
www.allitebooks.com

http://www.allitebooks.org


Microsoft Tabular 
Modeling Cookbook

Over 50 tips and tricks for analytical modeling using 
Business Intelligence Semantic Models with SQL Server 
2012 and PowerPivot

Paul te Braak

   BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Microsoft Tabular Modeling Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd. 
Livery Place 
35 Livery Street 
Birmingham B3 2PB, UK.

ISBN 978-1-78217-088-4

www.packtpub.com

Cover Image by Neston Simeoes (nestonsimoes@ymail.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Paul te Braak

Reviewers
Anindita Basak

Steve Hughes

Cosmin Ioan

Stevo Smočilac

Acquisition Editors
Sam Birch

Edward Gordon

Lead Technical Editor
Ankita Shashi

Technical Editors
Pankaj Kadam

Pramod Kumavat

Adrian Raposo

Project Coordinator
Shiksha Chaturvedi

Copy Editors
Alisha Aranha

Sayanee Mukherjee

Deepa Nambiar

Alfida Paiva

Laxmi Subramanian

Proofreader
Linda Morris

Indexer
Rekha Nair

Graphics
Yuvraj Mannari

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org


About the Author

Paul te Braak (ptebraak@abaXdata.com.au) is a leading Business Intelligence 
Consultant based in Australia. He has been involved in Information Management for over 15 
years, with the past 9 years focusing on the Microsoft Business Intelligence stack. His areas 
of interest include data modeling, data mining, and visualization. He is an active participant in 
the SQL Server community, speaks at various local and international events, and organizes a 
regional SQL Server Saturday. His blog can be found at www.paultebraak.wordpress.com.

I would like to thank everyone who has contributed to this book. Like most 
projects, there are many behind-the-scenes people who have assisted me, 
and I am truly grateful to those people. The book would never have been 
complete without your help! 
 
Firstly, I'd like to thank my wife for her understanding and acceptance during 
the project when I spent nights and weekends working. I am sure that my 
responsibilities at home have decreased (well, they've been removed), and 
this has afforded me the time to focus on writing. 
 
I would also like to thank Cathy Dumas for recommending me to Packt 
Publishing at the start of the project, and all the reviewers who have 
provided their input along the way and looked over my work with an 
objective view. I would like to thank the members of the community who  
are always willing to participate in events and forums that help us improve 
our knowledge. 
 
Finally, I'd like to thank Packt Publishing and all the associated staff  
(believe me, there have been quite a few) for the opportunity to write  
for them.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Anindita Basak is currently working as a senior system analyst at Sonata Software 
in the Windows Azure Pro Direct Delivery group of Microsoft. She has worked as a senior 
software engineer on implementation of various enterprise applications on Windows Azure 
and Windows phone. She started her journey with Windows Azure in the Microsoft Cloud 
Integration Engineering (CIE) team and worked as a support engineer in Microsoft India 
(R&D) Pvt. Ltd. With six years of experience in the Microsoft .NET technology stack, she is 
solely focused on Cloud and Microsoft Mobility. As an MVB, she loves to share her technical 
experience and expertise through her blog at http://anindita9.wordpress.com.

She recently worked as a technical reviewer for the books HDInsight Essentials and Microsoft 
SQL Server 2012 with Hadoop by Packt Publishing.

She holds a B.E in Information Technology from West Bengal University of Technology  
(formerly IIIT Calcutta). She has attended various business conferences and technology 
seminars of Microsoft.

I would like to thank my grandpapa Mr. Kanti Das Basak, mom, Anjana, dad, 
Ajit Kumar Basak, and my affectionate brother, Aditya. Without their help, I 
can't achieve any goals of my life.

www.allitebooks.com

http://www.allitebooks.org


Steve Hughes is a Practice Lead at Magenic. In his current role, he develops strategy and 
helps guide data, Business Intelligence, collaboration, and data integration development 
using Microsoft technologies, including SQL Server, SharePoint, and BizTalk. He continues 
to deliver data and Business Intelligence solutions using these platforms. He has been 
working with technology for over 15 years with much of that time spent on creating Business 
Intelligence solutions. He is passionate about using data effectively and helping customers 
understand that data is valuable and profitable. Steve can often be found at Professional 
Association for SQL Server (PASS) events, where he serves as a regional mentor and is active 
with the Minnesota SQL Server User Group (MNPASS). He shares his insights about the field 
on his blog at http://dataonwheels.wordpress.com.

I would like to thank my family for their continued support on these projects.

Cosmin Ioan is a data warehouse and Business Intelligence architect with over 16 years' 
experience in the Information Technology field, spanning development languages, systems 
administration, RDBMS and OLAP design, architecture, troubleshooting, and scalability on 
Microsoft, Oracle, and Sybase platforms. He has worked in consultancy and full-time roles for 
companies, public and private companies alike, such as Motorola, Citrix, Aetna, and Sheridan 
Healthcorp, chiefly building data warehouse and systems integration solutions, allowing 
companies to better harness and give meaning to their data assets.

When not working, Cosmin enjoys scuba diving and racquet sports.

Writing a technical book and reviewing one are never easy tasks. Due to 
inherent time constraints and ever-changing technology advancements, 
keeping a delicate balance between product depth and breadth, as well 
as a target audience for covering any one technical product is always a 
challenging proposition. My thanks to Paul for taking up such a challenge 
and allowing me to be part of the effort, as well as the nice team at Packt 
Publishing for their endeavor in publishing quality technical books.

www.allitebooks.com

http://www.allitebooks.org


Stevo Smočilac is an associate principal consultant at Magenic, a Microsoft Gold Certified 
Partner, who specializes in Business Intelligence solutions.

He has over 12 years' experience of working in software development, the last seven of which 
have focused on designing, implementing, managing, and administrating technical solutions 
developed using Microsoft SQL Server and the Microsoft Business Intelligence stack. He 
has been involved in all phases of the BI development lifecycle from envisioning through 
operational support, and he is passionate about the field of Business Intelligence.

Stevo is currently a Virtual Technology Solutions Professional (V-TSP) for Business Intelligence, 
a Microsoft Certified IT professional, and holds a B.Tech degree in Information Technology.

Originally from South Africa, he now resides in (the much colder) Northeastern United States 
with his wife Talya.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book 
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. 
Here, you can access, read and search across Packt's entire library of books. 

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, 
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface 1
Chapter 1: Getting Started with Excel 7

Introduction 7
Creating the model 8
Managing the appearance of tables and fields 12
Using tabular relationships to filter data 18
Adding fields to tables 28
Linking fields between tables 30
Creating model calculations 32

Chapter 2: Importing Data 37
Introduction 37
Importing data as text 38
Importing data from databases 43
Managing connections and tables 50
Using data feeds 54

Chapter 3: Advanced Browsing Features 57
Introduction 57
Sorting data 58
Creating hierarchies for drilldown interaction 60
Summing aggregates and row iteration 62
Parent-child hierarchies 65
Creating and using Key Performance Indicators 74
Role playing dimensions and relationships 80
Building ratios 84

Chapter 4: Time Calculations and Date Functions 91
Introduction 91
Calculating running totals – totals to date 92

www.allitebooks.com

http://www.allitebooks.org


ii

Table of Contents

Month, quarter, and year to date aggregations 96
445 dates and irregularities 98
Last year and prior period values 101
Relative Time – pivoting around measures 105
Moving averages and last n averages 109

Chapter 5: Applied Modeling 117
Introduction 117
Grouping by binning and sorting with ranks 118
Defining many-to-many relationships 127
Using the last non-empty function for stock data 132
Performing currency calculations 138
Allocating data at different levels 144

Chapter 6: Programmatic Access via Excel 151
Introduction 151
Connecting pivot tables and Slicers 153
Using cube functions 159
Working with worksheet events and VBA 163
Managing the Slicer through VBA 172

Chapter 7: Enterprise Design and Features 181
Introduction 181
Restoring a workbook to Analysis Services 182
Importing models into SQL Server Data Tools 186
Developing models in SQL Server Data Tools 189
Securing data with roles 193
Implementing dynamic security 198
Creating perspectives 201

Chapter 8: Enterprise Management 207
Introduction 207
Deploying models from SSDT 208
Deploying models with the Deployment Wizard 212
Creating and managing partitions 218
Processing the data 227
DirectQuery and real-time solutions 234

Chapter 9: Querying the Tabular Model with DAX 243
Introduction 243
Retrieving data from a single table 245
Using projection to combine data from different tables 248
Restricting data with filters and where conditions 251
Deriving tables and selecting top n records 253



iii

Table of Contents

Chapter 10: Visualizing Data with Power View 261
Introduction 261
Creating a Power View report 263
Creating and manipulating charts 272
Using tiles (parameters) 276
Using and showing images 279
Automating the table fields with default field sets 281
Working with table behavior and card control 283
Using maps 287
Using multiples (Trellis Charts) 290

Appendix: Installing PowerPivot and Sample Databases 293
Installing PowerPivot 293
Creating the database 296

Index 299





Preface
In 2010, Microsoft announced a change to its Business Intelligence environment, and said it 
will focus its development efforts on semantic modeling. At that time, the current technology 
used for analysis was SQL Server Analysis Server (SSAS), a technology that relied on disk-
based storage and the distinct steps of model development, deployment, and processing—a 
function usually under the control of IT. The new technology will house all its data in memory 
and allow the user (or model designer) to change the model in real time and view those 
changes instantaneously. In addition to this, the platform sought to remove many of the 
barriers that had existed in the traditional Business Intelligence landscape. It offered a 
uniform platform for data analysis across an entire organization. The same platform can now 
be used by an individual user in Excel deployed to SharePoint (for team Business Intelligence) 
or directly to a server (for corporate Business Intelligence). This will remove a large proportion 
of the rework that was traditionally involved in Business Intelligence projects and lead to 
the catchcry "BI to the masses" (meaning that anyone can model a Business Intelligence 
solution). A free add-in was released for Excel 2010, and the 2012 release of Analysis Server 
(in SQL Server) included a new storage mode called tabular.

This was an interesting challenge to the traditional methods for implementing Business 
Intelligence models. Under that structure, Business Intelligence was essentially controlled by 
an IT department, which used a waterfall methodology and there were distinct phases in an 
analytical project involving the separation of duties and more importantly, the separation of 
people. Those that had to use data models were often involved with a back-and-forth battle to 
make the model work as the business user required.

Tabular models were then introduced and overnight Excel users were able to consume 
massive amounts of data and create their own analytical models without the need to involve 
IT (other than access to the data of course!). The product extended the familiar pivot table 
by allowing users to create pivot tables using many different data sources (and removed the 
requirements for a pivot table to be sourced from a single data table). More importantly, the 
ability to create models for the analysis of data was delivered directly to those who needed it 
most—the analytical end user. The restrictions on analysis and data manipulation that they 
had previously encountered were removed.



Preface

2

This book is primarily written for those users—individuals who need to answer questions based 
on large amounts of data. For this reason, we focus on how these users can use that technology 
to build models in Excel using PowerPivot. We simply don't want to exclude those users who 
need it the most and do not have access to the more traditional tools developed for corporate 
BI. Furthermore, these techniques are also directly applicable to corporate tabular models.

Finally, the book looks at how these models can be managed and incorporated into production 
environments and corporate systems to provide robust and secure reporting systems.

What this book covers
Chapter 1, Getting Started with Excel, covers the basics of the tabular model, that is, how to 
get started with modeling and summarizing the data. This chapter includes a basic overview 
of how the tabular model works and how the model presents to an end user (we also look 
at some general data modeling principles, so that you can better understand the underlying 
structure of the datasets that you use). In doing so, we look at the basics of combining data 
within the model, calculations, and the control (and formatting) of what an end user can see.

Chapter 2, Importing Data, examines how different forms of data can be incorporated and 
managed within the model. In doing so, we examine some common sources of data which 
are used (for example, text files) and examine ways that these sources can be controlled and 
defined. We also examine some non-traditional sources (for example, data that is presented  
in a report).

Chapter 3, Advanced Browsing Features, examines how the model can be structured to 
provide an intuitive and desirable user experience. We examine a variety of techniques that 
include model properties and configurations, data structures and design styles, which can 
be used to control and present data within the model. We also examine how to create some 
common analytical features (for example, calculation styles, value bounds, ratios, and key 
performance indicators) and how these can be used.

Chapter 4, Time Calculations and Date Functions, explains how time and calendar 
calculations are added and used within the model. This chapter looks at defining the 
commonly used month-to-date and year-to-date calculations, as well as comparative 
calculations (for example, the same period last year). We also look at alternate calendars  
(for example, the 445 calendar) running averages and shell calculations.

Chapter 5, Applied Modeling, discusses some advanced modeling functionality and how 
the model can be used to manipulate its own data thus presenting new information. For 
example, we look at the dynamic generation of bins (that is, the grouping of data), currency 
calculations, many-to-many relationships, and stock calculations over time. We also look at 
how the model can be used to allocate its own data so that datasets that have been imported 
into the model at various levels of aggregation can be presented under a consistent view.



Preface

3

Chapter 6, Programmatic Access via Excel, explains how the tabular model can open a new 
world of possibilities for analysis in Excel by allowing the creation of interactive reports and 
visualizations that combine massive amounts of data. This chapter looks at how Excel and the 
tabular model can be used to provide an intuitive reporting environment through the use of 
VBA—Visual Basic for Applications is the internal programming language of Excel.

Chapter 7, Enterprise Design and Features, examines the corporate considerations of the  
tabular model design and the additional requirements of the model in that environment. We 
look at the various methods of upgrading PowerPivot model, perspectives, and the application 
of security.

Chapter 8, Enterprise Management, examines how the model is managed in a corporate 
environment (that is on SQL Server Analysis Server). This chapter looks at various techniques 
for deploying the tabular model to a SSAS server and the manipulation of objects once they 
have been deployed (for example, the addition and reconfiguration of data sources). We look 
at the addition of new data to the model through petitions and the processing of the model 
data through SQL Server Agent Jobs.

Chapter 9, Querying the Tabular Model with DAX, shows how to query the model using the 
language of the tabular model—DAX (Data Analysis Expressions). We look at how to retrieve 
data from the model and then go on to combine data from different parts of the model, create 
aggregate summaries and calculations, and finally filter data.

Chapter 10, Visualizing Data with Power View, explains how Power View can be used to 
analyze data in tabular models. This chapter looks at how to use Power View and how to 
configure and design a tabular model for use with Power View.

Appendix, Installing PowerPivot and Sample Databases, shows how to install PowerPivot in 
Excel 2010 and install the sample data used in this book.

What you need for this book
As a book which covers many aspects of tabular modeling, the recipes can be followed using 
a variety of software that incorporates tabular modeling. Although we focus on PowerPivot in 
Excel 2010 (this is still the most prevalent installation in corporate environments), the recipes 
can also be completed in Excel 2013. When recipes focus on server and corporate features, 
SQL Server Analysis Services 2012 (in tabular storage mode) is used. The complete list of 
software applications used in this book is:

 f Excel 2010 (with the free PowerPivot add-in)

 f Excel 2013

 f SQL Server Data Tools (installed with SQL Server 2012)

 f SQL Server 2012 (SQL Server Analysis Server Tabular Mode)



Preface

4

Who this book is for
This book is designed for two types of users. First and foremost, it is designed for those 
users who wish to create tabular models for analysis regardless of whether they create the 
model for personal use in Excel using PowerPivot or server-based models that are deployed 
to Analysis Services. For those modelers, we show how to design, create, and manipulate 
the model so that it can be used to answer the types of questions that appear in business. 
For these users and consumers of model data, we also show how the model can be used to 
provide an intuitive and interactive report (both in Excel and Power View). Our goal for these 
users was to give them the skills so that they can build a model capable of answering their 
business questions.

The second category of users are those who are responsible for the maintenance of models in 
corporate environments. These are administrators who must ensure that the corporate model 
data is up-to-date and secure. For these users we show tricks and techniques to deploy the 
model and keep it running smoothly.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Each  
product is identified by a product_id value."

A block of code is set as follows:

=LOOKUPVALUE
  (Subcategory[Subcategory]
  , Subcategory[product_id],Products[Product ID]
)



Preface

5

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "Then on the PowerPivot tab, 
click on the Create Linked Table button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly to you.



Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report 
them by visiting http://www.packtpub.com/submit-errata, selecting your book, 
clicking on the errata submission form link, and entering the details of your errata. Once your 
errata are verified, your submission will be accepted and the errata will be uploaded on our 
website, or added to any list of existing errata, under the Errata section of that title. Any existing 
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.



1
Getting Started  

with Excel

In this chapter, we will cover:

 f Creating the model
 f Managing the appearance of tables and fields
 f Using tabular relationships to filter data
 f Adding fields to tables
 f Linking fields between tables
 f Creating model calculations

Introduction
This chapter is designed as an introduction to tabular modeling by using PowerPivot. 
It shows the process by which a user imports data into PowerPivot for Excel, creates 
relationships between the datasets, and then reports on it.

The data used in this chapter is based on the orders of the fictitious bicycle company (named 
Adventure Works). Our data includes six datasets and they are:

 f Product list: This shows some generic information about the products being sold (for 
example, the name, color, and size of the product). Each product is identified by a 
product_id value.

 f Product subcategories list: This shows a subcategory that a product belongs to. The 
list shows the product_id value and the associated subcategory (by ID and Name).

 f Product categories list: This shows the product category that a product belongs to. 
The list shows the product_id value and the associated category (by ID and Name).



Getting Started with Excel

8

 f Orders list: This shows what orders have been placed by customers. The list includes 
an entry for each product that has been ordered. This data simulates a detailed 
extract from an operational source system.

 f Customer list: This gives us information about the customer (for example, their 
names, countries, and states) by customer number.

 f Dates list: This simply lists consecutive days defining information such as the month 
name, year, and half-year period of the date.

The tabular modeling lifecycle revolves around three primary steps. These are:

 f Getting the data into the model
 f Defining the relationships among tables
 f Defining calculations based on business logic

This chapter examines these steps and allows the reader to become familiar with the tabular 
(PowerPivot) design environment.

Creating the model
An Excel workbook can only contain one tabular model and that one model contains tables of 
data (which may or may not be related). The first step to create a model is to import data into 
it. There are many techniques to do this—some techniques have advantages over others but 
for now, let's only consider the fact that we want to load data that exists in an Excel worksheet 
into the model.

The installation instructions for PowerPivot in Excel 2010 are 
covered in the Appendix, Installing PowerPivot and Sample 
Databases, of this book.

Getting ready
Open the Excel workbook named SalesBook which is available from the Packt Publishing 
website to examine the worksheets within the book. Each sheet contains a dataset for 
Products, Subcategories, Categories, Customers, Dates, and Sales.

How to do it…
This recipe looks at importing data into the PowerPivot model through linked tables. These are 
very convenient to use when the data is stored in Excel. Additionally, once the data has been 
imported into PowerPivot, it retains a connection to the Excel table. This means that, when the 
data is changed in Excel, it can also be changed in the PowerPivot model.

1. Let's start by importing the product list. Select the Product List sheet and  
select cell A1.



Chapter 1

9

2. Then, on the PowerPivot tab, click on the Create Linked Table button.

Excel will automatically highlight the data range.

3. A small window will open confirming the data range with a checkbox for table 
headers. Select the checkbox and press OK.

4. The PowerPivot window will open and the data from the Product List sheet will be 
imported. Note that the table appears as a tab which is similar to Excel and is called 
Table1. Also, note that the PowerPivot window is a separate window than the Excel 
workbook, so that we can return to Excel.

5. Repeat this process for all the remaining datasets except Customers.



Getting Started with Excel

10

How it works…
When a linked table is created in PowerPivot, Excel creates a named range in the Excel 
workbook. This is then linked to the PowerPivot model (note that there is a small chain symbol 
before each of the tables). Also, note that the tables in Excel are formatted with alternate blue 
coloring. The named ranges can be viewed in Excel by clicking on the Name Manager button 
on the Formulas tab.

There's more…
A table (table range) is actually an Excel feature that PowerPivot utilizes. A table can be 
defined in Excel, given a meaningful name and then imported into PowerPivot, so that the 
name of the table in PowerPivot is the same as the named range in Excel.

Ensure that the Customers sheet is selected in Excel and also any cell in the Customers 
data is selected. In the Home tab, click on the Format as Table button, and choose a table 
style; the style chosen in the following screenshot is a relevant one:



Chapter 1

11

Note that the data is now formatted with alternating colors (based on the selected style). 
Return to the Name Manager window and double-click the table that relates to the 
Customers worksheet. A new window will open allowing you to edit the name, replace 
the name Table6 with Customers, and click on OK. The Table6 name is replaced by 
Customers in the Name Manager window.

Now, create a linked table in the same manner as we did before and note that the name of 
the table imported into PowerPivot is Customers.

If you want to select an entire table in Excel, simply choose 
the table name from the Name Box drop-down list in the 
formula bar in the upper-left corner. This is shown in the 
following screenshot:



Getting Started with Excel

12

Managing the appearance of tables  
and fields

A PowerPivot workbook contains two products that allow the user to analyze data. Firstly, 
there is the xVelocity in-memory analytics engine (the tabular model) which is a columnar 
database embedded in the workbook. Secondly, there is a client tool that allows the model to 
be queried, it also displays the results to the user in the form of a pivot table or pivot chart. In 
Excel 2010, the client tool was restricted to pivot table functionality (for example, a pivot table 
or pivot chart). In Excel 2013, the tools set has been extended to include Power View. The 
important distinction here is that the client tool is used to present the model to the user.  
This recipe shows how to control the way the model is presented to the user.

Getting ready
This recipe uses the model that has already been created in the prior recipe Creating the 
model. If this model has not been created, follow the recipe to ensure that the model has 
been loaded with data.

How to do it…
Start from an existing model within PowerPivot.

1. Ensure that you are in the PowerPivot window (not Excel), then click on the PivotTable 
button in the Home Tab.



Chapter 1

13

2. PowerPivot will switch back to the Excel window and a dialog will prompt for the 
location of the new pivot table. Select New Worksheet and click on OK.

3. Excel will now show PowerPivot Field List and a pivot table work area. These are 
identified by the arrows in the following screenshot. Note that PowerPivot Field List 
shows tables from the model as nodes, with the fields from the model as children.



Getting Started with Excel

14

4. Return to the PowerPivot application window and double-click on the Table1 tab. The 
name Table1 will be in a blue background and rename it to Products. Repeat this 
exercise for the other tables (Subcategory, Category, Dates, and Sales). The 
table names in your PowerPivot window will now look like the following screenshot:

5. Return to Excel and notice that PowerPivot Field List has detected a change in  
the model and prompts the user to refresh. Click on the Refresh button and note  
that the changes in the names of the tables are now reflected in the PowerPivot 
Field List panel.

Before After

6. Return to the PowerPivot application window and select the Products table. Double-
click on the product_id field and enter Product ID as the new name.  
The field will have a blue background when its name can be changed.



Chapter 1

15

7. Return to the PowerPivot window and update the remaining columns to the  
following names:

Table Column New name
Products product_id Product ID

Products product_name Product Name

Products colour Colour

Products size_range Size Range

Products size Size

Subcategory subcategory_name Subcategory

Category category_name Category

Dates date Day

Dates year Year

Dates month_name Month

Dates half_name Half

Sales order_number SO Number

Customers customer_id Customer ID

Customers customer_name Customer Name

Customers country_code Country Code

Customers state_code State Code

8. Return to Excel and refresh PowerPivot Field List. The column names will now 
display as those that were entered.

You can also rename fields by right-clicking on the field and 
selecting Rename Column from the pop-up in PowerPivot. 
Alternatively, you can double-click on the field name  
(so that it changes the color of the field) and rename it.

9. Return to the PowerPivot window and select the Sales table. Right-click anywhere 
on the order_number_line field and select Hide from Client Tools in the pop-up 
window. Select all the fields product_id, order_date, and customer_id by 
clicking-and-dragging the mouse across the three fields and hide these fields too.

PowerPivot mimics Excel in the way that you can select multiple 
fields by dragging your mouse across several columns (with the 
left button continually pressed). You can also select the first 
column, hold the Shift key, and select the final column.

Unlike Excel, multiple columns cannot be selected by using the 
Ctrl key and selecting multiple fields.



Getting Started with Excel

16

10. Return to the PowerPivot window, refresh PowerPivot Field List, and expand the 
Sales table. Note that these fields no longer appear in the field list.

11. Add the Day field to the pivot by expanding the Dates table and selecting the 
checkbox next to the Day field. The column will be automatically added to the  
rows area of the pivot and will be displayed, as shown in the following screenshot:

You can achieve the same result by dragging the Day field 
and dropping it in the Row Labels area of the pivot.



Chapter 1

17

12. Return to the PowerPivot window and select the Day column. From the format list, 
select More Dates Formats…, and then select the dd-MMM-yy format from the list 
of available formats. The value presented will show a formatted sample of the data. 
Choose the item that shows 14-Mar-01.

13. Return to Excel and refresh the pivot table. Note that the PowerPivot Field List panel 
may not indicate the change to the model. However, when the pivot table is refreshed, 
the data displays the new format.

www.allitebooks.com

http://www.allitebooks.org


Getting Started with Excel

18

14. In the Sales table, format the columns unit_price, unit_cost, tax, and 
total_price as a whole numeric number by selecting the columns and choosing 
Currency from the Format drop-down list.

How it works…
The semantic model defines the metadata structure of the model and includes information 
such as table names, column names, and data presentation formats. The model designer 
interacts with the semantic model through its presentation layer in a real-time manner (note 
that the model did not have to be deployed to a server), so that the changes made in the 
model are immediately available to the user.

The modeling environment behaves in a What You See Is What You Get (WYSIWYG) manner 
which means that any changes made to the design environment are reflected in the model 
that is presented to the user.

There's more…
There are two methods that the model designer can use to examine the structure of the 
model. So far, we have only examined the data view. The diagram view shows all tables and 
columns (including hierarchies) that are used within the model and presents them on a 
design surface. This is shown in the next recipe.

Using tabular relationships to filter data
In addition to table names, column names, and data formats, a semantic model defines how 
tables within a model relate to each other. This relationship is important because it defines 
the output of calculations (which are defined in the model). This recipe shows how to create 
relationships and the effect that these relationships have on the model.

Getting ready
This recipe assumes that the model in the recipe Managing the appearance of tables and 
fields has been created.



Chapter 1

19

The reader should recognize that the model is designed to show sales information by  
product, date, and customer. This type of modeling scenario is commonly referred to as a 
star schema and is shown in the following diagram. The Sales table is referred to as a fact 
table (since it stores the data facts that we wish to analyze—sales amount, tax amount, and 
so on) and the other tables are referred to as dimension (subject) tables because they hold 
descriptive information.

Customers (Order) Dates

Sales

Products

Extending the model further, the Products table is linked to the Subcategory table, and 
the Subcategory table is linked to the Category table. This is shown in the following 
diagram and is sometimes called a snowflake schema, since the dimension tables are not 
directly connected to the fact table:

Customers (Order) Dates

Sales

Products Subcategory Category

An important point to note, is that each dimension table has a unique identifying field,  
for example, a product can be uniquely identified in the Products table through the 
product_id field. This is commonly referred to as the primary key for the table.

In contrast, the referring column (product_id in the Sales table) can have many 
occurrences of the product_id field and is commonly referred to as the foreign key.



Getting Started with Excel

20

How to do it…
Start with the workbook that was developed in the prior recipe.

1. Drag the Product Name field onto the rows of the pivot table (under the Row 
Labels column) and the Sales column total_price onto values. Your screen 
should look like the following screenshot:

2. Return to the PowerPivot window and select the product_id field and then click on 
the Create Relationship button (in the Design tab). A new window will open asking 
you to define the related (lookup) table and column.



Chapter 1

21

3. Select the Products option from the Related Lookup Table drop-down list and 
Product ID from the Related Lookup Column drop-down list. The Create button  
is now enabled. Click on Create.

4. Return to the pivot table and refresh the model. The values for the Sum of  
total_price field have updated to reflect the total for each product.

5. Now, create relationships between the following tables and columns:

Source table Source column Related table Related column
Sales customer_id Customers Customer ID

Sales order_date Dates Day

Downloading the example code

You can download the example code files for all Packt 
books you have purchased from your account at 
http://www.packtpub.com. If you purchased 
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the 
files e-mailed directly to you.



Getting Started with Excel

22

6. In the PowerPivot window, click on the Manage Relationships button. A new window 
will open showing all the relationships that have been built in the model.

Relationships can be created using this window. When the Create 
button is clicked, the same Create Relationships window opens. 
However, the Create Relationships window is not populated with 
the source table and columns.

7. Click on the Diagram View button in the Home menu to switch to the diagram 
modeling view. Your screen will now show tables and columns (rather than data) and 
look like the following screenshot. Note that previously defined relationships appear 
as lines that connect tables.



Chapter 1

23

You can also switch between the data and diagram views 
by toggling the two buttons at the bottom-right side of the 
PowerPivot application status bar.

8. In the pivot table, replace the Product Name field with the Category field from the 
category table. The total value ($1,662,869.42) is repeated for all categories 
indicating that there is no relationship between the Sales table and Category table.

9. From the Products table, select the Product ID field, and drag it to the  
product_id field of the Subcateogry table. A new relationship will be created 
between Products and Subcategory. Use this method to create a relationship 
between the Products table and the Category table. Refresh the pivot table to 
ensure that the total value is not duplicated.

10. In the pivot table, drag the Product ID field from the Products table into the 
Values pane. The pivot table will now show the price and number of products for each 
category and will look like the following screenshot:



Getting Started with Excel

24

How it works…
The model has been extended to show two things. Firstly, by defining relationships between 
tables within the model, we have defined the filtering path for the data. This path is used to 
restrict rows between tables that have a relationship. Secondly, by adding a calculation (Sum 
of total_price and Count of Product ID), we have created measures that apply an aggregation 
function to the model fields. These are special types of measures within PowerPivot and are 
referred to as implicit measures (because the model implicitly defines a calculation for the field).

Relationships define how one table relates to another. In order to define a relationship, the 
join must occur on a field that has unique values in one of the tables (this is commonly called 
a primary key). The table that has the field with unique values is commonly called the related 
table. This can be seen in the diagram view, as shown in the following screenshot with the 
direction of the arrows on the relationships. Consider the Products table (which has a 
unique field product_id) that is related to the Sales table (through the product_id field 
in that table), but only the Products table needs to have a unique product_id. It is also 
said that the product_id field relates to many records in the Sales table. This can be seen 
by the direction of the arrow between Sales and Products, the related table has the arrow 
pointing towards it.

Relationships are important because they define how data is filtered and calculated when it is 
presented to the user.



Chapter 1

25

Relationships are the primary mechanisms with the model that are used to filter data and 
perform calculations. That is, the relationship defines how data is filtered when values are 
shown to the user. Although this is a new concept, the concept of relationships is important 
because they have important implications with the way that the model determines what data to 
show to the user. Consider the pivot table shown in the following screenshot—Subcategory on 
rows and Sum of total_price, Count of Product ID, and Count of category_id 
as measures:

Now, consider the relationship defined in the model. This is summarized in the  
following screenshot:



Getting Started with Excel

26

The rows in the pivot show the subcategory which defines a filter for each row (that is a filter 
for each subcategory). This filter can then be applied to the Products table, which in turn 
is applied to the Sales table. It might be better to say that the rows of the Sales table are 
filtered by the Products table and then those rows are filtered by the Subcategory table. 
This is why the calculations Sum of total_price and Count of Product ID show the 
correct values. The filter on rows of the Sales table and rows of the Products table can be 
applied in the direction of the arrows of the relationships.

However, this is not the case when Subcategory is shown with data from the Category 
table—a filter will only be applied in the direction that a relationship is created. This is why the 
calculation Count of category_id shows the same number for each subcategory. With 
the subcategory on rows, a filter is created which can filter the Products table but this filter 
cannot then applied in an upstream manner to the Category table.

The application of filters may seem unintuitive at first, especially with a relationship design 
such as the one among Products, Category, and Subcategory, but in reality the model 
should be designed so that the filters can be applied in a single direction. There is also, the 
question of unmatched values between fields used in the relationship and how they are 
treated by the model. For example, what would happen if we had a product_id field in the 
Sales table that did not have a match in the Products table? Would this even be allowed 
in the model? The tabular model handles this situation very elegantly. The model allows this 
situation (without error), and unmatched values are assigned to a blank placeholder. For 
example, if there was a product in the Sales table and no product in the Products table, it 
would be shown as blank when Products, Category, or Subcategory is used in the pivot.

We have also indicated that the model automatically created implicit measures. The term 
measure is common in business intelligence tools to specify that a calculated value is returned. 
Often, this can be a simple calculation, for example, the count of rows or the sum of a field. 
The important thing to remember is that measure is a single value that is returned from the 
model (when the model is filtered). Usually, measures are defined by a model designer, but 
they need not be. This is the case with an implicit measure. An implicit measure is defined 
automatically, depending on the data type of the column that is being used. Numeric columns 
are automatically summed, whereas text columns are automatically counted.

There's more…
The aggregation function of an implicit measure is initially set by the underlying data type. 
However, the user can change this within the pivot table by editing the measure in the pivot 
table. This can be done in the following manner:

1. Alter the pivot table so that it shows subcategory on rows and total_profit as 
values. By default, the measure will show Sum of total_profit. Right-click on 
the measure and select Edit Measure… from the pop-up window.



Chapter 1

27

2. A new window will open, displaying the aggregation function with the measure. Select 
Average from the function list and change the measure name to Average Profit. 
The Measure Settings window should look like the following screenshot:



Getting Started with Excel

28

3. Also, notice that a formula is used to define the measure, for Average Profit, the 
formula is =AVERAGE('Sales'[total_profit]). Click on the OK button and note 
that the pivot table now contains the new measure Average Profit.

Implicit measures that have been created in the model can be seen by exposing the measures 
in the Advanced tab of the PowerPivot window (the Advanced tab must be activated). This is 
shown in the following screenshot:

Adding fields to tables
The model designer is often required to add additional fields to tables, so that the information 
presented to the user is better suited for decision-making purposes. This can include creating 
new fields that are combinations of other fields within the same table or a calculation that is 
dependent on data in another table. This recipe looks at the first of these options to create 
new fields that use other fields within the same table.

Getting ready
The model used in this recipe starts with the model that was created in the previous recipe 
Using tabular relationships to filter data.



Chapter 1

29

How to do it…
1. Switch to the data view in the PowerPivot window and select the Products table. 

Select the Colour column by right-clicking on the column header and selecting 
Insert Column from the pop-up menu (note that the entire column must be selected). 
The new column is inserted to the left of the Colour column. Change the name of 
the CalculatedColumn1 to Product Name WC (product name with code).

2. Enter the following formula into any cell of the new column.
=[Product Name]&" (" & [Product ID] & ")"

All rows of the table will be automatically populated.

3. Switch to the Sales table. Double-click on the header row of the last column  
(the current header is Add Column) and change the name of the column to  
total_profit. Enter the following formula into any cell of the Profit column  
with the format of the column as currency.
=[total_price]-[unit_cost]-[tax]

The designer has two built-in functions that enable the easy 
creation of formulas. If the formula is being typed, an intellisense 
window will open in the formula bar, and show a list of objects 
that match what is being typed. Simply navigate to the desired 
column (or cell in the measure grid) and start typing, then press 
return to use the provided intellisense option (you can use arrow 
keys to select a function, table and column). Alternatively, a 
column or table name can be included in the formula by clicking 
on the column or table while the formula is being typed.

How it works…
This recipe introduces Data Analysis Expressions (DAX) as the language that is used in 
tabular modeling. From this recipe, we can see that the DAX language is very similar to an 
Excel calculation (there are some noticeable differences which are addressed in chapters). 
Also, note that in DAX, columns are referred to instead of cells. Furthermore, many Excel 
functions work exactly the same in DAX as they do in Excel.



Getting Started with Excel

30

In calculating the value for each row, a special filter is applied in the calculation. In these 
examples where the fields being used in the formula reside on a single row, the filter 
automatically restricts the value to that of the row. The application of filtering in this manner  
is commonly referred to as a row filter or a row filter context.

Linking fields between tables
There may be a requirement to create fields in a table that contain data from a separate table. 
In Excel, this would usually be achieved with a VLOOKUP function.

The sales model that has been developed in this chapter contains three tables which define 
Products, Subcategory, and Category. When the user browses the model in a pivot 
table, each of these tables appear as tables in the PowerPivot Field List pane. However, in 
this model, the category and subcategory directly relate to the product and it is our intent to 
show these fields in the Products table.

Getting ready
This recipe assumes that the sales model created in the Adding fields to tables recipe is 
available and that the appropriate relationships exist among the Product, Subcategory, 
and Category tables.

How to do it…
Start by opening the PowerPivot window and then perform the following steps:

1. Switch to the data view and create two new columns in the Products table titled 
Category and Subcategory. In the Category column enter the following formula:
=RELATED(Category[Category])

2. In the Subcategory column enter the following formula:
=LOOKUPVALUE
  (Subcategory[Subcategory]
  , Subcategory[product_id],Products[Product ID]
)

Formulas can be multiline (just like in Excel). To move to 
the next line when typing simply press Alt + Enter.

Hide the Subcategory and Category tables in the model by right-clicking on the tables tab 
and selecting Hide from Client Tools from the pop-up menu. Note that the hidden tables are 
still visible in the data view and diagram view, although they are now more transparent.



Chapter 1

31

How it works…
These two formulas achieve the same result but in different ways.

The related function returns the specified column, based on the relationship within the 
data model. This can span more than one table (for example, a related table to the Category 
table could be referenced from the Products table), however, a relationship must be defined 
between all the linking tables that are spanned by the formula. Furthermore, because the 
formula relies on these relationships (that is, those defined within the model), the formula will 
not result in an error since the model enforces the integrity defined by model relationships.

The LOOKUPVALUE function is quite different from the related function because it does not 
utilize or rely on a relationship within the model. That is, LOOKUPVALUE would still return the 
same results had the relationship not be defined between the Products and Subcategory 
tables. Furthermore, the LOOKUPVALUE function can use multiple columns as its reference 
(to lookup) which may be beneficial when a desired value in another table cannot be related 
to the source data through a single field. Note that relationships can only be defined on single 
columns. However, unlike the RELATED function, the LOOKUPVALUE function may return an 
error when more than one match can be found in the lookup table.

Both formulas return results by creating a row context filter for each row in the source table.

It is considered best to utilize the relationship wherever possible. Therefore, the use of the 
RELATED function is preferred over the LOOKUPVALUE function. Furthermore, the RELATED 
function makes the model simpler for others to understand. However, the LOOKUPVALUE 
function does have some benefits. It allows the value to be determined, based on multiple 
search conditions. The syntax for LOOKUPVALUE is defined as:

LOOKUPVALUE( <result_columnName>
  , <search_columnName>, <search_value>
  [, <search_columnName>, <search_value>]
…)

Here, a result_columnName column is returned from a target table where search 
conditions are satisfied. These conditions are defined by a search_columnName parameter 
and a search_value parameter. This means that we specify the column (in the lookup table) 
and the value that should be searched for—this is the field in the current table.



Getting Started with Excel

32

Creating model calculations
The sales model that has been developed in this chapter allows the user to interrogate data 
from the order list by products, customers, and dates. In doing so, the user can create an 
implicit measure so that the underlying data is aggregated according to the current filter 
context. The aggregation function of implicit measures is determined by the underlying data 
type of the column that is used for the measure. This method offers the user the ability 
to create and show simple calculations from the model data. However, it does not create 
a robust model because the calculations aren't readily selectable by the user and the 
calculation definition is not conformed within the model.

This recipe introduces calculations which are contained within the model and presented to 
the user as measures. DAX (the tabular model language introduced in Adding fields to tables 
recipe) is used to define measures, so that it can explicitly use these measures in the model. 
Furthermore, the ability to create measures through a complex DAX allows the model designer 
a larger degree of flexibility than is involved with implicit measures.

Getting ready
This recipe assumes that the sales model created in Linking fields between tables recipe is 
available and that the appropriate relationships exist among the Product, Subcategory, 
and Category tables.

By default, a table in Data View will have a horizontal line that does not show any data. This 
is referred to as the calculation area. If this is not visible, ensure that the Calculation Area 
button is selected in the Home menu.



Chapter 1

33

How to do it…
There are many ways to create simple measures. Let's start with the automatic creation  
of measures.

1. Select any cell in the order_quantity field. Then, from the ribbon, select the  
SUM function from the AutoSum drop-down. A new calculation will be created in  
the calculation area as:
Sum of order_quantity:=SUM([order_quantity])

2. In the formula bar, select the name of the measure (Sum of order_quantity) and 
rename it to Total Order Quantity. The calculation should now look like this:
Total Order Quantity:=SUM([order_quantity])

3. Right-click on the calculation, select Format Cells... from the pop-up menu, and 
specify the format as a number format—(decimal number) with zero decimal places 
and click on the User 1000 separator (,) checkbox.

4. Select this group of columns: unit_cost, tax, total_price, and total_profit, 
by selecting the unit_cost column and dragging the mouse across to the  
total_profit column.

5. Click on the AutoSum button to create your calculations for these columns.

6. Rename the measures to Total Cost, Total Tax, Total Price, and Total 
Profit respectively with the same format as Total Order Quantity. Note that 
the format of the number is inherited as currency.

7. Select the cell in the calculation area under the unit_price column and type  
the formula:
Average Price:=AVERAGE([unit_price])



Getting Started with Excel

34

Intellisence provides a list of formulas available (based on the expression that is 
entered) and a description of the function, as shown in the following screenshot:

8. Hide the following fields of the Sales table: order_quantity, unit_price, tax, 
total_price, and total_profit.

9. Return to the PowerPivot Field List pane (in Excel) and refresh the model. Existing 
implicit calculations that were based on existing fields are removed from the model 
and the Sales table now includes the additional measures which were created. 
These measures can now be placed in the pivot tables (value) field list.

Explicit measure cannot be used in a slicer, filter, or as 
row or column labels.



Chapter 1

35

How it works…
Measures that are created in the calculation area operate in the same manner as implicit 
measures. That is, the aggregation function is applied to the filtered data specified by the  
row and filter context within the client tool.

Because the measures are explicitly defined in the model they are called explicit measures 
and interpreted by the client tool as measures (many client tools detect an explicit measure as 
a special type of field and treat it differently than a table's standard field or dimension field).

There's more...
By default, the tabular model created in PowerPivot will display the model through a 
PowerPivot pivot table. This shows the model in its tabular form where measures and columns 
are shown with respect to the tables that they relate to. For example, the measures created 
in the Creating model calculations recipe appear under the Sales table node. In order to 
compare this (tabular) view with that of a traditional OLAP client, simply do the following:

1. Ensure that a cell within the pivot table is selected.

2. Activate PivotTable Field List by clicking on the Field List button from the Options 
tab of the PivotTable Tools menu.



Getting Started with Excel

36

3. The PivotTable Field List window opens, which shows the tabular model in the 
multidimensional (client) format.

The client tool (PivotTable Field List) shows the model in a different format and represents 
how a client tool interpretation of the model would be shown. Here, the measures are shown 
in measure groups and are not included as table objects.



2
Importing Data

In this chapter we will cover ways to import data from different types of data sources.  
This includes:

 f Importing data as text

 f Importing data from databases

 f Managing connections and tables

 f Using data feeds

Introduction
Prior to the introduction of tabular modeling, which is now commonly known as Business 
Intelligence Semantic Models (BISM), Microsoft relied on its multidimensional storage 
model (MOLAP) for Analysis Services (analytical) database. In fact, multidimensional refers to 
a method of storage, which is still a viable option for enterprise business intelligence through 
SQL Server Analysis Services (SSAS). The term BISM is not unique to tabular modeling—it 
also relates to the semantic abstraction of a data model within the MOLAP engine. However, 
whenever BISM is discussed, it usually relates to tabular modeling (whether that be in 
PowerPivot or SSAS with a tabular storage mode). The storage engine for tabular modeling is 
also referred to as xVelocity.

