

About This eBook
	

ePUB is an open, industry-standard format for eBooks. However, support of
ePUB and its many features varies across reading devices and applications.
Use your device or app settings to customize the presentation to your liking.
Settings that you can customize often include font, font size, single or double
column, landscape or portrait mode, and figures that you can click or tap to
enlarge. For additional information about the settings and features on your
reading device or app, visit the device manufacturer ’s Web site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-column,
landscape mode and adjust the font size to the smallest setting. In addition to
presenting code and configurations in the reflowable text format, we have
included images of the code that mimic the presentation found in the print book;
therefore, where the reflowable format may compromise the presentation of the
code listing, you will see a “Click here to view code image” link. Click the
link to view the print-fidelity code image. To return to the previous page
viewed, click the Back button on your device or app.

Microsoft® Visual Studio® 2015
	
Unleashed
	

Lars Powers
	
Mike Snell
	

800 East 96th Street, Indianapolis, Indiana 46240 USA

Microsoft® Visual Studio® 2015 Unleashed
Copyright © 2016 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and authors assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN-13: 978-0-672-33736-9
ISBN-10: 0-672-33736-3

Library of Congress Control Number: 2015907636
Printed in the United States of America

First Printing August 2015

Editor-in-Chie f
Greg Weigand

Acquisitions Editor
Joan Murray

De ve lopme nt Editor
Mark Renfrow

Managing Editor
Kristy Hart

Proje ct Editor
Elaine Wiley

Copy Editor
Gill Editorial Services

Inde xe r
Heather McNeill

Proofre ade r
Jess DeGabriele

Te chnical Editor
Christophe Nasarre-Soulier

Editorial Assistant
Cindy Teeters

Cove r De signe r
Mark Shirar

Compositor
Nonie Ratcliff

Trade marks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaime r

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Spe cial Sale s
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents at a Glance
	

Introduction

Part I Introducing Visual Studio 2015

1 A Quick Tour of Visual Studio 2015
	

2 The Visual Studio IDE
	

3 The .NET Languages
	

Part II An In-De pth Look at the IDE

4 Solutions and Projects
	

5 Browsers and Explorers
	

6 Introducing the Editors and Designers
	

Part III Working with the Visual Studio Tools

7 Working with Visual Studio’s Productivity Aids
	

8 Testing Code
	

9 Refactoring Code
	

10 Debugging Code

11 Deploying Code

12 Developing Applications in the Cloud with Windows Azure

13 Working with Databases

Part IV Exte nding Visual Studio

14 Introducing the Automation Object Model
	

15 Extending the IDE
	

16 Extending the Code Editor
	

Part V Building We b Applications

17 Building Modern Websites with ASP.NET 5

18 Using JavaScript and Client-Side Frameworks

19 Building and Consuming Services with Web API and WCF

Part VI Building Windows Clie nt Apps

20 Building Windows Forms Applications
	

21 Building WPF Applications
	

22 Developing Office Business Applications
	

Part VII Cre ating Mobile Apps

23 Developing Windows Store Applications

24 Creating Windows Phone Applications

25 Writing Cross-Platform Mobile Applications with Apache Cordova

Index

Table of Contents

Introduction

Part I Introducing Visual Studio 2015

1 A Quick Tour of Visual Studio 2015
The Visual Studio Product Line
	

Community Edition
	

Professional Edition
	

Enterprise
	

MSDN
	

TFS and Related Tools
	

Languages and Frameworks
	

Programming Language Choices
	

The .NET Framework
	

The Many Faces of a .NET Application
Windows
Web
Mobile

Developing Windows 8/10 Clients
Windows (WinForms)
Windows Presentation Foundation (WPF)
Office/SharePoint Solutions

Creating Web Applications with ASP.NET 5
Building Websites with Web Forms
Developing with MVC/Razor
Creating a Single Page Application (SPA)
Coding Web Services with Web API

Coding for Azure
	

Creating a Cloud Application
	

Publishing to Azure
	

Working with Data
	

Model as Code (Code First)
	
Writing Mobile Apps
	

Create an Apache Cordova App
	

Summary
	

2 The Visual Studio IDE
Installing Visual Studio

Installing Optional Features
	

Signing In to Visual Studio
	

Managing Your IDE Settings
Specify Stored and Synchronized Settings
Change Color Theme
Manually Import/Export and Change Default IDE Settings
Switch IDE User

Getting Started
	

Startup Options
	

Creating Your First Project
	
Targeting Your Environment
	

Navigating the IDE
	

The Menus
	

The Many Toolbars
	

Customizing Toolbars
	

The Solution Explorer
	
The Text Editors
	

The Visual Designers
	

The Toolbox
	

The Properties Window
	

Managing the Many Windows of the IDE
	

Pinning
	

Docking
	

Custom Window Layouts
	

Navigating IDE Windows
	

Touch Support
	
Customize Your IDE Font
	

Providing Feedback on Visual Studio
	

The Customer Experience Program
	

Summary
	

3 The .NET Language s
What’s New in C# 6.0 and VB 14
	

Null-Conditional Operators
	

ReadOnly Auto Properties
	

NameOf Expression
	

Using (Imports) Statics
	

String Interpolation
	

Lambda Expressions as Methods (C# Only)
	

Index Initializers (C# Only)
Language Primer
	

Programming Objects
	

Types, Variables, and Constants
	

Understanding Operators
	

Making Decisions and Branching Code
	

Looping
	

Working with Groups of Items
	

Programming with Attributes
	

Creating and Raising Events
Language Features

Infer a Variable’s Data Type Based on Assignment
Create an Object and Initialize Its Values (Object Initializers)
Define a Collection and Initialize Its Values
Creating an Instance of a Nonexistent Class
Add Methods to Existing Classes (Extension Methods)
Add Business Logic to Generated Code (Partial Methods)
Access and Query Data Using the .NET Languages
Write Simple Unnamed Functions Within Your Code (Lambda
	
Expressions)
	
Splitting an Assembly Across Multiple Files
	

Working with XML Directly Within Your Code (VB Only)
	
Removing Unused Arguments from Event Handlers (VB Only)
Creating an Automatically Implemented Property
Dropping the Underscore in VB for Line Continuation
Working with Dynamic Languages/Objects
	

Covariance and Contravariance
	

Asynchronous Programming
	

The .NET Framework
	

A Map to the .NET Framework
	

Summary

Part II An In-De pth Look at the IDE

4 Solutions and Proje cts
Understanding Solutions
	

Creating a Solution
	

Working with Solutions
	

Getting Comfortable with Projects
	

Creating a Project

Working with Project Definition Files
	

Working with Projects
	

Summary
	

5 Browse rs and Explore rs
Leveraging the Solution Explorer
	

Visual Cues and Item Types
	

Interacting with Items
	

Inspecting Objects
	

Class View
	

Toolbar
	
Search Bar
	
Objects Pane
	

Members Pane
	

Server Explorer
	
Data Connections
	

Server Components
	

Azure
	

Object Browser
	
Changing the Scope
	

Browsing Objects
	

Document Outline
	

Editing Elements
	

Summary
	

6 Introducing the Editors and De signe rs
Getting Started with the Basics
	

The Text Editor
	
Visual Studio Designers
	

Coding with the Code Editor
	
Opening an Editor
	
Writing Code in the Code Editor
	
Anatomy of the Code Editor Window
	

Code Navigation Tools
	

Searching Documents
	

Debugging in the Text Editor
	
Printing Code
	

Using the Code Definition Window
	

Creating and Editing XML Documents and Schema
Inferring Schema

Designing XML Schemas
	

Editing XSLT Style Sheets
	

Working with Cascading Style Sheets
	

Adding Style Rules
	

Defining Style Sheet Attributes
	

Developing Windows Client Applications
Creating a Windows Forms Project
Creating a Windows Presentation Foundation Project

Developing Web Forms
	

Designing a Web Form Application
	

Authoring WinForms Components and Controls
Creating a New Component or Control
Further Notes on Writing Component Code

Creating Classes with the Class Designer
Creating a Class Diagram
Adding Items to the Diagram
Defining Relationships Between Classes
Defining Methods, Properties, Fields, and Events

Summary

Part III Working with the Visual Studio Tools

7 Working with Visual Studio’s Productivity Aids
Basic Aids in the Text Editor
	

Change Tracking
	

Coding Problem Indicators
	

Active Hyperlinking
	

Syntax Coloring
	

Outlining and Navigation
	

Code Outlining
	

Tag Navigation
	

Smart Tasks and Light Bulbs
	

HTML Designer
	
Windows Forms Designer
	
Code Editor
	

IntelliSense
	

Complete Word
	

Quick Info
	

List Members
	

Parameter Info
	

Organize Usings
Code Snippets and Template Code
Brace Matching
Customizing IntelliSense

The Task List
	
Shortcut Tasks
	

Comment Tasks
	

Summary

8 Te sting Code
Unit Testing Basics
	

Creating a Test Project
	
Writing a Unit Test
	
Running Your Tests
	

Controlling Test Settings
	

The Unit Testing Framework
	

The TestContext Class
	

The Test Attribute Classes
	

Unit Test Setup and Teardown
	

The Assert Classes
	

Testing Your Exceptions
	

Creating Data-Driven Unit Tests
	

Testing Web Applications
Unit Testing MVC and Web API Projects
Unit Testing ASP.NET Pages

Creating Ordered Tests
	

Summary
	

9 Re factoring Code
Visual Studio Refactoring Basics

Invoking the Refactoring Tools
Making (and Previewing) Changes
Using the Class Designer to Refactor

Renaming Code
Accessing the Rename Operation
Working with the Rename Dialog Box

Refactoring Variable Assignments
	

Introduce Constant
	
Introduce Local
	
Inline Temporary Variable
	

Extract Method
	

Accessing the Extract Method Refactor
	
Extracting Methods
	

Extracting a Single Line of Code
	

Generate Method Stub
	

Extract Interface
	

Accessing the Extract Interface Refactor
	
Extracting Interfaces
	

Change Signature
	

Removing a Parameter
	
Reorder Parameters
	

Encapsulate Field
	

Accessing Encapsulate Field
	

Summary
	

10 De bugging Code
Debugging Basics

The Scenario
The Many Phases of Debugging
Debugging the Application (Self-Checking)
Debugging Basics Summary

The Visual Studio Debugger
The Debug Menu and Toolbar
Debug Options
Stepping In, Out, and Over Code
Indicating When to Break into Code
Working with Tracepoints (When Hit Option)
Viewing Data in the Debugger
Using the Edit and Continue Feature

Advanced Debugging Scenarios
Remote Debugging
Debugging WCF Services
Debugging Multithreaded Applications
Debugging Parallel Applications
Debugging a Client-Side Script
Debugging Crash Information (Dump Files)
Debugging Windows Store Apps

Summary

11 De ploying Code

An Overview of Client Deployment Options
Introducing ClickOnce Deployments
Introducing Windows Installer and InstallShield Deployments

Publishing a Project with ClickOnce
	

Publishing a Project with InstallShield Limited Edition
	

Publishing an ASP.NET Web Application
	

Selecting a Target
	
Configuring a Connection
	

Configuring Deployment Settings
	

Previewing the Publication
	

Summary

12 De ve loping Applications in the Cloud with Windows Az ure
Create Your Azure Account
	

Azure Account Sign-Up
	

Link Your Account to Visual Studio
	

Manage Azure Subscriptions
	

Create and Deploy an Azure Web Apps in Visual Studio
The Azure Hosting Platform
Create the ASP.NET Application and Azure Hosting
Deploy/Publish an Application to Azure
Set Up an Existing Application to Publish to an Azure web app
Website Management with Azure Server Explorer
Debug an Azure web app

Create Your Web App from the Azure Portal
	
Create the Application Hosting Environment
	
Configuring Your New Azure web app
	

The Website Toolbar
	
Creating a Database
	

Deploying to the New Environment from Visual Studio
	

Monitor and Manage Applications in Azure
	

Monitor and Manage a Website
	

Monitor and Manage a SQL Database
	

The Azure SDK for Visual Studio 2015
	

Download, Install, and Sign In
	

QuickStart Templates
	

Azure Resource Group Deployment Projects
	

Azure Cloud Services (PaaS)
	
Creating a Cloud Service Project
	

Running Your Cloud Service Project Locally
Deploy the Cloud Service Project

Summary

13 Working with Database s
Creating Tables and Relationships
	

Creating a New SQL Server Database
	

Defining Tables
	

Working with SQL Statements
	

Writing a Query
	

Creating Views
	

Developing Stored Procedures
	

Creating Triggers
	

Creating User-Defined Functions
	

Using Database Projects
	

Creating a Database Project
	
Changing the Database
	

Building and Deploying
	

Creating Database Objects in Managed Code
Creating a Stored Procedure in C#

Binding Controls to Data
An Introduction to Data Binding
Autogenerating Bound Windows Forms Controls
Editing Typed Data Sets
Manually Binding Windows Forms Controls
Data Binding in WPF Applications
Data Binding with Web Controls

Object Relational Mapping
An Overview of LINQ
Mapping Using the O/R Designer
LINQ Code
Working with the Entity Framework
Querying Against the Entity Data Model

Summary

Part IV Exte nding Visual Studio

14 Introducing the Automation Obje ct Mode l
An Overview of the Automation Object Model

Object Model Versions
Automation Categories

The DTE/DTE2 Root Object
Solution and Project Objects

Controlling Projects in a Solution
Accessing Code Within a Project

Working with Windows
Referencing Windows
Interacting with Windows
Text Windows and Window Panes
The Tool Window Types
Linked Windows

Command Bars
	

Documents
	

Text Documents
	

Command Objects
	

Executing a Command
	

Mapping Key Bindings
	

Debugger Objects
	

Summary
	

15 Exte nding the IDE
Creating Your First Extension
	

Setting Package Parameters
	

Adding Project Items
	

The Structure of an Extension
Defining and Reacting to Commands

A Sample Extension: Color Selector
Getting Started
Creating the User Control
Finishing the Package

Summary

16 Exte nding the Code Editor
The Extensibility Problem
	

Creating Dynamic Applications
	

MEF Architecture
	

MEF Principles
	

Working with MEF
	

The Visual Studio Editor and MEF
Editor Extension Points
Using the Visual Studio SDK

Managing Extensions and Updates
	

Creating Your Own MEF-Based Editor Extension
	

Summary
	

Part V Building We b Applications

17 Building Mode rn We bsite s with ASP.NET 5
ASP.NET Website Fundamentals
Introducing ASP.NET 5

The .NET Core Framework and Execution Environment
Choosing an ASP.NET Project Template
Understanding the ASP.NET 5 Project Template and Related Files
ASP.NET 5 Dependencies and Package Managers

Creating a Web Application with ASP.NET 5/MVC 6
	

Understanding the MVC Pattern
	

Creating a New ASP.NET 5 MVC 6 Project
	
Writing ASP.NET Server Code (Models and Controllers)
	

Defining a Model (Using Entity Framework 7)
	
Developing Controllers
	

Coding for the UI (Views and Related Web UI Elements)
	
The HTML Tags
	

The Razor Syntax
	

HTML Helpers
	

Page Layout with Razor
	
Strongly Typed Views
	

User Input Validation
	

Creating the Customer Example Pages
	

View Components, View Models, and Partial Views
	

Using Scaffolding to Generate a Controller and Views
	

Summary

18 Using JavaScript and Clie nt-Side Frame works
JavaScript Fundamentals
	

Storing and Using Scripts
	

Writing JavaScript
	
Functions
	

Objects
	

Built-In Objects
	

Working with the Browser Object Model (BOM)
	
Document Object Model (DOM)
	
Events
	

Developing with jQuery
jQuery in Your Visual Studio Project
	
Selecting Elements
	

Acting on Your Selection
	

Traversing Your Selections
	

Accessing Selection Content
	
Changing Elements/Attributes
	

Handling Events
	

Animations and Effects
	

jQuery and AJAX
Building Single-Page Applications (SPAs) with Client-Side JavaScript
Frameworks

Selecting a Client Framework
Responsive Web Layout with Bootstrap 3
	

Minify Your JavaScript with Gulp
	

Using Knockout
	
Creating a Site with AngularJS
	

Summary

19 Building and Consuming Se rvice s with We b API and WCF
Service Fundamentals

Why ASP.NET Web API and WCF
	

Key Web Service Terms
	

Use ASP.NET Web API to Build HTTP Services
	

Creating an ASP.NET Web API Project
	
Defining a Model
	
Creating the Services (Controller)
	
Understanding Service Routing
	

Consuming an ASP.NET Web API Service
	

WCF Service Applications
	

The WCF Project Template
	

Creating a WCF Service
	

Running and Testing Your WCF Service
	

Consuming a WCF Service
	

Creating/Calling REST-Based WCF Services
	

Hosting and Deploying a WCF Service
	

Summary

Part VI Building Windows Clie nt Apps

20 Building Windows Forms Applications

The Basics of Form Design
	

Considering the End User
	
Understanding the Role of UI Standards
	

Planning the User Interface
	

Creating a Form
The Windows Forms Application Project Type
Form Properties and Events

Adding Controls and Components
	

Control Layout and Positioning
	

Using Containers
	

Control Appearance and Behavior
	
Working with ToolStrip Controls
	

Displaying Data
	

Creating Your Own Controls
	

Subclassing an Existing Control
	
Designing a User Control
	
Creating a Custom Control
	

Summary

21 Building WPF Applications
The Windows Presentation Foundation Platform

Programming Model
Introducing the WPF Designer

XAML and Design Panes
Programming with WPF
	

Layout
	
Styles and Templates
	

Data Binding
	

Routed Events
	

Building a Simple Image Viewer Application
Starting the Layout
Storing the Images
Binding to the Images
Button Event Handlers and Image Effects
Path Selection with a Common Dialog Box

Summary

22 De ve loping Office Busine ss Applications
An Overview of Office Extension Features
	

Office Features
	

Visual Studio Office Project Types
Creating an Office Add-In
	

Customizing the Ribbon
	

Customizing the Task Pane
	

Creating Outlook Form Regions
	

Creating an Office Document Extension
	

Hosting Controls
	

Creating an Actions Pane
	

Storing Data in the Data Cache
	

Extending Office with Webpages
	

Starting with the App for Office Project Template
	

Summary
	

Part VII Cre ating Mobile Apps

23 De ve loping Windows Store Applications
Introducing the Modern UI
	

Modern UI Attributes
	

The Windows Runtime Library
	

Language Choices
	

The Application Model
	
Building a Windows Store Application
	

Selecting the Project Type
	

Designing the Layout
	
Reacting to Lifecycle Events
	

Publishing to the Windows Store
	

Summary

24 Cre ating Windows Phone Applications
Windows Phone Fundamentals
	

The UI Basics
	

The Programming Model
	
Moving from Silverlight to WinRT
	

Porting a Simple Silverlight Phone App to WinRT
	

Building a Universal App
	

The Universal Project Types
	

Creating the Data Model and View Model
	
Creating the Windows Phone UI
	
Creating the Windows UI
	

Summary

25 Writing Cross-Platform Mobile Applications with Apache Cordova

Fundamentals of Cordova Development
How Cordova Works
Cordova Dependencies
The Cordova Project Template
Creating a Basic Cordova App
Running and Debugging Your App

Using Cordova Frameworks and Plug-Ins
Choosing Cordova Client Frameworks
Cordova Plug-Ins (for Accessing Native Device Capabilities)

Developing a Cordova App with Ionic and Angular
Set Up Your Project
Anatomy of the Ionic-Angular-Cordova App
Rebuild the Sample App
Support Storage
Running on Windows Phone
Additional Items to Consider

Summary

Inde x

About the Authors
	

Mike Sne ll spends his work life helping teams build great software that
exceeds the expectations of end users. He runs the Solutions division at CEI
(www.ceiamerica.com). Mike and his team deliver architecture, consulting,
and mentoring to clients looking for help with enterprise projects, commercial
software, mobile applications, or cloud-based solutions. He is also a
Microsoft Regional director.
Lars Powe rs is currently the director of application development at
Newgistics, Inc. Prior to Newgistics, he held various technical management
positions at 3M and spent many years with Microsoft as a platform evangelist
focused on emerging technologies.

http://www.ceiamerica.com

Dedication

To my wife, Carrie Snell. Thank you.
Mike Snell

To Cheryl, once again.
Lars Powers

Acknowledgments

Mike Sne ll:
I would like to thank all the fine people involved with the making of this book.
This includes the team at Pearson: Joan Murray, Mark Renfrow, Elaine Wiley,
and Christophe Nasarre-Soulier. I would also like to thank the team of
developer-architects at CEI for acting as a sounding board for so many topics.
Of course, I’m also grateful to my co-author, Lars Powers, for the many years
of collaboration.
Lars Powe rs:
Nothing of consequence is delivered without team work. This book is no
exception. I’d like to acknowledge the Pearson team who did all the hard work
to get this book into your hands. Joan Murray alternately cajoled, supported,
and pushed us along. Mark Renfro and Elaine Wiley stitched all the pieces
together for us. And Christophe Nasarre-Soulier ensured we stayed on the
mark for technical accuracy.
And to my co-author, Mike: as always, projects are easier with you on board.

We Want to Hear from You!
	

As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we’re doing right, what we
could do better, what areas you’d like to see us publish in, and any other words
of wisdom you’re willing to pass our way.
We welcome your comments. You can email or write to let us know what you
did or didn’t like about this book—as well as what we can do to make our
books better.
Please note that we cannot help you with technical problems related to the
topic of this book.
When you write, please be sure to include this book’s title and author as well
as your name and email address. We will carefully review your comments and
share them with the author and editors who worked on the book.
Email: consumer@samspublishing.com
Mail: Sams Publishing

ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

mailto:consumer@samspublishing.com

Reader Services

Visit our website and register this book at informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this
book.

http://informit.com/register

Introduction

Visual Studio 2015 is Microsoft’s first, big release since moving to a more
open-source approach for .NET and related technologies. This includes the
new Roslyn compiler for C# and Visual Basic, the .NET Core Framework,
ASP.NET itself, and more. The result is enabling a wider reach for .NET
applications, including both building and deploying on Mac, Linux, and
Windows.
Microsoft has also worked to integrate Visual Studio with community-driven,
open source JavaScript frameworks, package managers, and UI kits. The
ASP.NET 5 model simplifies modern web development using frameworks such
as Bootstrap, AngularJS, Knockout, Gulp, and many more.
Visual Studio 2015 supports the new, Universal App model for building on
Windows. These applications can be written once and adapted to desktop,
tablet, and phone. This includes upcoming support for Windows 10
development.
Cross-platform mobile development is also supported. Microsoft has provided
project templates for the open-source Apache Cordova. This enables
developers to build a mobile application that runs on iOS, Android, and
Windows Phone using familiar web technologies of Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS), and JavaScript.
This latest version of Visual Studio unlocks productivity across platforms and
application types. And this book is meant to help you unlock the power behind
Visual Studio so that you can realize productivity gains and greater reach for
your applications.

Who Should Read This Book?
Developers looking to use Visual Studio (Community, Professional, or
Enterprise) to build great apps for users will want to read this book. Of
course, established .NET developers who rely on Visual Studio to get work
done will also want to read this book to ensure they are getting the most out of
their chosen toolset. This book covers both using the IDE and building most of
the many types of applications Visual Studio supports. It covers all of the
following key topics:

Writing code using Visual Basic and C#
Understanding the basics of solutions, projects, editors, and designers
Writing IDE extensions and add-ins
Writing unit tests to verify your code works as designed
Debugging code with the IDE
Refactoring your code
Building websites using the new ASP.NET 5 (and MVC 6) model, which
includes support for Bower client-side package management and the new
.NET Core 5 for running ASP.NET applications on Windows, Mac, and
Linux
Using JavaScript and the many client-side frameworks such as Knockout,
AngularJS, and Bootstrap to create great web experiences

Developing service-based solutions for web and mobile clients using
ASP.NET Web API and Windows Communication Foundation (WCF)
Creating Windows desktop and Store applications using Windows
Presentation Foundation (WPF)
Working with data and databases and leveraging LINQ and Entity
Framework to build data-centric applications
Using Microsoft Office and Visual Studio to create enterprise solutions
based on common office tools (Word, Excel, and so on)
Creating Windows Azure applications that live in the cloud
Developing applications for Windows Phone
Building cross-platform mobile applications that run on iOS, Android,
and Windows Phone using Apache Cordova and related tools

This book has one primary focus: detailing and explaining the intricacies of the
Visual Studio 2015 IDE to enable developers to be work faster and, ultimately,
work smarter. Although we do provide a language primer, those just starting
out with Visual Basic or C# may want a companion book that focuses solely on
their language of choice. If you can write C# or Visual Basic code, this book
will radically help you optimize your productivity with Visual Studio.
This book focuses primarily on Visual Studio 2015 Professional edition
(which also covers the Community edition). There are additional features in
Visual Studio Enterprise. However, those are mostly not covered by this book.
Instead, we dedicate space to the version of the product used by the majority of
.NET developers all over the world.

How Is This Book Organized?
You can read this book cover to cover, or you can pick the chapters that apply
most to your current need. We sometimes reference content across chapters, but
for the most part, each chapter can stand by itself. This organization allows you
to jump around and read as time (and interest) permits. There are seven parts
to the book; each part is described next.

Part I: Introducing Visual Studio 2015
The chapters in this part provide an overview of what to expect from Visual
Studio 2015. This includes a tour of using the IDE to build various types of
applications. In addition, we cover the new C# and Visual Basic language
enhancement for the 2016 and the .NET Framework 4.6. Finally, we conclude
this part with a language primer for those just getting started with .NET
development. Readers who are familiar with prior versions of Visual Studio
will want to review these chapters for the new additions in 2015.

Part II: An In-Depth Look at the IDE
This part covers the core development experience relative to Visual Studio. It
provides developers with a base understanding of the rich features of their
primary tool. The chapters walk through the many menus and windows that
define each tool. We cover the base concepts of projects and solutions, and we
explore in detail the explorers, editors, and designers.

Part III: Working with the Visual Studio Tools
Part III is the largest section of the book; it unlocks many of the powerful
productivity features of Visual Studio 2015. These chapters investigate the
developer productivity aids that are present in the IDE and discuss how to best
use Visual Studio for testing, refactoring, debugging, and deploying your code.
This part also covers building applications in Azure. The section concludes
with a chapter dedicated to using Visual Studio to work with databases.

Part IV: Extending Visual Studio
For those developers interested in customizing, automating, or extending the
Visual Studio IDE, these chapters are for you. We explain the automation
model and then document how to use that application programming interface
(API) to automate the IDE through macros. We also cover how you can extend
the IDE’s capabilities by writing your own add-ins.

Part V: Building Web Applications
Part V is for web developers. We cover building applications with the new
ASP.NET 5 (and MVC 6) model. This section also covers JavaScript and
related client-side frameworks for building responsive, highly interactive
client-side solutions. The section concludes with coverage on writing and
consuming services using Web API and Windows Communication Foundation
(WCF).

Part VI: Building Windows Client Apps
This section is targeted at developers looking to build applications for
Windows. This includes the class Windows Forms. We also cover the
powerful WPF and building Universal Application. Finally, this part includes
a chapter dedicated to building custom solutions on Microsoft Office.

Part VII: Creating Mobile Apps
Here we cover creating mobile application for Windows Store, Windows
Phone, and cross-platform (iOS, Android, and Windows Phone). This part is
targeted at the mobile developer looking to either build on Windows or use the
hybrid mobile technology, Apache Cordova.

Conventions Used in This Book
The following typographic conventions are used in this book:
Code lines, commands, statements, variables, and text you see onscreen
appears in a monospace typeface.
Placeholders in syntax descriptions appear in an italic monospace
typeface. You replace the placeholder with the actual filename, parameter, or
whatever element it represents.
Italics highlight technical terms when they’re being defined.
A code-continuation icon is used before a line of code that is really a
continuation of the preceding line. Sometimes a line of code is too long to fit as
a single line on the page. If you see before a line of code, remember that it’s
part of the line immediately above it.

The book also contains Notes, Tips, and Cautions to help you spot important or
useful information more quickly.

Source Code
You can download all the source code associated with this book from the
book’s website: www.informit.com/title/9780672337369

http://www.informit.com/title/9780672337369

 Part I: Introducing Visual Studio
	
2015
	

Chapter 1. A Quick Tour of Visual Studio 2015
	

In This Chapte r
The Visual Studio Product Line
Languages and Frameworks
The Many Faces of a .NET Application
Developing Windows 8/10 Clients
Creating Web Applications with ASP.NET 5
Coding for Azure
Working with Data
Writing Mobile Apps

Visual Studio 2015 and the latest version of the .NET Framework introduce
new features that address modern, mobile-first/cloud-first development
concerns such as cross-platform development, adoption of open standards, and
transparency through open source. This latest version also continues to
improve on existing developer experiences when writing code for the web,
Windows, Office, database, and mobile applications. The 2015 product allows
developers to really increase their range when building modern applications
that users demand. Some highlights for the 2015 release include the following:

Developer productivity enhancements in the code editor, including touch
support
Cross-platform mobile development for Windows, iOS, and Android
Modern, unified web development with ASP.NET 5
Cloud-ready integration to ease development and deployment
Integration of the new, open source “Roslyn” compiler for VB, C#, and
now TypeScript
Easier, faster data development across web, Windows, Windows Phone,
and Windows Store using Entity Framework 7
Shared projects for C# and JavaScript to make sharing code between
applications easier
Redesigned version of Blend for creating beautiful user interfaces (UIs)
with XAML
Enhanced IDE support for building JavaScript solutions with object-
oriented TypeScript language (a superset of JavaScript itself)
Open source of many .NET elements including the compiler, the .NET
Core, TypeScript, ASP.NET, and more

This chapter covers the core makeup and capabilities of Visual Studio 2015.
We first help you sort through the product choices available to .NET
developers. We then compare the .NET programming languages. The remaining
sections of the chapter cover the many possibilities open to .NET
programmers, including building web, Windows, cloud, data, and mobile
applications. Our hope is to give you enough information in this chapter to get

the full picture of what is available to you when you build solutions using
Visual Studio.

Note
Part I, “Introducing Visual Studio 2015,” is broken into three
chapters. This chapter provides a snapshot of all things Visual
Studio. Chapter 2, “The Visual Studio IDE,” is an introduction to
getting the tool installed, running it, and creating a first project. It
also familiarizes you with the basics of the IDE. Chapter 3, “The
.NET Languages,” is a quick primer on coding constructs in
Visual Basic and C#. It also covers general programming against
the .NET Framework.

The Visual Studio Product Line
There are three primary editions of the Visual Studio product: Community,
Professional with MSDN, and Enterprise with MSDN. Development teams
need to understand which tool they need for their development projects and
price point. At a high level, the primary tool editions are differentiated as
follows.

Visual Studio Community—A free, full-featured version of the
development tool for building Web, Windows, Desktop, and mobile
applications. This new version of the tool is targeted at developers
learning to code, doing open source projects, and taking academic
courses.
Profe ssional with MSDN—Includes the core features of the IDE to
build applications of all types on all .NET languages. Targets
professional developers and team looking to build commercial or
enterprise software. Includes support for writing, debugging, and testing
code.
Ente rprise with MSDN—Formerly the Ultimate edition, the Enterprise
edition includes the core IDE features along with many advanced tools
for building applications. It builds on the Professional edition to add
additional load testing support, architecture tools, lab management,
release management, and more.

Note
You can see a detailed product comparison at
https://www.visualstudio.com/products/compare-visual-studio-
2015-products-vs.

There is a peripheral version of the Visual Studio product called Test
Professional. It is a tool targeted directly at testers. You will learn more about
all this product in the coming sections.

https://www.visualstudio.com/products/compare-visual-studio-2015-products-vs

Visual Studio Code
Microsoft released another development tool alongside Visual
Studio 2015. This tool is called Visual Studio Code. It is a free
tool that allows developers to write web applications on
Windows, Mac, and Linux. The .NET Framework went cross-
platform; this is the tool that allows developers to work on these
other platforms. You can find more information at
https://code.visualstudio.com//.

Community Edition
The new Visual Studio Community 2015 edition is a full-featured IDE similar
to Professional but targeted toward students, small groups of developers, and
open source contributors (and not enterprise teams). This version is free and
available for immediate download. Note that Microsoft has also release a
Visual Studio Community 2013 edition.
The former Express editions have been retired. These editions were also free,
but they were feature limited. Community, student, and entrepreneurial
developers should be pleased to know this new edition is nearly the same as
Professional but just has licensing restrictions.
Being based on Professional opens community developers to all types of
applications using the great productivity tools built in Visual Studio. Just as
significant, it ensures the Community Edition supports Visual Studio plug-ins
(more than 5,000 in existence) for using community extensions targeted at
increasing productivity. It also allows developers to target multiple different
platforms with this single tool.
The primary difference between the editions Community and Professional
(outside of licensing and costs) are a few project types Microsoft has decided
not to include with the Community Edition. These project types are targeted
squarely at enterprise developers. They include SharePoint, Office,
LightSwitch, and Cloud Business Apps. These type of solutions are outside the
bounds of the solutions Microsoft sees students, hobbyists, and small groups
needing to create.

Note
For more information about the Visual Studio Community Edition
(including licensing restrictions) or to download, you can visit the
Microsoft site: https://www.visualstudio.com/products/visual-
studio-community-vs.

https://code.visualstudio.com//
https://www.visualstudio.com/products/visual-studio-community-vs

Professional Edition
Visual Studio Professional is the base entry for most developers who make a
living writing code. Visual Studio Professional gives you all the language
support (including VB, C#, F#, TypeScript, C++); the capability to write all
types of applications, including cross-platform mobile, web and JavaScript,
console, Windows, cloud, database, Office, SharePoint; and more. This edition
gives access to the tools that are key to building professional applications. The
following are important features that ship with Visual Studio Professional (and
higher):

Unit testing and test-driven development
Code analysis and code metrics
Developing all application types, including Windows, web, mobile,
Office, SharePoint, Cloud, SQL, and more
CodeLens to provide quick, detailed information including references,
linked items such as bugs, and changes on your code right in the IDE
Performance and diagnostics hub
Blend tool for building XAML UIs
Server Explorer
Refactoring in C# and Visual Basic
SQL Server Data Tools (SSDT) for database development
Code review tools (when working with Team Foundation Server, or
TFS)
Much more

Note
This book targets Visual Studio Professional only. A quick
perusal of the book will allow you to see the depth and breadth of
what you can do with this powerful edition of the tool.

Enterprise
Visual Studio Enterprise 2015 is targeted toward professional developers who
build both corporate and commercial applications. It includes all the features
inside Professional plus tools that help developers verify, test, and check their
code against common issues. It also includes debugging tools designed to
eliminate the “can’t reproduce” bugs. It provides architecture tools for creating
UML models and exploring code visually. This version of the product is the
everything-but-the-kitchen-sink option in a single package. The following list
highlights the features of Enterprise:

Advanced performance and code profiling
Code Clone tool for finding and eliminate duplicate code
Unit test code coverage analysis and fakes
Coded UI testing
Test case management and exploratory testing
Test lab management tools

Historical debugging with IntelliTrace (including in production)
Unified Modeling Language (UML) support for use case, class,
sequence, component, and activity diagrams (including generating
sequence diagrams from code)
Architecture Explorer, for coming up to speed on and examining the
structure of a code base
Web, load, and performance testing

MSDN
Developers with Professional and Enterprise typically also have a related
MSDN subscription. This subscription gives you development access to
Microsoft tools such as TFS or Visual Studio Online (VSO). MSDN benefits
are different between Professional and Enterprise. The latter provides
developer access to nearly all Microsoft software and operating systems
including SharePoint, Exchange, Office, Dynamics, BizTalk, and more.
Professional with MSDN, however, only provides access to TFS, Windows
Server, and SQL Server.
MSDN subscribers also have training benefits, access to deployment planning
services, and monthly credits to allow Azure application hosting ($50 / month
Azure credit for Professional subscribers and $150 / month for Enterprise). In
addition, there is a new e-learning benefit for MSDN subscribers that includes
access to a number of great learning solutions and instructional videos.

Note
The MSDN benefit is vast, check out the following link for full
details: https://www.visualstudio.com/products/visual-studio-
with-msdn-overview-vs.

TFS and Related Tools
A key component of most professional development teams includes the
application lifecycle management environment, TFS. This tool allows teams to
manage and track work. It provides the hub for collaboration between
developers, project managers, testers, and those providing feedback. This
section includes a brief overview of TFS and the related products: Team
Explorer and Visual Studio Test Professional (also known as Microsoft Test
Manager).

TF S
Application Lifecycle Management (ALM) is a broad term applied to the
concept of continuous delivery of software through a set of integrated tools and
processes. Microsoft uses this term often to refer to its collective group of
developer tools. This collection includes Visual Studio editions, TFS, Test
Professional, and related ancillary tools. TFS is the central hub that provides
the integrated ALM experience around the various tools and their associated
disciplines.

https://www.visualstudio.com/products/visual-studio-with-msdn-overview-vs

Visual Studio Online (VSO)
TFS comes in two versions: on-premises-hosted TFS and the
online-only version called Visual Studio Online (VSO). MSDN
subscribers have access to both.
The versions are similar, and Microsoft is working to make them
nearly the same. However, at the time of writing this, VSO has
fewer features than TFS; these missing features include the
following: SharePoint integration, process template and work
item customization, data warehouse, and related reporting. This
latter item is the most notable missing element.
Of course, there are advantages to VSO. First, it is online and
therefore more easily accessible and lower overall maintenance.
Second, it automatically updates versions, patches, and service
packs. It also supports cloud load testing and a few other VSO-
specific items.
For more information on VSO relative to TFS, see the link:
https://www.visualstudio.com/en-us/products/what-is-visual-
studio-online-vs.aspx.

The first version of TFS was delivered with the release of 2005. This included
source control, a centralized project management system, build automation, and
reporting. By all accounts, these tools have been a great success over the past
10 years. Microsoft continues to build upon this with the release of TFS 2015.
TFS is at the center of development and ALM coordination. The following list
highlights the many services provided by TFS:

Proce ss guidance /te mplate —TFS includes three process templates out
of the box: Microsoft Solutions Framework (MSF) for CMMI Process
Improvements, MSF for Agile Software Development, and Microsoft
Visual Studio Scrum. All provide a set of work items, workflows, and
reports that are uniquely crafted with regard to their specific
methodology. They also offer guidance to the team for executing key
activities on the project (such as requirements management or build
automation).
Proje ct manage me nt—TFS enables project managers to define their
projects in terms of iterations and functional areas. It provides work
items that are used to define, assign, and track work on the project. A
work item can be a task on the project, a requirement, a bug, a test
scenario, and so on. In general, a work item represents a generic unit of
work on the project. Of course, work items are customizable and can
have states, new fields, and business rules associated with them. TFS
also includes a task board for easily viewing, working with, and tracking
items in a collaborative way. Work items play a central part in ensuring
project team communication and reporting. Project managers can use the
TFS website along with the Excel and Project add-ins to Office to
manage the work items on a project.
Re quire me nts manage me nt—TFS provides specific work items for

https://www.visualstudio.com/en-us/products/what-is-visual-studio-online-vs.aspx

managing requirements. Work items are hierarchical, which means you
can create work item children. For example, you might create a
requirement work item and then define the tasks required to build that
requirement. You might also define the test cases that will be used to
verify the requirement. In this way, TFS enables rich reporting through
the aggregation of the child work item data (such as tests passing for a
requirement or work remaining at the requirement level).
Te st case manage me nt—TFS and Test Professional enable work items
specific to test planning and test case management. You can define a set
of test cases for a given requirement. Each test case can define the steps
required to execute the test case along with the expected results.
Ve rsion control—The source control features in TFS include enterprise-
class features such as change sets, shelving, automatic build rules, the
capability to associate work items to changed source, parallel
development, a source control policy engine, branching, checkpoints, and
more. There are powerful tools included for visualizing branch and
changeset relationships.
Build automation—The TFS build tools allow for automatic, scheduled,
and on-demand builds. Builds are reported against, documented,
automatically tested, and analyzed for code coverage and churn (as an
example). The build engine is written using Windows Workflow
Foundation (WWF). TFS provides a build template you can use as the
basis for creating custom build processes.
Re le ase manage me nt—TFS includes the Release Management tool for
managing software releases from your environments such as
development to test to staging to production. This tool allow you to track
a release and assign approvers for various stages of that release.
Re porting—TFS provides a rich set of reports for tracking statistics and
the overall health of your project. Reports include those built on SQL
Reporting Services (that are accessible from the IDE, the Web, and
SharePoint) as well as a new set of Excel reports for working directly
with the data.
Collaboration—TFS includes Web Portal for teams collaborating on
iterations, requirements, and the related project task. This consists of a
project home page for quick health check, a team room for discussions,
and task boards for updating status. Web Portal also provides web-based
access to source code, builds, and tests.
Inte gration with othe r IDEs—TFS is accessible from Visual Studio,
Office, SharePoint, and the Web. In addition, there is Team Explorer
Everywhere for accessing the TFS features using other IDEs running on
operating systems outside Windows. This includes the Eclipse IDE and
the Mac Xcode IDE.

Team Explorer
Some team members will not have a development tool such as Visual Studio or
Test Professional that provides access to TFS. In this case, they can get full
access through Team Explorer. Team Explorer is targeted at project managers,
business analysts, directors, and others on the team who need to access TFS
but do not do direct development. This tool is purchased as a client access
license (CAL). It includes a basic explorer, the Excel and Project add-ins, full
access to Web Portal, and reporting.

Test P rofessional (or Test Manager)
Visual Studio Test Professional 2015 provides test planning, test case
management, and manual testing for those people dedicated to the testing role.
This is a separate tool that should seem comfortable and familiar to testers.
Test plans are created based on application requirements (to provide
traceability). Test cases are created and tracked as work items.
When testers run a test plan, they work through each test case and each step in
the test case. They indicate the success or failure of the given test. For failures,
they can log bugs (also work items). The bugs can automatically include things
such as diagnostic trace information, event log data, network information, and
even video recording of the steps the tester was executing when the bug was
found.
Test Professional also enables testers to create action recordings of their steps.
These recordings can be played back to execute the same steps again. This
helps automate many portions of manual tests.
In addition, Test Professional includes lab management, which is a suite of
tools for provisioning test environments from a template. These environments
are virtual machines that are meant to be set up and torn down as needed for
testing. You also can create checkpoint environments for various builds.
Test Professional enables automated web, load, and stress tests. You can run
these automated tests directly from Visual Studio on your local machine to
simulate smaller user loads. However, if you want to collect data on multiple
machines and test against a higher user load, you can leverage a test controller
along with test agents. The test controller serves as the central data collector
and manages the test agents. Test agents are then installed on both the servers
under test and multiple client computers. This allows the servers under test to
send back important data such as IntelliTrace information. The multiple client
agents are used to simulate increased load and collect data from the client
perspective. Finally, the centralized controller aggregates the resulting data for
reporting.

Languages and Frameworks
Programming in Visual Studio and with the .NET Framework means you have a
variety of languages from which to choose. Coding against the framework
means selecting from C#, Visual Basic .NET (VB.NET), F#, or C++. The
Framework itself is common to all three. Once compiled and deployed,
applications written against .NET are similar in runtime execution. In fact, the
new, open source .NET Compiler Platform (“Roslyn”) is now the shared
compiler for both VB and C#.

Microsoft is now delivering the .NET Core as an open source stack to be run
on multiple operating systems including Linux, Windows, and Mac. It joins
other .NET open source products from Microsoft including ASP.NET itself, the
.NET Framework reference source, Entity Framework, and more. Together,
these initiatives enable developers to write, run, and host web and client
applications on all three platforms.

Programming Language Choices
What should be important to developers is selecting a language that enables
you to be productive and has a high degree of support inside the IDE.
Productivity is about developing with syntax that is familiar and logical to you.
IDE support means the tools can generate code, help you write code, and
provide features and artifacts that accelerate your coding. This is where many
third-party (non-Microsoft-supported) languages often fall short. It takes a lot
to provide IDE support to build the many application types Visual Studio
enables.
The following list is an overview of the Microsoft-supported languages for
.NET development with Visual Studio:

C#—C# is a programming language designed for those who are familiar
and comfortable programming in C-style languages (such as C, C++, and
Java). C# is type safe, object oriented, and targeted for rapid application
development. C# developers tend to spend more of their time inside the
Visual Studio code editor and less time with the designers.
Visual Basic .NET—VB.NET is about productivity. Developers can
rapidly build type-safe, object-oriented applications. Although VB
developers have full access to all code constructs in .NET, they tend to
use VB.NET because of the productivity features inside the IDE, and
they are already familiar with it from past experience with VB (or a
similar language built on Basic).
C++—With C++, developers can build .NET managed applications.
However, they can also create Windows-based applications that do not
rely on .NET. Most C++ developers have a C background and are
therefore more comfortable inside the C++ world than they are with
other languages. A C++ developer also has access to build against
Active Template Library (ATL), the Microsoft Foundation Class (MFC)
libraries, and the C Runtime (CRT) library.
Visual F#—The F# language is said to be multiparadigm because it
allows for functional, object-oriented, and imperative programming. It
brings .NET developers a solution to many difficult programming
problems. There are several features of F#, including lightweight
function types, functions as values, function composition and pipelining,
recursive functions, and lambda expressions, to name a few. F# makes
for simpler programming of math, scientific, engineering, and symbolic
analysis (such as machine learning) problems. Visual Studio 2015
introduces F# 4.0 developed by both Microsoft and the open source
community.
Type Script—Visual Studio 2015 includes support for TypeScript.
TypeScript is an answer to the many developers writing more and more

JavaScript on a daily basis but longing for more of the language and IDE
features they are accustomed to from other languages. TypeScript is a
strongly typed superset of JavaScript. It allows JavaScript developers to
write JavaScript in a faster, cleaner, and more productive way. The
language syntax is JavaScript. The compiler outputs TypeScript to plain
JavaScript that can be run in any browser on any platform.

Note
The basics of programming the languages of .NET are covered in
Chapter 3.

Note
If you are familiar with one language but need to program in
another (or translate), search for “Keywords Compared in
Various Languages” on MSDN (last updated for the 2010 version
but still useful).

The .NET Framework
The .NET Framework represents, in addition to the managed runtime, the base
classes, libraries, and useful functions that make programming in .NET so
productive. The classes and functions found in the .NET Framework offer the
majority of common features you need as a developer. Thanks to the Common
Type System (CTS), each language can take advantage of this single
Framework of functionality. Framework features include file I/O, web,
workflow, collections, Windows, communication, and much, much more.
Of course, as the .NET languages evolve, so does the Framework. However, to
maintain backward compatibility, each version of the Framework remains as a
separate entity. There are now many versions of the .NET Framework: 4.6,
4.5.2, 4.5.1, 4.5, 4.0, 3.5, 3.0, 2.0, 1.1, and 1.0.

Note
See Chapter 2 for details on how you can target a specific version
of the .NET Framework inside Visual Studio 2015.

The .NET Core
The new .NET Core is an open source version of the framework designed to
help you build cross-platform web and client solutions. It is also meant to be
easy to deploy and can be deployed with your application. Because it is open
source, you can edit the .NET Core to meet specific needs if required.
The .NET Core shares the same family (and much of the source code) as the
full .NET Framework but is without a few features such as code access
security and application domains. Thus, it also has a smaller footprint. It does
have the base class libraries, JIT, and GC.
Microsoft is shipping the .NET Core for Windows, Linux, and Mac. It intends
to update the .NET Core in cycle with the .NET Framework. The first major

product to adopt the .NET Core runtime is ASP.NET 5.

The M any Faces of a .NET Application
.NET has become the standard when building applications targeting the
Microsoft Windows client, server products, Windows Phone, Windows Store
apps, websites, and more. Windows programming and .NET programming are
now synonymous.
Many of the user applications we interact with have some if not all of their
code base in .NET. This includes rich clients built on Windows, solutions built
on Office (including parts of Office itself), mobile apps that also work with
web services, web applications that run in a browser and execute on a
Windows server, product extension solutions such as those written for
SharePoint and BizTalk, and Windows Store applications targeting Windows
8/10.
The good news is that the .NET developer is in high demand, and you can
leverage your skills to target a wide audience across an array of user
experiences.
Figure 1.1 shows the New Project dialog in Visual Studio; it serves as an
example of the myriad user solutions that are possible with .NET. This graphic
cannot fit all the possibilities available to you, but it does illustrate that
Windows, web, Office, and many other project types are within the reach of
.NET developers working with Visual Studio.

FIGURE 1.1 The many application faces made possible by Visual Studio
2015.

As discussed, you have many project templates available for your next
solution. What is needed, however, is some sort of road map with respect to
user experience. Choosing the right project template is an important part of
making the delivery of your solution successful. The following is a high-level

overview of the core presentation technologies available to the .NET
developer. (There are more, but these are the common ones.)

Note
Visual Studio provides many UI platform options. Many are
highlighted here; for in-depth coverage, see their specific chapters
in this book: Chapter 17, “Building Modern Websites with
ASP.NET 5,” Chapter 18, “Using JavaScript and Client-Side
Frameworks,” Chapter 20, “Building Windows Forms
Applications,” Chapter 21, “Building WPF Applications,”
Chapter 22, “Developing Office Business Applications,” Chapter
23, “Developing Windows Store Applications,” Chapter 24,
“Creating Windows Phone Applications,” and Chapter 25,
“Writing Cross-Platform Mobile Applications with Apache
Cordova.”

Windows
Windows Forms application (WinForms)—Windows form applications
are used to deliver business applications and tools built on the Windows
platform. You typically select a WinForms application template when
you need to build a solution that leverages the resources on the user ’s
machine. This means the application is installed and users expect it to
run more responsively than the typical web application. WinForms
applications can be standalone or data driven (often client-server).
WinForms applications might connect to web services and work in both
connected and unconnected scenarios.

Note
Microsoft has deemphasized building applications with
WinForms. If you’re building a new business application, you
should consider Windows Presentation Foundation (WPF)
because you can create a more modern user experience with it. A
WPF application can also be built as a Universal application that
runs on various Windows devices such as desktop, phone, and
tablet.

WPF application—WPF leverages XAML to allow you to create the
richest, most full-featured client solution that runs on Windows. You
choose WPF when you need to deliver a modern visual experience for
your Windows application by taking advantage of vector-based scaling,
3D, and the benefits of using XAML markup.
Office and Share Point—Visual Studio enables you to build solutions
based on the Office productivity tools, including Excel, Word, Project,
Visio, Outlook, and PowerPoint. Choose an Office project when you
want to write a business-productivity application centered on, and
running within, one of the Office applications or documents (such as an
Excel template or spreadsheet). You can also develop SharePoint

applications for delivering functionality through the collaboration portal.

Web
ASP.NET—ASP.NET has evolved for 2015 and is now a unified, lean
stack that allows developers to create all types of web applications. The
latest version of ASP.NET is primarily focused on ASP.NET Model-
View-Controller (MVC) and web application programming interface
(API) applications. These solutions typically run inside a user ’s browser
but communicate with a web server for application processing. They use
Hypertext Markup Language (HTML), Cascading Style Sheets (CSS),
and JavaScript on the client but communicate across Hypertext Transfer
Protocol (HTTP) to a server for centralized processing of code and data
storage and retrieval. There are many project templates outside the
defaults that are based on MVC. These enable various JavaScript-first
solutions based on single-page application concepts (see the later bullet)
as well as other web development types. The core, however, is a single
ASP.NET stack to run it all.

Note
Microsoft deemphasizes the older style of web development
based on web forms. Web forms are still in the current version of
Visual Studio for backward compatibility. However, if you are
building modern applications, you should consider MVC or one
of the SPA templates. This gives you better separation of code,
greater testability, and a simplified programming model based on
open standards.

We b API—Nearly all devices speak HTTP. As a result, web services
are the ubiquitous means for communicating from device to server. This
is true for desktop, phone, tablet, and all manners of applications.
ASP.NET speaks HTTP very well and has thus been extended to allow
developers to create services similar to the way you create other
ASP.NET MVC solutions. The ASP.NET web API is now unified with
MVC for a single programming model.
Single page applications (SPAs)—Users are demanding richer client
applications in the browser that often work like native applications
running on an operating system. Developers have turned to JavaScript to
make this work. Many JavaScript frameworks, such as jQuery, exist to
make developing rich applications easier. Larger “frameworks” have
created a whole new web client programming paradigm. Take AngularJS
as an example. It allows developers to code using an MVC style on the
client; the code runs in the user ’s browser versus ASP.NET running on a
server. These frameworks and application types are known as SPAs. A
user hits a single page in his web browser, and that page works like an
application behind the scenes serving up requests and updating the UI.
This is in contrast to a website that moves from page to page with full
browser refresh.

Mobile
Windows Store application (Unive rsal Apps)—Visual Studio 2015
allows developers to create applications that target the Windows 8/10
store for desktops, tablets, and phones. The new universal app model
(and project templates) allows developers to create a single application
that targets Windows and Windows phone at the same time.
Cross platform mobile applications—Visual Studio Tools for Apache
Cordova support building mobile applications that target Android, iOS,
Windows, and Windows Phone from a single project. This includes a
new Visual Studio Emulator for Android. Of course, the Windows and
Windows phone emulators already exist. You can also debug an iOS
version of an app from Visual Studio when it is deployed to the iOS
Simulator or a connected device. Apache Cordova is an open source set
of device APIs that allow device access from JavaScript. This allows
developers to create native device apps using HTML, CSS, and
JavaScript.

Visual Studio supports each of these UI delivery technologies. With them, you
have many options for creating great user experiences on .NET. The sections
that follow highlight a number of these technologies for building both Windows
and web solutions.

Developing Windows 8/10 Clients
Today’s users demand a rich, interactive experience when they work with
software. The line between what a web-based client can do versus one that
runs on Windows has blurred thanks to many UI advancements, technologies,
and tools, which can make it difficult to choose the right UI delivery for your
next application. It also means that if you do decide to write a Windows-based
client, you need to be sure you take full advantage of having the desktop
resources at your disposal. Your application should perform well, look great,
provide a high degree of interactivity, be able to work with larger data sets at
any given time, and more. Here we look at the Windows-based client options
for Visual Studio and creating smart, rich applications using WinForms, WPF
(and the Universal App model), and Microsoft Office.

Windows (WinForms)
Visual Studio provides a mature, feature-rich set of tools for the rapid
development of Windows applications that includes a drag-and-drop form
designer and many controls inside the form toolbox. With these tools,
developers can quickly lay out a Windows application that includes menus,
toolbars, data access, tabs, resizing support, common controls for working
with and printing files, and much more.
You create a Windows application by selecting the Windows Forms
Application project template in the New Project dialog. This type of
application is also called a WinForms application because it is based on the
WinForms technology in Visual Studio and the .NET Framework.
The first step in a WinForms application is determining the layout of your
form. You might decide to create a document-centric application (such as Word
or Excel), a single utility application (such as Calculator or Disk

Defragmenter), or some other type of application. Whatever your choice,
layout is typically controlled through the docking of controls to the form
(through the Properties dialog) and the use of Panel controls.
For example, Figure 1.2 shows a possible line-of-business application. A
MenuStrip and ToolStrip control are docked to the top of a Windows Form, a
StatusStrip is docked to the bottom of the form, and a TreeView and a Tab
control occupy the center.

FIGURE 1.2 Building a WinForms application inside Visual Studio 2015.
Containing both the TreeView and the Tab control is a SplitContainer control,
which allows two panels to size relative to one another using a splitter bar.
Together, these controls define the layout of the main, interactive section of the
form. In this case, a user can select records to view in the TreeView control
and have a DataGrid within the Tab control automatically populate with the
required information. Each control is added to the appropriate area of the form
and then configured via the Properties window.
You can start to see that the initial layout and definition of a WinForms
application is a rapid experience. You first need to decide your form layout.
The tools make it easy from that point forward.
As with all .NET programming, you create the visual design and layout of your
user interface and then write code to respond to events. The WinForms
application has a standard model that includes such events as Load, Closing,
and Closed. You also respond to the events triggered by the controls on the
form. For more detailed information about building WinForms applications,
see Chapter 20.

Windows Presentation Foundation (WPF)
WPF is a set of classes, tools, and controls with which developers can create
even richer, more dynamic client solutions for Windows. This includes
developing user experiences that combine traditional data view and entry with
video, 3D graphics, shading, and vector-based scaling. The results are truly
unique, visually appealing, rich applications.
WPF uses markup code to define the UI. This should be familiar to web
developers. The markup is based on XAML, an XML-based definition
language. The XAML is created for you using the Visual Studio WPF graphical
designer (or a design tool now shipping with Visual Studio 2015 called
Blend). At runtime, the .NET CLR processes the XAML. Unlike for HTML that
requires a browser, the XAML-based UI is not bound by the limits of HTML
inside a browser. Instead, it can create vector-based, hardware-accelerated
user experiences.
Visual Studio provides a familiar experience for creating WPF solutions. You
first define a WPF project and add WPF windows or pages to the project.
When creating your solution, you select a project type based on whether the
application runs as a browser add-in (uncommon) or as an install on a
Windows machine. Figure 1.3 shows the WPF project templates based on a
search for “WPF” in the dialog (upper right). Selecting WPF Application
creates a basic WPF application that is pushed to or installed on a client
machine. It might access local resources on the client.

FIGURE 1.3 Creating a new WPF project.

The WPF Browser Application, in contrast, is meant to be deployed through a
URL and run as a browser extension. The application, called an XBAP (XAML
browser application), runs inside a sandbox. It does not have rights to the
client machine and is cleaned up as part of the browser ’s cache. The
application does not require a download provided that users have the right
version of the .NET Framework on their machine. It can work with the

browser ’s cookies and is supported by both IE and Firefox on Windows. (It
	
does not run on other operating systems.)
	
Note that the other two application types in Figure 1.3 are WPF User Control
	
Library and WPF Custom Control Library. Both are for creating reusable
	
controls for WPF applications.
	
The next step in building your WPF window is to simply open it and drag and
	
drop UI controls onto a design surface. One big difference for developers used
	
to building WinForm applications, however, is that you now have control over
	
the layout code (or XAML), which is more akin to designing a web form with
	
Visual Studio. Figure 1.4 shows the XAML designer in action using the sample
	
application built later in Chapter 21.
	

FIGURE 1.4 Designing a WPF window.

Notice that the WPF controls are listed in the Toolbox on the left. Although
they are similar to Windows and web controls, they are their own set of
controls just for WPF. Also, notice how the designer has a split view between
the design surface and the XAML. These views stay in sync as you develop
your code. Finally, the properties window shown on the right provides a
familiar experience for WinForms developers when editing the many
properties of a selected control. We cover the WPF Form Designer in greater
detail in Chapter 21.

Office/SharePoint Solutions
Developers have been able to customize Office for a long time now; some of
us still remember writing Excel macros on Windows 3.1 or automating Word
with Word Basic. Thankfully, these days the tools used to write Office
solutions are built in to Visual Studio. With them, you can create Office-based
projects and solutions that leverage Word, Excel, Project, Visio, PowerPoint,
InfoPath, and Outlook. You can also create SharePoint applications following
the new SharePoint app model. Your Office apps can be created for desktop
installation or as a Cloud Business App in Office 365. Figure 1.5 shows the
New Project dialog for Office solutions.

FIGURE 1.5 The many Office/SharePoint project templates inside Visual
	
Studio.
	

There are a few scenarios that might lead developers to create an application
based on Office. The most common is when you need to extend a line-of-
business (LOB) application to provide functionality inside the common,
information-worker productivity tools of Office. This type of solution typically
combines structured, corporate data with a business process workflow that’s
centered on a document (such as an invoice or a purchase request).
For example, suppose you work with a financial, manufacturing, or payroll
application. Each of these fills a specific need. However, users might need to
work with the data that is housed inside the application and make key
decisions that feed back into these systems. This work is often done through cut
and paste and is not captured by the systems. Users lose productivity switching
back and forth between the Office tools and the LOB application. This is
precisely where you should consider creating an Office application to help
bridge this gap.

Note
The Office templates in Visual Studio 2015 cover both Office
2010 and Office 2013. The same is true for the SharePoint
templates.

Develop Documents, Templates, and Add-Ins
Notice the many templates in Figure 1.5. There are three separate templates for
Excel, for example. Each of these templates provides a specific purpose.
Office application templates allow you to create solutions built on a single
document, a document template, or as an add-in to the given Office application.
The following list provides a brief overview of these three project subtypes:

Docume nt (Workbook in Exce l)—Document projects allow you to
build a solution based on a specific document. There are typically not
multiple instances of the document. As an example, suppose you have an
Excel workbook that needs to read and write project resource billing
information from and to an enterprise resource planning (ERP) system.
This document might be updated weekly as part of a resource meeting.
The data should be up-to-date and changes should feed the billing
system. In this instance, you would create a solution based on this single
document.
Te mplate —An Office Template project is one that is based on an Office
template file (an Excel .xltx, for example). Creating a solution based on
an Office template file gives you the flexibility to provide users with
assistance when creating a new instance of a given template. You might
push common document templates out to your users. When a user creates
a new instance, the template might reach into data housed in other
systems to help the user fill out the details of the document. You might
then, in turn, capture the results in a database after routing the template
through a basic SharePoint workflow.
Add-in—An Add-in project allows you to extend the features and
functionality of a given Office application. You create add-ins to offer
additional productivity and solutions inside a given application. You
might, for example, write an Outlook add-in that allows users to more
easily file and categorize their email.

Whichever template you choose, Visual Studio provides a rich, design-time
experience for building your Office solution. For example, Figure 1.6 shows
the Visual Studio design experience building a solution for a Word 2013
template. In this example, a user is creating a quote for training. The fields in
the document pull from a line of business (LOB) application database that
includes customer information, resource data, and common pricing.

FIGURE 1.6 Designing a Word Template project in Visual Studio.

Create ShareP oint Solutions
Although SharePoint is not a true Windows client, SharePoint and Office have
become nearly synonymous. They share the same release cycle, and companies
are urged to keep versions of Office and SharePoint in synch. Companies
leverage SharePoint for knowledge management, collaboration, and business
process automation. Of course, this inevitably means customization and
extension by developers.
Visual Studio presents a rich toolset for SharePoint developers. With it, you
can create SharePoint workflows and build Web Parts based on ASP.NET. You
can also take advantage of the new app model for SharePoint 2013. In
addition, the debug experience when building SharePoint solutions is what
developers have come to expect. SharePoint development is a first-class
consideration inside the IDE. This allows developers to more easily extend
SharePoint to meet the business demand this collaboration product has
generated.

Creating Web Applications with ASP.NET 5
Nearly every business application written today involves some level of web
development. This includes full-blown websites, native mobile application
talking to web services, a desktop application working with service layers, or
those applications that run natively but are written using the HTML, CSS, or
JavaScript open standards. Web development is ubiquitous. Microsoft has
invested heavily in this area, and Visual Studio 2015 represents the
convergence of those investments.
ASP.NET 5 (previously referred to as vNext) includes enhancements to every
aspect of web development. In fact, this is the first release that also includes
many enhancements written by open source contributors. A lot has changed, but
developers will still feel comfortable in ASP.NET 5. This release makes

modern web apps easier to develop. Highlights for what’s new include the
following:

The ASP.NET Core 5.0 framework that can install with your application
and allow it to run on multiple devices and platforms (Mac, Linux,
Windows and not just a web server). Developers can also now develop
on all these devices using other tools such as Sublime Text.
Unified project templates for building web applications.
New and improved cloud tools in Visual Studio and Azure for
deployment, tracing, debugging, and editing in the cloud.
Auto compile of changes (no compile feature) saving precious seconds
every time you make a code change and need to view it in the browser.
Improved browser development tools in IE.
Development support for multiple web form factors to render responsive
user interfaces to desktops, tablets, and phones.
Integrated web API as a single project model for building web back
ends.
Rich support for server-side and client-side frameworks such as jQuery,
Ember.js, and AngularJS.
Support for community tools like Grunt and Bower that plug directly into
Visual Studio.
Improved NuGet support through the references dialog (no more
referencing DLLs in your projects), including IntelliTrace for NuGet
packages.
More...

Visual Studio provides an array of web development templates from which to
choose. This section presents many of these possibilities.

Note
We cover numerous aspects that follow in greater detail in Part V
of this book, “Building Web Applications.”

Building Websites with Web Forms
For many years, ASP.NET has been evolving website development with a rich
set of server-side controls that do a lot of the client-server communication and
HTML rendering tough stuff on the developer ’s behalf. Visual Studio 2015
continues to enable developers to take advantage of this design-time richness
and productivity. However, modern, responsive UIs that leverage the many
JavaScript frameworks often require more direct access to the HTML and CSS
than what is available when the HTML is emitted on your behalf (as it is in
Web Forms). For this reason, Web Forms have diminished in popularity (for
new development) in favor of ASP.NET MVC and SPAs. That said, there are
still many business applications taking big advantage of the developer
productivity of drag-and-drop, an event-driven model, and the overall
simplicity Web Forms has to offer.
Developers building with Web Forms do so because Web Forms include the

http:Ember.js

productivity-enhancing, rich set of design-time controls. These controls make
handling and binding to data easier. They allow for validation, viewstate, and
postback. They emit HTML on the developer ’s behalf. And, of course, they
make coding with them on server side much easier. Figure 1.7 shows just some
of the controls (and control groups) that are available to Web Forms
developers. The Standard group is shown as icons only to help you get a feel
for the volume of controls.

FIGURE 1.7 The rich set of server-side controls for building Web Forms
	
websites.
	

Develop and Design at the Same Time
You develop ASP.NET Web Forms pages by designing with controls and
connecting code to those controls. The code for the design is referred to as
markup. This is XHTML that defines the controls, their layout, and their look
on your page. The Web Forms tools include both a markup editor and a visual
WYSIWYG designer for laying out your page. You can switch between the
source (XHTML) and the design (WYSIWYG) view of a web form many times
during development. The source view allows you full access to editing the
XHTML of the page. Design view lets you see the page develop and gives
access to the many shortcuts attached to controls in the designer. Visual Studio
makes switching between these views simple. It also provides a split view.
With it, you can see both the XHTML and the visual designer. Figure 1.8 shows
an example.

FIGURE 1.8 The Web Forms designer split view.
Split view tries to keep both the source and the design in sync. This works
when you drag items from the Toolbox to either the source or the design view
panes. However, the design view can get out of sync when you are doing a lot
of edits to your source. In these cases, the design view indicates that it is out of
sync. Click on the designer, and everything is back in sync.

Centrally Manage Navigation and Design
Visual Studio 2005 first introduced the capability to create master pages.
These pages centralize the management of a site’s design and navigation
elements. In addition, master pages are supported by the designer, which
allows for a richer design experience. A developer can see the page in the
context of the site’s central design while in design mode.
You create a master page by selecting the Master Page template from the Add
New Item dialog. You then define your site navigation, header and footer

information, styles, and anything else that should apply to each page in the site
(or subarea of a site). After you define the navigation, you can create new web
forms that provide specific content that should be enclosed inside a master
page. Figure 1.9 shows an example of working with a web form whose outer
header content is based on a master page.

FIGURE 1.9 Web Forms pages that use a master page.

Developing with MVC/Razor
Visual Studio supports an alternative to building your application using Web
Forms. This alternative is based on the Model-View-Controller (MVC) design
pattern and the Razor syntax. The purpose of this pattern is to separate the
application’s logic and data (model), its user interface display (view), and the
code that helps the user interact with the UI and the data (controller).
Developers choose MVC because it gives them direct access to the HTML and
CSS, allowing them to more easily work with responsive design and
JavaScript frameworks. MVC also better supports test-driven development
because the views are just markup, and all their logic is in controller classes
that can be tested independently of the view markup.
You create a new MVC site by first selecting ASP.NET Web Application from
the New Project dialog. This launches the unified New ASP.NET Project
dialog. From here you can select Web Forms, MVC, Single Page Application,
Web API, and more. Of course for MVC, select the template titled “MVC.”
Figure 1.10 shows an example of the ASP.NET MVC site template inside
Visual Studio. See Chapter 17 for a detailed discussion of ASP.NET MVC.

FIGURE 1.10 An ASP.NET MVC project structure (see Solution Explorer)
	
and simple HTML markup (see AddPhoneNumber.cshtml).
	

Note
Project templates do not preclude you from writing any type of
ASP.NET code you like. That is, you can mix MVC with Web
Forms, Web Pages with Razor, SPA, or any combination that
makes your website work the way that makes sense to you. In fact,
the New ASP.NET Project dialog now allows you to create one
type of web application (such as MVC) but choose the references
and core folders required of another (such as Web Forms and Web
API).

Note
Visual Studio allows developers to also create websites built on
just the Razor syntax. This is helpful for simple websites that do
not need Web Forms or MVC but can take advantage of the easier
syntax of working with HTML. It can serve as a nice basis for
SPA applications. (See the next section.)

Creating a Single Page Application (SPA)
Visual Studio supports development of an application that leverages HTML5
and rich client-side JavaScript known as a SPA. Like MVC, a SPA allows you
to write web applications using the open standards of HTML, CSS, and
JavaScript. However, the key tenant of a SPA application is that it leverages
the ubiquity of JavaScript to build highly interactive, desktop-like applications
that run in browsers on any device type and operating system. JavaScript is
what makes it work. A SPA loads a single page and then uses JavaScript to talk
to the server and update portions of the page. Your site is not bound to a single
page, however. It is just that a lot happens in a single before you might
transition to another page (and set of features).
Writing all that JavaScript is a huge task. Thankfully, SPA applications are
built using common JavaScript frameworks that make development easier and
more consistent. These frameworks help with styling and page-to-server
asynchronous communication.
The Visual Studio default SPA template includes support for MVC and Web
API. The MVC support allows you to write your web page views and server-
side code using a familiar model. Web API is about building services that can
support the asynchronous JavaScript to server communication from the client.
Figure 1.11 shows creating a new project using the SPA template and the core
references for MVC and Web API.

FIGURE 1.11 Creating a new SPA project in Visual Studio.

The default SPA template in Visual Studio is configured by default to support a
few JavaScript frameworks. These include Bootstrap, Knockout, and jQuery.
Together, these frameworks allow developers to create a SPA application
using ASP.NET standards (MVC and Web API) and established JavaScript
frameworks. These frameworks are described as follows:

Bootstrap—Bootstrap (also called Twitter Bootstrap) is used for

building responsive, mobile-first web applications using HTML, CSS,
and JavaScript. This enables your web application to render correctly on
various device sizes like phones, tablets, and desktops without a ton of
extra work.
Knockout—Knockout (also called knockout.js) is used to bind data from
your model to your DOM elements (views) and get an automatic refresh
from client to server. It leverages the Model-View-View Model
(MVVM) design pattern to make development a familiar experience.
jQue ry—The jQuery library is the basis for handling JavaScript and
	
client HTML manipulation. It allows developers to create events, do
	
server-side communication, and animate the user interface.
	

Note
Visual Studio supports SPA templates that go far beyond the
default template. This includes support for building with the even
more popular SPA frameworks of Ember.js and AngularJS. In
fact, there are community-created and supported SPA templates
available for download. These templates simplify using these
JavaScript frameworks and combination of frameworks. Of
course, you can always skip the template and start with an empty
project. In that case, you could use NuGet to add components as
you need them.

Coding Web Services with Web API
Most organizations have multiple systems, each designed for a specific
purpose. They might have systems for finance, HR, order management,
inventory, customer service, and more. Each application houses specific
business processes. However, most organizations need to unlock these
business processes from their applications and reuse them as part of a different
solution. These include providing employees, customers, vendors, and partners
access via mobile devices. This is where service-oriented solutions help. By
exposing an application’s business process as a service, multiple clients can
take advantage of that process.
The promise of code reuse has been with us a long time. However, service-
oriented code reuse became popular with the advent of Web Services. The
ubiquitous nature of HTTP (and port 80), JavaScript, and JSON/XML data
structures allows for a new level of communication between application
boundaries. We can now write services that wrap business functions and call
them from multiple clients devices on multiple operating systems.
Web API services are designed to embrace the web standards of HTTP and
JavaScript. Building on HTTP allows creating REST (Representational State
Transfer) services that use the standard HTTP methods of GET, POST, PUT,
and DELETE to communicate back to the server. JavaScript allows that
communication to be asynchronous You can send data directly to the client
formatted as JSON or XML and then process those results in a client-side,
JavaScript function to update the user ’s browser.
You create a Web API project in Visual Studio by adding a new item to your

http:Ember.js
http:knockout.js

project. Web API files are built as controllers in MVC. Therefore, you right-
click the Controllers folder in the Solution Explorer and choose Add, New
Item. This brings up the Add New Item dialog in the correct context, as shown
in Figure 1.12. We discuss creating, hosting, and consuming services in detail
later in this book in Chapter 19, “Building and Consuming Services with Web
API and WCF.”

FIGURE 1.12 Add a web API as a controller to your MVC application.
	

Note
Visual Studio still allows developers to write service-oriented
solutions using Windows Communication Foundation (WCF).
However, these solutions are much more complex to create and
consume correctly. Business and mobile application developers
greatly prefer services based on HTTP, JSON, and REST.

Coding for Azure
Most of the distributed applications we write are deployed onto one or more
servers for hosting and delivery out to the user base. This hosted environment
might contain multiple web servers, a database server, and other servers as
necessary. The environment then needs to be monitored and managed either
internally or through a hosting provider. The management of this environment
can be costly. Servers require repair and updates; as the demand for your
application increases, you often have to add new hardware to scale with the
demand.
Cloud computing is meant to help address these issues. In its basic form, cloud
computing represents a hosting environment for your entire application (user
interface, logic, database, and so on). The environment is meant to
automatically scale with your demand and free you from hardware management
and monitoring tasks. This is accomplished through massive amounts of

distributed, automatically managed computing power.
Visual Studio developers that want to take advantage of cloud computing can
do so via Microsoft Azure. You can think of this technology as the server
operating system for hosting your application. The difference is that Azure is
not a single server operating system you install; rather, it is an operating system
that sits atop massive amounts of shared computing power. You can develop,
deploy, manage, and scale your application using the Microsoft Azure cloud as
the single host for your application. Adding scale to that host is then simply a
configuration change.

Creating a Cloud Application
Microsoft Windows Azure continues to mature and offers many scenarios for
developers, including data storage, service bus solutions, mobile web
services, websites, and much more. Visual Studio is built to integrate with
Azure. You get started by downloading and installing the Azure SDK for .NET
(VS 2015) 2.5. This includes Visual Studio 2015 tools and project templates
along with various Azure emulators.

Note
You can download the Azure SDK for Visual Studio 2015 from
the site: http://azure.microsoft.com/en-us/downloads/

You can work directly with Azure inside of Visual Studio by selecting the Host
in the Cloud option from the new ASP.NET Project dialog as shown back in
Figure 1.11 (bottom right). When you select this option, you must log into an
Azure account (or create a new one) to set up hosting. In this case, Visual
Studio sets up your project and creates an Azure website. You still develop
locally but are able to determine when to deploy your project to Azure.

Note
MSDN subscribers have up to $150/month in Azure benefits for
development, testing, and production. Use the link that follows to
find out your benefit level or search for “MSDN subscribers
Azure benefit”: http://azure.microsoft.com/en-us/pricing/member-
offers/msdn-benefits-details

The Azure SDK also enables a number of QuickStart templates for building
various Azure solutions. You can access these through the New Project dialog,
as shown in Figure 1.13. Here you can quickly create a media service, storage
queue, service bus messaging application, and more. Selecting a QuickStart
template creates an application already configured for the given task you are
trying to accomplish.

http://azure.microsoft.com/en-us/downloads/
http://azure.microsoft.com/en-us/pricing/member-offers/msdn-benefits-details

FIGURE 1.13 The Azure SDK QuickStart templates.

Publishing to Azure
When you are ready to push your application into Azure, you can do so directly
within Visual Studio. For example, when you create your site and choose
hosting in Azure, Visual Studio creates the site locally and works with Azure
to establish a hosting area, uniform resource locator (URL), and configuration.
It also creates a publishing script in your project. This script enables
publishing and configuration of that publishing. However, Visual Studio does
not deploy the site at the time of creation or when you run your application.
Instead, you choose when to deploy.
To deploy, you can right-click your website and choose Publish, or you can use
the Web Publish Activity window (View, Other Windows, Web Publish
Activity). This launches the Publish Web dialog as shown in Figure 1.14.

FIGURE 1.14 The Azure Publish Web dialog allows you to publish your
project directly to Azure.

After deployment, you can start, suspend, configure, or upgrade the application
from the Microsoft Azure management site. Of course, you can also now
access your site directly from its temporary URL.

Working with Data
Data is the domain of the business developer. It makes sense then that the
number one tool and framework for business development continues to provide
new and better ways of accessing and exposing that data. Data access is
everywhere inside Visual Studio and the .NET Framework. Here we highlight
some of the things you encounter when working with data inside Visual Studio.
Visual Studio allows developers to access their data in a multitude of ways.
However, the most popular development technique for the modern .NET
developer is leveraging the Entity Framework (EF). This framework
eliminates the repetitive code that used to be required for working with data. A
developer can now write clean, straightforward models and code that make it
easy to access data. The framework handles the repetitive and clutter-filled
database communication and configuration stuff on behalf of the developer.

Entity Frame work 7
Microsoft is working to release EF 7 as a lightweight version that
enables new platforms and data stores such as Windows Phone.
EF 7 will allow developers to target relational or nonrelational
data such as Azure Table Storage. At the time of writing, EF 7
was just getting off the ground. There was a preview release, but
the team could not mark it beta because it was still very much in
progress. Therefore, we focus primarily on the latest version of
EF: 6.x.

Model as Code (Code First)
Developers often prefer to work with code, and the EF Code First model is a
recognition of that fact. Code First allows you to write code that defines your
model (tables and relationships). You can then easily work with your model to
get data, update it, and save it back to the database.
Code First can be used to target an existing database or generate a database
directly from the code model. Of course, you can also use the Visual Studio
tools to generate a Code First model based on an existing database.
To write a Code First model in a given project, you start by adding appropriate
references to Entity Framework or use the NuGet package manager to install
the latest version of EF and add it to your project. Once your project is set up,
you start by defining simple classes called plain old CLR objects (POCOs)
that represent your database entities. You then create a database context object
that uses EF to communicate to your database via your model classes. The
following is an example.

Generate Code F irst from Existing Database
EF 6.1 introduced the ability to generate Code First from an existing database.
To get started, you add a new ADO.NET Entity Data Model to your application
by right-clicking your project and choosing Add, New Item and selecting the
Data template group. This launches the Entity Data Model Wizard, as shown in
Figure 1.15. Here you select Code First from Database to generate a Code
First model based on existing database entities.

FIGURE 1.15 The Entity Data Model Wizard simplifies the creation of
	
Code First and Model First EF development.
	

The next step in the wizard is to define a connection string to your database.
This connection string will be stored for you inside your application
configuration file. The final step is to select the tables for which you want the
wizard to generate Code First access. Figure 1.16 shows an example where
Customers and Orders are selected from a database.

FIGURE 1.16 Use the Entity Data Model Wizard to select tables to target
for Code First development.

The Visual Studio Wizard then generates a database context class and simple
classes to represent each of your database tables. The database context class
(derived from System.Data.DbContext) defines objects (of type
DbSet<TEntity>) that you use to work with your data. The DbContext
classes knows how to get a connection to your database and read and write
data. Figure 1.17 shows an example of this class in the code editor.

FIGURE 1.17 The Code First DbContext object provides access to database
tables as objects.

The simple POCO classes that the wizard generates contain properties that
represent fields on your database. These classes have no dependency on EF.
You use attributes to set rules for your data validation, such as required fields
and maximum string lengths. Figure 1.18 shows the Customer class
generated by the wizard.

FIGURE 1.18 The wizard can generate your Code First POCO classes on
your behalf.

The last step is to write code to read data into your Code First model, use it,
and write data back to the database if required. Entity Framework makes this
an easy process for developers. You access the data by creating a new instance
of your DbContext. You then can create a LINQ query to access that data
using your DbContext and DbSet collections. You can also add items to
your DbSet collections and tell the context to save your changes. Figure 1.19
shows an example of querying the Customer table inside a console application.

FIGURE 1.19 Use the DbContext object to access data from your database.
	

Note
Visual Studio, the .NET Framework, and even EF provide many
additional ways to work with your data. This includes EF model
first development, data synchronization, data sets, and others.
Data access and development is covered in detail in Chapter 13,
“Working with Databases.”

Writing M obile Apps
Visual Studio allows developers to target mobile devices in many ways. You
can create websites that use the SPA template to be adaptive to various device
sizes. Of course, Visual Studio enables native Windows Phone and Windows
Store applications. New to Visual Studio 2015 is the ability to write native,
cross-platform applications using Visual Studio Tools for Apache Cordova.

Note
Apache Cordova (http://cordova.apache.org/) is an open source
project that provides an application wrapper and device APIs for
accessing native features on Mac, Windows, and Linux.

The Apache Cordova tools allow you to build and debug apps that target iOS,
Android, Windows, and Windows Phone from a single Visual Studio project.
You can run and test your applications using Windows Phone emulator, the new
Visual Studio Emulator for Android, or by connecting a device (such as an
iPad) to your development computer.
You install the Apache Cordova tools from a secondary installer for Visual

http://cordova.apache.org/

Studio. This will set up the various emulators and give you the SDKs for
building cross-platform mobile applications.
Your Apache Cordova applications are written as HTML5, CSS, and
JavaScript applications wrapped in a native shell. This combination allows
you to write a single code base to target all these devices. You gain access to
the native device for things like local storage, camera functions, and barcode
scanning through the given native shell.

Create an Apache Cordova App
There are many, many components of an Apache Cordova cross-platform
application. This includes more than nine dependencies you must install and
configure. Thankfully, Visual Studio makes this easier for developers. To get
started, you create a new project. The Apache Cordova application template is
under the JavaScript language group, as shown in Figure 1.20.

FIGURE 1.20 You can find the Apache Cordova project template under the
	
JavaScript templates.
	

The project template should be familiar to web developers. It includes the core
web folders css, images, and scripts. Your screens are written as HTML pages
(see index.html in Figure 1.21). The merges and res folders are Cordova-
specific; the merges folder is for platform-specific overrides to your code; the
res folder is for icons and splash screens specific to a given platform. Figure
1.21 shows the Solution Explorer view of a Cordova application.

FIGURE 1.21 The Apache Cordova project structure should be familiar to
web developers.

You write Cordova screens using standard HTML, CSS, and JavaScript.
Again, this should be familiar to web developers. You can run and preview
your application directly from Visual Studio. To do so, you select your
platform in the toolbar (see Android in Figure 1.21) and then select the device
emulator (see Ripple – Nexus (Galaxy) in Figure 1.21). From there, you press
the green run (or play) button. This builds your application and launches the
appropriate emulator. It also give you access to the DOM explorer from Visual
Studio. Figure 1.22 shows a simple example of a Cordova application running
in the Ripple emulator/debugger and Visual Studio controlling the debug
process.

FIGURE 1.22 A sample application being debugged in the Apache Ripple
	
Android emulator.
	

Note
Mobile applications are covered in Part VII of the book,
“Creating Mobile Apps.” This includes Windows Phone/Store
applications and cross-platform applications built on Apache
Cordova.

Summary
A new release of Visual Studio means a lot to all the various development
camps out there. Visual Studio touches developers who write code in C++, C#,
Visual Basic .NET, and many other languages. Millions of developers boot and
launch their favorite tool every day. They spend the majority of their working
hours, days, weeks, and months architecting and building solutions with the
tool. We hope this chapter oriented you to the many possibilities available for
building your next application.

Chapter 2. The Visual Studio IDE
	

In This Chapte r
Installing Visual Studio
Managing Your IDE Settings
Getting Started
Creating Your First Project
Navigating the IDE
Managing the Many Windows of the IDE
Providing Feedback on Visual Studio

When you’re traveling over new ground, it’s often wise to consult a guide. At a
minimum, a quick check of the map is in order before you set out for new
adventures. The same holds true for approaching a new development tool the
size and breadth of Visual Studio 2015. It is wise to familiarize yourself a bit
with the tool before starting that first project off on the wrong foot.
This chapter is your quick, to-the-point guide. It serves to orient you before
you set out. We cover the basics of installation; configuration; booting the IDE;
and getting to know the layout of the tool in terms of projects, menus, tools,
editors, and designers. We also point out what’s new and improved for 2015.
Let’s get started.

Installing Visual Studio
The installation of Visual Studio 2015 remains similar to that of earlier
versions. The application plays host to many tools. Depending on your
purchase, a subset of these items is available during install. (See Chapter 1, “A
Quick Tour of Visual Studio 2015,” for a comparison of Visual Studio
editions.) If you are fortunate enough to own Visual Studio Enterprise, you are
presented with the full set of options for installation. For those with Visual
Studio Professional, however, you can choose between the types of
applications you intend to build such as Microsoft Office Developer Tools,
Microsoft Web Developer Tools, Cross Platform Mobile Development,
Universal Windows App Development tools, and more. Figure 2.1 shows the
setup options selection page for Visual Studio Professional 2015.

FIGURE 2.1 Visual Studio 2015 Professional basic installation options.
Setting up your development machine should be relatively straightforward. We
suggest that most developers install the core set of tools they intend to use. For
example, if you are a web developer, you want the Microsoft Web Developer
Tools; if you intend to build applications for Windows Phone, you want the
Windows 8.1 and Windows Phone 8.0/8.1 Tools; and so on. You can, of
course, install everything the product offers. Some people prefer this approach;
others find it just clutters their environment.

Tip
You might change your mind about your installation selections at a
later date. In this case, you can always go back and rerun setup.
Rerunning setup gives you the Add or Remove Features,
Repair/Reinstall, and Uninstall options.

Installing Optional Features
Visual Studio 2015 includes a number of options features as a secondary
dialog in the installation process. After hitting the Next button shown in Figure
2.1, the installer will launch a secondary selection for optional features. Many
of these features are shown in Figure 2.2. Notice these include many optional
items required for doing cross-platform mobile development such as Xamarin
or the Android SDK and emulator. Most cross platform mobile developers
(using Xamarin or Cordova) will want to install these optional items.

FIGURE 2.2 Use the Visual Studio 2015 installer to set up and configure
	
optional frameworks and templates for things like cross-platform mobile
	

development.
	

