within the current filter context. For a monthly value (or a cell in the
Sales Amount column), this is just the dates within that month. Consider the intersection
of Sales Amount (July 2005)—value of $489,329—the filter context here is simply Years of
2005 and the months of July—that is, dates in July 2005.

Now consider the formula Sales Amount LM in the context of the cell of Aug 2005.
The formula for the cell is as follows:

CALCULATE ([Sales Amount], DATEADD (Dates[date id], -1, MONTH))

Time Calculations and Date Functions

In Aug 2005, the current date (filter context) is all dates in Aug 2005, the native filter context
for the cell will be all the dates in the month.

The DATEADD function follows the ensuing syntax:
DATEADD (<dates>, <number of intervals>,<intervals)

It also returns a table of the dates shifted, that is, <number of intervalss bythe
<intervals. The formula Sales Amount LM reduces these dates by one month. The
interval can be one of the values YEAR, QUARTER, MONTH, Or DAY.

Therefore, the dates returned through the DATEADD function are all the dates in July (2005)
and these are the date(s) used within the <expressions> of the CALCULATE statement.

This principle is applied in all other calculations.

There's more...

The Month, quarter, and year to date aggregations recipe, introduced the concept of the
Dates table. The definition of this table is important in DAX because the table is used as a
reference for date-based calculations. Note that the first argument of the DATEADD function

is a column of dates. In this situation, we have used a date column that existed in the Dates
table which had a relationship that was used in the model. This is a natural choice, since the
Dates table includes a continuous list of dates, and this is a requirement of the function
argument. There is no requirement however, to have any relationships between the model and
the dates column used in the function. In fact, we could use any column of dates.

Further, the range of <dates> that is provided to the DATEADD function does affect its
outcome and this should be considered by the modeler when considering the range of dates
to include in a Dates table (whether it is used as a dimension or not).

Add the following measures to the Dates table:

Min Date:=CALCULATE (MIN([date id]))
Min Date LY:=CALCULATE ([Min Date], DATEADD (Dates[date id],
-1, YEAR))

104

Chapter 4

Put these measures on a pivot table with the Calendar Dates hierarchy on rows, and then
expand 2005 and 2006 as shown in the following screenshot:

Row Labels ~ Min Date Min Date LY
=12005 01-Jan-05
*Jan 01-Jan-05
+Feb 01-Feb-05
HMar 01-Mar-05
HApr 01-Apr-05
+May 01-May-05
*Jun 01-Jun-05
Jul 01-Jul-05
HAaug 01-Aug-05
*Sep 01-5ep-05
+H0ct 01-Oct-05
HMNov 01-MNov-05
HDec 01-Dec-05
= 2006 01-Jan-06 01-Jan-05
*Jan 01-Jan-06 01-Jan-05
+Feb 01-Feb-06 01-Feb-05

The values returned for Min Date LY are constrained by the values in the Dates table.
Notice that the first and earliest date that is in the Dates table is 01-Jan-05. We know

this because it is based on the value of Min Date. Also, note that the earliest date for the
measure Min Date LY is 01-Jan-05 (the same earliest date as Min Date). If we examine
the date in the Dates table, we also find that this is the earliest date in the table.

Since the DATEADD function is dependent on the Dates table (its date field is required as the
first argument in the function), the value returned from the function can never be a date that
does not exist in these dates. The Dates table used in models should therefore, have a range
that will cover the expected requirements of measures.

You might expect that DATEADD performs a calculation against the Date type, but this is not
the case.

Relative Time - pivoting around measures

A Relative Time dimension is an example of a Utility dimension, a dimension that does not
directly join to the data being analyzed, and is not directly used to slice and dice data. Rather,
the Utility dimension assists the modeler (and user) by making the presentation of the model
more user-friendly. An example of this is allowing the user to select a measure to show in

the pivot they create (or report), by allowing them to select a dimension member (that is, the
measure name from a list of options).

Time Calculations and Date Functions

Consider the following screenshot, which shows a very simple proforma report with Years
and Months on rows, and the product categories on columns. A Utility dimension allows the
user to select the measure that they wish to see in the report data area. They do not have to
alter the pivot table by dragging a measure to the Vvalues section of the pivot table layout.

Al

Q

A proforma can be thought of as a shell report layout. In
the following screenshot, we can see the expected layout
of the report. All we have to do is populate it with some
measure value.

This principle can also be used in most reporting tools as shown in the following screenshot:

Test

=1 2005
+ Jan
+Feb
+ Mar
+ Apr
+May
+ Jun
Jul
HAug
HSep
+Oct
I Nov
+ Dec

=1 2006
+ Jan
+Feb

Measure Name All b

Row Labels -T Accessories Bikes Cloth

—

Column Label|-T

Additionally, the user can use the Utility dimension to stack values into the pivot table
(or any report). This recipe looks at how to create a Utility dimension for measure selection

in a tabular model.

106

Chapter 4

Getting ready

This recipe continues with the model that was developed in the Last year and prior period
values recipe. The model already contains multiple measures (such as Sales Amount,
Sales Amount (To Date),and Sales Amount YTD). We will create a Utility dimension
for the user to select which measure they want to see in the reports.

How to do it...

This recipe starts by creating the Utility dimension.

1.

Launch the PowerPivot window and import the Excel named range Measure Name
on the sheet Measure Name into the tabular model.

Hide the field measure_id from the client tools.

Create a new measure in the Measure Name table (Dynamic Measure)to
determine what measure name is filtered and return the appropriate measure:

Dynamic Measure:=
if (COUNTROWS (VALUES ('Measure Name'))<>1
, BLANK()
, SWITCH(VALUES ('Measure Name' [measure id])
, Sales Detail[Sales Amount]
, Sales Detail[Sales Amount (To Date)]
, Sales Detail[Sales Amount YTD]
, Sales Detail[Sales Amount YTD (30 Jun)]
Sales Detail [Sales Amount LM]
Sales Detail [Sales Amount LY]
, Sales Detail[Sales Amount YTD LY]

~

~

oUW N

)

Create the pivot table (as shown previously) with the Calendar Dates hierarchy on
rows (expand the Years 2005 and 2006) and Category (from the Products table)
on columns. Add the Measure Name field as a pivot filter and the measure Dynamic
Measure as a value.

Test that changing the filter changes the values in the pivot.

Time Calculations and Date Functions

6. Alter the pivot by removing Category from the columns and placing Measure Name
on columns. Set the Sort by Column filter so that only Sales Amount, Sales
Amount LM, and Sales Amount LY are shown. The pivot will look as shown in
the following screenshot:

Dynamic Measure Column Labels -T
Row Labels -T| Sales Amount Sales Amount LM Sales Amount LY
=1 2005 8,065,435 6,362,491
Jul 489,329
HAug 1,538,408 489,329
+5ep 1,165,897 1,538,408
= Ot 844,721 1,165,897
= Nov 2,324,136 844,721
tDec 1,702,945 2,324,136
=1 2006 24,144, 430 23,662,161 8,005,435
+Jan 713,117 1,702,945
HFeb 1,900,789 713,117
+Mar 1,455,280 1,900,739
+ Apr 882,900 1,455,280
+ May 2,269,117 882,900
= Jun 1,001,804 2,269,117
+ Jul 2,393,690 1,001,204 489,329
HAug 3,601,191 2,393,690 1,538,408
HS5ep 2,885,339 3,601,191 1,165,857

The method of providing a value based on the Utility dimension revolves around two steps.
Firstly, we ensure that only one value is selected in the Utility dimension (in whatever filter
context is provided by the query) and secondly, we determine which value (or measure) is to
be returned based on the selected measure (value).

Ensure that only one value selected is contained within the IF function. This is used to return
a BLANK () function if more than one value is selected as the measure to display.

The use of COUNTROWS (VALUES ('Measure Name')) <>1 as the first argument for the IF
function simply returns the number of rows from the table that are selected in the query (filter)
context. If more than one value is selected, BLANK () is returned, otherwise the selected
measure is evaluated and returned.

108

Chapter 4

Constructing the IF function in this way (so that, the true part of
M the statement returns Blank () as the first argument) allows us
Q to put the more complex parts of the formula at the end of the
IF statement. This can help to reduce the clutter of the formula
and make it more readable.

Secondly, if a single row is selected, the SWITCH statement will determine what measure id
is chosen, and return the measure associated with that measure_id (remember that this may
happen for each cell in the pivot results). The SWITCH statement has the following syntax:

SWITCH
(<expression>
, <value>, <result>
[, <value>, <result>]
[, <else>]

)

Once a measure_id value is known, it is easy to see how this is used by SWITCH—the real
measure is outputted as the <result>. Note the <value> and <result> arguments of the
SWITCH statement in the preceding formula.

1, Sales Detail[Sales Amount]

2, Sales Detail[Sales Amount (To Date)]

3, Sales Detail[Sales Amount YTD]

, 4, Sales Detail[Sales Amount YTD (30 Jun)]
5, Sales Detail[Sales Amount LM]

6, Sales Detail[Sales Amount LY]

7, Sales Detail[Sales Amount YTD LY]

’

’

Finally, it is worth pointing out the use of the VALUES () function within the SWITCH
statement. The SWITCH statement will only be evaluated when one row from the Measure
Names table is selected. Therefore, we are guaranteed that only one row is returned by the
VALUES () function, and this is the measure_id value of the selected measure.

Moving averages and last n averages

Moving averages are often used in analysis for two purposes.

Firstly, they are used to remove volatility from single point values. By including a number of
prior observations, a smoother estimation of the volatile point is defined.

Time Calculations and Date Functions

Secondly, they remove volatility and can provide the general (and expected) trend movement
(just as any consecutive set of numbers are an indicator of trend). Since a daily value may
include prior N periods, the value of N is often used to support long-term or short-term trends.
For example, a trend based on 30 days may be considered a long-term trend, whereas a trend
based on five days may be used to provide a short-term trend. This type of smoothing, and a
mix of long- and short-term trends is often used in charting analysis for stock prices.

This recipe shows how to perform last N calculations over stock data. The data is from
the Australian Stock Exchange between January 1993 and December 2006. There are
approximately 2.5 million value {StockCode, TradingDate} combinations for almost
3,000 stock codes.

Getting ready

Open the workbook Stock Trades and note the three tables (Stocks, Trading History,
and Dates). Stocks is a table that lists stock codes. This could include other characteristics
such as the stock name, industry, and market. However, for our purposes the field
StockCode is sufficient to identify a stock. The table Trading History shows the closing
value (CloseValue) for the stock on a given day, and the table Dates is a sequential date
table (from January 1, 2003 to December 31, 2006). Dates shows the Year, Month Name,
and Month Sort for each date.

We are going to create a measure that shows the last 10-day average of the closing price.

How to do it...

Start by defining the relationships with the model.

1. Create a relationship between the column TradeDate in Trading History, and
TradeDate in the Dates table. Create a relationship between the StockCode
column in the Trading History table and the StockCode in the Stocks table. The
diagram of the model is quiet simple and should look like the following screenshot:

i == =

£ stockCode £ - {7 TradeDate
£ stockCode = 7 Year

1 TradeDate fF month
£ Closevalue - T Month_Sort

2. Inthe Dates table, set the Sort by Column of the Month field to Month_Sort and
hide the Month_Sort field (from the client tools).

Chapter 4

3.

Haome Design Advanced

- 2= = L [
i Delete ﬁ [EE:Z- g ﬁ ﬁ Undo
] Freeze - (i) v Redo

Add

= Width

In the Dates table (and the Design tab), define the field TradingDate as a Dates
date field by clicking on the Mark as Date Table button and specifying TradingDate
as the date field, as shown in the following screenshot:

Insert Calculation Existing Create Manage Table Mark as

Function Options = Connections | Relationship Relationships | Propertie ate Table =
Columns Calculations Relationships 5 Mark as Drate Table
- ‘/" |

[TradeDate] v| |

-

Date Table Settings

TradeDate hd hd hd * | Add Column

4.

In the Trading History table, define a measure Avg Value (average value) with
a two decimal (comma separated) number format as shown in the following code:

Avg Value:=AVERAGE ([CloseValue])

In the Trading History table, define a measure which shows the maximum
date from the Dates table filtered perspective. This is the current date. (format the
measure as a date March 14, 2001):

Max Date:=MAX (Dates [TradeDate])

In the Trading History table, define a measure that shows the date of the
day which is 10 days before the current date. Format the measure as a date
(March 14, 2001):
Max Date -10:=CALCULATE ([MAX Date]

, DATEADD (Dates [TradeDate] , -9, DAY)
)

In the Trading History table, define the measure, which holds the average
value for the past 10 days' trading. Format the measure with a numeric (comma
separated), two decimal place format:
Avg Value (10 Running) :=CALCULATE ([Avg Valuel]

, DATESBETWEEN (Dates [TradeDate]

, 'Trading History' [Max Date -10]

, 'Trading History' [Max Date]

Time Calculations and Date Functions

8. Create a pivot table with TradeDate (from the Dates table) on rows, using the
StockCode (from Stocks) table as a filter. Include the measures Max Date,
and Max Date -10. The pivot will look like the following screenshot:

StockCode All -
Row Labels ~ Max Date Max Date -10
01-Jan-93 01-Jan-93
02-Jan-93 02-lan-93
03-Jan-93 03-lan-93
04-Jan-93 04-lan-93
05-Jan-93 05-Jlan-93
06-Jan-93 06-lan-93
07-lan-93 07-lan-93
08-Jan-93 08-Jan-93
09-Jan-93 09-Jan-93
10-Jan-93 10-Jan-93 01-Jan-93
11-Jan-93 11-lan-93 02-lan-93
12-Jan-93 12-lan-93 03-Jan-93
13-Jan-93 13-lan-93 04-Jan-93

9. Create an additional pivot table with the same format as the prior one, but only include
the measures Avg Value and Avg Value (10 Running). Filter the pivot table to
only show StockCode AAC. Your pivot will look like the following screenshot:

StockCode AAC -1

Row Labels = Avg Value AvgValue (10 Running)
10-Aug-01 0.99 0.99
11-Aug-01 0.99
12-Aug-01 0.99
13-Aug-01 0.96 0.98
14-Aug-01 0.96 0.97
15-Aug-01 0.94 0.96
16-Aug-01 0.92 0.95
17-Aug-01 0.93 0.95
18-Aug-01 0.95
19-Aug-01 0.95
20-Aug-01 0.93 0.94

The formula for Avg Value (10 Running) works by calculating three calculations within
the formula. These are the current date (Max Date), the date 10 days prior to the current
date, and the value of the average between these two dates.

Chapter 4

The determination of the current date is achieved through the use of (Max Date). Max Date
returns the highest date from the current filter context in the Dates table (note that we filter
by Dates on pivot rows). This is required so that a scalar (single date) can be determined
from whatever filter context is applied to the model. Logically, this should be the last date of
whatever period is provided by the filter context.

In the pivot that shows TradingDate and Max Date, we can see that Max Date returns the
same day as the row filter (that is, Trading Date). However, the pivot may not be filtered by
TradingDate. In this situation we still need to determine a date to base our calculations on,
and therefore select the last date (for whatever Dates period is selected). Please review the
Calculating running totals - totals to date recipe for further explanation on the logical use of
Max Date.

Once a value for the current date is determined, we can use it to determine what the date
was 10 days prior (to the current date). This introduces the DATEADD function, which has the
following syntax:

DATEADD (<dates>, <number of intervals>,<intervals)

For this formula, <dates> specifies the dates column in the model, which should be a
continuous range of dates. Since most of the models will have a Date dimension (most
models require analysis by date), we can simply use the date field of this table for this
purpose (although any range of dates will suffice).

It is also important to identify that the return value for the formula is dependent on the range of
dates provided by the <dates> argument. Notice that there is no return value for the first 10
dates (a blank Max Date -10 value) in the first pivot table. The <number of intervalss
argument for the function is self-explanatory; however, the <intervals> argument defines the
number of periods and must be a value of the set (year, quarter, month, day).

Finally, the measure Avg Value (10 Running) calculates the average ClosevValue
between these two dates. Here, the filter context that is applied by the pivot is changed
through the use of the keyword CALCULATE and controlled by the DATESBETWEEN function.
The DATESBETWEEN function returns a set (table) of dates based on a <dates> column and
a start and end date. This syntax for DATESBETWEEN is simply as follows:

DATESBETWEEN (<dates>, <start_date>, <end date>)

Although this measure has calculated each component of the formula individually, there is no
requirement to do so. That is, there is no requirement to specify AVG Value, Max Date,
and Max Date -10 as measures, and then use them in the Max Avg Value (10
Running) formula. We achieve exactly the same result by combining all the components
into the same formula.

Time Calculations and Date Functions

Therefore, the following alternate formula also works:

Avg Value (10 Running) :=CALCULATE (AVERAGE ([CloseValue])
, DATESBETWEEN (Dates [TradeDate]
, CALCULATE (MAX (Dates [TradeDate])
, DATEADD (Dates [TradeDate], -9,DAY))
, MAX (Dates [TradeDatel])

)

There's more...

Having a fixed value for N periods usually raises one issue from the end user: "Can | have a
different number of periods?" The best way to overcome this is by allowing the end user a
means to specify the number of historical days that they wish to include in their calculation.
This is achieved through the use of a Utility table (or dimension) that allows the user to select
the number of periods that they wish to review.

The formula for N periods then interprets the selected value from this table and uses that as
the basis for the prior number of days.

To briefly reiterate, a Utility dimension is the one that performs a function other than the
expected slicing and dicing of data. That is, its primary purpose is not to filter data, but to
assist in model presentation. Please see the Relative Time - pivoting around measures
recipe, for a further explanation and implementation.

In order to use this so that it allows the user to specify the number of periods they wish to
include in their N periods, perform the following steps:

1. Import the table on the worksheet Periods into the model. The name for this table
range is defined, and the data area will be imported as Periods.

2. Add another measure to the Trading History table as follows:

Dynamic N AVG:=
if (not (HASONEVALUE (Periods [Number Of Periods]))
, BLANK ()
, CALCULATE('Trading History' [AVG Value]
, DATESBETWEEN (Dates [TradeDate]
, CALCULATE (MAX (Dates [TradeDate])
, DATEADD (Dates [TradeDate] , -1*VALUES (Periods [Number Of
Periods]) +1,DAY))
, max (Dates [TradeDate])

))

114

Chapter 4

3. Add this measure to the pivot with Year and Number of Periods as the pivot
filters. Set the Year as 2005. The pivot should look like the following screenshot:

Year 2005 -1
StockCode AAC T
MNumber Of Periods All hd
Row Labels - | Avg Value Avg Value (10 Running) Dynamic N AVG
01-Jan-05 1.56
02-Jan-05 1.57
03-lan-05 1.61 1.58
04-lan-05 1.63 1.59
05-Jan-05 1.61 1.59
06-Jan-05 1.61 1.60
07-Jan-05 1.60 1.61
08-lan-05 1.61
09-Jan-05 1.61
10-Jan-05 1.66 1.62
11-Jan-05 1.65 1.62
12-]an-05 1.63 1.63
13-lan-05 1.67 1.63
14-Jan-05 1.67 1.64
15-Jan-05 1.64
B Since the Periods table is not linked to any other table, the
PowerPivot field list will display a warning message about
relationship definition, as shown in the following screenshot.
This is nothing to be concerned about, since the Periods
table is not connected to the model.
PowerPivot Field List v X
) A E:La;;:culnshlp may be —
%‘ Seach |p|
= Dates “
Month B
w| TradeDate
w| Year =
Periods
Stocks &
E Trading History
L CloseValue

Time Calculations and Date Functions

The new calculation includes two important additions to the prior one. Firstly, there is a check
for selection on Number of Periods. If there are no periods selected (as is currently the
case), the measure returns a blank value—although we could return the average value (Avg
Value) to indicate that the value is an average. This check is achieved with the following code:

if (not (HASONEVALUE (Periods [Number Of Periods]))
, BLANK ()

. Previously (in the recipe Relative Time - pivoting around measures),
a we used COUNTROWS to achieve the same result; however, this
e method is equally valid and shows that the same outcome can be
achieved in different ways.

The function HASONEVALUE () simply checks for a filter on the Number of Periods column
in the Periods table. If there is more than one period selected, the value BLANK () is
returned as the output for the measure Dynamic N Avg.

Although the negation of HASONEVALUE (through the use of not ()) is not technically
required, it assists with the logic of the entire formula. That is, it is simpler to read BLANK ()
as the first return value (the TRUE condition) in the IF function, rather than the intended
formula. Of course, the choice is entirely up to you.

Secondly, the number of periods that the user intends to evaluate is returned through the use
of a VALUES function. The VALUES function has a very simple syntax as follows:

VALUES (<column>)

This returns the distinct values from the <column> reference. Since we know that there is
only one value selected, we can use this value as the basis of the N periods in the standard
formula. Note that we know there must be only one value in the values function because of
the branch that was chosen by the IF function.

Previously, the measure [Max Date -10] was hardcoded with a fixed value as the
following code:

DATEADD (Dates [TradeDate] , -9, DAY)

Now, the value (-9) is simply replaced by reference to the value that the person has
chosen as follows:

-1*VALUES (Periods [Number Of Periods])+1

Just as a prior measure, Avg Value (10 Running) used nested measures to remove
complexity, so could the measure Dynamic N AVG. We could separate out each part of the
calculation into its own measure and combine these into a final formula.

Applied Modeling

In this chapter, we'll be covering more complex modeling concepts such as:

» Grouping by binning and sorting with ranks

» Defining many-to-many relationships

» Using the last non-empty function for stock data
» Performing currency calculations

» Allocating data at different levels

Introduction

This is the final chapter that examines the foundations of tabular modeling (at least from the
modelers point of view). The following chapters will examine the techniques used to manage
the model in a corporate environment and include recipes on subjects such as data refreshes,
partitioning, security, query modes, and perspectives. The final chapters will examine querying
the model and creating visualizations using Power View (and the Power View settings required
by the model).

In order to provide a familiar model which can be used in the later chapters, this chapter is
a little different from the previous chapters because it progressively builds the model that is
used throughout the rest of the book. Each recipe is intended to demonstrate a particular
technique; however, they need to be followed in order so that the final model is completed. If
this is not suitable, each completed recipe can also be found in the downloadable resources
available on the Packt Publishing website.

Applied Modeling

Grouping by binning and sorting with ranks

Often, we want to provide descriptive information in our data, based on values that are
derived from downstream activities. For example, this could arise if we wish to include a field
in the Customer table that shows the value of the previous sales for that customer or a bin
grouping that defines the customer into banded sales. This value can then be used to rank
each customer according to their relative importance in relation to other customers.

This type of value adding activity is usually troublesome and time intensive in a traditional
data mart design as the customer data can be fully updated only once the sales data has
been loaded. While this process may seem relatively straightforward, it is a recursive problem
as the customer data must be loaded before the sales data (since customers must exist
before the sales can be assigned to them), but the full view of the customer is reliant on
loading the sales data. In a standard dimensional (star schema) modeling approach, including
this type of information for dimensions requires a three-step process:

1. The dimension (reseller customer data) is updated for known fields and attributes.
This load excludes information that is derived (such as sales).

2. Then, the sales data (referred to as fact data) is loaded in data warehouse. This
ensures that the data mart is in a current state and all the sales transaction data is
up-to-date. Information relating to any new and changed stores can be loaded correctly.

3. The dimension data which relies on other fact data is updated based on the current
state of the data mart.

Since the tabular model is less confined by the traditional star schema requirements of

the fact and dimension tables (in fact, the tabular model does not explicitly identify facts or
dimensions), the inclusion and processing of these descriptive attributes can be built directly
into the model.

The calculation of a simple measure such as a historic
sales value may be included in OLAP modeling through

s“ calculated columns in the data source view. However, this
is restrictive and limited to simple calculations (such as
total sales or n period sales). Other manipulations (such
as ranking and binning) are a lot more flexible in tabular
modeling (as we will see).

This recipe examines how to manipulate a dimensional table in order to provide a richer end
user experience. Specifically, we will do the following:

» Introduce a calculated field to calculate the historical sales for the customer
» Determine the rank of the customer based on that field

» Create a discretization bin for the customer based on their sales

» Create an ordered hierarchy based on their discretization bins

Chapter 5

Getting ready

Continuing with the scenario that was discussed in the Introduction section of the chapter, the
purpose of this chapter is to identify each reseller's (customer's) historic sales and then rank
them accordingly. We then discretize the Resellers table (customer) based on this. This
problem is further complicated by the consideration that a sale occurs in the country of origin
(the sales data in the Reseller Sales table will appear in any currency). In order to provide
a concise recipe, we break the entire process into two distinct steps:

» Conversion of sales (which manages the ranking of Resellers based on a unified
sales value)

» Classification of sales (which manages the manipulation of sales values based on
discretized bins to format those bins)

How to do it...

Firstly, we need to provide a common measure to compare the sales value of Resellers.
Convert sales to a uniform currency using the following steps:

1. Open a new workbook and launch the PowerPivot Window.

2. Import the text files Reseller Sales.txt, Currency Conversion.txt,and
Resellers. txt.

The source data folder for this chapter includes the base schema.ini
W\ file that correctly transforms all data upon import. When importing the
~ data, you should be prompted that the schema . ini file exists and
Q will override the import settings. If this does not occur, ensure that the
schema. ini file exists in the same directory as your source data. The
prompt should look like the following screenshot:

J‘_", A Schema ini file has been detected in the cument impart falder “F:A\Drop Box.Dropbox® Book:
WO02B4ENDEB4EMN_05_code”. Settings from this file will ovemide your cument import settings.

Applied Modeling

Although it is not mandatory, it is recommended that connection managers
are labeled according to a standard. In this model, | have used the convention
type table name where type refers to the connection type (. txt) and
table name refers to the name of the table. Connections can be edited using
the Existing Connections button in the Design tab.

Existing Connections | ?

Select an Basting Connechon
Select a connection to & data source that contains the data that you want to import.

Select a data source connection:

120

»

txi_reseller_sales
Data Source = F\Drop Box\Dropbox Book\0224ENDBEL4EN_05_code

m

tet_cumency_conmversion
Data Source = F\Drop Box\Dropbox'Book 0884ENWEE4EN_05_code

Create a relationship between the Customer 1ID field in the Resellers table and
the Customer IDfield inthe Reseller Sales table.

Add a new field (also called a calculated column) in the Resellers Sales table to
show the gross value of the sale amount in USD. Add usd_gross_sales and hide it
from client tools using the following code:

= [Quantity Ordered]

* [Price Per Unit]

*LOOKUPVALUE

(

'Currency Conversion' [AVG Rate]

, 'Currency Conversion' [Date]

, [Order dt]

, 'Currency Conversion' [Currency ID]
, [Currency ID]

)

Add a new measure in the Resellers Sales table to show sales (in USD). Add USD
Gross Sales as:

USD Gross Sales := SUM ([usd gross sales])

10.

11.

12.

13.

14.

Chapter 5

Add a new calculated column to the Resellers table to show the USD Sales
Total value. The formula for the field should be:

= 'Regeller Sales' [USD Gross Sales]

Add a Sales Rank field in the Resellers table to show the order for each resellers
USD Sales Total. The formula for Sales Rank is:

=RANKX (Resellers, [USD Sales Totall)

Hide the USD Sales Total and Sales Rank fields from client tools.

Now that all the entries in the Resellers table show their sales value in a uniform
currency, we can determine a grouping for the Reseller table. In this case, we are
going to group them into 100,000 dollar bands.

Add a new field to show each value in the USD Sales Total column of Resellers
rounded down to the nearest 100,000 dollars. Hide it from client tools. Now, add
Round Down Amount as:

=ROUNDDOWN ([USD Sales Totall, -5)

Add a new field to show the rank of Round Down Amount in descending order and
hide it from client tools. Add Round Down Order as:

=RANKX (Resellers, [Round Down Amount],,FALSE(), DENSE)

Add a new field in the Resellers table to show the 100,000 dollars group that the
reseller belongs to. Since we know what the lower bound of the sales bin is, we can
also infer that the upper bin is the rounded up 100,000 dollars sales group. Add
Sales Group as follows:

=IF ([Round Down Amount]=0 || ISBLANK([Round Down Amount])
"Sales Under 100K"
, FORMAT ([Round Down Amount], "S$#,K") & " - "

& FORMAT (ROUNDUP ([USD Sales Totall,-5),"s#,K")
)

Set the Sort By Column of the Sales Group field to the Round Down Order
column. Note that the Round Down Order column should display in a descending
order (that is, entries in the Resellers table with high sales values should

appear first).

Create a hierarchy on the Resellers table which shows the Sales Group field
and the Customer Name column as levels. Title the hierarchy as Customer By
Sales Group.

Add a new measure titled Number of Resellers tothe Resellers table:
Number of Resellers:=COUNTROWS (Resgsellers)

Applied Modeling

15. Create a pivot table that shows the Customer By Sales Group hierarchy on the
rows and Number of Resellers as values. If you created the usd_gross_sales
field in the Reseller Sales table, it can also be added as an implicit measure to
verify values. Expand the first bin of Sales Group. The pivot should look like the
following screenshot:

Row Labels - | Number of Resellers Sum of usd_gross_sales
=1 $800K - $900K 4 3,381,382
Brakes and Gears 1 882,276
Excellent Riding Supplies 1 853,851
Metropolitan Bicycle Supply 1 828,127
Totes & Baskets Company 1 817,128
+ $700K - $800K 7 5,067,477
+ $600K - 5700K 7 4,505,011
+ $500K - $600K 13 7,121,157
+ $400K - $500K 27 11,760,112
+ $300K - 5400K 26 9,160,253

This recipe has included various steps, which add descriptive information to the Resellers
table. This includes obtaining data from a separate table (the USD sales) and then
manipulating that field within the Resellers table. In order to provide a clearer definition of
how this process works, we will break the explanation into several subsections. This includes
the sales data retrieval, the use of rank functions, and finally, the discretization of sales.

The next section deals with the process of converting sales data to a single currency.

The starting point for this recipe is to determine a common currency sales value for each
reseller (or customer). While the inclusion of the calculated column USD Sales Total inthe
Resellers table should be relatively straightforward, it is complicated by the consideration
that the sales data is stored in multiple currencies. Therefore, the first step needs to include

a currency conversion to determine the USD sales value for each line. This is simply the local
value multiplied by the daily exchange rate. The LOOKUPVALUE function is used to return the
row-by-row exchange rate. (See the Linking fields between tables recipe in Chapter 1, Getting
Started with Excel, for an explanation of this function.)

Now that we have the usd_gross_sales value for each sales line, we define a measure
that calculates its sum in whatever filter context it is applied in. Including it in the Reseller
Sales table makes sense (since, it relates to sales data), but what is interesting is how the
filter context is applied when it is used as a field in the Resellers table. Here, the row filter
context that exists in the Resellers table (after all, each row refers to a reseller) applies a
restriction to the sales data. This shows the sales value for each reseller.

122

Chapter 5

For this recipe to work correctly, it is not necessary to include the calculated field

usd _gross_sales inReseller Sales.We simply need to define a calculation, which
shows the gross sales value in USD and then use the row filter context in the Resellers
table to restrict sales to the reseller in question (that is, the reseller in the row).

The Summing aggregates and row iteration recipe in Chapter 3, Advanced Browsing Features,
have explained how the X functions use row iterations to calculate aggregates based on
row-by-row calculations. Here, it is obvious that the exchange rate should be applied on a daily
basis because the value can change every day. We could use an X function in the USD Gross
Sales measure to achieve exactly the same outcome. Our formula will be:

SUMX

(

'Reseller Sales'

, 'Reseller Sales' [Quantity Ordered]
* 'Reseller Sales' [Price Per Unit]
* LOOKUPVALUE

(

'Currency Conversion' [AVG Rate]

, 'Currency Conversion' [Date]

, 'Reseller Sales' [Order dt]

, 'Currency Conversion' [Currency ID]
, 'Reseller Sales' [Currency ID]

)

)

Furthermore, if we wanted to, we could completely eliminate the USD Gross Sales measure
from the model. To do this, we could wrap the entire formula (the previous definition on USD
Gross Sales) into the CALCULATE statement in the Resellers table's field definition of
USD Gross Sales. This forces the calculation to occur at the current row context.

Why have we included the additional fields and measures in Reseller Sales? Thisis

a modeling choice. It makes the model easier to understand because it is more modular.
Additionally, the Performing currency calculations recipe is used to dynamically calculate
values in any chosen currency. This would otherwise require two calculations (one into a
default currency and the second into a selected currency) and the field usd _gross sales
is used in that calculation.

Now that sales are converted to a uniform currency, we can determine the importance by
rank. RANKX is used to rank the rows in the Resellers table based on the USD Gross
Sales field. The simplest implementation of RANKX is demonstrated within the Sales Rank
field. Here, the function simply returns a rank based on the value according to the supplied
measure (which is of course USD Gross Sales).

Applied Modeling

However, the RANKX function provides a lot of versatility and follows the syntax:

RANKX (<table>
, <expression>[, <value>[, <order>[, <ties>]]]

)

After the initial implementation of RANKX in its simplest form, the arguments of particular
interest are the <order> and <ties> arguments. These can be used to specify the sort order
(whether the rank is to be applied from highest to lowest or lowest to highest) and the function
behavior when duplicate values are encountered. This may be best demonstrated with an
example. To do this, we will examine the operation of rank in relation to Round Down Amount.

When a simple RANKX function is applied, the function sorts the columns in an ascending
order and returns the position of a row based on the sorted order of the value and

the number of prior rows within the table. This includes rows attributable to duplicate

values. This is shown in the following screenshot where the Simple column is defined as
RANKX (Resellers, [Round Down Amount]). Note, the data is sorted by Round Down
Amount and the first four tied values have a RANKX value of 1. This is the behavior we expect
since all rows have the same value. For the next value (700000), RANKX returns 5 because
this is the fifth element in the sequence.

H)|simple B3| Dense B3| iNverse Dense

9

L e S =
R N =
(= N = < T ¥ = ¥ = TR N

L _____hM-“-.-q...-‘”“ "H*‘A"th“‘h _*-'-.; I’“

When the DENSE argument is specified, the value returned after a tie is the next sequential
number in the list. In the preceding screenshot, this is shown through the DENSE column. The
formula for the field DENSE is:

RANKX (Resellers, [Round Down Amount],,,DENSE))

Finally, we can specify the sort order that is used by the function (the default is ascending)
with the help of <order> argument of the function. If we wish to sort (and rank) from lowest
to highest, we could use the formula as shown in the INVERSE DENSE column. The INVERSE
DENSE column uses the following calculation:

RANKX (Resellers, [Round Down Amount],, TRUE,DENSE)

124

Chapter 5

After having specified the Sales Group field sort by column as Round Down Order, we
may ask why we did not also sort the Customer Name column by their respective values in
the Sales Rank column? Trying to define a sort by column in this way would cause an error
as it is not a one-to-one relationship between these two fields. That is, each customer does
not have a unique value for the sales rank.

Let's have a look at this in more detail. If we filter the Resellers table to show the blank
USD Sales Total rows (click on the drop-down arrow in the USD Sales Total column
and check the BLANKS checkbox), we see that the values of the Sales Rank column for all
the rows is the same. In the following screenshot, we can see the value 636 repeated for all

the rows:

AW00000671
AW00000329
AWO00000689
AW00000619
AWO00000589
AWO00000565
AW00000547
AWO00000537
AWO00000507
AWO00000465

]

391
315
249
518
198
381
382

14
592
7

-

Reseller
Reseller
Reseller
Reseller
Reseller
Reseller
Reseller
Reseller
Reseller
Reseller

Contoso
Unicycles

Consumer Equipm...
Strong Metal Manu...

Hiatus Bike Tours

Metallic Paintand ...
Curbside Sporting ...

Preferable Bikes

Global Sporting Go...

Expert Cycle Store

Ltd.

Bicycles

Specialty Bike Shop
Specialty Bike Shop
Specialty Bike Shop

30 oros Sies] slesRank

636
636
636
636

/ 636

5q All Resellers with $0 Sales share the same Rank | 636

5 ESnop
Specialty Bike Shop
Specialty Bike Shop
Specialty Bike Shop

636
636
636
636

Discretizing sales

Allowing the client tool visibility to the USD Sales Total

and Sales Rank fields will not provide an intuitive browsing
attribute for most client tools. For this reason, it is not
recommended to expose these attributes to users. Hiding them
will still allow the data to be queried directly (see the Retrieving
data from a single table recipe in Chapter 9, Querying the
Tabular Model with DAX, on querying the tabular model directly).

By discretizing the Resellers table, we firstly make a decision to group each reseller into
bands of 100,000 intervals. Since, we have already calculated the USD Gross Sales value
for each customer, our problem is reduced by determining which bin each customer belongs to.

This is very easily achieved as we can derive the lower and upper bound for the Resellers
table. That is, the lower bound will be a rounded down amount of their sales and the upper
bound will be the rounded up value (that is rounded nearest to the 100,000 interval). Finally,
we must ensure that the ordering of the bins is correct so that the bins appear from the
highest value resellers to the lowest.

