
www.allitebooks.com

http://www.allitebooks.org

Microsoft Visio 2013 Business
Process Diagramming and
Validation

Explore Visio Professional 2013 and improve your
business information through structured diagrams
and custom validation rules

David J. Parker

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Visio 2013 Business Process Diagramming
and Validation

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2010

Second edition: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-800-2

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
David J. Parker

Reviewers
Nikolay Belykh

JMee Hong

Alexander Meijers

Ed Richards

Acquisition Editor
Neha Nagwekar

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Monica John

Edwin Moses

Mrunmayee Patil

Project Coordinator
Kranti Berde

Proofreader
Stephen Copestake

Indexer
Mehreen Deshmukh

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

David J. Parker, being frustrated as an architect in the late 80s trying to match 3D
building models with spreadsheets, explored linking Unix, CAD, and SQL databases
in the early 90s for facilities and cable management.

In 1996 he discovered the ease of linking data to Visio diagrams of personnel and
office layouts. He immediately became one of the first Visio business partners
in Europe, and was soon invited to present his applications at worldwide Visio
conferences. He started his own Visio-based consultancy and development business,
bVisual ltd (http://www.bvisual.net), applying analysis, synthesis, and design to
various graphical information solutions.

He presents Visio solution providers and Visio Services courses for Microsoft EMEA,
adding personal anecdotes and previous mistakes hoping that all can learn by them.

He wrote his first book, Visualizing Information with Microsoft Office Visio 2007, to
spread the word about data-linked diagrams in business, and his second book, which
is about creating custom rules for validating structured diagrams in Visio 2010, has
now been updated and extended for Visio 2013.

He wrote WBS Modeler for Microsoft, which integrates Visio and, Project, and many
other Visio solutions for various vertical markets.

David has been regularly awarded Most Valued Professional status for his Visio
community work over the years, and maintains a Visio blog at http://blog.
bvisual.net.

www.allitebooks.com

http://www.bvisual.net
http://blog.bvisual.net
http://blog.bvisual.net
http://www.allitebooks.org

Based near to Microsoft UK in Reading, he still sees the need for Visio evangelism
throughout the business and development community, and has been touring many
European capitals over the last two years spreading the word of intelligent business
diagramming with Visio and SharePoint.

I would like to thank Microsoft for continuing to develop Visio,
originally in Seattle, then Redmond in USA, and now in Hyderabad,
India. Thank you to Dr. Stephanie Horn at Microsoft for editing the
first version of this book, and my fellow Visio MVP, John Marshall,
for his help and encouragement. For the second, and updated,
version, I would like to thank fellow Visiophiles: Jimi Hong, Ed
Richards, Alexander Meijers, and Nikolay Belykh for their comments.

Most of all, I would like to thank my wife, Beena, for putting up with
me as I wrote another book. Maybe that is why my kids, Kryshnan
and Alyesha, have both left home!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Nikolay Belykh is a Visio specialist and an active member of Visio society. He
works currently as software architect in Process4.biz, the Microsoft partner company,
which received the Visio Partner Award of year 2012. The company provides the
award-winning modeling tool for business processes based on Microsoft Visio.

He received his MS degree in informatics from the Novosibirks University, Russia.
After his postgraduation studies, he started to work as software engineer in
industrial automation, where he first got in touch with Visio.

Now he lives and works in Vienna, Austria. You can reach him on Visio forums, or
on his blog site Unmanaged Visio (http://unmanagedvisio.com), where you can
find tips and free tools for Visio developers.

JMee Hong is a Visio MVP. Her specialties include technology and applications
related to data or system visualization with graphic solutions such as Visio, CAD,
and so on. She runs Visio adoption center with Microsoft Korea. She as a Visio
evangelist has been working with many of the commercial and public sector
customers for more than 8 years.

She holds B.S in mechatronics engineering and has also studied robotics system with
virtual reality software. This enables her to understand and consult any business areas'
engineering or technical graphic solution, and high usability interfaces.

I'm very honored in reviewing David J. Parker's book. He is a legend
of Visio and I have always learned from him through his blog.

I'm so proud of being a reviewer of his book. Thanks to all the
Visio MVPs!

www.allitebooks.com

http://www.allitebooks.org

Alexander Meijers has been involved with Microsoft products and technologies
for more than 20 years. He got introduced with SharePoint and Office since the
Version 2003 came to the market, and made these products his core knowledge.
With his extended knowledge of programming, he sees a lot of the opportunities
the products have. Due to the fact that the SharePoint platform depends heavenly
on other Microsoft products, his knowledge also extends to other products such as
SQL Server, Windows, Active Directory, and Exchange Server.

He has been involved to a large extent in SharePoint implementations and a number
of Office solutions. These implementations ranged from small, medium, to large
business project handling and in some cases involved more than 100 thousand end
users. His multidiscipline allows him to handle a large set of roles in projects such
as hardcore development, lead consultant, liaison between business and IT, business
advisory, project management, and lead architect. In his spare time he blogs about
SharePoint and Office at http://www.sharepointinspiration.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Overview of Process Management in
Microsoft Visio 2013 7

Exploring the new process management features in Visio 2013 8
Reviewing Visio Process Management capabilities 10

Understanding the Visio BMP Maturity Model 11
Reviewing the foundations of structured diagramming 12
Reviewing the enhanced process flow templates 14

Looking at the Flowchart templates 14
Reviewing the new process flow templates 15

Understanding a BPMN Diagram 15
Understanding a Microsoft SharePoint 2013 workflow 19

Validation of process diagrams 20
Analyzing the structure of a Visio document 21

Using the Visio Process Repository 25
Publishing visual data from Visio 25
Understanding the Visio 2013 editions 27
Planning your own solutions 27
Summary 29

Chapter 2: Understanding the Microsoft Visio Object Model 31
Introducing the Visio Type libraries 31
Going beyond the object model 32
Classifying the Visio document 33
Selecting a programming language to use with Visio 35
Understanding the Drawing Explorer window 36
Understanding the Visio object model 38

Examining the Application object 38
Reviewing the ActiveDocument and ActivePage objects 39

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Reviewing the Addons collection 39
Reviewing the COMAddIns collection 41
Reviewing the CurrentEdition property 42
Reviewing the DataFeaturesEnabled property 42
Reviewing the Documents collection 43
Reviewing the TypelibMinorVersion and Version properties 44

Examining the Document object 44
Reviewing the Advanced Properties object 45
Reviewing the DataRecordsets collection 46
Reviewing the DocumentSheet object 47
Reviewing the ID and Index properties 47
Reviewing the FullName and Name properties 47
Reviewing the Masters collection 48
Reviewing the Pages collection 48
Reviewing the ReadOnly property 49
Reviewing the Type property 49
Reviewing the Validation object 49

Examining the Master object 50
Reviewing the BaseID property 51
Reviewing the Hidden property 52
Reviewing the ID, Index, and IndexInStencil properties 52
Reviewing the Name and NameU properties 52
Reviewing the PageSheet object 52
Reviewing the Type property 52

Examining the Page object 53
Reviewing the Connects collection 53
Reviewing the ID and Index properties 55
Reviewing the Layers collection 55
Reviewing the PageSheet object 58
Reviewing the Comments and ShapeComments property 58
Reviewing the Shapes collection 61
Reviewing the Type property 62

Examining the Shape object 62
Reviewing the Characters and Text properties 64
Reviewing the Connects and FromConnects collections 65
Reviewing the Hyperlinks collection 65
Reviewing the ID, Index, NameID, Name, and NameU properties 65
Reviewing the IsCallout and IsDataGraphicCallout properties 65
Reviewing the LayerCount property 66
Reviewing the Master, MasterShape, and RootShape objects 66
Reviewing the OneD property 66
Reviewing the Parent object 66
Reviewing the Type property 66

Examining the Section object 67
Examining the Row object 67
Examining the Cell object 69

Reviewing the Column property 70
Reviewing the Error property 70

Table of Contents

[iii]

Reviewing the Formula and FormulaU properties 70
Reviewing the Name and LocalName properties 70
Reviewing the Result properties 70
Reviewing the Units property 70
Iterating through cells 71

Delving into the Connectivity API 73
Understanding the Shape.ConnectedShapes method 74
Understanding the Shape.GluedShapes method 76
Understanding the Shape.MemberOfContainers property 77
Understanding the Shape.CalloutsAssociated property 78
Listing the steps in a process flow 79

Summary 83
Chapter 3: Understanding the ShapeSheet™ 85

Finding the ShapeSheet 85
Understanding sections, rows, and cells 88
Reading a cell's properties 89

Printing out the ShapeSheet settings 93
Understanding the functions 95
Important sections for rules validation 97

Looking at the User-defined Cells section 97
Using the category of a Shape 97
Using the structure type of a Shape 102
Checking a Container shape 103
Checking a List shape 104
Checking for attached Callout shapes 105

Looking at the Shape Data section 107
Using the String type 109
Using the Fixed List type 111
Using the Number type 112
Using the Boolean type 113
Using the Variable List type 114
Using the Date type 115
Using the Duration type 117
Using the Currency type 118

Looking at the Hyperlinks section 118
Working with Layer Membership 120

Summary 121
Chapter 4: Understanding the Validation API 123

An overview of Validation objects 123
Using the Validate method 126
Validating custom rules written in code 126

Working with the ValidationRuleSets collection 127
Adding to or updating a ruleset 129

Table of Contents

[iv]

Working with the ValidationRules collection 131
Adding to or updating a rule 134
Verifying that a rule works 136

Working with the ValidationIssues collection 137
Retrieving the selected issue in the Issues window 140
Toggling the Issues window visibility 143
Listing the issues caused by a particular shape 144
Using code to clear issues 145
Retrieving an existing issue in code 145
Adding an issue in code 146

Summary 149
Chapter 5: Developing a Validation API Interface 151

Understanding the architecture of the tool 152
Enhancing the ThisAddin class 154

Listening for application events 155
Checking for the Visio Professional edition 156

Creating the ViewModel class 157
Creating the BaseViewModel class 159
Viewing the documents collection 159
Viewing the ValidationRuleSets collection 163
Viewing the ValidationRules collection 164
Viewing the ValidationIssues collection 166

Modifying the Visio Fluent UI 168
Creating the Rules Explorer window 174

Self-describing tree views 176
Making informative tool tips 177

Linking detail panels 179
Editing ruleset properties 179
Editing rule properties 180
Handling special key strokes 182

Adding the Explorer actions 184
Creating the Add button 186
Creating the Add Issue button 188
Creating the Paste button 190
Creating the Copy button 191
Creating the Delete button 192

Displaying the rule for a selected issue 193
Displaying the issues for the current selection 196
Summary 201

Chapter 6: Reviewing Validation Rules and Issues 203
Extensions to our ribbon 203
Annotating Visio diagrams with issues 206

Table of Contents

[v]

Saving the current user settings 210
Displaying the issue mark-up page 210

Adding in the issue comments 214
Hiding the issue mark-up page 215

Exporting rulesets to XML 216
Getting the XDocument object 219

Getting the VERuleSet XElement 221
Getting the VEIssue XElement 222

Importing rulesets from XML 223
Creating ruleset reports 226

Getting the XSL stylesheet 228
Summary 232

Chapter 7: Creating Validation Rules 233
Overview of the document validation process 234

Validating rulesets 235
Validating rules 236
Processing a rule 236

Validation functions 238
Useful ShapeSheet functions 239
Filter and Test Expressions 241

Checking the type of shape 243
Checking the category of shapes 246
Checking the layer of a shape 248
Checking if the page contains relevant shapes 249
Checking for specific cell values 251
Checking that connectors are connected 254
Checking that shapes have correct connections 256
Checking whether shapes are outside containers 257
Checking whether a shape has text 258
Custom validation rules in code 259

Summary 262
Chapter 8: Publishing Validation Rules and Diagrams 263

Overview of Visio categories and templates 263
Creating a custom template 267
Adding embellishments 268

Adding the template description 271
The simplest method to provide a template 272

Editing the file paths for templates 273
Setting the file paths for templates 275

Creating a template preview image 277
Enhancing the quality of the preview image 282

Table of Contents

[vi]

The best method for publishing templates 285
Creating a setup project 285
Running the installation 288
Uninstalling and Repairing 291

Summary 291
Chapter 9: A Worked Example for Data Flow
Model Diagrams – Part 1 293

What are Data Flow Diagrams? 294
Examining the standard template 296

Enhancing the masters 300
Editing the Data Flow master 301

Preparing for AutoConnect 302
Editing the Data Store master 305

Adding Shape Data 305
Enhancing the graphics 308
Displaying the ID value 309
Improving the group shape 310

Editing the Interface master 312
Editing the Process master 312

Adding Shape Data 312
Enhancing the graphics 313
Displaying the ID value 314
Displaying the Category value 315
Improving the group shape 316

Setting the Subprocess master 317
Enhancing the page 319

Summary 321
Chapter 10: A Worked Example for Data Flow
Model Diagrams – Part 2 323

Writing the ruleset 323
Rule 1 – all processes must have at least one data flow in and
one data flow out 325
Rule 2 – all processes should modify the incoming data,
producing new forms of the outgoing data 327
Rule 3 – each data store must be involved with at least
one data flow 329
Rule 4 – each external entity must be involved with at least
one data flow 331
Rule 5 – a data flow must be attached to at least one process 332
Rule 6 – data flows cannot go directly from one external entity
to another external entity 334
Rule 7 – do not allow a single page of a DFD to get too complex 334

Table of Contents

[vii]

Rule 8 – each component should be labeled 336
Rule 9 – each data flow should be labeled describing the
data that flows through it 337
Rule 10 – each component and subcomponent should be numbered 339
Rule 11 – a data flow must be connected between two components 341
Rule 12 – a flow must not cycle back to itself 343

Summary 345
Chapter 11: A Worked Example for Data Flow
Model Diagrams – Part 3 347

Completing the template 347
Reviewing the template 352

Creating the installer 353
Testing the Installer 357

Using a digital certificate 359
Thoughts about code in templates 361

Summary 362
Chapter 12: Integrating Validated Diagrams with
SharePoint 2013 and Office365 363

Using SharePoint and Visio together 363
Understanding a Visio Process Repository 366

Approving and rejecting Process Diagrams 368
Creating a Visio Process Repository 369
Adding a Visio template to SharePoint 374

Adding a template as a Site Content Type 375
Adding a List and Library Content Type 376

Creating a diagram from the custom template 378
Summary 379

Index 381

Preface
It has been three years since the first edition of this book, and the power of Visio
as a platform for visual data has been enhanced even more. Microsoft has merged
the Premium edition with the far more popular Professional edition, which means
that the content of this book is now accessible to literally millions more Visio users
because the Professional edition is the norm in business.

Once the creators of Aldus PageMaker had successfully introduced the desktop
publishing paradigm in the late eighties, some of the key personnel involved left
because they decided that they could make a smarter diagramming application.
Eighteen months later, they emerged with the Visio product. Now they needed to get a
foothold in the market, so they targeted the leading process flow diagramming package
of the day, ABC Flowcharter, as the one to outdo. They soon achieved their aim to
become the number one flowcharting application, and so they went after other usage
scenarios, such as network diagramming, organization charts, and building plans.

In 1999, Microsoft bought Visio Corporation and Visio gradually became Microsoft
Office Visio, meaning that all add-ons had to be written in a certain manner
and common Microsoft Office core libraries such as Fluent UI were ever more
increasingly employed. Microsoft then dropped the Office part of the name, may be
because Visio continues to be an independent profit center within Visio. The 2013
edition has seen Visio adopt the Open Packaging Convention that which had already
been used by the main Office products for two versions. This potentially opens the
contents of a Visio file to a mature group of developers with skills in this area.

Preface

[2]

Flowcharting still accounts for 30 percent of the typical uses that Visio is put to, but
the core product did not substantially enhance its flowcharting abilities. There were
some add-ons that provided rules, perhaps most notably for Data Flow Diagrams,
UML, and Database Modelling (all of which have now lost their built-in rules
engine), and many third parties have built whole flowcharting applications based
on Visio. What all of these enhancements have in common is the imposition of a
structure to the diagrams, which necessarily means the adoption of one ruleset or
another. There are a lot of competing and complementary rulesets in use, but what
is important is that the chosen ruleset fits the purpose it is being used for and that it
can be understood by other related professionals.

It is true that a picture is worth a thousand words, but the particular thousand words
understood by each individual are more likely to be the same if the picture was created
with commonly available rules. The structured diagramming features and Validation
API in Visio Professional 2013 enable business diagramming rules to be developed,
reviewed, and deployed. The first diagramming types to have these rules applied to
them are process flowcharts, reminiscent of the vertical markets attacked by the first
versions of Visio itself, but these rules can and will be extended beyond this discipline.

What this book covers
Chapter 1, Overview of Process Management in Microsoft Visio 2013, introduces
Microsoft Visio and the features that support process management; further,
it explores the built-in templates with validation rules.

Chapter 2, Understanding the Microsoft Visio Object Model, explores the useful objects,
collections, and methods in the Visio object model, in relation to validation rules.

Chapter 3, Understanding the ShapeSheet™, explores the unique ShapeSheet, and the
common sections, rows, and cells, along with useful functions and formulas.

Chapter 4, Understanding the Validation API, explores the objects, collections, and
methods in the Validation API.

Chapter 5, Developing a Validation API Interface, explains how to develop a tool to
create and edit validation rules.

Chapter 6, Reviewing Validation Rules and Issues, extends the tool to provide an XML
import/export routine of rules and issue annotation features.

Chapter 7, Creating Validation Rules, explains how to use the new tool to create
validation rules, and understand common functions in rule expressions.

Chapter 8, Publishing Validation Rules and Diagrams, examines the methods for
publishing validation rules for others to use.

Preface

[3]

Chapter 9, A Worked Example for Data Flow Model Diagrams – Part 1, explores
customizing the Data Flow Model Diagram template in preparation for
validation rules.

Chapter 10, A Worked Example for Data Flow Model Diagrams – Part 2, presents how to
go through each of the twelve rules in detail, writing a validation rule for each one.

Chapter 11, A Worked Example for Data Flow Model Diagrams – Part 3, deals with
preparing the new custom template for publication and creating an installation
package for it.

Chapter 12, Integrating Validated Diagrams with SharePoint 2013 and Office365, explains
how to understand the advantages of utilizing Visio with SharePoint with respect to
validated diagrams, and how to provide a custom template via SharePoint.

What you need for this book
The following software products are used:

• Microsoft Visio 2013 Professional software.
• Free Rules Tools add-in that can be downloaded from

http://www.visiorules.com.
• Optionally, Microsoft Visual Studio 2012 (with a little knowledge of C#)
• Optionally, Microsoft Visio 2013 SDK
• Optionally, Office365 Plus {also used in this book}.

Who this book is for
This book is primarily for Microsoft Visio users or developers who want to know
how to use and extend the validation rules in Microsoft Visio 2013 Professional
edition. There are some rulesets available out of the box, but the capability can be
added to many sorts of diagramming, whether they are process flows, network
cabling drawings, or risk dependency diagrams, for example. This is not a Visio
SmartShape developer manual or a Visio automation guide, although these subjects
are explored when relevant for writing validation rules, but it does shed light on the
possibilities of this new powerful feature of Microsoft Visio 2013. This book will be
an essential guide to understanding and creating structured diagramming rules, and
will add developer tools that are not in the out-of-the-box product.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Documents collection contains all of the stencils and drawings that are currently
open in the Visio application."

A block of code is set as follows:

Public Sub EnumerateAddons()
Dim adn As Visio.Addon
 Debug.Print "EnumerateAddons : Count = " & _
 Application.Addons.Count
 Debug.Print , "Index", "Enabled", "NameU", "Name"
 For Each adn In Application.Addons
 With adn
 Debug.Print , .Index, .Enabled, .NameU, .Name
 End With
 Next
End Sub

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"The Drawing Explorer window can be opened in the Visio UI in the Show/Hide
group on the DEVELOPER tab.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Overview of Process
Management in

Microsoft Visio 2013
When Visio was first conceived of over 20 years ago, its first stated marketing aim
was to outsell ABC Flowcharter, the best-selling process diagramming tool at the
time. Therefore, Visio had to have all of the features from the start that are core in
the creation of flowcharts, namely the ability to connect one shape to another and
to have the lines route themselves around shapes. Visio soon achieved its aim, and
looked for other targets to reach.

So, process flow diagrams have long been a cornerstone of Visio's popularity and
appeal and, although there have been some usability improvements over the years,
there have been few enhancements to turn the diagrams into models that can be
managed efficiently. Microsoft Visio 2010 saw the introduction of two features,
structured diagrams and validation rules, that make process management achievable
and customizable, and Microsoft Visio 2013 sees these features enhanced.

In this chapter, you will be introduced to the new features that have been added
to Microsoft Visio to support structured diagrams and validation. You will see
where Visio fits in the Process Management stack, and explore the relevant out
of the box content.

Overview of Process Management in Microsoft Visio 2013

[8]

Exploring the new process management
features in Visio 2013
Firstly, Microsoft Visio 2010 introduced a new Validation API for structured diagrams
and provided several examples of this in use, for example with the BPMN (Business
Process Modeling Notation) Diagram and Microsoft SharePoint Workflow templates
and the improvements to the Basic Flowchart and Cross-Functional Flowchart
templates, all of which are found in the Flowchart category. Microsoft Visio 2013
has updated the version of BPMN from 1.1 to 2.0, and has introduced a new
SharePoint 2013 Workflow template, in addition to the 2010 one.

Templates in Visio consist of a predefined Visio document that has one or more
pages, and may have a series of docked stencils (usually positioned on the left-hand
side of workspace area). The template document may have an associated list of
add-ons that are active while it is in use, and, with Visio 2013 Professional edition,
an associated list of structured diagram validation rulesets as well. Most of the
templates that contain validation rules in Visio 2013 are in the Flowchart category, as
seen in the following screenshot, with the exception being the Six Sigma template in
the Business category.

Chapter 1

[9]

Secondly, the concept of a Subprocess was introduced in Visio 2010. This enables
processes to hyperlink to other pages describing the subprocesses in the same
document, or even across documents. This latter point is necessary if subprocesses
are stored in a document library, such as Microsoft SharePoint.

The following screenshot illustrates how an existing subprocess can be associated
with a shape in a larger process, selecting an existing shape in the diagram, before
selecting the existing page that it links to from the drop-down menu on the Link to
Existing button.

Overview of Process Management in Microsoft Visio 2013

[10]

In addition, a subprocess page can be created from an existing shape, or a selection of
shapes, in which case they will be moved to the newly-created page.

There were also a number of ease-of-use features introduced in Microsoft Visio 2010
to assist in the creation and revision of process flow diagrams. These include:

• Easy auto-connection of shapes
• Aligning and spacing of shapes
• Insertion and deletion of connected shapes
• Improved cross-functional flowcharts
• Subprocesses
• An infinite page option, so you need not go over the edge of the paper

ever again

Microsoft Visio 2013 has added two more notable features:

• Commenting (a replacement for the old reviewer's comments)
• Co-authoring

However, this book is not about teaching the user how to use these features, since
there will be many other authors willing to show you how to perform tasks that only
need to be explained once. This book is about understanding the Validation API in
particular, so that you can create, or amend, the rules to match the business logic that
your business requires.

Reviewing Visio Process Management
capabilities
Microsoft Visio now sits at the top of the Microsoft Process Management Product
Stack, providing a Business Process Analysis (BPA) or Business Process Modeling
(BPM) tool for business analysts, process owners/participants, and line of business
software architects/developers.

Chapter 1

[11]

Of course, your particular business may not have all, or parts, of the stack, but you
will see in later chapters how Visio 2013 can be used in isolation for business process
management to a certain depth.

Understanding the Visio BMP Maturity Model
If we look at the Visio BPM Maturity Model that Microsoft has previously
presented to its partners, then we can see that Visio 2013 has filled some of the gaps
that were still there after Visio 2010. However, we can also see that there are plenty
of opportunities for partners to provide solutions on top of the Visio platform.
The maturity model shows how Visio initially provided the means to capture
paper-drawn business processes into electronic format, and included the ability
to encapsulate data into each shape and infer the relationship and order between
elements through connectors. Visio 2007 Professional added the ability to easily link
shapes, which represent processes, tasks, decisions, gateways, and so on with a data
source. Along with that, data graphics were provided to enable shape data to be
displayed simply as icons, data bars, text, or to be colored by value. This enriched the
user experience and provided quicker visual representation of data, thus increasing
the comprehension of the data in the diagrams. Generic templates for specific types
of business modeling were provided.

Visio had a built-in report writer for many versions, which provided the ability to
export to Excel or XML, but Visio 2010 Premium introduced the concept of validation
and structured diagrams, which meant that the information could be verified before
exporting. Some templates for specific types of business modeling were provided.

Overview of Process Management in Microsoft Visio 2013

[12]

Visio 2010 Premium also saw the introduction of Visio Services on SharePoint
that provided the automatic (without involving the Visio client) refreshing of
data graphics that were linked to specific types of data sources.

Throughout this book we will be going into detail about Level 5 (Validation) in
Visio 2013, because it is important to understand the core capabilities provided in
Visio 2013. We will then be able to take the opportunity to provide custom Business
Rule Modeling and Visualization.

Reviewing the foundations of structured
diagramming
A structured diagram is a set of logical relationships between items, where these
relationships provide visual organization or describe special interaction behaviors
between them.

The Microsoft Visio team analyzed the requirements for adding structure to
diagrams and came up with a number of features that needed to be added to
the Visio product to achieve this:

• Container Management: The ability to add labeled boxes around shapes to
visually organize them

Chapter 1

[13]

• Callout Management: The ability to associate callouts with shapes to
display notes

• List Management: To provide order to shapes within a container
• Validation API: The ability to test the business logic of a diagram
• Connectivity API: The ability to create, remove, or traverse connections easily

The following diagram demonstrates the use of Containers and Callouts in the
construction of a basic flowchart, that has been validated using the Validation
API, which in turn uses the Connectivity API.

www.allitebooks.com

http://www.allitebooks.org

Overview of Process Management in Microsoft Visio 2013

[14]

Reviewing the enhanced process flow
templates
There are three process flow diagram templates: Basic Flowchart, Cross-Functional
Flowchart, and Six Sigma, in Visio 2013 Professional edition that have been
enhanced since the previous versions of Visio and include validation rules.

Looking at the Flowchart templates
There is now very little difference between the Basic Flowchart template and the
Cross-Functional Flowchart template in the Flowchart category. In fact, they are
identical apart from the latter opening with a couple of Swimlane shapes already
placed on the page. Any Basic Flowchart diagram can become a Cross-Functional
Flowchart diagram with the dragging and dropping of a Swimlane shape onto
the page, at which point the new CROSS-FUNCTIONAL FLOWCHART tab will
appear, as in the following screenshot:

In addition, parts of the new Six Sigma template, in the Business category, use the
same flowchart rules.

Chapter 1

[15]

Reviewing the new process flow
templates
There are two process flow diagram templates, in addition to the Six Sigma Diagram
template, in the Flowchart category of Visio 2013 Professional Edition that include
their own validation rules. The first, BPMN Diagram, provides native Visio support
for an important and widely-used process flow notation, and the second, Microsoft
SharePoint 2013 Workflow, enables visual development of SharePoint workflows
that integrates closely with SharePoint 2013.

Understanding a BPMN Diagram
The Object Management Group/Business Process Management Initiative
(http://bpmn.org/) promotes the BPMN standards. The BMPN version in Microsoft
Visio 2013 is 2.0, an upgrade from Version 1.1 in Visio 2010. Although this officially
added diagram types to the standard, it did not add more BPMN templates in
Visio 2013. Instead, Microsoft actually simplified the number of stencils and shapes
for BPMN in Visio 2013, while increasing their capability. There is no better short
description of BPMN than the charter from the OMG's website, which states:

A standard Business Process Modeling Notation (BPMN) will provide businesses
with the capability of understanding their internal business procedures in a
graphical notation and will give organizations the ability to communicate these
procedures in a standard manner. Furthermore, the graphical notation will
facilitate the understanding of the performance collaborations and business
transactions between the organizations. This will ensure that businesses will
understand themselves and participants in their business and will enable
organizations to adjust to new internal and B2B business circumstances quickly.

Having been involved in the creation of two other BPMN solutions based on
earlier versions of Visio, I believe that the native support of BPMN is a very
important development for Microsoft, because it is obviously a very popular
methodology for the description of an interchange of business processes.

Overview of Process Management in Microsoft Visio 2013

[16]

The BMPN template in Visio 2010 contained five docked stencils, each of them
containing a logical set of shapes, but for Visio 2013 these have been reduced to just
one, BPMN Basic Shapes, as seen on the left of the following screenshot. The other
stencils are still there, but hidden by default.

Chapter 1

[17]

Each of the shapes has BPMN Attributes in the form of a set of Shape Data, which
can be edited using the Shape Data window or dialog. Some shapes can also be
edited using the right mouse menu.

These Shape Data rows correspond to BPMN Attributes, as specified by the OMG
specification. In the preceding screenshot, a Task shape is selected, revealing that
there are many permutations that can be set.

Overview of Process Management in Microsoft Visio 2013

[18]

The following screenshot shows all of the BPMN master shapes in the BPMN Basic
Shapes stencil:

In reality, any of these Task shapes can be changed into a Collapsed SubProcess
shape, and each of the Event shapes into any of the other Event shapes, by amending
the Shape Data. Thus, the original name of the Master shape is really immaterial,
since it is the Shape Data that determine how it should be understood.

Chapter 1

[19]

Understanding a Microsoft SharePoint 2013
workflow
Microsoft Visio 2013 also includes a template and shapes for designing workflows
that can be developed in tandem with Microsoft SharePoint Designer. With Visio
2010, you could pass the workflow back and forth between the two with no loss of
data or functionality, by using a Visio Workflow Interchange (*.vwi) file, and the
Import and Export buttons are still present on the PROCESS tab in the ribbon in
Visio 2013, as seen in the following screenshot. However, Visio 2013 Professional
and SharePoint Designer 2013 become complementary design surfaces that you can
seamlessly switch between, if you have them both installed on your desktop.

Overview of Process Management in Microsoft Visio 2013

[20]

Validation of process diagrams
Validation ensures that the diagram is compliant with the required business logic by
checking that it is properly constructed. Therefore, you need to be able to verify that
the ruleset being used is the one that your business requires. Visio will not provide
instant feedback at the moment that you transgress a rule. However, it will check
your diagram against a ruleset only when you select Check Diagram. It will then
provide you with feedback on why any given rule has been broken.

Some of the Validation API can be accessed via the PROCESS tab on the Diagram
Validation group; however, but there is more that is available only to developers,
thus enabling you to automate some tasks if necessary. The following example of a
BPMN diagram has some errors in it they would be difficult to spot if it were not for
the Issues window that lists them, because the diagram has been validated.

Chapter 1

[21]

The PROCESS tab is split into three ribbon groups. The first group on the PROCESS
tab, Subprocess, is for the creation of Subprocesses, and the third group is for the
Import and Export of a SharePoint Workflow, but it is the second group, Diagram
Validation, that is of most interest here.

In this second group, the first button, Check Diagram, validates the whole document
against the selected ruleset(s). You can have more than one ruleset in a document
that can be enabled or disabled as required. The drop-down menu on the Check
Diagram button (shown in the following screenshot) enables you to select which
Rules to Check, and also to Import Rules From another open Visio document. It is a
pity that you cannot export to/ import from XML, but we will create our own tool to
do that in a later chapter.

Analyzing the structure of a Visio document
At this point, we should be aware that Visio documents used to either be saved as
binary (normally with a *.vsd extension) or XML format (normally with a *.vdx
extension); however, in Visio 2013 they are in a new XML format that follows the
Open Packaging Convention.

Overview of Process Management in Microsoft Visio 2013

[22]

Visio 2013 diagram files have either a *.vsdx extension, or a *.vsdm extension if
they contain macros. The easiest way to look at the contents of a Visio 2013 file is to
change the extension to *.zip, and then just double-click to open it. Inside the zip
file, you will find a visio folder, and inside that is a validation.xml file if there are
any rules within the document, as shown in the following screenshot:

Simply double-clicking on the xml file will open it in the associated program, which
in my case is Internet Explorer.

If we expand a RuleSets branch, and one of the Rule sub-branches, then we can see
how a rule is defined, as shown in the following screenshot:

Chapter 1

[23]

Later, we will be going into these definitions in much greater detail but, for now,
notice that the RuleFilter and RuleTest elements contain formulae that precisely
define what constitutes the particular rule.

The Diagram Validation group also has the option to show/hide the Issues
Window, which has a right mouse menu that is identical (apart from the additional
Arrange By menu option) to the drop-down menu on the Ignore This Issue button,
as shown in the following screenshot:

Overview of Process Management in Microsoft Visio 2013

[24]

Now that we can see that a Rule has an ID, and belongs to a RuleSet that also has an
ID, we can begin to understand how an issue can be associated with a shape. So, if
we expand an Issue element in the Visio document XML, we can see that Issue has
IssueTarget and RuleInfo elements, as at the bottom of the following screenshot of
the Validation XML.

We can then use the ShapeID and the PageID from the preceding Issue to find the
actual shape in the relevant page XML, by reviewing the Shape elements under
the Shapes collection of PageContents, also identified by its ID, as shown in the
following screenshot:

Chapter 1

[25]

In fact, the PageID and ShapeID elements of an IssueTarget are optional because an
Issue may just be associated with a page, or even with the whole document.

We will use the new Validation API to explore these RuleSets, Rules, and Issues
in later chapters, and we will expose them to scrutiny so that your business can be
satisfied that you have modeled the business logic correctly.

Using the Visio Process Repository
There is also a Visio Process Repository, which is a site template that is included with
Microsoft SharePoint 2013. It provides a place to share and collaborate on process
diagrams, and for reviewers to add comments. The repository has built-in file access
control and version control — users can view the process diagram simultaneously
and edit the diagram without corrupting the original.

This repository can therefore ensure that a user is editing the most recent version of a
process diagram, and enable a user to find out about updates that have been made to
processes of interest to them.

In addition, administrators can monitor whether diagrams comply with a business's
internal standards, or not, or discover, for example, which processes apply to a
specified department. The Validation status of the diagram is automatically updated
in the Process Repository when the diagram is saved back to SharePoint.

Publishing visual data from Visio
Microsoft Visio has had, for several versions, a useful Save As Web feature that
creates a mini-website, complete with widgets for pan and zoom, Shape Data, and
shape reports. This has worked best using the Vector Markup Language (VML)
in Microsoft Internet Explorer; or in Scalable Vector Graphics (SVG) using a web
browser that supports it natively; or in older browsers that have the required plug-in.
This is quite powerful, but it does require that the native Visio file is republished if
any changes are made to the document. The new Open Packaging Convention XML
in Visio 2013 is utilized by Visio Services in SharePoint 2013 to render the diagram in
html directly, and has a JavaScript Object Model (JSOM) for developers. In addition,
Microsoft has an ActiveX Visio Viewer control that can display native Visio files that
are in the new OPC format or the older binary and XML formats.

Overview of Process Management in Microsoft Visio 2013

[26]

This control is installed as default with Microsoft Outlook 2007 and later, but is
also available as a separate free download from Microsoft. In fact, the Visio Viewer
control has a programmable API that enables Shape Data and hyperlinks to be
extracted and exposed too. While this viewer has the advantage that the native file
does not need to be hosted on SharePoint with Visio Services, its reach is limited by
the choice of browsers available and the willingness to make the native Visio file
accessible—this is not always the best strategy.

Microsoft Visio 2013 provides Visio Services for Microsoft SharePoint. Therefore, with
rendering on the server, any client that accesses the Microsoft SharePoint site will have
the ability to view Visio diagrams without having to install anything locally.

The user can interact with the diagrams by clicking on shapes to view the Shape Data,
navigating any embedded hyperlinks as well as pan/zoom and print capabilities.
These are capabilities of the Save As Web and Visio Viewer options too. In addition,
Visio 2013 introduced commenting on shapes and the ability to co-author. These
features are extremely useful for collaboration.

Microsoft Visio 2007 introduced the ability to add a data recordset to a diagram and
refresh that data so that the diagram could be kept up-to-date, but the Save As Web
html pages and the Visio Viewer ActiveX controls are not able to automatically
respond to any data changes. Therefore, the diagram can quickly become outdated,
thus requiring you to refresh the diagram in Visio, and then to republish it.

Now with Visio Services, that same data recordset can be refreshed by the server,
thus providing everyone who views the diagram using the new Visio web part
with the latest information. This is extremely nice, but be aware that there are some
limitationsfor example, no shapes will be added or deleted in this operation, but
data-linked cells will have their formulas updated, which is a big advance from
Visio 2010 when only linked Shape Data and Data Graphics were updated. No
layer visibility changes will be respected. Still, you no longer have to republish
just to refresh the data set!

Visio has a complex layering system. Most CAD systems, for example,
insist that all diagram elements belong to a single layer. This layer
can either be made visible or not, or all elements on a layer can have a
specified color. Drawing elements in Visio can belong to none, one, or
many layers! Visio Services, however, simply ignores layers.

Chapter 1

[27]

Understanding the Visio 2013 editions
Microsoft has merged the Professional and Premium editions from Visio 2010 into
the Professional edition in Visio 2013. There is still a Standard edition, but there is
a flavor of the Professional edition for 2013 that is available with certain Office365
subscriptions. The Office365 edition of Visio Professional can be used on up to 5 PCs
as a Click-Once installation

You need to be aware of the relevant features that are in each of them. In the
following matrix, a black dot denotes which features are in which edition:

Although you will need Microsoft Visio 2013 Professional Edition to use the
Validation capabilities, the Standard edition will be able to review any of the
diagrams created.

Planning your own solutions
By now, you should be eager to explore the out of the box structured diagram
functionality, and perhaps be considering how to create validation rules for your
own business. In doing so, I would advise that you always look to build upon what
Visio provides—do not try to replicate it! I believe that trying to create your own
Shape Data objects, or your own line routing algorithms, for example, is ultimately a
waste of time as they will lead you down some dead-ends, as the routing algorithms
are complex and difficult to reproduce.

The following three legacy diagram templates have had their functionality reduced
because Microsoft has removed the add-ons that they were associated with. The new
templates for these seem ripe for someone to create validation rules for the following:

• The Software and Database\UML Model Diagram solution from Visio 2010
has been removed and replaced with six UML templates, none of which have
an add-on behind them to create a model in the way that it used to.

Overview of Process Management in Microsoft Visio 2013

[28]

• The Software and Database\Database Model Diagram solution from Visio
2010 has been removed and replaced with three database modeling notation
templates, none of which have an add-on behind them to create a model in
the way that it used to.

• The Software and Database\Data Flow Model Diagram solution is one
that was re-assessed for Visio 2010. We still have the template and stencil for
this but the add-on has not made it through the Microsoft rationalization of
Visio add-ons. Therefore, you can now construct DFD models badly without
realizing it. We will attempt to remedy this omission in a later chapter by
constructing a ruleset that can be used with DFD models.

The following two diagram templates in Visio have their own limitations for
automation because, though they have associated add-ons, they do not have a
programmers interface:

• The Organization Chart solution within Visio is essentially a closed add-on
that has been around for many years. It has been given a facelift in Visio 2013,
but experience has shown that it can only be enhanced with great care (and
skill). There is no Application Programming Interface (API) to develop with.

• The Pivot Diagram solution is useful but also lacks an API for developers,
thus making customization difficult.

One of the frequently asked questions by newbies to Visio occurs when confronted
by the multiple diagram categories and types: How is a particular template supposed
to be used? Often, they are directed to the Visio online help for examples of how
to create certain types of diagrams but this is not always sufficient because they are
really asking for automatic assistance as they create the diagram. What they usually
want is in fact a guided diagramming system; they require a system that provides
them with some feedback on the way that they are composing a diagram. It is easy
to drag-and-drop shapes in Visio, to connect them together, to make a diagram
pretty with embellishments, or to add text in a variety of ways. However, this
loosely-created drawing cannot consistently convey any semantic meaning unless
it follows generally accepted rules. It is the imposition of rules that turns a pretty
picture into a meaningful mesh of semantic symbology. This is where Microsoft Visio
2013 Professional has made a great advance because it has provided us with the
ability to create validation rules for different types of behaviors. In fact, these new
features are worthy of a ribbon tab, the PROCESS tab, that although automatically
applied to several drawing templates, is also available for use on any type of diagram.

Chapter 1

[29]

Summary
In this chapter, we looked at an overview of the new capabilities and process diagram
types in Visio 2013, especially with regard to structured and validated diagrams.

Microsoft Visio 2013 provides considerable ease-of-use features to the end user, a
rich programming model for the developer, and greater capabilities for document
management and sharing than ever before.

In the next chapter we will need to delve deeper into the internal structure of a Visio
document and the use of its various APIs, so that you can best understand how to
formulate your own rules to represent the business logic that you require.

Understanding the Microsoft
Visio Object Model

Whatever programming language you code in, you need to understand the
objects, properties, methods, relationships, and events of the application that you
are working with. Without this knowledge, the development process is slow and
any code you use is going to be inefficient. Visio is no different, in that it provides
a programmer's interface (API) with an object model described in the Visio Type
Library, but Visio also has a programmable ShapeSheet behind every shape.
Therefore, the Visio Type Library can only be used efficiently if you understand
the ShapeSheet, and in turn, the ShapeSheet formulae can only be used fully if you
understand the Visio Type Library.

Also, if you are going to create validation rules to check the relationships and
properties of structured diagrams, then you will need to understand how to
traverse the Visio object model.

Therefore, this chapter is going to explain the Microsoft Visio 15.0 Type Library
(VisLib.dll), and the key objects, collections, and methods in the programmer's
interface of Visio; and the next chapter will reveal the ShapeSheet.

Introducing the Visio Type libraries
The publicly displayed version number of an application such as Visio can be
quite different from the internal version number that is revealed to programmers.
For example, Microsoft Visio 2013 is the public version number for the internal
minor version number 15 (you can almost ignore the major version number because
it rarely changes). Therefore, programmers need to know that the Visio Type Library
version is 15, although their users will know it as Visio 2013.

Understanding the Microsoft Visio Object Model

[32]

There was no Version 13 prior to 14 because Visio was at Version
6 (externally Visio 2000) when Microsoft bought the company in
1999. At that time, Microsoft Office was internally at Version 9, so
Microsoft Visio 2002 was internally hiked up to Version 10 to be at
the same version number as Microsoft Office 2002. At this point,
Microsoft Visio 2003 was internally at Version 11, and Microsoft Visio
2007 was internally at Version 12. Version 13 went the same way as
the thirteenth floors in high-rise buildings in the States—pandering to
the superstitions of the masses.

Microsoft Visio 2013 will also install the following type libraries:

Name File Visio Editions
Microsoft Visio 15.0 Drawing Control Library VisOcx.dll All editions
Microsoft Visio 15.0 Save As Web Type Library SaveAsWeb.dll All editions

In addition, since Version 2007, Microsoft Outlook installs the Microsoft Visio
Viewer (Vviewer.dll), which has a useful programming interface itself. It allows
pages, shapes, and data to be explored, even without Visio being installed. It is
also available as a separate, free download from Microsoft (see http://search.
microsoft.com/en-us/DownloadResults.aspx?q=visio+viewer+2013), should
you wish to use it on Windows desktops that do not have Microsoft Outlook installed.

Going beyond the object model
Some programmers think that Visio is present just to provide a graphical
canvas with the symbols and lines that they need to manipulate or interrogate.
Perhaps they have been used to draw items in Windows Forms applications or
even XAML-based development with WPF (Windows Presentation Foundation),
Silverlight, or Windows 8 applications. To think like this is to misunderstand Visio,
because it has a rich-diagramming engine, coupled with the ability to encapsulate
data and custom behaviors in every element, not to mention the inheritance between
certain types of objects. This has resulted in a fairly complex structure in parts of the
object model, so that all of the desired functionality can be described fully.

Programmers who look at the Visio object model for the first time may be full of
preconceptions and look in vain for the X and Y coordinate of a shape on a page.
They are surprised and a little frustrated that the X coordinate of a shape on a page is:

shape.CellsSRC(VisSectionIndices.visSectionObject,
 visRowIndices.visRowXFormOut,
 visCellIndices.visXFormPinX).ResultIU

Chapter 2

[33]

The SRC part of the CellsSRC method is an acronym for Section Row Column,
which will be explained later.

There is an alternative shorter form namely:

Shape.Cells("PinX").ResultIU

However, the shorter form is intrinsically more inefficient since the name has to be
interpreted into the SRC indices by Visio anyway. Therefore, it is recommended that
you work with the indices rather than the names, if at all possible.

The Visio object model is quite large, so I shall be selective by only discussing the
parts that I think will assist in understanding and developing validation rules. There
are other type libraries installed with Visio, but these are not relevant to the scope
of this book. In addition, the Visio edition installed has an impact on the Visio Type
Library itself. For example, the Validation objects and collections and the Data
Linking features are only available if you have the Professional edition installed.

The other differences between the different Visio editions are the add-ons, templates,
and stencils installed with it. However, as these could be moved around and copied
between users (illegally), their presence (or lack of presence) cannot be relied on
to ascertain the edition installed. One way to ascertain the version is to check a
specific registry setting (a popular way if you are writing an installation script and
are not familiar with PowerShell), or using the CurrentEdition property of the
Application object.

HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Visio\Application\
LicenseCache

The expected values are STD or PRO.

Classifying the Visio document
Before we get into the object model, we need to remind ourselves of the formats
and types of Visio documents. Traditionally, Visio used its own binary format
(which usually has an extension *.vsd for drawings), and then the XML format
was introduced (*.vdx for drawings). The latter is approximately ten times larger
in size than the former, although it often compresses to be smaller than the binary
equivalent. The XML format is very verbose because it needs to describe the
complexity of the graphics and the inheritance of elements within the document. In
addition, it is not in the same zipped-up XML files in subfolders format as most of
the Microsoft Office applications.

www.allitebooks.com

http://www.allitebooks.org

Understanding the Microsoft Visio Object Model

[34]

The Visio Web Drawing was new in Visio 2010, which, when published to
SharePoint 2010, allows certain elements that are linked to data recordsets to be
automatically refreshed when the underlying data is updated, without using Visio.

Microsoft Visio 2013 has a new XML format based on the Open Packaging
Convention. It is a streamlined version of the old XML format, and it is broken
down into many files within a zipped file.

This new Visio file format can be rendered directly by SharePoint 2013 and
SharePoint Online with Office 365 if Visio Services are enabled. This feature,
however, does not enable new shapes to be created or deleted or for connections to
be varied during the refresh. But it can be edited by the Visio client application to
make these sorts of changes. Therefore, Visio 2013 files can be rendered by a new
standard web part, VWA (Visio Web Access control), in Microsoft SharePoint 2013,
and can be set to refresh either on a timer event or manually. This means that native
Visio files can be viewed, and commented upon, in any modern browser, on any
modern devices such as Surface RT, iPad, or an Android Tablet.

The VWA is able to recalculate the formulas of all the shape cells
that are linked to a refreshable data recordset; however, the VWA
does not support layer control.

The following diagram lists the Visio file extensions for the different classes of
Visio documents. All of the file structures are the same, which means that you can
just change the extension from one to another, and the Visio UI will respond to the
extension to treat the file differently.

Chapter 2

[35]

A Visio drawing document can save its workspace along with it, which usually
means that there are a collection of docked stencils that contain the shapes
(properly referred to as Masters when they are in a stencil).

A Visio stencil is just a Visio document with the pages hidden, and is normally
saved with a *.vssx extension if there are no macros present, or *.vssm if there
are macros present.

A Visio template is just a Visio drawing document saved with a different extension,
*.vstx if there are no macros present, and *.vstm with macros present, so that Visio
knows that the default action is to open a copy of it, rather than the original document.

I mentioned that a stencil is just a Visio document with the drawing pages hidden.
Well, a drawing is just a Visio document which normally has its stencil hidden.
However, you can reveal this in the UI by navigating to More Shapes | Show
Document Stencil.

Any shape in a page in the document that is an instance of a Master
must be an instance of a Master in the document stencil. It is not
an instance of a Master in the stencil from which it was originally
dragged and dropped.

Selecting a programming language to
use with Visio
Microsoft Visio comes with Visual Basic for Applications (VBA) built into it,
which is a very useful interface for exploring the object model and testing out ideas.
In addition, Visio has a macro recorder that can provide a quick and dirty way of
exploring how some of the actions are performed. However, the resultant code from
the macro recorder can be very verbose in parts, and completely miss out some bits
because Visio is running code inside one of the many Add-ons or COM add-ins that
may be installed.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Understanding the Microsoft Visio Object Model

[36]

If you want to use VBA then you will need to run Visio in Developer Mode by ticking
the option available from the Visio Options dialog (use File | Options to display the
following screenshot), in the Advanced group, as shown in the given screenshot.

Developer Mode will also add some features to other parts of the Visio interface, such
as additional options on the right mouse menu when a page and shape are selected.

Understanding the Drawing Explorer
window
The Drawing Explorer window can be opened in the Visio UI in the Show/Hide group
on the DEVELOPER tab. It is an extremely useful method for visually navigating some
of the collections and objects in the Visio application. The DEVELOPER tab is shown
in this screenshot with an additional ribbon group that was created by the Visio SDK,
and a custom-extra ribbon group for some common commands that I use repeatedly.

Chapter 2

[37]

The Drawing Explorer window starts with the active document object as the
top-level node, and displays the Masters, Pages, and Styles collections, among
others, in subnodes.

There are two different page collections: Foreground Pages and
Background Pages. You will normally find all of the interesting
shapes in the Foreground Pages collection, since the Background
Pages are usually used for backgrounds and titles.

Understanding the Microsoft Visio Object Model

[38]

Understanding the Visio object model
We will now examine some of the key properties of the main objects in the Visio
Type Library. Please note that the collections have been highlighted in the diagrams
of these objects.

The output text that is displayed within the Immediate
window has been formatted as a table for legibility in the
following code examples.

Examining the Application object
The Application object is the root of most collections and objects in Visio,
including the Active objects, two of which are useful for traversing structured
diagrams—ActiveDocument and ActivePage.