Signing In to Visual Studio
Visual Studio gives developers with MSDN the option to sign in to their
MSDN account directly from within the IDE. This verifies your license to use
the software and allows you to store development settings (such as colors, key
bindings, and more) in a central place between computers and versions.
Signing in also gives you access to Visual Studio Online (TFS in the cloud) if
you are using that for source control and project tracking. It also links you to an
Azure account if you leverage that for hosting. Of course, logging in requires
that you have an Internet connection. Figure 2.3 shows how you access the sign
in process for Visual Studio directly from within the IDE.

FIGURE 2.3 You can sign into your MSDN account directly from within the
	
IDE.
	

Clicking the Sign in link as shown in Figure 2.3 will launch a Visual Studio
sign in dialog. Here you enter your email address and then link to the
appropriate ID that you use to maintain your credentials for MSDN. You can
have multiple accounts inside Visual Studio. We will look at that scenario in an
upcoming section.

M anaging Your IDE Settings
On subsequent visits to Visual Studio (post-sign in), you go straight to the tool,
and Visual Studio automatically signs you in. This way, on your behalf,
Microsoft stores any customizations you make around development settings
such as keyboard shortcuts or user interface (UI) themes. Settings are stored
locally on your machine (c:\users\[user]\documents\visual studio 2015\settings)
and synched in the cloud against your profile. This allows you to sign in from a
different device and maintain your settings without doing additional
customizations. Visual Studio also allows you to manually move setting files
from one device to another (or share them with your co-workers). This section
explores managing some of the key IDE settings.

Specify Stored and Synchronized Settings
Visual Studio stores and synchronizes all your development settings (and
modifications to those settings) by default. This includes the theme, fonts and
colors, keyboard shortcuts, start-up settings, and text editor options. You can
use the options dialog (Tools, Options) to find these many settings and change
them (discussed later in this chapter). You can also use this dialog to enable
(or disable) synchronized settings between machines. Figure 2.4 shows the
Synchronization Settings option.

FIGURE 2.4 Use the Synchronized Settings option under Environment to
specify if you wish to synch settings between machines.

Change Color Theme
You can switch your selected theme or your default settings post initial setup.
To change your theme, you launch the Options dialog from the Tools menu, as
shown in Figure 2.5. You select the Environment category from the tree view
on the left side of the dialog. Under Environment you choose the General
options. This gives you access to the color theme (see top right-side of Figure
2.5). The Visual Studio theme options are Light, Blue, and Dark. This book
uses the Light theme. The Dark theme provides a high-contrast visual theme
(black background with brighter text). The Blue theme looks similar to prior
versions of Visual Studio.

FIGURE 2.5 The Environment category General option allows you to
change the color theme applied to your IDE.

Manually Import/Export and Change Default IDE Settings
You can also switch your full environment settings from one type of developer
to another. The developer settings collections reset your IDE and related
dialogs (such as New Project) to highlight items most relevant to a given
developer type (such as Web, C#, or Visual Basic). Resetting your IDE default
settings collection is useful if you do a lot of switching from one language to
another or if you switch roles. For example, C# developers might use the C#
development settings most of the time. They might then toggle to another
collection of settings when switching to Visual Basic or developing a web-
only application.
You manage your environment settings from the Tools menu’s Import and
Export Settings option. Figure 2.6 shows the first screen in this wizard. This
screen enables you to choose to execute a settings export, import, or total reset.
First, we focus on resetting the IDE to one of the Visual Studio defaults (by
choosing Reset all settings).

FIGURE 2.6 Use the Import and Export Settings Wizard to reset your
settings back to the Visual Studio default options.

The next step in the Wizard when resetting your settings is an option to save
any current settings. Figure 2.7 shows how you can store your current settings
locally before resetting. This allows you to use the same tool to import this
settings file back to your IDE if you need to use them again. You can use this
same file to share these saved settings if needed.

FIGURE 2.7 You can export/save your settings prior to resetting.
The last step when resetting is to select a default collection of settings to
import. Figure 2.8 shows the available collections from which to choose.
These settings are based on language selection and development style.

FIGURE 2.8 You can reset to one of the default settings collections in Visual
Studio.

The other two options in the wizard are used to export and import settings (see
Figure 2.6). In both cases you select which settings you want to export and
which you plan to import. For example, you might love the way a friend has
configured her code editor in terms of font and contrasting colors, but you do
not want all her other settings, such as her keyboard configurations. You can
accomplish this by selecting to import only her code editor settings. Figure 2.9
provides a glimpse at the granular level to which you can manage your
environment settings during import and export.

FIGURE 2.9 You can specify exact settings to import and export.
	

Tip
In Figure 2.9, note the warning icon next to the Import and Export
Settings selection. Some settings may contain sensitive data (for
instance, a folder path that includes domain information or your
user name), and this icon flags those items that should be treated
with care to avoid disclosing what might be confidential
information.

Switch IDE User
Visual Studio 2015 asks you to log in at the initial launch to verify your license
and setup storage/synchronization with your settings. However, there are times
you may have to switch users or user accounts within the IDE. To do so, you
first select your name from the upper-right side of the menu bar. You then select
the Account Settings option as shown in Figure 2.10.

FIGURE 2.10 Access your account settings (including sign-out/sign-in) from
the Account settings option.

The Account Settings form allows you to personalize your account. It also
allows you to sign out, add additional accounts, and of course sign back in
after signing out. Figure 2.11 highlights the sign-out link with the cursor.
Clicking this link will sign you out and provide a new button for sign-in. With
it, you can sign in with a different user account. Notice too the Add an account
link under All Accounts. This allows you to add more than a single account to
your IDE in the event you are working on multiple projects in VSO or Azure.

FIGURE 2.11 The Visual Studio account page allows you to sign out and
	
back in using different user profiles.
	

Getting Started
When you first launch Visual Studio 2015, you are presented with the Start
Page for the IDE (see Figure 2.12). The Start Page contains a number of useful
links to get you moving quickly. Starting from the upper left, you have three
primary options: New Project, Open Project, and Open from Source Control.
You also can launch a recent project from the left side of the screen. The
centermost real estate is used for providing access to the latest learning links
and videos relevant to your development choices.

FIGURE 2.12 The Visual Studio Start Page.
	

Tip
You can highlight a project under the Recent list and pin it to
ensure it stays in the list. You can also right-click to easily
remove a project from this list.

Startup Options
If you just don’t like the Start Page, want to create your own, or prefer to
launch directly into the project you’ll be spending the next few months of your
life working on, you can customize what happens when the IDE boots. From
the Options dialog box (Tools, Options), choose the Environment node and
then the Startup leaf. Figure 2.13 shows some of the options available to you at
startup.

FIGURE 2.13 Startup/Start Page options.
	

Tip
You may like to briefly scan the Start Page but want it to
disappear after you load a project. This option is available to you
as a check box at the bottom left (scroll all the way down) of the
Start Page.

You can also use the At Startup option to tell the environment to load the last
solution, show the new or open project dialog boxes, open a custom Start
Page, or do nothing (show an empty environment). You can also configure how
often Start Page content is automatically refreshed from the server. (This is
hidden under the drop-down in Figure 2.13.) Finally, you have the option here
to use a custom Start Page.

Note
To see how you can create and use a custom Start Page for Visual
Studio, search “Customizing the Start Page for Visual Studio” on
msdn.microsoft.com.

Creating Your First Project
The next, natural step is to create your first project. You might have an existing
project you want to open, or you might be starting fresh. In either case, creating
or opening a project quickly exposes you to some of the basic project and file
management features within the IDE.
To get started, you can click the File menu or the New Project link on the Start
Page. Assuming you are using the File menu, you see the options to create a
new project or a website under the New submenu. Projects are simply
templates that group files for Windows, Office, web, and similar applications.
Visual Studio supports web projects as templates-driven web applications and
websites as a set of files that are promoted and managed to your web server as
files. You might also have multiple projects grouped together to form a single

http://msdn.microsoft.com

application. In this case, each project might be grouped under a single solution.
Figure 2.14 shows an example of the New Project dialog box. Notice that a
Visual C# ASP.NET Web Application is being created, along with a new
solution to house the project. For more information on solutions, see Chapter 4,
“Solutions and Projects.”

FIGURE 2.14 Creating a new project as a C# web application.

Targeting Your Environment
Many of us work in environments that include applications built on various
versions of the .NET Framework. You might be building your new applications
on .NET 4.6 but still need to support one or more .NET 3.5 applications. Of
course, this becomes even more prevalent as more versions of the framework
are released. You do not, however, want to have to keep multiple versions of
Visual Studio on your machine. Instead, you should be able to target the
version of the Framework for which the application is written. This way you
can work in a single IDE and take advantage of the latest productivity
enhancements.
Visual Studio 2015 supports the ability to target a specific version of the .NET
Framework for an application. This means you can use a single tool to develop
against many applications built on various .NET Framework flavors. Setting
the .NET Framework version of an application appropriately sets the toolbox,
project types, available references, and even IntelliSense inside the IDE to be
in sync with the chosen .NET Framework version. Figure 2.15 shows the New
Project dialog box again; this time, the .NET Framework version selection (top
center) has been highlighted.

FIGURE 2.15 Setting your new project to target a specific version of the
.NET Framework.

After you select a Framework version, the IDE automatically adjusts the
available project types, IntelliSense, referenceable libraries, and similar
features. For instance, if you choose to add a reference to your project, only
those libraries from the target version of the Framework are available to you in
the Add Reference dialog box.
You can also decide to move your application to a different (hopefully newer)
version of the .NET Framework at a later date. You can do so inside the
Project Properties dialog box. (Right-click your project file inside of Solution
Explorer and select Properties.) Figure 2.16 shows an example of the
properties for an ASP.NET MVC application. Notice the Target Framework
drop-down. You can change this, and the IDE then resets IntelliSense,
references, your toolbox, and more to the newly selected target framework.

FIGURE 2.16 Resetting the target Framework of a web application.
	

Note
The Framework setting is per project. Therefore, you can create a
single solution that contains multiple projects, and each can target
a different version of the .NET Framework.

Of course, you can use Visual Studio 2015 to open an existing application built
on an earlier version of Visual Studio and the .NET Framework. When doing
so, you have the option of upgrading or keeping it tied to its current framework
version.

Navigating the IDE
After you’ve created your first project, you should get started adding features
to your application. This, of course, requires that you have some basic
understanding of the many components of the IDE. Figure 2.17 shows a sample
website inside the IDE. Notice that the IDE layout is relatively generic:
Toolbox on the left, Solution Explorer on the right, and code in the middle. You
should expect a similar experience for your applications (at least until you’ve
customized things).

FIGURE 2.17 The standard layout of an application inside the IDE.
Getting around inside the IDE is the first step to being productive. The
following sections break down the many items shown in Figure 2.17; it might
be useful to refer back to this graphic to provide overall context as given item
is discussed.

The Menus
If you’ve been working with earlier versions of Visual Studio, you should find
the Visual Studio 2015 menu bar to be standard fare. It is intuitive; options are
where you would expect them; and new menus appear depending on your place
within the IDE, the tools you’ve chosen to install, and your default
programming language. For example, the Build menu shows up when you have
a project open.
Table 2.1 lists (from left to right across the IDE) some of the more common
menus, along with a description of each.

 TABLE 2.1 Visual Studio 2015 Menus
	

Note
Note that each menu screenshot in Table 2.1 was taken using the
C# menu default settings. In each case, Visual Basic has an
equivalent, albeit slightly different, menu. The keyboard shortcut
callouts in the menu items are also those of default C#. Visual
Basic developers should recognize a lot of them as the same. All
menus can be customized to an individual developer ’s preference.
You can also use the Keyboard options (Tools, Options,
Environment, Keyboard) to apply specific keyboard mapping
schemes.

The Many Toolbars
Visual Studio 2015 includes close to 30 toolbars in just the professional
edition. If you use a set of commands often, there is a good chance that there is
a matching toolbar to group those commands. As a result, a large percentage of
the toolbars are highly specialized. For example, if you are working with the
Class Designer, you use the Class Designer toolbar to manage classes or
change screen magnification. Or if you are building a SQL Query, you use the
Query Designer toolbar. We do not cover each of these toolbars here because
they are highly specialized. Instead, we stick to a quick tour to cover the
common ground.

The Standard Toolbar
The Standard toolbar is present at all times during your IDE sessions (unless,
of course, you customize things or turn it off). It provides quick access to all
the commands you use over and over. The standard commands are on the top
left: Back and Forward, Create New Project, Open File, Save, and Save All.
These are followed by Undo and Redo. Figure 2.18 shows the Standard
toolbar in the IDE.

FIGURE 2.18 The Standard toolbar in Visual Studio 2015.
	

Tip
We suggest you learn the keyboard equivalents for such standard
commands as cut, copy, paste, undo, and the like. In fact, most
standard toolbar items have a shortcut you should learn. You can
then remove many of these toolbar icons from the toolbar to save
precious screen real estate for commands that have you reaching
for the mouse anyway (and have harder-to-remember shortcut
keys). Keep in mind that toolbars can, and will, change
configurations depending on the project type currently loaded in
the IDE.

The button to the right of the undo/redo commands allow you to set your build
type (Debug or Release). The next button allows you to configure your build by
CPU. The button with the green start arrow is often called the Debug or Play

button. This button looks different depending on your project type (in this case,
a web project). This initiates a build of your project and launches it under the
debugger control. In the example shown in Figure 2.18, you also have the
option to select the default, debug browser (Chrome in this case). The last
button on the right provides an option for initiating a search within your code
files. This capability can be handy for quickly finding the place where you left
off or the place you are looking for. Finally, to the right of this is a drop-down
that enables you to add buttons to or remove them from the Standard toolbar.
As you will see later, you can, in fact, customize any of the toolbars in the IDE.

Customizing Toolbars
If the standard toolbars that ship with Visual Studio don’t meet your needs, you
can create custom toolbars that do. Select the Tool menu’s Customize item or
right-click a toolbar in the IDE and select Customize to launch the Customize
dialog box shown in Figure 2.19.

FIGURE 2.19 The Customize dialog box allows you to select and customize
menus and toolbars in the IDE.

The Toolbars tab allows you to select which toolbars to show. It also allows
you to dock the toolbar in a different location in the IDE (top, bottom, left, and
right). The Commands tab allows you to customize the menus, toolbars, and
context menus (right-click). Figure 2.19 shows the Commands tab for working
with the Standard toolbar.
You make customizations to the toolbar by selecting an item and choosing one
of the option buttons on the right (move up, move down, delete, and so on). If

things get messed up, you can use the Reset All button for a selected toolbar to
revert to the default state.

Create a New Toolbar
The Toolbars tab on the Customize dialog box enables you to select which
toolbars are visible. This dialog box also includes the New button, which
enables you to create new toolbars to group existing commands. This gives you
a great deal of customization options. After you’ve clicked the New button, you
name your new toolbar. You then switch to the Commands tab and select the
toolbar.
To add items to your new toolbar, you select the Add Command button, as
shown in Figure 2.19. Figure 2.20 shows the Add Command dialog. Here you
can access commands by categories. You select a command you want to add
and click the OK button to complete the operation. You repeat this process
until you have created your custom toolbar.

FIGURE 2.20 Create a custom toolbar and add commands.

Assign Keyboard Shortcuts
You can also configure your keyboard shortcut combinations from the
Customize dialog box. Use the Keyboard button (the bottom of Figure 2.19) to
bring up the Options dialog box to the environment’s keyboard options screen.
Figure 2.21 shows an example. First, you find a command from the list of
hundreds; next, you set your cursor in the Press Shortcut Keys text box and
press a shortcut key to map (or remap) a combination.

FIGURE 2.21 Use the Keyboard options to assign (or modify) keyboard
shortcuts to various IDE commands.

In Figure 2.21, the Build.Compile command is selected. The user is trying
to assign the Ctrl+F10 shortcut key to the command (under “Press shortcut
keys”). However, notice that Visual Studio lets you know that the Ctrl+F10
shortcut is already assigned to Debug.RunToCursor. Reassigning this
shortcut is possible but may not be your intent.
You should do some exploration of your own into the many toolbars (and
toolbar customization options) within Visual Studio. Often their usefulness
presents itself only at the right moment. For instance, if you are editing a
Windows form, having the Layout toolbar available to tweak the position of
controls relative to one another can be a valuable timesaver. Knowing that
these toolbars are available increases the likelihood that you can benefit from
their value.

The Solution Explorer
The Solution Explorer enables you to group and manage the many files that
make up your application. A solution simply contains multiple projects
(applications or assemblies). A project groups files related to its type. For
instance, you can create a website, Windows Forms application, class library,
console application, and more. The files inside the project containers represent
your code in terms of web pages, forms, class files, XML, and other related
items.
Figure 2.22 shows the Solution Explorer undocked from the IDE. The solution
contains two applications (called projects). There is a Windows Forms
application (OrderEntry) and a web application (WebSample).

FIGURE 2.22 The Visual Studio 2015 Solution Explorer with two projects
loaded.

You use the Solution Explorer to navigate the many items in your projects. You
can access an item by first selecting it and then double-clicking it. Solution
Explorer opens the given designer or editor associated with the type of file you
request. For example, opening a file with the extension .cs opens the C# code
editor. You can also add a new item (class, image, form) to your application
from here by right-clicking a project or folder and selecting the Add menu.
Finally, you can use the Solution Explorer during source control scenarios to
check items in and out of source control. The Solution Explorer is covered in
depth in Chapter 4.

Tip
You can select an item in the Solution Explorer (single-click) to
view its contents without actually opening the file for edit
(double-click). In this scenario, Visual Studio shows you the file,
and you are able to browse its contents. However, if you select
another file, the previous file does not remain open, and you are
not responsible for closing it. Note that you can leave it open in
the IDE by pressing the Keep Open tiny icon at the right of the
filename.

The Text Editors
Visual Studio 2015 has several text editors or word (code) processors. Each
text editor is based on a common core that provides the basic set of
functionality for each editor, such as the selection margin, the capability to
collapse nested items, and colorization. Each editor derives from this core and
is customized to give you the editors for code (C#, Visual Basic, and so on),
the XML editor, the XAML editor, the HTML (or ASPX) editor, the style sheet
editor, and more.

The Code Editors
The code editor, for our money, is where the magic happens. It is here that you
get down to business leveraging your favorite language to define objects and
their functionality. Of course, you can write code outside the Visual Studio
editor, but why would you? You can also write a novel using Notepad or do
your taxes by hand. A good code editor means higher productivity, plain and
simple. And Visual Studio has some of the best code editors around.
The code editor is front and center when you’re writing the guts of your
application. It handles indentation and whitespace to make your code clean and
readable. It provides IntelliSense and statement completion to free you from
having to look up (or memorize) every object library and keyword. It provides
shortcut snippets to help you quickly generate common code such as property
definitions. It groups code into blocks, it provides color codes for keywords
and comments, it highlights errors, and it shows new code relative to
previously compiled code. All in all, the Visual Studio code editor does quite
a bit to keep you focused, organized, and productive.

The C# Code Editor
Figure 2.23 shows the C# code editor with a controller open from the
ASP.NET MVC template. Some items to note include the following:

The code is grouped into logical sections along the left side. You can use
the minus signs to close a whole class, method, property, or similar
group. This capability enables you to hide code you are not working on
at the moment. You can also create your own custom, named regions to
do the same thing.
Code lines are numbered along the left edge of the editor. You can turn
this feature on or off for different code editors in the tool.
New code is signaled inside the section groups with a colored line.

Yellow is used for new code that has yet to be saved. The highlighted
line turns green after a save and disappears after you close and reopen
the file. This feature enables you to track where you have made changes
to code during your current session.
The name of the open code file is listed as the code window’s tab across
the top. The asterisk indicates that the code has changed since the last
time it was saved.
IntelliSense is invoked as you type. You can use the arrow keys to
quickly find the item in the list. Hovering over the item shows details for
the given item (tip text to the right). You can press the Tab key to
complete the item from IntelliSense. Note that the completion also occurs
after you press SPACE.
The code is highlighted in various colors. By default, keywords are navy
blue, comments are green, text is black, types you create are light blue,
string values are red, and so on.
The three drop-downs at the top of the code editor enable you to
navigate between projects (left-most side), between the classes in the
file (middle drop-down) and methods, fields, and properties within a
given class (right-side drop-down).

FIGURE 2.23 The C# code editor in action.

The Visual Basic Code Editor
The Visual Basic code editor works much the same way as the C# editor.
Figure 2.24 shows the code editor, this time with a Visual Basic file loaded.
Over time, these editors have become more and more similar. The primary
difference currently (outside the language syntax) is the horizontal lines used to
separate methods and properties within the editor.

FIGURE 2.24 The Visual Basic code editor in action.
Of course, Visual Studio contains many more text editors. There are other
language editors (C++ and F#), XML editors, XHTML editors, and more. Each
has similar features to the two code editors shown here.

Editor Customizations
You can customize nearly every aspect of the many code editors to your every
whim. From our experience, it seems no two developers see their code the
same way. You can use the Options dialog box (Tools, Options) to change the
editor ’s background color or the color and font of various text elements within
the editor. You can also turn on line numbering and manage indenting (tabs) and
whitespace. You can set options based on language and editor. The full list of
customizations for the editors is large.
Figure 2.25 shows the Options dialog box set for Fonts and Colors. From here,
you can tweak the many display items in the editor in terms of their color, font,
and font size.

FIGURE 2.25 Use the Options dialog box to set Fonts and Colors of the text
editors.

If you look a little closer at the Options dialog box, you come across the Text
Editor node as a topmost element in the option tree. From here, you can
manipulate even more settings for the text editor in general for language-
specific editors. For example, you can remove the horizontal procedure
separators in the Visual Basic editor or turn off the automatic reformatting of
code by the editor.
One common change we see developers make is controlling how the editor
automatically formats code inside the C# editor. It seems granular control of
curly braces is a big deal to those who look at code all day. For instance, you
might like to see all your curly braces on separate lines, or you might prefer
them to start on the line that starts the given code block. Fortunately, you can
control all of that from the Options dialog box. Figure 2.26 shows some of
these options available for formatting C# inside the editor. Notice how the
option also shows an example of how the editor formats the code.

FIGURE 2.26 Use the Options dialog to control how code is formatted by
the editor.

The Visual Designers
Visual Designers are the canvases that you work on using the mouse to create
items such as forms via drag, drop, move, resize, and the like. Visual Studio
2015 ships with many such visual designers. Together, they enable you to build
the items that make up your application. Items include Windows forms, web
forms, class diagrams, XML schemas, and more.
All the visual designers work in a similar way. First, they take center stage
within the IDE as tabbed windows surrounded by various menus, toolbars, and
panes. Second, you use the Toolbox (discussed in a moment) as a palette from
which you place items (such as controls) onto the given designer. You then
configure each item’s many properties using the Properties window.
Figure 2.27 shows the WPF Form Designer in action (the middle, highlighted
tab). Note that the Toolbox is on the left and the Properties window is on the
bottom right. We cover the majority of the visual designers in depth in the
coming chapters. You can also get a better overview from Chapter 6,
“Introducing the Editors and Designers.”

FIGURE 2.27 An example of a designer (WPF) inside the IDE.

The Toolbox
The Visual Studio 2015 Toolbox provides access to the many controls when
you’re building web and Windows forms. It also provides access to nearly
anything that can be dragged onto one of the numerous designers used for
creating forms, XML schemas, class diagrams, and more. As an example, if
you are building a web form, the Toolbox provides the many controls, grouped
for easier access, that can be added to the form. Furthermore, if you are
working with a text editor, the Toolbox enables you to save clips of text for
quick access.
Figure 2.28 shows the Toolbox in a standard configuration (undocked from the
IDE) for building a web form. The many controls inside this Toolbox and those
inside other Toolbox dialogs are covered throughout the rest of the book in
their respective chapters.

FIGURE 2.28 The Visual Studio Toolbox used to add controls to a form (in
	
this case, a web form).
	

Tip
You can customize the Toolbox to your liking. For example, you
can add your own groups (called tabs). You can also configure the
Toolbox to show more icons on the screen at a time. As you
familiarize yourself with the various standard controls, you can
turn off their text descriptions and simply show them as icons. To
do so, right-click the control group (tab) and uncheck List View.

The Properties Window
The many tools, controls, and rich designers that free us from repetitive code
also require our attention in the form of maintenance. This work is typically
done through the manipulation of the hundreds of properties that work in
concert to define our application. This is where the Properties window comes
into play. It enables us to control the size, appearance, and behavior of our
controls. Furthermore, the Properties window groups common properties into
sets for easier access. Finally, the Properties window gives us access to
connecting the events for a given control to the code inside our application.
Figure 2.29 shows the Properties window (undocked from the IDE) for a web
form button control. Note that the window can group similar properties into
sections via banded categories, such as Appearance. You can also list
properties in alphabetic order by clicking the AZ icon on the Properties
window toolbar. Another item worth noting is the lightning bolt icon on the
toolbar. This gives you access to the events for the given control. From the list
of events, you can select an event and wire it to code in your project (or
double-click it to generate an event handler).

FIGURE 2.29 A save button inside the Properties window.

M anaging the M any Windows of the IDE
To round out our whirlwind tour, we thought it important to provide you with
guidance on customizing and managing the plethora of windows available
within the IDE (lest they leave you with a postage-stamp-size window in
which to write your code). To manage these windows, you really need to know
only two skills: pinning and docking. In addition, Visual Studio 2015 brings
you custom window layouts for saving and applying different layouts.

Pinning
Pinning refers to the process of making a window stick in the open position. It
is called pinning in reference to the visual cue you use to perform the act: a
pushpin. Pinning is a key concept because you sometimes want full-screen real
estate for writing code or designing a form. In this case, you should unpin (auto
hide) the various extraneous windows in your IDE. Figure 2.30 shows the
mouse cursor over the pin of the Solution Explorer window. Note that this
window is currently pinned open. You would push this pin to unpin the
window.

FIGURE 2.30 Pinning and unpinning windows in the IDE.
An unpinned window slides the window closed but keeps it accessible to you
(versus closing it altogether). When a window is unpinned, a vertical tab
represents the window. The Toolbox and Properties tabs on the far left and
right of Figure 2.30 are examples. Clicking on this tab results in the window
unfolding for your use. After you use it, however, it goes back to its hiding
spot.

Docking
Docking is the process of connecting windows to various sticky spots within
the IDE. Typically, this means docking to the left, top, right, or bottom of the
IDE. For example, the Toolbox is, by default, docked to the left side of the
IDE. You might prefer to put it at the bottom of the screen, docked below the
active designer. You might also want to dock the Solution Explorer to the top
of the screen and then unpin it for quick access. You can see an example of this
docking approach in Figure 2.31.

FIGURE 2.31 Horizontally docking windows in the IDE.
You can also dock windows to one another. For example, you might want to
dock the Properties window below the Solution Explorer. Or you might want
the Properties window to be a tab within the same window to which the
Solution Explorer is docked. Figure 2.32 shows an example of the Properties
window being docked to the bottom of the Solution Explorer window.

FIGURE 2.32 Docking one window to another in the IDE.
To help with docking, Visual Studio 2015 has provided visual cues and

helpers. First, click and hold the title bar with the mouse, and then drag the
window to where you want to dock it. Visual Studio displays some docking
icons.
Four icons are at the edge of the IDE, one each at the left, top, right, and
bottom. These icons are used for docking the window at the given edge of the
IDE. Using these icons results in the window being docked across the full
length (or width) of the IDE. Figure 2.32 shows each of these icons as the
Properties window is being docked.
There is also an icon that shows over the top of a window to which you might
want to dock. This icon is used for docking the selected window relative to
another window in the IDE. For example, you might want to dock the
Properties window under the Solution Explore window (as shown in Figure
2.32). You do so with the bottom icon inside this icon group.
Of course, you can also undock items. This is simply the process of floating
windows off by themselves (outside, or on top of, the IDE). To do so, you
simply grab (click with the mouse) a window by the title bar and move it off to
the side of the IDE or just don’t choose a docking icon.
Finally, when working with a window, you can right-click the title bar and tell
Visual Studio how the window should behave. Figure 2.33 shows the available
options. The down-arrow icon on the window title bar provides access to the
same features. The Float option indicates that the window floats wherever you
put it, on top of the IDE. This can be useful if you find yourself moving
windows about or need to use multiple monitors. You turn off this option by
choosing Dock. You can also use the Dock as Tabbed Document option to add
a window to the center of your IDE (just like the default positioning of a
designer or code editor).

FIGURE 2.33 The float and docking options of a window in the IDE.

Custom Window Layouts
Visual Studio 2015 provides support for saving your custom window layouts.
This allows you to tweak your IDE for different functions such as C# coding
versus XAML layout activities. You can then save your window layout with a
name and apply it when the time is right.
As an example, suppose you configure the IDE to look similar to that shown in

Figure 2.34. This layout is optimized for focusing on code and code files. The
Toolbox and properties windows are unpinned.

FIGURE 2.34 You can create a custom window layout and save it.

You can save this layout from the Window menu. You select Save Window
Layout. You are then presented with a simple dialog to give the window layout
a name.
When your IDE activity changes (or you end up making changes to the IDE),
you can easily apply your saved window layout. To do so, you select the
Window menus and choose Apply Window Layout. Figure 2.35 shows an
example. Notice the window layout behind the menu has changed. Clicking
Apply Window Layout resets to the saved layout. Also, notice that your
window layouts are automatically given keyboard shortcuts (Ctrl+Alt+1). This
makes switching between layouts even easier.

FIGURE 2.35 You can apply a custom window layout to your IDE.
Finally, Visual Studio also allows you to manage your saved windows. You do
so from the Windows menu, Manage Window Layouts. Figure 2.36 shows an
example. Here you can rename a layout, delete it, or move it up and down in
the sequence (and thus change the keyboard shortcut associated with the
layout).

FIGURE 2.36 Manage custom window layouts.
	

Navigating IDE Windows
You can navigate open windows in the IDE without touching a mouse. This
keeps your fingers on the keyboard and can lead to greater productivity. Visual
Studio 2015 provides a couple of options here. The first is a simple window-
switching hotkey. Suppose you have a number of code windows open in the
IDE. To navigate forward (left to right) through them, you can use the key
combination Ctrl+- (minus sign). This is for the standard development settings
in the IDE; your settings might differ. To go backward (right to left), you use
Ctrl+Shift+- (minus sign). This provides faster window switching without
requiring that you scroll with the mouse or search through your solution.
You can get similar results using a visual aid called the IDE Navigator. This
tool is similar to the Alt+Tab feature of Windows that allows for fast
application switching. To access it, you use Ctrl+Tab (and Ctrl+Shift+Tab).
You use this key combination to open the dialog box and navigate open code
windows and active tool windows. Figure 2.37 shows the result. Notice that
active files are cycled through on the right. You can jump between the active
tools and active file lists using the right- and left-arrow keys.

FIGURE 2.37 Use the IDE Navigator to jump between the many open
	
windows in your IDE.
	

Note
To change the keyboard combinations assigned to the IDE
navigator, select the menu option Tools, Options. Under the
Environment node, select Keyboard. Here you can set keyboard
shortcut keys. The settings to change are as follows:
Window.NextDocumentWindowNav and
Window.PreviousDocumentWindowNav.

Touch Support
Visual Studio 2015 introduces touch support to the code editor. Developers
with touch monitors, touch laptops, or coding on a Surface will find this useful.
You likely will still type with your keyboard. However, you can use basic
gestures in the code editor to simplify a few key tasks including these:

Scroll via tapping and dragging on the code editor
Zoom and shrink via the pinch and expand gesture
Select a link of text by tapping in the margin of the editor
Select a single “word” of code by double-tapping the word
Press and hold your finger on the editor to open the context (right-click)
menu

Customize Your IDE Font
You can change the font that your IDE uses for menus and related items. To do
so, you open the Options dialog from the Tools menu. You first select the
Environment node and the Fonts and Colors subnode. At the top of the options
for fonts and colors is a drop-down for selecting where you wish to modify the
Fonts and Colors (for example, the Text Editor, Output Window, All Text Tool
Windows, and more). You can also use this drop down to set the font for the
entire IDE to the selection of your choice. Figure 2.38 shows selecting this
option (Environment Font) and changing the font from Automatic to Arial
Narrow.

FIGURE 2.38 Changing the font for your IDE.
Figure 2.39 shows the results. Notice the menu items and Solution Explorer are
now using the new font choice. Other items such as the Toolbox, Server
Explorer, and dialogs (like New Project) will pick up this same setting. If you
do not like your change, you can always change it back the same way by
selecting Automatic as your font choice.

FIGURE 2.39 The IDE with a new font setting.

Providing Feedback on Visual Studio
Visual Studio has a direct feedback option. You can use it to let the team know
what you like and what is not working. This helps Microsoft understand what
is working and what it needs to work on. You can report slow performance, an
IDE crash, or an IDE hang. You can also tell Microsoft what you do like.
You can start a feedback session from the Help, Feedback menu option.
However, Microsoft wanted to improve discoverability of this tool, so it
added it directly to the top of the IDE. You access it from the smiley face on
the top of the IDE. Figure 2.40 shows this menu in action. Notice that you can
send a smile (good feedback) or a frown (bad feedback).

FIGURE 2.40 Use the smiley face to send good and bad feedback on the
IDE directly to Microsoft.

Clicking the More Options menu item shown in Figure 2.40 takes you to the
Visual Studio connect site. Here you can log a bug, submit an ideal, or ask a
question.

Starting a feedback session launches the send feedback dialog, as shown in
Figure 2.41. The tool automatically captures a screenshot on your behalf. You
can then write Microsoft a note describing your feedback. Your email is
included (optional) if Microsoft contacts you about the feedback.

FIGURE 2.41 The Visual Studio Feedback dialog.

The Customer Experience Program
The Visual Studio help menu includes the item Customer Feedback Options.
This option enables you to participate in the Visual Studio Experience
Improvement Program. Choosing to participate enables Microsoft to collect
information on your hardware and software configuration and how you use the
tools. It does not send personal information. Of course, you can use this same
menu item to opt out of the program.

Summary
The whirlwind tour is over. We’ve covered the basics of installation, creation
of your first project, and the standard items you encounter when journeying out
on your own. You should now be oriented to the basic set of menus, toolbars,
settings, and window management inside Visual Studio. With your bearings in
place, you can push onward.

Chapter 3. The .NET Languages
	

In This Chapte r
What’s New in C# 6.0 and VB 14
Language Primer
Language Features
Asynchronous Programming
The .NET Framework

Unlocking the productivity promises of the Visual Studio IDE is at the heart of
this book. The IDE, of course, also ships from Microsoft in concert with new
versions of the .NET languages and Framework. You need to have a solid
grasp of programming the Visual Basic or C# language using the .NET
Framework to take advantage of everything Visual Studio has to offer. Of
course, you may also need to know many other things such as XAML,
Hypertext Markup Language (HTML), Cascading Style Sheets (CSS),
TypeScript, JavaScript (and related frameworks), C++, F#, and LightSwitch.
Today’s developer likely does not code in a single language syntax. However,
VB and C# are still at the core of most Visual Studio development.
In this chapter, we set aside the IDE (for the most part) and focus on the
foundations of .NET programming in C# and Visual Basic. We start by
highlighting new features of the languages for those who are already familiar
with C# and VB. We then include a language primer as a review of some basic
.NET programming tasks. We then cover some more in-depth programming
features, enhancements to C# 6.0 and VB 14, and language-related IDE
enhancements. The chapter concludes with an overview and map of the .NET
Framework class library.

What’s New in C# 6.0 and VB 14
This section is for developers looking for highlights on what’s new about the
C# and Visual Basic languages. For those who need the basics (or a refresher),
we suggest you start by reading the “Language Primer” section a little later in
this chapter. You can then return here to see what additions exist to the primer.
In general, the language changes are small additions that help you write cleaner
code. They simplify coding by eliminating unnecessary, repetitive code. The
changes also make the code easier to read and understand.

Note
You can examine much of the code in this section by downloading
the code files associated with this book.

Null-Conditional Operators
One of the most repetitive tasks you do as a programmer is to check a value for
null before you work with it. The code to do this checking is typically all over
your application. For example, the following verifies whether properties on an
object are null before working with them. (For a more complete discussion of
all operators, see the section “Understanding Operators” later in this chapter.)
C#
Click here to view co de image

public bool IsValid()

{

if (this.Name != null &&

this.Name.Length > 0 &&

this.EmpId != null &&

this.EmpId.Length > 0)

{

return true;

}

else

{

return false;

}

}

VB
Click here to view co de image

Public Function IsValid() As Boolean
If Me.Name IsNot Nothing AndAlso

Me.Name.Length > 0 AndAlso

Me.EmpId IsNot Nothing AndAlso

Me.EmpId.Length > 0 Then

Return True

Else

Return False

End If

End Function

Both C# 6.0 and VB 14 now allow automatic null checking using the question
mark dot operator (?.). This operator tells the compiler to check the
information that precedes the operator for null. If a null is found in an If
statement for example, the entire check is considered false (without additional
items being checked). If no null is found, then do the work of the dot (.) to
check the value. The code from earlier can now be written as follows:
C#
Click here to view co de image

public bool IsValid()

{

if (this.Name?.Length > 0 &&

this.EmpId?.Length > 0)

{

return true;

}

else

{

return false;

}

}

VB
Click here to view co de image

Public Function IsValid2() As Boolean
If Me.Name?.Length > 0 AndAlso

Me.EmpId?.Length > 0 Then

Return True

Else

Return False

End If

End Function

Note
The ?. operator is referred to as the Elvis operator because you
can see two dots for the eyes and the question mark as a swoop of
hair.

The null-conditional operator cleans up code in other ways. For instance,
when you trigger events, you are forced to copy the variable and check for null.
This can now be written as a single line. The following code shows both the
old way and the new way of writing code to trigger events in C#.
C#
Click here to view co de image

//trigger event, old model
{

var onSave = OnSave;

if (onSave != null)

{

onSave(this, args);

}

}

//trigger event using null-conditional operator

{

OnSave?.Invoke(this, args);

}

ReadOnly Auto Properties
Auto properties have been a great addition to .NET development. They
simplify the old method of coding properties using a local variable and a full
implementation of get and set. See “Creating an Automatically Implemented
Property” in the later section “Language Features.”

However, up until 2015, auto properties required both a getter and a setter; this
makes it hard to use them with immutable data types. The latest release now
allows you to create auto properties as read only (with just the get). A read-
only backing field is created behind the scenes on your behalf. The following
shows an example of a full property, a standard auto property, and the new
read-only auto property.
C#
Click here to view co de image

Public class Employee
{

//full property
private string name;
public string Name
{

get { return name; }
set { name = value; }

}

//standard auto property

public string Address { get; set; }

//read-only auto property

public string EmpId { get; }

}

VB
Click here to view co de image

Public Class Employee

'full property
Private _name As String
Public Property Name() As String

Get
Return _name

End Get
Set(ByVal value As String)

_name = value
End Set

End Property

'standard auto property

Public Property Address As String

'read-only auto property
Public ReadOnly Property EmpId As String

End Class

Read-only auto properties can be assigned from the constructor. Again, they
have a hidden backing field. The compiler knows this field exists and thus
allows this assignment. The following shows a constructor inside the
Employee class shown above assigning the read-only EmpId property.
Notice that, in Visual Basic, the Sub New constructor must be used to assign a

read-only property.
C#
Click here to view co de image

public Employee(string id)

{

EmpId = id;

}

VB
Click here to view co de image

Public Sub New(ByVal id As String)

EmpId = id

End Sub

You can also initiate read-only auto properties at the time of their creation (just
like the field that backs them), as shown next. Note that if you were to combine
this assignment with the previous constructor code (that initialized the read
only property), the object creation would happen first. Thus, the constructor
init would take precedence.
C#
Click here to view co de image

public string EmpId { get; } = "NOT ASSIGNED";

VB
Click here to view co de image

Public ReadOnly Property EmpId As String = "NOT

ASSIGNED"

NameOf Expression
You now have access to the names of your code elements, such as variables
and parameters. The .NET languages use the NameOf expression to enable
this feature.
Prior to 2015, you often had to indicate the name of a program element by
enclosing it in a string. However, if the name of that code element changed, you
had an error lurking in your code (unless you managed to remember to change
the string value). For example, consider the following code that throws an
instance of ArgumentNullException. This class takes a string as the
name of the argument. It then uses the string value to find your program
element; it’s not strongly typed programming at all.
C#
Click here to view co de image

public void SaveFeedback(string feedback)

{
if (feedback == null)
{

//without nameOf

throw new ArgumentNullException("feedback");
}

}

VB
Click here to view co de image

Public Sub SaveFeedback(ByVal feedback As String)
If feedback Is Nothing Then

'without nameOf
Throw New ArgumentNullException("feedback")

End If
End Sub

The NameOf expression eliminates this issue. You can use the expression
along with your actual, scoped code element to pass the name of your code
element as a string. However, NameOf uses the actual type to reference the
name. Therefore, you get compile-time checking and rename support. The
following shows an example of throwing the same exception as used earlier
but using NameOf.
C#
Click here to view co de image

throw new ArgumentNullException(nameof(feedback));

VB
Click here to view co de image

Throw New ArgumentNullException(NameOf(feedback))

Using (Imports) Statics
The using statement (Imports in VB) allows developers to declare namespaces
that are in scope; thus, classes in the namespace do not need to be fully
qualified inside your code. (See “Organizing Your Code with Namespaces”
later in this chapter.) You can now use the same statement with static classes.
To do so, in C# you must include the static keyword as in “using static.” In
Visual Basic, you simply use Imports and then specific the static library.
The ability to indicate using (Imports in VB) with a static class tells the
compiler that the class and its members are now in scope. This allows you to
call a method of the static class without referencing the namespace or even the
class name inside your code.
As an example, consider the static class System.Math. You could add a
using statement to the top of your code file. In that case, calls to the static
methods would no longer need to be qualified by namespace and class.
Instead, you could call the method directly. The following shows the difference
between the two approaches.
C#
Click here to view co de image

using static System.Math;

...

//use the static method, round without using

return System.Math.Round(bonus, 0);

//use the static method

return Round(bonus, 0);

VB
Click here to view co de image

Imports System.Math

...

'use the static method, round without imports

Return System.Math.Round(bonus, 0)

'use the static method

Return Round(bonus, 0)

String Interpolation
The .NET languages allow you to replace portions of a string with values. To
do so, you use String.Format or StringBuilder.AppendFormat.
These methods allow you to use placeholders as numbers inside curly braces.
These numbers are replaced in series by the values that follow. This is
cumbersome to write and can lead to confusion.
In 2015, the code editor allows you to put the variable right in the middle of
the string. You do so using the format that starts the string with a dollar sign ($)
as an escape character. You can then add curly braces within the string to
reference variables, as in {value}. The editor gives you IntelliSense for
your values, too. The call to String.Format then happens for you behind
the scenes. The example that follows shows how the previous use of
String.Format is now simplified with enhanced string literals.
C#
Click here to view co de image

//old style of String.Format
return String.Format("Name: {0}, Id: {1}", this.Name,
this.EmpId);

//string interpolation style

return ($"Name: {this.Name}, Id: {this.EmpId}");

VB
Click here to view co de image

'old style of String.Format
Return String.Format("Name: {0}, Id: {1}", Me.Name,
Me.EmpId)

'string interpolation style

Return $"Name: {Name}, Id: {EmpId}"

Lambda Expressions as Methods (C# Only)
Methods, properties, and other bits of code can now be assigned using lambda
expression syntax (in C# only). (See “Write Simple Unnamed Functions Within
Your Code (Lambda Expressions)” later in this chapter.) This makes writing
and reading code much easier. The following shows a full method
implementation as a lambda and a single expression. Notice that we use the
string interpolation discussed in the prior section.
C#
Click here to view co de image

public override string ToString() => $"Name:

{this.Name}, Id: {this.EmpId}";

Index Initializers (C# Only)
Prior language editions brought developers the concept of creating an object
and initializing its values at the same time. (See “Object Initializers” later in
this chapter.) However, you could not initialize objects that used indexes.
Instead, you had to add one value after another, making your code repetitive
and hard to read. C# 6.0 supports index initializers. The following shows an
example of creating a Dictionary<string, DateTime> object of
key/value pairs and initializing values at the same time.
C#
Click here to view co de image

var holidays = new Dictionary<string, DateTime>
{

{ "New Years", new DateTime(2015, 1, 1) },
{ "Independence Day", new DateTime(2015, 7, 4) }

};

Language Primer
You have a few language choices available to you as a .NET programmer:
Visual Basic, C#, C++, or F# are at the core. There are also user interface
(UI)-specific languages and markup syntax, such as JavaScript, HTML, and
XAML. Which core language you choose is typically a result of your history,
style, and intent. Developers who have worked with past incarnations of
Visual Basic or another basic language will find they are at home inside Visual
Basic. The language (including templates, tools, wizards, and so on) is all
about developer productivity. Developers whose roots are in a C-based
language (C++, Java, and so on) and who want similar productivity in a
straightforward way gravitate toward C#. Of course, some developers will
just want to stay in C++ even for their .NET applications.
Visual Studio 2010 saw the introduction of the F# language. Now part of the
full Visual Studio product line, F# 4.0 targets enterprise developers. Similar to
other .NET languages, F# supports object-oriented programming. What makes
it different is that it is also a functional programming language. Functional
programming elevates functions to first-class values. (The F in F# is for
functional.) For example, a functional language allows you to easily pass
functions as parameters, return functions as the result of a function, chain

functions together to create new functions, create recursive functions, and
more. These powerful features in F# allow you to more easily tackle complex
algorithms with less code (and often less pain) than it would take with the
standard object-oriented (OO)-only languages of Visual Basic and C#. Having
F# inside of Visual Studio also means that you can leverage the .NET
Framework, get the benefits of the Common Language Runtime (CLR)
(including calling to and from other .NET code), and have debugging and other
related tools support.

Note
F# is both a new language and a new way of programming. You
need to spend time to be able to “think” in F#. There is not room
in this book to present the language. In addition, most .NET
developers still write nearly all their code in Visual Basic or C#.
Therefore, we focus on those two languages throughout this book.

Programming Objects
Programming in .NET is an object-oriented experience. You write your own
classes and leverage those created by Microsoft (forms, controls, and
libraries). In fact, every .NET application has at least one class, and more
often it has hundreds. You can extend classes with new functionality
(inheritance), define classes based on a contract (interface), and override the
behavior of existing classes (polymorphism). This section looks at defining
objects with .NET code.

Classes
Think of classes as the container for your code. Classes define how you hold
data (properties) and perform actions (methods); they communicate how your
class works after it’s created (instantiated). When you create an instance of the
class, it is an object and can actually maintain its own state and execute code
to update and give access to it.
You define a class using the Class keyword. The following shows an
example.
C#

public class Employee

{

}

VB

Public Class Employee

End Class

F ields and P roperties
You add code to a class to define its data and behavior. Data for your class can
be stored in fields or properties. Fields and properties are similar; both define
data that is contained in the class. The difference is that properties can provide
a means to protect the access (setting and getting) to field data. Fields are
typically private variables defined by the class, accessible only from the class
code, and defined as follows.
C#

public class Employee

{

private string _name;

}

VB

Public Class Employee

Private _name As String

End Class

You can define public fields on your class to make them accessible from any
other class code. However, it is a best practice to encapsulate public data
inside a property. This way you can control whether to expose the ability to
read or write the value of a property. Properties are typically backed by an
internal, private field. This is called data hiding and is implemented with the
Private keyword. For example, the previously defined field can be
encapsulated into a property as follows.
C#

public class Employee

{

private string _name;

public string Name
{

get { return _name; }

set { _name = value; }

}

}

VB
Click here to view co de image

Public Class Employee

Private _name As String

Public Property Name() As String

Get

Return _name
End Get
Set(ByVal value As String)

_name = value

End Set

End Property

End Class

You can also create read-only properties. This is useful when you want to
reserve the writing of the property’s value to code running inside the class.
You create a read-only property by not implementing the set statement in the
property definition. In Visual Basic, you also have to add the ReadOnly
keyword. For example, suppose you want to add an Id property to the
Employee class defined previously. This Id can be read by anyone, but its
value (backed by _Id) is only set by internal class code. You could implement
a read-only property as follows.
C#

private int _id;

public int Id

{

get { return _id; }

}

VB
Click here to view co de image

Private _id As Integer

Public ReadOnly Property Id() As Integer

Get

Return _id

End Get

End Property

Methods
Methods represent the blocks of code in your class that, when called, perform
some specific action. This action could be reading or writing from a database,
calling other methods, calculating a value, processing some business rules and
returning a result, or whatever you need your code to do.
Methods are defined by their names and access levels; see the next section for
more details on access levels. In Visual Basic, you also need to add the Sub
keyword to define a method that does not return a value. In C#, this is done by
indicating the return type of void before the method name. For example, if
you were to add a Save method to the Employee class previously defined,
the code would look like this.
C#
Click here to view co de image

public void Save()

{

//implementation code goes here

}

VB
Click here to view co de image

Public Sub Save()

'implementation code goes here

End Sub

Methods often return values to the code that called the method. To define a
method that returns a value, you must indicate the method’s return type (the
class type of the returned data). In Visual Basic, you also use the keyword
Function (instead of Sub). You use the Return keyword to indicate the
value to return from your code. For example, if you were to add a method to
calculate an employee’s remaining sick day, you would do so as follows.
C#
Click here to view co de image

public int GetRemainingSickDays()

{

int _sickDays = 0;

//calculate remaining sick days

return _sickDays;

}

VB
Click here to view co de image

Function GetRemainingSickDays() As Integer

Dim _sickDays As Integer = 0

'code to calculate remaining sick days

Return _sickDays

End Function

In this example, note the return type defined in the method signature (first line
of the method). Also note the use of the keyword Return to return a value
from the method. In this case, that value is stored inside a variable defined as
internal to the method.

Member Accessibility
The properties, fields, and methods in your application are referred to as class
members. Each member in your class is defined to have a specific access
level. As you’ve seen, if you want other classes to be able to access a member,
you must declare that member as public. If you want to reserve the member for
accessibility only within the class, you declare it as private. These are two of
the member accessibility levels available to you. The full complement of
accessibility levels is described in Table 3.1.

TABLE 3.1 Member Accessibility Level in .NET
In addition to class-member accessibility, classes themselves use the same
accessibility levels. You can declare a class as public, private, protected, and
so on to define your intended usage. You want to make many classes private or
protected to the class and deriving types. The classes you make public define
the functionality you want to expose to other code.

Constructors
A constructor is code that is called when a new instance of your class is
created. This code is used to define how you want your class instance
initialized, typically by setting default values or some related setup code. You
create a constructor as you would a method. The difference is that you give the
constructor the same name as the class; you also do not need to prefix the
method with void in C#. In Visual Basic, you can use the Sub New statement
to create a default constructor for the class. This can be useful if you are
initializing read-only properties. The following code shows an example for the
Employee class.
C#
Click here to view co de image

public Employee()
{

//init default values of an empty employee object
}

VB
Click here to view co de image

Public Sub New()
'init default values of an empty employee object

End Sub

A class can have multiple constructors to change the way in which the object is
initialized. In these cases, each constructor is defined with a different set of
parameters. In C#, the version of the constructor that does not take parameters
is referred to as the default constructor. In Visual Basic, the Sub New construct
is used to define the default constructor. The following shows a couple

additional constructors added to the Employee class. One initializes an
Employee object based on the calling code passing in an id parameter; the
other uses the employee’s email address to initialize the object.
C#
Click here to view co de image

public Employee(int id)

{

//init default values for the employee defined by
the given ID
}

public Employee(string emailAddress)

{

//init default values for the employee defined by
the given email
}

VB
Click here to view co de image

Public Sub Employee(ByVal id As Integer)
'init default values for the employee defined by the

given ID
End Sub

Public Sub Employee(ByVal emailAddress As String)
'init default values for the employee defined by the

given email
End Sub

Static (Shared in VB) Members and Objects
Sometimes you do not want the full behavior of a class for all your methods.
Instead, you might want to define certain methods that are not part of an
instance of the class. These methods often retrieve information or calculate
values but are not part of a specific object. In these cases, you can create entire
classes or just specific methods of a class as static (or shared in Visual Basic).
The Shared and static keywords, when applied to a method, indicate that
the method can be called without creating an instance of the class that contains
it. Shared and static can also be defined at the class level. In this case,
you are indicating that the class only contains shared and static methods, and
you cannot create an instance of it. For example, you might add a static helper
method to the Employee class to check to see whether an employee is active
in the system before you create an instance. This declaration would look like
this.
C#
Click here to view co de image

public static bool IsActive(string emailAddress)

{

//check to see if an employee has been added to the
system
}

VB
Click here to view co de image

Public Shared Function IsActive(ByVal emailAddress As
String) As Boolean

'check to see if an employee has been added to the
system
End Function

Enumerations
Enumerations enable you to create a group of named values that help improve
your code readability. Each item in an enumeration is a unique numerical value
(byte, sbyte, short, ushort, int, uint, long, or ulong). Note that
the default is int. You can pass around the enumeration value as a name rather
than an actual value. In this way, your code doesn’t rely on arbitrary, “magic”
numbers. Instead, the code is sensible and readable.
You create an enumeration using the enum keyword. For example, you might
add an enumeration to the Employee class to store the employment status of
an employee. This would enable you to make decisions in your code based on
the specific status of an employee. To define this enumeration, you add code as
follows to the Employee class.
C#

enum EmploymentStatus
{

Salaried,
Hourly,
Contract,
Other

}

VB

Enum EmploymentStatus
Salaried
Hourly
Contract
Other

End Enum

Inheritance
You can define a new class based on an existing class, which is called
inheritance. You use inheritance to extend (or add to) the functionality of a base
class. Classes that extend a base class are said to derive their functionality
from another class. That is, they contain all the functionality of the base class
plus any additional functionality added to the new class.
You indicate inheritance in Visual Basic by using the Inherits keyword; in
C# you add a colon and the base class name following the name of the new
class. For example, suppose you implement a Manager class that derives
from Employee. The Manager class contains all the members of an
Employee but might add special properties and methods specific to a
Manager. You define this new class as follows.

C#

class Manager: Employee

{

}

VB

Public Class Manager

Inherits Employee

End Class

Note that you can actually define a base class that cannot be created. Instead, it
only exists to form the basis for a new class. Other classes can derive from it,
but you cannot create a direct instance of just the base class. This is done by
adding the MustInherit (VB) or abstract (C#) keyword in front of the
class definition. The keyword NotInheritable (VB) or sealed (C#)
indicates that the class cannot be used as the basis for a new class.

Note
.NET programmers can only derive from a single class. They
cannot inherit from multiple base classes. However, they can
implement multiple interfaces (as discussed next).

Overriding Behavior
When you design your classes, consider how other developers might extend
them. Your classes might serve as the base class for future derived classes. If
this is the case, you might also consider which (if any) features of your base
class you want to allow a derived class to override. The derived class may
then implement a new version of one of your base methods, for example. This
process is often referred to as polymorphism in OO programming.
To change the data or behavior of a base class, you can either add to the base
class or override an existing member of the base class. Doing the latter gives
you alternate behavior for the same function in your new class. You decide
which members of your base class are available for override. You do so by
marking them as virtual (Overridable in VB) members; this indicates that a
derived class may override your base class functionality.
For example, suppose that you want to enable the CalculateYearlyCost
method of the Employee class to be overridden when the Employee is used
as the base for the Manager class. In this case, the calculation for a
Manager is different for that of an Employee. You therefore mark the
method inside the Employee class as virtual (C#) or Overridable
(VB), as follows.
C#
Click here to view co de image

public class Employee
{

public virtual float CalculateYearlyCost()
{

}

}

VB
Click here to view co de image

Public Class Employee
Public Overridable Function CalculateYearlyCost() As

Single

End Function

End Class

You can then override this method in the derived class. You do so using the
override (C#) or Overrides (VB) keyword. You can still call the
method on the base class if you need to by using the base (C#) or MyBase
(VB) keyword. The following shows an example.
C#
Click here to view co de image

class Manager : Employee
{

public override float CalculateYearlyCost()
{

//add new functionality, access underlying method
using base keyword

}
}

VB
Click here to view co de image

Public Class Manager

Inherits Employee

Public Overrides Function CalculateYearlyCost() As
Single

'add new functionality, access underlying method
using MyBase

End Function

End Class

Hiding Members
There is a second way you can override the functionality of a base class. It
involves using the keyword new (C#) or Shadows (VB) to redefine the base
method. Overriding in this manner hides the base class members. However, the
base class member is still called if an instance of the derived class gets
downcast to an instance of the base class. This type of overriding is referred to
as hiding by name. For example, you could replace the C# keyword
override with new or the VB Overrides with Shadows to implement
this type of behavior.
You need to be careful about hiding members versus overriding because
downcasting can occur often. For example, you might be working with a

collection of Employee objects (some of type Manager and some of type
Employee). If you iterate over the list using the base class (for each
employee), you get a different method called on the Manager class depending
on whether you hid the member (in which case, the base class method is
called) or overrode the member (in which case, the derived class method is
called).

Overloading Members
You can also create multiple versions of the same procedure. All versions of a
procedure can be defined inside the same class, or you can have a few
versions in a base class and yet other versions in a derived class. This is
useful when you need to preserve the name of the procedure but need to create
different versions that each take different parameters. Creating multiple
versions of a procedure is called overloading or hiding by signature (as in the
method’s calling signature).
Overloading a method must follow rules designed to make each overload
somehow different from all the others. Of course, each overload has the same
name. However, you must change either the number of parameters the method
accepts, the data type of one or more of those parameters, or the order of the
parameters. You create a valid overload by changing one or more of these
items to make the overload signature unique. Note that changing the return type,
if the method returns a value, is not sufficient to create an overload; nor is
changing just a parameter modifier.
For example, suppose you were creating a method to return the number of
vacation days left for an employee. You might allow the users of this method to
get the vacation days left for the current year, a supplied month, or a supplied
month and year. In this case, the users of your method see a single method with
multiple overloads. You implement this overloading similar to the following
code.
C#
Click here to view co de image

public short GetVacationUsed()

{

//returns all vacation used in the current year

}

public short GetVacationUsed(short monthNumber)
{

//returns all vacation used in the given month of
the current year
}

public short GetVacationUsed(short monthNumber, short
year)
{

//returns all vacation used in the given month and
year
}

VB

Click here to view co de image

Public Function GetVacationUsed() As Short

'returns all vacation used in the current year

End Function

Public Function GetVacationUsed(ByVal monthNumber As
Short) As Short

'returns all vacation used in the given month of the
current year
End Function

Public Function GetVacationUsed(ByVal monthNumber As
Short, ByVal year As Short) _

As Short
'returns all vacation used in the given month and

year
End Function

Defining Interface Contracts
An interface is used to define a class contract. An interface does not contain
any actual functioning code. Rather, it indicates a common structure for code
that must be implemented by another class. This enables you to create common
contracts and use those contracts across multiple objects. You can then trust
that each class that implements the interface does so completely, following the
outline of the interface.
An interface can define different types of class members, including properties,
methods, events, and the like, but not fields or constructors. To create an
interface, you use the Interface keyword. For example, suppose you want
to define a basic interface for a person. The Employee class might then be
required to implement this interface. Other classes (such as User and
Customer) might also implement the same interface. The following shows an
example of how you might define this interface.
C#
Click here to view co de image

interface IPerson
{

string Name { get; set; }
DateTime DateOfBirth { get; set; }
string EyeColor { get; set; }
short HeightInInches { get; set; }

}

VB
Click here to view co de image

Public Interface IPerson
Property Name As String
Property DateOfBirth As DateTime
Property EyeColor As String
Property HeightInInches As Short

End Interface

You implement the interface by adding the interface to the class definition on
the class where you intend to implement the interface. In Visual Basic, this is
done by adding the Implements keyword under the class definition (similar
to inheritance). In C#, you add the interface to the class definition the same
way you would indicate a base class (using a colon). You can separate
multiple implemented interfaces by a comma.

Note
You implement an interface when you want to define the structure
of a base class but do not intend to implement any base
functionality. If you have common base functionality for which
you provide for extension, you should consider using inheritance
and abstract base class.

Creating Structures
So far we have talked about programming classes. There is another kind of
type available to .NET programmers called a structure. Structures are similar
to classes; they can contain properties, fields, enumerations, and methods.
They can implement interfaces and can have one or more constructors. The
main differences lie in how structures are managed by .NET.
Structures are considered value types. This means that when structures are
used, the entire class instance is passed around as a value and not a reference.
A class is a reference type. When you use a class instance and pass it around
your application, you are actually passing a reference to a class instance. Not
so with a structure. This also changes how .NET manages the memory used for
structures and classes. Structures use stack allocation, and classes are managed
on the heap by the Garbage Collector. To put this in perspective for .NET
developers, imagine you have an instance of an Employee class. This
instance might be created inside one object and passed to another object’s
method. If the second object makes a change to the Employee instance, this
change is reflected inside all objects that maintain a reference to the instance.
If this were a structure, however, there would be copies of that object passed
around, and changes would be isolated to each copy.
There are other differences between classes and structures. For one, structures
are sealed; that is, they cannot be inherited from. They also have an implicit
public constructor that cannot be redefined. For these reasons, structures are
best used when you need a lightweight container for data values and do not
need the features of a reference type. Structures are often used to define small
custom data types, reducing the odds to trigger a garbage collection.
You define a structure much like you define a class. In place of the class
keyword, however, you use struct (C#) or Structure (VB). For
example, imagine you want to define a data type that represents a paycheck.
You could create a structure to hold this information. The following shows an
example.
C#
Click here to view co de image

public struct PayCheck

{

private double _amount;

public double Amount

{

get { return _amount; }

}

//add additional structure elements ...

}

VB
Click here to view co de image

Public Structure Paycheck

Private _amount As Double

Public ReadOnly Property Amount() As Double

Get

Return _amount

End Get

End Property

'additional structure elements ...

End Structure

Organizing Your Code with Namespaces
A namespace is used to group code that is specific to a company, an
application, or a given library. Namespaces help .NET programmers overcome
naming conflicts for classes and methods. For instance, you cannot have two
classes with the same name in the same namespace because it would confuse
the .NET runtime and developers. Instead, your class names are unique inside
your namespace.
You declare a namespace at the top of your code using the keyword
namespace. Alternatively, you can set the default namespace inside your
project properties. In this way, you do not have to see the outer namespace
definition inside each code file. A common practice for defining namespaces
includes using your company name followed by the application being written
and then perhaps the library to which the code belongs. For example, you might
define the namespace grouping for the Employee class as follows.
C#
Click here to view co de image

namespace MyApplication.UserLibrary
{

public class Employee
{
}

}

VB
Click here to view co de image

Namespace MyApplication.UserLibrary

Public Class Employee

End Class

End Namespace

You do not have to add this namespace information at the top of every code file
in your project. This can become redundant and is error prone because a
developer might forget to include the namespace definition. As an alternative,
you can set the root namespace for your entire project using the project
properties window. (Right-click the project file and choose Properties.) Figure
3.1 shows an example. This is a similar experience in both C# and VB. Note
that you can define a root namespace here and still add additional namespace
groupings in your code as necessary. Of course, those additional namespace
definitions fall inside the root namespace.

FIGURE 3.1 Use the application properties to set the root namespace at the
project level.

You access code inside a namespace by using the fully qualified definition of
the namespace. For example, the .NET root namespace is System. If you
were to access the String class, you would do so by using
System.String. This is true for your code, too. To access the
GetVacationUsed method, you might call out as follows.
Click here to view co de image

MyCompany.MyApplication.UserLibrary.Employee emp =
new MyCompany.MyApplication.UserLibrary.Employee();

short usedVaca = emp.GetVacationUsed();

As you can see, accessing code using the fully qualified namespace can be

cumbersome in terms of typing and reading your code. Thankfully, you can
import (with the using statement in C#) a namespace inside your code. This
frees you from having to fully qualify each type you use. Instead, the compiler
resolves class names based on your imported namespaces. Of course, the
namespaces themselves are still required to prevent ambiguity in the compiler.
Importing namespaces also help trim IntelliSense to those imported libraries.
In most cases, you do not get conflicts with imported namespaces. Type names
are typically different enough in a given library that they do not overlap. If
names do overlap, you can add qualification to eliminate the conflict.
You import namespaces using the using statement (C#) or Imports (VB)
keyword. For example, the following shows namespaces imported into a class
file for a Windows Forms application. The code includes the import
statements for referencing the Employee class library.
C#
Click here to view co de image

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using MyCompany.MyApplication.UserLibrary;

namespace TestHarnessCSharp
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs
e)

{
Employee emp = new Employee();
//do work

}
}

}

VB
Click here to view co de image

Imports MyCompany.MyApplication.UserLibrary

Public Class Form1

Private Sub Form1_Load(sender As Object, e As
EventArgs) _

Handles MyBase.Load

Dim emp As New Employee()

'do work ...

End Sub

End Class

Notice in the preceding example that the C# code has a number of additional
using (or imports) statements at the top of the file. This is because VB
files automatically import many of the default namespaces in .NET. The latest
version of the IDE indicates which using statements are not necessary by
fading their color. The IDE also provides a quick action to remove these if you
want. Figure 3.2 shows an example.

FIGURE 3.2 You can easily eliminate unnecessary using statements in
your code.

Types, Variables, and Constants
All classes, structures, and interfaces you create in .NET are considered types.
That is, they define a specific type of data. The underlying .NET Framework
Base Class Library also provides strong types. In fact, the .NET languages of
both C# and VB are based on strongly typed objects. This means when you
define a variable you create an instance of a strongly typed class. The .NET
runtime can then rely on this type information for handling casting,
comparisons, and other rules.

Data Types
A number of built-in types (classes) are used for common programming needs.
These built-in types are referred to as data types and represent things such as a
string of characters or a numeric value. You work with these data types like
you would any structure or class. You can declare a variable of a certain type,
create a new instance, or execute a method off of the type.
Most of the simple data types you use are value types (structures). There are a
couple simple data types that are reference types (classes). These are string
(System.String) and object (System.Object). Recall that value types
store data (and copies of data) and that reference types instances store a
reference to underlying data: this is important in terms of performance (cost of
duplication with value types instances and cost of garbage collections induced
by the reference type instances). Table 3.2 lists many of the common value
types used in .NET programming; there are more than what is in this list. The
list shows the underlying .NET Framework class, the range allowed in the data
type, and the C# and VB data type names.

TABLE 3.2 Value Data Types by Language

Many of the data types listed in Table 3.2 include unsigned versions. These are
preceded with a u (as in ulong and uint). The System.Byte data type is the
exception. It is unsigned. The signed version is called sbyte. Signed values
include both the negative and the positive numbers in their range. Unsigned
value types start at zero and include only positive numeric values.

Declaring Variables
When you declare a variable using a simple type, you typically want to declare
the variable using the type that represents the lowest possible range for your
situation. For example, if you were to define a variable to hold the month
value, you might use System.Byte. If you were to define the year, you might
use System.Int16. In this way, the lowest possible memory overhead is
used for these types.
You declare a variable in C# by preceding the name of the variable with its
type. In Visual, you use the Dim statement. The type then comes after the
variable’s name. The following code shows an example of declaring variables
in each language.
C#

byte month;

short year;

float paycheckAmount;

VB
Click here to view co de image

Dim month As Byte

Dim year As Short

Dim paycheckAmount As Single

Of course, you can also define variables of other (more complex) types in the
.NET Framework or types defined in your own class libraries. When you
declare a variable, you can also assign it a default value or instantiate a new
instance. The following shows an example.
C#
Click here to view co de image

byte month = 1;

short year = 2015;

float paycheckAmount = 0;

string name = "test";

Employee emp = new Employee();

VB
Click here to view co de image

Dim month As Byte = 1

Dim year As Short = 2015

Dim paycheckAmount As Single = 0

Dim name As String = "test"

Dim emp As Employee = New Employee()

Type Conversion
Again, both VB and C# are strongly typed languages. Therefore, the variables
you declare cannot be reused by assigning different type values. Rather, they
must always represent the underlying type to which they were declared or a
type deriving from the variable type. This can be problematic. Sometimes, for
instance, you have an integer that you need to pass to a method that only
accepts a string. Or you need to parse a string value into an integer for a
calculation. These are all instances in which you need to convert one type to
another.
There are two conversions that you can make: implicit and explicit. An
implicit conversion happens when you pass a smaller value type into a larger
type that can contain the smaller value. In this case, if no data is lost, the
conversion is allowed. For example, you can pass a short into a long without
issue. However, passing a float (or double) into an integer might result in data
loss and is thus not allowed as an implicit conversion; you need to explicitly
convert. For example, the following code converts an integer value to a
double. This code does not throw a type conversion error. Rather, it converts
using implicit conversion.
C#

int intVal = 100;

double doubleVal = intVal;

VB
Click here to view co de image

Dim intVal As Integer = 100

Dim doubleVal As Double = intVal

If there is a chance that the conversion results in data loss, you must explicitly
indicate your intention to convert types. This is called casting. You can also
cast values that might otherwise be implicitly converted. In fact, this often
makes your code more readable.
In C#, you cast a variable to another type by putting the type to which you are
casting in parentheses in front of the type (or value) being cast, as in the
following.
C#
Click here to view co de image

double doubleVal = 12.345;

int intVal = (int)doubleVal;

In Visual Basic, you cast a variable to another type using conversion
keywords. These keywords have a C (for cast) in front of them followed by the
type to which you are casting. For example, you can cast to an integer using
CInt, a double using CDbl, or a string using CStr. The following shows an
example.
VB
Click here to view co de image

Dim doubleVal As Double = 12.345

Dim intVal As Integer = CInt(doubleVal)

There are times when you have a string value and need to convert it into a
numeric. This cast is not allowed. However, most of the numeric types include
the method Parse that enables you to parse a string into a numeric value.
There is also TryParse, which returns a Boolean indicating whether the
parse will work. It is recommended to use the latter for performance sake
because with Parse, an exception is thrown if the parsing fails. The
following code shows an example.
C#
Click here to view co de image

string stringVal = "1234";

int intVal;

intVal = int.Parse(stringVal);

VB
Click here to view co de image

Dim stringVal As String = "1234"

Dim intVal As Integer

intVal = Integer.Parse(stringVal)

The framework also includes the Convert class, which enables you to
convert one type to almost any other (including strings). This class is available

to both Visual Basic and C# programmers.

Defining Constants
You might need to define values in your application that will not (and cannot)
change during the execution of the application. In this case, you need to declare
a constant. A constant in .NET is said to be an immutable value. That is, a
constant cannot change values. You declare a constant in your code (typically
at the class level) using the keyword const. Like a field, a constant can be
private or public. The following shows an example.
C#
Click here to view co de image

private const int CompanyTaxNumber = 123456;

VB
Click here to view co de image

Private Const CompanyTaxNumber As Integer = 123456

Understanding Operators
Operators are indicators in your code that express an operation to perform. An
operator might be an assignment from one variable to another, a comparison
between two values, or a mathematical calculation among values. There are
many operators available to .NET programmers. We do not cover them all
here, but many of the more common operators are discussed in the following
sections.

Assignment
Assignment operators are used to assign one variable or value to another. The
most simple example is the equal (=) operator. This simply assigns the value
on the right of the operator to the variable on the left side of the assignment (as
in x = y). Other operators enable you to do assignment with addition (+=),
assignment with subtraction (-=), assignment with multiplication (*=), and
assignment of a string value with concatenation (&=). There are also
assignment operators for division, arithmetic shifting, and more. The following
shows a few assignment code examples.
C#
Click here to view co de image

public double CalculatePaycheck(double gross, double
commission,

double deductions)
{

double paycheck = gross; //define paycheck as gross
pay

paycheck += commission; //add commission
paycheck -= deductions; //subtract deductions

return paycheck;

}

VB
Click here to view co de image

Public Function CalculatePaycheck(ByVal gross As

Double, _

ByVal commission As Double, ByVal deductions As

Double)

Dim paycheck As Double = gross 'define paycheck as
gross pay

paycheck += commission 'add commission
paycheck -= deductions 'subtract deductions

Return paycheck

End Function

Arithmetic
The arithmetic operations enable you to perform calculations on variables and
using values. For example, you can use the multiplication operator (*) to
multiply two numbers (x * y). All the operators you expect are available,
such as addition (+), subtraction (-), division to return an integer (\), division
to return a floating point (/), multiplication (*), and dividing for remainder
(mod in VB, % in C#). There are other less common operators, too.
You typically use assignment with arithmetic operators, as in x = y * z.
However, you can use the value of the calculation when making decisions in
your code (without first assigning it to a variable); there’s more on this in the
coming sections. As an example of basic arithmetic in code with assignment,
the following code shows how you might calculate an employee’s accrued
vacation days at any given point in the year. (The AccrualRate is either a
constant or a set based on the number of days of vacation an employee has.)
C#
Click here to view co de image

double accruedVacation = DateTime.Today.DayOfYear *
AccrualRate;

VB
Click here to view co de image

Dim accruedVacation as Double =

DateTime.Today.DayOfYear * AccrualRate

Comparison
The comparison operators enable you to determine whether values are equal
to, greater than, or less than one another. You typically use these operators
comparing two variables, values, or expressions. The results of the
comparison indicate whether or not (true or false) the comparison is valid
(as in is x > y). The comparison operators include less than (<), less than or
equal to (<=), greater than (>), greater than or equal to (>=), equal (= in VB
and == in C#), and does not equal (<> in VB and != in C#). The following
shows an example of assigning a variable of type Boolean to a comparison
result.

C#
Click here to view co de image

bool check = accruedVacation > vacationTakenToDate;

VB
Click here to view co de image

Dim check As Boolean = accruedVacation >

vacationTakenToDate

You can also do type comparison to check whether two objects point to the
same reference (or not). In C#, this type of comparison is still done with the
equal (==) and not equal (!=) operators. In Visual Basic, you use the
keywords Is and IsNot, as in check = Employee1 Is Employee2.

NULL Comparison
See the earlier section “Null-Conditional Operators” under
“What’s New in C# 6.0 and VB 14” to see how you can now use
?. to check for nulls.

Concatenation
The concatenation operations enable you to combine string values. In Visual
Basic, the concatenation operator is an ampersand (&) sign used with two
string variables or values. In C#, the plus (+) sign is used. Note that for
performance sake, it is recommended to call string.Format or use a
StringBuilder if you need to create large strings. The following shows an
example.
C#
Click here to view co de image

string fullName = firstName + " " + lastName;

VB
Click here to view co de image

Dim fullName as String = firstName & " " & lastName

Logical and Conditional
The logical and conditional operators enable you to combine comparisons in
different ways to help make decisions in your code. (See the next section for
even more details.) For example, you might combine two comparisons to make
sure they are both true. Alternatively, you might need to determine if at least
one of the two comparisons is true. You can do this and more with the
logical operators. Table 3.3 lists many of the logical operators. (For code
examples, see the next section.)

TABLE 3.3 Logical and Conditional Comparison Operators
	

Making Decisions and Branching Code
	
You can use the operators discussed previously to test for specific conditions
in your code. These tests are then evaluated so you can make a decision on
what code to execute or where to branch off in your application. There are
three primary decision structures in .NET programming:
If...Then...Else, Select...Case, and
Try...Catch...Finally (as covered in the “Exception Handling”
section later in this chapter).

If...Then...Else
You can use the If syntax in your code to test one or more conditions. Based
on the results of your test, you might decide to execute one set of code if the
condition proves true and another set of code if the condition proves
false. You can also get into more complex scenarios by nesting If
statements and using the logical operators discussed in the prior section.
In Visual Basic, you use the explicit If...Then statements nested with End
If. In C#, you put your if conditions inside parentheses and the statements
nested inside brackets. For example, the following shows code to determine
whether an employee can get her vacation request approved. In this code, there
is a nested if statement and an example of combining two conditions with
and.
C#
Click here to view co de image

public bool CanApproveVacationRequest(int

daysRequested, int daysTaken,

int daysAllowed, int daysAccruedToDate)

{

//rule: employee can take vacation if it is accrued
and not used

if ((daysRequested < daysAllowed) && (daysTaken <
daysAllowed))

{
if ((daysTaken + daysRequested) <

daysAccruedToDate)
{

return true;
} else {

return false;
}

} else {
return false;

}
}

VB
Click here to view co de image

Public Function CanApproveVacationRequest(ByVal
daysRequested As Integer,

ByVal daysTaken As Integer, ByVal daysAllowed As
Integer,

ByVal daysAccruedToDate As Integer) As Boolean

'rule: employee can take vacation if it is accrued
and not used

If daysRequested < daysAllowed And daysTaken <
daysAllowed Then

If (daysTaken + daysRequested) < daysAccruedToDate
Then

Return True
Else

Return False
End If

Else
Return False

End If
End Function

Note that in Visual Basic if you have a single line that executes based on an if
condition you can write that as a single line of code, as in If x > 500
Then doSomething. In C#, if you have a single line that executes, you can
eliminate the need for the braces, and the statement following the if condition
is executed based on the condition’s evaluation.

Select...Case (Switch)
The Select...Case (switch in C#) code construct enables you to
evaluate a single statement for a value. Based on this condition, you then can
execute blocks of code depending on the value.
In C#, you define the condition inside parentheses following the keyword
switch. You then define each case block with the keyword case, the value
you are checking on, and a colon. You must then add a break statement at the
end of the case to indicate the end of the case. You can use the default

keyword to execute code if no case was realized. The following code shows
an example.
C#
Click here to view co de image

private void CalculateAdditionalCompensation()
{

switch (this.Status)

{

case EmploymentStatus.Contract:

//code for contract employees

break;

case EmploymentStatus.Hourly:

//code for hourly employees

break;

case EmploymentStatus.Salaried:

//code for salaried employees

break;

case EmploymentStatus.SalariedCommissioned:
//code for commissioned employees
break;

case EmploymentStatus.Other:

//code for other employees

break;

default:
//code that runs if bad status was set
break;

}

}

In Visual Basic, you write case Select...Case statements using the
keyword Select followed by Case followed by the condition. Each
condition is then preceded with Case. You can use Case Else to run code
when no other condition value evaluates. Here is a code example.
VB
Click here to view co de image

Private Sub CalculateAdditionalCompensation()

Select Case Me.Status

Case EmploymentStatus.Contract

'code for contract employees

Case EmploymentStatus.Hourly

'code for hourly employees

Case EmploymentStatus.Salaried

'code for salaried employees

Case EmploymentStatus.SalariedCommissioned
'code for commissioned employees

Case EmploymentStatus.Other

'code for other employees

Case Else
'code that runs if bad status was set

End Select

End Sub

Looping
There are many times in your code when you need to execute a set of
statements more than once. In these cases, you need to create a loop. The most
common scenarios are looping through code a set number of times, looping
until a condition becomes true or false, or looping through code once per
element in a collection of objects. (See the section “Working with Groups of
Items” later in this chapter.)

For...Next

The For...Next construct enables you to execute a block of code
statements a set number of times. This is accomplished through a counter that
increments a set number of steps each time the loop executes. After the counter
has reached a max value, the looping completes.
In C#, you write a for statement inside parentheses. The for statement has
three parts: counter declaration, condition for the counter, and counting step.
Each part is separated by a semicolon. The following code shows an example
of executing a code block once for each employee’s direct report.
C#
Click here to view co de image

for (int i = 0; i < numDirectReports; i++)
{

//update employee based on num of direct report
}

In Visual Basic, your For statement is a little more readable. You indicate the
counter, the initial value, and the To value. Optionally, you can add the Step
keyword to indicate how many times you want to increment the counter each
time through the loop. Here is a code example:
VB
Click here to view co de image

For i As Integer = 1 To numDirectReports
'update employee based on num of direct reports

Next

For...Each (Iterators)
Like For...Next, the For...Each construct enables you to execute a
group of statements. However, For...Each executes once for each element
in a group of elements (or a collection). For instance, if you add a block of
code to the Employee class that needs to execute once for each
DirectReport, you could do so using the For...Next (as shown
previously) and then execute based on the count of DirectReports.
However, using For...Each allows you to iterate over each object in a
collection. As you do, you get a reference to the given object that you can use
in your code. This makes coding a little easier to write and to understand.
You implement For...Each similar to For...Next in both C# and Visual
Basic. The following shows code that executes once for each Employee
instance inside the collection DirectReports.
C#
Click here to view co de image

foreach (Employee emp in DirectReports)
{

//execute code based on each direct report
// using the item as in emp.Name

}

VB
Click here to view co de image

For Each emp As Employee In DirectReports
'execute code based on each direct report
' using the item as in emp.Name

Next

Do...While/Until
Sometimes you need to repeat a block of code as many times as required until
a condition evaluates to true or false. You might be looking for a specific
value or might be using a counter that increments based on logic (instead of
standard steps). In these cases, you can use a Do...While or a While loop.
A Do...While loop executes once before the condition is evaluated to
determine whether it should execute a second time. A While loop evaluates
the condition first and then only executes if the condition evaluates to true.
In C#, you can create Do...While loops using the do keyword followed by
your block of code in braces. The while statement is written at the end of the
code block indicating that the statements are executed once before looping.
(Use a while loop to evaluate a condition before looping.) The following
shows an example.
C#
Click here to view co de image

do
{

//get next project and calculate commission
projectCommission = GetNextProjectCommision(empId);
calculatedCommission += projectCommission;

if (projectCommission == 0)
break;

} while (calculatedCommission < MaxMonthlyCommission);

Notice in this code the use of the break keyword. This indicates that the code
should break out of the Do...While loop. You can also use the continue
keyword to skip remaining code in your code block and jump right to the
while statement to force a condition evaluation (and possible another loop).
In Visual Basic, you can define the While (or until) statement at the top or
bottom of the loop. If defined at the top, your statement is evaluated before the
loop executes once. If at the bottom, the loop executes at least once before the
statement is evaluated. The While keyword indicates that you want to loop
while a condition is true (until it becomes false). The Until keyword
allows you to loop until a condition evaluates to true (while it is false).
The following shows an example.
VB
Click here to view co de image

Do
'get next project and calculate commission
projectCommission = GetNextProjectCommision(empId)
calculatedCommission += projectCommission
If projectCommission = 0 Then Exit Do

Loop While calculatedCommission < MaxMonthlyCommission

As mentioned before, there is also the basic While loop (without do). This
simply loops a block of code while a condition evaluates to true. Also, like
all looping constructs, you can nest Do...While loops to handle more
complex situations.

Working with Groups of Items
A common scenario in computer programming is managing a group of similar
items. For example, you might need to work with a set of values, such as ZIP
Codes to which a sales representative is assigned. Alternatively, you might
need to work with a group of objects such as the paychecks an employee has
received in a given year. When you need to work with a group of elements, you
can do so using an array or a collection class. The former is great for working
with a set sequential list of items of the same type. The latter is more
applicable for managing a variable-sized group of objects.

Arrays
An array is a group of items of the same type (either value or reference types).
For instance, you might create an array that contains all integer values or all
string values. You also have to define the number of elements contained in your
array when you first initialize it. There are ways to expand or contract this
size, but these typically involve copying the array into another array. If you
need the flexibility of adding and removing items in a group, you want to use a
collection class and not an array.
When you define an array’s size, you need to know that they are zero-based
arrays. That is, the first element in the array is item zero. Each item is
contiguous and sequential. This enables you to set and access items quickly

using the items index.
	

Note
When dimensioning the size of array in C# you get the actual
number of items indicated in the definition. Therefore, the
declaration short[] myArray = new short[6] yields
six items in the array (items 0–5). In Visual Basic, however, a
similar call to Dim myArray(6) As Short yields seven
items in the array (items 0–6).

The typical array you create is one dimensional, meaning that it contains a
single group of indexed items. You declare this type of an array by indicating
the number of elements in the array either on the declaration of the variable or
before the array’s first use. There are a few valid syntaxes for defining an
array. The standard way in C# is to use the new keyword to set the size of the
array. In Visual Basic, you can set the size of the array without using the
keyword new. The following shows an example.
C#
Click here to view co de image

short[] salesRegionCodes = new short[numRegions];

VB
Click here to view co de image

Dim salesRegionCodes(numRegions) As Short

You access an array through its index value. Array objects inherit for the
System.Array class. This gives you a number of properties and methods
you can use, including getting the total number of elements in all dimensions of
an array (Length) and getting the upper-bound value for a single dimension
(GetUpperBound). The following code shows an example of using this last
method and accessing an array through its index.
C#
Click here to view co de image

for (int i = 0; i < salesRegionCodes.GetUpperBound(0);

i++)

{

short code = salesRegionCodes[i];

//additional processing ...

}

VB
Click here to view co de image

For i = 0 To salesRegionCodes.GetUpperBound(0)

Dim code As Short = salesRegionCodes(i)

'additional processing ...

Next

You can also initialize the values in an array inside the declaration statement.
In this case, the number of elements you define sets the size of the array. The
following is an example.
C#
Click here to view co de image

double[] salesFigures = new double[] {12345.98,

236789.86, 67854.12};

VB
Click here to view co de image

Dim salesFigures() As Double = {12345.98, 236789.86,
67854.12}

You can define arrays that have more than a single dimension (up to 32). A
common scenario is a two-dimensional array in which one dimension is
considered rows and the other columns. You can use the Rank property to
determine the number of dimensions in an array.
For an example of a multidimensional array, consider one that contains sales
figures for each sales representative (rows) in each region (columns). You
might define this array as follows.
C#
Click here to view co de image

double[,] salesByRegion = new double[6, 5];

VB
Click here to view co de image

Dim salesByRegion(6, 5) As Double

Note that an array can also contain other arrays. These type of arrays are
called jagged arrays (or arrays of arrays). They are considered jagged because
each element in the array might contain an array of different size and
dimension; therefore, there might be no real uniformity to the array.

Collection Classes and Generics
A collection class can give you more flexibility when working with objects.
For example, you can have objects of different types in a single collection;
collections can be of varying lengths; and you can easily add and remove items
in a collection.
The standard collection classes are defined inside the
System.Collections namespace. The classes in this namespace include
a base class for creating your own, custom collections (CollectionBase)
and more specific collections such as ArrayList, Stack, SortedList,
Queue, and HashTable.
For example, you might create a simple, dynamic ArrayList to contain a set
of sales figures. The following code shows how you can create a new
ArrayList, add items to it, and loop through those items.
C#

http:67854.12
http:236789.86
http:12345.98
http:67854.12
http:236789.86
http:12345.98

Click here to view co de image

ArrayList salesFigures = new ArrayList();

salesFigures.Add(12345.67);

salesFigures.Add(3424.97);

salesFigures.Add("None");

for (int i = 0; i < salesFigures.Count; i++)
{

object figure = salesFigures[i];

//process figures ...