Applied Modeling

For convenience, these steps are broken down through the creation of additional columns but
they need not be—we could incorporate the steps into a single formula (mind you, it would be
hard to read). Additionally, we have provided a unique name for the first bin by testing for O
sales. This may not be required.

The rounding is done with the ROUNDDOWN and ROUNDUP functions. These functions
simply return the number moved by the number of digits offset. The following is the syntax
for ROUNDDOWN:

ROUNDDOWN (<number>, <num digitss>)

Since we are interested only in the INTEGER values (that is, values to the left of the decimal
place), we must specify <num_digitss> as -5.

The display value of the bin is controlled through the FORMAT function, which returns the text
equivalent of a value according to the provided format string. The syntax for FORMAT is:

FORMAT (<value>, <format strings>)

Field ordering (more specifically, the order of elements with fields) is examined in the Sorting
data recipe in Chapter 3, Advanced Browsing Features.

There's more...

In presenting a USD Gross Sales value for the Resellers table, we may not be interested
in all the historic data. A typical variation on this theme is to determine the current worth

by showing the recent history (or summing recent sales). This requirement can be easily
implemented into the preceding method by swapping USD Gross Sales with recent sales.
To determine this amount, we need to filter the data used in the suM function. For example, to
determine the last 30 days' sales for a reseller, we will use the following code:

SUMKX (
FILTER ('Reseller Sales'
, 'Reseller Sales' [Order dt]>
(MAX ('Reseller Sales' [Order dt])-30)
)
, USD SALES EXPRESSION

126

Chapter 5

Defining many-to-many relationships

Many-to-many relationships appear in a number of modeling situations. Perhaps, the most
common scenario and explanation is that of a bank account and their owners. In this situation,
a bank account can have many owners who are equally responsible for the balance. However,
the owners can have different accounts. The challenge faced in tabular modeling is that the
relationship includes a direction that does not actively filter the fact data. The use of the bridge
table breaks the standard downstream filtering that is usually applied in a star schema.

This recipe demonstrates how to create the many-to-many relationship by extending the
previous recipe to include store ownership. In this example, a reseller can be owned by
one or more owners. Furthermore, each owner has an ownership interest (as a percentage
interest in a reseller).

The following are the standard types of questions that the model is expected to answer:

» How many stores does an owner have?
» Whatis the owner's interest (ownership proportion) of the store(s)?

» What is the total value (both apportioned and unapportioned) of sales for
owners' stores?

Getting ready

This recipe extends the prior recipe (Grouping by binning and sorting with ranks) by adding
additional data to the model. The new data is a list of owners and the table shows the
ownership interest.

The owners. txt file identifies the owner (employee by ID and name), whereas the ownership
interest table, Store Owners.txt, identifies the store, owner, and their interest with a
percentage stake.

How to do it...

In building the many-to-many relationship, we first show what the implications of not correctly
defining measures are. We then show how to correct measure outcomes using DAX. Let's
start with the workbook that has been developed so far:

1. Open the model developed in the previous recipe.

2. Import the text files Owners.txt and Store Owners.txt into the model.

3. Create a relationship between Customer IDinthe Resellers table and
Customer IDinthe Store Owners table.

Applied Modeling

4.

Create a relationship between the Employee ID column inthe Store Owners
table and the Employee ID column inthe Owners table. The relationship
between the Reseller Sales table and the Owners model should look like the
following screenshot:

o

1 Employee ID

] HE el
1 customer I _ 1 Customer ID “L o .1 CustomerID
] Employee Name] Employee ID E 7 GeoArealD [Order dt
] Ownership Percent A Cuctnmer Tuna " 1 Due dt

128

Note that the direction of the relationship between Store Owners and Resellers
breaks the unidirectional filtering path that will otherwise be created, as shown in the
following diagram:

Resellers Sales|—>| Resellers |—>| Store Owners |—>| Owners |

Create a pivot table that shows Store Owners on rows and the measure USD
Gross Sales. The pivot will look like the following screenshot:

Row Labels T | USD Gross Sales
A, Scott Wright (EB5233686) 76,989, 167
Alan Brewer [470685086) 76,989 167
Alejandro McGuel (761597760) 76,989, 167
Alex Nayberg [3777B4364) 76,989, 167
Alice Ciccu (113695504) 76,989, 167

Amy Alberts [982310417) 76,989,167
1 _ . .-.'_, st At an e T S R e B

Create a measure to show the number of stores owned by an owner. Add the following
code to the Store Owners table and format it as a (separated by a comma) number
with no decimal spaces:

Stores Owned := DISTINCTCOUNT ('Store Owners' [Customer ID])

Chapter 5

7. Addthe measure Stores Owned to the pivot. Filter the pivot so that the first two
owners are shown. Then, add the Customer ID column from the Resellers table
as a secondary member on rows—all stores will be shown because the measure USD
Gross Sales (Raw) appears for every store. Hide the stores that do not have an
owner by filtering the pivot to show only the stores that have active owners. Select the
Customer ID cellin the pivot and then apply a value filter so that Stores Owned
does not equal to 0. The pivot will now look like the following screenshot:

Row Labels -1 USD Gross Sales (Raw) Stores Owned
= A. Scott Wright (685233686) 76,989,167 a

AWDDDD01E6 76,989,167 1

[AWODDOD267 |
AWODDDO0308
AWOD0DD00318 76,985,167 1
AWDDD00448 76,989,167 1
AWODDDO0516 76,989,167 1
AWDDDO0563 76,989,167 1

L - Mq.-"“---.___“_,‘.._ el bkl - |

8. Add a measure to the Store Owners table to show average ownership (interest)
using the following code. And then, add the Ownership % (AVG) measure to the
pivot table.

)

Onwership % (AVG) :=AVERAGE ([Ownership Percent])

We can easily verify that the ownership interest (and stores owned)
is correct by selecting an employee (in this case, employee ID of

A. Scott Wright is 685233686) and filtering the Store Owners
table within the model. If we do this, the table is reduced to only
stores owned by Scott. Have a look at the following screenshot:

&l - | Employ... [[V v

~\| AW00000186 50
AWO0000516 0685233686 50

Q AWO0000318 685233686 25
AWO0000448 685233686 25

AWO0000659 685233686 25

AWO000006594 685233686 25

AWO0000649 685233686 12

AWO0000563 685233686 12

Note that the filter indicator also shows that the column is filtered.

9. Create a measure to show the USD Gross Sales value for stores that are owned.
Add Gross Sales (All Owners) tothe Resellers Sales table:

CALCULATE ([USD Gross Sales], 'Store Ownersg')

Applied Modeling

10. Create a measure to show the USD Gross Sales value for the owners based on
their interest percentage in the store. Add Gross Sales (Ownership) tothe
Resellers Sales table as:

CALCULATE (
SUMX ('Store Owners'
, 'Store Owners' [Ownership Percent] /100
* [USD Gross Sales])
, 'Store Owners'

)

11. Format both measures as numeric values, separated by a comma, with no
decimal places.

12. Hide the unwanted columns from client tools. Hide all columns in the Store Owners
and Resellers Sales tables.

13. To verify the results, alter the existing pivot table. Ensure that the USD Gross
Sales, Ownership % (AVG),Gross Sales (All Owners), and Gross Sales
(Ownership) measures are added to the pivot. Remove Customer ID from the
rows. The pivot will look like the following screenshot:

Row Labels -T| USD Gross Sales Stores Owned Gross Sales (All Owners) Onwership % (AVG) Gross Sales (Ownership)
A. Scott Wright (BB5233686) 76,989,167] 529,433 28 161,999
Alan Brewer (470689086) 76,989,167 2 276,544 38 84,936
Grand Total 76,989,167 10 905,977 30 246,935

14. Create a new pivot that shows sales information for A. Scott Wright. Add Customer
ID from the Resellers table on the rows and the measures USD Gross Sales
(Raw), Gross Sales (All Owners), and Gross Sales (Ownership) onthe
columns. Add a filter to the pivot (Employee ID from the Owners table)and then
filter to Scott. Create a value filter for rows, so that the measure Gross Sales (All
Owners) does not equal to 0. The pivot will look like the following screenshot:

Employee Name A. Scott Wright (€T 233686)

Row Labels -1 USD Gross Sales Stores Owned Gross Sales (All Owners) Onwership % (AVG) Gross Sales (Ownership)

AWDOD00186 54,864 1 54,964 50 27,482
AWODD0D3 18 3,071 1 3,071 25 768
AWD0O000448 482,733 1 482,733 25 123,183
AWODD0D516 784 1 784 50 392
AWDOD00563 28,408 1 28,408 13 3,603
AWOD00064S 45,289 1 45,289 12 5,435
AWDODODESS BES 1 665 25 166
AWOD000694 3,520 1 3,520 25 BBO
Grand Total 629,433 8 629,433 28 161,999

130

Chapter 5

15. Note that Scott's sales Gross Sales (All Owners) match the USD Gross
Sales andthat Gross Sales (Ownership) are equal to the all owners' sales
multiplied by the ownership % (AVG). Furthermore, note that the totals for Scott
match the prior pivot's line items.

We have previously seen that the calculation of a measure is a calculation that is performed
on data that is restricted by the query context (the pivot table creates this context by the
intersections of the pivot table rows and columns). So far in this book, all models have
implemented relationships in a unidirectional manner, so that the relationships within

the model filter the data that is being used in the calculation. However, the creation of a
relationship between the Store Owners table and the Resellers table does not follow
this outward pattern and hence the data in the Resellers Sales table is not filtered when
fields from the Store Owners table or Owners table are used in the pivot table.

This is the reason why the first pivot table shows duplicate values for the USD Gross Sales
(Raw) measure. Note that the direction of the relationship between Resellers and Store
owners is different from the others, as shown in the following screenshot:

B
7 Employee ID
71 Employee Name

a5 ik i

Customer D . ._J_, = Customer ID . » - Customer ID
Employee ID 3 7 GeocArea ID Order dt

Ownership Percent F Cictomar Tuna T Due dt

This does not affect the calculations that are performed between tables where the
relationship and filter context automatically restrict the rows that the calculation is performed
on. Therefore, the measures for Stores Owned and Ownership % can be automatically
derived through any filter that is applied to the Store Owners table, since the relationship
dictates that the Store Owners table is automatically filtered by Owners. That is, the
number of stores owned will always be derived by the (query) filters which occur between the
Owners and Resellers tables.

If there is no filter applied (forcing all customer IDs to be shown), we only want to count
individual stores (that are applicable based on the Owners filter) and so, we need to apply
the DISTINCTCOUNT function to the Customer ID column inthe Store Owners table.
The DISTINCTCOUNT function performs, as the name suggests, and returns the number of
unique values of the provided column. This gives us what we want—the number of unique
stores under the current filter context.

While it is possible to use the COUNTROWS function for the Store Owners table, the value

returned will only be correct if there is a filter context on the employee. There is no filter for a
total level and, therefore, relying on COUNTROWS would give the total number of owners and

store combinations, rather than the number of stores.

Applied Modeling

Now, let's consider the measure Gross Sales (All Owners). The purpose of the measure
Gross Sales (All Owners) istoshowthe USD Gross Sales measure whenever a
valid reseller or owner combination occurs. The value at a dimensions aggregate level (say for
example, all owners) should be the full amount without adding the individual detail items.

This is achieved by specifying the bridge table in the calculation for Gross Sales (aAll
owners) . Revisiting the formula, we can see that the filter is applied on the basis of the
Store Owners table. Thus, the Boolean predicate (the part of the CALCULATE function
that filters the table) is only applied if a row exists in the current queries filter context. In this
way, we only show the measure USD Gross Sales (Raw) when arow in the queries filter
context leaves a row in the Store Owners table.

Gross Sales (All Owners) :=
CALCULATE ([USD Gross Sales], 'Store Owners')

While the measure Gross Sales (All Owners) shows the value of total sales for stores
that are owned (by an employee), it does not show how much of those sales the owner is
entitled to. In order to determine each owner's ownership interest in sales, we extend the
concept that was applied to Gross Sales (A1l Owners) attheir ownership interest

as defined in the Store Owners table. Stated another way, we wish to sum each row's
ownership interest of the sales amount multiplied by the Ownership Percent field.

We have already seen how SUMX can be used to iterate over rows (see the Summing
aggregates and row iteration recipe in Chapter 3, Advanced Browsing Features), which is
exactly the same principle that is applied in this formula. That is, iterate over each row in
the Store Ownership table that has been filtered by the query context to and multiply
the amount that is shown (see the Gross Sales (211 Owners) measure) by the rows
ownership proportion (that is, by the Ownership Percent field).

Using the last non-empty function for

stock data

Most OLTP (Operational) systems contain summary tables to record the on hand quantity of
stock. This is recorded at the level of detail appropriate to the system (for example, product
item and location).

Of course, the current value of any item or location(s) should be determined by aggregating
the net movement of all the prior transactions; however, the performance of such a
calculation is unacceptably slow in traditional relational environments. Therefore, in order to
retain balance history, the snapshots of the quantities are taken at key dates (say for example,
the month end).

A similar type of recording process occurs in data marts and data warehouse environments. In
these situations, the fact data (table) is commonly referred to as a periodic snapshot because
the snapshot of the data is taken at periodic intervals.

132

Chapter 5

For these types of tables, Stock on Hand quantities cannot be aggregated across time
dimensions because the aggregated value would not give the correct result. Consider a
situation where the daily balance of stock is held in a table (that is, there is a record of the
balance for every day). While we can easily determine daily balances, we cannot derive a
monthly balance by adding up all the daily balances. Instead, we must return the values
on the last day of the month. This adjustment is only applicable to aggregations across a
date dimension. All other dimensions (for example, stores and products) should aggregate
according to the hierarchy that is selected.

SQL Server Analysis Services (SSAS) multidimensional modeling includes a special aggregation
function (last non-empty) to retrieve the latest balance when dates were aggregated. However,
there is no such function in tabular modeling and the result has to be determined with DAX.

Getting ready

This recipe builds on the tabular model that was developed in the Defining many-to-many
relationships recipe. Continuing with the example developed in this recipe, we assume that
our resellers have implemented a just-in-time inventory system. When a product is sold, it is
ordered from the head office and delivered on the same day (this is a stock movement in for
the Resellers table). Then, on the sales shipping date, when the product is shipped from
the reseller, the stock is transferred out of the store's holdings.

Examine a sample of stock movements (filtered on customer AW00000438 and product BK-
R79Y-48). Here, we can trace that the daily balance (QTY BAL) is incremental and equal to
the prior day's balance, and the net effect of QTY INand QTY OUT.

J]%J I,J..--' Produ... q{-.r QTy_IN , T _ -]

How to do it...

As with the previous recipes, we start by adding some additional data to our model.

1. Launch the PowerPivot Window.

Applied Modeling

Import the text files Inventory Balances.txt, Products.txt, and Dates.txt.

Create a relationship between the Customer ID column inthe Inventory
Balances table and the Customer ID column inthe Resellers table.

The Dates table will act as a date dimension and can also be used to filter the
Reseller Sales data (this was not included in the previous recipe). Create a
relationship between the Day field in the Dates table and the Movement Dt field
in the Inventory Balances table and a relationship between the Day field in the
Dates table and the Order dt inthe Resellers table.

Create a relationship between the Product ID field in the Products table and the
Product IDfieldinthe Reseller Sales table. Then, create another relationship
between the Product 1ID field in the Products table and the Product ID fieldin
the Inventory Balances table.

Hide all fields in the Inventory Balances table.

Set the sort column from Month Name to Month Number in the Dates table and
hide Month Number from client tools. Then, create a hierarchy titled Date by
Year that has the levels: Year, Month Name, and Day.

Hide all fields in the Resellers Sales table from client tools.

The model should appear, as shown in the following screenshot (note that we are
excluding tables that are not necessary for inventory balances):

i

B o

P Y

e ST

T

T,

v —

i

] Geo Area ID 3 Due dt
] Customer Type
ﬂ] Customer Na... Geo ID 3
:ﬂ Reseller Type Currency 1D

= JIEM Sales Thtsl Sales Order ID

1 Customer ID = Order gt

=

Customer ID

m

e *
| Ship dt

1 Product ID

m |+

i
1 Day | Movement Ot
= vear — " Customer ID

T Month Name | Preduct ID
| Month Number OTY_IN

1 Date by Year o o

a

T 7 Product Name

T 7 Subcategory Name
v] category Name
| Finiched Snnds

Year {Year)
Month Name (Mo
Day (Day)

10.

11.

12.

13.

14.

Chapter 5

Add a measure to the Inventory Balances table to calculate the net effect of
stock movements. Add Stock Movement as follows:

Stock Movement := SUM([QTY_ IN]) + SUM([QTY_OUT])

Add a measure to the Inventory Balances table to aggregate the value of Stock
on Hand. Add QTY BAL as follows:

QTY BAL := SUM([QTY BAL])

Add a measure to the Inventory Balances table, which determines the value of
Stock on Hand (the stock balance) based on the addition of all historical transactions.
Add stock Balance (Trans) as follows:

Stock Balance (Trans):=
CALCULATE
(
[Stock Movement]
, FILTER (ALL (Dates)
, Dates [Day] <=MAX (Dates [Day])
)
)

Add a measure in the Inventory Balances table to show what the last date
was, which was associated with any stock movements that is within the current
(Date) filter context. Add Stock Date and format the date accordingly using the
following code:

Stock Date:=

LASTNONBLANK (' Inventory Balances' [Movement Dt]
, 'Inventory Balances' [QTY BAL]

)

Add a measure to the Inventory Balances table to show the total stock balance
at Stock Date. This is the last non-empty (or stock balance) aggregation. Add
Stock on Hand using the following code:

Stock On Hand:=
CALCULATE
(
[QTY BAL]
, LASTNONBLANK (' Inventory Balances' [Movement Dt]
, 'Inventory Balances' [QTY BAL]
)

Applied Modeling

15. Create a pivot table (which we will refer to as Pivet 1) that shows the Stock on
Hand value for the customer AW00000438 and the product BK-R79Y-48 (this was
the sample extract shown earlier in the chapter). The pivot should have filters for
Customer IDand Product ID,theDate by Year hierarchy on rows, and the
Stock Date and Stock on Hand measures on the columns. Expand the June
2008 value to look like the following screenshot:

Customer ID
Product ID

Row Labels |~
+ 2007
=1 2008
+ March
=lune
01-Jun-08
02-Jun-08
03-Jun-08
04-Jun-03
05-Jun-03
06-Jun-03
07-Jun-03
Grand Total

AW00000438 |7
BK-R79Y-48 |-T

Stock Date
08-Dec-07
07-Jun-08
08-Mar-08
07-Jun-08
01-Jun-08
02-Jun-08
03-Jun-08
04-Jun-08
05-Jun-08
06-Jun-038
07-Jun-08
07-Jun-08

Stock On Hand

=B I L T T I R R I =R -]

16. Create another pivot table (which will be referred to as Pivot 2), which shows all
the entries in the Resellers and Products tables. Include the measures Stock
Date, Stock on Hand, and Stock Balance

136

the following screenshot:

(Trans) . The pivot should look like

Customer D All
Product ID All

Row Labels ~ Stock Date Stock On Hand Stock Balance (Trans)

+ 2005 08-Dec-05]
+ 2006 08-Dec-06 0
12007 08-Dec-07 0
2008 07-Jun-08 10,264
+ 2009

+ 2010

Grand Total 07-Jun-08 10,264

0

0

0
10,264
10,264
10,264
10,264

Chapter 5

The Stock Balance (Trans) measure in Pivot 2 shows how the Stock Balance measure
can be calculated by aggregating transactional movements from prior periods. This formula
was addressed in the Calculating running totals - totals to date recipe in Chapter 4, Time
Calculations and Date Functions. However, using this technique, one may question whether

the balance from the year 2008 should be continued into 2009 because the balance does not
relate to the future years—or does it? This question is often argued in reporting teams!

The traditional approach to the last non-empty problem is to return all data on the last date
within the current period that is specified by the filter context.

We reiterate that the concept of a current period is a logical
4 condition imposed by the query (or the date reference
% imposed by the user). Unlike SSAS multidimensional, tabular
g modeling does not support the current member navigation
within a time dimension.

The measures in Pivot 2 demonstrate how this works through the use of Stock Date.
The purpose of the measure is to return the last date within the Inventory Balances
table, within the current filter context, that is, the last non-empty date. Note that this is
not the same value as the month end (which is the value that would be returned had a
MAX (Dates [Date]) function been used).

In order to determine the last date of the activity, we rely on the LASTNONBLANK function.
This simply returns the last value in the <column> parameter where the <expressions>
parameter is not blank. Since we are interested in stock balances, we would naturally use the
QTY BAL measure (since it is the sum of the balance field).

LASTNONBLANK (<column>, <expressions)

Once this date is determined, we can use the value as the last non-empty date and aggregate
the values from the Inventory Balances table. This is done by specifying the value as the
filter within the CALCULATE command. Remember, that the syntax for CALCULATE is:

CALCULATE (<expression>,<filterls>,<filter2s..)

By specifying the LASTNONBLANK value as a <filters> argument, we automatically apply
the filter without the need to completely redefine the queries filter context.

In summary, these formulas work by effectively filtering Stock on Hand records to the last date
based on the current filter context.

Applied Modeling

One may question, why the recipe does not manipulate the Date table filter context, for
example, trying to filter stock records based on the maximum date in the query filter context.
Trying to determine a stock balance in this way creates and reapplies many filters to the Date
table and can cause undesired results. Consider the logic being applied—I redefine the date
filter to determine the last date which had stock, then I try to use this date by removing the
queries filter context on the dates table. However, removing the filter changes the filter that is
applied when we try to get the last date.

Performing currency calculations

Currency calculations are a unique type of calculation, because the value that is returned to
the user needs to be dynamically determined within the model, based on their input (choice
of currency). This relies on two dynamic types of data, which can change within the model and
therefore may impact the calculation. Firstly, the rate used can be changed (that is, a change
to the rate of existing data) or secondly, new currencies can be added or removed to the
currency data that requires a new conversion to be created. Unlike the previous calculations
that we have seen in this book, the calculation must dynamically determine the rate that is

to be applied in conversions based on the available data in the model. Because additional
currency data could be added at any time, it is simply not possible to add additional columns
to our target table to precalculate a value in a target currency and materialize it in a table.

If we wanted to materialize values for each available currency (and extend our tables to add
columns for converted values in target currencies), we could determine the value to show in a
similar manner, as shown in the Relative Time-pivoting around measures recipe in Chapter 4,
Time Calculations and Date Functions.

The general approach used to determine a value in a target currency is to convert a base
currency to a target currency and then aggregate it (according to the query). We have seen
how we can iterate over rows using the X aggregations (see the Summing aggregates and row
iteration recipe in Chapter 3, Advanced Browsing Features). This recipe takes that concept
one step further by dynamically determining a conversion rate based on a value that the user
has chosen.

138

Chapter 5

Getting ready

This recipe extends the model that was built in the recipe titled Using the last non-empty
function for stock data by creating a currency conversion based on the USD Gross Sales
measure. The model includes the table of exchange rates (Currency Conversion)that
shows the USD conversion from a currency. These rates appear for every day of history.

s M s K] - -
1/07/2005 ... AUD 0.64553611774... 0.645161290...
2/07/2005 ... AUD 0.64271482743... 0.642756138...
3/07/2005 ... AUD 0.64135454079... 0.641148938...
4/07/2005 ... AUD 0.63918184723... 0.639631572...
5/07/2005 ... AUD 0.63828429182... 0.638162093...
6/07/2005 ... AUD 0.63930443677... 0.639549756...

| 7/07 2005.. AUDﬁ.?;.\ﬁgfigl‘g"ns"' 0.638895987... |

The sales data records its transactions in the source currency where the sale has taken place
(see the Reseller Sales table). Therefore, if we wish to calculate a converted amount,

we must first determine the USD value of line items by multiplying with the exchange rate
applicable to the currency that the sale was recorded in, and then, dividing by the USD value
for the target currency.

The Grouping by binning and sorting with ranks recipe included the creation of the additional
column titled usd_gross_sales to the Resellers Sales table, which shows the value of
the sale line in USD. In this recipe, we reproduce this field in a two-step process: firstly, we add
the USD conversion rate (the value required to convert the lines value to USD) and then, we
add the usd_gross_sales column.

While we could (and have) included this as a single step (see the definition of the
usd_gross_sales column in the Grouping by binning and sorting with ranks recipe), it may
make more sense to have a column value for the USD conversion in every row because it
would be used (in a real environment) by multiple measures. For example, a conversion rate
would be required for each standard measure such as Gross Sales, Net Sales, Cost of
Goods Sold, and Profit. However, in this recipe we only work with Gross Sales.

Applied

Modeling

How to do it...

Since the existing model already includes currency conversion data (used in the Grouping by

binning

and sorting with ranks recipe), the only additional data required for this recipe is a

definition table for currency types.

1.
2.
3.

&

140

Launch the PowerPivot Window.
Import the Currency . txt file into the model.

Create a relationship between the Date field in the Currency Conversion table
and the Day field in Dates.

Create a relationship between the Currency 1ID field in the Currency table and
the Currency IDfield in the Currency Conversion table. The diagram view of
your model should look like the following screenshot:

¥
HE
ol Day
. T vear
7 Currency ID 1 Date .] Month Mame
71 Currency Name 1 Currency ID e | Month Numb
7 AVG Rate 4 13 Date by Year
= EOD Rate) Year [Vear)
~ fonth Na
Day [Day)

Hide all the fields of the Currency Conversion table from client tools and add
the following measures to show the average daily rate and average end of day rate.
Format the measures appropriately.

Avg Ex Rate:=AVERAGE ([AVG Ratel)
Avg EOD Rate:=AVERAGE ([EOD Rate])

Add a new field to the Resellers Sales table to show the USD conversion value
for the day and a currency applicable to the line (the amount rate which is required to
convert each line to a USD value). Add usd_exchange rate as follows:
=LOOKUPVALUE (' Currency Conversion' [AVG Rate], 'Currency

Conversion' [Date], [Order dt], 'Currency Conversion' [Currency

ID], [Currency ID])

Chapter 5

7. Add a new field to the Resellers Sales table (alter the formula for the existing field)
to show the value of gross sales in USD. Add the field usd_gross_sales as follows:

=[Quantity Ordered] * [Price Per Unit]* [usd_exchange rate]

8. Hide both the fields usd_exchange rate and usd_gross_sales from client
tools.

9. Adda new measure to the Resellers Sales table to show the amount of gross
sales in the target currency and format it appropriately. Add the measure Local
Gross Sales as follows:

Local Gross Sales:=
IF
(
NOT (HASONEVALUE (Currency [Currency ID]))
, [USD Gross Sales],SUMX('Reseller Sales'
, IF(ISBLANK('Currency Conversion'[Avg Ex Ratel])
, BLANK ()
, [usd gross sales]
'Currency Conversion' [Avg Ex Ratel)

~

)

10. Create a pivot table (Pivot 1), which shows Currency Name on the rows and the
measures USD Gross Sales and Local Gross Sales on the columns.

Row Labels * USD Gross Sales Local Gross Sales
Afghani 76,989,167
Algerian Dinar 76,989,167
Argentine Peso 76,989,167 131,713,977
Armenian Dram 76,989,167
Aruban Guilder 76,989,167
Australian Dollar 76,989,167 142,279,185

ﬁamhiagwnawu, e e TR,] O e i et g,

11. Create a pivot table (Pivot 2) which shows the conversion of USD Gross Sales to
its Australian Dollar equivalent by day. Filter the pivot to show a Currency Name of
Australian Dollar.

12. Add the measure Avg Ex Rate (found in the Currency Conversion table)to
USD Gross Sales and Local Gross Sales on columns and the Date by
Year hierarchy (found in the Dates table) on rows.

Applied Modeling

13. Expand the Date by Year hierarchy to show the dates for July 2005, then filter
the date level so that only rows with a USD Gross Sales value which is not zero is
shown. Select a date value in the pivot, click on the drop-down arrow on Row labels
and navigate to Value Filters | Does Not Equal. Set the value to 0, the dialog looks
like the following screenshot:

Value Filter (Day) 7 R
Show items for which
USD Gross Sales |E| does not equal E| 0
oK] [Cancel
A, "

14. The pivot should look like the following screenshot. Note that the total converted
value, 142,279,185, is the same value as in Pivot 1 (showing that the formula
works for aggregated values) and the daily converted value, 01-Jul-05, of 701,372
is equal to USD Gross Sales of 452, 761 divided by the exchange rate.

Currency Name Awustralian Dollar |-T'
Row Labels |-T|USD Gross Sales Avg Ex Rate Local Gross Sales
=1 2005 7,586,983 0.63094 12,154,380
=July 452,761 0.64554 701,372
01-Jul-05 452,761 0.64554 701,372
HAugust 1,437,493 0.64098 2,242,633
+ September 1,102,514 0.66498 1,657,960
+ October 771,098 0.62664 1,230,518
+ Movember 2,202,908 0.61091 3,605,940
+ December 1,620,209 0.59655 2,715,957
+ 2006 23,044,103 0.54882 42,633,657
+2007 30,821,316 0.51820 59,315,689
+2008 15,536,760 0.55005 28,175,459
Grand Total 76,989,167 0.55244 —» 142,279,185

In the introduction, we discussed the general approach to determining a value in the target
currency. That is, we translate a standard USD amount at a rate which is determined by the
filter context placed on the Currency table (that is, the currency selected by the user). Since
this must be calculated on a daily basis, we use the SUMX function to iterate over the sales
rows and calculate the amount in the target currency for each day.

142

Chapter 5

There are some built-in checks in the measure defining Local Gross Sales and it may be
best to look at the equation in its entirety. Firstly, the formula can be broken down into some
simple pseudocode.

If the user has selected more than one currency, return the USD gross value; otherwise, return
the target currency value.

Why must we check for multiple currencies as a first step? We need to check it for two
reasons: firstly, what would a conversion into multiple currencies mean?—it is a condition that
does not make sense. Secondly, our formula uses an average rate (Avg Ex Rate), which will
return the daily average across all the selected currencies. This does not make sense either!

The check for multiple (user selected) currencies is achieved through the
NOT (HASONE (VALUE)) part of the equation. This simply returns TRUE if the user has
selected more than one currency from the currency table.

The calculation of USD gross sales is straightforward, sums the column usd_gross_sales.
This field should not require any further explanation (see the Grouping by binning and
sorting with ranks recipe for a full explanation). The only difference in this recipe, is that we
materialize the currency USD conversion rate in the Reseller Sales table rather than
calculating it in a formula. This is because the rate would be used in several calculations had
all the measures been added. These measures would include Gross Sales, Discount
Amount, Net Sales, Cost of Goods Sold, and Profit.

Now, we examine the determination of the value in a local or selected currency. This part of
the equation is managed by the following code snippet:

SUMX ('Reseller Sales'
, IF
(
ISBLANK ('Currency Conversion' [Avg Ex Ratel)
, BLANK ()
, [usd gross_ sales]
/ 'Currency Conversion' [Avg Ex Rate]l)

)

In determining the target currency value, the SUMX function is used to iterate over each row
inthe Reseller Sales table. Therefore, (provided we have a single target currency) we can
satisfy that the measure Avg Ex Rate will return the appropriate exchange rate because of
the row-by-row iteration and a single target currency.

However, the formula also checks to ensure that an exchange rate can be found, which
means, there is the Avg Ex Rate measure that can be used. If there is no rate (that is, the
rate is BLANK), we return nothing, otherwise, we return the converted value. If there was no
check and an empty Avg Ex Rate measure, the result will display #NUM.

Applied Modeling

Allocating data at different levels

Often, we have to present two data sources and compare them as if they were one. A typical
example of this type of situation is the comparison of budget data to actuals. More often than
not, the budgets are prepared at a much higher-level of grain than of actual data.

Consider the sales data that has been used in this chapter. We may define the grain of this as
Reseller, Date, and Product. The actual grain of the table is, of course, a lower-level since
it includes additional fields such as Sales Order and Geography, but for our purposes, this
is the grain that we have chosen to present to the model user. Now, consider some high-level
budget data that simply shows the budgeted sales (USD Gross Sales) by Quarter and
Year. Our goal is to incorporate this into the model. Have a look at the following screenshot:

1 Year,(uarter, Budget Lmount
2 2006,1,4750000.0000

3 2007,1,5913000.0000

4 2008,1,8051000.0000

5 2006,2,5068000.0000

& 2007,2,8039000.0000

7 2008,2,10359000.0000

"\--L_‘_,__.‘_ e — !-"——M-\.Hﬂ-—- S

There are two common approaches that are commonly used to solve this problem. Firstly, the
original data is arbitrarily assigned to a member within the aggregated value. For example,
the entire amount for the year of 2006 and quarter 1 (4, 750, 000) may be assigned to 1
January 2006. The second method involves creating a comparative view within the model
that allows the actual data to be reported at the same grain as that of the budget. For this to
work, new tables need to be introduced with keys at the higher-level grain, so that the data
can be compared in a consistent context. For our budget data, we will add an additional date
dimension defined by Year and Quarter, so that the budget data could be incorporated into
the model. A new column can be defined in the actual data (that is in Resellers Sales),
which defines Year and Quarter of the sale, and this field can be linked to the new date
table. Unfortunately, | now have two date tables (at different levels of grain) and measures,
which are not consistent across both. This can be most confusing!

While these methods can provide a solution which incorporates a different grain of data, they
lack the ability to fulfill a common desire and recast the aggregated budget data based on
historic transactions. Furthermore, the second method can be quite confusing for an end user
because there are now more tables in the model to navigate.

The method shown in this recipe is a third alternative. Here, we allocate the higher-level data
to lower levels based on values that is based on some gross up value. Of course, that value is
the ratio between the detail data sum and the summary data sum. This is conceptually very
simple—create a new measure based on our lower-level data, which will equal the total of the
higher-level data.

Chapter 5

This can aid in the model because variances to the budget can then be examined at any level
that exists in the model.

Getting ready

This recipe continues from the previous recipe Performing currency calculations.

How to do it...

Since the model only lacks budget information, start by importing the budget data:

1. Import the text file Reseller Budgets Amounts.txt into the
PowerPivot Window.

2. Add a new field to the Reseller Budget Amounts table to record the granularity
at which the budgets are set (this is the primary key of the table). Add a field
year quarter_ key with the following formula:

=[Year]* 10 +[Quarter]
The new calculated column is an example of a smart key and is a =
common method of key determination in data warehouses. A smart
\1 key creates a key based on the business definition.

~
Q If we were including a product category (or some other textual
description) in the key, we would need to convert the values to text
and use a delimiter to uniquely identify the key. A pipe symbol (|) or
b tilde (~) is often used for this purpose. -

3. Add a new field to the Resellers Sales table that classifies each row with the
table at the same grain as that of the budget data. Add a new column year
quarter_ key:
=YEAR ([Order dt]) * 10

+ SWITCH (month ([Order dt])
1

H W o Jo0 U W N R
[CRRVS VO SRR S AN VA

o -~
1y

, 11, a
, 12, a

Applied Modeling

4.

10.
11.

146

Create a relationship between the year quarter key column in the Reseller
Budget Amounts table and the Reseller Sales table.

Add a column to the Resellers Budget Amounts table to record the value of USD
sales for the given year quarter key value. Add usd _gross_sales as follows:

= CALCULATE (SUM('Reseller Sales' [usd gross_sales]))

Add a field to the Resellers Budget Amounts table that shows the ratio between
the budget amount and the USD sales amount. Add actual budget ratio
as follows:

=[Budget Amount]/[usd gross_sales]

Add a field actual budget ratiotothe Resellers Sales table to show what
the related actual budget ratio field for each line is. Add actual budget
ratio as follows:

= RELATED ('Reseller Budgets Amounts' [actual budget ratio])

Add a field to show what the allocated value of USD sales is—grossed up or
down—depending on the actual budget ratio.Add usd gross_sales budget
as follows:

=[actual budget ratio] * [usd gross_sales]

The usd_gross_sales_ budget field in the Resellers
Sales table could easily be obtained by combining the

N actual budget ratio and usd gross_ sales

=~ formulas. Including two fields only assists with the

Q explanation. If both fields are combined, the formula will be:

RELATED ('Reseller Budgets Amounts' [actual
budget ratio])
* [usd gross sales]

Create a measure in the Resellers Sales table to show the value of the budgeted
amount. Add USD Gross Sales Budget and format it appropriately.

USD Gross Sales Budget := SUM([usd gross sales budget])

Hide the Reseller Budget Amounts table from client tools.

Hide the additional fields: year quarter key, actual budget ratio, and
usd_gross_sales budget from client tools in the Resellers Sales table.