The following subfunction in VBA prints out the salient information to the
Immediate window:

Public Sub DebugPrintApplication()
Debug.Print "DebugPrintApplication"
 With Visio.Application
 Debug.Print , "ActiveDocument.Name", .ActiveDocument.Name
 Debug.Print , "ActivePage.Name", .ActivePage.Name
 Debug.Print , "Addons.Count", .Addons.Count
 Debug.Print , "COMAddIns.Count", .COMAddIns.Count
 Debug.Print , "CurrentEdition", .CurrentEdition
 Debug.Print , "DataFeaturesEnabled", .DataFeaturesEnabled
 Debug.Print , "Documents.Count", .Documents.Count
 Debug.Print , "TypelibMajorVersion", .TypelibMajorVersion
 Debug.Print , "TypelibMinorVersion", .TypelibMinorVersion

Chapter 2

[39]

 Debug.Print , "Version", .Version
 Debug.Print , "Build", .Build
 Debug.Print , "FullBuild", .FullBuild
 Debug.Print , "Language", .Language
 Debug.Print , "IsVisio32", .IsVisio32
 End With
End Sub

An example output is:

DebugPrintApplication

ActiveDocument.Name Visio Object Model.vsdm

ActivePage.Name Page-1

Addons.Count 100

COMAddIns.Count 16

CurrentEdition 1

DataFeaturesEnabled True

Documents.Count 2

TypelibMajorVersion 4

TypelibMinorVersion 15

Version 15.0

Build 4481

FullBuild 1006702977

Language 1033

IsVisio32 -1

Reviewing the ActiveDocument and ActivePage
objects
These objects can be referenced from the global object in VBA, but they are only
available via the Application object in other languages.

Reviewing the Addons collection
Many of the Microsoft-supplied Visio templates are intended to run with some
additional features that are provided as add-ons. Microsoft writes all of its additional
code as C++ add-ons to Visio as Visio Solution Library files (*.vsl), which are
standard DLLs with specific header information in them. Third party developers can
also write Addons, but some may write them as executable files (*.exe), which are
generally slower because they are not running within the Visio process thread.

Understanding the Microsoft Visio Object Model

[40]

You can list the Addons collections that are loaded in your Visio installation using the
following code:

Public Sub EnumerateAddons()
Dim adn As Visio.Addon
 Debug.Print "EnumerateAddons : Count = " & _
 Application.Addons.Count
 Debug.Print , "Index", "Enabled", "NameU", "Name"
 For Each adn In Application.Addons
 With adn
 Debug.Print , .Index, .Enabled, .NameU, .Name
 End With
 Next
End Sub

This will output a very long list to your Immediate window; the first few lines are
as follows:

EnumerateAddons : Count = 100

Index Enabled NameU Name

1 -1 Aec Aec

2 -1 AutoSpaceConvert AutoSpaceConvert

3 -1 AutoSpaceDrop AutoSpaceDrop

4 -1 AutoSpaceResize AutoSpaceResize

5 -1 Move Shapes... Move Shapes...

6 -1 Shape Area and
Perimeter...

Shape Area and
Perimeter...

7 -1 Array Shapes... Array Shapes...

8 -1 Measure Tool Measure Tool

9 -1 AnalystEdition.exe AnalystEdition.exe

10 -1 BRAINSTORM Brainstorming

11 -1 DBWiz Database Wizard

Note that the NameU (Universal Name) property can be different than the Name
property, although either can be used if you want to reference a particular add-on to
run it. For example, if you select a shape in Visio, then type the following code into
the Immediate window:

Application.Addons("Shape Area and Perimeter...").Run("")

Chapter 2

[41]

This will cause the add-on to run if you have a shape selected:

Reviewing the COMAddIns collection
Most Visio developers will use the VSTO (Visual Studio Tools for Office) template,
installed with the Visio SDK, in Visual Studio to create a VSTO Addin. These are
found in the COMAddIns collection, which is actually part of the Microsoft Office 15.0
Object Library, so you will need to set it correctly if you want IntelliSense to work in
Visual Studio or the VB Editor.

The following code will enumerate the loaded COMAddIns in your Visio application:

Public Sub EnumerateCOMAddIns()
Dim adns As Office.COMAddIns
Dim adn As Office.COMAddIn
 Set adns = Application.COMAddIns
 Debug.Print "EnumerateCOMAddIns"
 Debug.Print , "Description"
 For Each adn In adns
 With adn
 Debug.Print , .Description
 End With
 Next
End Sub

Understanding the Microsoft Visio Object Model

[42]

The output in the Immediate window will be as shown in the following table
(as these are custom add-ins, which I have mostly developed, you may not have
most or all of the following list):

EnumerateCOMAddIns

Description

ASMLEPMTimeline

CentechDraw

DESEPMTimeline

MapPoint Office Add-In

MultiLanguageTextForVisio

multiSelect

Nexans Visio Template 3.2

NMSRoadmap

pdSelect

Mapping Edition In-Process Wrapper

RulesTools

VisioEventTestAddIn

visNet

Visual Risk Analyser

VSTOAddIn

Visio Add-In for WBS Modeler

Reviewing the CurrentEdition property
Since the Validation object is only in the Visio Professional edition, a further check
could be included to ensure that the CurrentEdition value is not standard. It can be
done using the following command:

If Application.CurrentEdition= _
 visEdition.visEditionProfessional Then
 'Insert code here
End If

Reviewing the DataFeaturesEnabled property
Data Linking and Data Graphics features are not available in Visio Standard, and
they could be disabled in code in Visio Professional, so you should check that this
value is True if you want to interact with these particular features.

Chapter 2

[43]

Reviewing the Documents collection
The Documents collection contains all of the stencils and drawings that are currently
open in the Visio application.

Consider this screenshot of a drawing that has been created from the Software and
Databases | UML Class template:

How many documents are open? Well, there is one showing, Visio Object Model.
vsd, in the Switch Windows menu on the VIEW tab. There appear to be seven
docked stencils open too.

If you were to run the following code to list the currently open documents in the
Visio application:

Public Sub EnumerateDocuments()
Dim doc As Visio.Document
 Debug.Print "EnumerateDocuments : Count = " &
 Application.Documents.Count
 Debug.Print , "Index", "Type", "ReadOnly", "Name", "Title"
 For Each doc In Application.Documents
 With doc
 Debug.Print , .Index, .Type, .ReadOnly, .Name, .Title

Understanding the Microsoft Visio Object Model

[44]

 End With
 Next
End Sub

Then you might get output that looks as shown in the following table:

EnumerateDocuments : Count = 2

Index Type ReadOnly Name Title

1 1 0 Visio Object Model.
vsdm

2 2 -1 USTRME_M.VSSX UML Class Diagram
Shapes

As you can see, there are two documents, one of which is Type = 1 (Drawing) and
the other is Type = 2 (Stencil). The Document Stencil is part of the drawing page,
Visio Object Model.vsd.

Reviewing the TypelibMinorVersion and Version
properties
It may also be helpful to check the version of Visio, since Validation was not
available prior to Visio 2010:

If Application.Version = "15.0" Then

Or

If Application.TypelibMinorVersion >= 14 Then

Examining the Document object
The Application.Documents collection, seen highlighted in the following
diagram, contains many Document objects. The Document object contains the
collections of DataRecordsets, Masters, Pages, and other properties, that you
may need if you are validating a document.

Chapter 2

[45]

Reviewing the Advanced Properties object
The Advanced Properties objects, which are the document properties in the UI,
could be referenced by the Validation expressions, as follows:

• Category
• Creator displayed as Author in the Properties dialog
• Description displayed as Comments in the Properties dialog
• HyperlinkBase
• Keywords displayed as Tags in the Properties dialog
• Manager
• Subject
• Title

Understanding the Microsoft Visio Object Model

[46]

You can view these values in the backstage panel, and in the Advanced
Properties option on the Properties button. The following code will print
out the document's properties:

Public Sub DebugPrintDocumentAdvancedProperties()
 Debug.Print "DebugPrintDocumentAdvancedProperties : " &
 ActiveDocument.Name
 With ActiveDocument
 Debug.Print , "Title", .Title
 Debug.Print , "Subject", .Subject
 Debug.Print , "Author", .Creator
 Debug.Print , "Manager", .Manager
 Debug.Print , "Company", .Company
 Debug.Print , "Language", .Language
 Debug.Print , "Categories", .category
 Debug.Print , "Tags", .Keywords
 Debug.Print , "Comments", .Description
 Debug.Print , "HyperlinkBase", .HyperlinkBase
 End With
End Sub

The output will be as follows:

DebugPrintDocumentAdvancedProperties : Visio Object Model.vsdm

Title Business Process Diagramming in Visio 2013

Subject The Visio Object Model

Author David Parker

Manager Packt Publishing

Company bVisual ltd

Language 1033

Categories Samples

Tags Visio,Object Model,Type Library

Comments This document contains sample VBA code

HyperlinkBase http://www.visiorules.com

Reviewing the DataRecordsets collection
If you are using the Data Linking features, then you may want to reference one or
more of the DataRecordsets objects in the document. The following code will list
the DataRecordsets objects in the active Visio document:

Public Sub EnumerateRecordsets()
Dim doc As Visio.Document

Chapter 2

[47]

Dim dst As Visio.DataRecordset
 Set doc = Application.ActiveDocument
 Debug.Print "EnumerateRecordsets : Count = " &
 doc.DataRecordsets.Count
 Debug.Print , "ID", "DataConnection", "Name"
 For Each dst In doc.DataRecordsets
 With dst
 Debug.Print , .ID, .DataConnection, .Name
 End With
 Next
End Sub

The output will be as follows:

EnumerateRecordsets : Count = 1

ID DataConnection Name

1 1 Sheet1

The Pivot Diagram feature in Visio creates multiple
DataRecordsets that are not visible in the normal UI.

Reviewing the DocumentSheet object
The DocumentSheet object is the ShapeSheet of Documents.

If you want to ensure that a document is uniquely identifiable, since its name can
be changed, then you can use the UniqueID property to generate a GUID for the
DocumentSheet object, for example where doc is a Document object.

doc.DocumentSheet.UniqueID(VisUniqueIDArgs.visGetOrMakeGUID)

Reviewing the ID and Index properties
An ID property is assigned to a document when it is added to the Documents
collection; it will be kept so long as the document exists in the collection,
whereas the Index property may change if other documents are closed.

Reviewing the FullName and Name properties
The Name property is the filename without the path, while the FullName property is
the whole path, including the filename. Note that both of these properties include the
file extension.

Understanding the Microsoft Visio Object Model

[48]

Reviewing the Masters collection
The Document object contains the Masters collection as shown in the given code:

Public Sub EnumerateMasters()
Dim doc As Visio.Document
Dim mst As Visio.Master
 Set doc = Application.ActiveDocument
 Debug.Print "EnumerateMasters : Count = " & doc.Masters.Count
 Debug.Print , "ID", "Type", "OneD", "Hidden", "Name"
 For Each mst In doc.Masters
 With mst
 Debug.Print , .ID, .Type, .OneD, .Hidden, .Name
 End With
 Next
End Sub

This code will produce the output as follows:

EnumerateMasters : Count = 5

ID Type OneD Hidden Name

3 1 -1 0 Dynamic connector

5 4 0 0 Composite

8 1 0 0 Class

9 1 0 0 Member

10 1 0 0 Separator

The Type=1 is the constant visMasterTypes.visTypeMaster. There are other types
for fills, themes, and data graphics but they will usually be hidden to ensure that the
user does not accidently drag-and-drop them off the document stencil in the UI.

Reviewing the Pages collection
The Pages collection of the Document object contains all pages in the document,
regardless of the type; thus you may need to filter by type when you are
traversing them.

The following code provides a simple enumeration of the pages:

Public Sub EnumeratePages()
Dim doc As Visio.Document
Dim pag As Visio.Page
 Set doc = Application.ActiveDocument
 Debug.Print "EnumeratePages : Count = " & doc.Pages.Count

Chapter 2

[49]

 Debug.Print , "Index", "ID", "Type", "Name"
 For Each pag In doc.Pages
 With pag
 Debug.Print , .Index, .ID, .Type, .Name
 End With
 Next
End Sub

The output will be as follows:

EnumeratePages : Count = 3

Index ID Type Name

1 0 1 Page-1

2 5 1 Page-2

3 6 1 Page-3

The value of the ID property does not need to be contiguous

Reviewing the ReadOnly property
This is a Boolean (True/False) property. Usually, docked stencils are read-only, and
Visio-supplied ones cannot normally be edited. If you need to save a document in
code, then it is useful to check that it can be saved first.

Reviewing the Type property
You can test for the type of document in code to ensure that it is the type that
you want:

If doc.Type=VisDocumentTypes.visTypeDrawing Then
...

The other types are visTypeStencil and visTypeTemplate.

Reviewing the Validation object
The Validation object provides access to the Validation API and will be discussed
at length in Chapter 4, Understanding the Validation API.

Understanding the Microsoft Visio Object Model

[50]

Examining the Master object
When a Master shape is dragged and dropped from a stencil onto a page (or by using
any of the PageDrop methods), then Visio checks the local document stencil to see if
the master already exists.

If a master name exists already and it has not been edited locally, or even if it has and
the MatchByName property is true, then the shape becomes an instance of the local
master. If it does not exist, then the master is copied from the docked stencil to the
local stencil, so that the shape can become an instance of it.

The MatchByName property can be set by editing a master's
properties in the user interface, and changing the Match Master By
Name on Drop checkbox in the Master Properties dialog.

If you open a master on your local document stencil via Edit Master | Edit Master
Shape, then you can open the Master Explorer window. You can then see that it is
usually composed of a single shape which often has a Shapes collection within it.

Chapter 2

[51]

You can do a certain amount of editing to the shape in a local master, and have
these changes propagated to all instances within the document. However, many
users make the assumption that you can simply replace the master in a document
to update the instances. This is not so, although some third-parties have attempted
to make tools that can perform this task.

Reviewing the BaseID property
It is possible that many Masters have been derived from the same root Masters, in
which case they would all have the same BaseID.

Understanding the Microsoft Visio Object Model

[52]

Reviewing the Hidden property
If this value is true, then the Master object is hidden in the UI, but it still can have
shape instances. This is merely the display position of the Master object in the stencil.

Reviewing the ID, Index, and IndexInStencil
properties
An ID property is assigned to a master when it is added to the Masters collection, and
it will be kept so long as the document exists. The Index property is the read-only
ordinal position in the stencil, but the IndexInStencil property controls the display
position in the stencil, and can be modified.

Reviewing the Name and NameU properties
The Name property is the displayed name, which could be different to the universal
NameU property.

Reviewing the PageSheet object
The PageSheet object is the ShapeSheet of the Master object (or a Page object).

If you wanted to ensure that a page is uniquely identifiable, since its name can
be changed, then you can use the UniqueID property to generate a GUID for the
PageSheet object, for example, where pag is a Page object.

pag.PageSheet.UniqueID(VisUniqueIDArgs.visGetOrMakeGUID)

Reviewing the Type property
There are many different types of Master, since they are used to define data graphics,
fills, lines, and themes; so it can be useful to check first.

If master.Type = Visio,visMasterTypes.visTypeMaster Then
...

Chapter 2

[53]

Examining the Page object
The Page object contains the Connects, Layers, and most importantly,
the Shapes collections.

The ReviewerID property is not intended to be used anymore, because Visio 2013
has introduced the Comments and ShapeComments collections.

Reviewing the Connects collection
The page has a Connects collection that contains all of the shape connections in it. A
developer can now use the simpler ConnectedShapes and GluedShapes methods,
described later in this chapter, but it is worth understanding this collection.

Understanding the Microsoft Visio Object Model

[54]

In a process diagram, most flowchart shapes are connected to each other via a
Dynamic Connector shape. So, each Dynamic Connector (which is OneD) shape is
usually connected to a flowchart shape at each end of it. The cell at the start of the
line is called BeginX, and the cell at the end is called EndX.

There may be times that you may need to check the particular connection point that a
connector is glued to. For example, you may have named the connection point rows
because they represent a network port or something specific. Therefore, it is useful to
know that you can iterate the Connects collection with the following code:

Public Sub EnumeratePageConnects()
Dim pag As Visio.Page
Dim con As Visio.Connect
 Set pag = Application.ActivePage
 Debug.Print "EnumeratePageConnects : Count = " &
 pag.Connects.Count
 Debug.Print , "Index", "FromSheet.Name", "FromCell.Name",
 "FromSheet.Text ", _
 "ToSheet.Name", "ToCell.Name", "ToSheet.Text"
 For Each con In pag.Connects
 With con
 Debug.Print , .Index, .FromSheet.Name, .FromCell.Name,
 .FromSheet.Text, _
 .ToSheet.Name, .ToCell.Name, .ToSheet.Text
 End With
 Next
End Sub

Chapter 2

[55]

The following are the first few rows of the example output:

EnumeratePageConnects : Count = 24

Index FromSheet.
Name

FromCell.
Name

FromSheet.
Text

ToSheet.
Name

ToCell.
Name

ToSheet.
Text

1 Dynamic
connector

BeginX Start/End PinX Editorial
Process

2 Dynamic
connector

EndX Document PinX Author
Submits 1st
Draft

3 Dynamic
connector.5

BeginX Document PinX Author
Submits 1st
Draft

4 Dynamic
connector.5

EndX Decision PinX Editorial
Review

5 Dynamic
connector.7

BeginX Pass Decision PinX Editorial
Review

The text on each shape is displayed in the output to make it easier to understand,
but it is more likely that you will need to read the Shape Data on each shape in more
complex diagrams.

Reviewing the ID and Index properties
An ID property is assigned to a page when it is added to the Pages collection; it will
be kept, whereas the Index property will change if the page order is modified.

Reviewing the Layers collection
A page can contain many layers, which can have their Visible and Print setting
toggled among other options. However, changing the display of layers by updating
the Visible property is not supported in the Visio Web Access—you will see the
layers in the state they were when the Visio document was saved to SharePoint. This
is probably because a Visio shape can belong to none or many layers, making the
correlation to XAML very difficult.

Understanding the Microsoft Visio Object Model

[56]

Users often confuse layers with the display order in the Z-order or index. The
Z-index is controlled by the index of the shape within the page. The Move Forwards,
Move to Front, Move Backwards, and Move to Back commands merely change the
index of the affected shapes. However, Visio 2010 introduced a new way to control
the display level, which will be discussed in the next chapter. The Visio user can
access the layer settings from the Layer Properties dialog.

The sum of the number of shapes on each layer can be less or greater than the total
number of shapes on a page, because a shape can belong to none or multiple layers,
and shapes with subshapes can have different layer membership.

Chapter 2

[57]

The Drawing Explorer window provides an easy way of viewing the list of shapes
assigned to each layer.

It is important to understand that there is no guarantee that a similar named layer
will have the same index on different pages in the same document. Also, layer
control is generally done at a page level, rather than a document level. Therefore, it
is useful to understand how you can iterate the layers on a page in code, as in the
following example:

Public Sub EnumeratePageLayers()
Dim pag As Visio.Page
Dim lyr As Visio.Layer
 Set pag = Application.ActivePage
 Debug.Print "EnumeratePageLayers : Count = " &
 pag.Layers.Count
 Debug.Print , "Index", "Row", "Visible", "Print", "Name"
 For Each lyr In pag.Layers
 With lyr

Understanding the Microsoft Visio Object Model

[58]

 Debug.Print , .Index, .Row,
 .CellsC(VisCellIndices.visLayerVisible),
 .CellsC(VisCellIndices.visLayerPrint), .Name
 End With
 Next
End Sub

The output will be as follows:

EnumeratePageLayers : Count = 8

Index Row Visible Print Name

1 0 1 1 Flowchart

2 1 1 1 Connector

3 2 1 1 Callout

4 3 1 1 Author Callout

5 4 0 1 Editorial Team

6 5 1 1 Editorial Team Callout

7 6 1 1 Author

8 7 1 1 Container

Layers are useful for controlling visibility of shapes assigned to them, and they
provide a way of retrieving a selection of shapes. They can also be part of a
validation expression.

Reviewing the PageSheet object
The PageSheet object is the ShapeSheet of the Master or a Page object. (See the
Examining the Master object section covered previously).

Reviewing the Comments and ShapeComments
property
The REVIEW tab in Visio 2013 has been revised because a new method of commenting
on pages and shapes has been introduced and is intended to replace the reviewers'
markup in the previous versions. Comments can now be added by Visio or SharePoint
2013 users via the Visio Web Access control. The latter method means that even those
users who do not have Visio installed can add comments to Visio documents.

Chapter 2

[59]

The following code can be run to list the active page comments and all of the
comments of the shapes on the page:

Public Sub EnumerateComments()
Dim pag As Visio.Page
 Set pag = Application.ActivePage
 Debug.Print "UserName : " & pag.Application.Settings.UserName
 Debug.Print "UserInitials : " & _
 pag.Application.Settings.UserInitials
 Debug.Print "EnumerateComments for " & pag.Name
 Debug.Print , "Source", "Date", "Initials", "Name", "Text"
 Dim cmnt As Visio.Comment
 For Each cmnt In pag.Comments
 Debug.Print , cmnt.CreateDate, cmnt.AuthorInitials, _
 cmnt.AuthorName, cmnt.AssociatedObject, cmnt.Text
 Next
End Sub

Understanding the Microsoft Visio Object Model

[60]

The output will be as follows:

UserName : David Parker

UserInitials : DP

EnumerateComments for Page-1

Date Initials Name Associated
Object

Text

15/05/2013
10:18:45

DP David
Parker

Member.158 The Comments
collection is new
in Visio 2013

15/05/2013
10:45:59

DP David
Parker

Member.93 The ShapeComments
collection of a
page contains all
of the comments on
each of the shapes
in the page

15/05/2013
10:46:50

DP David
Parker

Member.81 The Comments
collection of a
page contains the
comments for the
page only

15/05/2013
10:48:22

DP David
Parker

Page-1 The page object
can have multiple
comments

15/05/2013
10:49:19

DP David
Parker

Page-1 Comments are
threaded

15/05/2013
10:50:09

DP David
Parker

Member.103 The ReviewerID
is superceded by
Comments in Visio
2013

15/05/2013
11:05:02

DP David
Parker

Class.75 The Page is a
special Shape

The ShapeComments collection does not work at the time of writing, but it has been
reported to Microsoft. However, you can use the AssociatedObject property to
figure out the target page or shape.

Comments are not displayed in the Microsoft SharePoint 2010
Web Part, which displays the Visio document for the web
format (*.vdw).

Chapter 2

[61]

Reviewing the Shapes collection
Each Page, Master, or Shape object can have a Shapes collection. The Shapes
collections contain all of the shapes, whether they are instances of a Master,
or simple drawn lines, rectangles, text, and so on.

In the following example, I have shown simply how to iterate through the shapes on
a page:

Public Sub EnumeratePageShapes()
Dim pag As Visio.Page
Dim shp As Visio.Shape
 Set pag = Application.ActivePage
 Debug.Print "EnumeratePageShapes : Count = " &
 pag.Shapes.Count
 Debug.Print , "Index", "ID", "Type", "OneD", "Is Instance",
 "Name", "Text"
 For Each shp In pag.Shapes
 With shp
 Debug.Print , .Index, .ID, .Type, .OneD, Not .Master
 Is Nothing, .Name, .Text
 End With
 Next
End Sub

A few lines from the output are as follows:

EnumeratePageShapes : Count = 34

Index ID Type OneD Is Instance Name Text

1 63 2 0 True Notch Production

2 69 2 0 True Notch.69 Editing

3 75 2 0 True Notch.75 Drafting

4 1 3 0 True Start/End Editorial
Process

5 3 3 -1 True Dynamic
connector

6 2 3 0 True Document Author
Submits
1st Draft

7 5 3 -1 True Dynamic
connector.5

8 4 3 0 True Decision Editorial
Review

Understanding the Microsoft Visio Object Model

[62]

It may be necessary to test that specific shapes exist on a page during the
validation process. For example, it may be a requirement that there is a
Start/End flowchart shape.

Reviewing the Type property
There are several types of pages in Visio, namely Foreground, Background, and
Markup. Any page in Visio can have an associated Background page and any
number of associated Markup pages used by reviewers. Therefore, it is usual to
check the page type in code before continuing with any operations on it.

If pag.Type = visPageTypes.visTypeForeground Then
...

The Markup page type is still present in Visio 2013, but you are encouraged to use
the new method of adding comments to the page and shapes.

Examining the Shape object
The Shape object is the most important object in the Visio application, and it
needs to be seen as a whole with its member Sections, Rows, and Cells to
understand its complexity.

Chapter 2

[63]

I have not shown all the properties or relationships of the objects in the preceding
screenshot, but have hopefully shown how they relate to each other.

Here is a function that prints out basic information about a selected shape into the
Immediate window in VBA:

Public Sub DebugPrintShape()
If Application.ActiveWindow.Selection.Count = 0 Then
 Exit Sub
End If
Dim shp As Visio.Shape
 Set shp = Application.ActiveWindow.Selection.PrimaryItem
 Debug.Print "DebugPrintShape : " & shp.Name
 With shp
 Debug.Print , "Characters.CharCount",
 .Characters.CharCount
 Debug.Print , "Connects.Count", .Connects.Count
 Debug.Print , "FromConnects.Count", .FromConnects.Count
 Debug.Print , "Hyperlinks.Count", .Hyperlinks.Count
 Debug.Print , "ID", .ID
 Debug.Print , "Index", .Index
 Debug.Print , "IsCallout", .IsCallout
 Debug.Print , "IsDataGraphicCallout",
 .IsDataGraphicCallout
 Debug.Print , "LayerCount", .LayerCount
 Debug.Print , "Has Master", Not .Master Is Nothing
 Debug.Print , "Has MasterShape",
 Not .MasterShape Is Nothing
 Debug.Print , "Name", .Name
 Debug.Print , "NameID", .NameID
 Debug.Print , "NameU", .NameU
 Debug.Print , "OneD", .OneD
 Debug.Print , "Parent.Name", .Parent.Name
 Debug.Print , "Has RootShape", Not .RootShape Is Nothing
 Debug.Print , "Text", .Text
 Debug.Print , "Type", .Type
 End With
End Sub

Understanding the Microsoft Visio Object Model

[64]

The preceding code produces the following output in my sample workflow,
as shown in the given table, when the Document shape with the text Author
Submits 1st Draft is selected before the code is run:

DebugPrintShape : Document

Characters.CharCount 24

Connects.Count 0

FromConnects.Count 3

Hyperlinks.Count 0

ID 2

Index 6

IsCallout False

IsDataGraphicCallout False

LayerCount 1

Has Master True

Has MasterShape True

Name Document

NameID Sheet.2

NameU Document

OneD 0

Parent.Name Write Chapter Sub-process

Has RootShape True

Text Author Submits 1st Draft

Type 3

Reviewing the Characters and Text properties
Every shape in Visio has a text block, regardless of whether there are any characters
in it. This text block can be multiple lines, contain different fonts and formats, and
can even contain references to other cell values. Indeed, if a text block does contain
references to other cells, then the shape.Text property in code will display special
characters instead of the actual value. However, shape.Characters.Text will
return the referenced cell's values. Therefore, it is usually better to use the shape.
Characters.Text property.

Chapter 2

[65]

Reviewing the Connects and FromConnects
collections
The Connects collection contains the connections that the source shape is connected
to, whereas the FromConnects collection contains the connections that are connected
to the source shape.

Sounds easy, but it isn't. Traversing a structured diagram using these collections
gets terribly messy, so use the newly added ConnectedShapes and GluedShapes
methods, as described in the Delving into the Connectivity API section covered later
in this chapter.

Reviewing the Hyperlinks collection
Hyperlinks can be created in the UI, in code, or even automatically by using Data
Linking. Hyperlinks can contain http:, https:, and even mailto: URLs. Therefore,
you may need to be aware of them, and even report on them.

Reviewing the ID, Index, NameID, Name, and NameU
properties
The Index property is controlled by the Z-index or Z-order in the user interface
(by using Send to Back, Bring to Front, and so on), whereas the ID property is a
sequential number that is assigned when the shape is created. The NameID property
is a concatenation of Sheet and ID.

The Name and NameU properties are automatically created, usually as a concatenation
of the Master.Name and ID properties, and are originally identical. These properties
can be modified (even independently of each other), but they must be unique for
the Shapes collection of the parent. The NameU property is the Shapes collection's
locale-independent name, but Name can be locale-specific.

Reviewing the IsCallout and IsDataGraphicCallout
properties
The IsCallout property was a new property for Visio 2010, implemented so
that you can spot more easily whether a shape is one of the new callout shapes.
IsDataGraphicCallout was introduced in Visio 2007 so that you can identify
if the parent shape is a Data Graphic shape.

Understanding the Microsoft Visio Object Model

[66]

Reviewing the LayerCount property
A shape can be a member of none, one, or multiple layers, which can lead to
great complexity. You may wish to have a rule that a shape must only belong
to a single layer.

Reviewing the Master, MasterShape, and
RootShape objects
A shape in Visio can either be an instance of a Master object, that is one that has
been dragged and dropped from a stencil, or it is one that is just drawn, like a line,
rectangle, ellipse, or text. You can test this by checking if the shape.Master or
shape.MasterShape object exists (Is Nothing) or not.

If the shape is part of a Master instance, then the RootShape object is the top-level
shape of the instance.

Reviewing the OneD property
The OneD property is true if the shape is set to behave like a line.

Reviewing the Parent object
The Parent property is never Nothing, but it can be either a Page, Master,
or Shape property.

Note that the Parent object may also be one of the following Containing properties:

• A shape in the Page.Shapes collection always has values for the
ContainingPage and ContainingPageID properties

• A shape in the Master.Shapes collection always has values for the
ContainingMaster and Containing MasterID properties

• A shape in the Shape.Shapes collection always has values for the
ContainingShape and ContainingShapeID properties

Reviewing the Type property
A shape can be a group of other shapes, in which case the shape.Type property will
be equal to VisShapeTypes.visTypeGroup, and the shape.Shapes collection will
probably contain other shapes.

There are other shape types too, such as Guide and Ink, but most will be
VisShapeTypes.visTypeShape or VisShapeTypes.visTypeGroup.

Chapter 2

[67]

Examining the Section object
Visio ShapeSheets have two types of Section objects—fixed and variable. You can
always rely upon a fixed Section object being present; thus, you do not need to
test for its existence before referencing it.

However, some sections are optional (and, in the case of Geometry, there may be
multiple occurrences). Therefore, you may need to test for their existence before
referencing them. The most common variable Section objects that you will need to
be aware of are for Shape Data, User-defined Cells, and less often, Hyperlinks. You
will learn more about these in Chapter 3, Understanding the ShapeSheet™.

Use the enum VisSectionIndices in the Visio Type Library to get the right integer
value for the Section.Index property. For example, you could test for the presence
of a Shape Data section object in a shape as follows (where shp is a Shape object):

If shp.SectionExists(VisSectionIndices.visSectionProp,
 VisExistsFlags.visExistsAnywhere) Then...

You can get the number of Rows (the collection of Rows) in a Section object using the
RowCount method as follows:

For i = 0 to shp.RowCount(VisSectionIndices.visSectionProp) -1...

Examining the Row object
Sections contain Row objects, just like a worksheet in Excel, and each Row contains
cells. All of the interesting information is at the Cell object level.

Take this example where a Document shape is selected.

Understanding the Microsoft Visio Object Model

[68]

You can enumerate through the cells of the Shape Data section using the
following code:

Public Sub EnumerateShapePropRows()
If Application.ActiveWindow.Selection.Count = 0 Then
 Exit Sub
End If
Dim shp As Visio.Shape
Dim iRow As Integer
Dim cel As Visio.Cell
 Set shp = Application.ActiveWindow.Selection.PrimaryItem
 Debug.Print "EnumerateShapePropRows : " & shp.Name
 If Not shp.SectionExists(VisSectionIndices.visSectionProp, _
 VisExistsFlags.visExistsAnywhere) Then
 Debug.Print , "Does not contain any Shape Data rows"
 Exit Sub
 End If
 With shp
 Debug.Print , "Shape Data row count : ",
 .RowCount (VisSectionIndices.visSectionProp)
 Debug.Print , "Row", "RowName", "Label"
 For iRow = 0 To .RowCount(VisSectionIndices.visSectionProp)
 - 1
 Set cel = .CellsSRC(VisSectionIndices.visSectionProp,
 _iRow, 0)
 Debug.Print , cel.Row, cel.RowName,
 .CellsSRC(VisSectionIndices.visSectionProp, iRow, _
 VisCellIndices.visCustPropsLabel).ResultStr ("")
 Next iRow
 End With
End Sub

The output will be as follows:

EnumerateShapePropRows : Document

Shape Data row count 7

Row RowName Label

0 Cost Cost

1 ProcessNumber Process Number

2 Owner Owner

3 Function Function

4 StartDate Start Date

5 EndDate End Date

6 Status Status

Chapter 2

[69]

I had to use the CellsSRC() method to iterate through the
Row object, and that I had to understand what values to use for
the third parameter.

Moreover, I know that the RowName object is safe to use on the Shape Data section,
but some Section objects do not have names for their Row objects.

I have also displayed the difference between the RowName and the Label object of a
Shape Data row. Note that the RowName object cannot contain any special characters
or spaces, whereas Label can.

Examining the Cell object
We must look a little more closely at the Cell object because this is where the
important ShapeSheet formulae are written and the resultant values are returned.
Although it is more efficient to retrieve a Cell object by using the CellsSRC()
property of the Shape object, it will not always be readily available because the Cell
object belongs to an optional Section. In this case, it may be necessary to use the
Cells() and CellsU() properties. It is usually prudent to employ the CellsExists()
or CellsExistsU() properties first. The following screenshot lists the cell properties:

Understanding the Microsoft Visio Object Model

[70]

Reviewing the Column property
There are different numbers of columns in different Sections of ShapeSheet.
Therefore, you should use the Section specific values of the VisCellIndices
enum to refer to a specific cell column. For example, the User-defined Cells section
column indices begin with visCellIndices.visUser. However, all of the Shape
Data section column indices begin with visCellIndices.visCustProps because
Shape Data used to be called Custom Properties.

Reviewing the Error property
If a Cell formula is unable to evaluate, then the Error value is one of the
VisCellError enum values. This value is generated along with the result.

Reviewing the Formula and FormulaU properties
Every Cell in Visio can contain a formula. This formula can contain references to
other cells; because Visio works with multiple languages, the Formula string is the
localized version of the FormulaU string, which is in English.

Reviewing the Name and LocalName properties
For some languages, the LocalName property may be different from the English
Name property.

Reviewing the Result properties
There are quite a few different cell properties that begin with .Result because the data
type is agnostic. Generally, you can retrieve text values using the .ResultStr("")
property, and numeric values using the .ResultIU property. IU stands for Internal
Units in this case (inches), but you could also use the .Result("m") property to return
a numeric property formatted in the units of your choice.

Also, be aware that there is a powerful Application.ConvertResult method that
you can use to convert values between units.

Reviewing the Units property
This is an integer value from the VisUnitCodes enum.

Chapter 2

[71]

Iterating through cells
Now that we understand a bit more about the Cell object, we can iterate through
some cells in the Shape Data rows of a selected shape. The following code utilizes
the CellsSRC() property of the Shape object to print out the name, formula, and
resultant values of all the Shape Data rows in each of the selected shapes in Visio:

Public Sub EnumerateShapePropCells()
If Application.ActiveWindow.Selection.Count = 0 Then
 Exit Sub
End If
Dim shp As Visio.Shape
Dim iRow As Integer
Dim iCol As Integer
Dim cel As Visio.Cell
 Set shp = Application.ActiveWindow.Selection.PrimaryItem
 Debug.Print "EnumerateShapePropRows : " & shp.Name
 If Not shp.SectionExists(VisSectionIndices.visSectionProp, _
 VisExistsFlags.visExistsAnywhere) Then
 Debug.Print , "Does not contain any Shape Data rows"
 Exit Sub
 End If
 With shp
 Debug.Print , "Shape Data row count : ", _
 .RowCount(VisSectionIndices.visSectionProp)
 Debug.Print , "Row", "RowName"
 Debug.Print , , "Column", "Cell.Name", "Cell.Formula", _
 "Cell.ResultIU", "Cell.ResultStr("""")"
 For iRow = 0 To
 .RowCount(VisSectionIndices.visSectionProp) - 1
 For iCol = 0 To
 .RowsCellCount(VisSectionIndices.visSectionProp, iRow)
 - 1
 Set cel =
 .CellsSRC(VisSectionIndices.visSectionProp, _
 iRow, iCol)
 Debug.Print , , iCol, cel.Name, cel.Formula, _
 cel.ResultIU, cel.ResultStr("")
 Next iCol
 Next iRow
 End With
End Sub

Understanding the Microsoft Visio Object Model

[72]

On my selected Document shape, the top of the output looks like this:

EnumerateShapePropRows : Document

Shape Data row count : 7

Column Cell.Name Cell.Formula Cell.
ResultIU

Cell.
ResultStr("")

0 Prop.Cost CY(340,"GBP") 340 £340.00

1 Prop.Cost.
Prompt

"" 0

2 Prop.Cost.
Label

"Cost" 0 Cost

3 Prop.Cost.
Format

"@" 0 @

4 Prop.Cost.
SortKey

"" 0

5 Prop.Cost.Type 7 7 7

6 Prop.Cost.
Invisible

FALSE 0 FALSE

7 Prop.Cost.
Verify

FALSE 0 FALSE

8 Prop.Cost.
DataLinked

0 FALSE

9 Prop.CostH27 0 FALSE

10 Prop.CostI27 0 FALSE

11 Prop.CostJ27 0 FALSE

12 Prop.CostK27 0 FALSE

13 Prop.CostL27 0 FALSE

14 Prop.Cost.
LangID

1033 1033 1033

15 Prop.Cost.
Calendar

0 0 0

The cells numbered 9 to 13 stick out because they do not appear in the UI at all.
In fact, these are reserved for internal use or future use by Microsoft, so use them
at your peril!

Chapter 2

[73]

Delving into the Connectivity API
All of the preceding sections were to get you used to the object model a bit, so
that you can understand how to traverse a structured diagram and retrieve the
information that you want. The Connectivity API also provides easy methods
for creating and deleting connections, but we are simply interested in traversing
connections in order to check or export the process steps to another application.

Here is the top part of the Write Chapter Sub-process page that demonstrates some of
the key features of the Connectivity API. They are done in the following sequence:

1. The flow shapes are connected together, creating a logical sequence of steps.
2. Some steps have an associated callout with extra notes.
3. Some steps are within a Container shape to define the phase.

Now we will traverse the diagram in code, and list out the steps in their phases with
any associated notes, but first we need to understand a few of the new methods in
the Connectivity API.

Understanding the Microsoft Visio Object Model

[74]

Understanding the Shape.ConnectedShapes
method
The Shape.ConnectedShapes method returns an array of identifiers (IDs) of
shapes that are one degree of separation away from the given shape (that is,
separated by a 1-D connector).

The method has two arguments: Flags and CategoryFilter.

• Flags: This filters the list of returned shape IDs by the directionality of the
connectors, using the VisConnectedShapesFlags enum for All, Incoming,
or Outgoing nodes.

• CategoryFilter: This filters the list of the returned shape IDs by limiting it
to IDs of shapes that match the specified category. A shape's categories can
be found in the User.msvShapeCategories cell of its ShapeSheet.

So, we can use the new ConnectedShapes method to list all of the significant
connections in my Write Chapter Sub-process page. I have used the existence
of the Prop.Cost cell as a test for shape significance.

Public Sub ListNextConnections()
Dim shp As Visio.Shape
Dim connectorShape As Visio.Shape
Dim sourceShape As Visio.Shape
Dim targetShape As Visio.Shape
Dim aryTargetIDs() As Long
Dim arySourceIDs() As Long
Dim targetID As Long
Dim sourceID As Long
Dim i As Integer
Const CheckProp As String = "Prop.Cost"
For Each shp In Visio.ActivePage.Shapes
 If Not shp.OneD Then
 If shp.CellExists(CheckProp, Visio.visExistsAnywhere) Then
 Debug.Print "Shape", shp.Name, shp.Text
 arySourceIDs = _
 shp.ConnectedShapes(visConnectedShapesOutgoingNodes,
 "")
 For i = 0 To UBound(arySourceIDs)
 Set sourceShape = _
 Visio.ActivePage.Shapes.ItemFromID(arySourceIDs(i))
 If sourceShape.CellExists(CheckProp, _
 Visio.visExistsAnywhere) Then
 Debug.Print , "<", sourceShape.Name, _

Chapter 2

[75]

 sourceShape.Text
 End If
 Next
 aryTargetIDs = _
 shp.ConnectedShapes(visConnectedShapesIncomingNodes,
 "")
 For i = 0 To UBound(aryTargetIDs)
 Set targetShape = _
Visio.ActivePage.Shapes.ItemFromID(aryTargetIDs(i))
 If targetShape.CellExists(CheckProp, _
 Visio.visExistsAnywhere) Then
 Debug.Print , ">", targetShape.Name, _
 targetShape.Text
 End If
 Next
 End If
 End If
Next
End Sub

The top of the output from the preceding function will appear as follows:

Shape Start/End Editorial Process

< Document Author Submits 1st
Draft

Shape Document Author Submits 1st
Draft

< Decision Editorial Review

> Start/End Editorial Process

> Decision Editorial Review

Shape Decision Editorial Review

< Document Author Submits 1st
Draft

< Process 1st Draft Peer
Reviewed

> Document Author Submits 1st
Draft

Shape Process 1st Draft Peer
Reviewed

< Process.8 Editorial Acceptance
Verdict

> Decision Editorial Review

Understanding the Microsoft Visio Object Model

[76]

Shape Start/End Editorial Process

Shape Process.8 Editorial Acceptance
Verdict

< Process.10 Author Rewrite

> Process 1st Draft Peer
Reviewed

Shape Process.10 Author Rewrite

< Process.12 Final Edit

> Process.8 Editorial Acceptance
Verdict

> Decision.14 Pass?

Shape Process.12 Final Edit

< Decision.14 Pass?

> Process.10 Author Rewrite

Shape Decision.14 Pass?

< Process.10 Author Rewrite

< Process.16 Production Phase

> Process.12 Final Edit

Shape Process.16 Production Phase

< Process.18 Author Review of
"PreFinal" PDF

> Decision.14 Pass?

Shape Process.18 Author Review of
"PreFinal" PDF

< Start/End.20 Publication

> Process.16 Production Phase

Shape Start/End.20 Publication

> Process.18 Author Review of
"PreFinal" PDF

Understanding the Shape.GluedShapes
method
The Shape.GluedShapes method returns an array of identifiers for the shapes that
are glued to a shape. For instance, if the given shape is a 2-D shape that has multiple
connectors attached to it, this method would return the IDs of those connectors. If the
given shape is a connector, this method would return the IDs of the shapes to which
its ends are glued.

Chapter 2

[77]

The method has three arguments: Flags, CategoryFilter, and
OtherConnectedShape:

• Flags: This filters the list of returned shape IDs by the directionality of
the connectors, using the VisGluedShapesFlags enum for All1D, All2D,
Incoming1D, Incoming2D, Outgoing1D, or Outgoing2D nodes.

• CategoryFilter: This filters the list of returned shape IDs by limiting it to
IDs of shapes that match the specified category. A shape's categories can be
found in the User.msvShapeCategories cell of its ShapeSheet.

• OtherConnectedShape: This is an optional, additional shape to which
returned shapes must also be glued

The method is used as follows:

arIDs = Shape.GluedShapes(Flags, CategoryFilter,
 pOtherConnectedShape)

Understanding the Shape.
MemberOfContainers property
We can return an array of IDs of the Containers that have a shape within.

You can use the ID property to return the Container shape, get its
ContainerProperties object, and, in this case, return the text from the shape.

Here is a private function that I will use in the main function in the following code:

Private Function getContainerText(ByVal shp As Visio.Shape) As
 String
'Return text of any containers,
'or an empty string if there are none
Dim aryTargetIDs() As Long
Dim targetShape As Visio.Shape
Dim returnText As String
Dim i As Integer
 returnText = ""
 aryTargetIDs = shp.MemberOfContainers
 On Error GoTo exitHere
 For i = 0 To UBound(aryTargetIDs)
 Set targetShape = _
 shp.ContainingPage.Shapes.ItemFromID(aryTargetIDs(i))
 If Len(returnText) = 0 Then
 returnText =
 targetShape.ContainerProperties.Shape.Text

Understanding the Microsoft Visio Object Model

[78]

 Else
 returnText = returnText & vbCrLf & _
 targetShape.ContainerProperties.Shape.Text
 End If
 Next
exitHere:
 getContainerText = returnText
End Function

Understanding the Shape.CalloutsAssociated
property
The Shape.CalloutsAssociated property will return an array of shape IDs of any
associated callouts.

You can use the ID to return the callout shape and, in this case, return the text from
within that shape.

Here is a private function that I will use in the main function:

Private Function getCalloutText(ByVal shp As Visio.Shape) As
 String
'Return text of any connected callouts,
'or an empty string if there are none
Dim aryTargetIDs() As Long
Dim targetShape As Visio.Shape
Dim returnText As String
Dim i As Integer
 returnText = ""
 aryTargetIDs = shp.CalloutsAssociated
 On Error GoTo exitHere
 For i = 0 To UBound(aryTargetIDs)
 Set targetShape = _
 shp.ContainingPage.Shapes.ItemFromID(aryTargetIDs(i))
 If Len(returnText) = 0 Then
 returnText = targetShape.Characters.Text
 Else
 returnText = returnText & vbCrLf & _

Chapter 2

[79]

 targetShape.Characters.Text
 End If
 Next
exitHere:
 getCalloutText = returnText
End Function

Listing the steps in a process flow
In order to create a sequential listing of the steps in the page, we need to create a
function that will call itself to iterate through the connections out from the source
shape. Accordingly, the following getNextConnected() method will recursively
build a collection of connected shapes by employing the ConnectedShapes()
method of the Shape object:

Private Function getNextConnected(ByVal shp As Visio.Shape, ByVal
 dicFlowShapes As Dictionary, ByVal colSteps As Collection) As
 Collection
'Return a collection of the next connected steps
Dim aryTargetIDs() As Long
Dim targetShape As Visio.Shape
Dim returnCollection As Collection
Dim i As Integer
 dicFlowShapes.Add shp.NameID, shp
 aryTargetIDs = _
 shp.ConnectedShapes(visConnectedShapesOutgoingNodes, "")
 For i = 0 To UBound(aryTargetIDs)
 Set targetShape = _
 shp.ContainingPage.Shapes.ItemFromID(aryTargetIDs(i))
 If Not targetShape.Master Is Nothing And _
 dicFlowShapes.Exists(targetShape.NameID) = False Then
 colSteps.Add targetShape
 getNextConnected targetShape, dicFlowShapes, colSteps
 End If
 Next
 Set getNextConnected = colSteps
End Function

Finally, we can create the public function that will list the steps. For simplicity,
we are only following the direct route and we are not displaying the text on the
connector lines.

Understanding the Microsoft Visio Object Model

[80]

We have introduced the Visio.Selection object because it contains a collection
of shapes returned by the Page.CreateSelection() method, which is extremely
useful for getting a filtered collection of shapes by Layer, Master, Type, and so on.

The Dictionary object is used in the preceding and following code, so
you will need to ensure that the Microsoft Scripting Runtime library
(C:\Windows\system32\scrun.dll) is ticked in the References
dialog opened from the Tools menu in the Visual Basic user interface.

Public Sub ListProcessSteps()
Dim sel As Visio.Selection
Dim pag As Visio.Page
Dim shp As Visio.Shape
Dim shpStart As Visio.Shape
Dim shpEnd As Visio.Shape
Dim iStep As Integer
Dim dicFlowShapes As Dictionary
 Set dicFlowShapes = New Dictionary
 Set pag = Visio.ActivePage
 'Find the Start and End shapes on the Page
 'Assume that they are the instances of the Master "Start/End"
 'Assume that the Start has no incoming connections
 'and the End shape has no outgoing connections
 Set sel = pag.CreateSelection(visSelTypeByMaster, 0, _
 pag.Document.Masters("Start/End"))
 If Not sel.Count = 2 Then
 MsgBox "There must be one Start shape and one End shape
 only", _
 vbExclamation, "ListProcessSteps"
 Exit Sub
 End If
 For Each shp In sel
 If shpStart Is Nothing Then
 Set shpStart = shp
 Set shpEnd = shp
 ElseIf UBound(shp.ConnectedShapes
 (visConnectedShapesOutgoingNodes, "")) > -1 _
 And UBound(shp.ConnectedShapes
 (visConnectedShapesIncomingNodes, "")) = -1 Then
 Set shpStart = shp
 ElseIf UBound(shp.ConnectedShapes
 (visConnectedShapesIncomingNodes, "")) > -1 _
 And UBound(shp.ConnectedShapes
 (visConnectedShapesOutgoingNodes, "")) = -1 Then

Chapter 2

[81]

 Set shpEnd = shp
 End If
 Next
 iStep = 1
Dim nextSteps As Collection
Dim nextShp As Visio.Shape
Dim iNext As Integer
 Set nextSteps = New Collection
 Set nextSteps = getNextConnected(shpStart, dicFlowShapes, _
 nextSteps)
 Debug.Print "Step", "Master.Name", "Phase", "Text", "Notes"
 Debug.Print iStep, shpStart.Master.Name,
 getContainerText (shpStart), shpStart.Text, _
 getCalloutText(shpStart)
 For iNext = 1 To nextSteps.Count
 iStep = iNext + 1
 Set nextShp = nextSteps.Item(iNext)
 Debug.Print iStep, nextShp.Master.Name, _
 getContainerText(nextShp), nextShp.Characters.Text,
 getCalloutText (nextShp)
 Next
 If Not nextShp Is shpEnd Then
 MsgBox "Theprocess did not finish on the End shape",
 vbExclamation, "ListProcessSteps"
 End If
End Sub

With a fanfare of trumpets, we get a simple listing of each step in the following order:

Step Master.Name Phase Text Notes

1 Start/End Editorial
Process

2 Document Drafting Author
Submits 1st
Draft

This includes
suitably formatted
text, images, code
and any other
material

3 Decision Drafting Editorial
Review

Commissioning Editor
establishes that
Chapter meets the
requirements of
the spec, text is
suitably formatted,
etc

Understanding the Microsoft Visio Object Model

[82]

Step Master.Name Phase Text Notes

4 Process Drafting 1st Draft
Peer
Reviewed

Technical quality
of the material
is checked – is
it accurate,
informative, and
appropriate to
the level of the
audience?