}

VB
Click here to view co de image

Dim salesFigures As New ArrayList()

salesFigures.Add(12345.67)

salesFigures.Add(3424.97)

salesFigures.Add("None")

For i As Integer = 0 To salesFigures.Count - 1

Dim figure As Object = salesFigures(i)

'process sales figure data ...

Next

Of course, many additional properties and methods are available to you
through the ArrayList and related collection classes. You should explore
these for your specific scenarios.
Notice in the preceding code that the collection class has two types of objects
inside it: double and string. This can be problematic if you need to rely on a
collection of objects all being of the same type. For example, you might want
all your sales figures to be of type double; or you might want a collection of
only Employee objects. In these cases, you need a strongly typed collection
class. You can create these by coding your own, custom collection classes
(inheriting from CollectionBase and implementing the interfaces specific
to your needs). However, .NET also provides a set of classes called generics
that allow for strongly typed groups of objects.
Generic collections can be found inside the
System.Collections.Generic namespace. A generic collection class
enables you to define the type that the class contains when you initialize it.
This then restricts what types the class can contain. You can rely on this
information within your code.
You define a generic list in C# using angle brackets (<>) with the type defined
inside those brackets. In Visual Basic, you define the generic type inside
parenthesis using the Of keyword. For example, the following defines a
simple, generic list of items that can only include values of type double.
C#
Click here to view co de image

List<double> salesFigures = new List<double>();

http:salesFigures.Add(3424.97
http:salesFigures.Add(12345.67
http:salesFigures.Add(3424.97
http:salesFigures.Add(12345.67

VB
Click here to view co de image

Dim salesFigures As New List(Of Double)

There are many generic collection classes available to you, including
Dictionary, HashSet, LinkedList, List, Queue, SortedList,
Stack, and more. You can also write your own generic collection classes.

Tuple
The System.Tuple class enables you to create a set, ordered list of items
and work with that list. After you’ve created the list, you cannot change it. This
makes for easy storage (and access) of sequential items.
For example, if you wanted to create a Tuple to store the month names in the
first quarter, you could do so using the static member Tuple.Create. Each
item you want to add to the list you add inside parentheses (and separated by
commas). You can then access the items in your Tuple using the Item1,
Item2, Item3 syntax. Note that the Tuple only exposes item properties for
the number of items that exist inside the group. The following code shows an
example.
C#
Click here to view co de image

var q1Months = Tuple.Create("Jan", "Feb", "Mar");

string month1 = q1Months.Item1;

VB
Click here to view co de image

Dim q1Months = Tuple.Create("Jan", "Feb", "Mar")

Dim month1 As String = q1Months.Item1

The Tuple class is based on generics. You define the type of object you
enable for each member in the list. The Create method shown infers this type
for you. However, you might want to be explicit. In this case, you can declare
your types using the constructor as follows.
C#
Click here to view co de image

Tuple<int, string, int, string, int, string>
q1MonthNumAndName =

Tuple.Create(1, "Jan", 2, "Feb", 3, "Mar");

VB
Click here to view co de image

Dim q1MonthNumAndName As Tuple(Of Integer, String,
Integer, String,

Integer, String) =
Tuple.Create(1, "Jan", 2, "Feb", 3, "Mar")

Programming with Attributes
Sometimes you need to provide metadata about the capabilities of your code.
This metadata is meant to tell other code that is inspecting your code (through
reflection) specific things about what the code might do. This includes
information for the .NET runtime, such as how you want your code compiled.
There are many attributes available in the .NET Framework. You can also
create your own, custom attributes to be applied to your code. In this case, you
can write code to examine the metadata about your own application.
Declarative attributes can be applied to classes, properties, methods,
parameters, and other elements inside your code. You can apply a single
attribute or multiple attributes to an application. Some attributes also might
take parameters to indicate additional information to the attribute code.
Note that, by convention, all attributes end with the word Attribute in their
names, such as SerializableAttribute. You typically leave the word
attribute off your declaration, however, because it is not required.
In C#, attributes are placed on code using square brackets ([]). For example,
you can use the ConditionalAttribute to indicate to the compiler
which code should be compiled based on environment variables or command-
line options. You would apply this attribute to your code as shown.
C#
Click here to view co de image

[System.Diagnostics.Conditional("DEBUG")]
public void EmployeeCalculationsTestMethod()
{

//code that compiles in the debug version of the
assembly
}

In Visual Basic, you decorate your code elements with an attribute by putting
the attribute in angle brackets (<>) in front of the code element, as follows.
VB
Click here to view co de image

<Conditional("DEBUG")> Public Sub
EmployeeCalculationsTestMethod()

'code that compiles in the debug version of the
assembly
End Sub

Exception Handling
A lot of programming time is spent eliminating exceptions from our code.
However, you can’t always eliminate all scenarios that might cause an
exception. In these cases, you need a way to anticipate the exception and then,
if possible, handle the exception in your code. There is where the
Try...Catch...Finally construct comes into play.
You put a Try statement around a block of code you expect might cause an
exception. You typically do so if you intend to handle the error. If you are not
intending to handle the error, you can let the error bubble up to the calling
code. Of course, you need to have an outer-error handler (or manager) inside

your outer code to prevent errors from bubbling up to users in nasty ways.
When an exception actually occurs inside your Try block, execution is
immediately passed to a Catch block. This might be a general catch of all
errors or a catch meant for a specific exception type. The code inside the
catch block is then meant to handle the error. Handling an error might
include logging the error, sending it to a message system, or actually trying
something different (or trying again using a jump statement) as the result of the
error.
The following shows a basic example. Inside the Try block is a calculation
that does division. This Try block has the possibility of raising an exception
in the case where the division is done by zero. This condition raises the
specific exception DivideByZeroException. There is a Catch block
that consumes this (and only this) type of exception. You can add code to the
Catch block to either eat the exception (do nothing) or process it somehow.
Also, if you want to rethrow the exception after handling it, you can do that,
too.
C#
Click here to view co de image

try
{

averageSales = salesToDate / avgRate;
}
catch (System.DivideByZeroException e)
{

//handle the exception ...
// if rethrowing use: throw;

}

VB
Click here to view co de image

Try

averageSales = salesToDate / avgRate

Catch ex As System.DivideByZeroException
'handle the exception ...
' if rethrowing use: Throw

End Try

You can have multiple Catch blocks that are both specific and generic. Note
that if no exception type is found in a Catch block, the exception is actually
not handled but is bubbled up to the calling code (or to the runtime).
Note that you can also rethrow the error from your Catch block using the
Throw keyword. If you do not rethrow the exception, the runtime assumes you
have handled the error and moves on. You can also use throw anywhere in your
application where you want to raise an exception.
There is also a Finally block that you can write. This bit of code goes after
your Catch blocks and runs regardless of whether an exception is raised.
That is, it will always run after the code execution path exits the try block,
either as a normal exit, after an exception is raised, or a call has been made to
return. In all cases, the Finally block will execute. It is useful for cleaning

up any resources that might have been allocated inside the Try block.
	

Exce ption Filte ring
Both Visual Basic 14 and C# 6.0 now allow exception filtering
during your catch blocks. This allows you to interrogate
properties of the exception and only enter the catch block if a
condition is met. You implement this approach using an if
statement at the end of your catch.

Creating and Raising Events
There is not much functionality you can build using the .NET languages without
events. Events enable one piece of code to notify another bit of code that
something has just happened. Code that raises events is said to publish an
event, and code that receives the event notice is said to subscribe to events. A
simple example is when you write a user interface for the Web or Windows. In
these cases, you are consistently adding code that subscribes to events
published by the UI, such as a user clicking a button control. Of course, an
event may have more than a single subscriber, and subscribers may subscribe
to multiple events.

Define an Event
When you define an event you need to determine whether you need to pass
custom data to the subscribers. This custom data is referred to as event
arguments (or args). If you do not need to pass custom data, you simply declare
the event using the keyword event and the existing delegate EventHandler.
For example, if you were to define a simple event that you would raise when
an employee class is updated, you might define that event as follows.
C#
Click here to view co de image

public event EventHandler EmployeeUpdatedEvent;

VB
Click here to view co de image

Public Event EmployeeUpdatedEvent As EventHandler

By declaring the event, you have effectively published it. Subscribers who
have a reference to your class can then set up a subscription to your event. You
then need to raise the event in the same class where you published it. This
notifies the subscribers that the event has fired.
It is slightly more complicated to define events where you need to pass custom
data. In this case, you must first create a custom class to maintain your event
data. This class must inherit from the EventArgs base class. For example,
you might create a custom event arguments class to contain the employee ID for
the employee-updated event. In this case, your custom class contains a property
to hold the Id value and a constructor for passing in this value, as in the
following code.
C#

Click here to view co de image

public class EmployeeUpdatedEventArgs : EventArgs
{

public EmployeeUpdatedEventArgs(string id)

{

_id = id;

}

private string _id;

public string EmployeeId

{

get { return _id; }

}

}

VB
Click here to view co de image

Public Class EmployeeUpdatedEventArgs

Inherits EventArgs

Public Sub New(ByVal id As String)

_id = id

End Sub

Private _id As String
Public ReadOnly Property EmployeeId() As String

Get
Return _id

End Get
End Property

End Class

When you use a custom event argument, you need to declare your event to use
the custom event argument class. You can do so using the version of the
EventHandler class that is defined as generic. In this case, you indicate the
class that contains the argument as part of the generic definition of
EventHandler. This class also automatically contains the sender argument
(typically a copy of the object publishing the event). The following shows an
example of defining this custom event handler.
C#
Click here to view co de image

public event EventHandler<EmployeeUpdatedEventArgs>
EmployeeUpdatedCustomEvent;

VB
Click here to view co de image

Public Event EmployeeUpdatedCustomEvent As _

EventHandler(Of EmployeeUpdatedEventArgs)

Raise an Event
You raise the event in the same class where the event is defined. An event is
raised as the result of some action. In the case of the example, the action in the
employee class has been updated. To raise the event, you simply call it in the
right spot and pass the appropriate parameters. In the case of the employee-
updated custom event, you pass an instance of the employee class as the
sender and then the employee Id as part of an instance of the
EmployeeUpdatedEventArgs, as shown here.
C#
Click here to view co de image

public void UpdateEmployee()

{

//do work to update employee ...

//raise event to notify subscribers of the update
EmployeeUpdatedCustomEvent(this, new

EmployeeUpdatedEventArgs(this.Id));

}

VB
Click here to view co de image

Public Sub UpdateEmployee()

'do work to update employee ...

'raise event to notify subscribers of update

RaiseEvent EmployeeUpdatedCustomEvent(Me, _

New EmployeeUpdatedEventArgs(Me.Id))

End Sub

Subscribe to and Handle an Event
The final step is to actually listen for (or subscribe to) the event. Here, you
need to do two things. First, you must write a method that mimics the signature
of the event. The content of this method is yours to write. It is called when the
event fires. The following shows an example of a method (inside a class that
subscribes to the employee class) that is called when the event fires. Notice
how this method uses the custom event type and must therefore match that
signature.
C#
Click here to view co de image

private void OnEmployeeUpdate(object sender,

EmployeeUpdatedEventArgs e)

{

//do something in response to employee update

string empId = e.EmployeeId;

}

VB
Click here to view co de image

Private Sub OnEmployeeUpdate(ByVal sender As Object, _

http:EmployeeUpdatedEventArgs(Me.Id
http:EmployeeUpdatedEventArgs(this.Id

ByVal e As EmployeeUpdatedEventArgs)

Dim empId As String = e.EmployeeId

Console.WriteLine("Event Fired: id=" & empId)

End Sub

Second, you must register your event handler with the actual event. You do this
by adding a pointer to the event using the += (C#) or AddHandler (VB)
syntax. You typically add your handlers inside the subscribing class’s
constructor or initialization code. The following shows code to connect the
OnEmployeeUpdate handler to the EmployeeUpdatedCustomEvent
event.
C#
Click here to view co de image

Employee _emp = new Employee();

_emp.EmployeeUpdatedCustomEvent +=

this.OnEmployeeUpdate;

VB
Click here to view co de image

AddHandler _emp.EmployeeUpdatedCustomEvent, AddressOf
OnEmployeeUpdate

When the code is run, you undoubtedly access features of the class that fire the
event (in this case, Employee.UpdateEmployee). When you hit a method
that triggers the event, your subscribing code is called accordingly. When you
don’t need to listen to the event, you must remember to unsubscribe your
handler from the event. If you forget to do so, the garbage collector might not
be able to free the memory used by the listener object.

Language Features
Thus far, you’ve looked at the basics of programming with the .NET languages,
including building objects and solving common coding issues with respect to
looping, handling logic, and creating and consuming events. This section points
out some additional elements that make the .NET languages special. Many of
these items are not necessarily things you might use every day; however, they
can provide you with additional skills when writing code and better
understanding when reading it. The .NET language features covered here
include the following:

Local type inference (also called implicit typing)
Object initializers
Collection initializers
Extension methods
Anonymous types
Lambda expressions
Partial methods
Language Integrated Query (LINQ)
Friend assemblies

XML language support
Unused event arguments
Automatically implemented properties
Implicit line continuation in VB
Work with dynamic language/objects
Covariance and contravariance
Intrinsic support for async operations
Type equivalence support

Infer a Variable’s Data Type Based on Assignment
In the later versions of Visual Basic and C# (2008 and later), you can define
variables without explicitly setting their data type. And, when doing so, you
can still get the benefits of strongly typed variables (compiler checking,
memory allocation, and more). The compilers actually infer the data type you
intend to use based on your code. This process is called local type inference or
implicit typing.
For example, consider the following lines of code. Here you create a variable
of type String and assign a value.
C#
Click here to view co de image

string companyName = "Contoso";

VB
Click here to view co de image

Dim companyName As String = "Contoso"

Now, let’s look at the same line of code using type inference. You can see that
you do not need the string portion of the declaration. Instead, the compiler
is able to determine that you want a string and strongly types the variable for
you. In C#, this is triggered by the keyword var. This should not be confused
with the var statement in languages such as JavaScript. Variables defined as
var are strongly typed. In Visual Basic, you still simply use the Dim statement
but omit the data type.
C#

var companyName = "Contoso";

VB

Dim companyName = "Contoso"

These two lines of code are equivalent in all ways. Although in the second
example no data type was declared, one is being declared by the compiler.
This is not a return to a generalized data type such as Variant or Object.
Nor does this represent late-binding of the variable. Rather, it is simply a
smarter compiler that strongly types the variable by choosing a data type based
on the code. You get all the benefits of early-bound variables while saving
some keystrokes.

For example, take a look at Figure 3.3. This is the C# compiler in action. (The
Visual Basic compiler does the same thing.) You can see that even at
development time, the compiler has determined that this variable is of type
System.String.

FIGURE 3.3 Type inference in action inside the IDE.

There are a few things for you to be aware of when using type inference. The
first is that it requires your local variable to be assigned a value to do the
compiler typing. This should not be a big deal because if your variable is not
assigned, it is not used.
The second item you should consider is that type inference works only with
local variables. It does not work with class-level variables (also called fields)
or static variables. In these cases, using local type inference results in the
compiler throwing an error in C#. In Visual Basic, you would get the same
error provided that Option Strict is set to On. If you are not using Option Strict
in your Visual Basic code, the variable is not strongly typed. Instead, the
variable is assigned the generic Object data type.
Local type inference can be useful in other declaration scenarios as well. This
includes defining arrays, creating variables during looping, defining a variable
inside a Using statement, and defining a variable that contains the result of a
function call. In each of these cases, the compiler can infer your data type
based on the context of the code.
As another example, the following code creates a Using statement and infers
the type of the variable cnn (as a SqlConnection object). Note that a
Using block defines a block of code for which a given resource is being
used. The use of a Using block guarantees that the runtime disposes of the
used object (in this case, the database connection) when done.
C#

Click here to view co de image

using (var cnn = new

System.Data.SqlClient.SqlConnection()) {

//code to work with the connection

}

VB
Click here to view co de image

Using cnn = New System.Data.SqlClient.SqlConnection
'code to work with the connection

End Using

In Visual Basic, you can turn local type inference off and on for a given file. By
default, a new Visual Basic code file is set to allow type inference. However,
if you want to turn it off at the file level, you can do so by setting Option Infer
Off at the top of the code file.

Create an Object and Initialize Its Values (Object Initializers)
There is a shortcut for both declaring an instance of a class and setting the
initial value of all or some of its members. With a single line of code, you can
instantiate an object and set a number of properties on that object. During
runtime, the object is created, and then the properties are set in the order in
which they appear in the initialization list. This feature is called object
initializers.
Let’s look at an example. Suppose you have a class called Employee that has
a number of properties such as FirstName, LastName, FullName,
Title, and the like. Using object initialization, you can both create an
instance of this class and set the initial values of some (or all) of the
Employee instance’s properties. To do so, you first construct the object. In
Visual Basic, you follow this construction with the With keyword. (C# does
not require an equivalent indicator.) You then place each property initialization
inside a set of curly braces. Examples are as shown here.
C#
Click here to view co de image

Employee emp = new Employee { FirstName = "Joe",

LastName = "Smith", Title = "Sr. Developer" };

VB
Click here to view co de image

Dim emp As New Employee With {.FirstName = "Joe", _
.LastName = "Smith", .Title = "Sr. Developer"}

This single line of code is the equivalent of first creating an Employee class
and then writing a line of code for each of the listed properties. Notice that in
Visual Basic, you access each property using a dot. In C#, you do not need the
dot.
Of course, you can also use object initialization with parameterized
constructors. You simply pass the parameters into the constructor as you
normally would. You then follow the constructor with the initialization. For

example, suppose that the Employee class had a constructor that took the first
and last name, respectively. You could then create the object with the
parameters and use object initialization for the Title, as shown here.
C#
Click here to view co de image

Employee emp = new Employee("Joe", "Smith")

{ Title = "Sr. Developer" };

VB
Click here to view co de image

Dim emp As New Employee("Joe", "Smith") With _

{.Title = "Sr. Developer"}

Object initialization also enables you to write some code in the initialization.
In addition, with Visual Basic you can use properties of the object you are
initializing to help initialize other properties. This is not valid in C#. The C#
compiler does not allow you to access the variable until the assignment is
complete. To see an example of this, the following code initializes an
Employee object and sets the Employee.FullName property by
concatenating the first and last names. Notice that the Visual Basic code uses
the object itself.
C#
Click here to view co de image

Employee emp = new Employee { FirstName = "Joe",
LastName = "Smith", FullName = "Joe" + " Smith"};

VB
Click here to view co de image

Dim emp As New Employee() With {.FirstName = "Joe", _
.LastName = "Smith", _
.FullName = .FirstName & " "" & .LastName}

You can also nest object initialization. That is, if a given property represents
another object, you can create the other object as part of the initialization. You
can also nest an initialization of the other object within the initialization of the
first object. A simple example makes this clear. Suppose that the Employee
class has a property called Location. The Location property might point
to a Location object that includes the properties for City and State. You
could then create the Employee object (along with the nested Location
object), as shown here.
C#
Click here to view co de image

Employee emp = new Employee { FirstName = "Joe",

LastName = "Smith", Location = new Location

{ City = "Redmond", State = "WA" } };

VB
Click here to view co de image

Dim emp As New Employee() With {.FirstName = "Joe", _
.LastName = "Smith", _
.Location = New Location With _
{.City = "Redmond", .State = "Washington"}}

Define a Collection and Initialize Its Values
You can now define a collection class or an array and, at the same time, set the
initial values in your object. This turns multiple lines of code calling simple
add methods into a single line. This is especially useful if you have a list of
items that your application works with and you need to both declare the list
and initialize these values.
For example, you might need to define an array to contain the geographic
locations for your sales office. You could define this array and initialize it as
follows.
C#
Click here to view co de image

string[] salesGeos = {"South", "Mid Atlantic", "Mid
West"};

VB
Click here to view co de image

Dim salesGeos() As String = {"South", "Mid Atlantic",
"Mid West"}

You can use similar syntax to define and initialize a collection class, including
those based on a generic. For example, the following defines a list of
Employee objects and adds two new Employee classes to that list. Note
that the Visual Basic code requires the From keyword.
C#
Click here to view co de image

List<Employee> empList = new List<Employee>

{new Employee("1234"), new Employee("3456")};

VB
Click here to view co de image

Dim empList As New List(Of Employee) From _

{New Employee("1234"), New Employee("3456")}

Creating an Instance of a Nonexistent Class
The .NET languages enable you to create an object that does not have a class
representation at design time. Instead, an unnamed (anonymous) class is
created for you by the compiler. This feature is called anonymous types.
Anonymous types provide crucial support for LINQ queries. With them,
columns of data returned from a query can be represented as objects (more on
this later). Anonymous types are compiled into class objects with read-only
properties.
Let’s look at an example of how you would create an anonymous type. Suppose

that you want to create an object that has both a Name and a PhoneNumber
property. However, you do not have such a class definition in your code. You
could create an anonymous type declaration to do so, as shown here.
C#
Click here to view co de image

var emp = new { Name = "Joe Smith",

PhoneNumber = "123-123-1234"};

VB
Click here to view co de image

Dim emp = New With {.Name = "Joe Smith", _

.PhoneNumber = "123-123-1234"}

Notice that the anonymous type declaration uses object initializers (see the
previous discussion) to define the object. The big difference is that there is no
strong typing after the variable declaration or after the New keyword. Instead,
the compiler creates an anonymous type for you with the properties Name and
PhoneNumber.
There is also the Key keyword in Visual Basic. It is used to signal that a given
property of an anonymous type should be used by the compiler to further define
how the object is treated. Properties defined as Key are used to determine
whether two instances of an anonymous type are equal to one another. C# does
not have this concept. Instead, in C# all properties are treated like a Visual
Basic Key property. In Visual Basic, you indicate a Key property in this way.
Click here to view co de image

Dim emp = New With {Key .Name = "Joe Smith", _

.PhoneNumber = "123-123-1234"}

You can also create anonymous types using variables (instead of the property
name equals syntax). In these cases, the compiler uses the name of the variable
as the property name and its value as the value for the anonymous type’s
property. For example, in the following code, the name variable is used as a
property for the anonymous type.
C#
Click here to view co de image

string name = "Joe Smith";

var emp = new {name, PhoneNumber = "123-123-1234" };

VB
Click here to view co de image

Dim name As String = "Joe Smith"

Dim emp = New With {name, .PhoneNumber = "123-123-
1234"}

Extension Methods)
g type as if the type always had the
ave to recompile a given class, nor do
to add these features. Rather, you
sing a compiler feature called

asic and C#. In Visual Basic, you first
lerServices namespace into your
Function with the

stly, you write a new Sub or
e new method being the type you want
le. In this example, we extend the
DoubleInSize. The compiler

lass because this method is marked as
he method takes an Integer value.

ilerServices

ions

ize(ByVal i As Integer) As

e import or method attribute. Instead,
reate a static method that you intend to
r of your extension method should be
ou apply the this modifier to the
we extend the int data type with a

erExtensions

eInSize(this int i)

t import (using in C#) the new
en call any new method as if it had

is an example in both Visual Basic
ubleInSize that was defined in

Add Methods to Existing Classes (
You can add custom features to an existin
custom features. In this way, you do not h
you have to create a second derived class
can add a method to an existing class by u
extension methods.
Adding methods varies between Visual B
import the System.Runtime.Compi
code file. Next, you mark a given Sub or
ExtensionAttribute directive. La
Function with the first parameter of th
to extend. The following shows an examp
Integer type with a new method called
knows we are extending the Integer c
Extension, and the first parameter in t
VB
Click here to view co de image

Imports System.Runtime.Comp

Public Module IntegerExtens
<Extension()>
Public Function DoubleInS

Integer
Return i + i

End Function
End Module

The C# compiler does not require the sam
you first create a static class. Next, you c
use as your extension. The first paramete
the type you want to extend. In addition, y
type. Notice the following example. In it,
new method called DoubleInSize:
C#
Click here to view co de image

namespace IntegerExtensions
{

public static class Integ
{

public static int Doubl
{

return i+i;
}

}
}

To use an extension method, you must firs
extension class into a project. You can th
always existed on the type. The following
and C#. In this case, a function called Do

the preceding example is being called from the Integer (int) class.
VB
Click here to view code image

Imports IntegerExtensions

Module Module1
Sub Main()

Dim i As Integer = 10
Console.WriteLine(i.DoubleInSize.ToString())

End Sub
End Module

C#
Click here to view code image

using IntegerExtensions;

namespace CsEnhancements
{

class Program
{

static void Main(string[] args)
{

int i = 10;
Console.WriteLine(i.DoubleInSize().ToString());

}
}

}

Add Business Logic to Generated Code (Partial Methods)
A partial method (like a partial class) represents code you write to be added
as a specific method to a given class upon compilation. This enables the author
of a partial class to define an empty method stub and then call that method from
other places within the class. If you provide implementation code for the
partial method stub, your code is called when the stub would be called
(actually the compiler merges your code with the partial class into a single
class). If you do not provide a partial method implementation, the compiler
goes a step further and removes the method from the class along with all calls
to it. This is why such as partial method returns void and cannot take out
parameters.
The partial method (and partial class) was created to aid in code generation
and should generally be avoided unless you are writing code generators or
working with them because they can cause confusion in your code.
Of course, Visual Studio has more and more code generation built in.
Therefore, it is likely you will run into partial methods sooner or later. In most
cases, a code generator or designer (such as LINQ to SQL) generates a partial
class and perhaps one or more partial methods. The Partial keyword
modifier defines both partial classes and partial methods. If you are working
with generated code, you are often given a partial class that allows you to
create your own portion of the class (to be merged with the code-generated
version at compile time). In this way, you can add your own custom business

logic to any partial method defined and called by generated code.
Let’s look at an example. The following represents an instance of a partial
class Employee. Here there is a single property called Salary. In addition,
there is a method marked Partial called SalaryChanged. This method
is called when the value of the Salary property is modified.
C#
Click here to view code image

partial class Employee {

double _salary;

public double Salary {
get {

return _salary;
}
set {

_salary = value;
SalaryChanged();

}
}

partial void SalaryChanged();
}

VB
Click here to view code image

Partial Class Employee

Private _salary As Double

Property Salary() As Double
Get

Return _salary
End Get
Set(ByVal value As Double)

_salary = value
SalaryChanged()

End Set
End Property

Partial Private Sub SalaryChanged()
End Sub

End Class

The preceding code might represent code that was created by a code generator.
The next task in implementing a partial method then is to define another partial
Employee class and provide behavior for the SalaryChanged method.
The following code does just that.
C#
Click here to view code image

partial class Employee

{
partial void SalaryChanged()
{

double newSalary = this.Salary;
//do something with the salary information ...

}
}

VB
Click here to view code image

Partial Class Employee
Private Sub SalaryChanged()

Dim newSalary As Double = Me.Salary
'do something with the salary information ...

End Sub
End Class

When the compiler executes, it replaces the SalaryChanged method with
the new partial method. In this way, the initial partial class (potentially code
generated) made plans for a method that might be written without knowing
anything about that method implementation. If you decide to write it, it is called
at the appropriate time. However, it is optional. If you do not provide an
implementation of the partial method SalaryChanged, the compiler strips
out the method and the calls to the method (as if they had never existed). This
provides similar services to the virtual/override mechanisms presented
earlier in this chapter.

Access and Query Data Using the .NET Languages
Visual Studio 2008 introduced the language feature set called LINQ. LINQ is a
programming model that takes advantage of many of the features discussed in
this section. It provides language extensions that change the way you access
and work with data. With it, you can work with your data using object syntax
and query collections of objects using Visual Basic and C#.
You can use LINQ to map between data tables and objects. (See Chapter 13,
“Working with Databases.”) In this way, you get an easier, more productive
way to work with your data. This includes full IntelliSense support based on
table and column names. It also includes support for managing inserts, updates,
deletes, and reads.
The last of these, reading data, is a big part of LINQ in that it has built-in
support for easily querying collections of data. Using LINQ features, you can
query not only your data but also any collection in .NET. There are, of course,
new keywords and syntax for doing so. Query operators that ship with Visual
Basic, for example, include Select, From, Where, Join, Order By,
Group By, Skip, Take, Aggregate, Let, and Distinct. The C#
language has a similar set of keywords. And, if these are not enough, you can
extend the built-in query operators, replace them, or write your own.
You use these query operators to query against any .NET data that implements
the IEnumerable or IQueryable interface. This may include a
DataTable, mapped SQL Server objects, .NET collections (including
Generics), DataSets, and XML data.

Let’s look at an example. Suppose you had a collection of employee objects
called employees and you wanted to access all the employees at a specific
location. To do so, you might write the following function.
C#
Click here to view code image

public static IEnumerable<Employee>
FilterEmployeesByLocation

(IEnumerable<Employee> employees, string location)
{

//LINQ query to return collection of employees
filtered by location

var emps = from Employee emp in employees
where emp.Location.City == location
select emp;

return emps;
}

VB
Click here to view code image

Public Shared Function FilterEmployeesByLocation(
ByVal employees As IEnumerable(Of Employee),
ByVal location As String) As IEnumerable(Of

Employee)

'LINQ query to return collection of employees
filtered by location

Dim emps = From Employee In employees
Where Employee.Location.City = location

Return emps

End Function

Take a look at what is going on in the previous listing. The function takes a list
of employee objects, filters it by a region passed to it, and then returns the
results. Notice that to filter the list we create a LINQ in-memory query called
emps. This query can be read like this: Looking at all the employee objects
inside the employees collection, find those whose city matches the city passed
into the function. Finally, we return emps as an IEnumerable<T> to allow the
calling client to cycle through the results.
This is just a brief overview of LINQ. There are many things going on here,
such as compile-time checking and schema validation (not to mention the LINQ
language syntax). You will undoubtedly want to spend more time with LINQ.

Write Simple Unnamed Functions Within Your Code (Lambda
Expressions)
The latest versions of the .NET languages (2008 and later) enable you to write
simple functions that might or might not be named, execute inline, and return a
single value. These functions exist inside your methods and not as separate,
standalone functions. These functions are called lambda expressions. It’s
useful to understand lambda expressions because they are used behind the
scenes in LINQ queries. However, they are also valid outside of LINQ.
Let’s take a look at an example. Suppose that you want to create a simple
function that converts a temperature from Fahrenheit to Celsius. You could do
so within your Visual Basic code by first using the keyword Function. Next,
you could indicate parameters to that function (in this case, the Fahrenheit
value). Lastly, you could write an expression that evaluates to a value that can
be returned from the lambda expression. The syntax is as follows.
VB
Click here to view code image

Dim fahToCel = Function(fahValue As Integer)
((fahValue - 32) / 1.8)

The C# syntax is a bit different. In C#, you must explicitly declare a delegate
for use by the compiler when converting your lambda expression. Of course,
you declare the delegate at the class-level scope. After you have the delegate,
you can write the expression inside your code. To do so, you use the =>
operator. This operator is read as “goes to.” To the left side of the operator,
you indicate the delegate type, a name for the expression, and then an = sign
followed by any parameters the expression might take. To the right of the =>
operator, you put the actual expression. The following shows an example of
both the delegate and the expression.
C#
Click here to view code image

//class-level delegate declaration
delegate float del(float f);

//lambda expression inside a method body
del fahToCel = (float fahValue) => (float)((fahValue -
32) / 1.8);

Notice that in both examples, we assigned the expression to a variable
fahToCel. By doing so, we have created a delegate (explicitly converting to
one in C#). We can then call the variable as a delegate and get the results, as
shown here.
C#
Click here to view code image

float celcius = fahToCel(-10);

VB
Click here to view code image

Dim celcius As Single = fahToCel(70)

Alternatively, in Visual Basic, we could have written the function inline
(without assigning it to a variable). For example, we could have written this.
VB
Click here to view code image

Console.WriteLine((Function(fahValue As Integer)
((fahValue - 32) / 1.8))(70))

Notice in this last example that the function is declared and then immediately
called by passing in the value of 70 at the end of the function.
The C# language has its own quirk, too. Here you can write multiple statements
inside your lambda expression by putting the statements inside curly braces
and setting off each statement with a semicolon. The following example has
two statements inside the lambda expression. The first creates the new value;
the second writes it to a console window. Notice, too, that the delegate must be
of type void in this instance and that you still must call the lambda expression
for it to execute.
C#
Click here to view code image

//class level delegate declaration
delegate void del(float f);

del fahToCel = (float fahValue) => { float f =
(float)((fahValue - 32) / 1.8);

Console.WriteLine(f.ToString()); };
fahToCel(70);

Lambda expressions are used in LINQ queries for things such as the Where,
Select, and Order by clauses. For example, using LINQ, you can write
the following statement.
C#
Click here to view code image

var emps = from emp in db.employees
where emp.Location == "Redmond"
select emp;

VB
Click here to view code image

Dim emps = From emp In db.employees
Where(emp.Location = "Redmond")
Select emp

This LINQ code gets converted to lambda expressions similar to this.
C#
Click here to view code image

var emps = from emp in db.employees
where (emp => emp.Location == "Redmond")
select (emp => emp);

VB
Click here to view code image

Dim emps = From emp In
db.employees.Where(Function(emp) emp.Location = _

"Redmond").Select(Function(emp) emp)

Splitting an Assembly Across Multiple Files
The 2005 version of C# introduced the concept of friend assemblies; the
feature was added to Visual Basic in 2008. It enables you to combine
assemblies in terms of what constitutes internal access. That is, you can define
internal members but have them be accessible by external assemblies. This
capability is useful if you intend to split an assembly across physical files but
still want those assemblies to be accessible to one another as if they were
internal.

Note
Friend assembles do not allow for access to private members.

You use the attribute class InternalsVisibleToAttribute to mark an
assembly as exposing its internal members as friends to another assembly. This
attribute is applied at the assembly level. You pass the name and the public key
token of the external assembly to the attribute. The compiler then links these
two assemblies as friends. The assembly containing
InternalsVisibleToAttribute exposes its internals to the other
assembly (and not vice versa). You can accomplish the same thing by using the
command-line compiler switches.
Friend assemblies, like most things, come at a cost. If you define an assembly
as a friend of another assembly, the two assemblies become coupled and need
to coexist to be useful. That is, they are no longer a single unit of functionality.
This can cause confusion and increase management of your assemblies. It is
often easier to stay away from this feature unless you have a specific need.

Working with XML Directly Within Your Code (VB Only)
You can embed XML directly within your Visual Basic code. This can make
creating XML messages and executing queries against XML a simple task in
Visual Basic. To support this feature, Visual Basic enables you to write straight
XML when using the data types called System.Xml.Linq.XElement
and System.Xml.Linq.XDocument. The former enables you to create a
variable and assign it an XML element. The latter, XDocument, is used to
assign a variable to a full XML document.
Writing XML within your Visual Basic code is a structured process and not
just simple strings assigned to a parsing engine. In fact, the compiler uses
LINQ to XML behind the scenes to make all this work. Let’s look at a simple
example. The following code creates a variable emp of type XElement. It
then assigns the XML fragment to this variable.
VB
Click here to view code image

Dim emp As XElement = <employee>
<firstName>Joe

Smith</firstName>
<title>Sr. Developer</title>
<company>Contoso</company>
<location>Redmond,

WA</location>
</employee>

You can create a similar fragment to an XDocument. You simply add the
XML document definition (<?xml version="1.0"?>) to the header of
the XML. In either scenario, you end up with XML that can be manipulated,
passed as a message, queried, and more.
Visual Basic enables you to write XML inside your code. The two objects
(XElement and XDocument) are still important to C# developers.
However, C# developers work with the properties and methods of these
objects directly and do not rely on the editor to parse XML directly within a
code window. The following shows the same code sample written using C#.
(You need the using statement using System.Xml.Linq;.)
C#
Click here to view code image

XElement xmlTree1 = new XElement("employee",
new XElement("firstName", "Joe Smith"),
new XElement("title", "Sr. Developer"),
new XElement("company", "Contoso"),
new XElement("location", "Redmond, WA")

);

In most scenarios, however, you do not want to hard-code your XML messages
in your code. You might define the XML structure there, but the data comes
from other sources (variables, databases, and so on). Thankfully, Visual Basic
also supports building the XML using expressions. To do so, you use an ASP-
style syntax, as in <%= expression %>. In this case, you indicate to the
compiler that you want to evaluate an expression and assign it to the XML. For
XML messages with repeating data, you can even define a loop in your
expressions. For example, let’s look at building the previous XML using this
syntax. Suppose that you have an object e that represents an employee. In this
case, you might write your XElement assignment as shown here.
VB
Click here to view code image

Dim e As Employee = New Employee()
Dim emp As XElement = <employee>

<firstName><%= e.FirstName
%></firstName>

<lastName><%= e.LastName %>
</lastName>

<title><%= e.Title %>
</title>

<company><%= e.Company %>
</company>

<location state=<%=

e.Location.State %>>
<%= e.Location.City %>

</location>
</employee>

Removing Unused Arguments from Event Handlers (VB Only)
Visual Basic now enables you to omit unused and unwanted arguments from
your event handlers. The thought is that this makes for code that reads more
cleanly. In addition, it enables you to assign methods directly to event handlers
without trying to determine the proper event signature.
For example, suppose you had the following code to respond to a button click
event.
Click here to view code image

Private Sub Button1_Click(ByVal sender As
System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

'your code here

End Sub

You could remove the arguments from this code (or never put them in). Your
new code functions the same and looks like this.
Click here to view code image

Private Sub Button1_Click() Handles Button1.Click
'your code here

End Sub

Creating an Automatically Implemented Property
C# and Visual Basic allow for a simplified property declaration called auto-
implemented properties. With this feature, you can declare a property without
having to declare a local private field to back the property. Instead, the
compiler does this for you. This can be useful when you do not need logic
inside the property’s assessors.
For example, suppose you want to define the property Name on the
Employee class. You can declare this property without setting a private field
variable, as shown here.
C#
Click here to view code image

public string Name { get; set; }

VB
Click here to view code image

Public Property Name As String

Notice that there is no logic in the get or set statements. Instead, the
compiler creates an anonymous field to back the property for you.

Dropping the Underscore in VB for Line Continuation
Visual Basic added a feature in 2010 for implicit line continuation. This
enables you to drop the need for the underscore (_) commonly used to indicate
line continuation. For example, the following code shows a valid method
signature without the need for the underscore required for line continuation.
Click here to view code image

Private Sub OnEmployeeUpdate(ByVal sender As Object,
ByVal e As EmployeeUpdatedEventArgs)

There are many places in Visual Basic where you can eliminate the underscore
and instead allow the compiler to use implicit continuation. These include after
commas, after an open parenthesis, after an open curly brace, after
concatenation, and more.

Tip
Visual Basic 14 (for Visual Studio 2015) now allows for
multiline string literals.

Working with Dynamic Languages/Objects
Most .NET development is about working with strongly typed objects where
the compiler knows in advance the properties and methods that a given class
exposes. However, there are objects (and languages) out there that do not have
a static structure against which you can program. Instead, they are designed to
get their information at runtime based on data inside an HTML form, a text file,
XML, a database, or something similar. These objects and languages are said
to be dynamic in that they get their structure only at runtime. Dynamic support
was added to .NET for the purpose of simplifying the access to dynamic
application programming interfaces (APIs) provided by languages such as
IronPython and IronRuby or even those found in Office Automation.

The Dynamic Data Type
The C# language has a new data type called dynamic. This type is similar to
object in that it might contain any actual type. In fact, in Visual Basic you
simply use object to get dynamic-like behavior. The difference in C#,
however, is that any value defined as dynamic only has its actual type inferred
at runtime (and not at compile time). This means you do not have type checking
against valid methods. That is, the compiler does not stop you from writing
code against methods or properties it cannot see at design time. Instead, type
checking is only done when the code executes. Of course, this means that your
dynamic type should be the right type at the right time or you get errors.
You can define dynamic fields, properties, variable, or return types of
methods. For example, the following shows a property defined as a dynamic.
Click here to view code image

public dynamic DyProperty { get; set; }

At first glance, it would seem that the dynamic keyword simply makes the
type behave like types declared as objects. In fact, the differences are so slight

that Visual Basic combines the concept of object and dynamic. However, in
C#, the keyword dynamic indicates that the property can contain any value
and that no type checking is done at compile time regardless of what the code
looks like that uses the property. That is in contrast to types declared as
objects, in which the compiler evaluates expressions that use the type and
prevents certain code (such as doing arithmetic with objects). Dynamic types
do not get this scrutiny by the compiler and therefore either execute properly or
throw an error if a problem exists.
Dynamics are useful for dealing with types and code outside of .NET, such as
IronPython. However, you have to be careful when using them for your own
needs. Because no resolution is done until runtime, you do not get strong type
checking by the compiler or with IntelliSense. There is also a slight memory
and performance penalty to pay at runtime for dynamic objects.
Figure 3.4 shows an example of the experience inside Visual Studio. There are
two methods here. The first, VarTestMethod, uses the var statement to
create an instance of the Employee class. Notice an attempt to call the
nonexistent property NewName is type-checked as an error. The second
method, DynTestMethod, declares a dynamic instance of Employee. In
this case, a call to emp.NewName does not get a compile time error. The
compiler allows this call, but an exception will be thrown at runtime if you get
it wrong.

FIGURE 3.4 Using dynamics means no type checking even in IntelliSense.

Creating a Custom Dynamic Object
A dynamic object is one that gets its type information for things such as
properties and methods at runtime. This is typically due to the fact that the
object is meant to represent dynamic information such as that contained in an
HTML or XML script file. In both cases, the underlying HTML and XML files
you create are unique to your needs. Therefore, you cannot code directly
against these models. Instead, you often have to code against static objects and
write syntax such as MyXml.GetElement("EmployeeId"). In this
example, the GetElement method then searches for the given XML element
and returns the same. With a dynamic object, the object can be written to
interrogate your XML (or similar data) and enables developers to code against
the dynamic object as if it contained the EmployeeId property. For example,
developers could use your dynamic object to write their code as
MyXml.EmployeeId. The dynamic object still has to interrogate the
underlying structure for an EmployeeId, but this does simplify the coding
for those working with your object and a dynamic structure such as XML or
HTML.
You can create dynamic objects using either Visual Basic or C#. To do so, you
inherit from the DynamicObject class inside the System.Dynamic
namespace. You then override the members inside this class. These members
serve as the basis for your dynamic items. For example, you can override the
TrySetMember and TryGetMember to indicate the code that should be
run when a user attempts to set or get a dynamic property on your object (such
as calling MyXml.EmployeeId). In this case, if a user is trying to return a
dynamic property, the TryGetMember method is called. Your code then
determines how to return information for the dynamic property. (You might
interrogate a file, for instance.)
There are many members on DynamicObject for which you can provide
functionality. In addition to the two aforementioned members, the other
notables include TryInvokeMember for invoking dynamic methods and
TryCreateInstance for creating new instances of a dynamic object.
You might also add your own methods and properties to a dynamic object. In
this case, the dynamic object first looks for your property or method before
calling out to the appropriate Try member.
Let’s look at an example. Suppose that you were to write a dynamic object to
represent an Employee. In this case, perhaps you get data scraped from a
web page or inside an XML file. You therefore want to convert this data to an
object for easier programming. In this case, you can create a new class called
Employee and make sure it inherits fromDynamicObject. In our
example, we use a simple Hashtable of key value pairs to simulate the
employee data. When a user creates an instance of this class, he is expected to
pass the employee data to the dynamic class in the constructor. The skeleton of
this class might then look like this.
C#
Click here to view code image

class Employee : System.Dynamic.DynamicObject
{

Hashtable _memberData;

public Employee(Hashtable employeeData)
{

_memberData = employeeData;
}

}

VB
Click here to view code image

Public Class Employee
Inherits System.Dynamic.DynamicObject

Dim _memberData As Hashtable

Public Sub New(ByVal employeeData As Hashtable)
_memberData = employeeData

End Sub

End Class

The next step is to override one or more of the Try members of
DynamicObject to add our own functionality. In this simple example, we
override the TryGetMember method to provide functionality for reading a
property and add it to the Employee class created earlier. This method takes
two parameters: binder and result. The binder parameter is an object
that represents the dynamic call made to your object (such as its name). The
result parameter is an outbound parameter of type object. You use it to
pass back any value you intend to pass as the property read. Finally, the
method returns a bool. This indicates true if the member was determined to
exist; otherwise, you return false.
In the example, we simply look inside the Hashtable for a given key (based
on the binder.Name property). If it exists, we set the result to its value and
return true. Otherwise, we set the result to null and return false. The
following shows the code for this additional member of our Employee class
(assumes you’re using [imports in VB] System.Dynamic).
C#
Click here to view code image

public override bool TryGetMember(
GetMemberBinder binder, out object result)

{
if (_memberData.ContainsKey(binder.Name))
{

//set the out parameter results to the value in
the

// hash table for the given key
result = _memberData[binder.Name];

//indicate that member existed
return true;

}
else
{

//property does not exist in hash table
result = null;
return false;

}
}

VB
Click here to view code image

Public Overrides Function TryGetMember(ByVal binder As
GetMemberBinder,

ByRef result As Object) As Boolean

If _memberData.ContainsKey(binder.Name) Then
'set the out parameter results to the value in the
' hash table for the given key
result = _memberData(binder.Name)

'indicate that member existed
Return True

Else
'property does not exist in hash table
result = Nothing
Return False

End If

End Function

Note
Note that classes that inherit fromDynamicObject can be
passed as instances to other languages that support the dynamic
interoperability model. This includes IronPython and IronRuby.

Using the Dynamic Object
You use a dynamic object like you would any other. You can create an instance,
call methods and properties, and so on. However, you do not get type checking
by the compiler. Again, this is because the object is late bound at runtime. In
C#, you indicate a late-bound dynamic object using the keyword dynamic. In
Visual Basic, you simply declare your type as object. Visual Basic figures
out whether you are using late binding.
For example, suppose that you want to use the dynamic version of the
Employee class created in the previous section. Recall that this class
simulates converting data into an object. In this case, the simulation is handled
through a Hashtable. Therefore, you need to declare an instance of the
Employee class as dynamic (or object in VB) and then create an instance
passing in a valid Hashtable. You can then call late-bound properties
against your object. Recall that these properties are evaluated inside the
TryGetMember method you overrode in the previous example. The
following shows a Console application that calls the dynamic Employee
object.
C#

Click here to view code image

class Program
{

static void Main(string[] args)
{

Hashtable empData = new Hashtable();
empData.Add("Name", "Dave Elper");
empData.Add("Salary", 75000);
empData.Add("Title", "Developer");

dynamic dyEmp = new Employee(empData);

Console.WriteLine(dyEmp.Name);
Console.WriteLine(dyEmp.Salary);
Console.WriteLine(dyEmp.Title);
Console.WriteLine(dyEmp.Status);

Console.ReadLine();
}

}

VB
Click here to view code image

Module Module1

Sub Main()

Dim empData As New Hashtable()
empData.Add("Name", "Dave Elper")
empData.Add("Salary", 75000)
empData.Add("Title", "Developer")

Dim dyEmp As Object = New Employee(empData)

Console.WriteLine(dyEmp.Name)
Console.WriteLine(dyEmp.Salary)
Console.WriteLine(dyEmp.Title)
Console.WriteLine(dyEmp.Status)

Console.ReadLine()

End Sub

End Module

All this code passes the compiler’s test and executes accordingly. However,
the last call to dyEmp.Status is not valid. In this case, the dynamic object
returns false and thus throws an error. Figure 3.5 shows the results,
including the Console output and the error message trying to access a bad
member.

FIGURE 3.5 The dynamic object executing in the Console and throwing
an error in Visual Studio.

Tip
You can use the features discussed here to load a dynamic
language library such as IronPython. In this case, you load the
dynamic language library and can then use this library inside your
code. For more on this, see “Creating and Using Dynamic Objects
(C# and Visual Basic)” inside MSDN.

Covariance and Contravariance
The .NET languages support the concepts of covariance and contravariance.
These concepts enable you to reduce restrictions on strong typing when
working with delegates, generics, or generic collections of objects. In certain
situations, decreasing the type restrictions might increase your ability to reuse
code and objects and decrease the need to do a lot of casting or converting to
provide the right type to a method.
Covariance is the ability to use a more derived type than that which was
originally specified by an interface or function signature. For example, you
could assign a list of strings to a generic list that only takes objects if that list
supports covariance (because strings inherit from objects and are thus more
derived). Contravariance is similar; it is the ability to use a less-derived type
for a given parameter or return value. That is, you might assign an object type
as the return type for a method that returns a string (provided that method
supports contravariance).
It is important to note that the target type has to support covariance or
contravariance. This is not a change to the entire language. Instead, it
introduces a couple new keywords to allow support for these concepts when

appropriate.

Variance in Generic Collections
Many of the generic interfaces in the latest version of the .NET Framework
now support variance. This includes the interfaces IEnumerable<T> and
IEnumerator<T> (among others) that support covariance. This means you
can have support for variance inside your collections.
For example, you might have a list of Manager objects. Recall that
Manager derives fromEmployee. Therefore, if you need to work with the
Manager list as an Employee collection, you can do so using List and the
IEnumerable interface. The following code shows an example.
C#
Click here to view code image

IEnumerable<Manager> managers = new List<Manager>();
IEnumerable<Employee> employees = managers;

VB
Click here to view code image

Dim managers As IEnumerable(Of Manager) = New List(Of
Manager)()
Dim employees As IEnumerable(Of Employee) = managers

The preceding code compiles and executes because Manager inherits from
Employee and is thus more derived. Using covariance, you can use a list of
Manager objects with a list of Employee objects. For example, you might
have a method that takes a list of Employee objects as a parameter. Using
covariance support, you can pass the Manager list instead.

Additional Considerations
Support for variance has additional ramifications for your coding. These
include the following:

Customgeneric classes—If you create your own custom generic
classes, you can declare support for variance. You do so at the interface
level using the out (covariant) and in (contravariant) keywords on
generic type parameters.
Delegate variance—Using variance, you can assign methods to
delegates that return more derived types (covariance). You can also
assign those methods that accept parameters that have a less derived type
(contravariance).
Func and Action—The generic delegates Func<> and Action<>
now support variance. This enables you to more easily use these
delegates with other types (and thus increase the flexibility of your
code).

Asynchronous Programming
Most of the time, developers write code that processes a series of commands
sequentially. For instance, we can envision a simple routine
(TallyExpenseReport) that accepts an ID, calls a second routine
(GetExpenseReport) to call a service with that ID to retrieve an expense
report, grabs the total dollar amount of the expense report, and then updates a
database before finally giving the user a message indicating the status of the
operation.
C#
Click here to view code image

public void TallyExpenseReport(string id)
{

//get the expense report
ExpenseReport rpt = GetExpenseReport(id);
UpdateDataStore(id, rpt.TotalAmt);

}

public ExpenseReport GetExpenseReport(string id)
{

//code to fetch an expense report goes here
return new ExpenseReport();

}

VB
Click here to view code image

Public Sub TallyExpenseReport(id As String)
'get the expense report
Dim rpt As ExpenseReport = GetExpenseReport(id)
UpdateDataStore(id, rpt.TotalAmt)

End Sub

Public Function GetExpenseReport(id As String) As
ExpenseReport

'code to fetch an expense report goes here
Return New ExpenseReport()

End Function

But in this top-down sequential process, we have actually sacrificed a bit of
the user’s experience; because of its sequential nature, each time we make a
call, the application is blocked until the call completes. If we are talking to a
service, this might be anywhere from fractions of a second to minutes. The
same is true when we go to update the database. The entire time that the
application is waiting for a task to complete, the application (and the user)
cannot do anything else.
A better approach is an asynchronous one: we still issue a request for
information from the service, and we still make a call to update the database,

but in this case the application makes the call and then continues on its merry
way. That, in essence, is an asynchronous application: the application doesn’t
block any of the calls we chose to make asynchronous. These types of
applications are fraught with complexity. But even the syntax to create and
work with asynchronous calls has been complex and a tad arcane. The .NET
Framework 4.5 added two keywords—async and await—to both Visual
Basic and C# that help make asynchronous programming a bit easier.
Async is used as a modifier to indicate that a method is asynchronous. The
await keyword is used to mark any calls within an async method that should
be waited on for completion. For the runtime wiring to work, all your async
function calls also need to have their return values modified to
Task<originaltype> (C#) or Task(of originaltype).
If we were to take another stab at writing our expense report code, we might
end up with two routines that look something like this.
C#
Click here to view code image

public async void TallyExpenseReport(string id)
{

//get the expense report
ExpenseReport rpt = await GetExpenseReport(id);
UpdateDataStore(id, rpt.TotalAmt);

}

public async Task<ExpenseReport>
GetExpenseReport(string id)
{

//code to fetch an expense report goes here
return new ExpenseReport();

}

VB
Click here to view code image

Public Async Sub TallyExpenseReport(id As String)
'get the expense report
Dim rpt As ExpenseReport = Await

GetExpenseReport(id)
UpdateDataStore(id, rpt.TotalAmt)

End Sub

Public Async Function GetExpenseReport(id As String)
As

Threading.Tasks.Task(Of ExpenseReport)

'code to fetch an expense report goes here
Return New ExpenseReport()

End Function

Our “await” call to GetExpenseReport will cause the
TallyExpenseReport routine to block further execution in this method
until a value is returned; meanwhile, execution control will be immediately
passed back to the original method that called TallyExpenseReport in
the first place. In other words, the application will continue on, it won’t block,
and it may elect to do other things such as processing more user input, making
additional expense report calls, and so on.

Note
Obviously, these simple code examples barely scratch the surface
of async programming. For more information, search MSDN for
“Asynchronous Programming Patterns.” This includes the
recommended, task-based asynchronous pattern (TAP) based on
the System.Threading.Tasks namespace.

The .NET Framework
The .NET Framework continues to evolve. This latest version layers on top of
the many earlier versions that brought us support for generics, LINQ, Windows
Presentation Foundation (WPF), Windows Communication Foundation (WCF),
Windows Workflow Foundation (WF), SQL Synch Services, parallel
computing, Dynamic Language Runtime (DLR), asynchronous programming,
and more. Version 4.6/5.0 adds features and enhancements to most classes in
the framework. It also provides new capabilities.

AMap to the .NET Framework
We cannot begin to cover all the features of the .NET Framework in this
limited space. Therefore, we simply highlight some of the key areas that fuel
the current version of the .NET Framework. Think of this section as a high-
level map to help guide you when exploring the Framework. Many of these
items are also covered in more depth throughout the book:

System.AddIn (add-in framework)—Provides classes and methods
for developers looking to build applications that can be extended based
on a common add-in framework. For example, the AddInStore class
allows for the discovery and management of add-ins. The framework
also provides versioning, isolation, activation, and sandboxing. If you
are building a new application and hope to allow for add-ins, you should
dig deeper on this namespace.
System.CodeDom—Includes the classes used to represent the
structure of a code file. The classes in this namespace can be used to
generate and compile code.
System.Collections—Provides the collection classes inside the
Framework, including ArrayList, Hashtable, Queue, Stack,
SortedList, and others. It is recommended to use the generic type-
safe collections from the System.Collections.Generic
namespace instead. This not only gives you type safety but also better
performance and memory usage. .
System.ComponentModel—Provides classes used to help with the

runtime and design time execution of .NET controls, including data-
binding and progress monitoring.
System.Configuration—Provides classes for reading, writing,
and managing application configuration information.
System.Data (ADO.NET)—Provides the classes required to work
with data and databases. This includes the DataTable and DataSet.
There is also the namespace System.Data.SqlClient for working
with SQL databases. For more information on working with ADO.NET,
see Chapter 21, “Building WPF Applications.”
System.Diagnostics—Contains classes for working with
diagnostic information about your application. This includes an
EventLog and Process class. There is also the
EventSchemaTraceListener class to allow for cross-domain,
cross-thread, cross-computer, end-to-end, lock-free logging, and tracing.
System.Diagnostics.Contracts—Provides support for code
contracts, including preconditions and other data that is not typically
defined inside a method signature.
System.Drawing—Provides classes (like Pen, Brush, and
Graphics) related to drawing with GDI+.
System.Dynamic—Provides support for dynamic objects that get
their members are runtime. (See content earlier in this chapter for more
details.)
System.EnterpriseServices—Provides the services
architecture for creating serviced components that run under COM+.
System.Globalization—Used to define language and culture
information for writing multilingual, multicultural applications.
System.IO—Provides classes for reading and writing file and data
streams. This includes classes such as File, Directory, and
Stream. Note there is also the System.IO.Pipes namespace that
provides support for writing code that communicates at the pipe level
across processes and across computers.
System.Linq (LINQ)—Defines standard LINQ query operators and
types. The System.Data.Linq namespace holds the connection
between databases and the LINQ subsystem. There are more LINQ-
related namespaces, too. These include
System.Data.Linq.Mapping for handling the O/R mapping
between SQL and LINQ and System.Xml.Linq for working between
XML and the LINQ subsystem.
System.Media—Used for accessing and playing sounds and music.
System.Messaging—Provides support for working with message
queues.
System.Net—Provides support for programming with network
protocols, including the Hypertext Transfer Protocol (HTTP), File
Transfer Protocol (FTP), and Transmission Control Protocol/Internet
Protocol (TCP/IP). It also includes peer-to-peer networking support
found in the System.Net.PeerToPeer namespace.

System.Security—Provides the classes used to implement security
inside the .NET runtime.
System.ServiceModel (WCF)—Encapsulates what is known as
WCF. With it you can easily create service-based applications that work
across multiple protocols, transports, and message types. WCF is
covered more in Chapter 21.
System.Threading—Provides support for writing multithreaded
applications. This includes System.Threading.Tasks, which
provides support for parallel computing on multiple threads and multiple
cores. This namespace simplifies the task of writing for these
environments.
System.Timers—Allows developers to raise an event on a
specified interval.
System.Web (ASP.NET)—Includes many classes and controls. For
example, the framework directly supports AJAX programming with the
ScriptManager and UpdatePanel controls. There are also
controls for displaying data, such as ListView. For more on the
ASP.NET framework, see Chapter 17, “Building Modern Websites with
ASP.NET 5.”
System.Windows (WPF)—Provides the WPF presentation
technology for Windows applications. This technology is spread
throughout the namespace and includes support for creating Windows
applications based on XAML, XBAP, vector graphics, and both 2D and
3D scenarios. For more information, see Chapter 21.
System.Workflow.Activities and System.Activities
(WF)—Provides classes for writing workflow applications and the
custom activities found inside a workflow application.
System.Xml—Provides support for working with XML and XSL.

Summary
This chapter highlighted new programming features and provided a primer on
the .NET languages. It should serve to get you running on the many features and
programming constructs made possible by these languages. Our intent is to help
you write more and better code during your development day. This chapter
also presented a high-level roadmap of the .NET Framework. This Framework
is becoming so large that developers (and books) are often forced to specialize
in a particular area. We suggest that you look at our list and then jump off to
your own specialty area for further exploration.

 Part II: An In-Depth Look at the
	
IDE
	

Chapter 4. Solutions and Projects
	

In This Chapte r
Understanding Solutions
Getting Comfortable with Projects

Solutions and projects are the containers Visual Studio uses to house and
organize the code you write within the IDE. Solutions are virtual containers;
they group and apply properties across one or more projects. Projects are both
virtual and physical in purpose. Besides functioning as organizational units for
your code, they map one to one with compiler targets. Put another way, Visual
Studio turns projects into compiled code. Each project results in the creation
of a .NET component (such as a DLL or an EXE file).
This chapter covers the roles of solutions and projects in the development
process. You learn how to create solutions and projects, examine their physical
attributes, and best leverage their features.

Understanding Solutions
From a programming perspective, everything that you do within Visual Studio
takes place within the context of a solution. As mentioned in this chapter ’s
introduction, solutions in and of themselves don’t do anything other than serve
as higher-level containers for other items. Projects are the most obvious items
that can be placed inside solutions, but solutions can also contain
miscellaneous files that may be germane to the solution itself, such as “read
me” documents and design diagrams. Really, any file type can be added to a
solution. Solutions can’t, however, contain other solutions. In addition, Visual
Studio loads only one solution at a time. If you need to work on more than one
solution concurrently, you need to launch another instance of Visual Studio.
So what do solutions contribute to the development experience? Solutions are
useful because they allow you to treat different projects as one cohesive unit of
work. By grouping multiple projects under a solution, you can work against
those projects from within one instance of Visual Studio. In addition, a solution
simplifies certain configuration tasks by enabling you to apply settings across
all the solution’s child projects.
You can also “build” a solution. As mentioned previously, solutions
themselves aren’t compiled, per se, but their constituent projects can be built
using a single build command issued against the solution. Solutions are also a
vehicle for physical file management: because many items that show up in a
solution are physical files located on disk, Visual Studio can manage those
files in various ways (delete them, rename them, move them). So it turns out
that solutions are useful constructs within Visual Studio.
The easiest way to explore solution capabilities and attributes is to create a
solution in the IDE.

Creating a Solution
To create a solution, you first create a project. Because projects can’t be
loaded independently of a solution within Visual Studio, creating a project
causes a solution to be created at the same time.

Note
There actually is a way to create a blank, or empty, solution
without also creating a project. While creating a new project, if
you expand the Other Project Types node that appears in the
Installed Templates list, you will see a category for Visual Studio
Solutions. This contains a Blank Solution template. Blank
solutions are useful when you need to create a new solution to
house a series of already existing projects; the blank solution
obviates the need to worry about an extra, unneeded project being
created on disk.

Launch the New Project dialog box by using the File menu and selecting the
New, Project option (shown in Figure 4.1).

FIGURE 4.1 The File, New, Project menu.

The New Project dialog box is displayed with defaults for the project name,
location, and solution name (see Figure 4.2). We take a detailed look at the
various project types offered there when we discuss projects later in this
chapter. Notice that a Solution Name field is displayed at the bottom of the
dialog box. In this field, you can customize the name of your solution before
you create it. Clicking OK at this point does two things: a project of the
indicated type and name is created on disk (at the location specified), and a
solution, with links to the project, is created on disk using the provided name.

FIGURE 4.2 The New Project dialog box.
If you have selected something other than the Blank Solution project type,
Visual Studio now displays the newly created solution and project in the
Solution Explorer window. (You will learn about Solution Explorer in depth in
Chapter 5, “Browsers and Explorers.”) In effect, Visual Studio has created the
solution hierarchy shown in Figure 4.3.

FIGURE 4.3 A simple solution hierarchy.
Assuming that you have accepted the default locations and left the Create
Directory for Solution box checked on a Universal App solution, the physical
directory/file structure is created, as shown in Figure 4.4.

FIGURE 4.4 The solution file hierarchy.
In this example, the first App1 folder holds the solution file and has a
subfolder for each project. The second App1 folder contains the new project.
The source files are placed in this folder, and any compiled output files sit
underneath the bin directory and then under the specific build configuration
(for example, Debug or Release). This particular example is unique to the
Universal App project type; each project type can have its own unique
approach to structuring its file hierarchy.

Caution
By default, the solution is named after the project. There is
potential for confusion here because you now have two
folders/entities named App1. One refers to the solution; the other
refers to the project. This is not an ideal way to physically
organize your code on disk. It is recommended that you give the
solution a unique name during the project creation process by
simply overriding the default name given in the Solution Name
field (see Figure 4.2).

The Solution Definition F ile
Visual Studio stores solution information inside two separate files: a solution
definition file and a solution user options file. For the preceding example, a
solution definition file (App1.sln) and a solution user options file
(App1.suo) were created.
The solution definition file is responsible for actually describing any project
relationships in the solution and for storing the various solution-level attributes
that can be set. The solution user options file persists any customizations or
changes that you, as a Visual Studio user, might have made to the way the
solution is displayed within the IDE (such as whether the solution is expanded
or which documents from the solution are open in the IDE). In addition, certain
source control settings and other IDE configuration data are stored here.
The solution user options file is, by default, marked as a hidden file and is
stored within a hidden folder; its content is actually binary. Because its internal

orms.

structure is not publicly documented, we do not attempt to dissect it here. The
solution definition file, however, is simply a text file. Listing 4.1 shows the file
content for a fairly complex sample solution.

LISTING 4.1 Sample Solution File

Click here to view co de image

Microsoft Visual Studio Solution File, Format Version
12.00

Visual Studio 14

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") =

"Contoso.Fx.Integration",

"ClassLibrary1\Contoso.Fx.Integration.csproj", "

{DA0BA585-76C1-4F5E-B7EF-R57254E185BE4}"

EndProject

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") =

"Contoso.Fx.Common",

"Contoso.Fx.Common\Contoso.Fx.Common.csproj", "

{A706BCAC-8FD7-4D8A-AC81-R249ED61FDE72}"

EndProject

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") =

"Contoso.Fx.Analysis",

"Contoso.Fx.Analysis\Contoso.Fx.Analysis.csproj", "

{EB7D75D7-76FC-4EC0-A11E-2B54849CF6EB}"

EndProject

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") =

"Contoso.Fx.UI",

"Contoso.Fx.UI\Contoso.Fx.UI.csproj", "{98317C19-F6E7-
42AE-AC07-72425E851185}"

EndProject

Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") =

"Architecture Models",

"Architecture Models", "{60777432-3B66-4E03-A337-
0366F7E0C864}"

ProjectSection(SolutionItems) = postProject
ContosoSystemDiagram.sd =

ContosoSystemDiagram.sd
EndProjectSection

EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") =
"Contoso.UI.WindowsForms.
OrderEntry",
"Contoso.UI.WindowsForms.OrderEntry\Contoso.UI.WindowsF
OrderEntry.csproj", "{49C79375-6238-40F1-94C8-
4183B466FD79}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") =
"Class Libraries", "Class
Libraries", "{E547969C-1B23-42DE-B2BB-A13B7E844A2B}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") =
"Controls", "Controls",
"{ED2D843C-A708-41BE-BB52-35BFE4493035}"
EndProject
Global

http:ContosoSystemDiagram.sd
http:ContosoSystemDiagram.sd
http:Contoso.Fx.UI

GlobalSection(SolutionConfigurationPlatforms) =
preSolution

Debug|Any CPU = Debug|Any CPU
Release|Any CPU = Release|Any CPU

EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) =

postSolution
{DA0BA585-76C1-4F5E-B7EF-

57254E185BE4}.Debug|Any CPU.ActiveCfg = Debug|
Any CPU
{DA0BA585-76C1-4F5E-B7EF-

57254E185BE4}.Debug|Any CPU.Build.0 = Debug|
Any CPU
{DA0BA585-76C1-4F5E-B7EF-

57254E185BE4}.Release|Any CPU.ActiveCfg = Release
|Any CPU
{DA0BA585-76C1-4F5E-B7EF-

57254E185BE4}.Release|Any CPU.Build.0 = Release|
Any CPU
{A706BCAC-8FD7-4D8A-AC81-

249ED61FDE72}.Debug|Any CPU.ActiveCfg = Debug|
Any CPU
{A706BCAC-8FD7-4D8A-AC81-

249ED61FDE72}.Debug|Any CPU.Build.0 = Debug|
Any CPU
{A706BCAC-8FD7-4D8A-AC81-

249ED61FDE72}.Release|Any CPU.ActiveCfg = Release
|Any CPU
{A706BCAC-8FD7-4D8A-AC81-

249ED61FDE72}.Release|Any CPU.Build.0 = Release
|Any CPU
{EB7D75D7-76FC-4EC0-A11E-

2B54849CF6EB}.Debug|Any CPU.ActiveCfg = Debug| Any
CPU
{EB7D75D7-76FC-4EC0-A11E-

2B54849CF6EB}.Debug|Any CPU.Build.0 = Debug|
Any CPU
{EB7D75D7-76FC-4EC0-A11E-

2B54849CF6EB}.Release|Any CPU.ActiveCfg =
Release |Any CPU
{EB7D75D7-76FC-4EC0-A11E-

2B54849CF6EB}.Release|Any CPU.Build.0 = Release
|Any CPU
{98317C19-F6E7-42AE-AC07-

72425E851185}.Debug|Any CPU.ActiveCfg = Debug|
Any CPU
{98317C19-F6E7-42AE-AC07-

72425E851185}.Debug|Any CPU.Build.0 = Debug|
Any CPU
{98317C19-F6E7-42AE-AC07-

72425E851185}.Release|Any CPU.ActiveCfg =
Release |Any CPU
{98317C19-F6E7-42AE-AC07-

72425E851185}.Release|Any CPU.Build.0 = Release
|Any CPU
{49C79375-6238-40F1-94C8-

4183B466FD79}.Debug|Any CPU.ActiveCfg = Debug|

Any CPU

{49C79375-6238-40F1-94C8-

4183B466FD79}.Debug|Any CPU.Build.0 = Debug|
Any CPU
{49C79375-6238-40F1-94C8-

4183B466FD79}.Release|Any CPU.ActiveCfg =
Release |Any CPU
{49C79375-6238-40F1-94C8-

4183B466FD79}.Release|Any CPU.Build.0 =
Release |Any CPU

EndGlobalSection
GlobalSection(SolutionProperties) = preSolution

HideSolutionNode = FALSE
EndGlobalSection
GlobalSection(NestedProjects) = preSolution

{ED2D843C-A708-41BE-BB52-35BFE4493035} =
{E547969C-1B23-42DE-B2BB-A13B7E844A2B}

{EB7D75D7-76FC-4EC0-A11E-2B54849CF6EB} =
{E547969C-1B23-42DE-B2BB-A13B7E844A2B}

{A706BCAC-8FD7-4D8A-AC81-249ED61FDE72} =
{E547969C-1B23-42DE-B2BB-A13B7E844A2B}

{DA0BA585-76C1-4F5E-B7EF-57254E185BE4} =
{E547969C-1B23-42DE-B2BB-A13B7E844A2B}

{98317C19-F6E7-42AE-AC07-72425E851185} =
{ED2D843C-A708-41BE-BB52-35BFE4493035}

EndGlobalSection
EndGlobal

At the beginning of the file are references to the projects that belong to the
solution. The references contain the project’s name, its globally unique
identifier (GUID), and a relative path to the project file itself (more on project
files in a bit):
Click here to view co de image

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") =

"Contoso.Fx.Integration",

"ClassLibrary1\Contoso.Fx.Integration.csproj", "

{DA0BA585-76C1-4F5E-B7EF-R57254E185BE4}"

EndProject

You can also see some of the various configuration attributes applied to the
solution; the Debug and Release settings, for instance, show up here. Note that
this project contains several solution folders: Architecture Models, Class
Libraries, and Controls. They are represented in the solution file in much the
same way as projects. In fact, the only difference is that they do not have a
relative file path associated with them.

Working with Solutions
After you have created a solution, the primary vehicle is in place for
interacting with your code base. In essence, this boils down to controlling the
way its constituent projects and files are built and deployed. Solutions also
provide functionality outside the scope of projects. The primary tool for
manipulating solutions and projects is the Solution Explorer. This tool is
discussed in depth in Chapter 5. Here, we look at the general procedures used
to manage solutions by using the menu system in Visual Studio; keep in mind
that most of the commands and actions discussed here can be initiated from the
Solution Explorer.

Solution Items
In practice, the content you add most often to a solution is project related. But
items can be added directly to a solution as well. Collectively, the term
solution items refers to any non-project file that is attached to a solution.
Because a solution can’t be compiled (only its projects will), it stands to
reason that files added at the solution level serve no practical purpose from a
compilation perspective. There are various reasons, however, that you might
want to add solution items to your solution. For instance, adding solution items
to your solution is a convenient way to store documentation that applies to the
solution as a whole. Because you can add any type of file to a solution, this
could take the form of documents, notes to other developers, design
specifications, or even source code files from other solutions that could have
some effect or bearing on the work at hand.
By default, Visual Studio supports a few types of solution items that can be
created directly from within the IDE. They are grouped within three categories.
Within each category are various file types that can be generated by Visual
Studio. Table 4.1 shows the supported General types.

TABLE 4.1 File Types Supported Within a Solution by Add New Item
	

Note
Keep in mind that you are in no way limited as to the type of file
you can add to a solution. Even though Visual Studio supports
only a limited number of file types that can be created within the
IDE, you always have the option of creating a file outside the IDE
and then adding it to a solution by using the Add Existing Item
command.

Figure 4.5 shows the Add New Item - Solution Items dialog box that appears
when you try to add a new item to a solution.

FIGURE 4.5 Adding a new solution item.

Solution F olders
To assist in organizing the various files in your solution, you can use solution
folders. Solution folders are virtual folders implemented entirely within Visual
Studio. Creating a solution folder does not cause a physical file folder to be
created on disk; these folders exist solely to provide another grouping level
within the solution. Solution folders can be nested and are especially useful in
large solutions that contain many different projects and miscellaneous files.
For example, you might want to group all your web service projects under a
single solution folder called Services and group the Windows forms elements
of your solution under a user interface (UI) folder. On disk, files added to a
virtual folder are physically stored within the root of the solution directory
structure.

Note
Visual Studio creates solution folders automatically if you add a
nonproject item to a solution. For instance, if we want to add a
text file to the current solution, Visual Studio automatically adds a
solution folder titled Solution Items to contain the text file.
Similarly, you might see a Misc Files folder in some
solutions. This is simply a solution folder.

Beyond providing a way to visually group items, solution folders allow you to
apply certain commands against all the projects contained within an individual
folder. For example, you can “unload” all the projects within a virtual folder
by issuing the unload command against the virtual folder. (This makes the
projects temporarily unavailable within the solution; they can be useful when
trying to isolate build problems or solution problems.) After unloading the

projects in a solution folder, another right-click on the same solution folder
allows you to reload the projects.

Solution P roperties
You can set several solution-level properties from within the IDE. The
Solution Property Pages dialog box gives you direct access to these properties
and enables you to do the following:

Set the startup project of the solution. (This project runs when you start
the debugger.)
Manage interproject dependencies.
Specify the location of source files to use when debugging.
Control static code analysis settings.
Modify the solution build configurations.

You launch this dialog box by clicking the solution in the Solution Explorer
window and then clicking View, Property Pages, or right-clicking the solution
in the Solution Explorer and selecting Properties. On this dialog box, the
property page categories are represented in a tree view to the left; expanding a
tree node reveals the individual property pages available.

Specifying the Startup P roject
Figure 4.6 shows the Startup Project property page. The Startup Project
property page indicates whether the startup project should be the currently
selected project, a single project, or multiple projects.

FIGURE 4.6 The Startup Project property page.

The default, and most typically used option, is to specify a single startup
project. The project to run is specified in the drop-down box. If Current
Selection is selected, the project that currently has focus in the Solution
Explorer is considered the startup project. Also note that as soon as you switch
from one file of a project to another file of another project, the latter project
becomes the current project: no need to click on the project in the Solution

Explorer!
You can also launch multiple projects when the debugger is started. Each
project currently loaded in the solution appears in the list box with a default
action of None. Projects set to None are not executed by the debugger. You can
also choose from the actions Start and Start Without Debugging. As their names
suggest, the Start action causes the indicated project to run within the debugger;
Start Without Debugging causes the project to run, but it is not debugged.

Setting P roject Dependencies
If a solution has projects that depend on one another—that is, one project
relies on and uses the types exposed by another project—Visual Studio needs
to have a build order of precedence established among the projects. For
example, consider a Windows application project that consumes types that are
exposed by a class library project. The build process fails if the class library
is not built first within the build sequence.
Most of the time, Visual Studio is able to determine the correct sequence based
on the references added to the different projects. You might need to manually
indicate that a project is dependent on other specific projects. For instance, a
UI project might depend on another class library project. To supply this
information, you use the Project Dependencies property page (see Figure 4.7).
By selecting a project in the drop-down, you can indicate which other projects
it depends on by placing a check mark on any of the projects shown in the
Depends On list.

FIGURE 4.7 Project dependencies.
	

Code Analysis Settings
Visual Studio has a built-in capability to perform static code analysis. Put
simply, this allows the IDE to analyze and report on the health of your code
with regard to how well it follows a set of best practices and guidelines.
Microsoft provides multiple rules libraries that can be executed against your
code. These range from globalization rules to security rules to basic design
guideline rules. The Code Analysis Settings property page (see Figure 4.8) is
used to specify which rule set should be run against which project in your
solution. Chapter 9, “Refactoring Code,” covers more of the features of static
code analysis.

FIGURE 4.8 Code analysis settings.

Source F ile Location for Debugging
In certain situations, you might need to explicitly point the Visual Studio
debugger at source files to use when the debugger executes. One such scenario
occurs when you are trying to debug a solution that references an object on a
remote machine. If the source is not available locally for that remote object,
you can explicitly point Visual Studio at the source files.
The Debug Source Files property page (see Figure 4.9) has two different list
boxes. The top box contains a list of folders that hold source code specific to
your debugging scenario. The bottom list box enables you to indicate specific
files that the debugger should ignore (that is, should not load) when debugging.
This last option is useful when you may not have all the source code files on
your local machine; you can simply tell Visual Studio to ignore files that aren’t
available to the debugger.

FIGURE 4.9 Source file locations.
To add an entry to either box, first place your cursor within the box and then
click the New Line button (upper right of the dialog box). This allows you to
enter a fully qualified path to the desired folder. You remove an entry by
selecting the item and then clicking the Cut Line button. The Check Entries
button allows you to double-check that all entries point to valid, reachable
folder paths.
If the loaded solution has any Visual C++ projects, you probably see several
items already added into the Directories Containing Source Code list box.

Build Configuration P roperties
Build configurations are covered in depth in Chapter 10, “Debugging Code.”
On the Build Configuration property page (see Figure 4.10), you indicate how
Visual Studio builds the projects contained within the solution. For each
project, you can set a configuration (Release or Debug by default) and platform
(AnyCPU, x86, x64 or any specific target) value. In addition, a check box
allows you to indicate whether to build and deploy a particular project.

FIGURE 4.10 Build configuration properties.
See Chapter 10 for information on how to effectively use build configurations
in your development.
	
Now that we have covered the concept of a solution in depth, let’s examine the
	
role of projects within Visual Studio.
	

Getting Comfortable with Projects
Projects are where all the real work is performed in Visual Studio. A project
maps directly to a compiled component. Visual Studio supports various project
types. Let’s reexamine the project creation process.

Creating a Project
As you saw earlier during the solution creation discussion, you create projects
by selecting the New, Project option from the File menu. This launches the
New Project dialog box (see Figure 4.11).

FIGURE 4.11 Adding a project to the current solution.
Table 4.2 shows some of the various project types supported in Visual Studio
out of the box.

TABLE 4.2 Supported Project Types
	

Note
Visual Studio supports the capability to create new project types
and templates. Because Visual Studio is extensible in this fashion,
the list of project types that you see in your particular copy of
Visual Studio can vary greatly depending on the Visual Studio
SKU you have installed and any add-ins, extensions, or “starter
kits” you have installed on your PC.
For example, the Windows Azure software development kit
(SDK), when downloaded and installed, adds project types under
the Cloud category.

Note
Project types are dependent on a specific version of the .NET
Framework. Changing the selected entry in the framework version
drop-down that you see at the top of Figure 4.11 will filter the list
of project types accordingly.

As outlined previously, creating a new project also creates a new containing
solution. However, if you are creating a project and you already have a
solution loaded in the IDE, the New Project dialog box offers you the
opportunity to add the new project to the existing solution. Compare Figure
4.11 with Figure 4.2; notice that there is a new option in the form of a drop-
down box that allows you to indicate whether Visual Studio should create a
new solution or add the project to the current solution.

Website P rojects
Developers have two different ways to create web projects within Visual
Studio 2015. Web application projects are created using the New Project
dialog that we just discussed. Website projects are created in a slightly
different fashion. Instead of selecting File, New, Project, you select File, New,
Web Site. This launches the New Web Site dialog box (see Figure 4.12).

FIGURE 4.12 Creating a new website project.

As with other project types, you initiate website projects by selecting one of
the predefined templates. In addition to the template, you select a target source
language and the location for the website. The location can be the file system,
an HTTP site, or an FTP site. Unlike other project types, websites are not
typically created within the physical folder tree that houses your solution. By
default, even selecting the file system object places the resulting source files in
a Web Sites folder under the Visual Studio 2015 projects folder.

003">

)\Microsoft.Common.props"
olsVersion)\Microsoft.Common.props')"

Note
The target source language for a website project simply
represents the default language used for any code files. It does not
constrain the languages you can use within the project. For
instance, a website project created with C# as the target language
can still contain Visual Basic code files.

After you have created the website, you manage and maintain it just like the
other project types within the IDE.
You might be wondering about the difference between a web application
project and a website project. One key difference is the way that these two
different project types are built. Web application projects use the same build
model as the other .NET project types; that is, all the code in the project is
compiled into a single assembly. Website projects, however, support a
dynamic build model in which the code for a particular page is generated at
runtime the first time a user hits the page. In this model, each page has its own
assembly. There are many other differences between the two project types, as
discussed in Part V, “Building Web Applications.”

Working with Project Definition Files
As with solutions, projects maintain their structure information inside a file.
	
These files have different extensions depending on their underlying language.
	
For instance, Visual Basic project files have a .vbproj extension, and
	
Visual C# project files have a .csproj extension.
	
Each project definition file contains all the information necessary to describe
	
the source files and the various project properties and options. This includes
	
the following:
	

Build configurations
Project references and dependencies
Source code file locations/types

Visual Basic and Visual C# project definition files are based on the same
schema. Listing 4.2 contains a snippet from a Visual C# project definition file.

LISTING 4.2 Contents of a Visual C# Project Definition File

Click here to view co de image

<?xml version="1.0" encoding="utf-8"?>

<Project ToolsVersion="4.0" DefaultTargets="Build"

xmlns="http://schemas.microsoft.com/developer/msbuild/2

<Import
Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion
Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildTo
/>

<PropertyGroup>
<Configuration Condition=" '$(Configuration)' ==

'' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == ''

">AnyCPU</Platform>

ace>
e>
n>

ut>

<ProjectGuid>{65C9998A-C3F7-4299-B91E-
030499362F80}</ProjectGuid>

<OutputType>WinExe</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>WindowsFormsApplication1</RootNamesp
<AssemblyName>WindowsFormsApplication1</AssemblyNam
<TargetFrameworkVersion>v4.5</TargetFrameworkVersio
<FileAlignment>512</FileAlignment>

</PropertyGroup>
<PropertyGroup Condition="

'$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<PlatformTarget>AnyCPU</PlatformTarget>
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG;TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>

</PropertyGroup>
<PropertyGroup Condition="

'$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
<PlatformTarget>AnyCPU</PlatformTarget>
<DebugType>pdbonly</DebugType>
<Optimize>true</Optimize>
<OutputPath>bin\Release\</OutputPath>
<DefineConstants>TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>

</PropertyGroup>
<ItemGroup>

<Reference Include="System" />
<Reference Include="System.Core" />
<Reference Include="System.Xml.Linq" />
<Reference Include="System.Data.DataSetExtensions"

/>
<Reference Include="Microsoft.CSharp" />
<Reference Include="System.Data" />
<Reference Include="System.Deployment" />
<Reference Include="System.Drawing" />
<Reference Include="System.Windows.Forms" />
<Reference Include="System.Xml" />

</ItemGroup>
<ItemGroup>

<Compile Include="Form1.cs">
<SubType>Form</SubType>

</Compile>
<Compile Include="Form1.Designer.cs">

<DependentUpon>Form1.cs</DependentUpon>
</Compile>
<Compile Include="Program.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
<EmbeddedResource

Include="Properties\Resources.resx">
<Generator>ResXFileCodeGenerator</Generator>
<LastGenOutput>Resources.Designer.cs</LastGenOutp
<SubType>Designer</SubType>

http:Include="Properties\AssemblyInfo.cs
http:Include="Program.cs
http:Include="Form1.Designer.cs
http:Include="Form1.cs

>
t>

t>

</EmbeddedResource>

<Compile

Include="Properties\Resources.Designer.cs">
<AutoGen>True</AutoGen>
<DependentUpon>Resources.resx</DependentUpon>

</Compile>
<None Include="Properties\Settings.settings">

<Generator>SettingsSingleFileGenerator</Generator
<LastGenOutput>Settings.Designer.cs</LastGenOutpu

</None>

<Compile

Include="Properties\Settings.Designer.cs">
<AutoGen>True</AutoGen>
<DependentUpon>Settings.settings</DependentUpon>
<DesignTimeSharedInput>True</DesignTimeSharedInpu

</Compile>

</ItemGroup>

<ItemGroup>

<None Include="App.config" />

</ItemGroup>

<Import

Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets"
/>

<!-- To modify your build process, add your task
inside one of the targets below and uncomment it.

Other similar extension points exist, see
Microsoft.Common.targets.

<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target>
-->

</Project>

This project definition file would look relatively the same as a Visual Basic
project.

Working with Projects
As source code containers, projects principally act as a settings applicator.
They are used to control and organize your source code files and the various
properties associated with the whole build and compile process. (You learn
about the build process in depth in Chapter 11, “Deploying Code.”) As with
solutions, projects can contain various items that are germane to their
development. Projects are language specific. You cannot mix different
languages within a specific project. There is no similar limitation with
solutions: a solution can contain many projects, each one in a different
language.

http:Include="Properties\Settings.Designer.cs
http:Include="Properties\Resources.Designer.cs

P roject Items
After a project is created, by default it contains one or more project items.
These default items vary depending on the project template you selected and on
the language of the project. For instance, creating a project using the C#
Windows Forms application template results in the formation of a Form1.cs
file, a Form1.Designer.cs file, and a Program.cs file. Projects are
also preconfigured with references and properties that make sense for the
given project type: the Windows Forms application template contains a
reference to the System.Windows.Forms assembly, whereas the class
library template does not.
Projects, like solutions, can have subfolders within them that you can use to
better manage and group project items. Unlike solutions, the folders you create
within a project are physical; they are created on disk within your project
directory structure. These are examples of physical project items. Source code
files are also physical in nature.
Projects can contain virtual items (items that are merely pointers or links to
items that don’t actually manifest themselves physically within your project
structure). They are, for example, references to other assemblies, database
connections, and virtual folders. (Virtual folders are described in Chapter 5.)
Figure 4.13 illustrates a fully described solution and project.