Chapter 5

12. Create a pivot table that shows the bate by Years hierarchy on rows, USD Gross
Sales and USD Gross Sales Budgets on columns. Expand the year 2005 to
show months. The pivot will look like the following screenshot:

Row Labels |~ USD Gross Sales USD Gross Sales Budget
12005 7,586,983 9,513,000
Hluly 452,761 587,893
+ August 1,437,493 1,866,532
+ September 1,102,514 1,431,574
+ October 771,098 944,442
HMNovember 2,202,908 2,698,124
+December 1,620,209 1,984,434
+ 20006 23,044,103 29,009,000
2007 30,821,316 38,782,000
+ 2008 15,536,766 18,410,000
Grand Total 76,989,167 95,714,000

To aid in the discussion, a screenshot of the Reseller Budget Amounts table follows

this paragraph. Here, we can see that the Budget Amount value for quarter 20053 is
3,866, 000. This is the amount that needs to be apportioned on the basis of actual values

in July, August, and September in 2005 (actually, over all dates in this quarter). Note,

our budget total of 3,886,000 = 587,893 + 1,866,532 + 1,431, 574. The true sales amount
(usd_gross_sales and USD Gross Sales) for this period is 2, 992, 767.63, as shown in
the following screenshot:

year_quarter key " M -

a

i P R] ctual_budget ratio B

20053 2005 3 3,886,000.00 2,992,767.63 1.29846365539154
20054 2005 4 5,627,000.00 4,594,215.22 1.22480113023058
20061 2006 1 4,750,000.00 3,817,843.98 1.2441577032143
20062 2006 2 5,068,000.00 4,020,581.46 1.26051419312295
20063 2006 3 10,537,000.00 8,496,592.78 1.2401441696835
20064 2006 4 8,6354,000.00 6,709,084.30 1.28989286999738
20071 2007 1 5,913,000.00 5,028,233.76 1.17595964787796

e T T e e L T P TR L e = W | m’};ﬂ_uug}q;,

Based on this data, we can easily see how our problem becomes one of allocation. That is,

we have existing sales data of 2, 992, 767. 63 (our actual data), but we would like to show
a value of 3,866, 000. Therefore, we simply need to gross up the sales data by difference

(actual budget ratio)in order to make both values the same. This is calculated in the
actual budget ratio column.

Applied Modeling

Inthe Reseller Sales table, the column usd gross sales budget calculates the
budget value. The field usd_gross_sales budget is derived by usd_gross_sales;
simply multiplying the existing sales value, usd _gross_sales, by the grossed up amount to
determine what the budget amount should be. The USD Gross Sales Budget measure
simply sums up the new column holding the grossed up amounts.

This method should be applicable in most situations. However, a potential reconciliation error
can occur when there is no data to base the allocation on. For example, imagine if there were
no sales for Q3 of 2003. In this circumstance, there would be no allocation and the USD gross
sales budget shown would exclude the Q3 values.

the model.

There's more...

In this recipe, we have so far allocated budget data based on the sales data for the same
year. A more common approach to this practice is to allocate the budget based on the data

of a previous year. For example, the Q3 values for 2005 would be allocated in the same
proportions as the sales data for Q3 of 2004 and the budget data for Q1 of 2006 would be
allocated based on the sales during Q1 of 2005. A side benefit of this is that all allocated data
can be immediately reconciled since the historic data exists—and the budget allocation can be
verified once the allocation has occurred.

1
[‘\Q It is always advisable to reconcile (verify) data shown by]

The technique that we can use to do this is essentially the same as that shown in this recipe;
however, there are two main differences that are worth noting. Firstly, in order to determine
the sales value, we must offset the year quarter keyinthe Reseller Sales table.
Secondly, we need to project any calculated budget amount in the Reseller Sales table,
forward a year since there is an existing relationship between the Dates table and the
Reseller Sales table.

1. Alter the formula for the year quarter key field in the Reseller Sales table to
cast the key in the next year. The formula should become:

= (YEAR ([Order dt])+1) * 10 + SWITCH (month ([Order dt])

, 1, 1
, 2, 1
, 3, 1

2. Add afield to the Reseller Sales table to showcast the sales data a year forward.
Add order_dt_ny as follows:

= CALCULATE (DATEADD (Dates [Day], 1 ,YEAR))

3. Create a secondary relationship between the Dates table and Reseller Sales
based on the order dt nyin Reseller Sales andDay in Dates.

148

Chapter 5

Alter the USD Gross Sales Budget measure in Reseller Sales to calculate
the SUM based on the secondary relationship (the relationship between the Dates
table and order dt ny inthe Reseller Sales table). The formula for the gross
sales budget is:

USD Gross Sales Budget:=
CALCULATE
(
SUM ([usd_gross_sales_budget])
, USERELATIONSHIP (
'Reseller Sales' [order dt ny]
, Dates [Day]

)
)

Hide the new field order_ dt ny from client tools.

Refresh the pivot and expand the months for 2006. Here, the Q3 budget values have
been apportioned over months (marked in red in the following screenshot) so that the
total is 10,537, 000 (this number is the same value as shown for 20063, as shown
in the preceding screenshot of the Reseller Budgets Amounts table).

Row Labels @~ |USD Gross Sales USD Gross Sales Budget

- 2005 7,586,983
= July 452,761
= ALZUST 1,437,453
= September 1,102,514
= October 771,098
= November 2,202 908
= December 1,620,209

- 2006 23,044,103 19,191,000
= lanuary 659,584
= February 1,812,593
= March 1,345 667
= April 208,428
= May 2,144 404
=lune 1,067,660
=]uly 2,214 B75 1,594,000
s August 3,475,686 5,061,156
= September 2,806,031 3,881,754 1D,53'.-’,DDD!
= October 1,685,004 1,452,487
= November 2,929 6ED 4,145 558 8,654,000
= December 2,084,310 3,051,845

Applied Modeling

Note that there is no budget data for 2005 and the first half of 2006. This is because there
is sales data that only appears in the second half of 2005 and therefore, nothing to base the
allocation against.

If we re-examine this process (in light of the requirement to use prior years' data as the basis
for allocation), the method can be explained with the following logic:

150

We have the sales data which relates to a specific period (based on the order date).

We have the budget data identified by a period (year and period), which we want to
allocate to on the basis of the prior period's sales data.

We append a field to the sales, which shows the budget period that the sales row is
related to. Since the budget data is to be allocated based on the prior years' sales data,
a year in the sales data is offset, so that it refers to a future year in the budget data.

The relationship between the budget data and sales data (year quarter key)
can be used to calculate the total sales in the budget period and this can be used to
determine what the gross up value should be.

The gross up value can then be applied to the sales data using the existing
relationship and a calculation that applies the gross up value to the sales value.

Now, we have a budgeted allocation amount in our sales data. However, the allocated
amount is apportioned on the basis of the following year's budget period. For
example, the sales data relating to 2005 has the 2006 budget allocations. What we
have to do is force the budget data to appear in 2006, while the sales data appears
in 2005. This is managed by casting the row forward a year (using the field
order dt ny) and using this date as the basis for the summation of budget values.
The secondary relationship is used to manage this.

Programmatic
Access via Excel

In this chapter, we will cover:

» Connecting pivot tables and Slicers

» Using cube functions

» Working with worksheet events and VBA
» Managing the Slicer through VBA

Introduction

The ability to create a tabular model through PowerPivot opens up countless possibilities for
the advanced Excel user and business analyst to develop reporting and analytical solutions.
Historically, these types of users start by attacking a business problem by pulling data into
Excel, creating pivot tables (to summarize data) using some of Excel's built-in programmatic,
and form functionality to create solutions.

However, a common problem encountered with this approach is that of scalability. And as
the amount of data increased, the ability of Excel to handle the solution decreased. This
tipping point need not be very large; further, the requirement of traditional pivot tables to
use flattened data required a lot of inefficient data work (usually through VLOOKUP functions,
because a traditional pivot table required a single table of data). Obviously, it is a poor use of
time when more effort is spent organizing data rather than analyzing it.

The ability of the tabular model to manage large amounts of data, create relationships
between that data, and define calculations based on business logic reignites the opportunity
for end users to create powerful applications in Excel.

Programmatic Access via Excel

This chapter examines how Excel interacts with the model, and how Excel can be used as

a reporting application layer to provide a rich and intuitive reporting environment. Most
importantly, the reader should recognize that the model is, for all intents and purposes, its
own object within Excel. Excel interacts with it, just as it would with any other OLAP solution.

The outcome of this chapter is to enable the reader to create a reporting workbook with the
functionality shown in the following screenshot. It shows two pivot tables and three charts.

A Slicer allows the user to select a year, which automatically applies a filter to pivot tables A
and B. The trend line chart also updates for the year, and when the user selects one of the
category names (in pivot table B), a selected category is shown for one of the trend lines. Also,
the selected year is shown highlighted in bar chart C. All chart labels and headings are also
updated accordingly.

Tear % Sales By Month for 2007 Monthly Trend for Clothing Category Sales Compared to All Products in 2007
005 A D
; Row Label, * USD Gross Sales 4500000 140,000
p o Ja 1,242,605 4,000,000 -
2007 ¥ 2,311,803

1,473,826
1,734,404
2,765,083
1,829,401 2,000,000
2,557,361

Septem!
October
November
December
Grand Total

2,139,617
3322137
331564
20,821,316

Sales By Category for 2007 c Clothing Category Sales By Year
6,000,000

Category Sales for 2007

000, 500,000
[ow Labels (T
Accessories 3 T000,000 500,000
otning | RV . amo
Components 4,602,052 3,000,000
300,000
5,159,682 —
Bikes 20,150,801 200,000
Grand Total 30,871,316 1,000,000
. 100,000 .
R o L —
g i H 2008 2006 2007 2008 2000
AL
- &
— -

It is important to reiterate that the PowerPivot model is a tabular
model hosted in Excel, that an Excel pivot table can connect to
% as a client. This experience would be exactly the same had the
s user connected via Excel to the model hosted on a production
server (or an OLAP (multidimensional) cube posted in a
traditional method of storage for analysis services).

152

Chapter 6

Connecting pivot tables and Slicers

Excel 2010 introduced new functionality into Excel in the form of Slicer controls. A Slicer can be
thought of as an Excel data control that connects to multidimensional data as a client tool, which
has built-in functionality for interacting with pivot tables. Since the tabular model is presented to
Excel as a multidimensional model (it is essentially a server model stored in Excel and accessed
through Excel's client tools), the pivot table and Slicer can connect to the tabular model.

In fact, the PowerPivot Field List is a special field list for interacting with a pivot table based
on the tabular model that includes two window groups for horizontal and vertical Slicers, as
shown in the following screenshot (the horizontal or vertical position only refers to the Slicers
position in relation to the location of the pivot table). This is only available in Excel 2010.

e U 2P ™
Store Owners T

1E Slicers Vertical :j Slicers Horizontal

b

“f Report Filter 5 Column Labels

Year A

L L E _._ualmua—l—l-_) _ﬂfﬂz__ﬂ.i*‘*m.;au‘ r

While the Slicer can be attached to a pivot table through the PivotTable Field list, the Slicer
can also be inserted as an individual control to interact with the model.

A Slicer can only be added to a pivot table using the PivotTable
Field list when using the PowerPivot Field list (or a pivot table that
N was inserted from a tabular model). If you choose to show the pivot
=~ table's default field list (that is, the default list when connecting to
Q a model as a normal client—see the There's More... section of the
Creating model calculations recipe in Chapter 1, Getting Started
with Excel), you will not see the options for adding Slicers to the
pivot. In this case they will have to be added manually.

This recipe shows how to insert a Slicer to your worksheet, use it to access data, and connect
it to pivot tables. In addition, we show how to manage and add pivot tables as a client, by
referencing an internal tabular model.

Programmatic Access via Excel

Getting ready

This recipe uses the model that was built in the Allocating data at different levels recipe in
Chapter 5, Applied Modeling. All the existing worksheets with pivot tables have been deleted,
leaving only a blank sheet in the workbook. If the required recipes have not been completed,
the empty workbook with the PowerPivot model can be downloaded (see online resources).

How to do it...

Let us start by adding a pivot table to our worksheet.

1. Insert a pivot table by clicking on the PivotTable button from the Insert tab, as shown
in the following screenshot:

Home Insert Page Layout

H HEDP 2

I

PivotTable Table Picture Clip Shapes Smartart Scred
- Art -
Tables INustrations
Al e .fr|
L A [8 c D :

2. The Create PivotTable dialogue will open. Choose the Use an external data source
option and then select the PowerPivot Data connection (double-click on the
connection or highlight the connection and click on the Open button). Place the
pivot table in cell D10 (select the location and click on OK). This is shown in the
following screenshot:

Create PivotTable |@7X§

Choosze the data that you want to analyze
(7 5elect a table or range
Table/Range: 55

Existing Connections

(@ Use an external data source
< Show: |1 Conecirs 5

Connection name:

Select a Connection:

Choosze where you want the PivotTable report to be placed

() Mew Worksheet PowerPivot Data
(@) Existing Worksheet | This connection is used by Excel for communicatior
T) — embedded PowerPivot data, and should not be me
Location: |sheet1isDs10 <= -3
<No nections found=
[=] [—] con ions foul
A
I ™

Al

Q

The location of the pivot table will default to the active cell
when the Insert a PivotTable button is clicked.

Chapter 6

3. Place the Month Name attribute from the Dates table on rows, and show the USD
Gross Sales measure from the Reseller Sales table as values.

4. Insert a Slicer into the worksheet by clicking on the Slicer button from the Insert tab,
as shown in the following screenshot:

Home Insert

FivotTable Table

Tables

Page Layout

lllustrations

Formulas Data Review

WView

Bar

Charts

Developer PowerPivot

Area Scatter Other
Charts =

Team

o B B R o) @Dl Q a2 [

Picture Clip Shapes SmartArt Screenshot | Column Line Pie
Art ©

Line Column Win/Loss

Sparklines

q

Hyp

=]
=
=]

Slicer

Al0 -

* Filter | Li
7=

5. When the Slicer button is clicked, a (choose) connection window will open. Choose

the PowerPivot Data connection that exists in the workbook.
6. Once the connection is chosen, a pop-up window will display a list of tables,

attributes, and hierarchies that are available in the model. Choose the Year attribute
from the Dates table. More than likely, you will have to expand the More fields
grouping. Click on OK after the Year box is checked. The Slicer dialogue is shown in
the following screenshot:

Insert Slicers -

[o]

Show fields related to:

[an

=2 j Currency
[[currency ID
[[currency Name

= 5 Dates
= [[|Date by Year
[vear
[[IMonth Name
[CIpay
= [y More fields
[Cpay

[[IMonth Name

[vear +—

= j Owners
[C|Employee ID
[C|Employee Name

=] j Products
[|category Name

=]

m

Cancel

Programmatic Access via Excel

7. A Slicer will appear on the page (as shown in the following screenshot). This contains
the data values (or members) for the Year attribute in the model. A year can be
selected by clicking on the year within the Slicer; however, the values in the pivot
table will not change.

8. When a cell in the pivot table is selected, the PivotTable Tools menu is displayed in
the ribbon of Excel (this is not shown when the pivot table is not active). Name the
pivot table by overwriting the default name given to the pivot table (PivotTable Tools
| Options). Name the pivot sales by month_all. This can also be typed directly
into the PivotTable Name box, as highlighted in the following screenshot:

T
me Insert Page Layout Formulas Data Review View Developer PowerPivot Team | Options Design
PivotTable Name: WActive Field: e o @ Group Selection | 4 [ET3 =T il A (A5 A=
: h ¥ Expand Entire Fielc 8] EE =l |z o JéL i Jé% =
PivotTablel USD Gross Sales au p = i
X @ . == rollapse Entire Field - Z] Sort Insert | Refresh Change Data | Clear Selecdt Move Sum z
E |4 Field Settings — Group Field Slicer ~ - Source - ~ PivotTable | Values B
PivotTable Active Field Sort & Filter Data Adtions

9. Attach the pivot table to the Slicer by clicking on the PivotTable Connections... option
after right-clicking on the Slicer. This is shown in the following screenshot:

F o
Year . |
& Cut
[2005 53 Copy
[2006 [, Paste Options:
| 2007 =
[2008 3] Refresh
A
Sort Ato Z
| 2009 A
Z) sotZtoa
[—— v | Sort Data Source Order
&
-——-"| E;__—q PivotTable Connections...

156

Chapter 6

10. When the PivotTable Connections... option is clicked on, a dialogue will open
showing all pivot tables in the workbook (as shown in the following screenshot).
Select the pivot tables that the Slicer is attached to, by checking the pivot table
and clicking on the OK button.

e

PivotTable Connections (Year) ? 28

Select PivotTables to connect to this slicer

Mame Sheet
sales_by_month_all Sheetl

B e L e sl SR R S

1
~ We can see that using a name for the pivot table allows us to
easily identify the pivot table in a workbook.

11. When the Slicer is attached to a pivot table (immediately after the OK button is
clicked on), the members for 2009 and 2010 will gray out. This indicates that there
is no data for those years. Further, when a Year is selected (by simply clicking on the
year) the active year remains blue (all other members white out), and the values in
the pivot table change to reflect the selected year.

12. Ensure that all months are shown for the pivot (regardless of data values) by
checking the Show items with no data on rows option from the Display tab in the
Pivot Table Options... (click on the Options button in the PivotTable Tools menu to
show the Options window).

There is nothing extraordinary to explain here. The Slicer filters the data for the pivot table(s)
that it is attached to.

The creation and use of the Slicer does not impede any pivot table functionality, or place any
additional requirements on the pivot table. For example, we can create another pivot table
below the existing one which has a Filter on the Years hierarchy of the Dates table, and
attach the Slicer to this new pivot table. When the value of the Slicer changes, the Filter on
the pivot table will automatically change to reflect the value(s) of the Slicer.

Programmatic Access via Excel

Adding a Filter to a pivot table with an alternate connection to
M a Slicer is a very convenient way to determine the value of the
Q Slicer. This can then be used to provide descriptive headings
(as we will see in the Working with worksheet events and VBA
and Managing the Slicer through VBA recipes).

Create a new pivot table (and name it sales by cat_all). Add Year as a Filter (from the
Dates table) with Category Name (Products table) on rows, and the measure USD Gross
Sales as values. Then attach the Slicer to it—any changes made to the Slicer are reflected by
the Filter.

Since this pivot is used in other recipes for this chapter, the first cell of the pivot table should
appear in D25 (you may have to move your pivot table). We also want to show the names of
the sales categories in an ascending order (based on USD Gross Sales). Right-click on any
cell in the pivot and select More Sort Options from the pop-up window. That is, right-click

on the Cell, and go to Sort | More Sort Options. When the Sort window opens, ensure that
USD Gross Sales is selected in the Ascending (A to Z) by: listbox (as shown in the following
screenshot). Then click on OK.

(Sort (Category Mame) @

Sort options
_ Data source order
_) Manual (you can drag items to rearrange them)
@) iAscending (A to Z) by::
USD Gross Sales E
") Descending (Z to A) by:

USD Gross Sales

Summary

Sort Category Mame by USD Gross Sales in ascending order

lMD[E COptions. .. I [QK] [Cancel I

The pivot table field headings will change their icons slightly to indicate that a filter or sort has
taken place. Notice that the Row Labels button includes an arrow to indicate a Sort. This is
shown in the following screenshot:

Row Labels -'|USD Gross Sales
Accessories ‘ 70,435

158

Chapter 6

Using cube functions

A pivot table can be a very useful tool for analyzing data. The ability to dynamically drop a
hierarchy from the model and expose all members, then sorting, filtering, and restricting those
members can be used in a large number of analytical situations. However, one problem with
the pivot table is that all the elements of the object (Filters, rows, and columns) are connected
and cannot be formatted with the complete discretion of the user. For example, the user cannot
insert a row between rows in the pivot table. While there are some options for formatting a
pivot table, these mainly relate to styles, and often the user wishes to have a larger amount of
control over what they are presenting. Additionally, using the formula that refers to a cell in the
pivot table is troublesome, because the pivot table can change and invalidate the formula.

This recipe examines the use of the CUBE FUNCTION formulas, which allows the user to
access model data without the restrictions imposed by the pivot table.

Getting ready

This recipe continues from the prior recipe Connecting pivot tables and Slicers.

How to do it...

While CUBEFUNCTIONS can be used as any formula and directly typed into the formula bar, it is
often more convenient to start with an existing pivot table and inherit that pivot table's structure.
The entire pivot table can be replaced with formulas. Let's start by creating a new pivot table.

1. Activate cell H27 and insert a pivot table based on the model data. Put the Years
hierarchy on rows and display the USD Gross Sales as a measure. Then use the
Category Name hierarchy of the Products table as a Filter.

2. Format the pivot table (change its options) so that rows without data are shown (this
will show all Years in the model).

3. With the pivot table active, select the Convert to Formulas button from the OLAP
Tools group. This is highlighted in the following screenshot:

PwotlTable Tools T -
| Options i Design
- = , =
=] m | o | o— a1 = jjl ¥ +
pld G E = B a2 2 I F
par Select Move Show Fields, Items, | PivotChart| OLAP | What-If Field +
" - PivotTable Walues As~ & Sets - Tools = |Analysis = List [Butl
Actions Calculations "] D
J K L M N ﬁ Convert to Formulas

Programmatic Access via Excel

4.

A dialogue will open (as shown in the following screenshot) prompting you to check
the Convert Report Filters option and click on the Convert button.

=

Convert to Formulas

i R ee— om—

By default, conversion permanently replaces PivotTable data values, row labels, and column labels
by substituting formulas for them. If report filters exist, they remain so that you can still filter data.

Selecting Convert Report Filters also permanently replaces existing report filters by substituting
formulas for them, removing the ability to filtker data.

iConvert Report Eilters:

Convert][Cancel

160

Once this button is clicked, the pivot table will be entirely replaced with formulas. It
also loses its formatting and the ability to filter by category.

Delete the values from both the cells under 2010 (it does not matter whether cells
are shifted up or to the left-hand side).

Select the cell that stores year values as a filter in the pivot table sales by cat

all (cell E25) and call it name (that is, define a named range that refers to the cell).
Title the Range as selected year by selecting cell E25 and typing the name into
the Name Box. This is shown in the following screenshot:

m Home Insert Page Layout Farmul3

"—“ﬂj & Cut
= 53 Copy -

Paste
- jFormatF‘ainter B I 1

Clipboard]

Calibri 0

selected year -

A name can be used to refer to a range of cells (in this case
\ there is only one cell in the range). Alternatively, names can
~ be defined and edited using the Name Manager on the
Q Formulas tab. See the Creating the model recipe in Chapter
1, Getting Started with Excel, for more information on using
the Name Manager.

Chapter 6

8. Highlight the cells J28 through to J32 (the first column without a formula) and type

the following formula:
=IF (selected year=H30:H34,I30:I34,"")

9. Instead of pressing the Enter key to accept the formula, press Shift + Ctrl + Enter.

10. Note that the formula is applied to all the sales that were selected and the formula is

enclosed in {}. The formula looks like this:

{=1IF (selected year=H30:H34,I130:I34,"")}

11. Change the year in the Slicer and note that a value is shown for the active year in
column J. Notice how the formula in the following screenshot is surrounded by { }:

Jx | {=IF[H30:H34=selected_year,|30:134,""}}

G H |)

Category Mame All

Row Labels USD Gross Sales

2005 7,586,983 |
2006 23,044,103

2007 30,821,316 30,821,316
2008 15,536,766

2009

Grand Total 768,989,167

The first part of this recipe converted the pivot table to formulas. These formulas allow an
Excel cell to access data directly from the model without relying on the pivot table. For our
purposes, there are two formulas. One formula defines a member (categorical value within the
model) as the descriptive or caption name, and the other to return measure values—that is

the values that exist at the intersection of members.

Programmatic Access via Excel

The formula in cell H30 shows an example of the CUBEMEMBER function. This function returns
the member for the provided member expression. The syntax for the CUBEMEMBER function is
as follows:

CUBEMEMBER (connection , member expression , caption)

Here the connection parameter refers to the name of the connection of the PowerPivot
model—remember that this was called PowerPivot Data when we inserted the pivot table in
the Connecting pivot tables and Slicers recipe.

The member expression parameter refers to the member unigue name or

member_ name for the member being defined. This is a three part name that defines a
distinct area in the model and includes the dimension, hierarchy, and member values,
and follows the syntax as follows:

[table] . [hierarchy] . [member]

In this case, [member] can refer to a key (which is prefixed by an & symbol) or simply the
member name (its value). For example, consider the definition of the member for the year
2005. There are two ways to represent the member. These are as follows: [Dates] .
[Year] .&[2005] or [Dates] . [Year] . [2005].

\ The syntax for a member expression is derived from the MDX
~ unique_ name of the member. The functionality demonstrated for
Q all recipes in this chapter would work in the exact same manner,
had a multidimensional cube been used as a data source.

Finally, the last argument of the CUBEMEMBER formula allows us to specify the display value
for the formula (sounds ironic right?). However, we can change what is displayed as the
caption. For example we could display Sales for 2005 as the caption even though the
caption should display 2005. In both cases, the member still refers to the 2005 year member.

The CUBEVALUE function is used to return a measure (or aggregated value) from the
model. The CUBEVALUE function follows a simple syntax, which defines the connection
and intersection (as MDX expressions). The syntax for CUBEVALUE is as follows:

CUBEVALUE (connection, [member expressionl],
[member expression2], ..)

162

Chapter 6

The CUBEVALUE function is quite flexible in how it can be used to
return values. So far we have only used CUBEVALUE by referring to
previously defined CUBEMEMBERS. These members can be replaced
with strings or defined as an MDX tuple. For example, all the following
formulas produce the same result (the USD Gross Sales amount
for 2006 and A11 Accessories):

=CUBEVALUE ("PowerPivot Data",I27,$H31,I$29)

1 Where I$27, $H31, and I1$29 are the CUBEMEMBER functions.
\

~ =CUBEVALUE ("PowerPivot Data"
, " [Dates] . [Year] .&[2006]"
, " [Measures] . [USD Gross Sales]™"
," [Products]. [Category Name] . [All]"
)
=CUBEVALUE ("PowerPivot Data"
n
PR
[Dates] . [Year] .&[2006]
, [Measures]. [USD Gross Sales]
, [Products] . [Category Name] . [All]
) n

-) -

The formula used in column J is an array formula and is immediately identifiable by the curly
parentheses around the formula. A complete discussion of this type of formula is out of the
scope of this book; however, using an array allows ranges to be applied against each other
within the formula (as was demonstrated when the formula was created). We could have used
the same formula and copied it down (maintaining the correct references of course). Further
reading about array formulas can be found at http://office.microsoft.com/en-au/
excel-help/introducing-array-formulas-in-excel-HA001087290.aspx.

Working with worksheet events and VBA

For the reporting scenario that was outlined in the Introduction to this chapter, the intent is to
allow the user to click on a pivot table row item and then have this action create downstream
activity affecting other elements on the worksheet. That is, when the user clicks on a category
item in the pivot table (the pivot titled sales by cat all), the bar chart showing year-on-year
category sales will change to show the selected category.

This type of action may be achieved through various methods—the use of a Filter or Slicer
connecting the two pivot tables immediately springs to mind. However, in doing this, the

end user is still required to select something from the drop down (Filter) or Slicer. We

want to interrogate the clicking action on a part of the spreadsheet to facilitate a change.
Furthermore, while the event (recipe) applies to a pivot table, there is no restriction to binding
this action to a pivot table. The technique can be applied to any situation where the user
selects a cell in the worksheet.

Programmatic Access via Excel

Getting ready

This recipe continues from the worksheet and model that was developed in the prior recipe
(Using cube functions). In order to do this we use a programmatic component of Excel (VBA).
In order to access this, the Developer tab of the ribbon should be visible. If not, the Developer
tab can be made visible by checking the Developer tab under the Customize Ribbon option of
Excel Options. To launch the Excel Options dialogue, select the Options button from the File
menu. This is shown in the following screenshot:

.

Excel Options &Iﬂ
General f\ . .
d| Customize the Ribbon.
Formulas
Lhoose commands from: (i) Customize the Ribbon: (i)
Praofing Popular Commands El Main Tabs El
Save
All Chart Types... - Main Tabs
Language Borders » [Bl |¥|Home
Advanced i Calculate Mow Clipboard
= Center Font
Customize Ribbon F Conditional Formatting 3 Alignment
Connections Number
Quick Access Toolbar r Styles
[4f] Custom Cells
Add-Ins - "
Cut L Editing
Trust Center A~ Decrease Font Size T Insert
3 Delete Cells... [¥] Page Layout
W' Delete Sheet Columns ~ [¥] Formulas
= Delete Sheet Rows Dat.a
[E-mail AT Review E]
& Fill Colar » View
- Filter << Remove Developer E]
Fant T|L2 Add-Ins
V| PowerPivot
e A .FQ”t',COM«4W~—M. bl . AR L

How to do it...

The overview of this recipe is as follows; firstly, we listen for a cell to be selected by the user.
Once this occurs, we use the cell to identify if it lies in the pivot table and then (if so), use its
value to populate a holding cell (126 in the following screenshot). Then, the existing CUBE
FUNCTIONS can use this value as a reference (as part of the formula). This is demonstrated in
the following screenshot:

Chapter 6

24
25
26
27
28
29
30
31
32
33
34
35

Year 2007 -

Row Labels -1 USD Gross Sales

ategory Mame All D E

Accessories
Clothing Row Labels USD Gross Sales
Components 4,602,052 2005 7,586,983
5,159,682 2006 23,044,103
Bikes 20,180,401 2007 30,821,316 30,821,316
Grand Total 30,821,316 2008 15,536,766
2009
Grand Total 76,989,167

aRA. _‘__..-ﬁ--"--l‘--\gg.....'.“h-. \A'M‘h‘“-_m_w‘m—.\w \.--..md-__...... -

Let us start by defining a name for the highlighted cell shown in the preceding screenshot
(that is cell 126) as follows:

1.

Create a named range for cell 126 by typing category sel into the Name Manager
of Excel when cell 126 is selected.

Alter the existing CUB EFUNCTION formula in cell 127 (the prior pivot table's Filter
location) to refer the value of the range category sel. Replace the existing formula
with the following;:

=CUBEMEMBER ("PowerPivot Data",category sel)

After this, the existing CUBE FUNCTIONS formulas will be invalidated showing the
#N/A values. We can correct this by pasting [Products] . [Category Name] .
[A11] into the category sel cell (I26).

Launch the Visual Basic for Applications (VBA) editor by clicking on the Visual Basic
button from the Developer tab.

Programmatic Access via Excel

5. Activate the code page for Sheet1 by double-clicking on Sheetl from the
VBAProject. When this occurs, the grayed out background in the image will turn
white. If VBAProject is not visible, it can be made visible by pressing Ctrl + R or
by navigating to View | Project Explorer from the menu items. You should see
something very similar to the following screenshot:

lﬂ Microsoft Visual Basic for Applications - Power Pivot Mode[- working copy.xlsx — -

Efile Edit View Inset Format Debug PRun Tools Add-Ins Window Help

EME-E 4 aas 90 » 1 a XFW - @
Project - VBAProject x|

= =
EIE VBAProject (Power Piv
=123 Microsoft Excel Object
ifH] Sheet1 (Sheet1)
@ ThisWorkbook

6. Create a subroutine for a selection change event by selecting the event from the drop-
down box (as shown in the following screenshot). Select Worksheet from the first
drop-down box, and SelectionChange from the second.

Worksheet ~ SelectionChange -

Private 5Sub Wurksheet_Selectinnm&ge:By‘.i’al Target Ls Range)

End Sub

You can create this automatically by pasting the following code:

Al
~ Private Sub Worksheet SelectionChange (ByVal Target As
Range)
End Sub

7. Fill the subroutine with the following code:

On Error GoTo Err

If Target.Cells.Count = 1 And _
Target.PivotTable.Name = "sales by cat_all" And _
Target.PivotField = " [Products] . [Category
Name] . [Category Name]" Then

166

Chapter 6

Sheetl.Range ("category sel") .Value =
Target.PivotItem.Value

End If

Exit Sub
Err:

B Notice the reference to Sheet1 in the previous code. Here,
Sheet1 refers to a workbook class in code, which is the

\1 sequentially numbered sheet in the workbook and not the actual
name of the sheet. If the sheet had been renamed (for example)
to S1, we can still refer to it by the sheet number, that is, Sheet1.

Alternatively, we can refer to it by its name by replacing the
b Sheet1 prefix with Sheets ("name"). -

8. The code screen should look like the following screenshot:

Worksheet + SelectionChange

Private Sub Worksheet_SelectionChange (ByVal Target As Range)
Cn Error GoTo Err
If Target.Cells.Count = 1 And _
Target.PivotTable.Name = "sales_by cat_all" And _

Target.PivotField = "[Products]. [Category Name] . [Category Name]"™ Then

Sheetl.Range ("category sel").Value = Target.PivotItem.Value

End If
Exit Subk
Err:
End Sub

Programmatic Access via Excel

9. Close the VBA code window and return to Excel. Test the application by selecting
different categories, multiple cells, and so on. When a category is selected, the key
will be placed in the category sel range and the CUBE FUNCTIONS will change, as
shown in the following screenshot:

= D E F G H | J K L
24
25 Year 2007 T
26 [Products].[Category Name].&[Accessories]
27 Row Labels -1/ USD Gross Sales Category Name Accessories
EI [Accessories T 269,781
29 Clothing 609,400 Row Labels USD Gross Sales
30 Components 4,602,052 2005 18,599
31 5,159,682 2006 70,435
32 Bikes 20,180,401 2007 269,781 269,781
33 Grand Total 30,821,316 2008 154,128
34 2009
35 Grand Total 512,942

The overall operation for this recipe has been discussed from a procedural perspective. That
is, we determine the member's unique name (see the How it works... section in the Using
cube functions recipe) for the category that the user has selected, and use this value in the
CUBE FUNCTION formula that has been previously created.

In doing this, Excel listens for an event where the user changes their selection (or the active
cell(s)). This is (of course) handled through the internal Worksheet SelectionChange
routine. Here the argument (Target) refers to the cell range that the user has selected.

Once this has occurred, there are several things that the code in the routine (Sub) looks for.
These occur in unison, and are as follows:

1. Acheck that the user has only selected one cell (by checking that Target . Count
equals to 1).

2. Determining if the cell belongs to the appropriate pivot table (through Target .
PivotTable.Name).

3. Checking that the user has selected a cell that relates to the Category hierarchy
(through the Target . PivotField property for the selected cell).

The functions that relate to the use of the pivot table should be somewhat self-explanatory,
that is, provided with a cell reference (through Target or cell chosen), we can determine the
name of the pivot table and the hierarchy chosen.

168

Chapter 6

Once we are satisfied that these conditions have occurred (and these are the only
conditions that make sense for our scenario), we simply set the value of the named range
category_sel to the value of the category that has been selected.

The reliance on the existence of a pivot table through the Target . PivotTable.Name
and Target . PivotField functions will throw an error (runtime error) had a pivot table
not been selected by Target. Therefore, we effectively wrap the IF statement in an error
catching routine.

There's more...

In addition to the unique member name (or key) for the selected cell, it will be desirable to
identify the name (that is, the display name) of the selected cell and combine that with a
descriptive graphic for the data. The intent of this will be to produce something similar to the
following chart:

Accessory Name Sales By Year

16,000,000

14,000,000

12,000,000

10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

2005 2006 2007 2008 2009

For this chart, the chart title changes depending on the pivot table cell selected (as previously
demonstrated) and the color for one of the bars signifies the selected year (as filtered by the
pivot table sales by cat all).

Programmatic Access via Excel

The creation of the chart is relatively straightforward. Create a bar chart with two series based
on the output from the Using cube functions recipe, and set the overlap distance for the
second series to 100 percent or completely overlapped. This can be set by right-clicking on
the second series (in the chart), selecting Format Data Series... from the pop-up window, and
then sliding the series overlap all the way to the right, as shown in the following screenshot:

G H |] K L
24
25
26 [Products]. [Category Name]. &
27 Category Name
28 16,000,000
29 Row Labels USD Gross Sales 14,000,000
30 2005 7,251,728 12,000,000
31 2006 14,092,409
32| 2007 5,150,682 fI5,159,682 10,000,000
33 2008 8,000,000
34 2009 I &, 000,000
35 Grand Total 25,5@513 4,000,000
36
= 1 9 2,000,000
38 o
— 005

In reality, we are showing two series in the same chart that cover each other (of course,
one series is on top of the other). We can control the overlap property as shown in the

following screenshot:

Format Data Series

A=

Series Options

Fill

Border Color

Border Styles
Shadow

Glow and Soft Edges

3-D Format

Series Options

Series Overlap

Separated

Gap Width
Mo Gap

T e M

170

s it ﬂ‘#-&nﬂ‘Mh s A

100%:

U

6%

U

Cverlapped

Large Gap

Chapter 6

Just as we have named the pivot tables in order to identify them in VBA, we can also name
the charts.

\ The naming of objects is not necessary from a technical
~ perspective (required in VBA) but it certainly makes it easy
Q to identify them. Other options include identifying a chart
by its index within the sheet.