5 Process Editing Editorial
Acceptance
Verdict

Commissioning Editor
evaluates reviewer
comments to verify
that the Chapter
meets the "Editorial
Acceptance" standard

6 Process Editing Author
Rewrite

Author addresses
comments, adds
any extra material
requested

7 Process Editing Final Edit

8 Decision Editing Pass? Finer iterations of
chapter required?

9 Process Production Production
Phase

Indexing, Layout,
Proofing

10 Process Production Author
Review of
"PreFinal"
PDF

Author inspects
finished PDF to see
if there are any
last minute changes
required and if they
are happy with the
chapters

11 Start/End Publication

Chapter 2

[83]

Summary
In this chapter, we delved into the Visio object model, and looked at the hierarchy of
the objects and collections.

We looked at the analytical parts of the Connectivity API, which enabled us to
navigate connections and to retrieve surrounding containers and associated callouts.

We also used this knowledge to build a function that does some rudimentary checks
of a diagram structure, and to list the steps in a process flow.

In the next chapter, we will look into the ShapeSheet and how to use the functions
within it.

www.allitebooks.com

http://www.allitebooks.org

Understanding the
ShapeSheet™

Microsoft Visio is a unique data diagramming system, and most of that uniqueness is
due to the power of the ShapeSheet, which is a window on the Visio object model. It
is the ShapeSheet that enables you to encapsulate complex behavior into apparently
simple shapes by adding formulae to the cells using functions. The ShapeSheet was
modeled on a spreadsheet, and formulae are entered in a similar manner to cells in
an Excel worksheet.

Validation rules are written as quasi-ShapeSheet formulae so you will need to
understand how they are written. Validation rules can check the contents of
ShapeSheet cells, in addition to verifying the structure of a diagram. Therefore,
in this chapter you will learn about the structure of the ShapeSheet and how to
write formulae.

Finding the ShapeSheet
There is a ShapeSheet behind every single Document, Page and Shape, and the
easiest way to access the ShapeSheet window is to run Visio in Developer mode.

You can tick Run in developer mode in the General section of
the Advanced tab in the Visio Options dialog that is opened by
navigating to File | Options.

Understanding the ShapeSheet™

[86]

This mode adds the DEVELOPER tab to the Fluent UI, which has a Show
ShapeSheet button. The drop-down list on the button allows you to choose
which ShapeSheet window to open, as in the following screenshot:

Alternatively, you can use the right-mouse menu of a shape or page, or on the relevant
level within the Drawing Explorer window, as shown in the following screenshot:

Chapter 3

[87]

The ShapeSheet window, opened by clicking on the Show ShapeSheet menu
option, displays the requested sections, rows, and cells of the item selected when
the window was opened. It does not automatically change to display the contents
of any subsequently selected shape in the Visio drawing page—you must open the
ShapeSheet window again to do that. The SHAPESHEET TOOLS ribbon, which is
displayed when the ShapeSheet window is active, has a Sections button on the View
group of the DESIGN tab to allow you to vary the requested sections on display.

You can also open the View Sections dialog from the right mouse menu within the
ShapeSheet window, as shown in the next screenshot:

You cannot alter the display order of sections in the ShapeSheet window, but you
can expand/collapse them by clicking on the section header.

The syntax for referencing the shape, page, and document objects in ShapeSheet
formula is listed in the following table:

Object ShapeSheet formula Comment
Shape Sheet.n! Where n is the ID of the shape.

Can be omitted when referring to cells in the
same shape.

Understanding the ShapeSheet™

[88]

Object ShapeSheet formula Comment
Page.PageSheet ThePage! Used in the ShapeSheet formula of shapes

within the page.
Page Pages[page

name]!
Used in the ShapeSheet formula of shapes in
other pages.

Document.
DocumentSheet

TheDoc! Used in the ShapeSheet formula in pages or
shapes of the document.

Understanding sections, rows, and cells
There are a finite number of sections in a ShapeSheet; some sections are mandatory
for the type of element they are, while others are optional. For example, the Shape
Transform section, which specifies the shape's size, angle, and position, exists for all
types of shapes and is therefore mandatory. The 1-D Endpoints section, which specifies
the co-ordinates of either end of the line, is only relevant, and thus displayed, for
OneD shapes (such as connectors; it is also mandatory but is not seen in for non-OneD
shapes. Neither of these sections is optional, because they are required for the specific
type of OneDshape. Sections such as User-defined Cells and Shape Data are optional
and they may be added to the ShapeSheet if they do not exist already. If you click on
the Insert button on the SHAPESHEET TOOLS ribbon, under the Sections group of
the DESIGN tab, then you can see a list of the sections that you may insert into the
selected ShapeSheet.

Chapter 3

[89]

In the preceding screenshot, the User-defined cells option is grayed out because this
optional section already exists.

It is possible for a shape to have multiple Geometry, Ellipse, or Infinite line sections.
In fact, a shape can have a total of 139 of them.

Reading a cell's properties
If you select a cell in the ShapeSheet, then you will see the formula in the formula
edit bar immediately below the ribbon as follows:

You can view the ShapeSheet Formulas (and I thought the plural was formulae!)
or Values by clicking on the relevant button in the View group on the ShapeSheet
Tools ribbon.

Notice that Visio provides IntelliSense when editing formulae. This was new in
Visio 2010, and is a great help to all ShapeSheet developers.

Understanding the ShapeSheet™

[90]

Also notice that the contents of cells are shown in blue text sometimes, while others
are black. This is because the blue text denotes that the values are stored locally with
this shape instance, while the black text refers to values that are stored in the Master
shape. Usually, the more black text you see, the more memory-efficient the shape is,
since less is needed to be stored with the shape instance. Of course, there are times
when you cannot avoid storing values locally, such as the PinX and PinY values in
the preceding screenshot, since these define where the shape instance is in the page.
The following VBA code returns 0 (False):

ActivePage.Shapes("Task").Cells("PinX").IsInherited

But the following code returns -1 (True):

ActivePage.Shapes("Task").Cells("Width").IsInherited

The Edit Formula button opens a dialog to enable you to edit multiple lines, since
the edit formula bar only displays a single line and some formulae can be quite large.

Chapter 3

[91]

You can display the Formula Tracing window using the Show Window button in
the Formula Tracing group on the SHAPESHEET TOOLS ribbon in the DESIGN
tab. You can decide whether to Trace Dependents, which displays other cells that
have a formula that refers to the selected cell, or Trace Precedents, which displays
other cells that the formula in this cell refers to.

Of course, this can be done in code too. For example, the following VBA code will
print out the selected cell in a ShapeSheet into Immediate Window:

Public Sub DebugPrintCellProperties()
'Abort if ShapeSheet not selected in the Visio UI
 If Not Visio.ActiveWindow.Type = Visio.VisWinTypes.visSheet Then
 Exit Sub
 End If
Dim cel As Visio.Cell
 Set cel = Visio.ActiveWindow.SelectedCell
'Print out some of the cell properties
 Debug.Print "Section", cel.Section
 Debug.Print "Row", cel.Row
 Debug.Print "Column", cel.Column
 Debug.Print "Name", cel.Name
 Debug.Print "FormulaU", cel.FormulaU
 Debug.Print "ResultIU", cel.ResultIU
 Debug.Print "ResultStr("""")", cel.ResultStr("")
 Debug.Print "Dependents", UBound(cel.Dependents)
'cel.Precedents may cause an error
On Error Resume Next
 Debug.Print "Precedents", UBound(cel.Precedents)

End Sub

Understanding the ShapeSheet™

[92]

Alt+F11 is a quick way to get into the Visual Basic Editor, and
Ctrl+G is a quick way to open the Immediate Window.

In an earlier screenshot, where the Actions.Checkbox.Action cell is
selected in the Data Object shape from the BPMN Basic Shapes stencil, the
DebugPrintCellProperties macro outputs the following:

Section 240

Row 0

Column 3

Name Actions.Checkbox.Action

FormulaU SETF(GetRef(Prop.BpmnCollection),NOT(Prop.
BpmnCollection))

ResultIU 0

ResultStr("") 0.0000

Dependents 0

Precedents 1

I have tried to be selective about the properties
displayed to illustrate some points.

Firstly, any cell can be referred to by either its name or section/row/column indices,
commonly referred to as SRC.

Secondly, the FormulaU should produce a ResultIU of 0, if the formula is correctly
formed and there is no numerical output from it.

Thirdly, the Precedents and Dependents are actually an array of referenced cells.

Chapter 3

[93]

Printing out the ShapeSheet settings
You can download and install the Microsoft Visio SDK from the Visio Developer
Center (visit http://msdn.microsoft.com/en-us/office/aa905478.aspx). This
will install an extra group, Visio SDK, on the Developer ribbon and three extra
buttons, with one of them being Print ShapeSheet.

Understanding the ShapeSheet™

[94]

I have chosen the Clipboard option and pasted the report into an Excel worksheet, as
in the following screenshot:

The output displays the cell name, value, and formulae in each section, in an
extremely verbose manner. This makes for many rows in the worksheet, and
a varying number of columns in each section.

Chapter 3

[95]

Understanding the functions
A function defines a discrete action, and most functions take a number of arguments
as input. Some functions produce an output as a value in the cell that contains the
formula, while others redirect the output to another cell; some do not produce a
useful output at all.

The Developer ShapeSheet Reference in the Visio SDK contains a description of
each of the 210 functions available in Visio 2013, and there are some more that are
reserved for use by Visio itself. There have been 13 new functions introduced since
Visio 2010.

Formulae can be entered into any cell, but some cells will be updated by the Visio
engine or by specific add-ons, thus overwriting any formula that may be within the
cell. Formulae are entered starting with the = (equals) sign, just as in Excel cells, so
that Visio can understand that a formula is being entered rather than just text. Some
cells have been primed to expect text (strings) and will automatically prefix what
you type with =" (equals double-quote) and close with "(double-quote) if you do not
start typing with an equal sign.

For example, the NOW() function returns the current date time value, which you
can modify by applying a format, say, =FORMAT(NOW(),"dd/MM/YYYY"). In fact,
the NOW() function will evaluate every minute, so be careful about how you use it
because it can slow down Visio itself, if you use it in too many shapes.

The user-defined section is often used for formulas that perform calculations but
they will only evaluate if they contain a reference to cells that undergo a value
change, unless you specify that it only updates at a specific event. You could, for
example, cause a formula to be evaluated when the shape is moved, by adding the
DEPENDSON() function, in the following example:

=DEPENDSON(PinX,PinY)+SETF(GetRef(Prop.ShapeMoved),"="""&
FORMAT(NOW(),"dd/MM/YYYY HH:mm")&"""")

However, the same DEPENDSON() function would be unnecessary in the following
formula because the PinX and PinY cells are already referenced, and a change in
their values would automatically cause the formula to be evaluated:

=SETF(GetRef(Prop.Coordinate),"="""&FORMAT(PinX,"0.000")&","&FORMAT(Pi
nY,"0.000")&"""")

Understanding the ShapeSheet™

[96]

The normal user will not see the result of any values unless there is something
changing in the UI. This could be a value in the Shape Data that could cause linked
Data Graphics to change. Or there could be something more subtle, such as the
display of some geometry within the shape, such as the Compensation symbol in
the BPMN Task shape, as shown in the following screenshot:

In the preceding example, you can see that the Compensation right-mouse
menu option is checked, and the IsForCompensation Shape Data value is TRUE.
These values are linked, and the Task shape itself displays the two triangles at the
bottom edge.

The custom right mouse menu options are defined in the Actions section of the
shape's ShapeSheet, and one of the cells, Checked, holds a formula to determine if
a tick should be displayed or not. In this case, the Actions.Compensation.Checked
cell contains the following formula, which is merely a cell reference:

=Prop.BpmnIsForCompensation

Prop is the prefix used for all cells in the Shape Data section because this section
used to be known as Custom Properties. The Prop.BpmnIsForCompensation row is
defined as a Boolean (True/False) Type, so the returned value is going to be 1 or 0
(True or False).

Thus, if you were to build a validation rule that required a Task to be for
Compensation, then you would have to check this value.

You will often need to branch expressions using the following:

IF(logical_expression, value_if_true, value_if_false).

Chapter 3

[97]

You can nest expressions inside each other.

You will often need to use the logical expression evaluators like the following:

• AND(logical_expression1, logical_expression2
[, opt_logical_expression3][,...] [, opt_logical_expressionN])

• OR(logical_expression1, logical_expression2
[, opt_logical_expression3][,...] [, opt_logical_expressionN])

You may also need to reverse a Boolean value using NOT(logical_expression).

These are the main evaluators and there are no looping functions available. Now let's
look at each relevant ShapeSheet section.

Important sections for rules validation
When validating documents, there are some sections that are more important and
more regularly used than others. Therefore, we will look at just a few of the sections
in detail.

Looking at the User-defined Cells section
The User-defined Cells section is used to store hidden variables (because they are
never displayed in the UI unless you open the ShapeSheet) and perform calculations.
There are just two columns in this section. The first, Value, is normally where the
real work is done, and the second, Prompt, is often used as a description of the row.

You can make Shape Data rows invisible too (by setting the Invisible
cell to True), usually, though, you do not need the overhead of all the
other cells in the row, so a User-defined Cell is more efficient.

Microsoft will often use specially named User-defined Cell rows to hold
specific information. For example, the Task shape has a named row, User.
msvShapeCategories, which is used to specify the category or categories that
it belongs to. The Task shape belongs, not surprisingly, to the Task category,
but it could have belonged to multiple categories by having them expressed
as a semi-colon separated list.

Using the category of a Shape
Visio 2010 introduced the new function HASCATEGORY(category) in order to support
structured diagrams.

Understanding the ShapeSheet™

[98]

In the BPMN diagrams, the Task shape has the Task category, so the following
formula will return TRUE for the Task shape:

=HASCATEGORY("Task")

But the following will return FALSE because the string is case-sensitive:

=HASCATEGORY("task")

Therefore, it is important to know what the exact spelling and case are for the values
in the User.msvShapeCategories cells.

Consequently, the following VBA macro, ListStencilShapeCategories, will
list all of the categories used in the docked stencils, and then it will optionally list
the stencil title, master name, and a count of the number of categories that the master
belongs to.

We are using the Dictionary object in the following code, so you
will need to ensure that the Microsoft Scripting Runtime library
(C:\Windows\system32\scrrun.dll or C:\Windows\
SysWOW64\scrrun.dll) is ticked in the References dialog opened
from the Tools menu in the Visual Basic user interface.

The sub-function calls a sub-routine to collect the categories in each master, and then
passes the data to another sub-routine for optional display.

Public Sub ListStencilShapeCategories()
'List the categories used in the docked stencils
 If Not Visio.ActiveWindow.Type = _
 Visio.VisWinTypes.visDrawing Then
 Exit Sub
 End If
Dim aryStencils() As String
 Visio.ActiveWindow.DockedStencils aryStencils
Dim stenCounter As Integer
Dim sten As Visio.Document
Dim mst As Visio.Master
Dim shp As Visio.Shape
Dim category As String
Dim colMasters As Collection
Dim dicCategories As Dictionary
 Set dicCategories = New Dictionary
 'Loop thru the stencils
 For stenCounter = 0 To UBound(aryStencils)
 'Do not read the document stencil
 If Len(aryStencils(stenCounter)) > 0 Then

Chapter 3

[99]

 Set sten = _
 Visio.Documents(aryStencils(stenCounter))
 'Loop thru each master in the stencil
 For Each mst In sten.Masters
 Set shp = mst.Shapes.Item(1)
 'Check that the Category cell exists
 If shp.CellExists("User.msvShapeCategories", _
 VisExistsFlags.visExistsAnywhere) Then
 CollectShapeCategories _
 shp, dicCategories, colMasters
 End If
 Next
 End If
 Next

 OutputStencilShapeCategories _
 dicCategories, aryStencils, colMasters

End Sub

The preceding sub-function calls a sub-routine to collect the shape categories.

Private Sub CollectShapeCategories(_
 ByVal shp As Visio.Shape, _
 ByRef dicCategories As Dictionary, _
 ByRef colMasters As Collection)
Dim categories() As String
Dim catCounter As Integer
 'The default List Separator is ;
 categories = _
 Split(shp.Cells("User.msvShapeCategories").ResultStrU(""),
";")
 For catCounter = 0 To UBound(categories)
 If dicCategories.Exists(categories(catCounter)) Then
 Set colMasters = dicCategories.
Item(categories(catCounter))
 colMasters.Add shp.Document.Title & " - " & shp.Parent.
Name & _
 " (" & UBound(categories) + 1 & ")"
 Set dicCategories.Item(categories(catCounter)) = _
 colMasters
 Else
 Set colMasters = New Collection
 colMasters.Add shp.Document.Title & " - " & shp.Parent.
Name & _

Understanding the ShapeSheet™

[100]

 " (" & UBound(categories) + 1 & ")"
 dicCategories.Add _
 categories(catCounter), colMasters
 End If
 Next catCounter
End Sub

The second sub-routine takes the collected data and offers to display it in
message boxes:

Private Sub OutputStencilShapeCategories(_
 ByVal dicCategories As Dictionary, _
 ByVal aryStencils As Variant, _
 ByVal colMasters As Collection)
Dim msg As String
Dim catCounter As Integer
 msg = "There are " & UBound(dicCategories.Keys) + 1 & _
 " categories in the " & _
 UBound(aryStencils) + 1 & " docked stencils:" & vbCrLf
 For catCounter = 0 To UBound(dicCategories.Keys)
 Set colMasters = _
 dicCategories.Item(dicCategories.Keys(catCounter))
 msg = msg & vbCrLf & dicCategories.Keys(catCounter) & _
 " - " & colMasters.Count & " masters"
 Next catCounter
 msg = msg & vbCrLf & vbCrLf & "Do you want to view the details?"
Dim ret As Integer
Dim mstCounter As Integer
 ret = MsgBox(msg, vbInformation + vbYesNo, _
 "ListStencilShapeCategories")
 If Not ret = vbYes Then
 Exit Sub
 End If

 'Display the masters for each category
 For catCounter = 0 To UBound(dicCategories.Keys)
 Set colMasters = _
 dicCategories.Item(dicCategories.Keys(catCounter))
 msg = colMasters.Count & _
 " masters that have the Category : " & _
 dicCategories.Keys(catCounter) & vbCrLf
 For mstCounter = 1 To colMasters.Count
 msg = msg & vbCrLf & colMasters.Item(mstCounter)
 Next mstCounter
 msg = msg & vbCrLf & vbCrLf & _

Chapter 3

[101]

 "Do you want to continue to view the next category?"
 ret = MsgBox(msg, vbInformation + vbYesNo, _
 "ListStencilShapeCategories")
 If Not ret = vbYes Then
 Exit For
 End If
 Next catCounter
End Sub

If you run this macro with, say, a blank document created from the BPMN Diagram
(Metric) template, then you will be presented with a list of all of the categories found
in the docked stencils, as shown in the following screenshot:

Understanding the ShapeSheet™

[102]

If you continue to view the details of the listed categories, you will be presented with
a dialog listing the stencil, master, and category count in brackets:

This is essential information for building validation rules that use the category.

The category can also be used to prevent shapes from being
contained by container shapes. Simply include the special category
DoNotContain in the User.msvShapeCategories formula.

Using the structure type of a Shape
Visio 2013's structured diagrams use another specifically named User-defined Cell,
User.msvStructureType, to define the Structure Type of the shape.

You are spared the VBA code for the ListStencilStructureTypes method in
this text because it is very similar to the preceding ListStencilShapeCategories
method, but we can discover that there are three different Structure Types in the
BPMN stencils. They are:

Container: There are 12 masters in all, including Expanded Sub-Process, Pool/Lane,
and Group

Callout: There is only one master, Text Annotation

List: There are two masters, Swimlane List, and Phase List

Chapter 3

[103]

Checking a Container shape
The formula, =CONTAINERCOUNT(), returns 1 in the examples because the Document
shape is inside the container shape labeled Drafting. If there are nested containers,
then the function will return the total number of containers that the shape is within.

If the shape is inside a container, then you can use the new
=CONTAINERSHEETREF(index[, category]) function to get a reference to the
container shape, and thus to any of the cells inside it. As there can be multiple
containers, index, which is one-based (the first index number is 1, not 0), specifies
which one to return. The category argument is optional.

Perhaps surprisingly, the CONTAINERMEMBERCOUNT() returns 9 in this example, because
it includes the three flowchart shapes, the three callouts, and the three connectors
between the flowchart shapes, even though the last three are 1-D shapes. If either end
of a connector is outside the container, then it would not be counted. Also, note that
the lines between the callouts and the flowchart shapes are part of the callout shape
and thus do not count either, as can be seen in the following screenshot:

Understanding the ShapeSheet™

[104]

Checking a List shape
In this example, we have used the Class and Member shapes from UML Class
stencil in the UML Class template to construct a partial Visio Type Library object
model. We have added two User-defined Cells to the ShapeSheet of the Member
master shape so that the item contains index of its position in the Class and the text
of the Class shape. The User.ListOrder and User.ListHeaderText in the following
screenshot are the extra rows:

This is achieved by using the following formula in the User.ListOrder.Value cell:

=LISTORDER()

The ListSheetRef() function will return the containing list box shape (if there is
one), and then its cells and properties can be referenced by following this with an
exclamation mark. Therefore, the formula to return the text of the container list box
in the User.ListHeaderText.Value cell is:

=SHAPETEXT(LISTSHEETREF()!TheText)

However, this formula will display =#REF! if the list item is not within a list box, so a
more complete formula is:

=IF(LISTORDER()=-1,"n/a",SHAPETEXT(LISTSHEETREF()!TheText))

Chapter 3

[105]

Alternatively, these values could be surfaced to the UI as Shape Data rows, in which
case you would protect them from being overwritten by using the GUARD() function.

=GUARD(IF(LISTORDER()=-1,"n/a",SHAPETEXT(LISTSHEETREF()!TheText)))

The GUARD() function can be put around the formula in any cell to protect its
contents from accidental updating via the UI. It can even prevent a user from
changing the position, size, or rotation. In code, you would have to use the
FORMULAFORCE property to update guarded contents because using the
normal FORMULA property would cause an error.

In either case, having these values available on the List box item makes reports and
rule validation much easier.

A List shape can contain the function LISTMEMBERCOUNT() in order to get the
number of list item shapes within it.

Checking for attached Callout shapes
In the following examples, we have added a new row to the User-defined Cells
section, named CalloutShapes, of the first Document shape in my example Packt
Editorial Process diagram. We have entered the function CALLOUTCOUNT() into the
Value cell of this row, and you can see that the result is displayed as 1.0000 in the
following screenshot:

Understanding the ShapeSheet™

[106]

This is because there is a single Callout shape connected to this shape.

When a Callout shape is connected to another shape you can get at any of the cells in
that target shape by use of the CALLOUTTARGETREF() function.

In the following example, as shown in the following screenshot, we have used
a formula to return the text of the target shape. The following formula uses the
ShapeText() function to return the text of the associated Callout shape:

=SHAPETEXT(CALLOUTTARGETREF()!TheText)

For example, this could be surfaced in the UI as a Shape Data row, thus making
reporting easier.

Chapter 3

[107]

Looking at the Shape Data section
The Value cell stores the actual values; because it is the default cell in the row, it
can be retrieved in a ShapeSheet formula as Prop.Cost, for example, rather than
Prop.Cost.Value. Other cells have to be referenced explicitly, as say, Prop.Cost.
Invisible, for example.

The ShapeSheet developer cannot move Shape Data rows up or down, but the display
order can be modified by entering text into the SortKey cells. The Visio UI will sort the
Shape Data rows according to the text sort order of the values in these cells.

The visibility of a Shape Data row is controlled by the Boolean result of the formula
in the Invisible cell.

There are eight different types in Shape Data rows, almost all of which are data
types. So, it is important to understand how to handle their values in any rule
validation. The following screenshot shows the drop-down list for the Type cell in
the ShapeSheet displaying the eight available types:

Each type is defined by an enumerator visPropTypes, which has the following values:

• String
• Fixed list
• Number
• Boolean
• Variable list
• Date or time
• Duration
• Currency

Understanding the ShapeSheet™

[108]

The default Type is 0, so if the Type has not been set then it is assumed to be String.

Each row in the Shape Data section can be named and has a Label that is displayed
in the UI. If a row is not specifically named, then it will be automatically named
Row_1, Row_2, and so on.

If your Visio diagrams have been used with Data | Link Data to Shapes, then you
need to know that this feature will attempt to link the data by matching the text in
the Shape Data row's Label cell with the column header, or the field name of the
external data first, and it is case-sensitive. If the target shape does not already have
a Shape Data row, then Visio will automatically create a row named after the Label
text, but with a _VisDM_ prefix, and any spaces or special characters removed. Note
that the last four Shape Data rows in the following screenshot were automatically
created by the Link Data to Shapes action, while the other Shape Data rows exist in
the master shape, and that CPU (MHz) and Memory (MB) are unnecessary duplicate
rows, since rows labeled CPU and Memory already existed.

Chapter 3

[109]

Therefore, you may need to match values based on Label rather than the Name row,
if your solution uses Link Data to Shapes.

The older Database Wizard feature does use the row Name to
perform its matching.

Using the String type
String data is just text that has been entered into a Shape Data row. It may have
been imported from elsewhere, for example using the Link Data to Shapes feature,
or it may just have been entered manually. In either case, if your validation rules
are using text values to match, then you may be wise to ensure that the case is
consistent by using the LOWER() or UPPER() functions, which will force the text to
be in lowercase or uppercase respectively. Alternatively, use case sensitivity on the
following string matching functions.

The Format cell may contain a pattern that modifies the display of the string to be in
lowercase or uppercase, but that does not mean that the Value is in these cases.

You can use the STRSAME(string1,string2[,opt_ignore_case]) and STRSAMEEX
(string1,string2,localeID,flag) functions to compare two strings, though you
may need to use TRIM(string) to remove any accidental spaces at the beginning
and end of the string.

Visio also provides a few functions to get specific parts of a string. The
LEFT(string[,num_of_chars]) and RIGHT(string[,num_of_chars]) functions
will return the specified number of characters (the default is 1) from the start or
end of a string. The MID(string,start_num,num_of_chars) function will extract
characters from within a string.

You can get the starting position of a string within another by using the FIND(find_
text,within_text[,opt_start_num][,opt_ignore_case]) function. You may
also need to use LEN(string) to get the number of characters in a text string.

Be aware that there are some solutions that will automatically enter the string values,
and there are others that may contain special formulae to retrieve a value. For
example, the Cross Functional Flowchart template in Visio 2013 gets the value of the
Prop.Function Shape Data row of a shape from the text that has been entered into
the Swimlane that it is within.

Understanding the ShapeSheet™

[110]

The display of the Value cell can be toggled between Formulas and
Values from the first two buttons on the View group of the DESIGN
tab of the SHAPESHEET TOOLS ribbon, or by using the right mouse
menu of the ShapeSheet window.

This is done with the following formula in the Value cell:

=IFERROR(CONTAINERSHEETREF(1,"Swimlane")!User.VISHEADINGTEXT,"")

What this means is that, if the shape is surrounded by a container with the category
Swimlane, return the value in the User.visHeadingText cell; otherwise, just return
an empty string.

Therefore, the Prop.Function.Value will be "" if the Process shape is not
inside a Swimlane shape; otherwise, it will be the value of the text in the
container Swimlane shape.

Chapter 3

[111]

Using the Fixed List type
If a Shape Data row is set to a Fixed List type, then the value must exist in the
drop-down list.

Recent versions of Visio will automatically create a formula in the Value cell that
returns the string value at a specific zero-based index in this list. For example look
at the following value:

=INDEX(2,Prop.BpmnStatus.Format)

It will return the third item from the semi-colon separated list in the Prop.
BpmnStatus.Format cell, which contains the formula:

="None;Ready;Active;Cancelled;Aborting;Aborted;Completing;Completed"

Thus, the value is Active.

If you were using rules based on a Fixed List value, it might be better to use the
index rather than the string value, since this could be mistyped or even translated
into a different language. Therefore, you could get the index position using the
LOOKUP() function as follows:

=LOOKUP(Prop.BpmnStatus,Prop.BpmnStatus.Format)

Understanding the ShapeSheet™

[112]

Using the Number type
Visio stores numbers as double precision numerals, but the Format cell may be
used to modify the display in the UI. The following screenshot shows that the
Define Shape Data dialog provides a drop-down list of the most popular formats
for numbers, and the formula is stored in the Format cell:

However, Visio also provides some functions to enable rounding and calculations.
Commonly used functions are as follows:

• ROUND(number,numberofdigit) to round a number to a given precision
• INT(number) to round down to the previous integer
• INTUP(number) to round a number up to the next integer
• FLOOR(number[, opt_multiple]), which rounds a number towards zero, to

the next integer, or the next instance of the optional multiple
• CEILING(number[, opt_multiple]), which rounds a zero away from zero

The MODULUS(number, divisor) function can also be useful if you need to
formulate a rule that requires specific values to be entered, for example.

ABS(number) function returns the absolute value, and SIGN(number[, opt_fuzz])
returns a value that represents the sign of a number.

Chapter 3

[113]

Since Visio is a graphics system, there are a large number of functions for dealing
with points, lines, and angles, that are not really relevant for rules validation.

You can simply compare number values using the equals sign (=), and you can
add values using number1+number2, or SUM(number1[, opt_number2] [, opt_
number3] [, ...] [, opt_number14]). Multiplication and division of values is
simple, using number1*number2 and number1/number2 respectively.

You can get the maximum or minimum value of a series of values with
MAX(number1,number2,...,numberN) or MIN(number1,number2,...,numberN).

Using the Boolean type
The Boolean type is often referred to as the True/False or Yes/No type, so
this type returns FALSE (zero) or TRUE (non-zero). Visio actually stores TRUE as 1
internally but some other programming languages use -1, so you may need to
use the ABS() function to get the absolute value, depending on your circumstances.
The following screenshot also shows that the Shape Data window automatically
provides a drop-down list for Boolean types:

Understanding the ShapeSheet™

[114]

Using the Variable List type
A Variable List type is similar to the Fixed List mentioned earlier, but it is usually
not appropriate to retrieve the index position of the selected value because Visio
will automatically add values to the list if the user enters a value that is not present
already. As can be seen in the following example, this even means that the same
word can be repeated in the list if the case is different.

Also, the list is only extended for this particular shape instance; other process shapes
in the diagram Variable List type will have their own variable list.

So, a variable list may seem like a flexible feature for the user, but it is a nightmare for
data validation; the resultant text value should be treated just like the String type.

Chapter 3

[115]

Using the Date type
Visio provides a date picker for the user if the Type is set as Date for a Shape Data
row. However, a custom solution may use either a date or a time picker, since a
DATETIME(double) value is actually stored. It is a Standard OLE automation date
time data type, which means that you will need to use FromOADate and TOOADate in
.Net languages.

Understanding the ShapeSheet™

[116]

The display format of the date time value can be modified using the Format cell, but
any rules validation should use the double precision number value. This will avoid
any problems with the optional positioning of day and months in a date string. The
UK, for example, always uses DD/MM/YY, but the US uses MM/DD/YY.

There are a number of functions that enable you to get to specific integer parts of a
date time value. They are:

• DAY(datetime[, opt_lcid])

• MONTH(datetime[, opt_lcid])

• YEAR(datetime[, opt_lcid])

• HOUR(datetime[, opt_lcid])

• MINUTE (datetime[, opt_lcid])

• SECOND(datetime[, opt_lcid])

There are also a couple of functions to return the integer value of the day
in the week or in the year, namely, WEEKDAY (datetime[, opt_lcid]) and
DAYOFYEAR(datetime[, opt_lcid]).

If you need to convert text to dates or times then you can
use the DATETIME(datetime|expression[, opt_lcid]),
DATEVALUE(datetime|expression[, opt_lcid]) or
TIMEVALUE(datetime|expression[, opt_lcid]) functions.

However, if you have the integer parts of a date or time, then use the
DATE(year,month,day) or TIME(hour,minute,second) functions.

Visio uses the System date; therefore the earliest date
that can be stored is 30th December 1899.

Since date and time are stored as double precision numbers internally, with the date
being the part before the decimal point and the time being the part after the decimal
point, you can check if they are equal (=), before (<), or after (>) easily enough,
but you may wish to check one date time against another within a duration range.
For example, you may want to verify that Prop.EndDate is greater than the Prop.
StartDate plus the Prop.Duration. This could be expressed as:

= Prop.EndDate<(Prop.StartDate+Prop.Duration)

Chapter 3

[117]

This will return True or False.

Similarly, you could test if Prop.EndDate is within the next 12 weeks by using
the following:

=Prop.EndDate<(Now()+12 ew.)

You can use any of the duration units in such formulae.

Using the Duration type
Visio can store duration values expressed as elapsed day (ed.), hour (eh.), minute
(em.), second (es.), or week (ew.). They are all stored internally as days and
fractions of days. The following screenshot demonstrates calculating the duration
between the Prop.StartDate and Prop.EndDate values:

The Format cell may have been used to modify the presentation in
the UI. The Visio Developer SDK contains a page called About
Format Pictures in the documentation, where you can review all
of the different format pictures.

Understanding the ShapeSheet™

[118]

Using the Currency type
The last type is Currency, the display of which defaults to the system settings,
although it is stored as a double precision number. The following screenshot shows
the Prop.Cost.Value cell formula stored as CY(340,"GBP"), but the value is displayed
as £340.00. The CY function will format the value according to the style in the
system's Region and Language settings.

Generally, you would treat Currency in a similar manner to the Number type
described earlier.

Looking at the Hyperlinks section
A shape in Visio can have multiple hyperlinks but one row has a reserved name,
Hyperlink.msvSubprocess, to provide a link to a sub-process page. The following
screenshot shows that a row in the Hyperlinks section, which has a value in either
the Address or SubAddresss column, will be a menu item on the right mouse click
menu, provided the Invisible column value is FALSE.

Chapter 3

[119]

So, you can test if a shape has a sub-process reference with the following formula:

=NOT(ISERR(INT(INDEX(0,"Hyperlink.msvSubprocess.NewWindow"))))

This is checking for the existence of the named Hyperlink row that is created by the
Subprocess commands on the PROCESS tab. There is no function to check directly
for the existence of a row; moreover, since the Hyperlinks section is optional, there
is no guarantee that the Hyperlink.msvSubProcess cell exists at all. The INDEX
function is used to get the value in a list, and you can pass the name of cells as a
string to this function. Normally when you enter the name of a cell as an argument to
a function, it is immediately converted into an object reference, or will return an error
if the cell does not exist. This prevents you from entering formulas with references to
non-existent cells. However, the name of a non-existent cell can be entered by name
as part of a list as an argument to the INDEX function, which will then try to resolve
the name of the cell to obtain the value in that cell. Of course it will fail to find a
value if the cell does not exist and by choosing a cell that can only contain a Boolean
value, the ISERR function will return the error result of the attempted conversion to
an integer by using the INT function. All that remains is to reverse the error result
with the NOT function to change the meaning to verify the existence of a cell.

Understanding the ShapeSheet™

[120]

Zero converts to FALSE in a cell that is used to store Boolean
values in Visio, and any non-zero number converts to TRUE.

You cannot easily test a page to check if it is a sub-process, or where it is used in a
main process, because a sub-process may be part of many parent processes.

Working with Layer Membership
Shape Layer Membership is more complicated than you might think. The
ShapeSheet of the page stores the Layers for that page and, as you can see from
the following screenshot, an individual shape's ShapeSheet merely stores a list
of indexes of the page's Layers.

Layers with the same name may have a different index number on different pages
within the same document. Therefore, you cannot create a rule that tests for a layer
by index.

The layer settings in the page control whether a layer is visible or printable.

You could have a rule that insists that all relevant shapes must be assigned to a layer,
which is given as:

=NOT(STRSAME(LayerMember,""))

Chapter 3

[121]

Or a rule that states that it must be on one layer only:

=NOT(AND(STRSAME(LayerMember,""),FIND(";",LayerMember,1)))

You can then check if the assigned layer is currently visible:

=INT(INDEX(0,"ThePage!Layers.Visible["&INDEX(0,LayerMember)+1&"]"))

Notice how you can refer to the ShapeSheet of the page using the ThePage! syntax.
You can similarly refer to the ShapeSheet of the document using the TheDoc! syntax.

Summary
In this chapter, we have explored a lot of the ShapeSheet functions that can be used
in validation tests, and we have focused on the ShapeSheet sections that are probably
most relevant for creating validation rules.

You may have noticed that there are no functions for checking connectivity in this
chapter. Well, they are part of the new quasi-ShapeSheet functions that can only be
used with the Validation API, so we will examine those later.

In the next chapter, we will examine the new Validation Rules API and you will
understand why it is important to understand both the Visio object model and
ShapeSheet functions, if you want to be able to analyze existing rules or create
your own.

Understanding the
Validation API

The Validation API was new in Visio 2010 Premium edition but is now part of
Visio 2013 Professional; it provides the opportunity for creating diagramming rules.
These rules can help eliminate common errors and enables companies to enforce
diagramming standards. A well-structured drawing could then be used to export
the encapsulated data and drawn relationships between elements to some external
application, if desired.

In the first chapter, we had an overview of the user interface of the Diagram
Validation group on the PROCESS tab, and a quick look at the elements in the
XML format. In this chapter we will explore the objects, collections, and methods
in the Validation API.

An overview of Validation objects
The Validation object model is accessed from the Visio Document object. The
Validation object is only available if the code is running in Visio 2013 Professional
edition, so you should check the edition, as described previously in Chapter 2,
Understanding the Microsoft Visio Object Model.

Understanding the Validation API

[124]

The Validation object contains two collections, Issues and RuleSets, that lead you to
the main areas of the API.

The ShowIgnoredIssues property merely dictates whether or not the Issues window
displays ignored issues. If the user selects to show ignored issues, they are shown as
grayed out, as seen in the following screenshot:

Chapter 4

[125]

The following DebugPrintValidation macro will display the detail of the validation
object but notice that you have to delve into the Issues, Issue, and Rule objects to
retrieve the count of ignored issues, as displayed in the UI. In fact, an issue can be
ignored individually, or by virtue of its rule being marked as ignored.

Public Sub DebugPrintValidation()
Debug.Print "DebugPrintValidation"
Dim ignoredIssues As Integer
 With Visio.ActiveDocument.Validation
 ignoredIssues = getIgnoredIssueCount(.issues)
 Debug.Print , "ActiveDocument.Name", .Document.Name
 Debug.Print , "Total issues", .issues.Count
 Debug.Print , "Active issues", _
 .issues.Count - ignoredIssues
 Debug.Print , "Ignored issues", ignoredIssues
 Debug.Print , "LastValidatedDate", .LastValidatedDate
 Debug.Print , "RuleSets.Count", .RuleSets.Count
 Debug.Print , "ShowIgnoredIssues", .ShowIgnoredIssues
 Debug.Print , "Stat", .Stat
 End With
End Sub

Private Function getIgnoredIssueCount(ByVal issues As
ValidationIssues) As Integer
Dim i As Integer
Dim issue As ValidationIssue
 For Each issue In issues
 i = i + (Abs(issue.Ignored = True) Or Abs(issue.Rule.Ignored =
 True))
 Next
 getIgnoredIssueCount = i
End Function

The preceding code will give an output like this:

DebugPrintValidation

ActiveDocument.Name WorldViewer Data Flow.vsdx

Total issues 5

Active issues 3

Ignored issues 2

LastValidatedDate 09/06/2013 08:37:59

RuleSets.Count 1

Understanding the Validation API

[126]

DebugPrintValidation

ShowIgnoredIssues True

Stat 0

Using the Validate method
You cannot "Validate" a document unless you have at least one ruleset in it. The
Validate([ruleSet as RuleSet][, flags as visValidationFlags]) method
has two optional parameters—RuleSet to use, and flags to indicate whether the
Issues window should be opened.

Validate will check the ruleset, if specified (or all enabled rulesets if none are
specified), and clear any existing issues before creating any new issues found. The
LastValidatedDate will be set so that you can check when a document was validated.

Validating custom rules written in code
You do not have to add all rules within a ruleset. You can have custom validation
code for difficult tasks such as checking cyclic routes in process flows, and then run
your code whenever the Validate() method is called.

The Document object has a RuleSetValidated event that will fire for every ruleset
after validation. It is done as follows:

Private Sub Document_RuleSetValidated(ByVal RuleSet As
 IVValidationRuleSet)
 Debug.Print "Document_RuleSetValidated for" & RuleSet.Name,
 Now()
End Sub

It is not worth checking the Validation object for the number of issues until after all
rulesets have been processed, because it does not get updated incrementally during
Validate().

The preceding code is in Visual Basic for Applications, which
provides a Document object WithEvents in the ThisDocument
class. In general, it is not considered a good coding practice to use
WithEvents because it can unintentionally create a very chatty
application that wastes processing time raising unnecessary events.
It is far better to use the AddAdvise (EventCode As Integer,
SinkIUnkOrIDisp, IIDSink As String, TargetArgs As
String) method to create events as required (see the Visio SDK
Documentation for more information).

Chapter 4

[127]

You can now add whatever code you want to for a ruleset, and then run the code
after the ruleset has been validated. You can then add any issues to the Validation.
Issues collection using the ValidationRule.AddIssue([TargetPage As Page]
[,TargetShape As Shape]) method.

Working with the ValidationRuleSets
collection
Validation Rules are grouped within ValidationRuleSets. The UI provides the
ability to import a built-in ruleset (Flowchart or BPMN 2.0) or a ruleset from another
open Visio document, but the programmer can use the Add(NameU as String) or
AddCopy(RuleSet as ValidationRuleSet[, NameU]) methods to create a new one.

The following code could be run from the Immediate window in VBA:

Visio.ActiveDocument.Validation.RuleSets.Add "bVisual"

You can retrieve a ruleset by its index position in the collection, using
ValidationRuleSets.Item(index), or by its ID using ValidationRuleSets.
ItemFromID(ID). Once you have retrieved a ruleset, you can read its Name
(this can be edited to be a localized version), NameU, Description (displayed
as the tool tip in the UI), or check if the RuleSets is enabled for validation.

Understanding the Validation API

[128]

The RuleSetFlags value determines if the ruleset is visible in the Rules to Check
dropdown in the UI, shown as follows:

The default value is 0 (VisRuleSetFlags.visRuleSetDefault), but you can change
it to 1 (VisRuleSetFlags.visRuleSetHidden) if you do not want it to appear in the
Rules to Check menu.

The following macro, EnumerateRuleSets, displays a list of the rulesets in the
active document:

Public Sub EnumerateRuleSets()
Dim doc As Visio.Document
Dim ruleSet As Visio.ValidationRuleSet
 Set doc = Visio.ActiveDocument
 Debug.Print "EnumerateRuleSets : Count =", _
 doc.Validation.RuleSets.Count
 Debug.Print , "ID", "Enabled", "RuleSetFlags", _
 "Count of Rules", "Name", "Description"
 For Each ruleSet In doc.Validation.RuleSets
 With ruleSet
 Debug.Print , .ID, .Enabled, _
 .RuleSetFlags, .Rules.Count, _
 .NameU, .Description
 End With
 Next
End Sub

Chapter 4

[129]

This will produce an output shown as follows:

EnumerateRuleSets : Count = 2

ID Enabled RuleSetFlags Count
of
Rules

Name Description

1 True 0 11
Flowchart

Verify that Flowchart
shapes are connected
properly.

4 True 0 0 bVisual

Adding to or updating a ruleset
Well, you can always copy a ruleset from another document in the UI, but you can
also create a new one in code or update an existing one. This can be done as follows:

Public Sub AddOrUpdateRuleSet()
Dim ruleSet As Visio.ValidationRuleSet
Dim ruleSetNameU As String
Dim doc As Visio.Document
 Set doc = Visio.ActiveDocument
 ruleSetNameU = "bVisual"
 'Check if the rule set exists already
 Set ruleSet = _
 getRuleSet(doc, ruleSetNameU)
 If ruleSet Is Nothing Then
 'Create the new rule set
 Set ruleSet = _
 doc.Validation.RuleSets.Add(ruleSetNameU)
 End If
 ruleSet.Name = "Be Visual"
 ruleSet.Description = "Example Rule Set"
 ruleSet.Enabled = True
 ruleSet.RuleSetFlags = visRuleSetDefault

End Sub

Private Function getRuleSet(ByVal doc As Visio.Document, _
 ByVal nameU As String) As Visio.ValidationRuleSet
Dim retVal As Visio.ValidationRuleSet
Dim ruleSet As Visio.ValidationRuleSet
 Set retVal = Nothing

Understanding the Validation API

[130]

 For Each ruleSet In doc.Validation.RuleSets
 If UCase(ruleSet.nameU) = UCase(nameU) Then
 Set retVal = ruleSet
 Exit For
 End If
 Next
 Set getRuleSet = retVal
End Function

Notice how the tool tip and displayed name are updated in the UI:

Of course, you can also delete a ruleset as follows:

Public Sub DeleteRuleSet()
Dim ruleSetNameU As String
Dim doc As Visio.Document
 Set doc = Visio.ActiveDocument
 ruleSetNameU = "bVisual"
 'Check if the rule set exists already
 If Not getRuleSet(doc, ruleSetNameU) Is Nothing Then
 'Delete the rule set
 doc.Validation.RuleSets(ruleSetNameU).Delete
 End If
End Sub
End Sub

You can use the NameU or Index of a ruleset to retrieve it from
the Validation.RuleSets collection.

Chapter 4

[131]

Working with the ValidationRules
collection
Once you have a ruleset, you can review, amend, or add to the rules within it. You
can add a rule using the ValidationRules.AddRule(NameU as string) method.
Note that NameU is really for use in code, since it is the Description property that is
displayed in the UI. NameU that must be unique within the Rules collection of the
parent ValidationRuleSet.

You can retrieve a rule by its index position in the collection, using
ValidationRules.Item(index), or by its ID using ValidationRules.
ItemFromID(ID). Once you have retrieved ValidationRule you can read
its NameU and Description or check whether the ruleset is ignored for validation:

Public Sub EnumerateRules()
Dim doc As Visio.Document
Dim ruleSet As Visio.ValidationRuleSet
Dim rule As Visio.ValidationRule
 Set doc = Visio.ActiveDocument

 For Each ruleSet In doc.Validation.RuleSets
 If ruleSet.Enabled Then
 Debug.Print "EnumerateRules for RuleSet : " & _
 ruleSet.nameU & " : Count = " & _
 ruleSet.Rules.Count
 Debug.Print "ID", "Ignored", "Category", _
 "NameU", "Description", _
 "T" & vbCrLf, _

Understanding the Validation API

[132]

 "FilterExpression",, "TestExpression"
 For Each rule In ruleSet.Rules
 With rule
 Debug.Print .ID, .Ignored, .Category, _
 .nameU, .Description, _
 .TargetType & vbCrLf, _
 .FilterExpression,, _
 .TestExpression
 End With
 Next
 End If
 Next
End Sub

The output from this looks as follows (note that the lines are wrapped line columns
for clarity):

EnumerateRules for RuleSet : Flowchart : Count = 11

ID Ignored Category NameU Description T

FilterExpression TestExpression

 1 False Connectivity UngluedConnector Connector is
not glued at
both ends.

0

ROLE()=1 AND(AGGCOUNT(GLUEDSHAPES(4)) = 1,
AGGCOUNT(GLUEDSHAPES(5)) = 1)

 2 False Start / End StartWithout
Terminator

Flowchart
shape has
no incoming
connectors
and is not
a Start/End
shape.

0

AND(OR(HASCATEGORY("Flowc
hart"),ONLAYER("Flowchart
")),NOT(OR(HASCATEGORY("S
tart/End"),STRSAME(LEFT(M
ASTERNAME(750),9),"Start/
End"),STRSAME(LEFT(MASTE
RNAME(750),10),"Terminat
or"))))

AGGCOUNT(GLUEDSHAPES(1)) > 0

Chapter 4

[133]

EnumerateRules for RuleSet : Flowchart : Count = 11

ID Ignored Category NameU Description T

FilterExpression TestExpression

 3 False Start / End EndWithout
Terminator

Flowchart
shape has
no outgoing
connectors
and is not
a Start/End
shape.

0

AND(OR(HASCATEGORY("Flowc
hart"),ONLAYER("Flowchart
")),NOT(OR(HASCATEGORY("S
tart/End"),STRSAME(LEFT(M
ASTERNAME(750),9),"Start/
End"),STRSAME(LEFT(MASTE
RNAME(750),10),"Terminat
or"))))

AGGCOUNT(GLUEDSHAPES(2)) > 0

At last, we are starting to see how the validation logic of each rule works and you
can see why the last chapter was about understanding the ShapeSheet functionality.

You should always set a value for the Category of a rule because the UI can
optionally group by Category, which helps the user fix any issues arising.

TargetType can be one of three values of the VisRuleTargets enumerator, which
defines the scope of the rule. They are:

• VisRuleTargets.visRuleTargetShape (0)
• VisRuleTargets.visRuleTargetPage (1)
• VisRuleTargets.visRuleTargetDocument (2)

You can create an issue for a rule using the AddIssue([TargetPage as Page]
[,TargetShape as Shape]) method, but you should ensure that the relevant
optional arguments are set. TargetType of the rule determines which optional
arguments should be set. For example, if the TargetType = 0 then you should
include both the TargetPage and TargetShape parameters. If the TargetType = 1
then you should only set the TargetPage parameter; if the TargetType = 2 then do
not set any parameter. This is important as it controls the behavior when you select
an issue in the Issues window.

The Ignored flag can be set in the UI or by the developer in code.