FIGURE 4.13 Project structure.

P roject P roperties
Like solution properties, project properties are viewed and set using a series
of property pages accessed through the Project, Properties menu. These
property pages are hosted within a dialog box referred to as the Project
Designer. Figure 4.14 shows the Project Designer that is displayed for a
sample Visual Basic class library project. Different languages and different
project types actually surface different property pages within the Project
Designer. For instance, the Application property page for a Visual Basic
project looks different and contains slightly different information than an
identical Visual C# project (although the basic intent of the page remains
unchanged).

http:Program.cs
http:Form1.Designer.cs
http:Form1.cs

FIGURE 4.14 Setting properties using the Project Designer.
In general, you use project properties to control the following:

General project attributes such as the assembly name and project type
The way the project is built/compiled
Debugger configuration for the project
Resources used by the project
Signing and security settings

Note
The Project Designer is easily accessed from the Solution
Explorer pane. For C# projects, you can double-click the
Properties item under the project. Visual Basic projects have a
My Project item that does the same thing. And, of course, you can
always right-click the project name and then select Properties
from the pop-up menu.

Let’s examine some of the more common project property pages and discuss
briefly the options that can be set on each.

Application
The Application property page allows you to set the assembly name,
root/default namespace, application/output type, and startup object. For
Windows Forms applications, authentication modes and visual styles are also
controlled via this property page. Note that the options available in this dialog
depend on the project type and the chosen language:

Asse mbly Name —This is the filename of the assembly that the project
is compiled into. Typically, it defaults to the project name. The extension
used is determined by the output type of the project.

Targe t Frame work—This is the specific version of the .NET
Framework to be targeted by the project. Starting with Visual Studio
2012, options were added here for .NET Framework 4.5, but you can
continue to compile code against earlier versions from 2.0 onward.
Root/De fault Name space —This specifies a namespace to be used by
any types declared within the project. This can also be declared
manually in code.
Output Type (C#)/Application Type (VB)—This value determines the
fundamental project type (for example, class library, Windows
application, console application).
Startup Obje ct—This object is used to set the entry point for the
project. For Windows Forms applications, this is the default form (or in
the case of C#, the class and entry point method—Program.Main by
default when [Not Set] is selected) that should be launched when the
application is executed. For console applications, the startup object is
the method that Windows calls after the console has been created—also
Program.Main by default when (Not Set) is selected. Class library
projects do not have an entry point and will be set to (Not Set) for C#
projects, and (None) for Visual Basic projects.
Icon—This is the icon to associate with the assembly and visible from
the Windows Explorer. It is not pertinent to class library or web
projects.
Re source File —This text box can be used to specify a path and filename
for a Win32 resource file. Resource files contain nonexecutable content,
such as strings, images, or version information, that is embedded within
the compiled assembly. Note that by default for .NET projects, version
information is generated based on the AssemblyInfo file that
contains specific attributes.
Windows Application Frame work Prope rtie s—Visual Basic provides
a series of properties that apply specifically to Windows application
projects. These properties allow you to set the splash screen associated
with the project, enable or disable support for XP themes/visual styles,
set the authentication mode supported by the project (Windows or
application-defined), and set the shutdown mode of the project. The
shutdown mode specifies whether the application should shut down
when the initial form is closed or when the last loaded form in the
application is closed.

Build (C# Only)
The Build property page is used with Visual C# projects to tweak settings
associated with build configurations. Using this dialog box, you can select
whether the DEBUG and TRACE constants are turned on, and you can specify
conditional compilation symbols. Settings that affect the warning and error
levels and the build output are also housed here. For more exploration of the
options available here, see Chapter 10.

Build Events (C# Only)
Visual Studio triggers a prebuild and postbuild event for each project. On the
Build Events page, you can specify commands that should be run during either
of these events. This page also allows you to indicate when the post-build
event runs: always, after a successful build, or when the build updates the
project output. Build events are particularly useful for launching system tests
and unit tests against a project that has just been recompiled. If you launch a
suite of, say, unit tests from within the postbuild event, the test cycle can be
embedded within the build cycle.

Note
If you specify commands in the prebuild or postbuild events,
Visual Studio creates a batch file for each event and places it into
the bin/debug directory. These files,
PreBuildEvent.bat and PostBuildEvent.bat, house
the commands you enter on the Build Events property page. In the
event of an error running the build event commands, you can
manually inspect and run these files to try to chase down the bug.

Compile (VB Only
The Compile property page is used by Visual Basic projects to control which
optimizations are performed during compile and control general compilation
options for the output path and warnings versus errors raised during the
compilation process. It is analogous to the C# Build property page:

Compile Options—You use the Option Strict, Option Explicit, and
Option Infer drop-downs to turn on or off these settings. You can also
control whether the project performs binary or text comparisons with the
Option Compare drop-down.
Compile r Conditions—Visual Basic allows you to customize the level
of notification provided upon detecting any of a handful of conditions
during the compilation process. For instance, one condition defined is
Unused Local Variable. If this condition is detected in the source code
during the compile, you can elect to have it treated as a warning or an
error or to have it ignored altogether.
Build Eve nts—Visual Basic allows you to access the Build Events
property page (see the preceding section for an explanation) via a Build
Events button located on this screen.
Warning configurations—You can choose to disable all compiler
warnings, treat all warnings as errors, and generate an XML
documentation file during the compile process. This results in an XML
file with the same name as the project; it contains all the code comments
parsed out of your source code in a predefined format.

Debug
The Debug property page allows you to affect the behavior of the Visual Studio
debugger:

Start Action—You use this option to specify whether a custom program,

a URL, or the current project itself should be started when the debugger
is launched.
Start Options—You use this option to specify command-line arguments
to pass to the running project, set the working directory for the project,
and debug a process on a remote machine.
Enable De bugge rs—You use the check boxes in this section to enable
or disable such things as support for debugging unmanaged code, support
for SQL stored procedure debugging, and use of Visual Studio as a host
for the debugger process.

P ublish
The Publish property page enables you to configure many ClickOnce-specific
properties. You can specify the publish location for the application, the install
location (if different from the publish location), and the various installation
settings, including prerequisites and update options. You can also control the
versioning scheme for the published assemblies.

References (VB Only)
The References property page is used within Visual Basic projects to select
the assemblies referenced by the project and to import namespaces into the
project. This screen also allows you to query the project in an attempt to
determine whether some existing references are unused. You do this by using
the Unused References button.

Reference P aths (C# Only)
The Reference Paths property page allows you to provide path information
meant to help Visual Studio find assemblies referenced by the project. Visual
Studio first attempts to resolve assembly references by looking in the current
project directory. If the assembly is not found there, the paths provided on this
property page are used to search for the assemblies. Visual Studio also probes
the project’s obj directory, but only after attempting to resolve first using the
reference paths you have specified on this screen.

Resources
Resources are items such as strings, images, icons, audio, and files that are
embedded in a project and used during design and runtime. The Resources
property page allows you to add, edit, and delete resources associated with the
project.

Security
For ClickOnce applications, the Security property page allows you to enforce
code access security permissions for running the ClickOnce application.
Various full-trust and partial-trust scenarios are supported.

Settings
Application settings are dynamically specified name/value pairs that can be
used to store information specific to your project/application. The Settings
property page allows you to add, edit, and delete these name/value pairs.
Each setting can be automatically scoped to the application or to the user and

can have a default value specified. Applications can then consume these
settings at runtime.

Signing
The Signing property page allows you to have Visual Studio code sign the
project assembly (and its ClickOnce manifests) by specifying a key file. You
can also enable Delay Signing from this screen.

Summary
Solutions and projects are the primary vehicles within Visual Studio for
organizing and managing your code. They allow you to divide and conquer
large solutions, and they provide a single point of access for various settings
(at both the solution and project levels). Solutions are the top-level container
and the first work item that Visual Studio creates when creating a new code
project.
In this chapter, you learned the following about solutions:

Solutions can be built (triggering a build of each of its projects) but
cannot be compiled.
Visual Studio can load only one solution at a time; to work on multiple
solutions concurrently, you must have multiple copies of Visual Studio
running.
You can create folders within a solution to help group its content; these
folders are virtual and do not represent physical folders on disk.
Solutions are primarily used to group one or more projects. Projects
within a solution can be a mix of the various supported languages and
project types.
Solutions cannot contain other solutions.
Besides projects, solutions can contain miscellaneous files (called
solution items) that typically represent information pertinent to the
solution (readme files, system diagrams, and the like).

Although solutions are an important and necessary implement, it is the Visual
Studio project that actually results in a compiled .NET component. Projects
are created and based on templates available within the IDE that cover the
various development scenarios, ranging from web application development to
Windows application development to smart device development.
In this chapter, you learned the following about projects:

Projects exist to compile code into assemblies.
Projects are based on a project template; project templates define the
various artifacts, references, and so on that make sense for the project’s
context.
Like solutions, projects support subfolders to help you better organize
your code. These folders are actual physical folders that are created on
disk.
Projects contain project items. They can be source code files,
references, and other items such as virtual folders and database
connections.

You have seen how solutions and projects are physically manifested; the next
chapter covers the primary Visual Studio tools used to interact with solutions
and projects.

Chapter 5. Browsers and Explorers
	

In This Chapte r
Leveraging the Solution Explorer
Class View
Server Explorer
Object Browser
Document Online

Visual Studio provides a cohesive and all-encompassing view of your
solutions, projects, and types within your projects through windows called
browsers and explorers. These windows (which are confusingly also referred
to as view windows) attempt to provide a visually structured representation of
a large variety of elements (some code based, others not).
In general, you access and display these windows through the View menu.
Some of these windows, such as the Solution Explorer and Class View, are
staples of a developer ’s daily routine. Others touch on elements that are used
during specific points within the development cycle or by more advanced
Visual Studio IDE users.
This chapter examines each of the basic browser and explorer windows in
detail.

Leveraging the Solution Explorer
The Solution Explorer is the primary tool for viewing and manipulating
solutions and projects. It provides a simple but powerful hierarchical view of
all solution and project items, and it enables you to interact with each item
directly via context menus and its toolbar.
Using Solution Explorer, you can launch an editor for any given file, add new
items to a project or solution, and reorganize the structure of a project or
solution. In addition, the Solution Explorer provides instant, at-a-glance
information as to the currently selected project; the startup project for the
solution; and the physical hierarchy of the solution, its projects, and their child
items.
The Solution Explorer is simply a window hosted by Visual Studio. It can be
docked, pinned, and floated anywhere within the Visual Studio environment. It
is composed of a title bar, a toolbar, and a scrollable tree-view region (see
Figure 5.1).

FIGURE 5.1 The Solution Explorer.
The tree view provides a graphics- and text-organizational view of the
currently loaded solution. Figure 5.1 shows all the various items and projects
represented for a 14-project solution loaded in the IDE.

Visual Cues and Item Types
Each item in the Solution Explorer is represented by a name and by an icon.
Table 5.1 shows which icon is used to represent the supported item types.

TABLE 5.1 Solution Explorer Item Types and Icons
	

Note
The icons shown in Table 5.1 are a representative list of icons
that correspond to specific project and solution items within the
IDE. Other files added to a project or solution are represented by
the icon associated with their file types. For example, a Word
document is represented by the standard Word document icon in
the Solution Explorer.

Version Control and Item Status
To provide a visual cue about the status of a particular item, the Solution
Explorer overlays an additional graphical element on the item icon. These
overlays are called signal icons. For example, when source code control is
enabled, the Solution Explorer visually indicates whether an item is checked
out via a graphical overlay. Table 5.2 describes the version control signal
icons used by the Solution Explorer to indicate the current version control
status of the item. Note that the version control state of an item is dependent on
the actual version control system you are using (for instance, Git or Team
Foundation Version Control).

TABLE 5.2 Version Control Signal Icons

Interacting with Items
The Solution Explorer supports different management actions depending on
	
whether you are currently interacting with a solution or a project. In fact,
	
supported commands might vary by project type as well. As an example, the
	
Copy Web Project command button is available for web projects but not class
	
library projects, whereas the Properties command button is available for all
	
item types.
	
There are two primary interfaces for interaction within Solution Explorer: the
	
toolbar and the context menu. Let’s review the primary features.
	
Table 5.3 shows the various buttons hosted in the Solution Explorer ’s toolbar,
	
along with their specific scope.
	

TABLE 5.3 Solution Explorer Toolbar Buttons
	

Managing Solutions
	
Clicking the solution in Solution Explorer immediately exposes all the valid
management commands for that solution. As stated earlier, you access these
commands through either the Solution Explorer toolbar or the context menu for
the solution (which you access by right-clicking the solution). Through the
toolbar and the solution’s context menu, the Solution Explorer allows you to do
the following:

View and set the properties for a solution
Build/rebuild a solution
Directly launch the configuration manager for a solution
Set project dependencies and build order
Add any of the various Visual Studio-supported solution and project
items
Run code analysis against all the files in the solution
View code metrics for all the files in the solution
Add the solution to the source control
	

You can initiate some of these actions by using the Solution Explorer toolbar;
	
you can access the balance in the context menu for a solution, as shown in
	
Figure 5.2.
	

FIGURE 5.2 The solution context menu.

Managing P rojects
Just as with solutions, Solution Explorer provides various ways to manage
projects within a solution, including the following:

Opening a project item
Building or rebuilding a project
Adding items to a project
Adding a reference to a project
Cutting, pasting, renaming, or deleting a project within the solution tree
Editing project properties
Running code analysis against all the files in the project
Viewing code metrics for all the files in the project
Unloading a project
Limiting the scope of the Solution Explorer to a single project
Launching a separate instance of the Solution Explorer window scoped
to a single project

Note
The current startup project for a solution is indicated with a bold
font (as is the OrderEntry project in Figure 5.1). If multiple
projects are selected as startup projects, the solution name is
instead bolded.

Figure 5.3 shows the project context menu for a class library project.
	

FIGURE 5.3 The project context menu.

The default action when you double-click an item is to open it within its
default editor or designer. Multiple select and drag-and-drop operations are
also supported. For instance, multiselecting several code files allows you to
open them simultaneously in their editor windows either by right-clicking or
typing the Enter key.
You can move and copy items within a solution, within a project, or between
projects through the standard drag and drop using the left mouse button. You
can also drag certain items from within a project and drop them onto a suitable
designer surface. This is an easy way, for instance, to add classes to a class
diagram: simply highlight the code files that contain the types you want to add
and drag them onto the class diagram designer window.

Inspecting Objects
Visual Studio 2015 implements several improvements to the Solution Explorer
from earlier versions that directly improve your ability to find and interact
with objects within a solution. For instance, although the top-level hierarchies
shown within the Solution Explorer are based on physical files (for example,
solution files that reference project files that reference C# code files), you can
also drill down directly into object definitions.

Note
A quick historical note: for those of you who have been using
Visual Studio throughout the years, you may have noticed that—
starting with Visual Studio 2012—the Solution Explorer window
changed significantly over prior versions. The Solution Explorer
window in Visual Studio 2012 is actually not a refinement of the
Visual Studio 2010 Solution Explorer, but rather is a refinement
of the popular Solution Navigator tool (a Visual Studio 2010
extension made available for download by Microsoft within the
Productivity Power Tools pack).
If you need to still work in Visual Studio 2010, using the Solution
Navigator add-on will give you nearly 100% of the functionality
of the Visual Studio 2015 Solution Explorer.

Figure 5.4 illustrates how we can directly access a class, and class members,
that are implemented within a specific code file. In this case, we can see three
classes that are all implemented within the Integration.cs code file:
MessageMapper, MessageBus, and ContextToken.

FIGURE 5.4 Examining class members.

Further expanding a class shows its properties, private fields, methods, and
nested classes. If you click any of these, a code editor window opens, and you
will be placed directly within the class on that specific line of code.

http:Integration.cs

Note
The Visual Studio 2015 Solution Explorer provides an improved
and speedier way to open items in an editor window. “Item
Preview” mode let’s you open the editor for any item in the
project by simply clicking on the item; there’s no need to double-
click or select and then press Enter. This mode is enabled by
default, but can be turned on and off by using the Preview
Selected Item button at the top of the Solution Explorer window.

Searching the Solution
The Solution Explorer search box allows you to quickly locate files and code
based on simple string searches. Just type your search string into the box (using
the Ctrl+; hotkey combination will get you there quickly), and as you type
Solution Explorer automatically starts filtering the contents of the window to
only those items that match your string.
Search can be limited to just filenames or to files and their content/code. It
will even search files that are external to the solution (for example, external
dependencies). The option of what to search is controlled by the search box
drop-down (see Figure 5.5).

FIGURE 5.5 Searching the solution.
	

Tip
The search box directly supports camel casing and Pascal casing
of strings. The way that it works is subtle and could be missed on
initial examination. To search the contents of the solution for
matches based on exact character casing, enter the string cased
precisely the way that you want. For example: a class called
AboutBox would be found using the search string AboutB. If
you type in a search string without casing, camel casing will not
be used and the search algorithm will ignore the casing entirely.
Typing in aboutb, for example, would also locate that same
AboutBox class.
The search box also supports Pascal-casing breaks. This allows
you to type AB and get any element Pascal cased with a capital A
followed by a capital B. The AboutBox class name fits this
pattern and as a result would be returned by a search of AB.

Using View Scopes and Additional Windows
Search is one way to limit the scope of what is displayed in the Solution
Explorer window. There are also three other mechanisms for filtering the
contents of the window to only those things you care about. By right-clicking
any project or project item, you can select Scope to This in the context menu
and filter the contents of the window to only that item or the things that the item
contains. Scoping to a project will only show that project and its content, and
scoping to a code file will only show that code file and its methods/properties
(and so on, and so forth). Every time you scope to a different item within the
window, it is just as if another view of the Solution Explorer were added as a
“page.” You can then use the Back, Forward, and Home buttons on the Solution
Explorer toolbar to move through these scope pages or bring you back to home,
which essentially removes all scopes and shows you the entire solution again.
The second way to constrain the list of items shown in the solution explorer is
via the files filter. This is toggled using the filter button on the Solution
Explorer toolbar. You can select from three modes: the Pending Changes filter
will show only those files that have uncommitted changes; the Open Files filter
will show only those files that are currently open in the IDE; and the Errors
filter will show only those files that have current compile errors associated
with them.
Finally, you can also scope to an element and launch that view within a
completely separate, new Solution Explorer window. This is done by right-
clicking an item (for instance, a project) and then selecting New Solution
Explorer View. This is a great productivity feature if you have a lot of screen
real estate on your monitor or if you have multiple monitors. You can take a
complex solution, grab the project or class that you want to focus on, and
create a new Solution Explorer view, which can be floated anywhere on your
screen or docked within the IDE. Figure 5.6 shows two Solution Explorer
windows, one docked and one floating, existing side by side.

FIGURE 5.6 Creating a new Solution Explorer view.

Class View
The Class View window is similar in design and function to the Solution
Explorer window. It, too, provides a hierarchical view of project elements.
However, the view here is not based on the physical files that constitute a
solution or project; rather, this window provides a logical view based on the
relationships of the various namespaces, types, interfaces, and enums within a
project.
The Class View window is composed of four major visual components: a
toolbar, a search bar, a tree view of types (called the objects pane), and a
members pane, as shown in Figure 5.7.

FIGURE 5.7 The Class View window.

Toolbar
The Class View window’s toolbar provides easy access to command buttons
for adding virtual folders, moving forward and back through the objects pane
items, and controlling which objects are displayed.
Table 5.4 describes the various Class View toolbar buttons.

TABLE 5.4 Class View Toolbar Buttons

Search Bar
The search bar is a drop-down text box that provides a quick and easy way to
filter the objects shown in the objects pane. When a search term (such as type
name or namespace name) is entered, the Class View window clears the
objects pane and then repopulates it with only those objects that match the
search term. Figure 5.8 shows the results of a search for ITransition.

FIGURE 5.8 Filtering the objects pane.
To restore the Objects pane and remove the filter, click the Clear Search button
	
to the right of the Search button.
	
Recent search terms are saved for reuse in the drop-down list.
	

Objects Pane
The objects pane encloses a tree of objects grouped, at the highest level, by
project. Each object is identified by an icon and by its name. Expanding a
project node within the tree reveals the various types contained within that
project. Further parent-child relationships are also visible, such as the
namespace-to-class relationship and the type-to-parent-type relationship.
Table 5.5 shows the icons used in the Objects pane.

TABLE 5.5 Objects Pane Icons
Certain signal images are also overlaid on top of these icons to visually
represent scope and access information for each object. These access type
signal icons are described in Table 5.6.

TABLE 5.6 Scope/Access Signal Icons
The depth of the various levels shown for each object is dictated by the view
settings in place at the time. For example, turning on the Show Base Types
option appends an additional base type level to the tree for each type. The
objects pane’s principal duty is to allow quick and easy navigation back and
forth through the object tree for each project. It exposes, in other words, an
object-oriented view of each project.
Right-clicking within the objects pane displays the shortcut menu, which is
useful for quickly re-sorting and organizing items in the Class View window.
These are the Sort/Group options available:

Sort Alphabe tically—The projects, namespaces, and types in the
objects pane are sorted in ascending, alphabetic order.
Sort by Obje ct Type —The types in the objects pane are alphabetically
sorted by their general classification (for example, in the following
order: classes, enums, interfaces, structs).
Sort by Obje ct Acce ss—The members are sorted by their access
modifiers (public, private, protected, and so on).
Group by Obje ct Type —Another folder level is added to the tree for
each distinct object type present. For example, if a project contains both
class and interface types, a class folder and an interface folder are
displayed in the objects pane tree, with their correlated types contained
within.

Members Pane
The members pane reacts to the selections made in the objects pane by
displaying all the members (properties, events, constants, variables, enums)
defined on the selected type. Each member has a distinctive icon to
immediately convey information such as scope and type; even member
signatures show up here. (Note that the same signal icons used by the objects
pane, and documented in Table 5.7, are used here as well.)

TABLE 5.7 Members Pane Icons
The members pane is ideal for quickly visualizing type behavior and attributes:
Just select the class/type in the objects pane and browse its members in the
members pane.

Note
Many developers find that the bulk of their development tasks are
more easily envisioned and acted on within the Class View
window rather than in the Solution Explorer window. The
available actions among the two are virtually identical, but the
Class View window provides a much more code-focused
perspective of your projects. Developers can spelunk through
inheritance trees and see, at a glance, other various members
implemented on each defined type within their projects. The
downside to using the Class View is that source code control
information is not visually surfaced here.

The members pane also exposes the ability to immediately view the definition
code for a member, to find every code location where the selected member is
referenced, and to launch the Object Browser with the primary node for the
member already selected for you.
The capability to alter the filter and display settings is also presented here.
Figure 5.9 illustrates all the available commands on this menu.

FIGURE 5.9 The members pane context menu.

Server Explorer
The Server Explorer window serves two purposes: it exposes various system
services and resources that reside on your local machine and on remote
machines, and it provides access to data connection objects. This tool also
allows for direct management of Azure cloud-based resources and services
and SharePoint instances.
As with the other Visual Studio explorer windows, the systems, services,
resources, and data connections are viewed in a graphical tree format. Systems
appear under a top-level Servers node (your local machine shows up by
default), data connections appear under a top-level Data Connections node,
Azure resources appear under an Azure node, and so on.

Note
The Server Explorer window content and configuration are not
specific to a solution or project. Server Explorer settings are
preserved as part of the IDE environment settings and are thus not
subject to change on a per-solution (or project) basis.

The toolbar at the top of the Server Explorer window provides one-click
access for adding a data or server connection or connecting to your Azure
subscription (see Figure 5.10). You can also force a refresh of the window
contents. (A button is provided to cancel the refresh because querying remote
machines might be a lengthy process.)

FIGURE 5.10 The Server Explorer window.

Data Connections
Data connections represent a physical connection to a local or remote
database. Through an established connection, you can gain access to and
manipulate the various objects within a database. Each category of object
shows up as a folder node under the Data Connections node. The tree items
under each node allow you to directly interact with their physical database
counterparts through a suite of designers and editors. These tools are covered
in depth in Chapter 13, “Working with Databases.”
In Figure 5.10, we have connected to a SQL Server 2014 database and have
access to the following objects within Server Explorer:

Tables

Views
Stored procedures
Functions
Synonyms
Types
Assemblies
	

In general, you can create new database objects, edit or delete existing ones,
	
and, where appropriate, query data from a database object (such as a table or
	
view).
	

Note
The level of functionality and the number of object types you can
access through the Server Explorer depends on both the version of
Visual Studio you are using and the version of the database you
are connecting to. In other words, not all functions are supported
across all databases. The Visual Database Tools interact most
effectively with Microsoft SQL Server, although most basic
functions are supported against a variety of other relational
databases.

Note
In prior versions of Visual Studio, you could also access database
diagrams from within Server Explorer. This is no longer true. If
you are working with a SQL Server database, you will need to
use the SQL Server Management Studio tools that ship with the
database to edit diagrams outside of Visual Studio.

Server Components
The Servers node in Server Explorer exposes various remote or local services
and resources for direct management or use within a Visual Studio project. In
essence, it is a management console for server-based components. By default,
your local machine is visible here as a server; to add other servers, right-click
the Servers node and select Add Server or click the Connect to Server button
in the Server Explorer toolbar. A dialog box prompts you for a computer name
or IP address for the server; this dialog box also supports the capability to
connect via a different set of credentials.
Under the Servers node, the following component categories appear as child
nodes:

Event Logs
Management Classes
Management Events
Message Queues
Performance Counters
Services

Other component categories might also choose to register for display under the
Servers node; the preceding list, however, represents the default, out-of-the-
box functionality provided by Visual Studio 2015.

Event Logs
Under the Event Logs node, you can administer the separate application,
security, and system event logs for the connected server. This includes clearing
event log entries or drilling into and inspecting individual event log entries.
Highlighting an event log or event log entry causes its properties to display in
the Visual Studio property window, enabling you to view and edit their values.
If you drag and drop one of the event logs into a project, a
System.Diagnostics.EventLog or System.Diagnostic.EventLogEntry component
instance is automatically created.

Management Classes
The items under the Management Classes node represent various Windows
Management Instrumentation (WMI) classes. Each of these classes maps to a
logical or physical entity associated with a server. The available classes are
shown in Table 5.8.

TABLE 5.8 WMI Management Class Nodes

A thorough discussion of WMI is beyond the scope of this chapter and this
book; in summary, however, each of these nodes exposes various WMI class
property groups (such as precedents, antecedents, settings, dependents, and so
on), and, in turn, each of these property groups exposes a span of commands,
enabling you to directly affect a resource on the server.
One simple example of how you might use this capability is to set access
information for a share exposed on a remote server. When you expand nodes in
the Server Explorer down to the share (via the Disk Volumes node), access to
the share information is gained via the shortcut menu on the share. In this
example, you would select the SetShareInfo action, which initiates a WMI
dialog box allowing you to change various share attributes such as the
description and maximum allowed users.

Management Events
The Management Events node contains a list of event queries; essentially, these
are “listeners” that you establish to periodically poll the WMI event system on
the server. These event queries are established through a dialog box. (See
Figure 5.11; you launch the dialog box by selecting Add Event Query on the
shortcut menu.) When an event is created, a child node to the Management
Events node is created, and under this node, actual event instances appear.

FIGURE 5.11 Creating a Management Event query.

Message Queues
If message queuing is installed on the target server, the Message Queues node
displays all the available message queues, along with any messages currently
residing in each queue.

P erformance Counters
You can view every performance counter installed on the target computer in the
Performance Counters node. Each performance counter is displayed within its
category. Performance counter instances, if available, are also displayed.

Services
Each installed service is enumerated under the Services node.

P rogramming with Server Explorer
Beyond enabling you to examine and manipulate data connections and server
resources, the Server Explorer serves another task: by dragging and dropping
items from the Server Explorer onto a Visual Studio design surface, you can
quickly create components in code that directly reference the item in question.
For example, dragging the Application Log node (from Servers, Event Logs)
onto an existing Windows form creates a System.Diagnostics.EventLog
component instance that is preconfigured to point to the application log. You
can then immediately write code to interact with the event log component. You
can use the same process to quickly embed message queue access into your
application or read from/write to a performance counter. Table 5.9 lists the
various possible drag-and-drop operations, along with their results.

TABLE 5.9 Server Explorer Drag and Drop
	

Note
Data connection items in the Server Explorer cannot be dragged
onto a design surface. For more information regarding drag-and-
drop development of database solutions, see Chapter 13.

Azure
The Azure node in Server Explorer is a central place for managing all the
resources associated with your Azure subscription accounts. If you have a
valid Azure account, connecting to it from Server Explorer will give you quick
access to edit and configure your cloud-based databases, websites, and other
services.
For example, editing the HTML for an Azure hosted web page is as simple as
connecting to your subscription, expanding the websites node, and then double-
clicking on the web page to load it into Visual Studio. Figure 5.12 shows a
simple “about” page being edited within Visual Studio.

FIGURE 5.12 Editing an Azure web page.
Server Explorer provides other useful ways to interact with Azure resources.
You can view an Azure website in your browser, attach a debugger to a web
page or Azure service, or directly launch the Azure management portal. These
actions are available by right-clicking an item under the Azure node. Figure
5.13 shows the context menu available for an Azure website.

FIGURE 5.13 Options for interacting with an Azure website.
We dig into much more detail on the Azure development front within Chapter
12, “Developing Applications in the Cloud with Windows Azure.”

Object Browser
The Object Browser is similar in functionality and look and feel to the Class
View window. It provides a hierarchical view of projects, assemblies,
namespaces, types, enums, and interfaces. Unlike the Class View window,
however, the Object Browser is capable of a much wider scope of objects. In
addition to the currently loaded projects, the Object Browser can display items
from the entire .NET Framework, up to and including COM components and
externally accessible objects. This is a great tool for finding and inspecting
types, regardless of where they are physically located.

Changing the Scope
You can use the toolbar ’s Browse drop-down to filter or change the scope of
the objects displayed within the Object Browser. The scoping options offered
are shown in Table 5.10.

TABLE 5.10 Object Browser Scoping Options

Editing the Custom Component Set
A custom component set is a list of components that you manually specify.
Using a custom list might be useful when you want to browse a list of
components from a variety of different “buckets.” Instead of wading through
each of the other scopes, you could include only those types that you care about
in the component list.
You add to the custom component list by selecting the Edit Custom Component
Set option in the Browse drop-down or by clicking the ellipsis to the right of
the drop-down. This launches an editor dialog box in which you can add or
remove entries in this list (see Figure 5.14).

FIGURE 5.14 Editing the custom component set.
Adding a component to the set is as easy as selecting from one of the
prepopulated object lists (available via the .NET, COM, or Projects tabs) or
by browsing directly to the container assembly via the Browse tab. You can
select an object or objects and then click the Add button. The current set
members show up at the bottom of the dialog box. You can also select a current
member and remove it from the list by clicking the Remove button.

Browsing Objects
The Object Browser consists of a toolbar and three different panes: an objects
pane, a members pane, and a description pane. Again, the similarity here to the
Class View window is obvious. The toolbar, objects pane, and members pane
function identically to the Class View objects pane and the members pane. You
click down through the tree view to view each object’s members; the toolbar
aids in navigating deep trees by providing a Forward and Back button. Figure
5.15 shows the Object Browser in action.

FIGURE 5.15 The Object Browser.
The hierarchical relationships, icons, and actions possible within the panes are
the same (therefore, we won’t rehash them here). The description pane,
however, is a new concept.

Note
You can quickly access the MSDN help topic for any given object
or member by selecting an item in the members pane and then
pressing the F1 key.

Description P ane
When an item is selected in either the Object Browser ’s objects pane or the
members pane, the description pane provides detailed information about the
selected item. The data provided is quite extensive and includes the following:

The name of the selected object
The name of the parent of the selected object
Code comments and inline help associated with the selected object

Where possible, the description pane embeds hyperlinks within the data that it
displays to enable you to easily navigate to related items. For example, a
declared property of type string might show the following description:
Click here to view co de image

public string SystemContextId { set; get; }

Member of

Contoso.Fx.Integration.Specialized.ContextToken

Figure 5.16 shows how this property will display within the description pane.
Note the use of hyperlinking: clicking the string identifier navigates to the

string data type within the Object Browser window. Similarly, clicking the
Contoso.Fx.Integration.ContextToken hyperlink navigates the browser to the
class definition for the ContextToken class.

FIGURE 5.16 The description pane.
	

Tip
You can click an assembly in the Objects pane and quickly add it
as a reference to the current project by clicking the Add to
References button located on the Object Browser ’s toolbar.

Document Outline
The Document Outline window (opened from the View, Other Windows menu)
exposes a hierarchical view of elements residing on a Windows form, a web
form, or a Windows Presentation Foundation (WPF) window. This is a
fantastic tool for “reparenting” form items or changing the z-order of a control
within its parent. In addition, it assists with understanding the exact logical
structure of a form that might have a lot happening on it from a visual
perspective.
Figures 5.17 and 5.18 show the Document Outline windows for a simple web
form and a slightly more complicated WPF window.

FIGURE 5.17 A web form.
	

FIGURE 5.18 A WPF form.
The Document Outline toolbar allows you to control the display of the types
within the tree view and facilitates reordering and repositioning elements
within the outline.

Editing Elements
The Document Outline makes it easy to instantly jump from the hierarchical
element view directly to the underlying code for an item. If an item is currently
being edited in the designer/code window, it is highlighted within the outline
tree. Conversely, selecting an item within the outline view causes the item to
be selected/highlighted within the designer/code window. Each project type
has slightly different behavior within the Document Outline tool. In general,
you can use drag-and-drop actions within the tree view to move elements
around in the outline. Windows Forms applications actually have a toolbar you
can use within the Document Outline window. Table 5.11 describes the toolbar
buttons.

TABLE 5.11 Windows Forms Document Outline Toolbar Commands

Summary
In this chapter, you have seen that browsers and explorers are Visual Studio
windows that typically provide a hierarchical view of their content. They tend
to share common interface elements (tree views, toolbars, and elements), and
they are, in effect, the primary means for visualizing and interacting with
project elements within the IDE.
Browsers and explorers provide simple point-and-click interfaces for the
following:

Visualizing and organizing your solutions and projects on a file-by-file
basis
Visualizing and organizing your projects on a type-by-type, class-by-
class basis
Querying and interacting with server resources such as databases,
performance counters, Azure resources, and message queues
Browsing through type libraries

Although certain browsers/explorers touch underlying concepts that are fairly
deep and complicated (WMI, for instance), they are all geared toward a
common goal: extending the reach of the IDE as a rapid application
development tool for tasks beyond simple code file editing.

Chapter 6. Introducing the Editors and
Designers

In This Chapte r
Getting Started with the Basics
Coding with the Code Editor
Creating and Editing XML Documents and Schema
Working with Cascading Style Sheets
Developing Windows Client Applications
Developing Web Forms
Authoring WinForms Components and Controls
Creating Classes with the Class Designer

Although Visual Studio provides an impressive array of functionality for nearly
all areas of the development process, its editors and designers are the real
heart of the IDE. They are the bread-and-butter tools of the programmer: they
enable you to write code, edit resources, design user interfaces, and construct
schemas. And, of course, each of these tools has key features designed to boost
your productivity and the quality of your output.
This chapter is squarely focused on using these editors and designers to create
solutions within the IDE.

Getting Started with the Basics
Broadly speaking, a Visual Studio editor is a text editor (think word
processor) that enables you to write specific output efficiently (Visual Basic
code, Hypertext Markup Language [HTML], XAML, and so on). A designer, in
contrast, is a visual editor that enables you to work directly with visual
concepts instead of text. Many document types are supported by both designers
and editors: you can build a form, for instance, by using the drag-and-drop
convenience of the Windows Forms Designer or by handcrafting the code
within a text editor; or you can build an XML file using the same mechanisms.
The Visual Studio text editor provides the core text-editing functionality for all
the editors. This functionality is then inherited and added upon to create editors
specific for a given document type. Thus, you have a code editor for source
code files, an XML editor for markup, a Cascading Style Sheets (CSS) editor
for style sheets, and so on.
Likewise, designers manifest themselves in ways specific to their roles. The
HTML designer is part text editor and part graphical tool, and the Windows
and web forms designers are superb what-you-see-is-what-you-get
(WYSIWYG) form builders.

The Text Editor
There are a few text-editing features that we all take for granted: selecting
parts of an existing body of text, inserting text into a document, copying and
pasting text, and so on. As you would expect, the text editor window supports
all these features in a way that is familiar to anyone who has used a Windows-
based word processor.
You select text, for instance, by using the following familiar actions:

1. Place the cursor at the start of the text you want to select.
2. While holding down the left mouse button, sweep the mouse to the end of

the text you want to select.
3. Release the left mouse button.

In addition to this “standard” selection method, the Visual Studio text editor
supports “column mode” selection. In column mode, instead of selecting text in
a linear fashion from left to right, line by line, you drag a selection rectangle
across a text field. Any text character caught within the selection rectangle is
part of the selected text. This is called column mode because it allows you to
create a selection area that captures columns of text characters instead of just
lines. The procedure is largely the same:

1. Place the cursor at the start of the text you want to select.
2. While holding down the Alt key and the left mouse button, expand the

bounds of the selection rectangle until it includes the desired text.
3. Release the left mouse button and the Alt key.

After you’ve selected text, you can copy, cut, or drag it to a new location
within the text editor. As with text selection, the commands for cutting,
copying, and pasting text remain unchanged from their basic standard
implementations in other Windows applications: you first select text, and then
you cut or copy it using the Edit menu, the toolbar, or the text editor ’s shortcut
menu. You can also quickly copy an entire line within the editor by positioning
your cursor anywhere on the line and, with nothing selected in the editor, use
Ctrl+C.
By dragging a text selection, you can reposition it within the current text editor,
place it in a previously opened text editor window, or even drag the selection
into the command or watch windows. Moving lines of code around the editor
is also accomplished with the Alt+Up Arrow or Alt+Down Arrow keys; these
will move the current line up or down within the editor.

Line Wrapping and Virtual Space
The default behavior of the text editor is not to automatically wrap any text for
you. In other words, as you type, your text or code simply keeps trailing on to
the right of the editor. If you exceed the bounds of the currently viewable area,
the editor window scrolls to the right to allow you to continue typing.
However, the text editor window can behave more like a word processor, in
which the document content is typically constrained horizontally to its virtual
sheet of paper.

Tip
With word wrapping turned on, Visual Studio automatically
wraps your text onto the next line. You can also have the IDE
place a visual glyph to indicate that a wrap has taken place. Both
of these options are controlled on the Options dialog box, under
the Text Editor, All Languages, General page (shown in Figure
6.1).

FIGURE 6.1 Editor Options dialog box.
	

If you override the default behavior, turn wrapping on, and then type a line of
code that exceeds the editor ’s width, you can see that the editor window (see
Figure 6.2) automatically wraps the source to fit within the boundaries of the
window and provides an icon to the far right of the editor to indicate that a
wrap has taken place. Word wrapping is useful for keeping all your code in
plain sight (without the need for scrolling horizontally).

FIGURE 6.2 Word wrapping in the editor.
The other option on the Text Editor Options dialog box, Enable Virtual Space,
is a mutually exclusive feature to word wrapping. That is, you can enable
virtual space or word wrapping, but not both. Virtual space refers to the
capability to type text anywhere within the editor window without entering a
bunch of spaces or tabs in the text area. This feature is useful when you want to
place, for example, a code comment to the right of a few lines of code. Instead
of tabbing each code comment over (or inserting padding spaces before them)
to get them to indent and line up nicely, you can simply place the cursor at the
exact column within the text editor where you want your comments to appear.
See Figure 6.3 for an example; the code comment “floating in virtual space”
that you see in the screenshot is not preceded by spaces or tabs. It was simply
typed directly into its current position.

FIGURE 6.3 Virtual spacing in the editor window.
	

Visual Studio Designers
	
Designers are much more visual in nature than the text editors within Visual
Studio; they provide a graphical perspective of a particular solution artifact.
Thus, a form appears within a designer just as it would to the end user, as
visual constructs made up of buttons, borders, menus, and frames. The code to
implement the items shown in a designer is actually written by Visual Studio.
Like the various editors, the designers are similar in form and function. They
occupy space within the tabbed documents area of the IDE (just as the editors
do). They might take on different behaviors depending on their target use. The
Windows Forms Designer and the component designer appear nearly the same,
but there are subtle differences in their uses.

Coding with the Code Editor
Writing code and creating other syntax-based files is really all about typing
text. The text editor window is the Visual Studio tool directly on point for
creating source code text files. It is the keystone of development inside the
IDE. It supports text entry and basic text operations such as selecting text
regions, dragging and dropping text fragments, and setting tab stops. With basic
text features alone, the editor would be sufficient to code with. However, it is
the advanced features layered on top for debugging, code formatting, code
guidance, and customization that really make this tool shine.
As we mentioned previously, the text editor actually has a few different
personalities within the IDE. The code editor is designed to support creating
and editing of source code files, the XML editor is targeted at XML files, and
the CSS editor is targeted at CSS files. Although there are subtle differences in
the way that code or markup is displayed in these windows, they all share the
user interface and the same set of editing functionality.

Tip
Each editor type is fully customizable. Just fire up the Options
dialog box (by choosing Tools, Options) and locate the Text
Editor node. Under this node are separate pages that allow
customization of each editor type.

Opening an Editor
You can launch a text editor (or any other editor in the IDE, for that matter) in
two ways. The first way involves using the Solution Explorer: select an
existing code file, text file, or other type file and double-click the file. If it is a
code file, you can also right-click it and select View Code. The file content is
loaded into a new editor window.
The second way to launch an editor window is to choose File, New, File. This
launches the New File dialog box. Selecting a code template from this dialog
box launches a code editor prefilled with the initial code stubs relevant to the
template selected.

Tip
The text editor windows live as tabbed windows front and center
within the IDE. If multiple code editors are open, they are each
accessible by their tabs. If several editors are open at one time,
finding the window you are looking for by cycling through the tabs
can be cumbersome. There are four ways to quickly locate and
select a code editor window. First, you can use Solution Explorer.
Double-clicking the code file again within the Solution Explorer
selects and displays the associated code editor window. Second,
you can use the Window menu. Each open code editor window is
shown by name in the windows list under the Window menu.
Third, to the far right of the editor tabs, right next to the Close
icon, is a small drop-down button in the image of an arrow.
Clicking the arrow drops down a list of all open editor windows,
allowing you to select one at will. Finally, Visual Studio has its
own version of the Windows switcher: Hold down the Ctrl key
and tap the Tab key to cycle through a list of all windows open in
IDE.

Writing Code in the Code Editor
Because the code editor ’s primary purpose is “word processing” for source
code, let’s first look at writing the simplest of routines, a “Hello, World”
function, from the ground up using the code editor.
Figure 6.4 shows a code editor with an initial stubbed-out console file. This
was produced by creating a new Visual C# Console project using the Solution
Explorer. Double-clicking the Program.cs file within that new project
displays the source code for this console application.

http:Program.cs

FIGURE 6.4 Code template for a Console code file.
As you can see, Visual Studio, as a result of the template used for creating the
project, has already filled in some code.
Click here to view co de image

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication1
{

class Program

{

static void Main(string[] args)
{
}

}

}

To demonstrate the code editor in action, write the code that outputs the
	
"Hello, World!" string to the Console window.
	
Within the Main routine, add the following.
	
Click here to view co de image

Console.WriteLine("Hello, World!");

To begin writing the code, simply place your cursor in the window by clicking
within the Main routine’s braces, press Enter to get some space for the new

line of code, and type the Console.WriteLine syntax.
	
These and other productivity enhancers are discussed at great length in the next
	
chapter. Here, we focus on the basics of editing and writing code in the editor
	
window.
	
Now that you have seen the code editor in action (albeit for a very simple
	
example), you’re ready to dig more into the constituent components of the
	
editor window.
	

Tip
Visual Studio supports “zooming” within any open code
editor/text editor. Hold down the Ctrl key and then use the mouse
scroll wheel to zoom the editor view in or out.

Anatomy of the Code Editor Window
Editor windows, as you have seen, show up as tabbed windows within the IDE
and are typically front and center visually in terms of windows layout. As you
can see with the code editor window in Figure 6.5, each text editor window
consists of four primary regions: a code pane, a selection margin, an indicator
margin, and scrollbars.

FIGURE 6.5 The components of the code editor window.
These regions and their functionality remain the same for all editor types
within the IDE.
The code editor for C# files also adds a set of user interface (UI) elements that
are not present with the other language editors: three drop-down boxes at the
top of the code editor window enable you to quickly navigate through source
code by selecting a loaded project in the leftmost drop-down, a type contained

within that project in the middle drop-down, and a specific type member
(property, field, function, and so on) in the right drop-down for the selected
type. This jogs the current cursor location directly to the indicated type.

The Code P ane
The code pane is the place where the document (source code, XML, and so on)
is displayed and edited. This region provides basic text-editing functionality,
in addition to the more advanced productivity features of the editor, such as
IntelliSense.
Right-clicking within the code pane provides a shortcut menu (see Figure 6.6)
that includes standard cut, copy, and paste tools along with an assortment of
other handy editing actions.

FIGURE 6.6 Code editor shortcut menu.

The Indicator Margin
The indicator margin is the slim gray-colored margin to the far left of the
editor. This margin area is used to mark a line of code that contains a
breakpoint or bookmark.
Figure 6.7 shows the "Hello, World" example with a bookmark placed
on the Main routine and a breakpoint placed on the Console.WriteLine
command.

FIGURE 6.7 A bookmark and a breakpoint.
Clicking within the indicator margin toggles a breakpoint on or off for the line
of code you have selected. (You will learn more about breakpoints later in this
chapter and in Chapter 10, “Debugging Code.”)

The Selection Margin
The selection margin is a narrow region between the indicator margin and the
editing area of the code pane. It provides the following:

The capability to select an entire line of text by clicking within the
selection margin.
A visual indication, via colored indicator bars, of those lines of code
that have changed during the current editing session.
Line numbers (if this option has been turned on). See the following
section in which we discuss customizing the text editor ’s behavior.

You can clearly see the “changed text” indicator and line numbers in action in
Figure 6.8.

FIGURE 6.8 Changed text indicators and line numbers.
	

Tip
Visual Studio provides a dedicated toolbar for the text editor. You
can view this toolbar by selecting View, Toolbars, Text Editor. It
exposes buttons for the Member List, Quick Info, Parameter List,
and Word Completion IntelliSense features, in addition to
indenting buttons, commenting buttons, and bookmark navigation
buttons. The navigation buttons are arguably the most useful
because they provide easily accessible forward and back
navigation through your code.

The Vertical Scrollbar
In addition to performing the obvious function of allowing you to scroll
vertically within the code editor, Visual Studio can overlay various pieces of
information onto the scrollbar. The options of what can be shown on the
scrollbar are controlled on the Options dialog in the Scroll Bars section (see
Figure 6.9). The following annotations can be added:

Change s—Any unsaved edits made to the code
Marks—Breakpoints and bookmarks
Errors—Current compile errors in the code
Care t position—The current cursor location within the file

FIGURE 6.9 Adding annotations to the scrollbar.
Figure 6.10 shows an example of a more complicated code set within the
window. Note the annotations on the vertical scrollbar.

FIGURE 6.10 Scrollbar annotations.
There is also an alternate “map mode” visualization that can be enabled for the
vertical scrollbar. In map mode, a thumbnail visual of the code file is shown,
along with all the annotation marks. This is a great way to instantly determine
where you are within a large code file; and, if you hover your pointer over a
line within the scrollbar, you can actually preview the code within a small
inset window (see Figure 6.11). You can select between wide, normal, or
narrow width for this map mode area in the same Scroll Bars section of the
Options dialog.

FIGURE 6.11 The vertical scrollbar in map mode.

Code Navigation Tools
As the lines of code in any given project increase, effectively navigating
through the code base (that is, quickly and easily finding lines of interest
among the potentially thousands or even millions of lines of code) becomes an
issue.
The text editor comes equipped with several tools to help you mark lines of
code, search and replace text across source files, and, in general, maintain
your situational awareness from within a long code listing.

Line Numbering
As mentioned in the discussion of the text editor ’s selection margin, you can
enable line numbering for any given document loaded into an editor. This
option is controlled in the Options dialog box within the Text Editor, All
Languages, General page, or selectively under the individual languages and
their General page.
By themselves, line numbers would be fairly useless. The capability to
immediately jump to a line of code completes the equation and provides some
real benefit from a navigation perspective. While within a text editor, press
Ctrl+G to jump to a line of code. This triggers the Go To Line dialog box (see
Figure 6.12), which provides a text box for specifying the line number to jump
to and even indicates the valid “scope” for the jump by providing a line
number range for the current document. Entering a valid line number here
moves the cursor position to the start of that line.

FIGURE 6.12 Jumping to a line.

Bookmarks
Bookmarks tackle the problem of navigating through large code files. By
	
placing a bookmark on a line of code, you can instantly navigate back to that
	
line of code at any time. When dealing with a series of bookmarks, you can
	
jump back and forth through the bookmarked lines of code, which turns out to
	
be a surprisingly useful feature. If you are a developer who is dealing with a
	
large base of source code, there are inevitably points of interest within the
	
source code that you want to view in the editor. Recall that the text editor
	
window provides a means of navigating via project, type, and member drop-
downs; these are not, however, the best tools for the job when your “line of
	
interest” is an arbitrary statement buried deep within a million lines of code.
	
Bookmarks are visually rendered in the indicator margin of the text editor.
	
(Refer to Figure 6.8; a bookmark appears on line 7.)
	
To add a bookmark or navigate through your bookmarks, you use either the text
	
editor toolbar or the Bookmarks window.
	
You can view the Bookmarks window, shown in Figure 6.13, by choosing
	
View, Other Windows, Bookmark Window. Notice that this window provides
	
a toolbar for bookmark actions and provides a list of all available bookmarks,
	
along with their actual physical location (filename and line number within that
	
file).
	

FIGURE 6.13 The Bookmarks window.

To toggle a bookmark for a given line of code, you first place your cursor on
the desired line within the text editor and then click the Toggle Bookmark
button. The same process is used to toggle the bookmark off. Using the
Forward and Back buttons within the bookmarks window jumps the text
editor ’s cursor location back and forth through all available bookmarks.

Tip
Use the Bookmarks window to navigate through code across
projects. You are not limited to bookmarks placed within a single
code file; bookmarks can, in fact, be in any loaded code file. The
list of bookmarks in this window is also a useful mechanism for
quickly toggling a bookmark on or off (via the check box next to
the bookmark) and for assigning a meaningful name to a
bookmark. Right-clicking a bookmark allows you to rename it
something more meaningful than Bookmark7.

Bookmark F olders
One interesting feature with the Bookmarks window is the capability to create
a bookmark folder. This is an organizational bucket for related bookmarks. For
instance, you might want to place bookmarks for a specific math algorithm
under a folder called MathFuncs. To do this, you first create a folder by
using the New Folder button on the toolbar. You can rename the folder to
whatever makes sense for your particular scenario. Then you can create a
bookmark and drag and drop it into the folder.
See Figure 6.14 for a look at a populated Bookmarks window. Note that two
folders are in use, in addition to bookmarks being shown for various source
code files.

FIGURE 6.14 The Bookmarks window with folders.

Call Hierarchy
The Call Hierarchy window is yet another way to navigate through your
projects. This window lets you easily follow the calls to and from every
method, property, or constructor. With the code editor open, just right-click the
member name and select View Call Hierarchy. This launches the Call
Hierarchy window. The member name appears in a tree view in the left pane
of this window; this tree view itemizes the various calls made to and from the
member. If you click one of the calling sites, you can then view the calls to and
from that method and so on.
Figure 6.15 shows an example of this iterative information displayed for
successive callers. Clicking any of the caller or callee nodes shows you the
specific location of that code in the right pane, and double-clicking that
information in the right pane immediately jumps the code editor to that line of

code.
	

FIGURE 6.15 Using the Call Hierarchy window to explore code
	
relationships.
	

Note
Starting with Visual Studio 2012, the Call Hierarchy window
works with both Visual Basic and C# code. In earlier versions,
only C# code was supported.

The usefulness of this tool doesn’t stop at caller/callee information. If you
right-click any node in the tree, you can jump directly to the code that
implements the method/property, find all references to the selected
method/property within your code, or even directly copy the code content
represented by the node. All these commands and more are available right
from a node’s right-click pop-up menu.

Searching Documents
The text editor window provides an extensive search-and-replace capability.
	
Two primary methods of searching are supported: Quick Find (ideal for
	
finding text fragments within the current document or set of open documents)
	
and Search in Files (ideal for finding text in a file residing anywhere within a
	
folder structure). All these search mechanisms are triggered through the Edit,
	
Find and Replace menu (and more commonly, through their hotkeys).
	
Each search mode is also capable of doing replacement operations. That
	
makes a total of four different functions:
	

Quick Find
Quick Replace
Find in Files
Replace in Files

Let’s take a closer look at each of the two search-and-replace modes
individually.

Quick F ind/Quick Replace
Figure 6.16 shows the Quick Find window in its native position to the top right
of the text editor window. Its minimalist UI allows you to quickly start your
search process by typing directly into the search box.

FIGURE 6.16 The Quick Find tool.
The search box drop-down holds the last 20 strings used in a find operation,
making it easy to reuse a previous search. Just select the string from the list.

F ine-Tuning Your Search
The Quick Find window also hosts options for fine-tuning your search via a
small toolbar at the bottom edge of the Find window:

Match Case causes the search to be executed against the exact case you
used in the Find What drop-down.
Match Whole Words forces the search to match on the entire string as
entered in the Find What drop-down.
Use Regular Expression changes how the search engine performs
matching on the string you have entered into the search box. A standard
search does a character match for the target string. By selecting this
option, however, you can instead use a full-blown regular expression to
perform even more intricate searches. For instance, checking this box
and then entering \b[0-9]{9}\b would return all matches for a nine-
digit number.
Scope alters the area that the search operation functions over. Your
selections in the drop-down here include the currently selected block of
code, the current document, all open documents, all documents in the
current project, and all documents in the entire solution.

Note
Although a complete discussion of regular expressions is beyond
the scope of this book, you should note that the Replace With box
is capable of supporting tagged expressions. For more
information on how you might use this to your advantage during
replace operations, consult a regular expression reference manual
and look at the MSDN Regular Expressions help topic for Visual
Studio.

F inding Search Results
After you have specified all the criteria for your search, the right-arrow button
(or F3 as a shortcut) to the right of the search box will find the next match to
the search or Shift+Ctrl F3 for the previous match. Any matches within the
scope specified are highlighted for you within the document and will be
scrolled into view. Subsequent clicks on the Find Next button move to the next
match until no more matches are found.
The Find Next button also functions as a drop-down that lets you perform a
Find Previous or a Find All action.

Replacing Text
The arrow to the left of the search box will expand the Quick Find window to
show a Replace text box: Type in the replacement string here, and then use one
of the two buttons to the right of the box to replace either the next matching
string or all matching strings with the new text (see Figure 6.17).

FIGURE 6.17 Expanding the Quick Find window to do a replacement.

Note that any replacements you make can always be undone via the Undo
command under the Edit menu.

F ind in F iles/Replace in F iles
Figure 6.18 shows the Find in Files tool. This tool is similar to Quick Find,
with two minor additions. You still have to specify the “what” (search string)
and the “where” (scope) components of the search. And you still can fine-tune
your search using regular expressions and by matching on case or whole word.
But you also have the option of creating a custom search scope. The way that
the search results are displayed is via a separate window instead of within the
code/text editor window.

FIGURE 6.18 Find in Files.
Let’s look at these two differences in turn.

Building Search F older Sets
Clicking the ellipses button to the right of the Look In drop-down launches a
dialog box that allows you to build up a set of directories as the scope of the
search. You can name this folder set and even set the search order for the
directories. Figure 6.19 captures this dialog box as a search set called
ClassLibCode is built. You can see that two directories have been added to
the set. You can add more by simply browsing to the folder with the Available
Folders control and adding them to the Selected Folders list.

FIGURE 6.19 Building a Search Folder set.
	

The F ind Results Window
With Quick Find, the search results are highlighted (or bookmarked) right
within the text editor window. The Find in Files mode displays its search
results in a separate, dedicated Find Results window (see Figure 6.20). You
can redirect the output to one of two results windows by selecting either the
Find Results 1 Window or Find Results 2 Window option at the bottom of the
Find and Replace dialog box. The two windows are identical; two options
provided here allow you to keep different search results separate and avoid the
confusion that the commingling of matches would cause if you were
constrained to just one output window.

FIGURE 6.20 The Find Results window.

In Figure 6.20, you see the results of a simple search conducted across all the
files in a solution. The contents of the Find Results window provide the
following information:

A description of the search performed (for example, Find all “Geo,”
Subfolders, Find Results 1, “Entire Solution”).
The matches returned from the search. Match information includes the
file path and name, the line number within the file, and a verbatim repeat
of the line of code containing the match.

A summary of the find results, including the number of matching lines of
code, the number of files containing matches, and the total number of
files searched.

Double-clicking one of the results lines in the window jogs the cursor location
directly to the matching line within the editor. Note that this window has a
toolbar. From left to right, the buttons on this toolbar allow you to do the
following:

Jump to the matched line of code within the text editor. (First place your
cursor on the match inside the Find Results window and then click the
Go to the Location of the Current Line button.)
Move back and forth through the list of matches. Each matched item is
highlighted in the Find Results window and in the Text Editor window.
Clear the Find Results window.
Clear the selected result window.
Cancel any ongoing searches.

Replacing in F iles
Just as with Quick Find, there is a way to perform replacements using the Find
in Files tool. This mode is entered by clicking the Replace in Files button at
the top of the search window (see Figure 6.21).

FIGURE 6.21 Replace in Files mode.
	

We’ve already covered the Replace and Replace All functions. Each file that
matches the search phrase is opened in a separate text editor window, and the
replacements are made directly in that window. If you’re performing a Replace
All, the replacements are made and then saved directly into the containing file.
You also have the option, via the Keep Modified Files Open After Replace All
check box, to have Visual Studio keep any files touched open inside their
respective text editors. This allows you to selectively save or discard the
replacements as you see fit.
You can elect to skip files during the search-and-replace process by using the
Skip File button. This button is available only if more than one file has been
selected as part of the search scope. Clicking this button tells the search engine
to skip the current file being processed and continue with the next in-scope
file.

Incremental Search
Incremental Search is a special case function that works with the Quick Find
window. With a text editor open, select Edit, Advanced, Incremental Search
(or press Ctrl+I). While Incremental Search is active, you will see the Quick
Find window and a special visual pointer cue composed of binoculars and a
down arrow. If you start typing a search string, character by character, the first
match found is highlighted within the text editor window. With each successive
character, the search string is altered and the search itself is re-executed. The
current search string and search scope is displayed on the Visual Studio status
bar and brought to view in the Editor. Figure 6.22 illustrates an Incremental
Search in progress; the characters MESS have been entered, and you can see
the first match flagged within the text editor.

FIGURE 6.22 Incremental Search.
	

By default, the search function works from the top of the document to the
	

bottom and from left to right. You can reverse the direction of the search by
using the Ctrl+Shift+I key combination.
To jump to the next match within the document, use the Ctrl+I key combination.
Clicking anywhere within the document or pressing the Esc key cancels the
Incremental Search.

Note
Incremental Searches are always performed in a manner that is
not case sensitive and will always match on substrings.

Debugging in the Text Editor
The text editor (more specifically, the code editor) has several interactive
features that facilitate the code-debugging process. Debugging activities within
the text editor primarily center on breakpoints and runtime code control. We
cover general Visual Studio debugging in greater detail in Chapter 10.
A breakpoint is simply a location (a line of code) that is flagged for the
debugger; when the debugger encounters a breakpoint, the currently executing
program is paused immediately before executing that line of code. While the
program is in this paused state, you can inspect the state of variables or even
affect variable state by assigning new values. You can also interactively
control the code flow at this point by skipping over the next line of code or
skipping directly to another line of code and continuing from there, all without
actually leaving the IDE.

Setting a Breakpoint
To set a breakpoint using the code editor, first locate the line of code you want
to pause on and then click that line of code within the indicator margin. (Refer
to Figure 6.5 for the location of the indicator margin.) This sets the breakpoint,
which can now be visually identified by a red ball in the indicator margin.
Hovering over the breakpoint indicator margin displays a ToolTip indicating
some basic information about that breakpoint: the code filename, the line
number within that code file, the type you are in (if any), and the line number
within that type.
In Figure 6.23, a breakpoint has been set within a class called
MessageMapper. The ToolTip information shows that you are on line 12
within the overall code file (Integration.cs).

http:Integration.cs

FIGURE 6.23 Setting a breakpoint.
Clicking the breakpoint again removes it.
The breakpoint we have set is a simple one in that it suspends the program on
that line of code without regard for any other variable or factor. Simple
breakpoints are, however, only the tip of the iceberg. Breakpoints support an
extensive set of conditions used to fine-tune and control what will actually
trigger the breakpoints. For instance, you can set a breakpoint to print a
message, and you can specify different conditions for firing the breakpoint.

Configuring a Breakpoint
If you refer to Figure 6.23, you will see that, in addition to presenting a tooltip
window with information about the breakpoint, there is a small, simple toolbar
exposed directly above the breakpoint symbol. This toolbar has two buttons
that allow you to configure the breakpoint or enable/disable the breakpoint.
(Disabled breakpoints appear as empty red circles; enabled breakpoints
appear as solid red circles.)
If you elect to configure the breakpoint, its settings will show directly within
the code editor window. You can set a condition for the breakpoint (in other
words, when should the breakpoint fire?) and tweak what exactly happens
during the breakpoint triggering process. (This is referred to as an action.) In
Figure 6.24, we have configured a breakpoint to fire on a specific conditional
expression and break count.

FIGURE 6.24 Configuring a breakpoint directly within the code editor.
	

Tip
Disabling a breakpoint, rather than deleting it, will preserve its
locations and all of its settings in case you ever need to enable it
again.

You can also access breakpoint settings by right-clicking the breakpoint
indicator to show the context menu.

Tip
Visual Basic actually provides a command word that allows you
to programmatically trigger a breakpoint within your code. The
Stop statement, like a breakpoint, suspends execution of the
executing code. This capability is useful when you’re running the
application outside the IDE. Any time a Stop statement is
encountered during runtime, the Visual Studio debugger launches
and attaches to the program.
Although C# doesn’t have an internal, equivalent statement to
Visual Basic’s Stop command, you can use the Debugger class
to achieve the same thing: simply call Debugger.Break to
force a breakpoint programmatically. You can even write code
that will run only when under debugger control by checking the
Debugger.IsAttached property. The Debugger class lives in the
System.Diagnostic namespace.

Controlling the F low of Running Code
When a program is run within the IDE, it continues along its path of execution
through the code base until it hits a breakpoint or Stop statement, is paused
manually, or terminates either by reaching the end of its code path or by being
manually stopped.

Tip
The DVR-like controls and their shortcut keys (available under
the Debug menu or on the Debug toolbar) are, by far, the easiest
way to start, pause, or stop code within the IDE.

When a breakpoint is hit, the code editor visually indicates the line of code
where execution has paused. Figure 6.25 shows a slightly modified version of
the "Hello, World" program, suspended at a breakpoint. A yellow arrow
in the indicator margin flags the next statement that will execute when you
resume running the program. In this case, because the breakpoint is also here,
the next statement indicator appears in the margin embedded within the
breakpoint glyph.

FIGURE 6.25 Stopping at a breakpoint.

When execution is paused, you can change the next line of code to be executed.
By default, of course, this is the line of code where operations were paused.
(Recall that execution stops just before running the line of code matched with
the breakpoint.) But you can manually specify the next line of code to run by
dragging the yellow “next statement” arrow to any other executable line within
the code editor.
In Figure 6.26, this feature has been used to jump out of the WriteLine loop.
Normal flow through the code has been circumvented, and instead of
continuing to spin through the for loop, the program immediately executes the
line of code just after the loop. You can see the arrow and highlighting that
show the next line of code and the breakpoint are no longer at the same
location within the code file.

FIGURE 6.26 Setting the next Run statement.
You can also create a sort of virtual breakpoint by right-clicking on an
executable line within the code editor window and selecting Run to Cursor
from the editor ’s context menu. This causes the program to run until it hits the
line of code that you have selected, at which point it pauses much as if you had
set a breakpoint there.

Printing Code
To print the current text editor ’s contents, select Print from the File menu. The
Print dialog box is fairly standard, allowing you to select your printer and set
basic print properties. Two Visual Studio-specific options bear mentioning
here. The Print What section in this dialog box controls whether line numbers
are produced in the printout and whether collapsed regions are included in the
printed content.

Colors and F onts
By default, the font colors and markup that you see in the text editor window
are sent to the printer as is (assuming that you are printing to a color printer). If
you so desire, you can tweak all these settings from the Environment, Fonts and
Colors page in the Options dialog box (see Figure 6.27).

FIGURE 6.27 The Fonts and Colors Options dialog box.
This is the same dialog box used to control font and color settings for many of
the IDE’s constituent parts. You access the printer settings by selecting Printer
in the Show Settings For drop-down at the top of the dialog box.
Figure 6.28 provides a snapshot of output produced by printing a code file.

FIGURE 6.28 Code printout.

Using the Code Definition Window
The code definition window is a “helper” window that works in close
conjunction with the code editor window by displaying definitions for symbols
selected within the code editor. It is actually a near clone of the code editor
window, with one big exception: It is read-only and does not permit edits to its
content.
The code definition window content is refreshed anytime the cursor position is

moved within the code editor window. If the cursor or caret is placed in a
symbol/type, the code definition window shows you how that symbol is
defined.
The code definition window has reacted to the cursor position by showing the
source code that actually defines the type of the _state field. You can see
from the figure that the code definition window is a fairly featured adaptation
of a text editor window: it supports bookmarks, breakpoints, and various
navigation aids. Although you cannot edit code using this window, you are not
prevented from copying code out of the window.
You can open a code definition window by using the View menu.

Tip
The code definition window also works well with the Class View
window. If you single-click a class within the Class View
window, the code definition window refreshes to show you the
code implementation for that class.

Visual Studio 2015 also has an alternate, and quicker way, of getting to the
definition of a particular type, method, or property. It’s called peek definition.
To see this in action, put your cursor over a type or member within the editor
window, right-click, and then select Peek Definition. A small editing window
will open within the parent code editor window. The advantage to this is that
you don’t need to switch your attention away from the code at hand, and you
can edit the definition code directly (unlike the Code Definition window). See
Figure 6.30 for an example of peek definition in action.

FIGURE 6.29 Using Peek Definition.
	

FIGURE 6.30 Editing an XML document.

Creating and Editing XM L Documents and Schema
The text editor is equally adept, and just as productive, at editing documents
with XML content, including XML schemas. The XML editor is launched
whenever you open a file with the .xml extension inside of Visual Studio. It is
also launched for .xsl files and .config files and is always available
when you use the Open With command in the Solution Explorer against any
item in a project.
Because XML documents contain structured content involving the concepts of
nodes and tags, attributes, and node containership, the XML editor supports
document outlining in a similar fashion to the code editor: you can expand or
collapse nodes within the editor to expose or hide a node’s content (see Figure
6.30). And just as with the code editor, syntax checking and IntelliSense are
fully supported by the XML editor. The XML editor is aware of the syntactical
requirements for the current document and provides appropriate IntelliSense
and formatting help where possible.
Using the XML editor, you can also carry out these actions:

Edit XSD schema documents
Generate a schema document from an XML document
Edit XSLT style sheets
Edit Document Type Definition (DTD) documents and XML-Data
Reduced (XDR) documents
Insert XML snippets

For a proper treatment of the various editing, validation, and productivity aids
available in this editor, see Chapter 7, “Working with Visual Studio’s
Productivity Aids.” Here, let’s explore two of the core XML functions: schema
generation and EXtensible Stylesheet Language Transformations (XSLT) style
sheet editing.

Inferring Schema
The XML editor can automatically generate an XML schema document (XSD)
based on a valid XML document. While the XML document is open, select
Create Schema from the XML main menu. This creates an XSD document and
opens it in the XML Schema Designer (more on this in the next section). From
there, you can make any necessary changes to the XSD document and save it to
disk. You can also include it in your project at this point.

Note
If you run the Create Schema command against an XML document
that already contains a DTD or XDR schema, the XML inference
algorithm uses these schemas as the basis for the conversion as
opposed to the actual data within the XML document.

Designing XML Schemas
Visual Studio has made huge strides over the years in its support for XML
schema design. This is evident right off the bat when you open an XML schema
file (.xsd). A visual design window and an XML Schema Explorer window,
working in tandem, quickly allow you to inspect, edit, and build out your
schema. Figure 6.31 shows the same schema we just inferred from our simple
“product catalog” XML file opened in the Visual Studio IDE. Note the schema
explorer to the right and the schema designer to the left. Let’s examine the
various views in detail.

FIGURE 6.31 Editing a simple XML schema.
	

Schema Views
Visual Studio provides five different ways to visualize/edit the information in
an XML schema, delivered by three different tools. We have already covered
the XML editor. Because XML schemas are verbalized using XML, the
editor ’s functions apply just as well to schema editing as they do to document
editing.
That leaves us with four remaining views implemented using two tools: the
XML Schema Explorer and the XML Schema Designer. Just as you have come
to expect with most explorer/designer pairs in the IDE, these two tools work
hand in hand.

The XML Schema Explorer
The Schema Explorer exposes a tree-view representation of schema content
(see Figure 6.32). Using this explorer, you can expand any of the schema
container elements to view their child elements. The toolbar on this explorer
window lets you search for schema elements and change the sort order.

FIGURE 6.32 The XML Schema Explorer.

Although this hierarchical view of the schema is useful in its own right, the
real purpose of the explorer window is to select items to view/edit in the
design window. In fact, the explorer and designer windows are inseparable
pairs: closing the designer automatically closes the explorer.

The XML Schema Designer
The schema design window is where all the schema editing takes place. You
can edit or view a schema (or set of schemas) by dragging items from the XML
Schema Explorer window onto the XML Schema Designer surface.
After you have added the schema to the design surface, the schema design
window provides three different views into the schema’s structure and content:

The Start View is the default view. As its name implies, this is a
launching page into the other views. The Start View also provides
summary statistics for the XML schema (such as a count of the global
elements, attributes, and types) and provides a quick and easy way to

add these items to the design surface.
The Graph View is a 2D view of the nodes and node relationships within
a schema. The Graph View is primarily useful in visualizing the
complexity and types of relationships within a schema. You can’t use this
to directly edit the nodes or node relationships. Use the toolbar buttons at
the top of the designer to change the way that the graph is displayed: left
to right, right to left, top to bottom, or bottom to top. Double-clicking a
node opens the schema’s XML in the XML editor, with the XML for that
node highlighted. See Figure 6.33 for a picture of the Graph View with a
more complex schema file loaded. This schema file represents a data
model of pet types. In this example, we have a base pet entity that
implements base-level attributes, and we have two other entities, dog
and cat, that derive from the base entity. This relationship is clearly
depicted in the graph view.

FIGURE 6.33 Using the Schema Designer ’s Graph View.
The Content Model View is a graphical, hierarchical view of the nodes
and node elements, attributes, types, and groups. This view is
particularly useful if you are trying to understand the details of a
particular portion of the schema. For instance, by double-clicking a type,
you can quickly gain a fairly complete understanding of that type’s
schema, including elements, attributes, types, and groups (in addition to
any constraints or relationships that are defined in the schema). This
view also provides a simple way to select nodes: an A-Z list of all
nodes within the schema appears in the list box to the left of the design
surface. Clicking the node in this list displays the node details on the
design surface (see Figure 6.34).

FIGURE 6.34 The Content Model View with two nodes displayed.
You can switch among these views by using the options on the start page or by
using the toolbar at the top of the designer window.

Tip
Using the Content Model View, it is easy to compare and contrast
two or more nodes within a schema. Just select the nodes you
want to view in the node list to the left of the design surface
(using Ctrl+Left to add additional nodes to your selection). You
can then use the design surface’s image scaler to get a high-level
view of the nodes or to zoom in on specific details.

Editing XSLT Style Sheets
XSLT files are XML files, so the process of editing an XSLT style sheet is the
same as that described for editing an XML document. There are, however, a
few additional features specific to XSLT documents. First, keywords are
recognized and shaded appropriately in the editor just as with a code
document. Second, the XML editor automatically processes the current state of
the document against the standard schema for XSLT style sheets and shows any
validation errors to you directly. Finally, Visual Studio is fully aware of any
script embedded in an XSLT document. You can set breakpoints within a script
block, and there is full debug support for scripts, enabling you to step through
code, see the current state of variables, and so forth. Figure 6.35 shows an
XSLT style sheet with a breakpoint set within a section of embedded script.

FIGURE 6.35 Debugging script embedded into an XSLT document.

Running XSLT Against XML
After a style sheet has been created and attached to an XML document, you can
execute that XSLT style sheet and view the output within a new editor window.
To attach the XSLT sheet to the XML document, use the Properties window for
the XML document and set the Stylesheet property. Entering the full path
and filename of the XSLT in this property attaches the style sheet.
Alternatively, you can manually code the style sheet into the XML document’s
prolog section by typing an xml-stylesheet Processing Instruction prolog
into the document, like this:
Click here to view co de image

<?xml-stylesheet type='text/xsl' href='myxsl.xsl'?>

When a style sheet is associated, selecting the Show XSLT Output option from
the XML menu runs the transforms against the XML document and shows you
the results in a separate editor window.

Working with Cascading Style Sheets
The CSS editor allows you to build and edit cascading style sheet documents.
Because CSS documents are, at their core, text documents, the editor doesn’t
need to provide much more than standard text-editing features to be effective.
However, a few built-in tools available from the editor enable you to add style
rules and build styles using dialog boxes as opposed to free-form text entry.

Adding Style Rules
Right-click within the CSS editor to access the shortcut menu. From there,
select the Add Style Rule option. The Add Style Rule dialog box allows you to
input an element, class name, or class ID and even define a hierarchy between
the rules. Committing the change from this dialog box injects the necessary
content into the CSS editor to create the rule.

Defining Style Sheet Attributes
After you’ve added a style to the CSS document by either writing the style
syntax manually or using the aforementioned Add Style Rule dialog box, you
can edit the attributes of that style using the Style Builder dialog box. You
launch this dialog box by right-clicking anywhere within the previously entered
style section and then selecting the Build Style option. When you use this
dialog box, it is possible to fully describe the style across several different
categories from font to layout to list formatting.

Developing Windows Client Applications
There are two principal .NET technologies used to develop Windows client
desktop applications: Windows Forms (WinForms) and Windows Presentation
Foundation (WPF). Both of these technologies are essentially a set of classes
and user interface controls exposed by the .NET Framework that enable
developers to quickly build out applications that are installed, and run, under
the Microsoft Windows operating system.

Note
With Windows 8, Microsoft has introduced a third client
application stack. These are so-called “modern UI” applications
that run on top of the Windows runtime. Although we don’t cover
building Windows client applications for the Windows runtime in
this chapter, we do cover those tools and technologies in depth in
Chapter 23, “Developing Windows Store Applications.”

WPF is unique when compared to the older Windows Forms technology
because it uses a markup language called XAML to describe application
objects, property values, and behavior. In this respect, it is similar to a web
application that uses HTML to describe the various elements of a web page.
WPF as a technology heavily leverages vector graphics and graphics hardware
acceleration to display an application’s user interface.
Regardless of the type of client application you need to build, the process is
much the same: both the WinForms designer and the WPF designer enable
drag-and-drop development, and both have project templates available in
Visual Studio.

Creating a Windows Forms Project
The process of building a Windows Forms application starts the same as all
other project types within Visual Studio: you select the Windows Application
project template from the New Project dialog box and set up the location for
the application’s source. From there, Visual Studio stubs out an initial project,
and the Windows Forms Designer loads, as shown in Figure 6.36.

FIGURE 6.36 Initial form in the Windows Forms Designer.
As you can see from the figure, a design-time mock-up of the actual form is
visible within the designer. This is the canvas for your user interface. Using
this canvas, you can add controls and visual elements to the form, tweak the
look and feel of the form itself, and launch directly to the code that is wired to
the form.
To investigate how the designer works, start with a simple design premise:
Suppose, for instance, that you want to take the blank form that Visual Studio
generated for you and create a login dialog box that allows users to input a
name and password and confirm their entries by clicking an OK button. A
Cancel button should also be available to allow users to dismiss the form.

Note
Don’t get confused about the various representations that a form
can have, such as message box or dialog box. From a
development perspective, they are all windows and are therefore
all forms.

The designer in this exercise allows you, the developer, to craft the form and
	

its actions while writing as little code as possible. Using drag-and-drop
operations and Property dialog boxes, you should be able to customize the look
and feel of the application without ever dealing with the code editor.

Customizing the F orm’s Appearance
There are a few obvious visual elements in the designer. For one, the form
itself is shown complete with its borders, title bar, client area, and
Min/Max/Close buttons. In addition, you can see grab handles at the bottom,
right, and bottom-right corner of the form. The grab handles are used to resize
the form. To change other attributes of the form, you use the property grid for
the form. The property grid enables you to set the background color, border
appearance and behavior, title text, and so on.
In Figure 6.37, the title of the form has been changed to Login, and the border
behavior has been changed to match a dialog box as opposed to a normal
resizable window.

FIGURE 6.37 Editing the form’s size, border, and title.

Adding Controls to a F orm
Controls are adornments to a form that have their own user interface. (There is
such a thing as UI-less controls; we cover such controls later in this chapter in
the section “Authoring WinForms Components and Controls.”) They provide
the principal interaction mechanism method with a form. Put another way, a
form is really just a container for the various controls that implement the
desired functionality for the form.
You can add controls to a form quite easily by dragging and dropping them
from the Toolbox. Continuing the metaphor of the designer as a canvas, the

Toolbox is the palette.

The Toolbox
The Toolbox is a dockable window within the IDE; it is viewable only when
you are editing a project element that supports Toolbox functionality. To make
sure that the Toolbox is visible, select it from the View menu (or use the
Ctrl+W, X shortcut).
The Toolbox groups the controls in a tabbed tree. Expand the tab grouping
(such as Common Controls or Menus & Toolbars), and you see a list of the
available controls. In this case, you want two text box controls to hold the
login ID and password text, a few label controls to describe the text box
controls, and the OK and Cancel buttons to commit or cancel the entries. You
can find all these controls under the Common Controls tab (see Figure 6.38).

FIGURE 6.38 The WinForms Toolbox.

To place a control on the form, drag its representation from the Toolbox onto
the form. Some controls, referred to as components, don’t actually have a
visual user interface. The timer is one example of a component. When you drag
a component to a form, it is placed in a separate area of the designer called the
component tray. The component tray allows you to select one of the added
components and access its properties via the Properties window.

Tip
The Toolbox is customizable in terms of its content and
arrangement. You can add or remove tabs from the Toolbox, move
controls from one tab to another through simple drag and drop,
and even rename individual items within the Toolbox. To perform
many of these actions, bring up the Toolbox context menu by right-
clicking a tab or an item.

Arranging Controls
When you are designing a form, control layout becomes an important issue.
You are typically concerned about ensuring that controls are aligned either
horizontally or vertically, that controls and control groups are positioned with
equal and common margins between their edges, that margins are enforced
along the form borders, and so on.
The designer provides three distinct sets of tools and aids that assist with form
layout. First, you have the options available to you under the Format menu.
With a form loaded in the designer, you can select different groups of controls
and use the commands under the Format menu to align these controls vertically
or horizontally with one another, standardize and increase or decrease the
spacing between controls, center the controls within the form, and even alter
the controls’ appearance attributes so that they are of equal size in either
dimension.
The other layout tools within the designer are interactive in nature and are
surfaced through two different modes: snap line and grid positioning. You can
toggle between these two modes via the Windows Forms Designer Options
dialog box (choose Tools, Options and then the Windows Forms Designer tab).
The property called LayoutMode can be set to either SnapToGrid or
SnapLines.

Using the Layout Grid
The layout grid is, as its name implies, a grid that is laid on top of the form.
The grid itself is visually represented within the designer by dots representing
the intersection of the grid squares. As you drag and move controls over the
surface of the grid, the designer automatically snaps the control’s leading edges
to one of the grid’s square edges.

Tip
Even with the grid layout turned on, you can circumvent the
snapping behavior by selecting a control, holding down the Ctrl
key and using the arrow keys to move the control up, down, right,
or left one pixel at a time.

The size of the grid squares (and thus the spacing of these guide dots) is
controlled by the GridSize property (also located in the Options dialog box). A
smaller grid size equates to a tighter spacing of guide dots, which in turns
equates to more finely grained control over control placement.
Figure 6.39 shows the login form with the layout grid in evidence. Note that the
grid was used to confirm the following:

FIGURE 6.39 The layout grid.
The text boxes are aligned with one another (and are the same length).
The labels are aligned vertically with the text boxes and horizontally
with each other.
The buttons are aligned vertically and have an appropriate buffer area
between their control edges and the form’s border.

Using Snap Lines
Snap lines are a slightly more intelligent mechanism for positioning controls.
With snap lines, no grid is visible on the form’s surface. Instead, the designer
draws visual hints while a control is in motion on the form.
Figure 6.40 illustrates snap lines in action; this figure shows the process of
positioning the OK button.

FIGURE 6.40 Using snap lines.

Note that the control (in this case, an OK button) has “snapped” into a position
that is located a set distance away from the form border (indicated by the thin
blue line extending down from the button to the form edge). The button snap

position also sufficiently spaces the control from its neighboring Cancel button,
as indicated by the thin blue line extending from the right edge of the button to
the left edge of the Cancel button. The snap line algorithm has also determined
that you are trying to create a row of buttons and thus need to vertically align
the current control to its neighbor. This is actually done using the interior text
of the buttons; the thin pink line running under the text of both buttons clearly
shows that they are perfectly aligned.
The snap line algorithms automatically take into account the recommended
margins and spacing distances as discussed in the Windows User Interface
Guidelines written and adopted by Microsoft. This feature takes the guesswork
out of many layout decisions and helps to ensure some commonality and
standards adherence within the Windows Forms applications.

Note
Changes made to the layout modes of the designer typically do not
take effect immediately. You might need to close the designer and
reopen it after making a change (such as switching between
SnapLine mode and SnapToGrid mode). If you have multiple
designer windows open, you may need to close them all before
your layout mode changes take effect.

Resizing Controls and Editing Attributes
When a control is in place on its parent form, you can interact with the control
in various ways. You can set control properties using the Properties window.
You also can alter the sizing and shape of the control by dragging the grab
handles on the sides of the control.

Writing Code
Although the designer excels at enabling developers to visually construct a
user interface, its capability to actually implement behavior is limited. You can
use the designer to place a button, but responding to a click of a button and
reacting in some way are still the domain of code.
At the code level, a form is simply a class that encapsulates all the form’s
behavior. For simplicity and ease of development, Visual Studio pushes all the
code that it writes via the designer into clearly marked regions and, in the case
of Windows forms, a separate code file. The file is named after the primary
form code file like this:
FormName.Designer.language_extension. As an example, the
login form is accompanied by a Login.Designer.cs file that implements
the designer-written code.
Listing 6.1 shows what Visual Studio has generated in the way of code to
implement the changes made through the designer.

LISTING 6.1 Windows Forms Designer–Generated Code

Click here to view co de image

namespace Contoso.UI.WindowsForms.OrderEntry

http:Login.Designer.cs

{
partial class Login
{

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.IContainer

components = null;

/// <summary>

/// Clean up any resources being used.