When the chart is selected, the Chart Tools ribbon item will be displayed, exposing the Chart
Name: box in the Layout tab. Name the chart accessory sales by year chart, as
shown in the following screenshot:

s lilell B

Team Design | Layout | Format

Chart Mame:

.'-\"._/__,\/-\'-"v'\._-l_}:'-ﬂ-'_zﬁ
3
1]

accessory_sale

) Bars =
E Properties i

Now, the existing routine for _SelectionChange can be altered to dynamically change the
title of the chart. Add the following line of code to the routine before the End If line:

Sheetl.ChartObjects ("accessory sales by year chart").Chart.ChartTi
tle.Text = Target.PivotItem.Caption & " Sales by Year"

It should be relatively straightforward how this code works—we specify the Text for the
ChartTitle within a (required) chart. The actual text is determined by concatenating the
value of the selected cell to the string Sales By Year. We can determine the value in a
number of ways (Target or Target .Value would provide the same result); however, in
keeping with the notion of PivotTable properties, the . Caption property of PivotItem
returns the name (value) that the user sees. Recall that the unique name key was
determined by the .value property.

Finally, it might also be appealing to identify the cell in the pivot table that was selected and
highlight it accordingly. This can be done by applying a cell style (based on the existing cell
styles in Excel). To do this, we require two lines of code: the first resets existing styles, and the
second highlights the selected cell.

Programmatic Access via Excel

The complete code snippet looks like the following code:

Private Sub Worksheet SelectionChange (ByVal Target As Range)
On Error GoTo Err

If Target.Cells.Count = 1 And _
Target.PivotTable.Name = "sales by cat_all" And _
Target.PivotField = " [Products] . [Category Name] . [Category
Name] " Then

Sheetl.Range ("category sel") .Value =
Target.PivotItem.Value
Sheetl.ChartObjects ("accessory sales by year chart")
.Chart.ChartTitle.Text = Target.PivotItem.Caption & "
Sales by Year"

Sheetl.Range ("D28:D32") .Style = "Normal"
Target.Style = "Accentl"
End If
Exit Sub
Err:
End Sub

1
‘\Q When we are clearing the existing formatting from the pivot rows,

we use a cell reference ("D28 :D32") and not a named reference.

Managing the Slicer through VBA

Managing an array of data based on the CUBE FUNCTION formulas is one method of
allowing the end user the ability to interact with the data. Another method is the ability to
programmatically interact with the Slicer, and then let the Slicer do the work for you (through
its pivot connections).

Accessing the Slicer programmatically can also open up a variety of additional development
options since you can access a wide range of information about the source of the Slicer (both
its data and elements), in addition to specific members that have been explicitly selected (as
in the Working with worksheet events and VBA recipe). In this recipe we will be using VBA to
determine the value (both the unique name and caption) of a Slicer, and using this value in
chart captions and pivot table Filters.

172

Chapter 6

Getting ready

This recipe assumes that the prior recipe Working with worksheet events and VBA has been
completed. What this recipe does is create a monthly trend chart for a selected category
against all categories, as shown in the following screenshot:

32

Row Labels ~ USD Gross Sales

lanuary
February
March
April

May

June

July
August
September

Year

659,584
1,812,593
1,345,667

808,428
2,144,494
1,067,660
2,214,875
3,475,686
2,806,031

Row Labels -1 USD Grog

Accessories

Clathing

Bikes

Components

2,108,170
6,647,328

=
o
L]

slicer_caption

Row Labels + USD Gross Sales

January 659,584
February 1,812,593

Anarch 1245667
Category Name 428

V ——AllCaegor

,660
|

g
g
T
|1
=
adud o Bd Brop s

—slicer_capti

October 1,695,094 0
November 2929680 680 PP
22, F oSS
December 2,084,310 L 310 \@o@?&' RS & 4—“900“’;75#;,&“&
23 Grand Total 23,044,103 Grand Totai 23,044,103 « & & o

[Products].[Category Name].&[Components]
Category Name Components

Components Sales by Year

14,092,409

wa L L ST WY

e Rl A NDAD L hw&&*—v—-\M“'r P e P00 gl

Here, the additional pivot table (for showing the selected category's sales) has a Slicer
attached, which is set by the selected cell (of the pivot table sales_by cat_all). The
additional line chart is used to compare the monthly sales values of each pivot table. Unlike
the previous recipe, we will show all the categories, when the user has not explicitly selected
a category within the pivot table.

How to do it...

Start by setting up the worksheet with the required objects.

1. Ensure that the pivot table sales by month all (the original monthly pivot table)
will show all the items with no data on rows, by checking the Show items with no
data on rows option from the Display tab of the PivotTables Options.

2. Copy the pivot table to cell H10 by highlighting the pivot table, pressing Ctrl + C,
then selecting cell H10 and pressing Ctrl + V. Rename the pivot table to
sales by month all sel.

Programmatic Access via Excel

3.

17

Ensure that the Slicer for the year is attached to both pivot tables. Right-click on
the Slicer, select Pivot Table connections... and ensure that all pivot tables are
connected via the checkbox.

Insert a Slicer based on the Category field of the Products table by clicking on the
Slicer button from the Insert tab.

Attach the Category Slicer to the pivot table sales by month all sel.

Add a cell to record the Slicer value (caption). Create a named range for cell 19 as
slicer caption.

M It is also a good idea to color the cells, which had user
Q input in a consistent format. In the preceding screenshot
they are in off yellow.

Insert a line chart using two series as the data ranges. One series has the name 211
Categories and series values from E11 to E22. These are the monthly values from
the pivot table sales by month all. The second series (the selected category)
has a range from I11 to I22 (monthly values from the sales by month all sel
pivot table). The horizontal (category) axis labels of the series should be set to the
month names (of either pivot).

Test whether the two lines of the chart change when a new year is selected from the
year Slicer, and when a category name is selected from the category name's Slicer.
The lines of the chart should move accordingly.

Depending on the year and category chosen, the line for the
pivot table sales by month all sel may be as close as
the horizontal axis, and it may be hard to see any relationship

.“ between the two lines. In order to show this relationship clearly, it

Q may help to move the line for the sales by month all sel

pivot table, to the chart's secondary axis. Do this by right-clicking
on the (chart) line and selecting Format Data Series... from the
pop-up menu. Then, check the Secondary Axis radio button from
the Plot Series On group, as shown in the following screenshot:

Chapter 6

slicer_caption

Row Labels = USD Gross Sales

lanuary 599991
February 1,019,273
Aarrh RA] 475
Category Name ® g719
7,093
5,131
ACCessories
Bikes
Clothing
Components
Grand Total 5,159,682

[Products].[Category Name].&[Comp

Category Name Components

4 000,000 =
3,500,000 / \
3,000,000 { \ /
2,000,000 A\ - —AlCaeg]
1,500,000 ,vi/ \ / ——slicer_ca
1,000,000 e /ﬁ\
N R
500,000
Format Data Series
0 1
\:P& Series Options : :
o P Series Options
“ Marker Options Plot Series On
3 Marker Fil @ _Primary Axi
Line Color
Line Style

Now let's create a subroutine to set the Slicer for a particular category.

9. Add a new module to our VBA solution. Launch the (VBA) developer window (click
on the Visual Basic button from the Developer tab of the ribbon). Right-click on the
project node and navigate to Insert | Module from the pop-up window, as shown in
the following screenshot:

o Private Sub Work

View Code

View Object On Error GoTo Er

VBAProject Properties... If Target.Ce

Insert J UserForm

Import File... (

Export File... Class Module

Remaove 1arg
Sheetl.C]

Print...

DDCEEblE Sheetl.R
Target.5

Hide

(General)

Programmatic Access via Excel

1
‘Q You can also navigate to Insert | Module from the VBA

developer's menu.

10. When the module is added, create a subroutine to set the category name Slicer to

the value of the member unique name key which is passed as an argument to the
routine. Add the following subroutine:
Public Sub SetSlicer (ByVal SlicerKey As String,
ByVal SlicerName As String)
Dim sC As SlicerCache

Set sC = ActiveWorkbook.SlicerCaches
("Slicer Category Name")

If SlicerKey <> "" Then
sC.VisibleSlicerItemsList = SlicerKey
Else
sC.ClearManualFilter
End If

Sheetl.Range ("slicer caption") .Value = SlicerName

End Sub

11. Alter the Worksheet SelectionChange event for Sheet1l to call the new

176

subroutine depending on the cell activities of the user (in Sheet 1) as follows:
Private Sub Worksheet SelectionChange (ByVal Target As Range)

On Error GoTo Err

If Target.Cells.Count = 1 And _
Target.PivotTable.Name = "sales by cat all" And _
Target .PivotField = " [Products] . [Category
Name] . [Category Name] " Then

Sheetl.Range ("category sel") .Value = _
Target.PivotItem.Value

Sheetl.ChartObjects
("accessory sales by year chart")
.Chart.ChartTitle.Text = _
Target.PivotItem.Caption & " Sales by Year"

Sheetl.Range ("D28:D32") .Style = "Normal"
Target.Style = "Accentl"

Chapter 6

SetSlicer Target.PivotItem.Value,
Target .PivotItem.Caption

Exit Sub
End If
Err:
SetSlicer "", "All Categories"
End Sub

12. Test the new functionality on the worksheet. When any cell within the
sales by cat_all pivot table is selected, the Slicer for the category name
is set, and the chart displays that category (on the secondary axis). If this does
not occur, the chart shows the trend for A11 Categories.

The operation for the worksheet event (Worksheet SelectionChange) was covered in the
Working with worksheet events and VBA recipe. Therefore, it is not necessary to go into any
great depth of how this component works, other than to just say that Excel listens for a change
in the user's cell activity (on sheet1). When the user has selected only one cell within the
desired pivot table range, we can be satisfied that a valid category is selected, and therefore,
we can pass the category unique name and caption to our Slicer change function. If this
is not the case, we simply remove any Filters that have been set by the Slicer.

The creation of the SetS1icer subroutine is also relatively straightforward. Here, we
simply make a reference to the Slicer (through the S1icerCache object) and then set its
value (through the .visibleSlicerItemsList). If the user has not selected a single cell
(resulting in the obvious conclusion that no unique category is selected), we simply remove
any filter that is on the Slicer and define the name as A11 Categories.

There are some advantages in creating a public subroutine as we have done in this recipe.
The routine can be called from anywhere in the workbook and will allow code reuse within
the workbook. This technique might have also been applied in the prior recipe Working with
worksheet events and VBA.

Programmatic Access via Excel

The routine refers to the Slicer by its name. This can be determined from the worksheet by
selecting the Slicer Settings... options from the pop-up menu when the Slicer is right-clicked.
We can also use this to control how the Slicer appears (for example, whether it has a name or
not and what that name is), as shown in the following screenshot:

r

Slicer Settings

9o

Source Mame: Category Mame

MName to use in formulas:

Slicer_Category_Name

Mame: |Category Mame
Header
Display header

Caption: |Category Mame

Item Sorting and Filtering

@ Data source order
(7} Ascending (A to Z)
") Descending (Z to A)

Visually indicate items with no data

Show items with no data last

OK

l [Cancel

In setting the Slicer value we assume a one-way flow of information, that is, that the Slicer will

be manipulated (by a known value). However, we m
allow it to be used as any other data range—for exa

ay want to obtain data from the Slicer and
mple, in a drop-down box. In order to do

this, we must read the data from the Slicer. For this intention, we need to be interested only in

the following three values:

of the Slicer

ng screenshot:

E F G

=SliceritemCount("Slicer_Year"})

B Column Forumla
=Slicerindex("Slicer_Year", AS)

C Column Formula
=Slicerindex("Slicer_Year",A7,"member_unigue_name")

» The number of elements in the Slicer
» The caption shown at an Index Position n
» The member unigue name shown at an Index Position n of the Slicer
Consider the desired output as shown in the followi
A B C
1
zl\’ears Count I E-_I
3
4 Index Position Index Caption Index Unigue Name
5|1 2005 [Dates].[Year].&[2005]
6B 2 2006 [Dates].[Year].&[2006]
73 2007 [Dates].[Year].&[2007]
2 4 2008 [Dates].[Year].&[2008]
9 |5 2009 [Dates].[Year].&[2009]
10 |6 2010 [Dates].[Year].&[2010]
117 i #REF! " #REF!

Tk it ki gt AR b e b e Sl |

178

eI “,‘M e _‘.-Am\m

Chapter 6

There are only two formulas in this worksheet. The first (S1icerItemCount) takes the Slicer
name as an argument and returns the number of data members in the Slicer. The second
(SlicerIndex) takes arguments for the Slicer name, an index position, and (an optional)
return type (note that the default return type is the data member caption).

Open the VBA editor and double-click on Module1l to open it. Then, add the following formulas
(lines of code) to the existing subroutine:

Public Function SlicerItemCount (ByVal SlicerName As String) As
Integer

On Error GoTo err_ handler

SlicerItemCount = _
ActiveWorkbook.SlicerCaches (SlicerName)
.SlicerCachelevels (1) .SlicerItems.Count

Exit Function

err_handler:
SlicerItemCount = -1
End Function

Public Function SlicerIndex(ByVal SlicerName As String _
, ByVal IndexPostition As Integer _
, Optional ReturnType As String) As Variant

On Error GoTo err_ handler

Dim sl As SlicerCacheLevel

Set sl =
ActiveWorkbook.SlicerCaches (SlicerName)
.SlicerCacheLevels (1)

If UCase (ReturnType) = "MEMBER UNIQUE NAME" Then
SlicerIndex = sl.SlicerItems (IndexPostition) .name
Else
SlicerIndex = sl.SlicerItems (IndexPostition) .Caption
End If

Exit Function

err_handler:
SlicerIndex = CVErr(2023)

End Function

Programmatic Access via Excel

Add a new sheet to the workbook. Cell B2 (the number of elements in the Slicer) has the
formula =SlicerItemCount ("Slicer Year"). The formula for the index's caption is given
by =SlicerIndex("Slicer Year", A5),and the formula for the member unique name
is given by the formula =SlicerIndex ("Slicer Year",A5, "member unique name").

In both these formulas, A5 refers to the index position for the data member that we are looking
for in the Slicer. Furthermore, the formula will display as functions in Excel's formula bar.

Both formulas work by making reference to the Slicer's S1icerCacheLevel. This is
actually the hierarchy displayed within the Slicer. Note that both the formulas refer to the
SlicerCache (the Slicer by name) and then specify S1icerCacheLevel (1) in order to
reference the actual level of the hierarchy (or perhaps from our point of view, the members
within that level).

The Slicers that we have created so far have all been single-level hierarchies (these were
commonly referred to as attribute hierarchies in traditional OLAP). However, when a Slicer is
created on a drillable hierarchy (or user hierarchy—a hierarchy with multiple levels), a Slicer
Control is created for each level (within the hierarchy). We can demonstrate this by adding
a Slicer for the date-by-year hierarchy (in the Dates table). When this is added, three Slicer
boxes are created as shown in the following screenshot:

e L il et o w— R

e e T T e CR

.
i | Year . Month Name . Day

2

Y i "

'j 2005 Januar\r 01-Jan-05

% | | 2006 February 02-Jan-05

¢

2007 March 03-Jan-05

i ;

;.. 2008 April 04-Jan-05

e -._“--ﬁ___‘“\‘r* ~-g—m#—d}-ﬂ-\“*ﬁr_~__“wn_-&.ﬂm_‘ B

In this situation, the property SlicerCacheLevel can be used to identify the data members
restricted by each level. That is, the Year level is 1, the Month Name is 2, and the Day is level 3.

180

Enterprise Design
and Features

In this chapter, we will cover:

» Restoring a workbook to Analysis Services

» Importing models into SQL Server Data Tools
» Developing models in SQL Server Data Tools
» Securing data with roles

» Implementing dynamic security

» Creating perspectives

Introduction

Creating a tabular model in Excel is a great way of allowing a user to combine a large amount
of data, business logic (through calculations and relationships), and semantic information
(column names, hierarchies, and tables) into a single, succinct model. This is beneficial to a
single user. However, hosting this model in Excel limits the audience that can use the model
for analysis (or the output of the model in the case of reports, charts, Pivots, and the like).
True, the workbook can be shared among users (say for example, a file share); however,

the workbook can only be used by one person at a time and there exists an inherent risk of
workbook duplication and the associated risk of workbook proliferation, that is, Excel Hell and
multiple versions of the same book with different data.

Enterprise Design and Features

There are two methods of promoting the Excel tabular model within the organization. Firstly,
publishing the workbook to the SharePoint site (commonly referred to as Team BI) or secondly,
promoting the model to SQL Server Analysis Services (SSAS) with its storage in tabular
mode. Promoting the tabular model to an Analysis Services database may be considered as
the final step in the development cycle of a tabular model. It allows the modeler to include
enterprise features in the model (such as perspectives, security, and partitions) and allows a
multitude of client tools to query the Model.

Of course, it may not be necessary to promote the model in all situations. However, the
designer should always consider the possibility of the current piece of work becoming an
enterprise model.

This chapter focuses on moving an Excel model into the SSAS environment and the additional
features in design and security that it offers.

It is not necessary to create a model in Excel and then promote
M it to an SSAS instance. The model can be completely designed
Q in SQL Server Data Tools (SSDT). The principles for design in
SSDT are exactly the same as in Excel, albeit with a slightly
different user interface.

Restoring a workbook to Analysis Services

Once the tabular model has been created in Excel, it can be immediately imported to a
SSAS server, thus allowing multiple people to query it and additional (XMLA/MDX) client
tools to access it. This recipe shows how to import an existing Excel model to the SSAS
(tabular) server.

Getting ready

The workbook used in this recipe is the same as the workbook developed in the Allocating
data at different levels recipe in Chapter 5, Applied Modeling. This is also the same workbook
that was used in Chapter 6, Programmatic Access via Excel.

In order to import the workbook directly into SSAS, it must be saved with a . x1sx
(nonmacro) extension.

182

Chapter 7

How to do it...

Let's start and connect to an SSAS server (with the storage in tabular mode).

1. Open SQL Server Management Studio and connect to the Analysis Services
(tabular instance).

2. Right-click on the database node and select Restore from PowerPivot. This is
shown in the following screenshot:

Object Explorer

Connect = _ﬂﬂj _ﬂﬁ BT IE £
= :fb PAULDESKOINSQL2012TABULAR (Microseft Analysis Se
L

Restore...

f Restore from PowerPivot... .

Attach...

Synchronize...

Reports »

Refresh

3. Navigate to the file using the Browse... button from the Backup file: location as
shown in the following screenshot. Then select OK.

The directories that can be browsed are a property of the SSAS
u server. In order to change these, right-click on the server node in
~ SQL Server Management Studio (SSMS) and select Properties.
Q Then, change the value AllowedBrowsingFolders to include any
needed folders. This is an advanced option and is found under
the General tab.

| 3 Restore from PowerPiveot EI@

R

Restore Source

- |
TEE T e Wﬁbase Files |
i gt i et = ol b nein ameimimann i o b sagidadiite, L o 4 o

Enterprise Design and Features

4. Name the database Import Example, as shown in the following screenshot, and
then click on OK:

|73 Restore from PowerPivot EI@

ey % Seript + 4 Help

Restore Source

Backup file: F:\Book\Power Pivot Model C

Restore Target

Select or type the name of the database for your restore operation. The database can be existing
or new.

Restore database: I_mport Example * J

Storage location:

Ointisme

5. Refresh the database node and ensure that the model has been imported.
A new database should exist as shown in the following screenshot:

Ohbject Explorer

Connect = ﬂj _%g " T IE 5
= 'Tb PAULDESKOLLSQL2012TABULAR (Microsoft A
= [Databases

I_J Import Example *_.__

Despite the implication that restoring an Excel tabular model is a restore operation (from
Analysis Services point of view), it is in fact the execution of an ImageLoad (XMLA) command.
The standard XMLA to restore a database from a backup is given in the following snippet:

<Restore xmlns="..">
<File>Backup File Name.abf</File>
<DatabaseName>Target Database</DatabaseName>
<AllowOverwritestrue</AllowOverwrites>
</Restore>

184

Chapter 7

However, the command to import the workbook is shown in the following snippet. In both
cases, the namespace declarations are removed for brevity (the full snippets are available
from the chapter's resource file XMLA to Import and Restore.XMLA):

<ImagelLoad xmlns=".."

xmlns:dd1100= ".."

xmlns:dd1200_200=".."

xmlns:dd1100_100="..">

<dd1200_200:ImagePath>Import File Name.xlsx</dd1200 200:ImagePath>
<dd1100:ReadWriteMode>ReadWrite</dd1100:ReadWriteMode>
<DatabaseName>Target Database</DatabaseName>

<DatabaseID>Target Database</DatabaseID>

</ImageLoad>

The ImageLoad command loads the Excel tabular database (or model) to a tabular SSAS
server. While this is a convenient and quick solution for making a model available to a wider
audience, it may have some undesired implications. This includes a general lack of ability to
alter the model's semantic design and the creation of default values; for example, a single
cube is created with the name Model (right-click on the database Import Example and see
that only one cube exists with the name Model).

If you are happy to live with these limitations there is no reason why a PowerPivot workbook
cannot be imported to the server. However, if you wish to make the model truly enterprise-
ready, you may first need to import the model into SQL Server Data Tools (SSDT) and edit the
model from there.

It is possible to alter the Server Model through XMLA (although not that practical in reality). In
order to change the name of the cube, we could script the database out as alter syntax and
then change the <Name> element in the <Cube> path. The command can then be executed
and the name of the cube will change. The location of the Name tag can be seen in the
following screenshot:

</Dimensions
</Dimensions:
- <Cubes>
- <Cubex
<ID>Model</ID>
<Name>Import Example</NameZ *‘-‘-‘-—
- <Annotationss
- <Annotations
<MName>DefaultMeasure</Name>
<Value> Mo measures defined</Value>
</Annotations
<fAnnotations:

Enterprise Design and Features

Importing models into SQL Server

Data Tools

Importing tabular models hosted in Excel to an SSAS tabular server may be an intermediate
step in creating an enterprise-ready tabular database. If an Excel model is to be used as a
prototyping mechanism it will more than likely have to be imported with SQL Server Data Tools
(SSDT), so that the model can be saved, managed, and verified in a more robust manner.

The tabular model can also be built from scratch using SSDT should a more traditional
development environment be required, that is one where Excel is not used.

For the purposes of the tabular model (in as much as the model
\ revolves around table relationships in calculations), there is no
~ difference between developing in Excel through PowerPivot or
Q SSDT. Indeed, on proof of concept and prototyping situations it is
often a good idea to sit with the user, using the same tools as they
use and build a model with them!

Getting ready

This recipe examines how to import an existing PowerPivot model into SSDT. The workbook
is the same as the one used in the Restoring a workbook to Analysis Services recipe and is
present in the code bundle available at http: //www.packtpub.com. Let's start with SSDT.

How to do it...

1. Open SQL Server Data Tools from the Microsoft SQL Server 2012 program group.

2. Create a new Project using the menu path File | New | Project. Then, select the
Import from PowerPivot template by navigating to Business Intelligence | Analysis
Services as shown in the following screenshot:

New Project B ==
Recent Templates |.NET Framework 4 ~ | Sort by: | Default - Search Installed Templates 0
Installed Templates T Busi Intell

. . ? Analysis Services Multidimensional and Data Min.., Business Intelligence ype: Business dnieligence
4 Business Intelligence = Creates a tabular project by extracting the
Analysis Services 4— 1 4, metadata and data from a PowerPivot for
Integration Services o Import frem Server (Multidimensional and Data... Business Intelligence Excel workbook.
Reporting Services
Visual Basic _'?i"r"g; Analysis Services Tabular Project Business Intelligence
Visual C#
i
isual C++ -____-' L[Import from PowerPivot Business Intelligence
Visual F# 2
SQL Server %wﬁvf Import frem Server (Tabular) Business Intelligence
QOther Projert Tune i

186

Chapter 7

3. You may also want to specify a suitable name for the project; let's call this Tmport
Example SSDT, and a different file location to store the project.

4. An open dialogue will display where you can navigate to the Excel workbook, in order
to select the appropriate file. Navigate to the directory storing the file Power Pivot
Model Complete.x1sm (you will have to change the file filter) and click on Open
once you have selected the file.

M In order to use the SSDT project, we will require a link to a
Q workspace database. This is really a connection to an SSAS server
and is discussed in the How it works... section of this recipe.

5. SSDT will spend a few moments importing the model (note that the status bar will
move from time to time while objects are being imported).

6. When the operation is finished, the project will open in SSDT showing a table view of
the model.

There is nothing complex associated with the import of the workbook to SSDT. However, the
reader should be aware that SSDT requires a connection to a tabular server in order to display
the model to the user and to be able to work on that model in SSDT. This is referred to as a
workspace database.

If there is no connection available, the import will not complete and no development can occur.
The presence of the model in the workspace database can be confirmed by refreshing the
model and expanding the Databases node in SSMS. Note the GUID appended to the name of
the solution in the Object Explorer dialog of SSMS, as shown in the following screenshot:

Object Explorer * 1 x
Connect~ 3 3 m “F E;
= 'Eb PAULDESKD1INSQLA012TABULAR (Microsoft Analysis Server 11.0.2218.0 - PaulDeski1\Paul)
= 1 Databases
| J Import Example
[Import Example S5DT_Paul_8cdecBab-b050-4267-9ed)-1d36e63afech

Enterprise Design and Features

The name of the workspace database (as a read-only property) that is used by the model can
be seen from the Solution Explorer pane (within SSDT). Right-click on the Model.bim file
within the Solution Explorer pane and select Properties. A screenshot of the window that
opens up is shown as follows:

Model.bim File Properties -
o= 2 =]
4
Build Action Compile
Copy To Output Directory Do not copy
4
Collation
Data Backup Do not back up to disk
DirectQuery Mode Off
File Mame Model.bim
Full Path CABOOKN mport Book\Import Book\Model.bim
Language English (Australia)
Workspace Database Import Book_Paul_a4c7c199-8031-4260-9ef5-cd15d91 cBb47
Workspace Retention Unload from memory
Workspace Server localhosthSQL20LZTABULAR

The server that is to be used as the workspace database cannot be set when the import
occurs. Further, if a tabular server is not available, an import (conversion) will not succeed.

Therefore, the developer should ensure that the server used to store the workspace database
was previously connected to SSDT. This can be as simple as creating a new Analysis Services
tabular project and setting the Deployment server to the tabular SSAS server. Note that,

by default, localhost is used as the server and this may not be the case when named
instances are used (as is the case).

The server can be set by right-clicking on the properties node (in the Solution Explorer pane
of SSDT) of the Project and selecting properties. The server name can then be set, as in

the following screenshot (a workspace database will be created on a local instance called
SQL2012TABULAR):

188

Chapter 7

SSAS Termnp Property Pages]
Configuration: | Active(Development) * | Platform: | Active(xBa) V] [j
4 Configuration Properties 4
Deployment Processing Opticn Default
Transactional Deployment False
Query Mode In-Memory
4
Server (ASQL2012TABULAR "
Editicn
D PR S PP Lt B ..u_"-“""‘"* T g A"“K‘\Hatﬁﬂn‘“

The properties also allow us to specify the Cube Name property, so that the default name of
model is not shown. This can be set by overwriting the Cube Name property as shown in the
following screenshot:

4
Server ASQL2012TABULAR
Edition Developer
Datakase Import Example S5DT
Yersion 11.0

Finally, this technique can be used to import a model that is located on a tabular server.
Simply choose the Import from Tabular Server template project.

Developing models in SQL Server Data Tools

The modeling environment in SQL Server Data Tools (SSDT) is almost identical to that of
PowerPivot. There is more functionality available; for example, the ability to create partitions
and apply security to the model. However, the general approach to modeling in SSDT is
identical to PowerPivot. That is, the import of data, its definition (tables and columns), and the
creation of relationships and measures are the same.

This recipe demonstrates how models can be developed in SSDT by extending the model
imported in the Importing models into SQL Server Data Tools recipe. Here, we add a
Geography table to the model to show the sales region that the purchase occurred in. Later
on (see the Securing data with roles recipe) this table will be used to secure the model by
allowing specific users access to privileged regions.

Enterprise Design and Features

Getting ready

Open the model that was developed in the Importing models into SQL Server Data Tools
recipe and ensure that the file Geography . txt has been downloaded from the resources
for Chapter 5, Applied Modeling. There is also a schema . ini file, which accompanies this
file and overwrites the default import settings. The file Geography.txt and schema. ini
should be located in the same directory.

How to do it...

Start with the SSDT project that was developed in the Importing models into SQL Server Data
Tools recipe.

1. Click on the Import From Data Source button from the toolbar. This is shown in the
following screenshot:

&8 Import Book - Microsoft Visual Studio (Administrator)
File Edit View Project Build Debug Model Table

= &9 - @ < | b |[Developmerf
e an|8@@a-2-S 2180

Import From Data Source
=

'—f;a Import Book
g References

hal ¥ mmmmwlnf-w—“—n -

u Alternatively, you can select Import From Data Source...
~ from the model's menu group. This action is very similar to
Q the From Other Sources button in PowerPivot and displays a
variety of data sources that can be imported.

Select Text File as the Data Source and click on Next.

Navigate to the Geography . txt file and select Open. A Table Import Wizard will
open allowing the connection name to be specified (in keeping with the model's
standard, the connection should be labeled txt geography). Note also, that the
schema. ini file has been recognized and the settings in this file will be used instead
of the default settings. This is shown in the following screenshot. Click on Next.

190

Chapter 7

|
| Connect to Flat File
| Enter the information required to get data from flat files.

| Friendly connection name: bt_geography

File Path: NOvopbexBock\0ES4ENVOBS4EN 05 _code'\Geagraphy .t | Browse... i

Column Separator: __Cnmma LII) Advanced I

| Use first row a5 column headers

¥ GeographyID (= -
1 Alexandria MNew South .. Australia E|
2 Coffs Harb.. New South .. Australia
3 Daringhurst New South .. Australia

H
B
<
HN 4 Goulbum MewSouth .. Australia
B
n
B
i

5 Lane Cove Mew South .. Australis
6 Lavender B.. Mew South .. Australia
7 Malsbar hew South .. Australia
8 Matraville Mew South .. Australia -

| Clear Row Filters |

B

I\ |A Schema.ini file has been detected in the curent import folder “C\Users\Paul Dropboat Book
\QES4ENVOBEEN_05_code”, Settings from this file will cverride your current import settings.

4. A new window will open that specifies the account that will be used to connect to
the data source by Analysis Services when the data is processed. Although not
recommended (in a production environment), let us assume that the SSAS service
account can access the file and use this account for convenience. Select the Service
Account and click on the Finish button. Once the data has been imported, click on
the Close button. The new table is added to the model.

5. Right-click on the Geography ID column heading (in the Geography table) and
select Create Relationship from the pop-up window. When the Create Relationship
dialog opens, select Reseller Sales under Related Lookup Table and Geo ID under
Related Lookup Column. Note that an information button appears as shown in the
following screenshot. When you hover over the icon, a warning message indicates an
incorrect direction for the relationship. Click on Create to create the relationship.

Related Lookup Table: Related Lockup Column:
Reseller Sales - & GeolD -

[The relationship cannot be created in the requested directl
S ‘-whw‘"*ﬁxw et

Enterprise Design and Features

6. Hide the Geography ID field in the Geography table by right-clicking on the field
and selecting Hide from Client Tools from the pop-up menu.

7. Switch to the diagram view and locate the Geography table. Create a hierarchy by
selecting the City, State, and Country attributes from the table, right-clicking and
selecting Create Hierarchy from the pop-up menu.

This process is quite similar to importing a text file into PowerPivot. In fact, the only noticeable
exception is that when developing in SSDT, the designer is prompted for an authentication
account to connect to the data source (remember that importing a text file will create a new
data source). It is important to remember that the design experience is actually managed

by a tabular server and SSDT connects to this in displaying data to the modeler. That is,

SSDT creates a workspace database on the server and the server connects to a data source
through its impersonation settings.

The creation of this relationship is also intuitive because the design surface (SSDT) identifies
the cardinality between the two tables and identifies the required direction of the relationship
between the two tables. The information message shown in the recipe demonstrates this.

In order to detect this relationship, one side of the relationship must hold only unique values
in the column. If it doesn't, a relationship cannot be created.

The account used to authenticate to a data source can be changed once the connection
has been created. This account is the impersonation setting for the connection and can be
managed through the Existing Connections dialog. To change the account in an existing
connection, click on the Existing Connections button from the toolbar. Alternatively, this
functionality also exists in the Model menu button, as shown in the following screenshot:

File Edit View Project Build Debug Model Table Column Teamn

Pl | 4]9 - | Y evelopment -|| 53 S
DEEoalE@a-= -5l e B,

Solution Explore:

| e

— . rﬂ-‘.‘—ﬁ“.u_ﬂu‘u_

When the Existing Connections dialog opens, select the connection (in our case, it is
the txt_geography connection) and click on the Edit button. Then, click on the
Impersonation... button to select the method and account for impersonation, as shown
in the following screenshot:

192

Chapter 7

Edit Connection ¥ 8
J Connect to Flat File

Enter the mmformation required to get data from Hat files. I

Friendly connection name Bt_geography

i Eile Path: CAUzers\ PaulDrapbox\ Book)\(BS4EM\QBS4EM_05_code Browse...

Column Separator. ' Comma (A " Advanced |

| Use first row &5 column headers | -[-mpmnnatii;n... |
« GeogrophyiD [N ETTENN

Imperzonation Infarmation

E—) |

Specify the credentials vsed by the Analysic Services server to connect to the data source.
These credentials sre used by the server when importing and refreshing data.

@ Specific Windows user name and password

Connects to the data source using the credentials of the user named below.
Uger Mame: E

Password:

Service Account

Connects to the data source using the credentials of the user running the |
Analysis Service senver.

ey Gonlme

Securing data with roles

Often, there is a desire to restrict the amount of data that a user can see. This can take
two forms. Firstly, there may be a need to restrict data because of a security concern, that
is, the user should only be able to read information from the model that relates to their
area of operating concern. Typical examples of this type of security restrictions are based
on geographical areas, reporting, or departmental lines. Restricting data through security
is examined in this recipe and the Implementing dynamic security recipe in this chapter.
Secondly, we may wish to restrict the objects that a user can see when they connect to the
server. This is not the application of a security feature, but simply the creation of specific
view(s) for the user. This is achieved through the use of perspectives (which is examined in
the Creating perspectives recipe in this chapter).

Enterprise Design and Features

Tabular modeling on an SSAS server implements role-based security. This is similar to the way
SSAS implements security in an OLAP environment. A very general explanation of this model
is that, when the user (or account) connects to the model, they are identified as belonging to
one or more roles and the implementation of their security profile is the amalgamation of all
roles they belong to.

This allows roles to be defined for different processing operations within the model, in addition
to the restriction of data. Furthermore, the role that an account belongs to is identified by that
account's Active Directory profile. When the account connects to the tabular server, it can be
identified as belonging to a role by belonging to an Active Directory group. This removes the
need to assign an individual user account's access to a role; instead, association to the role is
managed by Active Directory.

Getting ready

This recipe creates a role for an Active Directory group called TABULAR SECURITY
AMERICAS. We then examine how security is applied to the role and a user belonging to it.

How to do it...

The general method to create a role is to define the role and its access layer. Then, we specify
the domain members who are part of that role and finally the security for the role. This is done
through a DAX statement against the model tables. Let's start by creating the role.

1. Click on the Roles button from the toolbar. Alternatively, Roles is also an option in the
Model menu group, as shown in the following screenshot:

@0 Import Book - Microsoft Visual Studio (Administrator)
File Edit View Project Build Debug Medel Table Column Team SQL Data Test

Pl | £ 5 B9 - © | [Development -|| &1 5 (5 5¢] B8 (1 -
AR |E@Ba-2-308 & 6 F 2.
Solution Explorer Wl Model.bim™

| .5:15 E [Country]

il e R

2. The Role Manager dialog will open. Create a new role by clicking on the New button
and name the role AMERICAS. Specify the permissions for the role as Read (select
Read as the permission from the Permissions drop-down menu). Although not
mandatory, we can also give a description of the role.

Chapter 7

Assign members (domain users, groups, and principals) to the role by selecting the
Add... button from the Members tab. If the name of the domain member is known,
it can be typed directly into the dialog and confirmed with the Check Names button.
The role should look like the following screenshot:

Permissions Descripticn

AMERICAS 1 Security Role for Americas

| New || oy || oDelete |

Details - AMERICAS

| Row Filters | Members |

Specify the Windows users or groups for this role.

Mercuny\ TABULAR_SECURITY_AMERICAS

’ Add... Remove |

et

Active Directory groups are not searched by default and the name
M may not be validated. If this is the case, Domain Groups can be
Q added to the selection criteria by clicking on the Object Types...
button and checking the Groups option. Additionally, a detailed
search can be carried out by clicking on the Advanced button.