Unlike the xVelocity engine of tabular models, the multidimensional model was basically 
designed to use a relational source (preferably a SQL Server) as its data source. Additionally, 
the multidimensional engine assumed that data would be provided through a relational and 
conformed data structure.

www.allitebooks.com

http://www.allitebooks.org


Importing Data

38

In contrast to this requirement for a single source of data, tabular modeling is designed to 
support many different data sources which can then be combined in the model as a part of 
the modeling process. This offers the modeler the ability to combine multiple forms of data 
within a model, and therefore provides a richer modeling experience. By including additional 
data sources, model development time can also be greatly reduced, because there is no 
requirement to source the data from a traditional data mart (or data warehouse).

This chapter examines importing of data from various sources, and managing that data once 
it has been imported.

The previously discussed statement is not meant to imply 
that highly optimized models do not require well-structured 
and conformed databases—they may, when processing times 
and calculations do not perform satisfactorily. However, one 
of the benefits of tabular modeling is the ability to apply it at 
many different levels within an organization. A departmental 
or subject area solution may be built from an OLTP database, 
with some information coming from text files, spreadsheets, 
and other non-traditional (and non-enterprise) sources.

Although there are many data sources available for import (including many different relational 
database engines), this chapter focuses on some of the more ad hoc ones used by analysts, 
including text files, reports from reporting services, and data feeds. We also examine how the 
connection to the database can be managed once it has been created in the tabular model.

Importing data as text
Tabular modeling natively supports the import of files with extensions of text (.txt), comma 
separated values (.csv), and tab separated values (.tab). Once a file to import has been 
defined, the user can specify the delimiter (column separator), and the importing interface 
scans the file to estimate the underlying data types for each column. Finally, the interface 
finishes the import process by loading the data according to this specification.



Chapter 2

39

Getting ready
A text file to simulate the output file for the sales record header has been created and is 
available from the online resources for this chapter. This file includes the sales_order_id, 
customer_id, employee_id, currency_id, customer_po_id, sales_territory_id, 
order_dt (order date), due_dt (due date), ship_dt (ship date), and sales_amount fields.

The file will be imported as a table into PowerPivot (and the tabular model). A screenshot of 
the file is shown as follows:

How to do It…
Most data imports can be managed from the PowerPivot window:

1. Launch the PowerPivot window.

2. In the Home tab, click on the From Text button from the Get External Data grouping.

3. Call the Sales Header TXT connection.

4. Ensure that the file type Comma Separated Files (.csv) is selected from the  
drop-down box.

5. Navigate to the resources listed in Chapter 2, Importing Data and select the  
02_master.csv file.

6. Click on Open.

7. A new window will open showing the file structure. Ensure that Comma (,) is selected 
from the Column Separator drop-down list, and that the Use first row as column 
headers checkbox is ticked.



Importing Data

40

8. Confirm the import by clicking on Finish, as shown in the following screenshot:

9. The data will load (click on Close to exit the Table Import Wizard window).

The Table Import Wizard displays the data that will be imported 
in columns and rows. Generally, it may be said that this grid 
is shared across all types of imports. You can choose not to 
import a particular column by deselecting the column from the 
header field selection (note that in the preceding screenshot, 
all columns are selected). Additionally, the amount of data 
to be imported can be filtered by selecting the drop-down 
arrow next to a field and applying a filter through the graphical 
interface. It is considered best practice to import only those 
columns which are needed in the model, because the extra 
columns or rows will increase the size of the model.



Chapter 2

41

How it works…
Once the file name has been provided, the Table Import Wizard window uses a text driver to 
scan the first 200 rows of the file and determine the data type of each column. The text driver 
then uses this definition to import all the data for the file. The columns order_dt, due_dt, 
and ship_dt have been defined as dates, even though the file did not explicitly specify a date 
type (after all it is text).

Once the wizard has determined the data types for columns, it will use these types for the 
entire load. This may create issues where the value within the file does not conform to the 
data type specifications. In such a situation, the specific value will be discarded from the load. 
The row will be imported even if all the values are discarded. This type of situation can occur 
when a numeric value is expected, and a text value is found in the file, or the expected date 
format for the import cannot be derived from the underlying date value. For example, when 
the column format is DD-MM-YY, and the value follows the format MM-DD-YY.

The wizard can be defined for different delimiters. Tab, Comma, Semicolon, Space, Colon, and 
Vertical Bar (Pipe) are supported. This is regardless of the file extension (so you could import 
a .csv file with a Tab delimiter). However, the importer only allows you to import files that 
have extensions of .csv, .tab, or .txt. Additionally, you can specify if the first row of the file 
contains headings (and these are also imported).

There's more...
Although you can specify standard delimiters, the file may contain an unsupported character 
as its delimiter, and the data format chosen by the wizard may simply be the wrong type for the 
file. To overcome these issues (or the issues they may create), the text driver defaults (which 
are defined by the Wizard) can be overridden, so that the input file can be fully defined as 
load time. This is done by using a defining file titled schema.ini. This file needs to be saved 
in the same location as the file being imported. This offers the modeler full control over the 
specification of the import file. Consider the previous text import file with the following changes;

 f The delimiter is now a tilde (~)

 f The date format is MM-DD-YYYY (note that the local for the machine used in this book 
specified DD-MM-YYYY)



Importing Data

42

Repeat the recipe using the 02_master_tilde.csv file ensuring that the schema.ini file 
exists in the same directory. When the Wizard loads, an information box at the bottom of the 
window will indicate the presence of a schema.ini file, and this file will be used to specify 
import settings, as shown in the following screenshot:

The schema.ini file is a text file and can therefore be examined in notepad—a sample of our 
file is shown in the next screenshot. In order for it to be used, it must reside in the same folder 
as the file(s) being imported. The following are some universal notes about the structure of 
the file that should be mentioned:

 f The name of the file for which the schema is to be applied is specified as the first  
line. Note that the import is specified for a 02_master_tilde.csv file

 f The date format is specified (see the row DateTimeFormat) and is applied to  
each date field

 f The delimiter is specified as a tilde

 f Each column (by number) can specify a name different from the file's header row



Chapter 2

43

Naturally, there can only be one schema.ini file in a directory. However, the same file can 
be used to specify the format of individual files. This is achieved by simply extending the next 
specification with the name of the file, as has been done for 02_master_tilde.csv.

Further information about the format of the schema.ini file 
can be found at http://msdn.microsoft.com/en-us/
library/windows/desktop/ms709353(v=vs.85).aspx.

Importing data from databases
Although tabular models support the import of data from a variety of sources, a relational 
database is still considered to be one of the primary methods of obtaining data. Unlike other 
sources (such as text files), where the structure may change from time to time, the data 
from a database is preferred because it conforms to a schema which is expected to remain 
constant. Furthermore, most operational systems store their data in a relational database 
format, and therefore, the database becomes a suitable source of data.

Tabular models may extract relational data through a generic connection on the machine, for 
example, Open DataBase Connectivity (ODBC), which is a standard method of data access, 
or by a connection based on a native driver (specific driver) stored in the model.

An ODBC connection also stores a connection within the 
model. However, the actual connection to the database is 
managed by the ODBC connection on the machine (rather 
than the tabular model).

Wherever possible, the native driver should be used, since the driver supports the underlying 
Database Management System (DBMS) rather than the generic ODBC standard.

This recipe extracts data from a SQL Server database.



Importing Data

44

Getting ready
This recipe simulates the loading of the sales data from an operational database, commonly 
referred to as Online Transactional Processing (OLTP), based on the following schema:

This schema implements a standard invoicing structure where a header record (sales_header) 
contains generic information about the sale, and the detailed records (found in sales_detail) 
collect the line items for the sales. The database implements foreign key constraints to enforce 
referential integrity.



Chapter 2

45

Our goal for the recipe is to only import all sales (and related information) that occurred in 
Australian dollars. Australian dollar sales are determined by currency_id of AUD in the 
sales_header table.

How to do It…
In order to complete this recipe, the (SQL Server) database should be restored. The 
information on how to do this is available from the online resources with instructions in the 
Appendix, Installing PowerPivot and Sample Databases. Once this has been completed, we 
start from the PowerPivot window.

1. Open a new workbook and launch the PowerPivot window.

2. In the Home tab, select From SQL Server from the From Database drop-down list in 
the Get External Data group, as shown in the following screenshot:

3. The Table Import Wizard window opens to create a new connection within the model. 
Populate the wizard's options with the following values:

Friendly connection name Sales Data – SQL

Server name the name of your server
Database name tabular_modelling



Importing Data

46

To help with the selection of Servers of Databases, the drop-down 
boxes can be used. However, while selecting a server, the response 
of the dropdown may be slow, as all available servers on the 
network are polled.

4. Ensure that you can create a connection to the database by clicking on the  
Test Connection button (a message box should return with the message  
Test Connection Succeeded).



Chapter 2

47

While connecting to a SQL Server, we have two authentication 
methods to choose from (Windows or a SQL Server). Windows 
authentication requires your user account to have access to 
the database (since the database is restored from the online 
resources, we assume that you have the appropriate permissions), 
whereas a SQL Server authentication requires a SQL Account (an 
account on a SQL Server with its own username and password). 
The preferred method of authentication is always Windows.

5. Click on the Next button to specify how to define the data that will be imported. 
Ensure that the Select from a list of tables and views to choose the data to import 
radio button is selected and click on Next.

6. Activate the sales_detail field from the Chap2 schema table by checking the 
checkbox for the sales_detail table. Rename the table to Sales Detail by 
changing the name in the Friendly Name column.

7. With the sales_detail table row still selected, click on the Select Related Tables 
button. This will check the products and sales_header tables. Rename these 
tables to Products and Sales Header.

8. Ensure that the sales_header table row is active (the active row is dark blue) 
and click on the Preview & Filter button. A new window will open, which shows the 
available columns and filters on the table (as a grid). A column can be removed from 
the import by deselecting it.



Importing Data

48

9. Restrict the sales_header table to import only AUD sales by selecting the AUD 
currency_id from the column's drop-down box and clicking on the OK button.

10. Click on OK to return to the Select Tables and Views dialog box of the Table Import 
Wizard window.

11. Click on the Finish button to import the data, and then on Close to exit the Table 
Import Wizard window.

12. Switch to Diagram View to confirm that relationships have been created between the 
Sales Detail, Products and Sales Header tables.

13. Create a pivot table which shows currency_id from the Sales Header table on 
rows and (the implicit measure) Sum of quantity as values.



Chapter 2

49

How it works…
The Table Import Wizard window does two things each time it is invoked. Firstly, it creates a 
connection (which is a definition) within the model to define how the database is connected. 
Secondly, it creates a table definition for each table that was defined by the Wizard.

We can see that there are two distinct steps. However, since the first step in this process 
creates a connection when the Wizard is invoked again, and the same connection name is 
used, an error will be shown. This is because each connection name must be unique. We 
can demonstrate this by trying to reproduce the steps in this recipe (in the same workbook). 
Before the Table Import Wizard window allows you to select available tables from the 
connection, the Wizard will prompt you with a message that a data source with the same 
name already exists (and a different name must be specified in order to continue).

The Select Tables and Views window of the import allows you to define the table name within 
the model (note that the table will be called Friendly Name within the model) and filter the 
data that will be imported. Further, by using the Select Related Tables button, the Wizard 
will include any table that has a foreign key relationship with the selected table. This can be a 
very useful feature; however, one potential downside of relying on the Select Related Tables 
button for the identification of related objects is that the functionality is non-recursive, and 
it will apply only to the immediately selected object. This means that the related tables will 
not be identified. A generic ODBC driver does not allow for the recognition of relationships 
between tables.

The Preview Selected Table window allows you to define new column names and filter the 
data that is imported for a specific table. However, when a filter is applied to a table, the 
filter is only applied on the table that is imported—it is not applied to tables related to the 
table being imported. This means that the data in a table that is related to a filtered table 
is not filtered simply because its related table is filtered. This is the reason why the pivot of 
currency_id includes a blank row.

Tabular models do not allow as much flexibility for defining 
missing data as multidimensional models do. If the data 
in one table is missing from another, a missing value 
(a blank) is substituted into the other table. Unlike the 
multidimensional model, the label cannot be changed.

In contrast, there is no requirement to explicitly define error 
handling in tabular modeling. All the data is imported into 
the model (regardless of any requirement for a related value 
in another table).



Importing Data

50

There's more...
The connections that have been created in the tabular model can be seen by clicking on the 
Existing Connections button in the Design tab. All connections that exist in the model will be 
shown under the Power Pivot Data Connections group.

Managing connections and tables
The goal of the model designer should be to produce succinct models that are easily 
maintainable. This implies the re-use of objects (and structures) wherever possible. We have 
seen that it is relatively easy to import data into the model; however, the designer should also 
think about the maintenance of the model in the future. This recipe looks at how an existing 
model can be extended by adding additional data, and how a table can be altered once inside 
the model. This recipe is motivated by the maintenance of an existing table—that is, how do 
we change the import of a table which has already been specified? Additionally, as a point of 
practice, the modeler should re-use an existing connection that has been created, rather than 
create additional connections by continually importing tables using the same database settings.



Chapter 2

51

Getting ready
This recipe uses the model that has been created in the prior recipe Importing data  
from databases.

How to do it…
1. Open the workbook that was developed in the recipe Importing data from databases, 

and launch the PowerPivot window.

2. In the Design tab, click on the Existing Connections button to show the connections 
in the model.

3. Double-click on the connection Sales Data – SQL, ensure that the Select from a list 
of tables and views to choose the data to import radio button is selected, and click 
on Next.

You can also invoke the Table Import Wizard window by 
clicking on the Open button when the connection is selected.

4. Select the sales_header table by checking the checkbox next to the table name 
and click on the Select Related Tables button to select all tables that relate to the 
sales_header table.

5. Deselect the sales_detail table and click on the Finish button to import the 
remaining tables.

6. Click on the Close button to close the Table Import Wizard window.

7. Switch to Diagram View to ensure that relationships have been created between the 
sales_header, territory, currency, and customer tables.

8. Create a relationship between the sales_header and Sales Detail tables,  
and delete the Sales Header table that was created in the recipe Importing data 
from databases.

It is not necessary to correctly identify the source and related tables 
while defining a relationship. The model makes an estimation about 
which table is the reference table based on the cardinality of data 
in both the tables. While defining relationships in the Diagram 
View, PowerPivot will correct an invalid relationship (one which 
points in the wrong direction) based on this inference.



Importing Data

52

The currency table shows the currency ID in the currency name (as shown in the 
next screenshot). As the designer, we would like to suffix the currency_id field to the 
name, so that it includes the code within the name. For example, the name Emirati 
Dirham should appear as Emirati Dirham (AED). While we could create a formula 
for this within the model (see the Adding fields to tables recipe in Chapter 1, Getting 
Started with Excel), we want the model to be succinct and only show a single name. 
In order to do this, we can change the underlying table definition to include a custom 
calculation. Prior to the change, the table looks as shown in the following screenshot:

 

9. Select the currency table and click on the Table Properties button in the Design tab. 
A new Edit Table Properties window will open.

10. Change Table Preview to a SQL view by selecting Query Editor from the view  
drop-down box.



Chapter 2

53

11. Replace the existing query with the following code:
SELECT currency_id, currency + ' (' + currency_id + ')'  as 
  currency   FROM [chap2].[currency]

12. Click on the Validate button to ensure that the SQL statement is valid.

13. Click on the Save button to reload the data and return to the currency table.

How it works… 
Importing data through the Get External Data group of menu items is done by first creating 
a new connection and then creating table definitions on the connection. Importing data with 
these buttons is suitable when there are no existing connections in the model and when 
new data is required. However, when an existing connection in the model can be used to add 
additional data sources which use the existing connection, it makes more sense to re-use 
that connection (rather than creating a new one). This improves model manageability since 
the number of connections in the model is reduced. If the connection properties change (for 
example referencing a different server), the property only has to be changed in one connection.

The definition (query) used to define the table can also be edited through its Table Properties.

There's more...
The Table Properties editor includes a query designer which can be used in lieu of writing SQL. 
In order to use this, click on the Design button in the Edit Table Properties window. This will 
invoke the editor (which usually defaults to a text view). However, the developer can click on 
the Edit as Text button in the designer to switch to a visual designer.

Selecting the visual designer may lead to the loss of the 
query definition. If this is the case, the user is prompted 
that this will occur.



Importing Data

54

The definition of tables within the model holds information about the Source and Model 
definitions. Source refers to the underlying object (its physical structure), whereas Model 
refers to the semantic definition (what the end user sees). An example of the application 
of this can be seen when a column is renamed within the model (see the Managing the 
appearance of tables and fields recipe, in Chapter 1, Getting Started with Excel). The Edit 
Table Properties window allows us to toggle between these two views of data, by selecting 
either the Source or Model radio buttons, as shown in the following screenshot. This is only 
available for tables that have not been altered by defining a custom SQL.

Using data feeds
Data feeds allow a tabular model to consume XML data through an HTTP service—these are 
called the OData and .atomsvc feeds. The feed(s) can be defined to the model through either 
an OData service (which also can provide data) or a data service document (the .atomsvc 
file) that specifies the URL to the service.

The Open Data Protocol (OData) is a standard protocol for creating and consuming data over 
existing technologies such as HTTP. This means that data can be imported into the model as 
a web service. The ability to use data which is not generated from the corporate environment 
extends the possible data sources that can be used for analysis. Data may be available for 
free or purchased from vendors (see http://datamarket.azure.com/ for both).

Getting ready
This recipe imports some data from an online database called Northwind. Northwind is a 
well-known sample database (actually, the data is not that important to us—only the technique 
used to import it is). We also examine importing data from a reporting services report (which 
is imported as an .atomsvc file).



Chapter 2

55

How to do it…
We firstly examine how to import data using OData and then we examine how to obtain data 
from a reporting services report.

1. Open a new Workbook and launch the PowerPivot window.

2. Click on the From Data Feeds button from the Get External Data group.

3. Name the connection NorthWind, and use the following data feed URL:

http://services.odata.org/Northwind/Northwind.svc/.

4. Click on Test to test the connection, and then click on the Next button.

5. The Table Import Wizard window will open, here we can select which tables we  
would like to import.

6. Note that the Select Related Tables button is inactive and cannot be used.

7. Highlight the Products table and select the Preview & Filter button.

8. The Wizard changes to a grid view; however, the table cannot be filtered (there are  
no filter dropdowns).

9. Click on Finish to import the Products table.

10. Open a reporting services report and select the Export to Data Feed button. This 
button is identified in the following screenshot:

Unfortunately, we cannot provide specifics about the reporting 
services report that is required for this recipe. The configuration 
of reporting services and the associated creation of the report is 
outside the scope of this book. We do discuss the steps involved 
which are common to all reporting services reports.

These steps can also be applied to SharePoint lists (which have 
the same export button).

11. A warning message will prompt to save or open a file with the name of your  
report and an .atomsvc extension.

12. Click on Save.

13. Open PowerPivot and import data by clicking on the From Data Feeds button.

14. Click on the Browse button and navigate to the file which was saved in the previous 
step. In this case, there is no need to provide the data feed URL.



Importing Data

56

15. Select the file and click on the Open button.

16. This time, the Table Import Wizard window lists report objects (Tablix's, lists and 
charts) as tables that can be imported to PowerPivot.

17. Just like OData feed, there is no ability to filter the data or detect relationships 
between tables.

How it works…
The OData feed provides a web service which is essentially exposed to the tabular model as 
an XML feed, and may contain information about the data source, including tables within the 
source. This file can then be imported to the tabular model.

There's more...
As a web service, the OData feed can provide additional information to the service (such as a 
requested table, or a record within the table). For example, to specify a connection which only 
imports the customer's table, we could use the following data feed URL:

http://services.odata.org/Northwind/Northwind.svc/Customers

Additionally, we may provide the ability to filter and return a specific record. For example, to 
return a customer record by customer ID, we could use the following data feed URL:

http://services.odata.org/Northwind/Northwind.svc/
Customers('ALFKI')

When data is imported through an .atomsvc file, all data objects within the report are 
exposed as tables to the Wizard (data objects in the report are controls that present data,  
that is, Tablix's, lists and charts). The name shown in the Table Import Wizard is the name  
of the object within the SSRS report.

When exported, the .atomsvc file contains a list of objects that existed in the report at the 
time the file was exported. If the report is changed, and another object is added to the report, 
the .atomsvc file will not be aware that the new dataset has been included, and re-using the 
file would only show the dataset that existed at the time of export.

Purchased data from the Azure marketplace may require authentication. In this case, the 
Azure DataMarket Dataset driver should be used.



3
Advanced Browsing 

Features

This chapter looks at extending the model to provide a positive experience for the user. In this 
chapter, we will cover:

 f Sorting data

 f Creating hierarchies for drilldown interaction

 f Summing aggregates and row iteration

 f Parent-child hierarchies

 f Creating and using Key Performance Indicators

 f Role playing dimensions and relationships

 f Building ratios

Introduction
The first two chapters of this book focused on the basic modeling principles of relationships 
and how to import data into the model. This chapter extends those concepts by focusing on 
the development of the end-user experience. That is, how the user interacts with the model 
and the experience they have when doing so.

This chapter also examines a fundamental decision that the designer should make when 
designing the model, that is, the use of role playing dimensions. The choices available through 
role playing dimensions should be considered by the modeler as part of the initial design.



Advanced Browsing Features

58

Sorting data
When data is presented to the user, there is often a requirement to present the members 
(the individual data values) in a predefined order. Consider months of the year, when the user 
drills down from a year, they generally expect to see months ordered according to the calendar 
that they are working with. For example, a natural calendar runs from January to December, 
whereas a financial calendar may run from October to September.

In tabular modeling, this arrangement is controlled by sorting within column properties.

Getting ready
The workbook used in this recipe is available on the Packt Publishing website  
(http://www.packtpub.com/).

How to do it…
1. Open the Sorting Data & Hierarchies.xlsx workbook and launch the 

PowerPivot window.
2. Create a linked table that imports the dates worksheet into the PowerPivot model.
3. Hide (hide from Client Tools) the columns day_of_week, day_of_week_name, 

month_of_year, quarter_name, and semester.
4. Rename the month_name field to Month Name.
5. Create a pivot that shows Month Name on rows. Note that the members (Months) 

are sorted alphabetically by default.



Chapter 3

59

6. Return to the PowerPivot window. Ensure that the Month Name column is selected 
and then select the Sort by Column button from the Home tab (this is found in the 
Sort and Filter group).

7. A new window opens (Sort by Column), which specifies a column (the Sort column) 
that will be sorted by the values of another column (that is, the By column). Ensure 
that the Sort column has the value Month Name and the By column has the value 
month_of_year.

The field chosen (that is, the field that is being sorted) will be 
automatically populated based on the field that is selected  
(or active) in the grid when the Sort by Column button is selected.

8. Select OK to exit the window.

9. Return to the pivot table in Excel and refresh the model in the pivot table.  
Month Name will now be sorted in calendar month order (January to December).

How it works…
The By column defines the order in which the values of the Sort column will be displayed. This 
is a straightforward sort, and may be thought of as attaching a property to the sort column.



Advanced Browsing Features

60

The only caveat to this is that the By column must be in the same table as the column  
that is being sorted. If this is not the case, and you wish to sort by a column in another  
table, the sort order column must be imported (and materialized) in the table (through  
the RELATED function).

Creating hierarchies for drilldown 
interaction

Hierarchies allow the model designer to specify navigation paths for the user. Usually, this 
is done in order to group members of a particular type together. A simple example of this is 
grouping months of a year together.

Getting ready
This recipe assumes a continuation from the recipe Sorting data.

How to do It…
1. Switch to the Diagram View of the model.
2. Change the year_name column to Year.
3. Select the Month Name and Year columns by holding down the Ctrl key while 

selecting each column.
4. Right-click the Year column and select the Create Hierarchy option, so that a new 

hierarchy is created within the view.
5. Rename the hierarchy to Month By Year by right-clicking the hierarchy name and 

selecting Rename from the pop-up menu.



Chapter 3

61

6. Return to Excel and refresh the PowerPivot field list to show the new hierarchy in the 
dates table.

7. Remove the Months member from the existing Pivot and add the Month By Year 
hierarchy. Note that all years are shown (since these are the values of the first level).

8. Expand the year (by clicking on the + sign next to a year value).

How it works…
The creation of a hierarchy within the model is a metadata definition and not a structural 
creation within the model. This means that the model does not actually materialize the 
hierarchy as an object with the tabular database. When a request is made (by the client tool) 
for members of the hierarchy, the request is effectively the same as a query made against the 
members of that level (which is subject to restrictions imposed by the parent level).

There's more...
In this recipe, the levels of the hierarchies were automatically detected based on the data 
within the model and provided the drill path from year to month. Both year and month refer to 
the levels of the hierarchy and imply the grouping order. If this order is not correct, the levels 
can be rearranged by selecting the field within the hierarchy and dragging it to a new level. For 
example, suppose I want to first see months and then years. I can select the Month Name 
field in the hierarchy and drag it to the required position in the hierarchy. While doing this, the 
new position is shown by a dark line in the hierarchy.

The levels of the hierarchy do not have to be entirely defined when the hierarchy is created. 
In fact, you could create an empty hierarchy if you wish to, just by right-clicking on the table 
name (in Design View) and selecting Create hierarchy from the pop-up menu. Then, to add 
levels, simply drag the levels into the hierarchy from the table.

The level names in your hierarchy can also be renamed by right-clicking the level (within the 
hierarchy) and selecting Rename from the pop-up menu. The Design View will show the 
hierarchy as the level name followed by the source field (which are enclosed in parentheses), 
as shown in the following screenshot:



Advanced Browsing Features

62

For readers familiar with Analysis Services (OLAP), the addition of hierarchies to dimensions 
creates performance improvements because the storage engine will use the hierarchical 
structure in the aggregation of data at higher levels in the hierarchy. For example, the storage 
engine could provide a yearly total by adding up the months within the year. Of course, this is 
conditional on the correct design of dimensions and appropriate relationships being defined 
between hierarchy levels. For a tabular model, there is no such requirement, and there is no 
performance benefit for creating hierarchies in this way. The choice of hierarchies within the 
model is a decision of usability for the end user.

Summing aggregates and row iteration
In the recipes so far, we have looked at creating measures based on a simple summation. 
With these types of calculations, we simply define a measure as the sum of the respective 
columns. The calculations can then be used by other calculations and the result would be the 
same as if the calculation had been done within the row and aggregated. For example, if we 
define a measure of [Sales] and a measure of [COGS] (cost of sales), we could define a 
new measure as [Profit]:=[Sales]-[COGS]. Alternatively, we could add a column to the 
Sales table as line_profit with a column formula (SALES-COGS) and sum that column 
to create the new calculation.

However, in some situations, creating measures based on other measures does not provide 
the correct result, and it is necessary to determine the result of the calculation for each row 
and then perform a function on the results. DAX includes some handy functions for achieving 
this outcome without the need for intermediary columns.

Getting ready
Open the workbook Summing Aggregates and Row Iteration and examine the Sales Detail 
worksheet. This shows the line items for sales but does not include a sales value (selling 
price) for each line (this amount has been used in previous recipes to determine the sales 
value but has been removed from this recipe). The unit_price_amount value for each 
product is shown; however, the sales amount per line is dependent on other fields of the 
quantity sold and discount given. The sales_amount value for each line is determined by  
the formula:

order_quantity x ( 1 – discount_percent ) x unit_price_amount

Our goal is to create this formula without adding additional columns.



Chapter 3

63

How to do it…
Now that we have an understanding of the calculations that we want to create, let's do them 
in the tabular model. The workbook is available from the online resources.

1. Import the worksheet into the PowerPivot model and create a sales amount 
calculation as follows:
Sales Amount:=
sumx(
Sales_Detail
, [unit_price_amount]*(1-[discount_percent]) * [order_qty]
)

2. Create a check measure by performing the calculation manually. Add a column 
sales_amount to the table with the formula:
=[unit_price_amount]*(1-[discount_percent]) * [order_qty]

Then, create a measure by summing the sales_amount column
Sales Amount Check:=SUM([sales_amount])

3. Create a Variance measure with the following formula:
Variance:=[Sales Amount]-[Sales Amount Check]

4. Add the Variance to a pivot table with sales_order on rows and confirm whether all 
values are zero.

How it works…
The DAX X functions (SUMX, COUNTX, AVERAGEX, MAXX, and MINX) iterate an expression over 
a table to determine the result. The syntax for each of these functions is:

Function ( <table > , <expression> )

In this syntax, the <table> parameter is the data that the function is applied to and the 
<expression> parameter is the formula that must be determined for each row (of the 
<table>). As a sidebar, the <table> parameter of the function is not restricted to table 
names within the model; it can be derived through a function that returns a table.

The aggregate functions (SUM, COUNT, AVERAGE, MAX, and MIN) are performed after the 
expression has been evaluated (on a row-by-row basis).



Advanced Browsing Features

64

Therefore, in this recipe, the use of SUMX simulates the addition of a column (with a formula 
<expression>) and then performs a SUM on that column after the expression has been 
evaluated. The expression is:

[unit_price_amount]*(1-[discount_percent]) * [order_qty]

This formula is applied to each row of the table and then summed to achieve the same result, 
as if a column was added to the table.

There's more…
It was stated earlier that the <table> parameter within the function is not restricted to table 
names within the model, and the <table> parameter can be any function that returns a 
table. This includes filtering functions that restrict table results. For the data that is returned 
in such a case, the <expression> parameter is still applied against that result.

Consider a situation where we would like to create a measure to show the lowest selling price 
for Bikes.

1. Extend the model by importing the Products table and creating a relationship 
between product_id in the Sales_Detail and the Products table.

2. Add the measure Min Sales Price (Bikes) as follows:
Min Sales Price (Bikes):=
Minx
(
     FILTER(Sales_Detail
            , RELATED(Products[category])="Bikes"
           )
, [unit_price_amount] 
)

3. To verify the calculation, create a measure Min Sales Price (Bikes) check 
that relies on the previous calculations in the model.
Min Sales Price (Bikes) check:=Min([unit_price_amount])

4. Create a measure variance between the two calculated columns as follows:
Min Sales Price (Bikes) Variance:=
[Min Sales Price (Bikes) check]-[Min Sales Price (Bikes)]

5. Create a pivot table with a filter on the bikes category and all three measures.



Chapter 3

65

Regardless of what items are placed in the rows and columns, the two calculations for Min 
Sales Price will give the same result, and the variance will be zero.

In this case, the measure Min Sales Price (Bikes) works by applying a filter to the 
Sales_Detail table for all products that have a category of bikes (note the use of the 
RELATED function, which has been examined in a previous recipe). Further, by restricting  
the table to Bikes in the calculation, the calculation is not reliant on a PivotTable filter  
(the FILTER function is examined in later recipes).

In order for the calculation Min Sales Price (Bikes) check to work as intended (and 
only show the lowest price for a bike), the pivot table must be filtered by Bikes. Therefore, the 
entire logic of the pivot outcome obtained by creating an additional column, a calculation over 
that column, and a filter on the pivot table, all of these can be contained in a single formula.

Parent-child hierarchies
Systems often store data in tables that store hierarchical information in a self-referencing 
(parent-child) relationship. With this design, a field in the table is used to reference the 
primary key (identifying record) within the same table. A common example of this type of 
relationship can be found in organizational structures where an employee has a manager field 
that specifies another employee's record. Another example includes a bill of materials, which 
defines a product made from subproducts, which may in turn be made up of other products, 
and so on.

This type of structure is very efficient for storage because the same table can be used for all 
items within the hierarchy; this allows for easy updates, insertions, and deletions. However, 
one issue with this type of structure is that the tree of items within the structure is not 
immediately visible to an end user. A common method to expose the structure is to flatten the 
relationship into a table, so that each level is exposed as a field within the table. This recipe 
examines this within the tabular model.



Advanced Browsing Features

66

Getting ready
Review the table Employees, which shows the manager-employee relationship. The General 
Manager of the organization (Ken Sanchez) is the person who has no manager (manager_id 
is blank). Ken's direct reports have a manager_id value equal to Ken's employee_id 
(295847284). This reporting relationship can be continued, as in the following diagram:

General Manager

Regional Manager(s)

Area Manager(s)

Manager(s)

Employee(s)

Manages

Manages

Manages

Manages

How to do It…
Download the workbook (Employee.xlsx) from the online resources.

1. Open the Employee.xls workbook and launch the PowerPivot window.

2. Import the table Employee worksheet into the PowerPivot model by creating  
a linked table.

3. Create a calculated column as employee_name with the formula:
=[first_name] & "  " & [last_name]

4. Create a calculated column (hierarchy_path) with the formula:
=PATH([employee_id],[manager_id])

The formula builds a pipe-delimited representation of the hierarchy showing each 
position from the top level of the hierarchy to the current (row).



Chapter 3

67

5. Add a column to the table titled General Manager to store the name of  
the employee at the first level of the hierarchy. Show the employees name  
(the highest level of employee) by using the following formula:
  =LOOKUPVALUE( [employee_name]
, employee[employee_id]
, PATHITEM([hierarchy_path],1))

6. Add a column to the table titled Regional Manager to store the name of 
employees who report to the General Manager. Populate this column with the 
following formula:
=IF(ISBLANK(
        LOOKUPVALUE([employee_name], employee[employee_id]
                , PATHITEM([hierarchy_path],2)
                )
        )
        , [General Manager]
                , LOOKUPVALUE([employee_name]
                , employee[employee_id]
                , PATHITEM([hierarchy_path],2)
                )
)

7. Add columns for Area Manager, Manager, and Employee. Populate the columns 
using the same formula as in step 6, increasing the PATHITEM value by one each 
time and referring to the prior column. The formulas are listed in the following table:

Column Formula
Area Manager =IF(ISBLANK(LOOKUPVALUE([employee_name], 

employee[employee_id], PATHITEM([hierarchy_path],3))), 
[Region Manager] , LOOKUPVALUE([employee_name], 
employee[employee_id], PATHITEM([hierarchy_path],3)))

Manager =IF(ISBLANK(LOOKUPVALUE([employee_name], 
employee[employee_id], PATHITEM([hierarchy_path],4))), 
[Area Manager] , LOOKUPVALUE([employee_name], 
employee[employee_id], PATHITEM([hierarchy_path],4)))

Employee =IF(ISBLANK(LOOKUPVALUE([employee_name], 
employee[employee_id], PATHITEM([hierarchy_
path],5))), [Manager] , LOOKUPVALUE([employee_name], 
employee[employee_id], PATHITEM([hierarchy_path],5)))

8. Switch to Diagram View to create a hierarchy titled Organisation with the levels 
General Manager, Region Manager, Area Manager, Manager, and Employee, 
and then hide all the fields in the table.



Advanced Browsing Features

68

9. Create a pivot table from the model, add the Organisation hierarchy to rows, and 
expand the nodes. Expanding the level will show what employees report through to 
the expanded employee. Observe that each member in the hierarchy has a value and 
that the hierarchy is balanced (there are five levels). Also, note that the hierarchy is 
balanced through the repetition of employee names. For example, there is a general 
manager, Ken Sanchez, and a regional manager with the same name.

How it works…
The creation of the parent-child hierarchy involves three steps. They are as follows:

1. The normalization of the self-referencing structure, so that all recursive relationships 
are merged into a single pipe-delimited field. This defines the path from the  
upper-most level to the current row in the structure (including the current row 
identifier). This is achieved by using the PATH function (field hierarchy_path), as 
shown in the following screenshot. Note that the root manager (the person with an 
empty manager_id field) has only one level in their hierarchy_path (themselves) 
and the second employee (the one who reports to the root manager) lists the root 
manager and then themselves:



Chapter 3

69

2. Next, we determine the name of each employee along the path or, each employee in 
the hierarchy_path field based on a position within the field.

This is achieved through the use of a nested formula. Firstly, the hierarchy_path 
field is stripped into individual positions within the path; this allows each employee_
id value to be determined by its position. This is done with the following formula:
PATHITEM([hierarchy_path],n)

Here, n refers to the index position within the path.

The PATHITEM function also includes an optional third 
parameter,[TYPE]. This specifies the return value as either 
being text or an integer. The allowable values are either a 0 
(which is the default) for text, or a 1 for an integer. Since our 
values are of text type, we have omitted this from the formula.

Next, given the employee_id value is returned from the path, the LOOKUPVALUE 
returns the employee's name. This function was examined in the Linking fields between 
tables recipe in Chapter 1, Getting Started with Excel. Given a particular employee_id 
value (???), the LOOKUPVALUE formula returns the employee's name when it is used as:
=LOOKUPVALUE( [employee_name], employee[employee_id], ???)

The method also checks that each column in the hierarchy (or level) has an 
employee_name associated with it. This is done by nesting the LOOKUP value in the 
IF(ISBLANK()) function. When encompassed by the IF function in this manner, the 
formula ensures that the name appears on every level in the hierarchy. If there is no 
employee_name found, the employee_name of the previous levels is used.

3. Finally, with the parent-child structure broken down to individual columns that show 
the employee's name on each level, and a hierarchy is created from the fields that 
allow the user to drilldown in the client tool (PivotTable).

When viewed through a client tool, the de-normalization of the self-referencing structure gives 
the illusion of a parent-child hierarchy (that is, a structure that is drillable by the user, which 
is based on the self-referencing relationship). This technique is often used in this SAS (OLAP) 
dimension design to improve performance. While this is not a true parent-child hierarchy (the 
depth of the hierarchy must be specified by the model designer and not by the self-referencing 
relationship), the method exposes the parent-child structure through a flattened hierarchy.



Advanced Browsing Features

70

As a model designer, you must determine the depth of the hierarchy when designing the 
hierarchy rather than relying on the self-referencing relationship to specify it. Therefore, you 
need to determine the maximum depth of the current structure. To do this, add a column to 
the employee table titled path_depth using the following formula:

=PATHLENGTH([hierarchy_path])

This shows the number of elements in the hierarchy, or the number of employees within the 
current (row) employee's reporting path (including themselves). In order to determine the 
maximum depth of the hierarchy, simply determine the maximum reporting depth by creating 
a measure as follows:

max_path_depth:=MAX([path_depth])

This will show that there needs to be five levels.

Since the determination of the hierarchy depth is only required at 
design time, you can also sort the column in a descending order 
to find the maximum value (and therefore, the number of levels 
needed). Simply select the path_depth column and click on 
the Sort Largest to Smallest button from the Home menu.

Alternatively, you could simply create a measure without the need 
for additional columns in the table. Simply use the formula:

max_required_depth:=
MAXX(employee, PATHLENGTH([hierarchy_path]))

There's more…
The creation of a flattened hierarchy to expose a self-referencing relationship provides the 
modeler with an easy technique to flatten the hierarchy and show it to the user. However, the 
hierarchy is exposed with balanced levels, where the actual structure may not be balanced.

Consider the situation where we want to show the number of employees within the structure 
(the count of employees). For example, the structure that shows direct reports as a measure. 
Add the measure to the model:

Number Of Employees (native):=COUNTROWS(employee)



Chapter 3

71

The COUNTROWS function simply returns the number of rows that 
are present in the table (employee in this case). When used 
in a pivot, the filtering applied by the pivot shows the number of 
rows in each cell.

We could achieve the same result (in a slightly long-winded 
fashion) by adding an additional column (employee_count) 
to the table and specifying its formula as =1 (1 to represent 
each employee in the table). Then, the measure Number Of 
Employees (native) will be:

:=SUM(employee_count)

When the measure is added to the pivot table, and Brian Welcker's hierarchy is expanded, we 
can see, as an employee, Brian only reports to Ken Sanchez (the General Manger). Therefore, 
Brian holds all positions from the Regional Manager to the Employee.

This is exactly how the hierarchy is designed to act. Note that the table shows this structure.

There is no out of the box method to hide the duplicated names at lower levels of the 
hierarchy. In the traditional OLAP dimension design, hierarchy levels can be hidden if their 
name is the same as the parent using the level's HideMemberIf property. This property does 
not exist in tabular modeling. However, the same outcome can be simulated by allowing the 
client tool to hide empty rows and specifying an empty value for the hierarchy members that 
are duplicates of their parent.



Advanced Browsing Features

72

By default, pivot tables hide rows with no data (that is, where 
the data is blank). This can be verified by right-clicking on the 
pivot table and selecting PivotTable Options from the pop-up 
menu and ensuring that the Show items with no data on rows 
checkbox is deselected.

Return to the PowerPivot window and make the following changes:

1. Add the measure current_browse_depth to show what level is currently being 
filtered in the hierarchy:
current_browse_depth:=
IF(ISFILTERED([Employee])
        , 5
        , IF(ISFILTERED([Manager])
                , 4
                , IF(ISFILTERED([Area Manager])
                        , 3
                        , IF(ISFILTERED([Region Manager])
                                , 2
                                ,1
))))



Chapter 3

73

2. Add a new measure min_browse_depth to show the minimum visible depth  
that is shown by the hierarchy within the Pivot as follows:
min_browse_depth:=
MINX(employee
        , PATHLENGTH(employee[hierarchy_path])
)

3. Add a new measure to show the employee count as blank where the  
current_browse_depth measure is greater than the exposed browse  
depth (min_browse_depth):
Number of Employees (user design):=
IF(employee[current_browse_depth]> 
employee[min_browse_depth]
        , BLANK()
        , COUNTROWS(employee)
)

4. For illustration purposes, also add the following measure:
show_yn:=
IF(employee[current_browse_depth]> 
employee[min_browse_depth]
        , "dont show"
        , "show"
)

5. Add all these new measures to the pivot.

Here, we can see the interaction of the current_browse_depth and the min_browse_
depth measures within the application of the hierarchy. The current_browse_depth 
measure shows what level of the hierarchy is being viewed in the pivot. The min_browse_
depth measure shows the highest level of all employees that is encompassed by  
a hierarchy value.

Remember that when the hierarchy is placed on rows, each row 
in the hierarchy is really just grouping employees. The grouping is 
identified by an employee's name.



Advanced Browsing Features

74

When we view the pivot with these fields, we can say that we want to hide those employees 
within the hierarchy that appear at higher levels in the structure.

Now, replace all the measures shown with the measure Number of Employees (user 
design). All rows (previously indicated with a Don't show flag) are hidden from the pivot.

This method of hiding rows will only work when all the measures for the row are empty. If the 
native measure (Number of Employees (native)) is reintroduced to the pivot, all lower 
levels of Brian will be shown.

Creating and using Key Performance 
Indicators

Key Performance Indicators (KPIs) allow the model to implement a logic layer, so that a value 
can be monitored according to a rule. The outcome of the rule is a simple set of results that 
indicates how the value is comparing to the expectations, and usually equates to one of the 
three simple conditions: bad, moderate, or good.

By summarizing logic into the model in this way, the KPI improves model usability as the  
user is not required to interpret the value in the context of a business situation (or some 
layer of logic that is applied to the values); this is all managed by the KPI. Furthermore, since 
the KPI is represented by a state (for example, bad, moderate, or good), the KPI can cover 
boundary ranges of data. This effectively discretizes data into a conditional state based on  
the business logic.



Chapter 3

75

Getting ready
This recipe creates a KPI that compares actual sales to budgeted performance. The  
KPI should indicate an unfavorable outcome if the sales are more than 5 percent from the  
budget (unfavorable), a warning if the sales are between this and the budget, and a positive 
indicator if the sales are reported equal to, or greater than the budget. Set up the model by 
following these steps:

1. Open the KPIs.xlsx workbook and create (PowerPivot) linked tables for the 
worksheets Budget, Sales_Header, Dates, and Employees.