/// </summary>

/// <param name="disposing">true if managed

resources should be disposed;
/// otherwise, false.</param>
protected override void Dispose(bool

disposing)
{

if (disposing && (components != null))
{

components.Dispose();
}
base.Dispose(disposing);

}

#region Windows Form Designer generated code

/// <summary>
/// Required method for Designer support - do

not modify
/// the contents of this method with the code

editor.
/// </summary>
private void InitializeComponent()
{

this.label1 = new
System.Windows.Forms.Label();

this.label2 = new
System.Windows.Forms.Label();

this.textBoxID = new
System.Windows.Forms.TextBox();

this.textBoxPassword = new
System.Windows.Forms.TextBox();

this.buttonCancel = new
System.Windows.Forms.Button();

this.buttonOk = new
System.Windows.Forms.Button();

this.SuspendLayout();
//
// label1
//
this.label1.AutoSize = true;
this.label1.Location = new

System.Drawing.Point(61, 23);
this.label1.Name = "label1";
this.label1.Size = new

System.Drawing.Size(17, 13);

;

this.label1.TabIndex = 0;

this.label1.Text = "ID:";

//

// label2

//

this.label2.AutoSize = true;

this.label2.Location = new

System.Drawing.Point(26, 46);
this.label2.Name = "label2";
this.label2.Size = new

System.Drawing.Size(52, 13);
this.label2.TabIndex = 1;
this.label2.Text = "Password:";
//
// textBoxID
//
this.textBoxID.Location = new

System.Drawing.Point(85, 20);
this.textBoxID.Name = "textBoxID";
this.textBoxID.Size = new

System.Drawing.Size(195, 20);
this.textBoxID.TabIndex = 2;
//
// textBoxPassword
//
this.textBoxPassword.Location = new

System.Drawing.Point(85, 46);
this.textBoxPassword.Name =

"textBoxPassword";
this.textBoxPassword.Size = new

System.Drawing.Size(195, 20);
this.textBoxPassword.TabIndex = 3;
//
// buttonCancel
//
this.buttonCancel.DialogResult =

System.Windows.Forms.DialogResult.Cancel
this.buttonCancel.Location = new

System.Drawing.Point(205, 72);
this.buttonCancel.Name = "buttonCancel";
this.buttonCancel.Size = new

System.Drawing.Size(75, 23);
this.buttonCancel.TabIndex = 4;
this.buttonCancel.Text = "Cancel";
//
// buttonOk
//
this.buttonOk.Location = new

System.Drawing.Point(124, 72);
this.buttonOk.Name = "buttonOk";
this.buttonOk.Size = new

System.Drawing.Size(75, 23);
this.buttonOk.TabIndex = 5;
this.buttonOk.Text = "OK";
//
// Login
//

xedDialog;

this.AcceptButton = this.buttonOk;
this.AutoScaleDimensions = new

System.Drawing.SizeF(6F, 13F);
this.AutoScaleMode =

System.Windows.Forms.AutoScaleMode.Font;
this.CancelButton = this.buttonCancel;
this.ClientSize = new

System.Drawing.Size(292, 109);
this.Controls.Add(this.buttonOk);
this.Controls.Add(this.buttonCancel);
this.Controls.Add(this.textBoxPassword);
this.Controls.Add(this.textBoxID);
this.Controls.Add(this.label2);
this.Controls.Add(this.label1);
this.FormBorderStyle =

System.Windows.Forms.FormBorderStyle.Fi
this.MaximizeBox = false;
this.MinimizeBox = false;
this.Name = "Login";
this.ShowInTaskbar = false;
this.SizeGripStyle =

System.Windows.Forms.SizeGripStyle.Hide;
this.Text = "Login";
this.ResumeLayout(false);
this.PerformLayout();

}

#endregion

private System.Windows.Forms.Label label1;
private System.Windows.Forms.Label label2;
private System.Windows.Forms.TextBox

textBoxID;
private System.Windows.Forms.TextBox

textBoxPassword;
private System.Windows.Forms.Button

buttonCancel;
private System.Windows.Forms.Button buttonOk;

}
}

Creating a Windows Presentation Foundation Project
Windows Presentation Foundation (WPF) projects behave much like
WinForms projects do. In fact, one of the design goals for the WPF Designer
and editor was to act in ways that would be familiar to developers who are
used to Windows Forms development. Just as we previously did with our
WinForms project, we start the development and design process by selecting a
template (WPF Application) from the File, New Project dialog.
Two XAML files are automatically created within the project:
MainWindow.xaml, which represents the main window for the app; and
App.xaml (Application.xaml in Visual Basic), which represents the
application itself. These are analogous to the Form1.cs/Form1.vb and
Program.cs/Module1.vb files created in a new Windows Forms

http:Program.cs/Module1.vb
http:Form1.cs/Form1.vb
http:System.Windows.Forms.FormBorderStyle.Fi

project.
The first difference you notice with WPF projects is that, by default, you are
presented with two different panes. In one pane, you see the design surface for
the window, and in another you see an editor that contains the XAML
declarations for the form. This design view is actually the same that is used for
web applications (which we investigate as part of the next topic). See Figure
6.41 for a look at the Window1.xaml file loaded in the IDE.

FIGURE 6.41 The initial window in the WPF Designer.
Each of these panes is simply a different view of the same window: a visual
view and a text/XML view. I can add a button to the window, for example, by
dragging it from the Toolbox onto the design surface or by typing the XAML
declaration directly into the XAML pane like this:
Click here to view co de image

<Button Height="25" Name="button1"

Width="75">Button</Button>

Both the design and the XAML view are kept in sync with one another
	
automatically.
	
Because WPF is based on vector graphics, you can zoom in and out in the
	
designer using the combo-box control in the lower left of the designer. Note
	
that you can hold down the Ctrl key and use the mouse scroll wheel to control
	
the zoom level directly. Figure 6.42 shows the Window1 content, with a button,
	
zoomed in at 10x.
	

FIGURE 6.42 Ten times magnification in the WPF designer.

Using the Split P anes
You have control over how the design and XAML panes are displayed and
positioned within the IDE. There is a small button flagged with two-way
arrows that, when pressed, swaps the position of the two panes. You can also
change the panes from a horizontal to a vertical orientation (or vice versa) by
clicking the Horizontal Split or Vertical Split button. Finally, you can collapse
either pane by clicking the Collapse/Expand Pane button.
A cluster of controls situated on the border between the design and XAML
editor panes control zooming, pane management/arrangement, and other
functions (see Figure 6.43).

FIGURE 6.43 WPF editor controls.

Adding Controls
WPF windows are populated with controls by using the same drag-and-drop
action from the Toolbox that is used with Windows Forms and web forms
development. Control positioning and sizing are aided through snap lines, grid
lines, and sizing boxes that look a bit different than their WinForms
counterparts but perform the same tasks (see Figure 6.44).

FIGURE 6.44 Positioning controls in the WPF Designer.
We cover WPF development in more detail in Chapter 21, “Building WPF
Applications.”

Developing Web Forms
Web forms represent the user interface element to a web application.
Traditionally with .NET, the term web form is used to refer specifically to
pages processed dynamically on the server (using ASP.NET). We use a
broader definition here and use the term to refer to any web page, static or
dynamic, that can be developed and designed within the Visual Studio IDE.
The HTML designer (also referred to as the web designer) is the sister
application to the Windows Forms and WPF designers; it allows you to
visually design and edit the markup for a web page. As with the two client
application designers, it works in conjunction with the HTML designer and
source view to cover all the bases needed for web page design. We cover the
entire web application development process in depth in Part V, “Building Web
Applications”; the following sections cover the basics of the web designers
and editors.

Designing a Web Form Application
Web page design starts with a web project. As previously discussed, there are
two different ways for you to construct a web page or website with Visual
Studio. Both of these approaches are represented by their own unique project
templates. Specifically, we are talking about “web application” versus
“website” projects. In Chapter 4, “Solutions and Projects,” we broached some
of the core differences between these two project types; even more detail is
waiting for you in Chapter 17, “Building Modern Websites with ASP.NET 5.”
However, because the actual construction of a web page with the web designer
remains the same between the two project types, we concentrate here on
illustrating our points by walking through a website project.
Select File, New Web Site, and from the dialog box select the ASP.NET Web
Forms Site option. After you set the source code directory and source
language, click OK to have Visual Studio create the project and its initial web
page.
The web designer looks similar to the WPF Designer; it has a design surface
that acts as a canvas, allowing objects from the Toolbox to be placed and
positioned on its surface. Although they look slightly different from the pane
controls we saw in the WPF designer, they have the same basic functions. You
can work in a “split” mode in which the designer and markup editor are visible
in separate panes, or you can elect to work strictly with either the designer or
the editor open.
Now examine what happens when you try to mimic the login form that was
previously built using Windows forms. (There is actually a prebuilt login form
component that you could use here; for the sake of demonstrating the
development process, however, we will go ahead and cobble together our own
simple one for comparison’s sake.)

Adding and Arranging Controls
The process of adding and arranging controls doesn’t change from the
Windows Forms or WPF Designer process. Simply drag the controls from the
Toolbox onto the designer ’s surface. In this case, you want two labels, two text
boxes, and an OK button (because this isn’t a dialog box, you can dispense
with the Cancel button). Changing control properties is handled the same way
via the Properties window. You can select the labels and command buttons and
set their text this way.

Note
As you add controls to a web page, note that the default layout
mode is relative. That is, controls are not placed at absolute
coordinates on the screen but instead are placed relative to one
another. Absolute positioning is accommodated via style sheets.
For instance, you can select a label control, edit its style
properties, and select Absolutely Position as the position mode.
This will now allow you to range freely over the form with the
control.

A formatting toolbar is provided by default; it supplies buttons for common text
	

formatting actions such as changing font styles, colors, paragraph indenting,
and bulleting.
To line up control edges the way you want, you can press Shift+Enter to insert
spacing between the controls as necessary. (This generates a break tag,
,
in the HTML.) In this case, a break was added between the first text box and
the second label and between the second text box and the first button. Figure
6.45 shows the design in progress. The text boxes don’t line up, and you
probably want to apply a style for the label fonts and buttons; but the general
layout and intent are evident. Note that the designer provides a box above the
currently selected control that indicates both the control’s type and the instance
name of the control on the page.

FIGURE 6.45 Creating a web form.
	

Tip
As a further aid for control alignment, be sure to turn on the ruler,
the positioning grid, or both; they are accessed from the View
menu under Ruler and Grid.

Editing Markup
As controls and other elements are added and manipulated on the designer ’s
surface, HTML is created to implement the design and layout. As a designer or
developer, you are free to work at either the visual level with the designer or
the text/source level with the HTML source editor. Like the other editors
within Visual Studio, the HTML source editor supports IntelliSense and other
interactive features for navigating and validating markup.
Looking back at Figure 6.42, you can see the markup generated by the designer
when the controls were added to the login page.
As with the other designer/editor pairs, you can write your own HTML and see

it implemented immediately in the design view. The HTML editor has a toolbar
as well: the HTML source editing toolbar provides quick access to code
“forward and back” navigation, commenting, and schema validation options.
(We discuss schema validation in the later section “Browser Output and
Validation.”)
One key feature realized with the HTML editor is source format preservation.
The HTML source editor works hard to respect the way that you, the
developer, want your markup formatted. This includes the placement of
carriage returns and whitespace, the use of indentation, and even how you want
to handle word and line wrapping. In short, Visual Studio never reformats
HTML code that you have written.

Working with Tables
HTML tables provide a quick and easy way to align controls on a web page. A
dedicated Insert Table dialog box provides extensive control over table layout
and appearance. To place a table onto the design surface, select Insert Table
from the Table menu. The Insert Table dialog box supports custom table layouts
in which you specify the row and column attributes and the general style
attributes such as borders and padding. Through this dialog box, you can also
select from a list of preformatted table templates.
After you’ve added a table to the designer, it is fully interactive for drag-and-
drop resizing of its columns and rows.

F ormatting Options
In addition to preserving the format of HTML that you write, Visual Studio
provides fine-grained control over how the designer generates and formats the
HTML that it produces. You use the HTML page and its subpages in the
Options dialog box (Tools, Options, Text Editor, HTML) to configure
indentation style, quotation use, word wrapping, and tag casing (see Figure
6.46).

FIGURE 6.46 HTML formatting options.
Settings can be applied globally for all markup, or you can set options on a
per-tag basis by clicking the Tag Specific Options button (Text Editor, HTML,

ol is useful if your particular coding
olumn tags (<td>) but not with your
e tr tag is being set to support line
ithin the tag.

atting options at the tag level.

for managing styles and cascading
ly Styles windows are both used to
ding applying a style to the current
cascading style sheet file to/from the

the CSS Properties window,
currently selected page element,
property values.
ht look like this:

dow and its capability to itemize and
ithin a style sheet. The Options button
o control the way that the list of
y order, by type, and so on) or to filter
se used in the current page, and so

Format). For example, this level of contr
style uses line breaks within your table c
table row tags (<tr>). In Figure 6.47, th
breaks before and after the tag, but not w

FIGURE 6.47 Setting HTML form

Managing Styles and Style Sheets
Visual Studio has a complete set of tools
style sheets. The Manage Styles and App
perform common style editing tasks, inclu
HTML document or attaching/detaching a
current HTML document. The third tool,
enumerates all the CSS properties for the
allowing for quick changes for any of the
A typical workflow for editing styles mig

1. Open a web page.
2. Define a new style.
3. Apply the style.
4. Tweak the style.

Figure 6.48 shows the Manage Styles win
preview any of the formatting elements w
at the upper right of the window is used t
elements within a style sheet is shown (b
the elements that are shown (all, only tho

on).

FIGURE 6.48 The Manage Styles window.

You access both the Manage Styles window and the Apply Styles window
from the View menu.

BrowserOutput and Validation
The result of all the design effort put into an HTML document is its final
rendering within a browser. With various flavors of browsers in use
supporting various levels of HTML specifications (including XHTML), it is
difficult to ensure that the page’s design intent actually matches reality. Visual
Studio’s browser target settings help with this problem by enabling you to
easily target a specific HTML standard or browser. As you type HTML into the
source editor, Visual Studio validates the syntax on the fly against your
selected browser target. If a piece of markup violates the rules of your
particular validation target, it is flagged by the familiar red squiggly line
(complete with a ToolTip explaining the exact violation), and the error is listed
within the Task List window.
The target can be selected on the HTML designer or source editor toolbar; just
pick the target from the drop-down.

Note
The validation rules for a given browser or standard can actually
be customized to support targets that do not ship out of the box
with Visual Studio.

Standards Compliance
The HTML code generated by the HTML designer is, by default, XHTML
compliant; tags, for instance, are well formed with regard to XHTML
requirements. Using the various XHTML validation targets helps to ensure that
the code you write is compliant as well.
Visual Studio also focuses on providing compliance with accessibility
standards (those standards that govern the display of web pages for persons
with disabilities). You launch the Accessibility Checker by using the Check
Page for Accessibility button on the HTML Source Editing or Formatting
toolbars. (Note that this button is not added by default on those toolbars; you’ll
have to use the “add or remove buttons” feature to add it.)
Figure 6.49 shows the Accessibility Validation dialog box. You can select the
specific standards you want to have your HTML validated against. You can
also select the level of feedback that you receive (errors, warnings, or a text
checklist). Each item flagged by the checker appears in the Task List window
for resolution. For more details on the two standards supported here (WCAG
and Access Board Section 508), see their respective websites:
http://www.w3.org/TR/WCAG10/ and http://www.access-board.gov/508.htm.

FIGURE 6.49 Setting accessibility validation options.

Authoring WinForms Components and Controls
Referring to our earlier discussion of Windows forms, components are
nonvisual controls or classes. This is a good generic definition, but a more
specific one is this: a component is any class that inherits from
System.ComponentModel.IComponent. This particular interface
provides support for designability and resource handling. If you need a
designable control that does not have a user interface of its own, you work
with a component. Controls are similar in function but not form; a control is a
reusable chunk of code that does have a visual element to it.
Because Visual Studio provides a dedicated design surface for creating
Windows Forms components, we cover this separately in this section. WPF
projects also allow for custom controls and components, but in a fashion that is
much more streamlined and integrated with the overall development of forms
in the WPF world. We cover some of that content in our WPF chapter later in

http://www.w3.org/TR/WCAG10/
http://www.access-board.gov/508.htm

the book (Chapter 21).

Creating a New Component or Control
Starting from an existing WinForms project, you kick off the process of
authoring a component by using the Add New Item dialog box (from the Project
menu). Selecting Component Class in this dialog box adds the stub code file to
your current project and launches the component designer. To start control
development, you use the Add New User Control dialog box.

Note
Two different “types” of WinForms controls can be authored
within Visual Studio: custom controls and user controls. Custom
controls inherit directly from the
System.Windows.Forms.Control class; they are
typically code intensive because you, the developer, are
responsible for writing all the code necessary to render the
control’s visual portion. User controls (sometimes called
composite controls) inherit from the
System.Windows.Forms.UserControl class. User
controls are advantageous because you can build them quickly by
compositing other controls together that are already available in
the Toolbox. These controls already have their user interface
portion coded for you.

Both the control and the component designers work on the same principles as
the Windows Forms Designer: The designers allow you to drag an object from
the Toolbox onto the design surface.
Assume that you need a component that sends a signal across a serial port
every x minutes. Because Visual Studio already provides a timer and a serial
port component, which are accessible from the Toolbox, you can use the
component designer to add these objects to your own custom component and
then leverage and access their intrinsic properties and methods (essentially,
using them as building blocks to get your desired functionality).
Figure 6.50 shows the component designer for this fictional custom component.
Two objects have been added: a process component and a timer component.

FIGURE 6.50 The component designer.
A similar scenario can be envisioned with a user control. You can take the
example of a login “form,” consisting of two text boxes, two labels, and two
buttons, and actually make that a control (one that can be easily included in the
Toolbox and dropped onto a Windows form or web form).

Further Notes on Writing Component Code
Because the component has no visual aspect to it, you don’t have the layout and
formatting features that you see with the Windows Forms Designer. However,
the concept of drag-and-drop programming is alive and well. Visual Studio,
behind the scenes, injects the code to programmatically add the given class to
the component’s container. From there, you can edit the various objects’
properties, double-click an object to get to its code, and so on.
When you drag the timer and process objects over from the Toolbox, Visual
Studio aggregates these objects into the component by automatically writing the
code shown in Listing 6.2.

LISTING 6.2 Component Designer–Generated Code

Click here to view code image

namespace Contoso.UI.WindowsForms.OrderEntry
{

partial class Component1
{

/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.IContainer

components = null;

/// <summary>
/// Clean up any resources being used.
/// </summary>
/// <param name="disposing">true if managed

resources should be
/// disposed; otherwise, false.</param>
protected override void Dispose(bool

disposing)
{

if (disposing && (components != null))
{

components.Dispose();
}
base.Dispose(disposing);

}

#region Component Designer generated code

/// <summary>
/// Required method for Designer support - do

not modify
/// the contents of this method with the code

editor.
/// </summary>
private void InitializeComponent()
{

this.components = new
System.ComponentModel.Container();

this.timer1 = new
System.Windows.Forms.Timer(this.components);

this.process1 = new
System.Diagnostics.Process();

}

#endregion

private System.Windows.Forms.Timer timer1;
private System.Diagnostics.Process process1;

}
}

Writing code “behind” one of the objects placed on the component designer
canvas is easy: double-click the object’s icon, and the code editor is launched.
For instance, double-clicking the timer icon on the designer surface causes the
timer1_Tick routine to be created and then launched in the code editor.

Creating Classes with the Class Designer
The final designer we cover in this chapter is the class designer. The class
designer, via its class diagram, allows you to get a view of your code as it
exists statically (or at rest). You also get real-time synchronization between the
model and the actual code. You should think of the class designer more as a
visual code editor and less like a diagram. If you make a change to code, that
change is reflected in the diagram. When you change the diagram, your code
changes, too.

Creating a Class Diagram
There are a couple of ways to create a class diagram. The first is to add a
class diagram to your project from the Add New Item dialog box. Here, you
select a class diagram template (.cd) and add it to the project. You can then
add items to this diagram from the Toolbox or from existing classes in the
Solution Explorer.
The second way to add a class diagram to a project is to choose View Class
Diagram from the context menu for a given project. In this way, Visual Studio
generates a class diagram from an existing project. This option is shown in
Figure 6.51.

FIGURE 6.51 Launching the class designer.

In either case, you end up with a .cd file in your project that represents the
visual model of your classes. Clearly, the View Class Diagram option saves
you the time of dragging everything onto the diagram. Figure 6.52 shows an
example of the class designer file. We cover each window shown in this
designer.

FIGURE 6.52 The class designer.

Displaying Members
You use the arrow icon (points up or down) in the upper-right corner of each
object in the designer to toggle whether to show or hide its members. This is
useful if you need to conserve screen real estate or if you are interested only in
members of a particular class.
You can also use the class designer toolbar to indicate how members are
grouped for display and what additional information is shown. For example,
you can sort members alphabetically, group them by their kind (property,
method, and so on), or group by access (public, private, and so on). You can
then indicate whether you want to display just member names, their names and
types, or the full signatures.

Adding Items to the Diagram
You add items to the class designer by using either the Toolbox or the Solution
Explorer. The Toolbox is for adding new items. You use the Solution Explorer
to add existing classes to the diagram. In both scenarios, you simply drag and
drop the item onto the class designer window. If the item already exists, Visual
Studio builds out the class details for you. In fact, if the class file contains
more than one class, each class is placed as an object on the diagram.
Figure 6.53 shows an example of the class designer Toolbox tools. Notice that
you can define all object-oriented concepts here, including classes, interfaces,
and inheritance.

FIGURE 6.53 The class designer Toolbox.
When you add a new item such as a class or struct to the designer, the designer
prompts you for the item’s name and location. You can choose to generate a
new file to house the item or place it in an existing file. Figure 6.54 shows the
New Class dialog box. Here, you can give the class a name, set its access
modifier, and indicate a filename.

FIGURE 6.54 Adding a new class to the class designer.

Tip
The class designer can automatically add related classes to the
diagram. For example, suppose you add a class from the Solution
Explorer. If you want to show classes that inherit from this class,
you can right-click the class and choose Show Derived Classes.
This adds to the model all classes that derive from the selected
class.

Defining Relationships Between Classes
One of the biggest benefits of the class diagram is that it visually represents the
relationships between classes. These relationships are much easier to see in a
diagram than through code. The following relationships can be represented:

Inheritance—Indicates whether a class inherits from another class
Interface—Indicates whether a class implements one or more interfaces
Association—Indicates an association between classes

Let’s look at implementing each of these relationships through an example.

Inheritance
First, let’s look at inheritance with the class designer. Suppose that you have a
base class called EmployeeBase. This class represents a generic employee
in your system. You then want to create a concrete RemoteEmployee class
that inherits fromEmployeeBase. If you look back at Figure 6.52, you can
see that both of these classes are connected with an arrow leading from the
implementing class to the base or parent class. This is simply a visualization of
the inheritance that we had already set up in our code. But you can also wire
classes together through inheritance by using the class diagram window and the
class designer Toolbox. Select the Inheritance tool from the class designer
Toolbox, click the inheriting class (in this example, Employee), and then
extend the line up to the base class and click it. And just like that, you have
inherited a class, with Visual Studio writing the code for you. Figure 6.55
shows the two classes being connected via the Inheritance tool.

FIGURE 6.55 Class inheritance.

Interface
The next visual relationship we look at is an interface. For this example,
suppose that all the business entities in your system implement a similar
contract. This contract might define properties for ID and name. It also might
define methods such as Get, Delete, and Save.
To implement this interface, you again use the Inheritance tool from the class
designer Toolbox. You drag it from the class doing the implementation toward
the interface. Figure 6.56 shows the result of an implemented interface. Notice
the lollipop icon above the Customer class; it denotes the interface
implementation.

FIGURE 6.56 Implementing an interface.

Association
The final relationship to look at is association. This relationship is typically a
loose one in the Unified Modeling Language (UML) world. However, in the
class designer, an association is very real. Typically, this means that two
classes have an association through the use of one of the classes. This
relationship is also optional in terms of viewing. It can exist, but you do not
have to show it in the diagram.
For example, suppose that you have an Order object. This object might
expose an OrderStatus property. Suppose that it also has a property for
accessing the Customer record associated with the order. These two
properties are associations. You can leave them as properties, or you can
choose to show them as associations.
You can also draw these property associations on the diagram. To do so, you
select the Association tool from the Toolbox. This tool has the same icon as
Inheritance. You then draw the association from the class that contains the
association to the class that is the object of the association. You can also right-

click the actual property that represents the association and choose Show as
Association from the context menu (or Show as Collection Association for
associations that are part of a collection).
The result is that the association property is displayed on the association
arrow. This indicates that the class from which the association originates
contains this property. (It is shown only on this line, however.) Figure 6.57
illustrates an association between Order and OrderStatus, and Order and
Customer.

FIGURE 6.57 Creating an association.

Defining Methods, Properties, Fields, and Events
The most exciting part of the class designer is that it allows you to do more
than define classes and relationships. You can actually stub out code and do
refactoring. (See Chapter 9, “Refactoring Code,” for details.)
There are two ways to add code to your classes, structs, interfaces, and the
like. The first is to type directly into the designer. For example, if you are in
the Properties section of a class, you can right-click and choose to add a new
property. This places the property in your class and allows you to edit it in the
diagram. This method works for other class members as well. It does have a
couple of drawbacks, however. You can’t, for instance, define a full method
signature or indicate access levels. For that, you need the Class Details
window.
The Class Details window allows you to fully define methods, fields,
properties, and events for a class. It also works with other constructs such as
interfaces, delegates, and enums. To use this window, right-click a class and
choose Class Details from the context menu. Selecting this menu item brings up
the Class Details editor for the selected class. Figure 6.58 shows the Class
Details window in action.

FIGURE 6.58 Creating a method in the Class Details window.
Notice that when working in the Class Details window, you still get
IntelliSense. In this example, the Cancel method is being added to the
Order class. You can indicate a return type for the method with the Type
column. You can define the access modifier with the Modifier column. You can
also set the parameters of the method. In this case, the method takes the string
parameter ReasonCode.
Finally, there are Summary and Hide columns. The Hide column indicates
whether you want to show an item on the diagram. This capability allows you
to hide various members when printing or exporting as an image. The Summary
column allows you to add your XML documentation to the class. Clicking the
ellipsis button (not shown) in this field brings up the Description dialog box.
Here, you can enter your XML summary information for the given member.
Figure 6.59 shows an example for the Cancel method.

FIGURE 6.59 Creating code comments for a method.

Summary
Visual Studio provides a full array of editors and designers. They cover the
gamut of solution development activities from WYSIWYG positioning of
graphical controls to finely tuned text editing for a certain language, syntax, or
markup.
This chapter described how to leverage the basics within these editors and
designers. It also described how the editor and designer relationship provides
two complementary views of the same solution artifact, in effect working
together to provide you, the developer, with the right tool for the right task at
hand.
In subsequent chapters, we look at the more advanced options and productivity
features available within these tools and even look at end-to-end development
efforts involved in building a web application with ASP.NET or Silverlight
and building a Windows application using Windows Forms or WPF.

Part III: Working with the Visual
	
Studio Tools
	

Chapter 7. Working with Visual Studio’s
Productivity Aids

In This Chapte r
Basic Aids in the Text Editor
Outlining and Navigation
Smart Tasks and Light Bulbs
IntelliSense
The Task List

In Chapter 6, “Introducing the Editors and Designers,” we discussed the basic
capabilities of the designers and editors in Visual Studio 2015. In this chapter,
we delve a bit deeper into their capabilities and those of other Visual Studio
tools by examining the many productivity aids that the IDE provides. Many of
these productivity enhancers are embedded within the text editors. Others are
more generic in nature. But they all have one common goal: helping you, the
developer, write code quickly and correctly.
If you recall from Chapter 6, in our coverage of the editors, we used a basic
code scenario: a console application that printed "Hello, World!" to the
console. In Figure 7.1, you see what the final code looks like in the code editor
window.

FIGURE 7.1 "Hello, World" in the code editor.
	
If you have followed along by re-creating this project and typing the "Hello,
World!" code in Visual Studio, you have noticed that the productivity
features of the code editor have already kicked into gear.

First, as you start to type, the code editor has tabbed in the cursor for you,
placing it at a new location for writing nicely indented code.
Second, as you type your first line of code, Visual Studio reacts to your every
keystroke by interpreting what you are trying to write and extending help in
various forms (see Figure 7.2). You are given hints in terms of completing your
in-progress source, provided information on the members you are in the
process of selecting, and given information on the parameters required to
complete a particular method. These features are collectively referred to as
IntelliSense, and we explore its forms and functions in depth in this chapter.

FIGURE 7.2 IntelliSense in action.
As you type, the IDE is also constantly checking what you have written with
the compiler. If compile errors exist, they are dynamically flagged for you in
the code editor with a red underline.
So for this one simple line of code, Visual Studio has been hard at work
improving your coding productivity by doing the following:

Intelligently indenting the code
Suggesting code syntax
Displaying member descriptions to help you select the correct code
syntax
Visually matching delimiting parentheses
Flagging code errors by constantly background compiling the current
version of the source code

These features subtly help and coach you through the code-writing process and
accelerate the act of coding itself.

Basic Aids in the Text Editor
The text editor user interface has several visual constructs that help you with
common problem areas encountered during the code-writing process. These
basic aids provide support for determining what has changed within a code
document and what compile problems exist in a document. In addition, the
discrete syntax elements for each language are visually delineated for you
using colored text.

Change Tracking
When you are in the midst of editing a source code file, it is tremendously
useful to understand which lines of code have been committed (that is, saved to
disk) and which have not. Change tracking provides this functionality; a yellow
vertical bar in the text editor ’s selection margin (and vertical scrollbar if
enabled; see the prior chapter) spans any lines in the editor that have been
changed but not saved. If content has been changed and subsequently saved, it
is marked with a green vertical bar in the selection margin.
By looking at the yellow and green tracking bars, you can quickly differentiate
between the following:

Code that hasn’t been touched since the file was loaded (no bar)
Code that has been touched and saved since the file was loaded (green
bar)
Code that has been touched but not saved since the file was loaded
(yellow bar)

Change tracking is valid only for as long as the editor window is open. In other
words, change tracking is significant only for the current document “session”;
if you close and reopen the window, the track bars disappear because you have
established a new working session with that specific document.
Figure 7.3 shows a section of a code file displaying the change tracking bars.

FIGURE 7.3 Change tracking.

Coding Problem Indicators
The Visual Studio compiler works in conjunction with the code editor window
to flag any problems found within a source code document. The compiler can
even work in the background, enabling the editor window to flag problems as
you type (as opposed to waiting for the project to be compiled).
Coding problems are flagged using “squiggles” (wavy, color-coded lines
placed under the offending piece of code). These squiggles are the same
mechanism Microsoft Word uses to flag spelling and grammar problems. The
squiggle colors indicate a specific class of problem. Table 7.1 shows how
these colors map to an underlying problem.

TABLE 7.1 Coding Problem Indicator Colors
Hovering the mouse pointer over the problem indicator reveals the actual
compiler error or warning message, as demonstrated in Figure 7.4. You will
also be presented with a list of potential fixes to the issue. Note the hyperlink
in the message box: Show potential fixes. Clicking on this will
provide access to a number of refactoring options that could solve the code

issue. For example, perhaps you are trying to reference an object type that
doesn’t exist. This could be a simple typo, or you could be attempting to refer
to an object that you haven’t defined yet. In the latter case, this “potential
fixes” refactoring window can inject the code necessary to create a stub of the
object and will even show you a small preview of what that code looks like
(Figure 7.5).

FIGURE 7.4 Code problem indicators.
	

FIGURE 7.5 Refactoring a coding issue.
	

Active Hyperlinking
Text editors support clickable hyperlinks within documents; clicking a link
launches a browser redirected at the URL. One great use of this feature is to
embed URLs for supporting documentation or other helpful reference
information within code comments.

Syntax Coloring
The text editor can parse and distinctly color different code constructs to make
them that much easier to identify on sight. As an example, the code editor
window, by default, colors any code comments green. Code identifiers are
black, keywords are blue, strings are red, and so on.
In fact, the number of unique elements that the text editor is capable of parsing
and coloring is immense: the text editor window recognizes more than 100
different elements. And you can customize and color each one of them to your
heart’s content through the Fonts and Colors section, under the Environments
node in the Options dialog box. Do you like working with larger fonts? Would
a higher contrast benefit your programming activities? How about squeezing
more code into your viewable screen real estate? These are just a few reasons
you might stray from the defaults with this dialog box.
Figure 7.6 shows the Fonts and Colors page in the Options dialog box that
allows you to specify foreground and background colors for code, Hypertext
Markup Language (HTML), Cascading Style Sheets (CSS), or other elements.
Select the element in the Display Items list and change its syntax coloring via
the Item Foreground and Item Background drop-downs.

FIGURE 7.6 Setting font and color options.
	

Note
We first explored this dialog back in Chapter 2, “The Visual
Studio IDE.” The dialog box shown in Figure 7.6 enables you to
control much more than the syntax coloring for the text editor; you
can change the coloring schemes used in all the different windows
within Visual Studio. The item you select in the Show Settings For
drop-down determines the portion of the IDE you are customizing
and alters the list of items in the Display Items list.
You can always click the Use Defaults button at the upper right of
the dialog box to restore the default coloring schemes.

Outlining and Navigation
Certain documents, such as source code files and markup files, have a natural
parent-child aspect to their organization and syntax. XML nodes, for instance,
can contain other nodes. Likewise, functions and other programming language
constructs such as loops and try/catch blocks act as a container for other
lines of code. Outlining is the concept of visually representing this parent-child
relationship.

Code Outlining
Code outlining is used within the code editor; it allows you to collapse or
expand regions of code along these container boundaries. A series of grouping
lines and expand/collapse boxes are drawn in the selection margin. These
expand/collapse boxes are clickable, enabling you to hide or display lines of
code based on the logical groupings.

Tip
Both Visual Basic and C# provide a way to manually create
named regions of code via a special region keyword. Use
#region/#endregion (#Region and #End Region for
Visual Basic) to create your own artificial code container that is
appropriately parsed by the code outliner. Because each region is
named, this is a handy approach for organizing and segregating the
logical sections of your code. In fact, to use one example, the
code that the Windows Forms Designer generated for you is
automatically tucked within a “Windows Forms Designer
generated code” region.
One quick way to implement a region is with Surround With. In
the editor, highlight the code that you want to sit in a new region,
right-click the highlighted text, select Surround With from the
context menu, and then select #region (or #Region for VB).

Code outlining is best understood using a simple example. First, refer to Figure
7.1. This is the initial console application code. It contains a routine called
Main, a class declaration, a namespace declaration, and several using
statements. The code outline groupings that you see in the selection margin

visually indicate code regions that can be collapsed or hidden from view.
Because the class declaration is a logical container, the selection margin for
that line of code contains a collapse box (a box with a minus sign). A line is
drawn from the collapse box to the end of the container. (In this case, because
you are dealing with C#, the class declaration is delimited by a curly brace.) If
you click the collapse box for the class declaration, Visual Studio hides all the
code contained within that declaration.
Figure 7.7 shows how the editor window looks with this code hidden from
view. Note that the collapse box has changed to a plus sign, indicating that you
can click the box to reshow the now-hidden code and that the first line of code
for the class declaration has been altered to include a trailing box with an
ellipsis.

FIGURE 7.7 A collapsed outline region.

The HTML Editor also supports outlining in this fashion. HTML elements can
be expanded or collapsed to show or hide their containing elements.

Using the Outlining Menu
Several code outlining commands are available under the Edit, Outlining menu
(see Figure 7.8):

FIGURE 7.8 The Edit, Outlining menu.

Toggle Outlining Expansion—Based on the current cursor position in
the editor window, hides or unhides the outline region.
Toggle All Outlining—Hides or unhides all outline regions in the editor.
Stop Outlining—Turns off automatic code outlining (any hidden regions
are expanded). This command is available only if automatic outlining is
turned on.
Stop Hiding Curre nt—Removes the outline for the currently selected
region. This command is available only if automatic outlining has been
turned off.
Collapse to De finitions—Hides all procedure regions. This command is
useful for distilling a type down to single lines of code for all its
members.
Start Automatic Outlining—Enables the code outlining feature. This
command is available only if outlining is currently turned off.

Code outlining is a convenience mechanism: by hiding currently irrelevant
sections of code, you decrease the visible surface of the code file and increase
code readability. You can pick and choose the specific regions to view based
on the task at hand.

Tip
If you place the mouse pointer over the ellipsis box of a hidden
code region, the contents of that hidden region are displayed to
you in a ToolTip-style box; this is done without having to expand
and reshow the code region.

Tag Navigation
One problem with large or complex markup files, be they web forms, XAML
files, or XML documents, is navigation through the multiple levels and layers
of nested tags. Envision a web page containing a button within a table within a
table within a table. When you are editing the HTML (through either the
designer or the editor), how can you tell exactly where you are? Put another
way, how can you tell where the current focus is within the markup hierarchy?

Using the Tag Navigator
The tag navigator is Visual Studio’s answer to this question. The navigator
appears as a series of buttons at the bottom of the XAML, web, and XML
Schema designers. A breadcrumb trail of tags is shown that leads from the tag
that currently has focus all the way to the outermost tag. If this path is too long
to display within the confines of the editor window, it is truncated at the parent
tag side; a button enables you to display more tags toward the parent.
Figure 7.9 shows the tag navigator as implemented by the web designer. While
you’re editing the OK button in the sample login page, the tag navigator shows
the path all the way back to the parent enclosing <html> tag.

FIGURE 7.9 The web designer ’s tag navigator in action.

Each tag button displayed by the navigator can be used to directly select the
inclusive or exclusive contents of that tag. A drop-down triggered by the tag
button contains options for selecting the tag or selecting the tag content. The
former causes the tag itself, in addition to all of its enclosed content, to be
selected. The latter excludes the tag begin and end but still selects all its
enclosed content.
The navigator is a great mechanism for quickly moving up and down within a
large tag tree.

Using the Document Outline Window
The document outline window displays a tree-view representation of the
elements on a web page, XAML window, or Windows form. This hierarchical
display is a great navigation tool because it enables you to take in the entire
structure of your document in one glance and immediately jump to any of the
elements within the page.
To use the document outline window, choose Document Outline from the View,
Other Windows menu. Figure 7.10 shows a sample outline for a window
constructed with XAML.

FIGURE 7.10 The document outline of a XAML-based UI.

Clicking an element navigates to that element (and selects it) within the
designer window, and, of course, you can expand or collapse the tree nodes as
needed.

Note
The features and look and feel of the document outline window
change by document type. For instance, the XAML document
outline shows a thumbnail image of the UI element when you
hover over the node in the outline window. It also toggles
visibility of any line item by clicking the “eye” icon located to the
right of every line in the outline. The Windows Forms outline
window actually allows you to move and reparent items within
the form. Using just the outline window, you could move a button
from within one tab container and place it within another by
dragging the corresponding node to the new parent in the outline.

Smart Tasks and Light Bulbs
Smart tasks and light bulbs (a new addition to Visual Studio starting with
version 2015) are menu- or IntelliSense-driven features for automating
common control configuration and coding tasks within the IDE. Both designers
and editors implement these features in different ways. In the following
sections, we examine a few of the ways that these IDE aids make your life
easier, starting with smart tasks and designers.

HTML Designer
As controls are placed onto the HTML designer, a pop-up list of common tasks
appears. These tasks, collectively referred to as smart tasks, allow you to “set
the dials” for a given control to quickly configure it for the task at hand.
You use the common tasks list to quickly configure a control’s properties as
well as walk through common operations you might perform with it. For
example, when you add a GridView control to a web page, a common task list
appears that allows you to promptly enable sorting, paging, or editing for the
GridView. When you add a TextBox control to a web page, a common task list
appears that enables you to rapidly associate a validation control with the
control.
The Windows Forms Designer also plays host to smart tags.

Windows Forms Designer
With the Windows Forms Designer, the functionality of smart tasks remains
consistent; they do, however, take a slightly different form. A form control that
supports this functionality shows a smart tag glyph somewhere within its
bounds (typically to the top right of the control). This glyph, when clicked,
opens a small drop-down of tasks. Figure 7.11 contains a snapshot of the smart
tag in action for a tab control.

FIGURE 7.11 The smart tag on a tab control.
	

Code Editor
	
The Code Editor is where productivity really starts to come into its own with
the concept of light bulbs. Light bulbs (which in prior incarnations of Visual
Studio were called Smart Tags) pull together the collective intelligence of the
IDE into one central, inline spot where code fixes, refactorings, and code
completion suggestions can be provided and acted on quickly and easily.
A good example of the light bulb in action can be found when trying to
implement an interface. Normally, implementing an interface is a fairly code-
intensive task. We have to individually create a member within the
implementing class to map to each member defined on the interface. With the
light bulb concept, we can let the code editor itself do a lot of the work for us.
To implement our interface on an existing class, we would add the
“implements” syntax like this.
Click here to view co de image

class Program : IContosoConsole { }

As we type this into the code editor, Visual Studio’s IntelliSense (more to
come on this technology in a bit) will automatically flag the interface name
with a red underline indicating that potential problems exist. This is because
we have not yet followed through on the requirements of the interface. In other
words, we have established the “this class implements a specific interface”
syntax, but we haven’t actually gone ahead and implement the interface
members. Figure 7.12 shows our initial syntax along with the IntelliSense
underline/highlight.

FIGURE 7.12 The Code Editor catching potential issues with an interface
implementation.

If we now hover our cursor over the interface name that has been highlighted
for us, we will get a brief summary of what the code editor has identified issue
wise, along with the light bulb icon to the left of the issues window (see Figure
7.13). In this case, the editor has correctly identified that our implementing
class does not (yet) implement all the required interface members.

FIGURE 7.13 An issue identified with the light bulb.
If we click on the light bulb or select the Show potential fixes link
within the issues window, we will have a set of actions that Visual Studio
recommends to fix the identified issue.

Note
The light bulb indicator is also accessible in the left margin of the
code editor. It works the same way there that it does when you
hover over a flagged coding problem: it produces a drop-down
list of issues and fixes when you click on it.

In this case, the actions are Implement Interface and Implement Interface
	
Explicitly.
	
These two options will essentially write the code for us necessary to
	
implement our interface using either an implicit or an explicit style:
	

Imple me nt inte rface —Member names do not reference the name of the
derived interface.
Imple me nt inte rface e xplicitly—Members are prefixed with the name
of the derived interface.

In fact, fixes are visually presented to you within the editor, allowing you to get
an actual preview of the code changes that will happen if you select one of the
options. See Figure 7.14 to view the light bulb in action.

FIGURE 7.14 Code fixes with in-line preview using the light bulb.
This type of fix is known as a “Generate from Usage” scenario. It’s meant to
solve a fairly common workflow issue: with certain development styles
(especially, test-driven development or TDD), it is often the case that you are
referencing members and types that have not yet been created. In the preceding
example, this is an interface, but it could just as easily be another class, a
property, or a method.
Light bulbs are a common aid for any type of coding issue ranging from actual
syntax errors in the code to refactoring to missing references to more involved
usage scenarios (such as the one we just discussed).

IntelliSense
IntelliSense is the name applied to a collection of different coding aids
surfaced within the text editor window. Its sole purpose is to help you, the
developer, write a syntactically correct line of code quickly. In addition, it
tries to provide enough guidance to help you write lines of code that are
correct in context (that is, code that makes sense given the surrounding lines of
code).
As you type within the text editor, IntelliSense is the behind-the-scenes agent
responsible for providing a list of code fragments that match the characters you
have already entered, highlighting/preselecting the one that makes the most
sense given the surrounding context, and, if so commanded, automatically
inserting that code fragment in-line. This saves you the time of looking up types
and members in the reference documentation and saves time again by inserting
code without your having to actually type the characters for that code.
We spend a lot of time in this section discussing IntelliSense in the context of
editing code, but you should know that IntelliSense also works with other
document types such as XML documents, HTML documents, and Extensible

Stylesheet Language (XSL) files.
	

Tip
Attaching a schema to an XML document is beneficial from an
IntelliSense perspective. The schema is used to further enhance
the capabilities of the List Members function. (See the “List
Members” section later in this chapter.)

Many discrete pieces to IntelliSense seamlessly work in conjunction with one
another as you are writing code. You can trigger all these IntelliSense features
directly from the Edit, IntelliSense menu or by pressing Ctrl+Space. Many of
the features can be found as well on the text editor ’s context menu or by right-
clicking anywhere in the editor window. Let’s look at them one by one.

Complete Word
Complete Word is the basic timesaving kernel of IntelliSense. After you have
typed enough characters for IntelliSense to recognize what you are trying to
write, a guess is made as to the complete word you are in the process of
typing. This guess is then presented to you within a list of possible alternatives
(referred to as the completion list) and can be inserted into the code editor
with one keystroke. This is in contrast to your completing the word manually
by typing all its characters.
Figure 7.15 illustrates the process. Based on the context of the code and based
on the characters typed into the editor, a list of possible words is displayed.
One of these words is selected as the most viable candidate; you may select
any entry in the list (via the arrow keys or the mouse). Pressing the Tab (or the
Enter) key automatically injects the word into the editor for you.

FIGURE 7.15 IntelliSense: Complete Word.
	

Note
Complete Word takes the actual code context into account for
various situations. For instance, if you are in the midst of keying
the exception type into a try/catch block, IntelliSense
displays only exception types in the completion list. Likewise,
typing an attribute triggers a completion list filtered only for
attributes; when you’re implementing an interface, only interface
types are displayed; and so on.
This IntelliSense feature is enabled for all sorts of content.
Beyond C# and Visual Basic code, IntelliSense completion works
for other files as well, such as HTML tags, JavaScript, XAML,
CSS style attributes, .config files, and HTML script blocks,
just to name a few. Visual Basic offers functionality with
Complete Word that C# does not: it provides a tabbed completion
list, in which one tab contains the most commonly used syntax
snippets, and the other contains all the possible words.

You can manually invoke Complete Word at any time by using the Ctrl+Space
or Alt+right-arrow key combinations.

Tip
Holding down the Ctrl key while the completion list is displayed
makes the list partially transparent. This is useful if, during the
process of selecting an item from the list, you need to see any of
the lines of code that are hidden behind the list.

Completion Versus Suggestion Mode
Two different modes drive how IntelliSense displays its Complete Word list.
These modes are toggled with a hotkey combination, Ctrl+Alt+Space, or via
the Edit, IntelliSense, ToggleCompletionMode menu. When invoked, this
command toggles the behavior of Complete Word (and its derivatives such as
List Members) between completion and suggestion modes. Completion mode
works as previously described: Visual Studio offers you the closest matches to
what you are typing; the current closest match is highlighted in the completion
list. You can easily insert the highlighted item by pressing Enter, or you can
select to insert another item from the list.
Suggestion mode is subtly different. It also displays the closest matches to your
typed text, but instead of highlighting an item in the completion list, it simply
places a focus rectangle on the closest match. It preserves your current typing
at the top of the list. The net result is that pressing Enter won’t automatically
place one of the completion list items into your code; instead, it places
whatever you are in the process of typing. This mode is meant to cater to
scenarios where you are referencing a type or member that doesn’t (yet) exist.
In this scenario, you actually don’t want Visual Studio to automatically assume
that you are trying to reference a code construct that currently exists. In this
mode, you have the explicit option to select an existing code element or to
continue typing and enter the name for a code element that has yet to be

created. This gives you more flexibility while sacrificing a bit of the speed of
standard mode. (If you are referencing an existing item, consume-first mode
requires an extra mouse click to insert the item because it won’t be highlighted
in the completion list.)

Quick Info
Quick Info displays the complete code declaration and help information for any
code construct. You invoke it by hovering the mouse pointer over an identifier;
a pop-up box displays the information available for that identifier.
Figure 7.16 shows Quick Info being displayed for the
Console.WriteLine function. You are provided with the declaration
syntax for the member and a brief description of the member. The description
that shows up in the Quick Info window also works for code that you write. If
you have a code comment associated with a member, IntelliSense parses the
comment and uses it to display the description information.

FIGURE 7.16 IntelliSense: Quick Info.

List Members
The List Members feature functions in an identical fashion to Complete Word;
for any given type or namespace, it displays a scrollable list of all valid
member variables and functions specific to that type. To see the List Members
function in action, perform the following steps in an open code editor window:

1. Type the name of a class. (Ctrl+Space gives you the IntelliSense
	
window with possible class names.)
	

2. Type a period; this indicates to IntelliSense that you have finished with
the type name and are now “scoped in” to that type’s members. The list
of valid members is displayed.

3. Manually scroll through the list and select the desired member at this
point, or, if you are well aware of the member you are trying to code,
simply continue typing until IntelliSense has captured enough characters

to select the member you are looking for.
4. Leverage Complete Word by pressing the Tab key to automatically insert

the member into your line of code (thus saving you the typing effort).
This feature also operates in conjunction with Quick Info: as you select
different members in the members list, a Quick Info pop-up is displayed for
that member.
As noted earlier in our discussion of Complete Word, List Members can
function in either standard or consume-first modes.

Note
IntelliSense maintains a record of the most frequently used
(selected) members from the List Members and Complete Word
functions. This record is used to help avoid displaying or
selecting members that you have rarely, if ever, used for a given
type.

Parameter Info
Parameter Info, as its name implies, is designed to provide interactive
guidance for the parameters needed for any given function call. This feature
proves especially useful for making function calls that have a long list of
parameters or a long overload list.
Parameter Info is initiated whenever you type an opening parenthesis after a
function name. To see how this works, perform these steps:

1. Type the name of a function.
2. Type an open parenthesis. A pop-up box shows the function signature.
3. Scroll through the different signatures by using the small up- and down-

arrow cues if there are multiple valid signatures (for example, multiple
overloaded versions of this function). Select the desired signature.

4. Start typing the actual parameters you want to pass in to the function.
As you type, the parameter info pop-up continues coaching you through
the parameter list by bolding the current parameter you are working on.
As each successive parameter is highlighted, the definition for that
parameter appears. If the function in question has multiple overloads, the
pop-up box will contain up and down arrows that can be used to cycle
between the different parameter definition sets.

In Figure 7.17, we are entering a parameter for the Console.ReadKey
method. Note that we are using an overload of this function and the presence of
the up and down arrows for cycling between the two defined function
definitions for ReadKey.

FIGURE 7.17 IntelliSense: parameter info.
	

Organize Usings
	
Organize Usings is a C# and Visual Basic IntelliSense item. It provides three
separate functions: Remove Unnecessary Usings/Imports, Sort Usings/Imports,
and Remove and Sort Usings/Imports (which combines the first two actions
into one). All three commands live under the Organize Usings menu item on the
editor shortcut menu or under the main Edit, IntelliSense menu.
The Remove Unused Usings/Imports function is a great aid for uncluttering
your code. It scans through the current body of code and determines which
Using/Import statements are necessary for the code to compile; it then removes
all others. The Sort command is straightforward as well; it simply rearranges
all your Using/Import statements so they appear in A–Z alphabetic order by
namespace.

Code Snippets and Template Code
Code snippets are prestocked lines of code available for selection and
insertion into the text editor. Each code snippet is referenced by a name
referred to as its alias. Code snippets are used to automate what would
normally be non-value-added, repetitive typing. You can create your own code
snippets or use the default library of common code elements that Visual Studio
provides.

Using the Code Snippet Inserter
You insert snippets by right-clicking at the intended insertion point within an
open text editor window and then selecting Insert Snippet from the shortcut
menu. This launches the Code Snippet Inserter, which is a drop-down (or
series of drop-downs) that works much like the IntelliSense Complete Word
feature. Each item in the inserter represents a snippet, represented by its alias.
Selecting an alias expands the snippet into the active document.
Each snippet is categorized to make it easier to find the specific piece of code
you are looking for. As an example, to insert a constructor snippet into a C#

class, we would right-click within the class definition, select Insert Snippet,
select Visual C# from the list of snippet categories, and then select ctor.
Figure 7.18 shows this workflow in process; note that as you select a snippet
category, a placeholder is displayed in the text editor window to help establish
a breadcrumb trail.

FIGURE 7.18 The C# ctor code snippet.

After the constructor snippet is expanded into the text editor, you still, of
course, have to write meaningful code inside the constructor; but, in general,
snippets eliminate the process of tedious coding that really doesn’t require
much intellectual horsepower to generate.
Figure 7.19 shows the same process being followed for a Visual Basic code
window. The process is identical with the exception that Visual Basic makes
more extensive use of categories.

FIGURE 7.19 Inserting a Visual Basic code snippet.
	

Tip
If you are coding in Visual Basic, a quick, alternative way to
display the Code Snippet Inserter is to type a question mark and
then press the Tab key.

Visual Basic also exhibits slightly different behavior than C# after a snippet
has been expanded into the code window. Figure 7.20 shows the results of
drilling down through multiple categories and, in this example, selecting the
Create Transparent Windows Form snippet. Notice that the inserter has
injected the template code into the Visual Basic code for you, but the inserter
(at least in this case) wasn’t intelligent enough to know the name of the form
you are trying to make transparent.

FIGURE 7.20 A Visual Basic form transparency code snippet.
The snippet code has the form name filled in with a default, dummy name that
is already highlighted. You merely start typing the form name you need, and it
replaces the dummy name. The opacity value is also a dummy value that you
can quickly correct at this time.

Tip
Snippets may have one or more placeholder values: fragments of
code that you will want and probably need to change. You can
cycle through each of the placeholder values by pressing the Tab
key. When a placeholder is highlighted (in blue), you can start
typing to replace the syntax with something that makes sense for
your specific code context.

Surrounding Code with Snippets
C# and XML documents have one additional style of code snippets that bears
mentioning: Surround With snippets. Surround With snippets are still snippets
at their core (again, these are simply prestocked lines of code), but they differ
in how they are able to insert themselves into your code.
Using a Surround With snippet, you can stack enclosing text around a selection
with the text editor. As an example, perhaps you have a few different class
declarations that you would like to nest within a namespace. Using the
Surround With snippet is a simple two-step process: highlight the class
definitions and fire up the Code Snippet Inserter. This time, instead of selecting
Insert Snippet from the shortcut menu, you select Surround With. The insert
works the same way but this time has applied the snippet (in this case, a
namespace snippet) in a different fashion. Compare the before and after text
shown in Figures 7.21 and 7.22. We have encapsulated the class definitions
within a new namespace that sits within yet another namespace (all with just a
few mouse clicks).

FIGURE 7.21 Before inserting a Surround With snippet.
	

alStudio/2005/CodeSnippet">

FIGURE 7.22 After inserting a Surround With snippet.

Creating Your Own Code Snippets
Because code snippets are stored in XML files, you can create your own
snippets quite easily. The key is understanding the XML schema that defines a
snippet, and the best way to do that is to look at the XML source data for some
of the snippets included with the IDE.
Snippets are stored on a per-language basis under the install directory for
Visual Studio. For example, running Visual Studio 2015 with a U.S. English
installation of x86 Windows, the Visual Basic snippets can be found, by
default, in the folders under the C:\Program Files\Microsoft
Visual Studio 14.0\Vb\Snippets\1033 directory. Although
snippet files are XML, they carry a .Snippet extension.

The XML Snippet F ormat
Listing 7.1 provides the XML for the C# constructor snippet.

LISTING 7.1 C# Constructor Snippet

Click here to view co de image

<?xml version="1.0" encoding="utf-8" ?>
<CodeSnippets xmlns="http://schemas.microsoft.com/Visu

<CodeSnippet Format="1.0.0">
<Header>

<Title>ctor</Title>
<Shortcut>ctor</Shortcut>
<Description>Code snippet for

constructor</Description>
<Author>Microsoft Corporation</Author>
<SnippetTypes>

<SnippetType>Expansion</SnippetType>
</SnippetTypes>

</Header>

ult>

<Snippet>
<Declarations>

<Literal Editable="false">
<ID>classname</ID>

<ToolTip>Class name</ToolTip>

<Function>ClassName()</Function>

<Default>ClassNamePlaceholder</Defa

</Literal>
</Declarations>
<Code Language="csharp"><![CDATA[public

$classname$ ()
{

end
}]]>

</Code>
</Snippet>

</CodeSnippet>
</CodeSnippets>

The basic structure of this particular snippet declaration is described in Table
7.2. A more complete schema reference is available as part of the Visual
Studio Microsoft Developer Network (MSDN) library; it is located under
Visual Studio 2015, Reference, XML Schema References, Code Snippets
Schema Reference.

TABLE 7.2 XML Snippet File Node Descriptions

The trick to writing a snippet is to understand how literals and variable
replacement work. Suppose, for instance, that you want to create a C# snippet
that writes out a simple code comment indicating that a class has been
reviewed and approved as part of a code review process. In other words, you
want something like this.
Click here to view co de image

// Code review of ContextToken.

// Reviewer: Lars Powers

// Date: 12/1/2015

// Approval: Approved

In this snippet, you need to treat four literals as variable; they can change each
time the snippet is used: the classname, the reviewer ’s name, the date, and the
approval. You can set them up within the declarations section like this:

Click here to view co de image

<Declarations>
<Literal Editable="False">

<ID>classname</ID>

<ToolTip>Class name/type being

reviewed</ToolTip>

<Function>ClassName()</Function>

<Default>ClassNameGoesHere</Default>

</Literal>
<Literal Editable="True">

<ID>reviewer</ID>
<ToolTip>Replace with the reviewer's

name</ToolTip>
<Default>ReviewerName</Default>

</Literal>

<Literal Editable="True">

<ID>currdate</ID>

<ToolTip>Replace with the review

date</ToolTip>

<Default>ReviewDate</Default>

</Literal>

<Literal Editable="True">

<ID>approval</ID>

<ToolTip>Replace with Approved or

Rejected</ToolTip>

<Default>Approved</Default>

</Literal>

</Declarations>

Notice that you are actually calling a function to prepopulate the class name
within the snippet. Functions are available only with C#; they are documented
in Table 7.3. The rest of the literals rely on the developer to type over the
placeholder value with the correct value.

TABLE 7.3 Code Snippet Functions

You should also provide some basic header information for the snippet.
Click here to view co de image

<Header>

<Title>review</Title>

<Shortcut>review</Shortcut>

<Description>Code review comment</Description>

<Author>L. Powers</Author>

<SnippetTypes>

<SnippetType>Expansion</SnippetType>

</SnippetTypes>

</Header>

The last remaining task is to implement the <Code> element, which contains
the actual text of the snippet and references the literals that we have previously
defined.
Click here to view co de image

<Code Language="csharp">

<![CDATA[// Review of $classname$

// Reviewer: $reviewer$

// Date: $currdate$

// Approval: $approval$]]>

</Code>

When you put all this together, you end up with the custom snippet shown in
Listing 7.2.

LISTING 7.2 A Custom C# Snippet

Click here to view co de image

<?xml version="1.0" encoding="utf-8" ?>
<CodeSnippet Format="1.0.0">

<Header>
<Title>review</Title>
<Shortcut>review</Shortcut>
<Description>Code review comment</Description>
<Author>L. Powers</Author>
<SnippetTypes>

<SnippetType>Expansion</SnippetType>
</SnippetTypes>

</Header>

<Snippet>

<Declarations>
<Literal Editable="False">

<ID>classname</ID>
<ToolTip>Class name/type being

reviewed</ToolTip>
<Function>ClassName()</Function>
<Default>ClassNameGoesHere</Default>

</Literal>
<Literal Editable="True">

<ID>reviewer</ID>
<ToolTip>Replace with the reviewer's

name</ToolTip>
<Default>ReviewerName</Default>

</Literal>
<Literal Editable="True">

<ID>currdate</ID>
<ToolTip>Replace with the review

date</ToolTip>

<Default>ReviewDate</Default>
</Literal>
<Literal Editable="True">

<ID>approval</ID>
<ToolTip>Replace with Approved or

Rejected</ToolTip>
<Default>Approved</Default>

</Literal>

</Declarations>
<Code Language="csharp">

<![CDATA[// Review of $classname$
// Reviewer: $reviewer$
// Date: $currdate$
// Approval: $approval$]]>

</Code>
</Snippet>

/CodeSnippet>
</CodeSnippets>

When the code snippet is executed, our literals (bracketed by the $ symbols in
the preceding code) are replaced by their specified default values and are
highlighted to allow the snippet user to easily replace them after they are in the
editor. Our $classname$ literal is a bit different in that it places a call to
the ClassName() function to get the name of the current, enclosing class.
At this point, the snippet is syntactically complete. Although this snippet is
writing comments into the editor, the same process and structure applies for
emitting code into the editor. If you want to write a Surround With snippet, you
change the <SnippetType> to SurroundsWith.
Now you need to make Visual Studio aware of the snippet.

Adding a Snippet to Visual Studio
You can use Visual Studio’s own XML editor to create the XML document and
save it to a directory. (A big bonus for doing so is that you can leverage
IntelliSense triggered by the XML snippet schema to help you with your
element names and relationships.) The Visual Studio installer creates a default
directory to place your custom snippets located in your Documents folder:
user\Documents\Visual Studio 2015\Code
Snippets\Visual C#\My Code Snippets. If you place your XML
template here, Visual Studio automatically includes your snippet for use.

Tip
If you have placed your snippet file in the correct folder and it
still doesn’t show up within the Code Snippets Manager dialog
box, you probably have a syntax error within the file. A good way
to check this is to try to import the snippet file using the Import
button. Visual Studio immediately tells you whether the snippet
file is valid.

The Code Snippets Manager, which is launched from the Tools menu, is the
	
central control dialog box for browsing the available snippets, adding new
	

ones, or removing a snippet (see Figure 7.23). As you can see, the review
snippet shows up under the My Code Snippets folder.

FIGURE 7.23 The Code Snippets Manager.

You can also opt to include other folders besides the standard ones. To do so,
click the Add button to enter additional folders for Visual Studio to use when
displaying the list of snippets.
Figure 7.24 shows the results of the custom snippet.

FIGURE 7.24 The results of a custom code snippet in C#.
	

Tip
Snippets can also be browsed and shared online. A great way to
further your understanding of code snippet structure and functions
is to browse your way through the snippet files included in Visual
Studio, as well as those created by the developer community as a
whole.

Snippets in the Toolbox
Although this capability is technically not part of the official code snippet
technology within Visual Studio, you can store snippets of code in the Toolbox.
Select the text in the editor and then drag and drop it onto the Toolbox. You can
then reuse this snippet at any time by dragging it back from the Toolbox into an
open editor window.

Brace Matching
Programming languages make use of parentheses, braces, brackets, and other
delimiters to delimit function arguments, mathematical functions/order of
operation, and bodies of code. It can be difficult to visually determine whether
you have missed a matching delimiter—that is, if you have more opening
delimiters than you have closing delimiters—especially with highly nested
lines of code.
Brace matching refers to visual cues that the code editor uses to make you
aware of your matching delimiters. As you type code into the editor, any time
you enter a closing delimiter, the matching opening delimiter and the closing
delimiter are briefly highlighted. In Figure 7.25, brace matching helps to
indicate the matching delimiters for the interior for loop.

FIGURE 7.25 Brace matching.
	

Tip
You also can trigger brace matching simply by placing the cursor
directly to the left of an opening delimiter or the right of a closing
delimiter. If you are browsing through a routine congested with
parentheses and braces, you can quickly sort out the matching
pairs by moving your cursor around to the various delimiters. If
you want to move to the second member of a pair, you can press
Ctrl+ .̂

Although this feature is referred to as brace matching, it actually functions with
the following delimiters:

Parentheses: ()

Brackets: [], <>

Quotation marks: ""

Braces: {}
In the case of C#, brace matching also works with the following keyword pairs
(which essentially function as delimiters using keywords):

#region, #endregion

#if, #else, #endif

case, break

default, break

for, break, continue

if, else

while, break, continue

Customizing IntelliSense
Certain IntelliSense features can be customized, on a per-language basis,
within the Visual Studio Options dialog box. If you launch the Options dialog
box (located under the Tools menu) and then navigate to the Text Editor node,
you find IntelliSense options confusingly scattered under both the General and
the IntelliSense pages.
Figure 7.26 shows the IntelliSense editor Options dialog box for Visual C#.

FIGURE 7.26 IntelliSense options.
Completion Lists in this dialog box refer to any of the IntelliSense features that
facilitate autocompletion of code, such as List Members and Complete Word.
Table 7.4 itemizes the options available in this dialog box.

TABLE 7.4 IntelliSense Options

The Task List
The Task List is essentially an integrated to-do list; it captures all the items
that, for one reason or another, need attention and tracking. The Task List
window then surfaces this list and allows you to interact with it. To show the
window, select the View menu and choose the Task List entry. Figure 7.27
illustrates the Task List window displaying a series of user tasks. Tasks belong
to one of three categories: comment tasks, shortcut tasks, and user tasks. Only
one category can be displayed at a time.

FIGURE 7.27 The Task List window.
You can sort the tasks by any of the columns shown in the list. Right-clicking
the column headers provides a shortcut menu that allows you to control the sort
behavior as well as which columns (from a list of all supported columns)
should be displayed. This shortcut menu is also how you will delete, cut, copy,
or paste tasks from the list.

Shortcut Tasks
Shortcut tasks are similar to user tasks. But shortcut tasks are directly tied to a
line of code, and they are added by putting your cursor on the line of code you
want to associate with the task and then selecting Edit, Bookmarks, Add Task
List Shortcut. (We covered the similar concept of bookmarks back in Chapter
6.)
In addition to the description, completion indicator, and priority indicator
columns, shortcut tasks show the file and line number for the shortcut. Double-
clicking the shortcut task opens the associated file and puts your cursor back on
the associated line of code.

Comment Tasks
Comment tasks, like shortcut tasks, are associated with lines of code. But
unlike shortcut tasks or user tasks, comment tasks are created by placing a code
comment with a special string literal/token in a code file. There are three
tokens defined by default by Visual Studio: HACK, TODO, and UNDONE.
There is no check box in the Task List to mark a comment task as complete.
Instead, you simply remove the comment token from your code to remove the
task from the list.
For example, the following C# code results in four different comment tasks in
the Task List.
Click here to view co de image

namespace Contoso.Fx.Integration.Specialized
{

//TODO: Implement second constructor
public class MessageMapper : IMessageSink
{

public MessageMapper()
{
}

}

//TODO: Check on IMap interface implementation
public class MessageBus : MessageMapper

{

public MessageBus()

{

//UNDONE: MessageBus ctor

}

}

//HACK: rewrite of TokenStruct

public class ContextToken

{

public ContextToken()
{
}
public ContextToken(string guid)
{
}

}

}

Double-clicking the comment task takes you directly to the referenced comment
line within the editor window.

Custom Comment Tokens
If needed, you can add your own set of tokens that are recognized as comment
tasks. From the Tools, Options dialog box, select the Task List page under the
Environment section; this dialog box provides options for adding, editing, or
deleting the list of comment tokens recognized by the Task List.

Tip
The UI for adding a comment task token is not that intuitive. To
add a token, you first type in a name for the token using the Name
text box. At this point in time, the Add button becomes enabled.
Click the Add button to add the token to the list, and then you can
edit its priority and so on. Similarly, if you want to change a
token’s name or priority, you would select the token, make the
change to either the priority or name, and then click the Change
button to commit the change to the list.

In Figure 7.28, a Review token has been added to the standard list. Note that
you can also set a priority against each of the tokens and fine-tune some of the
display behavior by using the Task List Options check boxes, which control
whether task deletions are confirmed, and by setting whether filenames or
complete file paths are displayed within the task list.

FIGURE 7.28 Adding a custom comment task token.
	

Note
Visual Studio’s automation model provides complete control over
task lists. Using the exposed automation objects such as
TaskList and TaskListEvents, you can, for example,
programmatically add or remove tasks from the list; respond to a
task being added, edited, or even selected; and control the linking
between a task and an editor.

Summary
Visual Studio carries a staggering number of features designed to boost your
	
productivity. This chapter described the many facets of the IntelliSense
	
technology, ranging from statement completion to the new light bulb tool, and
	
you learned how to work with the various IntelliSense features to both write
	
code faster and improve the quality of your code.
	
We covered how to navigate and browse through sometimes complicated and
	
congested code files.
	
We also introduced code snippets and discussed the different types of code
	
snippets and their usefulness.
	
Finally, we covered how to use the Task List window to its fullest potential to
	
help organize and track the various to-do items inherent with any programming
	
project.
	
From a productivity standpoint, Visual Studio truly is more than the sum of its
	
parts. In synergy with one another, each of these features knocks down
	
substantial hurdles and eases pain points for developers, regardless of their
	
backgrounds, skill levels, or language preferences.
	

Chapter 8. Testing Code
	

In This Chapte r
Unit Testing Basics
The Unit Testing Framework
Testing Web Applications
Creating Ordered Tests

Developers have always been responsible for testing their code before it is
released to testers or users. In years past, this meant walking through every line
of code in the debugger (including all conditions and errors). To do so, you
often had to create test-harness applications that mimicked the functionality
required to execute your code. Stepping through all your code in a debugger
made for a fine goal but was not always realized (and was difficult to verify).
In fact, the entire exercise was often skipped during code changes and updates.
In addition, this process made it difficult to see if your code changes affected
other parts of the system. The result was lower-quality builds sent to testers
and users and thus higher defect rates and wasted time going back and forth
between developers and testers.
The unit test framework in Visual Studio provides a robust, automated means
for developers to test code as they write it. Tests are saved and run again if any
code changes. This helps with regressions and increases confidence in last-
minute fixes, refactoring, and late additions.
This chapter covers the basics of unit testing and the details of the unit test
framework. With this information in hand, you are on your way to realizing the
benefits of automated, developer testing, including fewer bugs, easier to
understand code, and additional confidence in code changes.

Inte llite st
Visual Studio 2015 introduces IntelliTest. This feature examines
your code and generates a suite of unit tests and even test data on
your behalf. This is especially useful for developers that work
with an existing code base that does not have an associated set of
unit tests. IntelliTest will explore your code and analyze every
conditional branch for a possible test.
IntelliTest is part of Visual Studio Enterprise 2015 and not
	
Professional (the focus of this book). You can learn more at:
	
https://msdn.microsoft.com/en-us/library/dn823749.
	

https://msdn.microsoft.com/en-us/library/dn823749

Unit Testing Basics
Unit testing in Visual Studio is about creating tests methods that run the code
inside the working layers of your application and validate the expected results
—even thrown exceptions. This includes testing the many classes that make up
your business and data domain. The user interface domain is typically just
markup (depending on your architecture approach), and the markup is tested
manually (or through tools such as CodedUI which is in Visual Studio
Enterprise). The focus of unit tests is writing code to test the functional code
you write. In this section, we cover the basics of writing unit tests. We drill in
on these basics in coming sections.

Note
Visual Studio Enterprise includes additional testing tools targeted
at the test team. These include tools for creating and tracking test
plans, test cases, and bugs. They also include tools for testing the
user interface and doing performance and load testing.

Creating a Test Project
Your unit tests must exist inside a test project. This is a project that has the
right references to the unit testing framework and the configuration required to
be run via the test tool built inside Visual Studio. There are two primary ways
you can initiate the creation of a unit test project: You can create an empty test
project from scratch, or you can automatically generate unit tests into a new
test project for existing code. We start with the first option.

The Test P roject Template
You create a new test project in Visual Studio through the Add New Project
dialog box (File, New, Project). Inside this dialog box, you navigate to the Test
node under your preferred language, as shown in Figure 8.1. Notice that you
can put your test project inside a new solution or an existing solution. In most
cases, you add test projects to existing solutions because they must reference
the projects within your solution.

FIGURE 8.1 Add a new test project to your solution using the Add New
	
Project dialog.
	

The recommended naming convention for test projects is to end the project
name with “Test” as in BusinessDomainUnitTests. This also helps you
recognize your unit tests versus other project types or even other test project
types such as Coded UI Tests. This is useful not only in Solution Explorer but
as part of the TFS build setup configuration; there, you select test projects for
the build process to execute automatically as part of the build.

Tip
You should define a policy on how many test projects you want to
create for your solution. Typically, you create a test project as a
one-to-one ratio with a project you want to test. For example, if
you have a project for your business objects and another project
for your data services, you might create two test projects (one for
each). This is not required; it just makes for an easily understood
organization of your code.
A similar approach holds true for test classes. You should create a
single test class for each class you have in your target project you
want to test. For example, if you are creating a test project for
your business domain objects that includes a Customer and an
Order object, you should create a CustomerTest and
OrderTest class. Again, this is not required; rather, it makes
for a good, logical organization of your code.

k

The Test P roject
Visual Studio sets a reference to the unit test framework
(Microsoft.VisualStudio.QualityTools.UnitTestFramewor
when you create a new test project. In addition, it creates a test class for you
that encapsulate your unit tests. Figure 8.2 shows the default project files
included in the unit test project along with the key references.

FIGURE 8.2 An empty test project (and related items) inside Solution
	
Explorer.
	

You can add additional test files to your test project by right-clicking the test
project in Solution Explorer and choosing Add, Unit Test or Add, Ordered
Test. This is a shortcut that adds the file directly to your solution (without
presenting an Add New Item dialog). You then have to rename the file inside
Solution Explorer. You can also add a new test file by right-clicking the
project name in Solution Explorer and choosing Add, New Item and then
selecting the Test node from the item templates (see Figure 8.3). This dialog
give you three test type choices:

Basic Unit Te st—This template creates a unit test class that is almost a
blank file. It includes just the basic lines of code required to get started
(using statement, namespace definition, class definition, and blank test
method.
Orde re d Te st—This template enables you to create a sequential list of
tests to be executed as a group. (See “Creating Ordered Tests” later in
this chapter.)
Unit Te st—This template creates a unit test class that includes stubbed
out methods for managing a TestContext, calling various test startup
and clean up events, and more (including comments).

FIGURE 8.3 Add new unit test (test class) to your project.
	

The Test Menu
The Test menu and the test toolbar access the common testing features,
including running tests, managing test settings, and accessing the Test Explorer
window. Figure 8.4 shows the Test menu open in the IDE. We touch on the
details of all these actions shortly. But first, let’s explore how to create tests.

FIGURE 8.4 Use the Test menu to access developer testing features.

Writing a Unit Test
Recall that a unit test is simply test code you write to call your application
code. This test code asserts that various conditions are either true or false
as a result of the call to your application code. The test either passes or fails
based on the results of these assertions. If, for example, you expect an outcome
to be true and it turns out to be false, that test would be a failed test.
In broad strokes, there are three steps to creating a typical unit test:

1. Apply the TestMethod attribute to the method you want to be treated
as a test.

2. Write code in your test method to execute the code you want to test,
passing in known values if there are parameters.

3. Write assertions in your test code to evaluate the results of your test.
Let’s look more closely with a real example.

Consider an Invoice class that has all the properties implemented that we
normally associate with an invoice. It exposes an InvoiceLineItem
object as a collection of invoice line items (represented by a
List<InvoiceLineItem>). It has properties and private methods for
getting the invoice total and counting the total number of items on the invoice.
Figure 8.5 shows this sample code.

FIGURE 8.5 Basic classes to represent an invoice and invoice line items.
	

Note
The code for this chapter is available for download from the
website associated with this book:
informit.com/title/9780672337369.

Let’s dig into the ComputeTotal method. This method cycles through the
line items on the invoice and calculates a total price for the invoice (without
shipping and tax, of course).
Click here to view co de image

private double ComputeTotal()
{

double total = 0;

foreach (InvoiceLineItem item in LineItems)

{

total += item.Price * item.Quantity;

}

return total;

}

Now let’s see how we can add a unit test that will validate whether the invoice
total property returns correctly when accessed. To do that, we create a new
unit test project, as previously discussed. We then add a reference to the

http://informit.com/title/9780672337369

project containing the Invoice object. (Right-click the References folder
under the unit test project, select Add Reference, and then pick the project
containing the invoice class from within the list of projects; in this case, the
project assembly name is BusinessDomain.)

Note
You don’t need to have access to a target object’s project or
source code to write a unit test. You can add a reference instead
to an assembly that implements the code you want to test.

With the initial structure set up, now we can actually write the unit test. One
approach to organizing a unit test is to use the arrange, act, and assert (AAA)
pattern. This pattern advocates a code structure that initializes the necessary
objects and fields (arrange), calls the method that you want to test (act), and
finally verifies that everything has worked as expected (assert). Listing 8.1
shows our test method, organized with the AAA pattern.

LISTING 8.1 Testing Invoice.Total with a unit test

Click here to view co de image

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using BusinessDomain;

namespace BusinessDomainUnitTests
{

[TestClass]
public class InvoiceTests
{

[TestMethod]

public void ComputeTotalTest()

{

//arrange------------------
Invoice invoice = new Invoice();

//note: could store prices and quantities
as variables in our code

// and then calculate the total here
to make tests safer

double expectedTotal = 12;

//act----------------------
invoice.LineItems.Add(new InvoiceLineItem(

"Prod 1", 1.75, "First item
description", 1));

invoice.LineItems.Add(new InvoiceLineItem(
"Prod 2", 5.25, "Second item

description", 1));

invoice.LineItems.Add(new InvoiceLineItem(

"Prod 3", 2.50, "Third item
description", 2));

//assert-------------------
Assert.AreEqual(expectedTotal,

invoice.Total,
"Total invoice not computed

correctly.");

}
}

}

Notice that there is nothing special with respect to this code. It looks like any
other method that you would craft with C#. This is because unit testing with
Visual Studio is attribute driven. What distinguishes your unit test code and
signals it as an actual unit test to Visual Studio are the attributes (TestClass
and TestMethod) added at the class and method levels. These attributes are
automatically added for you when you create a unit test project, but there is
nothing stopping you from writing a unit test class from the ground up and just
adding the attributes manually.
The test as written should pass, as you will see in the next section. However,
we will look at additional tests a developer might write to ensure their code
passes other conditions, such as when the invoice list does not contain items or
is null.

Running Your Tests
As you saw back in Figure 8.4, the Test menu is used to run your unit tests.
There are many options here. You can select individual tests to run, or you can
run them all. You can also choose to run only failed tests, passed tests, tests not
yet run, or just rerun your last run tests.
The Debug selection on the Test menu will run tests with the debugger
activated. This allows you to break into the debugger if a test fails and is
useful if you are actively troubleshooting code through tests.

Note
When you run a test project, any referenced projects are
recompiled along with your test project.

Viewing Test Results
When you run your tests, the results are shown in the Test Explorer window.
The Test Results window provides an overview of which tests passed and
which failed. Figure 8.6 shows the results of running our unit test of
Invoice.Total: It passed!

FIGURE 8.6 The Test Explorer window showing the test passed.
Note that the Test Explorer window is not only a tool for exploring test results;
it is also the primary way within Visual Studio to categorize/organize tests. It
can also directly run tests (arguably an easier way to execute tests than using
the Test menu). For example, you can use the Group By button (second from
left on the toolbar, upper right) for showing tests by class, outcome, project,
and more.
To see the outcome of a given test, you just click on it from the left side of Test
Explorer. This is useful if you are managing a lot of test results. You can see
information regarding the test name, whether it passed or failed, the duration of
the test, and the start and end time. The results pane also shows you the stack
trace for any failed unit test code and includes a link to the unit test source
code file.

Working with a F ailed Test
The previous test succeeded. However, good developers will write multiple
tests to verify their code meets other conditions, such as what happens when
you pass null values, large values, negative values, and so on. For example,
consider the following test added to the InvoiceTests class.
Click here to view co de image

[TestMethod]
public void ComputeTotalForNegativeQuantity()
{

Invoice invoice = new Invoice();

invoice.LineItems.Add(new InvoiceLineItem(

"Prod 1", 1.75, "First item description",

-1));

Assert.AreEqual(0, invoice.Total,

"Total invoice not computed correctly.");

}

This test passes a negative quantity for the invoice line item. If your code is
working correctly, suppose the line item should calculate zero based on our

business rules for this example (alternatively, we could throw an exception in
this case and write a test that expects an exception). However, when running
the test we expose an error, as shown in Figure 8.7. We can track down this
test or run the test again from the Debug option to be taken right to the spot our
code breaks. Of course, this bug is easy to fix, and once fixed you can rerun the
test to verify the fix.

FIGURE 8.7 One passed and one failed test (and 2 not run) in Test Explorer.

Controlling Test Settings
Previous editions of the test framework used a .testsettings file to
manage advance test settings such as deploying test data along with your tests.
However, in 2012 Microsoft introduced a newer version of the test framework
and mostly did away with the .testsettings files. You can still use them,
but if you do, your tests will be run under the old unit test framework (and thus
execute more slowly; also, the older test framework does not allow tests from
third-party frameworks).
The recommended solution is to use the default configuration of your unit tests
whenever possible. If you need to use test configuration files, you can add them
to your project from the Test menu (Test, Test Settings, Select Test Settings
File). You can then set the Copy to Output property for those settings files. You
can also use DeploymentItemAttribute on a method you want to use to
make your deployments. There are also many setup and teardown attributes you
can use to configure your tests. (See the next section, “The Unit Testing
Framework.”)

Note
Visual Studio 2015 allows you to use .runsettings to
configure things like code coverage (Enterprise only) analysis and
deployment directories. For more information on how to use these
advanced settings files, search MSDN for “Specifying Test
Settings for Visual Studio Tests.”

ework

The Unit Testing Framework
The unit testing framework is part of Visual Studio (and not the .NET
Framework itself). Unit testing in Visual Studio includes a set of framework
classes, the tools, and the execution host. You can find the namespace that
contains the unit testing framework classes at
Microsoft.VisualStudio.TestTools.UnitTesting.
Developers are most interested in the attribute classes and the Assert class
in this namespace. This section highlights the core usage scenarios for both the
attribute and the assertion classes (among others).

Note
The namespace for unit testing is
Microsoft.VisualStudio.TestTools.UnitTesting.
However, you set a reference to the assembly
Microsoft.VisualStudio.QualityTools.UnitTestFram

The TestContext Class
The unit test framework contains a class that is used to store information
pertaining to executing tests. This class is called TestContext. You use the
properties of this class to get information about your running tests, including
the path to the test directory, a URL to the executing test (in the case of
ASP.NET unit tests), and data-binding information such as the data connection
or the current row of data for the executing test class. There are also a couple
useful methods of this class for things like writing trace messages. The test
context information is stored inside properties of this class. The key properties
and methods are defined inside Table 8.1.

TABLE 8.1 TestContext Key Properties and Methods
TestContext is not accessible to your code by default. You access
TestContext by first defining a field and a property named
TestContext. The unit test framework automatically creates an instance of
a TestContext object when it runs your tests. It then looks for a
TestContext property in your source code. If it finds it, the framework
assigns an instance of TestContext to your property. You can then use your
property to access information about the executing test context. The following
code shows how you might define the TestContext property in a C# unit
test.
Click here to view co de image

private TestContext testContextInstance;

public TestContext TestContext {

get

{

return testContextInstance;

}

set {

testContextInstance = value;

}

}

Note
Some attribute classes require that you define a parameter of type
TestContext to your decorated method. This is true for
ClassInitialize (as discussed later). In this case, the unit
test framework automatically passes an instance of a
TestContext object to your method when it executes.

The Test Attribute Classes
The unit tests you write are run by Visual Studio using the unit test execution
host. This host has to examine your code and find the unit tests within it and run
them accordingly. To do so, the host relies on attributes. Recall that an attribute
is used to provide metadata about your code. Other code (such as the unit test
host) can use reflection to determine various bits of information about your
code.
As you’ve seen in the brief samples thus far, you signify unit tests by
decorating your code with the attribute classes defined inside the unit testing
namespace. For example, a test class has the TestClass attribute; a test
method is indicated using the TestMethod attribute. Table 8.2 presents a list
of the most common attribute classes found in the unit testing namespace.

TABLE 8.2 Visual Studio Test Attribute Classes

You can see from Table 8.2 that a number of attribute classes give you control
over your unit tests. Figure 8.8 shows our InvoiceTests unit test class
with a few additions. We have created a TestContext instance. We have
also stubbed out code for initializing the test class and cleaning up following
the test run. The next step is to write code inside each of these test methods.

FIGURE 8.8 The invoice test class with stubbed out methods for class
initialize and cleanup.

Unit Test Setup and Teardown
A good practice for your unit tests is to write them for a known state of the
system; this includes the database, files, and anything that makes up the entire
system. This ensures that developers can rely on these items being there when
they write their tests. Of course, the tests themselves often disrupt this state.
You might have a test that deletes data, changes it, adds new records, and the
like. In this case, you need to be able to reinitialize the state of the system prior
to executing your tests (or after executing your tests) to ensure both a steady
state to test against and a one-click test run experience for developers (another
good practice for unit testing).
You typically need to write code to keep your system in a steady state. This
code might copy a known good test database down to the test directory (you
could also do this with a DeploymentItem attribute); reset your database
using SQL; use a data generation plan to create your database; copy files; or
verify other deployment items.
The code to reset your system is specific to your environment. However, to
ensure this code is called when your tests run, you have a few attribute classes
with which to work: ClassInitialize and ClassCleanup, or
TestInitialize and TestCleanup. The former set are run at the start
(or end) of a test run in the entire unit test class. The latter are run before (or
after) each test executes in a given test class.
In most cases, you run initialize and cleanup at the class level. As an example,
if you had a Utilities class that included a method to reset your database,
you could ensure it is called by marking a method as ClassInitialize.
Note that this method takes a TestContext object (which is passed to it by
the unit test framework). A good practice is to reset the system again after the
unit tests execute. The following code shows an example of two test methods
doing both setup and cleanup.

Click here to view co de image

[ClassInitialize()]
public static void InitTests(TestContext testContext)
{

Utilities.ResetTestDb();
}

[ClassCleanup()]
public static void CleanupPostTests()
{

Utilities.ResetTestDb();
}

The Assert Classes
The UnitTesting namespace also includes the Assert static type. This
object contains methods for evaluating whether the results of a test were as
expected. You call these static methods and expect a true/false condition.
If the Boolean condition fails, the assertion fails. The assertions do not actually
return results. Rather, they automatically notify the unit test framework at
runtime if the assertion fails or succeeds.
As an example, you might write a unit test to load a known record from the
database. You would then write assertions about this known record to prove
that you can retrieve the data from the database and properly call the right
sets and gets on a specific object. The following shows a simple assertion
for testing that two variables contain the same value. If the values match
(AreEqual), the assertion passes without issue. If the values don’t match, the
assertion fails and the unit test framework marks the test as failed.
Click here to view co de image

Assert.AreEqual(cust.Id, customerId);

The AreEqual method is just one example of the many assertion methods
available to you from the Assert class. For the most part, these assertion
methods are variations on a concept: compare two values and determine the
results. Table 8.3 provides a more complete list.

TABLE 8.3 Test Assertions
	

http:Assert.AreEqual(cust.Id

Each assertion method has a number of overloads. These overloads enable you
to compare various data types, such as strings, numeric values, objects, and
generic collections of objects, to one another. In addition, there are overloads
that enable you to simply do the assertion and those that both do the assertion
and enable you to enter a message that is displayed when the assertion fails.
The Assert class also contains a version of the
AreEqual/AreNotEqual methods that use a generic data type. These
methods enable you to compare two generic types against one another for
equality. In this case, you indicate the generic type using standard generic
notation, <T> (or (of T) in VB), and pass the two generic types you want to
compare. The following shows an example.
Click here to view co de image

Assert.AreEqual<Invoice>(cust1, cust2);

Verifying Collections of Objects (CollectionAssert)
The UnitTesting namespace also contains the assertion classes,
CollectionAssert. With it, you can verify the contents of collection
classes. For instance, you can call the Contains method to assert whether a
given collection contains a specific element (or DoesNotContain). You
can use AllItemsAreInstancesOfType to check that a collection only
contains like instances. You can compare two collections to see if they are
equal (AreEqual/AreNotEqual) or simply equivalent; they have the same
elements but might be in a different order
(AreEquivalent/AreNotEquivalent).

Verifying Strings (StringAssert)
The StringAssert class contains methods for verifying strings and
portions of strings. For example, the Contains method enables you to check
that a string contains a specific substring. You can use the StartsWith
method to assert whether a string begins with a certain set of characters or use
EndsWith to check the ending of a string. Finally, the
Matches/DoesNotMatch methods enable you to check whether a string
matches a regular expression you define.