Enterprise Design and Features

4. Change to the Row Filters tab and find the Geography table. Add the following code
in the DAX Filter column:

=[Country] = "United States" || [Country] ="Canada"

The Row Filters tab should look like the following screenshot:

Row Filters | Members|

Specify DAX expressions that return Boolean values. Only rows that match the specified filters are visible to users in this role.

Table DAX Filter i
Dates

Store Owners
Inventory Balances

Products

m

Currency
Reseller Budgets Amounts
Geography -} =[Country] = "United States” || [Country] ="Canada” -

5. Click on OK to create the role.

6. Now that the role has been created we can test it through SSDT. Click on the Analyze
in Excel button (which is also an option in the Model menu group). After this, a
dialogue will open allowing you to specify the connecting user. Select Role as the
method and AMERICAS from the drop-down menu. Then click on OK to open Excel.
This is shown in the following screenshot (note that you need to be an Administrator
on the SSAS server to do this):

Analyze in Excel [7 | =
Choose the setting to use when browsing the model in Excel.

Specify the user name or role to use to connect to the model:
() Current Windows User

() Other Windows User

@ Role

| =l
Pers

196

Chapter 7

7. Excel will open with a Pivot Table connected to the tabular model. Drag the
Geography by City hierarchy of the Geography table on to the Pivot's rows to confirm
that only the countries Canada and United States are shown. The Rows column
will look like the. following screenshot. Note that any attribute displayed on rows
(for example, city) will also restrict to attributes relating to these countries.

A
1 Row Labels |~
2 |HCanada

3 ®HUnited States
4 Grand Total

We have discussed the general concept using which security is applied. That is, when the user
(domain member) connects to the model, they are allocated to whatever role(s) their domain
credentials specify. Their access permissions are then defined by the addition of all security
permissions and row filters that are defined by those role(s). The row filters simply evaluate
data according to the predicate of the DAX filter statement.

The addition of security roles should not be taken lightly because there is no way to explicitly
deny permissions to data. This means that a role can never specify a denied permission that
will take precedence over an allowed permission.

Consider the situation where we create a new role ALL, NOT_ UNITED STATES (for all
countries other than the United States). This may have a DAX filter as follows:

[Country] <>"United States"

When an account is a member of this and the AMERICAS role, they will see United Statesin
their data. Perhaps it is easier to consider the not equals expression (<>) as meaning everything
other than what has been listed and not as a denied permission against United States.

The other permissions for the model (None, Read and Process, Process, and Administrator)
should be self-explanatory. However, they are included here for completeness.

Permissions Description
None Members cannot make any modifications to the model schema and cannot
query data. This permission should be used to exclude users from the model.
Members are only allowed to query and not change the model schema. The
Read . . -
users with this permission cannot process the model.
Read and Members are allowed to query data and process the model. No changes can
Process be made to the model schema

Enterprise Design and Features

Permissions Description

Members can process the model but cannot query data. The permission
cannot alter the model schema.

Process

Administrator The user with this permission has (essentially) full control over the model.

There's more...

It is expected that roles should be added to the model in the development environment.
However, once the model is in production, roles can be added and edited directly to the
SSAS server using SQL Server Management Studio (SSMS). To do this, simply expand the
Database's node to expose the roles, right-click on the node and select New Role... from the
pop-up window. Alternatively, an existing role can be edited by double-clicking on its name.

Object Explorer
Connect~ 3 @i @m “F ﬂdg
= ib MERCURYSQL2012TABULAR (Microsoft Analysis Server 11.0.2218
- [Databases

= | | Import Book_Paul_a4c7c199-8031-4260-9ef5-cd15d91 cBbd
¥ [Connections

¥ [Tables
=g jFoles
Mew Role...
% Dy €
Reports 3
Refresh

Changes made to the workspace database will not be reflected in the SSDT project.

Implementing dynamic security

Implementing security through roles that contain hardcoded row filters is a very convenient
way to manage data access to the model. It's also relatively easy to understand.

However, some downsides of that method are that the roles require creation and
maintenance. Imagine a situation where hundreds or thousands of detailed roles have to be
created; this would require a lot of work! Further, while the use of Active Directory groups is
convenient from a model's administration perspective, it removes a large amount of control
from the Bl environment (and the Bl department). Often, this is not desirable (especially

in smaller departments and agile environments) as the Bl team is solely responsible for
administering security.

198

Chapter 7

One way of allowing the Bl team to administer security is to create the security model as an
artifact of the model and have security applied by reference to that artifact. This is commonly
referred to as dynamic security because the model implements security by reference to its
own data (and structure). Any changes to the (security) data are automatically applied in the
model when the data is processed (refreshed).

This recipe implements dynamic security.

Getting ready

This recipe builds from the solution that was developed in the Developing models in SQL Server
Data Tools recipe. Users and countries that each user can view are shown in a file, which is
present in the code bundle of this book available at http://www.packtpub. com. The file is
titled securityProfiles.txt and its content appears as shown in the following screenshot:

= SecurityProfiles td
user login, country
Mercury\Tabular Tester,United State

W L R

Mercury\Paul,United States

l'"..-“.hf_‘" E 5 w,d_"..

Mercury'Paul, Canada ’

As a CSV file, the first column contains the user login (account), which includes the domain
(or machine) name. In this recipe, the domain name used should refer to your machine or the
domain that you work from; if you are working on a domain.

How to do it...

Start by importing the SecurityProfiles. txt file into the model.
1. Import the file SecurityProfiles. txt into the model. The download also includes
a schema. ini file, which should be saved in the same location as the file.

2. Create a new role (titled Dynamic Security) with read permissions and set the
role's members as Authenticated Users.

Fow Filters | Members

Specify the Windows users or groups for this role,

J MT AUTHORITY\ Authenticated Users
e B e o, S rq-.. il B

Enterprise Design and Features

To apply dynamic security, an Active Directory Account group
M is commonly used to group users in a Domain group. When
Q a dynamic security is implemented you need not worry about
Active Directory groups and can refer to individual users in the
Security table.

3. Apply two row filters to the role. The first is created against the SecurityProfiles
table with the condition FALSE (). The second is applied against the Geography
table with the following syntax:
='Geography' [Country] =LOOKUPVALUE (

SecurityProfiles [country], SecurityProfiles[user login],
USERNAME ())

The Row Filters tab should look like the following screenshot:

Row Filters | pMembers

Specify DAX expressions that return Boolean values. Only rows that match the specified filters are visible to users in this role.

Table DAX Filter N
Store Owners
Inventory Balances

Products

Currency

m

Reseller Budgets Amounts
Geography ='Geography'[Country]=LOOKUPYALUE(SecurityProfile...
SecurityProfiles =FALSE(

4. Create a Pivot Table to explore the model under both accounts (as in the Securing
data with roles recipe). Examine how data from the Geography table is restricted by
the user (that is, the user who is connected). Also notice that there is no data for the
SecurityProfile table visible in the Pivot Table.

Instead of testing security through SSDT using the option Analyze in
Excel (and specifying the user account to test as), you may choose to
run several instances of Excel running each instance as a different user.
This can be achieved by using a command-line program runas. For

~ example, to open Excel as the user Mercury\Tabular Tester, we
Q will simply enter the following command into a new command window:

runas /user:"Mercury\Tabular Tester"
"C:\Program Files\Microsoft Office\Officels\
Excel.exe"

You are then prompted for the user's password.

200

Chapter 7

5. Finally, hide the table SsecurityProfile from client tools (because we do not want
an end user to see the structure of the SecurityProfile table).

The application of the row filter on the Geography table is the main mechanism that
implements security in this recipe. Here, the predicate on the Geography table permits the
Country value (data element) only if it exists in the SecurityProfile table with a match
against the connected domain user.

The use of the LOOKUPVALUE function (see the Linking fields between tables recipe in
Chapter 1, Getting Started with Excel) is that it associates a user with countries that are
specified in the table SecurityProfile. Previously, LOOKUPVALUE has been applied

to return data by reference to a column in an existing table; that is, the search _value
argument of the LOOKUPVALUE function has been a column within an existing table. In this
formula, however, the search arguments are defined by the USERNAME () function. This
function simply returns the connected user.

s .
~ If we wish to see the username, we could create a measure
CURRENT USER:=USERNAME ().

It was stated that the role can be implemented without hiding or specifying the FALSE ()
predicate on the SecurityProfile table. However, there are several reasons why this
predicate should be implemented. It should be noted that hiding a table from client tools
does not restrict the table from being queried. A curious user who knows the structure of the
table can query it even though it may be hidden within the model. To circumvent this possible
breach, the use of the FALSE () predicate as a row filter effectively disables data access
(even for curious users).

Creating perspectives

In the prior recipes, we have restricted what the user sees by hiding tables and columns from
client tools. This can remove clutter from the model and hide information that the user never
needs to see (for example, the SecurityProfile table). However, in situations where the
model contains distinctive subject areas, there may be a desire to expose only tables in those
subject areas as particular views. This is achieved through perspectives.

201

Enterprise Design and Features

A perspective allows a virtual model to be created over the existing model, so that the user
has a choice of views for the model. As a view, the perspective inherits all security from the
underlying model. Only the tables and columns that are shown in the view can be controlled.
Further, data security cannot be applied directly against a perspective and visibility of the
perspective cannot be defined by role. That is, the perspective cannot implement its own
data security profile.

Getting ready

This recipe builds on the model that was developed by the Model development in SQL Server
Data Tools recipe in this chapter. We will create a perspective to show only that information
which relates to exchange rates (exchange rate values by date and currency).

How to do it...

The three steps for creating a perspective are to create it, name it, and set its table and
column visibility.

1. Create a new perspective by launching the Perspectives dialog. Click on the
Perspectives button (or click on Perspectives from the Model menu) as shown in the
following screenshot:

@ Import Book - Microsoft Visual Studio (Administrator)
File Edit WView Project Build Debug Model Ta

P - @ K a9 - -] k|| Devel
AT E B = e =

- L
Solution Bxy .chE

202

Chapter 7

2. After the Perspectives window opens, click on the New Perspective button. This
window shows any existing perspectives in the model. Name the new perspective
Exchange Rates by overwriting the New Perspective caption. This is shown in the

following screenshot:

Perspectives

- Tables

- Currency

Fields

Currency ID
Currency Mame
+ Currency Conversion

+ Dates

Use perspectives to define views of the data. Perspectives are typi
easier to navigate large data sets,

O0OOoomom o

e Mﬂ‘*ﬁm —— ._.._’l.‘“\"‘h— m-#m,

3. Select the fields, hierarchies, and measures that will be visible in the perspective.
Expand each table and check each of the following items:

Table

Currency

Currency Conversion
Currency Conversion
Currency Conversion
Currency Conversion

Dates

4. Save the perspective by clicking on OK.

Field/Measure
Currency ID
AVG Rate

EOD Rate
AVG EOD Rate
AVG Ex Rate
Day

203

Enterprise Design and Features

5. The perspective can then be reviewed through the Analyze in Excel function. The
Perspective drop-down lists all perspectives in the model as shown in the following
screenshot. Select the Exchange Rates perspective and click on OK.

Choose the setting to wie when browzing the model in Excel.

Specify the user name or rele to use to connect to the model:
& Current Windows User

1 Other Windows User

Exchange Rates

6. When the PivotTable Field List is displayed, only those items that are exposed
through the perspective and are visible to client tools can be seen. Observe the
following screenshot, the measure AVG Rate cannot be seen in the field selection
list despite being checked when the perspective was created. This is because the
measure is hidden from client tools in the model.

PivotTable Field List

Choose fields to add to report:

= E Currency Conversion
[T]Avg EOD Rate

[T]Avg Ex Rate

= E Currency
[]currency I

= [Dates
= 5y More fields
[[]Day

204

Chapter 7

There is no explanation required here, as the perspective is simply a derived view from the
model. It cannot have any security applied to it and inherits the underlying model's security
(and visibility). Perspectives are, for all intents and purposes, a representation mechanism.

There's more...

Perspectives can also be created in PowerPivot. Do this by clicking on the Perspectives button
on the Advanced tab of the PowerPivot Ribbon. The user interface is the same as
that of SSDT.

When analyzing in a Pivot Table, the perspective can be chosen from the field list as shown in
the following screenshots:

ER | @Hq- 0 - 5 | PewerPivot for .

Home Design Advanced

EE R)

PowerPivot Field List v X

Exchange Rates

Shaw Implicit Summarize D
Measures By i - | Gheflissenogpn o tamtotint, o
B e e

205

Enterprise Management

In this chapter, we will cover:

» Deploying models from SSDT

v

Deploying models with the Deployment Wizard

v

Creating and managing partitions

v

Processing the data

» DirectQuery and real-time solutions

Introduction

When an Excel user creates a PowerPivot model, they have the luxury of managing all the data
from within PowerPivot. They can update table data when needed in an ad hoc manner as
they see fit.

However, the same situation is not true for enterprise models—tabular models that are deployed
to an SQL Server Analysis Server (SSAS) server. Here, there is an expectation from all users
that data is updated and refreshed according to an agreed schedule. Further, there are often
restrictions on developers that limit the activity they can perform on production servers.

This chapter examines how models are managed against SSAS servers and includes
deployment methods, management, and processing.

Enterprise Management

Deploying models from SSDT

The prior recipes in Chapter 7, Enterprise Design and Features, that deal with SQL Server
Data Tools (SSDT), create a workspace database on a tabular server. This is used by SSDT as
a temporary database (or model) for display and as a database that Excel can use (when you
choose to analyze the data in Excel through SSDT). When SSDT is closed, the database is lost.

In order to persist the database, so that it is constantly available to end users, it must be
deployed to an SSAS (tabular) server.

Getting ready

This recipe continues from the Creating perspectives recipe in Chapter 7, Enterprise Design
and Features.

How to do it...

Let's start by examining the deployment properties for our project:

1. Confirm the deployment options of the solution by right-clicking on the solution
and selecting Properties. The window opens as shown in the following screenshot.
Change the Deployment Server settings if desired. These include the tabular server,
the database (the name of the database that the model will be deployed to) and the
cube name (the name of the cube).

Import Book Property Pages : @
Configuration: |Acti\.re(Developmentj v| Platform: |Active(x86] 'l | Cenfiguration Manager... |
4 Coenfiguration Properties a
Deployment Processing Option Default
Transactional Deployment False
Query Mode In-Memory
Server ASQL2012TABULAR
Edition Developer
Database TABULAR MODELLING
Cube Name TABULAR MODELLING
Version 110
4
Impersonation Settings Default
Deployment Server
[P O SRy e s T S PO

bt o .t e ARt o decimil. - —

il

208

Chapter 8

The tabular model is synonymous to the Database and Cube Name
settings in the prior screenshot and these settings have relatively
little impact to the end user. In a tabular model, the model is

M published to a database (there can only be one model in the

Q database) and the database contains the cube (the model).

These definitions are inherited from the multidimensional model.

In that model, the objects are disconnected (dimensions are
separate objects from cubes) and there can be many cubes in each
database.

2. Deploy the model by right-clicking on the solution and selecting Deploy.

R scvion Eplorer <

= | &]
':g; Import Book| ...
gl Reference it Emld.
% Model.bin Rebuild
Deploy @
Clean

3. SQL Server Data Tools (SSDT) will open a new dialog showing the steps and rows of
the processing operation. This is shown in the following screenshot:

e F T Lt e e BTN S e e dtn S S
Details:

Work Itern Status Message
 [Dcply metadots e et ceployea |
o Reseller Sales Success. 60,855 rows transferred.

o Resellers Success, 701 rows transferred.
o Currency Conversicn Success, 14,264 rows transferred,

wﬁn“w&w*“"‘ e U G A A AN i A Sl AR« ridl
4. Click on Close.

5. Confirm the deployment by connecting to the model through Excel. Go to
Data | From Other Sources | From Analysis Services.

209

Enterprise Management

6.

Home Insert Page Layout Formulas Crata Review Vi

L , - - 3 1 ==y
al ! 5 __-_.iJ Connections A |

Al)

_Ié = ISEY ST _13 L] [ARPH
Fram From From [From Other| Existing Refresh .{l Sort

Access Web Text | Sources= | Connections All= =

From an Excel workbook, connect to the model by inserting a new data source.

Get Ext s, From SQL Server
Al Create & connedion 16 & SOL Server table. Import data
inte Excel a5 a Table or PreotTable repaort.

2
L3

EN —

[mport data into Excel a5 a Table or PivotTable report.
From XML Data Import
Cipen or map a XML Tile into Excel

]
=== |
5 From Analysts Senvices
I g Create s connedion toa SOQL Sener Anaﬁ Senvices culbe.
A B s
=

e gt g, gttt o i b e sl S iR i

Enter the server name in the Data Connection Wizard window. This is the same
server that was used in project properties. For example, in this project the server
was \SQL2012TABULAR (a named instance on the localhost). Click on Next.

Select the TABULAR MODELLING database from the drop-down list.

M

Data Connection Wizard

Select Database and Table
Select the Database and Table /Cube which contains the data you w

Select the database that contains the data you want:
TABLULAR. MODELLIMG

Import Book_Paul_a4c7c199-8031-4260-9ef5-cd15d91c8b47 -«
TABULAR MODELLIMG

If SSDT is still open (and you have deployed to the same server
~ as the workspace database), you should also see the workspace

Q database. Remember that this is a temporary database used by
SSDT to show the model.

Chapter 8

9. Now, select the TABULAR MODELLING cube and click on Next. Then click on Finish
to complete the wizard. Note (as shown in the following screenshot) that we can see
and identify the model (which is called cube) and perspective:

[ata Connection Wizard

Select Database and Tabke
Salact the Dntahens mnd Tabls fCube which contsing e dats you want,

Sehecth the datsbasce that contans the dats you wank:

TABLLAR MOCELLING -]
| Connect to a spedfic oube or table:

Hame Description Modified Created Type

W Exchangs Rages 9/2/2013 11:39: 19 AM PERSPECTIVE
ﬁfﬂﬂlﬂﬂmm 922013 11235: 19 AM CUBE

e o —unr#"-"‘-‘ onlindna - e

10. A pivot table will be inserted with a connection to the tabular (server-based) model.
This is used as another pivot table (client-based connection). See the Creating model
calculations recipe in Chapter 1, Getting Started with Excel, for the comparison of
client versus the PowerPivot tables.

Deploying from SSDT in this manner actually involves a two-step process that is managed by
SSDT. The first step creates the database (model) on the server. If the database exists, it is
updated for the new structure. The second command processes the database (data) that has
been created on the tabular server (that is the database created in the prior step).

Before the model's data can be queried by the client tool, the database must be flagged as
processed. The method of processing is specified in the deployment options of the solution
(noting that the first step of this recipe was to confirm these options). Here, the Processing
Option can specify how processing occurs after creation. These options are shown in the
following screenshot:

4
Processing Option Do Mot Process
Transactional Deployment Default
Query Mode Do Mot Process

4
i

Enterprise Management

These options cover a range of processing, from no processing to full processing and are
described in the following table:

Modes Description

Default SSAS determines the processing that is required for each table.
A table will only be processed if it has been altered (or is new).

Do Not Process No tables are processed.

Full All tables in calculations are processed.

When the model is deployed with a processing option of Do Not Process, only metadata
is deployed. This can be checked with the help of the following screenshot which shows
deployment of the same model with the Do Not Process option. Note that no partition
processing occurs.

FRTR S — T P . - . P L T Y —— ot -
/ B Lt T Y, - o T e e =

Details:

Work Itern Status Message

| I Deploy metadata Success. Metadata deployed. _

I e b i t*-_-uo-u-g At s oy g r—._. gy Tv ey

Since the workspace database includes the all model data, one may question why the Do Not
Process option should be considered as a part of deployment? This option has been chosen
when the data used by the model is sample data and needs to be changed in production. This
will require the deletion, alteration, and creation of additional partitions (data stores) and,
therefore, reprocessing. See the Creating and managing partitions recipe.

Deploying models with the Deployment

Wizard

Some organizations do not allow the developers to deploy their projects directly into
production, this change must be managed by a different group that does not use SSDT. In this
situation, the developer needs to provide an alternative method to the model.

This recipe examines how this can be achieved by using a deployment utility that is installed
with SSAS. The tool can provide two methods for deployment and we will investigate both.
Note that both the methods only differ in the final stage of deployment.

When using the Deployment Wizard, the wizard analyzes files that are created as part of a
project build to create an output action. This action can either be the execution of a script
from within the tool or the creation of a script—the XMLA file (XMLA stands for XML for
Analysis) that can be executed against the (tabular) server. In order to deploy with these
methods, only the output files need to be created from SSDT, everything else is managed
through the Deployment Wizard.

212

Chapter 8

Getting ready

This recipe continues with the model from the Deploying models from SSDT recipe.

How to do it...

When we deploy a model (with the Deployment Wizard) there are three things that
happen—the solution is built (creating a database file), then the Deployment Wizard is
used to configure the database file (this configuration is also saved in its own file), and
then both files are executed against the server.

Start by building the solution as follows:

1. Build the solution by right-clicking on the solution in the Solution Explorer pane and
selecting Build from the pop-up menu. Alternatively, click on the Build Project XXX
button from the Build menu. This is shown in the following screenshot:

» Model.bim

Properties Solution Explorer <

2| S E
i Import Book ", = L

g Reference
% Model.bir wEELlE
i, i g s el o _ppmemt o

2. Close SSDT. Start the Deployment Wizard from the All Programs menu. It is located in
the Analysis Services folder within the Microsoft SQL Server 2012 program group.

; Microsoft SQL Server 2012
a Download Microsoft SQL Server Cor
L Import and Export Data (32-bit)
L Import and Export Data (64-hit)
&8 S0L Server Data Tools
L%a S0L Server Management Studic
| Bnalysis Services
|3 Deployment Wizard *
. Configuration Tools
. Data Quality Services

s gpREEHMEtion BLommupitede

Enterprise Management

3. Navigate past the wizard's welcome screen. The wizard will then ask for a file with
the extension .asdatabase to open. The default location for this file is in the bin
directory of the solution (files). This file is named Model . asdatabase; locate the file
and click on the Open button.

The build of the solution also creates two other files that are used by
the Deployment Wizard. The first file Model .deploymenttargets
] specifies the current deployment server options—the server and
< the database name. The other file Model .deploymentoptions
Q specifies the other default options for the model (such as whether
partitions and roles will be created).

The default settings in these files can be configured through the
Deployment Wizard. -

4. Specify the target server and target database that the model will be deployed to.
Since the server and the database name have been configured, we can accept the
defaults and move to the next screen by clicking on Next.

|71 Analysis Services Deployment Wizard E\@
Installation Target
Specify a target server and database to which to deploy the Analysis Services database file %3

The wizard will deploy TABULAR MODELLIMG to the following Analysis Server and database,

If the database does not exist, it will be created during installation, Ctherwise, it will be ovenwritten.

Serven

|\SQL2012TABULAR)

Database:

|TABUL."-\R MODELLING j

M The deployment target settings are inherited from the
Q Model .deploymenttargets file. The server and the
database can be edited from this file, if needed.

214

Chapter 8

5. Leave the default values for the Partitions option and Role and members option and
click on Next.

=

[%3 Analysis Services Deployment Wizard (o=][]

Specify Options for Partitions and Roles
Determine how existing partiticns, security reles, permissions and role members are treated %3
during deployment.

Partiti " . L. .
arHmens * Deploy partitions. Any existing partiticns will be replaced.
Retain partiticns. Partitions for new measure groups will be deployed, but partitions
for existing measure groups will be unaffected.
Roles and " Deploy roles and members, Any existing reles and members will be replaced.
members

e Deploy roles and retain members. Roles will be deployed aleng with their members
for new roles, Members for existing reles will ke retained.

" Retain roles and members, The roles and members will not be deployed.

6. Finally, we can specify (if required) additional connection and impersonation
information for each connection within the model. Accept the defaults (since the prior
recipe, Deploying models from SSDT, is deployed with these values) and click on Next.

Q) Analysis Services Deployment Wizard El@
Specify Configuration Properties
Set the configuration properties for each object. %3

[” Retain configuration settings for existing ohjects

[Retain cptimization settings for existing chjects

de3434d9-Tfe3-4f09-8ce2-33670dcalac? [Mative OLE DB]Provider=Microsoft. ACE.OLEDB.12.0:Data Soﬁ
eabelb909-2alc-46fa-8213-7352c170f766 [Mative OLE DB]Provider=Microsoft. ACE.OLEDB.12.0;Data So
4 | Data Source Impersonation Information
0%alf2e3-alel-49b0-ad477-a6db48420dba Service Account
20LffO8k-8a92-4619-30cE-73bd22faelk0 Service Account
20fc558c-afal-43cd-bac7-053204bb6e0 Service Account ’J’
-\‘.w-ﬂ-“‘--h‘“‘"\'!-gr'cmﬂ“h PR TF PP SR S " gl b

215

Enterprise Management

7. Finally, specify the processing option for the model after deployment. Leave this as
Default processing and click on Next.

|11 Analysis Services Deployment Wizard EI@
Select Processing Options
Specify the way in which cbjects are processed during deployment. %3

Processing method + Default processing

" Full processing

" None

- M._*\\AH_ML;*M\-‘-‘-‘*-\—‘.‘ AR AUARRASS S anee adadefos. ootk .Mr\‘

8. Finally, we can specify whether or not a deployment script will be created (and the
name of that script). If a script's filename is provided, the Deployment Wizard will
close after the script has been created. If no filename is given, the wizard will simply
deploy the model and process it. In this recipe, we will choose the latter option
and fully process the model from within the Deployment Wizard. Leave the Script
Location field blank and click on Next.

9. The wizard will deploy and process the model; a sample output of this is shown in the
following screenshot:

|2 Analysis Services Deployment Wizard | = || =] || 3 |
Deploying database
The wizard is deploying the database to the server... %3

Connecting to the MERCURV\SQL2012TABULAR server -
Applying configuration settings and options...
Analyzing configuration settings...
Done
Analyzing optimization settings...
Done
Analyzing storage information... i
Deone
Analyzing security information...
Done il

m

4 ¥

»

—f‘ Processing Partition 'Reseller Budgets Amounts' - Reading data for the 'Reseller Budgets Amounts
4 Processing Partition 'Reseller Sales' - In Progress - 59999 of 59999,
_-5 Processing Partition 'Resellers’ - Reading data for the 'Resellers_1842e6ed-247d-4c8d-b72e-71612044

10. Click on Next for the confirmation screen or on Finish to close the wizard.

Chapter 8

There is no additional information about deployment using the wizard. It is important to
reiterate that the target settings (both server deployment and processing) are inherited from
the two additional files that are created when the model was built. Both of these files are XML
based and therefore the values (such as the processing option) can be set from within the files.

To demonstrate deployment using the script generation output, perform the following steps:

1. Complete the recipe using the Create deployment script option. By default, the
output file will be created in the same location as that of the .asdatabase file and
will be suffixed with an .xmla file extension. Of course, the location can be changed,
but leave the default values. Finally, close the wizard.

2. Open SQL Server Management Studio (SSMS) and connect to the tabular server.
3. Open the deployment script that was created in step 1.

4. Execute the script. When the script is running, the Messages tab will show progress
as shown in the following screenshot:

_'_1 Messages

Executing the query ...

{Subscribe xmlns="http://schemas.microsoft.com/analysisservices/2@8@83/engine” />
{Subscribe xmlns="http://schemas.microsoft.com/analysisservices/ 2883/ engine” />
READS, @

READ_KE, @

WRITES, @

WRITE_KE, @

CPU_TIME_MS, @

ROWS_SCANNED, @

ROWS_RETURNED, @

¢Batch Transaction="false" wxmlns="http://schemas.microsoft.com/analysisservices
¢Alter AllowCreate="true" ObjectExpansion="ExpandFull">

\w““‘iEHiEE;z_“—‘—A‘h_"ﬂﬂ-‘b“‘vuqﬂﬂn@.ﬂ‘*ﬂ‘*u‘hqil"‘“J’q-“-“‘lhtﬁﬁ

5. When the execution of the script is complete, the output results will show an empty
result set for success, as shown in the following screenshot:

k|
<return xmlns="urn:schemas-microsoft-com:xml-analysis"> i‘
<results xmlns="http://schemas.microsoft.com/analysisservices/2083/xmla
<rooct wmlns="urn:schemas-microsoft-com:xml-analysis:empty™ /=
<root xmlns="urn:schemas-microsoft-com:xml-analysis:empty™ />
</results>
</return:

-;“Mﬁum.hqm“,_"h_ﬁ%ﬂﬁmu‘_‘#‘

Enterprise Management

There's more...

The use of the Deployment Wizard removed reliance on SSDT. However, deployment can still be
a manual process because of the required interaction with the interface. Since the additional
deployment files can be overridden in the wizard, one might also question their purpose.

One of the useful features about the Deployment Wizard is that it can execute executables
from the command line and fully deploy the build. This can then be executed in a number
of scheduled ways (for example, as a scheduled task or through an Integration Services
package). Here, the use of the additional files becomes apparent as they specify the
deployment options and target.

There are a number of parameters that can be set for deployment; however, consider the
situation where we simply wish to deploy the model (with values specified in the additional
files). Executing the following command will deploy the model and leave the log showing the
steps that the deployment took:

Microsoft.AnalysisServices.Deployment.exe
"C:\BOOK\ Import Book\Import Book\bin\Model.asdatabase"
/s:"C:\BOOK\ Import Book\Import Book\bin\deployment.log"

B In this situation, my bin directory is located at C: \BOOK\
Import Book\Import Book\bin\.

1
*‘Q The code file that accompanies this chapter (available from

the online content) includes the fully-qualified name of the

Deployment . exe file. By default, this is found in the following

directory: C: \Program Files (x86)\Microsoft SQL
b Server\110\Tools\Binn\ManagementStudio. -

Further information about running the Deployment Wizard from the command line can be
found at http://tinyurl.com/nzn878y.

Creating and managing partitions

The tabular model is an in-memory engine meaning that the data in the model (all models on
the tabular server) is compressed and stored in the RAM while the server is running. The tabular
server also stores data on the disk (storage for when the SSAS engine is not running)—however,
the rule is generally that all queries against the model are performed on cached data. The
exception to this, of course, is when there is not enough RAM for the engine to use, and

paging occurs.

This is a stark contrast to Multidimensional Online Analytical Processing (MIOLAP) storage,
which stores data on the disk (notwithstanding aggregations that may have been cached).
This storage requires an effective partitioning strategy as a performance consideration. That
is, a strategy to physically store the data on the disk.

218

Chapter 8

Aside from performance implications, partitioning is also used as a management function—it
defines what data is available in the model. A common example of this is the application of
a sliding window where; for example, data is held in monthly partitions and rolling data for
the past 12 months is required. As monthly partitions are filled, the older and nonneeded
partitions can be deleted without impacting the entire dataset.

This recipe examines how to implement partitioning on the tabular server at both design

(in SSDT) and administration (using SSMS). Unlike MOLAP storage, partitioning can occur on
any table (MOLAP SSAS restricts partitioning to measure groups). Additionally, since storage
is in-memory, the use of a partitioning strategy becomes more of a management issue.

Getting ready

This recipe continues from the model that has been developed and deployed in the
Deploying models from SSDT recipe. Our goal is to create yearly partitions for the
Reseller Sales table that constrains data by the financial year. The partition names
span financial years (for example, Reseller Sales 2006 spans records with order
dates between 1-July-2005 and 30-Jun-2006).

How to do it...

This recipe is completed in two steps. Firstly, we alter the current partition for Reseller
Sales to apply for Reseller Sales 2006. This is done in the design mode. Secondly,
we alter the deployed model as it resides on the server (through SSMS).

Let's start by reviewing the current partition:

1. In SSDT, activate the Reseller Sales table in Grid View Mode and click on the
Partitions button.

File Edit View Project Build Debug Model Tabl
G- W G| % 2|9 - & | b |[Develod
R0 % % R WD NE | B Y E 5 B
Pl EE IR lE R @g-2-2 280

TPt Co_ et B __

Enterprise Management

2. The Partition Manager window opens. Note that the values in the Connection and
Source Name textboxes cannot be edited but the value in Partition Name can;
modify the value in the Partition Name textbox to Reseller Sales 2006. Thisis
shown in the following screenshot:

Partition Manager @
Use partitions to divide a table into logical parts that can be processed independently.
Table: Reseller 5ales v]
Search Partition Names el
Partition Mame # Rows Size (KB} Last Processed

Reseller 5ales

Mew] I Copy Delete

¥ Details - Reseller Sales

Partition Mame: Reseller Sales ‘_ &

Connection: tit_reseller_sales

Socurce Name: Reseller Sales.txt Refresh Preview @
+ Customer ID [=] Order dt B3| & Duedt B| & ship dt B B Geo ID B\ B Currency ID ﬂ B

. AWO00000676 1/07/200512:00:0... 13/07/200512:0... 8/07/2005 12:00:... 418 USD Sm|a
. AWD0000676 1/07/2005 12:00:0... 13/07/200512:0... 8/07/2005 12:00:... 418 USD 504
. AWO00000676 1/07/2005 12:00:0... 13/07/200512:0... 8/07/2005 12:00:... 418 USD 504

ANGO06TG 1/07/2003 12,000 ey 1302/ 2005R2:0.0. BL07/2005 12:0c0 o et 418 _USD S04

3. Click on the SQL definition button for the Partition. Replace the current SQL
command with the following (note the inclusion of the WHERE clause). Remember that
this data was sourced from the text file—this is why the WHERE condition includes #:
SELECT [Reseller Sales#txt].*

FROM [Reseller Sales#txt]
WHERE

[Order dt] between #2005-07-01 00:00:00#
and #2006-07-01 00:00:00#

4. Validate the syntax and then close by clicking on OK.

220

Chapter 8

5. Note that the current row count of the partition (before changes) is 60,855 records.
Process the table (there is only one partition in the table) by clicking on the Process
button and selecting the Process Table option, as shown in the following screenshot:

i | A~ E~-a 2L 5L 03 R 5
2 Process Table

2] Process Partitions...

F] Process All

kp e

6. Observe the new row count of 8,459 records. Then, deploy and process the model to
the server.

7. Now that the model has deployed to the server, we can consider it in a production
state where further development is not possible, partitions must be managed from
SSMS. The remaining part of this recipe adds a partition from SSMS.

8. Open SSMS and connect to the tabular server. Expand the TABULAR MODELLING
database and then expand the Tables node. Right-click on the Reseller Sales
table and select the Partition... option. A new window will open as shown in the
following screenshot:

4 Partitions EIIEI

Select a page I .
S - Hel
A General S Sent - [Ho

Use partitions to divide a table into logical parts that can be processed independenthy.

Table: Reseller Sales +| [Refresh |

Partitions

:'% = X B3 el |9&an:h Partition Mames o)

Partition Name H Rows Size (KB) Last Processed

R Socs 2006045 smanreem| |
e cetmarnan g ?*M_Mh“*\
9. Copy the partition for 2006 by highlighting the partition in the grid and clicking on the
Copy button.

If there are more than one partitions in the grid, the one that
S is active (selected partition) in the grid is copied.

221

Enterprise Management

10. The New Partition dialog opens. Rename the partition to Reseller Sales 2007
and adjust the years of the dates so that the values in [Order dt] lies between
2006 and 2007, as shown in the following screenshot:

4 New Partition EIIEI

Select a page c)
5 - Hel
2 General 5 serwt ~ [Helo

Specify the name and the SOL statement for the partition.

Partition Name: Reseller_Sales_2007
Table Paritioned: Reseller Sales
Connection: bd_reseller_zales

SOL Statement

SELECT [Reseller Salesftd]” FROM [Reseller Sales#t] WHERE [Order dt] between #2006 -
-07-01 00:00:00# and #2007-06-30 00:00:00#

11. Confirm the creation of the new partition by clicking on the OK button.

A partition is a logical definition of a data segment for a table, and the creation of a partition
(in SSDT or SSMS) simply defines that data. It is important to identify that the creation of a
partition does not automatically load data into that partition.

Consider a specific reseller (tire company), based on the current data in the model (as the
model should currently be) the value of [USD Sales Total] for them should be $12, 864.
In SSMS, right-click on the TABULAR MODELLING database and select Process Database
(choose the default option). After the model is processed, sales will now be $13, 334 due to
the additional data in the 2007 partition.

A B A 8
| 1 CustomerID ~ AW00000162 ¥ 1 CustomeriD AWO0000162 -¥
| 2 Customer Name Tire Company T 2 Customer Name All b
3 3
4 Row Labels v 4 Row Labels v
| 5 512,864 1 5 513,334
| 6 GrandTotal 6 Grand Total

Partition processing is examined in the next recipe—Processing
s the data.

222

Chapter 8

There's more...

There are two issues associated with the user interface for creating partitions. Firstly, you
cannot create a bulk set of partitions using some iterative process. For example, creating 70
partitions would be very troublesome and not easily reproducible if we wished to deploy to
another environment! What is needed in this situation is a reusable method of generating

a partition that can fully define the partition by changes to its structure (for example, its

data source, query, and name). Secondly, the user interface does not allow the creation of a
partition that uses a different data source to the base partition (the source used to create the
table initially). For example, we could not specify the SQL Server connection in the previous
part of the recipe.