2. On the Dates table, hide all columns from client tools except for the columns  
Year and Month of Year. Set the month of the year column to be sorted by the 
column month_of_year_sort.

3. Hide all of the columns from the Sales_Header and Budgets table.

4. Create relationships between the following tables and columns:

Table Column Related Table Related Column
Sales_Header employee_id Employees employee_id

Sales_Header order_dt Dates date_id

Budgets employee_id Employees employee_id

Budgets budget_date Dates date_id

5. Create the following measures in the Sales_Header table:

Measure Name Calculation
Sales Amount Sales Amount:=

SUM(Sales_Header[sales_amount])

Budget Amount Budget Amount:=
SUM(Budgets[budget_amount])

Sales Variance Sales Variance:=
[Sales Amount]-[Budget Amount]

Sales Variance % Sales Variance %:=
if( ISBLANK(Sales_Header[Budget Amount])
, BLANK()
, Sales_Header[Sales Amount]/Sales_Header[Budget 
Amount]-1
)

Sales KPI Sales KPI:=
SUM(Sales_Header[sales_amount])



Advanced Browsing Features

76

6. Create a pivot that shows the month of the year as row labels with the measures 
(Sales Amount, Budget Amount, Sales Variance, and Sales Variance %). 
The Pivot should look like the table in the following screenshot:

Note that the variance between Actual Sales and Budget Sales has constantly been improving 
and that Sales Variance % ranges from -7.00% in July 2005 to 7.00% in September 2006. 
This coincidence is intended, in order to illustrate how the KPI changes over a value range.

How to do It…
In order to add the KPI to the model, perform the following steps:

1. Open the PowerPivot window and right-click on the Sales KPI measure in the 
Sales_Header table. Select Create KPI… from the pop-up menu.

2. Specify the target value as Budget Amount by selecting it from the drop-down  
box (where the measure radio button is selected).

3. Ensure that the first icon's style set is selected (a border will indicate the  
selected style).



Chapter 3

77

4. Select the text from the first indicator and type 94.9. Move the other indicator until it 
reaches 100%. The KPI dialogue should look like the following screenshot:

The indicator bars can be slid across the status threshold bar or 
have values entered directly into the textboxes.

5. Select the OK button to complete the process.



Advanced Browsing Features

78

6. Return to the Pivot and refresh the model, a new node in the Sales_Header table tree 
will be created titled Sales KPI. It has three choices Value, Status, and Target.

7. Add these three measures to the pivot table. The Sales KPI Status column will show 
as a red cross for sales that have a variance of more than -5 percent, a warning 
indicator for sales with a variance between -5 percent and 0 percent, and an agreed 
indicator for the sales that are over budget.

How it works…
The creation of a KPI adds three new measures to the model. These are:

 f Value: It holds the value the KPI is based on.

 f Target: It holds the value that the Value measure is compared to.

 f Status: It holds a value that shows how the Value measure compares to the Target 
measure (according to the KPI logic). This is an important consideration because the 
KPI status can also be thought of as a simple condition, which indicates -1 (for bad), 
0 (for moderate), and 1 (for good). The Status measure is then converted into an 
image by the client tool.



Chapter 3

79

We can verify how the KPI status has been translated by the client tool. Outside the pivot 
table, add a formula that references the Sales KPI Status column. The value returned  
will be either -1, 0, 1.

The KPI status can be extremely useful when used as a value to filter data. For example, 
consider the situation where we only want to show data that is considered a bad state  
(red KPI status). Select the drop-down arrow on the Row Labels, then select Value Filter,  
and then Equals.



Advanced Browsing Features

80

A Value Filter window will open. Set the conditions of the window to filter on Sales KPI Status 
for a value of -1. Then, click on OK.

Once this is done, the pivot table will only show the rows with a red KPI indicator.

There's more...
In addition to editing the KPI from the PowerPivot window (right-clicking the Calculation Area 
cell with the KPI formula in it and then selecting Edit KPI Settings), the KPI can be edited 
directly from the workbook by selecting the KPI in the pivot table and selecting Edit KPI 
Settings from the PowerPivot tab.

Descriptive information can be added to the KPI by expanding the Descriptions section of the 
Edit KPI dialogue. However, the text entered here is not visible from Excel.

The structure of the KPI (for example, what is considered good or bad) can be managed by 
selecting the appropriate conditional rules under the threshold bar. This also determines the 
number of threshold indicators that are shown; for example, the following graphic shows the 
thresholds for an acceptable value (where the KPI value should not deviate too far from a 
target range):

Role playing dimensions and relationships
Role playing dimensions are dimensional structures that are re-used throughout the model. 
The use of a role playing dimension can simplify model maintenance because only one 
physical structure is created and it is used many times.



Chapter 3

81

Consider the Sales_Header table that has been used in this chapter. It includes three 
date fields (for Order Date, Due Date, and Ship Date). One date table can be used to 
reference all three columns.

Getting ready
This workbook model continues with the sales data that has been used so far in this chapter. 
However, unlike previous models, which focused only on the Sales Amount values that were 
ordered, we show the value of products that were shipped and delivered.

How to do it…
1. Open the workbook Role Playing.xlsx and import the Sales_Header,  

Sales_Detail, Products, and Dates tables to a new tabular model.

2. Create relationships between the following tables and fields:

Table Column Related Table Related Column
Sales_Detail sales_order_id Sales_Header sales_order_id

Sales_Detail product_id Products product_id

Sales_Header order_dt Dates date_id

Sales_Header due_dt Dates date_id

Sales_Header ship_dt Dates date_id

3. In design mode, additional relationships between two tables will be shown as  
dashed lines:



Advanced Browsing Features

82

4. Hide the Sales_Header table and all the Sales_Detail columns from client tools. 
Then, add the measures Ordered Amount, Shipped Amount, and Due Amount 
to the model, formatted with no decimal places and comma separation:
Ordered Amount:=
CALCULATE(
    SUM([sales_amount]), 
 USERELATIONSHIP(Sales_Header[order_dt], Dates[date_id])
)
Shipped Amount:=
CALCULATE(
    SUM([sales_amount]), 
 USERELATIONSHIP(Sales_Header[ship_dt], Dates[date_id])
)
Due Amount:=
CALCULATE(
    SUM([sales_amount]), 
 USERELATIONSHIP(Sales_Header[due_dt], Dates[date_id])
)
Default Amount:=
SUM([sales_amount])

5. In the Dates table:

1. Sort the Month column by the month_of_year column.

2. Create a hierarchy (Day by Year) that shows Year, Month, and date_id.

3. Rename date_id to Date (within the hierarchy).

4. Hide all columns in the Dates table.

5. Format the date_id column as 14 March 2001.

6. Create a pivot table that shows the hierarchy Day by Year on rows and the 
measures Ordered Amount, Shipped Amount, Due Amount, and Default 
Amount on rows. Expand the years and months, so that the dates are shown for  
July and August 2005. The Pivot will look like:



Chapter 3

83

How it works…
The creation of more than one relationship between tables creates a primary (Active) 
relationship and secondary relationship(s). By default, the Active relationship is used in 
calculations that are filtered between the two tables.

This can be seen in the pivot table in a way that the default calculation (Default Amount) 
mimics the measure Ordered Amount. This occurs because the first relationship between 
the Sales_Header table and the Dates table was between order_dt and date_id 
(hence, the relationship assumes an Active role).

In order to specify that another relationship should be used in a calculation, we must 
specify the relationship within that calculation and change the filtering context by including 
a CALCULATE function. The syntax for USERELATIONSHIP is very simple and automatically 
determines the lookup table (column) without the need to specify it (as ColumnName1 or 
ColumnName2). To include USERELATIONSHIP in a formula, simply specify two column 
names as arguments for the function.

USERELATIONSHIP(<columnName1>,<columnName2>)

In order to use the USERELATIONSHIP function, a 
relationship must be defined between the two columns. 
The function does not create a relationship, or create a 
pseudo-relationship, if there is no existing relationship.

There's more…
The Active relationship in the model is indicated in the diagram view by a solid line between 
two tables. Secondary relationships are shown as a dashed line. This is also visible within the 
Manage Relationships dialogue by the Active indicator in the grid.



Advanced Browsing Features

84

In order to change the Active relationship, you must first deactivate the current Active 
relationship and then specify the new Active relationship. In order to do this, edit the 
relationship and check (or uncheck the Active option).

There is no requirement to have an Active relationship between tables in the model. If this is 
the case and there are no Active relationships defined, any (default) calculations that would 
otherwise rely on the Active relationship will show duplicated values as if no relationship had 
existed (see Linking fields between tables recipe in Chapter 1, Getting Started with Excel).

When editing the model in the Design view, the fields that are active in the relationship are 
highlighted when the mouse hovers over the relationship. This makes it easy to identify 
participating fields when browsing the model. Additionally, the relationship can be edited 
(indicating whether it is active or not) by double-clicking on the relationship line.

Building ratios
We often like to determine the significance of an item within its group, based on its value 
when compared to the group total. To do that, we use a ratio that indicates the item's 
importance as a percent age (portion of 100). This recipe examines various techniques for 
building ratios, based on value data and the presentation of that ratio within the data.

Getting ready
This model continues with the sales data that is being used in previous chapters. Open the 
Ratios workbook and import the Sales_Header, Sales_Detail, Products, and Dates 
tables to a new tabular model.



Chapter 3

85

Create relationships between the following tables and fields:

Table Column Related Table Related Column
Sales_Detail sales_order_id Sales_Header sales_order_id

Sales_Header order_dt Dates date_id

Sales_Detail product_id Products product_id

Hide the Sales_Header table and all the Sales_Detail columns from client tools. Then 
add the measure Sales Amount to the sales_detail table:

Sales Amount:=SUM([sales_amount])

Finally, rename the fields product_name to Product, subcategory_name to 
Subcategory, and category_name to Category. Then, create a hierarchy (Product  
by Category) that has the levels Category, Subcategory, and Product.

How to do It…
1. Create a measure in the Sales_Detail table (Sales Amount (All 

Products)), which shows the value of all product sales. Add the following code:
Sales Amount (All Products):=
CALCULATE(Sales_Detail[Sales Amount]
    , ALL(Products))

2. Add a measure to the Sales_Detail table (Sales Ratio), which shows the ratio of 
the sales against all product sales. Add the measure and format it as a percent age:
Sales Ratio:=
[Sales Amount]/[Sales Amount (All Products)]

3. Create a pivot with all the three measures as column values and the Product 
by Category hierarchy on rows. Note that the measure Sales Amount (All 
Products) is 80,450,597, which equals the Sales Amount (Grand Total) value. 
Finally, note that the Sales Ratio column correctly shows the value (ratio or mix) 
for each line.



Advanced Browsing Features

86

4. Create a row filter that only shows the category of Accessories, Bikes, Clothing, 
and Components. Click on the Row Labels drop-down arrow and deselect the other 
categories. Note that the measure Sales Amount (All Products) still shows 
80,450,597 and that the Sales Ratio column does not total to 100 percent.

5. Return to the PowerPivot window and create the following measures. Sales Amount 
(Filtered Products) that should be formatted as numeric and  
Sales Ratio (Filtered) should be formatted as a percent age.
Sales Amount (Filtered Products):=
CALCULATE([Sales Amount]
    , ALLSELECTED(Products))

Sales Ratio (Filtered):=
[Sales Amount]/[Sales Amount (Filtered Products)]

6. Add these measures to the pivot table. The two new measures show totals for visible 
cells with the ratio summing to 100 percent.

How it works…
The calculation of the ratio requires no explanation, as it is simply a numerator divided by a 
denominator. However, it is worthwhile noting that there is no requirement to check division  
by zero errors (that is, there is no requirement to check that the denominator equals zero 
before the division). Expanding the Accessories category will show that there are some 
accessories without sales. These items do not have a sales ratio and do not show an error  
as one might expect.



Chapter 3

87

The measure which acts as the denominator in the ratio calculations introduces table filtering, 
which requires further explanation. The normal operation of a measure value in a pivot 
table is to perform the calculation function at the intersection of the pivot table axis (or the 
query axis). For example, consider the cell at the intersection of Accessories and Sales 
Amount. The value of this cell is effectively obtained by reducing the Sales_Detail table to 
those products that have a category of Accessories. Then, a sum calculation is performed 
on the sales_amount column to return the value. When the Accessories member is 
expanded in the pivot table (to show measures for Bike Racks), the filter is applied so that 
only sales lines for Products, with a Category of Accessories and a Subcategory of Bikes 
and Racks is included in the calculation.

The calculation Sales Amount (All Products) alters the way this native filtering 
works. This is done through the use of the CALCULATE statement (which specifies that the 
expression should be evaluated in another context) and subsequent changes to that context. 
The syntax for the CALCULATE function is:

CALCULATE(<expression>,<filter1>,<filter2>…)

When used within the Sales Amount (All Products) formula, the <filter>, which is 
applied (ALL(Products)) changes the existing application of the filter created by the row 
restrictions in the pivot table to ALL Products. Therefore, any filter that is applied through the 
query (or the client tool) is removed when the calculation is evaluated and the calculation is 
applied to all the products.

The ALL function, when used in this manner, simply returns all rows from the Products 
table, thus effectively removing the filter created by the pivot table.

Similarly, the function ALLSELECTED is used to restrict the Products table to products that 
are explicitly selected in the pivot.

There's more…
The ability to manipulate how the filter is applied is one of the most powerful features of DAX.

Consider the situation where we would like to provide a nested ratio (as shown in the following 
screenshot). These types of ratios are often called ratios to parent because they show 
proportional ratios of their parent in a hierarchy. In this situation, the ratio shows as a percent 
age of its parent and sums to 100 percent. Here, the measure Sales Ratio (Nested) shows 
the proportion of sales compared to the parent attribute.

www.allitebooks.com

http://www.allitebooks.org


Advanced Browsing Features

88

For the purposes of this recipe, we will not show the ratio for the products' level of  
the hierarchy.

Here, we create another set of measures to show what the sales ratio is for the selected 
subcategories. Add the following measures:

Sales Amount (All Selected Subcategory):=
CALCULATE(
    Sales_Detail[Sales Amount]
    , ALLSELECTED(Products[Subcategory])
)
Sales Ratio (Subcategory):=
[Sales Amount]/[Sales Amount (All Selected Subcategory)]

By specifying the Subcategory field within ALLSELECTED, the filter context for Products 
is forced to the current subcategory (rather than the previous ALL Products). When the items 
shown in the pivot are related to multiple subcategories, as would be the case when the row 
shows a category, ALLSELECTED(Products[Subcategory]) returns all Products.

Now, our model contains two ratios, which are expected to be returned depending on the level 
of the hierarchy that the user is viewing. Firstly, the measure Sales Ratio (Filtered) 
should be shown when the Accessories level is being viewed and secondly, Sales Ratio 
(Subcategory) should be shown when the user is at the Subcategory level. If the user 
navigates to Products, nothing should be shown.



Chapter 3

89

Unlike MDX (Multidimensional Expressions), DAX does not include the notion of hierarchies 
(and hierarchy-aware functionality) within calculations; everything must be based on tables 
and columns. In order to determine which level the user is viewing the hierarchy (or the 
Products table) at, we can check for filtering through the ISFILTERED function. For 
example, to determine if the user is viewing a subcategory, we could simply use ISFILTERED
(Products[Subcategory].

The formula for Sales Ratio (Nested) is therefore:

Sales Ratio (Nested):=
if(ISFILTERED(Products[Product])
    , BLANK()
    , if(ISFILTERED(Products[Subcategory])
    , [Sales Ratio (Subcategory)]
    , [Sales Ratio (Filtered)]
    )
)





4
Time Calculations  

and Date Functions

Often, our models need to display data within the context of time relationships. Therefore, in 
this chapter, we'll be covering:

 f Calculating running totals–totals to date

 f Month, quarter, and year to date aggregations

 f 445 dates and irregularities

 f Last year and prior period values

 f Relative Time–pivoting around measures

 f Moving averages and last n averages

Introduction
The chapters that have been examined so far treat calculations as a point in time data. 
That is, some event or occurrence that occurs at a given point in time. Further, the modeling 
that we have looked at aggregates this data by other tables, which may be thought of as 
dimensions for analyzing the data.

The ability to manipulate this type of data by dates and date-derived types is one of the most 
common forms of analysis, and includes a variety of different types of calculations. The 
most basic form of this analysis is the concepts of trending, and the comparative questions 
that arise regarding performance against prior periods. This type of analysis always includes 
the concept of date, and the business implications of a date aggregation (such as month 
to date value, year to date value, balance to date value, and running balances). Common 
performance metrics includes trending by time and comparatives to prior periods.



Time Calculations and Date Functions

92

The recipes in this chapter examine how to manipulate and create measures (and define the 
model) across a date dimension so that this type of analysis can be performed.

Pivotal to date calculations is the concept of the current date. The current date is nothing 
more than a reference point to which a calculation can be based and performed against. 
Consider the calculation of month to date, this requires a date (current date), otherwise the 
calculation is meaningless because we cannot calculate a month to date value without a date 
context. The same current date can then be used to provide year to date, month to date and 
the like.

Further, the current date as used in a query can be introduced to the tabular filter context 
in two ways. Firstly, the current date can be set by the report axis (rows or columns) with the 
current date changing for each row or column for the query. A simple example of this will 
be the month of the year as columns, where each column represents a change to the filter 
context. Secondly, the current date can be specified as a report filter where the same value is 
defined for all the data in the report.

Calculating running totals – totals to date
Running totals are used to provide point-in-time balances where the source data is 
transactional, and the balance is determined by performing an aggregate on all the values 
that exist before the current date.

Traditionally, the aggregation of data from the start of the transactional activity has been 
burdened with performance problems, and model designers have used point-in-time 
snapshots to reduce the number of calculations required. However, the xVelocity engine in 
tabular models is very efficient at managing this type of transaction and a simple calculation 
based on all prior data, could be a viable option when determining totals to date in your 
model. This recipe shows you how to add a running total to a model.

Getting ready
This recipe determines balances to date for data, and continues with the same type of 
sales data that has been used in prior chapters. Open the workbook Sales Book - Time 
Calcs.xls and import the Sales Header, Sales Detail, Products, and Dates 
worksheets into a new PowerPivot model. Create the following relationships within the model:

Table Column Related Table Related Column
Sales_Header order_dt Dates date_id

Sales_Detail sales_order_id Sales_Header sales_order_id

Sales_Detail product_id Products product_id

Hide the Sales_Header table from the client tools and all the columns from the  
Sales_Detail table.



Chapter 4

93

In the Products table hide all fields except for Product, Category, and Subcategory. 
Create a hierarchy called Product by Category and include the levels Category, 
Subcategory, and Product.

In the Dates table, rename the fields year_cal, month_name_cal, and date_id to Year, 
Cal Month, and Date. Then, create a hierarchy titled Calendar Dates and include those 
columns (in that order) as levels. Set the Sort by Column of Cal Month to month_id_cal 
and then, hide the column from the client tools.

Finally, rename the field Cal Month in the calendar day's hierarchy to Month. Hide the fields 
date_id, month_id_445, month_id_cal, month_name_445, qtr_id_445, qtr_445, 
and year_445 from the client tools. The Dates table should appear as shown in the 
following screenshot:

  

How to do it...
Our recipe starts by creating a generic sales calculation. This can then be used by another 
calculation that alters the query context to provide a running total.

1. In the Sales_Detail table, add the formula Sales Amount measure, which sums 
the Sales_Detail.sales_amount column.
Sales Amount:=SUM([sales_amount])



Time Calculations and Date Functions

94

2. Add another measure to show the accumulating balance of the sales amount  
as follows:
Sales Amount (To Date):= 
  CALCULATE(Sales_Detail[Sales Amount] 
  , FILTER(all(dates)  
  , Dates[date_id]<=MAX(Dates[date_id])) 
)

3. Add a new measure to the Sales_Detail table to show the expected result of the 
MAX(DATE) component of the Sales Amount (To Date) calculation:
Max Date:=MAX(Dates[date_id])

4. Create a pivot with the Calendar Dates hierarchy on rows and the Sales 
Amount, Sales Amount (To Date), and Max Date measures. Expand the 
Years 2005 and 2006 to the Months level. Your pivot should look something  
like the following screenshot:

How it works…
The calculation for Sales Amount (To Date) is a good example to demonstrate how 
a DAX measure can contort the filter context, which is created by the query. Further, the 
concepts of a current date that were discussed in the introduction are shown through the 
creation and use of the measure Max Date. In this scenario, the current date is materialized 
to the user as Max Date.

We can rationalize that the current date should be the maximum date of the filter context. If we 
have selected a month (an entire month as an attribute), we would rationalize that the current 
date should be the last day of the month. The expected result of MAX(Dates([date_id])) as 
part of the calculation returns the maximum date from the applied (date) filter—the filter in this 
case is applied as a result of the row values. When the filter context controlled by the query is a 
Year (as in the 2005 value of the pivot), the formula simply returns the last date of that year.



Chapter 4

95

It may also be beneficial to recognize that because of the use of the hierarchy, the Month level 
of the hierarchy automatically got filtered by Years in the preceding level of the hierarchy. 
If we were to replace the Pivots row hierarchy with the Cal Months attribute, we would see 
the last date for all months of the filter context (for example, the last date in January, or all 
January months). This is important because months (as far as running totals are concerned) 
should be considered within a year—and this is exactly what the hierarchy provides. The 
following screenshot illustrates the previously discussed feature:

The CALCULATE function is used to alter the filter context, which is natively provided by the 
query. What we want to do, is firstly remove any date filter from the SUM calculation, and then 
reapply it so that the new filter context includes the current date and all dates prior to it. This 
is achieved through the use of the FILTER function within the calculate command, as shown 
in the following code:

FILTER(ALL(dates), Dates[date_id]<=MAX(Dates[date_id]))

The FILTER function that restricts rows returned by a table according to the <filter> 
predicate and follows the syntax is as follows:

FILTER(<table>,<filter>)

When used within our CALCULATE statement, the result of the FILTER function is all rows 
from the Dates table that are less than (or equal to) the current date. This is achieved by 
removing any filters on the Dates table (that is selecting ALL(Dates) as the <table> 
argument) and then applying a new filter that enforces the predicate whereby the Dates.
date_id is less than or equal to the current date.



Time Calculations and Date Functions

96

Month, quarter, and year to date 
aggregations

Month to Date (MTD), Quarter to Date (QTD), and Year to Date (YTD) aggregations are 
arguably the most common aggregation functions performed on transactional data over time 
periods. The calculations implicitly include a business context to the end user because the 
user understands the start and end of the period that is used within the calculation. Consider 
the phrase Year to Date. Within this term, we assume an aggregation of periods in the current 
year to the current date. But without an understanding of when the year starts (or ends), the 
term is meaningless.

This recipe looks at how to build these to-date measures within a tabular model.

Getting ready
This recipe follows from the prior recipe Calculating running totals – totals to date, and 
assumes that the workbook from that recipe is completed.

How to do it…
Period to date calculations require that the model has a Dates table. This is simply a table 
that the tabular model can use to reference as a range of dates.

1. Mark the Dates table as a date table by selecting the Mark as Date Table button 
from the Design tab and specifying the date (column) as the date_id field, as 
shown in the following screenshot:

2. Add the Sales Amount (QTD) and Sales Amount (YTD) measures for  
the accumulating Sales Amount (QTD and YTD). These should be added in the 
Sales_Detail table, as shown in the following code:
Sales Amount QTD:=TOTALQTD([Sales Amount], Dates[date_id])
Sales Amount YTD:=TOTALYTD([Sales Amount], Dates[date_id])



Chapter 4

97

3. Create a pivot table from the model, which shows the Calendar Dates  
hierarchy on rows, and the measures Sales Amount and Sales Amount YTD on 
columns. Expand the Years 2005 and 2006 so that the pivot table looks like the 
following screenshot:

The Sales Amount YTD holds the cumulative balance of the transaction values.  
The accumulated value restarts in January each year.

How it works…
The totals to date functions (which includes TOTALYTD, TOTALQTD, and TOTALMTD) evaluate 
a calculation over the range of dates according to the requirements of the function (where 
requirements are presented as an <expression>). That is, if the function is TOTALYTD, the 
function will accumulate dates according to the current date, and perform a calculation for all 
dates that occur up to, and including the current date. It is not necessary to define the current 
date for this formula because it is implied by the relationship within the model. The syntax for 
these functions follows the same format:

TOTALYTD 
  (<expression>,<dates>[,<filter>][,<year_end_date>])

Since <year_end_date> is not required for the month to date calculations, the function 
TOTALMTD excludes this parameter.



Time Calculations and Date Functions

98

In just the same way as the other calculations have used an existing measure as the 
basis of the calculation, the  use of [Sales Amount] in this calculation is equivalent to 
including the qualified measure in place of <expression>. Therefore, the two calculations 
TOTALYTD([Sales Amount], Dates[date_id]) and TOTALYTD(sum(sales_amount), 
Dates[date_id]) are the same.

There's more…
If there is no <year_end_date> supplied (as in the previous code), the function defaults to 
an end date of December 31. It is relatively simple to replace this with another date using the 
example (for a year end of June 30) as:

Sales Amount YTD(30 Jun):= 
  TOTALYTD([Sales Amount], Dates[date_id],"30 Jun")

445 dates and irregularities
Manufacturing and retail companies often use a special type of calendar, which ensures that 
all months have an equal number of days. This is commonly called a 445 calendar, which 
indicates that a month is made of 4 weeks, with the next month comprising 4 weeks, and the 
final month (in the quarter) comprising of 5 weeks. The next quarter follows the same pattern 
of 2 x 4 weeks and then a 5-week month.

Month names in the 445 calendar do not always equate to the calendar month. The 445 
calendar month of January may run into February, and December may run into January (in fact 
this is frequently the case). Further, the week can start on any day of the calendar week, and 
a 445 calendar's month never end on the same calendar day of a month.

Although there are variations of this pattern (454 and 544), the concepts and implications of 
the calendar are the same. It poses a challenge in the model because a year does not start 
or end on the same date, and the months do not align with the calendar months. This recipe 
examines month to date, quarter to date, and year to date calculations under a 445 calendar.

Getting ready
This recipe builds on the workbook used in the prior recipe (Month, quarter, and year to date 
aggregations). Examine the Dates table; the table aligns each day to a month and year in the 
445 calendar.



Chapter 4

99

How to do it...
Unlike the period to date calculations that were addressed in the previous recipe, the 445 
calendar cannot rely on end dates. Our method must rely on the metadata of the calendar.

1. Launch the PowerPivot window.

2. On the Dates table, set the Sort by Column of month_name_445 to  
month_id_445.

3. Create a hierarchy titled 445 Dates and include the fields year_445,  
month_name_445, and date_id. Rename the hierarchy levels to Year, Month,  
and Date. The Dates table should look something like the following screenshot:

4. Add the following measures to the Sales_Detail table:
First Date of Period:=FIRSTDATE(Dates[date_id])
Last Date of Period:=LASTDATE(Dates[date_id])
Sales Amount 445 YTD:=CALCULATE([Sales Amount] 
  , Filter(ALL(Dates) 
  , Dates[year_445]=MAX(Dates[year_445]) 
  && Dates[date_id]<=MAX(Dates[date_id]) 
  )
)



Time Calculations and Date Functions

100

The placement of measures within tables is at the discretion of 
the modeler. Measures such as First Date of Period and 
Last Date of Period may be better placed in the Dates 
table in larger models (since they are natively associated with a 
Dates subject area). Placing measures in tables that they are 
associated with may make sense from a tabular modeling point 
of view (since the measures will appear in the appropriate subject 
area); however, the multidimensional representation of this will 
create many measure groups, which may be overwhelming for the 
user. However, measure names must be unique within the model.

Alternatively, the modeler may choose to create an empty table 
and then create all measures there. This will only expose one 
measure group to the client tool, which may provide a simpler 
interface for the end user.

5. Format the measure Sales Amount 445 YTD as a numeric type (comma 
separated at no decimal places) and the short date dd-mm-yy.

6. Create a pivot table with the hierarchy 445 Dates on rows and expand the 2006 
year to the Month level. Add the following measures to columns: Sales Amount, 
Sales Amount 445 YTD, First Date of Period, and Last Date of 
Period. The pivot table will look as shown in the following screenshot:



Chapter 4

101

How it works...
The addition of the measures First Date of Period and Last Date of Period 
demonstrates the issues that are associated with 445 calendars. Namely, the inconsistent 
ending dates for months and years. Because there is no defining end date, it would not be 
possible to achieve the YTD aggregation through the TotalYTD function.

The FIRSTDATE and LASTDATE functions have a simple syntax, with the output being the 
expected first and last date for the dates that are passed through the <dates> argument. 
Since each cell in the pivot applies a different (date) filter (that is a filter, based on the dates 
held at the consolidated (row) levels), the function simply returns the first (and last) date for all 
dates within the bounds of the row items. Remember that the rows are filtered by both Years 
and Months. This is conceptually the same as the use of MIN and MAX functions.

FIRSTDATE(<dates>) , LASTDATE(<dates>)

The measure Sales Amount 445 YTD works by adjusting the Dates filter context in the 
same way that we would logically rationalize the aggregation problem. That is, give me all dates 
within the current year which are before (or equal to) the current date. Note that the current 
year is implied by its association to the current date within the 445 hierarchy. Therefore, we 
must remove the existing filter from the Dates table (that is, the one created by the query) and 
reapply it according to the 445 chosen year. This is achieved with the following code:

Filter(ALL(Dates) 
  , Dates[year_445]=MAX(Dates[year_445]) 
  && Dates[date_id]<=MAX(Dates[date_id]) 
)

Last year and prior period values
One of the most common forms of comparison for a value is that of a base value to prior 
periods. The idea of a prior period generally takes either of the following two forms:

 f Comparison to a different period which relates to the current period—for example, 
comparison with the last month

 f Comparison to the same period with a year offset—for example, this month last year

Both forms of this calculation are conceptually the same—it is only the offset that is applied 
in the calculation that is different. Consider the situation of determining a value for the last 
month. Here, we perform a base calculation with a monthly offset from the current date. For 
the last year value, we perform the same base calculation with a 12-month offset. Of course, 
the 12-month offset can be simplified as one year, but the calculation is the same.



Time Calculations and Date Functions

102

Furthermore, by considering a base calculation in the context of a current date, the  
logic of prior period calculations can be applied to any base calculation. The calculation is 
generally irrelevant—we are only adapting the filter context used in the measure, so that the 
current date used by the base calculation (or base measure) is relative to the date supplied  
by the client (query).

Getting ready
This recipe continues from the 445 dates and irregularities recipe.

How to do it…
We will create measures for Sales Amount LM (Sales Amount Last Month), Sales Amount 
LY (Sales Amount Last Year), and Sales Amount YTD LY (Sales Amount YTD Last Year).

1. Open the workbook Sales Book – Time Calcs.xls. Since the model in this book 
has been used in a previous recipe, the tables are imported, formatted, and have 
hierarchies defined. The model also includes the base measure Sales Amount.

2. Create the following measures in the Sales_Detail table with a numeric, comma 
separated with no decimal places:
Sales Amount LM:=CALCULATE([Sales Amount] 
  , DATEADD(Dates[date_id], -1, MONTH)
)

Sales Amount LY:=CALCULATE([Sales Amount] 
  , DATEADD(Dates[date_id], -1, YEAR)
)

Sales Amount YTD LY:= 
  CALCULATE(Sales_Detail[Sales Amount YTD] 
  , DATEADD(Dates[date_id], -1, YEAR)
)

The benefits of a reusable shell measure should be apparent. 
All these measures are based on the [Sales Amount] 
measure. If our model requires a change so that [Sales 
Amount] is be calculated in a different way, a change will 
only be required in one measure.  Since all other (sales-based) 
measures rely on [Sales Amount], all changes would be 
propagated throughout the model.



Chapter 4

103

3. Create a pivot with the Calendar Dates hierarchy on rows and the measures (Sales 
Amount, Sales Amount LM, Sales Amount LY, Sales Amount YTD, and Sales 
Amount YTD LY) on columns. Expand the Years for 2005 and 2006 so that the 
Months level is shown. The pivot should look as shown in the following screenshot:

How it works…
It is easy to see that our calculations work. In August 2005, the Sales Amount LM value 
($489,329) is the July amount (last month amount). In July 2006, the value also appears as 
the Sales Amount LY value. This is repeated for comparisons of measures Sales Amount 
YTD and Sales Amount YTD LY.

For the measures Sales Amount LM and Sales Amount LY, the base measure used 
was Sales Amount. Remember that this measure is simply the sum of sales_amount, 
and represents the sum within the current filter context. For a monthly value (or a cell in the 
Sales Amount column), this is just the dates within that month. Consider the intersection 
of Sales Amount (July 2005)—value of $489,329—the filter context here is simply Years of 
2005 and the months of July—that is, dates in July 2005.

Now consider the formula Sales Amount LM in the context of the cell of Aug 2005.  
The formula for the cell is as follows:

CALCULATE([Sales Amount], DATEADD(Dates[date_id], -1, MONTH))



Time Calculations and Date Functions

104

In Aug 2005, the current date (filter context) is all dates in Aug 2005, the native filter context 
for the cell will be all the dates in the month.

The DATEADD function follows the ensuing syntax:

DATEADD(<dates>,<number_of_intervals>,<interval>)

It also returns a table of the dates shifted, that is, <number_of_intervals> by the 
<interval>. The formula Sales Amount LM reduces these dates by one month. The 
interval can be one of the values YEAR, QUARTER, MONTH, or DAY.

Therefore, the dates returned through the DATEADD function are all the dates in July (2005) 
and these are the date(s) used within the <expression> of the CALCULATE statement.

This principle is applied in all other calculations.

There's more…
The Month, quarter, and year to date aggregations recipe, introduced the concept of the 
Dates table. The definition of this table is important in DAX because the table is used as a 
reference for date-based calculations. Note that the first argument of the DATEADD function 
is a column of dates. In this situation, we have used a date column that existed in the Dates 
table which had a relationship that was used in the model. This is a natural choice, since the 
Dates table includes a continuous list of dates, and this is a requirement of the function 
argument. There is no requirement however, to have any relationships between the model and 
the dates column used in the function. In fact, we could use any column of dates.

Further, the range of <dates> that is provided to the DATEADD function does affect its 
outcome and this should be considered by the modeler when considering the range of dates 
to include in a Dates table (whether it is used as a dimension or not).

Add the following measures to the Dates table:

Min Date:=CALCULATE(MIN([date_id]))
Min Date LY:=CALCULATE([Min Date], DATEADD(Dates[date_id], 
  -1, YEAR))



Chapter 4

105

Put these measures on a pivot table with the Calendar Dates hierarchy on rows, and then 
expand 2005 and 2006 as shown in the following screenshot:

The values returned for Min Date LY are constrained by the values in the Dates table. 
Notice that the first and earliest date that is in the Dates table is 01-Jan-05. We know 
this because it is based on the value of Min Date. Also, note that the earliest date for the 
measure Min Date LY is 01-Jan-05 (the same earliest date as Min Date). If we examine 
the date in the Dates table, we also find that this is the earliest date in the table.

Since the DATEADD function is dependent on the Dates table (its date field is required as the 
first argument in the function), the value returned from the function can never be a date that 
does not exist in these dates. The Dates table used in models should therefore, have a range 
that will cover the expected requirements of measures.

You might expect that DATEADD performs a calculation against the Date type, but this is not 
the case.

Relative Time – pivoting around measures
A Relative Time dimension is an example of a Utility dimension, a dimension that does not 
directly join to the data being analyzed, and is not directly used to slice and dice data. Rather, 
the Utility dimension assists the modeler (and user) by making the presentation of the model 
more user-friendly. An example of this is allowing the user to select a measure to show in 
the pivot they create (or report), by allowing them to select a dimension member (that is, the 
measure name from a list of options).



Time Calculations and Date Functions

106

Consider the following screenshot, which shows a very simple proforma report with Years 
and Months on rows, and the product categories on columns. A Utility dimension allows the 
user to select the measure that they wish to see in the report data area. They do not have to 
alter the pivot table by dragging a measure to the Values section of the pivot table layout.

A proforma can be thought of as a shell report layout. In 
the following screenshot, we can see the expected layout 
of the report. All we have to do is populate it with some 
measure value.

This principle can also be used in most reporting tools as shown in the following screenshot:

Additionally, the user can use the Utility dimension to stack values into the pivot table  
(or any report). This recipe looks at how to create a Utility dimension for measure selection  
in a tabular model.



Chapter 4

107

Getting ready
This recipe continues with the model that was developed in the Last year and prior period 
values recipe. The model already contains multiple measures (such as Sales Amount, 
Sales Amount (To Date), and Sales Amount YTD). We will create a Utility dimension 
for the user to select which measure they want to see in the reports.

How to do it...
This recipe starts by creating the Utility dimension.

1. Launch the PowerPivot window and import the Excel named range Measure_Name 
on the sheet Measure Name into the tabular model.

2. Hide the field measure_id from the client tools.

3. Create a new measure in the Measure_Name table (Dynamic Measure) to 
determine what measure name is filtered and return the appropriate measure:
Dynamic Measure:= 
  if(COUNTROWS(VALUES('Measure Name'))<>1 
  , BLANK() 
  ,  SWITCH(VALUES('Measure Name'[measure_id]) 
  , 1, Sales_Detail[Sales Amount] 
  , 2, Sales_Detail[Sales Amount (To Date)] 
  , 3, Sales_Detail[Sales Amount YTD] 
  , 4,  Sales_Detail[Sales Amount YTD(30 Jun)] 
  , 5, Sales_Detail[Sales Amount LM] 
  , 6, Sales_Detail[Sales Amount LY] 
  , 7, Sales_Detail[Sales Amount YTD LY] 
  )
)

4. Create the pivot table (as shown previously) with the Calendar Dates hierarchy on 
rows (expand the Years 2005 and 2006) and Category (from the Products table) 
on columns. Add the Measure Name field as a pivot filter and the measure Dynamic 
Measure as a value.

5. Test that changing the filter changes the values in the pivot.



Time Calculations and Date Functions

108

6. Alter the pivot by removing Category from the columns and placing Measure Name 
on columns. Set the Sort by Column filter so that only Sales Amount, Sales 
Amount LM, and Sales Amount LY are shown. The pivot will look as shown in  
the following screenshot:

How it works…
The method of providing a value based on the Utility dimension revolves around two steps. 
Firstly, we ensure that only one value is selected in the Utility dimension (in whatever filter 
context is provided by the query) and secondly, we determine which value (or measure) is to 
be returned based on the selected measure (value).

Ensure that only one value selected is contained within the IF function. This is used to return 
a BLANK() function if more than one value is selected as the measure to display.

The use of COUNTROWS(VALUES('Measure Name'))<>1 as the first argument for the IF 
function simply returns the number of rows from the table that are selected in the query (filter) 
context. If more than one value is selected, BLANK() is returned, otherwise the selected 
measure is evaluated and returned.



Chapter 4

109

Constructing the IF function in this way (so that, the true part of 
the statement returns Blank() as the first argument) allows us 
to put the more complex parts of the formula at the end of the 
IF statement. This can help to reduce the clutter of the formula 
and make it more readable.

Secondly, if a single row is selected, the SWITCH statement will determine what measure_id 
is chosen, and return the measure associated with that measure_id (remember that this may 
happen for each cell in the pivot results). The SWITCH statement has the following syntax:

SWITCH
(<expression> 
  , <value>, <result> 
  [, <value>, <result>] 
[, <else>]
)

Once a measure_id value is known, it is easy to see how this is used by SWITCH—the real 
measure is outputted as the <result>. Note the <value> and <result> arguments of the 
SWITCH statement in the preceding formula.

, 1, Sales_Detail[Sales Amount]
, 2, Sales_Detail[Sales Amount (To Date)]
, 3, Sales_Detail[Sales Amount YTD]
, 4,  Sales_Detail[Sales Amount YTD(30 Jun)]
, 5, Sales_Detail[Sales Amount LM]
, 6, Sales_Detail[Sales Amount LY]
, 7, Sales_Detail[Sales Amount YTD LY]

Finally, it is worth pointing out the use of the VALUES() function within the SWITCH 
statement. The SWITCH statement will only be evaluated when one row from the Measure 
Names table is selected. Therefore, we are guaranteed that only one row is returned by the 
VALUES() function, and this is the measure_id value of the selected measure.

Moving averages and last n averages
Moving averages are often used in analysis for two purposes.

Firstly, they are used to remove volatility from single point values. By including a number of 
prior observations, a smoother estimation of the volatile point is defined.



Time Calculations and Date Functions

110

Secondly, they remove volatility and can provide the general (and expected) trend movement 
(just as any consecutive set of numbers are an indicator of trend). Since a daily value may 
include prior N periods, the value of N is often used to support long-term or short-term trends. 
For example, a trend based on 30 days may be considered a long-term trend, whereas a trend 
based on five days may be used to provide a short-term trend. This type of smoothing, and a 
mix of long- and short-term trends is often used in charting analysis for stock prices.

This recipe shows how to perform last N calculations over stock data. The data is from 
the Australian Stock Exchange between January 1993 and December 2006. There are 
approximately 2.5 million value {StockCode, TradingDate} combinations for almost  
3,000 stock codes.

Getting ready
Open the workbook Stock Trades and note the three tables (Stocks, Trading History, 
and Dates). Stocks is a table that lists stock codes. This could include other characteristics 
such as the stock name, industry, and market. However, for our purposes the field 
StockCode is sufficient to identify a stock. The table Trading History shows the closing 
value (CloseValue) for the stock on a given day, and the table Dates is a sequential date 
table (from January 1, 2003 to December 31, 2006). Dates shows the Year, Month Name, 
and Month_Sort for each date.

We are going to create a measure that shows the last 10-day average of the closing price.

How to do it...
Start by defining the relationships with the model.

1. Create a relationship between the column TradeDate in Trading History, and 
TradeDate in the Dates table. Create a relationship between the StockCode 
column in the Trading History table and the StockCode in the Stocks table. The 
diagram of the model is quiet simple and should look like the following screenshot:

2. In the Dates table, set the Sort by Column of the Month field to Month_Sort and 
hide the Month_Sort field (from the client tools).



Chapter 4

111

3. In the Dates table (and the Design tab), define the field TradingDate as a Dates 
date field by clicking on the Mark as Date Table button and specifying TradingDate 
as the date field, as shown in the following screenshot:

4. In the Trading History table, define a measure Avg Value (average value) with 
a two decimal (comma separated) number format as shown in the following code:
Avg Value:=AVERAGE([CloseValue])

5. In the Trading History table, define a measure which shows the maximum 
date from the Dates table filtered perspective. This is the current date. (format the 
measure as a date March 14, 2001):
Max Date:=MAX(Dates[TradeDate])

6. In the Trading History table, define a measure that shows the date of the  
day which is 10 days before the current date. Format the measure as a date  
(March 14, 2001):
Max Date -10:=CALCULATE([MAX Date] 
  , DATEADD(Dates[TradeDate],-9,DAY)
)

7. In the Trading History table, define the measure, which holds the average 
value for the past 10 days' trading. Format the measure with a numeric (comma 
separated), two decimal place format:
Avg Value (10 Running):=CALCULATE([Avg Value] 
  , DATESBETWEEN(Dates[TradeDate] 
  , 'Trading History'[Max Date -10] 
  , 'Trading History'[Max Date] 
  )
)



Time Calculations and Date Functions

112

8. Create a pivot table with TradeDate (from the Dates table) on rows, using the 
StockCode (from Stocks) table as a filter. Include the measures Max Date,  
and Max Date -10. The pivot will look like the following screenshot:

9. Create an additional pivot table with the same format as the prior one, but only include 
the measures Avg Value and Avg Value (10 Running). Filter the pivot table to 
only show StockCode AAC. Your pivot will look like the following screenshot:

How it works…
The formula for Avg Value (10 Running) works by calculating three calculations within 
the formula. These are the current date (Max Date), the date 10 days prior to the current 
date, and the value of the average between these two dates.