Understanding the Validation API

[134]

The FilterExpression property is evaluated against each of the potential targets,
as defined by the TargetType property. If the FilterExpression property returns
True then the TestExpression is evaluated, but if it returns False (or if there is
invalid syntax), then the target is skipped. The TestExpression property is then
evaluated and, if it returns True, then the target is deemed to comply with the rule.
If it returns False (or if there is invalid syntax), then ValidationIssue is added to
the Validation.Issues collection.

Lastly, you can remove a rule from a ruleset with the Rule.Delete() method.

Adding to or updating a rule
Later, we will go into the FilterExpression property and the TestExpression
property in great detail but, for now, we are going to create a simple rule that checks
that there are no blank pages in our document. To do this, we have added a rule
called NoShapesInPage to the bVisual ruleset in the following code:

Public Sub AddOrUpdateRule()
Dim ruleSet As Visio.ValidationRuleSet
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
Dim doc As Visio.Document
 Set doc = Visio.ActiveDocument
 ruleNameU = "NoShapesInPage"
 Set ruleSet = getRuleSet(doc, "bVisual")
 If ruleSet Is Nothing Then
 Exit Sub
 End If
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Shapes"
 rule.Description = _
 "A page must contain at least one shape"
 rule.TargetType = visRuleTargetPage
 rule.FilterExpression = ""
 rule.TestExpression = "AggCount(ShapesOnPage())>0"

End Sub

Private Function getRule(ByVal ruleSet As Visio.ValidationRuleSet, _
 ByVal nameU As String) As Visio.ValidationRule
Dim retVal As Visio.ValidationRule

Chapter 4

[135]

Dim rule As Visio.ValidationRule
 Set retVal = Nothing
 For Each rule In ruleSet.Rules
 If UCase(rule.nameU) = UCase(nameU) Then
 Set retVal = rule
 Exit For
 End If
 Next
 Set getRule = retVal
End Function

Notice that we have set the target to the page, and TestExpression is
AggCount(ShapesOnPage())>0, which will evaluate to True if there are
any shapes on the page:

Since a document must usually have at least one page, this rule would
also ensure that there are shapes in the document. The only exception
would be if a document only contains background pages, because
rules are not validated for background pages.

Understanding the Validation API

[136]

Another example might be a rule that every flowchart shape should have some text.
If we assume that every flowchart shape is on the Flowchart layer, then we could
construct a FilterExpression that tests for this. This will ensure that only relevant
shapes are processed with TestExpression that checks for the existence of text:

Public Sub AddOrUpdateRuleA()
Dim ruleSet As Visio.ValidationRuleSet
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
Dim doc As Visio.Document
 Set doc = Visio.ActiveDocument
 ruleNameU = "FlowchartShapesMustHaveText"
 Set ruleSet = getRuleSet(doc, "bVisual")
 If ruleSet Is Nothing Then
 Exit Sub
 End If
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Shapes"
 rule.Description = _
 "Every Flowchart Shapes must have some text"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = "ONLAYER(""Flowchart"")"
 rule.TestExpression = _
 "NOT(STRSAME(SHAPETEXT(TheText), """"))"
End Sub

This rule uses the ShapeSheet function SHAPETEXT(shapename!TheText[,flag])
combined with the STRSAME("string1", "string2"[, ignoreCase]) function
to check for an empty text string.

Verifying that a rule works
This is not a simple question because you do not get any error syntax checking when
you are writing the Filter and Test Expressions for rules. The FilterExpression
has to return True if the page or shape is to be checked against the TestExpression.
Therefore, simply toggle the formula in TestExpression between True and False
(or 1 and 0), while observing if the expected page or shapes raise an issue or not by
validating the document.

Chapter 4

[137]

Once you are satisfied that FilterExpression is working, you can move on to
verifying TestExpression. This should also return a Boolean value, and should
return False in order to raise an issue. Therefore, reverse the logic by wrapping the
formula with NOT(…). This should result in the raising of an issue where there is a
match. As we did earlier, reverse the logic, and observe if this causes the expected
issues to be alternately raised or not.

If there is no change in the issues raised, at either stage when the logic is toggled,
then there must be a syntax error in FilterExpression or TestExpression.

You will learn more about writing these expressions in Chapter 7, Creating
Validation Rules.

Validation rules that target the document are only re-evaluated when
the entire document changes. Since this occurs infrequently, there
may be cases where an issue that targets the document remains in the
document after it has been fixed by the user—a user may fix an issue and
still see it in the Issues window after a validation is run. For this reason,
Microsoft recommends that you only use validation rules that target the
document when you are using a custom solution to manage validation
issues. When you manage validation issues in code, you will be able to
re-evaluate the validation rule at your discretion.

Working with the ValidationIssues
collection
The ValidationIssues collection stores the issues created by the Validation.
Validate([RuleSet as ValidationRuleSet][, Flags as ValidationFlags])
method and by the RuleSet.AddIssue([TargetPage as Page][,TargetShape
as Shape]) method. It can be reset using the Clear() method, which will also zero
LastValidatedDate of the parent Validation object.

Understanding the Validation API

[138]

Most issues are automatically created by the Validate() method but you can write
code to add issues whenever the user clicks on Check Diagram against a particular
ruleset. You would do this by listening to the RuleSetValidated(RuleSet as
ValidationRuleSet) event of the Application, Documents, or Document object. This
technique is used by the Microsoft SharePoint 2013 Workflow template in Visio 2013.

You can enumerate the current issues in a document, and check which rule has been
transgressed, using the following code:

Public Sub EnumerateIssues()
Dim issue As Visio.ValidationIssue
Dim shpName As String
Dim doc As Visio.Document
 Set doc = Visio.ActiveDocument

 Debug.Print "EnumerateIssues : Count = " & _
 doc.Validation.issues.Count
 Debug.Print , "ID", "Ignored", "Rule.NameU", _
 TargetPage.Name", "TargetShape.Name"
 For Each issue In doc.Validation.issues
 If issue.targetShape Is Nothing Then
 shpName = ""
 Else
 shpName = issue.targetShape.Name
 End If
 Debug.Print , issue.ID, issue.Ignored, _
 issue.rule.nameU, _
 issue.TargetPage.Name, shpName
 Next
End Sub

The EnumerateIssues() macro will produce an output similar to this:

EnumerateIssues : Count = 6

ID Ignored Rule.NameU TargetPage.Name TargetShape.
Name

121 False NoEndTerminator Page-1

122 False EndWithoutTerminator Page-1 Process.32

123 False NoShapeText Page-1 Process.32

124 False FlowchartShapes
MustHaveText Page-1

Process.32

125 False EndWithoutTerminator Page-1 Process.34

126 False NoShapesInPage Page-2

Chapter 4

[139]

Three entries do not have a target shape because the rule
applies to a page.

Compare the previous listings in the table with that seen in the following screenshot:

Firstly, you can tell that this is a multi-page document because the Page column is
not displayed if there is only one foreground page.

Secondly, you cannot see which shape (if any) is the target of the issue. The user
can see the shape in the page when an issue is selected because Visio automatically
selects it. However, it is impossible to see how many issues a particular shape has.

You can retrieve an issue by its index position in the collection, using
ValidationIssues.Item(index), or by its ID using ValidationIssues.
ItemFromID(ID). Once you have retrieved an issue, you can access the rule
that was broken and, if applicable, the page and shape involved.

Understanding the Validation API

[140]

Retrieving the selected issue in the Issues
window
The Issues window is a built-in subwindow of the active window in Visio.
If you were to write some code to enumerate through the subwindows of the
active window, then you can see that there are a number of built-in windows
that may or may not be visible:

Public Sub EnumerateWindows()
Dim win As Visio.Window
 Debug.Print "EnumerateWindows : Count =" _
 & Application.ActiveWindow.Windows.Count
 Debug.Print , "ID", "Type", "Visible", "Caption"
 For Each win In Application.ActiveWindow.Windows
 Debug.Print , win.ID, win.Type, _
 win.Visible, win.Caption
 Next win
End Sub

The EnumerateWindows() macro will produce a listing similar to the following table:

EnumerateWindows : Count =9

ID Type Visible Caption

8650 7 True Basic Flowchart Shapes

2263 10 True Issues

1670 10 False Size & Position

2044 10 False

1721 10 False

1653 10 False Pan & Zoom

8654 7 True Cross-Functional Flowchart Shapes

1658 10 False Shape Data

1669 10 True Shapes

Here you can see that there are different types of windows, and they all have a
unique ID. In fact, the Type = 10 is the constant visWinTypes.visAnchorBarAddon,
and the ID = 2263 is the constant visWinTypes.visWinIDValidationIssues.

Chapter 4

[141]

Knowing this, you can write some code to get more information about the selected
issue by using the following code:

Public Sub DebugPrintIssue()
Dim issue As Visio.ValidationIssue
 Set issue = GetSelectedIssue
 If issue Is Nothing Then
 Exit Sub
 End If
 Debug.Print "DebugPrintIssue : " & issue.ID
 With issue
 Debug.Print , "Ignored", .Ignored
 Debug.Print , "RuleSet.Name", .rule.ruleSet.Name
 Debug.Print , "Rule.ID", .rule.ID
 Debug.Print , "Rule.NameU", .rule.nameU
 Debug.Print , "Rule.Description", .rule.Description
 Debug.Print , "Rule.Category", .rule.Category
 Debug.Print , "Rule.FilterExpression", _
 .rule.FilterExpression
 Debug.Print , "Rule.TestExpression", .rule.TestExpression
 Debug.Print , "TargetPageID", .TargetPageID
 If Not .TargetPage Is Nothing Then
 Debug.Print , "TargetPage.Name", .TargetPage.Name
 End If
 If Not .targetShape Is Nothing Then
 Debug.Print , "TargetShape.ID", .targetShape.ID
 Debug.Print , "TargetShape.Name", _
 .targetShape.Name
 End If
 End With
End Sub

Private Function GetSelectedIssue() As ValidationIssue
Dim issue As Visio.ValidationIssue
Dim win As Visio.Window
 Set win = _
 Application.ActiveWindow.Windows.ItemFromID(_
 VisWinTypes.visWinIDValidationIssues)
 If win.Visible = False Then
 Set issue = Nothing
 Else
 Set issue = win.SelectedValidationIssue
 End If
 Set GetSelectedIssue = issue
End Function

Understanding the Validation API

[142]

So, with the fourth issue selected in the preceding listing, the Immediate window
displayed is the following:

DebugPrintIssue : 125

Ignored False

RuleSet.Name Flowchart

Rule.ID 3

Rule.NameU EndWithoutTerminator

Rule.Description Flowchart shape has no outgoing connectors and
is not a Start/End shape.

Rule.Category Start / End

Rule.
FilterExpression

AND(OR(HASCATEGORY("Flowchart"),ONLAYER("Flowch
art")),NOT(OR(HASCATEGORY("Start/End"),STRSAME(
LEFT(MASTERNAME(750),9),"Start/End"),STRSAME(LE
FT(MASTERNAME(750),10),"Terminator"))))

Rule.
TestExpression

AGGCOUNT(GLUEDSHAPES(2)) > 0

TargetPageID 0

TargetPage.Name Page-1

TargetShape.ID 34

TargetShape.Name Process.34

There are times when you need to react to the user selecting an issue in the UI.
In this case, you can listen to the SelectionChanged event of the ActiveWindow in
the Visio Application.

Notice that the Issues window itself, as with all of the add-on windows, does not
have a selection changed event. Instead, you must listen to the SelectionChanged
event of the parent window, which fires whenever the shape selection changes.
When a user clicks an issue in the Issues window, then all shapes in the drawing
window are deselected. If the issue is not a document issue, then the target page is
activated in the drawing window; if there is a target shape, then this is selected in the
drawing window.

The following code snippet, from the ThisDocument class, is not perfect because it
has to listen for the SelectionChanged event of the drawing window object in order
to retrieve the selected item in the Issues window, if it is open. This event only fires if
the user selects an issue for a different shape or page in the Issues window. It does not
detect a change of selection if the user subsequently selects another item in the Issues
window that belongs to the same shape or page as the previously selected item.

Chapter 4

[143]

In the following code, the RuleSetValidated event for the Document object will
be enabled because VBA automatically creates the Document object WithEvents in
the ThisDocument class; however, the StartListening() method is required to
initialize the WithEvents Window object for the drawing window itself.

Option Explicit

Private WithEvents mWin As Visio.Window

Public Sub StartListening()
 Set mWin = Application.ActiveWindow
End Sub

Private Sub Document_RuleSetValidated(_
 ByVal RuleSet As IVValidationRuleSet)
 Debug.Print "Document_RuleSetValidated for " & _
 RuleSet.Name, Now()
End Sub

Private Sub mWin_SelectionChanged(ByVal Window As IVWindow)
 Dim winIssues As Window
 Set winIssues = _
 Window.Windows.ItemFromID(_
 VisWinTypes.visWinIDValidationIssues)

 If Not winIssues.SelectedValidationIssue Is Nothing Then
 Debug.Print "mWin_SelectionChanged", _
 "Issue = " & _
 winIssues.SelectedValidationIssue.Rule.Description
 Else
 Debug.Print "mWin_SelectionChanged", "No Issue"
 End If

End Sub

Toggling the Issues window visibility
In the last section, you listed all of the current windows using the
EnumerateWindows() method, and you could see that the ID of the Issues
window is 2263. This is, in fact, the value of the constant Visio.VisWinTypes.
visWinIDValidationIssues. You can use this constant to toggle the visibility
of the Issues window in the UI with the following method:

Public Sub ToggleIssuesWindowVisibility()
Dim win As Visio.Window
 Set win = ActiveWindow.Windows.ItemFromID(_
 Visio.VisWinTypes.visWinIDValidationIssues)
 win.Visible = Not win.Visible
End Sub

Understanding the Validation API

[144]

Note that the Issues window is automatically made visible whenever the document
is validated.

Listing the issues caused by a particular
shape
A shape does not have a collection of issues directly associated with it. You will need
to retrieve the relevant issues from the Document.Validation.ValidationIssues
collection as follows:

Public Sub EnumerateShapeIssues()
If Application.ActiveWindow.Selection.Count = 0 Then
 Exit Sub
End If
Dim shp As Visio.Shape
Dim issue As Visio.ValidationIssue
 Set shp = Application.ActiveWindow.Selection.PrimaryItem
 Debug.Print "EnumerateShapeIssues : " & shp.Name
 Debug.Print , "ID", "Ignored", "Rule.NameU"
 For Each issue In shp.Document.Validation.issues
 If issue.targetShape Is shp Then
 Debug.Print , issue.ID, _
 issue.Ignored, issue.rule.nameU
 End If
 Next
End Sub

This will produce an output similar to this table:

EnumerateShapeIssues : Process.32

ID Ignored Rule.NameU

122 False EndWithoutTerminator

123 False NoShapeText

124 False FlowchartShapesMustHaveText

Chapter 4

[145]

Using code to clear issues
When you are writing rules and then validating them in code, you will soon realize
that Visio does not automatically clear all of the issues which were previously
created, nor does Visio necessarily revalidate the same rule on an existing shape. It
assumes that, by default, the rules have not changed. Therefore, if the diagram has
not been changed, then it is not necessary to revalidate the shapes against the rules.
So, it may be necessary to force Visio to revalidate by removing all existing issues.
Fortunately, this can be done simply as follows:

Public Sub ClearAllIssues()
 Visio.ActiveDocument.Validation.issues.Clear
End Sub

Retrieving an existing issue in code
There will be times when you will need to test whether a particular document, page,
or shape has already raised an issue for a specific rule. The following getIssue()
method will retrieve an existing issue, if there is one; otherwise it will return Nothing.
You should pass in the rule object, and then the targetPage object (or Nothing), and
targetShape (or Nothing), as appropriate for the TargetType of the rule:

Private Function getIssue(_
 ByVal rule As Visio.ValidationRule, _
 ByVal targetPage As Visio.Page, _
 ByVal targetShape As Visio.Shape) As Visio.ValidationIssue
Dim retVal As Visio.ValidationIssue
Dim issue As Visio.ValidationIssue
 Set retVal = Nothing
 For Each issue In Visio.ActiveDocument.Validation.issues
 If issue.rule Is rule Then
 If rule.TargetType = visRuleTargetShape And _
 Not targetShape Is Nothing Then
 If targetShape Is issue.targetShape Then
 Set retVal = issue
 Exit For
 End If
 ElseIf rule.TargetType = visRuleTargetPage And _
 Not targetPage Is Nothing Then
 If targetPage Is issue.targetPage Then
 Set retVal = issue
 Exit For
 End If
 ElseIf rule.TargetType = _

Understanding the Validation API

[146]

 visRuleTargetDocument Then
 Set retVal = issue
 Exit For
 End If

 End If
 Next
 Set getIssue = retVal
End Function

Adding an issue in code
There are times when FilterExpression and TestExpression cannot adequately
define the rule you want to check; then it is easier to write a bit of code. One such
example could be ensuring that every page in the document is of portrait orientation.
This involves iterating through all of the foreground pages in the document to check
if the height is greater than the width. In a real solution, we should probably check
that the ratio is correct, too. To do this, we'll first have to add an empty rule with a
macro that utilizes the getRuleSet() and getRule() methods created earlier. This
is done as follows:

Public Sub AddOrUpdateRuleB()
Dim ruleSet As Visio.ValidationRuleSet
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "PagesMustBePortraitOrientation"
 Set ruleSet = getRuleSet(Visio.ActiveDocument, "bVisual")
 If ruleSet Is Nothing Then
 Exit Sub
 End If
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Pages"
 rule.Description = _
 "Every page must be portrait orientation"
 rule.TargetType = visRuleTargetDocument
 rule.FilterExpression = ""
 rule.TestExpression = ""
End Sub

Chapter 4

[147]

Now that we have a rule, we need to create some custom validation code, and
utilize the getIssue() method from earlier. So, if getIssue() does indeed return
something, then it is first deleted using the ValidationIssue.Delete() method, in
order to ensure that a new ID is generated when the ValidationRule.AddIssue()
method is called:

Public Sub CheckAllPagesArePortrait(_
 ByVal ruleSet As Visio.ValidationRuleSet)
Dim isPortrait As Boolean
Dim pageHeight As Double
Dim pageWidth As Double
Dim pag As Visio.Page
Dim issue As Visio.ValidationIssue
Dim rule As Visio.ValidationRule
 Set rule = _
 getRule(ruleSet, "PagesMustBePortraitOrientation")
 If rule Is Nothing Then
 Exit Sub
 End If
 For Each pag In ruleSet.Document.Pages
 If pag.Type = visTypeForeground Then
 pageHeight = pag.PageSheet.CellsSRC(_
 Visio.VisSectionIndices.visSectionObject, _
 Visio.VisRowIndices.visRowPage, _
 Visio.VisCellIndices.visPageHeight).ResultIU
 pageWidth = pag.PageSheet.CellsSRC(_
 Visio.VisSectionIndices.visSectionObject, _
 Visio.VisRowIndices.visRowPage, _
 Visio.VisCellIndices.visPageWidth).ResultIU
 isPortrait = pageHeight > pageWidth
 If isPortrait = False Then
 Set issue = getIssue(rule, pag, Nothing)
 If Not issue Is Nothing Then
 issue.Delete
 End If
 Set issue = rule.AddIssue(pag)
 End If
 End If
 Next
End Sub

Understanding the Validation API

[148]

So, all we need now is to call the CheckAllPagesArePortrait() method when the
ruleset is validated, as we saw earlier using the Document_RuleSetValidated event:

Private Sub Document_RuleSetValidated(_
 ByVal ruleSet As IVValidationRuleSet)
 If ruleSet.NameU = "bVisual" Then
 CheckAllPagesArePortrait ruleSet
 End If
End Sub

This will ensure that our custom validation code is run and any pages that are not
portrait orientation create an issue for that rule. These issues will then appear in the
Issues window in the UI.

Although we have seen how to add issues in code using a custom validation rule,
it would be more auditable to write your own rules using the FilterExpression
and TestExpression formulae as often as possible. This is because you can expose
these rules to public scrutiny more easily, and they can be copied from one ruleset to
another, either by copying-and-pasting between the unzipped versions of your Visio
documents, before zipping them back up again, or by using the utility introduced in
the next chapter.

Chapter 4

[149]

Summary
In this chapter, we have examined the Validation API and seen how we can review
or create rulesets and rules. We have also seen how rules can be validated to create
issues automatically and how issues can be created in code as the result of custom
validation code.

In the next chapter, we are going to start building a Visio VSTO 2012 add-in that we
can use to analyze existing rules, or create new ones more easily. You are also going
to switch from VBA to using C# in Visual Studio 2012, so that you can have a proper
development tool to use.

Developing a Validation
API Interface

Microsoft Visio 2013 does not provide a user interface to the Validation API that
rules developers can use, so this chapter is devoted to building a useful tool to enable
the tasks to be performed easily. The tool will enable you to review and amend
existing rules, to create new rules, and to even perform tests on rules. We will create
an explorer panel that displays a selectable tree view of the open rulesets, and an
editable panel to display the detail of the ruleset or rule selected in the tree view.

Don't worry if you are not a C# coder, because the completed tool is available from
the companion website http://www.visiorules.com. However, we will go through
the development of this tool in this chapter because it introduces you to using C#,
rather than VBA that we used in the previous chapters.

This chapter will also describe how to use this tool, so it should be worth reading
through, even if you are not a C# coder. It will cover the following topics:

• The architecture of the tool – a VSTO (Visual Studio Tools for Office) add-in
with a WPF (Windows Presentation Foundation) UI

• The ThisAddin class – listening for Visio application events and checking the
Visio edition

• Creating the ViewModel – wrapping the Validation API objects to enable
automatic updating of the UI of the new tool

• Modifying the Fluent UI – using callbacks in the ribbon
• Creating the Rules Explorer window – the tree view and detail panels, and

the new ribbon buttons
• Displaying the rule for a selected issue
• Displaying the issues for the current selection

Developing a Validation API Interface

[152]

Understanding the architecture of the
tool
This tool is developed in Microsoft Visual Studio Ultimate 2012, using C# and .NET
Framework 4.5. This means that it can be developed as a Visio 2013 Add-in using
VSTO 2013, as in the following screenshot. This will make deployment simple using
ClickOnce, because once it has been installed it will periodically check to see if there
is an updated version available.

We have called the project ValidationExplorer2; it will be extended in later
chapters to provide enhanced capabilities.

We are using Windows Presentation Foundation (WPF) to create the UI elements
wherever possible because it has become a popular preference over the last few
years. Visio is a COM application; therefore the WPF elements have to be hosted
within a WinForm control. The effort is worth it, though, because of the superior
data-binding and UI element flexibility.

Chapter 5

[153]

Programming in WPF promotes the adoption of a data-driven model, rather than
the event-driven model more common in WinForm applications. A programming
guide pattern called Model View View Model (MVVM) has evolved over the last
few years for working with WPF and Silverlight; this should be followed where
possible. However, as this is only a small application and it is hosted inside a COM
application, we have not adopted all of its patterns, but we have tried to follow the
spirit. The most important part of this model for m is the binding of the UI elements
to views of the data. This is particularly important for XAML-based coding, because
XAML can be so verbose that trying to follow programming logic within it is a
thankless and almost impossible task. It is far easier to separate the design of the UI,
which is described in XAML, from the current state of the interface. For example, we
have added IsSelected and IsExpanded properties to the classes bound to the main
tree view. These properties are merely bound (both ways) to the state of the interface.
This means that the code can set the values of the object properties, and the UI will
respond automatically. There is no need to iterate through the tree view nodes in
the UI, or indeed to find the tree view node by its key to select it. The magic of data
binding just does it.

The XAML binding capability is reminiscent of the Visio ShapeSheet
formula capability. Perhaps that is why I like it so much!

The Visio add-in template will create the ThisAddin class automatically because
this is the main hook into your project when the host application starts. The Solution
window shows the top-level structure of the solution files and folders:

Developing a Validation API Interface

[154]

The data layer is provided by the Visio objects and, in particular, by the new
Validation objects described in the earlier chapters.

The UI layer comprises WinForms controls as hosts for XAML User Controls, or just
XAML Windows, and are created in the UI folder.

The business logic or view model layer consists of classes and collections that can be
bound to the UI, and are created in the ViewModel folder.

Enhancing the ThisAddin class
The ThisAddin_Startup() event is a good place to test for the correct Visio version
and edition, along with checking that the Visio application events are indeed
enabled; otherwise this add-in will not work properly anyway.

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 try
 {
 veApplication.VisioApplication = this.Application;
 /* check prereq's */
 // check for Visio >= 2013 and Edition = PRO
 if (!this.IsVisio15ProfessionalInstalled)
 {
 MessageBox.Show(
 "This add-in requires the Professional edition of
Visio",
 "Visio Professional edition required", MessageBoxButton.
OK,
 MessageBoxImage.Exclamation
);
 return;
 }
 // events must be enabled
 // -1 is TRUE, 0 is FALSE, typically anything other than 0 is
TRUE
 if (!Convert.ToBoolean(Globals.ThisAddIn.Application.
EventsEnabled))
 {
 if (MessageBox.Show(
 "Event are currently disabled, this add-in requires
events to be enabled. " +
 "Would you like to enable events now?",
 "Rules Tools",
 MessageBoxButton.OKCancel,

Chapter 5

[155]

 MessageBoxImage.Information,
 MessageBoxResult.OK) == MessageBoxResult.OK)
 {
 // convert to short from TRUE which ends up being 1
 Globals.ThisAddIn.Application.EventsEnabled = Convert.
ToInt16(true);
 }
 }
 // init locals
 this.documents = new Dictionary<int, VEDocument>();
 // connect to events
 VisioEvents_Connect();
 }
 catch (COMException ex)
 {
 throw ex;
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }

Listening for application events
We need to listen for the creation, opening, or closing of any documents so that our
VEDocuments collection can be maintained.

Refer to http://msdn.microsoft.com/en-us/library/
office/ff768620.aspx for more information.

Therefore, the following VisioEvents_Connect() method is called by the
ThisAddIn_Startup event.

 private void VisioEvents_Connect()
 {
 Globals.ThisAddIn.Application.DocumentOpened +=
 new Visio.EApplication_DocumentOpenedEventHandler(
 VisioApplication_DocumentOpened);
 Globals.ThisAddIn.Application.DocumentCreated +=
 new Visio.EApplication_DocumentCreatedEventHandler(
 VisioApplication_DocumentCreated);
 Globals.ThisAddIn.Application.BeforeDocumentClose +=

Developing a Validation API Interface

[156]

 new Visio.EApplication_BeforeDocumentCloseEventHandler(
 VisioApplication_BeforeDocumentClose);
 //Listen for selection changes
 Globals.ThisAddIn.Application.SelectionChanged +=
 new Visio.EApplication_SelectionChangedEventHandler(
 Window_SelectionChanged);
 //Listen for key strokes for addon
 Globals.ThisAddIn.Application.OnKeystrokeMessageForAddon +=
 new Visio.EApplication_OnKeystrokeMessageForAddonEventHandle
r(VisioApplication_MessageForAddon);
 //Listen for import of rulesets
 Globals.ThisAddIn.Application.ExitScope +=
 new Visio.EApplication_ExitScopeEventHandler(VisioApplicati
on_ExitScopeEvent);
 }

The last event listens to the SelectionChanged event, because this is required later
to ascertain the currently selected issue in the Issues window.

The SelectionChanged event will only fire when an issue
pertaining to a different shape or page from the previous one is
selected. Unfortunately, there is no selection changed event for the
Issues window.

There is also a VisioEvents_Disconnect() method called by the ThisAddIn_
Shutdown() event.

If you want an even more efficient method for handling events in Visio,
then check out the AddAvise method. Never use the WithEvents
keyword that is available in VB.net because it is far too chatty.

Checking for the Visio Professional edition
In an earlier chapter, we saw how to test for the Visio edition in VBA; here is the
equivalent as a C# method:

 internal bool IsVisio15ProfessionalInstalled
 {
 get
 {
 bool retVal = false;

 // the installed version of Visio has to be 14 or > and the
edition has to be PRO or >

Chapter 5

[157]

 if (this.Application.TypelibMinorVersion > 14)
 {
 // CurrentEdition tells us that their Editions is
Professional
 if (this.Application.CurrentEdition == Visio.VisEdition.
visEditionProfessional)
 {
 retVal = true;
 }
 }
 return retVal;
 }
 }

Creating the ViewModel class
We created new classes to mirror the relevant parts of the Visio Type Library
objects, and all of the Validation API objects and collections. We prefixed these
wrapper classes with VE for ValidationExplorer, which is the project name. The
next screenshot shows the files in the ViewModel folder in the Solution window:

When you select a folder in the Solution Explorer, then select Project,
Add Class and so on, Visual Studio will automatically insert the
folder name to the namespace of the class.

As the Visio objects are COM objects, you cannot bind directly to them successfully
because XAML really needs to bind to dependency objects that can notify the UI of
any changes that take place.

Developing a Validation API Interface

[158]

Therefore, we created a BaseViewModel abstract class that implements the System.
ComponentModel.INotifyPropertyChanged interface; this will notify the client
when property values are changed.

All of my wrapper object classes implement this base class. The wrapper collections
implement the System.Collections.ObjectModel.ObservableCollection<T>
class because this will provide notifications when items are added, removed, or
when the whole list is refreshed. The class diagram from Visual Studio 2012 shows
how all of the view model classes are related:

Chapter 5

[159]

Each of the classes also implements the corresponding Visio class, and the Validation
objects are explicitly implemented so that individual properties can be enhanced,
if required.

Creating the BaseViewModel class
The BaseViewModel class merely implements the INotifyPropertyChanged
interface explicitly, as shown in the next screenshot:

Each of the classes that implement this base class will have the important
OnPropertyChanged method available. It is this that ensures that the
data-bound UI is kept automatically synchronized.

Viewing the documents collection
We created the VEApplication class to be the top level of our mirror hierarchy. This
contains the ObservableCollection called VEDocuments, which in turn provides
access to each VEDocument.

Developing a Validation API Interface

[160]

The following class diagram displays the properties and methods of the
VEApplication, VEDocuments, and VEDocument classes:

The FillDocuments method in the VEApplication class creates the collection
of VEDocuments from the open list of Visio documents. This is only used on
initialization because, once created, documents will be added or removed
from the collection in response to the relevant events (VisioApplication_
DocumentCreated, VisioApplication_DocumentOpened, and VisioApplication_
BeforeDocumentClose).

Chapter 5

[161]

The following method thus iterates through the open Visio documents and creates a
new VEDocument object for each relevant Visio Document:

 public void FillDocuments()
 {
 this.VEDocuments.Clear();
 if (visioApplication == null) return;
 foreach (Visio.Document doc in visioApplication.Documents)
 {
 //Only add drawings and templates to the collection
 if (doc.Type == Visio.VisDocumentTypes.visTypeDrawing
 || doc.Type == Visio.VisDocumentTypes.visTypeTemplate)
 {
 this.VEDocuments.Add(new VEDocument(this, doc));
 VEDocument ved = this.VEDocuments.Single(dc => dc.ID == doc.
ID);
 ved.IsExpanded = true;
 //Set the Selected Document
 if (visioApplication.ActiveDocument.ID == doc.ID)
 {
 this.SelectedVEDocument = ved;
 }
 }
 }
 OnPropertyChanged("VEDocuments");
 }

The stencil documents are filtered out by testing the type of
the document.

One of the coolest bits of C# is the terseness of the Lambda expressions in LINQ
statements. For example, the preceding code contains the following line:

VEDocument ved = this.VEDocuments.Single(dc => dc.ID == doc.ID);

This is such a simple way to select a specific element from a collection.

The VEDocument class contains the properties and methods for controlling the
extra forms in the add-in, and we have surfaced the methods for adding, copying,
pasting, and deleting rulesets, rules, and issues because this is the entry point to
these collections.

Developing a Validation API Interface

[162]

The following class diagram displays the methods of the VEDocuments class:

Chapter 5

[163]

Viewing the ValidationRuleSets collection
Each VEDocument object contains an ObservableCollection called VERuleSets,
which in turn provides access to each VERuleSet object.

The VERuleSets and VERuleSet classes implement Visio.ValidationRuleSets
and Visio.ValidationRuleSet respectively, which means that all of the properties
and methods for them are available to the developer. However, special attention
must be paid to ensuring that the notifiable properties are updated whenever
the underlying properties are changed. Similarly, it is necessary to create custom
methods to add and delete objects from the collections so that the observable
collections are kept synchronized.

The following class diagram displays the properties and methods of the VERuleSets
and VERuleSet classes:

Developing a Validation API Interface

[164]

Viewing the ValidationRules collection
Each VERuleSet object contains an ObservableCollection called VERules, which
in turn provides access to each VEule.

The VERules and VERule classes implement Visio.ValidationRules and Visio.
ValidationRule respectively, which means that all of their properties and methods
are available to the developer.

The following class diagram displays the properties and methods of the VERules and
VERule classes:

Chapter 5

[165]

The constructor for the VERules class takes the Visio.ValidationRules and the
VERuleSet object to create the collection of VERule objects:

 public class VERules : ObservableCollection<VERule>, Visio.
ValidationRules
 {
 #region Fields
 public ICollectionView VERulesView;
 #endregion

 #region Properties

 private VEDocument veDocument;
 public VEDocument VEDocument
 {
 get { return veDocument; }
 }

 private VERuleSet veRuleSet;
 public VERuleSet VERuleSet
 {
 get { return veRuleSet; }
 }

 public string DisplayName
 {
 get
 {
 return "Rules [Count=" + this.GetCount.ToString() +
 "] for " + Document.Name;
 }
 }

 #endregion

 #region Methods

 private Visio.ValidationRules rules;
 public VERules(Visio.ValidationRules rles, VERuleSet verset)
 {
 rules = rles;
 veRuleSet = verset;
 veDocument = verset.VEDocument;
 fillRules();

 //Set the default views
 this.VERulesView = CollectionViewSource.GetDefaultView(this);

Developing a Validation API Interface

[166]

 //Group by Category, sort by Description
 this.VERulesView.GroupDescriptions.Add(new PropertyGroupDescript
ion("Category"));
 this.VERulesView.SortDescriptions.Add(new
SortDescription("Description", ListSortDirection.Ascending));

 OnPropertyChanged(new PropertyChangedEventArgs("GetCount"));
 this.VERuleSet.RaisePropertyChanged("DisplayName");
 }

Viewing the ValidationIssues collection
We wanted to be able to view the issues for a page, or a selection of shapes,
grouped by each shape. Therefore, we decided to create the VEIssues collection
of VEIssue objects.

These objects need to be created when the document is first opened and then
re-created whenever the document is validated. Similar to the VEApplication class,
there is a call to the VisioEvents_Connect() method in the constructor, and a call to
the VisioEvents_Disconnect() method in the destructor.

 private void VisioEvents_Connect()
 {
 if (this.document != null)
 {
 this.document.RuleSetValidated +=
 new Visio.EDocument_RuleSetValidatedEventHandler(Docume
nt_RuleSetValidated);
 }
 }

 private void VisioEvents_Disconnect()
 {
 this.document.RuleSetValidated -=
 new Visio.EDocument_RuleSetValidatedEventHandler(Document_
RuleSetValidated);
 }

 private void Document_RuleSetValidated(Visio.ValidationRuleSet
rset)
 {
 OnRuleSetValidated(rset);
 }

 private void OnRuleSetValidated(Visio.ValidationRuleSet rset)
 {
 //Refresh the issues

Chapter 5

[167]

 this.RefreshIssues();
 }

 public void RefreshIssues()
 {
 this.LastValidatedDate = document.Validation.LastValidatedDate;
 OnPropertyChanged("LastValidatedDate");
 this.ShowIgnoredIssues = document.Validation.ShowIgnoredIssues;
 OnPropertyChanged("ShowIgnoredIssues");
 this.VEIssues.FillIssues();
 }

The following class diagram displays the properties and methods of the VEIssues
and VEIssue classes:

Developing a Validation API Interface

[168]

Fortunately, for this add-in, we can listen to the Visio.EDocument_RuleSetValidate
dEventHandler(Document_RuleSetValidated) event because the validation objects
are all created at this time. We will describe how this is used later in this chapter.

Modifying the Visio Fluent UI
The Fluent UI was new in Visio 2010, bringing it in line with the big three in
Office (Word, Excel, and PowerPoint). This means that there are a lot more relevant
resources available on the Web for developers to refer to. Before Microsoft bought
Visio in 1999, the Visio application had its own UIObject API that provided a
programming model for menus, toolbars, the status bar, and accelerator keys. One
of the first changes to be made, after the Microsoft acquisition, was the adoption of
the Microsoft Office CommandBars API in Visio. This meant that developers could
start using the same UI objects as other Office developers. But then the big three
Office applications got the new Ribbon in the 2007 version. This is now improved
and commonly called the Fluent UI; thus, even though the legacy UI objects may still
be available in the Visio type library, it is recommended that developers get to grips
with the Ribbon object.

One of the good things about the Fluent UI is the ability to describe the modifications
that you want in an XML file. You can even modify built-in ribbon tabs in this
XML file, which is fortunate because the new PROCESS tab has plenty of unused
space at the right-hand side. So, we created a Ribbon.xml file that described a new
group, labeled Rules Tools, with a large button to open the main Rules Explorer
window. The next five smaller buttons are only usable when the Rules Explorer
window is open, so they are disabled until then. The last button can be pressed any
time because it displays the issues for the selection or page (if nothing is selected).
We have also reproduced the Selection Issues button on the right mouse menu of a
shape or page, as seen in the following screenshot:

Chapter 5

[169]

I cannot pretend that I took the months of usability research that
Microsoft would have done for the optimum size and appearance of
the buttons in the Rules Tools group, but I have tried to put an order to
them. Also, I should thank Chris Hopkins of Microsoft for his excellent
article about extending the Visio Ribbon at: http://blogs.msdn.com/
chhopkin/archive/2009/11/20/ribbon-extensibility-for-
visio-solutions-in-visio-2010.aspx.

Developing a Validation API Interface

[170]

This is an abbreviation of the Ribbon.xml file that creates this modification to the UI:

<?xml version="1.0" encoding="UTF-8"?>
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui"
 onLoad="Ribbon_Load">
 <ribbon>
 <tabs>
 <tab idMso="TabProcess" >
 <group id="RulesTools"
 imageMso="ReviewReviewingPaneVertical"
 label="Rules Tools" autoScale="true">
 <button id="buttonValidationExplorerWindow"
 imageMso="ReviewReviewingPaneVertical"
 size="large"
 onAction="OnAction"
 getEnabled="GetEnabled"
 getLabel="GetLabel"
 getSupertip="GetSupertip"
 getVisible="GetVisible"
 />
 <separator/>

 <button id="buttonRuleAdd"
 getImage="GetImage"
 onAction="OnAction"
 getEnabled="GetEnabled"
 getLabel="GetLabel"
 getSupertip="GetSupertip"
 getVisible="GetVisible"
 />

 <button id="buttonIssues"
 size="large"
 getImage="GetImage"
 onAction="OnAction"
 getEnabled="GetEnabled"
 getLabel="GetLabel"
 getSupertip="GetSupertip"
 getVisible="GetVisible"
 />
 </group>
 </tab>
 </tabs>
 </ribbon>

Chapter 5

[171]

 <contextMenus>
 <contextMenu idMso="ContextMenuShape1D" >
 <button id="buttonIssues1D"
 getImage="GetImage"
 onAction="OnAction"
 getEnabled="GetEnabled"
 getLabel="GetLabel"
 getSupertip="GetSupertip"
 getVisible="GetVisible"
 />
 <button id="buttonReverse1D"
 getImage="GetImage"
 onAction="OnAction"
 getEnabled="GetEnabled"
 getLabel="GetLabel"
 getSupertip="GetSupertip"
 getVisible="GetVisible"
 />
 </contextMenu>
 <contextMenu idMso="ContextMenuShape" >
 <button id="buttonIssues2D"
 getImage="GetImage"
 onAction="OnAction"
 getEnabled="GetEnabled"
 getLabel="GetLabel"
 getSupertip="GetSupertip"
 getVisible="GetVisible"
 />
 </contextMenu>
 <contextMenu idMso="ContextMenuDrawingPage" >
 <button id="buttonIssuesPage"
 getImage="GetImage"
 onAction="OnAction"
 getEnabled="GetEnabled"
 getLabel="GetLabel"
 getSupertip="GetSupertip"
 getVisible="GetVisible"
 />
 </contextMenu>
 </contextMenus>
</customUI>

Developing a Validation API Interface

[172]

The idMso="TabProcess" attribute is the important bit to know, because TabProcess
is control.id of the PROCESS tab in Visio 2013. If you do not use the idMso attribute,
then you need to use the id attribute to create your own unique identifier.

The Ribbon.xml file has effectively got code behind in a class called Ribbon.cs, and
this class contains the callbacks specified in the getImage, onAction, getEnabled,
getLabel, getSupertip, and getVisibile methods. These neat methods enable you
to centralize the custom images, text, and actions, in addition to defining when each
control is enabled.

For example, the following snippet is an extract from the Ribbon class that returns
the label for each of the buttons:

 public string GetLabel(Microsoft.Office.Core.IRibbonControl
control)
 {
 switch (control.Id)
 {
 case "buttonValidationExplorerWindow":
 {
 return "Rules Explorer";
 }
 case "buttonRuleAdd":
 {
 return "Add...";
 }
 case "buttonIssues":
 {
 return "Selection Issues";
 }
 case "buttonReportRules":
 {
 return "Report";
 }
 }
 return "";
 }
Similar calls return the image for each button.

 public System.Drawing.Bitmap GetImage(

Chapter 5

[173]

 Microsoft.Office.Core.IRibbonControl control)
 {
 switch (control.Id)
 {
 case "buttonRuleAdd":
 {
 return GetResourceImage("base_plus_sign_32.png");
 }
 case "buttonIssues":
 {
 return GetResourceImage("bulleted_list_options.png");
 }
 }
 return null;
 }

The preceding function calls the GetResourceImage() method to extract Resource
images from the Images folder.

 private System.Drawing.Bitmap GetResourceImage(string image)
 {
 // build up a relative path to the image.
 System.Uri imageLocation = new
 System.Uri("/RulesTools;component/Images/" + image,
 System.UriKind.Relative);
 // Use the helper methods on WPF's application
 // class to create an image.
 using (Stream resourceStream = System.Windows.Application.GetRes
ourceStream(imageLocation).Stream)
 {
 return new System.Drawing.Bitmap(resourceStream);
 }
 }

Developing a Validation API Interface

[174]

The overall effect is a pleasing extension to the built-in PROCESS tab, which can be
seen in the following screenshot:

Creating the Rules Explorer window
The Rules Explorer Window is a Visio anchor window, of which there are many
examples available, including some in the Microsoft Visio 2013 SDK. The resultant
window is a sub-window of the document window, just as with a number of other
built-in windows such as the Drawing Explorer, Shape Data window and, of course,
the new Issues window. These windows can float free, anchored to an edge of the
drawing window or merged with other sub-windows.

Chapter 5

[175]

The following screenshot of Visual Studio 2012 shows that the FormExplorer class
merely acts as a host for the UserControlExplorer control:

The UserControlExplorer control is the WPF control that contains all of the
goodies and some code behind. The next image of the Visual Studio 2012 UI
shows the UserControlExplorer.xaml file:

The Document Outline shows that very little is defined directly within the
TreeViewMain element because it calls on templates defined in Resources.

Developing a Validation API Interface

[176]

Self-describing tree views
We wanted the tree view to display the open documents, their rulesets, and the
rules within them. This is achieved by creating three HierarchicalDataTemplate
definitions—DocumentTemplate, RuleSetTemplate, and RuleTemplate.

 <TreeView Grid.Row="0" Name="TreeViewMain"
 Background="White"
 ItemsSource="{Binding Path=VEDocuments}"
 ItemTemplate="{StaticResource ResourceKey=DocumentTemplate}"
 SelectedItemChanged="TreeViewMain_SelectedItemChanged"
 OverridesDefaultStyle="False"
 />

The ResourceKey property of the ItemTemplate attribute specifies
HierarchicalDataTemplate that is defined in the ResourceDictionary
of UserControl.

 <HierarchicalDataTemplate x:Key="DocumentTemplate"
 DataType="{x:Type localVM:VEDocument}"
 ItemsSource="{Binding
Path=VERuleSetsView}"
 ItemTemplate="{StaticResource
ResourceKey=RuleSetTemplate}"
 >
 <StackPanel Orientation="Horizontal"
 ToolTip="{StaticResource
ResourceKey=DocumentToolTip}">
 <Image Source="..\Images\Page.png"
 Style="{StaticResource
ResourceKey=ImageStyle}"/>
 <TextBlock Text="{Binding Path=DisplayName}"
 Style="{StaticResource
ResourceKey=TreeItemStyle}" />
 </StackPanel>
 </HierarchicalDataTemplate>

Thus, the HierarchicalDataTemplate for each DataType specifies the template for
its child items.

Chapter 5

[177]

Making informative tool tips
WPF enables a developer to create larger and more interesting tool tips than those
usually created with WinForms applications.

Each of the tree view items has a tool tip defined in XAML in order to display the
most important details for it, as shown in the following screenshot:

The RuleToolTip is defined in the UserControlExplorer.xaml file:

 <ToolTip x:Key="RuleToolTip">
 <Border Style="{StaticResource ResourceKey=ToolTipBorderSty
le}">
 <GroupBox >
 <GroupBox.Header>
 <StackPanel Orientation="Horizontal">
 <Image Source="..\Images\IssueTracking_32x32.
png"
 Style="{StaticResource
ResourceKey=ImageStyle}" />
 <TextBlock Text="Rule : " />
 <TextBlock Text="{Binding Path=ID}" />
 </StackPanel>
 </GroupBox.Header>
 <Grid Style="{DynamicResource
ResourceKey=ToolTipGridStyle}">

Developing a Validation API Interface

[178]

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="60" />
 <ColumnDefinition Width="140" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="18" />
 <RowDefinition Height="18" />
 <RowDefinition Height="54" />
 </Grid.RowDefinitions>

 <TextBlock Text="NameU"
 Style="{StaticResource
ResourceKey=ToolTipLabelStyle}"
 Grid.Row="0" Grid.Column="0" />
 <TextBlock Text="{Binding Path=NameU}"
 Style="{StaticResource ResourceKey=
ToolTipTextBlockStyle}"
 Grid.Row="0" Grid.Column="1" />

 <TextBlock Text="Category"
 Style="{StaticResource
ResourceKey=ToolTipLabelStyle}"
 Grid.Row="1" Grid.Column="0" />
 <TextBlock Text="{Binding Path=Category}"
 Style="{StaticResource ResourceKey=
ToolTipTextBlockStyle}"
 Grid.Row="1" Grid.Column="1" />

 <TextBlock Text="Description"
 Style="{DynamicResource
ResourceKey=ToolTipLabelStyle}"
 Grid.Row="2" Grid.Column="0" />
 <TextBlock Text="{Binding Path=Description}"
 Style="{StaticResource ResourceKey=
ToolTipTextBlockStyle}"
 Grid.Row="2" Grid.Column="1"
 TextWrapping="Wrap"/>
 </Grid>
 </GroupBox>
 </Border>
 </ToolTip>

Chapter 5

[179]

Linking detail panels
We want the relevant detail panel to be displayed whenever a ruleset or a rule is
selected in the tree view, in a master-detail relationship. This detail panel will enable
the editing of a ruleset or a rule.

Editing ruleset properties
You can edit a ruleset by selecting the ruleset tree view item. This enables and
expands the RuleSet Properties panel, thus providing access to the Enabled,
NameU, Name, Flags, and Description properties. Remember that the NameU
is the internal unique identifier, while the Name can be localized, if desired. The
following screenshot shows the editable panel for the selected ruleset:

Developing a Validation API Interface

[180]

The Flags property is selected from a combo box that contains the humanized version of
the Visio.VisRuleSetFlags enumerator, as shown in the following screenshot:

I borrowed the code for this from Tom F Wright's CodeProject
article: http://www.codeproject.com/KB/WPF/
enumlistconverter.aspx.

This technique requires a Resources reference in the XAML:

 <localUI:VisRuleSetFlagsListConverter x:Key="VisRuleSetFlagsLis
tConverter"/>

This Converter is then specified in the ItemSource and SelectedIndex of the
ComboBox element:

 <ComboBox ItemsSource="{Binding
 Source={StaticResource ResourceKey=VisRuleSetFlagsListConvert
er}}"
 SelectedIndex="{Binding Path=Flags, Mode=TwoWay,
 Converter={StaticResource ResourceKey=VisRuleSetFlagsListConver
ter}}"
 Grid.Row="3" Grid.Column="1" Grid.ColumnSpan="3" />

Editing rule properties
Whenever the user selects a rule in the tree view of the Rules Explorer window, the
Rule Properties expander is automatically expanded, thus providing easy access to
the properties for viewing or editing. The next screenshot shows the editable panel
for the selected rule:

Chapter 5

[181]

The expander for the Documents, Rulesets and Rules tree view (and RuleSet
Properties) can be collapsed, and the vertical scrollbar positioned, to allow full
access to the Rule Properties panel, as shown in the following screenshot:

Developing a Validation API Interface

[182]

The XAML data binding and the underlying VERule object ensure that the Visio.
ValidationRule object is automatically updated but, of course, the Visio document
must be saved eventually to preserve these changes.

Handling special key strokes
The user can type normal characters into the text boxes in the detail panels but there
are some special key combinations that will act upon the drawing page rather than
the add-in window, unless they are handled. In particular, a rules developer will
want to use Delete, Ctrl+C, Ctrl+X, and Ctrl+V to delete, copy, cut, and paste. Other
useful keys are Ctrl+A, Ctrl+Z, and Ctrl+Y to select all, undo, and redo.

See the following MSDN article for more information about
the OnMessageKeystrokeForAddon event: http://msdn.
microsoft.com/en-us/library/ms427669.aspx.