Creating partitions through XMLA can solve both of these problems. Here, all we have to do

is create a statement that is executed against the database. This process (and the iteration)
can be easily managed through Integration Services. The remainder of this recipe looks at the
generation of the XMLA command.

Before continuing, it is important to recognize the multidimensional representation of a
tabular database. In the multidimensional view, each table in the tabular model can be
shown in two ways—one as a dimension and the other as a measure group. Additionally,
in multidimensional view, partitions are only created against measure groups. Further, the
tabular model contains only one cube when compared to OLAP.

Finally, we need to recognize that all objects have an ID and a name. For example, the cube
object has an ID (model) that may not be the same as its name (TABULAR MODELLING). We
can identify the ID for a table (and therefore, the OLAP versions of the measure group) by
right-clicking on it in SSMS and selecting Properties. Here, we can see that the Resellers
Sales table's ID is different from its name.

—

7T Table Properties - Reseller Sales [= ===
Select a page [)

S - Hel
4 General ; et m =

Name = Reseller Sales
D 3 Fescller Sales_al2a30a5-6bbe-4166-0b 1f-BbbfZab 933 R
Description

Create Timestamp
Last Schema Update

4 Status
State Processed
Last Processed 5/09/2013 8:38:58 AM
Curent Storage Mode InMemory

223

Enterprise Management

Our goal is to create a new partition for the Reseller Sales table that relates to 2009 and
sources its data from the SQL database. Firstly (since there is no connection to our SQL Server
in the model), we need to define the connection. The following code snippet will achieve this:

<Create xmlns="..">
<ParentObject>
<DatabaseID>TABULAR MODELLING</DatabaseID>
</ParentObject>
<ObjectDefinitions>
<DataSource xmlns:xsd="http.... ">
<ID>sgl dw</ID>
<Name>sqgl dw</Name>
<ConnectionString>ConString</ConnectionStrings>
<ImpersonationInfo>
<ImpersonationMode>ImpersonateServiceAccount
</ImpersonationMode>
</ImpersonationInfo>
<Timeout>PT0S</Timeout>
</DataSource>
</ObjectDefinition>
</Create>

For brevity, namespace declarations and the connection
M string details have been removed from the code snippet.
Q The full code for all sections of this recipe is available in the
resources accompanying this chapter available on the Packt
Publishing website.

The CREATE statement defines the connection (data source) by name and ID as a child of
the parent database. Additional information (impersonation and timeouts are also specified);
however, the main criteria here is the name and ID. Both must be unique within the database
otherwise an error will occur as shown in the following screenshot:

3 Messages |

Executing the query ...

The datasource with the name of 'sql_dw' already exists in the 'TABULAR MODELLING' database.
Execution complete

If this is successful, the program will return an empty result, as shown in the
following screenshot:

| [Messages| [Resus |

<return xmlns="urn:schemas-microsoft-com:xml-analysis">
<root xmlns="urn:schemas-microsoft-com:xml-analysis:empty™ />
<freturnz

Chapter 8

Now that the SQL connection has been created (refreshing the Connections node in SSMS
will confirm this), we can define the script for the partition.

There are two ways to achieve this. Firstly, just as the connection, we can script the partition
as the CREATE command. When the script is executed, it will fail if it already exists. The code
snippet for the create is as follows:

<Create xmlns="..">
<ParentObject>
<DatabaseID>TABULAR MODELLING</DatabaseID>
<CubeID>Model</CubelD>
<MeasureGroupID>Reseller Sales-??? </MeasureGroupID>
</ParentObject>
<ObjectDefinition>
<Partition xmlns:xsd="..">
<ID>Reseller Sales_2008</ID>
<Name>Reseller Sales_ 2008</Name>
<Source xsi:type="QueryBinding"s>
<DataSourceID>sqgl dw</DataSourceID>
<QueryDefinition>
@sql
</QueryDefinitions>
</Source>
<StorageMode ..>InMemory</StorageModes>
<ProcessingMode>Regular</ProcessingMode>
<DirectQueryUsage>InMemoryOnly</ DirectQueryUsages>
</Partitions>
</ObjectDefinition>
</Create>

Note here that the partition is a child of the measure group. The partition is defined by the ID
and name (both must be unique). Further, the source (data) of the partition refers to a query
against the one previously defined in the data source.

Secondly, the partition can be created through an ALTER command. In doing so, we specify
that if the object does not exist, it should be created. The code snippet for ALTER is as follows:

<Alter AllowCreate="true" ...>
<Object>
<DatabaseID>TABULAR MODELLING</DatabaseID>
<CubeID>Model</CubeID>
<MeasureGroupID>Reseller Sales_</MeasureGroupID>
<PartitionID>reseller sales_ 2009</PartitionID>
</Object>
<ObjectDefinition>
<Partition xmlns:xsd="...">
<ID>Reseller Sales_2009</ID>
<Name>Reseller Sales 2009</Name>

225

Enterprise Management

<Source xsi:type="QueryBinding"s
<DataSourceID>sgl dw</DataSourceID>
<QueryDefinitions>
@query
</QueryDefinitions>
</Source>
<StorageMode>InMemory</StorageMode >
<ProcessingMode>Regular</ProcessingMode>
<DirectQueryUsage>InMemoryOnly</ DirectQueryUsage>
</Partitions>
</ObjectDefinitions>
</Alter>

Notice whether the two statements CREATE and ALTER are defined in a similar way. The
definition for the object (see the tag <ObjectDefinitions>) is exactly the same, only the
command and (parent) object definition differ.

The ALTER commands can be used to change any element of an existing object. Consider,
for example, that we will like to define the SecurityProfiles table to reference the new
sgl_dw data source and the security profiles table within it. Without impacting the
operation of the current database, we can change the table's source:

<Alter AllowCreate="true" ..>
<Objects>
<DatabaseID>TABULAR MODELLING</DatabaseID>
<CubeID>Model</CubeID>
<MeasureGroupID>SecurityProfiles </MeasureGroupID>
<PartitionID>SecurityProfiles </PartitionID>
</Object>
<ObjectDefinitions>
<Partition xmlns:xsd="..">
<ID>SecurityProfiles 3</ID>
<Name>SecurityProfiles 3</Namex>
<Source xsi:type="QueryBinding"s
<DataSourceID>sgl dw</DataSourceID>
<QueryDefinitions>
select
user login
, country
from dbo.security profiles
</QueryDefinitions>
</Source>
</Partitions>
</ObjectDefinitions>
</Alter>

It is important to remember that partition changes are only reflected as a change in data once
the processing has occurred. Processing is examined in the next recipe—Processing the data.

226

Chapter 8

Processing the data

Creating a partition (as explained in the Creating and managing partitions recipe) creates a
definition of the partition (in model metadata). Once this is done, the data must be loaded
into the partition if it has to become viewable. Furthermore, changes to the underlying data
are not reflected in the model until the partition is processed.

Consider the situation where data is partitioned at the source database. This could be by table,
partitions within tables, or views (or various combinations of these). For example, assume that
we have the sales data separated in views by year, as shown in the following screenshot:

= .-
+ [System Views
+ [} dbo.reseller_sales_2006
dbo.reseller_sales_2007
dbo.reseller_sales_2008
dbo.reseller_sales_2009
dbo.reseller_sales_2010

[+ =

T

3 o o

The partitioning strategy of the model also follows this structure because sales are recorded
on the date that the order is placed (assume that this is a business rule) and, therefore, only
the values in dbo.reseller sales 2010 are expected to change in the source data when
the data is updated (in a nightly batch). The least resource-intensive operation to update the
model is, therefore, to update only the 2010 partition. So, rather than trying to fully process
the model, we wish to only update the sales data for 2010.

The time required to process the model can be a
consideration for a number of reasons. Notwithstanding
large databases (they naturally take longer to process), the
% demand for near real-time data implies small processing
ad windows. Models that are built over OLTP systems and have
an update frequency of less than 5 minutes are a real-world
example of a targeted processing and partitioning strategy.

This recipe shows how to achieve that task by scheduling the model refresh with SQL
Server Agent.

Getting ready

This recipe builds on the model that was created in the Creating and managing partitions
recipe. For convenience, all the Reseller Sales partitions now reference the database. We
assume that a user (in this case, Mercury\ProcessOperator) has permissions to process
the model with read access to the relational database.

227

Enterprise Management

A backup of the tabular model for this recipe is also available (as an * . abf file) in the source
files for this chapter. This backup has all connections referring to the SQL Server source. To
restore the database simply use the following code snippet:

<Restore

xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
<File>File Directory\TABULAR MODELLING.abf</File>
<DatabaseName>TABULAR MODELLING</DatabaseName>

</Restore>

Note that when the database is restored, you will need to edit the sgl dw connection.

How to do it...

This recipe is broken into two components. Firstly, the creation of the code to process the
partition and, secondly the creation of SQL Server Agent Job and schedule to execute the
partition refresh. The following are the steps:

1. Open SSMS, connect to the TABULAR MODELLING database, and create an
XMLA command.

2. Paste the following code into the code window and execute it:

<Process xmlns="http://schemas.microsoft.com/
analysisservices/2003/
engine">
<Type>ProcessFull</Type>
<Object>
<DatabaseID>TABULAR MODELLING</DatabaseID>
<CubeID>Model</CubeID>

<MeasureGroupID>Reseller Sales_a82a30a5-6b6e-4166-bblf-
5bbf2ab9337f</MeasureGroupID>

<PartitionID>Reseller Sales 2010</PartitionID>
</Object>
</Process>

The code should execute correctly and display the following message:

| 3 Messages | [Resuls |

<return xmlns="urn:schemas-microsoft-com:xml-analysis">
<root xmlns="urn:schemas-microsoft-com:xml-analysis:empty™ />
</returnz

If not, confirm the measure group ID by examining the properties of Reseller
Sales (see the Creating and managing partitions recipe for an explanation on
how to do this).

228

Chapter 8

3. Create a credential to impersonate the processing user MERCURY \
ProcessOperator:

USE [master]

GO

CREATE CREDENTIAL [ProcessOperator]

WITH IDENTITY = N'MERCURY\ProcessOperator'
GO

4. Create a proxy:

USE [msdb]
GO
EXEC msdb.dbo.sp_add proxy @proxy name=N'ProcessOperator', @
credential name=N'ProcessOperator',
@enabled=1
GO
EXEC msdb.dbo.sp_grant proxy to subsystem @proxy
name=N'ProcessOperator', @subsystem i1d=10
GO

5. Create a job (that executes Analysis Service Command) that is run by the proxy.
Connect to SQL Server and expand the SQL Server Agent. Right-click on Jobs and
select New Job... from the pop-up menu, as shown in the following screenshot:

+ [Integration Services Catalogs
- [SQL Server Agent

= o B
El New Job... hack

=TE] BA Colend..)

6. Name the job Process Tabular Model Partition. Thisis a general setting of
the job (marked point 1 in the following screenshot):

] New Job
Select a page)
Ty 5 - Hel
_ﬁ%:‘ General \$ cript u elp
[Steps
A Schedules E Name: Process Tabular Model Partition|

4 plerts

[Notifications Owner: MercuryPaul

%A Targets

B Category: [Uncategorized (Local)]
Description:

229

Enterprise Management

7. Select the Steps option from the Select a page pane (marked in red as point 2 in the
prior screenshot). When this is clicked, a new pane opens on the right-hand side of
the window. Create a new step by clicking on the New button.

@ Mew Job
Selecta page l .
i Script Hel

%4 General ; pt L:ll p
_’@i Steps

| Schedules Job step list:

&4 flerts

| Notifications Step Name

e e *ﬁ%w*iwwrﬁnﬂ*r_i

8. Name the step Process Reseller Sales 2010 Partition, selectthe SQL
Server Analysis Services Command option from the Type drop-down and the
ProcessOpeartor option from the Run as drop-down.

9. Then, specify the tabular server (in this case, localhost\SQL2012TABULAR) and
paste the process command from the one that was created in step 1. The window
should look like the following screenshot:

(=@]=]
5 + [Hep
Step name:
Process Reseller Sales 2010 Parition
Type:
[SQL Server Analysis Services Command -]
Fun as:
lF‘mcessOpemtor ']
Server MSQL2012TABULAR
Command: <Process xmins="http //schemas microsoft.com/analysisservices/2003/engine "> -
< TypexProcessFull </ Type>
<Object>
<Database|D>TABULAR MODELLING </DatabasalD=
<CubelD=Model </ Cubel 0=
Select Al <MeasureGroup |0 =Reseller Sales_adZa3lab-6bke-4166bb 1f-5t
<Parition|D:Reseler_Sales_2010</Parttion|D>
</Process>

23

o

Chapter 8

10. Click on the Advanced page. Now, ensure that the success action is Quit the job
reporting success and the failure action is Quit the job reporting failure. The screen

should look like the following screenshot:

F

E Job Step Properties - Process Reseller Sales 2010 Partition =R Ed
Selecta page |
- Hel
& General = 3 Heb
4 Advanced e
On success action:
[Qu'rt the job reporting success v]
Retry attempts: Retry interval {minutes):
0k 0 B
On failure action:
[Qu'rt the job reporting failure v]
11. Click on OK to confirm the step.

12.

Click on the Schedules page. Create a new schedule (to run every 5 minutes during

business hours (8:00 A.M. to 7:00 P.M.) by clicking on the New... button.

13.
14.
15.

16.
following screenshot will give you a better idea:

In the Name textbox, enter 5 Minute Intervals Business Hours.
Select the Recurring option in the Schedule type drop-down list.
Under the Frequency heading, select Daily in the Occurs drop-down list.

And finally, set it to occur every 5 minutes between 8:00 A.M. and 6:59 P.M. The

] New Job Schedule
MName: 5 Minute Intervals Business Hours
Schedule type: Recuring v] Enabled
5:57:33 FM
Frequency
Occurs: [Daily -
Recurs every: 1 2 dayls)
Daily frequency
) Oceurs once at: 120000 AM |2
@ Occurs every: 5l = Starting at: 8:00:00 AM |2
Ending at: 65959 PM |2
Duration
Start date: 5/09/2013 [E~ 7 End date: 5/09/20n3
@ Noend date:

o]l -]

231

Enterprise Management

17. Confirm the job schedule by clicking on OK.

Although the user interface may imply that the schedule is

attached to the job, the two items are separated and exist as
objects in their own right. Deleting the job will not delete the

schedule. You can re-use an existing schedule by clicking on

the Pick... button in the Schedules page.

18. Confirm the job by Clicking on the OK button.

19. If the job is not shown in the job list, refresh the list by selecting the job's node and
pressing F5.

20. Leave the job for some time (more than 5 minutes). Return to SSMS, right-click on the
job (Process Tabular Model Partition)and select View History from the
Pop-up menu. A new window will open showing the outcome of those executions
stating that the job has completed. Failed jobs are indicated with a red cross mark.

There are two considerations in this recipe. Firstly, the XMLA command to process the
required partition and secondly, the Agent Job that schedules and manages the process.

[5 Load Log (i Export [#]Refresh F Filter.. 9 Search..
Log file summary: Mo fitter applied

fo a0 =S

Stop R Delete ...

Date v Step ID Server Job Mame
‘B v 9/09/2013 65500 PM MERCURY%SQL2012 Process Tabular Model Partitio
v 59/09/2013 6:50:00 PM MERCURY*SQL2012 Process Tabular Model Partitio
v 5/05/2013 6:45:00 FM MERCURY*SQL2012 Process Tabular Model Partitio
1 v 5/009/2013 6:40:00 FM MERCURY*SQL2012 Process Tabular Model Partitio
v 5/059/2013 6:35:00 PFM MERCURYSQL2012 Process Tabular Model Partitio
v 5/009/2013 6:30:00 FM MERCURY*SQL2012 Process Tabular Model Partitio
v 57092013 6:25:00 FM MERCURY\SQL2012 Process Tabular Model Partitio
LT T WY N ISP e di‘_HQAHHquv*A**ﬂh_M*ﬁ

5

The processing XMLA for a single partition is straightforward. The partition is specified by its
hierarchical association to its parent objects (that is, database, cube, and measure group).

The other option (Type) specifies how the object will be processed. Have a look at the
following code:

<Process ..>

<Type>ProcessFull</Type>

<Object>

232

Chapter 8

<DatabaseID>TABULAR MODELLING</DatabaseID>
<CubeID>Model</CubeID>
<MeasureGroupID>@Measure Group ID</MeasureGroupID>
<PartitionID>Reseller Sales 2010</PartitionID>
</Object>
</Process>

Further information about processing types can be found at http://tinyurl.com/
ozvldpk. For this situation, we need to remember that the sales data is used to create
calculations in other tables (that is, values in the Resellers table). Since there is a
dependency between the two tables, it makes sense that one cannot be updated without
impacting the other. Processing the partition using a data command (that is, ProcessData)
will violate this dependency since calculations in the Customers table will not be updated.
Should such a situation occur (where all the data is processed, however the model is
unusable), a ProcessRecalc command can be applied to the entire database, so that only
calculations are updated. As the name implies, this type only recalculates measures and does
not load any data. Further, the operation can only be applied at the database level:

<Process
xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
<Type>ProcessRecalc</Type>
<Objects>
<DatabaseID>TABULAR MODELLING</DatabaseID>
</Object>
</Process>

As an overview explanation of SQL Agent Job (remembering of course that the agentis not a
part of Analysis Services or the tabular model), we effectively create an identity within SQL
Server to execute the Process command.

From a security perspective, this identity raises several issues. Firstly, they need an authority
to execute the command (on the SSAS subsystem) within SQL Server Agent. This was included
after the credential and proxy (which effectively recognizes the user on the system) with

the sp_grant proxy to_ subsystem command. Secondly, as an identity processing the
tabular model, the identity needs access to perform the operation within SSAS and access to
read data from SQL Server. It should be noted that SQL Server Agent (usually) runs as its own
account (SQL 2012 creates these accounts during installation) and the account is not likely to
have any permissions on SQL or SSAS.

Finally, the job is essentially a batch process that is managed by SQL Server Agent
(an independent Windows service). | say batch process because the job is a series of
sequential steps (although we only had one) that are executed by the agent.

233

Enterprise Management

DirectQuery and real-time solutions

The ability to routinely process data with SQL Server Agent (see the Processing the data recipe)
gives the model designer a large degree of flexibility to determine when data in the model

is refreshed. In fact, the standard practice for Business Intelligence solutions is that data is
updated on a nightly basis and therefore model processing becomes part of the nightly refresh.

However, where the source data is rapidly changing, there may be a requirement to implement
a DirectQuery solution. This is an environment that is conceptually similar to Relational
Online Analytical Processing (ROLAP). Here, the model passes all queries through to the
relational database (rather than querying its own data store).

A DirectQuery solution may seem like an extremely attractive option for real-time data access
since the model is essentially a semantic definition used to define the model structure.
Further, there is no requirement for the model to process data since all queries are passed
back to the relational engine. This also makes deployment very fast. However, there are
some restrictions for the use of DirectQuery, which should be considered as a part of the
development strategy:

» A DirectQuery option is applied in entirety to the model (you can not specify a query
mode by partition as you can do with OLAP measure groups). This means that any
query will be converted into SQL. In practice, this severely limits the performance of
the model.

» There are modeling restrictions because some functions and DAX expressions are
not supported.

» The source of data is restricted to SQL Server.

» Only DAX queries can be executed against the model. This will limit the client tools
that can be used to query the model.

Getting ready

This recipe creates a simple model that shows the sales data by Geographic,
Customer, and Date attributes. We demonstrate the implications of a model that
supports DAX-only-queries in comparison to the de facto pivot table interface.

How to do it...

Start by creating a new project, the steps are as follows:

1. Create a new SSAS tabular project titled Direct Query Solution.

Chapter 8

2. Inthe Solution Explorer pane, right-click on the Model .bim file, and select
Properties. Then set the DirectQuery Mode Property option to On (it is Off by
default). These configurations are shown in the following screenshot:

Properties * 1 X
Modelbim File Properties -
oz 2 b=l
4

Build Action Compile

Copy To Qutput Directory Do not copy
4

Collation

Data Backup Do not back up to disk

DirectQuery Mode On %

File Mame Model.bim

L st o b n o iiea, Q| I_rﬁﬂ'rm_«k il ol W"‘iﬁ.ﬂi

3. Return to the Solution Explorer pane, right-click on the solution name
(Direct Query Solution), and select Properties from the pop-up menu.

4. Setthe Query Mode option to DirectQuery.

Direct Query Solution Property Pages
Configuration: [Active(DeveIopment] v] Platform: ’Active(:ﬁﬁ] vl ’ Conﬁi
4 Configuration Properties Pl
Deployment Processing Option Default
Transactional Deployment False
Query Mode DirectQuery H
4
Server localhost\SQL2012TABULAR
Edition Developer
Database Direct Query Solution
Cube Name Model
Version 11.0
4
Impersonation Settings Default
. q-—-ﬁ--—* ok ‘.A*-—ﬂx-m. e ———— LS E DL

5. Select OK to accept the changes.

6. Click on the Import From Data Source button. Note that only Microsoft SQL Server
connections are allowed. Click on Next to use the SQL Server data source.

235

Enterprise Management

7.

10.
11.

12.
13.

14.

15.

16.

236

Specify the Server (Friendly) connection name as sql dw and specify the server.
Finally, select the tabular modelling database and test the connection.

Specify the impersonation (service account is allowable where the account has
access). After all, this is a demonstration!

Select the following tables from the list of available tables (all tables are in the dbo
schema). Specify the friendly names as indicated. For the reseller sales table,
filter the records to only import rows where the currency id value is USD.

Tables Friendly names
Dates Dates
Products Products
reseller sales Sales
Resellers Stores
Geography Geography

Click on Finish to import the data.

Switch to the diagram view. Note that most relationships have been created.

Ensure that the relationship between order dt in the Sales table is the primary
relationship to the Dates table. Finally, create a relationship between product_id
in the Products table and product_id in the Sales table.

Hide the sales table from client tools.

Create a measure in the Stores table with the following formula:

Gross Sales:=sumx('Sales', [quantity]*[price]l)

Specify the format for Gross Sales as a decimal number with two decimal places.
This is done by selecting the measure and with the Properties window open.

Finally, create a hierarchy in the Dates table (Year, Month Name, and Day). Specify
the sort column for Month Name as Month Number and hide the Month Number
column from client tools.

Click on the Analyze in Excel button and create a pivot that shows Years on the
rows and Gross Sales as values. The pivot will look like the following screenshot
(note that numbers have been formatted):

A B
1 Row Labels ~|Gross Sales
2 2005 6,555,475
3 |2006 18,541,506
4 2007 22,350,237
5 (2008 10,622,435
& Grand Total 58,069,653

Chapter 8

17. Deploy the solution in SSDT. The progress window should show that only the
metadata has been deployed; it will look like the following screenshot:

Deploy @

Deploying

The deployment operaticn may take several minutes to complete,

0 Success 1 Total 0 Cancelled
1 Success 0 Error
Details:
Work Item Status Message
| Deploy metadata Success, Metadata deployed.

e MNM#M_W\‘*‘#“M

18. Connect to the deployed solution through Excel, that is, follow this menu path
Data | From Other Sources | From Analysis Services.

19. Specify the appropriate tabular server and connect to the Direct Query
Solution database (not to be confused with the workspace database).

20. After specifying the location for the pivot table, the following Error/Information box
will be displayed:

Microsoft Excel

i l*_l DirectQuery error: MOX,/S0L operations are not supported in DirectQuery mode.

Was this information helpful?

21. Clicking on OK will return to the pivot table (insert) location dialog. Click on Cancel to
terminate the creation of the pivot table.

237

Enterprise Management

22. Create SQL Server Trace by clicking on the SQL Server Profiler option from the Tools

menu in SSMS.

-'53 Microsoft SQL Server Management Studio (Administrator)
File Edit View Debug | Tools | Window Help

NI SEH R = e | U3 SQL Server Profiler &

3y | iy Database Engine Tuning Advisor

W _;] Code Snippets Manager...

Ctrl+E, Ctrl+B

23. In the Trace (connection dialog), connect to the SQL Server database.

24. Check the SQL:BatchCompleted checkbox under TSQL, which will be the only event
selected and then click on Run. The Trace Properties window should look like the

following screenshot:

Trace Properties @
'General FEverts Selection
Review selected events and event columns to trace. To see a complete list, select the "Show all everts” and "Show all columns™ options.
Events | TextData | ApplicationName ‘ NTUserName | LoginName | CrU | Reads | Writes | Duration ‘ CliertProcess
= Security Audit
[Audit Login r r r r r
[Audt Logout r r r r r r r r
= Sessions
[T BEdstingConnection r I r r I— I—
Stored Procedures
RPC:Completed r r r r r r r r r
= TSQL
v SQL:BatchCompleted v v W v v v v 2 2
[~ SQOL:BatchStarting r r r r r
4 i 3
Audit Logout
Collects all new disconnect events since the trace was started, such as when a client issues a disconnect command. ™ Show all events
I~ Show all columns
No data column selected
Column Filters.. |
Crganize Columns... |
Run Cancel | Help |

238

Chapter 8

25.

You can restrict the trace activity to the tabular modelling database by
checking the Show all Columns checkbox and then clicking on the Column
Filters button. Then, select the DatabaseName filter group and specify the name
tabular modelling. The filter should look like the following screenshot:

"

Edit Filter =2 |

DatabaseMame
Mame of the database in which the
statement of the user is running.

“F ApplicationMame =
ClientProcessID
CPU
DatabaselD

“F DatabaseMame
Duration
EndTime 4

Error - Like

GrouplD ‘... tabular_modeliing
HostMame - Mot like

IsSystem

LoginMame

LoginSid il

m

[Exdude rows that do not contain values

Ok Cancel

Click on OK to apply the filter.

Create a new MDX query against the tabular model and the Direct Query
Solution database. The query is as follows:

define measure 'Stores' [SalesValuel]
= sumx('Sales', [quantity]*[price]l)
evaluate
(

addcolumns

(

Values (Dates [Year])
"SalesValue", 'Stores' [SalesValue]

239

Enterprise Management

26. Return to the trace window and note the outcomes. Stop the trace and close profiler.

3 Untitled - 2 (\sql2012) ==]
| EventClass TextData | ApplicationMame | NTUszerMName | L
Trace start
5QL: BatchCompleted SELECT [ci_pates_year],[c2] A... Microsoft 5Q... Paul M
Trace stop
4| 1]
DISTINCT A
[t4].[vear] AS [cl_Dates_Year]
FROM
i
(SELECT __[dbu]. [dates].= FROM [dbo].[dates])
AS [t4] UNION
SELECT null AS [cl_pates_Year] —
FROM
(SELECT null AS [unused]) As [t5]
)]
VY™ - A WS o e P P ,_'—NAM-M__“A"-.-\.. !

27. Finally, expand the Dates and Geography nodes in the MDX query designer. An error
Error occurred retrieving child nodes: is shown under each node as shown in the

following screenshot:

MOXQuerny2.mdx -...on (Mercun/\Paul)* >

Cube:
Model

[Metadata % Functions

Measure Group:
| <All>

[Model

= ool Measures
B [£5 Stores
I£| Gross Sales
= KPls
= [Q Dates
« Emar occumed retrieving child nodes: DirectGQuery emor:

= T,r_): Geography
« Emar occumed retrieving child nodes: DirectGQuery emor:

[Q Products

[Q Stores .
e *#r L R WP T

The completed solution for this recipe is available from the online resources on the Packt
Publishing website.

240

Chapter 8

This recipe demonstrates the nature and implications of the DirectQuery solutions.

Firstly, we can see the real time application of DirectQuery through the trace output (step 26
of the recipe). When a query is made to the tabular database, it is transformed into SQL and
executed against the relational database.

The limited ability of the model to operate with existing client tools is also demonstrated.
Naturally, this should be a major consideration for any model developer. Since most client
tools are MDX-based (as seen with the pivot table and SSMS MDX browser), the existing tools
may not be useable. Currently, only Power View (which is examined in the next chapter) is
supported (other third-party tools may also exist).

Step 16 (Analyzing the model in Excel) shows that the pivot table can connect to the model
but it is important to remind the reader that in this case, the model is the workspace
database (which has storage in xVelocity mode).

241

Querying the Tabular
Model with DAX

This chapter covers querying the tabular model with DAX. We'll be covering;:

» Retrieving data from a single table
» Using projection to combine data from different tables
» Restricting data with filters and where conditions

» Deriving tables and selecting top n records

Introduction

Regardless of the amount of effort that has been applied in planning and building a model,
it is likely that it will be required to answer a question that has not been anticipated. In this
situation, the model must be queried.

Throughout this book, we have separated the concepts of the tabular model from the client
tool that queries the model. This is because the client interprets the model and displays it to
the user under a defined set of assumptions. Moreover, because the tabular model supports
MDX (multidimensional) queries, the representation of the tabular model in most client tools
is that of the multidimensional model (actually, Microsoft does not currently have a browser-
style interface to query tabular models).

Querying the Tabular Model with DAX

Because most client tools (including SQL Server Management Studio) show the tabular model
in a multidimensional style, querying the tabular model with DAX can be extremely difficult
because you cannot see the underlying tabular schema (and therefore, do not know the
structure of the model). For example, consider the following two screenshots. The first shows
a multidimensional representation, whereas the second shows the tabular representation:

Multidimensional Tabular
/a Model =4 Model
= gl Measures Elﬁ Curmrency
= S Curency F | P T i | Cumrency ID

wily Avg ECD Rate

'£| AvgExRate f | i 7 E Curency Name

[Reseller Sales |5 Avg Ex Rate
[Resellers |8 Avg EOD Rate
& kpis =7 Dates
=l currency B | P L] E Day
curencyD B | i E Morth Name

@ CurencyMName — § | E Year

= MonthMame O F | i e E Category Name
Year B | i e E DealerPrice

st DatebyYear O F | @ i E ListPrice
B Products F | Product 1D

i - s e

+

m
®[E =
&

i

There are two main differences between the tabular and multidimensional view of the model,
which are summarized as follows:

» There is no concept of a measure group in tabular modeling. Tabular models
associate measures (or calculations) within the tables that they are defined in. Notice
that in the multidimensional representation, the currency conversion measures are
displayed in a measure group (Currency), whereas in the tabular representation, they
are attached to the Currency table.

» There is no concept of hierarchies within a tabular model. The Date by Year
hierarchy (even though it is defined in the tabular model) is not visible (or an object)
in the tabular model.

Chapter 9

While querying the model with MDX is user friendly (and provides a richer client experience),
formulas must be written in DAX and may require debugging; therefore, it's better if the model
is evaluated and queried with DAX.

\ The recipes in this chapter are presented using a tool called
~ DAX Studio. This is a free add-in for Excel that can be used to
Q connect to PowerPivot and Tabular Servers, and is available at
https://daxstudio.codeplex.com/.

Retrieving data from a single table

The first recipe in this chapter examines how to display results from a table in the model; keep in
mind that the table may contain calculated columns and these are also included in its structure.
The base script includes several alterations, so that segments of the table may be retrieved.

The workbook (with the associated model) is available from the online resources at
http://www.packtpub.com.

Getting ready

The model used in this chapter is available from the online resources at http://www.
packtpub.com. We have installed DAX Studio so that the model within the workbook can be
queried. Alternatively, the model can be imported to a tabular server and queried through SSMS
(SQL Server Management Studio) although you would not see the model schema definition.

While using DAX Studio to query an embedded model (that is,
M a PowerPivot model stored in the workbook), ensure that the
Q active cell is found on a pivot table that relates to the tabular
model (while launching DAX Studio). An introduction to DAX
Studio can be found at http://wp.me/plrCld-"7e.

How to do it...

Let us start by retrieving all the data available from the Resellers table:

1. Open DAX Studio and enter the following statement:

evaluate ('Resellers')

245

Querying the Tabular Model with DAX

2. The result (a table), that is shown will list the contents of the Resellers table, for
example, the following screenshot shows the grid output:

rd

L Query Results

Resellers[Customer Resellers[Geo Fesellers[Customer Resellers[Customer Resell
0] Area D] Type] MName] Type]

» AWDDO00591 35 Reseller Fitness Discount ... [Value Ad

AWDDD00ZI5 365 Reseller Bicycle Merchan... | Warehou
AVD0000464 174 Reseller Educational Servi... | Value
AWDDO00141 G Reseller Rertal Galleny Specia
AWDD000263 45 Reseller Farthest Bike Store | Wareho
AWD0000310 437 Reseller Orange Bicycle C... | Specialty,

. wﬂ_mk %fﬁﬁlﬁ“_& o, FabeRikes sod S aSnaci

3. Notice that the list is not in the proper order. To change this, so that the list appears
ordered, add an Order By clause to the evaluate statement.

evaluate ('Resellers') order by [customer Id]

The evaluate statement returns the table that has been defined as its argument, and is the
essential requirement to return a query. In this example, the table definition is like that of an
existing table (that is, the Resellers table).

The syntax of the DAX query allows a high degree of flexibility and includes the ability to define
measures and specify the ordering of results. The full syntax is as follows:

[DEFINE { MEASURE <tableNames>[<name>] = <expressions> }
EVALUATE <table>

[ORDER BY {<expressions> [{ASC | DESC}]1}[, ..]

[START AT {<values|<parameter>} [, ..]1]1]

246

Chapter 9

So far, the table argument for EVALUATE has been an existing table; however, the definition
can be any DAX syntax that returns a table. Most probably, this could be an existing table that
has been filtered. Consider the Sales Group calculation in the Resellers table, which
assigns each Reseller to a group based on their sales value (see the Grouping by binning
and sorting with ranks recipe in Chapter 5, Applied Modeling). The values for this field can be
easily seen by creating a Pivot based on the field, but let's consider the situation where we
want to show Resellers that have high sales (these are in the $800K - $900K bin range).
As filter returns a table, we can use this within the evaluate statement.

evaluate

(
filter ('Resellers', 'Resellers'[Sales Group]="$800K - $900K")

)

The result of the preceding evaluate statement is as shown in the following screenshot:

P® Query Results
Resellers[Customer Resellers[Geo Resellers[Customer Resellers[Customer Resellers[Feseller Hes
0] Area D] Type] Mame] Type] Sales
2 AWDDD001 70 BeT Reseller Excellent Riding ... |Value Added Res... | 8538
AWDDD00328 591 Reseller Totes & Bashkets ... |Value Added Res... 8171
AWDD000R02 204 Reseller Metropaolitan Bicy... | Warehouse B2812
AWDDD006ST 601 Reseller Brakes and Gears | Value Added Res... | 88227

The use of the predicate 'Resellers' [Sales Group]="$800K - $900K" inthe
previous query allows us to retrieve the data, which meets the filter condition, from the
Resellers table. While this achieves our immediate goal, it relies on the prior knowledge
that the highest group is in the $800K - $900K range and a hardcoded value in the query.
In order to overcome this, we can create a DAX calculation within the £ilter, or define a
calculation for the model and then use this (model calculation) within the query.

247

Querying the Tabular Model with DAX

Descriptive text fields are notoriously poor identifiers for ordering. In fact, [Sales Group] has
a Sorted By field of [Round Down Order] to achieve the required order. This field can,
therefore, be used to determine the highest element of [Sales Groupl. More specifically, the
highest [Sales Group] element is determined by the lowest [Round Down Order]. If we
wish to dynamically determine the resellers of the highest group, we could embed a calculation
to determine the minimum value of [Round Down Order] (remembering that this needs

to be evaluated over all the Resellers table's rows) and use this instead of the hard coded
value. Our query would then become:

evaluate
(
filter('Resellers', [Round Down Order] =

(calculate (Min('Resellers' [Round Down Order]),
ALL('Resellers')))

)

Alternatively, we may want to define the minimum value as a measure for the query, and
then use it instead of an embedded calculation. In this situation, we could utilize the define
measure clause of the syntax and use the query as follows:

define measure 'Resellers' [lowest Order] =
calculate (Min('Resellers' [Round Down Order]), ALL('Resellers'))

evaluate
(
filter ('Resellers’',
'Resellers' [Round Down Order]=[lowest order]

)

Using projection to combine data from

different tables

The evaluation of an entire table (as shown in the previous recipe, Retrieving data from a
single table) excludes the wider concept of projection, because the example returns all the
columns from a single table. More often than not, we wish to return only a subset of columns
(or perhaps even derived columns) from one or more tables. Unlike SQL, which allows
projection in its syntax, DAX has no succinct projection equivalent.

Consider the following SQL statement, which selects column a from table aand column b
from table b.

Select table a.column a, table b.column b From ..

248

Chapter 9

Using DAX, we cannot specify a projection in the same manner (as follows):
Evaluate('table_a'[column_a], 'table b'[column b])

If we wish to mimic this activity using DAX, we must define the table as part of the evaluate
statement. This recipe examines how to do that.