Chapter 4

113

The determination of the current date is achieved through the use of (Max Date). Max Date 
returns the highest date from the current filter context in the Dates table (note that we filter 
by Dates on pivot rows). This is required so that a scalar (single date) can be determined 
from whatever filter context is applied to the model. Logically, this should be the last date of 
whatever period is provided by the filter context.

In the pivot that shows TradingDate and Max Date, we can see that Max Date returns the 
same day as the row filter (that is, Trading Date). However, the pivot may not be filtered by 
TradingDate. In this situation we still need to determine a date to base our calculations on, 
and therefore select the last date (for whatever Dates period is selected). Please review the 
Calculating running totals – totals to date recipe for further explanation on the logical use of 
Max Date.

Once a value for the current date is determined, we can use it to determine what the date 
was 10 days prior (to the current date). This introduces the DATEADD function, which has the 
following syntax:

DATEADD(<dates>,<number_of_intervals>,<interval>)

For this formula, <dates> specifies the dates column in the model, which should be a 
continuous range of dates. Since most of the models will have a Date dimension (most 
models require analysis by date), we can simply use the date field of this table for this  
purpose (although any range of dates will suffice).

It is also important to identify that the return value for the formula is dependent on the range of 
dates provided by the <dates> argument. Notice that there is no return value for the first 10 
dates (a blank Max Date -10 value) in the first pivot table. The <number_of_intervals> 
argument for the function is self-explanatory; however, the <interval> argument defines the 
number of periods and must be a value of the set (year, quarter, month, day).

Finally, the measure Avg Value (10 Running) calculates the average CloseValue 
between these two dates. Here, the filter context that is applied by the pivot is changed 
through the use of the keyword CALCULATE and controlled by the DATESBETWEEN function. 
The DATESBETWEEN function returns a set (table) of dates based on a <dates> column and 
a start and end date. This syntax for DATESBETWEEN is simply as follows:

DATESBETWEEN(<dates>,<start_date>,<end_date>)

Although this measure has calculated each component of the formula individually, there is no 
requirement to do so. That is, there is no requirement to specify AVG Value, Max Date,  
and Max Date -10 as measures, and then use them in the Max Avg Value (10 
Running) formula. We achieve exactly the same result by combining all the components  
into the same formula.



Time Calculations and Date Functions

114

Therefore, the following alternate formula also works:

Avg Value (10 Running):=CALCULATE(AVERAGE([CloseValue]) 
  , DATESBETWEEN(Dates[TradeDate] 
  , CALCULATE(MAX(Dates[TradeDate]) 
  , DATEADD(Dates[TradeDate],-9,DAY)) 
  , MAX(Dates[TradeDate]) 
  )
)

There's more…
Having a fixed value for N periods usually raises one issue from the end user: "Can I have a 
different number of periods?" The best way to overcome this is by allowing the end user a 
means to specify the number of historical days that they wish to include in their calculation. 
This is achieved through the use of a Utility table (or dimension) that allows the user to select 
the number of periods that they wish to review.

The formula for N periods then interprets the selected value from this table and uses that as 
the basis for the prior number of days.

To briefly reiterate, a Utility dimension is the one that performs a function other than the 
expected slicing and dicing of data. That is, its primary purpose is not to filter data, but to 
assist in model presentation. Please see the Relative Time – pivoting around measures 
recipe, for a further explanation and implementation.

In order to use this so that it allows the user to specify the number of periods they wish to 
include in their N periods, perform the following steps:

1. Import the table on the worksheet Periods into the model. The name for this table 
range is defined, and the data area will be imported as Periods.

2. Add another measure to the Trading History table as follows:
Dynamic N AVG:= 
  if(not(HASONEVALUE(Periods[Number Of Periods])) 
  , BLANK() 
  , CALCULATE( 'Trading History'[AVG Value] 
  , DATESBETWEEN(Dates[TradeDate] 
  , CALCULATE(MAX(Dates[TradeDate]) 
  , DATEADD(Dates[TradeDate],-1*VALUES(Periods[Number Of 
  Periods])+1,DAY)) 
  , max(Dates[TradeDate]) 
  ))
)



Chapter 4

115

3. Add this measure to the pivot with Year and Number of Periods as the pivot 
filters. Set the Year as 2005. The pivot should look like the following screenshot:

Since the Periods table is not linked to any other table, the 
PowerPivot field list will display a warning message about 
relationship definition, as shown in the following screenshot. 
This is nothing to be concerned about, since the Periods 
table is not connected to the model.



Time Calculations and Date Functions

116

The new calculation includes two important additions to the prior one. Firstly, there is a check 
for selection on Number of Periods. If there are no periods selected (as is currently the 
case), the measure returns a blank value—although we could return the average value (Avg 
Value) to indicate that the value is an average. This check is achieved with the following code:

if(not(HASONEVALUE(Periods[Number Of Periods])) 
, BLANK()

Previously (in the recipe Relative Time – pivoting around measures), 
we used COUNTROWS to achieve the same result; however, this 
method is equally valid and shows that the same outcome can be 
achieved in different ways.

The function HASONEVALUE() simply checks for a filter on the Number of Periods column 
in the Periods table. If there is more than one period selected, the value BLANK() is 
returned as the output for the measure Dynamic N Avg.

Although the negation of HASONEVALUE (through the use of not()) is not technically 
required, it assists with the logic of the entire formula. That is, it is simpler to read BLANK() 
as the first return value (the TRUE condition) in the IF function, rather than the intended 
formula. Of course, the choice is entirely up to you.

Secondly, the number of periods that the user intends to evaluate is returned through the use 
of a VALUES function. The VALUES function has a very simple syntax as follows:

VALUES(<column>)

This returns the distinct values from the <column> reference. Since we know that there is 
only one value selected, we can use this value as the basis of the N periods in the standard 
formula. Note that we know there must be only one value in the values function because of 
the branch that was chosen by the IF function.

Previously, the measure [Max Date -10] was hardcoded with a fixed value as the  
following code:

DATEADD(Dates[TradeDate],-9,DAY)

Now, the value (-9) is simply replaced by reference to the value that the person has  
chosen as follows:

-1*VALUES(Periods[Number Of Periods])+1

Just as a prior measure, Avg Value (10 Running) used nested measures to remove 
complexity, so could the measure Dynamic N AVG. We could separate out each part of the 
calculation into its own measure and combine these into a final formula.



5
Applied Modeling

In this chapter, we'll be covering more complex modeling concepts such as:

 f Grouping by binning and sorting with ranks

 f Defining many-to-many relationships

 f Using the last non-empty function for stock data

 f Performing currency calculations

 f Allocating data at different levels

Introduction
This is the final chapter that examines the foundations of tabular modeling (at least from the 
modelers point of view). The following chapters will examine the techniques used to manage 
the model in a corporate environment and include recipes on subjects such as data refreshes, 
partitioning, security, query modes, and perspectives. The final chapters will examine querying 
the model and creating visualizations using Power View (and the Power View settings required 
by the model).

In order to provide a familiar model which can be used in the later chapters, this chapter is 
a little different from the previous chapters because it progressively builds the model that is 
used throughout the rest of the book. Each recipe is intended to demonstrate a particular 
technique; however, they need to be followed in order so that the final model is completed. If 
this is not suitable, each completed recipe can also be found in the downloadable resources 
available on the Packt Publishing website.



Applied Modeling

118

Grouping by binning and sorting with ranks
Often, we want to provide descriptive information in our data, based on values that are 
derived from downstream activities. For example, this could arise if we wish to include a field 
in the Customer table that shows the value of the previous sales for that customer or a bin 
grouping that defines the customer into banded sales. This value can then be used to rank 
each customer according to their relative importance in relation to other customers.

This type of value adding activity is usually troublesome and time intensive in a traditional 
data mart design as the customer data can be fully updated only once the sales data has 
been loaded. While this process may seem relatively straightforward, it is a recursive problem 
as the customer data must be loaded before the sales data (since customers must exist 
before the sales can be assigned to them), but the full view of the customer is reliant on 
loading the sales data. In a standard dimensional (star schema) modeling approach, including 
this type of information for dimensions requires a three-step process:

1. The dimension (reseller customer data) is updated for known fields and attributes. 
This load excludes information that is derived (such as sales).

2. Then, the sales data (referred to as fact data) is loaded in data warehouse. This 
ensures that the data mart is in a current state and all the sales transaction data is  
up-to-date. Information relating to any new and changed stores can be loaded correctly.

3. The dimension data which relies on other fact data is updated based on the current 
state of the data mart.

Since the tabular model is less confined by the traditional star schema requirements of 
the fact and dimension tables (in fact, the tabular model does not explicitly identify facts or 
dimensions), the inclusion and processing of these descriptive attributes can be built directly 
into the model.

The calculation of a simple measure such as a historic 
sales value may be included in OLAP modeling through 
calculated columns in the data source view. However, this 
is restrictive and limited to simple calculations (such as 
total sales or n period sales). Other manipulations (such 
as ranking and binning) are a lot more flexible in tabular 
modeling (as we will see).

This recipe examines how to manipulate a dimensional table in order to provide a richer end 
user experience. Specifically, we will do the following:

 f Introduce a calculated field to calculate the historical sales for the customer
 f Determine the rank of the customer based on that field
 f Create a discretization bin for the customer based on their sales
 f Create an ordered hierarchy based on their discretization bins



Chapter 5

119

Getting ready
Continuing with the scenario that was discussed in the Introduction section of the chapter, the 
purpose of this chapter is to identify each reseller's (customer's) historic sales and then rank 
them accordingly. We then discretize the Resellers table (customer) based on this. This 
problem is further complicated by the consideration that a sale occurs in the country of origin 
(the sales data in the Reseller Sales table will appear in any currency). In order to provide 
a concise recipe, we break the entire process into two distinct steps:

 f Conversion of sales (which manages the ranking of Resellers based on a unified 
sales value)

 f Classification of sales (which manages the manipulation of sales values based on 
discretized bins to format those bins)

How to do it…
Firstly, we need to provide a common measure to compare the sales value of Resellers. 
Convert sales to a uniform currency using the following steps:

1. Open a new workbook and launch the PowerPivot Window.

2. Import the text files Reseller Sales.txt, Currency Conversion.txt, and 
Resellers.txt.

The source data folder for this chapter includes the base schema.ini 
file that correctly transforms all data upon import. When importing the 
data, you should be prompted that the schema.ini file exists and 
will override the import settings. If this does not occur, ensure that the 
schema.ini file exists in the same directory as your source data. The 
prompt should look like the following screenshot:



Applied Modeling

120

Although it is not mandatory, it is recommended that connection managers  
are labeled according to a standard. In this model, I have used the convention  
type_table_name where type refers to the connection type (.txt) and  
table_name refers to the name of the table. Connections can be edited using  
the Existing Connections button in the Design tab.

3. Create a relationship between the Customer ID field in the Resellers table and 
the Customer ID field in the Reseller Sales table.

4. Add a new field (also called a calculated column) in the Resellers Sales table to 
show the gross value of the sale amount in USD. Add usd_gross_sales and hide it 
from client tools using the following code:
= [Quantity Ordered]
*[Price Per Unit]
*LOOKUPVALUE
(
'Currency Conversion'[AVG Rate]
,'Currency Conversion'[Date]
,[Order dt]
,'Currency Conversion'[Currency ID]
,[Currency ID]
)

5. Add a new measure in the Resellers Sales table to show sales (in USD). Add USD 
Gross Sales as:
USD Gross Sales := SUM ( [usd_gross_sales] )



Chapter 5

121

6. Add a new calculated column to the Resellers table to show the USD Sales 
Total value. The formula for the field should be:
= 'Reseller Sales' [USD Gross Sales]

7. Add a Sales Rank field in the Resellers table to show the order for each resellers 
USD Sales Total. The formula for Sales Rank is:
=RANKX(Resellers, [USD Sales Total])

8. Hide the USD Sales Total and Sales Rank fields from client tools.

Now that all the entries in the Resellers table show their sales value in a uniform 
currency, we can determine a grouping for the Reseller table. In this case, we are 
going to group them into 100,000 dollar bands.

9. Add a new field to show each value in the USD Sales Total column of Resellers 
rounded down to the nearest 100,000 dollars. Hide it from client tools. Now, add 
Round Down Amount as:
=ROUNDDOWN([USD Sales Total],-5)

10. Add a new field to show the rank of Round Down Amount in descending order and 
hide it from client tools. Add Round Down Order as:
=RANKX(Resellers,[Round Down Amount],,FALSE(), DENSE)

11. Add a new field in the Resellers table to show the 100,000 dollars group that the 
reseller belongs to. Since we know what the lower bound of the sales bin is, we can 
also infer that the upper bin is the rounded up 100,000 dollars sales group. Add 
Sales Group as follows:
=IF([Round Down Amount]=0 || ISBLANK([Round Down Amount])
, "Sales Under 100K"
, FORMAT([Round Down Amount], "$#,K")  & " - "
& FORMAT(ROUNDUP([USD Sales Total],-5),"$#,K")
)

12. Set the Sort By Column of the Sales Group field to the Round Down Order 
column. Note that the Round Down Order column should display in a descending 
order (that is, entries in the Resellers table with high sales values should  
appear first).

13. Create a hierarchy on the Resellers table which shows the Sales Group field 
and the Customer Name column as levels. Title the hierarchy as Customer By 
Sales Group.

14. Add a new measure titled Number of Resellers to the Resellers table:
Number of Resellers:=COUNTROWS(Resellers)



Applied Modeling

122

15. Create a pivot table that shows the Customer By Sales Group hierarchy on the  
rows and Number of Resellers as values. If you created the usd_gross_sales 
field in the Reseller Sales table, it can also be added as an implicit measure to 
verify values. Expand the first bin of Sales Group. The pivot should look like the 
following screenshot:

How it works…
This recipe has included various steps, which add descriptive information to the Resellers 
table. This includes obtaining data from a separate table (the USD sales) and then 
manipulating that field within the Resellers table. In order to provide a clearer definition of 
how this process works, we will break the explanation into several subsections. This includes 
the sales data retrieval, the use of rank functions, and finally, the discretization of sales.

The next section deals with the process of converting sales data to a single currency.

The starting point for this recipe is to determine a common currency sales value for each 
reseller (or customer). While the inclusion of the calculated column USD Sales Total in the 
Resellers table should be relatively straightforward, it is complicated by the consideration 
that the sales data is stored in multiple currencies. Therefore, the first step needs to include 
a currency conversion to determine the USD sales value for each line. This is simply the local 
value multiplied by the daily exchange rate. The LOOKUPVALUE function is used to return the 
row-by-row exchange rate. (See the Linking fields between tables recipe in Chapter 1, Getting 
Started with Excel, for an explanation of this function.)

Now that we have the usd_gross_sales value for each sales line, we define a measure 
that calculates its sum in whatever filter context it is applied in. Including it in the Reseller 
Sales table makes sense (since, it relates to sales data), but what is interesting is how the 
filter context is applied when it is used as a field in the Resellers table. Here, the row filter 
context that exists in the Resellers table (after all, each row refers to a reseller) applies a 
restriction to the sales data. This shows the sales value for each reseller.



Chapter 5

123

For this recipe to work correctly, it is not necessary to include the calculated field  
usd_gross_sales in Reseller Sales. We simply need to define a calculation, which 
shows the gross sales value in USD and then use the row filter context in the Resellers 
table to restrict sales to the reseller in question (that is, the reseller in the row).

The Summing aggregates and row iteration recipe in Chapter 3, Advanced Browsing Features, 
have explained how the X functions use row iterations to calculate aggregates based on  
row-by-row calculations. Here, it is obvious that the exchange rate should be applied on a daily 
basis because the value can change every day. We could use an X function in the USD Gross 
Sales measure to achieve exactly the same outcome. Our formula will be:

SUMX
(
'Reseller Sales'
, 'Reseller Sales'[Quantity Ordered]
* 'Reseller Sales'[Price Per Unit]
* LOOKUPVALUE
(
'Currency Conversion'[AVG Rate]
, 'Currency Conversion'[Date]
,'Reseller Sales'[Order dt]
,'Currency Conversion'[Currency ID]
,'Reseller Sales'[Currency ID]
)
)

Furthermore, if we wanted to, we could completely eliminate the USD Gross Sales measure 
from the model. To do this, we could wrap the entire formula (the previous definition on USD 
Gross Sales) into the CALCULATE statement in the Resellers table's field definition of 
USD Gross Sales. This forces the calculation to occur at the current row context.

Why have we included the additional fields and measures in Reseller Sales? This is 
a modeling choice. It makes the model easier to understand because it is more modular. 
Additionally, the Performing currency calculations recipe is used to dynamically calculate 
values in any chosen currency. This would otherwise require two calculations (one into a 
default currency and the second into a selected currency) and the field usd_gross_sales  
is used in that calculation.

Now that sales are converted to a uniform currency, we can determine the importance by 
rank. RANKX is used to rank the rows in the Resellers table based on the USD Gross 
Sales field. The simplest implementation of RANKX is demonstrated within the Sales Rank 
field. Here, the function simply returns a rank based on the value according to the supplied 
measure (which is of course USD Gross Sales).



Applied Modeling

124

However, the RANKX function provides a lot of versatility and follows the syntax:

RANKX(<table>
, <expression>[, <value>[, <order>[, <ties>]]]
)

After the initial implementation of RANKX in its simplest form, the arguments of particular 
interest are the <order> and <ties> arguments. These can be used to specify the sort order 
(whether the rank is to be applied from highest to lowest or lowest to highest) and the function 
behavior when duplicate values are encountered. This may be best demonstrated with an 
example. To do this, we will examine the operation of rank in relation to Round Down Amount.

When a simple RANKX function is applied, the function sorts the columns in an ascending 
order and returns the position of a row based on the sorted order of the value and 
the number of prior rows within the table. This includes rows attributable to duplicate 
values. This is shown in the following screenshot where the Simple column is defined as 
RANKX(Resellers,[Round Down Amount]). Note, the data is sorted by Round Down 
Amount and the first four tied values have a RANKX value of 1. This is the behavior we expect 
since all rows have the same value. For the next value (700000), RANKX returns 5 because 
this is the fifth element in the sequence.

When the DENSE argument is specified, the value returned after a tie is the next sequential 
number in the list. In the preceding screenshot, this is shown through the DENSE column. The 
formula for the field DENSE is:

RANKX(Resellers, [Round Down Amount],,,DENSE))

Finally, we can specify the sort order that is used by the function (the default is ascending) 
with the help of <order> argument of the function. If we wish to sort (and rank) from lowest 
to highest, we could use the formula as shown in the INVERSE DENSE column. The INVERSE 
DENSE column uses the following calculation:

RANKX(Resellers, [Round Down Amount],,TRUE,DENSE)



Chapter 5

125

After having specified the Sales Group field sort by column as Round Down Order, we 
may ask why we did not also sort the Customer Name column by their respective values in 
the Sales Rank column? Trying to define a sort by column in this way would cause an error 
as it is not a one-to-one relationship between these two fields. That is, each customer does 
not have a unique value for the sales rank.

Let's have a look at this in more detail. If we filter the Resellers table to show the blank  
USD Sales Total rows (click on the drop-down arrow in the USD Sales Total column 
and check the BLANKS checkbox), we see that the values of the Sales Rank column for all 
the rows is the same. In the following screenshot, we can see the value 636 repeated for all 
the rows:

Allowing the client tool visibility to the USD Sales Total 
and Sales Rank fields will not provide an intuitive browsing 
attribute for most client tools. For this reason, it is not 
recommended to expose these attributes to users. Hiding them 
will still allow the data to be queried directly (see the Retrieving 
data from a single table recipe in Chapter 9, Querying the 
Tabular Model with DAX, on querying the tabular model directly).

Discretizing sales
By discretizing the Resellers table, we firstly make a decision to group each reseller into 
bands of 100,000 intervals. Since, we have already calculated the USD Gross Sales value 
for each customer, our problem is reduced by determining which bin each customer belongs to.

This is very easily achieved as we can derive the lower and upper bound for the Resellers 
table. That is, the lower bound will be a rounded down amount of their sales and the upper 
bound will be the rounded up value (that is rounded nearest to the 100,000 interval). Finally, 
we must ensure that the ordering of the bins is correct so that the bins appear from the 
highest value resellers to the lowest.



Applied Modeling

126

For convenience, these steps are broken down through the creation of additional columns but 
they need not be—we could incorporate the steps into a single formula (mind you, it would be 
hard to read). Additionally, we have provided a unique name for the first bin by testing for 0 
sales. This may not be required.

The rounding is done with the ROUNDDOWN and ROUNDUP functions. These functions  
simply return the number moved by the number of digits offset. The following is the syntax  
for ROUNDDOWN:

ROUNDDOWN(<number>, <num_digits>)

Since we are interested only in the INTEGER values (that is, values to the left of the decimal 
place), we must specify <num_digits> as -5.

The display value of the bin is controlled through the FORMAT function, which returns the text 
equivalent of a value according to the provided format string. The syntax for FORMAT is:

FORMAT(<value>, <format_string>)

Field ordering (more specifically, the order of elements with fields) is examined in the Sorting 
data recipe in Chapter 3, Advanced Browsing Features.

There's more...
In presenting a USD Gross Sales value for the Resellers table, we may not be interested 
in all the historic data. A typical variation on this theme is to determine the current worth 
by showing the recent history (or summing recent sales). This requirement can be easily 
implemented into the preceding method by swapping USD Gross Sales with recent sales. 
To determine this amount, we need to filter the data used in the SUM function. For example, to 
determine the last 30 days' sales for a reseller, we will use the following code:

SUMX(
  FILTER('Reseller Sales'
  , 'Reseller Sales'[Order dt]>
  (MAX('Reseller Sales'[Order dt])-30)
  )
  , USD SALES EXPRESSION
)



Chapter 5

127

Defining many-to-many relationships
Many-to-many relationships appear in a number of modeling situations. Perhaps, the most 
common scenario and explanation is that of a bank account and their owners. In this situation, 
a bank account can have many owners who are equally responsible for the balance. However, 
the owners can have different accounts. The challenge faced in tabular modeling is that the 
relationship includes a direction that does not actively filter the fact data. The use of the bridge 
table breaks the standard downstream filtering that is usually applied in a star schema.

This recipe demonstrates how to create the many-to-many relationship by extending the 
previous recipe to include store ownership. In this example, a reseller can be owned by  
one or more owners. Furthermore, each owner has an ownership interest (as a percentage 
interest in a reseller).

The following are the standard types of questions that the model is expected to answer:

 f How many stores does an owner have?

 f What is the owner's interest (ownership proportion) of the store(s)?

 f What is the total value (both apportioned and unapportioned) of sales for  
owners' stores?

Getting ready
This recipe extends the prior recipe (Grouping by binning and sorting with ranks) by adding 
additional data to the model. The new data is a list of owners and the table shows the 
ownership interest.

The Owners.txt file identifies the owner (employee by ID and name), whereas the ownership 
interest table, Store Owners.txt, identifies the store, owner, and their interest with a 
percentage stake.

How to do it…
In building the many-to-many relationship, we first show what the implications of not correctly 
defining measures are. We then show how to correct measure outcomes using DAX. Let's 
start with the workbook that has been developed so far:

1. Open the model developed in the previous recipe.

2. Import the text files Owners.txt and Store Owners.txt into the model.

3. Create a relationship between Customer ID in the Resellers table and 
Customer ID in the Store Owners table.



Applied Modeling

128

4. Create a relationship between the Employee ID column in the Store Owners 
table and the Employee ID column in the Owners table. The relationship  
between the Reseller Sales table and the Owners model should look like the 
following screenshot:

Note that the direction of the relationship between Store Owners and Resellers 
breaks the unidirectional filtering path that will otherwise be created, as shown in the 
following diagram:

Resellers Sales Resellers Store Owners Owners

5. Create a pivot table that shows Store Owners on rows and the measure USD 
Gross Sales. The pivot will look like the following screenshot:

6. Create a measure to show the number of stores owned by an owner. Add the following 
code to the Store Owners table and format it as a (separated by a comma) number 
with no decimal spaces:
Stores Owned := DISTINCTCOUNT('Store Owners'[Customer ID])



Chapter 5

129

7. Add the measure Stores Owned to the pivot. Filter the pivot so that the first two 
owners are shown. Then, add the Customer ID column from the Resellers table 
as a secondary member on rows—all stores will be shown because the measure USD 
Gross Sales (Raw) appears for every store. Hide the stores that do not have an 
owner by filtering the pivot to show only the stores that have active owners. Select the 
Customer ID cell in the pivot and then apply a value filter so that Stores Owned 
does not equal to 0. The pivot will now look like the following screenshot:

8. Add a measure to the Store Owners table to show average ownership (interest) 
using the following code. And then, add the Ownership % (AVG) measure to the 
pivot table.
Onwership % (AVG):=AVERAGE([Ownership Percent])

We can easily verify that the ownership interest (and stores owned) 
is correct by selecting an employee (in this case, employee ID of 
A. Scott Wright is 685233686) and filtering the Store Owners 
table within the model. If we do this, the table is reduced to only 
stores owned by Scott. Have a look at the following screenshot:

Note that the filter indicator also shows that the column is filtered.

9. Create a measure to show the USD Gross Sales value for stores that are owned. 
Add Gross Sales (All Owners) to the Resellers Sales table:
CALCULATE([USD Gross Sales], 'Store Owners')



Applied Modeling

130

10. Create a measure to show the USD Gross Sales value for the owners based on 
their interest percentage in the store. Add Gross Sales (Ownership) to the 
Resellers Sales table as:
CALCULATE(
  SUMX('Store Owners'
  , 'Store Owners'[Ownership Percent]/100
  *[USD Gross Sales])
  , 'Store Owners'
)

11. Format both measures as numeric values, separated by a comma, with no  
decimal places.

12. Hide the unwanted columns from client tools. Hide all columns in the Store Owners 
and Resellers Sales tables.

13. To verify the results, alter the existing pivot table. Ensure that the USD Gross 
Sales, Ownership % (AVG), Gross Sales (All Owners), and Gross Sales 
(Ownership) measures are added to the pivot. Remove Customer ID from the 
rows. The pivot will look like the following screenshot:

14. Create a new pivot that shows sales information for A. Scott Wright. Add Customer 
ID from the Resellers table on the rows and the measures USD Gross Sales 
(Raw), Gross Sales (All Owners), and Gross Sales (Ownership) on the 
columns. Add a filter to the pivot (Employee ID from the Owners table) and then 
filter to Scott. Create a value filter for rows, so that the measure Gross Sales (All 
Owners) does not equal to 0. The pivot will look like the following screenshot:



Chapter 5

131

15. Note that Scott's sales Gross Sales (All Owners) match the USD Gross 
Sales and that Gross Sales (Ownership) are equal to the all owners' sales 
multiplied by the Ownership % (AVG). Furthermore, note that the totals for Scott 
match the prior pivot's line items.

How it works…
We have previously seen that the calculation of a measure is a calculation that is performed 
on data that is restricted by the query context (the pivot table creates this context by the 
intersections of the pivot table rows and columns). So far in this book, all models have 
implemented relationships in a unidirectional manner, so that the relationships within 
the model filter the data that is being used in the calculation. However, the creation of a 
relationship between the Store Owners table and the Resellers table does not follow 
this outward pattern and hence the data in the Resellers Sales table is not filtered when 
fields from the Store Owners table or Owners table are used in the pivot table.

This is the reason why the first pivot table shows duplicate values for the USD Gross Sales 
(Raw) measure. Note that the direction of the relationship between Resellers and Store 
Owners is different from the others, as shown in the following screenshot:

This does not affect the calculations that are performed between tables where the 
relationship and filter context automatically restrict the rows that the calculation is performed 
on. Therefore, the measures for Stores Owned and Ownership % can be automatically 
derived through any filter that is applied to the Store Owners table, since the relationship 
dictates that the Store Owners table is automatically filtered by Owners. That is, the 
number of stores owned will always be derived by the (query) filters which occur between the 
Owners and Resellers tables.

If there is no filter applied (forcing all customer IDs to be shown), we only want to count 
individual stores (that are applicable based on the Owners filter) and so, we need to apply 
the DISTINCTCOUNT function to the Customer ID column in the Store Owners table. 
The DISTINCTCOUNT function performs, as the name suggests, and returns the number of 
unique values of the provided column. This gives us what we want—the number of unique 
stores under the current filter context.

While it is possible to use the COUNTROWS function for the Store Owners table, the value 
returned will only be correct if there is a filter context on the employee. There is no filter for a 
total level and, therefore, relying on COUNTROWS would give the total number of owners and 
store combinations, rather than the number of stores.



Applied Modeling

132

Now, let's consider the measure Gross Sales (All Owners). The purpose of the measure 
Gross Sales (All Owners) is to show the USD Gross Sales measure whenever a 
valid reseller or owner combination occurs. The value at a dimensions aggregate level (say for 
example, all owners) should be the full amount without adding the individual detail items.

This is achieved by specifying the bridge table in the calculation for Gross Sales (All 
Owners). Revisiting the formula, we can see that the filter is applied on the basis of the 
Store Owners table. Thus, the Boolean predicate (the part of the CALCULATE function 
that filters the table) is only applied if a row exists in the current queries filter context. In this 
way, we only show the measure USD Gross Sales (Raw) when a row in the queries filter 
context leaves a row in the Store Owners table.

Gross Sales (All Owners):=
CALCULATE([USD Gross Sales], 'Store Owners')

While the measure Gross Sales (All Owners) shows the value of total sales for stores 
that are owned (by an employee), it does not show how much of those sales the owner is 
entitled to. In order to determine each owner's ownership interest in sales, we extend the 
concept that was applied to Gross Sales (All Owners) at their ownership interest 
as defined in the Store Owners table. Stated another way, we wish to sum each row's 
ownership interest of the sales amount multiplied by the Ownership Percent field.

We have already seen how SUMX can be used to iterate over rows (see the Summing 
aggregates and row iteration recipe in Chapter 3, Advanced Browsing Features), which is 
exactly the same principle that is applied in this formula. That is, iterate over each row in 
the Store Ownership table that has been filtered by the query context to and multiply 
the amount that is shown (see the Gross Sales (All Owners) measure) by the rows 
ownership proportion (that is, by the Ownership Percent field).

Using the last non-empty function for  
stock data

Most OLTP (Operational) systems contain summary tables to record the on hand quantity of 
stock. This is recorded at the level of detail appropriate to the system (for example, product 
item and location).

Of course, the current value of any item or location(s) should be determined by aggregating 
the net movement of all the prior transactions; however, the performance of such a 
calculation is unacceptably slow in traditional relational environments. Therefore, in order to 
retain balance history, the snapshots of the quantities are taken at key dates (say for example, 
the month end).

A similar type of recording process occurs in data marts and data warehouse environments. In 
these situations, the fact data (table) is commonly referred to as a periodic snapshot because 
the snapshot of the data is taken at periodic intervals.



Chapter 5

133

For these types of tables, Stock on Hand quantities cannot be aggregated across time 
dimensions because the aggregated value would not give the correct result. Consider a 
situation where the daily balance of stock is held in a table (that is, there is a record of the 
balance for every day). While we can easily determine daily balances, we cannot derive a 
monthly balance by adding up all the daily balances. Instead, we must return the values 
on the last day of the month. This adjustment is only applicable to aggregations across a 
date dimension. All other dimensions (for example, stores and products) should aggregate 
according to the hierarchy that is selected.

SQL Server Analysis Services (SSAS) multidimensional modeling includes a special aggregation 
function (last non-empty) to retrieve the latest balance when dates were aggregated. However, 
there is no such function in tabular modeling and the result has to be determined with DAX.

Getting ready
This recipe builds on the tabular model that was developed in the Defining many-to-many 
relationships recipe. Continuing with the example developed in this recipe, we assume that 
our resellers have implemented a just-in-time inventory system. When a product is sold, it is 
ordered from the head office and delivered on the same day (this is a stock movement in for 
the Resellers table). Then, on the sales shipping date, when the product is shipped from 
the reseller, the stock is transferred out of the store's holdings.

Examine a sample of stock movements (filtered on customer AW00000438 and product BK-
R79Y-48). Here, we can trace that the daily balance (QTY_BAL) is incremental and equal to 
the prior day's balance, and the net effect of QTY_IN and QTY_OUT.

How to do it…
As with the previous recipes, we start by adding some additional data to our model.

1. Launch the PowerPivot Window.



Applied Modeling

134

2. Import the text files Inventory Balances.txt, Products.txt, and Dates.txt.

3. Create a relationship between the Customer ID column in the Inventory 
Balances table and the Customer ID column in the Resellers table.

4. The Dates table will act as a date dimension and can also be used to filter the 
Reseller Sales data (this was not included in the previous recipe). Create a 
relationship between the Day field in the Dates table and the Movement Dt field 
in the Inventory Balances table and a relationship between the Day field in the 
Dates table and the Order dt in the Resellers table.

5. Create a relationship between the Product ID field in the Products table and the 
Product ID field in the Reseller Sales table. Then, create another relationship 
between the Product ID field in the Products table and the Product ID field in 
the Inventory Balances table.

6. Hide all fields in the Inventory Balances table.

7. Set the sort column from Month Name to Month Number in the Dates table and 
hide Month Number from client tools. Then, create a hierarchy titled Date by 
Year that has the levels: Year, Month Name, and Day.

8. Hide all fields in the Resellers Sales table from client tools.

9. The model should appear, as shown in the following screenshot (note that we are 
excluding tables that are not necessary for inventory balances):



Chapter 5

135

10. Add a measure to the Inventory Balances table to calculate the net effect of 
stock movements. Add Stock Movement as follows:
Stock Movement := SUM([QTY_IN]) + SUM([QTY_OUT])

11. Add a measure to the Inventory Balances table to aggregate the value of Stock 
on Hand. Add QTY BAL as follows:
QTY BAL := SUM([QTY_BAL])

12. Add a measure to the Inventory Balances table, which determines the value of 
Stock on Hand (the stock balance) based on the addition of all historical transactions. 
Add Stock Balance (Trans) as follows:
Stock Balance (Trans):=
CALCULATE
(
  [Stock Movement]
  , FILTER(ALL(Dates)
  , Dates[Day]<=MAX(Dates[Day])
  )
)

13. Add a measure in the Inventory Balances table to show what the last date  
was, which was associated with any stock movements that is within the current 
(Date) filter context. Add Stock Date and format the date accordingly using the 
following code:
Stock Date:=
LASTNONBLANK('Inventory Balances'[Movement Dt]
, 'Inventory Balances'[QTY BAL]
)

14. Add a measure to the Inventory Balances table to show the total stock balance 
at Stock Date. This is the last non-empty (or stock balance) aggregation. Add 
Stock on Hand using the following code:
Stock On Hand:=
CALCULATE
(
  [QTY BAL]
  , LASTNONBLANK('Inventory Balances'[Movement Dt]
  , 'Inventory Balances'[QTY BAL]
  )
)



Applied Modeling

136

15. Create a pivot table (which we will refer to as Pivot 1) that shows the Stock on 
Hand value for the customer AW00000438 and the product BK-R79Y-48 (this was 
the sample extract shown earlier in the chapter). The pivot should have filters for 
Customer ID and Product ID, the Date by Year hierarchy on rows, and the 
Stock Date and Stock on Hand measures on the columns. Expand the June 
2008 value to look like the following screenshot:

16. Create another pivot table (which will be referred to as Pivot 2), which shows all 
the entries in the Resellers and Products tables. Include the measures Stock 
Date, Stock on Hand, and Stock Balance (Trans). The pivot should look like 
the following screenshot:



Chapter 5

137

How it works…
The Stock Balance (Trans) measure in Pivot 2 shows how the Stock Balance measure 
can be calculated by aggregating transactional movements from prior periods. This formula 
was addressed in the Calculating running totals – totals to date recipe in Chapter 4, Time 
Calculations and Date Functions. However, using this technique, one may question whether 
the balance from the year 2008 should be continued into 2009 because the balance does not 
relate to the future years—or does it? This question is often argued in reporting teams!

The traditional approach to the last non-empty problem is to return all data on the last date 
within the current period that is specified by the filter context.

We reiterate that the concept of a current period is a logical 
condition imposed by the query (or the date reference 
imposed by the user). Unlike SSAS multidimensional, tabular 
modeling does not support the current member navigation 
within a time dimension.

The measures in Pivot 2 demonstrate how this works through the use of Stock Date. 
The purpose of the measure is to return the last date within the Inventory Balances 
table, within the current filter context, that is, the last non-empty date. Note that this is 
not the same value as the month end (which is the value that would be returned had a 
MAX(Dates[Date]) function been used).

In order to determine the last date of the activity, we rely on the LASTNONBLANK function. 
This simply returns the last value in the <column> parameter where the <expression> 
parameter is not blank. Since we are interested in stock balances, we would naturally use the 
QTY BAL measure (since it is the sum of the balance field).

LASTNONBLANK(<column>,<expression>)

Once this date is determined, we can use the value as the last non-empty date and aggregate 
the values from the Inventory Balances table. This is done by specifying the value as the 
filter within the CALCULATE command. Remember, that the syntax for CALCULATE is:

CALCULATE(<expression>,<filter1>,<filter2>…)

By specifying the LASTNONBLANK value as a <filter> argument, we automatically apply 
the filter without the need to completely redefine the queries filter context.

In summary, these formulas work by effectively filtering Stock on Hand records to the last date 
based on the current filter context.



Applied Modeling

138

One may question, why the recipe does not manipulate the Date table filter context, for 
example, trying to filter stock records based on the maximum date in the query filter context. 
Trying to determine a stock balance in this way creates and reapplies many filters to the Date 
table and can cause undesired results. Consider the logic being applied—I redefine the date 
filter to determine the last date which had stock, then I try to use this date by removing the 
queries filter context on the dates table. However, removing the filter changes the filter that is 
applied when we try to get the last date.

Performing currency calculations
Currency calculations are a unique type of calculation, because the value that is returned to 
the user needs to be dynamically determined within the model, based on their input (choice 
of currency). This relies on two dynamic types of data, which can change within the model and 
therefore may impact the calculation. Firstly, the rate used can be changed (that is, a change 
to the rate of existing data) or secondly, new currencies can be added or removed to the 
currency data that requires a new conversion to be created. Unlike the previous calculations 
that we have seen in this book, the calculation must dynamically determine the rate that is 
to be applied in conversions based on the available data in the model. Because additional 
currency data could be added at any time, it is simply not possible to add additional columns 
to our target table to precalculate a value in a target currency and materialize it in a table. 
If we wanted to materialize values for each available currency (and extend our tables to add 
columns for converted values in target currencies), we could determine the value to show in a 
similar manner, as shown in the Relative Time–pivoting around measures recipe in Chapter 4, 
Time Calculations and Date Functions.

The general approach used to determine a value in a target currency is to convert a base 
currency to a target currency and then aggregate it (according to the query). We have seen 
how we can iterate over rows using the X aggregations (see the Summing aggregates and row 
iteration recipe in Chapter 3, Advanced Browsing Features). This recipe takes that concept 
one step further by dynamically determining a conversion rate based on a value that the user 
has chosen.



Chapter 5

139

Getting ready
This recipe extends the model that was built in the recipe titled Using the last non-empty 
function for stock data by creating a currency conversion based on the USD Gross Sales 
measure. The model includes the table of exchange rates (Currency Conversion) that 
shows the USD conversion from a currency. These rates appear for every day of history.

The sales data records its transactions in the source currency where the sale has taken place 
(see the Reseller Sales table). Therefore, if we wish to calculate a converted amount, 
we must first determine the USD value of line items by multiplying with the exchange rate 
applicable to the currency that the sale was recorded in, and then, dividing by the USD value 
for the target currency.

The Grouping by binning and sorting with ranks recipe included the creation of the additional 
column titled usd_gross_sales to the Resellers Sales table, which shows the value of 
the sale line in USD. In this recipe, we reproduce this field in a two-step process: firstly, we add 
the USD conversion rate (the value required to convert the lines value to USD) and then, we 
add the usd_gross_sales column.

While we could (and have) included this as a single step (see the definition of the  
usd_gross_sales column in the Grouping by binning and sorting with ranks recipe), it may 
make more sense to have a column value for the USD conversion in every row because it 
would be used (in a real environment) by multiple measures. For example, a conversion rate 
would be required for each standard measure such as Gross Sales, Net Sales, Cost of 
Goods Sold, and Profit. However, in this recipe we only work with Gross Sales.



Applied Modeling

140

How to do it…
Since the existing model already includes currency conversion data (used in the Grouping by 
binning and sorting with ranks recipe), the only additional data required for this recipe is a 
definition table for currency types.

1. Launch the PowerPivot Window.

2. Import the Currency.txt file into the model.

3. Create a relationship between the Date field in the Currency Conversion table 
and the Day field in Dates.

4. Create a relationship between the Currency ID field in the Currency table and 
the Currency ID field in the Currency Conversion table. The diagram view of 
your model should look like the following screenshot:

5. Hide all the fields of the Currency Conversion table from client tools and add 
the following measures to show the average daily rate and average end of day rate. 
Format the measures appropriately.
Avg Ex Rate:=AVERAGE([AVG Rate])
Avg EOD Rate:=AVERAGE([EOD Rate])

6. Add a new field to the Resellers Sales table to show the USD conversion value 
for the day and a currency applicable to the line (the amount rate which is required to 
convert each line to a USD value). Add usd_exchange_rate as follows:
=LOOKUPVALUE('Currency Conversion'[AVG Rate],'Currency  
Conversion'[Date],[Order dt],'Currency Conversion'[Currency  
ID],[Currency ID])



Chapter 5

141

7. Add a new field to the Resellers Sales table (alter the formula for the existing field) 
to show the value of gross sales in USD. Add the field usd_gross_sales as follows:
=[Quantity Ordered]*[Price Per Unit]*[usd_exchange_rate]

8. Hide both the fields usd_exchange_rate and usd_gross_sales from client 
tools.

9. Add a new measure to the Resellers Sales table to show the amount of gross 
sales in the target currency and format it appropriately. Add the measure Local 
Gross Sales as follows:
Local Gross Sales:=
IF
(
  NOT(HASONEVALUE(Currency[Currency ID]))
  , [USD Gross Sales],SUMX('Reseller Sales'
  , IF(ISBLANK('Currency Conversion'[Avg Ex Rate])
  , BLANK()
  , [usd_gross_sales]
  / 'Currency Conversion'[Avg Ex Rate])
  )
)

10. Create a pivot table (Pivot 1), which shows Currency Name on the rows and the 
measures USD Gross Sales and Local Gross Sales on the columns.

11. Create a pivot table (Pivot 2) which shows the conversion of USD Gross Sales to 
its Australian Dollar equivalent by day. Filter the pivot to show a Currency Name of 
Australian Dollar.

12. Add the measure Avg Ex Rate (found in the Currency Conversion table) to 
USD Gross Sales and Local Gross Sales on columns and the Date by 
Year hierarchy (found in the Dates table) on rows.



Applied Modeling

142

13. Expand the Date by Year hierarchy to show the dates for July 2005, then filter 
the date level so that only rows with a USD Gross Sales value which is not zero is 
shown. Select a date value in the pivot, click on the drop-down arrow on Row labels 
and navigate to Value Filters | Does Not Equal. Set the value to 0, the dialog looks 
like the following screenshot:

14. The pivot should look like the following screenshot. Note that the total converted 
value, 142,279,185, is the same value as in Pivot 1 (showing that the formula 
works for aggregated values) and the daily converted value, 01-Jul-05, of 701,372 
is equal to USD Gross Sales of 452,761 divided by the exchange rate.