Firstly, the ThisAddin.VisioEvents_Connect() method was enhanced to add the
OnKeystrokeMessageForAddon event, which is as follows:

 Globals.ThisAddIn.Application.OnKeystrokeMessageForAddon +=
 new Visio.EApplication_
OnKeystrokeMessageForAddonEventHandler(
 VisioApplication_MessageForAddon);

The VisioApplication_MessageForAddon() event was written to handle each of
the anticipated keystrokes in order to action upon the currently active text box.

 public System.Windows.Controls.TextBox
 CurrrentTextBox = null;
 private bool VisioApplication_MessageForAddon(
 Microsoft.Office.Interop.Visio.MSGWrap msg)
 {
 if (CurrrentTextBox == null) return false;
 if ((int)msg.wParam == (int)System.Windows.Forms.Keys.Delete)
 {
 if (CurrrentTextBox.SelectionLength > 0)
 {
 CurrrentTextBox.Text.Remove(
 CurrrentTextBox.SelectionStart,
 CurrrentTextBox.SelectionLength);
 CurrrentTextBox.SelectedText = "";
 }
 return true;
 }

Chapter 5

[183]

 else if (System.Windows.Input.Keyboard.IsKeyDown(
 System.Windows.Input.Key.LeftCtrl) == true ||
 System.Windows.Input.Keyboard.IsKeyDown(
 System.Windows.Input.Key.RightCtrl) == true)
 {
 if ((int)msg.wParam == (int)System.Windows.Forms.Keys.A)
 {
 CurrrentTextBox.SelectionStart = 0;
 CurrrentTextBox.SelectionLength = CurrrentTextBox.Text.
Length;
 CurrrentTextBox.SelectedText = CurrrentTextBox.Text;
 return true;
 }
 else if ((int)msg.wParam == (int)System.Windows.Forms.Keys.C)
 {
 Clipboard.SetText(CurrrentTextBox.SelectedText);
 return true;
 }
 else if ((int)msg.wParam == (int)System.Windows.Forms.Keys.X)
 {
 Clipboard.SetText(CurrrentTextBox.SelectedText);
 if (CurrrentTextBox.SelectionLength > 0)
 {
 CurrrentTextBox.Text =
 CurrrentTextBox.Text.Remove(
 CurrrentTextBox.SelectionStart,
 CurrrentTextBox.SelectionLength);
 CurrrentTextBox.SelectedText = "";
 }
 return true;
 }
 else if ((int)msg.wParam == (int)System.Windows.Forms.Keys.V)
 {
 if (Clipboard.ContainsText() == false) return false;
 CurrrentTextBox.SelectedText = Clipboard.GetText();
 return true;
 }
 else if ((int)msg.wParam == (int)System.Windows.Forms.Keys.Z)
 {
 CurrrentTextBox.Undo();
 return true;
 }
 else if ((int)msg.wParam == (int)System.Windows.Forms.Keys.Y)
 {

Developing a Validation API Interface

[184]

 CurrrentTextBox.Redo();
 return true;
 }
 else return false;
 }
 return false;
 }

The GotFocus event was then added to the textbox controls in the
UserControlExplorer.xaml file that is used for editing text, as in the
following example:

 <TextBox Text="{Binding Path=NameU, Mode=TwoWay}"
 GotFocus="TextBox_GotFocus"
 Style="{DynamicResource ResourceKey=TBStyle}"
 Grid.Row="1"
 Grid.Column="1" Grid.ColumnSpan="3" />

The TextBox_GotFocus() event handler was added to the code in the
UserControlExplorer.xaml.cs class as follows:

 private void TextBox_GotFocus(object sender,
 RoutedEventArgs e)
 {
 if (sender is System.Windows.Controls.TextBox)
 {
 Globals.ThisAddIn.CurrrentTextBox =
 (System.Windows.Controls.TextBox)sender;
 }
 else
 {
 Globals.ThisAddIn.CurrrentTextBox = null;
 }
 }

Adding the Explorer actions
The smaller action buttons are available when the Rules Explorer window is open.

The Ribbon class contains a method to test if this Explorer Window is open for the
active document:

 public static bool IsExplorerWindowOpen(Visio.Document document)
 {
 //Check if the explorer window is open
 if (document != null)

Chapter 5

[185]

 {
 foreach (Visio.Window win in document.Application.Windows)
 {
 if (win.Document == document)
 {
 foreach (Visio.Window subWin in win.Windows)
 {
 if (subWin.Caption == Globals.AnchorBarTitle)
 {
 return subWin.Visible;
 }
 }
 }
 }
 }
 return false;
 }

The particular actions that the buttons perform depend upon the type of item
selected in the tree view. Therefore, we added a couple of methods to the Ribbon
class that test if VERuleSet or VERule is selected in the tree view.

 public static bool IsRuleSetSelected(Visio.Document document)
 {
 //Check if the explorer window is open
 if (document != null)
 {
 //Get the VEDocument
 ViewModel.VEDocument ved = Globals.ThisAddIn.VEApp.
VEDocuments.Single(doc => doc.ID == document.ID);
 //Test if SelectedRuleSet is null
 return ved.SelectedVERuleSet != null;
 }
 return false;
 }

 public static bool IsRuleSelected(Visio.Document document)
 {
 //Check if the explorer window is open
 if (document != null)
 {
 //Get the VEDocument
 ViewModel.VEDocument ved = Globals.ThisAddIn.VEApp.
VEDocuments.Single(doc => doc.ID == document.ID);
 //Test if SelectedRule is null

Developing a Validation API Interface

[186]

 return ved.SelectedVERule != null;
 }
 return false;
 }

Of course, something needs to set the SelectedVERuleSet and SelectedVERule
properties of the active VEDocument instance. This is done in the TreeViewMain_
SelectedItemChanged() event in the code in the UserControlExplorer.xaml file.
This event is also used to set the DataContext of the expanders for the RuleSet and
Rule Properties panels.

Creating the Add button
The Add button action will add a ruleset if a document is selected in the tree view,
but it will add a rule if a ruleset is selected in the tree view. Then, the new item itself
is automatically selected in the tree view, as shown in the following screenshot:

The OnAction(Office.IRibbonControl control) callback defines the case for the
buttonRuleAdd button. It tests whether a VEDocument or VERuleSet is selected, and
then calls the relevant method in the VEDocument object.

 case "buttonRuleAdd":
 {
 //Only enable if a ruleset or rule is selected
 bool isWinOpen = Ribbon.IsExplorerWindowOpen(
 Globals.ThisAddIn.Application.ActiveDocument);
 if (isWinOpen)

Chapter 5

[187]

 {
 if (Ribbon.IsRuleSetSelected(
 Globals.ThisAddIn.Application.ActiveDocument))
 {
 Globals.ThisAddIn.VEApp.SelectedVEDocument.AddRule();
 }
 else if (!Ribbon.IsRuleSelected(
 Globals.ThisAddIn.Application.ActiveDocument))
 {
 Globals.ThisAddIn.VEApp.SelectedVEDocument.AddRuleSet();
 }
 else
 {
 System.Windows.MessageBox.Show(this.GetSupertip(control),
 this.GetLabel(control),
 System.Windows.MessageBoxButton.OK,
 System.Windows.MessageBoxImage.Information);
 }
 }
 else
 {
 System.Windows.MessageBox.Show(this.GetSupertip(control),
 this.GetLabel(control),
 System.Windows.MessageBoxButton.OK,
 System.Windows.MessageBoxImage.Information);
 }
 break;
 }

For example, the AddRule() method ensures that a unique new name is proposed,
and then passed through to the AddRule() method of the VERuleSet object:

 public void AddRule()
 {
 try
 {
 if (this.SelectedVERuleSet != null)
 {
 //Add a rule
 string newName =
 this.SelectedVERuleSet.VERules.SuggestRuleName();
 VERule ver =
 this.selectedVERuleSet.VERules.AddRule(newName);
 this.selectedVERuleSet.SelectedVERule = ver;
 this.SelectedVERule =

Developing a Validation API Interface

[188]

 this.selectedVERuleSet.SelectedVERule;
 }
 }
 catch (Exception)
 {
 throw;
 }
 }

 public VERule AddRule(string NameU)
 {
 Visio.ValidationRule rul = rules.Add(NameU);
 this.Add(new VERule(rul, veRuleSet));
 OnPropertyChanged(new
 PropertyChangedEventArgs("GetCount"));
 this.VERuleSet.RaisePropertyChanged("DisplayName");
 return this.Single(ver => ver.NameU == NameU);
 }

Notice that this method creates a new Visio.ValidationRule first, then adds this
to the VERules ObservableCollection. It then calls the OnPropertyChanged()
method to ensure that the UI display of the VERules is updated.

The AddRuleSet() method is similar to the AddRule() method.

Creating the Add Issue button
The Add Issue button action will simply add an issue to a rule, as shown in the
following screenshot:

Chapter 5

[189]

The AddRuleIssue() method in the VEDocument class establishes the TargetType of
the rule, then adds the issue to the relevant item or items.

 public void AddRuleIssue()
 {
 try
 {
 if (this.SelectedVERule != null)
 {
 //Add an issue for the rule
 if (this.selectedVERule.TargetType ==
 Visio.VisRuleTargets.visRuleTargetDocument)
 {
 Visio.ValidationIssue iss =
 this.selectedVERule.AddIssue();
 this.VEIssues.AddIssue(iss);
 }
 else if (this.selectedVERule.TargetType ==
 Visio.VisRuleTargets.visRuleTargetDocument)
 {
 Visio.ValidationIssue iss =
 this.selectedVERule.AddIssue(
 document.Application.ActivePage);
 this.VEIssues.AddIssue(iss);
 }
 else
 {
 foreach (Visio.Shape shp in
 document.Application.ActiveWindow.Selection)
 {
 Visio.ValidationIssue iss =
 this.selectedVERule.AddIssue(
 document.Application.ActivePage, shp);
 this.VEIssues.AddIssue(iss);
 }
 }
 }
 }
 catch (Exception)
 {
 throw;
 }
 }

Developing a Validation API Interface

[190]

Creating the Paste button
The Paste button action will paste a previously copied ruleset or rule to the selected
document or ruleset respectively, as in the next screenshot:

The VEApplication.PasteRule() method establishes that a VERuleSet item
is selected, and that there is a temporary VERule object copied. It then calls the
VERules.PasteRule() method.

 public void PasteRule()
 {
 if (this.SelectedVERuleSet != null
 && tempRule != null)
 {
 VERule newVer =
 this.SelectedVERuleSet.VERules.PasteRule(tempRule);
 this.SelectedVEDocument.SelectedVERule = newVer;
 }
 }

The VERules.PasteRule() method checks if a new unique name is required before
creating a new rule and cloning the properties:

 public VERule PasteRule(VERule sourceRule)
 {
 VERule newVer = null;
 if (this.Count(ver => ver.NameU ==
 sourceRule.NameU) == 0)
 {

Chapter 5

[191]

 //Use same name
 newVer = this.AddRule(sourceRule.NameU);
 }
 else
 {
 //Get a new name
 string newName = this.SuggestRuleName();
 newVer = this.AddRule(newName);
 }
 //Set all of the Visio Validation properties
 newVer.Ignored = sourceRule.Ignored;
 newVer.Category = sourceRule.Category;
 newVer.Description = sourceRule.Description;
 newVer.FilterExpression = sourceRule.FilterExpression;
 newVer.TestExpression = sourceRule.TestExpression;
 newVer.TargetType = sourceRule.TargetType;
 OnPropertyChanged(new
 PropertyChangedEventArgs("GetCount"));
 this.VERuleSet.RaisePropertyChanged("DisplayName");
 return newVer;
 }

Creating the Copy button
The Copy action will take a copy of the selected ruleset or rule, so that it is available
for the Paste action, as shown in the following screenshot:

Developing a Validation API Interface

[192]

The VEApplication.CopyRule() method simply copies the SelectedVERule object
to a temporary object and then ensures that the HasTempRule property is notified.

 public void CopyRule()
 {
 tempRule = this.SelectedVERule;
 OnPropertyChanged("HasTempRule");
 }

There is a similar VEApplication.CopyRuleSet() method that is called if the user
has a VERuleSet object selected in the Validation Explorer tree view, rather than a
VERule object.

Creating the Delete button
The Delete action enables the user to delete the selected ruleset or rule, as in the
next screenshot:

The VERules.DeleteRule() method ensures that the Visio.ValidationRules
collection and the VERules ObservableCollection are kept synchronized:

 public void DeleteRule(VERule ver)
 {
 Visio.ValidationRule rul = this.rules[ver.NameU];
 this.Remove(ver);
 rul.Delete();
 OnPropertyChanged(new
 PropertyChangedEventArgs("GetCount"));
 this.VERuleSet.RaisePropertyChanged("DisplayName");
 }

Chapter 5

[193]

There is a similar VERuleSets.DeleteRuleSet() method that is called if the user
has a VERuleSet object selected in the Validation Explorer tree view, rather than a
VERule object.

Displaying the rule for a selected issue
The built-in Issues Window, which is opened from the Diagram Validation group
on the PROCESS tab, provides an existing method for a user to select an issue.
Therefore we can synchronize the selected rule in the Rules Explorer whenever an
issue is selected. This enables the rules developer to analyze the expressions used.

Actually, the Issues window does not cause any events at all but it does select the
target shape or page whenever an issue is selected in the window.

Developing a Validation API Interface

[194]

Thus, we can use the Application.Window_SelectionChanged() event to test
if the Issues window is open. If it is, then the selected issue ID is sent into the
veApplication.SetSelectedIssue() method:

 public void SetSelectedIssue(int? docid, int? issue)
 {
 if (docid.HasValue && this.VEDocuments.Count() > 0)
 {
 selectedVEDocument =
 this.VEDocuments.Single(doc => doc.ID == docid);
 selectedVEDocument.SetSelectedIssue(issue);
 }
 else
 {
 selectedVEDocument = null;
 }
 }

The VEApplication.SetSelectedIssue() method then gets the correct VEDocument
object and passes the issue ID through to it via the selectedVEDocument.
SetSelectedIssue(issue) method.

 public void SetSelectedIssue(int? iss)
 {
 if (iss.HasValue)
 {
 if (this.VEIssues.Count(issu => issu.ID == iss.Value) == 0)
return;
 this.SelectedVEIssue = this.VEIssues.Single(issu => issu.ID ==
iss.Value);

 var resultIssues = from isu in this.VEIssues select isu;
 foreach (VEIssue issu in resultIssues)
 {
 if (issu.ID != selectedVEIssue.ID) issu.IsSelected = false;
 }
 selectedVEIssue.IsSelected = true;

 var results = from rls in this.VERuleSets select rls;
 foreach (VERuleSet rls in results)
 {
 rls.IsSelected = false;
 rls.UnSelect();
 }
 if (this.VERuleSets.Count > 0)

Chapter 5

[195]

 {
 this.SelectedVERuleSet = this.VERuleSets.Single(rs => rs.ID
== selectedVEIssue.Rule.RuleSet.ID);
 selectedVERuleSet.IsSelected = true;
 selectedVERuleSet.IsExpanded = true;
 this.SelectedVERule = selectedVERuleSet.VERules.Single(rl =>
rl.ID == selectedVEIssue.Rule.ID);
 selectedVERule.IsSelected = true;
 }
 else
 {
 this.SelectedVEIssue = null;
 this.SelectedVERuleSet = null;
 this.SelectedVERule = null;
 }
 }
 else
 {
 this.SelectedVEIssue = null;
 this.SelectedVERuleSet = null;
 this.SelectedVERule = null;
 }
 }

Now, because the IsSelected property of the tree view items is bound to
the IsSelected property of the underlying objects, the UI instantly reacts
and displays the details of the rule for the selected issue in the Issues window.

For example, the UserControlExplorer.xaml file contains the
HierarchicalDataTemplate for the rule. This definition does not contain any
binding for the TreeViewItem because it merely describes the UI elements for
the item. In order to set the binding for the item, and to vary the colors when it is
selected, you can define a Style with the TargetType="{x:Type TreeViewItem}"
attribute. This style will automatically be applied to each TreeViewItem as follows:

 <Style TargetType="{x:Type TreeViewItem}">
 <Setter Property="Background"
 Value="Transparent" />
 <Setter Property="Foreground"
 Value="Black" />
 <Setter Property="IsExpanded"
 Value="{Binding Path=IsExpanded}" />
 <Setter Property="IsSelected"
 Value="{Binding Path=IsSelected}" />
 <Style.Triggers>

Developing a Validation API Interface

[196]

 <DataTrigger
 Binding="{Binding Path=IsSelected}" Value="True">
 <Setter Property="Background"
 Value="Black" />
 <Setter Property="Foreground"
 Value="White" />
 </DataTrigger>
 </Style.Triggers>
 </Style>

Displaying the issues for the current
selection
The Selection Issues button opens a dialog that contains just the issues for the
selected page or shapes. If there are multiple issues on the page, or on a shape,
then they are grouped together for clarity.

We have already expressed a preference for using WPF where possible. However,
the VSTO template, which is a Windows Forms project, hides the WPF window item
type from selection if you try to add one. You are only offered the User Control
(WPF) to add in the WPF category of installed templates. Fortunately, you can select
this option and then make some simple changes to the code to turn a User Control
(WPF) into a Window (WPF). In this case, we added a new UserControl (WPF)
named WindowIssues. We then edited the XAML of the WindowIssues.xaml file.

From:

<UserControl x:Class="ValidationExplorer2.UI.WindowIssues"

To:

<Window x:Class="ValidationExplorer2.UI.WindowIssues"

Similarly, we edited the WindowIssues.xaml.cs file and changed the following line:

From:

 public partial class WindowIssues : UserControl

To:

 public partial class WindowIssues : Window

Chapter 5

[197]

The WindowIssues class is now a true WPF window that can be edited to display the
issues for the selection, grouped by each shape, as in the next screenshot:

The ThisAddin class has a method to open the selected issues dialog.

 public void OnActionOpenSelectionIssues()
 {
 VEDocument document = this.documents[Globals.ThisAddIn.
Application.ActiveDocument.ID];
 if (document != null)
 {
 // this is our document so call open window
 document.OpenSelectionIssues();
 }
 }

Developing a Validation API Interface

[198]

The OpenSelectionIssues() method is quite simple, because the list view in
the WindowlIssues.xaml file is based on a filtered view of the current document
VEIssues observable collection:

 public void OpenSelectionIssues()
 {
 Globals.ThisAddIn.VEApp.SelectedVEDocument = this;
 UI.WindowIssues frm = new UI.WindowIssues();
 frm.ShowDialog();
 }

The WindowIssues.xaml file defines the list view, complete with its grouping.

First, you need to include an extra namespace:

xmlns:dat="clr-namespace:System.Windows.Data;assembly=PresentationFra
mework"

Next, you can use this namespaces to define the CollectionViewSource grouping,
as follows:

 <CollectionViewSource Source="{Binding Path=VEIssues}"
x:Key="listingDataView"
 Filter="CollectionViewSource_
Filter">
 <CollectionViewSource.GroupDescriptions>
 <dat:PropertyGroupDescription PropertyName="TargetName" />
 </CollectionViewSource.GroupDescriptions>
 </CollectionViewSource>

You can then reference this collection view source in ListView:

 <ListView Name="ListViewMain"
 SelectionChanged="ListViewMain_SelectionChanged"
 ItemsSource="{Binding Source={StaticResource
 ResourceKey=listingDataView}}" IsEnabled="False">

Next, you can define the ListView.GroupStyle binding to the name of the group:

 <ListView.GroupStyle>
 <GroupStyle>
 <GroupStyle.ContainerStyle>
 <Style TargetType="{x:Type GroupItem}">
 <Setter Property="Margin" Value="0,0,0,5"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type GroupItem}">

Chapter 5

[199]

 <Expander IsExpanded="True"
BorderBrush="#FFA4B97F"

BorderThickness="0,0,0,1">
 <Expander.Header>
 <DockPanel>
 <TextBlock FontWeight="Bold" Text="{Binding
Path=Name}"

Margin="5,0,0,0" Width="300"/>
 <TextBlock FontWeight="Bold"

Text="{Binding Path=ItemCount}"/>
 </DockPanel>
 </Expander.Header>
 <Expander.Content>
 <ItemsPresenter />
 </Expander.Content>
 </Expander>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </GroupStyle.ContainerStyle>
 </GroupStyle>
 </ListView.GroupStyle>

Lastly, ListView.View can be defined binding to the properties of the VEIssue objects:

 <ListView.View>
 <GridView >
 <GridViewColumn Width="120" Header="Category"
 DisplayMemberBinding="{Binding Path=Rule.Category}"/>
 <GridViewColumn Width="240" Header="Rule"
 DisplayMemberBinding="{Binding Path=Rule.Description}"/>
 <GridViewColumn Width="120" Header="NameU"
 DisplayMemberBinding="{Binding Path=Rule.NameU}"/>
 <GridViewColumn Width="60" Header="IsIgnored"
 DisplayMemberBinding="{Binding Path=IsIgnored}"/>
 <GridViewColumn Width="120" Header="RuleSet Name"
 DisplayMemberBinding="{Binding Path=Rule.RuleSet.Name}"/>
 <GridViewColumn Width="240" Header="RuleSet Description"
 DisplayMemberBinding="{Binding Path=Rule.RuleSet.
Description}"/>
 </GridView>
 </ListView.View>

Developing a Validation API Interface

[200]

The constructor in the code sets the DataContext for UserControlIssues:

 public WindowIssues()
 {
 InitializeComponent();
 if (Globals.ThisAddIn.VEApp.SelectedVEDocument != null)
 {
 this.DataContext = Globals.ThisAddIn.VEApp.SelectedVEDocument;
 }
 }

The CollectionViewSource_Filter() method is called in the XAML definition of
the CollectionViewSource and is defined as follows:

 private void CollectionViewSource_Filter(object sender,
FilterEventArgs e)
 {

 ViewModel.VEIssue issue = e.Item as ViewModel.VEIssue;
 bool ignore = (issue.IsIgnored == true
 && Globals.ThisAddIn.Application.ActiveDocument.Validation.
ShowIgnoredIssues == false);
 if (ignore == true) { e.Accepted = false; return; }

 if (Globals.ThisAddIn.Application.ActiveWindow.Selection.Count
== 0)
 {
 //Check for the active page
 if (issue.TargetPage == Globals.ThisAddIn.Application.
ActivePage
 && issue.TargetShape == null)
 e.Accepted = true;
 else e.Accepted = false;
 }
 else
 {
 //Check for the Target Shape in the active selection
 foreach (Visio.Shape shp in Globals.ThisAddIn.Application.
ActiveWindow.Selection)
 {
 if (issue.TargetPage == Globals.ThisAddIn.Application.
ActivePage
 && issue.TargetShape != null)
 {
 if (shp == issue.TargetShape)
 {

Chapter 5

[201]

 e.Accepted = true;
 break;
 }
 else { e.Accepted = false; }
 }
 else e.Accepted = false;
 }
 }
 }

Summary
In this chapter we started to develop a Visio 2013 Add-In that enables the rules
developer to analyze which rules have been transgressed to cause any particular
issue. We have provided an interface that allows the rules developer to add, copy,
paste, modify, and delete rulesets and rules.

In the next chapter, we are going to extend the add-in to provide an export of rules to
XML, and to a report so that the rules can be reviewed. We will provide an import of
rulesets from the XML files that we created. Finally, we will also create annotations
for issues in Visio so that the diagrams can be viewed with corresponding issues to
assist the rules developer in analyzing the reason for failing validation.

Reviewing Validation Rules
and Issues

In the previous chapter, we created a tool to allow us to review and edit rules in
Microsoft Visio 2013 Professional. In this chapter, we will extend this tool to provide
an import/export routine of rules to an XML file, or to an HTML report, and enable
you to add issues as annotations in Visio diagrams. These features will allow rules to
be stored, restored, printed out, and pondered over, along with the issues that they
may create in a diagram. This should provide confidence in their fitness for purpose.

As before, I will not be offended if you do not follow all of the coding, but please
read the bits about using the extra features.

Extensions to our ribbon
Our Rules Tools group in the PROCESS tab of the Visio ribbon needs to be
extended to include our new features:

Reviewing Validation Rules and Issues

[204]

There are four new buttons required:

• Annotate
• Report
• Export
• Import

These are added to the Ribbon.xml file and the relevant call-backs are added to the
Ribbon class.

The Annotate button is enabled for all diagrams but the other buttons are only
enabled when the Rules Explorer window is open, and I have arranged them
on the drop-down menu of a split button.

The OnAction event of the Annotate button checks whether the active page type is
a visTypeForeground. This is because a user may inadvertently be on a reviewer
(visTypeMarkup) or background (visTypeBackground) page when the button is
pressed. This is explained further in the next section. Initially, the Ribbon class gets
the call-back from the clicked button, and then re-directs it to the ThisAddin class:

 case "buttonAnnotate":
 Globals.ThisAddIn.OnActionAnnotateIssues();
 break;

So, the ThisAddin class has the following method:
 public void OnActionAnnotateIssues()
 {
 VEDocument document = this.documents[
 Globals.ThisAddIn.Application.ActiveDocument.ID];
 if (document != null)
 {
 // this is our document so call open window
 document.OpenAnnotateIssues();
 }
 }

The VEDocument class has the OpenAnnotateIssues() method that checks the page
type and whether the user is in markup mode or not (this is done by checking the
value of a specific cell in the document's ShapeSheet):

 public void OpenAnnotateIssues()
 {
 Globals.ThisAddIn.VEApp.SelectedVEDocument = this;
 //Toggle the issues annotation
 if (Globals.ThisAddIn.VEApp.VisioApplication.ActivePage.Type ==
 Visio.VisPageTypes.visTypeForeground)

Chapter 6

[205]

 if (this.document.DocumentSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionObject,
 (short)Visio.VisRowIndices.visRowDoc,
 (short)Visio.VisCellIndices.visDocViewMarkup).ResultIU ==
0)
 { this.DisplayIssueMarkup(); }
 else
 { this.HideIssueMarkup(); }
 else
 this.HideIssueMarkup();
 }

Both the Export RuleSets and RuleSets Report buttons will output a single ruleset if
a rule or ruleset item is selected in the Rules Explorer window, or all of the rulesets
if a document item is selected. Then, the export method is as follows:

Globals.ThisAddIn.VEApp.SelectedVEDocument.ExportDocument(
true, true);

And the report method is called as follows:

Globals.ThisAddIn.VEApp.SelectedVEDocument.ReportDocument(
true, false);

The two arguments passed through are whether to include rulesets and issues in
the action. Actually, while I have provided exporting rules sets and issues to XML,
I have not included a report for issues currently. Therefore, the second argument for
ReportDocument is false. Perhaps, you would like to create a XSL report for issues.

The action for the Import RuleSets button simply checks that a document has
been selected in the Rules Explorer before importing the rulesets in the selected
XML document.

 if (Globals.ThisAddIn.VEApp.SelectedVEDocument != null)
 {
 Globals.ThisAddIn.VEApp.SelectedVEDocument.
ImportRuleSets();
 }
 else
 {
 System.Windows.MessageBox.Show(this.
GetSupertip(control),
 this.GetLabel(control),
 System.Windows.MessageBoxButton.OK,
 System.Windows.MessageBoxImage.Information);
 }

Reviewing Validation Rules and Issues

[206]

Annotating Visio diagrams with issues
One useful feature of Visio is the ability to add reviewers' comments and scribbles
via the REVIEW tab.

In fact, this feature has been changed for Visio 2013 and is a replacement for the old
mark-up feature that was present in the previous versions of Visio. However, the
old feature is still present, and accessible via code, but hidden from normal users
(unless they are added back in again with the Customize the Ribbon feature). There
were some good reasons for Microsoft providing a different way of adding page and
shape comments. For example, the new comments are also editable via Visio Services
on SharePoint 2013, and the comments are actually associated directly with shapes.
I have utilized the old mark-up feature to display issues, so that they do not become
confused with other shape comments.

Chapter 6

[207]

Normally, comments are assigned to the currently signed-in user or you can create
them for the local user, which you can set by navigating to File | Options manually.

The Always use these values regardless of sign in to Office checkbox is a new
setting in Visio 2013 that allows the local user to be used rather than the Microsoft
identity (Settings.UseLocalUserInfo).

In fact, these old-style mark-up comments are actually stored as annotation rows
in the ShapeSheet of the page, and are not printable. When you switch on mark-up
tracking, a new special page is created as an overlay over the existing page. This
new page is of type Visio.VisPageTypes.visTypeMarkup, and it is named after the
foreground page that it is associated with, but with a suffix of the user's initials.

Reviewing Validation Rules and Issues

[208]

The idea is that a drawing can be passed from user to user, with each adding their
own distinct mark-up page, without affecting the original drawing. These mark-up
pages appear as Background Pages in the Drawing Explorer panel.

When you add a comment using the Annotate button in the RulesTools add-in, it
gets added as a row in the Annotation section of the ShapeSheet of the page:

You can see that each comment has an X and Y value for its location in the page, an
index, and a datetime stamp.

Chapter 6

[209]

The Annotate button automatically reveals the old Reviewing pane to the right of
the diagram.

You can click on a comment in the Reviewing pane to display the details of
the comment.

I did not want these issue notes to be confused with any notes that the current user
may wish to create, so I decided to create a dummy user, Validation Explorer,
with the initials vex, in order to keep them clearly distinct. Of course, I do not expect
anyone to manually add this dummy user; it will be added automatically. The only
trace that it exists will be an entry in the Reviewer section of the ShapeSheet of the
document, because this is where Visio automatically creates an entry when mark-up
is switched on:

Reviewing Validation Rules and Issues

[210]

Saving the current user settings
There are two Application Settings to provide the strings for the dummy user,
which can be opened from the Settings tab on the panel opened from the Project |
ValidationExplorer2 Properties… menu option:

I then added private strings to store the current user's settings.

 private string theUserName = "";
 private string theUserInitials = "";
 private bool useLocalUserInfo = false;

These variables are set during the constructor of the VEDocument class:

 this.theUserName =
 veApplication.VisioApplication.Settings.UserName;
 this.theUserInitials =
 veApplication.VisioApplication.Settings.UserInitials;
 this.useLocalUserInfo =
 veApplication.VisioApplication.Settings.UseLocalUserInfo;

They will be required in order to set the user details back again.

Displaying the issue mark-up page
The Annotate button adds the issues to the Reviewer Comments automatically for
the page and each shape that has issues. This allows the user to easily see all of the
issues for a selected shape.

Chapter 6

[211]

After checking that the active page is not already a mark-up page, this method
collects all of the issues that are not ignored in the current page and groups them
by the page or shape, using the power and simplicity of Linq. It then transfers
these objects into a Dictionary because experimentation found that the pagIssues
collection is emptied as soon as the active page is changed. This happens because
I have elsewhere set up ViewCollection on the VEIssues collection that
automatically filters by the active page.

The Visio application settings are then changed to the dummy user before mark-up
tracking and viewing are switched on. This automatically changes the active page to
the mark-up page.

The comments are then added to the mark-up page and finally mark-up tracking
is switched off; however, mark-up viewing is left on so that the user can see
the comments.

 public void DisplayIssueMarkup()
 {
 try
 {
 //Check the page type
 Visio.Page pag =
 (Visio.Page)veApplication.VisioApplication.ActiveWindow.
Page;
 if (pag.Type == Visio.VisPageTypes.visTypeMarkup) return;

 //Group the issues for this page by target

Reviewing Validation Rules and Issues

[212]

 var pagIssues = from issu in this.VEIssues
 where issu.IsIgnored == false
 && issu.TargetPageID == pag.ID
 group issu by issu.Target into g
 select new { Target = g.Key, Issues = g };

 //Transfer into a dictionary
 //otherwise it will be empty when the page changes
 var dicIssues =
 new Dictionary<object, List<VEIssue>>();
 foreach (var v in pagIssues)
 {
 List<VEIssue> lst = new List<VEIssue>();
 foreach (var i in v.Issues)
 {
 lst.Add(i);
 }
 dicIssues.Add(v.Target, lst);
 }
 //Set the dummy user settings
 veApplication.VisioApplication.Settings.UseLocalUserInfo =
true;
 veApplication.VisioApplication.Settings.UserName =
 Properties.Settings.Default.vexUserName;
 veApplication.VisioApplication.Settings.UserInitials =
 Properties.Settings.Default.vexUserInitials;
 //Turn on Track Markup
 //this will use the User settings to
 //either create a new markup page
 //or go to a previously created one
 this.document.DocumentSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionObject,
 (short)Visio.VisRowIndices.visRowDoc,
 (short)Visio.VisCellIndices.visDocAddMarkup).FormulaU =
 true.ToString();
 //Turn on View Markup
 this.document.DocumentcSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionObject,
 (short)Visio.VisRowIndices.visRowDoc,
 (short)Visio.VisCellIndices.visDocViewMarkup).FormulaU =
 true.ToString();

 //Get the markup page
 pag = (Visio.Page)veApplication.VisioApplication.ActiveWindow.
Page;
 if (pag.Type == Visio.VisPageTypes.visTypeMarkup)
 {

Chapter 6

[213]

 int rvwrID = pag.ReviewerID;
 //Clear any existing annotations
 if (pag.PageSheet.get_SectionExists(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)Visio.VisExistsFlags.visExistsAnywhere) != 0)
 {
 pag.PageSheet.DeleteSection(
 (short)Visio.VisSectionIndices.visSectionAnnotation);
 }

 //Add notes to the markup page
 foreach (var k in dicIssues.Keys)
 {
 string note = @"";
 List<VEIssue> lst = (List<VEIssue>)dicIssues[k];
 foreach (VEIssue i in lst)
 {
 note += i.DisplayName + "\n";
 }
 if (k is Visio.Page)
 { addIssueNote(pag, null, rvwrID, note); }
 else if (k is Visio.Shape)
 { addIssueNote(pag, (Visio.Shape)k, rvwrID, note); }
 }
 //Turn off track markup
 this.document.DocumentSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionObject,
 (short)Visio.VisRowIndices.visRowDoc,
 (short)Visio.VisCellIndices.visDocAddMarkup).FormulaU =
 false.ToString();
 }
 }
 catch (Exception)
 {
 throw;
 }
 //Set the Settings back to the current user
 veApplication.VisioApplication.Settings.UserName =
 this.theUserName;
 veApplication.VisioApplication.Settings.UserInitials =
 this.theUserInitials;
 veApplication.VisioApplication.Settings.UseLocalUserInfo =
 this.useLocalUserInfo ;
 }

Reviewing Validation Rules and Issues

[214]

Adding in the issue comments
The issue comments are added to the mark-up page with the following method:

 private void addIssueNote(
 Visio.Page pag, Visio.Shape shp, int rvwrID, string msg)
 {
 //Get the last row number in the
 //Annotations section of the ShapeSheet of the page
 int intAnnotationRow = pag.PageSheet.AddRow(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)Visio.VisRowIndices.visRowLast, 0);
 if (shp != null)
 {
 //Add the comment
 pag.PageSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)intAnnotationRow,
 (short)Visio.VisCellIndices.visAnnotationX).FormulaU =
 "=GUARD(Pages[" + shp.ContainingPage.Name + "]!" +
 shp.NameID + "!PinX)";
 pag.PageSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)intAnnotationRow,
 (short)Visio.VisCellIndices.visAnnotationY).FormulaU =
 "=GUARD(Pages[" + shp.ContainingPage.Name + "]!" +
 shp.NameID + "!PinY)";
 }
 else
 {
 //Add the comment at the centre of the page,
 //but allow it to be re-positioned, if required
 pag.PageSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)intAnnotationRow,
 (short)Visio.VisCellIndices.visAnnotationX).FormulaU =
 "=PageWidth*0.5";
 pag.PageSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)intAnnotationRow,
 (short)Visio.VisCellIndices.visAnnotationY).FormulaU =
 "=PageHeight*0.5";
 }
 //Add the reviewer ID
 pag.PageSheet.get_CellsSRC(

Chapter 6

[215]

 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)intAnnotationRow,
 (short)Visio.VisCellIndices.visAnnotationReviewerID).FormulaU
=
 rvwrID.ToString();
 //Add the index
 pag.PageSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)intAnnotationRow,
 (short)Visio.VisCellIndices.visAnnotationMarkerIndex).FormulaU
=
 (intAnnotationRow + 1).ToString();
 //Add timestamp
 pag.PageSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)intAnnotationRow,
 (short)Visio.VisCellIndices.visAnnotationDate).FormulaU =
 "DATETIME(" + DateTime.Now.ToOADate() + ")";
 //Add the concatenated issues
 pag.PageSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionAnnotation,
 (short)intAnnotationRow,
 (short)Visio.VisCellIndices.visAnnotationComment).FormulaU =
 "\"" + msg + "\"";
 }

Hiding the issue mark-up page
This is only called if the active page type is not a foreground page. It ensures that the
active page is returned to the foreground page by ensuring that tracking and viewing
of mark-up is switched off. Finally, an attempt is made to hide the Reviewing pane
by using the DoCmd() method on the Visio application object. This will only toggle
the visibility, though, but it is most probable that it is visible, so this will hide it most
of the time.

 public void HideIssueMarkup()
 {
 try
 {
 //Ensure that the user Settings are correct
 veApplication.VisioApplication.Settings.UserName =
 this.theUserName;
 veApplication.VisioApplication.Settings.UserInitials =
 this.theUserInitials;

Reviewing Validation Rules and Issues

[216]

 veApplication.VisioApplication.Settings.UseLocalUserInfo =
 this.useLocalUserInfo;

 //Turn off Add Markup
 this.document.DocumentSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionObject,
 (short)Visio.VisRowIndices.visRowDoc,
 (short)Visio.VisCellIndices.visDocAddMarkup).FormulaU =
 false.ToString();
 //Turn off View Markup
 this.document.DocumentSheet.get_CellsSRC(
 (short)Visio.VisSectionIndices.visSectionObject,
 (short)Visio.VisRowIndices.visRowDoc,
 (short)Visio.VisCellIndices.visDocViewMarkup).FormulaU =
 false.ToString();
 //Hide the Reviewer pane (probably)
 this.TheApplication.VisioApplication.DoCmd(
 (short)Visio.VisUICmds.visCmdTaskPaneReviewer);
 }
 catch (Exception)
 {
 throw;
 }
 }

Exporting rulesets to XML
Even though there is an option to import a ruleset from another Visio document, I
know that some rules developers would like to export and import rulesets to XML.
This allows rulesets to be stored, restored, and analysed more easily.

I decided that the XML structure exported should be the same as the Visio 2013
XML format, and thus use a part of the Visio XML schema. This means using the
same namespaces, but it would mean that any XSL stylesheets developed for our
export would also work for the validation.xml files found within the zip files that
are standard Visio 2013 XML format (*.vsdx and *.vstx files).

Chapter 6

[217]

I decided to include the option to export the issues in a document, too, because
someone may have the need to use them in an external program. Having the issues
available in XML format means that they could be displayed as a table, for example,
so that they can be reviewed independently.

The ExportDocument() method first constructs a title for SaveFile dialog,
depending upon the include options provided. The default name proffered
for the XML file uses the drawing file name as a base.

Reviewing Validation Rules and Issues

[218]

Alternatively, you can manually change the extension of a Visio 2013
file to ZIP and then open the ZIP file to extract the Validation.xml
file; or, indeed, you can reverse the process to import a ruleset.

Once a file name has been obtained, the System.XMl.Linq.XDocument object is
created, saved, and opened in the associated application.

 public void ExportDocument(
 bool includeRulesets, bool includeIssues)
 {
 try
 {
 //Set the title for the SaveFile dialog
 string title = "";
 if (includeRulesets) title += "RuleSets";
 if (includeRulesets && includeIssues) title += " and ";
 if (includeIssues) title += "Issues";
 string shortName =
 System.IO.Path.GetFileNameWithoutExtension(this.document.
FullName);
 string fileName =
 System.IO.Path.Combine(this.document.Path, shortName +
".xml");
 Microsoft.Win32.SaveFileDialog dlg =
 new Microsoft.Win32.SaveFileDialog();
 dlg.Title = "Save " + title;
 dlg.InitialDirectory =
 System.Environment.GetFolderPath(
 System.Environment.SpecialFolder.MyDocuments);
 dlg.FileName = shortName + " " + title + ".xml";
 dlg.OverwritePrompt = true;
 dlg.DefaultExt = ".xml";
 dlg.Filter = "XML documents (.xml)|*.xml";
 if (dlg.ShowDialog() == true)
 {
 fileName = dlg.FileName;
 }
 else return;
 XDocument xDoc = getXDocument(includeRulesets, includeIssues);
 if (xDoc != null)
 {
 //Save the file
 xDoc.Save(fileName);
 //Open the file with the associated program

Chapter 6

[219]

 System.Diagnostics.ProcessStartInfo startInfo =
 new System.Diagnostics.ProcessStartInfo(fileName);
 startInfo.WindowStyle =
 System.Diagnostics.ProcessWindowStyle.Normal;
 System.Diagnostics.Process.Start(startInfo);
 }
 }
 catch (Exception)
 {
 throw;
 }
 }

Getting the XDocument object
First, this method creates the required XNamespace objects then it creates a new
XDocument object and retrieves the XElement objects for VERules and/or VEIssues
of VEDocument.

 private XDocument getXDocument(
 bool includeRulesets, bool includeIssues)
 {
 try
 {
 //Validation
 // ValidationPoperties
 // LastValidated
 // ShowIgnored
 // RuleSets
 // RuleSet
 // ID
 // NameU
 // Description
 // Rule
 // ID
 // NameU
 // Category
 // Description
 // RuleFilter
 // RuleTest
 // Issues
 // Issue
 // ID
 // IssueTarget

Reviewing Validation Rules and Issues

[220]

 // PageID
 // ShapeID
 // RuleInfo
 // RuleSetID
 // RuleID

 XNamespace xns =
 "http://schemas.microsoft.com/office/visio/2012/main";
 XNamespace xnsr =
 "http://schemas.openxmlformats.org/officeDocument/2006/
relationships";
 XDocument xdoc =
 new XDocument(new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("Exported from Rules Tools " + this.document.
Name +
 " on " + System.DateTime.Now.ToUniversalTime().
ToString()),
 new XElement(xns + "Validation",
 new XAttribute(XNamespace.Xmlns + "r", xnsr.
NamespaceName),
 new XElement(xns + "ValidationProperties")
)
);

 XElement validNode = xdoc.Element(xns + "Validation");
 if (includeRulesets)
 {
 if (this.SelectedVERuleSet == null)
 {
 validNode.Add(new XElement(xns + "RuleSets",
 from el in this.VERuleSets
 select el.GetXElement(xns)
));
 }
 else
 {
 validNode.Add(new XElement(xns + "RuleSets",
 from el in this.VERuleSets
 where (el.ID == this.selectedVERuleSet.ID)
 select el.GetXElement(xns)
));
 }
 }
 if (includeIssues)
 {

Chapter 6

[221]

 validNode.Add(new XElement(xns + "Issues",
 from el in this.VEIssues
 select el.GetXElement(xns)
));
 }

 return xdoc;
 }
 catch (Exception)
 {

 }
 return null;
 }

Getting the VERuleSet XElement
This method creates an XElement for the VERuleSet object, and then adds an
XElement for each VERule in the VERules collection.

 public XElement GetXElement(XNamespace xns)
 {
 XElement retNode;
 try
 {
 retNode = new XElement(xns + "RuleSet",
 new XAttribute("ID", this.ID),
 new XAttribute("NameU", this.NameU),
 new XAttribute("Name", this.Name),
 new XAttribute("Description", this.Description));
 retNode.Add(from ver in this.VERules
 select ver.GetXElement(xns));
 }
 catch (Exception)
 {
 throw;
 }
 return retNode;
 }

Reviewing Validation Rules and Issues

[222]

Getting the VEIssue XElement
This method creates an XElement for the VEIssue object, and then adds an XElement
for the RuleInfo and IssueTarget.

 public XElement GetXElement(XNamespace xns)
 {
 XElement retNode;
 try
 {
 retNode = new XElement(xns + "Issue",
 new XAttribute("ID", this.ID),
 new XElement(xns + "RuleInfo",
 new XAttribute("RuleSet",
 this.Rule.RuleSet.ID),
 new XAttribute("Rule",
 this.Rule.ID)
)
);
 if (this.Ignored)
 {
 retNode.Add(
 new XAttribute("Ignored", this.Ignored));
 }
 if (this.TargetPage != null ||
 this.TargetShape != null)
 {
 XElement targetNode =
 new XElement(xns + "IssueTarget");
 if (this.TargetPage != null)
 targetNode.Add(
 new XAttribute("PageID",
 this.TargetPage.ID));
 if (this.TargetShape != null)
 targetNode.Add(
 new XAttribute("ShapeID",
 this.TargetShape.ID));
 retNode.Add(targetNode);
 }
 }
 catch (Exception)
 {
 throw;
 }
 return retNode;
 }

Chapter 6

[223]

Importing rulesets from XML
This method first requests the user to select the XML file (this can be in the
standard Visio XML file format too) which contains the ruleset or rulesets to
import from. It then iterates through the ruleset and rule elements to add them
to the selected VEDocument.

If it encounters a ruleset with the same name as an existing ruleset in the selected
VEDocument, then the user is prompted to overwrite or not.

Imported rulesets are immediately added to the Rules Explorer tree view.

 public void ImportRuleSets()
 {
 try
 {
 string title = "RuleSets";
 string fileName = "";
 Microsoft.Win32.OpenFileDialog dlg =
 new Microsoft.Win32.OpenFileDialog();
 dlg.Title = "Import " + title;
 dlg.InitialDirectory =
 System.Environment.GetFolderPath(
 System.Environment.SpecialFolder.MyDocuments);
 dlg.DefaultExt = ".xml";
 dlg.Filter =
 "XML documents (.xml)|*.xml";
 if (dlg.ShowDialog() == true)
 {
 fileName = dlg.FileName;
 }
 else return;

 XDocument xdoc = XDocument.Load(fileName);
 XNamespace xns =
 "http://schemas.microsoft.com/office/visio/2012/main";
 XNamespace xnsr =
 "http://schemas.openxmlformats.org/officeDocument/2006/
relationships";

 //Get the Validation element (abort if none found)
 XElement validNode = xdoc.Element(xns + "Validation");
 if (validNode == null) return;
 //Get the RuleSets element (abort if none found)
 XElement ruleSetsNode = validNode.Element(xns + "RuleSets");
 if (ruleSetsNode == null) return;
 foreach (XElement ruleSetNode in

Reviewing Validation Rules and Issues

[224]

 ruleSetsNode.Elements(xns + "RuleSet"))
 {
 //Get the NameU attribute
 string rsName = ruleSetNode.Attribute("NameU").Value;
 //Set the default response
 System.Windows.MessageBoxResult process =
 System.Windows.MessageBoxResult.Yes;
 //Check if the rule set exists already
 if (this.VERuleSets.Count(ver => ver.NameU == rsName) > 0)
 {
 //Ask to replace an existing ruleset (or skip if declined)
 process = System.Windows.MessageBox.Show(
 "The rule set, " + rsName +
 ", exists already.\nDo you wish to replace it?",
 "Import Ruleset",
 System.Windows.MessageBoxButton.YesNo,
 System.Windows.MessageBoxImage.Question,
 System.Windows.MessageBoxResult.Yes);
 if (process == System.Windows.MessageBoxResult.No) break;
 this.VERuleSets.DeleteRuleSet(rsName);
 }
 else process = System.Windows.MessageBoxResult.Yes;
 //Add a new VERuleSet object to this VEDocument
 VERuleSet vrset = this.VERuleSets.AddRuleSet(rsName);
 //Set the properties of the VERuleSet from the attributes
 foreach (XAttribute xat in ruleSetNode.Attributes())
 {
 switch (xat.Name.LocalName)
 {
 case "Name":
 vrset.Name = xat.Value;
 break;
 case "Description":
 vrset.Description = xat.Value;
 break;
 case "RuleSetFlags":
 vrset.RuleSetFlags =
 (Visio.VisRuleSetFlags)Convert.ToInt32(xat.Value);
 break;
 }
 }
 //Set the remaining properties of the VERuleSet from the
elements
 foreach (XElement xelm in ruleSetNode.Elements())
 {
 switch (xelm.Name.LocalName)
 {

Chapter 6

[225]

 case "Rule":
 string rName = xelm.Attribute("NameU").Value;
 VERule vrle = vrset.VERules.AddRule(rName);
 //Set the properties of the VERule from the attributes
 foreach (XAttribute xat in xelm.Attributes())
 {
 switch (xat.Name.LocalName)
 {
 case "Category":
 vrle.Category = xat.Value;
 break;
 case "Description":
 vrle.Description = xat.Value;
 break;
 case "TargetType":
 vrle.TargetType =
 (Visio.VisRuleTargets)Convert.ToInt32(xat.
Value);
 break;
 }
 }
 //Set the remaining properties of the VERule from the
elements
 foreach (XElement xelmR in xelm.Elements())
 {
 switch (xelmR.Name.LocalName)
 {
 case "RuleFilter":
 vrle.FilterExpression = xelmR.Value;
 break;
 case "RuleTest":
 vrle.TestExpression = xelmR.Value;
 break;
 }
 }
 break;
 }
 }
 }
 }
 catch (Exception)
 {
 throw;
 }
 }

Reviewing Validation Rules and Issues

[226]

Creating ruleset reports
It is a relatively simple operation to use System.Xml.Xsl and System.Xml.XPath
to iterate through the elements in the XDocument created by the getXDocument()
method. The result is an HTML page that can be displayed in any browser:

This is a very utilitarian display. I will let you format the
report to your own requirements!

The ReportDocument() method prompts for the name of an HTML document to
output to.

 public void ReportDocument(
 bool includeRulesets, bool includeIssues)
 {
 try
 {
 string title = "";
 if (includeRulesets)

Chapter 6

[227]

 title += "RuleSets";
 if (includeRulesets && includeIssues)
 title += " and ";
 if (includeIssues)
 title += "Issues";
 string shortName =
 System.IO.Path.GetFileNameWithoutExtension(
 this.document.FullName);
 string fileName = System.IO.Path.Combine(
 this.document.Path, shortName + ".html");
 Microsoft.Win32.SaveFileDialog dlg =
 new Microsoft.Win32.SaveFileDialog();
 dlg.Title = "Save " + title;
 dlg.InitialDirectory =
 System.Environment.GetFolderPath(
 System.Environment.SpecialFolder.MyDocuments);
 dlg.FileName = shortName + " " + title + ".html";
 dlg.OverwritePrompt = true;
 dlg.DefaultExt = ".html";
 dlg.Filter = "HTML documents (.html)|*.html";
 if (dlg.ShowDialog() == true)
 {
 fileName = dlg.FileName;
 }
 else return;
 XDocument xDoc = getXDocument(
 includeRulesets, includeIssues);
 if (xDoc == null)
 {
 return;
 }
 //Get the XSL Stylesheet
 string xslMarkup = getRuleSetXSL();
 // Load the style sheet.
 XslCompiledTransform xslt =
 new XslCompiledTransform();
 xslt.Load(
 System.Xml.XmlReader.Create(
 new StringReader(xslMarkup)));
 //Save the XDocument to a temporary file
 string tempFile =
 System.IO.Path.GetTempFileName();
 xDoc.Save(tempFile);
 //Execute the transform and output to html.