Getting ready

This recipe shows the concepts of projection by answering a common type of question (from
our tabular model):

What were the total sales, by country, for the bike category in 2008 and what
proportion of bike sales does each country have?

How to do it...

Create a new query with the following syntax:

define measure 'Reseller Sales'[2008 Sales] =
calculate('Reseller Sales' [Local Gross Sales],
'Dates' [Year] = 2008)

measure 'Reseller Sales'[2008 Bike Sales]
calculate('Reseller Sales'([2008 Sales],
'Products' [Category Name] = "Bikes")

measure 'Reseller Sales'[2008 Bike Ratio] =
'Reseller Sales'[2008 Bike Sales]/'Reseller Sales'[2008 Sales]

evaluate (addcolumns (summarize ('Geography', 'Geography' [Countryl]),
"Total Sales", 'Reseller Sales'[2008 Sales], "Bike Sales",
'Reseller Sales'[2008 Bike Sales], "Bike Ratio",
'Reseller Sales'[2008 Bike Ratio]))

The result of this query will be displayed, as shown in the following screenshot:

MQuer_l,r Results
Geography[Country [Total Sales] [Bike Sales] [Bike Ratio]

412356.9294332... 355153.1319123... |0.861213502463...
Canada 1532458312746 | 1224565.120073... 0.795346455224
Germary 857417.5228680... | 700642 6801225... [0.817154227168...
France 1374217.795728... | 1110375.650263... |0.808005582313...
United Kingdom 1571337.801505... | 1637491 283814 .. | 0.830649765977...
United States 5388946767959, [7975537 279555, .. |0.845460272453. .

. ‘_#_-wﬁq_*.’w_.—_h“*“_*#

249

Querying the Tabular Model with DAX

The query is essentially broken down into three steps. These steps are broadly defined as
measure creation, base table definition, and table extension (adding additional columns).

Firstly, the measures required for the model are defined. The definition of a measure (as far
as the calculation is concerned) is essentially the same as the calculation of a measure in the
model. For example, 2008 sales are defined by the following formula:

calculate ('Reseller Sales' [Local Gross Sales],
'Dates' [Year] = 2008)

Here, the existing sales measure within the model ([Local Gross Sales]) is filtered by
the year 2008. Note that DAX does not include a clause for WHERE (as would be the case in
SQL), so the filter is applied in the measure definition. In running the query, the statement is
evaluated over the bounds of the model (that is, the table bounds).

The value for bike sales in 2008 ([2008 Bike Sales]) leverages the defined measure for
the sales of the year 2008 with an additional restriction for products belonging to the bike
category. While we could achieve the same outcome by fully defining bike sales of the year
2008 in a single measure (as follows), the measure definition for [2008 Bike Sales]
shows how a measure created in the query can be re-used. The same outcome would be
achieved with [2008 Bike Sales] being defined as follows:

calculate ('Reseller Sales' [Local Gross Sales],
'Products' [Category Name] = "Bikes", 'Dates'[Year] = 2008)

Next, we focus on the table definition that is embedded in evaluate. Here, the table is
defined in two stages. Firstly, a base table is defined as a distinct list of countries, and
secondly, the base table has columns appended to it with the additional measures that we
have defined.

The SUMMARIZE syntax has been used to define the base table (that is, the list of countries).
The SUMMARIZE syntax shown, as follows, essentially groups the data that is in a table. This is
equivalent to the GROUP BY statement (SQL) applied to a single table.

SUMMARIZE (<table>, <groupBy columnName>, <groupBy columnName)

Secondly, the base table has columns appended to it. This is achieved through the use of the
ADDCOLUMNS function. The ADDCOLUMNS function simply appends calculated columns to a
table by defining its name and expression. It has the following syntax:

ADDCOLUMNS (<table>, <name>, <expression>[, <name>, <expressions>]..)
Therefore, the base table (as a list of countries) has been extended to include the measures.
It is important to recognize that the relationships in the underlying model are still being used

by the query.

250

Chapter 9

There's more...

In this recipe, the use of SUMMARIZE produces a single column table. An alternative to this
is to use the VALUES function. The VALUES function returns a list of distinct values based on
the column reference and has the following syntax:

VALUES (<column>)

Therefore, the body of the evaluate statement could also be written as follows:

evaluate

(

addcolumns

(
values ('Geography' [Country]), "Total Sales",
'Reseller Sales'[2008 Sales], ...

)

Using SUMMARIZE would only be required when there is more than one column from the same
table to return.

Restricting data with filters and where

conditions

In the Using projection to combine data from different tables recipe, we stated that there is
no WHERE clause in DAX. If this type of restriction is to be applied to a result set, it must be
defined by a query, and this is the focus of this recipe. Here, we seek to answer the question:

Which customers had sales in 2008 and what was their sales value (for that year)?

Getting ready

The model used in this recipe is the sales data that has been used in this chapter
(see the workbook Model . x1sx, which is available from online resources at
http://www.packtpub.com).

251

Querying the Tabular Model with DAX

How to do it...

This recipe examines two queries. Firstly, listing customers and their sales value in 2008, and
secondly, listing customers that had sales in 2008 with their sales value.

1. Create a new query to show the 2008 sales values of customers. The query
is as follows:

define measure 'Resellers' [Sales] =
calculate ('Reseller Sales' [USD Gross Sales],
'Dates' [Year]=2008)

evaluate
(
addcolumns
(
values ('Resellers' [Customer ID]), "Sales",
'Resellers' [Sales]

)

2. Execute the query and note that the result lists 701 customers.

Create a query to show the customers who had sales in 2008 and the associated
value of their sales (for that year). The query is as follows:

define measure 'Resellers'[Sales 2008] =
calculate ('Reseller Sales' [USD Gross Sales],
'Dates' [Year]=2008)

measure 'Resellers' [Sales 2008 Rows] =
calculate (countrows ('Reseller Sales'),
'Dates' [Year]=2008)

measure 'Resellers' [Sales] =
'Reseller Sales' [USD Gross Sales]

evaluate
(
filter
(
addcolumns
(
values ('Resellers' [Customer ID]), "Sales",
'Resellers' [Sales 2008], "Sales (all)",
'Resellers' [Sales]
), 'Resellers'[Sales 2008 Rows] > 0

252

Chapter 9

4. Execute the query and note the result. There are now 466 rows in the result set,
the measure [Sales 2008] shows the sales for 2008, and the [Sales (all)]
measure shows the sales for all years.

Although there is no equivalent of WHERE in DAX, evaluate returns the table that has been
defined. This definition can include a £ilter context (that restricts the table), so that the
rows returned are reduced according to a condition; this is effectively a WHERE clause as most
of the results are restricted (as would be the case with a WHERE clause in SQL).

In the second query, we achieve this by filtering based on customers that had sales in 2008,
that is, the rows in the Sales table relating to the year 2008.

However, the use of a £ilter context in this way does not limit the evaluation of other
measures that are defined within the query. There has been no restriction to the Sales
table's data; only the customers are shown. Other measures are evaluated over the entire
model (or the table bounds of the model).

There's more...

Should we wish to implement a more "classical" WHERE condition (that is, restricting the rows
of the underlying table), calculations need to be applied when the table is filtered. This can
be achieved by extending the use of summarize to include calculations. For this, we could
execute the following query:

evaluate

(
summarize (

filter ('Reseller Sales', related('Dates' [Year])=2008),
[Customer Id], "Sales", 'Reseller Sales' [USD Gross Sales]

)

Note how the filter is applied through the related Year in the Dates table.

Deriving tables and selecting top n records

As a comparison to DAX, SQL is a mature language that has a variety of mechanisms for
temporarily defining and using tables. One of the reasons for using this type of feature is that
a result may need to be pre-computed before it is applied in the outer constructs of a query.

253

Querying the Tabular Model with DAX

Consider the situation of accumulating sales based on the sales values' ranks, as shown in
the following screenshot:

P

% Query Results

Eﬁse"e‘“[ﬂ”“m [Sales] [Rank] rE |
vy L 246562.8495754 . |1 246662 8495754 .
AWOD0D00S5 | 220496.6580000... 467159, 5075754...

AWDD000559 211318.9465000...
AWDD000016 202644 1140716
AWDD000520 200652 3307573...
AWDD000546 189204 4222000... 1270975.921505...

AWDD0D00433 187564 844 14585944 765505...
I M A b it b ALl S

678478 4544754
881122 5685471
1081775.453305...

S I - o T T S S

This type of query must pre-compute values before they can be used. Logically, the query
must determine each customer's sales value, then rank the customers based on that value,
and then (finally) determine (on a row-by-row basis) the total value of sales for all rows with
a lower rank. Clearly, there is an order to implement this type of query because one set of
values cannot be calculated before the other is complete. Using temporary structures is an
excellent method for achieving this.

Unfortunately, there is no declaration to derive a temporary table in DAX. The query must
utilize a nesting functionality to incrementally build the output. This recipe looks at how to
achieve that with a DAX query.

Getting ready

The goal of this recipe is to rank our resellers based on their 2008 sales and then produce an
accumulating total. This involves two steps, firstly ranking them and then accumulating sales

based on that rank. The RANK function was examined in the Grouping by binning and sorting

with ranks recipe in Chapter 5, Applied Modeling.

The model used in this recipe is the same that has been used in prior recipes of this chapter,
and is available from the online resources at http://www.packtpub.com.

Chapter 9

How to do it...

Start by defining a base table:

1.

Create a new query that defines customers, their sales (for 2008), and rank (based
on those sales). We also order the results by that rank (so that the output is more
visually meaningful).

define measure 'Resellers' [Sales 2008] =

calculate('Reseller Sales' [USD Gross Sales],
'Dates' [Year]=2008)

measure 'Resellers' [Sales Rank] = rankx(all('Resellers'),
'Resellers' [Sales 2008])

evaluate
(
addcolumns
(
values ('Resellers' [Customer ID]), "Sales",
'Resellers' [Sales 2008], "Rank",

'Resellers' [Sales Rank]

order by [Rank] asc

The result of this query will be displayed, as shown in the following screenshot:

P

% Query Results

F[ﬁse"m[c”“"‘a [Sales] [Rank]

4 AWDD000443 246662 84957548417

AWDD000025 220456 65300000002
AWDD000559 211318 94650000007
AWDD000016 202644 11407166766
AWDD000520 200652 93075796363
AWDDD00546 183204 42720000003
AWDD000433 187364 844

AWDDD00502 187702 26705881933
— Tmieiaen, | el g . mﬂ*ﬁ. ey

== R - T 5 B o T

255

Querying the Tabular Model with DAX

2. Now, extend this query to add the accumulating sales:

define measure 'Resellers' [Sales] =
calculate('Reseller Sales' [USD Gross Sales],
'Dates!' [Year]=2008)

measure 'Resellers' [Rank] = rankx(all('resellers'),
'Resellers' [Sales])

evaluate
(
addcolumns
(
addcolumns
(
values ('Resellers' [Customer ID]), "sales",
'Resellers' [Sales], "Rank", 'Resellers' [Rank]

), "cum sales", calculate('Resellers' [Sales],
filter (all('Resellers'),
'Resellers' [Rank] <= [Rank]))

order by 'Resellers' [Sales] desc

The result of this query will be displayed, as shown in the following screenshot:

P

% Query Results

EJEISE"ETS[CUSWNE" [Sales] [Rank] [cum sales]

b AWDDD00448 246662 8405754

AWDDD00035 220436 6530000...
AWDD000559 211318.9465000...
AWDD000016 202644 1140716
AWDD000520 200652 3307573...
AWDD000546 189204 4222000...

AWD0000433 187564 844
m-”*ww

—_

246662 3455754
467159.5075754....
678478 4544754
881122 5685471
1081775.453305...
1270975.921505...
1458944 765505...

S I - o T T S S

256

Chapter 9

It has already been stated that there is no method of defining and manipulating a temporary
table in DAX. In order to solve this problem and use the results of a previously generated
query, we need to incrementally build the result set by sequentially adding columns to the
previous table's output. This is seen in the use of the nested addcolumns statements, where
each addcolumns statement is used to extend the previous table's results.

For example, we define a base table (defined with the innermost addcolumns statement)
and extend that with another addcolumns statement. Here, the results of the inner table
can be used in much the same way as a correlated subquery would be used in SQL. The outer
statement is executed for each row of the inner context, or perhaps more appropriately, the
outer calculation is applied under the filter context of the inner one.

This can be better represented in a pseudo code with the following statement:

For each
Record as { Customer, Sales, Rank }
List { Record, { sum (sales) where Rank <= Record.Rank }}

The use of For each in the preceding statement specifies that the sum function (which is
appended to the Record table in the List {} line) should be applied in the context of the
records' row. This makes sense when we consider that each row has a rank that determines
its order (based on sales) and we need to sum all the records with a lower (or equal) rank.

Note that it is not enough to apply the accumulating sum calculation without considering
the current row's Rank. For example, the evaluate section of the query should nest
addcolumns, as shown in the following snippet:

evaluate
(
addcolumns
(
values ('Resellers' [Customer ID]), "sales", 'Resellers' [Sales],
"Rank", 'Resellers' [Rank], "cum sales",

calculate ('Resellers' [Sales], filter(all('Resellers'),
'Resellers' [Rank] <= [Rank]))

)

The result of this query is not accumulating sales, but the total sales for the year on each row
(that is, all sales for 2008). Why? This is because the following calculation removes any filter
that exists in the table (with the statement all ('Resellers')):

calculate('Resellers' [Sales], filter(all('Resellers'),
'Resellers' [Rank] <= [Rank]))

257

Querying the Tabular Model with DAX

Trying to reapply a filter with the predicate 'Resellers' [Rank] <= [Rank] always
evaluates to true as each row's rank is equal to itself. No rows are restricted and the
calculation 'Resellers' [Sales] is applied to all rows.

There's more...

There are two variations to this type of query, which are common business additions to the
implementations of rank and accumulating values. The first is the TOP N query, which returns
a given number of records (for example, the highest selling five customers), and the second
is the TOP % query, which returns the number of records based on a threshold value (for
example, the customers that are contributing 80 percent of the sales value).

DAX provides a TOPN function, which returns a specified number of records based on a sort
condition. The TOPN function has the following syntax:

TOPN (<n_value>, <table>, <orderBy expressions>,
[<order>[, <orderBy expression>, [<order>]]..])

Implementing this function directly against the Resellers table (Resellers has an existing
column for sales rank) to return the five highest selling customers could be achieved with the
following query:

evaluate (topn(5, 'Resellers', 'Resellers'[Sales Rank], true))

order by 'Resellers' [Sales Rank]

Here, the n_value argument of 5 represents the top five records. The orderBy
expression argument is the (existing) column [Sales Rank] with the order argument
set to ascending. Valid values for the order are 0 (or FALSE) for descending and 1 (or TRUE)
for ascending. The default value, if the order argument is omitted, is FALSE.

It is unlikely that a model does not contain a convenient column that can apply the TOP N
query. For example, we need to find who the top five bike sellers for 2008 are. For this, the
measure needs to be defined for the bike sales of 2008 and applied to a table. This table is
then filtered in with the TOPN function. The query would be as follows:

define measure 'Resellers' [Bike Sales 2008] =
calculate('Reseller Sales' [USD Gross Sales], 'Dates' [Year]=2008,
'Products' [Category Name] ="Bikes")

evaluate
(
topn
(
5,
/* table */
addcolumns

258

Chapter 9

values ('Resellers' [Customer ID]), "Bike Sales 2008",
'Resellers' [Bike Sales 2008]
), 'Resellers'[Bike Sales 2008], false

order by 'Resellers' [Bike Sales 2008] desc

As an alternate approach to TOPN, we could simply implement a filter based on a derived
rank. In this situation, the evaluate syntax of the previous query would be:

evaluate
(
filter
(
addcolumns
(
values ('Resellers' [Customer ID]), "sales",
'Resellers' [Sales], "Rank", 'Resellers' [Rank]

), [Rank] <= 5

)

Finally, we examine the implementation of a TOP % query. To do this, we apply the Pareto
principle, which is a common way to analyze data. This principle roughly states that only 20
percent of elements account for 80 percent of the total worth. Using our sales data, we would
suggest that 20 percent of the customers contribute to 80 percent of the total sales value.
Rather than validating this on the data, a more appropriate DAX related question might be
"Which of the customers account for 80 percent of sales?" The query is shown as follows:

define measure 'Resellers' [Sales] =
calculate ('Reseller Sales' [USD Gross Sales], 'Dates'[Year]=2008)

measure 'Resellers' [Rank] =
rankx (all ('resellers'), 'Resellers' [Sales])

measure 'Resellers' [Total Sales] =

calculate ('Resellers' [Sales], all('Resellers'))
evaluate
(
filter
(
addcolumns

(

259

Querying the Tabular Model with DAX

addcolumns
(
values ('Resellers' [Customer ID]), "sales",
'Resellers' [Sales], "Rank", 'Resellers' [Rank]
), "cum sales", calculate('Resellers' [Sales],
filter(all('Resellers'), 'Resellers' [Rank] <= [Rank])),
"cum sales %", calculate('Resellers' [Sales],
filter(all('Resellers'), 'Resellers' [Rank] <= [Rank]))
/ 'Resellers' [Total Sales]
), [cum sales %]1<0.8

order by 'Resellers' [Rank] asc

Here, the base query used in the recipe has been extended to include a column [cum sales
%1, which calculates the accumulating percentage of sales (naturally, this is based on the rank
position of each customer). The purpose of this column is to show the ratio of the accumulated
sales to the total sales (or each additional customer's contribution to the sales in terms of the
percentage). Then, we can simply apply a filter to show the first 80 percent of customers (which

is automatically implied as [cum sales %] is determined based on the rank).

260

10

Visualizing Data
with Power View

In this chapter, we will cover:

» Creating a Power View report

» Creating and manipulating charts

» Using tiles (parameters)

» Using and showing images

» Automating the table fields with default field sets
» Working with table behavior and card control

» Using maps

» Using multiples (Trellis Charts)

Introduction

Throughout this book, we have discussed tabular modeling with respect to the models and
the client tools that interpret the models and display them to the enduser. Tabular models
support MDX-based clients, and therefore, current clients can still be used against tabular
models with the same look and feel as they had for multidimensional cubes. Examples of
this have been demonstrated in the use of pivot tables, which are shown to the user in a
multidimensional format.

Visualizing Data with Power View

However, the tabular model contains some settings that are designed for tabular clients.
Exposing these features is the focus of this chapter. Here, we continue with the self-service
theme of this book and introduce Power View (based in Excel 2013) as a reporting tool to
present information to the enduser. We show how the model can be managed to present
information to the user. To this end, the chapter is also an introduction to Power View. Power
View has a different approach to traditional reporting. In traditional reporting (tools), the

user designs a report (based on a metadata and structure) and then executes (or renders)
the report to see the results. In contrast, Power View is designed to be a real-time analysis
solution where users interact directly with a canvas. When any change is made to that canvas,
the results are immediately reflected in the report.

Power View is available as a SharePoint (reporting) service or a feature in certain editions of
Excel 2013 (Office 365 and Professional Plus).

The model in this chapter is similar to the Sales Model that has been presented in prior
chapters. However, in this chapter, the model sources its data from a data mart, which is
based on a star design. This can be seen in the Products (and Customers) table where
the 1D field is no longer the unique identifier for the table. These tables are modeled as Type
Il dimensions (or slowly changing dimensions). Here, the dimension row is uniquely identified
by the surrogate key (in each table, the field is suffixed by class_dk). It is the surrogate keys
that join the sales data. Also, note that the Sales data has been flattened (and has no
header—detail relationship). This schema is shown in the following screenshot:

£l Date oider: dt customer_dk

1 Month dus &1 Customer ID

Pl Customer Short Na...

T Customer Type
region_dk

= Customer Name

4 23 Fuctamor b Tuna

product_dk -
M Product ID
7 Product Short Name
] Sub Category o A
Region
T Category -
Country
[51 Sales Gross T Group
|8 Discount 4 3 Region by Territory
f3 Sales Net Group (Group)
\ e 2 GOGS Country (Country)
17 Taw 4 Ranminn (Daminnl y

262

Chapter 10

Although there are some subtle changes in the operation of
M PowerPivot in the Excel 2013 model when compared to the
Q 2010 model (for example, the calculated values are shown
with function icons, rather than calculations), the creation of
the model and its design is identical to Excel 2010.

Creating a Power View report

The first recipe examines how to create a Power View report and navigate the reporting
surface. Our goal is simple, we have been asked to investigate trends in sales by Product
Category, Month, and Country. This is done by creating a grid on the design surface and
then manipulating it.

Getting ready

This recipe is based on the PowerPivot model shown above—the model in the workbook
(Sales Model 2013.x1sx) is available from the online resources. Once a tabular model
has been converted to an Excel 2013 format, the model is no longer compatible with the Excel
2010 add-in (and cannot be opened or used in Excel 2010).

All the tabular modeling features that relate to Power View can be set in Excel 2010 (the same
menu paths are used); however, the results are only visible in Excel 2013 (since this is the
only version of Excel that has Power View available). An Excel 2010 version of this file is also
available from the online resources.

The Power View and PowerPivot add-ins may also require activation in Excel 2013 (this needs
to be done only once). To check if these add-ins are active (or confirm if they are available in
your version of Excel), perform the following;

1. Open Excel (so that there is no workbook open). Depending on how you have opened
Excel, the following are two views available to you:

o If you opened Excel from an icon (on the Windows workspace), you will see
the following screen. Click on the Open Other Workbooks option as shown in
the following screenshot:

Excel

Recent

Suggested searches: Budget ,

Loan Schedule

@ Open Other Workbooks

<. ',..’1,.. e S

263

Visualizing Data with Power View

o If you closed all the workbooks that you had opened in Excel (and the screen
looks like the following), simply click on the FILE option as shown in the
following screenshot:

:
HOME INSERT PAGE LAYOUT FORMULAS

Paste

Clipboard & Font Alignment

2. Click on Options from the list.

Click on Add-Ins from the navigation panel and confirm that the Power Pivot for
Excel add-in and the Power View add-in appears under the Active Application
Add-ins (as shown in the following screenshot):

G . .

enera D View and manage Microsoft Office Ad
Formulas
Proofing Add-ins
Save Name
Language Active Application Add-ins

Microsoft Office PowerPivot for Excel 2013

Advanced Power View

Customize Ribbon
Inactive Application Add-ins

Quick Access Toolbar Analysis ToolPak
Analysis ToolPak - VBA
Add-Ins ‘=
Date (XML)
Trust Center Euro Currency Tools

4. If the add-ins do not appear (as active), they have not been activated—they will need
to be activated now. Select COM Add-ins from the Manage drop-down list (at the
bottom of the window), then click on the GO button.

Chapter 10

5. A new window will open displaying COM Add-Ins. Ensure that the PowerPivot and
Power View add-ins are checked(as shown in the following screenshot) and then
click on the OK button:

Add-Ins available:

D Ingquire
| Microsoft Office PowerPivot for Excel 2013
Power View

I S e P TR EEFE S s R b b g ARSI g, G0 e il

How to do it...

Openthe Sales Model 2013.x1sx workbook and create a new Power View report. Reports
appear in the same manner as worksheets, with a tab at the bottom of the Excel window.

1. Insert a new Power View report by clicking on the Power View button from the Insert
Tab as shown in the following screenshot:

)

. 5 Sales Model 2013.xlsx - Excel
EE INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW POWERPIVOT

=) a = di-=-%- j@]:

B] ® 12 Gaon U X A2 A

..?lmended Table [lllustrations Apps for Recommended J,' - PivotChart Power Line Column

iTables - Office ~ Charts el - View

i:les Apps Charts n Reports Sparkline

kS —swﬁ' e gt e gl nhmb B, - g it
\l If this is the first time that Power View has run, Excel may ask

Q permission to install Silver Light. If this occurs, permit the
installation (this is required only once).

2. A new Power View report is inserted. The design canvas consists of four sections,
shown in the following screenshot. These are described as follows:

o The Report Canvas (the report) displays the data to the user.

o The Filters Pane applies a global (report-wide) filter (also titled a view filter)
to the data, without the need to filter a control on the report.

a The Power View Field List shows the tables and fields in the model.

265

Visualizing Data with Power View

a The Control Content shows what model fields are used in the active control
(that is, the one that is selected on the Report Canvas). The Control
Content also allows the user to add and remove fields from the active
control and therefore, change the format and appearance of that control
(or visualization). The active control is (of course) the control that is selected
in the Report Canvas.

H = Sales Model 2013.xlsx - Excel T EH - B %X
HOME = INSERT PAGELAYOUT FORMULAS DATA REVIEW VIEW POWERVIEW POWERPIVOT PaulteBr.. - @

EI Format -
Clipboard Font Alignment Mumber Styles Cells Editing -

Power View Fields x
ACTIVE ALL

Filters [Customers

Pane [GeographyF 1610 LiSt

A Order Date

A Products

Report Canvas [Sales
Drag fields between areas below:
FIELDS

Control
Content

Sheet4 | Power Viewl (O] “ 3

It may be helpful to think that anything displaying the data on the
Report Canvas is done so through with a control. For example, a
."Q grid is a control that groups the data into a single object.

Also, note that the sheet name for the Power View report can be
changed just as any Excel sheet—either double-click the name or
= right-click and select Rename from the pop-up window.

266

Chapter 10

Add a table to the canvas by dragging the Month field from the Order Date table
onto the canvas. The months will expand (showing each month of the year). Add
the measure Sales Gross (found in the Sales table) to the Reports table (the
control) by dragging the field onto the table (when the field hovers over the table, it
gets a darker dotted border, as shown in the following screenshot):

ﬁanuar'
! B Sales Gross

-

February
Parch
April

Pay

June

Juby
August
September
Qctobar
Movember

Cecember

The table in the canvas has its edges surrounded by a light border. This indicates that
the control is active. The control can be deactivated by clicking on any part of the
canvas that is not in the control's border area. Activate the table and drag the GOGS
measure into the FIELDS section of the Control Content section to add GOGS to the
Reports table, as shown in the following screenshot:

) Drag fields between areas below

: TILE BY

January 3,479,168

February 6,741,816 FIELDS

March 5,487,607 Month &
g Sales Gross -

April 4,644,623 S =

A= 04949 9309

The active control can be moved and resized by dragging its borders on the canvas.
When the mouse hovers over the border boundaries (the gray lines of the border), the
mouse pointer changes to an arrow to indicate that the border can be resized. The
entire control can be moved when the mouse changes to a hand pointer. Ensure that
the control is large enough to cover all the months of the year.

267

Visualizing Data with Power View

6. Add a new table to the canvas that shows Country Sales by Product Category.
Drag the Country field to a new section of the canvas (that is, not on the Month
table) so that a new table is added to the canvas.

7. Convert this new table to a matrix control (a matrix groups data into rows and
columns) by activating the control and selecting Matrix from the Table drop-down,
as shown in the following screenshot:

E=E

Table

[

vIsL

Matriz ‘—

[Card

8. After the control has changed to a matrix, the available fields in the Control Content
changes. We can now drag the Category field (from the Products table) into the
COLUMNS section and the Sales Gross into the Y. VALUES section. The controls
content section should look like the following screenshot:

Drag fiekds between aneas Debow

£ WALLES

Sales Gross -

22 Coundry -
COLUMNE

Categody bl

The number of boxes available (and their names) in the
~ Control Content section is determined by the type of

Q visualization that is used. That is, whether the control is
a table, matrix, card, chart, or map.

268

Chapter 10

9. Resize the control, so that all data fits onto the canvas.

10. Name the report by clicking on the grayed heading section (which displays the text
Click here to add a title) and name the report Sales Summary by Year.

11. The controls currently show data for all the years in the model. We want to restrict
the report to show only specific years and want to apply this filter to all the controls
that are on the canvas. In the Filters pane, click on the VIEW label to apply the filter
to the entire report (alternatively, you can select any area of the canvas that does not
activate a control.). Then, drag the Year field into the Filters section. The section will
immediately change and will look like the following screenshot:

Filters ¢ X
VIEW

4 Ye - x
[
]
2005 2010

12. The filter can now be applied to the report by dragging the ends of the slider
bar. When this is done, a text description is added to the view (as shown in the
following screenshot):

d g + # X
i Bebween 2007 and 2008 +—

e ;
2005 2010

The addition of controls to the canvas and the application of a (global) filter are
straightforward and do not require further explanation.

There's more...

There are a few additional points that should be included to the recipe concerning the
introduction of the report. These are discussed in the following section.

269

Visualizing Data with Power View

When a control on the canvas is selected, the Filters section changes to include the type of
the control that is active (currently, there is no method available to name the control, so only
the type of control is shown.). For example, if the Month table is selected (the one we initially
created), the Filters pane will include a TABLE label as shown in the following screenshot. We
can now click on the TABLE label to show the filters that are applicable to the active control.

Filters < %
TABLE 4
>
(A
.
&,
(A¥)
b3 x
(AM)

Now, any field that is added as a filter will only be applied to the active control and not the
entire report. Clicking on the VIEW label will change the control back to the global filters.

A filter can be removed by clicking on the delete button for the filter (the button with a cross as
highlighted in the following screenshot). Hovering over a button will show a tool tip for the item.

4 Yea 3 & x

is between 2007 and 2009 Delete filter

|
2005 2010

270

Chapter 10

The way that the filter is presented in Power View is dependent on the type of data that the
filter is based on. Since year is a number, Power View expects you to filter based on a range.
But this need not be the case—you may desire a check-box list or some text based query.
Clicking on the filter mode will change how the filter is presented (and of course, how you
interact with it). These choices are shown in the following screenshot:

-

2005 is greater than or equal to b

And

The controls in Power View work in a similar manner as a pivot table. That is, they hide
information when there is no data for the selected view. This can be seen by applying a filter to
Year for 2010. When this is done, the table control provides a no data message as shown in
the following screenshot:

Month Sales Gross» GOGS

This table contains no rows.

This may be a novel feature for visualization; however, there may be situations where you
want to see the range of dimension members available (just like the Show rows with no data
feature in a pivot table). To do this (and show all month labels), perform the following steps:

1. Activate the table, so that the Control Content shows the fields in the table.

271

Visualizing Data with Power View

2. Select the drop-down arrow for the Month field and select the Show items with no
data option.

Drag fields between areas below

TLE BY

Monkh -‘ -

Remove Field

¥ | Do Mot Summanze
Count (Not Blank)
Count (Distinct)

m==lls Show items with no data

Creating and manipulating charts

When an enduser is shown data in tables and matrix controls, their subconscious mind
thinks about the relationships between the data that they are presented with. For example,
consider the table created in the prior recipe, Creating a Power View report, as shown in the
following screenshot:

January 1,242,605
February 2,311,803
March 1,473,826

1,734,404

Here, we recognize the month as a sequence of consecutive periods and associate
performance and the change in values from month to month (for example, February is almost
twice as good as January).

This analysis requires a bit of thought from the user and is not the most efficient way to
present the month-on-month trend—a visual representation is much more effective. This
recipe examines the creation and manipulation of charts in Power View.

272

Getting ready

This recipe uses the same workbook that was used in the prior recipe (Sales Model
2013 .x1sx is available from the online resources). Unlike worksheets, Power View reports
cannot be copied with the workbook. They must be created from scratch. Create a new
report (titled Charts) and add a table that shows Months and Sales Gross (asin the
preceding screenshot).

How to do it...

Let's start by converting a table to a chart.

1. Activate the table by selecting any cell in it.

Chapter 10

2. Convert the table control to a stacked bar chart by selecting the Stacked Bar option

from the Bar Chart button as shown in the following screenshot:

FILE HOME
=B

INSERT

Clustered Bar

Table | Bar Column Other
- Ehartr| Chart~ Chart~

Stacked Bar *——

1005% Stacked Bar

PAGE LAYOUT FORM

Map

Jont

Tiles Tile 5h

Tovrme
'Y pE

Tiles Slig

3. When this is done, the control converts to a chart with the same structure as the

table (Months on rows), however, the values are now bars of the chart, as can be

seen in the following screenshot:

sort by Month = asc

:
Sales Gross by Month

January
February
March
April

273

Visualizing Data with Power View

When the chart cannot fit into the physical bounds of the
control, the chart's axes are not compressed to fit into the
~\l control. Note that all the months are not shown (in the preceding
screenshot) and there is a slider between the months and data
Q bars. This allows the months to be scrolled with the chart.

Alternatively (of course), the chart control can be resized so that
- all months fit into it. -

4. Convert the control to a stacked column chart by selecting Stacked Column from the
Column Chart button. A column chart (as the name suggests) displays the axis on
the columns. Resize the chart so that it fits into the page.

5. Add the category field from the Products table to the Legend box in the Control
Content section. Each monthly bar is now broken down into sections that show
category groupings. The chart and Control Content section should look like the
following screenshot:

Drag fields between areas below:
- TILE BY
{ Bl Accessories ¥ VALUES
] Bl Bikes Sales Gross -
Clothing
[]
Bl Components .
AR
Month -
November
ﬁOctober December LEGEND
* Category -
N s e

o

Currently, all category stacks in columns are equally transparent. We (that is, the
user) can draw attention to an individual category by selecting it in the Legend box
on the chart. When this is done, all other categories in the chart will become dull.
To return the chart to the original state (with equal category transparency), simply
re-click the category in the chart's Legend box.

274

Chapter 10

7. Convert the chart to a clustered column (chart) by selecting Clustered Column from
the Column Chart button. The chart changes so that a data bar is shown for each
category by month, as shown in the following screenshot. Individual categories can
be emphasized by selecting the category name from the Legend box.

THLEL

September Movember
August October December

A common use of a stacked chart is to show proportional
\ values within a month. For example, the chart shows how a
~ monthly sales value is broken down by category. However, one
Q flaw of this type of visualization is that the proportions within a
month are not comparable between months. A clustered chart
is much more suitable for this type of analysis.

8. Hide the title of the chart (which describes the chart as Sales Gross by Month
and Category) by selecting the None option from the Title button from the LAYOUT
tab, as shown in the following screenshot:

HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW POWER VIEW DESIGN LAYOUT POWER

Title Legend Data Map Type Grid Grid Axes Colors Bubbles
< * labels ~ Background Height = Width
* Mone ‘_ Bxis Multiples Synchronize

None

9. Add value labels to the chart by selecting Outside End from the Data Labels button
(the Layout tab).

10. Move the Legend box to the bottom of the chart by selecting the Show Legend at
Bottom option from the Legend button (the Layout tab).

275

Visualizing Data with Power View

Using tiles (parameters)

Regardless of the reporting tool, the use of parameters is a common feature for allowing
user interaction with report data. The typical way that these are implemented is through the
population of a control (usually a drop-down list) that allows the user to select a value, and
this value dictates what data is seen on the report. When parameters are used, it is often
necessary to explicitly define the parameter and its data before it can be used in the report
(and subsequent datasets).

Power View does not have parameters in the traditional sense. Instead, the report is based on
all of the data within the model. The user can filter controls through a special type of control
called a tile. The tile lists available values for the field chosen, allowing the user to select a
value which is applied to other report controls.

Getting ready

This recipe continues from the Power View report created in the previous recipe, Creating and
manipulating charts.

How to do it...

Adding a tile can be achieved in a number of ways. In this recipe, we add it to an existing
control and then manipulate it.
1. Activate the Reports table so that the Control Content (section) is visible.

2. Dragthe Year field (from the table Order Date) into the box labeled TILE BY.
The section should look like the following screenshot:

Drag fields between areas below:
TILE BY

Year *_ ~
. WALUES

5ales Gross -

AXIS

Manth -
LEGEMND

Category -
YERTICAL MULTIPLES
W

276

Chapter 10

3. Immediately, the tile is added above the chart. Selecting different years (as shown in
the following screenshot) from the tile will change the values:

2005 "

2M

4. Thetile is bound by a blue border (above and below) that covers the area that is
applicable to the tile. In the preceding screenshot, we can see the upper bound; the
lower bound (which is not shown) is below the chart. Resize the tile control so that
it fills the canvas. When this happens, the existing chart will also move some of its
borders (within the tile's boundary of course).

5. Add a new pie chart to the tile control by dragging the Category field onto the canvas
between the tile's boundary lines (that is, place the field under the existing chart).

When this is done, a new table will be added to the canvas.

7. Addthe Ssales Gross measure to the table and convert it to a pie chart by selecting
it from the Other Chart button.

Resize the pie, so that it is positioned in the center of the page.

9. Select a category field from the bar chart. Note that the transparency of the
segments also changed to reflect the targeted Category.

10. Change the Year in the tile. Note that the existing (selected) category remains active.

There is nothing extra to explain here. The tile may be thought of as an additional control that
has its own bounds. Any other control placed within those bounds are controlled by the tile.

277

Visualizing Data with Power View

There's more...