How it works…
In the introduction, we discussed the general approach to determining a value in the target 
currency. That is, we translate a standard USD amount at a rate which is determined by the 
filter context placed on the Currency table (that is, the currency selected by the user). Since 
this must be calculated on a daily basis, we use the SUMX function to iterate over the sales 
rows and calculate the amount in the target currency for each day.



Chapter 5

143

There are some built-in checks in the measure defining Local Gross Sales and it may be 
best to look at the equation in its entirety. Firstly, the formula can be broken down into some 
simple pseudocode.

If the user has selected more than one currency, return the USD gross value; otherwise, return 
the target currency value.

Why must we check for multiple currencies as a first step? We need to check it for two 
reasons: firstly, what would a conversion into multiple currencies mean?—it is a condition that 
does not make sense. Secondly, our formula uses an average rate (Avg Ex Rate), which will 
return the daily average across all the selected currencies. This does not make sense either!

The check for multiple (user selected) currencies is achieved through the 
NOT(HASONE(VALUE)) part of the equation. This simply returns TRUE if the user has 
selected more than one currency from the currency table.

The calculation of USD gross sales is straightforward, sums the column usd_gross_sales. 
This field should not require any further explanation (see the Grouping by binning and 
sorting with ranks recipe for a full explanation). The only difference in this recipe, is that we 
materialize the currency USD conversion rate in the Reseller Sales table rather than 
calculating it in a formula. This is because the rate would be used in several calculations had 
all the measures been added. These measures would include Gross Sales, Discount 
Amount, Net Sales, Cost of Goods Sold, and Profit.

Now, we examine the determination of the value in a local or selected currency. This part of 
the equation is managed by the following code snippet:

SUMX('Reseller Sales'
, IF
(
  ISBLANK('Currency Conversion'[Avg Ex Rate])
  , BLANK()
  , [usd_gross_sales]
  / 'Currency Conversion'[Avg Ex Rate])
)

In determining the target currency value, the SUMX function is used to iterate over each row 
in the Reseller Sales table. Therefore, (provided we have a single target currency) we can 
satisfy that the measure Avg Ex Rate will return the appropriate exchange rate because of 
the row-by-row iteration and a single target currency.

However, the formula also checks to ensure that an exchange rate can be found, which 
means, there is the Avg Ex Rate measure that can be used. If there is no rate (that is, the 
rate is BLANK), we return nothing, otherwise, we return the converted value. If there was no 
check and an empty Avg Ex Rate measure, the result will display #NUM.



Applied Modeling

144

Allocating data at different levels
Often, we have to present two data sources and compare them as if they were one. A typical 
example of this type of situation is the comparison of budget data to actuals. More often than 
not, the budgets are prepared at a much higher-level of grain than of actual data.

Consider the sales data that has been used in this chapter. We may define the grain of this as 
Reseller, Date, and Product. The actual grain of the table is, of course, a lower-level since 
it includes additional fields such as Sales Order and Geography, but for our purposes, this 
is the grain that we have chosen to present to the model user. Now, consider some high-level 
budget data that simply shows the budgeted sales (USD Gross Sales) by Quarter and 
Year. Our goal is to incorporate this into the model. Have a look at the following screenshot:

There are two common approaches that are commonly used to solve this problem. Firstly, the 
original data is arbitrarily assigned to a member within the aggregated value. For example, 
the entire amount for the year of 2006 and quarter 1 (4,750,000) may be assigned to 1 
January 2006. The second method involves creating a comparative view within the model 
that allows the actual data to be reported at the same grain as that of the budget. For this to 
work, new tables need to be introduced with keys at the higher-level grain, so that the data 
can be compared in a consistent context. For our budget data, we will add an additional date 
dimension defined by Year and Quarter, so that the budget data could be incorporated into 
the model. A new column can be defined in the actual data (that is in Resellers Sales), 
which defines Year and Quarter of the sale, and this field can be linked to the new date 
table. Unfortunately, I now have two date tables (at different levels of grain) and measures, 
which are not consistent across both. This can be most confusing!

While these methods can provide a solution which incorporates a different grain of data, they 
lack the ability to fulfill a common desire and recast the aggregated budget data based on 
historic transactions. Furthermore, the second method can be quite confusing for an end user 
because there are now more tables in the model to navigate.

The method shown in this recipe is a third alternative. Here, we allocate the higher-level data 
to lower levels based on values that is based on some gross up value. Of course, that value is 
the ratio between the detail data sum and the summary data sum. This is conceptually very 
simple—create a new measure based on our lower-level data, which will equal the total of the 
higher-level data.



Chapter 5

145

This can aid in the model because variances to the budget can then be examined at any level 
that exists in the model.

Getting ready
This recipe continues from the previous recipe Performing currency calculations.

How to do it…
Since the model only lacks budget information, start by importing the budget data:

1. Import the text file Reseller Budgets Amounts.txt into the  
PowerPivot Window.

2. Add a new field to the Reseller Budget Amounts table to record the granularity 
at which the budgets are set (this is the primary key of the table). Add a field  
year_quarter_key with the following formula:
=[Year]* 10 +[Quarter]

The new calculated column is an example of a smart key and is a 
common method of key determination in data warehouses. A smart 
key creates a key based on the business definition.

If we were including a product category (or some other textual 
description) in the key, we would need to convert the values to text 
and use a delimiter to uniquely identify the key. A pipe symbol (|) or 
tilde (~) is often used for this purpose.

3. Add a new field to the Resellers Sales table that classifies each row with the 
table at the same grain as that of the budget data. Add a new column year_
quarter_key:
=YEAR([Order dt]) * 10
+ SWITCH(month([Order dt])
, 1, 1
, 2, 1
, 3, 1
, 4, 2
, 5, 2
, 6, 2
, 7, 3
, 8, 3
, 9, 3
, 10, 4
, 11, 4
, 12, 4
)



Applied Modeling

146

4. Create a relationship between the year_quarter_key column in the Reseller 
Budget Amounts table and the Reseller Sales table.

5. Add a column to the Resellers Budget Amounts table to record the value of USD 
sales for the given year_quarter_key value. Add usd_gross_sales as follows:
= CALCULATE(SUM('Reseller Sales'[usd_gross_sales]))

6. Add a field to the Resellers Budget Amounts table that shows the ratio between 
the budget amount and the USD sales amount. Add actual_budget_ratio  
as follows:
=[Budget Amount]/[usd_gross_sales]

7. Add a field actual_budget_ratio to the Resellers Sales table to show what 
the related actual_budget_ratio field for each line is. Add actual_budget_
ratio as follows:
= RELATED('Reseller Budgets Amounts'[actual_budget_ratio])

8. Add a field to show what the allocated value of USD sales is—grossed up or  
down—depending on the actual_budget_ratio. Add usd_gross_sales_budget 
as follows:
=[actual_budget_ratio]*[usd_gross_sales]

The usd_gross_sales_budget field in the Resellers 
Sales table could easily be obtained by combining the 
actual_budget_ratio and usd_gross_sales 
formulas. Including two fields only assists with the 
explanation. If both fields are combined, the formula will be:

RELATED('Reseller Budgets Amounts'[actual_
budget_ratio])  
* [usd_gross_sales]

9. Create a measure in the Resellers Sales table to show the value of the budgeted 
amount. Add USD Gross Sales Budget and format it appropriately.
USD Gross Sales Budget := SUM([usd_gross_sales_budget])

10. Hide the Reseller Budget Amounts table from client tools.

11. Hide the additional fields: year_quarter_key, actual_budget_ratio, and 
usd_gross_sales_budget from client tools in the Resellers Sales table.



Chapter 5

147

12. Create a pivot table that shows the Date by Years hierarchy on rows, USD Gross 
Sales and USD Gross Sales Budgets on columns. Expand the year 2005 to 
show months. The pivot will look like the following screenshot:

How it works…
To aid in the discussion, a screenshot of the Reseller Budget Amounts table follows 
this paragraph. Here, we can see that the Budget Amount value for quarter 20053 is 
3,866,000. This is the amount that needs to be apportioned on the basis of actual values 
in July, August, and September in 2005 (actually, over all dates in this quarter). Note, 
our budget total of 3,886,000 = 587,893 + 1,866,532 + 1,431, 574. The true sales amount 
(usd_gross_sales and USD Gross Sales) for this period is 2,992,767.63, as shown in 
the following screenshot:

Based on this data, we can easily see how our problem becomes one of allocation. That is, 
we have existing sales data of 2,992,767.63 (our actual data), but we would like to show 
a value of 3,866,000. Therefore, we simply need to gross up the sales data by difference 
(actual_budget_ratio) in order to make both values the same. This is calculated in the 
actual_budget_ratio column.



Applied Modeling

148

In the Reseller Sales table, the column usd_gross_sales_budget calculates the 
budget value. The field usd_gross_sales_budget is derived by usd_gross_sales; 
simply multiplying the existing sales value, usd_gross_sales, by the grossed up amount to 
determine what the budget amount should be. The USD Gross Sales Budget measure 
simply sums up the new column holding the grossed up amounts.

This method should be applicable in most situations. However, a potential reconciliation error 
can occur when there is no data to base the allocation on. For example, imagine if there were 
no sales for Q3 of 2003. In this circumstance, there would be no allocation and the USD gross 
sales budget shown would exclude the Q3 values.

It is always advisable to reconcile (verify) data shown by 
the model.

There's more...
In this recipe, we have so far allocated budget data based on the sales data for the same 
year. A more common approach to this practice is to allocate the budget based on the data 
of a previous year. For example, the Q3 values for 2005 would be allocated in the same 
proportions as the sales data for Q3 of 2004 and the budget data for Q1 of 2006 would be 
allocated based on the sales during Q1 of 2005. A side benefit of this is that all allocated data 
can be immediately reconciled since the historic data exists—and the budget allocation can be 
verified once the allocation has occurred.

The technique that we can use to do this is essentially the same as that shown in this recipe; 
however, there are two main differences that are worth noting. Firstly, in order to determine 
the sales value, we must offset the year_quarter_key in the Reseller Sales table. 
Secondly, we need to project any calculated budget amount in the Reseller Sales table, 
forward a year since there is an existing relationship between the Dates table and the 
Reseller Sales table.

1. Alter the formula for the year_quarter_key field in the Reseller Sales table to 
cast the key in the next year. The formula should become:
=(YEAR([Order dt])+1) * 10 + SWITCH(month([Order dt])
, 1, 1
, 2, 1
, 3, 1 ...

2. Add a field to the Reseller Sales table to showcast the sales data a year forward. 
Add order_dt_ny as follows:
= CALCULATE(DATEADD(Dates[Day], 1 ,YEAR))

3. Create a secondary relationship between the Dates table and Reseller Sales 
based on the order_dt_ny in Reseller Sales and Day in Dates.



Chapter 5

149

4. Alter the USD Gross Sales Budget measure in Reseller Sales to calculate 
the SUM based on the secondary relationship (the relationship between the Dates 
table and order_dt_ny in the Reseller Sales table). The formula for the gross 
sales budget is:
USD Gross Sales Budget:=
CALCULATE
(
SUM([usd_gross_sales_budget])
, USERELATIONSHIP(
'Reseller Sales'[order_dt_ny]
, Dates[Day]
  )
)

5. Hide the new field order_dt_ny from client tools.

6. Refresh the pivot and expand the months for 2006. Here, the Q3 budget values have 
been apportioned over months (marked in red in the following screenshot) so that the 
total is 10,537,000 (this number is the same value as shown for 20063, as shown 
in the preceding screenshot of the Reseller Budgets Amounts table).



Applied Modeling

150

Note that there is no budget data for 2005 and the first half of 2006. This is because there 
is sales data that only appears in the second half of 2005 and therefore, nothing to base the 
allocation against.

If we re-examine this process (in light of the requirement to use prior years' data as the basis 
for allocation), the method can be explained with the following logic:

1. We have the sales data which relates to a specific period (based on the order date).

2. We have the budget data identified by a period (year and period), which we want to 
allocate to on the basis of the prior period's sales data.

3. We append a field to the sales, which shows the budget period that the sales row is 
related to. Since the budget data is to be allocated based on the prior years' sales data, 
a year in the sales data is offset, so that it refers to a future year in the budget data.

4. The relationship between the budget data and sales data (year_quarter_key) 
can be used to calculate the total sales in the budget period and this can be used to 
determine what the gross up value should be.

5. The gross up value can then be applied to the sales data using the existing 
relationship and a calculation that applies the gross up value to the sales value.

6. Now, we have a budgeted allocation amount in our sales data. However, the allocated 
amount is apportioned on the basis of the following year's budget period. For 
example, the sales data relating to 2005 has the 2006 budget allocations. What we 
have to do is force the budget data to appear in 2006, while the sales data appears 
in 2005. This is managed by casting the row forward a year (using the field  
order_dt_ny) and using this date as the basis for the summation of budget values. 
The secondary relationship is used to manage this.



6
Programmatic  

Access via Excel

In this chapter, we will cover:

 f Connecting pivot tables and Slicers

 f Using cube functions

 f Working with worksheet events and VBA

 f Managing the Slicer through VBA

Introduction
The ability to create a tabular model through PowerPivot opens up countless possibilities for 
the advanced Excel user and business analyst to develop reporting and analytical solutions. 
Historically, these types of users start by attacking a business problem by pulling data into 
Excel, creating pivot tables (to summarize data) using some of Excel's built-in programmatic, 
and form functionality to create solutions.

However, a common problem encountered with this approach is that of scalability. And as 
the amount of data increased, the ability of Excel to handle the solution decreased. This 
tipping point need not be very large; further, the requirement of traditional pivot tables to 
use flattened data required a lot of inefficient data work (usually through VLOOKUP functions, 
because a traditional pivot table required a single table of data). Obviously, it is a poor use of 
time when more effort is spent organizing data rather than analyzing it.

The ability of the tabular model to manage large amounts of data, create relationships 
between that data, and define calculations based on business logic reignites the opportunity 
for end users to create powerful applications in Excel.



Programmatic Access via Excel

152

This chapter examines how Excel interacts with the model, and how Excel can be used as 
a reporting application layer to provide a rich and intuitive reporting environment. Most 
importantly, the reader should recognize that the model is, for all intents and purposes, its 
own object within Excel. Excel interacts with it, just as it would with any other OLAP solution.

The outcome of this chapter is to enable the reader to create a reporting workbook with the 
functionality shown in the following screenshot. It shows two pivot tables and three charts. 
A Slicer allows the user to select a year, which automatically applies a filter to pivot tables A 
and B. The trend line chart also updates for the year, and when the user selects one of the 
category names (in pivot table B), a selected category is shown for one of the trend lines. Also, 
the selected year is shown highlighted in bar chart C. All chart labels and headings are also 
updated accordingly.

It is important to reiterate that the PowerPivot model is a tabular 
model hosted in Excel, that an Excel pivot table can connect to 
as a client. This experience would be exactly the same had the 
user connected via Excel to the model hosted on a production 
server (or an OLAP (multidimensional) cube posted in a 
traditional method of storage for analysis services).



Chapter 6

153

Connecting pivot tables and Slicers
Excel 2010 introduced new functionality into Excel in the form of Slicer controls. A Slicer can be 
thought of as an Excel data control that connects to multidimensional data as a client tool, which 
has built-in functionality for interacting with pivot tables. Since the tabular model is presented to 
Excel as a multidimensional model (it is essentially a server model stored in Excel and accessed 
through Excel's client tools), the pivot table and Slicer can connect to the tabular model.

In fact, the PowerPivot Field List is a special field list for interacting with a pivot table based 
on the tabular model that includes two window groups for horizontal and vertical Slicers, as 
shown in the following screenshot (the horizontal or vertical position only refers to the Slicers 
position in relation to the location of the pivot table). This is only available in Excel 2010.

While the Slicer can be attached to a pivot table through the PivotTable Field list, the Slicer 
can also be inserted as an individual control to interact with the model.

A Slicer can only be added to a pivot table using the PivotTable 
Field list when using the PowerPivot Field list (or a pivot table that 
was inserted from a tabular model). If you choose to show the pivot 
table's default field list (that is, the default list when connecting to 
a model as a normal client—see the There's More... section of the 
Creating model calculations recipe in Chapter 1, Getting Started 
with Excel), you will not see the options for adding Slicers to the 
pivot. In this case they will have to be added manually.

This recipe shows how to insert a Slicer to your worksheet, use it to access data, and connect 
it to pivot tables. In addition, we show how to manage and add pivot tables as a client, by 
referencing an internal tabular model.



Programmatic Access via Excel

154

Getting ready
This recipe uses the model that was built in the Allocating data at different levels recipe  in 
Chapter 5, Applied Modeling. All the existing worksheets with pivot tables have been deleted, 
leaving only a blank sheet in the workbook. If the required recipes have not been completed, 
the empty workbook with the PowerPivot model can be downloaded (see online resources).

How to do it…
Let us start by adding a pivot table to our worksheet.

1. Insert a pivot table by clicking on the PivotTable button from the Insert tab, as shown 
in the following screenshot:

2. The Create PivotTable dialogue will open. Choose the Use an external data source 
option and then select the PowerPivot Data connection (double-click on the 
connection or highlight the connection and click on the Open button). Place the  
pivot table in cell D10 (select the location and click on OK). This is shown in the 
following screenshot:



Chapter 6

155

The location of the pivot table will default to the active cell 
when the Insert a PivotTable button is clicked.

3. Place the Month Name attribute from the Dates table on rows, and show the USD 
Gross Sales measure from the Reseller Sales table as values.

4. Insert a Slicer into the worksheet by clicking on the Slicer button from the Insert tab, 
as shown in the following screenshot:

5. When the Slicer button is clicked, a (choose) connection window will open. Choose 
the PowerPivot Data connection that exists in the workbook.

6. Once the connection is chosen, a pop-up window will display a list of tables, 
attributes, and hierarchies that are available in the model. Choose the Year attribute 
from the Dates table. More than likely, you will have to expand the More fields 
grouping. Click on OK after the Year box is checked. The Slicer dialogue is shown in 
the following screenshot:



Programmatic Access via Excel

156

7. A Slicer will appear on the page (as shown in the following screenshot). This contains 
the data values (or members) for the Year attribute in the model. A year can be 
selected by clicking on the year within the Slicer; however, the values in the pivot 
table will not change.

8. When a cell in the pivot table is selected, the PivotTable Tools menu is displayed in 
the ribbon of Excel (this is not shown when the pivot table is not active). Name the 
pivot table by overwriting the default name given to the pivot table (PivotTable Tools 
| Options). Name the pivot sales_by_month_all. This can also be typed directly 
into the PivotTable Name box, as highlighted in the following screenshot:

9. Attach the pivot table to the Slicer by clicking on the PivotTable Connections… option 
after right-clicking on the Slicer. This is shown in the following screenshot:



Chapter 6

157

10. When the PivotTable Connections... option is clicked on, a dialogue will open 
showing all pivot tables in the workbook (as shown in the following screenshot). 
Select the pivot tables that the Slicer is attached to, by checking the pivot table  
and clicking on the OK button.

We can see that using a name for the pivot table allows us to 
easily identify the pivot table in a workbook.

11. When the Slicer is attached to a pivot table (immediately after the OK button is 
clicked on), the members for 2009 and 2010 will gray out. This indicates that there 
is no data for those years. Further, when a Year is selected (by simply clicking on the 
year) the active year remains blue (all other members white out), and the values in 
the pivot table change to reflect the selected year.

12. Ensure that all months are shown for the pivot (regardless of data values) by 
checking the Show items with no data on rows option from the Display tab in the 
Pivot Table Options... (click on the Options button in the PivotTable Tools menu to 
show the Options window).

How it works…
There is nothing extraordinary to explain here. The Slicer filters the data for the pivot table(s) 
that it is attached to.

There's more...
The creation and use of the Slicer does not impede any pivot table functionality, or place any 
additional requirements on the pivot table. For example, we can create another pivot table 
below the existing one which has a Filter on the Years hierarchy of the Dates table, and 
attach the Slicer to this new pivot table. When the value of the Slicer changes, the Filter on 
the pivot table will automatically change to reflect the value(s) of the Slicer.



Programmatic Access via Excel

158

Adding a Filter to a pivot table with an alternate connection to 
a Slicer is a very convenient way to determine the value of the 
Slicer. This can then be used to provide descriptive headings 
(as we will see in the Working with worksheet events and VBA 
and Managing the Slicer through VBA recipes).

Create a new pivot table (and name it sales_by_cat_all). Add Year as a Filter (from the 
Dates table) with Category Name (Products table) on rows, and the measure USD Gross 
Sales as values. Then attach the Slicer to it—any changes made to the Slicer are reflected by 
the Filter.

Since this pivot is used in other recipes for this chapter, the first cell of the pivot table should 
appear in D25 (you may have to move your pivot table). We also want to show the names of 
the sales categories in an ascending order (based on USD Gross Sales). Right-click on any 
cell in the pivot and select More Sort Options from the pop-up window. That is, right-click 
on the Cell, and go to Sort | More Sort Options. When the Sort window opens, ensure that 
USD Gross Sales is selected in the Ascending (A to Z) by: listbox (as shown in the following 
screenshot). Then click on OK.

 

The pivot table field headings will change their icons slightly to indicate that a filter or sort has 
taken place.  Notice that the Row Labels button includes an arrow to indicate a Sort. This is 
shown in the following screenshot:



Chapter 6

159

Using cube functions
A pivot table can be a very useful tool for analyzing data. The ability to dynamically drop a 
hierarchy from the model and expose all members, then sorting, filtering, and restricting those 
members can be used in a large number of analytical situations. However, one problem with 
the pivot table is that all the elements of the object (Filters, rows, and columns) are connected 
and cannot be formatted with the complete discretion of the user. For example, the user cannot 
insert a row between rows in the pivot table. While there are some options for formatting a 
pivot table, these mainly relate to styles, and often the user wishes to have a larger amount of 
control over what they are presenting. Additionally, using the formula that refers to a cell in the 
pivot table is troublesome, because the pivot table can change and invalidate the formula.

This recipe examines the use of the CUBE FUNCTION formulas, which allows the user to 
access model data without the restrictions imposed by the pivot table.

Getting ready
This recipe continues from the prior recipe Connecting pivot tables and Slicers.

How to do it…
While CUBEFUNCTIONS can be used as any formula and directly typed into the formula bar, it is 
often more convenient to start with an existing pivot table and inherit that pivot table's structure. 
The entire pivot table can be replaced with formulas. Let's start by creating a new pivot table.

1. Activate cell H27 and insert a pivot table based on the model data. Put the Years 
hierarchy on rows and display the USD Gross Sales as a measure. Then use the 
Category Name hierarchy of the Products table as a Filter.

2. Format the pivot table (change its options) so that rows without data are shown (this 
will show all Years in the model).

3. With the pivot table active, select the Convert to Formulas button from the OLAP 
Tools group. This is highlighted in the following screenshot:



Programmatic Access via Excel

160

4. A dialogue will open (as shown in the following screenshot) prompting you to check 
the Convert Report Filters option and click on the Convert button.

5. Once this button is clicked, the pivot table will be entirely replaced with formulas. It 
also loses its formatting and the ability to filter by category.

6. Delete the values from both the cells under 2010 (it does not matter whether cells 
are shifted up or to the left-hand side).

7. Select the cell that stores year values as a filter in the pivot table sales_by_cat_
all (cell E25) and call it name (that is, define a named range that refers to the cell). 
Title the Range as selected_year by selecting cell E25 and typing the name into 
the Name Box. This is shown in the following screenshot:



Chapter 6

161

A name can be used to refer to a range of cells (in this case 
there is only one cell in the range). Alternatively, names can 
be defined and edited using the Name Manager on the 
Formulas tab. See the Creating the model recipe in Chapter 
1, Getting Started with Excel, for more information on using 
the Name Manager.

8. Highlight the cells J28 through to J32 (the first column without a formula) and type 
the following formula:
=IF(selected_year=H30:H34,I30:I34,"") 

9. Instead of pressing the Enter key to accept the formula, press Shift + Ctrl + Enter.

10. Note that the formula is applied to all the sales that were selected and the formula is 
enclosed in {}. The formula looks like this:
{=IF(selected_year=H30:H34,I30:I34,"")}

11. Change the year in the Slicer and note that a value is shown for the active year in 
column J. Notice how the formula in the following screenshot is surrounded by {}:

How it works…
The first part of this recipe converted the pivot table to formulas. These formulas allow an 
Excel cell to access data directly from the model without relying on the pivot table. For our 
purposes, there are two formulas. One formula defines a member (categorical value within the 
model) as the descriptive or caption name, and the other to return measure values—that is 
the values that exist at the intersection of members.



Programmatic Access via Excel

162

The formula in cell H30 shows an example of the CUBEMEMBER function. This function returns 
the member for the provided member expression. The syntax for the CUBEMEMBER function is 
as follows:

CUBEMEMBER(connection , member_expression , caption)

Here the connection parameter refers to the name of the connection of the PowerPivot 
model—remember that this was called PowerPivot Data when we inserted the pivot table in 
the Connecting pivot tables and Slicers recipe.

The member_expression parameter refers to the member_unique_name or  
member_name for the member being defined. This is a three part name that defines a  
distinct area in the model and includes the dimension, hierarchy, and member values, 
and follows the syntax as follows:

[table].[hierarchy].[member]

In this case, [member] can refer to a key (which is prefixed by an & symbol) or simply the 
member name (its value). For example, consider the definition of the member for the year 
2005. There are two ways to represent the member. These are as follows: [Dates].
[Year].&[2005] or [Dates].[Year].[2005].

The syntax for a member expression is derived from the MDX 
unique_name of the member. The functionality demonstrated for 
all recipes in this chapter would work in the exact same manner, 
had a multidimensional cube been used as a data source.

Finally, the last argument of the CUBEMEMBER formula allows us to specify the display value 
for the formula (sounds ironic right?). However, we can change what is displayed as the 
caption. For example we could display Sales for 2005 as the caption even though the 
caption should display 2005. In both cases, the member still refers to the 2005 year member.

The CUBEVALUE function is used to return a measure (or aggregated value) from the  
model. The CUBEVALUE function follows a simple syntax, which defines the connection  
and intersection (as MDX expressions). The syntax for CUBEVALUE is as follows:

CUBEVALUE(connection, [member_expression1], 
    [member_expression2], …)



Chapter 6

163

The CUBEVALUE function is quite flexible in how it can be used to 
return values. So far we have only used CUBEVALUE by referring to 
previously defined CUBEMEMBERS. These members can be replaced 
with strings or defined as an MDX tuple. For example, all the following 
formulas produce the same result (the USD Gross Sales amount 
for 2006 and All Accessories):

=CUBEVALUE("PowerPivot Data",$I$27,$H31,I$29)

Where I$27, $H31, and I$29 are the CUBEMEMBER functions.
=CUBEVALUE("PowerPivot Data"
     ,"[Dates].[Year].&[2006]"
     ,"[Measures].[USD Gross Sales]"
     ," [Products].[Category Name].[All]"
     )
=CUBEVALUE("PowerPivot Data"
      ,"(
            [Dates].[Year].&[2006]
          , [Measures].[USD Gross Sales]
          , [Products].[Category Name].[All]
               )"
           )

The formula used in column J is an array formula and is immediately identifiable by the curly 
parentheses around the formula. A complete discussion of this type of formula is out of the 
scope of this book; however, using an array allows ranges to be applied against each other 
within the formula (as was demonstrated when the formula was created). We could have used 
the same formula and copied it down (maintaining the correct references of course). Further 
reading about array formulas can be found at http://office.microsoft.com/en-au/
excel-help/introducing-array-formulas-in-excel-HA001087290.aspx.

Working with worksheet events and VBA
For the reporting scenario that was outlined in the Introduction to this chapter, the intent is to 
allow the user to click on a pivot table row item and then have this action create downstream 
activity affecting other elements on the worksheet. That is, when the user clicks on a category 
item in the pivot table (the pivot titled sales_by_cat_all), the bar chart showing year-on-year 
category sales will change to show the selected category.

This type of action may be achieved through various methods—the use of a Filter or Slicer 
connecting the two pivot tables immediately springs to mind. However, in doing this, the 
end user is still required to select something from the drop down (Filter) or Slicer. We 
want to interrogate the clicking action on a part of the spreadsheet to facilitate a change. 
Furthermore, while the event (recipe) applies to a pivot table, there is no restriction to binding 
this action to a pivot table. The technique can be applied to any situation where the user 
selects a cell in the worksheet.



Programmatic Access via Excel

164

Getting ready
This recipe continues from the worksheet and model that was developed in the prior recipe 
(Using cube functions). In order to do this we use a programmatic component of Excel (VBA). 
In order to access this, the Developer tab of the ribbon should be visible. If not, the Developer 
tab can be made visible by checking the Developer tab under the Customize Ribbon option of 
Excel Options. To launch the Excel Options dialogue, select the Options button from the File 
menu. This is shown in the following screenshot:

How to do it…
The overview of this recipe is as follows; firstly, we listen for a cell to be selected by the user. 
Once this occurs, we use the cell to identify if it lies in the pivot table and then (if so), use its 
value to populate a holding cell (I26 in the following screenshot). Then, the existing CUBE 
FUNCTIONS can use this value as a reference (as part of the formula). This is demonstrated in 
the following screenshot:



Chapter 6

165

Let us start by defining a name for the highlighted cell shown in the preceding screenshot 
(that is cell I26) as follows:

1. Create a named range for cell I26 by typing category_sel into the Name Manager 
of Excel when cell I26 is selected.

2. Alter the existing CUB EFUNCTION formula in cell I27 (the prior pivot table's Filter 
location) to refer the value of the range category_sel. Replace the existing formula 
with the following:
=CUBEMEMBER("PowerPivot Data",category_sel)

3. After this, the existing CUBE FUNCTIONS formulas will be invalidated showing the 
#N/A values. We can correct this by pasting [Products].[Category Name].
[All] into the category_sel cell (I26).

4. Launch the Visual Basic for Applications (VBA) editor by clicking on the Visual Basic 
button from the Developer tab.



Programmatic Access via Excel

166

5. Activate the code page for Sheet1 by double-clicking on Sheet1 from the 
VBAProject. When this occurs, the grayed out background in the image will turn 
white. If VBAProject is not visible, it can be made visible by pressing Ctrl + R or 
by navigating to View | Project Explorer from the menu items. You should see 
something very similar to the following screenshot:

6. Create a subroutine for a selection change event by selecting the event from the drop-
down box (as shown in the following screenshot). Select Worksheet from the first 
drop-down box, and SelectionChange from the second.

You can create this automatically by pasting the following code:
Private Sub Worksheet_SelectionChange(ByVal Target As 
    Range)
End Sub

7. Fill the subroutine with the following code:
On Error GoTo Err

    If Target.Cells.Count = 1 And _ 
        Target.PivotTable.Name = "sales_by_cat_all" And _ 
        Target.PivotField = "[Products].[Category 
        Name].[Category Name]" Then



Chapter 6

167

        Sheet1.Range("category_sel").Value = 
            Target.PivotItem.Value

    End If

    Exit Sub
Err:

Notice the reference to Sheet1 in the previous code. Here, 
Sheet1 refers to a workbook class in code, which is the 
sequentially numbered sheet in the workbook and not the actual 
name of the sheet. If the sheet had been renamed (for example) 
to S1, we can still refer to it by the sheet number, that is, Sheet1.

Alternatively, we can refer to it by its name by replacing the 
Sheet1 prefix with Sheets("name").

8. The code screen should look like the following screenshot:



Programmatic Access via Excel

168

9. Close the VBA code window and return to Excel. Test the application by selecting 
different categories, multiple cells, and so on. When a category is selected, the key 
will be placed in the category_sel range and the CUBE FUNCTIONS will change, as 
shown in the following screenshot:

How it works…
The overall operation for this recipe has been discussed from a procedural perspective. That 
is, we determine the member's unique name (see the How it works... section in the Using 
cube functions recipe) for the category that the user has selected, and use this value in the 
CUBE FUNCTION formula that has been previously created.

In doing this, Excel listens for an event where the user changes their selection (or the active 
cell(s)). This is (of course) handled through the internal Worksheet_SelectionChange 
routine. Here the argument (Target) refers to the cell range that the user has selected.

Once this has occurred, there are several things that the code in the routine (Sub) looks for. 
These occur in unison, and are as follows:

1. A check that the user has only selected one cell (by checking that Target.Count 
equals to 1).

2. Determining if the cell belongs to the appropriate pivot table (through Target.
PivotTable.Name).

3. Checking that the user has selected a cell that relates to the Category hierarchy 
(through the Target.PivotField property for the selected cell).

The functions that relate to the use of the pivot table should be somewhat self-explanatory, 
that is, provided with a cell reference (through Target or cell chosen), we can determine the 
name of the pivot table and the hierarchy chosen.



Chapter 6

169

Once we are satisfied that these conditions have occurred (and these are the only  
conditions that make sense for our scenario), we simply set the value of the named range 
category_sel to the value of the category that has been selected.

The reliance on the existence of a pivot table through the Target.PivotTable.Name  
and Target.PivotField functions will throw an error (runtime error) had a pivot table 
not been selected by Target. Therefore, we effectively wrap the IF statement in an error 
catching routine.

There's more...
In addition to the unique member name (or key) for the selected cell, it will be desirable to 
identify the name (that is, the display name) of the selected cell and combine that with a 
descriptive graphic for the data. The intent of this will be to produce something similar to the 
following chart:

For this chart, the chart title changes depending on the pivot table cell selected (as previously 
demonstrated) and the color for one of the bars signifies the selected year (as filtered by the 
pivot table sales_by_cat_all).



Programmatic Access via Excel

170

The creation of the chart is relatively straightforward. Create a bar chart with two series based 
on the output from the Using cube functions recipe, and set the overlap distance for the 
second series to 100 percent or completely overlapped. This can be set by right-clicking on 
the second series (in the chart), selecting Format Data Series… from the pop-up window, and 
then sliding the series overlap all the way to the right, as shown in the following screenshot:

In reality, we are showing two series in the same chart that cover each other (of course,  
one series is on top of the other). We can control the overlap property as shown in the 
following screenshot:



Chapter 6

171

Just as we have named the pivot tables in order to identify them in VBA, we can also name  
the charts.

The naming of objects is not necessary from a technical 
perspective (required in VBA) but it certainly makes it easy 
to identify them. Other options include identifying a chart 
by its index within the sheet.

When the chart is selected, the Chart Tools ribbon item will be displayed, exposing the Chart 
Name: box in the Layout tab. Name the chart accessory_sales_by_year_chart, as 
shown in the following screenshot:

Now, the existing routine for _SelectionChange can be altered to dynamically change the 
title of the chart. Add the following line of code to the routine before the End If line:

Sheet1.ChartObjects("accessory_sales_by_year_chart").Chart.ChartTi 
    tle.Text = Target.PivotItem.Caption & " Sales by Year"

It should be relatively straightforward how this code works—we specify the Text for the 
ChartTitle within a (required) chart. The actual text is determined by concatenating the 
value of the selected cell to the string Sales By Year. We can determine the value in a 
number of ways (Target or Target.Value would provide the same result); however, in 
keeping with the notion of PivotTable properties, the .Caption property of PivotItem 
returns the name (value) that the user sees. Recall that the unique_name key was 
determined by the .value property.

Finally, it might also be appealing to identify the cell in the pivot table that was selected and 
highlight it accordingly. This can be done by applying a cell style (based on the existing cell 
styles in Excel). To do this, we require two lines of code: the first resets existing styles, and the 
second highlights the selected cell.



Programmatic Access via Excel

172

The complete code snippet looks like the following code:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

On Error GoTo Err

    If Target.Cells.Count = 1 And _ 
        Target.PivotTable.Name = "sales_by_cat_all" And _ 
        Target.PivotField = "[Products].[Category Name].[Category 
        Name]" Then
    
        Sheet1.Range("category_sel").Value = 
            Target.PivotItem.Value
        Sheet1.ChartObjects("accessory_sales_by_year_chart") 
            .Chart.ChartTitle.Text = Target.PivotItem.Caption & " 
             Sales by Year"
            
        Sheet1.Range("D28:D32").Style = "Normal"
        Target.Style = "Accent1"
            
    End If

    Exit Sub
Err:

End Sub

When we are clearing the existing formatting from the pivot rows, 
we use a cell reference ("D28:D32") and not a named reference.

Managing the Slicer through VBA
Managing an array of data based on the CUBE FUNCTION formulas is one method of 
allowing the end user the ability to interact with the data. Another method is the ability to 
programmatically interact with the Slicer, and then let the Slicer do the work for you (through 
its pivot connections).

Accessing the Slicer programmatically can also open up a variety of additional development 
options since you can access a wide range of information about the source of the Slicer (both 
its data and elements), in addition to specific members that have been explicitly selected (as 
in the Working with worksheet events and VBA recipe). In this recipe we will be using VBA to 
determine the value (both the unique name and caption) of a Slicer, and using this value in 
chart captions and pivot table Filters.



Chapter 6

173

Getting ready
This recipe assumes that the prior recipe Working with worksheet events and VBA has been 
completed. What this recipe does is create a monthly trend chart for a selected category 
against all categories, as shown in the following screenshot:

Here, the additional pivot table (for showing the selected category's sales) has a Slicer 
attached, which is set by the selected cell (of the pivot table sales_by_cat_all). The 
additional line chart is used to compare the monthly sales values of each pivot table. Unlike 
the previous recipe, we will show all the categories, when the user has not explicitly selected  
a category within the pivot table.

How to do it…
Start by setting up the worksheet with the required objects.

1. Ensure that the pivot table sales_by_month_all (the original monthly pivot table) 
will show all the items with no data on rows, by checking the Show items with no 
data on rows option from the Display tab of the PivotTables Options.

2. Copy the pivot table to cell H10 by highlighting the pivot table, pressing Ctrl + C,  
then selecting cell H10 and pressing Ctrl + V. Rename the pivot table to  
sales_by_month_all_sel.



Programmatic Access via Excel

174

3. Ensure that the Slicer for the year is attached to both pivot tables. Right-click on 
the Slicer, select Pivot Table connections... and ensure that all pivot tables are 
connected via the checkbox.

4. Insert a Slicer based on the Category field of the Products table by clicking on the 
Slicer button from the Insert tab.

5. Attach the Category Slicer to the pivot table sales_by_month_all_sel.

6. Add a cell to record the Slicer value (caption). Create a named range for cell I9 as 
slicer_caption.

It is also a good idea to color the cells, which had user 
input in a consistent format. In the preceding screenshot 
they are in off yellow.

7. Insert a line chart using two series as the data ranges. One series has the name All 
Categories and series values from E11 to E22. These are the monthly values from 
the pivot table sales_by_month_all. The second series (the selected category) 
has a range from I11 to I22 (monthly values from the sales_by_month_all_sel 
pivot table). The horizontal (category) axis labels of the series should be set to the 
month names (of either pivot).

8. Test whether the two lines of the chart change when a new year is selected from the 
year Slicer, and when a category name is selected from the category name's Slicer. 
The lines of the chart should move accordingly.

Depending on the year and category chosen, the line for the 
pivot table sales_by_month_all_sel may be as close as 
the horizontal axis, and it may be hard to see any relationship 
between the two lines. In order to show this relationship clearly, it 
may help to move the line for the sales_by_month_all_sel 
pivot table, to the chart's secondary axis. Do this by right-clicking 
on the (chart) line and selecting Format Data Series… from the 
pop-up menu. Then, check the Secondary Axis radio button from 
the Plot Series On group, as shown in the following screenshot:



Chapter 6

175

Now let's create a subroutine to set the Slicer for a particular category.

9. Add a new module to our VBA solution. Launch the (VBA) developer window (click 
on the Visual Basic button from the Developer tab of the ribbon). Right-click on the 
project node and navigate to Insert | Module from the pop-up window, as shown in 
the following screenshot:



Programmatic Access via Excel

176

You can also navigate to Insert | Module from the VBA 
developer's menu.

10. When the module is added, create a subroutine to set the category name Slicer to 
the value of the member_unique_name key which is passed as an argument to the 
routine. Add the following subroutine:
Public Sub SetSlicer(ByVal SlicerKey As String, _ 
                     ByVal SlicerName As String)
    Dim sC As SlicerCache
    Set sC = ActiveWorkbook.SlicerCaches 
        ("Slicer_Category_Name")

    If SlicerKey <> "" Then
        sC.VisibleSlicerItemsList = SlicerKey
    Else
        sC.ClearManualFilter
    End If

    Sheet1.Range("slicer_caption").Value = SlicerName

End Sub

11. Alter the Worksheet_SelectionChange event for Sheet1 to call the new 
subroutine depending on the cell activities of the user (in Sheet1) as follows:
Private Sub Worksheet_SelectionChange(ByVal Target As Range)

On Error GoTo Err

    If Target.Cells.Count = 1 And _ 
        Target.PivotTable.Name = "sales_by_cat_all" And _ 
        Target.PivotField = "[Products].[Category 
        Name].[Category Name]" Then
    
        Sheet1.Range("category_sel").Value = _ 
            Target.PivotItem.Value
        Sheet1.ChartObjects 
            ("accessory_sales_by_year_chart") 
            .Chart.ChartTitle.Text = _ 
            Target.PivotItem.Caption & " Sales by Year"

        Sheet1.Range("D28:D32").Style = "Normal"
        Target.Style = "Accent1"
            



Chapter 6

177

        SetSlicer Target.PivotItem.Value, 
            Target.PivotItem.Caption
        
        Exit Sub
        
    End If
    
Err:
SetSlicer "", "All Categories"
End Sub

12. Test the new functionality on the worksheet. When any cell within the  
sales_by_cat_all pivot table is selected, the Slicer for the category name  
is set, and the chart displays that category (on the secondary axis). If this does  
not occur, the chart shows the trend for All Categories.

How it works…
The operation for the worksheet event (Worksheet_SelectionChange) was covered in the 
Working with worksheet events and VBA recipe. Therefore, it is not necessary to go into any 
great depth of how this component works, other than to just say that Excel listens for a change 
in the user's cell activity (on Sheet1). When the user has selected only one cell within the 
desired pivot table range, we can be satisfied that a valid category is selected, and therefore, 
we can pass the category_unique_name and caption to our Slicer change function. If this 
is not the case, we simply remove any Filters that have been set by the Slicer.

The creation of the SetSlicer subroutine is also relatively straightforward. Here, we 
simply make a reference to the Slicer (through the SlicerCache object) and then set its 
value (through the .VisibleSlicerItemsList). If the user has not selected a single cell 
(resulting in the obvious conclusion that no unique category is selected), we simply remove 
any filter that is on the Slicer and define the name as All Categories.

There are some advantages in creating a public subroutine as we have done in this recipe. 
The routine can be called from anywhere in the workbook and will allow code reuse within 
the workbook. This technique might have also been applied in the prior recipe Working with 
worksheet events and VBA.



Programmatic Access via Excel

178

The routine refers to the Slicer by its name. This can be determined from the worksheet by 
selecting the Slicer Settings... options from the pop-up menu when the Slicer is right-clicked. 
We can also use this to control how the Slicer appears (for example, whether it has a name or 
not and what that name is), as shown in the following screenshot:

There's more...
In setting the Slicer value we assume a one-way flow of information, that is, that the Slicer will 
be manipulated (by a known value). However, we may want to obtain data from the Slicer and 
allow it to be used as any other data range—for example, in a drop-down box. In order to do 
this, we must read the data from the Slicer. For this intention, we need to be interested only in 
the following three values:

 f The number of elements in the Slicer

 f The caption shown at an Index Position n of the Slicer

 f The member_unique_name shown at an Index Position n of the Slicer

Consider the desired output as shown in the following screenshot:



Chapter 6

179

There are only two formulas in this worksheet. The first (SlicerItemCount) takes the Slicer 
name as an argument and returns the number of data members in the Slicer. The second 
(SlicerIndex) takes arguments for the Slicer name, an index position, and (an optional) 
return type (note that the default return type is the data member caption).