Reviewing Validation Rules and Issues

[228]

 xslt.Transform(tempFile, fileName);
 //Delete the temporary file
 System.IO.File.Delete(tempFile);

 //Open in web browser (associated programme)
 System.Diagnostics.ProcessStartInfo startInfo =
 new System.Diagnostics.ProcessStartInfo(fileName);
 startInfo.WindowStyle =
 System.Diagnostics.ProcessWindowStyle.Normal;
 System.Diagnostics.Process.Start(startInfo);
 }
 catch (Exception)
 {
 throw;
 }
 }

Getting the XSL stylesheet
The XSL template returned by this method can be saved as a file, say RuleSets.
xslt, and can be used to transform the validation.xml file contained in any
Visio 2013 document that contains rulesets.

XSL (XML Style Language) describes how to display an XML file of a
given type. See http://www.w3.org/Style/XSL/WhatIsXSL.html
for more information.

The output will be a ruleset report in HTML.

<?xml version='1.0' encoding='UTF-8' ?>
<xsl:stylesheet version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
 xmlns:r='http://schemas.openxmlformats.org/officeDocument/2006/
relationships'
 xmlns:v='http://schemas.microsoft.com/office/visio/2012/main'>
<xsl:output method="html"/>

<xsl:template match="//v:Validation/v:RuleSets/v:RuleSet">
<html>
 <body>
 <h1>Visio Rules Tools RuleSets Report</h1>
 <table border="1" width='100%'>
 <tr style='background-color:teal;color:white;font-weight:bold'>
 <th>ID</th>

Chapter 6

[229]

 <th>NameU</th>
 <th>Description</th>
 <th>RuleSetFlags</th>
 </tr>
 <tr>
 <td><xsl:value-of select="@ID"/></td>
 <td><xsl:value-of select="@NameU"/></td>
 <td><xsl:value-of select="@Description"/></td>
 <td><xsl:value-of select="RuleSetFlags"/></td>
 </tr>
 </table>
 <table border="1" width='100%'>
 <tr style='background-color:gray;color:white;font-weight:bold'>
 <th>ID</th>
 <th>NameU</th>
 <th>Category</th>
 <th>Description</th>
 <th>RuleTarget</th>
 <th>RuleFilter</th>
 <th>RuleTest</th>
 </tr>
<xsl:for-each select='v:Rule'>
 <tr style='vertical-align:top'>
 <td>
 <xsl:value-of select='@ID'/>
 </td>
 <td>
 <xsl:value-of select='@NameU'/>
 </td>
 <td>
 <xsl:value-of select='@Category'/>
 </td>
 <td>
 <xsl:value-of select='@Description'/>
 </td>
 <td>
 <xsl:value-of select='@RuleTarget'/>
 </td>
 <td>
 <xsl:value-of select='v:RuleFilter'/>
 </td>
 <td>
 <xsl:value-of select='v:RuleTest'/>
 </td>

Reviewing Validation Rules and Issues

[230]

 </tr>
</xsl:for-each>
 </table>
 </body>
</html>
</xsl:template>

</xsl:stylesheet>

Save the main body of the getRuleSetXSL() into a RuleSets.xslt file, then use
a tool such as XML Notepad to open a Visio XML format document. You can use
Visual Studio to process an XML file with a selected XSLT file too, but I like the
Tree View display in XML Notepad.

Chapter 6

[231]

You can then enter the full path to the RuleSets.xslt file on the XSL Output tab in
XML Notepad and press Transform. The Visio Rules Tools RuleSets Report will
then be displayed.

Alternatively add the following line as line 2 in any XML file that
contains rulesets (edit the href path accordingly):
<?xml-stylesheet type="text/xsl" href="RuleSets.
xslt"?>

Open in your web browser to display the report!

Reviewing Validation Rules and Issues

[232]

Summary
In this chapter we have extended the Rules Tools add-in to provide the capability
to export and import rulesets to and from an XML file. We have transformed the
ruleset XML into an HTML report and we annotated pages with current issues.
We now have a complete UI tool to create and test new rules.

In the next chapter, we are going to go deep into the validation functions and learn
how to create test and filter expressions.

Creating Validation Rules
In the last chapter, we finished creating a tool to allow us to manipulate rules in
Microsoft Visio 2013 Professional in the following ways:

• Review rules
• Edit rules
• Create rules
• Test rules
• Import rules
• Export rules

In this chapter, we will use this tool to create rules for structured diagramming. We
will look at the common ShapeSheet functions that will be useful for rules, and the
new validation functions.

We will also go through different scenarios for creating rules, especially with regard
to the Filter and Test Expressions.

You can also refer to an article that I wrote on MSDN to discover more
information about validation rules: http://msdn.microsoft.com/
en-us/library/ff847470(v=office.14).aspx.

Creating Validation Rules

[234]

Overview of the document validation
process
The user can initiate the validation process by clicking on the Check Diagram button
that is present on the PROCESS tab. This process will clear any existing issues for
any changed pages in the document before looping through any rulesets. A changed
page, sometimes referred to as dirty, is one that has shapes on it that have been
altered in some way since the last validation. After validation, the process will
re-mark as ignored any issues that were previously marked as ignored.

Any custom validation rules for a ruleset should be executed in code whenever the
relevant RulesetValidated event is fired. Visio does not automatically clear all
issues in the document when the user selects the Process or the Check Diagram
button. It only clears issues for pages that are dirty, that is, those that have had shape
changes since the last time it was validated.

If you are writing code to validate your ruleset, then you could just
iterate through any existing issues to delete only those that are associated
with your ruleset, because the ValidationIssues.Clear() method
will remove all issues in the document.

After the rulesets are validated, Visio will check if the user has checked the Show
Ignored Issues option. If Show Ignored Issues is ticked, issues for rules that have
been marked as ignored will be displayed as grayed out in the Issues window.

Chapter 7

[235]

Validating rulesets
The validation process will loop through all of the rulesets in the document, and will
continue to process the ruleset if the Enabled property is True.

Creating Validation Rules

[236]

Validating rules
If the ruleset is enabled, then the process will loop through each of the rules in
the ruleset.

Processing a rule
Rules are processed even if they are marked as ignored, though the ignored marker
will be preserved. The validation process will retrieve the target object, which can be
a document, page, or shape (the default).

Chapter 7

[237]

Then, if the FilterExpession evaluates to True, the target will be passed through to
TestExpression. Note that Visio will not pass the target through if there is an error
in the syntax of FilterExpression.

Process rule

Select target

Got target? Evaluate Filter
Expression

Is result = True?

Rule processed

Raise issue

Evaluate Test
Expression

Is result = False?N Y

Y

N

N Y

If TestExpression evaluates to False, or if there is a syntax error in the formula,
then an issue is raised.

To check that FilterExpression is syntactically correct, enter True
in the TestExpression before validating, and then enter False in
FilterExpression before validating again. If you do not get any
issues on either pass, then there is something wrong with your syntax.
Similarly, to check if your TestExpression is syntactically correct, you
can alternately wrap your formula with NOT(…) to reverse its meaning.

Creating Validation Rules

[238]

Validation functions
The syntax for the FilterExpression and TestExpression formulae are the same
as for the ShapeSheet formulae. However, Visio 2013 includes some extra validation
functions such as the ShapeSheet functions, but these functions cannot be used in the
ShapeSheet formulae, with the exception of those marked with an asterisk.

The following table is an extract from The Diagram Validation API blog:

http://blogs.msdn.com/visio/archive/2010/01/07/the-diagram-
validation-api.aspx

It lists the special quasi-ShapeSheet functions that can be used in the
FilterExpression and TestExpression formulae, and has been extended
to include the new functions added in Visio 2013 (marked with *).

Function Description
HasCategory(categoryName)* Returns a Boolean indicating whether the

shape has the specified category.
Is1D()* Returns a Boolean indicating whether the

shape is 1D or not.
Role() Returns an integer indicating the shape role:

{Element = 0, Connector = 1, Container = 2,
Callout = 4}.

OnLayer(LayerName) Returns a Boolean indicating whether the
shape is a member of the specified layer.
Returns a Boolean indicating whether a layer
exists on the page if called on a Page.

ConnectedShapes(Direction) Returns the set of shapes, matching the
Direction criteria, connected to the shape.

GluedShapes(Direction) Returns the set of shapes, matching the
Direction criteria, glued to the shape.

ContainerMembers() Returns the set of shapes that are members of
the container or list shape.

ListMembers() Returns the set of shapes that are members of
the list shape.

Callouts() Returns the set of shapes that are callouts on
the shape.

ParentContainers() Returns the set of containers that the shape
belongs to.

ShapesOnPage() Returns the set of top-level shapes on the page.
If no page specifier precedes the function, the
shape's containing page is assumed.

Chapter 7

[239]

Function Description
AggCount(Set) Counts the number of shapes in a set.
FilterSet(Set,FilterExpression) Returns the subset of shapes in a set that

match an expression.
OnBoundaryOf() Returns the set of containers such that the

shape is on the boundary of these containers.

Useful ShapeSheet functions
This is a table of the ShapeSheet functions that are commonly used in the Filter
Expression and Test Expression formulae:

Function Description
AND(logical expression1,logical
expression2,...,logical
expressionN)

Returns TRUE (1) if all of the logical
expressions supplied are true. If any of the
logical expressions are false or 0, the AND
function returns FALSE (0).

OR(logicalexpression1,logicalexp
ression2,...,logicalexpressionN)

Returns TRUE (1) if any of the logical
expressions are true.

NOT(logicalexpression) Returns TRUE (1) if logicalexpression
is false. Otherwise, it returns FALSE (0).

IF(logicalexpression,valueiftrue
,valueiffalse)

Returns valueiftrue if
logicalexpression is true. Otherwise, it
returns valueiffalse.

INDEX(index,"list"[,[delimiter]
[,[errorvalue]]])

Returns the substring at the zero-based
location index in the list delimited-by-
delimiter. Or, it returns -1 if not found.

LOOKUP("key","list"[,"delimit
er"])

Returns a zero-based index that indicates
the location of the substring key in a list, or
returns -1 if the target string contains the
delimiter.

HASCATEGORY(category) Returns TRUE if the specified string is found
in the shape's category list.

IS1D() Returns TRUE if the shape is 1D (one-
dimensional); returns FALSE if the shape is
2D (two-dimensional).

IFERROR(primary expression,
alternate expression)

Returns the evaluated result of a primary
expression, if it does not evaluate to an
error. Otherwise, returns the evaluated
result of an alternate expression.

Creating Validation Rules

[240]

Function Description
CALLOUTCOUNT() Returns the total number of callout shapes

that are associated with the shape.
CALLOUTTARGETREF()! Returns a sheet reference to the target shape

of the callout shape.
CONTAINERCOUNT() Returns the total number of containers that

include the shape as a member (including
nested relationships, that is, containers
within containers).

CONTAINERSHEETREF(index[,
category])

Returns a sheet reference to the specified
container that contains the shape.

LISTMEMBERCOUNT() Returns the number of member shapes in
the list container shape.

LISTORDER() Returns the 1-based position of the shape in
the list.

LISTMEMBERCOUNT() Returns a sheet reference to the list
container shape that contains the shape.

<sheetref>!SHEETREF() Returns a reference to the sheet (shape) that
is specified in sheetref, or, if there is no
sheetref qualifier, to the current sheet.
You can use this function in other functions
that take a sheet reference token.

SHAPETEXT
(shapename!TheText,flag)

Retrieves the text from a shape.

MASTERNAME (langID_opt) Returns a sheet's master name as a string,
or the string, <no master> if the sheet
doesn't have a master. The master name
is in the form <master name>:<shape
name>.

LEFT(text, [,num_chars_opt]) Returns the first character or characters
in a text string, based on the number of
characters you specify.

LEN (text) Returns the number of characters in a text
string.

STRSAME ("string1", "string2",
ignoreCase)

Determines whether strings are the same.
It returns TRUE if they are the same,
and FALSE if they aren't. To compare
multibyte strings or to do comparisons
using case rules for a specific locale, use the
STRSAMEEX function.

Chapter 7

[241]

Function Description
FIND (find_text, within_text
,[start_num], [ignore_case])

Finds one text string contained within
another text string, and returns the starting
position of the text string you are seeking
relative to its position in the text string that
contains it.

All the ShapeSheet functions are valid, but some are strongly discouraged because they
cause an action to be performed rather than a value to be returned, and their impact
cannot be predicted. The following list details the specific ShapeSheet functions that
should not be used in the Filter Expression and Test Expression formulae:

• CALLTHIS(…)

• DOOLEVERB(…)

• DEFAULTEVENT()

• DOCMD(…)

• GOTOPAGE(…)

• HELP(…)

• HYPERLINK(…)

• OPENFILE(…)

• OPENGROUPWIN()

• OPENSHEETWIN()

• OPENTEXTWIN()

• PLAYSOUND(…)

• RUNADDON(…)

• RUNADDONWARGS(…)

• RUNMACRO(…)

• SETF(…)

Filter and Test Expressions
You should use the FilterExpression function to reduce the number of target
shapes (or pages) to be tested. You can then use the TestExpression function to
apply to this reduced set in order to obtain a Boolean result.

Creating Validation Rules

[242]

A good way to understand how to write these expressions is to review the ones
already created by Microsoft for the flowcharts and Business Process Modeling
Notation (BPMN) templates. You can use the Rules Tools add-in to review
them interactively, or to create a report. For example, create a new Flowchart
or Cross-Functional Flowchart diagram and review the 11 rules present in the
document in the Flowchart ruleset:

Chapter 7

[243]

In fact, the same ruleset is applied to the Basic Flowchart and the Six Sigma diagrams
too, so there are some rules that do not apply to all of them, such as the ones that
involve swimlanes. These particular rules refer to containers, which do not exist
unless the user manages to use a swimlane shape from the Cross-Functional
Flowchart Shapes stencil.

So, in order to test a few expressions, untick the Enabled property of the Flowchart
ruleset and you can add a new ruleset.

If you want to cut, copy, or paste text in the Rules Explorer window, then you can use
the right-mouse menu rather than the accelerator keys (Ctrl + X, Ctrl + C, Ctrl + V).

Checking the type of shape
You can test whether a shape is 1D or not with the IS1D() function, and you can
test the type more specifically with the ROLE() function. For example, ROLE()=1 also
returns True if the shape is a connector.

The ROLE() function matches against the following Visio.VisRoleSelectionTypes
constant values:

• Default or element = 0 (this is not explicitly in the enum, but it is valid)
• visRoleSelConnector = 1

• visRoleSelContainer = 2

• visRoleSelCallout = 4

Creating Validation Rules

[244]

Let us create a test rule by selecting the Add button on the Rules Tools ribbon
group. You can edit the Category and Description, if you like, but be sure to enter
ROLE()=0 in the Filter Expression, and False in the Test Expression, then select
Check Diagram.

As you can see, there are 8 Active Issues, so what is happening? Firstly, the Test
Expression is obviously always going to return False, so there must be eight shapes
being passed through to the Test Expression by the Filter Expression.

Chapter 7

[245]

The Drawing Explorer window reveals that there are six shapes in the shapes
collection of the page, and four of these shapes have two subshapes. So, there are
actually 14 shapes in total, but only eight of them are returned by ROLE()=0. By
the way, if you were to change the Filter Expression to ROLE()=1 then there are no
issues, because there are no connectors on the drawing page yet!

Creating Validation Rules

[246]

We can shed a bit more light on which shapes are raising issues by selecting the
Annotate button on the Rules Tools ribbon group. You can double-click a row in the
Issues window to select the shape or page that is causing that issue, but this does not
give you an overview of the distribution of issues, nor does it display all of the issues
for that shape.

We can now see that the eight shapes raising issues are in fact all the subshapes! This
is probably not desirable in this particular case, so a real rule will need to have a
more refined Filter Expression.

Checking the category of shapes
Master shapes created for use in Visio 2013 may include the reserved user-defined
cell, User.msvShapeCategories. This cell can contain the name of a single category,
or multiple categories in a list separated by a semicolon. Therefore, you can use the
HASCATEGORY(category) function on instances of these shapes. For example, the
following formula will return True if the shape has the Flowchart category:

HASCATEGORY("Flowchart")

Chapter 7

[247]

However, the shapes to test may be instances of masters that do not contain
this cell; so, you may have to use an alternative approach. You could use the
MASTERNAME(lang_id) function to get the name of the master, if any. You should
use lang_id = 750 to specify the universal language. Often, though, users
inadvertently create duplicate, or in fact multiple masters, through no fault of their
own. In these cases, Visio automatically adds an .nn suffix to ensure uniqueness of
name. Thus, you need to test that the first part of the name is a match by employing
the STRSAME() and LEFT() functions too by using the formula:

STRSAME(LEFT(MASTERNAME(750),10),"Terminator",0)

Rather than counting the number of characters in the name, you could write:

STRSAME(LEFT(MASTERNAME(750),LEN("Terminator")),"Terminator",0)

The MasterName() function actually returns both the name of
the master and the shape in the master, with a colon separator.
That is why you must use the LEFT() function.

If you look at the ShapeSheet of the outer shape labeled Title, and one of the
swimlane shapes labeled Function, then you will see that they have User.
msvStructureType="Container", but the User.msvShapeCategories are different:

Creating Validation Rules

[248]

So, if you amend the Filter Expression to AND(ROLE()=2,HASCATEGORY("Swimla
ne")) then you will get two shapes raising issues.

If you change the formula to AND(ROLE()=2,HASCATEGORY("CFF Container"))
then you will get just one issue.

You will only get one issue if you were to change the Filter Expression formula to:

STRSAME(LEFT(MASTERNAME(750),LEN("Phase List")),"Phase List",0)

Checking the layer of a shape
Some shapes are assigned to a layer when they are dragged from a stencil. This can
be because the master shape was pre-assigned to a layer, or because the user set an
active layer when the shape instance was created. A user can also change the layer
assignment interactively, and shapes can belong to either no layer at all, one layer, or
multiple layers.

Knowing this, you should use the layer assignment of a shape with caution, but
sometimes it may be the only way of distinguishing a shape:

ONLAYER("Flowchart")

Chapter 7

[249]

So, if you were to amend our test rule accordingly, and then drag-and-drop a
Start/End shape into the first swimlane, you will get one issue:

You can see in the Drawing Explorer window that the Start/End shape was
pre-assigned to the Flowchart layer, and thus this layer was automatically
created in the page when the master shape instance was dropped.

Checking if the page contains relevant shapes
Sometimes you may need to only continue testing the shapes on a page if that
particular page contains specific shapes. In this case, you will need to get a
collection of all of the shapes on the page using SHAPESONPAGE(), and then filter
this set of shapes by matching their properties against an expression result, using
FILTERSET(). This expression must be passed through as a string, thus any
quotation marks must be re-affirmed by doubling them within the expression.
Finally, a Boolean result must be returned by checking the count of matching shapes
using AGGCOUNT(). For example, the following formula returns True if the page
contains any swimlane shapes:

AGGCOUNT(FILTERSET(SHAPESONPAGE(),"HASCATEGORY(""Swimlane"")"))>0

Creating Validation Rules

[250]

So, using this formula in our test rule reveals 10 active issues:

These issues are raised by all the shapes, except for the top-group shape of the
container-type shapes.

If you change the Target Type to vis Rule Target Page, then you will only get one
issue raised for the page:

Chapter 7

[251]

Of course, if you changed the Target Type to vis Rule Target Document, then there
are no issues.

The ShapesOnPage() function will cause Visio to check every
shape on the page and will take more time if there are lot of shape
on the page. Therefore, you should use this function sparingly.

Checking for specific cell values
You may want to test for particular values in a cell. Initially, you may want to check
only the shapes that actually have that cell present. (Remember that some sections in
the ShapeSheet are optional.) For example, all of the flowchart shapes contain at least
seven Shape Data rows:

Creating Validation Rules

[252]

The connectors, swimlanes, and so on do not have these Shape Data rows. So, we
can filter for the shapes that contain the Prop.Owner cell by entering the following
Filter Expression:

NOT(ISERROR(Prop.Owner))

This formula works because the formula will return True if the Prop.Owner cell
exists, because it will not return an error when requesting its value. This reveals that
there are four such shapes on this page.

Now that you have established which shapes contain the Shape Data cell, you can
test for actual values. However, you must exercise a little caution. You may have
thought that an empty value in a Shape Data row is always the same, but it is not.
This is the similar to the null versus empty string values in databases. In Visio,
a master shape instance will have default Shape Data values inherited from the
master, and in the case of the flowchart shapes, there is no formula in any of the
Shape Data rows. As you can see, they do not display any values in the Shape Data
window, except for the Function row. In fact, the Function row is updated by Visio
automatically because it references the swimlane header text that it lies within.

Chapter 7

[253]

If a user enters some text in the Owner row, then decides to delete it, the underlying
row has an empty string value, not a null value. So, if you want to ensure a value
has been entered in a Shape Data row, then you need to check for the existence of
a value using the LOCALFORMULAEXISTS() function. You also need to check that it
is not an empty string, using the STRSAME() function. Consequently, the following
formula will test if Prop.Owner contains a value:

AND(LOCALFORMULAEXISTS(Prop.Owner),NOT(STRSAME(Prop.Owner,"")))

If this is entered as the Test Expression, and one of the flowchart shapes had a Prop.
Owner value entered and then deleted, and another flowchart shape has a value,
then only three of the four shapes will raise an issue.

Of course, this will work for a text value too, instead of the empty string.

If you want to check for numerical values, such as the Prop.Cost Shape Data row,
then you will need to amend the Test Expression. If you want to find all shapes that
have not had any user input, then the following will suffice:

LOCALFORMULAEXISTS(Prop.Cost)

Creating Validation Rules

[254]

This is because numeric fields will reset to 0 if the user deletes an entry, as it can
never be an empty string.

Of course, you could test that the user has entered a value greater than zero with the
following Test Expression:

AND(LOCALFORMULAEXISTS(Prop.Cost),Prop.Cost>0)

Interestingly, dates do return back to no formula if the user deletes an entry. So, the
following Test Expression is sufficient to check that an entry has been made:

LOCALFORMULAEXISTS(Prop.StartDate)

If you want to raise an issue for all shapes that do not have a Prop.StartDate value
after today, then you could use the Test Expression:

Prop.StartDate>Now()

If your user can select values from a list, either fixed or variable, then you can use the
INDEX() function with the STRSAME() function to test whether the value is matched.
For example, the Flowchart shapes have a Prop.Status list, therefore, you could test
whether the value is equal to the fifth value using the following Test Expression
(note that the array is zero-based):

STRSAME(Prop.Status,INDEX(4,Prop.Status.Format))

Testing the value at a particular index position in the list is preferable to using actual
values, because it will still work if the text has been localized.

Not all data is stored in the Shape Data rows. You may need to test whether
the Actions row is checked or not. For example, the BPMN shapes have multiple
options on their right-mouse menus, and the ImproperAssociation rule has the
Filter Expression:

AND(HASCATEGORY("Connecting Object"),Actions.Association.Checked)

Checking that connectors are connected
One common structured diagramming error is leaving connectors unconnected at
one or both ends. In these flowchart diagrams, you can filter for connectors, using
ROLE()=1 or the new IS!D() function, then check that there is one glued shape at
either end of it, using the GLUEDSHAPES() function.

So, the following formula in the Test Expression will return False if there is a
connection missing:

AND(AGGCOUNT(GLUEDSHAPES(4)) = 1, AGGCOUNT(GLUEDSHAPES(5)) = 1)

Chapter 7

[255]

The GluedShapes(n) function has the following Visio.VisGluedShapesFlags
constant values:

• visGluedShapesAll1D = 0

• visGluedShapesIncoming1D = 1

• visGluedShapesOutgoing1D = 2

• visGluedShapesAll2D = 3

• visGluedShapesIncoming2D = 4

• visGluedShapesOutgoing2D = 5

Consequently, if we have an unconnected connector in our test diagram, then it will
raise an issue.

Creating Validation Rules

[256]

Checking that shapes have correct
connections
A shape can be glued directly to other shapes, as is the case with connectors, or they
can be connected via a connector to another shape.

You may want to ensure that certain shapes have incoming connections. For
example, you could just filter for the Decision shapes by using the formula:

OR(HASCATEGORY("Decision"),STRSAME(LEFT(MASTERNAME(750),LEN("Decision
")),"Decision"))

Then you can test that there is at least one incoming connection using the formula:

AGGCOUNT(GLUEDSHAPES(1)) > 0

Similarly, you could ensure that each Decision shape has two outgoing connections
using the Test Expression:

AGGCOUNT(GLUEDSHAPES(2)) = 2

Chapter 7

[257]

Alternatively, you may want to try the following formula for the Filter Expression
because it tests for all shapes on the Flowchart layer, except for the Start/End shapes:

AND(ONLAYER("Flowchart"),NOT(STRSAME(LEFT(MASTERNAME(750),LEN("Start/
End")),"Start/End")))

The ConnectedShapes() function will return a collection of shapes at the other end
of the glued connector.

AGGCOUNT(CONNECTEDSHAPES(0)) > 0

The ConnectedShapes(n) function has the following Visio.
VisConnectedShapesFlags constant values:

• visConnectedShapesAllNodes = 0

• visConnectedShapesIncomingNodes = 1

• visConnectedShapesOutgoingNodes = 2

Checking whether shapes are outside
containers
In a cross-functional flowchart diagram, you should ensure that all flowchart shapes
are actually inside a swimlane. Visio 2013 has a cell in the Shape Layout section,
called Relationships, that stores the values of related containers and lists.

Creating Validation Rules

[258]

If you look at the Relationships cell for the Process shape below the swimlanes, then
you will find that there is no formula in there.

You first need to check that the page has at least one swimlane on it. This can be
done with the following Filter Expression formula:

AGGCOUNT(FILTERSET(SHAPESONPAGE(),"HASCATEGORY(""Swimlane"")"))>0

However, you do need to change the target type to the page for this filter to work
efficiently, because you only want the rule to be validated once per page, not once
per shape on the page.

Now, you need to test if there are any Flowchart shapes that are not within a
swimlane. To do this, you need to use the PARENTCONTAINERS() function to get a
collection of each shape's containers, then filter this set by the category Swimlane.
So, this is a complete formula for the Test Expression:

AGGCOUNT(FILTERSET(SHAPESONPAGE(),"AND(OR(HASCATEGORY(""Flowchart""),
ONLAYER(""Flowchart"")),AGGCOUNT(FILTERSET(PARENTCONTAINERS(),""HASCA
TEGORY(""""Swimlane"""")""))=0)"))<1

You can use a similar formula for checking whether the shapes are on a boundary or
not, by using:

ONBOUNDARYOF()

Checking whether a shape has text
In any flowchart diagram, you should ensure that all connector shapes exiting from a
Decision shape are labeled, usually Yes or No, for example.

Firstly, you need to filter the connector shapes to those that are exiting a Decision
shape. This can be done with the following Filter Expression:

AGGCOUNT(FILTERSET(GLUEDSHAPES(4),"OR(HASCATEGORY(""Decision""),STRSA
ME(LEFT(MASTERNAME(750),LEN(""Decision"")),""Decision""))"))=1

Next, you need to test whether the connector has any text or not with the following
Test Expression:

NOT(STRSAME(SHAPETEXT(TheText), ""))

Chapter 7

[259]

Then, when you run the rule, it will find any unlabeled connectors exiting a
Decision shape.

Custom validation rules in code
Previously, in Chapter 4, Understanding the Validation API, you learned that you can
add custom validation rules in code. You would need to do this if the validation rule
is too complex to phrase as the Filter and Test Expressions. For example, you might
want to ensure that there are no cycles (paths that return to where they start from).

You could add code into a Visio add-in but I will demonstrate how you can put
some custom code into the drawing document as VBA, because this will be in the
document along with any ruleset that you may have written using the Filter and
Test Expressions.

Creating Validation Rules

[260]

First, you need to listen for the RuleSetValidated event of the document, which
can be added easily to the ThisDocument class in the VBA project. I have used the
getRule() method from Chapter 4, Understanding the Validation API to ensure that
there is a rule named CheckCycle present. If there is, then the CheckCycle() method
is called.

Private Sub Document_RuleSetValidated(_
 ByVal ruleSet As IVValidationRuleSet)
Dim rule As Visio.ValidationRule
 'Check for custom validation
 Set rule = getRule(ruleSet, "CheckCycle")
 If Not rule Is Nothing Then
 CheckCycle rule
 End If
End Sub

The CheckCycle() method initially deletes any existing issues for the
specified rule, then creates a new CustomValidation object before calling
the DoCycleValidation() method.

Private Sub CheckCycle(_ ByVal rule As Visio.ValidationRule)
 ClearRuleIssues rule
Dim myCustomValidation As CustomValidation
 Set myCustomValidation = New CustomValidation
Dim valid As Boolean
 valid = myCustomValidation.DoCycleValidation(rule)
End Sub

The ClearRuleIssues() method steps backwards through the collection of
Validation.Issues to delete any that are associated with the specified rule. Any
other issues are left intact.

Private Sub ClearRuleIssues(_
 ByVal ruleToClear As Visio.ValidationRule)
Dim val As Visio.Validation
Dim issue As Visio.ValidationIssue
Dim rule As Visio.ValidationRule
Dim i As Integer

Chapter 7

[261]

 Set val = Visio.ActiveDocument.Validation
 For i = val.Issues.count To 1 Step -1
 Set issue = val.Issues.Item(i)
 Set rule = issue.rule
 If rule Is ruleToClear Then
 issue.Delete
 End If
 Next
End Sub

The DoCycleValidation() method loops through all of the page and, if the page is a
foreground type, calls the findCycle() method.

Public Function DoCycleValidation(_
 ByVal cycleRule As Visio.ValidationRule) _
 As Boolean

 'Declare variables
 Dim validationErrors As Boolean
 Dim issue As Visio.ValidationIssue
 Dim doc As Visio.Document
 Dim pag As Visio.Page

 'Use findCycle method to look for cycles"
 'Add issue if cycle is found on a page
 Set doc = cycleRule.Document
 For Each pag In doc.Pages
 If pag.Type = visTypeForeground Then
 validationErrors = _
 findCycle(pag, cycleRule)
 End If
 Next

End Function

The findCycle() method is too long to list here (it's in the download) but it will add
an issue for the first shape in any cycle found, along with an issue for each connector
in the cycle.

Creating Validation Rules

[262]

Now that the code exists, it will be activated if a rule called CheckCycle is validated.
The Target Type can be set to visRuleTargetDocument, and the Filter Expression
can be False because it will not need to do any validation.

Of course, there could be many other validation rules in your custom code.

Summary
In this chapter we have learned how to use the target type to set the context for a
rule. We then learned how to write a few Filter Expressions to reduce the shapes that
need to be processed, and finally how to write Test Expressions that can raise issues.
There are probably more expressions that could be written but we can work those
out when we have specific requirements.

In the next chapter, we will learn how to publish custom templates with validation
rules for deployment to other Visio 2013 Professional users.

Publishing Validation Rules
and Diagrams

In the last chapter, we finished learning how to write validation rules for structured
diagrams. In particular, we looked at the quasi-ShapeSheet formulae that are used to
define Filter Expressions and Test Expressions. You should now know how to write
validation rules for most implementations.

In this chapter, we will go through various methods for publishing Visio validation
rules for others to use.

Overview of Visio categories and
templates
The normal Visio user selects a Visio template from a category in the Backstage
Getting Started view of the Visio user interface. If the user has both Metric and
US Unit templates installed, then a choice of units will be offered.

Publishing Validation Rules and Diagrams

[264]

You can choose either of the two units. The following screenshot will help in
elaborating the concept further:

If you were to read the diagram template name, then you might think that there
is a Visio template called Audit Diagram (Metric).vstx, in a folder named as
Business, somewhere on your hard drive. However, that is not correct. In fact, there
is a file called AUDIT_M.VSTX in <Program Files>\Microsoft Office\Office15\
Visio Content\1033, although I have heard that some users may have a folder
named Microsoft Office 2013. The <Program Files> folder is usually located
at the location C:\Program Files (x86), but this depends on whether you have
installed the 32-bit or 64-bit Visio, and 1033 is the major language group ID. In my
case, although UK English is 2047, the major language is US English that is 1033.
Therefore, my Microsoft Office content is installed under the 1033 subfolder.

Chapter 8

[265]

When Visio is installed, it has a files table in the installation file that contains the
mapping of the terse name to the more verbose one, along with the long description.
This mapping is then installed into the registry, and so the Visio interfaces then
understand how to display the contents.

Some of this interpretation is hardcoded into Visio. For example, the built-in Visio
templates and stencils all conform to the old DOS 8.3 format, and the first part ends
in _M or _U. This is how the Visio interface understands whether to display (Metric)
or (US Units). It may be that the content is slightly different for each version,
perhaps defaulting to mm rather than inches, or sized slightly different to fit on grid,
for example, but the display in the Backstage view is controlled by the last two
characters of the terse file name.

Publishing Validation Rules and Diagrams

[266]

You may notice that there is an option to create a Visio document from an existing
one by selecting New from existing at the bottom of the Backstage view when
Template Categories is selected. This will offer you the chance to browse for all
types of Visio files, as listed in the following table:

Extension Format Description
*.vsdx OPC Visio drawing file
*.vsdm OPC Macro-enabled Visio drawing file
*.vsd Binary Visio 2003-2010 drawing file
*.vdx XML Visio 2003-2010 drawing file
*.vssx OPC Visio stencil file
*.vssm OPC Macro-enabled Visio stencil file
*.vss Binary Visio 2003-2010 stencil file
*.vsx XML Visio 2003-2010 stencil file
*.vstx OPC Visio template file
*.vstm OPC Macro-enabled Visio template file
*.vst Binary Visio template file
*.vtx XML Visio template file
*.vsw Binary Legacy Visio workspace file
*.vdw Binary Data-refreshable Visio 2010 drawing for use with Visio Services

SharePoint 2010

However, if you want to present your users with a choice in one of the existing
categories, or in a new one, then you need to create a template.

Although most Visio 2003-2010 file types can be saved in
binary or XML format, the latter is typically 7 to 10 times
larger in disk size.

Chapter 8

[267]

Creating a custom template
We will create a new template, and then go through several ways that we can make
it available to others for use as a template. Firstly, create a new drawing from the
Audit Diagram template, then go to Process | Check Diagram | Import Rules From
| Flowchart Rule Set.

There are only two built-in ruleset in Visio, so we will use an import of the Flowchart
Rule Set for this example. In fact, the procedure shown in this chapter is exactly the
process that can be gone through in order to create Visio templates for companies
who want customized versions of the ones supplied in Visio.

Publishing Validation Rules and Diagrams

[268]

Adding embellishments
Most companies want to standardize the appearance of their Visio diagrams with,
for example, company logos, borders, and titles. In this example, we are going to
add a standard border and slightly modify it.

Select one of the Borders and Titles from the Backgrounds group on the DESIGN tab.

This action will automatically create a new background page, called VBackground-1.
This will become the default background page for all new pages created in documents
that are created from this template. In fact, you can add other backgrounds in a
document, and you can have pages of different sizes. Visio is very flexible but you
should consider whether you will be generally printing all pages in the document to
the same printer, using the same printed paper size.

Chapter 8

[269]

You can now select the VBackground-1 tab, and you will then be able to edit the
shapes on the background page.

Publishing Validation Rules and Diagrams

[270]

One of the coolest features in Visio is the ease with which you can create text that is
automatically updated from a value in a cell. In this case, wouldn't it be nice if the
page title automatically displayed the name of the page? Well, all you need to do is
edit the text of the title box on the background page. In this case, it is in the top left
of the background page. Usually you can just double-click on a shape to edit the text,
but you can also just click to select it then press F2 to go into text edit mode. You
can then select Field from the INSERT tab. This action will open up the Field dialog
where you can select a Category and Field name, or enter a custom formula. In this
case, you need to select Page Info from Category and Name from Field name.

Actually, I will often add the Document Info | Title and Document Info | Subject,
with a hyphen between them before the Page Info | Name field. Of course, you may
want to create a rule that reminds users that they should fill in a Title and Subject
for every document that they create.

Chapter 8

[271]

Although we just specified that the title block displays the page name of the
background page, Visio understands that you really want to display the page name
of the foreground page. So when you click back onto Page-1, you will see that the
text automatically displays Page-1:

Clever isn't it? What is more, Visio will automatically change the size of the
background page, if you change the size of the foreground page.

Adding the template description
You should now go into the Backstage view to edit the Info of the document. Once
there, you can provide some information for future reference in the Properties panel:

Publishing Validation Rules and Diagrams

[272]

You should fill in the Comments with a description that will help your users
make the right choice of template, because this will be displayed in the Visio
user interface later.

You can also get to edit the document properties from the right-mouse
menu on the document node in the Drawing Explorer window, which
can be opened from the checkbox on the DEVELOPER tab. In this
case, it will open the old Properties dialog.

The simplest method to provide a template
Now save this document as a Visio template (*.vstx) in the special folder My Shapes
or, let's say, in a new folder called My Templates, with a subfolder called Company
Flowcharts, inside the special folder, Documents (or My Documents) folder.

Chapter 8

[273]

OK, so we now have a custom template. However, the Visio interface does not know
where to find the templates, even though it is inside the special folder, Documents
(or My Documents). There is a special folder called My Shapes in the Documents
folder that is intended for Visio stencils, but it does not automatically display the
contents for templates.

Editing the file paths for templates
Fortunately, we can tell Visio where to look for custom templates, and other custom
files, from the Visio Options panel. Simply open the File Locations dialog from the
Advanced | General section at the very bottom of the scrollable panel. You can then
navigate to the My Shapes folder by clicking on the ellipsis button (…) to the right of
the Templates textbox.

Publishing Validation Rules and Diagrams

[274]

You should select the My Shapes or the My Templates folder, not the Company
Flowcharts subfolder, because Company Flowcharts will be used as the category
name in the Visio interface.

So now, when you want to select a template, you will find My Audit Diagram inside
the Company Flowcharts folder:

Chapter 8

[275]

You should be aware that Visio will scan through every folder and subfolder, for
every path listed in the File Locations dialog. This can be a very slow process if there
are a lot of folders and files within them. Therefore, this method of deploying custom
templates is not the recommended method but it is acceptable for certain situations,
(for example, when no installations are permitted) provided it is done with care. You
can imagine the effect that entering C: in just one of these locations could have, since
Visio will attempt to read every folder and subfolder looking for suitable files. Visio
will appear to stop responding, if you are lucky.

You may have noticed that you can specify a path called Start-Up in
the File Locations dialog. If you set a path here, Visio will attempt to
run every executable file it finds! Imagine doing that from C:! Believe
me this has happened on more than one occasion. The only remedy is
to shut down as quickly as possible, restart the computer, then edit the
following registry key to remove this path before starting Visio again.
Computer\HKEY_CURRENT_USER\Software\Microsoft\
Office\15.0\Visio\Application\StartUpPath

Setting the file paths for templates
Visio 2013 has introduced another way of setting the file path for templates with the
Default personal templates location option in the File | Options | Save dialog.

Publishing Validation Rules and Diagrams

[276]

This will introduce a new PERSONAL collection in the Backstage view when you
want to select a new diagram type. As before, any subfolder will be treated as a
category in the Backstage view.

Chapter 8

[277]

Creating a template preview image
You will have noticed that our new template looks pretty boring in the Backstage
view. The default preview image in Visio is generated automatically from the first
foreground page in a document. Therefore, you can create a new preview image
for the template by mocking-up a new drawing, created from the template, with a
suitable arrangement of shapes on it. You will then be able to copy the image from
the drawing to the template using one line of VBA code.

Publishing Validation Rules and Diagrams

[278]

Now, open the Page Setup dialog from the right-mouse menu, on the foreground
page node of the Drawing Explorer window or from the Size | More Page Sizes
option on the DESIGN tab. Select Custom Size on the Page Size tab, and edit the
height to be the same as the width.

You are doing this because the preview image of the template in the Backstage view
is square.

Open the DocumentSheet by selecting Show ShapeSheet from the right-mouse
menu of the document node, on the Drawing Explorer window.

Chapter 8

[279]

Then edit the PreviewQuality to be 1-visDocPreviewQualityDetailed. This
will ensure that the size specified in the ThumbnailDetailMaxSize registry key
value is used.

Close the ShapeSheet and then save the document as, say, A validated audit
diagram.vsdx.

Next, you need to open the original My Audit Diagram.vstx document by using
the File | Open menu; then select Open or Open Original from the options on the
Open button.

Publishing Validation Rules and Diagrams

[280]

So, you now have two documents open. This is necessary because you are going to
copy the preview image from one to the other! You can verify the names of the files
that you have open from the menu on the Switch Windows button on the VIEW tab.

Simply go into the VBA environment (Alt+F11 normally takes you straight there).
You do not want to add any VBA code into the documents, because you just need
to type one line into the Immediate window (Ctrl+G):

Visio.Documents("My Audit Diagram.vstx").CopyPreviewPicture Visio.
Documents("A validated audit diagram.vsdx")

You have now copied the preview image from A validated audit diagram.vsd
to My Audit Diagram.vst, but the template will lose the preview unless you edit
the LockPreview value to True in the ShapeSheet of the My Audit Diagram.vst
document:

Chapter 8

[281]

Now you can close the ShapeSheet and save the template; this time you will see that
there is a preview image.

Remember that you will need to change the LockPreview back to 0 (False) if you
ever want to update the image.

Alternatively, you could save this following VBA code in the ThisDocument class of
the A validated audit diagram.vsdm file so that you can recopy the preview image
at a later date. This method will assume that you also have the target template open.

Public Sub CopyPreview()
Dim docTarget As Visio.Document
Dim doc As Visio.Document
If Visio.Documents.Count < 2 Then
 Exit Sub
Else
 'Get the first writable drawing that is open

Publishing Validation Rules and Diagrams

[282]

 For Each doc In Visio.Application.Documents
 If doc.Type = visTypeTemplate _
 And doc.ReadOnly = False _
 And Not doc Is ThisDocument Then
 Set docTarget = doc
 Exit For
 End If
 Next
 If docTarget Is Nothing Then
 Exit Sub
 End If
End If

If MsgBox("Do you want to copy the preview image from " & _
 ThisDocument.Name & " to " & docTarget.Name & "?", _
 vbYesNo) = vbYes Then
 docTarget.DocumentSheet.Cells("LockPreview").FormulaU = 0
 docTarget.CopyPreviewPicture ThisDocument
 docTarget.DocumentSheet.Cells("LockPreview").FormulaU = 1
End If

End Sub

Enhancing the quality of the preview image
You may be slightly disappointed with the quality of this image compared to the
standard Visio ones. It is certainly less crisp but there is a way that you can fix this.
Visio is rendering to a fixed size by default.

This method requires a registry hack, so only attempt this if
you are confident.

Chapter 8

[283]

First, you need to tell Visio to store all of its settings that it is holding in memory
into the registry so that you can edit them. This is done by ticking the Put all
settings in Windows registry box in the Visio Options dialog, under the
Advanced | General group:

Then close Visio, and start the Registry Editor (type regedit at the Start
command\screen). Navigate down to the following node:

Computer\HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Visio\
Application

Then edit one of the two Thumbnail values as follows:

ThumbnailDetailMaxSize = 5000000

Publishing Validation Rules and Diagrams

[284]

Now, open A Validated Audit Diagram.vsdm that you previously created, and
resave the document in order to update its preview image. You may then want to
change the LockPreview value of this document to True by using the ShapeSheet as
described earlier, in case you want to use it again.

Open the My Audit Diagram.vstx document and copy the preview image across,
using the VBA line as mentioned earlier.

The VBA code will automatically unlock and then lock the preview image.

Now, you will see that the preview picture of the document is much crisper
and clearer.

Finally, you could edit the registry values back to their defaults; otherwise, Visio will
need to work harder, and your file sizes will be increased:

ThumbnailDetailMaxSize = 60000

Chapter 8

[285]

The best method for publishing templates
Now you know how to publish a template and category using a simple method,
you will now learn how to provide a setup package that can be distributed and
installed. For this, you will need an application, such as Visual Studio, that can create
an installation package (*.msi) file. Visual Studio had a Setup and Deployment
project type prior to the 2012 edition, and you could use this and the Visio Solution
Publishing Tool from the Microsoft Visio SDK (Software Development Kit).
However, Microsoft deprecated the Setup and Deployment project type, and
encouraged most developers to use the WiX Toolset from http://wixtoolset.org/.
This provides the ability to build Windows installation packages from the XML source
code. Fortunately, an experienced Visio developer and blogger, Nikolay Belyh, has
provided a WiX Setup Project for Visio, http://unmanagedvisio.com/products/
visio-wix-installer-project-template/; this provides an extension to the
WiX Toolset just for Visio projects. So, install them both.

You can choose to enable the optional InstallShield Limited Edition
in Visual Studio 2012, which will provide you with the ability to
create an .msi file, but you will need to add a PublishComponent
table by hand before using the Visio Solution Publishing Tool that
is available in the Visio SDK.

Creating a setup project
In Visual Studio, create a new Installed | Templates | WiX Toolset | WiX Setup
Project for Visio, called, say, MyAuditTemplateVisioSetup:

Publishing Validation Rules and Diagrams

[286]

In Visio, save the My Audit Diagram.vstx file as AuditR_M.vstx then, in Visual
Studio, add the file to the MyAuditTemplateVisioSetup project. I removed the
dummy Stencil_1_M.vss and the Template_1_M.vst from the project.

Note that I also updated the Product.Name, Manufacturer, and so on, to suit my
requirements shown as follows:

 <Product Id="*"
 Name="My Audit Template with Rules $(var.Version)"
 Language="1033"
 Version="$(var.Version)"
 Manufacturer="bVisual"
 UpgradeCode="$(var.UpgradeCode)">
 <Package InstallerVersion="200"
 Compressed="yes"
 InstallPrivileges="elevated"

Chapter 8

[287]

 InstallScope="perMachine" />
 <MajorUpgrade
 DowngradeErrorMessage="A later version of My Audit Template with
Rules is already installed. Setup will now exit." />
 <MediaTemplate EmbedCab="yes"/>

 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="ManufacturerFolder"
 Name="bVisual">
 <Directory Id="INSTALLDIR"
 Name="Company Flowcharts"
 FileSource="." >
 <Component>
 <File Name="AuditR_M.vstx">
 <visio:PublishTemplate
 MenuPath="Company Flowcharts\My Audit Diagram" />
 </File>
 </Component>
 </Directory>
 </Directory>
 </Directory>
 </Directory>

 <Feature Id="ProductFeature"
 Title="All Items" Display="expand" >
 <Feature Id="TemplatesFeature"
 Title="Install templates" >
 <ComponentRef Id="AuditR_M.vstx" />
 </Feature>
 </Feature>
 <UIRef Id="WixUI_FeatureTree" />
 </Product>

You can then build the release of this package; you should find that two files are
created, namely MyAudtTemplateSetup.msi and MyAudtTemplateSetup.wixpdb, in
the <Projects>\MyAudtTemplateSetup\MyAudtTemplateSetup\bin\Release folder.

Publishing Validation Rules and Diagrams

[288]

Running the installation
Double-click on the MyAuditTemplateVisioSetup.msi file in the Release folder of
the project, or select Install from the right-mouse menu on it. The Welcome dialog
should appear as shown in the following screenshot:

You can then click on Next on the End-User License Agreement after ticking the
acceptance checkbox, then Next on the Custom Setup screen, and then Install.
Once installed, you will finally see the completed screen.

The AuditR_M.vstx file will be installed into the <ProgramFilesFolder>\bVisual\
Company Flowcharts folder.

Chapter 8

[289]

However, there will be a new category in CATEGORIES, though it will be a simple
folder image. Unfortunately, Visio does not provide the ability to enhance this.

You will find the verbosely named template inside the category.

Publishing Validation Rules and Diagrams

[290]

Note that I have removed the file path changes that I made earlier in this chapter.

Of course, you do not need to create a new category. For example, you could have
just put the existing Flowchart in the WiX XML:

MenuPath="Flowchart\My Audit Diagram" />

This will cause your template to appear in the existing category:

Of course, you do not have to have a separate installation package for each of your
new templates, or even for multiple-language versions, because you can have
multiple templates installed in one .msi file.

Also, the template could contain modified versions of standard Visio shapes, or
even some extra ones on new stencils too. In this case there will be stencils to be
deployed to the installation folder too; each stencil will require name and description
enhancements entered in the WiX XML file.

And finally, if your rules are too complicated to be defined purely with the Filter and
Test Expressions, then this method of installing custom templates could also contain
custom validation code.

Chapter 8

[291]

Uninstalling and Repairing
Once the template and\or stencils are installed, there may come a time when they
need to be uninstalled. This can be done by running the installation .msi file again,
or by selecting the program from the Control Panel | Programs and Features dialog:

Summary
In this chapter we have learned two different ways of deploying custom Visio
templates that contain validation rules. The first simple method does not require any
extra tools besides Visio, but is more difficult to control. The second is more complex
and requires additional skills and applications, but is more suitable for large-scale
deployment and centralized control.

In the next and final chapter, we will walk through the creation and deployment of
a new ruleset for Data Flow Model Diagrams. We will convert some plain English
rules into ones that Visio can understand, in order to ensure that well-constructed
diagrams are created.

A Worked Example for
Data Flow Model

Diagrams – Part 1
In the preceding chapters, we have learned about the Visio object model, the new
Validation API, how to write validation rules, and how to publish these rules for
others to use.

In this chapter, we are going to present a complete cycle for writing validation rules
for the Data Flow Model Diagram methodology. I chose this template because there
used to be an add-on associated with it in Visio; this add-on is unfortunately no
longer provided, and there are no rules for it either.