There are two positions that the tile can occupy within the canvas. The first (as we have seen)
is at the top of the control and is called a Tab Strip. The second is at the bottom with a slightly
focused visualization (called a Tile Flow). Change the type by selecting Tile Flow from the Tile

Type button as shown in the following screenshot:

=T T T T 5T TTETTT

D 1 . :'_:':.. :-. . = | . _

s | Tile Slicer Card Sho
Type~ Style = Level
Til Tab%inp Optig

i Tile Flow efem—

Once the previously described steps have been performed, our canvas should now look like
the following screenshot:

Y_

sort by Month * asc

EL]
2.30M

1.97M
1.67M
1.27M
M osam J J
o J__19 __1.6 - 39 - _I1?5 _I _Is? | = _I92

August September October MNovember December

|'l\.f1|||||-n-:'|

January Febrl.laryI March April May June July

Category
M Accessories MMBikes MW Clothing MM Components

Category
I Accessor
I Bikes
B Clothing
I Compone

2005 2006 2007 2008

278

Chapter 10

Using and showing images

There is an old adage that a picture is worth a thousand words. While we can naturally assess
data more easily if it is presented in the correct visual format, pictures and images in reports
add a style that add recognition to data. Consider the use of KPIs (KPIs were addressed in
the Creating and using Key Performance Indicators recipe in Chapter 3, Advanced Browsing
Features) that visually display performance. On seeing a set of KPIs, we can immediately
assess the position.

Images are an attractive inclusion in reports because they are visually appealing and improve
user understanding. This is because an image is immediately identifiable as a symbol—it holds
a predetermined meaning for the user.

This recipe looks at what the tabular model requires for displaying data as images in
Power View.

Getting ready

This recipe uses the Sales Model 2013 .x1sx workbook available from the online content.
There is no dependency on prior recipes.

How to do it...

The Country table of the model list's sales areas that include a Country field and a
Country Flag field. The Country field aggregates regions into countries with the Country
Flag, providing a URL image of that country's flag.

1. Unhide the Country Flag field from client tools on the Geography table.

2. Observe that the field is actually a fully qualified Uniform Resource Locator (URL) that
requests an image (note the .gif extension) as shown in the following screenshot:

hitps://www.cia.gov/library/publications/the-world-factbook/graphics/flags/large/us-lgflag.gif
v v v | Country Flag [~ Add column
United States Morth America Inttps://www.cia.zov/li... |
United States MNorth America https://www.cia.gov/li...
United States Morth America https:/mww.cia.gov/li...
Linited Statac RMnrth America it e fwnsner ria oo fli

279

Visualizing Data with Power View

3. To verify the location of the URL, copy it from the formula bar and paste it into
Internet Explorer. Instead of a web page, the following screenshot will be displayed:

4. Ensure that the Data Category for the field is set to Image URL. This may be
automatically detected by PowerPivot. To confirm this, examine the Reporting
Properties option in the Advanced Tab. The Data Category should be set to Image
URL as shown in the following screenshot. If it is not, select it from the drop-down list.

Home Design Advanced

Select: <Default= ~ m z m
d

Show Implicit Summarize Default Table
Calculated Fields By Field Set Behaviar

Perspectives Reporting Properties

Data Category : Image URL (Suggested] =

5. Click on the Table Behavior button and set the Default Image (field) to Country
Flag (optional).

\ We can also use a URL as an image by specifying its Data
~ Category as WEB URL. However, if this option is used,
Q setting the default image property for the table will raise an
error when Power View tries to read the model.

280

Chapter 10

6. Return to Excel and insert a new Power View report (named Images). Drag the
Country Flag field onto the canvas. Observe that the flags are shown in the place
of text (as in the following screenshot). Generally, this field can be used just as any
other field in Power View (for example, as a tile or as rows in a table).

Countr

Tl
=

1
~ Excel may display a warning that external content is required—if
this is shown, allow Excel to access the external content.

There's more...

In addition to using the WEB URL feature, tabular models allow fields of binary data (type).
This allows an image to be stored in the field, rather than a pointer to an external resource
(that is, a URL). The Photo field in the Products table is an example of this type of data.

A recipe of how to load this data is outside the scope of the book (other than the loading of
the table from the database); however, Power View can interpret the binary data and display
it as an image. There are no additional settings or properties that need to be set to use an
image, however, it is recommended that the Data Category be set to Image.

Automating the table fields with default

field sets

There is often a set of standard views that users like to see when they use a model, for
example, we might expect any user that uses the Products table would automatically like
to see only the Category and Sub Category fields. Of course, they are not restricted from
adding other fields to a control, however, when they use the table, we might like to give them
the option of automatically adding those fields.

This recipe looks at how that can be achieved (and used).

281

Visualizing Data with Power View

Getting ready

This recipe uses the Sales Model 2013 .x1sx workbook available from the online content.
There is no dependency on prior recipes.

How to do it...

Let's start by examining Power View's behavior before the model is configured for this action.
1. Create a new Power View report. Double-click on the Products table (note that
nothing happens).
2. Launch the PowerPivot window and activate the Products table.
3. Click the Default Field Set button to launch the Default Field Set dialogue.

4. Addthe category and Sub Category fields to the Default fields, in order: box by
selecting them from the Fields in the table: box and clicking on the Add button as
shown in the following screenshot:

Default Field Set for Table Products

Specify the columns, measures, and field ordering that define the default field set when visualizing this table in certain client tools.

Click here for more information on Default Field Set.

Fields in the table: Default fields, in order:

cost_std_usd Catego

ond T
Photo
price_std_usd
Product 1D

Product Name
Product Short Name
product_dk

start_dt

Status

You can specify the order in which the fields will be added to the
S table by specifying the order in the Default fields, in order: box.
Q To change the order, simply highlight the field (in that box) and

click on the Move Up or Move Down button.

282

Chapter 10

5. Close the dialogue by clicking on the OK button.

Return to Power View and click on OK to refresh Power View's cache of the
data model.

7. Double-click on the Products table. This time, the two fields are added to
a new table.

. You can also use this (double-click) technique to add the default
~ fields to an existing control (this does not apply to all controls).
Q Simply ensure that the control is active before you double-click
on the table in the Power View field list.

Working with table behavior and card

control

PowerPivot is very flexible for summarizing and aggregating data—most of the time,
we want to see that data at an aggregated level and at other times, it may be required
at a detailed level. This recipe looks at how to specify table properties so that data is
listed distinctively.

Finally, the recipe introduces a Card control that lists data into a distinctive group
for display.

Getting ready

This recipe uses the Sales Model 2013 .x1sx workbook available from the online
content. There is no dependency on prior recipes.

How to do it...

This recipe commences on the assumption that there is no table behavior set on the
Products table. First, we ensure that any formats from prior recipes are discarded.

1. Launch the PowerPivot window and activate the Products table.

283

Visualizing Data with Power View

2. Click on the Table Behavior button in the Advanced tab to launch the Table Behavior
dialog. Ensure that the table has no behaviors set. It should look like the following
screenshot. Click on OK to confirm the properties.

Table Behavior for Table Products

The properties on this dialog allow you to change the default behavior of different visualization types and default grouping behavior
in client tools for this table.

Click here for more information on Table Behavior.

Row |dentifier:

Keep Unigue Rows:

Default Label:

Default Image:

[Mo Column Selected]

Table Behavior

[] Categary

[] cost_std_usd
[] end_dt

[] Phate

[] price_std_usd
[] Product 1D
[] Product Name
[] Product Short Name
[product_dk
[] start_dt

[] Status

[] Sub Category

[Mo Column Selected]

[Mao Column Selected]

==

3. Create a new Power View report using a table control that includes the Product 1D,
Category, and Sub Category fields from the Products table.

4. Add afilter to the report so that only product HL-U509 is shown. Drag Product IDto
the Filter section, then use a string filter for product HL-U509 (searching for product
509 will list similar products to 509). Check the product HL-U509 in the Filter section
to check if the details are displayed in one row (as in the following screenshot):

Froduct ID
HL-U509

Categ

ory Sub Category

Accessories Helmets

5. Return to the Table Behavior dialogue and set the Row ldentifier field to the
product_dk field.

Q

Each table should have a Row Identifier assigned (assuming that
there is a field in the table that can act in this capacity—sometimes
this may not be the case). This materializes the (primary) key for
the table and will stop the tabular model from creating an arbitrary
unique identifier for each row.

is no change to the report.

Accessones
Accessories
Accessones

4 Dy
is HL-U508, HL-US09 or HL-U508

509

| HL-U509

| HL-US09

HL-US09
HL-US09-B
HL-US09-B

HL-US09-B
HL-U508-R

Chapter 10

Return to Power View and refresh the report (update the cache of Power View); there

Return to the Table Behavior dialog for the Products table. Check the box next to
Product ID inthe Keep Unique Rows list.

Return to Power View (refresh the cache). Since the change has been made to
Product ID, you will also need to re-apply a filter to Product 1ID.

9. Return to the Table Behavior dialog for the Products table. This time, set the
Default Label to Product ID and the Default Image to Photo (this is the only choice
available). The Table Behavior dialog should look like the following screenshot:

Row |dentifier:

Keep Unigue Rows:

Default Label:

Default Image:

P e

product_dk

e e Y T P I R e Cv W

W

Category
cost_std_usd
end_dt

Photo
price_std_usd
Product ID
Product Name

product_dk
start_dt

I3 [

Product Short Name

R R L e e e

285

Visualizing Data with Power View

10. Save the changes to the model (by clicking on OK) and return to Power View.
11. Extend the table (control) by adding the Photo field and Gross Sales.

12. Change the table view to a card by selecting Card from the Table drop-down in the
Switch Visualization group as shown in the following screenshot:

= i
Table Bar Column Other
* Chart~ Chart~ Chart~

Visualization

Matrix

| Card ‘*ﬁ_

13. The table control changes to the Card layout. Note the placement and format of the
Product ID field in the Card. It has a larger (attention-grabbing) font and is located
in the top-left corner of each card, as in the following screenshot:

1ot by Prodoet ID maz

HL-U509

ADRSEOrEs Halmatz

HL-U509

The setting of table properties in this recipe is relatively straightforward. Setting a row
identifier explicitly defines the unique field for the table.

Once the unique field has been set, the fields that require uniqueness can be set—naturally,
things must be done in this order. This assigns a one-to-one relationship with the row identifier,
meaning that each Product 1ID is repeated for each instance of the table's row identifier.

286

Chapter 10

Finally, the table's default label is a property which is only applicable to the Card. This
specifies the field that will be used as a label in the Card control. This can be thought of as
a unique identifier for the Card (note duplicates are shown, even though we might not expect
that behavior) and the more pronounced formatting.

Setting a default label will force the field to be treated in the
same manner as a Keep Unique Rows flag and force Product
\1 ID to be repeated in a Card (even if the Keep Unique Rows flag

~
Q was not checked).
If you wish to use the Card visualization in Power View, the

model needs to be physically structured, so that the Product
- IDis unique. -

Humans absorb data more easily if it is presented in a visual format—consider how quickly
trends can be assessed when a line chart is used rather than a data table. The same
argument applies to maps, where information related to geographic regions is used. The use
of maps (or map reports) is an efficient way to display geography-related information because
it adds context to data that would otherwise require thought. For example, imagine a table
summarizing the sales by city. When you look at this table, you think about where the city is,
and try to make comparisons between the values for each city. This is a lot for the user to do
in their subconscious!. To analyze the relationships between cities, a more suitable approach
would be to show the data values on a map, so that the user need not think about the location
element of their data.

This recipe examines how to configure the tabular model for use with maps in Power View.

Getting ready

This recipe uses the Sales Model 2013 .x1sx workbook available from the online content.
There is no dependency on prior recipes.

How to do it...

Let us start by examining fields that can be used to refer to geographies.

1. Activate the Customer table in the PowerPivot window.

287

Visualizing Data with Power View

2. Ensure that the data categories for the geography-related fields are set to appropriate
values. That is, the geography-related fields are tagged as geography. These are
set in the Advanced tab under the Reporting Properties grouping when the field is
selected (as in the following screenshot):

jE;i\dwwancrad

E EIEEr

§ Data Category : City (Suggested) = ‘——
%Showlmplicit Summarize Default Table

8

b1

alculated Fields By Field Set Behavior
Reporting Properties

] - T - T B] Add colun

8 537 |seattle | washington United States
{ 572 Austin Texas United States
{ Utah United States

The Data Categories that should be set are as follows:

Field Name Data Category

City City (suggested)

State State/Province

Country Country/Region (suggested)

3. Return to Excel and create a new Power View report. Expand the Customers
table and examine the fields City, State, and Country. Note that the fields
have a globe icon (indicating that they play a geographic role), as is visible in the
following screenshot:

Power View Fields
ACTIVE ALL

4[] Customers
= & City
mil & Country

Customer ID

[

|:| Customer Name
|:| Customer Short Name
|:| Customer Type
|:| Customer_by Type
—>

£ State

288

Chapter 10

4. Create a new table by dragging the City attribute onto the report canvas. Extend the
table to include the Sales Gross measure.

5. Convert the table to a map by clicking on the Map button (from the Switch
Visualization group).

6. Immediately, the visualization changes. Resize the control so that it fits in the
entire page.

\ The map is interactive, and its view (that is, the actual map with
~ data points) can be zoomed into by using the mouse roller or
Q moved (left-click and dragging). Alternatively, the maps navigation
controls can be used (as in the following screenshot):

™)

0 @(C

7. Because the map is showing data at a city level, it appears cluttered. We can reduce
this clutter in the following combination of ways:

o We could use a higher-level attribute in the Location field of the Control
Content. This is done by dragging the State attribute to the Location box in
the Control Content and removing City. As expected, the number of display
points on the chart decreases (we could also use the Country attribute for
a higher-level view).

o We could apply a Filter to show only data points that met a specific criteria
(sales value). This is done by expanding the Filters section, ensuring that
the MAP control is selected, and using the slider filter (or an alternate filter
control, as discussed in the Creating a Power View report recipe).

8. Setthe Location field to State, to examine the change in granularity.

There is no requirement for additional explanations other than the reiteration, that the map is
dependent on the data category setting for fields. The control section of the map also includes
the longjtude and latitude placeholders. These should be used in preference to field names.

The size of the bubble on the map indicates sales value, however, we often want to add more
meaning to those data points by adding a category to indicate how those sales are broken
down. Do this by dragging the Category field into the COLOR box (in the map's Control
Content). When this is done, the bubbles change to pie charts (to indicate the composition of
sales), and a legend is added to the map.

289

Visualizing Data with Power View

M The legend is interactive. Selecting an individual entry from the
Q legend will focus on each pie chart's segment in that category.
Selecting it again will return the selection to the original state.

Using multiples (Trellis Charts)

The use of charts is a common way to understand relationships between data—of course, this
is not unique to Power View, but applicable to analytics in general. However, as more data fields
are added to the chart and the number of fields exceeds the axis number of the chart, the
chart becomes more complex and difficult to read. One solution that has been used to combat
this situation, is to reproduce a template chart based on a dimension—for example, we might
show various charts with each chart showing data for a specific country. When this functionality
is included in the charting engine, the output is commonly referred to as trellis charting.

This recipe shows how to implement trellis charting in Power View. This functionality is
possible for most Power View charts (including maps).

Getting ready

This recipe uses the Sales Model 2013 .x1sx workbook available from the online content.
There is no dependency on prior recipes.

How to do it...

1. The creation of a Trellis Chart (which is called multiples in Power View) is a
configuration of the chart control (whether a chart or map). However, this behavior
is consistent among all chart types. Create a Clustered Column chart that shows
Sales Gross by Category (see the Creating and Manipulating Charts recipe in
this chapter for information on how to do this).

It is often preferred to show columns (or bars) in an ordered
M sequence based on data value (rather than the chart's axis category
Q name). This can be achieved by setting the sort by field of the chart.
This option is shown when the mouse hovers over the chart (as in
the following screenshot). Set the sort by field to Sales Gross.

Category
Sales Gross

290

Chapter 10

2. Dragthe Country field to the chart's Vertical Multiples box in the chart's
control section.

3. Resize the chart, so that it covers the full canvas (to see the full effect of
the visualization).

As mentioned in the recipe, the use of multiples (or Trellis's) technique is available in all
charts (including maps). A vertical multiple will expand individual charts, so that they can
appear over rows (column cells are first populated, and then individual charts overflow to
rows—this is shown in the following screenshot). Horizontal multiples will only have one layer
of charts and will not overflow to additional rows.

r i)

sart by Sales Grosr = asc T

50M

A0M

w
=1
=

[Millions)

ra
=1
=

A0K
;'BDM
EZDM
10K
o m | — B
Accessories Clothing Acceszories Clothing Agcessories Clothing

Bikes Components Bikes Components Bikes Componsnts

291

Visualizing Data with Power View

Once multiples have been created on a chart, the format of the multiples (that is, the number
of charts appearing in each row and column) can be adjusted, so that the Trellis Chart is more
visually appealing. This is specified by the Grid Height and Grid Width settings in the LAYOUT
tab of Power View (as shown in the following screenshot). Simply set the number of charts to
appear in rows (Grid Height) and columns (Grid Width).

ouT FORMULAS DAT

iEEl=eiE

Grid Grid Ayes
Height ~ Width -
Multiples Sy

292

Installing PowerPivot
and Sample Databases

In this appendix, we will discuss:

» Installing PowerPivot

» Creating the database

Installing PowerPivot

In Excel 2010, PowerPivot is an add-in that must be downloaded and installed. In Office 365
Pro and Excel 2013 Pro Plus, the add-in is a part of the default Excel installation setup (which
means there is no requirement to install PowerPivot). However, the add-in must be activated
before it can be used (see Chapter 10, Visualizing Data with Power View, for details on
enabling the add-in in Excel 2013).

The 2010 add-in can be downloaded from the Microsoft download center (free of charge)
using the following URL:

http://www.microsoft.com/en-us/download/details.aspx?1d=29074

Installing PowerPivot and Sample Databases

Although the installation is relatively straightforward once the installation file is obtained, the
downloaded file must match the installed version of Excel (that is, whether Excel is operating
in 32-bit or 64-bit mode). This can be checked by selecting the Help option from the File tab
(in Excel), as shown in the following screenshot:

N B AN R Bookd - Microsoft Excel 1t

Home Inset Pagelayout Formulas Data Review View Developer Insight Analtics InsightMow DataMining Team 4

| Save 1
Support

Get help using Microsoft Office.

s =3 ce
- 9 Microsoft Office Help Q. |Ce
Open

[Close
Product Activated
Info Getting Started = ' . 1
| :] icrosoft Office Professional Plus 2010 s
| “'\ See what's new and find resources te help you This product contains Microsoft Access, Micrasoft Excel, Microsaft SharePoint Warkspace, Microsoft§
Becent ——Gy Ieemthebasics quickly. Onehlote, Microsoft Outlook, Microsoft PowerPoint, Microsoft Publisher, Microsoft Word, Microsoft
InfoPath.)
bED Contact Us
an Let us know if you need help or how we can make About Microsoft Excel 1
" Office better. Version: 14.0.7106.5003 (64-bit) ‘/
e Additional Version and Copyright Information
Tools for Working With Office Part of Microsoft Office Professional Plus 2010
@ 2010 Microsoft Corporation. All rights reserved. i
- Optiens Microsoft Customer Services and Support
[2) Options - f:élt:(”:”i““ﬁ“‘*g& display, and other program Product ID:02337-383-0127317-38618 i
° s Microsoft Software License Terms

B Ext

| Check for Updates 4
Get the latest updates available for Microsoft
Office. J
I it = D VNEOIREPIRS SN B T A A i thn e ks it

In the About Microsoft Excel section, we can see that this version of Excel is a 64-bit version
(and hence, we must install the 64-bit version of PowerPivot).

The download page (from the provided URL) will look like the following screenshot:

Bl Microsoft® SQL Server® 2012 SP1 PowerPivot for
Microsoft Excel® 2010

Select Language: ‘English v‘ Free P

* Se

S0

Microsoft PowerPivot for Microsoft Excel 2010 provides ground- e
breaking technology; fast manipulation of large data sets, o
Sl ST N U W g e e A e, Lot bt bR] B R . g B g ol SR

When the Download button is clicked, you are prompted to choose the file to download, as
shown in the following screenshot.

Appendix

The file with the name ending with _amdé4 . msi—the middle one in the following screenshot
should be installed for the 64-bit version of Excel and the other file (_x86 .ms1i) should be
downloaded and installed on systems having the 32-bit version of Excel:

Choose the download you want

[| File Name Size
|:| 1033 \ReadMe_PowerPivot.htm 12 KB
|:| 1033x6d\PowerPivot_for_Excel_amd&d.msi 130.0 MB
|:| 1033xee\PowerPivot_for_Excel_x8&.msi 985 MB

Once the file has been downloaded, we can execute it by double-clicking on it, however,
Excel must be closed during the installation of PowerPivot. Note that, depending on your
user account permissions, you may be prompted to run the installation process as an
administrator, or the file will change the computer's settings. Run the file by simply clicking
on the Run button.

Open File - Security Warning =2
Dk your wand to run this file?

Mame: pPower Pvolt\PowerPregt for Excel amded msi
Publisher: Merrosoff Comporatien

Type: Windows Installer Package

From: F\Temp\Power Prvot\PowerPivat_for_Excel_amds...

Rn || Cocsl |

o | Abways ask before opening this file

| ¥While files from the Infemet can be useful, this fils typs can
you it Yitst's fhe rakc?

295

Installing PowerPivot and Sample Databases

The installation process does not require any advanced user interaction. All you have to do is
accept the terms and license agreement and click on the Install button. Once the installation
is successfully completed, the installer will provide a confirmation window, as shown in the
following screenshot. Simply click on Finish to complete the process.

B Microsoft SQL Senver 2012 PowesPivot for Excel Setup ot

Completing the Microsoft SQL Server 2012
PowerPivot for Excel installation

Satup has installad Marosafit SOL Server 2012 PowerPivot for Exeed
sucoessfully. Chok Finish to et

L . e e e, s ‘__?hu---.m#‘.....-rﬂ '\I-.l"'d'\-""""'—.-..-.."‘I_p."'..J."l\..-...ln—i'-"".L -

When Excel is opened, the PowerPivot tab will appear in Excel's menu bar.

Creating the database

The SQL Server database used in the prior recipes is available as a backup from the online
content for this book on the Packt Publishing website. This backup can be restored to the SQL
server instance (running SQL Server 2012).

We do not specify details for the installation of SQL Server (since they are outside the scope of
this book). However, a brief overview of the database restore is discussed in this section.

An evaluation version of SQL Server is available for download at the following URL. This
license will expire after 180 days. Alternatively, a free edition of SQL Server (SQL Server
Express) is also available (with reduced features and no license expiry limit).

http://www.microsoft.com/betaexperience/pd/SQL2012EvalCTA/enus/
default.aspx

The online resources contain two files. Firstly, a file named tabular modelling.bak,
which is the database backup. The second is the file that contains the restore script. It is also
reproduced as follows:

USE [master]

RESTORE DATABASE tabular modelling
FROM DISK = N'C:\BOOK\SQLDATA\tabular modelling.bak'
WITH FILE = 1

, MOVE N'tabular modelling' TO
N'C:\BOOK\SQLDATA\tabular modelling.mdf'

296

’

’

MOVE N'tabular modelling log' TO
N'C:\BOOK\SQLDATA\tabular modelling.ldf'

NOUNLOAD, REPLACE, STATS = 5

GO

Appendix

This code assumes that the backup file has been stored in the C: \BOOK\ SQLDATA directory.
Additionally, the database files that are created will also be created in this directory. Running
the code from SQL Server Management Studio will create the database and restore all its data.

The output of executing the script should look like the following screenshot:

1a
16
2a
25
31
33
4@
46
S5a
55
o8
65
71
75
aa
a6
e
95

_'j Messages

1] EUSE [master]
2
3 |EJRESTORE DATABASE tabular_modelling
40 | FROM DISK = N'C:)\BOOKA\SQLDATA\tabular_modelling.bak’
50 |WITH FILE =1
60 |, MOVE N'tabular modelling' TO N'C:\BOOK\SQLDATA\tabular_modelling.mdf’
71|, MOVE N'tabular modelling_log' TO N'C:\BOOK\SQLDATA\tabular_modelling.ldf’
8 » MNOUNLOAD, REPLACE, STATS =25
g
1@ G0
100 % ~

percent
percent
percent
percent
percent
percent
percent
percent
percent
percent
percent
percent
percent
percent
percent
percent
percent
percent

5 percent processed.

processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.
processed.

188 percent processed.
Processed 8688 pages for database 'tabular_modelling', file 'tabular_modelling' on file 1.
Processed 2 pages for database 'tabular_modelling', file 'tabular_modelling_log' on file 1.
RESTORE DATABASE successfully processed 8618 pages in 1.582 seconds (42.519 MB/sec).

If the folders used on your computer are different, the directories in the script should be
changed accordingly. It should also be noted that SQL Server does not require its data (or log
files) to be stored in specific folders, so the choice of C: \BOOK\SQLDATA as a data folder
may be suitable.

297

Symbols

445 calendar
about 98
using 99, 100
working 101
445 Dates 99
.atomsvc feeds 54
<expression> parameter 63

A

Accessories category 86
ADDCOLUMNS function 250
Advanced tab 28, 205
aggregates

summing 62
ALL function 87
ALLSELECTED function 87
ALTER commands 226
Analysis Services

workbook, restoring to 182-185
Analyze in Excel button 196, 236
AutoSum button 33

Bar Chart button 273
base table
defining 255
bin grouping 118
BISM 37
BLANK() function 108
Business Intelligence Semantic Models.
See BISM

Index

C

CALCULATE function 83, 95
calculation area 32
Calculation Area button 32
card control

about 283

working with 283-286
charts

creating 272-275

manipulating 272-275
client tools 121
Column Filters button 239
connections

managing 50-53
Control Content 266, 268
Convert Report Filters option 160
Convert to Formulas button 159
COUNTROWS function 71,131
Create Hierarchy option 60
Create Linked Table button 9
Create Relationships window 22
CREATE statement 224
cube functions

about 159

using 159-163
Cube Name property 189
CUBEVALUE function 162
currency calculations

performing 138-143
current date 92
customer list 8

D

data
allocating, at different levels 144-150
importing, as text 38-43
importing, from databases 43-49
processing 227-233
restricting, with filters 251-253

restricting, with where conditions 251-253

retrieving, from single table 245-248
securing, with roles 193-198
sorting 58, 59

Data Analysis Expressions (DAX) 29

Database Management System (DBMS) 43

databases
creating 296, 297
data, importing from 43-50
Data Categories 288
data feeds
about 54
using 55
working 56
data filtering
tabular relationships, using for 18-28
datasets
customers list 8
date list 8
orders list 8
product categories list 7
product list 7
product subcategories list 7
DATEADD function 105
dates list 8
DAX 127
Deployment Wizard
using, for model deploying 212-218
Design button 53
dimension 223
dimensional table
manipulating 118-124
DirectQuery Mode Property option 235
DirectQuery solution
about 234
implications, demonstrating 241
new project, creating 234-240
restrictions 234

300

DISTINCTCOUNT function 131
Do Not Process option 212
Download button 294
dynamic security
implementing 198-201

Excel tabular model

promoting, methods 182
Existing Connections button 120
Export to Data Feed button 55

F

field appearance
managing 12-18
Field List button 35
fields
adding, to tables 28-30
linking, between tables 30
Filter 157
Filters Pane 265
FIRSTDATE function 101
Format as Table button 10
Formulas tab 10
From Data Feeds button 55

H

HideMemberlf property 71
hierarchies
creating, for drilldown interaction 60-62
hierarchy 121
Home Tab 12

ImageLoad command 185
images
displaying 279-281
using 279, 281
Import From Data Source button 190
Install button 296

K

Key Performance Indicators. See KPI

KPI
about 74
adding, to model 76, 78
creating 75, 76
measures, adding to model 78-80

L

LASTDATE function 101
last non-empty function
using 132-136
working 137, 138
last year value 101-105
levels 121
LOOKUPVALUE function 31

Manage Relationships button 22
many-to-many relationships
defining 127-130
working 131, 132
maps 287
MDX (Multidimensional Expressions) 89
measure group 223
Measure Settings window 27
Microsoft SQL Server 235
model calculations
about 32
creating 32-36
models
creating 8
deploying, Deployment Wizard used 212-218
deploying, from SSDT 208-212
deploying, in SSDT 189-192
importing, to SSDT 186-189
working 10, 11
Month to Date (MTD) aggregations 96-98
Multidimensional Online Analytical
Processing (MIOLAP) 218
multidimensional view
differentiating, with tabular model 244
multiples 290

Name Box 160
Name Manager window 11

0

Online Transactional Processing (OLTP) 44
Open DataBase Connectivity (ODBC) 43
Open Data Protocol (OData) 54

orders list 8

P

parent-child hierarchies

about 65

creating 68-74

diagram 66

using 66, 68
Pareto principle 259
partitions

creating 218-226

managing 218-226
PATHITEM function 69
perspectives

creating 201-205
pipe symbol (]) 145
PivotTable button 12, 154
PivotTable Connections... option 157
PivotTable Field List window 36
pivot tables

connecting 153-158
PowerPivot

installing 293-296
PowerPivot Data Connections group 50
PowerPivot Field List 153
PowerPivot Field List panel 17
Power View

about 262

trellis charting, implementing 290
Power View report

Control Content 266

creating 263-271

Filters Pane 265

Power View Field List 265

Report Canvas 265
Preview Selected Table window 49
prior period value

about 101-103

forms 101, 102

working 103-105
processed 211
ProcessRecalc command 233

301

product categories list 7 Slicers

product list 7 connecting 153-158
product subcategories list 7 managing, through VBA 172-180
projection Slicer Settings... options 178
used, for data combination from different smart key 145
tables 248-251 snowflake schema 19
sort by column 125
Q sp_grant_proxy_to_subsystem command 233

. SQL Server Analysis Services. See SSAS
Quarter to Date (QTD) aggregations 96, 97 SQL Server Data Tool. See SSDT

SQL Server Management Studio

R (SSMS) 183, 217
RANKX function 124 SQL Server Trace 237, 238
ratios SSAS 37,133, 182, 207
building 84-88 SSDT
Recurring option 231 about 182, 203, 209
related table 24 models, deploying from 208-211
Relational Online Analytical Processing models, deploying in 189-192
(ROLAP) 234 models, importing to 186-189
Relative Time dimension stac.ked chart
about 105 using 275
using 107-109 star schema 19
Report Canvas 265, 266 status measure 78
Resellers table Stock on Hand 133
discretizing 125, 126 Summing Aggregates and Row

result_columnName parameter 31 lteration 62-65

role playing dimensions 80-84
roles

data, securing with 193-198
row filter context 122
Row Filters tab 196

T

table appearance
managing 12-18
table behavior

rows working with 283

iterating 62-65 Table Behavior dialog 285
runnlr_lg totals table fields

adding, to model 92-95 automating, with default field sets 281, 282

using 92 Table Import Wizard window 49, 56

TABLE label 270
S tables
deriving 253

Select Related Tables button 49, 55

Select Tables and Views window 49 deriving, with DAX query 254-260

SharePoint 262 fields, linking between 30, 31
silver Light 265 managing 50-54
single table tabulgr m.odel . _
data, retrieving from 245-248 configuring, for using with map 287-289
Slicer Control 180 differentiating, with multidimensional
view 244

302

tabular modeling. See also BISM
tabular modeling
about 7
lifecycle, steps 8
tabular relationships
used, for data filtering 18-28
target measure 78
tilde (~) 145
tile
about 276
adding 276-278
Tile Type button 278
TOPN function 258
TOP N query 258
TOP % query 258
totals to date functions
working 97
trellis charting
about 290
implementing, in Power View 290-292

U

Uniform Resource Locator (URL) 279
Use an external data source option 154
USERNAME() function 201
Utility dimension

about 105

creating 107

\'}

Validate button 53

Value measure 78

VALUES() function 109

VBA
Slicer, managing through 172-180
working with 163-172

Visual Basic for Applications (VBA) 165

w

WEB URL feature 281
workbook

restoring, to Analysis Services 182-185
worksheet events

working with 163-172
Worksheet_SelectionChange event 176

X

XMLA 212
XML for Analysis. See XMLA
XVelocity 37

Y
Year to Date (YTD) aggregations 96, 97

303

enterprise &

professional expertise distilled

PUBLISHING

Thank you for buying
Microsoft Tabular Modeling Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enferprise &

professional expertise distiled

"PUBLISHING

Server 2008 R2 Analysis
Services: Cookbook

2 2 oarvT]enterorise ®
Tomislav Piasevoli [PACKT] enterpeise

MDX with Microsoft SQL
Server 2008 R2 Analysis
Services: Cookbook

ISBN: 978-1-84968-130-8 Paperback: 480 pages

80 recipes for enriching your Business Intelligence
solutions with high-performance MDX calculations and
flexible MDX queries

1. Enrich your Bl solutions by implementing best
practice MDX calculations

2. Master a wide range of time-related,
context-aware, and business-related calculations

3. Enhance your solutions by combining MDX with
utility dimensions

4. Become skilled in making reports concise

Expert Cube Development with
Microsoft SQL Server 2008
Analysis Services

Expert Cube Development
with Microsoft SQL Server
2008 Analysis Services

ISBN: 978-1-84719-722-1 Paperback: 360 pages

Design and implement fast, scalable, and
maintainable cubes

1. Areal-world guide to designing cubes with
Analysis Services 2008

2. Model dimensions and measure groups in
Bl Development Studio

3. Implement security, drill-through, and
MDX calculations

4. Learn how to deploy, monitor, and
performance-tune your cube

Please check www.PacktPub.com for information on our titles

"PUBLISHING

Business Intelligence Cookbook:
A Project Lifecycle Approach
Using Oracle Technology

John Heaton [PACKT] enterprise®

enterprise 8

professional expertise distilled

Business Intelligence
Cookbook: A Project
Lifecycle Approach Using

Oracle Technology
ISBN: 978-1-84968-548-1 Paperback: 368 pages

Over 80 quick and advanced recipes that focus on
real-world techniques and solutions to manage,
design, and build data warehouse and business
intelligence projects

1. Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real-time examples
to perform key steps and functions on your project

2. Practical ways to estimate the effort of a data
warehouse solution based on a standard work
breakdown structure

Microsoft Dynamics GP
2013 Reporting

Second Edition

Christophes J Lilay

David Duncan [PACKT] enterer il

Microsoft Dynamics GP 2013

Reporting Second Edition
ISBN: 978-1-84968-892-5 Paperback: 386 pages

Create valuable insights for your organization with
Microsoft Dynamics GP 2013 reporting tools

1. Explore the new reporting features found
in GP 2013

2. Add value to your organization by identifying
the major reporting challenges facing your
organization and selecting the most effective
reporting tool to meet those challenges

3. Empower users from top to bottom in your
organization to create their own reports

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with Excel
	Introduction
	Creating the model
	Managing the appearance of tables
and fields
	Using tabular relationships to filter data
	Adding fields to tables
	Linking fields between tables
	Creating model calculations

	Chapter 2: Importing Data
	Introduction
	Importing data as text
	Importing data from databases
	Managing connections and tables
	Using data feeds

	Chapter 3: Advanced Browsing Features
	Introduction
	Sorting data
	Creating hierarchies for drilldown interaction
	Summing aggregates and row iteration
	Parent-child hierarchies
	Creating and using Key Performance Indicators
	Role playing dimensions and relationships
	Building ratios

	Chapter 4: Time Calculations
and Date Functions
	Introduction
	Calculating running totals – totals to date
	Month, quarter, and year to date aggregations
	445 dates and irregularities
	Last year and prior period values
	Relative Time – pivoting around measures
	Moving averages and last N averages

	Chapter 5: Applied Modeling
	Introduction
	Grouping by binning and sorting with ranks
	Defining many-to-many relationships
	Using the last non-empty function for
stock data
	Performing currency calculations
	Allocating data at different levels

	Chapter 6: Programmatic
Access via Excel
	Introduction
	Connecting pivot tables and Slicers
	Using cube functions
	Working with worksheet events and VBA
	Managing the Slicer through VBA

	Chapter 7: Enterprise Design
and Features
	Introduction
	Restoring a workbook to Analysis Services
	Importing models into SQL Server
Data Tools
	Developing models in SQL Server Data Tools
	Securing data with roles
	Implementing dynamic security
	Creating perspectives

	Chapter 8: Enterprise Management
	Introduction
	Deploying models from SSDT
	Deploying models with the Deployment Wizard
	Creating and managing partitions
	Processing the data
	DirectQuery and real-time solutions

	Chapter 9: Querying the Tabular Model with DAX
	Introduction
	Retrieving data from a single table
	Using projection to combine data from different tables
	Restricting data with filters and where conditions
	Deriving tables and selecting top n records

	Chapter 10: Visualizing Data
with Power View
	Introduction
	Creating a Power View report
	Creating and manipulating charts
	Using tiles (parameters)
	Using and showing images
	Automating the table fields with default
field sets
	Working with table behavior and card control
	Using maps
	Using multiples (Trellis Charts)

	Appendix: Installing Power Pivot and Sample Databases
	Installing Power Pivot
	Creating the Database

	Index