Open the VBA editor and double-click on Module1 to open it. Then, add the following formulas 
(lines of code) to the existing subroutine:

Public Function SlicerItemCount(ByVal SlicerName As String) As 
    Integer

On Error GoTo err_handler

    SlicerItemCount = _ 
        ActiveWorkbook.SlicerCaches(SlicerName) 
        .SlicerCacheLevels(1).SlicerItems.Count
    
Exit Function
    
err_handler:
    SlicerItemCount = -1
End Function

Public Function SlicerIndex(ByVal SlicerName As String _ 
    , ByVal IndexPostition As Integer _ 
    , Optional ReturnType As String) As Variant
    
On Error GoTo err_handler
    
    Dim sl As SlicerCacheLevel
    Set sl = 
        ActiveWorkbook.SlicerCaches(SlicerName) 
        .SlicerCacheLevels(1)
    
    If UCase(ReturnType) = "MEMBER_UNIQUE_NAME" Then
        SlicerIndex = sl.SlicerItems(IndexPostition).name
    Else
        SlicerIndex = sl.SlicerItems(IndexPostition).Caption
    End If
    Exit Function

err_handler:
    SlicerIndex = CVErr(2023)

End Function



Programmatic Access via Excel

180

Add a new sheet to the workbook. Cell B2 (the number of elements in the Slicer) has the 
formula =SlicerItemCount("Slicer_Year"). The formula for the index's caption is given 
by =SlicerIndex("Slicer_Year", A5), and the formula for the member_unique_name 
is given by the formula =SlicerIndex("Slicer_Year",A5,"member_unique_name").

In both these formulas, A5 refers to the index position for the data member that we are looking 
for in the Slicer. Furthermore, the formula will display as functions in Excel's formula bar.

Both formulas work by making reference to the Slicer's SlicerCacheLevel. This is 
actually the hierarchy displayed within the Slicer. Note that both the formulas refer to the 
SlicerCache (the Slicer by name) and then specify SlicerCacheLevel(1) in order to 
reference the actual level of the hierarchy (or perhaps from our point of view, the members 
within that level).

The Slicers that we have created so far have all been single-level hierarchies (these were 
commonly referred to as attribute hierarchies in traditional OLAP). However, when a Slicer is 
created on a drillable hierarchy (or user hierarchy—a hierarchy with multiple levels), a Slicer 
Control is created for each level (within the hierarchy). We can demonstrate this by adding 
a Slicer for the date-by-year hierarchy (in the Dates table). When this is added, three Slicer 
boxes are created as shown in the following screenshot:

In this situation, the property SlicerCacheLevel can be used to identify the data members 
restricted by each level. That is, the Year level is 1, the Month Name is 2, and the Day is level 3.



7
Enterprise Design  

and Features

In this chapter, we will cover:

 f Restoring a workbook to Analysis Services

 f Importing models into SQL Server Data Tools

 f Developing models in SQL Server Data Tools

 f Securing data with roles

 f Implementing dynamic security

 f Creating perspectives

Introduction
Creating a tabular model in Excel is a great way of allowing a user to combine a large amount 
of data, business logic (through calculations and relationships), and semantic information 
(column names, hierarchies, and tables) into a single, succinct model. This is beneficial to a 
single user. However, hosting this model in Excel limits the audience that can use the model 
for analysis (or the output of the model in the case of reports, charts, Pivots, and the like). 
True, the workbook can be shared among users (say for example, a file share); however, 
the workbook can only be used by one person at a time and there exists an inherent risk of 
workbook duplication and the associated risk of workbook proliferation, that is, Excel Hell and 
multiple versions of the same book with different data.



Enterprise Design and Features

182

There are two methods of promoting the Excel tabular model within the organization. Firstly, 
publishing the workbook to the SharePoint site (commonly referred to as Team BI) or secondly, 
promoting the model to SQL Server Analysis Services (SSAS) with its storage in tabular 
mode. Promoting the tabular model to an Analysis Services database may be considered as 
the final step in the development cycle of a tabular model. It allows the modeler to include 
enterprise features in the model (such as perspectives, security, and partitions) and allows a 
multitude of client tools to query the Model.

Of course, it may not be necessary to promote the model in all situations. However, the 
designer should always consider the possibility of the current piece of work becoming an 
enterprise model.

This chapter focuses on moving an Excel model into the SSAS environment and the additional 
features in design and security that it offers.

It is not necessary to create a model in Excel and then promote 
it to an SSAS instance. The model can be completely designed 
in SQL Server Data Tools (SSDT). The principles for design in 
SSDT are exactly the same as in Excel, albeit with a slightly 
different user interface.

Restoring a workbook to Analysis Services
Once the tabular model has been created in Excel, it can be immediately imported to a  
SSAS server, thus allowing multiple people to query it and additional (XMLA/MDX) client  
tools to access it. This recipe shows how to import an existing Excel model to the SSAS 
(tabular) server.

Getting ready
The workbook used in this recipe is the same as the workbook developed in the Allocating 
data at different levels recipe in Chapter 5, Applied Modeling. This is also the same workbook 
that was used in Chapter 6, Programmatic Access via Excel.

In order to import the workbook directly into SSAS, it must be saved with a .xlsx  
(nonmacro) extension.



Chapter 7

183

How to do it…
Let's start and connect to an SSAS server (with the storage in tabular mode).

1. Open SQL Server Management Studio and connect to the Analysis Services  
(tabular instance).

2. Right-click on the database node and select Restore from PowerPivot. This is  
shown in the following screenshot:

3. Navigate to the file using the Browse… button from the Backup file: location as 
shown in the following screenshot. Then select OK.

The directories that can be browsed are a property of the SSAS 
server. In order to change these, right-click on the server node in 
SQL Server Management Studio (SSMS) and select Properties. 
Then, change the value AllowedBrowsingFolders to include any 
needed folders. This is an advanced option and is found under 
the General tab.



Enterprise Design and Features

184

4. Name the database Import Example, as shown in the following screenshot, and 
then click on OK:

5. Refresh the database node and ensure that the model has been imported.  
A new database should exist as shown in the following screenshot:

How it works…
Despite the implication that restoring an Excel tabular model is a restore operation (from 
Analysis Services point of view), it is in fact the execution of an ImageLoad (XMLA) command. 
The standard XMLA to restore a database from a backup is given in the following snippet:

<Restore xmlns="…">
  <File>Backup File Name.abf</File>
  <DatabaseName>Target Database</DatabaseName>
  <AllowOverwrite>true</AllowOverwrite>
</Restore>



Chapter 7

185

However, the command to import the workbook is shown in the following snippet. In both 
cases, the namespace declarations are removed for brevity (the full snippets are available 
from the chapter's resource file XMLA to Import and Restore.XMLA):

<ImageLoad xmlns="…"
xmlns:ddl100= "…"
xmlns:ddl200_200="…"
xmlns:ddl100_100="…">
<ddl200_200:ImagePath>Import File Name.xlsx</ddl200_200:ImagePath>
<ddl100:ReadWriteMode>ReadWrite</ddl100:ReadWriteMode>
<DatabaseName>Target Database</DatabaseName>
<DatabaseID>Target Database</DatabaseID>
</ImageLoad>

The ImageLoad command loads the Excel tabular database (or model) to a tabular SSAS 
server. While this is a convenient and quick solution for making a model available to a wider 
audience, it may have some undesired implications. This includes a general lack of ability to 
alter the model's semantic design and the creation of default values; for example, a single 
cube is created with the name Model (right-click on the database Import Example and see 
that only one cube exists with the name Model).

If you are happy to live with these limitations there is no reason why a PowerPivot workbook 
cannot be imported to the server. However, if you wish to make the model truly enterprise-
ready, you may first need to import the model into SQL Server Data Tools (SSDT) and edit the 
model from there.

There's more...
It is possible to alter the Server Model through XMLA (although not that practical in reality). In 
order to change the name of the cube, we could script the database out as alter syntax and 
then change the <Name> element in the <Cube> path. The command can then be executed 
and the name of the cube will change. The location of the Name tag can be seen in the 
following screenshot:



Enterprise Design and Features

186

Importing models into SQL Server  
Data Tools

Importing tabular models hosted in Excel to an SSAS tabular server may be an intermediate 
step in creating an enterprise-ready tabular database. If an Excel model is to be used as a 
prototyping mechanism it will more than likely have to be imported with SQL Server Data Tools 
(SSDT), so that the model can be saved, managed, and verified in a more robust manner. 
The tabular model can also be built from scratch using SSDT should a more traditional 
development environment be required, that is one where Excel is not used.

For the purposes of the tabular model (in as much as the model 
revolves around table relationships in calculations), there is no 
difference between developing in Excel through PowerPivot or 
SSDT. Indeed, on proof of concept and prototyping situations it is 
often a good idea to sit with the user, using the same tools as they 
use and build a model with them!

Getting ready
This recipe examines how to import an existing PowerPivot model into SSDT. The workbook 
is the same as the one used in the Restoring a workbook to Analysis Services recipe and is 
present in the code bundle available at http://www.packtpub.com. Let's start with SSDT.

How to do it…
1. Open SQL Server Data Tools from the Microsoft SQL Server 2012 program group.

2. Create a new Project using the menu path File | New | Project. Then, select the 
Import from PowerPivot template by navigating to Business Intelligence | Analysis 
Services as shown in the following screenshot:



Chapter 7

187

3. You may also want to specify a suitable name for the project; let's call this Import 
Example SSDT, and a different file location to store the project.

4. An open dialogue will display where you can navigate to the Excel workbook, in order 
to select the appropriate file. Navigate to the directory storing the file Power Pivot 
Model Complete.xlsm (you will have to change the file filter) and click on Open 
once you have selected the file.

In order to use the SSDT project, we will require a link to a 
workspace database. This is really a connection to an SSAS server 
and is discussed in the How it works… section of this recipe.

5. SSDT will spend a few moments importing the model (note that the status bar will 
move from time to time while objects are being imported).

6. When the operation is finished, the project will open in SSDT showing a table view of 
the model.

How it works…
There is nothing complex associated with the import of the workbook to SSDT. However, the 
reader should be aware that SSDT requires a connection to a tabular server in order to display 
the model to the user and to be able to work on that model in SSDT. This is referred to as a 
workspace database.

If there is no connection available, the import will not complete and no development can occur. 
The presence of the model in the workspace database can be confirmed by refreshing the 
model and expanding the Databases node in SSMS. Note the GUID appended to the name of 
the solution in the Object Explorer dialog of SSMS, as shown in the following screenshot:



Enterprise Design and Features

188

The name of the workspace database (as a read-only property) that is used by the model can 
be seen from the Solution Explorer pane (within SSDT). Right-click on the Model.bim file 
within the Solution Explorer pane and select Properties. A screenshot of the window that 
opens up is shown as follows:

There's more...
The server that is to be used as the workspace database cannot be set when the import 
occurs. Further, if a tabular server is not available, an import (conversion) will not succeed.

Therefore, the developer should ensure that the server used to store the workspace database 
was previously connected to SSDT. This can be as simple as creating a new Analysis Services 
tabular project and setting the Deployment server to the tabular SSAS server. Note that, 
by default, localhost is used as the server and this may not be the case when named 
instances are used (as is the case).

The server can be set by right-clicking on the properties node (in the Solution Explorer pane 
of SSDT) of the Project and selecting properties. The server name can then be set, as in 
the following screenshot (a workspace database will be created on a local instance called 
SQL2012TABULAR):



Chapter 7

189

The properties also allow us to specify the Cube Name property, so that the default name of 
model is not shown. This can be set by overwriting the Cube Name property as shown in the 
following screenshot:

Finally, this technique can be used to import a model that is located on a tabular server. 
Simply choose the Import from Tabular Server template project.

Developing models in SQL Server Data Tools
The modeling environment in SQL Server Data Tools (SSDT) is almost identical to that of 
PowerPivot. There is more functionality available; for example, the ability to create partitions 
and apply security to the model. However, the general approach to modeling in SSDT is 
identical to PowerPivot. That is, the import of data, its definition (tables and columns), and the 
creation of relationships and measures are the same.

This recipe demonstrates how models can be developed in SSDT by extending the model 
imported in the Importing models into SQL Server Data Tools recipe. Here, we add a 
Geography table to the model to show the sales region that the purchase occurred in. Later 
on (see the Securing data with roles recipe) this table will be used to secure the model by 
allowing specific users access to privileged regions.



Enterprise Design and Features

190

Getting ready
Open the model that was developed in the Importing models into SQL Server Data Tools 
recipe and ensure that the file Geography.txt has been downloaded from the resources 
for Chapter 5, Applied Modeling. There is also a schema.ini file, which accompanies this 
file and overwrites the default import settings. The file Geography.txt and schema.ini 
should be located in the same directory.

How to do it…
Start with the SSDT project that was developed in the Importing models into SQL Server Data 
Tools recipe.

1. Click on the Import From Data Source button from the toolbar. This is shown in the 
following screenshot:

Alternatively, you can select Import From Data Source… 
from the model's menu group. This action is very similar to 
the From Other Sources button in PowerPivot and displays a 
variety of data sources that can be imported.

2. Select Text File as the Data Source and click on Next.

3. Navigate to the Geography.txt file and select Open. A Table Import Wizard will 
open allowing the connection name to be specified (in keeping with the model's 
standard,  the connection should be labeled txt_geography). Note also, that the 
schema.ini file has been recognized and the settings in this file will be used instead 
of the default settings. This is shown in the following screenshot. Click on Next.



Chapter 7

191

4. A new window will open that specifies the account that will be used to connect to 
the data source by Analysis Services when the data is processed. Although not 
recommended (in a production environment), let us assume that the SSAS service 
account can access the file and use this account for convenience. Select the Service 
Account and click on the Finish button. Once the data has been imported, click on 
the Close button. The new table is added to the model.

5. Right-click on the Geography ID column heading (in the Geography table) and 
select Create Relationship from the pop-up window. When the Create Relationship 
dialog opens, select Reseller Sales under Related Lookup Table and Geo ID under 
Related Lookup Column. Note that an information button appears as shown in the 
following screenshot. When you hover over the icon, a warning message indicates an 
incorrect direction for the relationship. Click on Create to create the relationship.



Enterprise Design and Features

192

6. Hide the Geography ID field in the Geography table by right-clicking on the field 
and selecting Hide from Client Tools from the pop-up menu.

7. Switch to the diagram view and locate the Geography table. Create a hierarchy by 
selecting the City, State, and Country attributes from the table, right-clicking and 
selecting Create Hierarchy from the pop-up menu.

How it works…
This process is quite similar to importing a text file into PowerPivot. In fact, the only noticeable 
exception is that when developing in SSDT, the designer is prompted for an authentication 
account to connect to the data source (remember that importing a text file will create a new 
data source). It is important to remember that the design experience is actually managed 
by a tabular server and SSDT connects to this in displaying data to the modeler. That is, 
SSDT creates a workspace database on the server and the server connects to a data source 
through its impersonation settings.

The creation of this relationship is also intuitive because the design surface (SSDT) identifies 
the cardinality between the two tables and identifies the required direction of the relationship 
between the two tables. The information message shown in the recipe demonstrates this.

In order to detect this relationship, one side of the relationship must hold only unique values 
in the column. If it doesn't, a relationship cannot be created.

There's more...
The account used to authenticate to a data source can be changed once the connection 
has been created. This account is the impersonation setting for the connection and can be 
managed through the Existing Connections dialog. To change the account in an existing 
connection, click on the Existing Connections button from the toolbar. Alternatively, this 
functionality also exists in the Model menu button, as shown in the following screenshot:

When the Existing Connections dialog opens, select the connection (in our case, it is  
the txt_geography connection) and click on the Edit button. Then, click on the 
Impersonation... button to select the method and account for impersonation, as shown  
in the following screenshot:



Chapter 7

193

Securing data with roles
Often, there is a desire to restrict the amount of data that a user can see. This can take 
two forms. Firstly, there may be a need to restrict data because of a security concern, that 
is, the user should only be able to read information from the model that relates to their 
area of operating concern. Typical examples of this type of security restrictions are based 
on geographical areas, reporting, or departmental lines. Restricting data through security 
is examined in this recipe and the Implementing dynamic security recipe in this chapter. 
Secondly, we may wish to restrict the objects that a user can see when they connect to the 
server. This is not the application of a security feature, but simply the creation of specific 
view(s) for the user. This is achieved through the use of perspectives (which is examined in  
the Creating perspectives recipe in this chapter).



Enterprise Design and Features

194

Tabular modeling on an SSAS server implements role-based security. This is similar to the way 
SSAS implements security in an OLAP environment. A very general explanation of this model 
is that, when the user (or account) connects to the model, they are identified as belonging to 
one or more roles and the implementation of their security profile is the amalgamation of all 
roles they belong to.

This allows roles to be defined for different processing operations within the model, in addition 
to the restriction of data. Furthermore, the role that an account belongs to is identified by that 
account's Active Directory profile. When the account connects to the tabular server, it can be 
identified as belonging to a role by belonging to an Active Directory group. This removes the 
need to assign an individual user account's access to a role; instead, association to the role is 
managed by Active Directory.

Getting ready
This recipe creates a role for an Active Directory group called TABULAR_SECURITY_
AMERICAS. We then examine how security is applied to the role and a user belonging to it.

How to do it…
The general method to create a role is to define the role and its access layer. Then, we specify 
the domain members who are part of that role and finally the security for the role. This is done 
through a DAX statement against the model tables. Let's start by creating the role.

1. Click on the Roles button from the toolbar. Alternatively, Roles is also an option in the 
Model menu group, as shown in the following screenshot:

2. The Role Manager dialog will open. Create a new role by clicking on the New button 
and name the role AMERICAS. Specify the permissions for the role as Read (select 
Read as the permission from the Permissions drop-down menu). Although not 
mandatory, we can also give a description of the role.



Chapter 7

195

3. Assign members (domain users, groups, and principals) to the role by selecting the 
Add... button from the Members tab. If the name of the domain member is known, 
it can be typed directly into the dialog and confirmed with the Check Names button. 
The role should look like the following screenshot:

Active Directory groups are not searched by default and the name 
may not be validated. If this is the case, Domain Groups can be 
added to the selection criteria by clicking on the Object Types... 
button and checking the Groups option. Additionally, a detailed 
search can be carried out by clicking on the Advanced button.



Enterprise Design and Features

196

4. Change to the Row Filters tab and find the Geography table. Add the following code 
in the DAX Filter column:
=[Country] = "United States" || [Country] ="Canada"

The Row Filters tab should look like the following screenshot:

5. Click on OK to create the role.

6. Now that the role has been created we can test it through SSDT. Click on the Analyze 
in Excel button (which is also an option in the Model menu group). After this, a 
dialogue will open allowing you to specify the connecting user. Select Role as the 
method and AMERICAS from the drop-down menu. Then click on OK to open Excel. 
This is shown in the following screenshot (note that you need to be an Administrator 
on the SSAS server to do this):



Chapter 7

197

7. Excel will open with a Pivot Table connected to the tabular model. Drag the 
Geography by City hierarchy of the Geography table on to the Pivot's rows to confirm 
that only the countries Canada and United States are shown. The Rows column  
will look like the. following screenshot. Note that any attribute displayed on rows  
(for example, City) will also restrict to attributes relating to these countries.

How it works…
We have discussed the general concept using which security is applied. That is, when the user 
(domain member) connects to the model, they are allocated to whatever role(s) their domain 
credentials specify. Their access permissions are then defined by the addition of all security 
permissions and row filters that are defined by those role(s). The row filters simply evaluate 
data according to the predicate of the DAX filter statement.

The addition of security roles should not be taken lightly because there is no way to explicitly 
deny permissions to data. This means that a role can never specify a denied permission that 
will take precedence over an allowed permission.

Consider the situation where we create a new role ALL_NOT_UNITED_STATES (for all 
countries other than the United States). This may have a DAX filter as follows:

[Country]<>"United States"

When an account is a member of this and the AMERICAS role, they will see United States in 
their data. Perhaps it is easier to consider the not equals expression (<>) as meaning everything 
other than what has been listed and not as a denied permission against United States.

The other permissions for the model (None, Read and Process, Process, and Administrator) 
should be self-explanatory. However, they are included here for completeness.

Permissions Description

None Members cannot make any modifications to the model schema and cannot 
query data. This permission should be used to exclude users from the model.

Read Members are only allowed to query and not change the model schema. The 
users with this permission cannot process the model.

Read and 
Process

Members are allowed to query data and process the model. No changes can 
be made to the model schema



Enterprise Design and Features

198

Permissions Description

Process Members can process the model but cannot query data. The permission 
cannot alter the model schema.

Administrator The user with this permission has (essentially) full control over the model.

There's more...
It is expected that roles should be added to the model in the development environment. 
However, once the model is in production, roles can be added and edited directly to the 
SSAS server using SQL Server Management Studio (SSMS). To do this, simply expand the 
Database's node to expose the roles, right-click on the node and select New Role… from the 
pop-up window. Alternatively, an existing role can be edited by double-clicking on its name.

Changes made to the workspace database will not be reflected in the SSDT project.

Implementing dynamic security
Implementing security through roles that contain hardcoded row filters is a very convenient 
way to manage data access to the model. It's also relatively easy to understand.

However, some downsides of that method are that the roles require creation and 
maintenance. Imagine a situation where hundreds or thousands of detailed roles have to be 
created; this would require a lot of work! Further, while the use of Active Directory groups is 
convenient from a model's administration perspective, it removes a large amount of control 
from the BI environment (and the BI department). Often, this is not desirable (especially 
in smaller departments and agile environments) as the BI team is solely responsible for 
administering security.



Chapter 7

199

One way of allowing the BI team to administer security is to create the security model as an 
artifact of the model and have security applied by reference to that artifact. This is commonly 
referred to as dynamic security because the model implements security by reference to its 
own data (and structure). Any changes to the (security) data are automatically applied in the 
model when the data is processed (refreshed).

This recipe implements dynamic security.

Getting ready
This recipe builds from the solution that was developed in the Developing models in SQL Server 
Data Tools recipe. Users and countries that each user can view are shown in a file, which is 
present in the code bundle of this book available at http://www.packtpub.com. The file is 
titled SecurityProfiles.txt and its content appears as shown in the following screenshot:

As a CSV file, the first column contains the user login (account), which includes the domain 
(or machine) name. In this recipe, the domain name used should refer to your machine or the 
domain that you work from; if you are working on a domain.

How to do it…
Start by importing the SecurityProfiles.txt file into the model.

1. Import the file SecurityProfiles.txt into the model. The download also includes 
a schema.ini file, which should be saved in the same location as the file.

2. Create a new role (titled Dynamic Security) with read permissions and set the 
role's members as Authenticated Users.



Enterprise Design and Features

200

To apply dynamic security, an Active Directory Account group 
is commonly used to group users in a Domain group. When 
a dynamic security is implemented you need not worry about 
Active Directory groups and can refer to individual users in the 
Security table.

3. Apply two row filters to the role. The first is created against the SecurityProfiles 
table with the condition FALSE(). The second is applied against the Geography 
table with the following syntax:
='Geography'[Country]=LOOKUPVALUE( 
  SecurityProfiles[country], SecurityProfiles[user_login],  
  USERNAME())

The Row Filters tab should look like the following screenshot:

4. Create a Pivot Table to explore the model under both accounts (as in the Securing 
data with roles recipe). Examine how data from the Geography table is restricted by 
the user (that is, the user who is connected). Also notice that there is no data for the 
SecurityProfile table visible in the Pivot Table.

Instead of testing security through SSDT using the option Analyze in 
Excel (and specifying the user account to test as), you may choose to 
run several instances of Excel running each instance as a different user. 
This can be achieved by using a command-line program runas. For 
example, to open Excel as the user Mercury\Tabular Tester, we 
will simply enter the following command into a new command window:

runas /user:"Mercury\Tabular Tester"  
  "C:\Program Files\Microsoft Office\Office14\
Excel.exe"

You are then prompted for the user's password.



Chapter 7

201

5. Finally, hide the table SecurityProfile from client tools (because we do not want 
an end user to see the structure of the SecurityProfile table).

How it works…
The application of the row filter on the Geography table is the main mechanism that 
implements security in this recipe. Here, the predicate on the Geography table permits the 
Country value (data element) only if it exists in the SecurityProfile table with a match 
against the connected domain user.

The use of the LOOKUPVALUE function (see the Linking fields between tables recipe in 
Chapter 1, Getting Started with Excel) is that it associates a user with countries that are 
specified in the table SecurityProfile. Previously, LOOKUPVALUE has been applied 
to return data by reference to a column in an existing table; that is, the search_value 
argument of the LOOKUPVALUE function has been a column within an existing table. In this 
formula, however, the search arguments are defined by the USERNAME() function. This 
function simply returns the connected user.

If we wish to see the username, we could create a measure 
CURRENT USER:=USERNAME().

It was stated that the role can be implemented without hiding or specifying the FALSE() 
predicate on the SecurityProfile table. However, there are several reasons why this 
predicate should be implemented. It should be noted that hiding a table from client tools 
does not restrict the table from being queried. A curious user who knows the structure of the 
table can query it even though it may be hidden within the model. To circumvent this possible 
breach, the use of the FALSE() predicate as a row filter effectively disables data access 
(even for curious users).

Creating perspectives
In the prior recipes, we have restricted what the user sees by hiding tables and columns from 
client tools. This can remove clutter from the model and hide information that the user never 
needs to see (for example, the SecurityProfile table). However, in situations where the 
model contains distinctive subject areas, there may be a desire to expose only tables in those 
subject areas as particular views. This is achieved through perspectives.



Enterprise Design and Features

202

A perspective allows a virtual model to be created over the existing model, so that the user 
has a choice of views for the model. As a view, the perspective inherits all security from the 
underlying model. Only the tables and columns that are shown in the view can be controlled. 
Further, data security cannot be applied directly against a perspective and visibility of the 
perspective cannot be defined by role. That is, the perspective cannot implement its own  
data security profile.

Getting ready
This recipe builds on the model that was developed by the Model development in SQL Server 
Data Tools recipe in this chapter. We will create a perspective to show only that information 
which relates to exchange rates (exchange rate values by date and currency).

How to do it…
The three steps for creating a perspective are to create it, name it, and set its table and 
column visibility.

1. Create a new perspective by launching the Perspectives dialog. Click on the 
Perspectives button (or click on Perspectives from the Model menu) as shown in the 
following screenshot:



Chapter 7

203

2. After the Perspectives window opens, click on the New Perspective button. This 
window shows any existing perspectives in the model. Name the new perspective 
Exchange Rates by overwriting the New Perspective caption. This is shown in the 
following screenshot:

3. Select the fields, hierarchies, and measures that will be visible in the perspective. 
Expand each table and check each of the following items:

Table Field/Measure
Currency Currency ID

Currency Conversion AVG Rate

Currency Conversion EOD Rate

Currency Conversion AVG EOD Rate

Currency Conversion AVG Ex Rate

Dates Day

4. Save the perspective by clicking on OK.



Enterprise Design and Features

204

5. The perspective can then be reviewed through the Analyze in Excel function. The 
Perspective drop-down lists all perspectives in the model as shown in the following 
screenshot. Select the Exchange Rates perspective and click on OK.

6. When the PivotTable Field List is displayed, only those items that are exposed 
through the perspective and are visible to client tools can be seen. Observe the 
following screenshot, the measure AVG Rate cannot be seen in the field selection 
list despite being checked when the perspective was created. This is because the 
measure is hidden from client tools in the model.



Chapter 7

205

How it works…
There is no explanation required here, as the perspective is simply a derived view from the 
model. It cannot have any security applied to it and inherits the underlying model's security 
(and visibility). Perspectives are, for all intents and purposes, a representation mechanism.

There's more...
Perspectives can also be created in PowerPivot. Do this by clicking on the Perspectives button 
on the Advanced tab of the PowerPivot Ribbon. The user interface is the same as  
that of SSDT.

When analyzing in a Pivot Table, the perspective can be chosen from the field list as shown in 
the following screenshots:





8
Enterprise Management

In this chapter, we will cover:

 f Deploying models from SSDT

 f Deploying models with the Deployment Wizard

 f Creating and managing partitions

 f Processing the data

 f DirectQuery and real-time solutions

Introduction
When an Excel user creates a PowerPivot model, they have the luxury of managing all the data 
from within PowerPivot. They can update table data when needed in an ad hoc manner as 
they see fit.

However, the same situation is not true for enterprise models—tabular models that are deployed 
to an SQL Server Analysis Server (SSAS) server. Here, there is an expectation from all users 
that data is updated and refreshed according to an agreed schedule. Further, there are often 
restrictions on developers that limit the activity they can perform on production servers.

This chapter examines how models are managed against SSAS servers and includes 
deployment methods, management, and processing.



Enterprise Management

208

Deploying models from SSDT
The prior recipes in Chapter 7, Enterprise Design and Features, that deal with SQL Server 
Data Tools (SSDT), create a workspace database on a tabular server. This is used by SSDT as 
a temporary database (or model) for display and as a database that Excel can use (when you 
choose to analyze the data in Excel through SSDT). When SSDT is closed, the database is lost.

In order to persist the database, so that it is constantly available to end users, it must be 
deployed to an SSAS (tabular) server.

Getting ready
This recipe continues from the Creating perspectives recipe in Chapter 7, Enterprise Design 
and Features.

How to do it…
Let's start by examining the deployment properties for our project:

1. Confirm the deployment options of the solution by right-clicking on the solution 
and selecting Properties. The window opens as shown in the following screenshot. 
Change the Deployment Server settings if desired. These include the tabular server, 
the database (the name of the database that the model will be deployed to) and the 
cube name (the name of the cube).



Chapter 8

209

The tabular model is synonymous to the Database and Cube Name 
settings in the prior screenshot and these settings have relatively 
little impact to the end user. In a tabular model, the model is 
published to a database (there can only be one model in the 
database) and the database contains the cube (the model).

These definitions are inherited from the multidimensional model. 
In that model, the objects are disconnected (dimensions are 
separate objects from cubes) and there can be many cubes in each 
database.

2. Deploy the model by right-clicking on the solution and selecting Deploy.

3. SQL Server Data Tools (SSDT) will open a new dialog showing the steps and rows of 
the processing operation. This is shown in the following screenshot:

4. Click on Close.

5. Confirm the deployment by connecting to the model through Excel. Go to  
Data | From Other Sources | From Analysis Services.



Enterprise Management

210

6. From an Excel workbook, connect to the model by inserting a new data source.

7. Enter the server name in the Data Connection Wizard window. This is the same 
server that was used in project properties. For example, in this project the server  
was \SQL2012TABULAR (a named instance on the localhost). Click on Next.

8. Select the TABULAR MODELLING database from the drop-down list.

If SSDT is still open (and you have deployed to the same server 
as the workspace database), you should also see the workspace 
database. Remember that this is a temporary database used by 
SSDT to show the model.



Chapter 8

211

9. Now, select the TABULAR MODELLING cube and click on Next. Then click on Finish 
to complete the wizard. Note (as shown in the following screenshot) that we can see 
and identify the model (which is called cube) and perspective:

10. A pivot table will be inserted with a connection to the tabular (server-based) model. 
This is used as another pivot table (client-based connection). See the Creating model 
calculations recipe in Chapter 1, Getting Started with Excel, for the comparison of 
client versus the PowerPivot tables.

How it works…
Deploying from SSDT in this manner actually involves a two-step process that is managed by 
SSDT. The first step creates the database (model) on the server. If the database exists, it is 
updated for the new structure. The second command processes the database (data) that has 
been created on the tabular server (that is the database created in the prior step).

Before the model's data can be queried by the client tool, the database must be flagged as 
processed. The method of processing is specified in the deployment options of the solution 
(noting that the first step of this recipe was to confirm these options). Here, the Processing 
Option can specify how processing occurs after creation. These options are shown in the 
following screenshot:



Enterprise Management

212

These options cover a range of processing, from no processing to full processing and are 
described in the following table:

Modes Description
Default SSAS determines the processing that is required for each table. 

A table will only be processed if it has been altered (or is new).
Do Not Process No tables are processed.
Full All tables in calculations are processed.

When the model is deployed with a processing option of Do Not Process, only metadata 
is deployed. This can be checked with the help of the following screenshot which shows 
deployment of the same model with the Do Not Process option. Note that no partition 
processing occurs.

Since the workspace database includes the all model data, one may question why the Do Not 
Process option should be considered as a part of deployment? This option has been chosen 
when the data used by the model is sample data and needs to be changed in production. This 
will require the deletion, alteration, and creation of additional partitions (data stores) and, 
therefore, reprocessing. See the Creating and managing partitions recipe.

Deploying models with the Deployment 
Wizard

Some organizations do not allow the developers to deploy their projects directly into 
production, this change must be managed by a different group that does not use SSDT. In this 
situation, the developer needs to provide an alternative method to the model.

This recipe examines how this can be achieved by using a deployment utility that is installed 
with SSAS. The tool can provide two methods for deployment and we will investigate both. 
Note that both the methods only differ in the final stage of deployment.

When using the Deployment Wizard, the wizard analyzes files that are created as part of a 
project build to create an output action. This action can either be the execution of a script 
from within the tool or the creation of a script—the XMLA file (XMLA stands for XML for 
Analysis) that can be executed against the (tabular) server. In order to deploy with these 
methods, only the output files need to be created from SSDT, everything else is managed 
through the Deployment Wizard.



Chapter 8

213

Getting ready
This recipe continues with the model from the Deploying models from SSDT recipe.

How to do it…
When we deploy a model (with the Deployment Wizard) there are three things that  
happen—the solution is built (creating a database file), then the Deployment Wizard is  
used to configure the database file (this configuration is also saved in its own file), and  
then both files are executed against the server.

Start by building the solution as follows:

1. Build the solution by right-clicking on the solution in the Solution Explorer pane and 
selecting Build from the pop-up menu. Alternatively, click on the Build Project XXX 
button from the Build menu. This is shown in the following screenshot:

2. Close SSDT. Start the Deployment Wizard from the All Programs menu. It is located in 
the Analysis Services folder within the Microsoft SQL Server 2012 program group.



Enterprise Management

214

3. Navigate past the wizard's welcome screen. The wizard will then ask for a file with 
the extension .asdatabase to open. The default location for this file is in the bin 
directory of the solution (files). This file is named Model.asdatabase; locate the file 
and click on the Open button.

The build of the solution also creates two other files that are used by 
the Deployment Wizard. The first file Model.deploymenttargets 
specifies the current deployment server options—the server and 
the database name. The other file Model.deploymentoptions 
specifies the other default options for the model (such as whether 
partitions and roles will be created).

The default settings in these files can be configured through the 
Deployment Wizard.

4. Specify the target server and target database that the model will be deployed to. 
Since the server and the database name have been configured, we can accept the 
defaults and move to the next screen by clicking on Next.

The deployment target settings are inherited from the  
Model.deploymenttargets file. The server and the 
database can be edited from this file, if needed.



Chapter 8

215

5. Leave the default values for the Partitions option and Role and members option and 
click on Next.

6. Finally, we can specify (if required) additional connection and impersonation 
information for each connection within the model. Accept the defaults (since the prior 
recipe, Deploying models from SSDT, is deployed with these values) and click on Next.



Enterprise Management

216

7. Finally, specify the processing option for the model after deployment. Leave this as 
Default processing and click on Next.

8. Finally, we can specify whether or not a deployment script will be created (and the 
name of that script). If a script's filename is provided, the Deployment Wizard will 
close after the script has been created. If no filename is given, the wizard will simply 
deploy the model and process it. In this recipe, we will choose the latter option 
and fully process the model from within the Deployment Wizard. Leave the Script 
Location field blank and click on Next.

9. The wizard will deploy and process the model; a sample output of this is shown in the 
following screenshot:

10. Click on Next for the confirmation screen or on Finish to close the wizard.



Chapter 8

217

How it works…
There is no additional information about deployment using the wizard. It is important to 
reiterate that the target settings (both server deployment and processing) are inherited from 
the two additional files that are created when the model was built. Both of these files are XML 
based and therefore the values (such as the processing option) can be set from within the files.

To demonstrate deployment using the script generation output, perform the following steps:

1. Complete the recipe using the Create deployment script option. By default, the 
output file will be created in the same location as that of the .asdatabase file and 
will be suffixed with an .xmla file extension. Of course, the location can be changed, 
but leave the default values. Finally, close the wizard.

2. Open SQL Server Management Studio (SSMS) and connect to the tabular server.

3. Open the deployment script that was created in step 1.

4. Execute the script. When the script is running, the Messages tab will show progress 
as shown in the following screenshot:

5. When the execution of the script is complete, the output results will show an empty 
result set for success, as shown in the following screenshot:



Enterprise Management

218

There's more...
The use of the Deployment Wizard removed reliance on SSDT. However, deployment can still be 
a manual process because of the required interaction with the interface. Since the additional 
deployment files can be overridden in the wizard, one might also question their purpose.

One of the useful features about the Deployment Wizard is that it can execute executables 
from the command line and fully deploy the build. This can then be executed in a number 
of scheduled ways (for example, as a scheduled task or through an Integration Services 
package). Here, the use of the additional files becomes apparent as they specify the 
deployment options and target.

There are a number of parameters that can be set for deployment; however, consider the 
situation where we simply wish to deploy the model (with values specified in the additional 
files). Executing the following command will deploy the model and leave the log showing the 
steps that the deployment took:

Microsoft.AnalysisServices.Deployment.exe
"C:\BOOK\Import Book\Import Book\bin\Model.asdatabase" 
  /s:"C:\BOOK\Import Book\Import Book\bin\deployment.log"

In this situation, my bin directory is located at C:\BOOK\
Import Book\Import Book\bin\.

The code file that accompanies this chapter (available from 
the online content) includes the fully-qualified name of the 
Deployment.exe file. By default, this is found in the following 
directory: C:\Program Files (x86)\Microsoft SQL 
Server\110\Tools\Binn\ManagementStudio.

Further information about running the Deployment Wizard from the command line can be 
found at http://tinyurl.com/nzn878y.

Creating and managing partitions
The tabular model is an in-memory engine meaning that the data in the model (all models on 
the tabular server) is compressed and stored in the RAM while the server is running. The tabular 
server also stores data on the disk (storage for when the SSAS engine is not running)—however, 
the rule is generally that all queries against the model are performed on cached data. The 
exception to this, of course, is when there is not enough RAM for the engine to use, and  
paging occurs.

This is a stark contrast to Multidimensional Online Analytical Processing (MOLAP) storage, 
which stores data on the disk (notwithstanding aggregations that may have been cached). 
This storage requires an effective partitioning strategy as a performance consideration. That 
is, a strategy to physically store the data on the disk.



Chapter 8

219

Aside from performance implications, partitioning is also used as a management function—it 
defines what data is available in the model. A common example of this is the application of 
a sliding window where; for example, data is held in monthly partitions and rolling data for 
the past 12 months is required. As monthly partitions are filled, the older and nonneeded 
partitions can be deleted without impacting the entire dataset.

This recipe examines how to implement partitioning on the tabular server at both design  
(in SSDT) and administration (using SSMS). Unlike MOLAP storage, partitioning can occur on 
any table (MOLAP SSAS restricts partitioning to measure groups). Additionally, since storage  
is in-memory, the use of a partitioning strategy becomes more of a management issue.

Getting ready
This recipe continues from the model that has been developed and deployed in the  
Deploying models from SSDT recipe. Our goal is to create yearly partitions for the  
Reseller Sales table that constrains data by the financial year. The partition names  
span financial years (for example, Reseller_Sales_2006 spans records with order  
dates between 1-July-2005 and 30-Jun-2006).

How to do it…
This recipe is completed in two steps. Firstly, we alter the current partition for Reseller 
Sales to apply for Reseller_Sales_2006. This is done in the design mode. Secondly,  
we alter the deployed model as it resides on the server (through SSMS).

Let's start by reviewing the current partition:

1. In SSDT, activate the Reseller Sales table in Grid View Mode and click on the 
Partitions button.



Enterprise Management

220

2. The Partition Manager window opens. Note that the values in the Connection and 
Source Name textboxes cannot be edited but the value in Partition Name can; 
modify the value in the Partition Name textbox to Reseller_Sales_2006. This is 
shown in the following screenshot:

3. Click on the SQL definition button for the Partition. Replace the current SQL 
command with the following (note the inclusion of the WHERE clause). Remember that 
this data was sourced from the text file—this is why the WHERE condition includes #:
SELECT [Reseller Sales#txt].*
FROM [Reseller Sales#txt]
WHERE
[Order dt] between  #2005-07-01 00:00:00#
and #2006-07-01 00:00:00#

4. Validate the syntax and then close by clicking on OK.



Chapter 8

221

5. Note that the current row count of the partition (before changes) is 60,855 records. 
Process the table (there is only one partition in the table) by clicking on the Process 
button and selecting the Process Table option, as shown in the following screenshot:

6. Observe the new row count of 8,459 records. Then, deploy and process the model to 
the server.

7. Now that the model has deployed to the server, we can consider it in a production 
state where further development is not possible, partitions must be managed from 
SSMS. The remaining part of this recipe adds a partition from SSMS.

8. Open SSMS and connect to the tabular server. Expand the TABULAR MODELLING 
database and then expand the Tables node. Right-click on the Reseller Sales 
table and select the Partition… option. A new window will open as shown in the 
following screenshot:

9. Copy the partition for 2006 by highlighting the partition in the grid and clicking on the 
Copy button.

If there are more than one partitions in the grid, the one that 
is active (selected partition) in the grid is copied.



Enterprise Management

222

10. The New Partition dialog opens. Rename the partition to Reseller_Sales_2007 
and adjust the years of the dates so that the values in [Order dt] lies between 
2006 and 2007, as shown in the following screenshot:

11. Confirm the creation of the new partition by clicking on the OK button.

How it works…
A partition is a logical definition of a data segment for a table, and the creation of a partition 
(in SSDT or SSMS) simply defines that data. It is important to identify that the creation of a 
partition does not automatically load data into that partition.

Consider a specific reseller (tire company), based on the current data in the model (as the 
model should currently be) the value of [USD Sales Total] for them should be $12,864. 
In SSMS, right-click on the TABULAR MODELLING database and select Process Database 
(choose the default option). After the model is processed, sales will now be $13,334 due to 
the additional data in the 2007 partition.

Partition processing is examined in the next recipe—Processing 
the data.



Chapter 8

223

There's more...
There are two issues associated with the user interface for creating partitions. Firstly, you 
cannot create a bulk set of partitions using some iterative process. For example, creating 70 
partitions would be very troublesome and not easily reproducible if we wished to deploy to 
another environment! What is needed in this situation is a reusable method of generating 
a partition that can fully define the partition by changes to its structure (for example, its 
data source, query, and name). Secondly, the user interface does not allow the creation of a 
partition that uses a different data source to the base partition (the source used to create the 
table initially). For example, we could not specify the SQL Server connection in the previous 
part of the recipe.

Creating partitions through XMLA can solve both of these problems. Here, all we have to do 
is create a statement that is executed against the database. This process (and the iteration) 
can be easily managed through Integration Services. The remainder of this recipe looks at the 
generation of the XMLA command.

Before continuing, it is important to recognize the multidimensional representation of a 
tabular database. In the multidimensional view, each table in the tabular model can be 
shown in two ways—one as a dimension and the other as a measure group. Additionally, 
in multidimensional view, partitions are only created against measure groups. Further, the 
tabular model contains only one cube when compared to OLAP.