Testing Your Exceptions
You should write unit tests to verify your code behaves as expected in both
positive and negative conditions. The positive conditions can be verified using
the Assert methods, as discussed previously. However, many times you want
to verify that your code returns the correct exception when you call or use it in
a certain manner. In this case, you can decorate a test method with the
ExpectedException attribute to test for specific error conditions.
The attribute takes the type of expected exception as a parameter. If the test
method results in an exception being thrown and the type of that exception is as
you defined in the attribute, the test is considered a success. If an exception is
not thrown or an exception of a different type is thrown, the test is considered
to have failed.
As an example, suppose that you want to test what happens when you try to

create a new invoice that has incomplete details. In this case, your code might
be written to throw a custom exception of type
InvalidInvoiceException. You would then decorate your test method
as follows.
Click here to view co de image

[TestMethod()]
[ExpectedException(typeof(InvalidInvoiceException),

"The Invalid Invoice Exception was not thrown.")]
public void Invoice_Is_Valid() {

//create a bad, new invoice instance to test against
}

Notice that, in this code, if the exception is not thrown, there is an error
message provided as the result of the test (The Invalid Invoice
Exception was not thrown). This error message is an optional
parameter of the ExpectedException attribute.
You can combine assertions with the ExpectedException attribute. In this
case, both the assertions need to pass, and the exception needs to be thrown for
the test method to be considered passed.

Note
The resulting exception must be of the same type as the expected
exception. The resulting exception cannot, for instance, inherit
from the expected exception. In this case, the test is considered to
have failed.

Creating Data-Driven Unit Tests
Let’s build on our knowledge of both basic unit testing concepts and the unit
testing framework attribute classes and examine how to create a unit test that
feeds off of a data source.
Looking back at Listing 8.1, you recall we had to manually define a few
invoice objects in the “arrange” section of the test. This works out fine for the
limited data we are dealing with here but would quickly become unmanageable
if we wanted or needed a more expansive data set. In other words, instead of
just testing with a scenario of adding two invoice lines, what if we wanted to
add hundreds? And what if we wanted to dynamically populate those line
items instead of hard-coding them in the test method? In these cases, you want
to author the unit test in such a way that it derives its values from an actual data
source.
The basic process for authoring the unit test remains the same, with the
following tweaks:

1. Create the data source that will store the values to inject into the unit
test.

2. Add a TestContext property (public) to the unit test class.
3. Add a reference to System.Data from the unit test project.
4. Add a DataSource attribute to the method to wire the data to the unit

test method.
Let’s put the data-driven scenario into action by adding another unit test
method. This one tests whether the InvoiceLineItem object is
successfully producing line item totals (that is, the product of the price and the
quantity of each line). The test will be executed for each line item we add to
the invoice via the data source.

Adding a Data Source
Any .NET accessible data source will work: a table in SQL Server, an object
collection, an Excel file, a CSV file, an XML file, and so on. Because it is
quick and easy to implement, let’s store our invoice test data in a CSV file.
First we add a text file to the test project (right-click the project, select Add
New Item, and then select the Text File item template); we name the file
InvoiceTestData.csv.
Next, we enter the following values and save the file. Each line in the file
represents an invoice line item. Fields are separated by commas, as in name,
description, quantity, and price. Remember, you can download the code for this
chapter from the website associated with this book:
informit.com/title/9780672337369.

"Prod 1","line 1",2,2.50

"Prod 2","line 2",0,100

"Prod 3","line 3",10,1.25

"Prod 4","line 4",3,3.33

"Prod 5","line 5",1000,10

"Prod 6","line 6",2,5

"Prod 7","line 7",1,9.10

"Prod 8","line 8",5,5

"Prod 9","line 9",8,9.75

"Prod 10","line 10",20,2000

Because we have chosen to use a file to store our test data, we want to make
sure that the file is deployed along with the unit test binaries as part of any
build. The CSV file needs to be marked as content, and it needs its build
action set to Copy Always or Copy if newer. To do this, right-click the
file in the Solution Explorer window, and use the property window to change
the Build Action and Copy to Output Directory values to the mentioned values.
With the file setup complete, let’s write the data source attribute. The
DataSource attribute class has three overloads. The first simply takes a
single parameter: dataSource-SettingName. In this case, you are
expected to pass the name of the data source settings as defined inside a
configuration file. The second overload takes both a connectionString
and a tableName. In this case, you pass a valid connection string to the
DataSource and indicate the name of the table you intend to bind to the unit
test. The final overload takes providerInvariantName,
connectionString, tableName, and dataAccessMethod. The
provider name is used to indicate the type of provider, such as a CSV provider,
SQL Server, or similar. The connection string is based on your chosen
provider and indicates how you access the data. The table name is the name of
the table (or file) that contains your data. Finally, the data access method
determines how your data is bound to the unit test: sequentially or randomly.

http://informit.com/title/9780672337369
http:9",8,9.75
http:7",1,9.10
http:4",3,3.33
http:3",10,1.25
http:1",2,2.50

e.CSV",

e.CSV",

The following shows an example for our CSV file.
Click here to view co de image

[DataSource("Microsoft.VisualStudio.TestTools.DataSourc
"InvoiceTestData.csv", "InvoiceTestData#csv",
DataAccessMethod.Sequential)]

Note
The first parameter is using the built-in CSV data source parser
that exists in the unit testing framework. The way you configure
this data source for other sources, such as SQL tables or even
Excel files, will vary. You should consult the Microsoft
Developer Network (MSDN) documentation to determine exactly
how to construct this attribute for your data source.

Notice that in the preceding code example, the first parameter of the
DataSource attribute constructor defines the CSV provider. The next
parameter is a connection string to the actual data file. The third parameter
(InvoiceTestData#csv) simply indicates that the table name does not
exist; it is the filename. The last parameter, the enumeration
DataAccessMethod.Sequential, indicates that each row should be
bound to the unit test in sequential order.
Because we are deploying a file as a data source here, we need one additional
attribute, DeploymentItem, to tell the unit testing framework what specific
deployed file it should seek. That brings us to three attributes for this test
method, as follows.
Click here to view co de image

[TestMethod]
[DataSource("Microsoft.VisualStudio.TestTools.DataSourc

"InvoiceTestData.csv", "InvoiceTestData#csv",
DataAccessMethod.Sequential)]

[DeploymentItem("InvoiceTestData.csv")]

With the attributes in place, we can write our test method. See Listing 8.2 for
our final product. Each row within our data source is accessed via the
TestContext property, which we added to our unit test class. Because we
have attributed our method correctly, it will be called once for every row in
our data source.
We extract the values from the row (item number, description, quantity, and
price) within the “arrange” section, and then we create a new InvoiceLine
object using those values. Within the “act” section, we create the LineItem
instance and store off the line item total that it produced. Finally, in the
“assert” section, we compare the total from the LineItem object with the
total that we manually computed. If they are equal, our code has passed the unit
test. Note, you might also put the expected value directly in your test data.

LISTING 8.2 Driving a Unit Test Using a CSV File

Click here to view co de image

e.CSV",
[TestMethod]
[DataSource("Microsoft.VisualStudio.TestTools.DataSourc

"InvoiceTestData.csv", "InvoiceTestData#csv",
DataAccessMethod.Sequential)]

[DeploymentItem("InvoiceTestData.csv")]

public void ComputeLineItemsTest()

{

//arrange --------------------------
string name =

Convert.ToString(TestContext.DataRow[0]);
string desc =

Convert.ToString(TestContext.DataRow[1]);
short qty =

Convert.ToInt16(TestContext.DataRow[2]);
double price =

Convert.ToDouble(TestContext.DataRow[3]);

double expected = qty * price;

//act
InvoiceLineItem line = new InvoiceLineItem(name,

price, desc, qty);
double actual = line.Total;

//assert --------------------------
Assert.AreEqual(expected, actual, "Line total is

incorrect.");

}

Figure 8.9 shows the results of newly minted unit tests. Notice the data-driven
unit tests are executed once for every row in the data source CSV file.

FIGURE 8.9 Data-drive unit tests results in Test Explorer.
	

Note
You may want to store your data source connection in a
configuration file (App.config). The unit test framework
supports this scenario. For a walkthrough, see “Using a
Configuration File to Define a Data Source” inside MSDN.

Testing Web Applications
Modern web applications separate user experience markup from the code that
responds to requests and serves views to the user. This separation makes web
code much more testable (as opposed to code files mixed with markup and
server-side code). As an example, the ASP.NET Model-View-Controller
(MVC) and web application programming interface (API) models use
controllers as C# classes to respond to Hypertext Transfer Protocol (HTTP)
requests and return results. This structure makes writing unit tests against
controller classes a straightforward process.
There are times, however, when you need to write tests against actual pages
running on the web server. Visual Studio supports this scenario, too, allowing
you to write tests that have access to the server state, such as Page and
Session. This section takes a look at both scenarios. For more information on
writing web applications, see Part V of this book, “Building Web
Applications.”

Unit Testing MVC and Web API Projects
The ASP.NET MVC and Web API project templates include the option to
create a unit test project associated with your web project. When you create a
new web project (File, New Project), Visual Studio launches the unified web
application creation dialog, as shown in Figure 8.10. Notice the Add Unit
Tests option in the lower left. Checking this box for the MVC and Web API
templates ensures that a companion unit test project is created with all the
proper references (including a reference to your web application).

FIGURE 8.10 You can include a unit test project with your ASP.NET
application.

Notice in Figure 8.10 that we are starting with an empty web project
configured for Web API. We are also creating a test project for testing the
controller classes we create for the Web API application. As an example,
imagine our Web API exposes methods for accessing an invoice object similar
to what was discussed earlier in this chapter. Let’s take a look at the Web API
code and the unit test.

Note
This section assumes you are familiar with ASP.NET MVC/Web
API. If not, please check Chapters 17, “Building Modern
Websites with ASP.NET 5” and 19, “Building and Consuming
Services with Web API and WCF.”

The Web AP I Model and Controller
Before writing the unit test, we must have something to test. In this example,
we get started by adding a model to the Web API project. You can do so by
navigating to the project in Solution Explorer and right-clicking the Models
folder. Here we choose Add, New Item. From the New Item dialog, we select
a class and name it Invoice. We then write code to represent the invoice
object and invoice line items as shown in Figure 8.11. (You can get this code
as a sample from the book download.)

FIGURE 8.11 The Invoice model used by the sample Web API
application.

The next step is to write a controller for serving up HTTP web services around
the invoice model. The public members of this controller will be exposed as
services for HTTP clients such as browsers, mobile devices, and desktop
applications.
To get started, inside Solution Explorer, right-click the Controllers folder and
choose Add, Controller. This will launch the Add Scaffold dialog; from here,
we choose the Web API empty controller. This will create a simple controller
class that inherits from System.Web.Http.ApiController.
We now need to add HTTP services for accessing the invoice. In this example,
we will create two services: GetInvoice and GetInvoiceLineItems.
Both services use an internal method to simulate (with a switch statement)
looking up these domain items from a database. Figure 8.12 shows the two

services and the stubs for the private lookup methods. These are typical, albeit
simple, web services you would create using Web API. (Again, see Chapter 19
for details.)

FIGURE 8.12 The Invoice model used by the sample Web API
application.

The Controller Unit Test
Before we can create a unit test for the Web API controller, we must install and
reference key components of the Web API. Visual Studio did not automatically
do these tasks for us in the version of the project we created (Empty, Web API
+ unit tests). We can accomplish this task through NuGet.
Right-click Reference under the unit test project inside Solution Explorer and
choose Manage NuGet Packages. This will launch the NuGet Package Manager
as shown in Figure 8.13. Here we search for the Web API package by typing
asp.net web api into the search box (upper-right of Figure 8.13). Next,
select Microsoft.AspNet.WebApi.Core and choose Install.

FIGURE 8.13 Install AspNet.WebApi.Core inside the unit test project
from NuGet.

We can verify the installation by confirming the new references were added to
the project. Notice that most of these reference match those in the Web API
project. This ensures you can create a client that accesses the same types the
controller uses. We use NuGet (versus setting Framework references) to get a
matching version of the Web API libraries installed in the test project. For
instance, if you right-click a reference and look at the Properties dialog, you
will notice that version numbers match between the two projects.
The test method can now be written. In this example, we first rename the test
class to WebApiInvoiceTest. Next, we add a using statement to the top
of the class for System.Web.Http.Results. This allows us to use the
OkNegotiatedContentResult class when calling GetInvoice. It
also allows us to strongly type the results to the Invoice class from the
model. We access these results through the object’s Content property (as
shown in the final assertion in Listing 8.3).

LISTING 8.3 The Unit Test Method for Testing the Web API Controller

Click here to view co de image

using System;

using System.Web.Http;

using Microsoft.VisualStudio.TestTools.UnitTesting;

using System.Web.Http.Results;

namespace TestWebApi.Tests

{

[TestClass]
public class WebApiInvoiceTest
{

[TestMethod]

e>;

public void VerifyInvoiceTotal()
{

int invoiceId = 1500;

//create controller instance for testing
var controller = new

Controllers.InvoiceController();

//get an invoice
var invoice =

controller.GetInvoice(invoiceId) as
OkNegotiatedContentResult<Models.Invoic

//get the invoice line items
var lineItems =

controller.GetInvoiceLineItems(invoiceId);

//verify the invoice total matches the
total of line items

double verifyTotal = 0;
foreach (var item in lineItems)
{

verifyTotal += item.Price *
item.Quantity;

}

//assert results of test
Assert.AreEqual(invoice.Content.Total,

verifyTotal);
}

}
}

Notice that the TestMethod works the same as the other unit test methods
we wrote earlier in the chapter. The big wrinkles here are using the Web API
core for creating the client to access the controller and the objects inside
System.Web.Htttp.Results for dealing with HTTP results from the
service. Figure 8.14 shows the results of the test running inside Visual Studio.

FIGURE 8.14 The test method calling the Web API controller and
	
succeeding.
	

Unit Testing ASP.NET Pages
You may need to create a unit test that calls older web code (code that is not
segmented like MVC or Web API). You might also just want to create tests that
call specific web pages and validate the results. Sometimes you need access to
Page and Session objects in your tests, for example. In this case, you can create
an ASP.NET unit test. These tests are configured to be hosted by a web server
(local or IIS) and can call directly into your pages and ASP.NET environment.
To get started, add a new test project to your web solution (or create a new
solution and project designed to test your website). You will also need the
attribute classes found in the
Microsoft.VisualStudio.TestTools.UnitTesting.Web
namespace. No need to change your references in the unit test project. You
simply need to add this using statement (imports in Visual Basic) to your test
class file. You should now have two using statements related to testing, as
shown here.
Click here to view co de image

using Microsoft.VisualStudio.TestTools.UnitTesting;
using
Microsoft.VisualStudio.TestTools.UnitTesting.Web;

Next, you may want to set a reference from your unit test application to your
	
website application. This ensures you can access the classes defined within the
	
site. This includes the pages themselves and any other class files you might
	
have in the App_Code directory or elsewhere.
	
You will also want to set a reference to System.Web. This exposes the
	
ASP.NET components such as Page and Session.
	
You define three primary attributes when creating ASP.NET unit tests:
	
UrlToTest, HostType, and AspNetDevelopmentServerHost.
	
These attributes are defined as follows:
	

UrlToTest—This allows you to indicate a page that should be called
for the execution of the given unit test. This page is called by the test
framework, and the context of that web request is available to your unit
test (via the Page object). You can code against the ASP.NET
environment inside your unit test as if you were writing code in a web
page’s code-behind file.
HostType—This allows you to change the host type for executing your
tests to ASP.NET. You do so by passing “ASP.NET” as a string value to
the attribute.
AspNetDevelopmentServerHost—If you are using IIS as your
host, you need only set UrlToTest and HostType. If you are using
the ASP.NET Development Server (that works with Visual Studio),
however, you must also add the attribute
AspNetDevelopmentServerHost. You pass the path to the web
application as a parameter of the attribute. You also pass the name of the
web application root.

Listing 8.4 shows an example of using all three attributes to define an
ASP.NET unit test that runs against a local development server. Notice that you
obtain a reference to the ASP.NET objects from the TestContext object’s

")]

RequestedPage property. You can use this property to cast directly to the
type of the requested page (in this case, ShoppingCartPage). Of course,
the RequestedPage property is of type System.Web.UI.Page and
therefore gives you access to objects such as Server, Session, Request,
and Response.

LISTING 8.4 An ASP.NET Unit Test

Click here to view co de image

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

using

Microsoft.VisualStudio.TestTools.UnitTesting.Web;

using System.Web.UI;

using AspNetHostedTestSample;

namespace AspNetHostedTests

{

[TestClass]
public class ShoppingCartTests
{

public TestContext TestContext { get; set; }

[TestMethod()]

[HostType("ASP.NET")]

[AspNetDevelopmentServerHost("%PathToWebRoot%",

"/AspNetHostedTestSample")]
[UrlToTest("http://localhost:15279/ShoppingCart
public void AddShoppingCartItemTest()
{

// **** README: change UrlToTest to your
localhost to run ****

//get the requested page
Page reqPage = TestContext.RequestedPage;
Assert.IsTrue(reqPage.Title == "Shopping

Cart",
"Page title does not match.");

//cast to actual page type
ShoppingCart actualPage =

(ShoppingCart)reqPage;
Assert.IsNotNull(actualPage.Cart, "There

is no cart on the page.");

//validate cart usage
actualPage.Cart.Add("Product 1");
actualPage.Cart.Add("Product 2");
Assert.IsTrue(actualPage.Cart.Count == 2,

"Item count does not match.");
}

}
}
}

http:HostType("ASP.NET
http:System.Web.UI

Creating Ordered Tests
Visual Studio enables you to group unit tests, set their sequence of execution,
and treat the results as if a single test was run. This can be useful if you need to
write unit tests that are dependent on one another. For example, you might
insert a record in one test and rely on that record being there in a later test. Of
course, this goes against a good practice for unit testing; each test should be
able to execute independently. Thankfully, you can create an ordered test that
groups the individual unit tests into a new, self-contained test.
You add an ordered test to your test project by right-clicking the unit test
project and selecting Add, Ordered Test. You can also select the Ordered Test
template from the Add New Test dialog box.
An ordered test is simply an XML file based on the OrderedTest schema.
You do not, however, need to hand-edit the XML. Instead, Visual Studio gives
you the ordered test designer to help you. Figure 8.15 shows an example of this
designer.

FIGURE 8.15 You add existing unit tests to an ordered test to create a new
test that executes two or more tests in a specific order.

The left side of the dialog box is where you find all your tests in your solution.
Tests are shown by test name. You select individual tests from the left side and
use the arrow (>) in the middle to include the tests in your ordered test. You
can use the up and down arrows on the right side to change the order in which
your tests execute.
The ordered test becomes its own test within your test project. You can then
run it by itself or as part of a larger group. When run, Visual Studio executes
each unit test in the order you defined. If any fail, the entire ordered test fails
unless you have checked the Continue After Failure check box (located on the
bottom of the dialog in Figure 8.15). You can view the details of the failed
ordered test to see which tests passed and which failed. Figure 8.16 shows the
ordered test inside the Test Explorer being run. Notice the first item (compute
for negative) failed, so the other two tests in the ordered test were not run.

FIGURE 8.16 The ordered test results inside Test Explorer.

Summary
This chapter showed how you can use the unit test framework to define test
projects and create test class files using the TestClass attribute. Each test
method should include the TestMethod attribute. You can also data-bind
unit tests using the DataSource attribute class.
You can write unit tests to verify ASP.NET MVC and Web API controller
classes. When doing so, you need to ensure the unit test project references the
core client objects required to easily communicate with ASP.NET MVC.
You can also create unit tests that run inside of ASP.NET (either in IIS or the
Visual Studio development server). An ASP.NET unit test uses the
TestContext object to access information about the ASP.NET environment,
including the executing page, session, and server variables.
Writing unit tests can lead to fewer issues found in production. Having a suite
of tests for your code makes that code easier to understand and more reliable.
You will also gain confidence with code changes because you will be able to
tell what code was broken as a result of a change.

Chapter 9. Refactoring Code
	

In This Chapte r
Visual Studio Refactoring Basics
Renaming Code
Refactoring Variable Assignments
Extract Method
Extract Interface
Change Signature
Encapsulate Field

Whether or not you realize it, if you are like most developers, you are always
refactoring code. Every time you change your code to reduce duplication or
rename items for the sake of clarity, you are refactoring. Refactoring is simply
putting a name to a common development task. The strict definition of the term
is “a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable behavior.”
That is, refactoring does not add features to the application. Instead, it
improves the general maintenance of the code base.
The time to refactor your code is as you are building it. This is when you are
closest to the code and thus able to quickly make these maintenance-type
changes. It is much harder to let the problems linger and come back to them
later. Refactoring should be part of your everyday development approach.
Refactoring is also a key tenet of modern, agile development where your code
base builds feature by feature to satisfy a series of tests. This can result in code
that works wonderfully but does not look as though it was designed as a
cohesive unit. It can create maintenance issues, duplicate code, poor
conventions, and other issues. To combat these problems, you would be wise
to go over the code base at frequent intervals after everything works fine. The
goal is to improve the general quality of the code (remove duplication, create
common interfaces, rename items, put things into logical groups, and so on)
without risk.
Refactoring has been moved inside the code editor for 2015. It presents itself
in the margin of the editor as a light bulb appearing as you need it. Refactoring
has also been extended beyond C# to Visual Basic. These tools let you make
changes to the code base without the concern of creating more problems than
you are solving.

Note
There are a couple of features built in to Visual Studio for
refactoring database elements. We cover these in Chapter 13,
“Working with Databases.”

Visual Studio Refactoring Basics
The Visual Studio refactoring tools work to ensure that you see the promises of
refactoring: increased reuse of your code, fewer rewrites, reduced duplication,
and better readability. These tools work to instill confidence in the edits they
make to your code. They do so by using a common refactoring engine based on
the new .NET compiler platform (“Roslyn”) rather than string matching and
search-and-replace. The engine and compiler work together to cover the entire
code base (and its references) to find all possible changes that need to be made
as part of a given Refactor operation. The engine even searches out code
comments and tries to update them to reflect new type names. In addition, you
can preview changes to your code before they happen. This adds further to
your comfort level with the modifications these tools are making to your code.
Table 9.1 presents a high-level overview of the many Refactoring operations
that are possible with the code editor. We cover each of them in detail in the
coming sections. First, however, we cover some of the common elements of the
refactoring process. These elements include both invoking a refactoring tool
inside Visual Studio and previewing the refactoring changes as they happen.

TABLE 9.1 Refactoring Operations Inside the Visual Studio Code Editor

Invoking the Refactoring Tools
The refactoring tools are available directly inside the code editor. You can
invoke them in several ways. First, if your cursor is positioned near code that
Visual Studio thinks could or should be refactored, you will see a light bulb in
the left margin of the code editor (called the Quick Actions menu). You can
click on this to see your options unfold in a context-sensitive, refactoring menu.
Second, you can always access Quick Actions from the editor using the
shortcut “control dot” (Ctrl+.). A right-click inside your code will also take
you to Quick Actions from the context menu. Finally, the Visual Studio class
designer supports edits that work as refactoring.

Note
Visual Studio has done away with the Refactoring menu that used
to appear at the top of the tool in favor of the Quick Actions menu
directly inside the code editor.

Using the Quick Actions Menu
Figure 9.1 shows the Quick Actions menu being invoked via the keyboard
shortcut (Ctrl+.) or a right-click on the method signature (and choosing Quick
Actions from the context menu). Notice the light bulb on the left and the menu
that unfolds. The options in the menu are context sensitive to actions you could
take on the highlighted code. In this case, the only option is to change the
method signature (reorder the parameters) within the selected constructor for
the InvoiceLineItem class.

FIGURE 9.1 Use Ctrl+. to access the Quick Actions menu to refactor your
code.

Notice in Figure 9.1 that there is no preview of your possible changes. This is
because the Change Signature refactor option has too many options, and it
would be confusing to put all of them in the preview window. To finish
invoking this refactor, click on the Change Signature menu item next to the light
bulb. This brings up the Change Signature dialog as shown in Figure 9.2. From
here you can chance the order of parameters (move up/down buttons with
arrows) and remove parameters.

FIGURE 9.2 Use the Change Signature dialog to modify your method
signature.

Making (and Previewing) Changes
As you become comfortable with the refactoring tools, you might decide to
simply let them do their thing without much oversight on your part. However, if
you are like most developers, no one (or no tool) touches your code without
your consent. Fortunately for us, the refactoring tools provide a preview
option. This option lets you follow the tool through its changes and, in turn,
accept or reject a given change. It also supports Undo should you want to
revert your changes.
The Preview Changes dialog box is invoked as an option (check box) on a
given Refactoring operation. Figure 9.3 shows an example of invoking the
Rename operation from the context menu (right-click). In this case, we are
renaming the InvoiceLineItems class. Notice the option to preview
changes.

FIGURE 9.3 A Rename operation with Preview Changes selected.
To complete this refactor, you first rename the class inside the code editor. You
then click Apply on the small Rename dialog shown in Figure 9.3 (upper
right). Provided you have enabled Preview Changes, Visual Studio will open
the Preview Changes dialog, as shown in Figure 9.4. The top portion of this
dialog box lists all the changes that the given Refactor operation intends to
make. This list is presented as a tree, with the outer branch representing where
you intend to originate the change. All the leaves under this branch are files
where changes happen. Nested beneath the filenames are the actual places
within the code where a change is made. You use this list to select each item
you would like to preview. You can review each change, select/unselect those
to apply, and ultimately apply changes to your code (or cancel the operation).

FIGURE 9.4 Previewing the changes of a Rename operation.
As each item in the Preview Changes tree is clicked, the corresponding code is
displayed below the tree in the Preview Code Changes section of the dialog
box. This enables developers to quickly review where changes are being
made. To prevent a given change, you can simply uncheck the item in the tree
view. Of course, you can prevent entire file changes by unchecking further up
in the hierarchy at the file level. When you are finished with your preview and
satisfied with the proposed changes, you simply click the Apply button to
commit the changes to your code.

Using the Class Designer to Refactor
The class designer enables you to view the contents of your classes and their
relationships. It can also be used as a productivity tool: you can create new
classes and modify existing ones directly within the designer.

Note
The class designer is covered in Chapter 6, “Introducing the
Editors and Designers.”

The class designer also supports refactoring. For example, you can rename
elements within your classes or change their signature and the operation will
use the compiler to update references accordingly. Figure 9.5 shows renaming
a class directly within the diagram. Hitting enter after this rename will update
references.

FIGURE 9.5 Refactoring within the Visual Studio class designer.
	

Note
In the current build at time of writing (2015 RC), the Visual
Studio class designer exposes the refactoring tool as a context
menu from items within the class. However, the items in the menu
are currently not implemented and throw an error. Microsoft may
fix this in future builds. That said, refactoring by just editing the
items in the diagram is very much operational.

Renaming Code
Renaming code elements is the most common Refactoring operation. Visual
Studio supports Rename operations in Visual Basic, C#, C++, database
schemas, and other code elements. Thankfully, all these Rename operations
work in a similar fashion.
Most developers do not wait until the code base is operational and say to
themselves, “Okay, now I will go back and rename items for clarity.” The more
likely scenario is that as you build your application, you consistently rename
items to correct mistakes or make things clearer and more readable. Of course,
as the code base builds, it becomes more and more difficult to rename classes,
methods, fields, and the like without introducing new bugs into your code.
The capability to rename items with the confidence that you are not introducing
bugs into your code is paramount. With the Visual Studio editor, you can
rename all relevant code items including namespaces, classes, fields,
properties, methods, and variables. The compiler helps make sure that your
code does not get broken and that all source code references are found. In fact,
the Rename operation can even search through your code comments and strings
and update them accordingly.

Tip
The 2015 version of Visual Basic and C# includes the keyword
nameOf. (See Chapter 3, “The .NET Languages.”) You can use
this expression to use actual types where you need to pass string
literals. This gives you compile-time checking of Rename
operations.

Accessing the Rename Operation
You can rename from many places within the IDE. In the section “Invoking the
Refactoring Tools,” earlier in this chapter, we looked at accessing Refactoring
operations from the Quick Actions (light bulb) menu. You get this menu when
you rename a type or method in the code editor. This allows you to apply the
rename to the other code elements that reference the renamed item. You can
also access Rename by right-clicking an element in the code editor. In addition,
if you use the Properties dialog box to change the name of a control you’ve
placed on a form or an element within class view. In both instances the
Rename operation is invoked behind the scenes, and the item is renamed
appropriately.
As an example, from the Class View (View, Class View) you can access the
Rename operation via the Properties window of a given code element. Figure
9.6 shows an example of the Class View, Properties window, and Rename
operation working together. Renaming an item here invokes the full rename for
all code that references the given element being renamed (without preview).

FIGURE 9.6 You can access Rename from the Class View and Properties
window.

You can also rename directly within Solution Explorer for a filename that
equates to a class name. For instance, suppose you have a file named
Customer and you want to change the class name and filename to Shopper.
You do so by right-clicking and choosing Rename. Visual Studio enables you to
rename the file. When you do so, it prompts you to see whether you also want
to rename the class. If you choose yes, Visual Studio refactors your code on
your behalf. So if you have a Customer class and a Customer.cs file, a
Rename operation to Shopper will rename the file as well as the class if you
give it permission to (and will refactor all references to the previous class
name).

Note
Although an undo on the Rename operation rolls back a change, in
the case of a filename change, Undo reverts the code but does not
change the filename back to its original name.

http:Customer.cs

Rename Keyboard Shortcuts
You can access the Rename operation from keyboard shortcuts. Rename is a
popular task, so Visual Studio has provided its own shortcut key: F2. Previous
versions of Visual Studio required you to invoke rename via the shortcut
“chord,” Ctrl+R, R (where you continue to hold Ctrl when pressing the second
R). Pressing this combination in sequence still brings up the Refactoring,
Rename operation relative to the code element behind your cursor. Figure 9.7
shows an example of using the shortcut key to rename the Customer class.
Notice the editor highlights the item being renamed. You now simply type the
new name in the editor and hit the Apply button as shown.

FIGURE 9.7 Use F2 or Ctrl+R, R to invoke rename from the keyboard.

Rename from Quick Actions
You can also invoke rename directly from the Quick Actions menu. As an
example, suppose we are trying to rename an enum from OrderStatus to
OrderState. Typing over the old name in the code editor invokes the light
bulb menu, as shown in Figure 9.8. Notice that directly from this light bulb
menu you can choose to apply the rename or execute the rename with preview.
Notice also the squiggled line shown over OrderStatus above, showing a
compile error relative to the element being renames. Figure 9.9 shows the
Preview dialog after selecting the operation from the light build menu.

FIGURE 9.8 Renaming an element in the code editor invokes the light bulb
	
menu.
	

FIGURE 9.9 Previewing rename changes including comments and strings.
	

Note
Using the light bulb menu to rename does not give you the option
to choose to rename comments or strings. You would need to
invoke from the keyboard or shortcut menu to get that option.

Working with the Rename Dialog Box
The Rename dialog that appears in your code editor enables you to specify a
few options when invoking a given Rename Refactor operation. Recall that you
get the small Rename dialog from either F2 or Ctrl+R, R. Refer to Figure 9.7
for an example. The dialog presents developers with a few options when doing
a rename. The three check boxes enable you to set the options described in
Table 9.2.

TABLE 9.2 The Rename Dialog Box Options

Refactoring Variable Assignments
Some common refactoring opportunities found during code reviews are “magic
numbers” that should be variables or constants, code that should assigned a
variable to allow clarity and re-use, and variables that could more easily be
expressed as inline code. Visual Studio 2015 allows you to quickly refactor to
take advantage of these opportunities.

Introduce Constant
The new code editor allows you to do away with magic numbers passed as
parameters, in conditional statements, or lurking elsewhere in your code. It
allows you to at least push these numbers into constant variables. That way if
the number changes, you only need to change the constant and not hope you find
all occurrences of the magic number in your code. (Of course, it would be even
better if you externalized the value so you did not have to recompile your code
to change a number.)
Let’s look at an example. Figure 9.10 shows code for a discount rule on an
invoice. The rule states that if the order is greater than $100, then a 10%
discount should be applied. However, both 100 and .10 are represented as
magic numbers in the code. Selecting the value in the editor and then invoking
the light bulb menu (Ctrl+.) presents you with options to introduce a constant
instead of these numbers. Notice that the resulting changes are previewed right
in the IDE. The example shown in Figure 9.10 will create a new variable (V)
and assign it the constant value of 100.

FIGURE 9.10 Convert a “magic number” in your code to a constant.

You apply the change by clicking on the menu item representing the version of
the refactor you want to execute. This makes the change but also brings up the
small refactor menu to allow you to apply the change to strings and comments
(see Figure 9.11). Notice, too, in Figure 9.10 that you can click on Preview
Changes directly from the light bulb foldout menu. Figure 9.11 shows the
change being made. Notice as you name the constant the references are updated
also.

FIGURE 9.11 Executing an Introduce constant refactor inside the IDE.
The Introduce constant refactor gives you a few options (see Figure 9.10). The
first option, Introduce Constant For, creates a standard constant scoped at the
class level. The Introduce Local Constant For option creates a constant inside
your method (or whatever type of code you are referencing in the editor). The
options that include All Occurrences are going to search outside the selected
magic number and find other uses of that number (and replace them with the
constant variable).

Introduce Local
The Introduce local refactor allows you to convert an expression of code to a
local variable within your method (or similar). This can make your code easier
to read. It is also useful if you plan to reuse the result of the expression
multiple times. Figure 9.12 shows converting the discount amount (total * .10)
to a local variable.

FIGURE 9.12 Use Introduce Local to move code expressions into local
variables.

The result of the Refactor operation is a variable to represent the discount. You
can now change the code to make it more readable, as follows.
Click here to view co de image

//apply discount rule

if (total > discountThreshold)

{

var discount = total * discountPercent;

total = total - discount;

}

Inline Temporary Variable
The Inline temporary variable refactor allows you to remove temporary
variables from your code and replace them with actual code expressions
assigned to the temporary variable. Think of this as the opposite of Introduce
Local. For example, Figure 9.13 shows how you can turn the discount
variable back into inline code.

FIGURE 9.13 Use the Inline temporary variable to turn temporary variables
into inline code.

The result of this Refactor operation is the removal of the temporary variable.
The use of the temporary variable is then replaced by inline code, as the
following shows.
Click here to view co de image

//apply discount rule
if (total > discountThreshold)
{

total = total - total * discountPercent;
}

Extract M ethod
When developers go back and take a look at their code, perhaps during a
periodic code review or after a particularly long session of heads-down
development, they often find methods that are too long or coarse grained,
contain duplicate code, or are just poorly organized. A common thing to do is
pass over the code and create fine-grained, discrete methods to reduce these
issues and make for a more readable, reusable, and maintainable code base.
The problem, of course, is that doing this is time consuming and often
introduces bugs into the code. The code editor in Visual Studio provides an
Extract Method refactoring tool to ensure a quick, bug-free experience when
you’re working to better organize your code. With this tool, you can create a
new method using existing code.

Accessing the Extract Method Refactor
To access the Extract Method Refactor operation, you first must select a
portion of code to refactor. You then invoke the light-bulb menu either through
a right-click or the keyboard shortcut (Ctrl+.).

Extracting Methods
With the Extract Method operation, you can create (or extract) a new method
from multiple lines of code, a single line, or an expression within a given line
of code. In each case, the method is created immediately following the method
from which the code was extracted. The extracted code is replaced by a call to
the new method.
Listing 9.1 provides an example of a method (GetFullInvoice) that is
unnecessarily long. We’ve added line numbers for reference purposes. When
you’re reviewing code, methods such as these are common and exactly what
you should be looking for. The method is designed as a static call that returns a
given customer ’s Invoice object based on the ID number. However, the
invoice and the line items are all retrieved from discrete database calls and
stored in domain-specific objects. These objects are then stored on the
Invoice instance as properties.

Note
If you would like to follow along in your code editor, download
the sample code from the website associated with this book:
informit.com/title/9780162337369.

LISTING 9.1 A Long Static Method

Click here to view co de image

01 public class InvoiceDb

02 {

03 public static Invoice GetFullInvoice(int id)

04 {

05 //get invoice table data

06 DataTable dtOrder =

DataAccess.GetTableData("Invoice", id);

07

08 //validate invoice against id

09 if (id != (int)dtOrder.Rows[0]["id"])

10 {

11 throw new ApplicationException("Invalid

invoice.");

12 }

13

14 //create empty invoice object based on id

15 Invoice invoice = new Invoice(id);

16

17 //get invoice items

18 List<InvoiceLineItem> items = new

List<InvoiceLineItem>();

19 DataTable invItems =

http://informit.com/title/9780162337369

DataAccess.GetTableData("InvoiceLineItems", id);

20 foreach (DataRow r in invItems.Rows)

21 {

22 InvoiceLineItem item = new InvoiceLineItem(

23 (string)r["name"],

(string)r["description"],

24 (double)r["unit_price"],

(Int16)r["quantity"]);

25 items.Add(item);

26 }

27 invoice.LineItems = items;

28 return invoice;

29 }

30 }

Opportunities for method extraction inside this one method are numerous.
Obvious considerations are the code to initialize the Invoice instance and
the code to get invoice line items. Extracting these two chunks of code into
discrete methods would result in better organized code (thus, more readable),
more opportunities for reuse, and an easier-to-maintain code base. Let’s look
at doing these two extractions.
First, let’s extract the code that sets up the Invoice instance. Knowing what
to select for extraction requires a bit of experience with the tool. In this case,
we will extract lines 05 through 15 (as numbered in the Listing 9.1), which is
the code from the first call to DataAccess through the Invoice class
initialization. Figure 9.14 shows the selected code and related light bulb menu
to access the Extract Method refactor.

FIGURE 9.14 Select the code to refactor, invoke the light build menu, and
choose options to Extract Method.

Invoking the Extract Method refactor creates a new method from your selected

code along with the appropriate parameters and return type. It also replaces the
extracted code with a reference call to this new method. Finally, Visual Studio
invokes the Rename refactor so you can give your new method a name that
makes sense. Figure 9.15 shows the extracted method, the call to the extracted
method, and the results of renaming the new method inside the IDE.

FIGURE 9.15 The refactored method and the resulting Rename operation.

Next, let’s extract the code that builds a list of invoice items and adds them to
the Invoice object. We begin by selecting the code represented by lines 17
through 26 in Listing 9.1. Note that we do not want to select the call to set the
invoice’s LineItems property (line 27); we simply want to return an object
that represents all line items for a given invoice.
Figure 9.16 shows the method extraction. In this case, we name the new
method GetInvoiceItems. Notice that the method takes a parameter
named id. It would likely be helpful to rename this parameter invoiceId.

FIGURE 9.16 The code after refactoring the call to get invoice line items.
The newly organized (and much shorter) original method looks like Listing 9.2.
In addition, you now have two new tight, discrete methods that you may be
able to reuse in the future (and perhaps make public). These new methods are
in Listing 9.3.

LISTING 9.2 The Original Long Static Method After the Extractions

Click here to view co de image

public static Invoice GetFullInvoice(int id)
{

Invoice invoice = GetInvoice(id);

//get invoice items

List<InvoiceLineItem> items = GetInvoiceItems(id);

invoice.LineItems = items;

return invoice;
}

LISTING 9.3 The Extractions

Click here to view co de image

private static List<InvoiceLineItem>

GetInvoiceItems(int invoiceId)

{

List<InvoiceLineItem> items = new
List<InvoiceLineItem>();

DataTable invItems =
DataAccess.GetTableData("InvoiceLineItems",
invoiceId);

foreach (DataRow r in invItems.Rows)

{

InvoiceLineItem item = new InvoiceLineItem(
(string)r["name"], (string)r["description"],
(double)r["unit_price"], (Int16)r["quantity"]);

items.Add(item);

}

return items;
}

private static Invoice GetInvoice(int id)
{

//get invoice table data
DataTable dtOrder =

DataAccess.GetTableData("Invoice", id);

//validate invoice against id

if (id != (int)dtOrder.Rows[0]["id"])

{

throw new ApplicationException("Invalid
invoice.");

}

//create empty invoice object based on id

Invoice invoice = new Invoice(id);

return invoice;

}

Note
The Extract Method does not allow you to choose where to put the
extracted method. Many times, you might find a bit of code that
really needs to be extracted into a method of another, different
class. For this, you have to extract the method and then move
things around manually.

Extracting a Single Line of Code
Sometimes you want to extract a single line of code or a portion of a line of
code as its own method. For example, you might have a calculation that is done
as part of a line of code but is common enough to warrant its own method.
Alternatively, you might need to extract an object assignment to add additional
logic to it. In either case, the code editor supports this type of extraction.
Let’s look at an example. Suppose you have the following line of code that
calculates an invoice’s total inside a loop through the invoice items list.
Click here to view co de image

total += item.Price * item.Quantity;

You might want to extract just the portion of the assignment that calculates a

line item’s total (price * quantity). To do so, you select the portion of code and
invoke the Extract Method refactor using the Quick Actions (light bulb) via
Ctrl+. or from the context menu. Figure 9.17 shows this operation in action for
the selected code.

FIGURE 9.17 You can extract a single line (or portion of a line) to its own
method.

Notice that, by default, the new method would like an instance of
InvoiceLineItem. You might prefer to pass both quantity and unit price
instead. You would have to make these changes manually. Alternatively, if
quantity and unit price were assigned to variables before the extraction was
done, you would get a new method that accepted these parameters (instead of
an InvoiceLineItem instance). Figure 9.18 demonstrates this fact.

FIGURE 9.18 An alternate view of extracting a portion of code using
variables.

The resulting refactor replaces a portion of the line of code with the following.
Click here to view co de image

total = total + GetItemTotal(price, quantity);

It also adds the new method, as follows.
Click here to view co de image

private static double GetItemTotal(double price, short

quantity) {
return price * quantity;

}

Generate Method Stub
You can get Visual Studio to automatically generate a method stub for you. This
is not strictly a refactoring operation but can provide some similar increases in
productivity. The scenario where this is applicable is as follows. Suppose you
are writing code that calls a method from one of your objects. However, that
method does not yet exist. You can still write code to make the call to the
nonexistent method. Visual Studio then recognizes that this method does not
exist and provides you an option from the light bulb menu (see Figure 9.19) to
create the method.

FIGURE 9.19 Generate a method stub for a nonexistent method.
Clicking the Quick Actions menu item results in Visual Studio generating the
method based on the stubbed out call. The method looks like the one
previewed in the foldout menu shown in Figure 9.19.

Extract Interface
When classes contain the same subset of members, defining a common contract
that each class shares can be useful. You do this, of course, via an interface.
Some basic advantages to defining interfaces are that your code becomes more
readable, is easier to maintain, and operates the same for like members.
However, developers often don’t realize the commonality between their
classes until after those classes are coded. This sometimes makes creating
interfaces painful.
The Visual Studio code editor provides the Extract Interface refactoring
operation to make this process easier. It enables you to take an existing class or
struct and automatically generate a matching interface that the existing class
then implements.

Accessing the Extract Interface Refactor
To access the Extract Interface refactor operation, you first must position your
cursor on a class, a struct, or another interface definition that contains the
members you want to extract into a new interface. You then can use the Quick
Actions menu (Ctrl+.) to execute an Extract Interface refactor.

Tip
To invoke the Extract Interface operation from the keyboard, first
position your cursor on the class, struct, or interface definition
that contains the members you want to extract. Next, play the
keyboard shortcut chord Ctrl+R, I.

Extracting Interfaces
To better understand the Extract Interface operation, let’s look at an example.
Suppose you review your code and notice that a number of your domain
objects share similar properties and methods. Let’s say the objects Invoice,
Order, and Product all contain properties for Id and Name and methods
for Save and Delete. In this case, you should consider extracting this
commonality into a standard interface that each of your domain objects would
implement. Let’s look at how the Extract Interface refactoring operation aids in
this regard.
First, you position your cursor on the target class whose members you want to
extract. In the example, choose the Invoice class and position the cursor on
the class name. Then press Ctrl+. to show the light bulb. From here choose
Extract Interface. Invoking the Extract Interface operation presents a dialog box
named the same. Figure 9.20 shows this dialog box relative to the example.

FIGURE 9.20 Use Extract Interface to create an interface based on an
existing class.

Notice that you first define a name for the interface. By default, the tool names
the interface with the name of the class preceded by the letter I for interface
(in this case, IInvoice). Of course, we are going to use our interface across
our domain, so we change this to IBusinessEntity.

The Extract Interface dialog box also shows the generated name and the new
filename for the interface. The generated name is simply the fully qualified
name of the interface. This is used by the class for implementation of the
interface. The New File Name text box shows the filename for the interface.
All extracted interfaces result in the creation of a new file. The tool tries to
keep the filename in sync with the interface name.
The last thing to do is select which members of the object you want to publish
as an interface. Of course, only public members are displayed in this list. For
this example, select the members Delete, Id, Name, and Save.
Clicking the OK button generates the interface. The only change that is made to
the Invoice class is that it now implements the new interface, as in the
following line of code.
Click here to view co de image

public class Invoice : IBusinessEntity

The interface is then extracted to a new file. Listing 9.4 shows the newly
extracted interface.

LISTING 9.4 The Extracted Interface

Click here to view co de image

namespace Contoso.Fx.Common
{

interface IBusinessEntity
{

int Id { get; set; }
string Name { get; set; }
void Delete();
void Save();

}
}

The next step in the example is to go out to each domain object and implement
the new interface. This is not exactly refactoring, but Visual Studio does help
make this easier. Once you indicate that the given object implements an
interface, Visual Studio pops up the light bulb in the code editor. This helps
implement the interface. Figure 9.21 shows the light bulb that results from
typing IBusinessEntity after the Order class declaration.

FIGURE 9.21 Implementing an interface with the help of the light bulb.
Notice in Figure 9.21 that you have two options: Implement Interface and
Implement Interface Explicitly. The former checks the current class to see
whether there are implementations that apply. The latter generates code that
explicitly calls the interface items. It puts all this code inside a region for the
given interface. This capability can be useful if you’re stubbing out a new class
based on the interface. The following lines of code provide an example of
explicitly implementing the Save method of the interface.
Click here to view co de image

void IBusinessEntity.Save() {

throw new NotImplementedException();

}

Change Signature
You sometimes need to change your method signatures by removing an item, by
adding a local variable as a parameter, or by reordering the existing
parameters. These changes require that all calls to the method also be changed.
Doing this manually can introduce new bugs into the code. For example,
suppose you want to swap the order of two parameters with the same type
(int, for example). If you forget to change a call to the method, it might still
work; it just won’t work right. These bugs can be challenging to find.
Therefore, Visual Studio provides refactoring operations for removing and
reordering parameters.

Removing a Parameter
You invoke the Change Signature refactor by positioning your cursor inside a
method signature and clicking Ctrl+. (or right-clicking and choosing Quick
Actions). This Refactor operation enables you to select one or more
parameters from a given method, constructor, or delegate and have it (or them)
removed from the method. It also allows you to reorder the parameters on the
method signature. Of course, once executed, the refactoring operation updates
any callers with the new method signature.

Tip
There is another keyboard shortcut to invoke the Change Signature
refactoring operation directly. First, position your cursor in the
method that contains the parameters you want to remove. Next,
play the keyboard chord Ctrl+R, V.

Let’s look at an example. Suppose you have a method with the following
signature.
Click here to view co de image

public static Order GetCustomerOrder(int customerId,
int orderId)

This method returns an Order object based on both a customer and an order
identification number. Suppose you determine that the order ID is sufficient for
returning an order. In this case, you invoke Change Signature on the method
using Ctrl+. and the resulting light bulb. This brings up the Change Signature
dialog, as shown in Figure 9.22. To remove a parameter, you simply select it in
the dialog and click the Remove button. In this example, the customerId
parameter is crossed out because it is being removed. If you change your mind,
you can use the Restore button to cancel individual parameter removals.

FIGURE 9.22 The Change Signature dialog in action while removing a
parameter.

When you are ready to make the removal, you can choose to preview the
changes or simply apply them all simultaneously. The Preview option works
the same as other previews. It shows you each change in a tree view and
enables you to see the details behind the change. You can, of course, also
uncheck specific changes. When finished, you apply the final set of removals to
your code.

Caution
It is common to declare a local variable inside a method and pass
that local variable in a call to another method. If you use the
refactoring operation to remove the parameter on the method you
are calling, the local variable still exists in your calling method.
Be careful to make sure that this is what you intended; if not, you
have to remove the local variable manually.

Reorder Parameters
You typically move parameters around in a method just for readability and
maintenance. You might want the more important parameters to appear first on
the method signature, or you might try to keep the order similar across like
methods or overloads. You can see from Figure 9.22 that the Change Signature
dialog allows you to move around the parameters using the up and down
arrows (upper right).
As you change the parameter order, the resulting method signature is displayed
below the parameter list (bottom of Figure 9.22). You also have the option to
preview any changes that are made to callers of the method. Clicking the OK
button applies the changes to both the method and its callers.

Encapsulate Field
It’s common to have a private field in your object from which you need to
create a property. These fields might have been built as private because they
were used only internally to the object. Alternatively, a developer might have
simply defined a public field instead of encapsulating it as a property. In either
case, if you need to make an actual property out of a field, you can do so with
the Encapsulate Field refactor operation.

Accessing Encapsulate Field
The Encapsulate Field operation enables you to quickly generate properties
from a given field. Properties, of course, enable you to protect the field from
direct access and to know when the given field is being modified or accessed.
To encapsulate a field, you position your cursor over the field and again press
Ctrl+. to access the light bulb menu. Figure 9.23 shows an example.

FIGURE 9.23 Encapsulate a field into a property from the Quick Actions
menu.

An additional option on the Quick Actions menu for encapsulate field is the
choice of the Usages Reference Field. This refers to existing references to the
field. Suppose you have a public field. This field might be called both from
within the object that defines the field and by other, external objects. You might
want to force external callers to use the new property. In this case, you select
the Usages Reference Field option.
When you apply the encapsulation, the tool changes your internal field to
private (if it was not already private) and then generates a property. The
property includes both get and set accessors for the field. If the field was
declared as read-only, the encapsulation generates only a get accessor.
Let’s look at the code. Suppose you have the following field declaration.

public int ratingScore;

Suppose you use this field in another assembly, such as this.

Product p = new Product();

p.ratingScore = 3;

Now suppose you want to encapsulate this public field into a public property
(with a private backing field). You would do so by highlighting the field in the

code editor and pressing Ctrl+. to get started. You would want to select the
Usages Reference Field option from the light bulb menu. Figure 9.24 shows the
preview available for this refactor. Notice that the code that uses the current
field is also being updated to use the new property.

FIGURE 9.24 Preview the encapsulate field changes, including referenced
usages.

Summary
This chapter showed how the refactoring tools built in to the Visual Studio
code editor can greatly increase productivity and decrease unwanted side
effects (bugs) when you’re making sweeping changes to your code to improve
maintenance, reuse, and readability. The refactoring tools don’t simply make
changes using text searches and replacements; they use the Visual Studio
compiler to make and validate the code changes, and this improves confidence
in, and reliability of, the tools.
These tools can be accessed using the keyboard (Ctrl+.), the Quick Actions
menu (via a right-click), the class designer, and elsewhere. The refactoring
tools enable you to change your code in many ways. You can easily rename
items in your code. You can take existing lines of code and extract them to new
methods. Your objects can be used as the basis to define new interfaces. You
can modify method signatures, including removing and reordering parameters.
Finally, you can take existing fields and quickly encapsulate them into
properties.

Chapter 10. Debugging Code
	

In This Chapte r
Debugging Basics
The Visual Studio Debugger
Advanced Debugging Scenarios

Today’s developers might spend as much time debugging their code as they do
writing it. This is due in some part to the nature of today’s highly dependent
and distributed applications. These applications are built to leverage existing
functionality, frameworks, building blocks, libraries, and so on. In addition,
they often communicate with other applications, services, components,
databases, and even data exchanges. Developers also demand more assistance
from their debugger to help increase their productivity. The Visual Studio
debugger addresses these needs by enabling some great debugging scenarios.
Some highlights include the following:

Breakpoint and tracepoint configuration
Visualizers and debugger DataTips
Visual diagnostic tools during debug session
Edit and Continue
Just-my-code debugging
The Exception Assistant
Debugging support at design time
Client-side script debugging
Debugging multithreaded and parallel code
Remote debugging

We cover all these features and more in this chapter. Of course, if you are just
getting started with .NET, more than just this list is new to you. The Visual
Studio debugger has been evolving since the first release of .NET, which
provided a unified debugger with the capability to debug across languages. In
this chapter, we start by covering the basics of debugging an application. We
then discuss the Visual Studio debugger in depth.

Debugging Basics
A typical scenario for a developer is to start building a web page or form and
build up the code that surrounds it. In addition, the developer might rely on a
framework or a few building blocks that provide added functionality. The
application might also communicate with a services layer and most often a
database. Even the most typical applications have a lot of moving parts. These
moving parts make the task of finding and eliminating errors in the code all the
more complex. The tools that help you track down and purge errors from your
code not only have to keep up with this complexity, but must ease the effort
involved with the debugging process. In the following sections, we cover how
a developer uses the tools built into Visual Studio to debug a typical
development scenario.

The Scenario
We want to define an application scenario that we can use both to introduce the
basics of debugging and to function as a base for us to build on throughout the
chapter when demonstrating the many features of the debugging tools. In this
scenario, imagine you are writing a web application with all the typical
moving parts:

Data for the application is stored in a SQL database.
A data access library built on Entity Framework code-first abstracts
working with the database.
A variety of different technologies are involved in the solution, including
a web-based user interface (UI) built on ASP.NET Model-View-
Controller (MVC) using C# controllers and HTML/JavaScript views.

Even though we concentrate on C#, the debugging tools in Visual Studio are
equally applicable to Visual Basic development. Everything we discuss here
applies to both languages unless specified otherwise.

The Many Phases of Debugging
Nearly every time developers open the IDE, they are in some way debugging
their code. The line between debugging and writing code, in fact, is blurred.
For example, the code editor helps eliminate errors in your code as you write
it. It highlights items where errors are present and enables you to fix them. You
are then both writing and debugging simultaneously.
In addition, the compiler acts as another debugging tool. It is constantly
compiling your code and checking it. Should you click the Run button, the
compiler will report a list of errors for you to fix before continuing. This is
debugging. The steps or phases of the debugging process include the following:

Coding—The editor helps you by pointing out issues and possible
resolutions using the Quick Actions menu (light bulb) and other visual
cues.
Compiling—The compiler checks your code and reports errors you
should fix before continuing.
Se lf-che cking—You run the application in debug mode and step through
screens and code to verify functionality.

Unit te sting—You write and run unit tests to check your application.
(See Chapter 8, “Testing Code.”)
Code analysis—You run the Static Code Analyzer to verify that your
application meets project standards.
Code re vie w—Your code is reviewed by a peer and issues are logged,
tracked, and fixed accordingly.
Re sponding to bug—When a bug has been logged against the code, you
must re-create and debug a specific scenario.

In this chapter, we concentrate on two of these phases: self-checking (which
may include unit testing) and responding to bugs. These are the two phases in
which developers get the most use of the debugging tools built in to Visual
Studio. For the purposes of this chapter, we assume that the code is written and
that it compiles. Let’s start by looking at how to self-check the code.

Debugging the Application (Self-Checking)
In this scenario, you have just started writing a web page to edit a customer ’s
profile. Assume that you’ve laid out the page, connected to the profile web
service, and written the code to save a user ’s profile to the database. You now
need to start self-checking your work to make sure everything operates as you
expect.

Note
If you want to follow along, the code we have used in this chapter
comes predominantly from the Contoso University sample
application that Microsoft provides to demonstrate construction of
an MVC-based web application. Search for “Contoso University”
on the Microsoft Developer Network (MSDN) site to find the
download location for the entire Visual Studio solution. We are
using the ASP.NET MVC 5 and Entity Framework 6 version.
Note that the site contains the setup instructions for working with
the application. You should be using SQL Express LocalDb for
development. This site instructs you on installing the database and
data. However, you may have to modify the Web.config file
connection string to point to your instance of LocalDb. The best
way to do this is to create a new database with the same name
(currently ContosoUniversity2) using SQL Server Object
Explorer (accessible from the View menu). You can then right-
click the database and view properties. Here you can find the
right connection string information for the Web.config file.
You can then install the database schema and related data
following instructions.

The first step is to start your application in debug mode. This allows you to
break into your code if an error occurs. In development, this is typically your
default setting. You first invoke debug mode by clicking the Run (or Start
Debugging) button (the green arrow on the Standard toolbar). Figure 10.1
shows the sample application about to be run in debug mode for the first time.

Notice that for web applications, you can choose which browser to use out of
all the installed browsers on your machine. In this case, we are selecting
Internet Explorer.

FIGURE 10.1 Use the Start button to debug the application.

Enabling Debugging on a Website
This example is a web application. Therefore, it requires you to set up
debugging on server-side code whose errors and information are output to a
remote client. Of course, in the majority of cases, developers code and debug
on a single development machine. However, sometimes you have to debug a
process on a test server.
In either case, you have to enable debugging through a setting in the
configuration file (Web.config) for your application. The modern, default
Web.config file has debugging enabled by default. The setting that controls
debugging is the compilation element under the system.web node. You set
debug equal to false (as in off) or true (as in on). The following is an
example of the XML with debug mode turned on. Again, this is the default
setting. Controlling debugging directly with this setting is not recommended.
As you will see in a moment, the type of build you target can control this
setting.
Click here to view co de image

<system.web>
<compilation debug="true" targetFramework="4.5"/>

...
</system.web>

The Web.config file has multiple subfiles that are used based on the type of
build you are creating in Visual Studio. This allows you to define settings for
Debug and Release configurations. You do so through XDT (XML-Document-

Transform). Figure 10.2 shows the IDE build setting set to Debug (top drop-
down menu), the Web.Release.config subfile, and the XDT transform
that would turn off debugging for a release build. Notice, too, in Solution
Explorer the Web.config file and the two subfiles: one for debug-specific
settings and one for release-specific settings.

FIGURE 10.2 The Web.config files control your debug setting on your
	
website build.
	

Note
It is important that you turn off debugging (by doing a release
build) before deploying your web application to production.
Having debugging enabled in a production environment is a
security risk. With debugging enabled, ASP.NET writes the
details of your errors to a web page. These details provide
valuable clues to would-be attackers about how your application
is put together. In some instances, the error could include user
credentials that are being used to access secured resources.

Starting in Debug Mode
The most typical scenario for starting a debug session is just clicking the Start
button on the toolbar. This works with all application types, including
Windows and ASP.NET. This action instructs Visual Studio to compile the
application and bring up the initial form or page.
Applications can also be started without debugging; this includes both
Windows and ASP.NET applications. This capability is useful if you simply
want to walk through an application as a user might see it (without breaking
into the IDE). You use the Debug menu, Start Without Debugging option to start
your application without attaching it to the Visual Studio Debugger. Figure 10.3

shows an example of invoking this action.
	

FIGURE 10.3 You can start an application without debugging it.

You can also start a debugging session by stepping into code, line by line. This
approach is useful if you want to see all your code as it executes (rather than
just errors). You might desire this if you are getting some unexpected behavior.
Stepping line by line gives you an exact understanding of what is going on with
your code (rather than just your assumed understanding).
Stepping into code on a web form is typically done by first opening the main
source. You then right-click and select the Run to Cursor option from the
shortcut menu. Figure 10.4 shows an example. This command tells Visual
Studio to start debugging the application. When the execution gets to this point,
the IDE opens to let you step through each line of code (or continue, and so
on).

FIGURE 10.4 You can have Visual Studio run your application up to the
current line of code and then break into debugging.

Breaking on an Error
Not everything you find in debug mode is an error that results in a break into
the code for a debug session. Often, issues arise just because you’re looking at
the behavior of the application. For example, a control could be out of place,
the tab order could be wrong, and so on. For these items, you still have to rely
on your eyes. The debugging tools in Visual Studio help you respond to hard
errors in your code.
By default, when unhandled exceptions occur in your code, the IDE will break
into the debugger and highlight the offending code. The key in that sentence is
“unhandled exceptions.” They represent places in your code where you do not
have try-catch blocks to manage an exception. Your code should catch
expected exceptions, trace them, and recover from the corresponding error if
possible. In this case, you see the following message in the Output pane (but
the debugger does not stop on the faulting statement):
A first chance exception of type ‘System.ArgumentNullException’ occurred
in...
Breaking on just unhandled exceptions is typically a good default setting.
However, you often need to see handled exceptions as well. This can help you
get to the root cause of the error when the exception is thrown rather than when
it is caught and dealt with by your code.
Fortunately, the errors that result in a break in the IDE are a configurable set.
For example, you might handle a specific exception in your code and not want
to be dumped to the IDE every time it occurs. Rather, you want to be notified
only of those exceptional conditions. The new, Exception Settings pane shown
by Figure 10.5 allows you to manage the set of exceptions you want the

debugger to break on when they are thrown. You access this pane by choosing
Debug, Exception Settings (or pressing Ctrl+D, E).

FIGURE 10.5 Use the new Exception Settings pane to select the exceptions
on which you want the debugger to break into your code.

In the Exception Settings pane, the various exceptions are categorized by debug
engine and sorted by namespace for easy access. There is also a Filter feature
on the toolbar. When a box in not checked in the Exception Settings pane, the
debugger will only break execution when that exception is thrown and not
handled by your code. This is the default setting for the vast majority of
exceptions. Checking the box indicates you want the debugger to break
execution when the exception is thrown (regardless if it is handled or not). The
debugger then reacts by breaking on the line that triggers the exception, before
your catch handler is called.
The Exception Settings pane also has a context menu (right-click) for
exceptions. Here you find the option “Continue when unhandled in user code.”
This option tells the debugger to ignore this exception even if you are not
handling it in your code.

Debugging an Error
The first step in debugging your application is to click the Start button. Your
application is then running under the control of the debugger. As it happens, the
sample application we discussed in our scenario can throw an exception upon
its initial startup provided the database connection string is not set up or the
database has not been created. The debugger responds by breaking into the
code and showing the offending line (in this case, the call to get students from
the database). Figure 10.6 shows a typical view of the editor when it breaks on
an error.

FIGURE 10.6 The Visual Studio debugger breaking on an exception.
There are a few items of interest about the standard debug session shown in
Figure 10.6. First, Visual Studio has highlighted the line that has thrown the
exception. You can see this clearly by the arrow (left margin) and the
highlighted text.
Next, notice the window in the middle right of the image. This is the Exception
Assistant. It provides details on the exception and offers tips for
troubleshooting and fixing the given issue. From this window, you can access a
few actions, including searching online help for more information on the
exception.
At the bottom of the screen are a few additional helpful windows. The Locals
window on the left automatically shows the value assigned to all variables
local to the code in scope where the exception was thrown. This gives you
easy access to key information that might be contributing to the issue. Notice
that at the bottom of this window is an inactive tab called Watch 1. This is a
Watch window; it keeps track of any custom watch scenarios you set up (more
on this later).
The window on the bottom right of the screen is the call stack. It shows the
order in which various components of an application were called. You can
look at the call stack to find out how you got to where you are. You can also
use it to navigate to any code referenced in the stack. (See the section
“Debugging Multithreaded Applications” later in this chapter for more on the
call stack.) Finally, the inactive tab next to this gives you access to the
Immediate window. The Immediate window allows you to type in code
commands and get the results in the editor (more on this to come).

Debugging Different P rocesses
After you examine the error in this example (Figure 10.6), you can see that it is
being thrown from the EntityFramework.dll running inside the web
application process. When you debug an application, you debug (or shadow) a
running process such as an executable (.exe). Visual Studio, by default,
considers the startup application’s process the primary process being
debugged. In this case, the application host is iisexpress.exe.
You can also debug code running in a different process than the process
automatically launched by Visual Studio. To do so, you must have the source
code and be attached to the executing process (running a debug build). If all the
code for a given application is in a single solution, Visual Studio automatically
attaches to each process (as in the previous example).For example, if you have
both a web UI application and a web service application, each of these could
run in a separate process. The web application may run in IIS Express, and the
web service application could be hosted by Windows Process Activation
Service (WAS). If your Visual Studio startup process is the web UI
application, this is the process you will debug. You would have to load the
code for the web service application and attach to that process to debug it.

Note
The debugger does automatically break into the IDE on errors
raised outside of the Visual Studio application startup host
process. Therefore, an unhandled error raised by code in the
startup process would result in a break into the debugger on the
offending line of code. An unhandled error raised by code running
in another host process will do the same. Visual Studio does
respect breakpoints you set inside code executing in other
processes. You can also step into code from one process to
another inside the debugger.

Sometimes you need to manually attach to an already-running process. You
might want to attach the IDE to a running web server, or you might have a web
service application to which you want to bind debugging. Whatever the
scenario, Visual Studio allows you to attach to the process and begin a debug
session. To attach to a running process, such as a web server, you choose the
Attach to Process option from the Debug menu. This brings up the dialog box
shown in Figure 10.7.

FIGURE 10.7 Use Attach to Process (Debug menu) to attach the Visual
	
Studio debugger to a running process such as a web host application.
	

To connect the Visual Studio debugger to a process, you simply highlight it and
click the Attach button (as shown in Figure 10.7). Note that any currently
attached processes are grayed out. This is a visual indicator that you are
already attached to a given process. In the example in Figure 10.7, the
application was started without debugging. We then used Attach to process to
connect a debug session to the running process.

Setting a Breakpoint
To get the debugger to break into your code when it reaches a specific line of
code, you set a breakpoint on that line. You do so by clicking on the indicator
bar (far left of the code editor) for the given line. Alternatively, you can right-
click on the line and choose Insert Breakpoint from the Breakpoint context
menu. Figure 10.8 shows setting a breakpoint from the indicator bar. Just
before the line is executed, Visual Studio breaks into the code and allows you
to interrogate variable values and step line by line. It also confirms how your
code is executing.

FIGURE 10.8 You can set a breakpoint on a specific line of code.

Breakpoint Conditions and Actions
You can set additional conditions on your breakpoint. This allows you to only
break on the given line if a certain condition inside your code is true. You
can also choose to implement an action, such as write a message to the Output
window in the IDE, when the line of code is executed.

Note
Refer back to Chapter 6, “Introducing the Editors and Designers,”
for a discussion of the breakpoint indicator and margin toolbar
user interface.

You can access breakpoint conditions and actions right from the breakpoint
itself. Notice in Figure 10.8 that there is a settings “gear” icon above the
breakpoint in the IDE. Clicking this gear opens the conditions and actions for
the breakpoint. Figure 10.9 shows the settings for the selected breakpoint. In
this example, the breakpoint condition is set to break if the sort order is not set
to Date. Notice, too, that you get IntelliSense inside this settings window. In
addition, the action of logging to the Output window is configured in Figure
10.9.

FIGURE 10.9 Manage breakpoint settings (conditions and actions) directly
from the code editor.

Continuing Debugging After a Breakpoint
When you hit a breakpoint, you often end up examining running code, code that
was run (call stack), and code that will be run. Of course, you also verify
variables, check the call stack, look for bugs, and more. Once you are done
with the breakpoint, you want to tell Visual Studio to continue executing the
code normally (or at least until you hit another breakpoint). You do so by
simply hitting the large green arrow button (with the word “Continue” now)
again.
It is easy to get lost in a debug session. You often have to navigate off the
executing code to find issues. You scroll through the current file and even
switch files. It can often be hard to find your way back; the line that was
executing could be buried in any one of the open code windows. Thus, Visual
Studio provides the Show Next Statement button (gray arrow) on the Debug
toolbar to take you back, effectively returning you to the line of code that the
debugger broke on. Figure 10.10 shows this button on the toolbar in a debug
session. Note you can also get here from a right-click in the code editor.

FIGURE 10.10 Show Next Statement takes you back to the code that will
execute next in the debug session.

There are times when you are debugging and want to skip lines or sections of
your code. In this instance, you can tell Visual Studio the next statement to
execute (and thereby skip any code that might have otherwise executed). You
do so with Set Next Statement. You can access this option by right-clicking a
line of code and selecting Set Next Statement from the context menu.

Stepping Through Code to F ind an Error
The debugger breaks execution and steps into code as soon as it hits a
breakpoint or an unhandled exception is thrown. This allows you to step
through the code. To step line by line through the code, you can click the Step
Into button (blue arrow pointing to a dot) on the Debug toolbar or press the F11
function key. This executes the code one line at a time, enabling you to view
both execution flow and the state of the application as code executes. You can
also exit the current method and return to the calling method using Shift+F11.
In many scenarios, you can make a fix to bugs found during the debug session
and continue stepping through or running the code; this is referred to as Edit
and Continue. However, this is not supported in certain scenarios. You cannot
invoke Edit and Continue when the debugger has been attached to an already
running process, for example.
If you are not using Edit and Continue, you can bookmark the line where you
want to make the change using the Text Editor toolbar. You then click the Stop
button (red square) on the Debug toolbar to stop the debug session. The code
change can now be made. You again use the Text Editor toolbar to return to
your bookmark and make your change. Figure 10.11 shows an example of
creating a bookmark during a debug session.

FIGURE 10.11 You can uses bookmarks to flag places in your code you
intend to return to following the debug session.

To continue through self-checking following a change, you restart the
debugging process. However, before restarting, you might want to clear the
breakpoint you set by selecting the Debug menu, Windows, and then
Breakpoints. This brings up the Breakpoints window shown in Figure 10.12.
From this window, you can view all breakpoints in the application. Here, you
select and clear the breakpoint by clicking the Delete button from the toolbar
on the Breakpoints pane. Finally, you click the Start button to continue the
debug self-check session.

FIGURE 10.12 You can manage your breakpoints using the Breakpoints
window.

Debugging Basics Summary
This section walked through the many phases of debugging and introduced the
basic concepts of executing code line by line inside Visual Studio. If you are
familiar with prior IDE versions, you probably noticed a lot of similarities.
This section showed the many tools inside the debugging environment,
including the Debug toolbar and menu, the Breakpoints window, the Watch
window, and so on. Now that you have a grasp of the basics, in the next section
we intend to explore these debug elements in greater detail.

The Visual Studio Debugger
The debugger built in to Visual Studio 2015 is one of the largest and most
complex tools in the IDE. With such a large feature-set area, we cannot
possibly cover every scenario you might encounter. In this next section,
however, we hope to expose the most commonly applicable features. We touch
on advanced features in the next section.

The Debug Menu and Toolbar
The Debug menu and its related toolbar provide your first-level access to
starting debug sessions, stepping into code, managing breakpoints, and
accessing the many features of debugging with Visual Studio. There are two
states to the debug menu: at rest (or inactive) and in debug mode. Figure 10.13
shows the menu in the at-rest state.

FIGURE 10.13 The Debug menu before starting a debug session.
In the at-rest state, the Debug menu provides features to start a debug session,
attach code to a running process, or access some of the many debug windows.
Table 10.1 lists all the features available from the Debug menu at rest.

TABLE 10.1 Debug Menu Items at Rest

When the debugger is engaged and you are working through a debug session,
the state of the Debug menu changes. It now provides several additional
options over those provided by the at-rest state. These options include those
designed to move through the code, restart the session, and access even more
debug-related windows. Figure 10.14 shows the Debug menu during a debug
session.

FIGURE 10.14 The Debug menu during an active debug session.
Let’s look at the many options provided by the Debug menu during a debug
session. Table 10.2 presents the many items available from the debug menu in
this state. When reading through the table, refer to the preceding figures to get
context on any given item.

TABLE 10.2 Debug Menu Items for an Active Debug Session

The Debug Toolbar
The Debug toolbar provides quick access to some of the key items available
on the Debug menu. From here, you can manage your debug session. For
example, you can start or continue a debug session, stop an executing session,
step through lines of code, and so on.

Tip
A variety of buttons aren’t visible within the debug toolbar by
default. We recommend adding all the available debug commands
to this toolbar. There aren’t many, and they turn out to be
tremendously useful during debugging sessions. You can do so
using the down arrow on the end of the toolbar. This brings up the
Add or Remove Buttons option for the given toolbar. Even better,
learn the keyboard shortcut to become even more productive
during a debugging session.

Figure 10.15 presents the Debug toolbar during an active debug session. Be
default, the debug menu is hidden by the IDE unless you are debugging.
However, you can choose to show it (right-click the toolbar area and select
Debug from the list of available toolbars). In design mode a number of these
items are disabled; in fact, hitting the green continue arrow in design mode
actually starts a debugging session for your application. We have added
callouts for each item on the toolbar. You can cross-reference these callouts to
Table 10.2 for further information.

FIGURE 10.15 The Debug toolbar during an active debug session (break
	
mode).
	

Note
In Figure 10.15, the item with the callout, Debug Windows, on the
right of the figure is actually is a drop-down menu. This menu
provides access to the many debug windows that are available to
developers. See Figure 10.13 for a sample of the menus you can
access from this toolbar item.

Debug Options
You can control the many debugging options in Visual Studio through the
Options dialog box. You can access these options from the Tools menu (Tools,
Options) and then select the Debugging node from the left side of the dialog
box. Alternatively, you can open the Options dialog right to the Debugging
section using the Debug menu (Debug, Options).
Four sets of options are available under the Debugging node:

Ge ne ral—Provides access to the many debugging switches (more than
20) to turn on and off Visual Studio debugging behavior. This includes
enabling and disabling breakpoint filters, using just-my-code debugging,
enabling the new Diagnostic Tools, creating breakpoint filters, handling
warnings, and many other options (see Figure 10.16). Note that the Edit
and Continue options have been moved under General for Visual Studio
2015.

FIGURE 10.16 You can use the Options dialog box to control how Visual
	
Studio behaves during a debugging session.
	

Just-In-Time —Enables you to indicate the type of code (managed,
native, and script) for which you want to enable or disable Visual Studio
debugging (also called just-in-time debugging).
Output Window—Provides management features for the Output
window, such as which messages are shown.
Symbols—Enables you to choose which debug symbols are loaded for
your debug session. You can also choose additional debug symbol files
(.pdb and .dbg). These files can be helpful if you do not have the
source code associated with a particular library you need to debug, such
as the .NET Framework itself or a third-party component.

The majority of the settings you manage can be found on the General screen.
Figure 10.16 shows the many options for this dialog box. We cover the features
behind these options throughout the remainder of this chapter. These many
options help you customize your debug experience. However, as we debug
code in this chapter, we are assuming the default options for the debugger.

Stepping In, Out, and Over Code
Probably the most common debug operation for developers is stepping through
their code line by line and examining the data emitted by the application and
the debugger. Code stepping is just that: examining a line, executing the line,
and examining the results (and then repeating the process over and over).
Because this is such a dominant activity, becoming efficient with the step
operations in Visual Studio is important for maximizing the use of your time
during a debug session. Here, we cover each of the stepping options and
provide examples.

Start Debugging
The most common way to start a debug session is selecting the Start Debugging
option (green “play” arrow) from the Debug menu or the similar arrow on the
Standard toolbar. Of course, F5 also does the trick. This starts a debug session
but does not break into code unless an exception occurs or a breakpoint is
encountered. This is a common operation for developers testing their code
without wanting to walk through it or those who use a lot of breakpoints.
The Step Into command is another option available from the Debug menu and
toolbar. (You can also press F11 as a shortcut.) Two behaviors are commonly
associated with this one command. First, when in an active debug session, Step
Into steps into the next line of code and executes it (more on this in a moment).
The second behavior is related to when you invoke the command for an
application that is not currently running in debug mode. In this case, the
application is compiled and started, and the first line is presented to you in the
debug window for stepping purposes. This is, in essence, stepping into your
application. This works great for Windows, WPF, Console, and similar
applications. However, it is not practical for most web applications. If you
step into a web application at start time, you are likely stepping into someone
else’s JavaScript code (and a lot of it).
For web applications, you should start debugging using the Start Debugging
option on the Debug toolbar or the Run button on the Standard toolbar. In this
case, your web application simply runs in debug mode and only steps into code
if you set a breakpoint or an error occurs. You can also choose the line from
which you want to start stepping through code using the Run to Cursor option.
(See the following section.)
A call to the Step Over command (Debug menu, toolbar, or F10) while your
application is at rest results in the same behavior as Step Into. That is, your
application is compiled and started in a debug session on the first line of code.
(Again, for websites, this is typically a JavaScript file.)

Run to Cursor
One of the more handy (and overlooked) features of the debug toolset is Run to
Cursor. This feature works the way it sounds. You set your cursor position on
some code in the IDE and invoke the Run to Cursor command (right-click or
Ctrl+F10). The application is compiled and run until it hits the line of code
where your cursor is placed. At this point, the debugger breaks the application
and presents the line of code for you to step through. This capability is
especially handy because this is how many developers work. They are looking
at a specific line (or lines) of code and want to debug this line. They do not
need to start from the first line and might not want to be bothered with
breakpoints. The Run to Cursor feature is, therefore, an efficient means to get
the debugger on the same page as you.
As an example, suppose we want to get to the first, real meaningful line of our
executing code in the Contoso University sample and begin stepping through.
We can open the HomeController.cs file. Here we will find a method
called Index. We can put our cursor inside this method and press Ctrl+F10
(or right-click and choose Run to Cursor). This starts the application and
breaks on this line of code as shown in Figure 10.17. Notice there is no
breakpoint set. From here, we can start stepping through code in our website.

FIGURE 10.17 You can tell the debugger to run to a given line of code and
stop before executing it using the Run to Cursor command.

In this example, we would get through the home page controller quickly. The
IDE would then start stepping through code in the shared layout file,
_Layout.cshtml. Eventually, the requested page will render to the
browser and no additional executing lines of code will be active in the IDE.
Provided you step through each line, however, the IDE still knows you want to
step through every line of code. Therefore, a subsequent request from the
browser (clicking on the Students link, for example) will also break into

http:HomeController.cs

the IDE (in this case on the StudentController.cs class).
Run to Cursor works even if the application user (tester or developer) is
required to activate some portion of the code prior to the code’s reaching the
cursor position. In this way, it acts like an invisible, temporary breakpoint. For
instance, consider an example in which users are presented with a default web
page. From here, they can select to edit their profiles. If you set the Run to
Cursor command on a line inside the code that executes to edit a profile, the
debugger still executes the application and waits until the user invokes the
given line of code.

Break All
If your application is already running in a debug session and you want to break
into the debugger, you can do so at any time by invoking the Break All
command from the Debug menu or toolbar (using the Pause button). (You can
also use the keyboard shortcut Ctrl+Alt+Break.) Invoking Break All stops your
application on the next executing line and enables you to interrogate the
debugger for information. The Break All command is especially useful if you
need to break into a long-running process or a loop that seems to have stalled
your application.

Note
Setting Break All on a web application that is waiting for a user
request does not break into any code by default. Instead, you get a
message from the IDE indicating that that call stack contains only
external code (provided Just My Code is enabled for debugging,
which is the default). You would need to click the Continue button
(green play arrow) to continue debugging in this scenario.

Step Into
During an active debug session (where the IDE is stopped on a line of code
waiting for instructions on how to move forward), you have basically three
options for moving through your code. You can step into a line or function, step
over a given function, or step out of a function. Let’s look at each option.
The Step Into command (F11) enables you to progress through your code one
line at a time. Invoking this command executes the current, highlighted line of
code and positions your cursor on the next line to be executed. The important
distinction between stepping into and other similar commands is how Step Into
handles lines of code that contain method calls. If you are positioned on such a
line, calling Step Into takes you to the first line inside that method being called.
For example, look at Figure 10.18. It shows an example of a call to present the
edit page for a university course. This line of code is calling an internal
method, PopulateDepartmentsDropDownList, to get all the
departments from which to select. A call to Step Into will result in your
stepping into the first line of this method.

http:StudentController.cs

FIGURE 10.18 Stepping into a line of code can take you into another
method (or class).

Figure 10.19 shows stepping into this method. Notice that you are now
positioned to step line by line through the called method. Of course, when you
reach the end of this method, the debugger returns you to the next line in the
calling function (back to the next line depicted in Figure 10.18).

FIGURE 10.19 The results of stepping into another method.
	

Note
Visual Studio helps manage the many code windows you step
through while in a debug session. It does not fully open them.
Instead, it presents them to you and closes each one as it is no
longer needed. This prevents you from having a dozen or more
code windows open at the end of your debug session.
If you want to keep a code window open, however, you can do so
using the Keep Open icon on the Window tab. You can also use
the Text Editor toolbar to set flags on certain code elements to
return to them later.

Step Into Specific
The Visual Studio debugger is set by default to step over property calls and
basic operators. This eliminates simple calls like a property read that you
likely do not want to interrogate line by line. You will get a warning message
about this behavior from the IDE the first time you encounter it. You can tell the
IDE to stop reminding you about this fact.
There are times, however, when you do want to step into a specific property or
operation. To do so, you can right-click the line of code about to be executed
and choose Step Into Specific from the context menu, as shown in Figure
10.20. This line of code has two options: call the property getter for the DAL
Student object, or step into the Find code in the DataSet class of
System.Data.

FIGURE 10.20 You can step into a specific property or operator call in the
	
IDE.
	

Note
You can change this default behavior form the Debugging Options,
General settings (Debug menu, Options item). Here you will see
the option Step Over Properties and Operators (Managed Only).
Unchecking this option will tell the debugger to always step into
properties and operators of managed code.

Step Over
The Step Over command (F10) enables you to maintain focus on the current
procedure without stepping into any methods called by it. That is, calling Step
Over executes line by line for the current executing method but does not take
you into any function calls, constructors, or property calls outside the executing
method.
For example, consider Figure 10.18. Here, the debugger is positioned on the
call to PopulateDepartmentsDropDownList. If you call the Step
Over command, the function executes in its entirety without your stepping
through it. Instead, the next line to execute in step mode is the line following
the call to PopulateDepartmentsDropDownList (return
View(course);). Of course, any exception thrown by the function you step
over (and not handled by your code) results in the debugger breaking into your
code (and the function) as normal.

Step Out
The Step Out command (Shift+F11) is another useful tool. It allows you to tell
the debugger to finish executing the current method you are debugging but
return to break mode as soon as it is finished. This is a great tool when you get
stuck in a long method you wish you had stepped over. In addition, you might
step into a given function only to debug a portion of it and then want to step
back out.
For example, refer again to Figure 10.19. Recall that you stepped into this
method from the code in Figure 10.18. Suppose that you start stepping. After
you take a look and verify some of the code, you simply want to have the
function complete and return to debugging back in the calling function (the next
line in Figure 10.18). To do so, you invoke Step Out from the toolbar. This also
saves you from stepping should code in this function call other code.

Continuing Execution
When you are in a debug session, the Start Debugging command changes to
Continue. The Continue command is available when you are paused on a given
line of code in the debugger. It enables you to let the application continue to
run on its own without stepping through each line. For example, suppose you
walked through the lines of code you wanted to see, and now you want to
continue checking your application from a user ’s perspective. Using Continue,
you tell the application and debugger to keep running until either an exception
occurs or a breakpoint is hit.

Ending a Debug Session
You can end your debug session in several ways. One common method is to
kill the currently executing application. This might be done by closing the
browser window for a web application or clicking the Close button of a
Windows application. Calls in your code that terminate your application also
end a debug session.
You also have a couple of options available to you from the Debug menu. The
Terminate All command kills all processes that the debugger is attached to and
ends the debug session. There is also the Detach All option. Figure 10.21
shows both options from the Debug menu. Detach All simply detaches the
debugger from all running processes without terminating them. This capability
can be useful if you’ve temporarily attached to a running process, debugged it,
and want to leave it running.

FIGURE 10.21 You can detach from a running process but leave the process
running.

Indicating When to Break into Code
You control the debugger through breakpoints and tracepoints. With these, you
can tell the debugger when you are interested in breaking into code or
receiving information about your application. Breakpoints enable you to
indicate when the debugger should stop on a specific line in your code.
Tracepoints were introduced in Visual Studio 2005. They are a type of
breakpoint that enables you to perform an action when a given line of your
code is reached. This typically involves emitting data about your application to
the Output window. Mastering the use of breakpoints reduces the time it takes
to zero in on and fix issues with your code.
The most common method of setting a breakpoint is to first find the line of code
on which you want the debugger to stop. You then click in the code editor ’s
indicator margin for the given line of code. Doing so places a red circle in the
indicator margin and highlights the line of code as red. Of course, these are the
default colors; you can change the look of breakpoints in the Tools, Options
dialog box under the Environment node, Fonts and Colors.
There are a few additional ways to set breakpoints. For instance, you can
right-click a given line of code and choose Insert Breakpoint from the
Breakpoint context menu; this will set a breakpoint using the indicator margin.
You can also choose New Breakpoint from the Debug menu (or press Ctrl+D,
N) to open the New Breakpoint dialog box, in which you can set a function
breakpoint. We cover this in the next section.

Setting a F unction Breakpoint
A function breakpoint is just a breakpoint that is set through the New
Breakpoint dialog box (see above as to how to invoke). It is called a function
breakpoint because it is typically set at the beginning of the function (but does
not need to be). From the New Breakpoint dialog box, you can manually set the
function on which you want to break, the line of code in the function, and even
the character on the line.
If your cursor is on a function or on a call to a function when you invoke this
dialog box, the name of the function is automatically placed in the dialog box,
or you can type a function name in the dialog box. Figure 10.22 shows the New
Breakpoint dialog box in action. Notice that you can manually set the line and
even the character on the line where the breakpoint should be placed (for lines
of code that include multiple statements).

FIGURE 10.22 You can set a function breakpoint for a given function by
name; Visual Studio will find the function in your code and set the

breakpoint on your behalf.

In the example in Figure 10.22, the cursor is on a call to
PopulateAssignedCourseData. Notice that the New Breakpoint
dialog has the Use IntelliSense to verify the function name option selected.
Clicking the OK button will let the IDE find the function and set a breakpoint
on it inside your code. It does not set a breakpoint on the line calling the
function. To do that, you could just click the indicator margin for that line of
code.

Note
If you specify an overloaded function in the New Breakpoint
dialog box, you must specify the actual function on which you
want to break. You do so by indicating the correct parameter types
for the given overload. For example, if you have a function called
GetCustomer that takes a customerId parameter (as an
int) and an overload that also looks up a customer by name (as a
string), you indicate this overload in the Function field as
GetCustomer(string).

Recognizing the Many Breakpoints of Visual Studio
Visual Studio has a number of breakpoint icons. These icons enable you to
easily recognize the type of breakpoint associated with a given line of code.
For instance, a round, filled circle is a common breakpoint, whereas a round,
hollow circle represents a common breakpoint that has been disabled. We’ve
provided Table 10.3 for reference purposes. It shows some of the more
common icons associated with breakpoints and presents a description of each.