Since we are going to produce a new template, we can then take the opportunity
to enhance the master shapes too. This will provide some extra functionality, such
as identifiers for each process, which could be used to detail the diagrams, and to
make them suitable for export into other applications. I know that some of these
enhancements are usually done by a ShapeSheet developer rather than a rules
developer, but I have included fairly detailed steps because they give valuable
insight into Visio shape behavior.

So, in this chapter, we will go through the following steps:

• Examining the existing template
• Making any shape enhancements we may want

A Worked Example for Data Flow Model Diagrams – Part 1

[294]

What are Data Flow Diagrams?
The normal Visio user selects a Visio template from a category in the Backstage
Getting Started view of the Visio user interface.

A quick search on the web reveals that Data Flow Diagrams (DFDs) are a graphical
representation of the flow of data into, around, and out of a system:

http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm

Throughout the seventies, various academics developed methodologies for modeling
data flows. The one by Gane and Sarson is utilized in the Data Flow Model
Diagrams template in Visio. This methodology has the following four elements:

• Squares representing external entities, which are the source or destination
of the data. These are the places that provide the organization with data, or
have data sent to them by the organization (for example, customers, partners,
or government bodies).

• Rounded rectangles representing processes, which take data as input,
perform an action with the data, and then produce an output.

• Arrows representing the data flows, which can be either electronic data or
physical items. The arrows should be labeled with the name of the data that
moves through it.

• Open-ended rectangles representing data stores, including electronic stores
such as databases or XML files, and physical stores such as filing cabinets or
stacks of paper. They can be manual, digital, or temporary.

With a dataflow diagram, developers can map how a system will operate,
what the system will accomplish, and how the system will be implemented.
It's important to have a clear idea of where and how data is processed in a system,
to avoid double-handling and bottlenecks. A DFD also helps management organize,
and prioritize data handling procedures and staffing requirements.

Chapter 9

[295]

A DFD lets a system analyst study how existing systems work, locate possible areas
prone to failure, track faulty procedures, and reorganize components to achieve
better efficiency or effectiveness.

There are a number of rules that are commonly followed when creating DFDs:

1. All processes must have at least one data flow in and one data flow out.
2. All processes should modify the incoming data, producing new forms of

outgoing data.
3. Each data store must be involved with at least one data flow.
4. Each external entity must be involved with at least one data flow.
5. A data flow must be attached to at least one process.
6. Data flows cannot go directly from one external entity to another external

entity: such flows need to go through at least one process.

There are also a couple of conventions that could be considered:

1. Do not allow a single page of a data flow diagram to get too complex—it
should have no more than ten components. If it has more than this, combine
some components into a single, self-contained unit and create a new DFD for
that unit.

2. Each component should be labeled with a suitable description.
3. Each data flow should be labeled describing the data flowing through it.
4. Each component and subcomponent should be numbered in a

top-down manner.

Finally, there are two other connectivity rules that could be added:

1. A data flow must be connected to two data components.
2. A flow must not cycle back to itself.

A Worked Example for Data Flow Model Diagrams – Part 1

[296]

Examining the standard template
You can find the standard Data Flow Model Diagram template in the Software and
Databases category:

If you create a new document from this template, you will see that there are just four
masters on the Gane-Sarson stencil, and there are no rules associated with it at all.

Chapter 9

[297]

If you then drag-and-drop just one example of each shape onto the page, you will see
that the graphics are not complicated either:

You now need to review the current shapes; one way to do this is to create a quick
report in Visio. I started by reviewing the ShapeSheet of each of the shapes, and saw
that each of them contains a few User-defined Cells that point to their role within
UML diagrams. For example, the User.UMLShapeType cell contains a numerical
value that specifies the type of UML shape and the User.visDescription cell
contains a text description of this type.

A Worked Example for Data Flow Model Diagrams – Part 1

[298]

So, you can create a new report that lists all of the shapes on the current page using
the Shape Reports button in the Reports group on the REVIEW tab. Then you can
click on the Advanced button to open a dialog to set a filter. In this case, you can
check for the existence of the UMLShapeType cell by selecting the Value = TRUE for
the Condition = exists, before clicking on Add.

You can then proceed to select the properties that you want to display as columns in
the report on the next panel. You should select <MasterName>, UMLShapeType and
visDescription. You will need to tick the Show all properties option in order to
see the last two, because user-defined cells are not displayed by default:

Chapter 9

[299]

You can then proceed to save the report definition as, say DFD Shapes, and then run
it as an Excel report format. You should get a report that looks like this:

I changed the precision of the number format to 0, so that the UMLShapeType
values did not have any decimal point.

A Worked Example for Data Flow Model Diagrams – Part 1

[300]

Enhancing the masters
Before you start to enhance the masters in the document (not the original
Gane-Sarson stencil), please open the Master Properties dialog for each of the four
masters and tick the Match master by name on drop option. This will ensure that
the enhanced masters will be used in this document, rather than the original masters,
even if the user drags-and-drops from the original stencil. These enhanced masters
will provide functionality that, in my humble opinion, should have been present in
the Microsoft built-in masters. Since the built-in stencils and masters should not be
edited, my approach is to provide enhanced masters in the custom template, and
make the user employ the enhanced masters automatically, whenever they select a
similarly named master from the built-in stencils.

Chapter 9

[301]

You can now edit each master in turn.

You can access the masters in the document by using the Drawing
Explorer window, which can be opened from the Show/Hide group
on the DEVELOPER tab, or by ticking the More Shapes \ Show
Document Stencil option in the Shapes window.

Editing the Data Flow master
The Data Flow master is used to connect the Process, Interface, and Data Store
shapes. The user should enter some text on each Data Flow to name the data that
is flowing along it. This description implies that the direction of flow is important,
and that each data flow should be labeled appropriately. We can also enable some
of the features in Visio, such as connector splitting, that were not available when
the Data Flow master was first developed. This will improve the user experience
because other shapes will be able to be dropped on top of a Data Flow shape and
automatically insert themselves into the flow, rather than forcing the Data Flow
shape to re-route around it.

The Data Flow shape looks like a simple connector with an arrow head denoting the
flow direction:

Now open the master shape by selecting Edit Master Shape on the right-mouse menu
of the Data Flow node, in the Masters branch of the Drawing Explorer window.

Then ensure that the Master Explorer window is open, and select the shape.

A Worked Example for Data Flow Model Diagrams – Part 1

[302]

These shapes were created for an earlier version of Visio, before Microsoft added
the ability for the 2D shapes to automatically split the 1D connectors when they are
dropped on them. It would be useful to add this capability to the Data Flow shape
by modifying its behavior. Click on the Behavior button in the Shape Design group
of the DEVELOPER tab. Tick the Connector can be split by shapes option.

You can now click on the OK button of the dialog and close the master edit window.

Preparing for AutoConnect
You will want to ensure that the user does indeed use the Data Flow shape to
connect the DFD shapes together. Therefore, we need to understand how a user
can make connections.

Chapter 9

[303]

The easiest method is to use the AutoConnect feature. This displays blue triangles
around an existing shape as you hover over it. These triangles can be used to connect
to an existing adjacent shape or even to drop a new shape by using the Quick
Shapes selector.

However, there is an unfortunate consequence of using this feature, as it will
automatically create and use a new master called Dynamic connector.

The Dynamic connector master is a rare hardcoded master in Visio, and it is also
used by the Connector Tool in the Tools group on the HOME tab, unless you have
preselected an alternative connector master on the active stencil.

Therefore, we need to anticipate how Visio works, and avoid having the wrong
connector between our shapes. To do this, we will change the NameU of the Data
Flow connector.

A Worked Example for Data Flow Model Diagrams – Part 1

[304]

So, first ensure that there is no Dynamic connector master present in the document
(CTRL + Z to Undo the previous action), and then open the Immediate window in
the VB Editor (ALT + F11).

Initially, if you type ?Visio.ActiveDocument.Masters("Data Flow").Name
or ?Visio.ActiveDocument.Masters("Data Flow").NameU in the Immediate
window, then you will get the words Data Flow on the response line.

If you then type Visio.ActiveDocument.Masters("Data Flow").NameU =
"Dynamic connector" into the window, and repeat the first two lines, you
will find that NameU is now Dynamic connector.

Now, when you use the Quick Shapes, AutoConnect, or the Connector Tool, you
should find that the Data Flow master is used in all cases!

Chapter 9

[305]

Editing the Data Store master
The Data Store master looks like an open-ended rectangle but we would like it
to include an optionally displayed square that will display the ID of the store.
Therefore, we will need to add Shape Data, and some extra graphics that will
contain the ID text. The display of these extra items will be toggled according
to a Shape Data row that we will put into the page.

Select Edit Master Shape from the right mouse menu on the Data Store master in
the Document Explorer window, and you will see that the shape is a very simple
three-sided rectangle:

Adding Shape Data
While looking at examples of DFDs on the web, it is clear that there is an alternate
appearance for the Data Store shape that has a square containing an identifier to
the left of the shape. Therefore, we can take the opportunity to add this option to
the shape.

Since we need to have two distinct text areas in the shape, it will need to be a
group shape. Therefore, select the shape in the Master Edit window and then
select Convert to Group from the Group dropdown in the Arrange group of the
HOME tab. It is important to convert to a group rather than just grouping the shape,
because converting will maintain the user-defined cells at the top-level shape. You
should notice a subtle change in the icon of the Sheet.5 shape in the Master Explorer
window after you have converted it to a group.

In order to provide the user with the option to display the ID boxes on the shape,
I am suggesting that you should add a Boolean Shape Data row to the page.

A Worked Example for Data Flow Model Diagrams – Part 1

[306]

So, on the VIEW tab. open the Shape Data window from the Task Panes dropdown
in the Show group. Alternatively, you can tick the Shape Data Window option on
the Show/Hide group on the DATA tab. Then select the page by clicking on the gray
area around the shape.

You will see that there is no shape data in the Shape Data window; thus, open
the Define Shape Data dialog from the right-mouse menu on the header caption
of this window.

You need to enter the following text into the boxes on the Define Shape Data dialog:

• Label: Display DFD IDs
• Name: DisplayID
• Type: Boolean
• Value: True
• Prompt: Select True to display the IDs in the DFD shapes

Chapter 9

[307]

If you do not see the Name text box in the Define Shape Data
dialog, then you have not ticked Run in developer mode on the
File | Options | Advanced panel.

Click on OK to save this Shape Data in the page of the master. Now, you need to add
a new Shape Data row called ID to the shape itself by selecting it and then opening
the Define Shape Data as before. You will need to add a Shape Data row named ID
to the shape (called Sheet.5) shown as follows:

Enter a question mark for the Value, just for testing purposes.

Creating Shape Data using the Define Shape Data dialog actually adds rows to
the Shape Data section in the ShapeSheet. You can only enter text, not formulae,
into these ShapeSheet cells using the Define Shape Data dialog, so you will need
to open the ShapeSheet of the shape.

A Worked Example for Data Flow Model Diagrams – Part 1

[308]

You should edit the formula in the Invisible cell of the Prop.ID shape data row as:

=NOT(ThePage!Prop.DisplayID)

This will ensure that the Prop.ID shape data row is only visible if the value of the
Prop.DisplayID shape data row is True for the page.

Enhancing the graphics
You now need to add a square into this master, so go to Group | Open Group from
the right-mouse menu on the master shape. Now roughly draw a square using the
Rectangle button on the Tools group of the HOME tab. You could change the Line
Weight to ½ pt at this stage, using the right-mouse menu item Format | Line.

Chapter 9

[309]

Displaying the ID value
Navigate to Insert | Field to add Custom Formula =Sheet.5!Prop.ID. This will
ensure that the text inside the rectangle always displays the value of the Prop.ID
shape data row, in the top level of the group:

There are several formulae that you now need to edit in the ShapeSheet of the
rectangle shape, to ensure that it is always the right size and location, and to
control the visibility of the lines and text.

In the Shape Transform section of the ShapeSheet, enter the formula
=Sheet.5!Height*1 in the Width and Height cells, and then enter the formula
=Sheet.5!Height*0.5 in the PinX and PinY cells. This will ensure that this
subshape is a square aligned to the left edge of the main shape.

A Worked Example for Data Flow Model Diagrams – Part 1

[310]

In the Geometry1.NoShow and Miscellaneous.HideText cells, enter the formula
=NOT(ThePage!Prop.DisplayID).

You can now close the ShapeSheet and group edit window, in order to return to the
main Data Store shape.

Improving the group shape
Use the Size & Position window, that can be opened from the View | Task Panes
menu or by clicking on the Height, Width, or Angle display in the status bar, to
enlarge the shape width to 35 mm.

You can open the Page Setup dialog from the right-mouse menu
of the Data Store node in the Master Explorer window in order to
change the page size to match the shape size, if you want.

Chapter 9

[311]

Enter some temporary text into the shape, and then use the Text Block tool, on the
Home | Tools group, to roughly resize the text block by selecting and moving one
of the corners or midpoints of its edges.

This last action will cause a new section, Text Transform, to be created in the
ShapeSheet of this shape.

Navigate to this section and edit the TxtWidth cell formula to:

=GUARD(Width-IF(ThePage!Prop.DisplayID,Height*1,0))

Then edit the TxtPinX formula to:

=GUARD(TxtWidth*0.5+IF(ThePage!Prop.DisplayID,Height*1,0))

Close the ShapeSheet and click on the Behavior button on the Shape Design group
on the DEVELOPER tab. In the Group behavior section, untick the Snap to member
shapes option, then change the Selection to Group only. Also tick the Shape can
split connectors option.

A Worked Example for Data Flow Model Diagrams – Part 1

[312]

You can now delete the temporary text in the main shape, and the question mark in
the Prop.ID shape data row using the Shape Data window. Close and save the Data
Flow master.

Editing the Interface master
The Interface shape is used to represent external entities that are the source
or destination of data. The only change required is to tick the Shape can split
connectors option on the Behavior dialog, as for the Data Store master, so that
the shape can automatically split the Data Flow connector when dropped on it.
Optionally, you can convert the shape to a group, too, since any future use of Data
Graphics will do this automatically.

Editing the Process master
The Process shape takes data as input and then transforms it in some way, before
sending it as output.

The Process master looks like a rounded rectangle, but we would like it to include
an optionally displayed header area that will display the ID of the process, and an
optional footer area that will display Category. Therefore, we will need to add Shape
Data and some extra graphics that will contain the ID and Category text. The display
of these extra items will be toggled according to a Shape Data row that we will put
into the page.

Adding Shape Data
Edit the Process master shape, and add a Prop.DisplayID shape data row to the
page, just as you did for the Data Store shape. Convert the shape to a group and add
a Prop.ID shape data row, also as you did to the Data Store shape. However, you
should also add a new Shape Data row, called Category, with a String data type.

Chapter 9

[313]

As before with the Data Store master, you should add the page Shape Data row;
now open the ShapeSheet and edit the Invisible cell of these two shape data rows
and enter the formula:

=NOT(ThePage!Prop.DisplayID)

Enhancing the graphics
Now you need to have the ID optionally displayed at the top of the shape, and the
Category optionally displayed at the bottom of the shape. In the earlier Data Store
shape, you added a new rectangle into the group shape, and you were able to see
this rectangle and the text inside it. This worked because the group shape did not
have any fill pattern. However, the Process shape is a solid shape, and therefore you
need to remove the fill pattern. To do this, open the ShapeSheet of the Process shape,
scroll to the Geometry1 section, and change the Geometry1.NoFill formula to True.

A Worked Example for Data Flow Model Diagrams – Part 1

[314]

Having removed the fill from the group shape, you now need to add a new shape
inside the group that can have a fill pattern. So, as with the Data Store shape, open
the group, draw a rough rectangle, then show the ShapeSheet of this rectangle.

You should now edit the formula of Width =Sheet.5!Width*1,
Height =Sheet.5!Height*1, PinX =Sheet.5!Width*0.5, and PinY
=Sheet.5!Height*0.5. Then edit Geometry1.NoLine = True, and Rounding =
Sheet.5!Rounding in the Line Format section.

Displaying the ID value
Now you need to optionally display the Prop.ID value above a line at the top of
the shape, so draw a line inside the group, creating another shape like the rectangle,
then insert the =Sheet.5!Prop.ID formula using the Insert | Field action, just as for
the Data Store shape. Then open the ShapeSheet and scroll down to the Text Block
Format section to edit the TextBkgnd as 0, VerticalAlign as 2, and both TopMargin
and BottomMargin as 0 pt.

Chapter 9

[315]

Then scroll back up to the 1-D Endpoints section to edit the BeginY and EndY
formula =Sheet.5!Height*1-TEXTHEIGHT(TheText,750), and the BeginX as 0;
and EndX as Sheet.5!Width*1:

Lastly, you need to set the visibility of the line and text, as earlier, by inserting the
formula =NOT(ThePage!Prop.DisplayID) into the Geometry1.NoShow cell and
the HideText cell in the Miscellaneous section.

Displaying the Category value
Close the ShapeSheet, and then duplicate the line (Ctrl + D).

Open the ShapeSheet of this new line and scroll down to the Text Block Format
section to change the VerticalAlign value to 0.

Scroll up to the Text Fields section and change the Value cell to =Sheet.5!Prop.
Category.

A Worked Example for Data Flow Model Diagrams – Part 1

[316]

Then scroll back up to the 1-D Endpoints section to edit the BeginY and
EndY formula =TEXTHEIGHT(TheText,750) and the BeginX=0, and
EndX=Sheet.5!Width*0.

You can now close the ShapeSheet and the group window.

Improving the group shape
Use the Size & Position window to enlarge the shape to 35 mm wide, and
20 mm high.

Chapter 9

[317]

Again, click on the Behavior button on the Shape Design group on the
DEVELOPER tab. In the Group behavior section, untick the Snap to member
shapes option and then change the Selection to Group only. Also tick the Shape
can split connectors option.

You can now delete the question mark(s) in the Prop.ID and Prop.Category shape
data row using the Shape Data window; then close and save the Process master.

Setting the Subprocess master
Visio 2013 Professional edition has the ability to create a subprocess from a selection
of shapes. Similar to the AutoConnect feature discussed earlier, an unnecessary
master can be accidentally created by its use.

For example, if you select a few shapes on a document, the Create from Selection
button is enabled in the Subprocess group on the PROCESS tab.

A Worked Example for Data Flow Model Diagrams – Part 1

[318]

Clicking on this button will move the selected shapes to a new page and replace
them with a subprocess shape in their place, with a hyperlink to the new page.

By default, a standard subprocess shape is used. We can change the default as follows:

Open the ShapeSheet from the right-mouse menu of the document node in
the Drawing Explorer window. Create a new user-defined row and name it
msvSubprocessMaster, then enter the formula "Process".

Chapter 9

[319]

Now, when you use the Subprocess actions, you will find that your modified
Process master is used.

Now save your document!

Enhancing the page
Since you have increased the size of a couple of the master shapes, you should
now check the layout options for the page. You can take the opportunity to tweak
the default spacing of shapes and connectors, as well as allowing shapes to split
the connectors.

A Worked Example for Data Flow Model Diagrams – Part 1

[320]

So, select Page Setup from the right-mouse menu of the page node in the Drawing
Explorer window. Tick the Enable connector splitting on the Layout and Routing tab.

Select the Spacing button to open the Layout and Routing Spacing dialog. You
should enter suitable values for each of the settings. Of course, mine are shown in
millimeters, but you could enter yours in inches (7.5 mm = 0.29 in, 15 mm = 0.59 in,
20 mm = 0.79 in, 25 mm = 0.98 in).

Chapter 9

[321]

Click on OK to close both dialogs.

You have ensured that the Data Flow connector can be split by a suitable 2D
shape, and that the three 2D shapes are splitters. You should also check that
Enable connector splitting is ticked in the Editing options on the File | Options |
Advanced panel.

Now when a user drops a DFD shape over an existing connector shape, it will
automatically split and reconnect to the added shape.

Summary
In this chapter, we have examined an existing template in order to make any
changes that we need to make to the shape and page for our rules to work. We have
enhanced the graphics and shape data to suit our requirements, and to improve the
user experience. This involved adding Shape Data and user-defined cells to the page
and masters; it also involved enabling some behaviors that were introduced to Visio
after the original masters were developed.

We now have customized shapes that are ready to have rules applied to them. Thus,
in the next chapter, we will analyze and write the ruleset that will satisfy all of the
rules that we identified for Data Flow Diagrams at the start of this chapter.

A Worked Example for
Data Flow Model

Diagrams – Part 2
In the previous chapter, we listed the potential rules for the Gane and Sarson data
flow diagrams, then we enhanced the masters in the Microsoft supplied Data Flow
Model Diagram template. We also created a report to list the four DFD shapes,
showing their unique values in the User.UMLShapeType cell.

In this chapter, we will go through each of the 12 rules in detail, and write a rule to
enable us to validate the diagram for each one.

Writing the ruleset
In Chapter 4, Understanding the Validation API you learned how to write VBA code to
add a ruleset and rules; although you could repeat this throughout the rest of this
chapter, I prefer to use the user interface that we developed in Chapter 6, Reviewing
Validation Rules and Issues and Chapter 7, Creating Validation Rules. Therefore, you will
need to install the Rules Tools add-in, or run the Validation Explorer solution from
Visual Studio 2012, in order to write the rules easily. However, I have included VBA
methods to add (or update) the ruleset and rules; these can be written into the VBA
project of any Visio document but should be run when the document that you want
to add the rules to is active.

Open the Rules Explorer window from the Rules Tools group on the PROCESS tab.

A Worked Example for Data Flow Model Diagrams – Part 2

[324]

With your document node selected in the Rules Explorer window, click on the Add
button then enter the Name, NameU, and Description of this new ruleset.

You can now add each of the new rules, by translating the previous descriptions into
validation formulae.

The equivalent VBA code is listed as follows, adapted from the code in Chapter 4,
Understanding the Validation API (and requires the getRuleSet() method from there):

Public Sub AddOrUpdateRuleSet()
Dim ruleSet As Visio.ValidationRuleSet
Dim ruleSetNameU As String
Dim doc As Visio.Document
 Set doc = Visio.ActiveDocument
 ruleSetNameU = "DFD Ruleset"
 'Check if the rule set exists already
 Set ruleSet = getRuleSet(doc, ruleSetNameU)
 If ruleSet Is Nothing Then
 'Create the new rule set
 Set ruleSet = doc.Validation.RuleSets.Add(ruleSetNameU)
 End If

Chapter 10

[325]

 ruleSet.Name = "DFD Ruleset"
 ruleSet.Description = _
 "A set of rules for Data Flow Model diagrams"
 ruleSet.Enabled = True
 ruleSet.RuleSetFlags = visRuleSetDefault

 'Uncomment a method below as required
 'AddOrUpdateRule1 ruleSet
 'AddOrUpdateRule2 ruleSet
 'AddOrUpdateRule3 ruleSet
 'AddOrUpdateRule4 ruleSet
 'AddOrUpdateRule5 ruleSet

 'AddOrUpdateRule7 ruleSet
 'AddOrUpdateRule8 ruleSet
 'AddOrUpdateRule9 ruleSet
 'AddOrUpdateRule10 ruleSet

 'AddOrUpdateRule11 ruleSet
 'AddOrUpdateRule12 ruleSet
End Sub

Rule 1 – all processes must have at least one
data flow in and one data flow out
A Process shape, User.UMLShapeType=100, must have the count of both the
incoming and outgoing glued Data Flow connectors, User.UMLShapeType=97,
greater than zero shown as follows:

• Name U: ProcessInOut
• Category: Connectivity
• Target Type: vis Rule Target Shape
• Description: All processes must have at least one data flow in

and one data flow out

• Filter Expression: User.UMLShapeType =100
• Test Expression: AND(AGGCOUNT(FILTERSET(GLUEDSHAPES(1),"User.UM

LShapeType=97"))>0,AGGCOUNT(FILTERSET(GLUEDSHAPES(2),"User.
UMLShapeType=97"))>0)

A Worked Example for Data Flow Model Diagrams – Part 2

[326]

The parameter for the GluedShapes() method has the
values of the constant Visio.VisGluedShapesFlags.
visGluedShapesIncoming1D (1) and Visio.
VisGluedShapesFlags.visGluedShapesOutgoing1D (2).

You can test this rule by having a Process shape without any Data Flow connections;
with only one Data Flow connection; or, as shown, with more than one Data Flow
connection in the same direction:

The equivalent VBA code is listed as follows, adapted from the code in Chapter 4,
Understanding the Validation API (and requires the getRule() method from there):

Public Sub AddOrUpdateRule1(_
ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "ProcessInOut"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Connectivity"

Chapter 10

[327]

 rule.Description = _
 "All processes must have at least one data flow in and one
data flow out"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 "User.UMLShapeType=100"
 rule.TestExpression = _
 "AND(AGGCOUNT(FILTERSET(GLUEDSHAPES(1),""User.UMLShapeType=97"
"))>0,AGGCOUNT(FILTERSET(GLUEDSHAPES(2),""User.UMLShapeType=97""))>0)"
End Sub

Rule 2 – all processes should modify the
incoming data, producing new forms of the
outgoing data
In other words, a Process shape must take input from a DFD component, and also
send output to a DFD component.

A Process shape, User.UMLShapeType=100, must have the count of both the
incoming and outgoing connected DFD components, User.UMLShapeType=98
or User.UMLShapeType=99 or User.UMLShapeType=100, greater than zero
shown as follows:

• Name U: ProcessToDFD
• Category: Connectivity
• Target Type: vis Rule Target Shape
• Description: A Process shape must take input from a DFD

component, and also send output to a DFD component

• Filter Expression: User.UMLShapeType=100
• Test Expression: AND(AGGCOUNT(FILTERSET(CONNECTEDSHAPES(1

),"OR(User.UMLShapeType=98,User.UMLShapeType=99,User.UM
LShapeType=100)"))>0,AGGCOUNT(FILTERSET(CONNECTEDSHAPES
(2),"OR(User.UMLShapeType=98,User.UMLShapeType=99,User.
UMLShapeType=100)"))>0)

The parameter for the ConnectedShapes() method has the
values of the constant Visio.VisConnectedShapesFlags.
visConnectedShapesIncomingNodes (1)
and Visio.VisConnectedShapesFlags.
visConnectedShapesOutgoingNodes (2).

A Worked Example for Data Flow Model Diagrams – Part 2

[328]

You can test this rule by having a Process shape connected with the Data Flow
connectors to non-DFD shapes:

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule2(_
ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "ProcessToDFD"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Connectivity"
 rule.Description = _

Chapter 10

[329]

 "A Process shape must take input from a DFD component, and
 also send output to a DFD component"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 "User.UMLShapeType=100"
 rule.TestExpression = _
 "AND(AGGCOUNT(FILTERSET(CONNECTEDSHAPES(1),""OR(User.
UMLShapeType=98,User.UMLShapeType=99,User.UMLShapeType=100)""))>0,A
GGCOUNT(FILTERSET(CONNECTEDSHAPES(2),""OR(User.UMLShapeType=98,User.
UMLShapeType=99,User.UMLShapeType=100)""))>0)"
End Sub

Rule 3 – each data store must be involved
with at least one data flow
In other words, a data store must be connected to at least one data flow.

A Data Store shape, User.UMLShapeType=98, must have the count of glued Data
Flow connectors, User.UMLShapeType=97, greater than zero shown as follows:

• Name U: DataStoreHasDataFlow
• Category: Connectivity
• Target Type: vis Rule Target Shape
• Description: A data store must be connected to at least one

data flow

• Filter Expression: User.UMLShapeType =98
• Test Expression: AGGCOUNT(FILTERSET(GLUEDSHAPES(0),"User.

UMLShapeType=97"))

The parameter for the GluedShapes() method is the value of the
constant Visio.VisGluedShapesFlags.visGluedShapesAll1D.

A Worked Example for Data Flow Model Diagrams – Part 2

[330]

You can test this rule by having a Data Store shape without any glued Data
Flow connectors.

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule3(_
ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "DataStoreHasDataFlow"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Connectivity"
 rule.Description = _
 "Each data store must be involved with at least one data flow"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 "User.UMLShapeType=98"
 rule.TestExpression = _
 "AGGCOUNT(FILTERSET(GLUEDSHAPES(0),""User.UMLShapeType=97""))"
End Sub

Chapter 10

[331]

Rule 4 – each external entity must be involved
with at least one data flow
In other words, an interface must be connected to at least one data flow.

An Interface shape, User.UMLShapeType=99, must have the count of glued Data
Flow connectors, User.UMLShapeType=97, greater than zero shown as follows:

• Name U: InterfaceHasDataFlow
• Category: Connectivity
• Target Type: vis Rule Target Shape
• Description: An interface must be connected to at least one

data flow

• Filter Expression: User.UMLShapeType=99
• Test Expression: AGGCOUNT(FILTERSET(GLUEDSHAPES(0),"User.

UMLShapeType=97"))

The parameter for the GluedShapes() method is the
value of the constant Visio.VisGluedShapesFlags.
visGluedShapesAll1D (0).

You can test this rule by having a Data Store shape without any glued Data
Flow connectors.

A Worked Example for Data Flow Model Diagrams – Part 2

[332]

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule4(_
 ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "InterfaceHasDataFlow"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Connectivity"
 rule.Description = _
 " An interface must be connected to at least one data flow"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 "User.UMLShapeType=99"
 rule.TestExpression = _
 "AGGCOUNT(FILTERSET(GLUEDSHAPES(0),""User.UMLShapeType=97""))"
End Sub

Rule 5 – a data flow must be attached to at
least one process
A Data Flow connector, User.UMLShapeType=97, must have the count of glued
Process shapes, User.UMLShapeType=100, greater than zero shown as follows:

• Name U: DataFlowToProcess
• Category: Connectivity
• Target Type: vis Rule Target Shape
• Description: A data flow must be attached to at least one process
• Filter Expression: User.UMLShapeType=97
• Test Expression: AGGCOUNT(FILTERSET(GLUEDSHAPES(3),"User.

UMLShapeType=100"))

The parameter for the GluedShapes() method is the
value of the constant Visio.VisGluedShapesFlags.
visGluedShapesAll2D (3).

Chapter 10

[333]

You can test this rule by having a Data Flow connector glued between two
non-Process shapes.

The equivalent VBA code is listed as follows, adapted from the code in Chapter 4,
Understanding the Validation API (and requires the getRule() method from there):

Public Sub AddOrUpdateRule5(_
 ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "DataFlowToProcess"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Connectivity"
 rule.Description = _
 "A data flow must be attached to at least one process"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 "User.UMLShapeType=97"
 rule.TestExpression = _
 "AGGCOUNT(FILTERSET(GLUEDSHAPES(3),""User.
UMLShapeType=100""))"
End Sub

A Worked Example for Data Flow Model Diagrams – Part 2

[334]

Rule 6 – data flows cannot go directly from
one external entity to another external entity
Such flows need to go through at least one process.

This rule is already captured by the previous rule, since all the Data Flow connectors
must be connected to at least one Process shape.

Rule 7 – do not allow a single page of a DFD
to get too complex
It should have no more than 10 components. If it has more than 10 components,
combine some components into a single self-contained unit and create a new DFD
for that unit.

If there is a Data Flow connector, User.UMLShapeType=97, on the page, then
the total count of DFD component shapes, User.UMLShapeType=98 or User.
UMLShapeType=99 or User.UMLShapeType=100, should be less than 11. The
parameters are as follows:

• Name U: TooComplex
• Category: Count
• Target Type: vis Rule Target Page
• Description: This page is too complex. Combine some components

into a single self-contained unit, and use a new page for this
unit

• Filter Expression: AGGCOUNT(FILTERSET(SHAPESONPAGE(),"User.
UMLShapeType=97"))>0

• Test Expression: AGGCOUNT(FILTERSET(SHAPESONPAGE(),"
OR(User.UMLShapeType=98,User.UMLShapeType=99,User.
UMLShapeType=100)"))<11

Chapter 10

[335]

You can test this rule by having more than ten DFD component shapes on a page,
with at least one Data Flow connector shape on it.

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule7(_
 ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "TooComplex"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Count"
 rule.Description = _
 "This page is too complex. Combine some components into a
single self-contained unit, and use a new page for this unit"
 rule.TargetType = visRuleTargetPage
 rule.FilterExpression = _
 "AGGCOUNT(FILTERSET(SHAPESONPAGE(),""User.
UMLShapeType=97""))>0"
 rule.TestExpression = _
 "AGGCOUNT(FILTERSET(SHAPESONPAGE(),""OR(User.
UMLShapeType=98,User.UMLShapeType=99,User.UMLShapeType=100)""))<11"
End Sub

A Worked Example for Data Flow Model Diagrams – Part 2

[336]

Rule 8 – each component should be labeled
Each DFD component shape, User.UMLShapeType=98 or User.UMLShapeType=99 or
User.UMLShapeType=100, should have some text in it shown as follows:

• Name U: NoComponentLabel
• Category: Text
• Target Type: vis Rule Target Shape
• Description: Each component should be labeled
• Filter Expression: OR(User.UMLShapeType=98,User.

UMLShapeType=99,User.UMLShapeType=100)

• Test Expression: NOT(STRSAME(SHAPETEXT(TheText),""))

You can test this rule by omitting to add any text to a DFD component shape.

Chapter 10

[337]

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule8(_
 ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "NoComponentLabel"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Text"
 rule.Description = _
 "Each component should be labeled"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 "OR(User.UMLShapeType=98,User.UMLShapeType=99,User.
UMLShapeType=100)"
 rule.TestExpression = _
 "NOT(STRSAME(SHAPETEXT(TheText),""""))"
End Sub

Rule 9 – each data flow should be labeled
describing the data that flows through it
Each Data Flow connector shape, User.UMLShapeType=97, should have some text in
it shown as follows:

• Name U: NoDataFlowLabel
• Category: Text
• Target Type: vis Rule Target Shape
• Description: Each data flow should be labeled with the data that

flows through it

• Filter Expression: User.UMLShapeType=97
• Test Expression: NOT(STRSAME(SHAPETEXT(TheText),""))

A Worked Example for Data Flow Model Diagrams – Part 2

[338]

You can test this rule by omitting to add any text to a DFD component shape.

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule9(_
 ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "NoDataFlowLabel"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Text"
 rule.Description = _
 "Each data flow should be labeled with the data that flows
through it"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 "User.UMLShapeType=97"
 rule.TestExpression = _
 "NOT(STRSAME(SHAPETEXT(TheText),""""))"
End Sub

Chapter 10

[339]

Rule 10 – each component and
subcomponent should be numbered
This rule starts with an example. For example, a top level DFD has components 1,
2, 3, 4, and 5. The subcomponent DFD of component 3 would have components
3.1, 3.2, 3.3, and 3.4; and the sub-subcomponent DFD of component 3.2 would have
components 3.2.1, 3.2.2, and 3.2.3. This enables a developer to plan in a top-down
manner: starting with representing large concepts, and then repeatedly breaking
these objects into their components.

Each Process or Data Store shape, User.UMLShapeType=98 or User.
UMLShapeType=100, should have a Prop.ID value if the page has a Prop.DisplayID
value of TRUE shown as follows:

• Name U: NoID
• Category: Text
• Target Type: vis Rule Target Shape
• Description: Each component and subcomponent should be numbered
• Filter Expression: AND(OR(User.UMLShapeType=98,User.

UMLShapeType=100),Prop.ID.Invisible=False)

• Test Expression: NOT(STRSAME(Prop.ID,""))

You can test this rule by omitting to add an ID value to any Process or Data Store
shape, when the page has the Display IDs value set to TRUE.

A Worked Example for Data Flow Model Diagrams – Part 2

[340]

So, if you change the page Display IDs Shape Data to FALSE, and then rerun Check
Diagram, the page will pass validation because the Prop.ID Shape Data are invisible.

In our case, the Prop.ID value defaults to an empty string ("""), but
some developers may leave the default value without a formula. In this
case it would be necessary to amend the Test Expression to cater for both
options:
OR(STRSAME(Prop.ID,"") and LOCALFORMULAEXISTS(Prop.ID))

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule10(_
ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "NoID"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then

Chapter 10

[341]

 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Text"
 rule.Description = _
 "Each component and subcomponent should be numbered. E.g. a
top level DFD has components 1 2 3. The subcomponent DFD of component
3 would have components 3.1, 3.2 and 3.3; and the sub-subcomponent DFD
of component 3.2 would have components 3.2.1 and 3.2.2"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 "AND(OR(User.UMLShapeType=98,User.UMLShapeType=100),Prop.
ID.Invisible=False)"
 rule.TestExpression = _
 "NOT(STRSAME(Prop.ID,""""))"
End Sub

Rule 11 – a data flow must be connected
between two components
The previous rule, A data flow must be attached to at least one process, does not
check that both ends are connected to a data component, therefore an extra rule is
required to check for this.

Each DFD component shape, User.UMLShapeType=98 or User.UMLShapeType=99 or
User.UMLShapeType=100, should have some text in it shown as follows:

• Name U: DataFlowEnds
• Category: Connectivity
• Target Type: vis Rule Target Shape
• Description: A data flow must be attached to two data components
• Filter Expression: User.UMLShapeType=97
• Test Expression: AGGCOUNT(FILTERSET(GLUEDSHAPES(3),"

OR(User.UMLShapeType=98,User.UMLShapeType=99,User.
UMLShapeType=100)"))>1

A Worked Example for Data Flow Model Diagrams – Part 2

[342]

You can test this rule by omitting to add any text to a DFD component shape.

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule11(_
ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = " DataFlowEnds"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Connectivity"
 rule.Description = _
 "A data flow must be attached to two data components"
 rule.TargetType = visRuleTargetShape
 rule.FilterExpression = _
 " User.UMLShapeType=97"
 rule.TestExpression = _
 "AGGCOUNT(FILTERSET(GLUEDSHAPES(3),""OR(User.
UMLShapeType=98,User.UMLShapeType=99,User.UMLShapeType=100)""))>1"
End Sub

Chapter 10

[343]

Rule 12 – a flow must not cycle back to itself
This rule is a variation of the one in Chapter 7, Creating Validation Rules, so the VBA
code needs to be inserted into the template document has all of the rules in it.

A DFD component shape must not cycle back to itself by following the flow direction
through other DFD components, shown as follows:

• Name U: CheckCycle
• Category: Connectivity
• Target Type: vis Rule Target Page
• Description: A flow must not cycle back to itself
• Filter Expression: False
• Test Expression: True

You can test this rule by creating a connecting DFD component together in a cycle.

The ThisDocument class needs to include the Document_RuleSetValidated()
event, CheckCycle(), getRule(), and ClearRuleIssues() methods as described in
Chapter 7, Creating Validation Rules. Also, you must add a Reference to the Microsoft
Scripting Runtime, as before.

A Worked Example for Data Flow Model Diagrams – Part 2

[344]

The CustomValidation class needs to copied, but the InitializeValues() method
needs to be modified because the data components are not on the Flowchart layer.
Instead, the code checks for the value in the User.UMLShapeType cell, if it exists.

Private Sub initializeValues(ByVal visPage As Visio.Page)
 Dim shps As Visio.Shapes
 Set shps = visPage.Shapes
 Dim shapeID As Integer

 Set flowchartShapes = New Collection
 Set hshTable = New Dictionary
 cycleFound = False
 Dim shp As Visio.Shape
 Dim i As Integer
 For Each shp In shps
 If shp.CellExistsU("User.UMLShapeType", _
 Visio.visExistsAnywhere) Then
 Select Case shp.Cells("User.UMLShapeType").ResultIU
 Case 97
 shapeID = shp.ID
 Case 98, 99, 100
 shapeID = shp.ID
 flowchartShapes.Add shapeID
 hshTable.Add shapeID, shapeStatus.[New]
 End Select
 End If
 Next
End Sub

The equivalent VBA code is listed as follows:

Public Sub AddOrUpdateRule12(_
 ByVal ruleSet As Visio.ValidationRuleSet)
Dim rule As Visio.ValidationRule
Dim ruleNameU As String
 ruleNameU = "CheckCycle"
 Set rule = getRule(ruleSet, ruleNameU)
 If rule Is Nothing Then
 Set rule = ruleSet.Rules.Add(ruleNameU)
 End If
 rule.Category = "Connectivity"
 rule.Description = _
 " A flow must not cycle back to itself"
 rule.TargetType = visRuleTargetPage
 rule.FilterExpression = _

Chapter 10

[345]

 "False"
 rule.TestExpression = _
 "True"
End Sub

Summary
In this chapter, we have created validation rules to match all of the Data Flow model
diagram rules that we wanted. We have used the Rules Tools add-in to write and
test each rule, and provided equivalent VBA code to create each rule. We found that
all but one of these validation rules could be written fully using the Filter and Test
Expressions, while one had to be written with the custom code.

In the next chapter, we will prepare the template for publication, so that it can be
deployed easily for use by others.

A Worked Example for
Data Flow Model

Diagrams – Part 3
In the previous two chapters, we enhanced the masters and wrote the rules for Gane
and Sarson data flow diagrams, based on the Microsoft supplied Data Flow Model
Diagram template.

In this chapter, we will prepare a new custom template and create an installation
package for it.

Completing the template
Now that you have modified the masters, written the validation rules, and enhanced
the first page, you need to give the finishing touches to the template before creating
an installation file.

Follow the instructions in Chapter 8, Publishing Validation Rules and Diagrams, to add
a title block, select a theme, and insert the page name field into the title shape in the
background page. Then save your document as a template to DFMD_M.vstm, if it is
metric units, or DFMD_U.vstm, if it is US units.

Test your template by creating a new document from it, and then resize the first page
to a square.

A Worked Example for Data Flow Model Diagrams – Part 3

[348]

If you hold down the Ctrl key and move your mouse cursor to the top of
the page, then you will see that the cursor changes to a vertical two-way
arrow. You can then click and drag the top edge of the page downwards,
while still holding down the Ctrl key, until the page looks square.

Then arrange some of the DFD shapes on the page, as this page will be used as
the preview image on your new template. Follow the instructions in Chapter 8,
Publishing Validation Rules and Diagrams, for enhancing the quality of the preview
image, before saving it as a new document, say as 8002EN_11_Image.vsdx. You
can then copy the preview picture, as in Chapter 8, Publishing Validation Rules and
Diagrams, with the CopyPreview() method or by the following command in the
VBA Immediate Window:

Visio.Documents("DFMD_M.vstm").CopyPreviewPicture
Visio.Documents("8002EN_11_Image.vsdx")

Of course, you need to ensure that the LockPreview cell in the document ShapeSheet
of your new template is changed to TRUE before saving your template again if you do
not use the CopyPreview() method.

Chapter 11

[349]

I chose a color scheme that is compatible with the category that I intend the template
to be part of.

You should edit the document properties using the File | Info | Properties panel.
For example, I added <title> into the Title field, <subject> into the Subject field,
and This is a Data Flow Model Diagram template with validation rules into the
Comments field.

A Worked Example for Data Flow Model Diagrams – Part 3

[350]

Finally, ensure that you close Document Stencil in your template before saving it.
You should still have the Gane-Sarson stencil docked when you save the workspace,
but you do not need to include this in your installer because your target users should
already have this installed. The user will drag-and-drop shapes off this stencil but
your modified ones in the document stencil will be dropped instead.

Chapter 11

[351]

Notice that I set the Display DFDIDs Shape Data row to FALSE, and that there is a
ruleset called DFD Ruleset in the document. I did this because a user will probably
want to sketch out a DFD initially, and can progress to a more complete one later.

Do not be tempted to tick Remove unused master shapes on the Remove Hidden
Information dialog, because you need to keep your custom masters in this template:

A Worked Example for Data Flow Model Diagrams – Part 3

[352]

Reviewing the template
If you look at the template in File Explorer in Windows 8 with the right View settings,
then you should see the preview image of the template; however, the file detail
preview panel displays the first page using the built-in Visio document previewer:

This Visio document previewer (Microsoft Visio Viewer) is the same one used by
Outlook, and is also available as a free download from www.Microsoft.com. It is, in
fact, a useful ActiveX control that can be used by developers (see my own visViewer
at http://bvisual.net/Products/visViewer.aspx, for example).

Chapter 11

[353]

The preceding screenshot actually reveals a bug in the current Visio
Viewer control, because the background page name is being displayed
in the header rather than the active page name. If it is important that you
display the page name automatically in this control; then you will need
to put the text on the foreground page instead of the background page.

Creating the installer
In Visual Studio 2012, create a new Installed | Templates | WiX Toolset | WiX
Setup Project for Visio, called, say, DataFlowModelDiagramTemplate.

A Worked Example for Data Flow Model Diagrams – Part 3

[354]

Add your new template to the Application Folder. Then follow the instructions in
Chapter 8, Publishing Validation Rules and Diagrams, for enhancing the properties of
the deployment package.

Note that I also updated the Product.Name, Manufacturer, and so on to suit my
requirements as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>

<!--
 Wix Project template to install (and publish) Visio components
(stencils & templates)
 <visio:Publish /> item which does all the work
-->

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:visio="http://schemas.microsoft.com/wix/Visio" >

 <?define Version="1.0.0.0"?>
 <?define UpgradeCode="{be8174da-cce0-4c71-bca1-86bba58b1cb0}" ?>

 <Product Id="*" Name="DataFlowModelDiagramTemplate $(var.Version)"
 Language="1033" Version="$(var.Version)"
 Manufacturer="bVisual" UpgradeCode="$(var.UpgradeCode)">
 <Package InstallerVersion="200" Compressed="yes"
 InstallPrivileges="elevated" InstallScope="perMachine" />

 <MajorUpgrade DowngradeErrorMessage=
 "A later version of Data Flow Model Diagram Template
is already installed. Setup will now exit." />
 <MediaTemplate EmbedCab="yes"/>

 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="ManufacturerFolder"
 Name="bVisual">

 <Directory Id="INSTALLDIR"
 Name="Data Flow Model Diagram" FileSource="." >

 <Component>

Chapter 11

[355]

 <File Name="DFMD_M.vstm">
 <visio:PublishTemplate
 MenuPath="Software and Database\Data Flow Model
Diagram" />
 </File>
 </Component>

 </Directory>
 </Directory>
 </Directory>
 </Directory>

 <Feature Id="ProductFeature"
 Title="All Items" Display="expand" >

 <Feature Id="TemplatesFeature"
 Title="Install templates" >
 <ComponentRef Id="DFMD_M.vstm" />
 </Feature>

 </Feature>

 <UIRef Id="WixUI_FeatureTree" />

 </Product>
</Wix>

I have set the menu attribute property to place the template into the existing
Software and Database category, and I gave it the verbose name: Data Flow
Model Diagram with Rules.

The name should not be the same as an existing template
name in the same category, because it will fail to appear in
the Visio user interface.

A Worked Example for Data Flow Model Diagrams – Part 3

[356]

I added the DFMD_M.vstm file to the setup project.

You can then build the release of this package, and you should find that
two files are created, namely DataFlowModelDiagramTemplateSetup.msi
and DataFlowModelDiagramTemplateSetup.wixpdb, in the <Projects>\
DataFlowModelDiagramTemplateSetup\DataFlowModelDiagramTemplateSetup\
bin\Release folder.

Chapter 11

[357]

Testing the Installer
The msi file can then be double-clicked; alternatively, select it and then click on
Install on the right mouse menu.

A Worked Example for Data Flow Model Diagrams – Part 3

[358]

When the installation is complete, the template can be found in all its glory in the
existing Software and Database category.

Note that the template's Comments property is displayed in the interface.

Chapter 11

[359]

This particular template contains macros, so you will probably get a warning
whenever a new drawing is created from it.

Using a digital certificate
Your company may not allow you to enable VBA macros from untrusted publishers
because you might have a more strict policy in force. The Visio Trust Center
provides the option to disable all macros except those from trusted publishers.

A Worked Example for Data Flow Model Diagrams – Part 3

[360]

If this is the case, then you can invest in a digital signature that you can apply to
your VBA project.

This can be done by navigating to Tools | Digital Signature in the Microsoft Visual
Basic for Applications editor.

There is also an option to hide the VBA code from prying eyes under
Tools | <project> Properties | Protection | Lock project from
viewing. If you use this option, then do not forget the password.

If you do apply a digital certificate, and the publisher has not yet been trusted, then
you will be prompted again; however, this time the message is different and you
have the option to Trust all from publisher.

Chapter 11

[361]

If you do trust the publisher, then you will see it listed in the Trust Center as a
Trusted Publisher.

There will not be any prompts to enable macros from bVisual ltd.

Thoughts about code in templates
I do not normally leave my VBA code in Visio templates, because that would cause
a copy of the code to be in every document created from the template. If you need to
make changes to the code, then you would need to apply these changes to all of the
Visio documents that contain the code.

A better solution for VBA is to put as much of the code as possible into a stencil that
is normally docked with the workspace. This is a good solution if you can be sure
that the user has access to the stencil, and that VBA is allowed to run.

The best solution is to have an add-in installed on the user's PC; I would normally do
this with Visual Studio, just as with the RulesTools add-in that is available from the
companion web site for this book.

For the purposes of this book, I have just used VBA within the document because it
ensures that all rules are available without any other dependencies.

A Worked Example for Data Flow Model Diagrams – Part 3

[362]

Summary
We have now completed an example template that contains a custom ruleset, and
published it for others to use. In most cases, the ruleset will be saved in the template
without the need for any extra code; however, for more advanced needs, we have
also looked at VBA macros, with optional digital certificates, that could be included
to extend the ruleset.

In the next chapter, we will consider the use of Visio documents with rulesets
in Office365. We will also look at an alternative method of providing users
with a custom Visio template, straight from Office365, rather than installing
into their desktop.

Integrating Validated
Diagrams with

SharePoint 2013
and Office365

In the previous chapters, we have learned how to create validation rules in Visio, and
how to deploy custom Visio templates to other Visio users.

In this chapter, we will look at some of the advantages of utilizing Visio with
SharePoint with respect to validated diagrams, and how to provide a custom
template via SharePoint.

Using SharePoint and Visio together
Microsoft SharePoint is available on the premises or in the cloud, principally via an
Office365 subscription. Similarly, Visio is available as a desktop installation or via
Click-To-Run from an Office365 Plus subscription. The Click-To-Run edition of
Visio 2013 Professional, officially called Visio Professional for Office365, is exactly the
same as Visio 2013 Professional but it can be accessed from the cloud on a number of
Windows devices.