Finally, we need to recognize that all objects have an ID and a name. For example, the cube 
object has an ID (model) that may not be the same as its name (TABULAR MODELLING). We 
can identify the ID for a table (and therefore, the OLAP versions of the measure group) by 
right-clicking on it in SSMS and selecting Properties. Here, we can see that the Resellers 
Sales table's ID is different from its name.



Enterprise Management

224

Our goal is to create a new partition for the Reseller Sales table that relates to 2009 and 
sources its data from the SQL database. Firstly (since there is no connection to our SQL Server 
in the model), we need to define the connection. The following code snippet will achieve this:

<Create xmlns="…">
  <ParentObject>
    <DatabaseID>TABULAR MODELLING</DatabaseID>
  </ParentObject>
  <ObjectDefinition>
    <DataSource xmlns:xsd="http….. ">
      <ID>sql_dw</ID>
      <Name>sql_dw</Name>
      <ConnectionString>ConString</ConnectionString>
      <ImpersonationInfo>
        <ImpersonationMode>ImpersonateServiceAccount 
        </ImpersonationMode>
      </ImpersonationInfo>
      <Timeout>PT0S</Timeout>
    </DataSource>
  </ObjectDefinition>
</Create>

For brevity, namespace declarations and the connection 
string details have been removed from the code snippet. 
The full code for all sections of this recipe is available in the 
resources accompanying this chapter available on the Packt 
Publishing website.

The CREATE statement defines the connection (data source) by name and ID as a child of 
the parent database. Additional information (impersonation and timeouts are also specified); 
however, the main criteria here is the name and ID. Both must be unique within the database 
otherwise an error will occur as shown in the following screenshot:

If this is successful, the program will return an empty result, as shown in the  
following screenshot:



Chapter 8

225

Now that the SQL connection has been created (refreshing the Connections node in SSMS 
will confirm this), we can define the script for the partition.

There are two ways to achieve this. Firstly, just as the connection, we can script the partition 
as the CREATE command. When the script is executed, it will fail if it already exists. The code 
snippet for the create is as follows:

<Create xmlns="…">
  <ParentObject>
    <DatabaseID>TABULAR MODELLING</DatabaseID>
    <CubeID>Model</CubeID>
    <MeasureGroupID>Reseller Sales-??? </MeasureGroupID>
  </ParentObject>
  <ObjectDefinition>
    <Partition xmlns:xsd="..">
      <ID>Reseller_Sales_2008</ID>
      <Name>Reseller_Sales_2008</Name>
      <Source xsi:type="QueryBinding">
        <DataSourceID>sql_dw</DataSourceID>
        <QueryDefinition>
          @sql
        </QueryDefinition>
      </Source>
      <StorageMode ..>InMemory</StorageMode>
      <ProcessingMode>Regular</ProcessingMode>
      <DirectQueryUsage>InMemoryOnly</ DirectQueryUsage>
    </Partition>
  </ObjectDefinition>
</Create>

Note here that the partition is a child of the measure group. The partition is defined by the ID 
and name (both must be unique). Further, the source (data) of the partition refers to a query 
against the one previously defined in the data source.

Secondly, the partition can be created through an ALTER command. In doing so, we specify 
that if the object does not exist, it should be created. The code snippet for ALTER is as follows:

<Alter AllowCreate="true" ...>
  <Object>
    <DatabaseID>TABULAR MODELLING</DatabaseID>
    <CubeID>Model</CubeID>
    <MeasureGroupID>Reseller Sales_</MeasureGroupID>
    <PartitionID>reseller_sales_2009</PartitionID>
  </Object>
  <ObjectDefinition>
    <Partition xmlns:xsd="...">
      <ID>Reseller_Sales_2009</ID>
      <Name>Reseller_Sales_2009</Name>



Enterprise Management

226

      <Source xsi:type="QueryBinding">
        <DataSourceID>sql_dw</DataSourceID>
        <QueryDefinition>
@query
        </QueryDefinition>
      </Source>
      <StorageMode>InMemory</StorageMode>
      <ProcessingMode>Regular</ProcessingMode>
      <DirectQueryUsage>InMemoryOnly</ DirectQueryUsage>
    </Partition>
  </ObjectDefinition>
</Alter>

Notice whether the two statements CREATE and ALTER are defined in a similar way. The 
definition for the object (see the tag <ObjectDefinition>) is exactly the same, only the 
command and (parent) object definition differ.

The ALTER commands can be used to change any element of an existing object. Consider, 
for example, that we will like to define the SecurityProfiles table to reference the new 
sql_dw data source and the security_profiles table within it. Without impacting the 
operation of the current database, we can change the table's source:

<Alter AllowCreate="true" ..>
  <Object>
    <DatabaseID>TABULAR MODELLING</DatabaseID>
    <CubeID>Model</CubeID>
    <MeasureGroupID>SecurityProfiles_</MeasureGroupID>
    <PartitionID>SecurityProfiles_</PartitionID>
  </Object>
  <ObjectDefinition>
    <Partition xmlns:xsd="..">
      <ID>SecurityProfiles_3</ID>
      <Name>SecurityProfiles_3</Name>
      <Source xsi:type="QueryBinding">
        <DataSourceID>sql_dw</DataSourceID>
        <QueryDefinition>
          select
          user_login
          , country
          from dbo.security_profiles
        </QueryDefinition>
      </Source>
    </Partition>
  </ObjectDefinition>
</Alter>

It is important to remember that partition changes are only reflected as a change in data once 
the processing has occurred. Processing is examined in the next recipe—Processing the data.



Chapter 8

227

Processing the data
Creating a partition (as explained in the Creating and managing partitions recipe) creates a 
definition of the partition (in model metadata). Once this is done, the data must be loaded 
into the partition if it has to become viewable. Furthermore, changes to the underlying data 
are not reflected in the model until the partition is processed.

Consider the situation where data is partitioned at the source database. This could be by table, 
partitions within tables, or views (or various combinations of these). For example, assume that 
we have the sales data separated in views by year, as shown in the following screenshot:

The partitioning strategy of the model also follows this structure because sales are recorded 
on the date that the order is placed (assume that this is a business rule) and, therefore, only 
the values in dbo.reseller_sales_2010 are expected to change in the source data when 
the data is updated (in a nightly batch). The least resource-intensive operation to update the 
model is, therefore, to update only the 2010 partition. So, rather than trying to fully process 
the model, we wish to only update the sales data for 2010.

The time required to process the model can be a 
consideration for a number of reasons. Notwithstanding 
large databases (they naturally take longer to process), the 
demand for near real-time data implies small processing 
windows. Models that are built over OLTP systems and have 
an update frequency of less than 5 minutes are a real-world 
example of a targeted processing and partitioning strategy.

This recipe shows how to achieve that task by scheduling the model refresh with SQL  
Server Agent.

Getting ready
This recipe builds on the model that was created in the Creating and managing partitions 
recipe. For convenience, all the Reseller Sales partitions now reference the database. We 
assume that a user (in this case, Mercury\ProcessOperator) has permissions to process 
the model with read access to the relational database.



Enterprise Management

228

A backup of the tabular model for this recipe is also available (as an *.abf file) in the source 
files for this chapter. This backup has all connections referring to the SQL Server source. To 
restore the database simply use the following code snippet:

<Restore  
xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
  <File>File Directory\TABULAR MODELLING.abf</File>
  <DatabaseName>TABULAR MODELLING</DatabaseName>
</Restore>

Note that when the database is restored, you will need to edit the sql_dw connection.

How to do it…
This recipe is broken into two components. Firstly, the creation of the code to process the 
partition and, secondly the creation of SQL Server Agent Job and schedule to execute the 
partition refresh. The following are the steps:

1. Open SSMS, connect to the TABULAR MODELLING database, and create an  
XMLA command.

2. Paste the following code into the code window and execute it:
<Process xmlns="http://schemas.microsoft.com/
analysisservices/2003/ 
engine">
  <Type>ProcessFull</Type>
  <Object>
    <DatabaseID>TABULAR MODELLING</DatabaseID>
    <CubeID>Model</CubeID>
    <MeasureGroupID>Reseller Sales_a82a30a5-6b6e-4166-bb1f- 
5bbf2ab9337f</MeasureGroupID>
    <PartitionID>Reseller_Sales_2010</PartitionID>
  </Object>
</Process>

The code should execute correctly and display the following message:

If not, confirm the measure group ID by examining the properties of Reseller 
Sales (see the Creating and managing partitions recipe for an explanation on  
how to do this).



Chapter 8

229

3. Create a credential to impersonate the processing user MERCURY\
ProcessOperator:
USE [master]
GO
CREATE CREDENTIAL [ProcessOperator]
WITH IDENTITY = N'MERCURY\ProcessOperator'
GO

4. Create a proxy:
USE [msdb]
GO
EXEC msdb.dbo.sp_add_proxy @proxy_name=N'ProcessOperator',@
credential_name=N'ProcessOperator',
    @enabled=1
GO
EXEC msdb.dbo.sp_grant_proxy_to_subsystem @proxy_
name=N'ProcessOperator', @subsystem_id=10
GO

5. Create a job (that executes Analysis Service Command) that is run by the proxy. 
Connect to SQL Server and expand the SQL Server Agent. Right-click on Jobs and 
select New Job... from the pop-up menu, as shown in the following screenshot:

6. Name the job Process Tabular Model Partition. This is a general setting of 
the job (marked point 1 in the following screenshot):



Enterprise Management

230

7. Select the Steps option from the Select a page pane (marked in red as point 2 in the 
prior screenshot). When this is clicked, a new pane opens on the right-hand side of 
the window. Create a new step by clicking on the New button.

8. Name the step Process Reseller Sales 2010 Partition, select the SQL 
Server Analysis Services Command option from the Type drop-down and the 
ProcessOpeartor option from the Run as drop-down.

9. Then, specify the tabular server (in this case, localhost\SQL2012TABULAR) and 
paste the process command from the one that was created in step 1. The window 
should look like the following screenshot:



Chapter 8

231

10. Click on the Advanced page. Now, ensure that the success action is Quit the job 
reporting success and the failure action is Quit the job reporting failure. The screen 
should look like the following screenshot:

11. Click on OK to confirm the step.
12. Click on the Schedules page. Create a new schedule (to run every 5 minutes during 

business hours (8:00 A.M. to 7:00 P.M.) by clicking on the New… button.
13. In the Name textbox, enter 5 Minute Intervals Business Hours.
14. Select the Recurring option in the Schedule type drop-down list.
15. Under the Frequency heading, select Daily in the Occurs drop-down list.
16. And finally, set it to occur every 5 minutes between 8:00 A.M. and 6:59 P.M. The 

following screenshot will give you a better idea:



Enterprise Management

232

17. Confirm the job schedule by clicking on OK.

Although the user interface may imply that the schedule is 
attached to the job, the two items are separated and exist as 
objects in their own right. Deleting the job will not delete the 
schedule. You can re-use an existing schedule by clicking on 
the Pick… button in the Schedules page.

18. Confirm the job by Clicking on the OK button.

19. If the job is not shown in the job list, refresh the list by selecting the job's node and 
pressing F5.

20. Leave the job for some time (more than 5 minutes). Return to SSMS, right-click on the 
job (Process Tabular Model Partition) and select View History from the  
Pop-up menu. A new window will open showing the outcome of those executions 
stating that the job has completed. Failed jobs are indicated with a red cross mark.

How it works…
There are two considerations in this recipe. Firstly, the XMLA command to process the 
required partition and secondly, the Agent Job that schedules and manages the process.

The processing XMLA for a single partition is straightforward. The partition is specified by its 
hierarchical association to its parent objects (that is, database, cube, and measure group).  
The other option (Type) specifies how the object will be processed. Have a look at the 
following code:

<Process …>
  <Type>ProcessFull</Type>
  <Object>



Chapter 8

233

    <DatabaseID>TABULAR MODELLING</DatabaseID>
    <CubeID>Model</CubeID>
    <MeasureGroupID>@Measure Group ID</MeasureGroupID>
    <PartitionID>Reseller_Sales_2010</PartitionID>
  </Object>
</Process>

Further information about processing types can be found at http://tinyurl.com/
ozvldpk. For this situation, we need to remember that the sales data is used to create 
calculations in other tables (that is, values in the Resellers table). Since there is a 
dependency between the two tables, it makes sense that one cannot be updated without 
impacting the other. Processing the partition using a data command (that is, ProcessData) 
will violate this dependency since calculations in the Customers table will not be updated. 
Should such a situation occur (where all the data is processed, however the model is 
unusable), a ProcessRecalc command can be applied to the entire database, so that only 
calculations are updated. As the name implies, this type only recalculates measures and does 
not load any data. Further, the operation can only be applied at the database level:

<Process  
xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
  <Type>ProcessRecalc</Type>
  <Object>
    <DatabaseID>TABULAR MODELLING</DatabaseID>
  </Object>
</Process>

As an overview explanation of SQL Agent Job (remembering of course that the agent is not a 
part of Analysis Services or the tabular model), we effectively create an identity within SQL 
Server to execute the Process command.

From a security perspective, this identity raises several issues. Firstly, they need an authority 
to execute the command (on the SSAS subsystem) within SQL Server Agent. This was included 
after the credential and proxy (which effectively recognizes the user on the system) with 
the sp_grant_proxy_to_subsystem command. Secondly, as an identity processing the 
tabular model, the identity needs access to perform the operation within SSAS and access to 
read data from SQL Server. It should be noted that SQL Server Agent (usually) runs as its own 
account (SQL 2012 creates these accounts during installation) and the account is not likely to 
have any permissions on SQL or SSAS.

Finally, the job is essentially a batch process that is managed by SQL Server Agent  
(an independent Windows service). I say batch process because the job is a series of 
sequential steps (although we only had one) that are executed by the agent.



Enterprise Management

234

DirectQuery and real-time solutions
The ability to routinely process data with SQL Server Agent (see the Processing the data recipe) 
gives the model designer a large degree of flexibility to determine when data in the model 
is refreshed. In fact, the standard practice for Business Intelligence solutions is that data is 
updated on a nightly basis and therefore model processing becomes part of the nightly refresh.

However, where the source data is rapidly changing, there may be a requirement to implement 
a DirectQuery solution. This is an environment that is conceptually similar to Relational 
Online Analytical Processing (ROLAP). Here, the model passes all queries through to the 
relational database (rather than querying its own data store).

A DirectQuery solution may seem like an extremely attractive option for real-time data access 
since the model is essentially a semantic definition used to define the model structure. 
Further, there is no requirement for the model to process data since all queries are passed 
back to the relational engine. This also makes deployment very fast. However, there are 
some restrictions for the use of DirectQuery, which should be considered as a part of the 
development strategy:

 f A DirectQuery option is applied in entirety to the model (you can not specify a query 
mode by partition as you can do with OLAP measure groups). This means that any 
query will be converted into SQL. In practice, this severely limits the performance of 
the model.

 f There are modeling restrictions because some functions and DAX expressions are  
not supported.

 f The source of data is restricted to SQL Server.

 f Only DAX queries can be executed against the model. This will limit the client tools 
that can be used to query the model.

Getting ready
This recipe creates a simple model that shows the sales data by Geographic,  
Customer, and Date attributes. We demonstrate the implications of a model that  
supports DAX-only-queries in comparison to the de facto pivot table interface.

How to do it…
Start by creating a new project, the steps are as follows:

1. Create a new SSAS tabular project titled Direct Query Solution.



Chapter 8

235

2. In the Solution Explorer pane, right-click on the Model.bim file, and select 
Properties. Then set the DirectQuery Mode Property option to On (it is Off by 
default). These configurations are shown in the following screenshot:

3. Return to the Solution Explorer pane, right-click on the solution name  
(Direct Query Solution), and select Properties from the pop-up menu.

4. Set the Query Mode option to DirectQuery.

5. Select OK to accept the changes.

6. Click on the Import From Data Source button. Note that only Microsoft SQL Server 
connections are allowed. Click on Next to use the SQL Server data source.



Enterprise Management

236

7. Specify the Server (Friendly) connection name as sql_dw and specify the server. 
Finally, select the tabular_modelling database and test the connection.

8. Specify the impersonation (service account is allowable where the account has 
access). After all, this is a demonstration!

9. Select the following tables from the list of available tables (all tables are in the dbo 
schema). Specify the friendly names as indicated. For the reseller_sales table, 
filter the records to only import rows where the currency_id value is USD.

Tables Friendly names
Dates Dates
Products Products
reseller_sales Sales
Resellers Stores
Geography Geography

10. Click on Finish to import the data.

11. Switch to the diagram view. Note that most relationships have been created. 
Ensure that the relationship between order_dt in the Sales table is the primary 
relationship to the Dates table. Finally, create a relationship between product_id 
in the Products table and product_id in the Sales table.

12. Hide the Sales table from client tools.

13. Create a measure in the Stores table with the following formula:
Gross Sales:=sumx('Sales', [quantity]*[price])

14. Specify the format for Gross Sales as a decimal number with two decimal places. 
This is done by selecting the measure and with the Properties window open.

15. Finally, create a hierarchy in the Dates table (Year, Month Name, and Day). Specify 
the sort column for Month Name as Month Number and hide the Month Number 
column from client tools.

16. Click on the Analyze in Excel button and create a pivot that shows Years on the 
rows and Gross Sales as values. The pivot will look like the following screenshot 
(note that numbers have been formatted):



Chapter 8

237

17. Deploy the solution in SSDT. The progress window should show that only the 
metadata has been deployed; it will look like the following screenshot:

18. Connect to the deployed solution through Excel, that is, follow this menu path  
Data | From Other Sources | From Analysis Services.

19. Specify the appropriate tabular server and connect to the Direct Query 
Solution database (not to be confused with the workspace database).

20. After specifying the location for the pivot table, the following Error/Information box 
will be displayed:

21. Clicking on OK will return to the pivot table (insert) location dialog. Click on Cancel to 
terminate the creation of the pivot table.



Enterprise Management

238

22. Create SQL Server Trace by clicking on the SQL Server Profiler option from the Tools 
menu in SSMS.

23. In the Trace (connection dialog), connect to the SQL Server database.

24. Check the SQL:BatchCompleted checkbox under TSQL, which will be the only event 
selected and then click on Run. The Trace Properties window should look like the 
following screenshot:



Chapter 8

239

You can restrict the trace activity to the tabular_modelling database by  
checking the Show all Columns checkbox and then clicking on the Column  
Filters button. Then, select the DatabaseName filter group and specify the name 
tabular_modelling. The filter should look like the following screenshot:

Click on OK to apply the filter.

25. Create a new MDX query against the tabular model and the Direct Query 
Solution database. The query is as follows:
define measure 'Stores'[SalesValue]
=  sumx('Sales', [quantity]*[price])
evaluate
(
  addcolumns
  (
    Values(Dates[Year])
    , "SalesValue",  'Stores'[SalesValue]
  )
)



Enterprise Management

240

26. Return to the trace window and note the outcomes. Stop the trace and close profiler.

27. Finally, expand the Dates and Geography nodes in the MDX query designer. An error 
Error occurred retrieving child nodes: …. is shown under each node as shown in the 
following screenshot:

The completed solution for this recipe is available from the online resources on the Packt 
Publishing website.



Chapter 8

241

How it works…
This recipe demonstrates the nature and implications of the DirectQuery solutions.

Firstly, we can see the real time application of DirectQuery through the trace output (step 26 
of the recipe). When a query is made to the tabular database, it is transformed into SQL and 
executed against the relational database.

The limited ability of the model to operate with existing client tools is also demonstrated. 
Naturally, this should be a major consideration for any model developer. Since most client 
tools are MDX-based (as seen with the pivot table and SSMS MDX browser), the existing tools 
may not be useable. Currently, only Power View (which is examined in the next chapter) is 
supported (other third-party tools may also exist).

Step 16 (Analyzing the model in Excel) shows that the pivot table can connect to the model 
but it is important to remind the reader that in this case, the model is the workspace 
database (which has storage in xVelocity mode).





9
Querying the Tabular 

Model with DAX

This chapter covers querying the tabular model with DAX. We'll be covering:

 f Retrieving data from a single table

 f Using projection to combine data from different tables

 f Restricting data with filters and where conditions

 f Deriving tables and selecting top n records

Introduction
Regardless of the amount of effort that has been applied in planning and building a model, 
it is likely that it will be required to answer a question that has not been anticipated. In this 
situation, the model must be queried.

Throughout this book, we have separated the concepts of the tabular model from the client 
tool that queries the model. This is because the client interprets the model and displays it to 
the user under a defined set of assumptions. Moreover, because the tabular model supports 
MDX (multidimensional) queries, the representation of the tabular model in most client tools 
is that of the multidimensional model (actually, Microsoft does not currently have a browser-
style interface to query tabular models).



Querying the Tabular Model with DAX

244

Because most client tools (including SQL Server Management Studio) show the tabular model 
in a multidimensional style, querying the tabular model with DAX can be extremely difficult 
because you cannot see the underlying tabular schema (and therefore, do not know the 
structure of the model). For example, consider the following two screenshots. The first shows 
a multidimensional representation, whereas the second shows the tabular representation:

Multidimensional Tabular

There are two main differences between the tabular and multidimensional view of the model, 
which are summarized as follows:

 f There is no concept of a measure group in tabular modeling. Tabular models 
associate measures (or calculations) within the tables that they are defined in. Notice 
that in the multidimensional representation, the currency conversion measures are 
displayed in a measure group (Currency), whereas in the tabular representation, they 
are attached to the Currency table.

 f There is no concept of hierarchies within a tabular model. The Date by Year 
hierarchy (even though it is defined in the tabular model) is not visible (or an object) 
in the tabular model.



Chapter 9

245

While querying the model with MDX is user friendly (and provides a richer client experience), 
formulas must be written in DAX and may require debugging; therefore, it's better if the model 
is evaluated and queried with DAX.

The recipes in this chapter are presented using a tool called 
DAX Studio. This is a free add-in for Excel that can be used to 
connect to PowerPivot and Tabular Servers, and is available at 
https://daxstudio.codeplex.com/.

Retrieving data from a single table
The first recipe in this chapter examines how to display results from a table in the model; keep in 
mind that the table may contain calculated columns and these are also included in its structure. 
The base script includes several alterations, so that segments of the table may be retrieved.

The workbook (with the associated model) is available from the online resources at  
http://www.packtpub.com.

Getting ready
The model used in this chapter is available from the online resources at http://www.
packtpub.com. We have installed DAX Studio so that the model within the workbook can be 
queried. Alternatively, the model can be imported to a tabular server and queried through SSMS 
(SQL Server Management Studio) although you would not see the model schema definition.

While using DAX Studio to query an embedded model (that is, 
a PowerPivot model stored in the workbook), ensure that the 
active cell is found on a pivot table that relates to the tabular 
model (while launching DAX Studio). An introduction to DAX 
Studio can be found at http://wp.me/p1rCld-7e.

How to do it…
Let us start by retrieving all the data available from the Resellers table:

1. Open DAX Studio and enter the following statement:
evaluate('Resellers')



Querying the Tabular Model with DAX

246

2. The result (a table), that is shown will list the contents of the Resellers table, for 
example, the following screenshot shows the grid output:

3. Notice that the list is not in the proper order. To change this, so that the list appears 
ordered, add an Order By clause to the evaluate statement.
evaluate('Resellers') order by [customer Id]

How it works…
The evaluate statement returns the table that has been defined as its argument, and is the 
essential requirement to return a query. In this example, the table definition is like that of an 
existing table (that is, the Resellers table).

The syntax of the DAX query allows a high degree of flexibility and includes the ability to define 
measures and specify the ordering of results. The full syntax is as follows:

[DEFINE { MEASURE <tableName>[<name>] = <expression> }
EVALUATE <table>
[ORDER BY {<expression> [{ASC | DESC}]}[, …]
[START AT {<value>|<parameter>} [, …]]]



Chapter 9

247

So far, the table argument for EVALUATE has been an existing table; however, the definition 
can be any DAX syntax that returns a table. Most probably, this could be an existing table that 
has been filtered. Consider the Sales Group calculation in the Resellers table, which 
assigns each Reseller to a group based on their sales value (see the Grouping by binning 
and sorting with ranks recipe in Chapter 5, Applied Modeling). The values for this field can be 
easily seen by creating a Pivot based on the field, but let's consider the situation where we 
want to show Resellers that have high sales (these are in the $800K - $900K bin range). 
As filter returns a table, we can use this within the evaluate statement.

evaluate
(
  filter('Resellers', 'Resellers'[Sales Group]="$800K - $900K")
)

The result of the preceding evaluate statement is as shown in the following screenshot:

There's more...
The use of the predicate 'Resellers'[Sales Group]="$800K - $900K" in the 
previous query allows us to retrieve the data, which meets the filter condition, from the 
Resellers table. While this achieves our immediate goal, it relies on the prior knowledge 
that the highest group is in the $800K - $900K range and a hardcoded value in the query. 
In order to overcome this, we can create a DAX calculation within the filter, or define a 
calculation for the model and then use this (model calculation) within the query.



Querying the Tabular Model with DAX

248

Descriptive text fields are notoriously poor identifiers for ordering. In fact, [Sales Group] has 
a Sorted By field of [Round Down Order] to achieve the required order. This field can, 
therefore, be used to determine the highest element of [Sales Group]. More specifically, the 
highest [Sales Group] element is determined by the lowest [Round Down Order]. If we 
wish to dynamically determine the resellers of the highest group, we could embed a calculation 
to determine the minimum value of [Round Down Order] (remembering that this needs 
to be evaluated over all the Resellers table's rows) and use this instead of the hard coded 
value. Our query would then become:

evaluate
(
  filter('Resellers', [Round Down Order] =  
    (calculate (Min('Resellers'[Round Down Order]),  
    ALL('Resellers')))
  )
)

Alternatively, we may want to define the minimum value as a measure for the query, and 
then use it instead of an embedded calculation. In this situation, we could utilize the define 
measure clause of the syntax and use the query as follows:

define measure 'Resellers'[lowest Order] =  
  calculate(Min('Resellers'[Round Down Order]), ALL('Resellers'))

evaluate
(
  filter('Resellers',  
  'Resellers'[Round Down Order]=[lowest order]
  )
)

Using projection to combine data from 
different tables

The evaluation of an entire table (as shown in the previous recipe, Retrieving data from a 
single table) excludes the wider concept of projection, because the example returns all the 
columns from a single table. More often than not, we wish to return only a subset of columns 
(or perhaps even derived columns) from one or more tables. Unlike SQL, which allows 
projection in its syntax, DAX has no succinct projection equivalent.

Consider the following SQL statement, which selects column_a from table_a and column_b 
from table_b.

Select table_a.column_a, table_b.column_b From …



Chapter 9

249

Using DAX, we cannot specify a projection in the same manner (as follows):

Evaluate('table_a'[column_a], 'table_b'[column_b])

If we wish to mimic this activity using DAX, we must define the table as part of the evaluate 
statement. This recipe examines how to do that.

Getting ready
This recipe shows the concepts of projection by answering a common type of question (from 
our tabular model):

What were the total sales, by country, for the bike category in 2008 and what 
proportion of bike sales does each country have?

How to do it…
Create a new query with the following syntax:

define measure 'Reseller Sales'[2008 Sales] =  
  calculate('Reseller Sales'[Local Gross Sales],  
  'Dates'[Year] = 2008)

measure 'Reseller Sales'[2008 Bike Sales] =  
  calculate('Reseller Sales'[2008 Sales],  
  'Products'[Category Name] = "Bikes")

measure 'Reseller Sales'[2008 Bike Ratio] =  
  'Reseller Sales'[2008 Bike Sales]/'Reseller Sales'[2008 Sales]

evaluate(addcolumns(summarize('Geography', 'Geography'[Country]),  
  "Total Sales", 'Reseller Sales'[2008 Sales], "Bike Sales",  
  'Reseller Sales'[2008 Bike Sales], "Bike Ratio",  
  'Reseller Sales'[2008 Bike Ratio]))

The result of this query will be displayed, as shown in the following screenshot:



Querying the Tabular Model with DAX

250

How it works…
The query is essentially broken down into three steps. These steps are broadly defined as 
measure creation, base table definition, and table extension (adding additional columns).

Firstly, the measures required for the model are defined. The definition of a measure (as far 
as the calculation is concerned) is essentially the same as the calculation of a measure in the 
model. For example, 2008 sales are defined by the following formula:

calculate('Reseller Sales'[Local Gross Sales],  
  'Dates'[Year] = 2008)

Here, the existing sales measure within the model ([Local Gross Sales]) is filtered by 
the year 2008. Note that DAX does not include a clause for WHERE (as would be the case in 
SQL), so the filter is applied in the measure definition. In running the query, the statement is 
evaluated over the bounds of the model (that is, the table bounds).

The value for bike sales in 2008 ([2008 Bike Sales]) leverages the defined measure for 
the sales of the year 2008 with an additional restriction for products belonging to the bike 
category. While we could achieve the same outcome by fully defining bike sales of the year 
2008 in a single measure (as follows), the measure definition for [2008 Bike Sales] 
shows how a measure created in the query can be re-used. The same outcome would be 
achieved with [2008 Bike Sales] being defined as follows:

calculate('Reseller Sales'[Local Gross Sales],  
'Products'[Category Name] = "Bikes", 'Dates'[Year] = 2008)

Next, we focus on the table definition that is embedded in evaluate. Here, the table is 
defined in two stages. Firstly, a base table is defined as a distinct list of countries, and 
secondly, the base table has columns appended to it with the additional measures that we 
have defined.

The SUMMARIZE syntax has been used to define the base table (that is, the list of countries). 
The SUMMARIZE syntax shown, as follows, essentially groups the data that is in a table. This is 
equivalent to the GROUP BY statement (SQL) applied to a single table.

SUMMARIZE(<table>, <groupBy_columnName>, <groupBy_columnName)

Secondly, the base table has columns appended to it. This is achieved through the use of the 
ADDCOLUMNS function. The ADDCOLUMNS function simply appends calculated columns to a 
table by defining its name and expression. It has the following syntax:

ADDCOLUMNS(<table>, <name>, <expression>[, <name>, <expression>]…)

Therefore, the base table (as a list of countries) has been extended to include the measures.

It is important to recognize that the relationships in the underlying model are still being used 
by the query.



Chapter 9

251

There's more...
In this recipe, the use of SUMMARIZE produces a single column table. An alternative to this 
is to use the VALUES function. The VALUES function returns a list of distinct values based on 
the column reference and has the following syntax:

VALUES(<column>)

Therefore, the body of the evaluate statement could also be written as follows:

evaluate
(
  addcolumns
  (
    values('Geography'[Country]), "Total Sales",  
      'Reseller Sales'[2008 Sales], …. 
  )
)

Using SUMMARIZE would only be required when there is more than one column from the same 
table to return.

Restricting data with filters and where 
conditions

In the Using projection to combine data from different tables recipe, we stated that there is 
no WHERE clause in DAX. If this type of restriction is to be applied to a result set, it must be 
defined by a query, and this is the focus of this recipe. Here, we seek to answer the question:

Which customers had sales in 2008 and what was their sales value (for that year)?

Getting ready
The model used in this recipe is the sales data that has been used in this chapter  
(see the workbook Model.xlsx, which is available from online resources at  
http://www.packtpub.com).



Querying the Tabular Model with DAX

252

How to do it…
This recipe examines two queries. Firstly, listing customers and their sales value in 2008, and 
secondly, listing customers that had sales in 2008 with their sales value.

1. Create a new query to show the 2008 sales values of customers. The query  
is as follows:
define measure 'Resellers'[Sales] =  
  calculate('Reseller Sales'[USD Gross Sales],  
  'Dates'[Year]=2008)

evaluate 
(
  addcolumns
  (
    values('Resellers'[Customer ID]), "Sales",  
      'Resellers'[Sales]
  )
)

2. Execute the query and note that the result lists 701 customers.

3. Create a query to show the customers who had sales in 2008 and the associated 
value of their sales (for that year). The query is as follows:
define measure 'Resellers'[Sales 2008] =  
  calculate('Reseller Sales'[USD Gross Sales],  
  'Dates'[Year]=2008)

measure 'Resellers'[Sales 2008 Rows] =  
  calculate(countrows('Reseller Sales'),  
  'Dates'[Year]=2008)

measure 'Resellers'[Sales] =  
  'Reseller Sales'[USD Gross Sales]

evaluate 
(
  filter
  (
    addcolumns
    (
      values('Resellers'[Customer ID]), "Sales",  
        'Resellers'[Sales 2008], "Sales (all)",  
        'Resellers'[Sales]
    ), 'Resellers'[Sales 2008 Rows] > 0
  )
)



Chapter 9

253

4. Execute the query and note the result. There are now 466 rows in the result set, 
the measure [Sales 2008] shows the sales for 2008, and the [Sales (all)] 
measure shows the sales for all years.

How it works…
Although there is no equivalent of WHERE in DAX, evaluate returns the table that has been 
defined. This definition can include a filter context (that restricts the table), so that the 
rows returned are reduced according to a condition; this is effectively a WHERE clause as most 
of the results are restricted (as would be the case with a WHERE clause in SQL).

In the second query, we achieve this by filtering based on customers that had sales in 2008, 
that is, the rows in the Sales table relating to the year 2008.

However, the use of a filter context in this way does not limit the evaluation of other 
measures that are defined within the query. There has been no restriction to the Sales 
table's data; only the customers are shown. Other measures are evaluated over the entire 
model (or the table bounds of the model).

There's more...
Should we wish to implement a more "classical" WHERE condition (that is, restricting the rows 
of the underlying table), calculations need to be applied when the table is filtered. This can 
be achieved by extending the use of summarize to include calculations. For this, we could 
execute the following query:

evaluate
(
  summarize(
    filter('Reseller Sales', related('Dates'[Year])=2008),  
      [Customer Id], "Sales", 'Reseller Sales'[USD Gross Sales]
  )
)

Note how the filter is applied through the related Year in the Dates table.

Deriving tables and selecting top n records
As a comparison to DAX, SQL is a mature language that has a variety of mechanisms for 
temporarily defining and using tables. One of the reasons for using this type of feature is that 
a result may need to be pre-computed before it is applied in the outer constructs of a query.



Querying the Tabular Model with DAX

254

Consider the situation of accumulating sales based on the sales values' ranks, as shown in 
the following screenshot:

This type of query must pre-compute values before they can be used. Logically, the query 
must determine each customer's sales value, then rank the customers based on that value, 
and then (finally) determine (on a row-by-row basis) the total value of sales for all rows with 
a lower rank. Clearly, there is an order to implement this type of query because one set of 
values cannot be calculated before the other is complete. Using temporary structures is an 
excellent method for achieving this.

Unfortunately, there is no declaration to derive a temporary table in DAX. The query must 
utilize a nesting functionality to incrementally build the output. This recipe looks at how to 
achieve that with a DAX query.

Getting ready
The goal of this recipe is to rank our resellers based on their 2008 sales and then produce an 
accumulating total. This involves two steps, firstly ranking them and then accumulating sales 
based on that rank. The RANK function was examined in the Grouping by binning and sorting 
with ranks recipe in Chapter 5, Applied Modeling.

The model used in this recipe is the same that has been used in prior recipes of this chapter, 
and is available from the online resources at http://www.packtpub.com.



Chapter 9

255

How to do it…
Start by defining a base table:

1. Create a new query that defines customers, their sales (for 2008), and rank (based 
on those sales). We also order the results by that rank (so that the output is more 
visually meaningful).
define measure 'Resellers'[Sales 2008] =  
  calculate('Reseller Sales'[USD Gross Sales],  
  'Dates'[Year]=2008)

measure 'Resellers'[Sales Rank] = rankx(all('Resellers'),  
  'Resellers'[Sales 2008])

evaluate
(
  addcolumns
  (
    values('Resellers'[Customer ID]), "Sales",  
      'Resellers'[Sales 2008], "Rank",  
      'Resellers'[Sales Rank]
  )
)

order by [Rank] asc

The result of this query will be displayed, as shown in the following screenshot:



Querying the Tabular Model with DAX

256

2. Now, extend this query to add the accumulating sales:

define measure 'Resellers'[Sales] =  
  calculate('Reseller Sales'[USD Gross Sales],  
  'Dates'[Year]=2008)

measure 'Resellers'[Rank] = rankx(all('resellers'),  
  'Resellers'[Sales])

evaluate
(
  addcolumns
  (
    addcolumns
    (
      values('Resellers'[Customer ID]), "sales",  
        'Resellers'[Sales], "Rank", 'Resellers'[Rank]
    ), "cum sales", calculate('Resellers'[Sales],  
      filter(all('Resellers'),  
      'Resellers'[Rank] <= [Rank]))
  )
)

order by 'Resellers'[Sales] desc

The result of this query will be displayed, as shown in the following screenshot:



Chapter 9

257

How it works…
It has already been stated that there is no method of defining and manipulating a temporary 
table in DAX. In order to solve this problem and use the results of a previously generated 
query, we need to incrementally build the result set by sequentially adding columns to the 
previous table's output. This is seen in the use of the nested addcolumns statements, where 
each addcolumns statement is used to extend the previous table's results.

For example, we define a base table (defined with the innermost addcolumns statement) 
and extend that with another addcolumns statement. Here, the results of the inner table 
can be used in much the same way as a correlated subquery would be used in SQL. The outer 
statement is executed for each row of the inner context, or perhaps more appropriately, the 
outer calculation is applied under the filter context of the inner one.

This can be better represented in a pseudo code with the following statement:

For each
Record as { Customer, Sales, Rank }
List { Record, { sum (sales) where Rank <= Record.Rank }}

The use of For each in the preceding statement specifies that the sum function (which is 
appended to the Record table in the List {} line) should be applied in the context of the 
records' row. This makes sense when we consider that each row has a rank that determines 
its order (based on sales) and we need to sum all the records with a lower (or equal) rank.

Note that it is not enough to apply the accumulating sum calculation without considering 
the current row's Rank. For example, the evaluate section of the query should nest 
addcolumns, as shown in the following snippet:

evaluate
(
  addcolumns
  (
    values('Resellers'[Customer ID]), "sales", 'Resellers'[Sales],  
      "Rank", 'Resellers'[Rank], "cum sales",  
      calculate('Resellers'[Sales], filter(all('Resellers'),  
      'Resellers'[Rank] <= [Rank]))
  )
)

The result of this query is not accumulating sales, but the total sales for the year on each row 
(that is, all sales for 2008). Why? This is because the following calculation removes any filter 
that exists in the table (with the statement all('Resellers')):

calculate('Resellers'[Sales], filter( all('Resellers'),  
  'Resellers'[Rank] <= [Rank]))



Querying the Tabular Model with DAX

258

Trying to reapply a filter with the predicate 'Resellers'[Rank] <= [Rank] always 
evaluates to true as each row's rank is equal to itself. No rows are restricted and the 
calculation 'Resellers'[Sales] is applied to all rows.

There's more...
There are two variations to this type of query, which are common business additions to the 
implementations of rank and accumulating values. The first is the TOP N query, which returns 
a given number of records (for example, the highest selling five customers), and the second 
is the TOP % query, which returns the number of records based on a threshold value (for 
example, the customers that are contributing 80 percent of the sales value).

DAX provides a TOPN function, which returns a specified number of records based on a sort 
condition. The TOPN function has the following syntax:

TOPN(<n_value>, <table>, <orderBy_expression>,  
  [<order>[, <orderBy_expression>, [<order>]]…])

Implementing this function directly against the Resellers table (Resellers has an existing 
column for sales rank) to return the five highest selling customers could be achieved with the 
following query:

evaluate(topn( 5, 'Resellers', 'Resellers'[Sales Rank], true))

order by 'Resellers'[Sales Rank]

Here, the n_value argument of 5 represents the top five records. The orderBy_
expression argument is the (existing) column [Sales Rank] with the order argument 
set to ascending. Valid values for the order are 0 (or FALSE) for descending and 1 (or TRUE) 
for ascending. The default value, if the order argument is omitted, is FALSE.

It is unlikely that a model does not contain a convenient column that can apply the TOP N 
query. For example, we need to find who the top five bike sellers for 2008 are. For this, the 
measure needs to be defined for the bike sales of 2008 and applied to a table. This table is 
then filtered in with the TOPN function. The query would be as follows:

define measure 'Resellers'[Bike Sales 2008] =  
  calculate('Reseller Sales'[USD Gross Sales], 'Dates'[Year]=2008, 
'Products'[Category Name]="Bikes")

evaluate
(
  topn
  (
    5,  
    /* table */ 
    addcolumns



Chapter 9

259

    (
      values('Resellers'[Customer ID]), "Bike Sales 2008",  
        'Resellers'[Bike Sales 2008]
    ), 'Resellers'[Bike Sales 2008], false
  )
)

order by 'Resellers'[Bike Sales 2008] desc

As an alternate approach to TOPN, we could simply implement a filter based on a derived 
rank. In this situation, the evaluate syntax of the previous query would be:

evaluate
(
  filter
  (
    addcolumns
    (
      values('Resellers'[Customer ID]), "sales",  
'Resellers'[Sales], "Rank", 'Resellers'[Rank]
    ), [Rank] <= 5
  )
)

Finally, we examine the implementation of a TOP % query. To do this, we apply the Pareto 
principle, which is a common way to analyze data. This principle roughly states that only 20 
percent of elements account for 80 percent of the total worth. Using our sales data, we would 
suggest that 20 percent of the customers contribute to 80 percent of the total sales value. 
Rather than validating this on the data, a more appropriate DAX related question might be 
"Which of the customers account for 80 percent of sales?" The query is shown as follows:

define measure 'Resellers'[Sales] =  
calculate('Reseller Sales'[USD Gross Sales], 'Dates'[Year]=2008)

measure 'Resellers'[Rank] =  
  rankx(all('resellers'), 'Resellers'[Sales] )

measure 'Resellers'[Total Sales] =  
  calculate('Resellers'[Sales], all('Resellers'))

evaluate
(
  filter
  (
    addcolumns
    (



Querying the Tabular Model with DAX

260

      addcolumns
      (
        values('Resellers'[Customer ID]), "sales",  
          'Resellers'[Sales], "Rank", 'Resellers'[Rank]
      ), "cum sales", calculate('Resellers'[Sales],  
        filter( all('Resellers'), 'Resellers'[Rank] <= [Rank])),  
        "cum sales %", calculate('Resellers'[Sales],  
        filter( all('Resellers'), 'Resellers'[Rank] <= [Rank]))
      / 'Resellers'[Total Sales]
    ), [cum sales %]<0.8
  )
)

order by 'Resellers'[Rank] asc

Here, the base query used in the recipe has been extended to include a column [cum sales 
%], which calculates the accumulating percentage of sales (naturally, this is based on the rank 
position of each customer). The purpose of this column is to show the ratio of the accumulated 
sales to the total sales (or each additional customer's contribution to the sales in terms of the 
percentage). Then, we can simply apply a filter to show the first 80 percent of customers (which 
is automatically implied as [cum sales %] is determined based on the rank).



10
Visualizing Data  

with Power View

In this chapter, we will cover:

 f Creating a Power View report

 f Creating and manipulating charts

 f Using tiles (parameters)

 f Using and showing images

 f Automating the table fields with default field sets

 f Working with table behavior and card control

 f Using maps

 f Using multiples (Trellis Charts)

Introduction
Throughout this book, we have discussed tabular modeling with respect to the models and  
the client tools that interpret the models and display them to the enduser. Tabular models 
support MDX-based clients, and therefore, current clients can still be used against tabular 
models with the same look and feel as they had for multidimensional cubes. Examples of 
this have been demonstrated in the use of pivot tables, which are shown to the user in a 
multidimensional format.