TABLE 10.3 The Breakpoint Icons

Working with the Breakpoints Window
The Breakpoints window in Visual Studio provides a convenient way to
organize and manage the many conditions on which you intend to break into the
debugger. You access this window from the Debug menu or toolbar (or by
pressing Ctrl+D, B). Figure 10.23 shows the Breakpoints window inside
Visual Studio with a number of active breakpoints.

FIGURE 10.23 Use the Breakpoints window to manage the many
breakpoints in your debug session.

The Breakpoints window also has its own toolbar (refer to Figure 10.23) that
enables you to manage the breakpoints listed in the window. The commands
available from the toolbar are described in detail in Table 10.4.

TABLE 10.4 The Breakpoints Window Toolbar

Managing Each Individual Breakpoint
The Breakpoints window also gives you access to each breakpoint. It serves as
a launching point for setting the many options associated with a breakpoint. For
example, you can disable a single breakpoint by toggling the check box
associated with the breakpoint in the list. In addition, you can set the many
properties and conditions associated with a breakpoint. Figure 10.24 shows a
disabled tracepoint and a disabled breakpoint; it also shows the context menu
associated with an individual breakpoint. Notice, too, that this dialog is for an
active debug section. The highlighted breakpoint (bold) is the current, active
breakpoint in the IDE awaiting instruction from the developer.

FIGURE 10.24 You can manvage individual breakpoints inside the
	
Breakpoints window.
	

Notice that from this context menu for a breakpoint, you can delete the
breakpoint and navigate to its related source code (Go to Source Code). More
important, however, is the access to setting the conditions and filters
associated with the breakpoint. We cover using each of these options next.

Labeling Breakpoints
You can provide labels for your breakpoints, which enables you to define
categories of breakpoints and quickly find them in the Breakpoints window.
For example, you might want to set a number of breakpoints and tracepoints
related to a specific scenario in your code, such as editing an instructor record
or adding a new student. These breakpoints are useful when you need to
modify and review this code. However, when you are working on unrelated
code, you might want to turn a whole group of breakpoints off. Breakpoint
labels support this scenario.
You label a breakpoint by selecting Edit Labels from the breakpoint context
menu (refer to Figure 10.24 to see an example). The Edit Breakpoint Labels
dialog box opens, as shown in Figure 10.25. Here you can add a new label and
apply that label to the selected breakpoint. Alternatively, you can select one or
more labels from the existing labels previously defined.

FIGURE 10.25 You can use the Edit Breakpoint Labels dialog box to label
breakpoints to make them easier to find and work with as a group.

You can work with the breakpoint labels inside the Breakpoints window. You
can sort the list by the Labels column, as shown in Figure 10.26. In addition,
you can use the Search feature to find breakpoints based on keywords
contained in the labels.

FIGURE 10.26 You can sort or search breakpoints based on their labels.

Breakpoint Conditions and Actions
Often, setting a simple breakpoint is not sufficient (or efficient). For instance,
if you are looking for a particular condition to be true in your code (a
condition that seems to be causing an exception), you would prefer to break
based on that condition. This saves the time of constantly breaking into a
function only to examine a few data points and determine that you have not hit
your condition. You might also want to set an action to execute should the
breakpoint be hit (such as logging information to the Output window). The
BreakPoint Settings dialog allows you to set breakpoint conditions and actions.

Setting a Breakpoint Condition
A breakpoint condition enables you to break into the debugger or perform an
action when a specific condition either is evaluated as true or has changed.
Often, you know that the bug you are working on occurs only based on a very
specific condition. Breakpoint conditions are the perfect answer for
troubleshooting an intermittent bug.

There are three types of conditions you typically add to breakpoints:
Conditional Expression, Hit Count, and Filter. There are a couple ways to add
a condition to your breakpoint: inside the Breakpoints window and using the
new breakpoint settings right inside the code editor.
To set a breakpoint condition from within the Breakpoints window, you select
the breakpoint on which you want to apply a condition and then right-click it to
open the context menu for the given breakpoint. Refer to Figure 10.24 for an
example of the context menu; here you would select the Settings option to set a
breakpoint condition (or action).
The other option is to launch the breakpoint settings dialog right inside your
code editor. You do so by hovering over the breakpoint icon in the indicator
margin of the code edit. This will show two icons: breakpoint settings (gear
icon) and disable breakpoint (filled circle over an open circle). Figure 10.27
show the results of hitting the first icon: breakpoint settings.

FIGURE 10.27 You can use the Breakpoint Settings dialog box directly in
the code editor to set a Boolean code condition that tells the debugger when

to stop on your breakpoint.

Notice in Figure 10.27 that, when setting the breakpoint condition, you have
access to IntelliSense. After setting the condition using the code editor, the
settings window stays visible in your code editor and your breakpoint icon is
given a plus sign. You can close this window if it is in your way. You can
reopen by again hovering over the breakpoint icon and clicking the gear icon
from the indicator margin.
When you set a condition expression as a condition (as shown in Figure
10.27), you have two options: Is True and Has Changed. The Is True option
enables you to set a Boolean condition that, when evaluated to true, results
in the debugger ’s breaking into the given line of code.
For example, suppose that you are notified of an error that happens when

populating a collection of student objects. There are many options where you
could set your breakpoint. Suppose you want to walk through code in your
view (.cshtml page). You could do so by setting a breakpoint in the view
and then setting a condition on that breakpoint. Figure 10.28 shows setting a
conditional expression Is True condition Model.Count() > 0 to a
breakpoint. This tells the debugger not to stop on this line of code unless this
condition is met.

FIGURE 10.28 An example of a conditional expression breakpoint being hit
in a debug session.

The other option for Conditional Expression breakpoints is Has Changed. This
option tells the debugger to break when the value of an expression changes.
The first pass through your code sets the value for the first evaluation. If the
value changes after that, the debugger breaks on a given line. This capability
can be useful when you have fields or properties with initial values and you
want to track when those values are being changed. In addition, Has Changed
can be useful in looping and if...then scenarios in which you are
interested only in whether the results of your code changed a particular value.

Tip
Your breakpoint information is persisted between debug sessions.
That is, when you close Visual Studio for the day, your
breakpoints are still there when you return. This validates the time
you might spend setting some sophisticated debugging options
because they can remain in your application and be turned on and
off as required. The options can also be exported to a file and
shared with other developers or other computers.

Setting a Breakpoint F ilter
Breakpoint filters enable you to specify a specific machine, process, or thread
on which you want to break. For instance, if your error condition seems to
happen only on a certain machine or within a certain process, you can debug
this condition specifically with a filter. Filters are most useful in complex
debugging scenarios in which your application is highly distributed.
You access this feature by adding a filter condition to a breakpoint from within
the code editor window or the Breakpoint Settings dialog accessed via a right-
click from the Breakpoints pane. When setting a Filter you can specify the
machine by name, the process by name or ID, or the thread by name or ID. You
can also specify combinations with & (and), || (or), and ! (not). This allows
you to get to a specific thread on a specific process on a certain machine.
Figure 10.29 shows the Breakpoint Settings dialog box; here we are adding
another condition to an existing breakpoint. Notice the Intellisense dropdown;
we can use it to stop provided that the running process is the development web
server (ProcessName = "iisexpress.exe").

FIGURE 10.29 You can set a breakpoint filter to stop the debugger inside a
specific process or thread or on a specific machine.

Using a Hit Count with a Breakpoint
Using Hit Count, you can tell the debugger that you want to break when a given
line of code is reached a number of times. Typically, you can find a better
condition than breaking based on Hit Count. However, this feature is useful
when you can’t determine the actual condition but know that when you pass
through a function a certain number of times, something bad happens. In
addition, the Hit Count option might be more useful in tracepoint scenarios in
which you are emitting data about what is happening in your code. You might
want to write that data only periodically.
Figure 10.30 shows the Breakpoint Settings dialog box with a Hit Count
condition being set.

FIGURE 10.30 You can set the debugger to break when it hits a line of code
a set number of times.

This dialog box also provides a few options for setting the actual hit count

condition. In the drop-down list to the right of Hit Count (Figure 10.30), the
following options are available:

= —Breaks when the hit count is equal to a number
is multiple of—Breaks when the hit count is a multiple of a certain
number
>= —Breaks when the hit count is greater than or equal to a specified
value

Visual Studio breaks into your code when the hit count condition is met. Figure
10.31 shows an example. Notice that you have the option of clicking the Reset
button and turning the hit count back to zero and continuing debugging from that
point. Note that you can add any condition to a breakpoint during an active
debug session.

FIGURE 10.31 When the hit count condition is met, you have the option to
	
reset the hit count from the editor.
	

Tip
You can combine all the breakpoint conditions we’ve discussed
on a single breakpoint. For example, you may add a condition and
a filter to a given breakpoint. Doing so allows you to create even
more specific scenarios for debugging your application using
breakpoints.

Working with Tracepoints (When Hit Option)
Tracepoints enable you to emit data to the Output window or run a Visual
Studio macro when a specific breakpoint is hit. You then have the option to
break into the debugger (like a regular breakpoint), process another condition,
or just continue executing the application. This capability can be useful if you
want to keep a running log of what is happening as your application runs in
debug mode. You can then review this log to get valuable information about
specific conditions and order of execution when an exception is thrown.
You can set tracepoints explicitly by right-clicking a line of code and choosing
Insert Tracepoint from the Breakpoint menu (see Figure 10.32). This simply
enables the Breakpoint Settings dialog in the code editor and automatically
enables an Action. Figure 10.33 shows setting the message for the action inside
this editor. You can also enable an Actions option for any given breakpoint.
Doing so adds tracking to the breakpoint.

FIGURE 10.32 You can set a tracepoint using the When Breakpoint Is Hit
	
dialog box.
	

FIGURE 10.33 You can set a tracepoint/action directly inside the code
editor.

The options available for logging and action include logging a message to the
Output window and continuing execution. The first option, logging a message,
enables you to output data about your function. You can use a number of
keywords to output data, such as $FUNCTION for the function name and
$CALLER for the name of the calling function. Additional keywords include:
$ADDRESS, $CALLSTACK, $PID, $PNAME, $TID, and $TNAME. You can
also output your specific variable values. You do so by enclosing the variable
names in curly braces.
The Continue execution option enables you to indicate whether this is a true
tracepoint or a breakpoint that contains a tracing action. If you choose to
continue, you get only the trace action (message/macro). If you indicate not to
continue, you get the trace action, and the debugger stops on this line of code,
just as with a regular breakpoint. This is essentially applying an action to a
standard breakpoint.
You can also combine tracepoint actions with conditions. When you do so, the
action fires only when the breakpoint condition is met.
For example, suppose a tracepoint is set inside the
CourseController.Details method. Imagine this tracepoint prints a
message to the Output window when the line of code is hit and simply
continues executing the application. Imagine, too, you set a condition on the
breakpoint to only break when a certain course is being accessed. The message
we intend to print is as follows:
Click here to view co de image

Function: $FUNCTION, Thread: $TID $TNAME, Id: {id}

This message prints the function name, the thread ID and name (if any), and the

value of the variable, id. Figure 10.34 shows two passes through the
tracepoint output in the Output window (Debug, Windows, Output). The
message is intermingled with other messages. The first message is at the top of
the Output window; the second is highlighted.

FIGURE 10.34 You can view the results of tracepoints inside the Output
window.

Viewing Data in the Debugger
After the debugger has thrown you into break mode, the next challenge is to
filter all the data that your application is emitting. Getting to the right data
helps you find and fix problems faster. Visual Studio tries to make the data
available where you want it. For example, DataTips show you variable values
right in the code editor. There are many similar examples in the way Visual
Studio shows debugging data when and where you need it, which are covered
throughout the following sections.

Watching Variables
A common activity in a debug session is to view the values associated with the
many variables in your application. Various windows are available to help you
here. The two most obvious are the Locals and Autos windows.

Locals Window
The Locals window shows all the variables and their values for the current
debug scope, which gives you a view of everything available in the current,
executing method. The variables in this window are set automatically by the
debugger. They are organized alphabetically in a list by name. In addition,
hierarchy is shown with variable members listed as a tree-based structure.
When the debugger breaks on an exception, it appears as $exception in the
list.
Figure 10.35 shows an example of the Locals window. In it, you can see the
sample Contoso University application paused while executing a call to get

student details for editing. Notice that the db object (of type
SchoolContext) is highlighted and expanded to show the various
properties and fields associated with this object. If you break in a nonstatic
method, the current instance is referenced by the this local that appears
expanded. The Value column shows the content of variables and fields, and it
turns red when it changes, like the id local at the bottom of Figure 10.35.

FIGURE 10.35 Use the Locals window to see variable values for the
	
currently executing method.
	

Tip
You can edit a value in the Locals or Autos window by right-
clicking the variable and choosing Edit Value from the context
menu. You can then change the value of the variable directly from
within the window (similar to changing variable values using the
Immediate window).

The Autos Window
Often, viewing all the locals provides too many options to sort through. This
can be true when there is just too much in scope in the given process or
function. To home in on the values associated with the line of code you are
looking at, you can use the Autos window, which shows the value of all
variables and expressions that are in the current executing line of code or in the
preceding line of code. This allows you to really focus on just the values you
are currently debugging.
Figure 10.36 shows the Autos window for the same method as was shown in
Figure 10.35. Notice there are not a lot of difference in this example.
However, the Autos window does show the additional call to
db.Students, which is the active code in the debug session. The Autos
window tries to anticipate the items you might need to review and shows their
values.

FIGURE 10.36 You can use the Autos window to automatically get
VARIABLE values for the last executed and the currently executing line of

code.

The Watch Windows
The Visual Studio Watch windows enable you to set a custom list of variables
and expressions that you want to keep an eye on. In this way, you decide the
items in which you are interested. The Watch windows look and behave just
like the Locals and Autos windows. In addition, the items you place in Watch
windows persist from one debug session to another.
You access each Watch window from the Debug menu (Debug, Windows,
Watch) or toolbar during an active debug session. The four Watch windows are
named Watch 1, Watch 2, Watch 3, and Watch 4. Having four Watch windows
enables you to set up four custom lists of items you want to monitor. This
capability can be especially helpful if each custom list applies to a separate
scope in your application.
You add a variable or an expression to the Watch window from either the code
editor or the QuickWatch window. If you are in the code editor during a debug
session, select a variable or highlight an expression, right-click, and choose
the Add Watch menu item. This takes the highlighted variable or expression
and places it in the Watch window. You can also drag and drop the highlighted
item into a Watch window. Also, from the Autos and Locals windows, you can
right-click a variable and select Add Watch.

Note
Watch windows now support lambda expressions; you can write a
lambda expression as a Watch “variable” and monitor the value of
the expression within the debug Watch window.

QuickWatch
The QuickWatch dialog enables you to quickly view the result of a single
variable or expression; you can also add an item from QuickWatch to an
existing Watch window.
You set a QuickWatch item by highlighting it in the code editor, right-clicking,
and choosing QuickWatch from the context menu. From the QuickWatch
window, you can write expressions and add them to the Watch window. When

writing your expression, you have access to IntelliSense. Figure 10.37 shows
the QuickWatch window; notice here we add a watch for the expression id
!= null.

FIGURE 10.37 The QuickWatch window enables you to define expressions
and monitor their results during a debug session.

The item you add to QuickWatch is evaluated when you click the Reevaluate
button. Clicking the Add Watch button sends the variable to the Watch 1
window.

DataTips
DataTips enable you to highlight a variable or an expression in your code
editor and get information right in the editor. This feature is more in tune with
how developers work. For example, if you are looking at a line of code, you
might highlight something in that line to evaluate it. You can do this by creating
a QuickWatch. However, you can also simply hover your mouse over the item,
and its data is unfolded in a DataTip. In addition, Visual Studio lets you pin
your data tips directly to your code window so that they are always visible
during a debug session inside your code editor.
Figure 10.38 shows a DataTip active in a debug session. Here, the cursor is
positioned over a string variable. If it were a complex object with multiple
properties, the IDE would present a plus sign to allow you to expand the
variable to unfold the many properties and fields of the object. Notice, too, you
can right-click the member and edit its value, copy it, or add it to the Watch
window (as shown). Also, notice the magnifying glass icon next to the items in
the list; it allows you to select a specific visualizer for a given item (more on
visualizers shortly).

FIGURE 10.38 You can use DataTips to quickly visualize your object data
	
in the debugger.
	

Tip
The DataTips window can get in the way of viewing code.
Sometimes you need to see the DataTips and the code underneath.
In this case, pressing the Control (Ctrl) key makes the DataTips
window transparent for as long as you hold the key.

P inning a Data Tip
In Figure 10.38, the highlighted member, sortOrder has a pin icon on the far
right of the window. This icon enables you to pin your DataTip to the code
window, which ensures this DataTip is displayed each time you pass through
the code in the debugger. This is a faster, more accessible version of a Watch
window.
You can pin all sorts of code items as DataTips. You can pin an entire object,
or, in the case of the example, a single variable. You can also move pinned
DataTips around in the editor to position them accordingly. In Figure 10.39, we
have pinned a DataTip to the code editor. Note that when the debug session is
over, the indicator margin in the code window includes a pin to indicate there
is a DataTip pinned to the given line of code. After a DataTip is pinned, you
can highlight it to remove it, unpin it, or add your own comment to the DataTip.

FIGURE 10.39 You can pin DataTips to the code editor to provide easier
	
variable watching during a debug session.
	

Tip
You can use the Export and Import options from the Debug menu
to save your DataTips to an XML file and reuse them on another
computer.

P erfTips
The Visual Studio 2015 debugger has added performance information directly
inside the code editor. This information is available during an active debug
session. To see line by line performance, you can execute a line of code, run to
breakpoint, or step over a line; you then simply hover over the line of code that
was executed, and you can see the duration of the execution (in milliseconds).
This makes recognizing performance issues in your code much easier.
Clicking the performance tip in the code editor brings up the new Diagnostic
Tools pane as shown in Figure 10.40. This is the diagnostic information being
captured about your running application (more on this in a moment). Here you
can use the diagnostic window to see time elapsed between steps in the
Debugger (among other things).

FIGURE 10.40 Select a PerfTip in the editor to bring up diagnostic
information about lines of code previously executed.

Diagnostic Tools
Visual Studio 2015 includes the new Diagnostic Tools window that
automatically begins tracking performance information about your running code
during a debug session. You access this tool from the Debug menu, Show
Diagnostic Tools option (or CTRL+Alt+F2).
This Diagnostic Tools window (shown in Figure 10.41) shows running graphs
over a timeline at the top of the window and detailed information in tabs at the
bottom half of the window. You can use this information to find where your
code is using too much memory or CPU. The tool works closely with your
debugger to break the graphs into sections based on when you are in the
debugger stepping through code versus when you are simply running your
application.

FIGURE 10.41 Visual Studio 2015 provides the Diagnostic Tools window
to give you profiling data as your application is being debugged.

There is also a timeline across the top of the window that shows a running time
as your application is being debugged. You can use the toolbar in the window
to zoom in and out of this timeline. You can also select a section of the timeline
and then use slider bars to select a start and end time to zero in on a portion of
your data. This can be useful, for example, if you see a spike in memory usage.
You can zero in on this portion of the data and then use the Memory Usage tab
to take a snapshot of the objects that were running on the heap.

Visualizing Data
When you are looking at variable values, what you really want to get to is the
data behind the object. Sometimes this data is obscured by the object model
itself. For example, suppose you are looking for the data that is contained in a
DataSet object. To find it, you have to dig many layers deep in a Watch
window or a DataTip. You have to traverse the inner workings of the object
model just to get at something as basic as the data contained by the object. If
you’ve spent much time doing this, you know how frustrating it can be.
Visual Studio offers a quick, easy way to access the data contained in an
object. It does so through a tool called a visualizer. Visualizers are meant to
present the object’s data in a meaningful way.
A number of visualizers ship with Visual Studio by default. The following list
highlights many of them:

HTML—Shows a browser-like dialog box with the HTML interpreted
as a user might see it.
XML—Shows the XML in a structured format.
JSON—Shows JSON structured results in an easier-to-read format.

Te xt—Shows a string value in an easy-to-read format.
WPF Tre e Visualiz e r—Enables you to view the WPF application
events in a meaningful way. We cover WPF applications in Chapter 21,
“Building WPF Applications.”
DataSe t—Shows the contents of the DataSet, DataView, and
DataTable objects.

There is also a framework for writing and installing visualizers in Visual
Studio so that you can write your own and plug them into the debugger. You can
also download more visualizers and install them. The possibilities of
visualizers are many—as many ways as there are to structure and view data. A
few ideas might be a tree-view visualizer that displays hierarchical data or an
image visualizer that shows image data structures.
You invoke a visualizer from one of the many places you view data values,
including Watch windows and DataTips. Visualizers are represented by a
magnifying glass icon. Refer to Figures 11.38 or 11.39 to see an example of the
magnifying glass icon used to launch a visualizer. As an example, instead of
digging through the object hierarchy in a Watch window to get at data, you can
invoke the DataSet visualizer right from a DataTip. Figure 10.42 shows the
visualizer in action for a string variable named query.

FIGURE 10.42 Use visualizers (magnifying glass icon) such as the Text
	
Visualizer to make data easier to view in the debugger.
	

Using the Edit and Continue Feature
Edit and Continue enables you to change code as you debug without killing
your debug session. You can make a modification to a line of code or even fix
a bug and keep working in break mode. Visual Basic developers who worked
in versions prior to .NET should recall this powerful tool. Its absence in .NET
made it one of the most requested features. The good news is that Edit and
Continue was added in 2005 to both Visual Basic and C#. In 2008, this feature
was also added to Visual C++. Visual Studio 2015 continues to improve on
this feature.

ntinue. You simply make your code
eep running through your code with a

turned off, you can reenable it using
Tools menu.

le for Edit and Continue. In fact, it
best practice, any major additions to
ode. If your change is within the body
passing the Edit and Continue test.
dy require the debugger to restart.
Edit and Continue include the

e statement
tack that lead to the current, active

events, or properties

es supported (and not
earch MSDN for “Edit and
k to the Edit and Continue
guage. You can then select the
hanges. Here you can

d unsupported changes for your

e’ve looked at many of the
indows and web applications.

sses, multithreaded applications, and
mple, presents unique needs in terms
resents a few of the more common,
ncounter.

to a running application on another
ation in its environment. This is often
occurring on specific hardware.

orks on my machine.” Remote
out why their application doesn’t

various scenarios, such as debugging
ices, web applications, remote

is getting it set up properly. The

There is no trick to invoking Edit and Co
change during a debug session and then k
Step command or Continue.
The feature is turned on by default. If it is
the Options dialog box available from the
Not all code changes you make are eligib
should be used only in minor fixes. As a
your code should not be done in debug m
of a method, it has a higher likelihood of
Most code changes outside the method bo
Common changes that are not eligible for
following:

Changing code on the current, activ
Changing code on any calls on the s
statement
Adding new types, methods, fields,
Changing a method signature

Note
For a more exhaustive list of featur
supported) by Edit and Continue, s
Continue.” From there, you can lin
documentation for your chosen lan
link, titled Supported Code C
review the full list of supported an
chosen language (C#, VB, C++).

Advanced Debugging Scenarios
Debugging can sometimes be complex. W
straightforward scenarios presented by W
However, the debugging of remote proce
multicore (parallel) applications, for exa
of configuration and tools. This section p
advanced debugging scenarios you will e

Remote Debugging
Remote debugging allows you to connect
machine or domain and debug that applic
the only way to experience errors that are
We’ve all heard this developer ’s cry: “W
debugging helps those developers figure
work in other environments.
Remote debugging makes a lot of sense in
SQL server-stored procedures, web serv
services or processes, and so on.
The hardest part about remote debugging

actual debugging is no different from the debugging we’ve discussed thus far.
However, the setup requires you to jump through a lot of hoops in terms of
installation and security. These hoops are necessary because you do not, by
default, want developers to easily connect debug sessions to applications on
your servers.
There is some good news. Visual Studio tries to minimize and simplify the
setup and configuration of remote debugging. Microsoft has written the Remote
Debugging Monitor (msvsmon.exe) for this purpose. However, developers
still find the setup tasks somewhat arduous (but rewarding when finished). We
do not cover the setup in great detail here because it is often environment
specific. We suggest querying MSDN for “Remote Debugging” to get the full
walk-through and troubleshooting advice for your specific situation.

Tip
You can also remote debug Windows Store apps running on a
separate device such as a Windows Surface. See MSDN, “Debug
and test Windows Store apps on a remote device from Visual
Studio.”

We do offer the following, however, as a set of high-level tasks that you need
to complete to get remote debugging working:

1. Install the remote debugging monitor (msvsmon.exe) on the remote
machine being debugged. You install it using the setup application,
rdbsetup.exe. You can also run it from a file share. You need to
select the version that matches the version of Visual Studio you are using
and the type of processor on the remote device (x86, x64, ARM).

2. Configure remote debugging permissions. Typically, this means one of
two things. First, you can set up identical accounts (username and
password) on both machines (debugging and server). The debugging
account may be a local or a domain account. However, the server
account should be a local account. Second, you can give your user
account administrative access to the machine being debugged, but this is
often a security risk that you shouldn’t take lightly.

3. Run the remote debugging monitor on the remote machine. This is a
Windows application (with a GUI). You can also set the monitor to run
as a Windows service. This capability can be useful for specific server
scenarios and ASP.NET remote debugging.

4. If your debug machine is running XP with SP2, you have to configure
your security policy and firewall for remote debugging. (See the MSDN
documentation “How to: Set Up Remote Debugging.”) If you are running
Windows 7 or 8+, you might have to elevate privileges when running
Visual Studio (run as Administrator).

5. Run Visual Studio on your debug machine as you would to debug any
process. Open the project that contains the source for the process you
want to debug.

6. Attach to the running process on the remote machine using Attach to
Process. You have to browse to the machine you want to debug and find

the process running on that machine.
As you can see, getting remote debugging set up can be a challenge. However,
if you have a test environment that you typically debug, the setup should be a
one-time operation. From there, you should be able to debug in a more realistic
environment as well as walk through SQL-stored procedures.

Note
You can set up remote debugging to the Azure cloud. This is
actually pretty straightforward. For a detailed walk-through, see
MSDN “Debugging a Cloud Service or Virtual Machine in Visual
Studio.”

Debugging WCF Services
For the most part, you debug a web service (or Windows Communication
Foundation [WCF] service) using the same tools and techniques we’ve
discussed to this point. The key to debugging services is properly attaching to
them. There are basically two options for this. The first option is to step into a
service directly from within code you are debugging (a client calling a
service). The second option is to attach to a service that has already been
called by a client. Let’s look at these options.

Stepping into a WCF Service
You can step directly into a WCF service provided that your calling code (or
client) has a two-way contract with the service. This is called a Duplex
Contract, and it enables the client and the service to communicate with one
another. Each can initiate calls. This is useful when your server needs to call
back to the client or raise events on the client. You use the
ServiceContractAttribute to set this up.
Your client must also be synchronous for this to work. That is, the client cannot
make a call to the WCF service asynchronously and then begin doing
something else. Instead, it must call and wait.

Attaching to a WCF Service
You can use the Attach to Process option (covered earlier) to debug both WCF
and Web Services. In these cases, the service is already running typically in a
process outside of your current debug environment. To attach and debug to this
process, you must make sure you have the code for the service loaded inside of
Visual Studio. Next, the service process must be hosted by IIS or IIS Express
for development. Finally, the service must have been invoked by a WCF-based
client to gain access to its execution.

Debugging Multithreaded Applications
A multithreaded application is one in which more than a single thread is
running in a given process. By default, each process that runs your application
has at least one thread of execution. You might create multiple threads to do
parallel processing. This can significantly improve performance, especially
when run on today’s multicore processors and hyperthreading technology.
However, multithreading comes at a cost. The code can be more complex to
write and more difficult to debug. If you’ve ever written a multithreaded
application, you already know this. For example, just stepping line by line
through a multithreaded application to debug it might have you jumping from
one thread to another. You would then have to keep track of this flow in your
head to make sense of the diagnostic information you see.
Fortunately, Visual Studio provides a few tools that make the job a bit easier.
We do not cover coding a multithreaded application here. Instead, we cover
the debug options available to you for debugging one, such as the following:

The ability to view threads in your source during a debug session
The Debug Location toolbar used to view processes, threads, and
flagged threads
The Thread window used to work with a list of threads in your
application
Breakpoint filters that enable you to set a breakpoint for an individual
thread

Let’s look at each of these features in more detail.

Note
MSDN provides a simple code sample that is useful for working
through debugging a multithreaded application. Search for the
topic “Walkthrough: Debugging a Multithreaded Application.” We
use that code sample here to help drive home the key debugging
concepts. You can also download this sample from the book’s
website.

Discovering and Flagging Threads
Visual Studio enables you to visualize the threads in your application in debug
mode. When you are stopped on a breakpoint, your application is paused, and
all threads in that application are halted. The threads are still there. They are
put in a suspended state so you can examine their statuses. They do not
continue until you continue the execution of your code. However, in a
multithreaded scenario, threads outside the one on which your code broke
might not be easily visible in the debugger. To see them in the Debug menu, you
can use the Show Threads in Source option from the Debug menu, as shown in
Figure 10.43.

FIGURE 10.43 Select the Show Threads in Source icon from the Debug
toolbar to tell Visual Studio to visually display threads in the debug session.

Selecting Show Threads in Source highlights other threads that exist in your
code in the indicator margin (or gutter) of the code window during a debug
session. The icon used to highlight these items looks like two wavy lines (or
cloth threads). Figure 10.44 shows an example of a multithreaded application
in a debug session.

FIGURE 10.44 The thread icon in the indicator margin of the code window
indicates that a thread is stopped on a line of code in the debug session.

Note
Most debug scenarios are single threaded. Therefore, you will not
see another thread executing. You must write an application that
uses more than one thread to see the thread icon in the debugger.

Notice the graphic on the left of line 26. This indicates that a thread exists at
this location in your source code. Hovering over the indicator shows the thread
or threads that the indicator references. Each thread is shown by its ID number

(in brackets) and name (if any).

Tip
Naming threads can help you better identify them when debugging.
To name a thread, you set the value of the Name string property of
the System.Threading.Thread instance you are interested
in. Also, notice that you can’t rename the same thread more than
once or a System.InvalidOperationException is
thrown.

Now that you’ve found a thread, you might want to flag it for further
monitoring. This simply helps group it with the threads you want to monitor
versus those you do not care about. You can flag a thread right from the
indicator margin. To do so, right-click the indicator and choose the Flag option
on the context menu. You can see this flag under the cursor shown in Figure
10.44.
Flagged threads show up highlighted (red flag) in the Threads window (Debug,
Windows, Threads). This window is shown at the bottom of Figure 10.44. You
can use this window to flag or unflag additional threads. Flagged threads
provide special grouping in both the Thread window and the Debug Location
toolbar. We cover these features next.

Managing Debug Processes and Threads
You can switch between the processes you are debugging and the threads
within those processes by using the Debug Location toolbar. (You might have
to right-click the toolbar area and add this toolbar to the IDE.) This toolbar is
shown in Figure 10.45. On the left is the Process list. Here you can select a
process to view details about that process, including executing threads. Many
multithreaded applications are run within a single process, however.

FIGURE 10.45 The Debug Location toolbar.

The Thread list drop-down (see Figure 10.45) on the Debug Location toolbar
shows a list of threads for the selected process. Notice that the threads are
shown with their IDs, names, and flag indicators. You can select a thread in
this list to jump to source code associated with the thread. If no source code is
associated with a selected thread, the IDE indicates that source code is not
available.
You can filter the list to show only flagged threads by toggling the second
button to the right of the Thread list (shown with two flags). The first button to
the right flags (or unflags) the current, active thread.
You can also manage threads from within the Threads window (Debug,
Windows, Threads). Here you see all threads listed for a given process. Figure
10.46 shows an example. Notice that the left of the list shows the flagged status
of threads. We have flagged a thread in a sample application. Notice also that
these threads can be named. This allows for easy recognition in the Name
column.

FIGURE 10.46 The Threads window provides total control over the threads
in a debug session.

You have several options available when you right-click a thread in the
window, as shown in the context menu in Figure 10.46. Notice the Switch to
Thread option, which allows you to switch the active thread being debugged.
The active thread is shown with a yellow arrow in the thread list (to the right
of the flag). Switching active threads changes the debug context and content in
the debug windows. You can also Freeze (or pause) threads using this context
menu. (Of course, you can then thaw [or resume] them, too.) Freezing a thread
is equivalent to suspending it. The icons for freezing and thawing selected
threads are on the far right side of the toolbar in the Threads window. The
Threads window has a number of other features. You can use it to search the
calls stack group threads by process, ID, category, priority, suspended state,
and more.

Tip
When debugging multithreaded applications, it’s often easier to
freeze all but one thread. This allows you to focus on what is
happening with the given thread.

Inspecting Individual Threads
When your application hits a breakpoint, all executing threads are paused. This
enables you to inspect them individually. As you’ve seen, you can use the
Debug Locations toolbar (refer to Figure 10.45) to change the selected thread
in the IDE. Doing so reconfigures the debug windows. This includes the call
stack and Watch windows (including Autos and Locals).
For example, imagine you are working on an application that has a main thread
of execution. It might then create two additional threads on which it does work.
In fact, the sample we started this section with works just like this. We added
two lines of code to the sample application (which you can download): one to
name each of the threads (InstanceCaller thread and StaticCaller
thread). We then increased the sleep times in each of the methods used as
delegates to create and sleep the threads. Finally, we set a breakpoint in the
StaticMethod on the Thread.Sleep line of code.

When you break into the application, you can inspect each of the executing
threads. Here you can see the code state for the selected thread (or any of the
other threads spawned by the application). Figure 10.47 shows an example.
Notice that the StaticCaller thread is the active thread in the Debug
Locations toolbar (top of the drop-down list). The code is also stopped inside
this method.

FIGURE 10.47 You can switch to active threads using the Debug Location
toolbar. Name your threads to make them easier to work with.

The sample code actually creates the InstanceCaller thread first and puts
it to sleep to simulate a long-running operation. You can select this thread using
the drop-down list shown in Figure 10.47. Figure 10.48 shows this thread
selected. Notice that the code window changes to the current line being
executed by this thread (Thread.Sleep). Because this is not the active
thread, this icon in the indicator margin is a different type of arrow, and the
selection is a different color (by default). In addition, the Autos window now
shows values for this thread, and the call stack shows the lifeline of this code.

FIGURE 10.48 Selecting another thread in a debug session allows you to
view the call stack for that thread and inspect its variables.

Breaking Based on a Specific Thread
You can also break on a line of code when it hits a thread. To do so, set a
breakpoint in your code and choose a breakpoint filter (covered earlier).
Figure 10.49 shows an example. In this example, the filter is set based on the
thread name. You could have multiple threads calling into this method.
However, you would only hit the breakpoint when the specific thread hit this
method.

FIGURE 10.49 You can add a breakpoint filter to stop Visual Studio on a
specific thread.

Debugging Parallel Applications
A parallel application is one that executes code simultaneously. This includes
multithreaded applications. Therefore, the multithreaded debugging discussed
thus far is applicable to parallel applications. However, there are additional
features of the .NET languages, the framework, and the Visual Studio Debugger
to help support parallel coding scenarios. These features are an attempt to take
advantage of the recent proliferation of many-core processors. Developers
want to take advantage of this computer power, which means they need to
begin changing the way they write their applications to take advantage of the
multiple cores, each capable of running one or more threads in parallel.
This section covers two of the new debugging features that help support
parallel programming: Parallel Stack and Parallel Tasks. Some of these
features also apply to multithreaded applications. However, the main focus of
these features is parallel applications written for multicore. Recall that
parallel programming means task-based programming using features of the
.NET 4.0 and above. You can refer to Chapter 3, “The .NET Languages,” for a
short discussion on parallel programming (System.Threading.Task,
Parallel.For, and so on).

The Parallel Stacks Window
As more cores become available and more programming is done to support
those cores, more threads will be executing in parallel. Therefore, you need
additional support for debugging the processing complexities of your
application. The Parallel Stacks window provides some help. It gives you a
view of either all threads or all tasks executing at any given moment in time.
The view is a diagram that shows the threads or tasks in your application, how
they were created, and full call stack information for each thread or stack.

Parallel Stacks Threads View
You access the Parallel Stacks window in an active debug session from the
Debug menu (Debug, Windows, Parallel Stacks). This window provides a
visual diagram of the threads executing in your application. Figure 10.50
shows an example of the Threads view of the sample application in the
Parallel Stacks window.

FIGURE 10.50 Use Threads view of the Parallel Stacks window to
visualize your threads.

In this example, notice that there are five threads in the application (see bottom
box). As you can see, if you hover over one of the thread call stack boxes, you
can see the thread IDs and their names (if they have been named). Hovering
over the initial grouping (5 Threads) will show all five threads represented by
the code in this application.

Tip
You can visualize external code (including that being executed by
the framework) in the Parallel Stacks window by right-clicking in
the window and selecting Show External Code.

The arrows in the diagram indicate how the threads are spawned within the
application and provide information such as the thread ID, name, and call
stack. You can use each thread’s call stack information to switch to the code
associated with a thread (and thus debug its context) by double-clicking.
The Parallel Stacks window has a toolbar at the top. In this case, the Threads
option is selected in the first drop-down (as opposed to tasks). You can toggle
between tasks (see the next section) and threads using this toolbar. The other
options for this toolbar are shown in Figure 10.51.

FIGURE 10.51 The toolbar in the Parallel Stacks window.
Switching to Method view using the toolbar (refer to Figure 10.51) changes the
diagram to highlight (or pivot on) a specific method in your code. In this view,
you can see all threads that enter the given method along with their call stacks
up to that method. You can then see the exit points from the method and the call
stacks following the method’s exit. Figure 10.52 shows the same sample code
(Figure 10.50) in Method view. Notice there is only a single thread entering
this method at present.

FIGURE 10.52 Use the Method view to show all threads that enter and exit
a method along with the related call stack information.

Parallel Stacks Task View
You can toggle the Parallel Stacks window to show tasks instead of threads.
You can use the drop-down in the toolbar to switch from threads to tasks. You
can then use the same diagram tool and related features to visualize tasks as
you would threads. Both tasks and threads are joined in this same tool window
because they are such similar concepts. Of course, this feature requires that
your application is coded to use tasks.
Recall that tasks are bits of work that can be executed in parallel by two or
more processor cores. You code tasks using the task scheduling service in the
.NET Framework’s parallel task library (System.Threading.Task
namespace). The task scheduler provides a number of services such as
managing thread pools on each core and providing synchronization services for
your code. This is an additional layer of abstraction over simply managing
your own threads or using the ThreadPool class. Instead, the framework
handles cores and threads. Therefore, trying to debug task-based applications

at the thread level is a challenge given the fact that the framework (and not
your code) is typically managing the threads.
Visual Studio provides two principal windows for looking at the task-level
abstraction of multicore development: Parallel Stacks (in Tasks view) and the
Parallel Tasks window. We discuss the latter in a moment. First, let’s look at
what can be done to view tasks using the Parallel Stacks window.

Tip
If you are debugging unfamiliar-but-parallel code and are unsure
if it uses tasks or threads, you can enable external code in the
Parallel Tasks window (right-click and select Show External
Code). In Threads view, you can see whether there are calls to the
Task class. This indicates the code was written using multitask
(and not simply multithreads).

You switch to Tasks view by selecting Tasks in the drop-down of the Parallel
Stacks toolbar. This shows the call stacks for each task being executed. It also
shows you the status of the task (waiting, running, scheduled). Figure 10.53
shows you an example of a parallel application running. Note the sample
application uses a naming scheme to show how various tasks can execute
simultaneously on different processors. Here, we are simply showing you how
you can use the tools in your application.

FIGURE 10.53 You can switch the Parallel Stacks window to Tasks view to
view the tasks running in your debug session.

Note
Like the multithreading sample we suggested you download from
MSDN, here we are using a parallel application sample. You can
create it, too, by following the MSDN topic “Walkthrough:
Debugging a Parallel Application.” You can also download this
sample from the book’s website.

This abstracted view helps you see the tasks in your application without
worrying so much about on which processor and thread they are executing. Of
course, you can switch to Threads view to see this information, too. Figure
10.54 shows the same sample code as Figure 10.53 at the same breakpoint in
the same window but for Threads view. Notice that in this simple example, the
parallel framework has created threads that are similar to the tasks (two main
threads executing the work). If you start to add a lot more work to this
application, however, you see inactive threads that are sitting in the pool
waiting to do work. You also start to see a single thread executing larger call
stacks (due to reuse) that do not align with your Tasks view.

FIGURE 10.54 The Threads view of the same spot in a debug session
depicted by the Tasks view shown in Figure 10.53.

The Parallel Tasks Window
Another way to look at the tasks running in your application is through the
Parallel Tasks window (Debug, Windows, Tasks). This window is actually
similar to the Threads window, but it shows the abstraction layer of tasks for
those developers doing task-based development.
Figure 10.55 shows an example of this window running in the same spot as
before for the parallel sample application. Notice that for each task (in this
case there are four) you can view the task ID, status, location, task (or entry
point for the task), thread assignment, and application domain. Note that this
example groups the tasks by their status (active, blocked, and so on). This is
done by right-clicking the status column and selecting Group by Status from the
context menu.

FIGURE 10.55 You can use the Parallel Tasks window in a similar manner
to the Threads window.

You can also use the Parallel Tasks window to flag tasks for viewing. You do
so using the arrows on the left side of each task in the dialog box. In addition,
you can right-click a task to freeze or thaw its associated thread. Alternatively,
you can use the right-click option Freeze All Threads But This One to focus on
a specific thread and task.
The Location column shows the current location of the task. If you hover over
this location, you see the call stack for the task. This is all code called thus far
in the given task. This mouseover is actually actionable. It is called a stack tip.
The stack tip enables you to switch between stack frames and view the code
inside a given call in the stack.

Debugging a Client-Side Script
Visual Studio lets you debug your client-side script (JavaScript and VBScript)
by enabling script debugging in the browser. This can be done in Internet
Explorer using the Internet Options dialog box (Tools, Internet Options). From
this dialog box, select the Advanced tab and then navigate to the Browsing
category (see Figure 10.56). Here you need to uncheck the Disable Script
Debugging option (checked by default). This tells IE that if it encounters a
script error, it should look for a debugger (such as Visual Studio).

FIGURE 10.56 You can enable client-side script debugging from IE’s
Options dialog box.

Next, set breakpoints inside your web view files within your <script>
blocks or inside any JavaScript code file. You can then stop on these lines and
debug them with Visual Studio. There are some limitations, however. If you are
having trouble, review “Limitations on Script Debugging” in the MSDN
documentation.

Debugging Crash Information (Dump Files)
It is often not possible to re-create all environment- or user-specific scenarios
in a development environment. Of course, many application bugs or crashes
happen without the developer present or a copy of Visual Studio running. In
these cases, you can use tools to generate a dump file of the application state at
the time of the issue.
Dump files save information about the state of your application. Dump files are
typically created in response to a major bug or an application failure (crash).
The dump file can then be sent to a developer. A developer can open the file
and connect it with the source code and debug symbols to debug the state of the
application at the time of the issue.

Dumping Debug Information
You can save running (but paused or on a breakpoint) .NET managed code as
dump files. You have a few options for creating these files. In a debugging
setting, you can use Visual Studio to create these files and share them with
other developers as necessary. Of course, other applications can also create
mini dump files, which then can be opened by Visual Studio for debugging.
Your options for creating dump files include the following:

Use the Save Dump As option from the Debug menu in an active debug
session of Visual Studio.
Attach to a running (or crashed) remote process from Visual Studio. (See
the information about attaching to a process earlier in this chapter.) You
can then break into that process and save the dump file using the Save
Dump As option.
Microsoft provides the utility UserDump as part of its OEM Support
Tools. You can use this utility to create dump files that Visual Studio can
read.
Microsoft provides the Autodump+ utility as part of the Microsoft
Debugging Tools for Windows. It, too, creates dump files for use by
Visual Studio.

We focus on how Visual Studio creates dump files. A quick web search will
lead you to the download for other dump-creating utilities.

Using Visual Studio to Create a Dump File
Creating a dump file with Visual Studio is straightforward. You stop (or break
into) the application at the point you want to capture. This might be at a place
in the testing where there is a known issue. You then select the Save Dump As
option from the Debug menu. The Save Dump As dialog box is then displayed,
as shown in Figure 10.57.

FIGURE 10.57 You can save a mini dump file with or without heap
information.

Notice that when you save a dump file, you can choose between creating the
file with heap information and without. The heap information is often not
required for many managed code debugging scenarios. Thus, you can save your
file without it and conserve hard drive space.

Debugging with a Dump File
The first step to debugging with a dump file is to open the file from the File
menu (File, Open, File) or by double-clicking the dump file. When you open a
dump file, the new Dump File summary page appears. This page displays
information about the dump file, such as when the dump file was created, the
version of the OS and CLR that was running when the dump file was written,
and the versions of the various other components (modules) that were running
at the time. Figure 10.58 shows an example of this summary page. Notice that
you can use the Modules search box to determine if a specific .dll or .exe
was loaded at the time of the dump.

FIGURE 10.58 The mini dump summary page shows you both detailed
information and next steps (actions) when you open a dump file.

The dump summary page provides a few actions. The two that developers use
the most are Set Symbol Paths and Debug with Mixed. The Set Symbol Paths
option enables you to indicate the paths to the symbol files (.pdb) that match
the build of the application from which the dump originated. By default, Visual
Studio looks for symbol files where your code executed. Therefore, if you
dump and open that dump on the same machine, you have nothing more to set
up. Visual Studio finds your symbol files. If, however, symbol files are created
on a per-build basis and dumps can originate from anywhere, you have to use
Set Symbol Paths to indicate where Visual Studio should find your latest
symbols.

Important
Symbol files (.pdb) are important if you intend to debug a built
application. For this reason, we recommend you store your
symbol files in a safe location along with the compiled versions
of your deployed code to make debugging a production issue
using a dump much easier. Symbols should also be generated for
Release builds.

Figure 10.59 shows an example of the Options, Debugging, Symbols dialog
box. In the top part of the dialog box, you can set up a symbol location, which
might be a server where builds are dropped or a local folder on your machine.
Notice, too, that you can load the Microsoft Public Symbols from their servers.
The middle section of the dialog box, Cache Symbols in This Directory,
enables you to set up a local folder for caching symbols downloaded from a
server, which saves time in that the files can load from a local source. You
indicate which modules of your symbol files should be loaded (or excluded) in
the last part of the dialog box. You can set this option to All Modules.

FIGURE 10.59 You can use the Symbols options to indicate a location for
symbol files and set up a local cache.

The other option available on the mini dump page (refer to Figure 10.58),
Debug with Mixed, enables you to start the debugger using the data found in the
mini dump file. It is helpful to know that a .NET symbol file (.pdb)
essentially contains information about your source files path, variable names,
and code line numbers. When you debug a dump file, Visual Studio looks at the
.pdb files it finds (searching your code or your symbol directory) and tries to
use this information to find your code files on your machine. If it can locate
your code, it opens the code file and gives you a rich debugging experience.

Debugging Windows Store Apps
Windows Store apps can be difficult to debug because they are often started,
suspended, and resumed based on user actions. These actions are controlled by
the Windows Process Lifetime Management (PLM) environment. When in
debug mode, however, these activation events (start, suspend, resume,
terminate) are disabled. Fortunately, you can still trigger these events using the
debugger.

Note
See Chapter 23, “Developing Windows Store Applications,” for
additional details on creating and debugging Windows Store apps.

You debug a PLM event by first setting a breakpoint in the event handler for the
event you want to debug. You then start to debug the application. From there
you can use the Debug Location toolbar to fire PLM events to respond to app
suspend, resume, suspend and shutdown, and even trigger background tasks.
For example, you may want to save the application state when the user
navigates away from your app or the device enters a low power state. To do
so, you would write code to handle the Suspending event. You might also
want to restore your application if the user reopens your application (prior to it
being terminated). To do so, you would respond to the Resuming event.
Once you’ve written your event handler, you run the application form the IDE
in Debug mode (using the green “play” arrow). You then set a breakpoint
inside the given event handler. Finally, you trigger the PLM event by clicking
on the Debug Location toolbar and selecting the appropriate event.
Figure 10.60 shows an example; notice the Lifecycle Events option on the
Debug Location toolbar. Also, notice the breakpoint set in the event handler,
OnSuspending. Clicking the Suspend option from the toolbar will fire from
inside the IDE the Suspending event that will trigger the OnSuspending
registered handler.

FIGURE 10.60 You can trigger Windows Store PLM events from the
debugger.

Summary
This chapter presented the Visual Studio 2015 debugger. We covered setting
breakpoints in code as well as setting conditions for when those breakpoints
are hit. We discussed stepping through code after hitting that breakpoint. In
addition, we presented tracepoints, which perform an action (such as printing a
message to the Output window) when a line of code is hit in the debugger. The
chapter also examined the many ways you can see the data presented by the
debugger, including the Watch windows, visualizers, and DataTips.
The advanced debugging scenarios covered included remote processes, web
services, multithreaded applications, multicore, and client-side script. In this
chapter, you also learned how to use the mini dump features to take a snapshot
of a running application and debug it at a later time on a different machine.
Finally, we covered calling into Process Lifetime Management events for
Windows store apps.
Although the debugger itself is large and, in some areas, complicated,
mastering its features is a critical skill to have for all Visual Studio
developers.

Chapter 11. Deploying Code
	

In This Chapte r
An Overview of Client Deployment Options
Publishing a Project with ClickOnce
Publishing a Project with InstallShield Limited Edition
(forthcoming)
Publishing an ASP.NET Web Application

Ple ase Note
Over the last few revisions of Visual Studio Unleashed, this
chapter has traditionally covered all of the core knowledge
required to package and deploy applications. This has included
coverage of a free add-in from InstallShield called InstallShield
Limited Edition. Unfortunately, this time around, a copy of
InstallShield Limited Edition for Visual Studio 2015 was not
available in time for us to include it in the print version of this
book. We’ve left the section here in this chapter, and will provide
content for that section via an electronic, free version of this
chapter published online at this book’s website when available:
www.informit.com/title/9780672337369.

Visual Studio is primarily a coding and development tool. But after you have
built an application, the next problem you face is how to get it into the hands of
the users. This is not an insignificant problem. Applications can have a variety
of prerequisites that need to be verified. Is the right version of the .NET
Framework installed? Does the target machine have SQL Server installed? Is a
supported operating system detected?
In addition to prerequisites, the actual install process involves myriad
variables. Some applications are simple enough to enjoy the ability to do
“xcopy deployment.” In other words, you just copy the executable to the target
machine and away you go. But there are certainly more complicated scenarios
as well. For instance, your application might store some data in the Registry
and might require Registry values to be set upon install. Or there might be a
particular folder structure required. Or maybe a database schema needs to be
configured, and data populated, during the deployment process.
In addition to these standard deployment scenarios, Microsoft has been
advancing its strategy with respect to application “stores”: central locations
where developers can publish their applications. We cover these specific
flavors of code deployment in Chapters 23, “Developing Windows Store
Applications,” and 24, “Creating Windows Phone Applications.”
In this chapter, we focus on the more traditional code deployment scenarios for
.NET client applications and for server-based ASP.NET web applications.

http://www.informit.com/title/9780672337369

An Overview of Client Deployment Options
Two primary installation and deployment technologies are available within
Visual Studio: ClickOnce and InstallShield. Both of these vehicles are similar
in that they enable you to move binaries and components from one location and
install them onto a target client machine. But there are definitely pros and cons
to dealing with each.

Introducing ClickOnce Deployments
ClickOnce was created to try to match the low-deployment factor of web
applications. With web applications, users can merely open a browser and
click a link to access functionality. In a similar fashion, with ClickOnce, you
can publish a set of binaries to a web server or file share, and users can simply
click a link to the ClickOnce package to have the application installed onto
their machine. The ClickOnce technology is available for Windows
Presentation Foundation applications, Windows Forms applications, and .NET
console applications.
You can use three methods to deploy any of these flavors of applications using
ClickOnce:

We b/Share de ployme nt—In this model, your application executables or
DLLs are first published to a web server or network share. You can then
provide a link (either a web URL or network path) to binaries. Users can
click this link to have the applications automatically installed onto their
current machine (thus the moniker ClickOnce). No further interaction is
required from the user.
CD de ployme nt—With this method, binaries are packaged and copied
onto a CD or DVD. Users then browse the content of the media and
launch the install process with one click. This method is primarily used
when users are isolated and do not have the required Internet access or
network access to make the web/share deployment method useful.
We b/share e xe cution—This scenario is nearly identical to the first
method discussed. Binaries are published to a web location or network
share, and a link to that location is then provided to users. When the user
clicks that link, the binaries are immediately copied over and the
application starts without making a permanent home for the app on the
user ’s PC. After a user closes the application, it is like it was never
there in the first place; all the application binaries are removed, there are
no entries placed within the Start menu or within the Add or Remove
Programs list in the Control Panel, and so on. To the user, it appears as if
the application has been run directly from the Internet (or network share),
although in fact the binaries have been cached on to the local machine.

ClickOnce applications are extremely easy to deploy for developers, and they
are extremely easy for users to install because little interaction is required and
there is little overall footprint on the client. However, this simplicity comes
with a price. Generally speaking, ClickOnce deployments cannot do any of the
more complicated things we referenced in the introduction to this chapter, such
as modifying Registry settings or installing third-party software. If your install
scenario is too complicated for ClickOnce to handle, you have to turn to
Windows Installer.

Introducing Windows Installer and InstallShield Deployments
InstallShield is an installer technology created by Flexera; Visual Studio 2015
ships with a version of this software called InstallShield Limited Edition.
InstallShield generates installation packages (MSI files), which contain all the
information that the Windows Installer runtime needs to execute and support
the installation process for that particular payload.
The basic process looks like this:

1. InstallShield, based on your input, bundles your application and its
resources within a setup package, typically referred to as an MSI file
because of its default .msi file extension. MSI files are a cohesive unit
of deployment that is understood by the Windows Installer runtime.

2. The MSI file is delivered to the end users.
3. Running the MSI file launches a wizard that guides the user through the

install process. This typically includes querying for information such as
where the software should be installed on the hard drive and specifying
various options that the software might support in terms of feature set
selection.

Note
Earlier versions of Visual Studio offered a dedicated project
template for generating MSI packages. With Visual Studio 2012,
this approach was deprecated in favor of InstallShield Limited
Edition. Even though the InstallShield project template is
integrated directly into Visual Studio 2015, you must still register,
download, and install the software to use it. If you have Windows
Installer setup projects created in earlier versions of Visual
Studio, you can import those for use with InstallShield and Visual
Studio 2015.
And, as mentioned previously, modern applications are moving
more to a store-based publishing ecosystem.

With few limitations, you can craft a setup wizard to handle a variety of
situations, including different payloads based on the running operating system
(OS) version, adding a shortcut to the Windows startup group, adding Registry
entries, and installing device drivers.

Note
Certain applications have special deployment requirements. We
reexamine the topic of deployment for the other major application
types within each chapter that covers those types. For example,
for Azure cloud-based applications, read Chapter 12,
“Developing Applications in the Cloud with Windows Azure.”

Publishing a Project with ClickOnce
You create a ClickOnce install by first configuring the correct “publish”
options for your project. These are located on the Project Properties dialog
box, under the Publish tab (see Figure 11.1).

FIGURE 11.1 Setting ClickOnce publication properties.
You can see that this property page holds a variety of settings, including where
to host the ClickOnce installation and how we want to handle the offline versus
online aspects of ClickOnce. To make things easy for our first deployment, we
let the Publish Wizard walk us through setting these options. Click the Publish
Wizard button at the bottom of the Publish property page to get started.
The first page of the wizard captures where we want to publish our
application. This can be a path to a file share, or it can be a uniform resource
locator (URL) pointing to a website or File Transfer Protocol (FTP) site
directory (see Figure 11.2).

FIGURE 11.2 Setting the install type in the Publish wizard.
Page two of the wizard identifies how users install the application. You have
three choices here: via a website, via a network share, or from physical media
(CD/DVD).
The first two options require you to enter the exact location where users can
download the software. At first glance, it’s not clear what is different about the
location specified here and the location specified on page one. Let’s clarify
what is happening with an example. Let’s assume, for instance, that we want
users of our application to be able to install the Windows Forms client by
visiting a link on the Contoso website. In this scenario, we might end up with
the following values:

Publishing folde r location
—c:\inetpub\wwwroot\ContosoCSRInstall

Installation folde r location—http://www.contoso.com/CSR/Install.htm
The first path is the physical one that Visual Studio uses to copy the installation
files to their home. The second path is the one (in this case, a URL) that the
world uses to access those installation files.
The third and final page of the wizard varies slightly depending on the install
option we selected on the second page. For website and network share installs,
we must indicate whether the application should be available online and
offline or just online. Offline capable applications have a shortcut added to the
Start menu and can be uninstalled through the normal Add/Remove Programs
control panel. Online-only applications are run directly from the
Installation folder location. If we select the CD/DVD installation
option, we have the opportunity to specify whether the application updates
itself when online.
After the wizard finishes, the project builds and immediately tries to publish

http://www.contoso.com/CSR/Install.htm

using the information collected. If you have specified that an installation web
page be created (back in the Project Properties page, on the Publish tab, click
the Options button, and then specify a web page such as Install.htm on the
Deployment tab), Visual Studio creates a basic ClickOnce install web page
(see Figure 11.3). You can easily customize the look and feel of a ClickOnce
page by editing the HTML.

FIGURE 11.3 A ClickOnce install point (web page).
	

Note
You don’t need to go through the entire Publish Wizard every time
you want to deploy or redeploy your application. After you have
the options set the way you want them on the Publish property
page, you can republish using those settings by selecting Publish
from the Visual Studio Build menu.

Now let’s move on and see how to accomplish the same end result using Visual
Studio and the Windows Installer technology.

Publishing a Project with InstallShield Limited Edition
Just as with ClickOnce, Visual Studio directly supports deployment of
applications using the Windows Installer technology. The approach is different
(as are the underlying technologies); Windows Installer deployments are
created with the use of a separate project template and application
(InstallShield).
Unfortunately, InstallShield Limited Edition for Visual Studio 2015 was not

available in time for us to cover the content in this version of our book.
Please keep an eye out for revised content at this book’s website
(www.informit.com/title/9780672337369); we’ll re-publish this chapter in its
entirety, including documentation on InstallShield projects.

Publishing an ASP.NET Web Application
Visual Studio provides a dedicated tool/wizard for publishing ASP.NET web
applications. Using this tool, you can take an existing web application project,
compile it, bundle all the folders, files, settings, and databases that are used by
that application into a web package, and then deploy that package to a web
server. One advantage to compiling your website before deploying is that the
compiler finds compile-time errors for you before deploying onto the target
server. Another advantage you gain by compiling your application is increased
page performance. Because all the pages within the site are precompiled, the
need to compile dynamically during the first page hit is removed.
Let’s continue with a brief walk-through of the publishing process. The Web
Publish process is kicked off via the Build menu’s Publish command (see
Figure 11.4) or by right-clicking on the web application project in Solution
Explorer and selecting Publish.

FIGURE 11.4 Launching the Web Publishing tool.

The first screen asks for the deployment target to use.

http://www.informit.com/title/9780672337369

Selecting a Target
The publishing process is driven by a profile. This is a collection of settings
that define the parameters of the deployment target. You can either create your
own profile (as you would if you were publishing to an internal web server, to
your own development machine, or to a corporate IT/enterprise asset), or you
can use a profile bundled with Visual Studio (such as Windows Azure) or
provided by a third party (as would be the case if you were publishing your
web application to a third-party hosting provider).
On this first page of the Publish tool, we have an option to publish to Windows
Azure (which we’ll cover in-depth in Chapter 12). If you are using a third-
party hosting provider, and that provider has a profile file available, you can
import it by using the Import option. In this chapter, we’ll look at the Custom
option that allows us to create our own deployment target (see Figure 11.5).

FIGURE 11.5 Selecting a publish target.

When we select the Custom target option, we are prompted to name the profile,
and then we need to set the connection parameters for our target.

Configuring a Connection
The next page captures the method of deployment and connection information.
The method of deployment is selected by using the Publish Method drop-down.
There are four different options here: Web Deploy (formerly known as One-
Click Publishing), Web Deploy Package, FTP, and File System. Of all the
options available, Web Deploy is the best in terms of leveraging Visual Studio
to do the heavy lifting. This method uses Internet Information Services (IIS)
remote management services to copy the relevant application files to a remote
or local server. As mentioned in the discussion about profile settings, some
web hosting providers directly support One-Click Publishing/Web Deploy,
which makes this method particularly attractive for targeting offsite web
servers that a third party is maintaining.
The rest of the options on this page of the wizard are dynamic and depend on
the method you choose. For FTP deployments, for example, you need to
provide the appropriate FTP login information. For Web Deploy profiles, you
must provide a service URL and an application URL (see Figure 11.6).

FIGURE 11.6 A One-Click install point (web page).

Configuring Deployment Settings
The next-to-last step in the Publish Wizard captures the build configuration that
you want to deploy (for example, Release or Debug). Also, for each database
connection used by the web application, it configures the corresponding
connection string to use on the target server.
In the Contoso University sample application, two database connections are
used: one called SchoolContext, and the other called
ApplicationServices. If you look at Figure 11.7, you can see that the
wizard shows us a section for each of these connections. Use the drop-down

box to enter the connection string that the application should use on the target
server (that is, the server on the receiving end of the publish operation).

FIGURE 11.7 Configuring deployment/publish settings.

Deploying the Database
Under each Connection String drop-down, you’ll find an Update Database
check box. Placing a check here tells the Web Deploy engine to also package
up your physical database (in this case, a SQL Express database) and deploy it
to the target server. The publishing engine automatically updates or creates the
destination database schema as needed.
You can also provide custom SQL scripts to be used as part of the deployment
process. To do this, click the Configure Database Updates link located to the
right of the Update Database check box. In the dialog, click the Add SQL
Script link at the top (see Figure 11.8).

FIGURE 11.8 Deploying referenced databases with custom SQL script.
From there, click the Add Script button, and then navigate to the script file.
Notice that there is already a script entry in the list; this is the script that the
deployment tool generates based on the settings you have provided. Custom
scripts that are added are executed in the order they are listed. For instance, if
you need a script to execute before the general schema and data script that the
tool generates, you add the script to the list and then use the arrow keys to the
right of the list to move it above the default script.

Previewing the Publication
After all the required properties and settings have been provided, the final
page of the wizard shows you a preview of the actions that will be performed
(see Figure 11.9). This is a smart preview and not just a restatement of your
earlier settings. In other words, the publishing tool actually reaches out to the
target server at this stage and shows you a list of files that will be copied or
deleted, database schemas that will be created, and so forth. You can make
last-minute changes on this screen by opting to not copy or delete specific
files.

FIGURE 11.9 Previewing the deployment.
If everything looks okay, click the Publish button to initiate the deployment.

Summary
This chapter introduced you to the various tools available within Visual Studio
for deploying both client applications and server-side ASP.NET web
applications. For client applications, you learned about the two principal
deployment technologies (ClickOnce and InstallShield) and the specific
reasons you might choose one over the other. This chapter explored these two
technologies in depth by examining how to use Visual Studio to publish a
WinForms application using both methods.
This chapter also covered the tools available for deploying ASP.NET web
applications from a local machine to a web server and demonstrated the tools
within the IDE for accomplishing the same.

Chapter 12. Developing Applications in the
Cloud with Windows Azure

In This Chapte r
Create Your Azure Account
Create and Deploy an Azure Web App in Visual Studio
Create Your Web App form the Azure Portal
Monitor and Manage Applications in Azure
The Azure SDK for Visual Studio 2015
Azure Cloud Services (PaaS)

Microsoft continues to evolve Azure as a full-service, easy-to-scale, cloud
platform for building, testing, and hosting applications. Azure offers website
and cloud service hosting, virtual machines, storage, and media services.
There are two core concepts of Azure: infrastructure as a service (IaaS) and
platform as a service (PaaS). The former allows you to create, host, and
manage virtual machines in the cloud. The latter, PaaS, is a hosting platform
that is managed and scaled on your behalf. You can take advantage of PaaS
directly by creating your own cloud services; alternatively, you can use Azure
web apps, a hosting platform already built on PaaS and designed to make your
development and deployment easier. The following describes the core Azure
offerings across IaaS and PaaS:

App—The Azure platform allows fast and easy deployment and
management of websites built on .NET, PHP, Node.js, and other
technologies. These websites can take advantage of SQL databases, table
storage, blog storage, caching, a content delivery network (CDN), and
more. In addition, you can build mobile services for handling iOS,
Android, Xbox, and other applications.
Compute /ne tworking—This service allows you to deploy and run
virtual machines (VMs) based on Windows Server or Linux. You can
then use the machines to custom configure and host your applications.
This allows you to deploy existing code without changes and take
advantage of custom hosting configurations. You can also configure
hybrid (on-premises to cloud) networked solutions.
Storage —Azure provides SQL and NoSQL database solutions. This
includes full power of SQL Server as well as the ability for other storage
solutions. It also has data services that allow you to get insight from all
your data using HDInsight (Hadoop).
And more —Azure is big and ever-growing; the following are some
additional services available to developers: Stream Analytics for
processing millions of events per second; Predictive Analytics to use
machine learning to mine historical data; identity management, single-
sign on, and synch with on-premises directories; BizTalk services and
other application integration options; media services to enable content
encoding, storage, protection, and delivery; and more.

This chapter focuses on the developer experience with Azure and Visual
Studio 2015. We first cover getting started with the Azure management portal;
creating, deploying, and debugging your first application in Azure; and using
the portal to monitor and manage your application. The chapter then covers the
details of the Azure software development kit (SDK) for Visual Studio to make
building and scaling cloud applications easier.

Note
This chapter is focused on the Azure PaaS offering as related to
website hosting and building applications using cloud services.
We do not cover Azure IaaS here because that is about setting up
and managing virtual machines for your application hosting.

Create Your Azure Account
Visual Studio 2015 has built-in support for many basic Azure functions, such
as creating and deploying a website or set of mobile services. These features
require an Azure portal account. This section covers the basics of setting up
your portal account, linking it to Visual studio, and managing your Azure
subscription. The sections that follow cover creating and deploying an Azure
application with Visual Studio and using the Azure Portal to monitor and
manage your application.

Note
Microsoft has also created an Azure SDK for Visual Studio that
ships separately. This is covered later in this chapter.

Azure Account Sign-Up
The first step is to set up your Azure account. Microsoft has a lot of ways for
you to get started. This includes a free trial, Microsoft Developer Network
(MSDN) benefits/credits, BizSpark benefits for start-ups, monthly credits for
Microsoft Partners, pay-as-you-go options, spending limits, prepackaged
deals, Enterprise Agreements, and more. You will want to visit
http://azure.microsoft.com/en-us/pricing/ for details.
To get started, you will want to sign up for Azure using a Microsoft Live ID. If
you have an MSDN subscription, you will want to use the same Live ID
associated with your subscription to set up your Azure account. If you have a
work or school account, you will want to sign in with that ID. Signing in with
the right account ensures that you have access to your Azure benefits.
If you do not have an MSDN subscription or want to create a new account, you
can sign up for Azure from the website (azure.microsoft.com) by clicking Free
Trial or Buy Now. First, you log in with an existing Live ID (or create a new
Live ID account). Next, you sign up for your Azure account using your Live ID.
Figure 12.1 shows the sign-in process for setting up a free trial account. The
free trial does require a credit card to set up. However, this is for verification
purposes only. The account automatically expires and has a spending limit of
zero (unless you change these options).

http://azure.microsoft.com/en-us/pricing/
http://azure.microsoft.com

FIGURE 12.1 Sign up for Azure using your MSDN, work, or school account
to access related benefits.

Once signed up, you have the option to go to get started with a few video
tutorials or go directly to the management portal. When you hit the management
portal for the first time, the Azure site will walk you through the basics. More
on the management portal later in this chapter.
You can also access a usage a billing summary page for your account directly
from the management portal. Figure 12.2 shows the billing summary
information for a newly created, free trial account. From here you can see your
usage and upgrade your account if necessary. You can also change subscription
details, cancel your subscription, modify your payment method, and more.
Notice the Portal link in the upper-right corner. This links you back to the
Azure management portal for configuring your services.

FIGURE 12.2 The Azure account summary screen allows basic account
management tasks and provides billing information.

Link Your Account to Visual Studio
Visual Studio 2015 gives you the option to log in (upper-right corner of the
IDE). Provided you log in (which is optional) and your ID is associated with
an Azure account, you will get access to your Azure environment directly
within Visual Studio. You can also add additional Azure accounts to your
Visual Studio profile. This enables you to log in to Visual Studio with one
account and log in to Azure with a different account. You can also leverage
multiple Azure accounts from the same instance of Visual Studio. Let’s take a
look at how this works.
You navigate your Azure services from the Server Explorer window (View,
Server Explorer). Figure 12.3 shows an example. Notice that the window
exposes Azure cloud services, mobile services, notification hubs, SQL
databases, web apps, and more. The first time you access Azure this way, you
may be prompted to log in to an account that works with Azure.

FIGURE 12.3 Server Explorer allows you to navigate and work with the
	
Azure services for your account(s).
	

Manage Azure Subscriptions
The Azure node in Server Explorer provides access to manage your
subscriptions through its context menu by right-clicking and selecting Manage
and Filter Subscriptions. Figure 12.4 shows the Manage Microsoft Azure
Subscriptions dialog. You can see here that there are three accounts already
associated to Visual Studio. You can add additional accounts using the link in
the bottom right: Add an account. This process simply requires you to log
in to your additional account. (See the prior section on setting up that account
inside the Azure web app.)

FIGURE 12.4 Visual Studio allows you to manage your Azure subscriptions
from within Server Explorer.

Notice that three of the accounts in Figure 12.4 already have Azure
subscriptions and one does not. You can use the link Sign Up for a

Subscription to add subscriptions to your account. An Azure subscription
is a usage plan associated with your account. Figure 12.5 shows the current,
available options. You can also access this directly from the portal when
adding a subscription to your account. In addition to these options, there is the
free trial and the standard benefits you get with MSDN (or a similar
account/agreement). Subscriptions control how you will likely pay for the
Azure services you use and what support agreement you have with Microsoft.

FIGURE 12.5 You add additional subscriptions to your Azure account from
	
the Azure web app.
	

Note
You manage your Azure services from the Azure portal. See the
upcoming section, “Monitor and Manage Applications in Azure”
for details.

Create and Deploy an Azure Web Apps in Visual Studio
Azure web apps allow you to host scalable websites, service-oriented
applications, dev-ops scenarios, and more. Web apps can be built on .NET,
Java, PHP, Node.js, and Python. You can also access your data using SQL
databases, MySQL, DocumentDB, Search, and MongoDB. Azure web apps
include support for third-party products designed to help build websites, such
as the content management systems (CMS) WordPress, Umbraco, Joomla, and
Drupal. In this section, we focus on building and deploying an ASP.NET
website to Azure using Visual Studio.

The Azure Hosting Platform
The Azure web apps hosting technology is built on top of the fully managed
PaaS environment. The PaaS environment (covered in the upcoming section,
“Azure Cloud Services (PaaS)”) is a platform on which you can build
applications without the overhead of managing the infrastructure on which they
run. Azure web apps sit on top of this environment and allow you to leverage
Azure cloud services in an easier way for building and hosting your web
applications. This includes new applications as well as existing applications.
(Even those with sticky sessions can be moved to this environment without
changes.)
Azure web apps are run on a set of VMs shared as a resource pool in Azure
(on your behalf). You don’t have control over these machines, nor do you want
it. Instead, Azure takes care of all infrastructure concerns on your behalf
(including automatic patching). Your app is isolated and hosted in VMs
dedicated to your application. This ensures predictable performance and
security isolation.
One of the biggest benefits of Azure hosting (outside of no infrastructure
management) is scalability. You can easily scale your application platform to
meet demand (and scale down when demand subsides). You do so from the
Azure portal; it is as easy as moving a slider control. In fact, Azure has an
AutoScale feature that allows you to increase the virtual instances (called
nodes) running your application based on CPU consumption. If your
application meets a target percentage of CPU consumption (you set the target),
you can tell your app to run on additional nodes. Of course, AutoScale will
also scale back down.

Create the ASP.NET Application and Azure Hosting
Azure web apps can be created directly from the Azure portal interface (a
website) or from within Visual Studio (for ASP.NET solutions). The portal
interface allows deploying from a source code provider such as Visual Studio
Online, GitHub, TeamCity, Hudson, or BitBucket. You can use these source
control providers for continuous deployment during a dev-test scenario. Here,
we cover creating directly from Visual Studio. (The portal interface is covered
in upcoming sections.)
To get started, we will create a new ASP.NET application linked directly to an
Azure web app. This will create the Visual Studio application project (and
related source code) locally as well as set up an Azure web app to which we
can deploy. You can also link (and deploy) an existing application to an Azure
web app; we cover that scenario later in the chapter. The first step is File,
New Project, where we select the Web node and an ASP.NET Web
Application. Figure 12.6 shows an example of the first step in creating the web
application project.

FIGURE 12.6 You create a new Azure web app in Visual Studio the same
way you would create any website in Visual Studio.

Visual Studio then brings up the New ASP.NET Project dialog, as shown in
Figure 12.7. Notice the bottom-right corner. This is where you choose to
automatically set up and link this project to an Azure cloud hosting
environment as either a web app or a virtual machine. You can use the Manage
Subscriptions link to select the subscription you intend to use by turning off
other subscriptions from this dialog (refer to Figure 12.4). If you leave
multiple subscriptions active, you are prompted for the subscription under
which the web app should be hosted (see Subscription option in Figure 12.8).

FIGURE 12.7 Use the New ASP.NET Project dialog to link your new
	
project to an Azure website or VM.
	

FIGURE 12.8 Configure your Azure URL, default hosting region, and
database as part of the new project creation process.

Figure 12.8 shows the final step in setting up your Visual Studio project to be
hosted by Azure. Here you can configure the basic Azure web app hosting
settings. You start by creating a site name which also becomes your temporary
URL as [SiteName].azurewebsites.net (until you update your DNS to point to
an actual URL). You then set an Azure region for hosting the application

http:SiteName].azurewebsites.net

(typically you select one closest to your users). Finally, you can choose to set
up a database to be associated with the site.
The drop-down under Microsoft Azure hosting in Figure 12.6 (set to Website
in the figure) includes the alternate choice: Virtual Machine. This allows you
to set up your Visual Studio project to be deployed to a VM server that you
manage (versus the Azure hosting platform built on PaaS). Figure 12.9 shows
the VM setup dialog you receive after selecting this choice. This includes
settings for your DNS, the VM location, a username and password, and server
sizing. You have a couple dozen choices for VM size based on CPU cores and
RAM. (Of course, different pricing applies as you select bigger VMs.)

FIGURE 12.9 You can use Visual Studio to link your website to an Azure
	
VM (versus an Azure web app hosted on PaaS).
	

Clicking the OK button on either Figure 12.8 or 12.9 will create your new
project and related Azure hosting infrastructure. (Provision a VM or create an
Azure web app.) Visual Studio will also link your project to the given Azure
environment to allow for easy deployment (also called publishing by Visual
Studio). It can take a few minutes for your provisioning to complete
(especially for VMs); however, Visual Studio will notify you when it’s
complete in both the Output and the Web Publish Activity windows.
Figure 12.10 shows a completed project setup for Azure web apps. (The VM
solution looks similar in the end.) Notice the link from Server Explorer to the
site. (We cover this in upcoming sections.) Also, notice that the solution inside
Solution Explorer now contains a folder called PublishScripts. These
are the scripts Visual Studio uses to publish your site to Azure. You can add
similar scripts to an existing site to connect it to Azure in the same way (more
on this to follow).

FIGURE 12.10 The Azure hosted website inside Visual Studio.

Deploy/Publish an Application to Azure
You can use Visual Studio to build, run, and debug your application locally
(using your localhost server) as you would any application. Visual Studio also
simplifies publishing to Azure when you are ready to post the build to a server
(typically for testing, but it can also be used for production).
To get started, you can use the Publish link inside the Web Publish Activity
(View, Other Windows, Web Publish Activity), as shown at the bottom of
Figure 12.10. This dialog makes executing a publish activity quick (using the
toolbar) and allows you to see the activity results as they happen. However,
the first time you set up your publishing profile, you will want to use the
Publish Web Wizard. You typically access this by right-clicking the web
application inside Solution Explorer and choosing Publish.
Figure 12.11 shows the Profile screen inside the Publish Web Wizard. From
here you can select which publishing profile you want to configure (using
Manage Profiles). Having multiple publishing profiles allows you to deploy
the same application to different environments with different settings. Notice,
too, that you can select the publish target as an Azure web app or VM. Doing
so downloads the configuration from Azure for the given environment.

FIGURE 12.11 Use the Publish Web Wizard to manage publish profiles
(target environments and configuration) for your application.

The next step is to set the Connection information for your selected publishing
profile. Most of this information should be configured already by Visual Studio
on your behalf. Figure 12.12 shows the Connection information for publishing
a website to Azure. The first option, Publish Method, allows you to set the
publish method as a web deployment (via HTTP), create a web deployment
package (to be deployed by a deployment service), use FTP, or use the file
system for deployment. In this case, we have selected Web Deploy.

FIGURE 12.12 The Connection tab allows you to choose your deployment
method, URL, and other server connection settings.

You will also want to click the Validate Connection button, as shown in Figure
12.12. This ensures your Web Deploy can connect to the environment for
	
deployment.
	
The next step in the wizard is to configure the deployment settings. Figure
	
12.13 shows an example. The Configuration drop-down allows you to select a
Debug or Release build for the application deployment. This makes sure the
appropriate Web.config version is published with your web application.
(Typically the Debug version points to debug data/server settings and the
Release version points to production.) The File Publish Options allow you to
set whether files should be removed from the destination, precompiled during
publishing (to eliminate “warm-up” for first-time access), or exclude any test
data you might have in the App_Data folder. Finally, if you have a database
associated to the application, you would set that information here, too.

FIGURE 12.13 The Settings tab is used to set a Debug or Release version of
the deployment.

The last step in the Publish Web Wizard is shown in Figure 12.14. Here you
can create a preview of your deployment. Clicking Start Preview runs the
publish profile and determines actions to be taken by file. Figure 12.15 shows
the results by file.

FIGURE 12.14 The Preview tab allows you to kick off a preview of actions
	
to be taken by file as part of the publish process.
	

FIGURE 12.15 You can preview each file to be added, updated, or removed
as part of the publishing process.

The last step is to click the Publish button. This kicks off the publish activity
and shows the results inside both the Output and the Web Publish Activity

windows. Once the publish activity has succeeded, Visual Studio will launch
your site in a browser for verification. Figure 12.16 shows the site running
inside a browser. (Notice the temporary URL.)

FIGURE 12.16 The Azure web app running in Azure post-publish.
	

Note
Subsequent deployments do not need to go through the wizard.
Once they’re configured, you can kick off another deployment
from the Web Publish Activity window using the toolbar at the top
of the window. (Refer to Figure 12.10, where the toolbar is
grayed out because the profile configuration has yet to be set up.)
Here you select a publish profile and click the Publish Web icon
next to the selected profile. This will redeploy your site using the
same configuration you set up previously.

Set Up an Existing Application to Publish to an Azure web app
You can set up an existing application with a publishing profile. You do not
have to link your project to Azure at the time of creation (as shown in Figure
12.7). For example, suppose you have an existing application, as shown in the
Solution Explorer inside Figure 12.17. Notice there is no publishing profile
associated with the solution (as compared to Figure 12.10).

FIGURE 12.17 An existing Visual Studio web application without a
publishing profile.

To get started, you simply right-click the application in Solution Explorer and
choose Publish. This brings up the Publish Web Wizard, as shown in Figure
12.11. However, in this case, there is no default publishing profile. Instead,
you are required to select one of the publish targets listed in the dialog (or use
the Import option).
Suppose for this example that you want to publish to a VM. You would then
select Microsoft Azure Virtual Machines under the More Options section in
Figure 12.11. This brings up the dialog shown in Figure 12.18. Here you can
create a new VM or select an existing one tied to your Azure account and
related subscriptions. Note that you can also use Server Explorer to create new
VMs. This process will walk you through a more in-depth wizard.

FIGURE 12.18 Select the Azure VM for the publishing profile.

You then continue walking through the Publish Web Wizard to build your
publishing profile. For example, Figure 12.19 shows setting the connection

information for an Azure VM deployment.
	

FIGURE 12.19 You can use Publish Web to add a publishing profile to your
solution (and to publish to VMs, too).

Your website is deployed upon completion of the wizard. Your Solution is also
now updated with a publishing profile, as shown in Figure 12.20. Note that you
can use the toolbar in the Web Publish Activity window to both republish your
app (globe icon with arrow) and change settings (cog icon) for your publish
profile using the Publish Web Wizard.

FIGURE 12.20 A publish profile added to an existing solution.

Website Management with Azure Server Explorer
Visual Studio allows you to manage your Azure services from Server Explorer.
You manage a website by right-clicking the website in Server Explorer, as
shown in Figure 12.21. Notice from here you can view the website settings,
stop the website, and attach the debugger (among other things).

FIGURE 12.21 The Visual Studio Server Explorer allows you to manage
	
your Azure web apps (among other things).
	

Note
That Azure SDK for Visual Studio expands on what is available
inside Server Explorer, including adding access to your VMs and
other Azure services. See the section “The Azure SDK for Visual
Studio 2015” for details.

Clicking the View Settings option on your Azure web app in Server Explorer
brings up the configuration and logs information for your website. Figure 12.22
shows the configuration information. Notice here you can stop and start (and
restart) your website. You can also change settings such as logging and remote
debugging. Clicking the link Full Website Settings will launch the
Azure management portal to the Configure tab. This is used for controlling the
many additional settings you might need to access your website.

FIGURE 12.22 You manage your Azure web app settings from within Visual
	
Studio.
	

Debug an Azure web app
You can attach the Visual Studio debugger directly to an Azure web app. To do
so, you open the project that contains the source code for the project you intend
to debug. You then navigate to the website in Server Explorer. Here, you can
right-click the website and choose Attach Debugger. Visual Studio will then
configure remote debugging for your site, attach to the process, and start a
debug session where you can hit breakpoints and examine values.

Create Your Web App from the Azure Portal
Thus far we have covered creating Azure services for our application from
within Visual Studio. However, it is likely you will need to create services
from within the Azure Portal itself and then connect and deploy your
application to these services using the publishing techniques described in the
prior section. This section examines how you use the Azure portal to set up
services such as a hosted website and a database.

Note
At the time of this writing, Microsoft had just released a preview
of another revision to their Azure management portal. This
revision was used for the screenshots and content here. Don’t be
surprised if things have changed a bit by the time you read this.

Create the Application Hosting Environment
The Azure management portal is used to create, configure, monitor, and manage
all the Azure services to which you have access and subscribe. To get started,
you must first log in (portal.azure.com). Figure 12.23 shows the Azure
Startboard (home page) of the management portal. The left side of the screen is
a toolbar that you can use to navigate the various sections of the portal,
including notifications and billing. Notice also that the bottom left holds the
New button; you use this to create new Azure services.

FIGURE 12.23 The Azure portal dashboard is where you go to manage and
create sites, services, and storage items.

The center area of the portal Startboard shows the health of all Azure data
centers, an update on your current billing cycle, and links to other areas of
Azure. This dashboard is configurable. Think of it like the Windows 8 start
screen. You can resize icons, move them around, pin different ones to this
page, and so on. For example, Figure 12.23 shows the right-click action on the
Feedback icon. You can unpin this item from the dashboard or customize its
size (small, normal, wide). You can also move it around inside the dashboard
grid.
You create a new item in the Azure management portal by first clicking the
New button (upper left of Figure 12.23). The New button unfolds the New
window pane, as shown in Figure 12.24. This provides quick access to

http://portal.azure.com

creating common items such as web apps and databases. Items are organized
by category. In this example, we have selected the Web Apps group.

FIGURE 12.24 Use the New button to create a new Azure service, including
a web app.

As an example, we will click the Web Aps link to set up a new website for
hosting our code. Figure 12.25 shows creating a new web app. You start by
choosing a temporary, azurewebsites.net URL. You can configure your domain
name system (DNS) later to use your actual domain name. Your temporary
domain name must be unique across other Azure sites. The tool verifies this
and gives you a green check mark if all is well. You then select your app
service plan, resource group, subscription, and location. Figure 12.25 shows
selecting the East US default service plan for the Azure free trial. Finally, at
the bottom of the screen is the Create button; use it to create and provision your
hosting environment for a website. Notice, too, you can choose to add this
website to your Startboard (portal home page).

http:azurewebsites.net

FIGURE 12.25 You create a new Azure new website by indicating a
temporary URL, location, and subscription options.

Configuring Your New Azure web app
Azure will return you to the Startboard when you click Create. Here you will
see a notification that your website is being created (along with a progress
bar). You will also get a notice when Azure is finished. Once it’s finished, you
can click on the notification or the new Starboard item that represents your
website on the home page to open your website. This will open a new window
pane that Azure calls a “blade.” You can maximize and minimize blades in the
portal. Figure 12.26 shows a maximized blade that represents just some of the
many options for monitoring and managing your website.

FIGURE 12.26 You can manage, monitor, and configure your website inside
an Azure blade window.