SharePoint not only provides a first-class document store with versioning and
check-in / check-out capabilities, but it is increasingly becoming the hub of all
digital activities in organizations with its workflow, data co-ordination, and
dashboarding capabilities.

Integrating Validated Diagrams with SharePoint 2013 and Office365

[364]

Visio Services on SharePoint 2013 enables Visio documents to be more deeply
integrated than was possible with SharePoint 2010. For example, Visio diagrams can
not only be viewed in web pages accessible in all modern browsers in all modern
devices, but the data-linked shapes in these diagrams can also be automatically
refreshed from their data source, without the user needing Visio installed locally.
Visio 2013 diagrams are displayed in a special SharePoint web part, called the Visio
Web Access control, which not only provides the ability to pan and zoom and to
select individual pages from a drop-down list, but also allows the shape data and
hyperlinks to be viewed and followed. Page and shape comments are not only
viewable, but can be added via the browser, even without a Visio client.

Visio 2010 had to save the documents into a special web-drawing format (*.vdw)
in SharePoint, if you wanted them to render in the Visio Web Access (VWA). This
Visio document was in fact the binary (*.vsd) version of the Visio file formats, with
an extra layer of Silverlight layered over the top. It is this Silverlight layer that
contains the refreshable linked data and associated data graphics only. Any changes
to this Silverlight layer are quickly applied to the underlying Visio document
whenever it is opened in the Visio client application. You can still choose to save in
this format from Visio 2013, but this only restricts the browser-based viewing. Visio
2013 documents do not need to be saved into a special format in SharePoint, and the
Silverlight restriction is removed because the graphics are rendered in high-quality
png on-the-fly.

You can, of course, fully edit a diagram in Visio, which is the graphics, the data
within them, and any associated comments, as shown in the following screenshot:

Chapter 12

[365]

The same diagram can be viewed directly in SharePoint and the comments can be
edited, if you are an authenticated user, as shown in the next screenshot:

The Visio web part can just be one of many web parts on a web page hosted in
SharePoint, and connections can be established between web parts so that, for example,
different pages are displayed, specific shapes are highlighted, or lists are filtered by
a selected shape. In addition, there is a JavaScript Object Model available, so that
more fluid and compelling web pages can be developed. The skills and techniques for
building these Visio-based dashboards would require another book to be able to fully
describe them, so this chapter focuses only on validation integration.

Visit the official Visio blog at http://blogs.office.com/b/visio
for more information about Visio Services and Visio as a dashboard.

Visio documents can be stored in any document library in SharePoint, but there is
also a special type of document library called the Visio Process Repository that has
some built-in enhancements for use by validation diagram types.

Integrating Validated Diagrams with SharePoint 2013 and Office365

[366]

Understanding a Visio Process
Repository
A Visio Process Repository is an enhanced document library that has some default
settings applied and automatically updates the validation status and swimlane
headers (if any) into specific columns in the SharePoint list. This provides the ability
to quickly view, for example, which processes involve a particular department, or
which ones are not yet validated and approved.

The versioning settings, which are an optional setting for all SharePoint document
libraries, are preset for the Visio Process Repository, in order to require content
approval for submitted items and to require documents to be checked out before
they can be edited.

You will need to allow documents to be edited without checking
out if you want SharePoint users to be able to edit comments using
the SharePoint Visio Web Access control.

The following cross-functional flowchart in the Visio Process Repository.vstx
document describes the different statuses that a validated diagram can go through:

Chapter 12

[367]

Initially, when a diagram is drawn, there is no validation status until the Check
Diagram action is performed for the first time. Then the validation status can
either be <Validated> or <Validation errors found>. If the diagram is saved
to SharePoint then the validation status is automatically inserted into the Category
column. If the diagram is then edited, and saved before the Check Diagram action
is performed again, then the validation status becomes <Modified since last
validation>. Notice the values in the Category column in the following screenshot:

Similarly, any header text that is found in swimlane shapes is automatically inserted
into the Keywords column in SharePoint.

Integrating Validated Diagrams with SharePoint 2013 and Office365

[368]

Approving and rejecting Process Diagrams
The Process Diagrams library also has a built-in approval/rejection feature, and
provides Approved Processes and Invalid Processes views.

You can edit the Approval Status of a document by selecting View Properties from
the submenu of a row in the library.

This link will open a new page from where you can Approve/Reject a document
from the button in the Actions group, as shown in the following screenshot:

Chapter 12

[369]

As you can see, you also have access to normal SharePoint Version History,
Workflows, Shared With, Check Out, and Alert Me.

Creating a Visio Process Repository
Firstly, you need to have the correct level of subscription in Office365 to create a Visio
Process Repository. This is a site template, so one way of creating a subsite is to open
the Site Contents page from your SharePoint site, as in the following screenshot:

Integrating Validated Diagrams with SharePoint 2013 and Office365

[370]

Then you can select to add a new subsite, by selecting the command at the bottom of
the page (easy to miss if you don't scroll down) shown as follows:

Chapter 12

[371]

When you click to add a new subsite, you get presented with a list of different site
templates. You will find Visio Process Repository under the Enterprise tab under
the Select a template label, as shown in the following screenshot:

Integrating Validated Diagrams with SharePoint 2013 and Office365

[372]

Once you have created a Visio Process Repository, you will find that there is a
Process Diagrams library that is already created for you. You can add more of these
special libraries if you want to, by adding a Process Diagram Library app to the site
contents. The next screenshot shows the new subsite before any process diagrams
have been added to it:

If you click on the Process Diagrams header, the document library list looks slightly
different from the front page list because it displays some extra columns and views
that have been provided especially for Visio diagrams with validation capabilities.
For example, notice the Keywords, Approval Status, and Category columns in the
following screenshot:

Chapter 12

[373]

If you select the New Document drop-down button, then you will see the existing
Visio templates with validation rules. You may not have such a long list as this if
you do not have both Metric and US Units installed.

You can edit the visibility of these templates on this menu, as is shown later in
this chapter, so I would hide the first six (for Visio 2003-2010) if all my users have
Visio 2013.

Visio 2010 Professional and Premium documents can be saved
as Visio Web Drawings (*.vdw) for displaying in the Visio Web
Access SharePoint web part.

Integrating Validated Diagrams with SharePoint 2013 and Office365

[374]

Adding a Visio template to SharePoint
We published custom Visio templates in the previous chapters but we have an
alternative method of making Visio templates available using SharePoint. We
uploaded the AuditR_M.vstx Visio template that we created in Chapter 8,
Publishing Validation Rules and Diagrams, in to an asset library in SharePoint.

Although we have used the SharePoint web pages in the following actions, you
could use SharePoint Designer 2013, which is a free download from Microsoft, to
change many of the same settings, but in a slightly different way.

Chapter 12

[375]

Adding a template as a Site Content Type
After uploading the template, you can edit the Name and Description, set the Parent
Content Type, and put it in the Document Content Types group. This is necessary
for the template to be available to all of your subsites.

Integrating Validated Diagrams with SharePoint 2013 and Office365

[376]

You will then need to enter the URL of the document template that you have
just added.

Adding a List and Library Content Type
Now that a new Site Content Type has been defined, it needs to be added as a
Content Type to the Lists and Libraries that you want. In this case, you need to edit
the Settings of the Process Diagrams library. As shown in the following screenshot,
all of the available Visio templates are visible on the new button:

Chapter 12

[377]

Simply select the desired Available Site Content Types and then click on the Add >
button, as shown in the following screenshot:

Integrating Validated Diagrams with SharePoint 2013 and Office365

[378]

We also selected the Change New Button Order page to make the pre-Visio 2013
templates invisible, and we could change the order of the drop-down menu items too:

You can publish Visio templates that include custom stencils in the same way, as
long as the stencils are in the same SharePoint folder as the Visio template. Visio
will then open these stencils along with the new Visio drawing.

Creating a diagram from the custom
template
Once this has been done, you will find that the custom template is now available
for use from the New Document drop-down list in SharePoint as shown in the
following screenshot:

Chapter 12

[379]

From here, your users can create rule-based diagrams without the necessity to install
any custom Visio content on their own Windows PC.

Summary
In this chapter, you have learned about the Visio Process Repository in SharePoint
2013 through Office365. You have also learned how to add a custom Visio template
to SharePoint so that your users can create Visio diagrams that follow your
company's guidelines and for compliance.

Visio diagrams are a first-class consumer of data, especially using its
linking-shapes-to-data feature, but this book has demonstrated how it can be an
excellent generator of validated data too. A visual data tool makes comprehension
of complex information far easier, and thus reduces the risk of mistakes arising from
misunderstandings. The ability to define rules to validate diagrams of all types with
Visio Professional ensures that consistency is applied and a specified structure is
followed. The optional integration with SharePoint 2013 increases the auditability
and reach of Visio documents, and can provide reviewing across any modern
browser on any modern device.

Index
Symbols
1D (one-dimensional) 239
2D (two-dimensional) 239
=CONTAINERSHEETREF(index[,

category]) function 103
<sheetref>!SHEETREF() function 240

A
ABS(number) function 112
Actions row 254
AddAvise method 156
Add button 244, 324, 377
AddCopy(RuleSet as ValidationRuleSet[,

NameU]) method 127
AddIssue([][]) method 133
Add(NameU as String) method 127
AddRuleIssue() method 189
AddRule() method 187, 188
AddRuleSet() method 188
Advanced button 298
Advanced | General group 283
Advanced | General section 273
Advanced group 36
AGGCOUNT() function 249
AggCount(Set) function 239
AND function 239
AND(logical expression1,logical

expression2,logical expressionN)
function 239

Annotate button 204, 208-210, 246
Annotation section 208
Application.ConvertResult method 70

Application.Documents collection 44
application events

listening for 155, 156
Application object

about 33
ActiveDocument object, reviewing 39
ActivePage object, reviewing 39
Addons collection, reviewing 39, 40
COMAddIns collection, reviewing 41
CurrentEdition property, reviewing 42
DataFeaturesEnabled property,

reviewing 42
Documents collection, reviewing 43, 44
examining 38
TypelibMinorVersion property,

reviewing 44
Version property, reviewing 44

Application.Window_SelectionChanged()
event 194

AssociatedObject property 60
attached Callout shape

checking 105, 106
Audit Diagram template 267
AutoConnect feature 303, 317

B
Backgrounds group 268
BaseViewModel class

creating 159
Basic Flowchart diagram 14
Basic Flowchart template 8, 14
Behavior button 302, 311, 317
Behavior dialog 312

[382]

Boolean Shape Data row 305
Boolean type

using 113
Borders and Titles option 268
BPA 10
BPM 10
BPMN Attributes 17
BPMN Basic Shapes stencil diagram 18
BPMN Diagram

about 8, 15-18
URL 15

BPMN Diagram template 15, 242
Business category 8, 14
Business Process Analysis. See BPA
Business Process Modeling. See BPM
Business Process Modeling Notation

Diagram. See BPMN Diagram
Business Rule Modeling 12

C
CALLOUTCOUNT() function 105, 240
callout management 13
Callouts() function 238
CALLOUTTARGETREF() function 106
CALLOUTTARGETREF()! function 240
Category column 367
CEILING(number[, opt_multiple])

function 112
Cell object

cells, iterating through 71, 72
Column property, reviewing 70
Error property, reviewing 70
examining 69
Formula property, reviewing 70
FormulaU property, reviewing 70
LocalName property, reviewing 70
Name property, reviewing 70
Result property, reviewing 70
Units property, reviewing 70

cells
about 88, 89
iterating through 71, 72

CellsExists() property 69
CellsExistsU() property 69

cells properties
reading 89-92

Cells() property 69
CellsSRC() method 33, 69
CellsSRC() property 69, 71
CellsU() property 69
Change New Button Order page 378
CheckAllPagesArePortrait() method 148
CheckCycle() method 260, 343
Check Diagram action 367
Check Diagram button 21, 234
Clear() method 137
ClearRuleIssues() method 260, 343
ClickOnce 152
code custom validation

adding 261, 262
CollectionViewSource_Filter() method 200
Column property

reviewing 70
COM add-ins 35
CommandBars API 168
Comments field 349
Comments property

reviewing 58-60
Company Flowcharts 274
ConnectedShapes(Direction) function 238
ConnectedShapes() function 257
ConnectedShapes() method 65, 79, 327
Connectivity API

about 13
delving, into 73
features 73
process flow steps, listing 79-81
Shape.CalloutsAssociated property 78
Shape.ConnectedShapes method 74, 75
Shape.GluedShapes method 76, 77
Shape.MemberOfContainers property 77

connectors connection
checking 254

Connects collection
reviewing 53-55, 65

CONTAINERCOUNT() function 240
container management 12
CONTAINERMEMBERCOUNT()

function 103

[383]

ContainerMembers() function 238
ContainerProperties object 77
Container shape

checking 103
CONTAINERSHEETREF(index[, category])

function 240
Containing MasterID property 66
ContainingMaster property 66
ContainingPageID property 66
ContainingPage property 66
ContainingShapeID property 66
ContainingShape property 66
Control Panel | Program and Features

dialog 291
CopyPreview() method 348
Create from Selection button 317
Cross-Functional Flowchart diagram 14
Cross-Functional Flowchart template 8, 14
Currency type

using 118
CurrentEdition property 33
current selection

issues, diaplaying for 196-201
current user settings

saving 210
Customize the Ribbon feature 206
Custom Properties 70
custom rules

written in code, validating 126
Custom Setup screen 288
custom template

creating 267
diagram, creating from 378, 379

CustomValidation class 344
CustomValidation object 260
Custom validation rules

adding, in code 259, 260
CY function 118

D
Data Flow connector 303, 312, 332-334
Data Flow connector shape 337
Data Flow Diagrams. See DFDs

Data Flow master
AutoConnect, preparing for 302-304
editing 301, 302

Data Flow Model Diagram methodology
about 293
elements 294

Data Flow Model Diagrams template
about 294, 347
Data Flow master, editing 301-304
Data Store master, editing 305-312
examining 296-299
Interface master, editing 312
masters, enhancing 300, 301
page, enhancing 319-321
Process master, editing 312-317
Subprocess master, setting 317-319

DataFlowModelDiagramTemplate. See
installer

Data Flow node 301
Data Graphics 96
Data Graphics features 42
data layer 154
Data Linking

used, for creating, hyperlinks 65
Data Linking features 33, 42, 46
Data Store master

editing 305
graphics, enhancing 308
group shape, improving 310-312
ID value, displaying 309, 310
Shape Data, adding 305-307

Data Store node 310
Data Store shape 312-314, 329, 339
Data tab 306
Date type

using 115, 116
DAY(datetime[, opt_lcid]) function 116
DAYOFYEAR(datetime[, opt_lcid])

function 116
DebugPrintValidation macro

used, for Validation object detail
displaying 125

Decision shapes 256, 258

[384]

Default personal templates location
option 275

Define Shape Data dialog 306, 307
DEPENDSON() function 95
Description property 131
Design tab 268, 278
detail panels

linking 179
rule properties, editing 180-182
ruleset properties, editing 179, 180
special key strokes, handling 182-184

Developer ShapeSheet Reference 95
DFDs

about 294
creating, connectivity rules 295
creating, conventions 295
creating, rules 295

diagram
creating, from custom template 378, 379

Diagram Validation group 20, 123, 193
Dictionary object 80
digital certificate

template code thoughts 361
using 359-361

Direction criteria 238
Display IDs value 339
DoCmd() method 215
Document Content Types group 375
Document Explorer window 305
Document object

about 126
Advanced Properties objects,

reviewing 45, 46
DataRecordsets collection, reviewing 46, 47
DocumentSheet object, reviewing 47
examining 44
FullName property, reviewing 47
ID property, reviewing 47
Index property, reviewing 47
Masters collection, reviewing 48
Name property, reviewing 47
Pages collection, reviewing 48
ReadOnly property, reviewing 49
Type property, reviewing 49

Validation object, reviewing 49
Document_RuleSetValidated event 148
Document_RuleSetValidated() method 343
documents collection

viewing 159-161
document validation process

overview 234
rule, processing 236, 237
rulesets, validating 235
rules, validating 236

DoCycleValidation() method 260, 261
DOS 8.3 format 265
Drawing Explorer panel 208
Drawing Explorer window

about 36, 37, 245, 278, 318
Masters collection 37
Pages collection 37
Shapes collection 37

Duration type
using 117

Dynamic connector master 303, 304
Dynamic Connector shape 54

E
embellishments

adding 268-271
method used, for providing

template 272-276
template description, adding 271, 272
template preview image, creating 277-284
templates, publishing 285-291

Enabled property 235, 243
enhanced process flow templates

Flowchart templates 14
reviewing 14

Enterprise tab 371
EnumerateRuleSets macro

used, for rulesets list displaying 128
EnumerateWindows() macro 140
EnumerateWindows() method 143
Error property

reviewing 70
Explorer actions

Add button, creating 186-188

[385]

adding 184, 186
Add Issue button, creating 188, 189
Copy button, creating 191, 192
Delete button, creating 192
Paste button, creating 190

Export button 19
ExportDocument() method 217
Export RuleSets button 205

F
Field dialog 270
File | Info | Properties panel 349
File Locations dialog 273, 275
File | Open menu 279
File | Options | Advanced panel 321
file paths

editing, for templates 273-275
setting, for templates 275, 276

Filter Expression formula 258
FilterExpression function 237, 238, 241
FilterExpression property 134, 136
Filter Expressions. See Test Expressions
FILTERSET() function 249
FilterSet(Set,FilterExpression) function 239
findCycle() method 261
FIND (find_text, within_text ,[start_num],

[ignore_case]) function 241
Fixed List type

using 111
flags parameter 126
Flags property 180
FLOOR(number[, opt_multiple])

function 112
Flowchart category 8, 246
Flowchart layer 249, 257
Flowchart templates

Basic Flowchart template 14
Cross-Functional Flowchart template 14
Six Sigma template 14

FormExplorer class 175
Formula property

reviewing 70
FormulaU property

reviewing 70

FromConnects collection
reviewing 65

Function row 252
functions 95-97

G
Gane and Sarson data flow

diagrams 323, 347
Gane-Sarson stencil 296
Geometry1.NoShow cell 315
Geometry1 section 313
getIssue() method 145, 147
getNextConnected() method 79
GetResourceImage() method 173
getRule() method 146, 260, 326, 333, 343
getRuleSet() method 146, 324
getRuleSetXSL() method 230
Getting Started view 294
getXDocument() method 226
glued Data Flow connectors 325, 329, 331
glued Process shapes 332
GluedShapes(Direction) function 238
GLUEDSHAPES() function 254
GluedShapes() method 65, 326, 329, 331, 332
GluedShapes(n) function 255
GotFocus event 184
Group behavior section 311, 317
Group dropdown 305
GUARD() function 105
GUID 47
Guide 66

H
HASCATEGORY(category)

function 97, 239, 246
HasCategory(categoryName) function 238
HasTempRule property 192
HideText cell 315
Home tab 303, 305, 308
HOUR(datetime[, opt_lcid]) fucntion 116
Hyperlinks collection

reviewing 65
hyperlinks section 118, 119

[386]

I
id attribute 172
idMso attribute 172
ID property

reviewing 52, 55
IFERROR(primary expression, alternate

expression) function 239
IF(logicalexpression,valueiftrue,valueiffal

se) function 239
Ignored flag 133
Ignored Issues option 234
Immediate window 127, 142, 280, 304
Import button 19
Import RuleSets button 205
ImproperAssociation rule 254
include options 217
INDEX() function 254
INDEX(index, "list" [,[delimiter]

[,[errorvalue]]]) function 239
IndexInStencil property

reviewing 52
Index property

reviewing 52, 55
InitializeValues() method 344
Ink 66
Insert | Field action 314
Insert tab 270
installer

creating 353-356
testing 357, 358

IntelliSense 41, 89
Interface master

editing 312
Interface shape 331
Internal Units. See IU
INT(number) function 112
INTUP(number) function 112
Invisible cell 313
IS1D() function 239, 243
IsCallout property

reviewing 65
IsDataGraphicCallout property

reviewing 65
IS!D() function 254

IsExpanded property 153
IsSelected property 153, 195
issue

adding, in code 146-148
clearing, code used 145
diaplaying, for current selection 196-201
in code, retrieving 145
in Issues window, retrieving 140-143
rule, displaying for 193-195

issue mark-up page
comments, adding 214, 215
displaying 210-215
hiding 215

Issues window 20, 124, 126, 156, 234
Issues window visibility

toggling 143, 144
ItemTemplate attribute 176
IU 70

J
JavaScript Object Model 365

L
Label object 69
LayerCount property

reviewing 66
Layer Membership 120, 121
Layer Properties dialog 56
Layers collection

reviewing 55-58
Layout and Routing Spacing dialog 320
Layout and Routing tab 320
LEFT() function 247
LEFT(text, [,num_chars_opt]) function 240
LEN (text) function 240
Library Content Type

Visio template, adding as 376-378
Line Format section 314
Link to Existing button 9
List Content Type

Visio template, adding as 376-378
list management 13
LISTMEMBERCOUNT() function 105, 240
ListMembers() function 238

[387]

LISTORDER() function 240
List shape

checking 104, 105
ListSheetRef() function 104
LOCALFORMULAEXISTS() function 253
LocalName property 70
LockPreview cell 348
LockPreview value 280, 284
LOOKUP("key","list"[,"delimiter"])

function 239
LOOKUP() function 111
LOWER() function 109

M
main function 77, 78
Master Edit window 305
Master Explorer window 50, 301, 305, 310
MasterName() function 247
MASTERNAME(lang_id) function 247
MASTERNAME (langID_opt) function 240
Master object

BaseID property, reviewing 51
examining 50, 51
Hidden property, reviewing 52
ID property, reviewing 52
IndexInStencil property, reviewing 52
Index property, reviewing 52
Name property, reviewing 52
NameU property, reviewing 52
PageSheet object, reviewing 52
reviewing 66
Type property, reviewing 52

Master Properties dialog 300
Masters 35
Master shape 18
MatchByName property 50
Microsoft Process Management Product

Stack 10
Microsoft Scripting Runtime library 98, 343
Microsoft SharePoint 2013 Workflow

about 19
working 19

Microsoft SharePoint 2013 Workflow
template 15, 138

Microsoft SharePoint Designer 19
Microsoft Visio 15.0 Type Library 31, 32
Microsoft Visio SDK (Software

Development Kit)
about 285
URL, for downloading 93

MINUTE (datetime[, opt_lcid]) function 116
Miscellaneous section 315
Model View View Model (MVVM) 153
MODULUS(number, divisor) function 112
MONTH(datetime[, opt_lcid]) function 116
My Audit Diagram 274

N
Name property 70
New Document drop-down list 373, 378
new process flow templates

BPMN Diagram 15-18
Microsoft SharePoint 2013 Workflow 15, 19
reviewing 15

NOT function 119
NOT(logicalexpression) function 239
NOW() function 95
Number type

using 112, 113

O
OMG specification 17
OnAction event 204
OnBoundaryOf() function 239
OneD property

reviewing 66
OnKeystrokeMessageForAddon event 182
OnLayer(LayerName) function 238
OnPropertyChanged() method 188
OpenAnnotateIssues() method 204
Open button 279
OpenSelectionIssues() method 198
Organization Chart solution 28
OR(logicalexpression1,logicalexpression2,...,

logiclexpressionN) function 239
Owner row 253

[388]

P
page

enhancing 319-321
Page column 139
Page.CreateSelection() method 80
PageID element 25
Page Info | Name field 270
Page object

Comments property, reviewing 58-60
Connects collection, reviewing 53-55
examining 53
ID property, reviewing 55
Index property, reviewing 55
Layers collection, reviewing 55-58
PageSheet object, reviewing 58
ShapeComments property, reviewing 58-60
Shapes collection, reviewing 61, 62
Type property, reviewing 62

Page Setup dialog 278, 310
PageSheet object

reviewing 58
ParentContainers() function 238, 258
Parent object

reviewing 66
Parent property 66
particular shape issues

listing 144
PERSONAL collection 276
Pivot Diagram solution 28
Process button 234
Process Diagram Library app 372
process diagrams

validating 20-25
Visio Document structure, analyzing 21-25

Process Diagrams library 368, 372, 376
process flow

steps, listing 79-81
process management features, Visio

exploring 8-10
Process Management stack 7
Process master

Category value, displaying 315, 316
editing 312

graphics, enhancing 313, 314
group shape, improving 316, 317
ID value, displaying 314, 315
Shape Data, adding 312, 313

Process shape 110, 258, 325, 334
Professional edition 33
programming language

selecting, to use with Visio 35, 36
Project | ValidationExplorer2 Properties

menu option 210
Prop.Cost Shape Data row 253
Prop.DisplayID value 339
Properties button 46
Properties dialog 272
Properties panel 271
Prop.ID value 340
Prop.Owner cell 252
Prop.Owner value 253
Prop.StartDate value 254
Prop.Status list 254
Put all settings in Window registry box 283

Q
quality

enhancing, of template preview
image 282-284

quasi-ShapeSheet functions
AggCount(Set) 239
Callouts() 238
ConnectedShapes(Direction) 238
ContainerMembers() 238
FilterSet(Set,FilterExpression) 239
GluedShapes(Direction) 238
HasCategory(categoryName) 238
Is1D() 238
ListMembers() 238
OnBoundaryOf() 239
OnLayer(LayerName) 238
ParentContainers() 238
Role() 238
ShapesOnPage() 238

Quick Shapes selector 303

[389]

R
Rectangle button 308
Registry Editor 283
Relationships cell 258
relevant shape

availability on page, checking 249, 250
Remove Hidden Information dialog 351
ReportDocument() method 226
ResourceKey property 176
Result properties

.Result("m") property 70

.ResultIU property 70

.ResultStr() property 70
reviewing 70

Reviewer section 209
Reviewing pane 209, 215
Ribbon class 172, 185, 204
Role() function 238, 243
RootShape object

reviewing 66
ROUND(number,numberofdigit)

function 112
RowCount method 67
RowName object 69
Row object

examining 67
rows 88, 89
Rule.Delete() method 134
Rule Properties expander 180
Rule Properties panel 181
rules

displaying, for selected issue 193-195
functioning 136, 137
processing 236, 237
updating 134, 135
validating 236

ruleset
adding, to ValidationRuleSets collection

129, 130
deleting 130
exporting, to XML 216-223
importing, from XML 223, 226
updating 129, 130
validating 235

writing 323-344
RuleSetFlags value 128
RuleSet parameter 126
RuleSet Properties panel 179
ruleset reports

creating 226-231
XSL stylesheet, fetching 228-231

rulesets, exporting to XML
VEIssue XElement method, fetching 222
VERuleSet XElement method, fetching 221
XDocument object, fetching 219-221

RuleSets Report button 205
RuleSetValidated event 126, 143, 234, 260
RuleSetValidated(RuleSet as

ValidationRuleSet) event 138
Rules Explorer window

about 151, 204, 205, 243, 323
creating 174, 175
detail panels, linking 179-184
Explorer actions, adding 184-193
self-describing tree views 176-179

Rules to Check dropdown 128
RulesTools add-in 208, 242, 323, 361
Rules Tools group 203
Rules Tools ribbon group 244, 246

S
Save As Web feature 25
Save As Web html pages control 26
Save As Web option 26
SaveFile dialog 217
Scalable Vector Graphics (SVG) 25
SECOND(datetime[, opt_lcid]) fucntion 116
Section.Index property 67
Section object

about 67
examining 67

Section Row Column 33
sections

about 88, 89, 97
hyperlinks section 118, 119
Shape Data section 107-109
User-defined Cells section 97

Select a template label 371

[390]

selectedVEDocument.
SetSelectedIssue(issue) method 194

SelectedVERule object 192
SelectedVERule property 186
SelectedVERuleSet property 186
SelectionChanged event 142, 156
Selection Issues button 168, 196
self-describing tree views

about 176
Informative tool tips, creating 177-179

Settings tab 210
Setup and Deployment project type 285
setup project

creating 285-287
installation, running 288-290
repairing 291
uninstalling 291

shape
outside container, checking 257, 258
structure type, using 102
text availability, checking 258

Shape.CalloutsAssociated property 78
Shape can split connectors

option 311, 312, 317
shape category

checking 246-248
using 98-102

shape.Characters.Text property 64
ShapeComments property

reviewing 58, 60
Shape.ConnectedShapes method

about 74
arguments, CategoryFilter 74
arguments, Flags 74
using 74, 75

shape connections
checking 256, 257

Shape Data 18
Shape Data cell 252
Shape Data row 251-253
Shape Data section

about 107-109
Boolean type, using 113
Currency type, using 118
Date type, using 115, 116

Duration type, using 117
Fixed List type, using 111
Number type, using 112, 113
String type, using 109, 110
Variable List type, using 114

Shape Data window 252, 306, 312, 317
Shape Design group 302, 311, 317
Shape.GluedShapes method

about 76
arguments, CategoryFilter 77
arguments, Flags 77
arguments, OtherConnectedShape 77
using 77

ShapeID element 25
shape layer

checking 248, 249
Shape Layout section 257
shape.Master

reviewing 66
shape.MasterShape object

reviewing 66
Shape.MemberOfContainers property 77
Shape object

Characters property, reviewing 64
Connects collection, reviewing 65
examining 62-64
FromConnects collection, reviewing 65
Hyperlinks collection, reviewing 65
ID property, reviewing 65
Index property, reviewing 65
IsCallout property, reviewing 65
IsDataGraphicCallout property,

reviewing 65
LayerCount property, reviewing 66
Master object, reviewing 66
MasterShape object, reviewing 66
NameID property, reviewing 65
Name property, reviewing 65
NameU property, reviewing 65
OneD property, reviewing 66
Parent object, reviewing 66
RootShape object, reviewing 66
Text property, reviewing 64
Type property, reviewing 66

Shape Reports button 298

[391]

Shapes collection
reviewing 61, 62

ShapeSheet
about 85
cells 88, 89
cells properties, reading 89-92
functions 95-97
Layer Membership 120, 121
rows 88, 89
searching 85-87
sections 88, 89

ShapeSheet functionality 31, 133
ShapeSheet functions

AND(logical expression1,logical
expression2,...,logical expressionN)
239

avoiding 241
CALLOUTCOUNT() 240
CALLOUTTARGETREF()! 240
CONTAINERCOUNT() 240
CONTAINERSHEETREF(index[, category])

240
FIND (find_text, within_text ,[start_num],

[ignore_case]) 241
HASCATEGORY(category) 239
IFERROR(primary expression, alternate

expression) 239
IF(logicalexpression,valueiftrue,valueiffal

se) 239
INDEX(index, "list" [,[delimiter]

[,[errorvalue]]]) function 239
IS1D() 239
LEFT(text, [,num_chars_opt]) 240
LEN (text) 240
LISTMEMBERCOUNT() 240
LISTORDER() 240
LOOKUP("key","list"[,"delimiter"])

function 239
MASTERNAME (langID_opt) 240
NOT(logicalexpression) 239
OR(logicalexpression1,logicalexpression2,

...,logicalexpressionN) 239
SHAPETEXT (shapename!TheText,flag)

240

<sheetref>!SHEETREF() 240
STRSAME (240

ShapeSheet settings
printing out 93, 94

ShapesOnPage() function 238, 249, 251
Shapes window 301
ShapeText() function 106
shape.Text property 64
SHAPETEXT(shapename!TheText[,flag])

function 136, 240
Shape Transform section 309
shape type

checking 243-246
shape.Type property 66
SharePoint

using, with Visio 363-365
Visio template, adding to 374-378

sheetref qualifier 240
Show all properties option 298
Show/Hide group 36
ShowIgnoredIssues property 124
SIGN(number[, opt_fuzz]) function 112
Silverlight 364
Site Contents page 369
Site Content Type

Visio template, adding as 375, 376
Six Sigma Diagram template 15
Six Sigma template 8, 14
Size | More Page Sizes option 278
Size & Position window 310, 316
Snap to member shapes option 311, 317
Software and Database category 355, 358
Software and Database\Database Model

Diagram solution 28
Software and Database\Data Flow Model

Diagram solution 28
Software and Database\UML Model

Diagram solution 27
Spacing button 320
specific cell values

checking 251-254
SRC 92
Start command\screen 283
Start/End shape 249, 257

[392]

StartListening() method 143
String type

using 109, 110
STRSAME("srting1","string2"[,ignoreCase])

function 136, 240
STRSAMEEX function 240
STRSAME() function 247, 253, 254
structured diagram 12
structured diagramming foundations

callout management 13
Connectivity API 13
container management 12
list management 13
reviewing 12, 13
Validation API 13

structure type
Callout 102
Container 102
List 102

Subject field 349
subprocess 9
Subprocess group 317
Subprocess master

setting 317-319
Swimlane category 258
Swimlane shape 14, 109
Switch Windows button 280
System.XMl.Linq.XDocument object 218

T
targetPage object 145
TargetPage parameter 133
TargetShape parameter 133
TargetType="{x:Type TreeViewItem}"

attribute 195
TargetType property 134
Task Panes dropdown 306
Task shape 17
template

completing 347-351
file paths, editing for 273-275
file paths, setting for 275, 276
providing, method 272-276
publishing, method 285-291

reviewing 352
setup project, creating 285-287
setup project installation, running 288-290
setup project, repairing 291
setup project, uninstalling 291

Template Categories 266
template description

adding 271, 272
template preview image

creating 277-284
quality, enhancing 282-284

Templates textbox 273
TestExpression function 237
TestExpression property 134, 136
Test Expressions

about 241
code custom validation, adding 261, 262
connectors connection, checking 254
custom validation rules in code,

adding 259, 260
relevant shapes availability,

checking 249-251
shape category, checking 246-248
shape layer, checking 248, 249
shapes availability outside container,

checking 257, 258
shape's correct connections,

checking 256, 257
shapes label, checking 258
shape type, checking 243-246
specific cell values, checking 251-254
writing 242, 243

Text Block Format section 314, 315
Text Block tool 311
TextBox_GotFocus() event handler 184
Text Fields section 315
ThisAddin class 204

about 151
application events, listening for 155, 156
enhancing 154-156
Visio Professional edition, checking 156

ThisAddIn_Shutdown() event 156
ThisAddin_Startup() event 154, 155
ThisAddin.VisioEvents_Connect()

method 182

[393]

ThisDocument class 126, 142, 260, 281, 343
ThumbnailDetailMaxSize registry key 279
Title field 349
tool architecture 152-154
Transform button 231
TreeViewMain element 175
TreeViewMain_SelectedItemChanged()

event 186
TxtPinX formula 311
TxtWidth cell formula 311
Type property

reviewing 62

U
UI layer 154
UIObject API 168
UniqueID property 47, 52
Units property

reviewing 70
Universal Name property

(NameU property) 40
UPPER() function 109
UserControlExplorer.xaml.cs class 184
User-defined Cells section

about 97
attached Callout shape, checking 105, 106
Container shape, checking 103
List shape, checking 104, 105
shape category, using 98-102
shape structure type, defining 102

User.UMLShapeType cell 344

V
Validate() method

using 126
Validation API 8, 13, 49, 123
Validation Explorer solution 323
Validation Explorer tree view 192, 193
validation functions

about 238
ShapeSheet functions 238

ValidationIssues.Clear() method 234
ValidationIssues collection

existing issue, retrieving in code 145

issue, adding in code 146-148
issues, clearing with code 145
Issues window visibility, toggling 143, 144
particular shape issues, listing 144
selected issue, retrieving 140-143
viewing 166-168
working with 137-139

Validation object
custom rules, validating 126, 127
overview 123-125
Validate() method, using 126

ValidationRule.AddIssue() method 127, 147
Validation Rules 127
ValidationRules.AddRule(NameU as string)

method 131
ValidationRules collection

rule, adding to 134-136
rule, functioning 136, 137
rule, updating 134-136
viewing 164-166
working with 131-134

ValidationRuleSets collection
ruleset, adding to 129, 130
ruleset, deleting 130
ruleset, updating 129, 130
viewing 163
working with 127, 128

Validation.Validate([][]) method 137
Variable List type

using 114
VBA 35
VBackground-1 page 268
VEApplication class 166
VEApplication.CopyRule() method 192
VEApplication.CopyRuleSet() method 192
VEApplication.PasteRule() method 190
VEApplication.SetSelectedIssue()

method 194
Vector Markup Language (VML) 25
VEDocument class 189, 204, 210, 219, 223
VEDocument object 194
VEIssue object 222
VEIssue XElement method

fetching 222, 223
VERule class 164

[394]

VERule object 182, 190
VERules class 165
VERules.DeleteRule() method 192
VERuleSet class 163
VERuleSet object 164, 165, 221
VERuleSets class 163
VERuleSets.DeleteRuleSet() method 193
VERuleSet XElement method

fetching 221
VERules.PasteRule() method 190
ViewModel class

BaseViewModel class, creating 159
creating 157, 158
documents collection, viewing 159-161
ValidationIssues collection,

viewing 166-168
ValidationRules collection, viewing 164-166
ValidationRuleSets collection, viewing 163

view model layer 154
View tab 280
View | Task Panes menu 310
Visible property 55
Visio

abilities 32, 33
programming language, using with 35, 36
ShapeSheet 85
using, with SharePoint 363-365
visual data, publishing from 25, 26

Visio 2010
ease-of-use features 10

Visio 2013
Click-To-Run edition 363
process management features 8-10

Visio 2013 editions
about 27
features, diagram 27

Visio 2013 process management
capabilities, reviewing 10-12
features 8-10

Visio 2013 process management capabilities
Visio BPM Maturity Model 11, 12

VisioApplication_MessageForAddon()
event 182

Visio BPM Maturity Model 11, 12

Visio categories
about 263
templates, selecting 263-266

Visio diagrams
annotating, with issues 206-209

Visio diagrams, annotating with issues
current user settings, saving 210
issue mark-up page, displaying 210-215
issue mark-up page, hiding 215

Visio document
classifying 33-35
Visio stencil 35
Visio template 35

Visio Document object 123
VisioEvents_Connect() method 155, 166
VisioEvents_Disconnect() method 156, 166
Visio file types

list 266
Visio Fluent UI

modifying 168-173
Visio object model

abilities 32, 33
about 38
Application object, examining 38-44
Cell object, examining 69-72
Document object, examining 44-49
Master object, examining 50-52
Page object, examining 53-62
Row object, examining 67-69
Section object, examining 67
Shape object, examining 62-66

Visio Options dialog 36, 283
Visio Options panel 273
Visio Process Repository

about 365-367
creating 369-373
Process Diagrams, approving 368, 369
Process Diagrams, rejecting 368, 369
using 25

Visio Professional edition
checking for 156

Visio ribbon
extensions 203-205

Visio.Selection object 80

[395]

Visio Solution Publishing Tool 285
Visio template

adding, as Library Content Type 376-378
adding, as List Content Type 376-378
adding, as Site Content Type 375, 376
adding, to SharePoint 374
selecting, from category 263-266

Visio Trust Center 359
Visio Type Library 31
Visio Type Library objects 157
Visio.ValidationRule object 182
Visio Viewer ActiveX control 26
Visio Viewer control 25
Visio Viewer option 26
Visio.VisPageTypes.visTypeMarkup page

type 207
Visio.VisRoleSelectionTypes constant

values 243
Visio.VisRuleSetFlags enumerator 180
Visio Web Access control. See VWA
Visio Web Drawing 34
Visio Workflow Interchange (*.vwi) file 19
VisRuleTargets enumerator 133
Visual Basic for Applications. See VBA
visual data

publishing, from Visio 25, 26
Visualization 12
Visual Studio Tools for Office template. See

VSTO template
visViewer

URL 352
VSTO template 41
VWA 34, 364

W
WEEKDAY (datetime[, opt_lcid]) function

116
WindowIssues class 197
Windows Presentation Foundation. See

WPF
WithEvents object 143
WiX Toolset

URL 285
WPF 32, 152
Write Chapter Sub-process page 73, 74

X
XDocument object

fetching 219-221
XElement object 219
XML

rulesets, exporting to 216-222
rulesets, importing from 223, 226

XML Notepad 230
XNamespace object 219
XSL Output tab 231
XSL stylesheet

fetching 228-231

Y
YEAR(datetime[, opt_lcid]) fucntion 116

Thank you for buying
Microsoft Visio 2013 Business Process

Diagramming and Validation

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 254 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization

2. Understand the topics such as importing
data for visualization and formatting data for
visualization

3. Understand the underlying data and how to
use the right visualizations

Social Data Visualization with
HTML5 and JavaScript
ISBN: 978-1-78216-654-2 Paperback: 104 pages

Leverage the power of HTML5 and JavaScript to
build compelling visualizations of social data from
Twitter, Facebook, and more

1. Learn how to use JavaScript to create
compelling visualizations of social data

2. Use the d3 library to create impressive SVGs

3. Master OAuth and how to authenticate with
social media sites

Please check www.PacktPub.com for information on our titles

Learning IPython for Interactive
Computing and Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and data
visualization

1. A practical step-by-step tutorial which will
help you to replace the Python console with the
powerful IPython command-line interface

2. Use the IPython notebook to modernize the way
you interact with Python

3. Perform highly efficient computations with
NumPy and Pandas

4. Optimize your code using parallel computing
and Cython

Tableau Data Visualization
Cookbook
ISBN: 978-1-84968-978-6 Paperback: 172 pages

Over 70 recipes for creating visual stories with your
data using Tableau

1. Quickly create impressive and effective
graphics which would usually take hours in
other tools

2. Lots of illustrations to keep you on track

3. Includes examples that apply to a general
audience

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Overview of Process Management in Microsoft Visio 2013
	Exploring the new process management features in Visio 2013
	Reviewing Visio Process Management capabilities
	Understanding the Visio BMP Maturity Model

	Reviewing the foundations of structured diagramming
	Reviewing the enhanced process flow templates
	Looking at the Flowchart templates

	Reviewing the new process flow templates
	Understanding a BPMN Diagram
	Understanding a Microsoft SharePoint 2013 workflow

	Validation of process diagrams
	Analyzing the structure of a Visio document

	Using the Visio Process Repository
	Publishing visual data from Visio
	Understanding the Visio 2013 editions
	Planning your own solutions
	Summary

	Chapter 2:Understanding the Microsoft Visio Object Model
	Introducing the Visio Type libraries
	Going beyond the object model
	Classifying the Visio document
	Selecting a programming language to use with Visio
	Understanding the Drawing Explorer window
	Understanding the Visio object model
	Examining the Application object
	Reviewing the ActiveDocument and ActivePage objects
	Reviewing the Addons collection
	Reviewing the COMAddIns collection
	Reviewing the CurrentEdition property
	Reviewing the DataFeaturesEnabled property
	Reviewing the Documents collection
	Reviewing the TypelibMinorVersion and Version properties

	Examining the Document object
	Reviewing the Advanced Properties object
	Reviewing the DataRecordsets collection
	Reviewing the DocumentSheet object
	Reviewing the ID and Index properties
	Reviewing the FullName and Name properties
	Reviewing the Masters collection
	Reviewing the Pages collection
	Reviewing the ReadOnly property
	Reviewing the Type property
	Reviewing the Validation object

	Examining the Master object
	Reviewing the BaseID property
	Reviewing the Hidden property
	Reviewing the ID, Index, and IndexInStencil properties
	Reviewing the Name and NameU properties
	Reviewing the PageSheet object
	Reviewing the Type property

	Examining the Page object
	Reviewing the Connects collection
	Reviewing the ID and Index properties
	Reviewing the Layers collection
	Reviewing the PageSheet object
	Reviewing the Comments and ShapeComments property
	Reviewing the Shapes collection
	Reviewing the Type property

	Examining the Shape object
	Reviewing the Characters and Text properties
	Reviewing the Connects and FromConnects collections
	Reviewing the Hyperlinks collection
	Reviewing the ID, Index, NameID, Name, and NameU properties
	Reviewing the IsCallout and IsDataGraphicCallout properties
	Reviewing the LayerCount property
	Reviewing the Master, MasterShape, and RootShape objects
	Reviewing the OneD property
	Reviewing the Parent object
	Reviewing the Type property

	Examining the Section object
	Examining the Row object
	Examining the Cell object
	Reviewing the Column property
	Reviewing the Error property
	Reviewing the Formula and FormulaU properties
	Reviewing the Name and LocalName properties
	Reviewing the Result properties
	Reviewing the Units property
	Iterating through cells

	Delving into the Connectivity API
	Understanding the Shape.ConnectedShapes method
	Understanding the Shape.GluedShapes method
	Understanding the Shape.MemberOfContainers property
	Understanding the Shape.CalloutsAssociated property
	Listing the steps in a process flow

	Summary

	Chapter 3:Understanding the ShapeSheet™
	Finding the ShapeSheet
	Understanding sections, rows, and cells
	Reading a cell's properties

	Printing out the ShapeSheet settings
	Understanding the functions
	Important sections for rules validation
	Looking at the User-defined Cells section
	Using the category of a Shape
	Using the structure type of a Shape
	Checking a Container shape
	Checking a List shape
	Checking for attached Callout shapes

	Looking at the Shape Data section
	Using the String type
	Using the Fixed List type
	Using the Number type
	Using the Boolean type
	Using the Variable List type
	Using the Date type
	Using the Duration type
	Using the Currency type

	Looking at the Hyperlinks section
	Working with Layer Membership

	Summary

	Chapter 4:Understanding the Validation API
	An overview of Validation objects
	Using the Validate method
	Validating custom rules written in code

	Working with the ValidationRuleSets collection
	Adding to or updating a ruleset

	Working with the ValidationRules collection
	Adding to or updating a rule
	Verifying that a rule works

	Working with the ValidationIssues collection
	Retrieving the selected issue in the Issues window
	Toggling the Issues window visibility
	Listing the issues caused by a particular shape
	Using code to clear issues
	Retrieving an existing issue in code
	Adding an issue in code

	Summary

	Chapter 5:Developing a Validation API Interface
	Understanding the architecture of the tool
	Enhancing the ThisAddin class
	Listening for application events
	Checking for the Visio Professional edition

	Creating the ViewModel class
	Creating the BaseViewModel class
	Viewing the documents collection
	Viewing the ValidationRuleSets collection
	Viewing the ValidationRules collection
	Viewing the ValidationIssues collection

	Modifying the Visio Fluent UI
	Creating the Rules Explorer window
	Self-describing tree views
	Making informative tooltips

	Linking detail panels
	Editing rule set properties
	Editing rule properties
	Handling special key strokes

	Adding the Explorer actions
	Creating the Add button
	Creating the Add Issue button
	Creating the Paste button
	Creating the Copy button
	Creating the Delete button

	Displaying the rule for a selected issue
	Displaying the issues for the current selection
	Summary

	Chapter 6:Reviewing Validation Rules and Issues
	Extensions to our ribbon
	Annotating Visio diagrams with issues
	Saving the current user settings
	Displaying the issue mark-up page
	Adding in the issue comments

	Hiding the issue mark-up page

	Exporting rule sets to XML
	Getting the XDocument object
	Getting the VERuleSet XElement
	Getting the VEIssue XElement

	Importing rule sets from XML
	Creating rule set reports
	Getting the XSL stylesheet

	Summary

	Chapter 7:Creating Validation Rules
	Overview of the document validation process
	Validating rule sets
	Validating rules
	Processing a rule

	Validation functions
	Useful ShapeSheet functions
	Filter and Test Expressions
	Checking the type of shape
	Checking the category of shapes
	Checking the layer of a shape
	Checking if the page contains relevant shapes
	Checking for specific cell values
	Checking that connectors are connected
	Checking that shapes have correct connections
	Checking whether shapes are outside containers
	Checking whether a shape has text
	Custom validation rules in code

	Summary

	Chapter 8:Publishing Validation Rules and Diagrams
	Overview of Visio categories and templates
	Creating a custom template
	Adding embellishments
	Adding the template description
	The simplest method to provide a template
	Editing the file paths for templates
	Setting the file paths for templates

	Creating a template preview image
	Enhancing the quality of the preview image

	The best method for publishing templates
	Creating a setup project
	Running the installation
	Uninstalling and Repairing

	Summary

	Chapter 9:A Worked Example for Data Flow Model Diagrams – Part 1
	What are Data Flow Diagrams?
	Examining the standard template
	Enhancing the masters
	Editing the Data Flow master
	Preparing for AutoConnect

	Editing the Data Store master
	Adding Shape Data
	Enhancing the graphics
	Displaying the ID value
	Improving the group shape

	Editing the Interface master
	Editing the Process master
	Adding Shape Data
	Enhancing the graphics
	Displaying the ID value
	Displaying the Category value
	Improving the group shape

	Setting the Subprocess master
	Enhancing the page

	Summary

	Chapter 10:A Worked Example for Data Flow Model Diagrams – Part 2
	Writing the rule set
	Rule 1 – all processes must have at least one data flow in and one data flow out
	Rule 2 – all processes should modify the incoming data, producing new forms of the outgoing data
	Rule 3 – each data store must be involved with at least one data flow
	Rule 4 – each external entity must be involved with at least one data flow
	Rule 5 – a data flow must be attached to at least one process
	Rule 6 – data flows cannot go directly from one external entity to another external entity
	Rule 7 – do not allow a single page of a DFD to get too complex
	Rule 8 – each component should be labeled
	Rule 9 – each data flow should be labeled describing the data that flows through it
	Rule 10 – each component and subcomponent should be numbered
	Rule 11 – a data flow must be connected between two components
	Rule 12 – a flow must not cycle back to itself

	Summary

	Chapter 11:A Worked Example for Data Flow Model Diagrams – Part 3
	Completing the template
	Reviewing the template

	Creating the installer
	Testing the Installer

	Using a digital certificate
	Thoughts about code in templates

	Summary

	Chapter 12:Integrating Validated Diagrams with SharePoint 2013 and Office365
	Using SharePoint and Visio together
	Understanding a Visio Process Repository
	Approving and rejecting Process Diagrams

	Creating a Visio Process Repository
	Adding a Visio template to SharePoint
	Adding a template as a Site Content Type
	Adding a List and Library Content Type

	Creating a diagram from the custom template
	Summary

	Index