Visualizing Data with Power View

262

However, the tabular model contains some settings that are designed for tabular clients. 
Exposing these features is the focus of this chapter. Here, we continue with the self-service 
theme of this book and introduce Power View (based in Excel 2013) as a reporting tool to 
present information to the enduser. We show how the model can be managed to present 
information to the user. To this end, the chapter is also an introduction to Power View. Power 
View has a different approach to traditional reporting. In traditional reporting (tools), the 
user designs a report (based on a metadata and structure) and then executes (or renders) 
the report to see the results. In contrast, Power View is designed to be a real-time analysis 
solution where users interact directly with a canvas. When any change is made to that canvas, 
the results are immediately reflected in the report.

Power View is available as a SharePoint (reporting) service or a feature in certain editions of 
Excel 2013 (Office 365 and Professional Plus). 

The model in this chapter is similar to the Sales Model that has been presented in prior 
chapters. However, in this chapter, the model sources its data from a data mart, which is 
based on a star design. This can be seen in the Products (and Customers) table where 
the ID field is no longer the unique identifier for the table. These tables are modeled as Type 
II dimensions (or slowly changing dimensions). Here, the dimension row is uniquely identified 
by the surrogate key (in each table, the field is suffixed by class_dk). It is the surrogate keys 
that join the Sales data. Also, note that the Sales data has been flattened (and has no 
header—detail relationship). This schema is shown in the following screenshot:



Chapter 10

263

Although there are some subtle changes in the operation of 
PowerPivot in the Excel 2013 model when compared to the 
2010 model (for example, the calculated values are shown 
with function icons, rather than calculations), the creation of 
the model and its design is identical to Excel 2010.

Creating a Power View report
The first recipe examines how to create a Power View report and navigate the reporting 
surface. Our goal is simple, we have been asked to investigate trends in sales by Product 
Category, Month, and Country. This is done by creating a grid on the design surface and 
then manipulating it.

Getting ready
This recipe is based on the PowerPivot model shown above—the model in the workbook 
(Sales Model 2013.xlsx) is available from the online resources. Once a tabular model 
has been converted to an Excel 2013 format, the model is no longer compatible with the Excel 
2010 add-in (and cannot be opened or used in Excel 2010).

All the tabular modeling features that relate to Power View can be set in Excel 2010 (the same 
menu paths are used); however, the results are only visible in Excel 2013 (since this is the 
only version of Excel that has Power View available). An Excel 2010 version of this file is also 
available from the online resources.

The Power View and PowerPivot add-ins may also require activation in Excel 2013 (this needs 
to be done only once). To check if these add-ins are active (or confirm if they are available in 
your version of Excel), perform the following:

1. Open Excel (so that there is no workbook open). Depending on how you have opened 
Excel, the following are two views available to you:

 � If you opened Excel from an icon (on the Windows workspace), you will see 
the following screen. Click on the Open Other Workbooks option as shown in 
the following screenshot:



Visualizing Data with Power View

264

 � If you closed all the workbooks that you had opened in Excel (and the screen 
looks like the following), simply click on the FILE option as shown in the 
following screenshot:

2. Click on Options from the list.

3. Click on Add-Ins from the navigation panel and confirm that the Power Pivot for 
Excel add-in and the Power View add-in appears under the Active Application  
Add-ins (as shown in the following screenshot):

4. If the add-ins do not appear (as active), they have not been activated—they will need 
to be activated now. Select COM Add-ins from the Manage drop-down list (at the 
bottom of the window), then click on the GO button.



Chapter 10

265

5. A new window will open displaying COM Add-Ins. Ensure that the PowerPivot and 
Power View add-ins are checked(as shown in the following screenshot) and then  
click on the OK button:

How to do it…
Open the Sales Model 2013.xlsx workbook and create a new Power View report. Reports 
appear in the same manner as worksheets, with a tab at the bottom of the Excel window.

1. Insert a new Power View report by clicking on the Power View button from the Insert 
Tab as shown in the following screenshot:

If this is the first time that Power View has run, Excel may ask 
permission to install Silver Light. If this occurs, permit the 
installation (this is required only once).

2. A new Power View report is inserted. The design canvas consists of four sections, 
shown in the following screenshot. These are described as follows:

 � The Report Canvas (the report) displays the data to the user.

 � The Filters Pane applies a global (report-wide) filter (also titled a view filter) 
to the data, without the need to filter a control on the report.

 � The Power View Field List shows the tables and fields in the model.



Visualizing Data with Power View

266

 � The Control Content shows what model fields are used in the active control 
(that is, the one that is selected on the Report Canvas). The Control  
Content also allows the user to add and remove fields from the active 
control and therefore, change the format and appearance of that control  
(or visualization). The active control is (of course) the control that is selected 
in the Report Canvas.

It may be helpful to think that anything displaying the data on the 
Report Canvas is done so through with a control. For example, a 
grid is a control that groups the data into a single object.

Also, note that the sheet name for the Power View report can be 
changed just as any Excel sheet—either double-click the name or 
right-click and select Rename from the pop-up window.



Chapter 10

267

3. Add a table to the canvas by dragging the Month field from the Order Date table 
onto the canvas. The months will expand (showing each month of the year). Add 
the measure Sales Gross (found in the Sales table) to the Reports table (the 
control) by dragging the field onto the table (when the field hovers over the table, it 
gets a darker dotted border, as shown in the following screenshot):

4. The table in the canvas has its edges surrounded by a light border. This indicates that 
the control is active. The control can be deactivated by clicking on any part of the 
canvas that is not in the control's border area. Activate the table and drag the GOGS 
measure into the FIELDS section of the Control Content section to add GOGS to the 
Reports table, as shown in the following screenshot:

5. The active control can be moved and resized by dragging its borders on the canvas. 
When the mouse hovers over the border boundaries (the gray lines of the border), the 
mouse pointer changes to an arrow to indicate that the border can be resized. The 
entire control can be moved when the mouse changes to a hand pointer. Ensure that 
the control is large enough to cover all the months of the year.



Visualizing Data with Power View

268

6. Add a new table to the canvas that shows Country Sales by Product Category. 
Drag the Country field to a new section of the canvas (that is, not on the Month 
table) so that a new table is added to the canvas.

7. Convert this new table to a matrix control (a matrix groups data into rows and 
columns) by activating the control and selecting Matrix from the Table drop-down,  
as shown in the following screenshot:

8. After the control has changed to a matrix, the available fields in the Control Content 
changes. We can now drag the Category field (from the Products table) into the 
COLUMNS section and the Sales Gross into the ∑ VALUES section. The controls 
content section should look like the following screenshot:

The number of boxes available (and their names) in the 
Control Content section is determined by the type of 
visualization that is used. That is, whether the control is 
a table, matrix, card, chart, or map.



Chapter 10

269

9. Resize the control, so that all data fits onto the canvas.

10. Name the report by clicking on the grayed heading section (which displays the text 
Click here to add a title) and name the report Sales Summary by Year.

11. The controls currently show data for all the years in the model. We want to restrict 
the report to show only specific years and want to apply this filter to all the controls 
that are on the canvas. In the Filters pane, click on the VIEW label to apply the filter 
to the entire report (alternatively, you can select any area of the canvas that does not 
activate a control.). Then, drag the Year field into the Filters section. The section will 
immediately change and will look like the following screenshot:

12. The filter can now be applied to the report by dragging the ends of the slider  
bar. When this is done, a text description is added to the view (as shown in the 
following screenshot):

How it works...
The addition of controls to the canvas and the application of a (global) filter are 
straightforward and do not require further explanation.

There's more...
There are a few additional points that should be included to the recipe concerning the 
introduction of the report. These are discussed in the following section.



Visualizing Data with Power View

270

When a control on the canvas is selected, the Filters section changes to include the type of 
the control that is active (currently, there is no method available to name the control, so only 
the type of control is shown.). For example, if the Month table is selected (the one we initially 
created), the Filters pane will include a TABLE label as shown in the following screenshot. We 
can now click on the TABLE label to show the filters that are applicable to the active control.

Now, any field that is added as a filter will only be applied to the active control and not the 
entire report. Clicking on the VIEW label will change the control back to the global filters.

A filter can be removed by clicking on the delete button for the filter (the button with a cross as 
highlighted in the following screenshot). Hovering over a button will show a tool tip for the item.



Chapter 10

271

The way that the filter is presented in Power View is dependent on the type of data that the 
filter is based on. Since year is a number, Power View expects you to filter based on a range. 
But this need not be the case—you may desire a check-box list or some text based query. 
Clicking on the filter mode will change how the filter is presented (and of course, how you 
interact with it). These choices are shown in the following screenshot:

The controls in Power View work in a similar manner as a pivot table. That is, they hide 
information when there is no data for the selected view. This can be seen by applying a filter to 
Year for 2010. When this is done, the table control provides a no data message as shown in 
the following screenshot:

This may be a novel feature for visualization; however, there may be situations where you 
want to see the range of dimension members available (just like the Show rows with no data 
feature in a pivot table). To do this (and show all month labels), perform the following steps:

1. Activate the table, so that the Control Content shows the fields in the table.



Visualizing Data with Power View

272

2. Select the drop-down arrow for the Month field and select the Show items with no 
data option.

Creating and manipulating charts
When an enduser is shown data in tables and matrix controls, their subconscious mind  
thinks about the relationships between the data that they are presented with. For example, 
consider the table created in the prior recipe, Creating a Power View report, as shown in the 
following screenshot:

Here, we recognize the month as a sequence of consecutive periods and associate 
performance and the change in values from month to month (for example, February is almost 
twice as good as January).

This analysis requires a bit of thought from the user and is not the most efficient way to 
present the month-on-month trend—a visual representation is much more effective. This 
recipe examines the creation and manipulation of charts in Power View.



Chapter 10

273

Getting ready
This recipe uses the same workbook that was used in the prior recipe (Sales Model  
2013.xlsx is available from the online resources). Unlike worksheets, Power View reports 
cannot be copied with the workbook. They must be created from scratch. Create a new  
report (titled Charts) and add a table that shows Months and Sales Gross (as in the 
preceding screenshot).

How to do it…
Let's start by converting a table to a chart.

1. Activate the table by selecting any cell in it.

2. Convert the table control to a stacked bar chart by selecting the Stacked Bar option 
from the Bar Chart button as shown in the following screenshot:

3. When this is done, the control converts to a chart with the same structure as the 
table (Months on rows), however, the values are now bars of the chart, as can be 
seen in the following screenshot:



Visualizing Data with Power View

274

When the chart cannot fit into the physical bounds of the 
control, the chart's axes are not compressed to fit into the 
control. Note that all the months are not shown (in the preceding 
screenshot) and there is a slider between the months and data 
bars. This allows the months to be scrolled with the chart.

Alternatively (of course), the chart control can be resized so that 
all months fit into it.

4. Convert the control to a stacked column chart by selecting Stacked Column from the 
Column Chart button. A column chart (as the name suggests) displays the axis on 
the columns. Resize the chart so that it fits into the page.

5. Add the Category field from the Products table to the Legend box in the Control 
Content section. Each monthly bar is now broken down into sections that show 
category groupings. The chart and Control Content section should look like the 
following screenshot:

6. Currently, all Category stacks in columns are equally transparent. We (that is, the 
user) can draw attention to an individual category by selecting it in the Legend box  
on the chart. When this is done, all other categories in the chart will become dull.  
To return the chart to the original state (with equal category transparency), simply  
re-click the category in the chart's Legend box.



Chapter 10

275

7. Convert the chart to a clustered column (chart) by selecting Clustered Column from 
the Column Chart button. The chart changes so that a data bar is shown for each 
category by month, as shown in the following screenshot. Individual categories can  
be emphasized by selecting the category name from the Legend box.

A common use of a stacked chart is to show proportional 
values within a month. For example, the chart shows how a 
monthly sales value is broken down by category. However, one 
flaw of this type of visualization is that the proportions within a 
month are not comparable between months. A clustered chart 
is much more suitable for this type of analysis.

8. Hide the title of the chart (which describes the chart as Sales Gross by Month 
and Category) by selecting the None option from the Title button from the LAYOUT 
tab, as shown in the following screenshot:

9. Add value labels to the chart by selecting Outside End from the Data Labels button 
(the Layout tab).

10. Move the Legend box to the bottom of the chart by selecting the Show Legend at 
Bottom option from the Legend button (the Layout tab).



Visualizing Data with Power View

276

Using tiles (parameters)
Regardless of the reporting tool, the use of parameters is a common feature for allowing 
user interaction with report data. The typical way that these are implemented is through the 
population of a control (usually a drop-down list) that allows the user to select a value, and 
this value dictates what data is seen on the report. When parameters are used, it is often 
necessary to explicitly define the parameter and its data before it can be used in the report 
(and subsequent datasets).

Power View does not have parameters in the traditional sense. Instead, the report is based on 
all of the data within the model. The user can filter controls through a special type of control 
called a tile. The tile lists available values for the field chosen, allowing the user to select a 
value which is applied to other report controls.

Getting ready
This recipe continues from the Power View report created in the previous recipe, Creating and 
manipulating charts.

How to do it…
Adding a tile can be achieved in a number of ways. In this recipe, we add it to an existing 
control and then manipulate it.

1. Activate the Reports table so that the Control Content (section) is visible.

2. Drag the Year field (from the table Order Date) into the box labeled TILE BY.  
The section should look like the following screenshot:



Chapter 10

277

3. Immediately, the tile is added above the chart. Selecting different years (as shown in 
the following screenshot) from the tile will change the values:

4. The tile is bound by a blue border (above and below) that covers the area that is 
applicable to the tile. In the preceding screenshot, we can see the upper bound; the 
lower bound (which is not shown) is below the chart. Resize the tile control so that 
it fills the canvas. When this happens, the existing chart will also move some of its 
borders (within the tile's boundary of course).

5. Add a new pie chart to the tile control by dragging the Category field onto the canvas 
between the tile's boundary lines (that is, place the field under the existing chart).

6. When this is done, a new table will be added to the canvas.

7. Add the Sales Gross measure to the table and convert it to a pie chart by selecting 
it from the Other Chart button.

8. Resize the pie, so that it is positioned in the center of the page.

9. Select a Category field from the bar chart. Note that the transparency of the 
segments also changed to reflect the targeted Category.

10. Change the Year in the tile. Note that the existing (selected) category remains active.

How it works...
There is nothing extra to explain here. The tile may be thought of as an additional control that 
has its own bounds. Any other control placed within those bounds are controlled by the tile.



Visualizing Data with Power View

278

There's more...
There are two positions that the tile can occupy within the canvas. The first (as we have seen) 
is at the top of the control and is called a Tab Strip. The second is at the bottom with a slightly 
focused visualization (called a Tile Flow). Change the type by selecting Tile Flow from the Tile 
Type button as shown in the following screenshot:

Once the previously described steps have been performed, our canvas should now look like 
the following screenshot:



Chapter 10

279

Using and showing images
There is an old adage that a picture is worth a thousand words. While we can naturally assess 
data more easily if it is presented in the correct visual format, pictures and images in reports 
add a style that add recognition to data. Consider the use of KPIs (KPIs were addressed in 
the Creating and using Key Performance Indicators recipe in Chapter 3, Advanced Browsing 
Features) that visually display performance. On seeing a set of KPIs, we can immediately 
assess the position.

Images are an attractive inclusion in reports because they are visually appealing and improve 
user understanding. This is because an image is immediately identifiable as a symbol—it holds 
a predetermined meaning for the user.

This recipe looks at what the tabular model requires for displaying data as images in  
Power View.

Getting ready
This recipe uses the Sales Model 2013.xlsx workbook available from the online content. 
There is no dependency on prior recipes.

How to do it…
The Country table of the model list's sales areas that include a Country field and a 
Country Flag field. The Country field aggregates regions into countries with the Country 
Flag, providing a URL image of that country's flag.

1. Unhide the Country Flag field from client tools on the Geography table.

2. Observe that the field is actually a fully qualified Uniform Resource Locator (URL) that 
requests an image (note the .gif extension) as shown in the following screenshot:



Visualizing Data with Power View

280

3. To verify the location of the URL, copy it from the formula bar and paste it into 
Internet Explorer. Instead of a web page, the following screenshot will be displayed:

4. Ensure that the Data Category for the field is set to Image URL. This may be 
automatically detected by PowerPivot. To confirm this, examine the Reporting 
Properties option in the Advanced Tab. The Data Category should be set to Image 
URL as shown in the following screenshot. If it is not, select it from the drop-down list.

5. Click on the Table Behavior button and set the Default Image (field) to Country  
Flag (optional).

We can also use a URL as an image by specifying its Data 
Category as WEB URL. However, if this option is used, 
setting the default image property for the table will raise an 
error when Power View tries to read the model.



Chapter 10

281

6. Return to Excel and insert a new Power View report (named Images). Drag the 
Country Flag field onto the canvas. Observe that the flags are shown in the place 
of text (as in the following screenshot). Generally, this field can be used just as any 
other field in Power View (for example, as a tile or as rows in a table).

Excel may display a warning that external content is required—if 
this is shown, allow Excel to access the external content. 

There's more...
In addition to using the WEB URL feature, tabular models allow fields of binary data (type). 
This allows an image to be stored in the field, rather than a pointer to an external resource 
(that is, a URL). The Photo field in the Products table is an example of this type of data.

A recipe of how to load this data is outside the scope of the book (other than the loading of 
the table from the database); however, Power View can interpret the binary data and display 
it as an image. There are no additional settings or properties that need to be set to use an 
image, however, it is recommended that the Data Category be set to Image.

Automating the table fields with default  
field sets

There is often a set of standard views that users like to see when they use a model, for 
example, we might expect any user that uses the Products table would automatically like 
to see only the Category and Sub Category fields. Of course, they are not restricted from 
adding other fields to a control, however, when they use the table, we might like to give them 
the option of automatically adding those fields.

This recipe looks at how that can be achieved (and used).



Visualizing Data with Power View

282

Getting ready
This recipe uses the Sales Model 2013.xlsx workbook available from the online content. 
There is no dependency on prior recipes.

How to do it…
Let's start by examining Power View's behavior before the model is configured for this action.

1. Create a new Power View report. Double-click on the Products table (note that 
nothing happens).

2. Launch the PowerPivot window and activate the Products table.

3. Click the Default Field Set button to launch the Default Field Set dialogue.

4. Add the Category and Sub Category fields to the Default fields, in order: box by 
selecting them from the Fields in the table: box and clicking on the Add button as 
shown in the following screenshot:

You can specify the order in which the fields will be added to the 
table by specifying the order in the Default fields, in order: box. 
To change the order, simply highlight the field (in that box) and 
click on the Move Up or Move Down button.



Chapter 10

283

5. Close the dialogue by clicking on the OK button.

6. Return to Power View and click on OK to refresh Power View's cache of the  
data model.

7. Double-click on the Products table. This time, the two fields are added to  
a new table.

You can also use this (double-click) technique to add the default 
fields to an existing control (this does not apply to all controls). 
Simply ensure that the control is active before you double-click 
on the table in the Power View field list.

Working with table behavior and card 
control

PowerPivot is very flexible for summarizing and aggregating data—most of the time,  
we want to see that data at an aggregated level and at other times, it may be required  
at a detailed level. This recipe looks at how to specify table properties so that data is  
listed distinctively.

Finally, the recipe introduces a Card control that lists data into a distinctive group  
for display.

Getting ready
This recipe uses the Sales Model 2013.xlsx workbook available from the online  
content. There is no dependency on prior recipes.

How to do it…
This recipe commences on the assumption that there is no table behavior set on the 
Products table. First, we ensure that any formats from prior recipes are discarded.

1. Launch the PowerPivot window and activate the Products table.



Visualizing Data with Power View

284

2. Click on the Table Behavior button in the Advanced tab to launch the Table Behavior 
dialog. Ensure that the table has no behaviors set. It should look like the following 
screenshot. Click on OK to confirm the properties.

3. Create a new Power View report using a table control that includes the Product ID, 
Category, and Sub Category fields from the Products table.

4. Add a filter to the report so that only product HL-U509 is shown. Drag Product ID to 
the Filter section, then use a string filter for product HL-U509 (searching for product 
509 will list similar products to 509). Check the product HL-U509 in the Filter section 
to check if the details are displayed in one row (as in the following screenshot):

5. Return to the Table Behavior dialogue and set the Row Identifier field to the 
product_dk field.



Chapter 10

285

Each table should have a Row Identifier assigned (assuming that 
there is a field in the table that can act in this capacity—sometimes 
this may not be the case). This materializes the (primary) key for 
the table and will stop the tabular model from creating an arbitrary 
unique identifier for each row.

6. Return to Power View and refresh the report (update the cache of Power View); there 
is no change to the report.

7. Return to the Table Behavior dialog for the Products table. Check the box next to 
Product ID in the Keep Unique Rows list.

8. Return to Power View (refresh the cache). Since the change has been made to 
Product ID, you will also need to re-apply a filter to Product ID.

9. Return to the Table Behavior dialog for the Products table. This time, set the 
Default Label to Product ID and the Default Image to Photo (this is the only choice 
available). The Table Behavior dialog should look like the following screenshot:



Visualizing Data with Power View

286

10. Save the changes to the model (by clicking on OK) and return to Power View.

11. Extend the table (control) by adding the Photo field and Gross Sales.

12. Change the table view to a card by selecting Card from the Table drop-down in the 
Switch Visualization group as shown in the following screenshot:

13. The table control changes to the Card layout. Note the placement and format of the 
Product ID field in the Card. It has a larger (attention-grabbing) font and is located 
in the top-left corner of each card, as in the following screenshot:

How it works...
The setting of table properties in this recipe is relatively straightforward. Setting a row 
identifier explicitly defines the unique field for the table.

Once the unique field has been set, the fields that require uniqueness can be set—naturally,  
things must be done in this order. This assigns a one-to-one relationship with the row identifier, 
meaning that each Product ID is repeated for each instance of the table's row identifier.



Chapter 10

287

Finally, the table's default label is a property which is only applicable to the Card. This 
specifies the field that will be used as a label in the Card control.  This can be thought of as 
a unique identifier for the Card (note duplicates are shown, even though we might not expect 
that behavior) and the more pronounced formatting.

Setting a default label will force the field to be treated in the 
same manner as a Keep Unique Rows flag and force Product 
ID to be repeated in a Card (even if the Keep Unique Rows flag 
was not checked).

If you wish to use the Card visualization in Power View, the 
model needs to be physically structured, so that the Product 
ID is unique.

Using maps
Humans absorb data more easily if it is presented in a visual format—consider how quickly 
trends can be assessed when a line chart is used rather than a data table. The same 
argument applies to maps, where information related to geographic regions is used. The use 
of maps (or map reports) is an efficient way to display geography-related information because 
it adds context to data that would otherwise require thought. For example, imagine a table 
summarizing the sales by city. When you look at this table, you think about where the city is, 
and try to make comparisons between the values for each city. This is a lot for the user to do 
in their subconscious!. To analyze the relationships between cities, a more suitable approach 
would be to show the data values on a map, so that the user need not think about the location 
element of their data.

This recipe examines how to configure the tabular model for use with maps in Power View.

Getting ready
This recipe uses the Sales Model 2013.xlsx workbook available from the online content. 
There is no dependency on prior recipes.

How to do it…
Let us start by examining fields that can be used to refer to geographies.

1. Activate the Customer table in the PowerPivot window.



Visualizing Data with Power View

288

2. Ensure that the data categories for the geography-related fields are set to appropriate 
values. That is, the geography-related fields are tagged as geography. These are 
set in the Advanced tab under the Reporting Properties grouping when the field is 
selected (as in the following screenshot):

The Data Categories that should be set are as follows:

Field Name Data Category
City City (suggested)
State State/Province
Country Country/Region (suggested)

3. Return to Excel and create a new Power View report. Expand the Customers  
table and examine the fields City, State, and Country. Note that the fields  
have a globe icon (indicating that they play a geographic role), as is visible in the 
following screenshot:



Chapter 10

289

4. Create a new table by dragging the City attribute onto the report canvas. Extend the 
table to include the Sales Gross measure.

5. Convert the table to a map by clicking on the Map button (from the Switch 
Visualization group).

6. Immediately, the visualization changes. Resize the control so that it fits in the  
entire page.

The map is interactive, and its view (that is, the actual map with 
data points) can be zoomed into by using the mouse roller or 
moved (left-click and dragging). Alternatively, the maps navigation 
controls can be used (as in the following screenshot):

7. Because the map is showing data at a city level, it appears cluttered. We can reduce 
this clutter in the following combination of ways:

 � We could use a higher-level attribute in the Location field of the Control 
Content. This is done by dragging the State attribute to the Location box in 
the Control Content and removing City. As expected, the number of display 
points on the chart decreases (we could also use the Country attribute for 
a higher-level view).

 � We could apply a Filter to show only data points that met a specific criteria 
(sales value). This is done by expanding the Filters section, ensuring that 
the MAP control is selected, and using the slider filter (or an alternate filter 
control, as discussed in the Creating a Power View report recipe).

8. Set the Location field to State, to examine the change in granularity.

How it works...
There is no requirement for additional explanations other than the reiteration, that the map is 
dependent on the data category setting for fields. The control section of the map also includes 
the longitude and latitude placeholders. These should be used in preference to field names.

There's more...
The size of the bubble on the map indicates sales value, however, we often want to add more 
meaning to those data points by adding a category to indicate how those sales are broken 
down. Do this by dragging the Category field into the COLOR box (in the map's Control 
Content). When this is done, the bubbles change to pie charts (to indicate the composition of 
sales), and a legend is added to the map.



Visualizing Data with Power View

290

The legend is interactive. Selecting an individual entry from the 
legend will focus on each pie chart's segment in that category. 
Selecting it again will return the selection to the original state.

Using multiples (Trellis Charts)
The use of charts is a common way to understand relationships between data—of course, this 
is not unique to Power View, but applicable to analytics in general. However, as more data fields 
are added to the chart and the number of fields exceeds the axis number of the chart, the 
chart becomes more complex and difficult to read. One solution that has been used to combat 
this situation, is to reproduce a template chart based on a dimension—for example, we might 
show various charts with each chart showing data for a specific country. When this functionality 
is included in the charting engine, the output is commonly referred to as trellis charting.

This recipe shows how to implement trellis charting in Power View. This functionality is 
possible for most Power View charts (including maps).

Getting ready
This recipe uses the Sales Model 2013.xlsx workbook available from the online content. 
There is no dependency on prior recipes.

How to do it…
1. The creation of a Trellis Chart (which is called multiples in Power View) is a 

configuration of the chart control (whether a chart or map). However, this behavior 
is consistent among all chart types. Create a Clustered Column chart that shows 
Sales Gross by Category (see the Creating and Manipulating Charts recipe in 
this chapter for information on how to do this).

It is often preferred to show columns (or bars) in an ordered 
sequence based on data value (rather than the chart's axis category 
name). This can be achieved by setting the sort by field of the chart. 
This option is shown when the mouse hovers over the chart (as in 
the following screenshot). Set the sort by field to Sales Gross.



Chapter 10

291

2. Drag the Country field to the chart's Vertical Multiples box in the chart's  
control section.

3. Resize the chart, so that it covers the full canvas (to see the full effect of  
the visualization).

How it works...
As mentioned in the recipe, the use of multiples (or Trellis's) technique is available in all 
charts (including maps). A vertical multiple will expand individual charts, so that they can 
appear over rows (column cells are first populated, and then individual charts overflow to 
rows—this is shown in the following screenshot). Horizontal multiples will only have one layer 
of charts and will not overflow to additional rows.



Visualizing Data with Power View

292

There's more...
Once multiples have been created on a chart, the format of the multiples (that is, the number 
of charts appearing in each row and column) can be adjusted, so that the Trellis Chart is more 
visually appealing. This is specified by the Grid Height and Grid Width settings in the LAYOUT 
tab of Power View (as shown in the following screenshot). Simply set the number of charts to 
appear in rows (Grid Height) and columns (Grid Width).



Installing PowerPivot 
and Sample Databases

In this appendix, we will discuss:

 f Installing PowerPivot

 f Creating the database

Installing PowerPivot
In Excel 2010, PowerPivot is an add-in that must be downloaded and installed. In Office 365 
Pro and Excel 2013 Pro Plus, the add-in is a part of the default Excel installation setup (which 
means there is no requirement to install PowerPivot). However, the add-in must be activated 
before it can be used (see Chapter 10, Visualizing Data with Power View, for details on 
enabling the add-in in Excel 2013).

The 2010 add-in can be downloaded from the Microsoft download center (free of charge) 
using the following URL:

http://www.microsoft.com/en-us/download/details.aspx?id=29074



Installing PowerPivot and Sample Databases

294

Although the installation is relatively straightforward once the installation file is obtained, the 
downloaded file must match the installed version of Excel (that is, whether Excel is operating 
in 32-bit or 64-bit mode). This can be checked by selecting the Help option from the File tab 
(in Excel), as shown in the following screenshot:

In the About Microsoft Excel section, we can see that this version of Excel is a 64-bit version 
(and hence, we must install the 64-bit version of PowerPivot).

The download page (from the provided URL) will look like the following screenshot:

When the Download button is clicked, you are prompted to choose the file to download, as 
shown in the following screenshot.



Appendix

295

The file with the name ending with _amd64.msi—the middle one in the following screenshot 
should be installed for the 64-bit version of Excel and the other file (_x86.msi) should be 
downloaded and installed on systems having the 32-bit version of Excel:

Once the file has been downloaded, we can execute it by double-clicking on it, however, 
Excel must be closed during the installation of PowerPivot. Note that, depending on your 
user account permissions, you may be prompted to run the installation process as an 
administrator, or the file will change the computer's settings. Run the file by simply clicking  
on the Run button.



Installing PowerPivot and Sample Databases

296

The installation process does not require any advanced user interaction. All you have to do is 
accept the terms and license agreement and click on the Install button. Once the installation 
is successfully completed, the installer will provide a confirmation window, as shown in the 
following screenshot. Simply click on Finish to complete the process.

When Excel is opened, the PowerPivot tab will appear in Excel's menu bar.

Creating the database
The SQL Server database used in the prior recipes is available as a backup from the online 
content for this book on the Packt Publishing website. This backup can be restored to the SQL 
server instance (running SQL Server 2012).

We do not specify details for the installation of SQL Server (since they are outside the scope of 
this book). However, a brief overview of the database restore is discussed in this section.

An evaluation version of SQL Server is available for download at the following URL. This 
license will expire after 180 days. Alternatively, a free edition of SQL Server (SQL Server 
Express) is also available (with reduced features and no license expiry limit).

http://www.microsoft.com/betaexperience/pd/SQL2012EvalCTA/enus/
default.aspx

The online resources contain two files. Firstly, a file named tabular_modelling.bak, 
which is the database backup. The second is the file that contains the restore script. It is also 
reproduced as follows:

USE [master]

RESTORE DATABASE tabular_modelling
FROM  DISK = N'C:\BOOK\SQLDATA\tabular_modelling.bak'
WITH  FILE = 1
,  MOVE N'tabular_modelling' TO  
  N'C:\BOOK\SQLDATA\tabular_modelling.mdf'



Appendix

297

,  MOVE N'tabular_modelling_log' TO 
  N'C:\BOOK\SQLDATA\tabular_modelling.ldf'
,  NOUNLOAD,  REPLACE,  STATS = 5

GO

This code assumes that the backup file has been stored in the C:\BOOK\SQLDATA directory. 
Additionally, the database files that are created will also be created in this directory. Running 
the code from SQL Server Management Studio will create the database and restore all its data.

The output of executing the script should look like the following screenshot:

If the folders used on your computer are different, the directories in the script should be 
changed accordingly. It should also be noted that SQL Server does not require its data (or log 
files) to be stored in specific folders, so the choice of C:\BOOK\SQLDATA as a data folder 
may be suitable.





Index
Symbols
445 calendar

about  98
using  99, 100
working  101

445 Dates  99
.atomsvc feeds  54
<expression> parameter  63

A
Accessories category  86
ADDCOLUMNS function  250
Advanced tab  28, 205
aggregates

summing  62
ALL function  87
ALLSELECTED function  87
ALTER commands  226
Analysis Services

workbook, restoring to  182-185
Analyze in Excel button  196, 236
AutoSum button  33

B
Bar Chart button  273
base table

defining  255
bin grouping  118
BISM  37
BLANK() function  108
Business Intelligence Semantic Models.  

See  BISM

C
CALCULATE function  83, 95
calculation area  32
Calculation Area button  32
card control

about  283
working with  283-286

charts
creating  272-275
manipulating  272-275

client tools  121
Column Filters button  239
connections

managing  50-53
Control Content  266, 268
Convert Report Filters option  160
Convert to Formulas button  159
COUNTROWS function  71, 131
Create Hierarchy option  60
Create Linked Table button  9
Create Relationships window  22
CREATE statement  224
cube functions

about  159
using  159-163

Cube Name property  189
CUBEVALUE function  162
currency calculations

performing  138-143
current date  92
customer list  8



300

D
data

allocating, at different levels  144-150
importing, as text  38-43
importing, from databases  43-49
processing  227-233
restricting, with filters  251-253
restricting, with where conditions  251-253
retrieving, from single table  245-248
securing, with roles  193-198
sorting  58, 59

Data Analysis Expressions (DAX)  29
Database Management System (DBMS)  43
databases

creating  296, 297
data, importing from  43-50

Data Categories  288
data feeds

about  54
using  55
working  56

data filtering
tabular relationships, using for  18-28

datasets
customers list  8
date list  8
orders list  8
product categories list  7
product list  7
product subcategories list  7

DATEADD function  105
dates list  8
DAX  127
Deployment Wizard

using, for model deploying  212-218
Design button  53
dimension  223
dimensional table

manipulating  118-124
DirectQuery Mode Property option  235
DirectQuery solution

about  234
implications, demonstrating  241
new project, creating  234-240
restrictions  234

DISTINCTCOUNT function  131
Do Not Process option  212
Download button  294
dynamic security

implementing  198-201

E
Excel tabular model

promoting, methods  182
Existing Connections button  120
Export to Data Feed button  55

F
field appearance

managing  12-18
Field List button  35
fields

adding, to tables  28-30
linking, between tables  30

Filter  157
Filters Pane  265
FIRSTDATE function  101
Format as Table button  10
Formulas tab  10
From Data Feeds button  55

H
HideMemberIf property  71
hierarchies

creating, for drilldown interaction  60-62
hierarchy  121
Home Tab  12

I
ImageLoad command  185
images

displaying  279-281
using  279, 281

Import From Data Source button  190
Install button  296

K
Key Performance Indicators. See  KPI



301

KPI
about  74
adding, to model  76, 78
creating  75, 76
measures, adding to model  78-80

L
LASTDATE function  101
last non-empty function

using  132-136
working  137, 138

last year value  101-105
levels  121
LOOKUPVALUE function  31

M
Manage Relationships button  22
many-to-many relationships

defining  127-130
working  131, 132

maps  287
MDX (Multidimensional Expressions)  89
measure group  223
Measure Settings window  27
Microsoft SQL Server  235
model calculations

about  32
creating  32-36

models
creating  8
deploying, Deployment Wizard used  212-218
deploying, from SSDT  208-212
deploying, in SSDT  189-192
importing, to SSDT  186-189
working  10, 11

Month to Date (MTD) aggregations  96-98
Multidimensional Online Analytical  

Processing (MOLAP)  218
multidimensional view

differentiating, with tabular model  244
multiples  290

N
Name Box  160
Name Manager window  11

O
Online Transactional Processing (OLTP)  44
Open DataBase Connectivity (ODBC)  43
Open Data Protocol (OData)  54
orders list  8

P
parent-child hierarchies

about  65
creating  68-74
diagram  66
using  66, 68

Pareto principle  259
partitions

creating  218-226
managing  218-226

PATHITEM function  69
perspectives

creating  201-205
pipe symbol (|)  145
PivotTable button  12, 154
PivotTable Connections... option  157
PivotTable Field List window  36
pivot tables

connecting  153-158
PowerPivot

installing  293-296
PowerPivot Data Connections group  50
PowerPivot Field List  153
PowerPivot Field List panel  17
Power View

about  262
trellis charting, implementing  290

Power View report
Control Content  266
creating  263-271
Filters Pane  265
Power View Field List  265
Report Canvas  265

Preview Selected Table window  49
prior period value

about  101-103
forms  101, 102
working  103-105

processed  211
ProcessRecalc command  233



302

product categories list  7
product list  7
product subcategories list  7
projection

used, for data combination from different 
tables  248-251

Q
Quarter to Date (QTD) aggregations  96, 97

R
RANKX function  124
ratios

building  84-88
Recurring option  231
related table  24
Relational Online Analytical Processing 

(ROLAP)  234
Relative Time dimension

about  105
using  107-109

Report Canvas  265, 266
Resellers table

discretizing   125, 126
result_columnName parameter  31
role playing dimensions  80-84
roles

data, securing with  193-198
row filter context  122
Row Filters tab  196
rows

iterating  62-65
running totals

adding, to model  92-95
using  92

S
Select Related Tables button  49, 55
Select Tables and Views window  49
SharePoint  262
Silver Light  265
single table

data, retrieving from  245-248
Slicer Control  180

Slicers
connecting  153-158
managing, through VBA  172-180

Slicer Settings... options  178
smart key  145
snowflake schema  19
sort by column  125
sp_grant_proxy_to_subsystem command  233
SQL Server Analysis Services. See  SSAS
SQL Server Data Tool. See  SSDT
SQL Server Management Studio  

(SSMS)  183, 217
SQL Server Trace  237, 238
SSAS  37, 133, 182, 207
SSDT

about  182, 208, 209
models, deploying from  208-211
models, deploying in  189-192
models, importing to  186-189

stacked chart
using  275

star schema  19
status measure  78
Stock on Hand  133
Summing Aggregates and Row  

Iteration  62-65

T
table appearance

managing  12-18
table behavior

working with  283
Table Behavior dialog  285
table fields

automating, with default field sets  281, 282
Table Import Wizard window  49, 56
TABLE label  270
tables

deriving  253
deriving, with DAX query  254-260
fields, linking between  30, 31
managing  50-54

tabular model
configuring, for using with map  287-289
differentiating, with multidimensional  

view  244



303

tabular modeling. See  also BISM
tabular modeling

about  7
lifecycle, steps  8

tabular relationships
used, for data filtering  18-28

target measure  78
tilde (~)  145
tile

about  276
adding  276-278

Tile Type button  278
TOPN function  258
TOP N query  258
TOP % query  258
totals to date functions

working  97
trellis charting

about  290
implementing, in Power View  290-292

U
Uniform Resource Locator (URL)  279
Use an external data source option  154
USERNAME() function  201
Utility dimension

about  105
creating  107

V
Validate button  53
Value measure  78
VALUES() function  109
VBA

Slicer, managing through  172-180
working with  163-172

Visual Basic for Applications (VBA)  165

W
WEB URL feature  281
workbook

restoring, to Analysis Services  182-185
worksheet events

working with  163-172
Worksheet_SelectionChange event  176

X
XMLA  212
XML for Analysis. See  XMLA
xVelocity  37

Y
Year to Date (YTD) aggregations  96, 97





Thank you for buying  
Microsoft Tabular Modeling Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL 
Management" in April 2004 and subsequently continued to specialize in publishing highly focused 
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and 
customizing today's systems, applications, and frameworks. Our solution-based books give you the 
knowledge and power to customize the software and technologies you're using to get the job done. 
Packt books are more specific and less general than the IT books you have seen in the past. Our 
unique business model allows us to bring you more focused information, giving you more of what 
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order  
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home 
to books published on enterprise software – software created by major vendors, including (but 
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer 
information relevant to a range of users of this software, including administrators, developers, 
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be 
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to 
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors 
will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



MDX with Microsoft SQL 
Server 2008 R2 Analysis 
Services: Cookbook
ISBN: 978-1-84968-130-8            Paperback: 480 pages

80 recipes for enriching your Business Intelligence 
solutions with high-performance MDX calculations and  
flexible MDX queries

1. Enrich your BI solutions by implementing best 
practice MDX calculations

2. Master a wide range of time-related,  
context-aware, and business-related calculations

3. Enhance your solutions by combining MDX with 
utility dimensions

4. Become skilled in making reports concise

Expert Cube Development 
with Microsoft SQL Server 
2008 Analysis Services
ISBN: 978-1-84719-722-1             Paperback: 360 pages

Design and implement fast, scalable, and  
maintainable cubes

1. A real-world guide to designing cubes with 
Analysis Services 2008

2. Model dimensions and measure groups in  
BI Development Studio

3. Implement security, drill-through, and  
MDX calculations

4. Learn how to deploy, monitor, and  
performance-tune your cube

Please check www.PacktPub.com for information on our titles



Business Intelligence 
Cookbook: A Project 
Lifecycle Approach Using 
Oracle Technology
ISBN: 978-1-84968-548-1            Paperback: 368 pages

Over 80 quick and advanced recipes that focus on  
real-world techniques and solutions to manage,  
design, and build data warehouse and business 
intelligence projects

1. Full of illustrations, diagrams, and tips with clear 
step-by-step instructions and real-time examples 
to perform key steps and functions on your project

2. Practical ways to estimate the effort of a data 
warehouse solution based on a standard work 
breakdown structure

Microsoft Dynamics GP 2013 
Reporting Second Edition
ISBN: 978-1-84968-892-5            Paperback: 386 pages

Create valuable insights for your organization with 
Microsoft Dynamics GP 2013 reporting tools

1. Explore the new reporting features found  
in GP 2013

2. Add value to your organization by identifying 
the major reporting challenges facing your 
organization and selecting the most effective 
reporting tool to meet those challenges

3. Empower users from top to bottom in your 
organization to create their own reports

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started 
with Excel
	Introduction
	Creating the model
	Managing the appearance of tables 
and fields
	Using tabular relationships to filter data
	Adding fields to tables
	Linking fields between tables
	Creating model calculations

	Chapter 2: Importing Data
	Introduction
	Importing data as text
	Importing data from databases
	Managing connections and tables
	Using data feeds

	Chapter 3: Advanced Browsing Features
	Introduction
	Sorting data
	Creating hierarchies for drilldown interaction
	Summing aggregates and row iteration
	Parent-child hierarchies
	Creating and using Key Performance Indicators
	Role playing dimensions and relationships
	Building ratios

	Chapter 4: Time Calculations 
and Date Functions
	Introduction
	Calculating running totals – totals to date
	Month, quarter, and year to date aggregations
	445 dates and irregularities
	Last year and prior period values
	Relative Time – pivoting around measures
	Moving averages and last N averages

	Chapter 5: Applied Modeling
	Introduction
	Grouping by binning and sorting with ranks
	Defining many-to-many relationships
	Using the last non-empty function for 
stock data
	Performing currency calculations
	Allocating data at different levels

	Chapter 6: Programmatic 
Access via Excel
	Introduction
	Connecting pivot tables and Slicers
	Using cube functions
	Working with worksheet events and VBA
	Managing the Slicer through VBA

	Chapter 7: Enterprise Design 
and Features
	Introduction
	Restoring a workbook to Analysis Services
	Importing models into SQL Server 
Data Tools
	Developing models in SQL Server Data Tools
	Securing data with roles
	Implementing dynamic security
	Creating perspectives

	Chapter 8: Enterprise Management
	Introduction
	Deploying models from SSDT
	Deploying models with the Deployment Wizard
	Creating and managing partitions
	Processing the data
	DirectQuery and real-time solutions

	Chapter 9: Querying the Tabular Model with DAX
	Introduction
	Retrieving data from a single table
	Using projection to combine data from different tables
	Restricting data with filters and where conditions
	Deriving tables and selecting top n records

	Chapter 10: Visualizing Data 
with Power View
	Introduction
	Creating a Power View report
	Creating and manipulating charts
	Using tiles (parameters)
	Using and showing images
	Automating the table fields with default 
field sets
	Working with table behavior and card control
	Using maps
	Using multiples (Trellis Charts)

	Appendix: Installing Power Pivot and Sample Databases
	Installing Power Pivot
	Creating the Database

	Index