The Azure web app blade as shown in Figure 12.26 provides many options for
working with your website. Many of these options demonstrate a dashboard-
like view. You can also click on each to expose additional details and access
other features of each of these items. Some of these options are highlighted
here:

Monitoring—Monitor the performance of your application.
File Syste m Storage —Monitor your file system storage inside Azure
for your website.
Re que sts and e rrors—View requests and errors on your site. You can
also access the diagnostics tools from here.
Eve nts—Access error, warning, and informational events for your site.
Ale rt rule s—View, add, and configure alerts for tracking various site
conditions such as too many specific occurrences of an error in a given
time window.
Se ttings—Configure the core settings for your website such as
properties, scalability, backups, SSL, web hosting, diagnostic logging,
users, roles, and more. You can also use the Application settings tab to
set .NET Framework version, PHP version, Java version, connection
strings, and more.
Estimate d spe nd—Track your Azure spending related to this website.
Virtual ne twork—Configure access to a virtual network from your
website.
De ployme nt cre de ntials—Set credentials used to deploy your
application.
Quick start—Access tools and knowledge about getting started with

your site and Azure.
De ployme nt—Set up continuous deployment from a source repository to
your website. You can choose deployment from Visual Studio Online,
GitHub, and others.
Pricing tie r—Shows your pricing tier and thus your available node
instances. Here you can upgrade tiers to take advantage of custom
domains, SSL, more storage, website staging, and the Auto scale feature.
See Figure 12.27 for an example of the Azure web app tiers available
and their differences.

FIGURE 12.27 The Azure web app pricing tiers control access to the many
features of Azure web apps.

The Website Toolbar
The Azure web app blade contains a toolbar at the top of the page. This is
useful for managing your running website. Figure 12.28 highlights this toolbar.
You can use the Stop and Start buttons to control if the site is up and running.
Restart cycles your website and resets the running instance. The options on the
Azure web app toolbar are listed next (from left to right on the toolbar):

Se ttings—Used to define the many settings of your web app, including
authentication, SSL, backups, extensions, and more.
Tools—Used to access tools for working with your site such as Log
Stream, Console, Process Explorer, and Troubleshoot.
Browse —Used to browse to your running site.
Start—Used to start your site if it is currently stopped.
Stop—Used to turn off your site.
Swap—Used to swap content and configuration from one Azure site to
another. This is useful if you have a dev site you want to promote to
staging, for example.
Re start—Used to restart (stop and start) your website hosting process.
De le te —Used to delete the website.
Ge t publish profile —Used to download your publish profile for import
into Visual Studio (or similar tool) for publishing. Note that Visual
Studio can also just reach out to your Azure instance and get this
information provided you have the right credentials.
Re se t publish profile —Used to reset your website publishing profile if
information has changed. The publish profile gives tools like Visual
Studio all it needs to publish a site directly to your Azure instance.
Change app se rvice plan—Used to upgrade or downgrade your hosting
plan. (Refer to Figure 12.27 for web app plans.)
Buy Domains—Used to purchase custom domains and SSL.

FIGURE 12.28 Use the Azure web app toolbar to start and stop your running
website.

Creating a Database
The Azure web app blade allows you to easily add a SQL database or a
MySQL database to your website. Of course, you can add these and other data
storage and access services directly from the Azure home page and then
configure their access using the other features of Azure. However, here we
will walk through the scenario of adding a SQL database to your Azure web
app.
You use the New button on top left of the web app blade (refer to Figure
12.28) to get started adding a SQL database to your web app. This brings up
the Create blade where you can select Data + Storage form the available
categories. You can then select SQL Database from the possibilities as shown
in Figure 12.29.

FIGURE 12.29 Use Add from the website toolbar to add a SQL database to
your Azure web app.

The next step is to provide additional details about your database. Here you
define the name of your database, your pricing tier, resource group, server, and
more. Figure 12.30 shows an example. In this case, the database name is set to
vsunleashedDb; the pricing tier is set to B Basic. Notice too that this
database uses the Adventure Works sample database; this sample database is
an option inside Azure. Figure 12.31 shows the process of selecting (or in this
case, creating) a database server for hosting the database.

FIGURE 12.30 There are many options required to set up your SQL
	
database.
	

FIGURE 12.31 You can select an existing server or create a new one to host
your database.

Azure will now provision your database and link it correctly to your Azure
web app. You can view provisioning progress using the notifications from the
Startboard. Once it’s complete, you can view, monitor, and manage the SQL
database from the Azure portal. To do so, you can browse to the database using

the Browse button in the portal. Figure 12.32 shows accessing a SQL database
from Browse, Recent. You can also filter the browse list by type (such as SQL
Server).

FIGURE 12.32 Use the portal to view your SQL database.

Figure 12.33 shows the database up and running in Azure (and the related
management Startboard). From here you can view and configure resource
utilization, failed connections, events, alerts, geo replication, and more. Notice
the button Open in Visual Studio. This allows you to open the database directly
inside Visual Studio (more on this to come).

FIGURE 12.33 Manage a SQL database using the Azure portal.

Deploying to the New Environment from Visual Studio
Visual Studio makes it easy to deploy and work with the application once your
Azure hosting environment is set up. To do so, you follow the steps discussed
previously in the chapter in the section, “Set Up an Existing Application to
Publish to an Azure web app.”

M onitor and M anage Applications in Azure
You monitor and manage your Azure services in the same management portal
shown earlier (portal.azure.com). Here you can monitor, stop, and start running
services. You can also add new services and delete existing ones. In addition,
this is where Azure provides detailed information about things happening in
your hosted environment, such as logging, storage usage, and billing. Refer to
the section “Configuring Your New Azure web app” for basic information on
configuring your website.

http://portal.azure.com

Monitor and Manage a Website
Managing your website includes monitoring activity, changing configuration,
scaling it, linking other Azure resources, and more. To access website
management, you select your site’s name from the Browse All option shown on
the left toolbar of the portal home page, as shown in Figure 12.34.

FIGURE 12.34 Use the Browse option to select a service you want to
monitor or manage.

Once you select a website, Azure presents you with a Startboard that shows
details specific to this site. Figure 12.35 shows an example. The website
management Startboard shows essential site details at the top and site
monitoring (requests and errors) in the middle of the page. You can scroll
down to view usage information, events, alerts, and more. You can also access
the many settings for the site by clicking the All Settings link. This provides
access to users and roles, scaling options, backups, troubleshooting, and more.

FIGURE 12.35 The management portal provides details on things happening
in your site, including information messages, warnings, and errors.

Traffic Monitoring
Azure allows you to view the HTTP traffic hitting your site and capture related
metrics about requests, response times, and errors. You get started by clicking
the Monitoring blade item from the site Startboard (see Figure 12.35). Doing
so opens the Metric blade, as shown in Figure 12.36. Notice that you get a
larger view of the data. In this case, the data is showing requests and errors for
the past hour. You can scroll this page to also show alerts.

FIGURE 12.36 The Metric blade shows additional detail on web app
metrics to help you monitor your application performance and any related

issues.
You can edit the metrics shown on this chart and the timeline across which you
want to view the information. To do so, you click the Edit chart link in the
Metric toolbar (at the top of the page); you can also right-click the chart itself.
This brings up your options, as shown in Figure 12.37.

FIGURE 12.37 You can edit the website metrics you want to view.
The Edit Chart pane allows you to customize your view of web app metrics.
Notice that you can choose the Time Range at the top to show data across the
past hour, today, past week, or set a custom range. You can then set information
to a bar or line chart. The checkbox items in the list allow you to select what
type of metrics you want to see on the chart. For example, if you choose the
Http 404 (bad request) option, Azure will include this information in your
metric results. Figure 12.38 shows an example of adding 404 errors to the

chart and changing the chart type to Bar.
	

FIGURE 12.38 The metrics window with the additional metric, Http 404
errors added.

Managing Alerts
An alert allows Azure to notify someone should something not go as planned in
your website. You can view the alerts configured for your site by scrolling the
Metric window (bottom of Figure 12.36). These are alerts specific to metrics
around errors, CPU usage, and response time (such as, average response time
greater than 1 second). There are also those associated with events (such as
website stopped).
You can use the Metrics pane to click on an alert rule and edit it (turn it off,
change parameters, or add additional people that need to be notified). You can
also click the Add Alert button at the top of Figure 12.36 to create a new
metric alert.
Azure also provides the Alert Rules Startboard item for managing all your
alerts. This can be accessed from the startboard for your web app. The
interface is similar to the one found when editing just metric alerts. Figure
12.39 shows two alerts in the Alert rules blade.

FIGURE 12.39 Use Alert rules to create and edit conditions on which you
want Azure to send out notifications.

Clicking an alert from Figure 12.39 will take you to the editing options for the
given alert. You can also create a new alert by clicking the Add Alert button at
the top of the page. This brings up the blade shown in Figure 12.40. You can
see that you first select a resource being monitored; you then set an alert name,
description, and alert type (metric or event). In this case, we are creating a
metrics alert. You select from an available list of metrics; here we pick the 404
(not found) metric. Notice that Azure shows the recent average for the metric in
a graph to help you set your threshold.

FIGURE 12.40 You create a new alert by setting a name, an alert type, and a
metric (or event) choice.

Figure 12.41 shows the rest of the new alert setup. Here you set the condition,
threshold, and period. In this case, you are requesting that if Azure sees more
than five 404 errors in the course of one hour, you want to know about it. You
can also choose who to notify (administrators, co-administrators, and
additional people). Alert notifications are sent in the form of an email.

FIGURE 12.41 You finish creating an alert by setting a condition, threshold,
and notification options.

Once you save your new alert, it will be created on your behalf. Azure will
post a notification to your portal to let you know it was created. You will also
now see it in your alert’s list. Clicking the alert allows you to edit it and see a
graph about how often you are above the threshold. This allows you to manage
the alert closing. Figure 12.42 shows the previously created alert in edit mode.

FIGURE 12.42 Use the Edit Rule blade to view how often you hit your
threshold and make the necessary edits to the alert.

Application Insights and Web Tests (Outside-In Monitoring)
Azure allows you to create web tests that verify your site is up and running, all
is well, and users around the world can access the site. If not, the web test can
send you an alert. These type of tests are referred to as outside-in tests because
they test the site from outside the environment.
Web tests are a feature of Azure Application Insights. This tool is a set of
services that work to monitor your application, IIS server, VM, and more. It
can report performance, usage analytics, availability, server diagnostics, and
almost any key metric you wish to track. In addition, you can add Application
Insights to your Visual Studio project. This is code that will emit data to be
managed by the tool. Here, we will look at setting up Application Insights and
using just the web tests feature.
To get started, you add Application Insights as a service inside the Azure
Portal. You select the New (+ icon) which displays the Create blade as shown

in Figure 12.43. Next, you browse to Developer Services and then select
Application Insights. Azure will then present the required fields for
configuring Application Insights as shown in Figure 12.44. Here you can select
the type of application being monitored (in this case, an ASP.NET web
application), resource group, subscription, and location. Finally, you give this
service a name and hit the Create button.

FIGURE 12.43 Add Application Insights as an Azure Service to enable
	
deeper diagnostics and web tests.
	

FIGURE 12.44 You can configure Application Insights to work with an
	
ASP.NET web application or a mobile app.
	

Azure will then work to deploy and configure your Application Insights
service. Once complete, you can select it from the Startboard to get started
configuring it for your specific scenario. Figure 12.45 shows some of the many
configuration options. You select the Availability option to create a web test.
This brings up the Web tests blade as shown in Figure 12.46.

FIGURE 12.45 Use the Application Insights blade to configure the many
	
options for monitoring your application.
	

FIGURE 12.46 Use the Add web test option to add a new web test to
	
Application Insights.
	

You use the Web tests blade to add a new web test to Application Insights.
Figure 12.46 shows clicking the Add web test option. Tests are configured to
hit certain pages in your site from other Azure locations. Figure 12.47 shows
configuration of a standard ping test to verify a site is up and responding okay
from Chicago, Illinois; San Jose, California; San Antonio, Texas; Ashburn
Virginia; and Miami Florida. This test can be configured as a ping test or a
multistep tests that hits multiple pages in your site. You can also have the test
check for specific content on the requested page as part of the success criteria.
Finally, you can configure alerts to be sent if a test fails or if certain locations
fail in a set time period.

FIGURE 12.47 You can test your site from the outside in using Azure.
You can return to the web tests page once you have configured your tests and
they have been up and running for a while. The page will show you a summary
view of all your web tests. You can then select an individual web test to see
detailed information about that specific test. Figure 12.48 shows the specific
web test created previously (Verify site US) and trends over time. You can use
the toolbar at the top of the page to edit the test, disable it, set a specific time
range, and refresh your results.

FIGURE 12.48 You can view specific results of your test.

Manage Scalability
You manage the elastic scale of your site by clicking the Scale option on the
website Startboard (or from All settings, Scale). The Scale page (see Figure
12.49) shows a graph at the top that indicates how Azure has scaled your
instances over time—in this case, based on CPU percentage. Notice that this
site has never needed to be scaled.

FIGURE 12.49 The Azure scale page shows how Azure has scaled your site
	
up and down over time based on key metrics you control.
	

Note
Your scale options (instances) are restricted by your selected
hosting plan. (Refer to Figure 12.27 for details.)

Azure has the Autoscale feature that allows you to automatically scale up and
down based on key metrics in your site. Figure 12.49 shows Autoscale set to
scale up an instance (to 10 as the max) should the CPU usage be greater than
80%. It then scales down if CPU decreases to 60% or less. You can modify
these rules by selecting them. You can also add additional rules using the Add
Rule link.
Figure 12.50 shows a simplified version of these rules. You access this by
setting the Scale by option to CPU Percentage. Notice that you can set the
Instance Range. This is the minimum and maximum number of virtual instances
(or nodes) on which your code can execute. Your Azure plan controls the
maximum. You then set the scale up and scale down range for CPU usage.

FIGURE 12.50 The Azure Autoscale rules for CPU.
Setting the Scale by to, schedule and performance rules (refer to Figure 12.49),
allows you to add specific rules and rule profiles. Clicking the Add Rule link
allows you to select a metric on which you want to scale. You have a choice of
metrics like CPU usage, memory percentage, and data in/out. Figure 12.51
shows adding a rule to scale by memory usage. Here the environment is set to
scale up a node as average memory usage hits 70% usage over the past 15
minutes. You can add another rule then to scale down when the memory usage
has a sustained drop below 70%.

FIGURE 12.51 Adding an Azure Autoscale scale up rule based on memory
usage.

Clicking the Add Profile link (bottom of Figure 12.49) allows you to set a
custom scaling profile based on a recurrence or a fixed date. You can then add
additional rules to this custom profile. Figure 12.52 shows scaling from 1 node
to 5 on Monday at 9:00 am through Friday (and back to 1 on the weekends).

FIGURE 12.52 The Azure Autoscale scale down rules.

Diagnostic Logs
Azure supports diagnostic logging to help you better understand what is
happening in your site and to troubleshoot errors. You enable logging via the
Settings option from the Startboard. Figure 12.53 shows the settings pane along
with the Diagnostics logs option selected.

FIGURE 12.53 You enable diagnostic logging from the Settings option in the
Azure Startboard for a website.

Notice in Figure 12.53 that you can download and review logs from an FTP
site. You can also use the options to turn various logging options on and off.
The middle section, Application Logging, is where you set application logging
(see Figure 12.54). This allows you to turn on tracing for your application and
view the results in the Azure portal. Notice here that you can choose a level
(error, warning, or verbose).

FIGURE 12.54 You can enable application tracing (and thus streaming
	
logs).
	

Note
Application logging (tracing) will automatically turn off in 12
hours if you don’t turn it off manually.

Before you use application tracing, you must have trace messages inside your
code. The following line of code writes a simple informational message when
the site’s home page is requested. Of course, you could write a trace message
for warnings, errors in your code, and just about anything you want to monitor.
Click here to view co de image

System.Diagnostics.Trace.TraceInformation("Home page
requested.");

These tracing messages will output to a trace log provided tracing is turned on
(as discussed previously). You access this trace information from the web app
Startboard by selecting the Tools option from the toolbar and then clicking Log
Stream. Figure 12.55 shows the output of a few trace messages for a sample
application.

FIGURE 12.55 The application logs (trace messages) from the Azure
	
Streaming logs.
	

Visual Studio also gives you access to log files directly in the IDE. To see
these logs, you can navigate to the Server Explorer window (View, Server
Explorer). You then select the Azure node and navigate to your website. Figure
12.56 shows an example of the same trace log shown in Figure 12.55 open
inside the IDE. You can also right-click your website in Server Explorer and
choose View Streaming Logs to see the logs as they stream (again, similar to
Figure 12.55).

open inside Visual Studio Server
rer.

ase
ilar manner to your websites. You can
electing it from the Browse option
12.57 shows a standard Startboard
an see resource metrics and set alerts
web app (see prior section).

FIGURE 12.56 The application logs
Explo

Monitor and Manage a SQL Datab
You manage your SQL databases in a sim
access the Startboard for a database by s
(top option back in Figure 12.34). Figure
for a small SQL database in Azure. You c
in the same way you would for an Azure

FIGURE 12.57 The Startboard for an Azure SQL database.
Azure provides a number of pricing tiers dependent on your specific needs
such as auditing, storage, geo-replication (available for standard and premium
accounts only), and more. Figure 12.58 shows an example of the available
tiers at the time of writing. One big concern here is DTU, which stands for
Database Throughput Unit. This is a combination of CPU, memory, reads, and
writes. As the number increases, your database throughput performance
increases.

FIGURE 12.58 The pricing tiers for Azure SQL database hosting.
You can work directly with the database by opening it in Visual Studio. You
access this option from either the toolbar at the top of the database Startboard
shown in Figure 12.57. Clicking this option provides the Open in Visual Studio
pane, as shown in Figure 12.59. Notice here that before you open the database

in Visual Studio, you need to open your IP address with Azure Firewall rules.

FIGURE 12.59 Open the Azure SQL Database in Visual Studio by adding
your IP address in the firewall rules.

You click the Open in Visual Studio button once your firewall rules are set up.
This will launch Visual Studio 2015 and provide access to the SQL Server
tools login screen. Once connected, you can execute queries and create new
tables, views, and stored procedures as you would with any database. Figure
12.60 shows the database open in SQL Server Object Explorer to a sample,
VS Unleashed Feedback database. See Chapter 13, “Working with Databases,”
to learn more about these Visual Studio tools.

FIGURE 12.60 The Azure SQL database open in Visual Studio.

The Azure SDK for Visual Studio 2015
The Azure SDK for Visual Studio 2015 provides additional tools and platform
support for building applications targeted to Azure. This includes the
QuickStart project templates for creating different types of Azure applications,
the Add Connected Service tool for consuming Azure storage and mobile
services, the ability to manage Web Jobs from Server Explorer, and a whole
lot more.

Download, Install, and Sign In
Certain versions of Visual Studio 2015 actually preship with the Azure SDK.
An easy way to find out if you already have the SDK installed is to create a
new project in Visual Studio (File, New, Project). Next, select the Cloud node
under your default language. If you see project types then you already have the
SDK. If you see Get Microsoft Azure SDK for .NET, you do not have the SDK
installed. You can double-click this option and you will be taken to a
download page inside Visual Studio with a button to launch the web platform
installer for the SDK.
You can also download and install the SDK directly. You can access the
download from the Azure site: http://azure.microsoft.com/en-us/downloads/.
Here you select the version of the SDK based on the version of Visual Studio
(2015). There are also versions available for 2012 and 2013. Figure 12.61
shows the install process screen for the SDK version 2.6 (in this case, the
SDK is already installed).

http://azure.microsoft.com/en-us/downloads/

FIGURE 12.61 The many tools installed as part of the Azure SDK 2.5 for
Visual Studio 2015.

When you launch Visual Studio after installation of the SDK, you will still sign
into the IDE and to Azure the same way, as discussed at the start of this
chapter. However, you now have access to many more Azure services directly
from Server Explorer. Figure 12.62 shows the support for the many Azure
services, including Cloud Services, HDInsight, Service Bug, Storage, and
Virtual Machines.

FIGURE 12.62 The Azure SDK expands connectivity from Visual Studio
Server Explorer to additional Azure services.

You can select the various nodes shown in Figure 12.62 and begin working
with that service right inside the IDE. As an example, you can double-click a
VM and be taken to a configuration screen for the VM. Figure 12.63 shows an
example. Notice that you can connect to the VM, shut it down, change its size
configuration, and more.

FIGURE 12.63 You can edit VM configuration information from Visual
Studio.

QuickStart Templates
The Azure SDK ships with a number of QuickStart templates designed to
speed your development of applications that take advantage of the many Azure
services. You access these templates from the New Project dialog (File, New,
Project) under the Cloud node. Figure 12.64 shows an example of these many
project templates.

FIGURE 12.64 Use the Azure QuickStart templates to speed development of
applications that use Azure services.

The QuickStart templates for Azure provide sample code and configuration for
various Azure services. The following outlines the templates available at the
time of writing:

AppServices
Azure Active Directory: Graph API—Shows how to use the AAD
Graph API for working with users, groups, and membership roles
Azure Active Directory: Web Authentication with OpenID
Connect—Shows how to build an application with ASP.NET MVC
and use OpenID for Azure AD sign-in
Azure Media Services: Transcoding—Shows how to use Azure
media services to transcode media in various formats for streaming
Azure Service Bus: Messaging with Queues—Demonstrates using
Azure queues for building reliable messaging applications
Azure Service Bus: Messaging with Topics—Illustrates using
Azure Service Bus Topics for distributed messaging applications
based on the PubSub pattern

Compute
Azure WebJobs SDK: Blobs—Example of creating WebJobs to
work with Blob storage
Azure WebJobs SDK: Queues—Project template for using
WebJobs to work with queues
Azure WebJobs SDK: Service Bus—Shows how to leverage Azure
Service Bus with WebJobs
Azure WebJobs SDK: Tables—Example of WebJobs working with
Azure table storage

Deploy andManage Cloud Services—Template for creating code to
provision (and deprovision) Storage Accounts and Cloud Services
Deploy andManage Virtual Machines—Template for creating code
to provision (and deprovision) Azure VMs
Deploy andManage Web Sites—Example of Azure web app
deployments using WAML

DataServices
Azure DocumentDB—Allows you to write code that stores JSON
messages/documents
Azure Redis Cache—Shows how you can create an application to
move items into and out of the Azure cache service
Azure Storage: Blobs—Builds an application that uses blog storage
for files
Azure Storage: Files—Builds an application that uses Azure file
storage
Azure Storage: Queues—Allows you to work with Azure storage
queues (insert, peek, get, delete messages)
Azure Storage: Tables—Helps you work with structured data and
Azure table storage
Deploy andManage SQLDatabase—Illustrates how to deploy and
manage an Azure SQL Database using the management libraries in
Azure
Deploy andManage Azure Storage—Uses the Azure management
libraries for working with the various Azure storage accounts

Azure Resource Group Deployment Projects
Previously in the chapter, you saw how you could create a Visual Studio
ASP.NET project, link it to Azure, and deploy it when the time came. The two
examples showed both the Azure setup and configuration required to host the
site at the time of project creation and another example doing so post-project
creation. This works great for working with web apps. However, a single
Azure application might use many different Azure services, such as web app,
SQL, and cache. In that case, you would like a means to build the entire Azure
group of services for your application from within Visual Studio.
The Azure SDK includes the concept of Resource Groups. This is a method to
manage the Azure resources that your application uses as a single group. This
aids with deployment and management from within Visual Studio. You can
even use PowerShell to further customize what get installed and configured
inside Azure for your application environment.
To use resource groups, you first create a project using the Azure Resource
Group project template. Figure 12.65 shows the project type for a new project
and solution. Clicking the OK button on this dialog launches the Select Azure
Template dialog, as shown in Figure 12.66. These are templates that can setup
and configure the many services required for a common application. You can
use these as a basis for your Azure resource group project.

FIGURE 12.65 The Azure Resource Group template allows you to create
resource group projects for deploying multiple Azure services in a single

application.

FIGURE 12.66 Select an Azure template to create a group of services for a
single application.

As an example, suppose you wish to provision a resource group inside Azure

for hosting a Web app. You might write custom configuration that you wish
repeated on each deployment. In this case, you can create an Azure Resource
Group project (as its own solution by adding it to an existing solution). When
prompted for the Azure template, we select the “Web app” template shown at
the top of Figure 12.66.
Figure 12.67 shows an example of the newly created Azure resource group
project. Notice that the project contains a Windows PowerShell script for
deploying the application to Azure (Deploy-
AzureResourceGroup.ps1). There is also a deployment template
(WebSite.json) and a deployment template parameters file
(WebSite.param.dev.json).

FIGURE 12.67 The Visual Studio web app solution including the additional
Azure deployment project.

You can use the project to deploy your Azure resource group. To get started,
you right-click the project in Solution Explorer and choose the Deploy option.
This launches the New Deployment dialog, as shown in Figure 12.68. Here
you can select your Azure account (upper-right). You then set your Azure
subscription, the resource group, a deployment template (from the deployment
project), deployment parameters, and a storage account (if required).

FIGURE 12.68 You can execute a new deployment and select a resource
group for managing multiple Azure service deployments as a unit.

You must also set the deployment parameters to point to your site either inside
the website.param.dev.json file or by using the Edit Parameters
button in Figure 12.68. Figure 12.69 shows the parameter setup. The siteName
parameter is the name of your site and new resource group. The
hostingPlanName is your hosting plan as named inside Azure. The siteLocation
is the Azure location you intend to use to host the resource group.

FIGURE 12.69 You configure your Resource Group deployment as a last
step prior to final deployment to Azure.

The final step is to let Visual Studio deploy these resources to Azure on our
behalf by hitting the Deploy button. You will see the progress of the
deployment inside the Visual Studio Output window. You will also get a
notification inside Azure once complete (success or failure). You can now use
this project to make any changes to your hosting resource group and then
simply redeploy as necessary.

Azure Cloud Services (PaaS)
The web applications we have created and deployed thus far are all running on
Azure web apps. This is a hosting environment built to simplify website
creation, deployment, and management. It is built on top of Azure Cloud
Services to create an optimized approach for developers just looking to build
and host a website.
You can, however, build and deploy directly to Azure Cloud Services. This is
Microsoft’s PaaS offering. You write and deploy applications on PaaS to
provide reliability, free you from managing environments, and gain support for
high scalability.
Recall that Azure web apps are built on Cloud Services. This makes the
distinction a bit blurry. However, there are some key differences between
hosting as an Azure website and using Cloud Services. With Cloud Services,
for example, you can get access to the VMs that run your application. You have
separate staging and production environments, and you can use networking to
connect to on-premises servers. You should know that the VMs that run your
Cloud Services are managed on your behalf (patched), which is unlike the
Azure VM technology.

Note
For a great discussion on the various Azure hosting options, see
the documentation “Azure Execution Models” at the link provided
at the end of the Note. This includes a discussion of how VMs,
websites, and Cloud Services differ. It also discusses how you
might choose one over the other for your application:
https://azure.microsoft.com/en-
us/documentation/articles/fundamentals-application-models/

Creating a Cloud Service Project
You create a cloud service project from Visual Studio (File, New, Project).
You select the Cloud option on the left of the New Project dialog; you then
select the template Azure Cloud Service. Figure 12.70 shows an example.

https://azure.microsoft.com/en-us/documentation/articles/fundamentals-application-models/

FIGURE 12.70 Select Azure Cloud Service to get started working with
PaaS directly in Azure.

The Azure Cloud Service template then presents a few sub options, as shown
in Figure 12.71. You use this dialog to select the type of cloud services you
want to add to your solution. Your options include a web role for building a
web user interface, the work role for creating web jobs that run in the
background, a role for WCF services, and others. You can always add services
at a later date. In this case, we added just the ASP.NET Web Role.

FIGURE 12.71 Choose various cloud services to add to your project.
Visual Studio then prompts you on what type of ASP.NET application you want
to create. You can choose between the standard site templates that are
supported by the current version of Azure. Figure 12.72 shows options at the
time of writing.

FIGURE 12.72 Select the remaining project parameters, such as ASP.NET
template.

Visual Studio then creates two projects and adds them to a solution. The MVC
Web role is simply an ASP.NET MVC website. The other project is an Azure
configuration definition project for working with your Azure Cloud Service.
Figure 12.73 shows an example inside Solution Explorer.

FIGURE 12.73 The Azure Cloud Service project along with the related
website.

Tip
You can create your website using a standard project template and
then configure it later as a cloud service application. This proves
to be especially useful if your website project already exists. To
make this happen, right-click your project and choose Convert,
Convert to Microsoft Azure Cloud Service Project.

Running Your Cloud Service Project Locally
You can run your cloud service application locally in debug mode using Visual
Studio. When debugging, Visual Studio launches the Azure emulators for
compute and storage to host and run your service as it would be run on the
Azure application platform. If needed, you can access these emulators from the
system tray. Figure 12.74 shows the user interface (UI) for the Azure Compute
Emulator.

FIGURE 12.74 The Azure Compute Emulator runs your application locally
as if it were running inside the Azure cloud.

Deploy the Cloud Service Project
You deploy your Azure Cloud Service project in a manner similar to that
discussed for Azure websites. To get started, you right-click the cloud service
project in Solution Explorer and choose Publish. This brings up the Publish
Azure Application dialog shown in Figure 12.75. Here you can set the
environment (staging or production), the build configuration (release or
debug), and related configuration options.

FIGURE 12.75 You can publish an Azure Cloud Service application
directly from Visual Studio.

Visual Studio launches the Microsoft Azure Activity Log window when you
choose to publish the cloud service application. This window allows you to
monitor the progress of your deployment (along with other things). Figure
12.76 shows the completed deployment inside the IDE.

FIGURE 12.76 You can use the Microsoft Azure Activity Log to monitor
activities such as deployments inside the IDE.

Summary
This chapter presented the building blocks for moving forward with Azure
application development within Visual Studio 2015. You must create a
Windows Azure account to use the many services. Thankfully, Microsoft has
created an easy-to-use management portal for configuration of all Azure items.
You can use it to create websites, manage storage, and monitor activity.
The Azure SDK provides additional tools for working with Azure from Visual
Studio. With it, you can create templates for the various Azure project types
you might add to an application, such as media services, table storage, queues,
and service bus. The SDK also includes resource groups for working with a
group of Azure items as a logical unit.
Finally, we discussed the differences between creating and deploying Azure
websites and Azure Cloud Services. The former simplifies website hosting.
However, the latter provides additional access and control of your hosting
environment.

Chapter 13. Working with Databases
	

In This Chapte r
Creating Tables and Relationships
Working with SQL Statements
Using Database Projects
Creating Database Objects in Managed Code
Binding Controls to Data
Object Relational Mapping

This chapter is all about managing SQL Server databases and building data-
aware applications using Visual Studio.
	
Six different Visual Studio tools enable you to interact with a database and
	
assist with building applications that leverage data from a database:
	

Solution Explorer
Server Explorer
SQL Server Object Explorer
Database Diagram Designer
Table Designer
Query and View Designer

Collectively, they are referred to as the SQL Server Data Tools (SSDT). You
first came across a few of these tools in Chapter 5, “Browsers and Explorers.”
Now this chapter explores how developers use these tools to create database
	
solutions.
	
Project templates for database maintenance are also provided as part of the
	
SQL Server Data Tools.
	
We start by examining how to build databases and database objects with the
	
SSDT. From there, we can cover the specifics of creating data-aware
	
applications with data-bound controls.
	

Note
Some tools may not be available or may function differently
depending on the version of SQL Server you use. Here, we focus
on using Visual Studio 2015 with SQL Server 2014.

Creating Tables and Relationships
The primary entities in any database are its tables. Tables are composed of a
structure and data. Server Explorer and the new SQL Server Object Explorer
are the Visual Studio instruments used to define or edit the structure or data of
any table within a connected database. In fact, using either Explorer, it is
possible to create a new SQL Server database instance from scratch. Because
the functionality between these Explorer windows is nearly identical, we
won’t bother to illustrate every detail here within the context of both
Explorers. The SQL Server Object Explorer (launched from the View menu, or
by clicking the SQL Server Object Explorer button in the Server Explorer
command bar) looks much more like the management console that ships with
SQL Server itself and may be preferable to some people. Other than that, it
will largely be a matter of preference in terms of which tool you use. For a
quick side-by-side comparison of the two windows, see Figure 13.1.

FIGURE 13.1 The Server Explorer versus the SQL Server Object Explorer.
We focus here on using the Server Explorer because most Visual Studio users
are already familiar with it.

Creating a New SQL Server Database
Data connections are physical connections to a database. In Server Explorer,
the Data Connections node has a list of every established database connection.
To start the database creation process, right-click the Data Connections node
and select the Create New SQL Server Database option. In the resulting dialog
box (see Figure 13.2), you need to provide a server name, login credentials,
and a name for the new database.

FIGURE 13.2 Creating a new SQL Server database.
This immediately creates the indicated database and adds a connection to the
new database under the Data Connections node. Figure 13.3 shows the newly
created Contoso database added to the list of connections.

FIGURE 13.3 The new database added to the data connections.

Connecting to an Existing Database
You can also establish a connection to an existing database. Again, you right-
click the Data Connections node; this time, though, you select the Add
Connection option. The Add Connection dialog box (see Figure 13.4) is
similar to the New Database dialog box. You specify a data source, server
name, login credentials, and database name/database filename to connect to the
database.

FIGURE 13.4 Connecting to an existing database.
Under each connection are folders for the following classes of database
objects:

Database diagrams (not available with SQL Server 2012)
Tables
Views
Stored procedures
Functions
Synonyms
Types
Assemblies

These folders are the launching point for creating corresponding objects within
the database.

Defining Tables
The table designer is the SQL Server data tool you use to define or edit the
definition for a table. Using the Server Explorer window, right-click the
Tables folder under an existing connection and select Add New Table.

The designer (see Figure 13.5) is implemented with two panes: a design pane
that allows you to define the table in a “point and click” fashion, and a script
pane that lets you work directly with the T-SQL syntax that defines the table.
Within the design pane itself, there is a tabular presentation of the table
columns. Adding a table column is as simple as adding a row to this definition
matrix and setting the datatype using the in-grid drop-down. There is also a
section within the designer that allows you to view, create, and edit the table’s
keys, constraints, indexes, and so on.

FIGURE 13.5 The Table Designer interface.

Setting a P rimary Key
Creating a primary key for a table is a simple process: in the design pane,
select the column or columns that constitute the key, right click, and then select
Set Primary Key from the shortcut menu. A key icon indicates any primary keys
defined in the table.

Creating Indexes, F oreign Keys, and Check Constraints
Indexes, foreign keys, and check constraints are all created using the same
interface and process. Using the index tree to the right of the table definition,
right-click on the type of object you want to create or edit, and then select Add
New from the pop-up menu. This will immediately create a placeholder for
that object; you can now right-click on the object, select Properties from the
context menu, and then edit the properties (including column membership)
using the standard property page within Visual Studio.
Let’s put these moving parts together and see how this works end to end by
creating a table within our database to hold course content for an online
school.

We will start with an existing database residing within a SQL Server
2014 instance. Open the Server Explorer, select the target database,

right-click on the Tables node, and select Add Table (see Figure 13.6).
Note that, by default, the tool has created a default primary key field for
us named Id.

FIGURE 13.6 Adding a table.

Let’s name the table Course, which is best done using the SQL pane.
Select the current [Table] name and type the name Course instead
(see Figure 13.7).

FIGURE 13.7 Renaming the table in the SQL pane.

We now need to add the other columns to the table. Each of these can be
added in turn just by typing their name and selecting their datatype within
the designer. We’ll add a CourseCode int, a Title varchar, and a
Description varchar column. In the empty table designer row, type
the name, select the data type from the drop-down, check the Allow
Nulls column as appropriate, and then press the Tab key to create
another row for defining your next column. In Figure 13.8, we have
already added the CourseCode column and are working on the Title
column.

FIGURE 13.8 Adding columns to the table definition.
Once the columns are added, we can worry about any check constraints,
indexes, foreign keys, or triggers. For this example, we want to make
sure that CourseCode is indexed. To create an index for this column,
we will move our attention to the indexes/keys area of the design pane.
Right-click on the Indexes node there and select Add New, Index (see
Figure 13.9). The index will be created with a default name and will
immediately show under the Indexes node. To change the name of the
index and to add our column to it, we need to use the property page.
Right-click the index and select Properties.

FIGURE 13.9 Defining an index.
In the Property sheet, use the Columns property to add or remove
columns to the index. Clicking the ellipses on this property will launch
the Index Columns dialog (see Figure 13.10). In this dialog, one or more
columns can be selected and added to the index. For our example, we are
only interested in adding the CourseCode column. Back on the
property sheet, we can change the name of the index and perform other
useful actions, such as indicating whether the index is clustered.

FIGURE 13.10 Adding columns to the index.
Now that we have successfully defined our table, the last step is to
update the database with the definition and physically create the table
within the database. In the table designer, click on the Update button at
the top/left of the designer (see Figure 13.11). We have the option to
either generate a script with the table definition or update the database
directly. In this case, we’ll update directly. Once we kick off the process,
progress and results of the operation will be reported back to us within
the IDE (see Figure 13.12).

FIGURE 13.11 Updating the database.
	

FIGURE 13.12 The results of the update.
Note that as we have been designing our table, Visual Studio has been keeping
pace by writing all the necessary T-SQL in the T-SQL pane. This works the
same way that the web page designer and XAML/WPF designers do within the
tool. We are free to work with the design surface or write the necessary code
directly. The two panes are automatically kept in sync. Therefore, we could
create our table’s columns and set the primary key by simply writing the
necessary SQL in the SQL pane.
Click here to view co de image

CREATE TABLE [dbo].[Course]

(

[Id] INT NOT NULL PRIMARY KEY,

[CourseCode] INT NOT NULL,

[Title] VARCHAR(50) NOT NULL,

[Description] VARCHAR(50) NULL

)

GO

CREATE INDEX [IX_Course_Code] ON [dbo].[Course]

([CourseCode])

Note
Foreign keys for any given table can also be defined using the
Table Designer and the same process we used for adding an
index: just click on the Foreign Key entry in the design page and
use the property page to edit the actual key values. In prior
versions of Visual Studio, table relationships could be easily built
using a Database Diagram Designer. This feature was removed
from Visual Studio starting with Visual Studio 2013, although the
tool is still supported within the SQL Server Management Studio.
This is installed as part of SQL Server itself.

Working with SQL Statements
There is full support within the SQL Server Data Tools set for crafting and
executing SQL statements against a connected database.

Writing a Query
The primary tool that facilitates the development of SQL statements is the
query/view designer, which is a graphical tool that enables you to build
queries with a point-and-click interface. After a query is written, this tool
enables you to execute that query, view the returned results, and even perform
basic troubleshooting by examining the query execution plan.
Creating a new select query against a table is as simple as right-clicking the
database in Server Explorer and then selecting New Query. An initial prompt
gathers a list of the tables, views, functions, and synonyms to use as the target
of the query (see Figure 13.13).

FIGURE 13.13 Adding tables to the query.
	

Tip
The visual query design tools we are discussing are, for some
reason, only available when you have established a connection to
SQL Server using the .NET Framework Provider for OLE DB. If
you are trying to follow along with the instructions here and find
that you are stuck with only the SQL editor (no visual tools), it is
likely that your data connection in Server Explorer is using the
native .NET Framework Provider for SQL Server. Conversely,
you can only add or edit stored procedures if your data connection
is using the native client and not the OLE DB client.
So, to recap: to use the visual tools, make sure your database
	
connection is configured using the OLE DB Provider. To
	
edit/create stored procedures, make sure you are using a
	
connection that leverages the native SQL Server provider.
	

After you have selected the objects you want the query to target, the query
designer opens. As Figure 13.14 illustrates, the designer has four panes:

Crite ria pane —This pane enables you to select, via a point-and-click
diagram, the data columns to include in the select statement, sorting, and

alias names.
Diagram pane —This pane is similar to the diagram in the database
diagram designer; it graphically depicts the database object
relationships. This makes creating joins a simple action of using existing
relationships or creating new ones right within this tool.
Re sults pane —After the query is executed, this pane holds any data
	
returned as a result. Note that this pane is equipped with navigation
	
controls to enable you to page through large resultsets.
	
SQL pane —The SQL pane holds the actual SQL syntax used to
implement the query. You can alter the statement manually by typing
directly into this pane, or you can leverage the designer and let it write
the SQL for you based on what you have entered into the diagram and
criteria panes.

FIGURE 13.14 The Query Designer.

You can show or hide any of these panes at will. Right-click anywhere in the
designer and select the Pane fly-out menu to select or deselect the visible
panes.

F ine-Tuning the SQL Statement
To flesh out the select statement, you can indicate which columns from
which tables you want returned by placing a check next to the column in the
diagram pane. You use the criteria pane to specify a sort order, provide alias
names for the return columns, and establish a filter for the resultset. As you
select these different options, the designer turns them into SQL, visible in the
SQL pane.

Note
We are using the AdventureWorks sample database in a SQL
Server Express 2014 instance for most of this chapter. If you want
to follow along, you can download a copy of this database and
others by visiting http://MSFTDBProdSamples.codeplex.com/.
AdventureWorks is also the sample database used by the SQL
Server 2014 Books Online help collection.

Figure 13.15 shows the completed “Employee” query, with results visible in
the bottom pane.

FIGURE 13.15 Querying for employee information in the
	
AdventureWorks database.
	

Specifying Joins and Join Types
When you add multiple related tables to the query designer, the designer uses
their foreign key relationships to automatically build a JOIN clause for the
query. You also have the option to create joins on table columns that don’t have
an existing relationship. You do this the same way that you specify
relationships in the database diagram designer: you select and drag the column
from one table to another within the diagram pane. The columns to be joined
must be of compatible data types; for instance, you can’t join a varchar
column with an integer column.
Joins are created using a comparison operator. By default, this is the equal
operator; in other words, return rows where the column values are equal
across the join. But you have control over the actual comparison operation

http://MSFTDBProdSamples.codeplex.com/

used in the join. For example, perhaps you want the resultset to include rows
based on a join where the values in Table A are greater than the values in
Table B on the joined columns. You can right-click the join relationship line in
the diagram pane and select Properties to see the properties for the join;
clicking the ellipsis button in the Join Condition and Type property reveals the
Join dialog box, shown in Figure 13.16.

FIGURE 13.16 Setting join properties.

Other Query Types
By default, creating queries from the Server Explorer results in a select query.
But the query designer is equally adept at building other query types. If you
want, for instance, an insert query, you can change the type of the query loaded
in the designer by selecting Query Design, Change Type.
Table 13.1 shows the different query types that the designer supports.

TABLE 13.1 Supported Query Types
	

Tip
If you just want to quickly see the data contents of any given table,
you can right-click the table within the Server Explorer and then
select Show Table Data. This initiates a new query/view designer
with a SELECT * statement for the given table. By default, only
the results pane is visible. This functionality is ideal for testing
scenarios in which you need to quickly edit data in the database
or observe the effects of SQL statements on a table.

Creating Views
Views are virtual tables. They look and act just like tables in the database but
are, in reality, select statements that are stored in the database. When you
look at the content of a view, you are actually looking at the resultset for a
select statement.
Because views are implemented as select statements, you create them using the
query/view designer tool. In Server Explorer, right-click the Views folder
under the database where you want to create the view and select Add New
View. From there, you build the select statement just as you would for any
other SQL statement.
Clicking the Update button creates (or updates) the view in the database.

Developing Stored Procedures
A stored procedure is a SQL statement (or series of statements) stored in a
database and compiled. With SQL Server, stored procedures consist of
Transact-SQL (T-SQL) code and have the capability to involve many coding
constructs not typically found in ad hoc queries. For instance, you can
implement error-handling routines within a stored procedure and even call into
operating-system functions with so-called extended stored procedures.
For a given database, right-click the stored procedures folder in Server
Explorer and select Add New Stored Procedure. A template for a stored
procedure will open in the query designer. The SQL Editor is a close sibling to
Visual Studio’s Code Editor; it includes support for IntelliSense, syntax
coloring, breakpoints, and the more general text-editing features (cut-copy-
paste, word wrapping, and so on).

Tip
Remember: if you don’t see the Stored Procedures folder
within Server Explorer, you are likely not connecting to the data
source using the native SQL Server provider. If that is the case,
just add another connection to the database using the SQL Server
provider.

Figure 13.17 shows the beginnings of a stored procedure in the SQL Editor
window.

FIGURE 13.17 Writing a stored procedure.
With the template loaded into the SQL Editor, writing a stored procedure
involves typing in the lines of code and SQL that perform the required actions.

Note
The capability to create and edit stored procedures is supported
only in Microsoft SQL Server. You cannot use the Visual Studio
tools to create a procedure in, say, an Oracle database.

Debugging Stored P rocedures
In addition to coding stored procedures, you can leverage Visual Studio to help
you debug them. With the stored procedure open in the SQL Editor window, set
a breakpoint in the procedure by clicking in the Indicator Margin. (For more
details on the indicator margin and general editor properties, see Chapter 6,
“Introducing the Editors and Designers.”) With a breakpoint in place, right-
click the stored procedure’s name in the Server Explorer tree and select
Execute (see Figure 13.18).

FIGURE 13.18 Running a stored procedure with a breakpoint.
The SQL Debugger is also parameter friendly. If the stored procedure uses any
parameters, the debugger shows a dialog box to capture values for the
parameters (see Figure 13.19).

FIGURE 13.19 Entering parameter values.
You can quickly cycle through the list of parameters, supplying appropriate
values. After you click OK, the stored procedure is executed. If you have set a
breakpoint, execution pauses on the breakpoint. (A yellow arrow indicates the

current line of execution within the editor, just the same as with the code editor
window.) With execution stopped, you can use the Locals and Watch windows
to debug the procedure’s code. See Chapter 10, “Debugging Code,” for a more
thorough treatment of the Locals and Watch windows as debugging tools in
Visual Studio.
The Debug menu is used to control execution and flow. If you select Continue,
the procedure continues running up to the next breakpoint (if present).

Creating Triggers
Triggers are a type of stored procedure designed to run when the data in a table
or view is modified. Triggers are attached to an individual table; when a query
(an update, insert, or delete query) affects data in the table, the trigger
executes.
Because a trigger is really a stored procedure with a controlled execution time
(hence the name trigger), it can have quite complex SQL statements and flow
execution logic.
To create a trigger, use Server Explorer and locate the table to which the
trigger is to be attached. Right-click the table name, select Add New Trigger,
and then use the SQL Editor to write the SQL for the trigger. When the trigger
is saved to the database, it shows up under its related table in Server Explorer
(alongside the columns in the table). Figure 13.20 shows a simple trigger
designed to raise an error if an update statement changes the Availability
column in the Location table.

FIGURE 13.20 Creating a trigger.
	

Creating User-Defined Functions
User-defined functions are bodies of code/SQL designed to be reusable across
a variety of possible consumers: stored procedures, applications, or even other
functions. In that respect, they are no different from functions written in C# or
Visual Basic. They are routines that can accept parameters and return a value.
User-defined functions return scalar values (for example, a single value) or a
resultset containing rows and columns of data.
One example of a user-defined function might be one that accepts a date and
then determines whether the day is a weekday or weekend. Stored procedures
or other functions in the database can then use the function as part of their
processing.
Because user-defined functions are T-SQL statements with a format similar to
stored procedures, the SQL Editor again is the primary tool for writing them.
For each data connection visible in Server Explorer, a Functions folder
contains any existing functions. To create a new function, you can right-click
this folder, select Add New, and then select the type of function to create. You
have three options:

Inline Function—Returns values as a resultset; the resultset is built from
the results of a SELECT query.
Table -Value d Function—Returns values as a resultset; the resultset is
built by programmatically creating a table within the function and then
populating the table using INSERT INTO queries.
Scalar-Value d Function—Returns a single value.
	

After selecting the appropriate function type, template code for the function is
	
delivered inside a new SQL Editor window. Feel free to use the query/view
designer to construct any required lines of SQL within the function.
For the specifics on how to write a function and put it to best use within the
database, consult your database’s documentation.

Using Database Projects
Up to this point, we have discussed the use of the Visual Database Tools
outside of the context of a Visual Studio solution/project. Now let’s investigate
the role of the Database project type. Database projects in Visual Studio are
used to manage the development and deployment of databases. They essentially
represent an offline version of a database. It mirrors a database through a set of
SQL files that contain the schema and object definitions for things such as
tables, indexes, and stored procedures. With database projects, Visual Studio
enables an end-to-end database development workflow that typically goes
something like this:

The DBA, who is typically the only person on a project team with access
to the production database, uses Visual Studio to create an initial
database project and reverse engineer a production database into that
project.
The DBA is also typically responsible for generating test data sets for
use in nonproduction databases.
From there, the database developer gets involved. The database
developer works within the confines of the database project to write the

database code, changes schema items as needed to implement the
required functionality, and writes unit tests that validate those changes.
When done with a set of changes, the database developer checks the
schema changes into the Team Foundation Server source control system.
The DBA is then reinjected into the process. The DBA reviews the
changes, compares the changes to the schema and data already in
production, builds a deployment package containing those changes, and
then oversees the deployment of those changes in a moderated way into
production.

Note
Scripts are nothing more than SQL statements stored in a file.
They are useful because they can be executed in batch to do such
things as create tables in a new database or add a canned set of
stored procedures to a database. Because they are merely files,
they can be transferred from computer to computer, enabling you
to duplicate database structures across machines with ease.

The SQL scripts in the database project can create many of the database
objects that we have already discussed: tables, views, triggers, stored
procedures, and so on. Queries developed using the query/view designer can
also be directly saved into a database project. In short, you use the Visual
Database Tools in conjunction with a database project to create and save SQL
scripts and queries.

Creating a Database Project
Database projects use the same project template system and “new project”
process as all other Visual Studio project types. This means that we launch the
creation process by selecting File, New and then selecting one of the templates
located in the Other Languages/SQL Server category on the New Project
dialog box (see Figure 13.21).

FIGURE 13.21 Selecting the database project template.
	

Note
If you are coming to Visual Studio 2015 as a prior user of Visual
Studio 2010 or earlier, note the fundamental changes that have
taken place with regard to the database tools. There is no longer a
wizard that is launched when you create a new database project,
and the number of project templates has shrunk to just the single
SQL Server Database Project that comes in the currently shipping
version of the SQL Server Data Tools.

Note
To be able to parse and validate the objects within a database
project, Visual Studio needs to communicate with a local instance
of SQL Server: this can be the Express Edition, Developer
Edition, or Enterprise Edition of the particular database version
you are targeting. If you do not have a local instance of SQL
Server running, you see a dialog box at the start of the new project
process prompting you to supply the path to a valid SQL Server
local instance.

Importing a Database
After the project has been created, we are left with a rather sparse and empty
solution tree (see Figure 13.22). We have two basic options at this point. We
can create items within the project and configure the properties of the database
by right-clicking the project name and running the Properties dialog, or we can
import an existing database, thus pulling all of its attendant information into the
project. Most database developers will want to build their initial project from
an existing database. This preserves the concept of a production database
being the “one version of the truth.” This is a recognition of the fact that we
really want our test and development database environments to mirror the
production environment in terms of structure. By reverse engineering a
database into its component objects, Visual Studio enables us to create copies
of a database, and that, in turn, enables developers to work in their own
private sandboxes without worrying about affecting the production data store.

FIGURE 13.22 The initial, empty database project structure.

Let’s import a database. Right-click the project, select Import, and then select
Database. This launches the Import window.

The Import tool (see Figure 13.23) captures the database connection to use
(effectively answering the question, “Which database should be imported?”)
and the various items to be imported.

FIGURE 13.23 Importing a SQL Server database.

At the bottom of the screen is a drop-down labeled Folder structure; the value
set here dictates exactly how Visual Studio structures the project around the
imported items. There are two approaches: organizing by object type and
organizing by schema. For the object type approach, Visual Studio creates a
schema objects folder with subfolders for your database objects such as tables
and stored procedures. This is similar to the way that the Server Explorer
represents a database in its tree view. The schema approach will group your
project objects by the schema type that they belong to. There is also a hybrid
approach, Schema/ObjectType, which will first organize by schema and then,
within each schema folder, by object type. For most database implementations,
the object type setting is the most useful. The exception is those cases where
the database itself has multiple schemas. In those scenarios, the hybrid
Schema/ObjectType option will likely be best. Because our sample
AdventureWorks database contains multiple schemas, this is the option we
will select.
Click the Start button to start the import. A Status dialog will detail the
progress of the import (see Figure 13.24).

FIGURE 13.24 Importing the AdventureWorks2014 database.
At its conclusion, project items (which correspond to all the database schema
items) will now exist in the project (see Figure 13.25). Note that each object in
the database (be it a table, a stored procedure, an index, a key, or a constraint)
is represented by a single .sql file. In addition to the schema files, we have
folders for holding data generation plans (more on these in a bit) and pre- and
post-deployment scripts. Scripts placed into the pre- and post-folders are
executed just before or immediately after deployment.

FIGURE 13.25 A database project after importing a database.

Changing the Database
With a fully populated database project, you can now make any desired
changes by opening any of the generated .sql files and editing the file. This
works the same way that object editing works using the Server Explorer or the
SQL Server Object Explorer: you can edit the raw SQL commands using the
SQL editor or, if you opened a table’s .sql file, for instance, you can edit the
table definition by using the designer or the SQL editor.
You can control a number of database and server options via the database
project. You can access all these via the Project Properties dialog. These
would rarely need to be changed by a developer (they are more likely to be
within the database administrator ’s scope of work), but let’s briefly cover
what is available. First, launch the dialog by right-clicking the project, and
then select Properties. The Project Settings page (see Figure 13.26) is where
you can set the target deployment platform (in other words, the version of SQL
Server) and general scripting options. This is also where you can set more
fine-grained database options via the Database Settings button.

FIGURE 13.26 Database project properties.

Database Settings
Clicking the Database Settings button launches a dialog where you can set
things like collation, filegroup, transaction, cursor, and text search options.
Figure 13.27 shows the Operational tab of this dialog for a SQL Server 2008
database.

FIGURE 13.27 Setting database options.

Building and Deploying
The final item we haven’t covered is the actual act of updating a schema in a
database with the schema in a database project. You use the familiar build-
and-deploy paradigm leveraged by other Visual Studio project types. In the
context of a database project, the build process parses all the SQL files and
identifies any files that have SQL syntax errors. If the build is clean, you can
now publish the database by right-clicking the project within Solution Explorer
and selecting Publish (see Figure 13.28). This actually updates the target
database with the schema (or creates a new database if the target database
doesn’t exist).

FIGURE 13.28 Publishing a database.
	

Note
You don’t have to use Visual Studio to do the actual schema
deployment to the server. By building the database project, you
are generating a SQL script file with all the necessary SQL
commands. You can execute that script file from within any tool
that understands T-SQL (including SQL Server Management
Studio itself). This is useful when the actual schema change is
implemented by someone in the DBA role, who might or might not
have Visual Studio installed, or who might have a specific tool
that he is required to use for schema propagation.

Creating Database Objects in M anaged Code
Database objects are commonly implemented using some dialect of the SQL
language. This is true with SQL Server as well, and as we have just reviewed,
the Visual Studio database project allows you to craft your database objects
using SQL. But using that same project, you can also design database objects
using C#.
SQL Server 2005 introduced the capability of authoring SQL objects in
managed code. So, instead of using Transact SQL, you can actually write your
stored procedures, queries, views, and so on using C#. These are run under the
auspices of SQL Server ’s own version of the .NET Common Language
Runtime (CLR).
The SQL Server CLR supports a variety of object types that can be written in
C#:

Stored procedures
Triggers
Aggregates
User-defined functions
User-defined types

The following sections look at how to go about creating a straightforward
stored procedure using C# instead of T-SQL.

Creating a Stored Procedure in C#
Add a stored procedure item to your database project by right-clicking the
project and selecting Add, New Item. From the Add New Item dialog, you
select the SQL CLR C# category and then the SQL CLR C# Stored Procedure
project item, as shown in Figure 13.29. Let’s name the stored procedure
UpdateEmployeeLogin.

FIGURE 13.29 Adding a C# stored procedure.
A new class is added to the project. Listing 13.1 shows the base code that
shows up within the new class file. You can add your custom code to the static
void routine UpdateEmployeeLogin.

Note
Earlier versions of Visual Studio had a separate project type
(SQL Server Project) that was used to write managed code SQL
objects. With Visual Studio 2012 and the new SQL Server Data
Tools, this functionality is now available directly from within the
database project template. There is no need for a separate project.
The single database project template will allow you to write and
deploy your SQL CLR objects right alongside the more traditional
T-SQL script files.

LISTING 13.1 The Start of a Managed Code Stored Procedure

Click here to view co de image

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

public partial class StoredProcedures
{

[Microsoft.SqlServer.Server.SqlProcedure]
public static void UpdateEmployeeLogin()
{

// Put your code here
}

}

Managed code objects in SQL Server leverage the .NET Framework data
classes (that is, ADO.NET) to do their work. This means that stored
procedures you write will instantiate and use classes such as
SqlConnection and SqlCommand. The code you write is identical to
data access code that you would write from within any other .NET project
type: class libraries, web projects, and Windows Forms projects. Because the
common denominator is the use of ADO.NET classes, developers don’t need
to learn another language (such as T-SQL) to perform work in the database.

Note
It’s beyond the scope of this chapter to cover the relative merits
or disadvantages of writing your database objects in managed
code as opposed to T-SQL. Check out the whitepaper available
on Microsoft Developer Network (MSDN) titled “Using CLR
Integration in SQL Server 2005.” Although it’s fairly old (it was
written in November 2004), it is a great treatment of this subject
and is highly recommended reading.

Listing 13.2 shows a fleshed-out C# routine that updates the
AdventureWorks Employee table with login information. None of this
code is complicated, and it can be easily understood (and written) by anyone
with C# data access experience.

LISTING 13.2 Managed Code for Updating Employee Login Values

Click here to view co de image

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

public partial class StoredProcedures

{

[Microsoft.SqlServer.Server.SqlProcedure]
public static void UpdateEmployeeLogin(SqlInt32

employeeId,
SqlInt32 managerId, SqlString loginId, SqlString

title,

);

SqlDateTime hireDate, SqlBoolean currentFlag)
{

using (SqlConnection conn =
new SqlConnection("context

connection=true"))
{

SqlCommand UpdateEmployeeLoginCommand =
new SqlCommand();

UpdateEmployeeLoginCommand.CommandText =
"update HumanResources.Employee SET

ManagerId = " +
managerId.ToString() +

", LoginId = '" + loginId.ToString() +
"'" +

", Title = '" + title.ToString() + "'"
+

", HireDate = '" + hireDate.ToString()
+ "'" +

", CurrentFlag = " +
currentFlag.ToString() +

" WHERE EmployeeId = " +
employeeId.ToString();

UpdateEmployeeLoginCommand.Connection =
conn;

conn.Open();
UpdateEmployeeLoginCommand.ExecuteNonQuery(
conn.Close();

}
}

};

One line of code, however, deserves a more detailed explanation. The
SqlConnection object is created like this.
Click here to view co de image

SqlConnection conn = new SqlConnection("context

connection=true")

The connection string "context connection=true" tells the data
provider engine that the connection should be created in the same context as the
calling application. Because this routine is running inside a database, that
means you are connecting to the host database and running within the context
(transactional and otherwise) of the calling application. Because you are
piggybacking on the context of the database that the routine is running in, you
don’t need to hard-code a full SQL connection string here.
For comparison purposes, Listing 13.3 shows the same update query
implemented in T-SQL.

LISTING 13.3 T-SQL for Updating Employee Login Values

Click here to view co de image

ALTER PROCEDURE [HumanResources].
[uspUpdateEmployeeLogin]

@EmployeeID [int],
@ManagerID [int],
@LoginID [nvarchar](256),
@Title [nvarchar](50),
@HireDate [datetime],
@CurrentFlag [dbo].[Flag]

WITH EXECUTE AS CALLER
AS
BEGIN

SET NOCOUNT ON;

BEGIN TRY
UPDATE [HumanResources].[Employee]
SET [ManagerID] = @ManagerID

,[LoginID] = @LoginID
,[Title] = @Title
,[HireDate] = @HireDate
,[CurrentFlag] = @CurrentFlag

WHERE [EmployeeID] = @EmployeeID;
END TRY
BEGIN CATCH

EXECUTE [dbo].[uspLogError];
END CATCH;

END;

Building and Deploying the Stored P rocedure
When you build your SQL Server project, the typical compilation process
takes place. Assuming that your code will build, you can now deploy the
resulting assembly to the database, as we have already seen by using the
Publish command on the project.
After the assembly has been deployed, you can test it by calling it from an
application or from a query window. For detailed information on how to call
and write managed assemblies, consult the SQL Server Books Online.

Binding Controls to Data
You have now seen all the various ways you can use Visual Studio to create
and manage databases. The following sections look at the tools available for
consuming data within Windows forms, WPF, or web applications.

An Introduction to Data Binding
There is a common problem and solution pattern at hand with applications that
front databases. Typically, data has to be fetched from the database into the
application, and the application’s user interface has to be updated to display
the data in an appropriate manner. For large data sets, the concept of paging
comes into play. Because it is inefficient to load in, say, a 100MB data set, a
paging mechanism needs to be pressed into action to enable the user to move
forward and back through the data “stream.” After the data has safely made it
into the application’s UI, the application-to-database flow needs to be handled.
For any pieces of data that have been changed, those changes have to be
reconciled and committed back into the database.
Data binding is the term given to the implementation of a design pattern that
handles all facets of this round trip of data from a data structure, into an
application’s controls, and back again. Although the data structure is most
commonly a database, it could be any sort of container object that holds data,
such as an array or a collection. .NET further stratifies the concepts of data
binding into simple data binding and complex data binding. Both of these terms
refer to a control’s intrinsic capabilities in the larger context of the data-
binding process.

Simple Data Binding
Simple data binding is the capability for a control to bind to and display a
single data element within a larger data set. A TextBox control is a great
example of a control commonly used in simple data-binding scenarios. You
might use a TextBox, for example, to display the last name of an employee as it
is stored within the employee table of a database.
Support for simple data binding is widespread throughout both the Windows
and web forms controls. When you use the built-in capabilities of the Windows
and Web Forms Designer, it is trivial to add a group of controls to a form and
simple-bind them to a data set (more on this in a bit).

Complex Data Binding
The term complex data binding refers to the capability of a control to display
multiple data elements at one time. You can think of this as a “multirow”
capability. If a control can be leveraged to view multiple rows of data at one
time, it supports complex data binding.
The DataGridView control (for Windows forms) and DataGrid control (for
web forms) are premier examples of controls that were purpose-built to handle
tabular (multirow and multicolumn) data.
Although the internals necessary to implement data binding are messy,
complex, and hard to understand, for the most part the Visual Studio tools have
abstracted the cost of implementing data binding out to a nice and easy drag-
and-drop model. Now let’s look at how to rapidly build out support for round-
trip data binding.

Autogenerating Bound Windows Forms Controls
Although there are various ways to approach and implement data-bound
controls with Visual Studio, they all involve the same basic two steps:

1. Establish a data source.
2. Map the data-source members to controls or control properties.

From there, the Visual Studio Form Designers can generate the correct controls
and place them on the form. All the data-binding code is handled for you; you
just need to worry about the layout, positioning, and UI aspects of the controls.
As you might imagine, your form can have controls that use simple data binding
or complex data binding or a mix of both. Now you’re ready to look at the
steps involved with creating a series of controls that leverage both simple and
complex data binding to display information from the AdventureWorks
Employee table. In this scenario, you work with the Windows Forms Designer.
The ASP.NET Web Forms Designer works in a similar fashion, and you have a
chance to investigate drag-and-drop approaches for data binding in the web
environment in just a bit. As we have already established, the first step is
selecting a data source.

Selecting a Data Source
In Visual Studio, make sure you are working inside a Windows Forms
Application project and use the Data Sources window to select a data source.
If this window isn’t already visible, select View, Other Windows, Data
Sources. If your current project doesn’t have any defined data sources, you
need to create one. Click the Add New Data Source button in the toolbar of the
window to start the Data Source Configuration Wizard. On the first page of this
wizard (see Figure 13.30), select the type of the data source. There are four
options here:

Database —The data source resides as a table within a relational
database.
Se rvice —The data source is a web service that returns the data to be
bound to the form controls.
Obje ct—The data source is an object that provides the data. (This is
useful when a business object from another layer of the application is
responsible for delivering the data to the form.)
Share Point—The data source is an object that is hosted within a
SharePoint site.

FIGURE 13.30 Choosing the data source type.
Because the concepts of data binding are most easily understood within the
context of a database, we use the database data-source type as the underpinning
for our walk-throughs in this chapter.
If you have selected the database data source type, the second page of the
wizard focuses on selecting the type of data model you use. Prior versions of
Visual Studio simply enabled you to model your data using data sets. Visual
Studio now also enables you to build an Entity Data Model and use that as a
data source for your binding. Entity Data Models are a feature of the Entity
Framework, which we discuss later in this chapter. Regardless of the model
you select, you need to indicate where the model gets its data (via connection
string, and so on) and what data should be pulled into the model from the
source database.
Select DataSet, and then click through the next two pages of the wizard, which
will capture the connection and connection string to use. The final page of the
wizard enables you to select which of the objects in the database should be
used for the source data. You can select from any of the data elements present
in any of the various tables, views, stored procedures, or user-defined
functions in the database. For the purposes of this example, we have selected a
DataSet model that pulls its data from the AdventureWorks database, and
we have selected a few employee table data columns that are of interest:
BusinessEntityID, LoginID, HireDate, rowguid, BirthDate,
Gender, SalariedFlag, VacationHours, SickLeaveHours, and
CurrentFlag.
At the conclusion of the wizard, your selected data source is visible in the
Data Sources window (see Figure 13.31).

FIGURE 13.31 The Data Sources window.
	

Note
If you have chosen to use a DataSet as your data model, behind
the scenes Visual Studio is really just using the data source
information collected in the Data Source Configuration Wizard to
create a typed data set. This data set is then stored as a project
item in the current project.

With the data source in place, you’re ready to move on to the next step:
mapping the data-source elements to controls on your form.

Mapping Data Sources to Controls
The really quick and easy way to create your data-bound controls is to let
Visual Studio do it for you. From the Data Sources window, click the drop-
down button on the data-source name to reveal a menu (see Figure 13.32).

FIGURE 13.32 Changing the data table mapping.

This menu enables you to set the control generation parameters and really
answers the question of which controls you want generated based on the table
in the data source. By setting this to DataGridView, you can generate a
DataGridView control for viewing and editing your data source. The Details
setting enables you to generate a series of simple data-bound controls for
viewing or editing data in the data source.
For this example, select Details, and then drag and drop the data source itself

from the Data Sources window and onto a blank form.
	
Figure 13.33 shows the results. In just two short steps, Visual Studio has done
	
all of the following for you:
	

Autogenerated a set of Label, TextBox, and DataTimePicker controls
Autogenerated a tool strip with controls for navigating among records in
the data source, saving changes made to a record, deleting a record, and
inserting a new record
Created all the necessary code behind the scenes to establish a
connection to the data source, read from the data source, and commit
changes to the data source

FIGURE 13.33 Auto-generated controls: viewing Employee data.
You have essentially created an entire data-enabled application from scratch
with absolutely no coding on your part.
The approach of using simple data binding might not fit into the user interface
design, so you always have the option of working in the complex data-binding
world and using the DataGridView as an alternative. Figure 13.34 shows the
results of autogenerating a DataGridView instance using this same process.

FIGURE 13.34 An autogenerated DataGridView.

Customizing Data-Source Mappings
Refer again to Figure 13.31 and look at the individual data elements that show
up under the Employee data source. Each of these is displayed with a name and
an icon. The name is, of course, the name of the data element as defined in the
database. The icon represents the default mapping of that data type to a .NET
control. For example, the Title field maps to a TextBox control, and the
BirthDate field maps to a DataTimePicker control. Visual Studio actually
attempts to provide the best control for any given data type. But feel free to
manually indicate the specific control you want used. If you want to display the
value of the EmployeeID column in a label instead of a text box (in
recognition of the fact that you cannot edit this value), it would be easy enough
to change this before generating the controls by selecting the EmployeeID
column in the Data Sources window and then clicking the drop-down arrow to
select Label instead of TextBox.
In addition to changing the control to data type mapping on an individual level,
you can affect the general default mappings that are in place by selecting the
Customize option from that same drop-down menu. The Visual Studio Options
dialog box opens with the Windows Forms Designer page selected. Using the
settings there (see Figure 13.35), you can specify the default control type that
you want to apply for each recognized data type.

FIGURE 13.35 Customizing the UI representation for different data types.

Editing Typed Data Sets
There is a designer provided solely for editing (and creating) typed data sets
within Visual Studio: the data set designer. This designer launches
automatically when you open a DataSet project item such as the
AdventureWorksEmployeeDataSet.xsd file that we just created
when investigating data binding.

Note
Typed DataSet objects can be huge productivity enhancers over
a normal data set: instead of using indexes into collections, you
can reference tables and columns by their actual names. In
addition, IntelliSense works with typed DataSet members,
making coding against large data hierarchies much easier.

You can use the data set designer to easily tweak data sets by changing any of
the various constituent parts, including the queries used to populate the data
set. Figure 13.36 shows the previously created
AdventureWorksEmployeeDataSet open in the data set designer.

FIGURE 13.36 The data set designer.
Note that each piece of the data set is visually represented here, and we can
interact with those pieces to effect changes. For instance, if we want to alter
the query we originally constructed using the Data Set Configuration Wizard,
we right-click the Employee table on the design surface and select Configure
to relaunch the query editor.
In the scenario we have been discussing, we are wiring the data set directly to
the results from a SQL query, but we can also use the data set designer to
create “unbound” new data sets. Adding a DataSet project item to our project
enables us to start with a blank slate, adding tables, queries, and so on to the
data set to satisfy any storage requirements (or data retrieval requirements) that
our application might have. This is especially useful for applications that read
and write data but don’t necessarily interact with a database. These data set
files can be used as simple file storage that you can easily bind later to a
relational database.

Manually Binding Windows Forms Controls
In many situations, you don’t want Visual Studio to create your data-bound
controls for you, or you might need to bind existing controls to a data source.
Data binding in these cases is just as simple and starts with the same step:
creating or selecting a data source. Some controls, such as the DataGridView,
have smart tag options for selecting a data source. Others don’t have intrinsic
data dialog boxes associated with them but can be bound to data just as easily
by working, again, with the Data Sources window.

Binding the DataGridView
Grab a DataGridView from the Toolbox and drag it onto the form’s surface.
After you’ve created the control, select its smart tag glyph and use the drop-
down at the top of the task list to select the data source to bind to (see Figure
13.37).

FIGURE 13.37 Selecting a data source for a DataGridView.
With a data source selected, you have again managed to develop a fully
functional application with two-way database access. All the code to handle
the population of the grid and to handle committing changes back to the
database has been written for you.

Customizing Cell Edits
The power of the DataGridView lies in its capability to both quickly bind to
and display data in a tabular format and provide a highly customized editing
experience. As one small example of what is possible in terms of cell editing,
follow through with the Employee table example. When you auto-generated
form controls to handle Employee table edits, you ended up with
DateTimePicker controls to accommodate the date- and time-based data in the
table. With the DataGridView, the cell editing experience is a simple text box
experience. Each cell contains text, and you can edit the text and save it to the
database. But you can provide a more tailored editing experience. You can use
various stock controls (such as the DataGridViewButtonColumn,
DataGridViewComboBoxColumn, and others that inherit from
DataGridViewColumn; see Chapter 20, “Building Windows Forms
Applications”) to display data within the columns of the grid.
For example, you can use the DataGridViewComboBoxColumn class to
provide a drop-down edit for the Gender column in the grid. To do this, you
first need to change the default column type. Select the grid control, open the
smart tag glyph, and select the Edit Columns action. In the Edit Columns dialog
box, find the column for the employee gender data and change its column type
to DataGridViewComboBoxColumn (see Figure 13.38).

FIGURE 13.38 Changing the column type.
With the column type changed, you now need to specify how the grid should
retrieve the list of possible values to display in the drop-down; the grid is
smart enough to already know to use the underlying gender values from the
table to select the one value to display in the grid. To handle the list of
possible values, you could hard-code them in the column, or you could wire up
a separate query (something along the lines of SELECT
DISTINCT(Gender) FROM Employees) and have that query provide
the list of possible values. Because constructing another query or data source
is easy and doesn’t lead to a brittle hard-coded solution, that’s the approach
we investigate here. To create a query to feed the combo-box column, you can
visit the Data Sources window, select the Add New Data Source action, and
follow the same steps you followed before to add the original Employee data
source. This time, though, select only the Gender column.
After the data source is created, right-click the data source and select Edit
DataSet with Designer. We use the data set designer to modify our query
appropriately. In the designer (see Figure 13.39), you can see the Fill query
and TableAdapter used to populate the data set. If you click the query (that is,
click the last row in the table graphic in the designer window), you can use the
Properties window to directly edit the SQL for the query. By modifying this to
reflect SELECT DISTINCT syntax, you can return the valid gender values
for inclusion in the grid.

FIGURE 13.39 Changing the query for a data source.
There are two more steps needed. We need a new binding source to connect to
our gender data set, and then we need to set our gender column drop-down to
point to that binding source. We already have one binding source that was
automatically added to our form when we added the DataGridView and
connected it to a data set. Now we need another binding source to connect to
the new data set that is retrieving the distinct gender values. From the Toolbox
window, under the Data category, select the BindingSource component and
drag it onto your form. This will add a new binding instance to the component
tray. Click the binding source, and in the property window set its data source
to the gender data set that we just created.
Last step: go back to the GridView control, use the smart tag to select the Edit
columns option, go back to the Gender column, and then set the
DataSource, DisplayMember, and ValueMember properties. The
DataSource will be set to the binding source we just configured (here, we
have called it simply genderBindingSource), as shown in Figure 13.40.

FIGURE 13.40 Configuring the binding source.
Figure 13.41 shows the results. If you need to implement a cell edit control that
doesn’t currently exist, you can create your own by inheriting from the
DataGridViewColumn base control. This employee grid could benefit from a
DateTimePicker control for the date- and time-based data, such as birth date
and hire date.

FIGURE 13.41 A data bound drop-down within a DataGridView.
	

Note
If you look in the MSDN documentation, there is a specific
example of creating a DataGridViewDateTimePickerColumn
control and then wiring it up within the grid. Search for “How to:
Host Controls in Windows Forms DataGridView Cells.”

Binding Other Controls
For other controls that don’t have convenient access to binding via their smart
tag, you can leverage the Data Sources window. Drag a data source from the
Data Sources window and drop it onto an existing control. The designer
creates a new binding source, sets it appropriately, and then makes an entry in
the control’s DataBinding collection. If you try to drag a data element onto
a control that doesn’t match up (for instance, dragging a character field onto a
check box), the drop operation isn’t allowed.

Data Binding in WPF Applications
Just as with Windows Forms applications, Visual Studio supports drag-and-
drop data binding with WPF projects. The process is identical to the one we
just covered for binding Windows Forms controls; we first need a data source
added to our project. To change things up a bit, let’s quickly build out a form
that shows purchase orders and their detail line items.
First, create a new WPF project. Refer to Chapter 21, “Building WPF
Applications,” if you want to first refresh your knowledge of the WPF project
type and its designers/editors. Add the data sources in the same fashion as we
did previously by using the Data Sources Wizard. This time, instead of
employee data, let’s focus on purchase order data. From the
AdventureWorks database, select both the PurchaseOrderHeader
and PurchaseOrderDetail tables to be included in the data set. Call the
data set AdventureWorksPurchasingDataSet.
With the data source added, we build out a simple UI. Using the default
window created for us, MainWindow, create a two-column grid and place a
list box in the left column of the grid. Name the list box
listBoxPurchaseOrders. At this point, your workspace should look
similar to the one depicted in Figure 13.42.

xaml/presentation"
6/xaml"

FIGURE 13.42 Working with a WPF window and data sources.
Now drag the PurchaseOrderID field from the
PurchaseOrderHeader data source to the list box. Although nothing
appears to have changed visually, the list box has actually been bound with a
few lines of XAML:

First, our data source has been referenced as a resource with the key
adventure-WorksPurchasingDataSet (picking up from the
name we gave the data set in the wizard).
Additionally, a CollectionViewSource has been added with the
appropriate binding path into the data set to pick up the Department
table data.
Finally, the DisplayMemberPath and ItemsSource properties
have been set on the list box itself.

Besides the XAML modifications that we made, a series of statements have
been added to the code file, within the Window_Loaded event handler.
These statements are responsible for loading the data from the database via a
table adapter object.
Listing 13.4 shows the current state of our XAML.

LISTING 13.4 XAML with Visual Studio-Generated Data Binding

Click here to view co de image

<Window	 x:Class="AdventureWorksWPF.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/
xmlns:x="http://schemas.microsoft.com/winfx/200
Title="MainWindow" Height="350" Width="525"
xmlns:my="clr-namespace:AdventureWorksWPF"
Loaded="Window_Loaded">

<Window.Resources>
<my:AdventureWorksPurchasingDataSet

x:Key=" adventureWorksPurchasingDataSet"
/>

<CollectionViewSource
x:Key="purchaseOrderHeaderViewSource"

Source="{Binding
Path=PurchaseOrderHeader,

Source=
{StaticResource adventureWorksPurchasingDataSet}}" />

</Window.Resources>
<Grid DataContext="{StaticResource

purchaseOrderHeaderViewSource}">
<Grid.ColumnDefinitions>

<ColumnDefinition Width="150" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>
<ListBox	 Grid.Column="0" Margin="5"

X:Name="listBoxPurchaseOrders"
VerticalAlignment="Stretch"
DisplayMemberPath="PurchaseOrderID"

ItemsSource="{Binding}"
/>

</Grid>
</Window>

If we run the application at this stage, we see that we have a list of all the
purchase order IDs displayed in our list box (see Figure 13.43).

FIGURE 13.43 A data bound drop-down within a DataGridView.
Now every time we select a purchase order ID in the list box, we want to see
its line items in the right column of our window. This is another, easy drag-
and-drop operation requiring no hand-coding on our part. Grab the
PurchaseOrderDetail data source column that sits under the
PurchaseOrderHeader data source, and drag it over into the rightmost
column of our WPF window. (Figure 13.44 shows the result within our WPF
designer of this drag-drop action.) This has the net effect of creating a
DataGrid control bound to the PurchaseOrderDetail rows that

correspond to the currently selected PurchaseOrderHeader object in the
list box.

FIGURE 13.44 Adding a master-detail data source to the WPF window.

It’s important that you grab the correct PurchaseOrderDetail column
object from the Data Sources window; by selecting the one that lies under the
PurchaseOrderHeader, you are also grabbing the foreign key
relationship between those two tables in the database, and that provides the
context necessary for the WPF designer and editor to wire up the correct code
to respond to selections in the list box and display related records in the
DataGrid.
Figure 13.45 shows the complete app that was accomplished with absolutely
no coding required!

FIGURE 13.45 A master-detail window built entirely by dragging and
dropping data sources.

Data Binding with Web Controls
Although the general concepts remain the same, data-binding web-based
controls is a slightly different game than in the Windows Forms or WPF world.
The first obvious difference is that data sources for web forms are
implemented by data-source controls in the
System.Web.UI.WebControls namespace; there is no concept of the
Data Sources window with web applications. Because of this, instead of
starting with a data source, you need to start with a data control and then work
to attach that control to a data source.

Selecting a Data Control
You work with five primary controls in a web application to deliver data-
bound functionality:

GridVie w control—Provides a tabular presentation similar to the
DataGridView control.
De tailsVie w control—Displays a single record from a data source; with
a DetailsView control, every column in the data source shows up as a
row in the control.
FormVie w control—Functions in the same way as the DetailsView
control with the following exception: it doesn’t have a built-in “default”
for the way that the data is displayed. Instead, you need to provide a
template to tell the control exactly how you want the data rendered onto
the web page.
Re pe ate r control—Simply renders a list of individual items fetched
from the attached data source. The specifics of how this rendering looks
are controlled via templates.
DataList control—Displays rows of information from a data source.
The display aspects are fully customizable and include header and footer
elements.

For demonstration purposes, let’s go back to working with the
AdventureWorks Employee table and see how you can implement a data-
bound web page for viewing employee records.

Using the GridView
First, with a Web Forms project open, drag a GridView control from the
Toolbox onto an empty web form page. The first thing you notice is that the
GridView’s smart tag menu is just as efficient as the DataGridView’s menu.
You are directly prompted to select (or create and then select) a data source as
soon as you drop the control onto the web page surface (see Figure 13.46).

FIGURE 13.46 Adding a GridView to a blank web page.
The <New Data Source...> option uses a similar data-source wizard to collect
information about your data source and add it to the project.
	
Once again, because of the data-binding support in the designer, you now have
	
a fully functional application without writing a line of code. Figure 13.47
	
shows this admittedly ugly web page with live employee data.
	

FIGURE 13.47 Live employee records in the GridView.
Thankfully, you can just as easily put some window dressing on the table and
make it look nice. By using the GridView’s smart tag menu again, you can
select the Auto Format option to apply several flavors of window dressing to
the table (see Figure 13.48). And, of course, by applying a style sheet, you can
really affect the look and feel of the page.

FIGURE 13.48 Auto-formatting options for the GridView control.
	

Updating Data with the GridView
Creating the web grid was easy, and no data access coding was required on
your part. The GridView you currently have is great for static reporting, but
what if you want to edit data within the grid just as you did earlier in the
Windows forms application? The key here is a set of properties on the
GridView (see Figure 13.49): AutoGenerateEditButton and
AutoGenerateDeleteButton. When you set these properties to True,
the GridView automatically includes an Edit link and a Delete link (shown on
the previous figures). The Edit link comes fully baked with rendering code so
that when it is clicked, that particular row in the grid becomes editable.

FIGURE 13.49 Enabling edit and delete functionality in the GridView.
After changing the data in one or more of the columns, you can click the Update
link to send the data back to the database. For the update to work, however,
you need to explicitly tell the data-source control (in this case, a
SqlDataSource control) which query to use for processing updates. This is
done with the SqlDataSource.UpdateQuery property. By specifying a
parameterized UPDATE query in this property, you have fully informed the
data source how to deal with updates. You can take advantage of the Query
Builder window to write this query for you: select the data-source control on
the web form, and in the Properties window select the UpdateQuery
property. This launches the Query Builder window and enables you to
construct the parameterized update command (see Figure 13.50).

FIGURE 13.50 Setting the UpdateQuery property using the Query
	
Builder dialog.
	

With that last piece of the puzzle in place, you now have a fully implemented
and bound grid control that pages data in from the database and commits
changes back to the database.

Note
To implement delete capabilities for a record, you perform the
same steps using the DeleteQuery property and setting the
AutoGenerateDeleteButton to True.

Data-Source Controls
As mentioned, data sources are surfaced through one or more data-source
controls placed onto the web form. In the GridView example, the designer
actually adds a SqlDataSource control to the form for you (based on your
creation of a new DB-based data source). But there is nothing preventing you
from adding one or more data-source controls to a web page directly. Just drag
the control from the Toolbox onto the form surface. Table 13.2 itemizes the
available data-source controls.

TABLE 13.2 Data-Source Controls
	

After configuring the data source, you can visit any data-aware control and
bind it to the source.

Object Relational M apping
We have spent most of this chapter covering the “standard” process for
creating .NET applications that read and write data that resides in a database.
Although Visual Studio and the ADO.NET libraries themselves do a lot to
abstract away the difficult pieces of that process, problems still remain. In fact,
there is one common problem that developers writing database-driven
applications face: the mismatch between an application’s normal object-
oriented programming model, implemented in C# or Visual Basic, and the
relational programming model surfaced in databases or data sets, implemented
primarily with SQL.
In the object-oriented world, we manipulate objects via methods and
properties, and each object can be (and often is) a parent or container for other
objects. The relational database world is much more straightforward: Entities
are implemented as row/column-based tables, and each “cell” in a table holds
simple scalar values. The core issue is that you must change programming
models when dealing with an application’s internal framework or the
relational database used as its data store (and translating from one to the other
isn’t a straightforward task).
As a simple example, rows from an invoice table are easily fetched into a
DataSet object using the various data-binding tools and classes discussed
previously. But deriving a “native” Invoice object from the data set
involves two-way manual translation and manipulation to get the core values to
translate across this object/relational barrier. This highlights several issues.
Do you abandon the data set approach and read directly from the database into
your applications’ objects? Do you eschew the object approach and try to use
the DataSet component throughout all layers of your application? Or is a
hybrid approach best, maintaining strongly typed object collections in addition
to the data sets?
Ideally, application developers would be free to work with and manipulate
objects within the program’s object model and have those objects and changes
automatically stored in the database with little or no intervention. Not only
does this keep the focus on core well-understood object design patterns, but it
lets the individual developer work with his core language strength without
having to learn or become expert in SQL. Pursuit of this goal obviously
requires some sort of standard approach and tooling support for mapping
objects to and from their equivalents within the relational database. This is
exactly what object/relational mapping tools do.
The term object/relational mapping (or O/R mapping) refers to this general
process of translating objects to and from databases. O/R mapping tools have
been on the market for years now, and Microsoft has finally delivered O/R
mapping support directly in the .NET Framework and in Visual Studio through
two different but similar technologies: LINQ to SQL and Entity Framework.
Let’s briefly discuss both of these technologies and their Visual Studio tooling,
starting with LINQ to SQL.

ted Query. It is a component
ith .NET Framework 3.5 that adds
bjects. Specifically, it extends the
#) and the runtime to try to erase the
sual Basic and C# support new query
r to the way SQL operates over

roved invoice objects like this.

s
) == true

approved)

ally translating objects and methods to
arily through the use of code

is a simple example of a class method
e.

eEmployee")]

r(Name="EmployeeID",

System.Nullable<int>

,

d())), employeeID);
urnValue));

eted at a specific mapping problem:
to map objects to database entities.
to query XML documents and map
.
lly refers to the inclusion of .NET
s to be written over collections of

with the approved invoices).
ct regarding LINQ to SQL: although
t has been deprecated in favor of the
ht still prefer to use LINQ to SQL
object-relational mapping (ORM) to

An Overview of LINQ
LINQ is an acronym for Language Integra
introduced as a framework component w
SQL-like querying capabilities to .NET o
core .NET languages (Visual Basic and C
object-to-database-entity barrier. Both Vi
operators that operate over objects simila
tables in a database.
For example, you could query for all app
Click here to view co de image

var	 approved =
from invoice in invoice
where (invoice.Approved
select invoice;

foreach (Invoice invoice in
{

// do some work here
}

Runtime support is introduced for physic
and from their database equivalents (prim
attributes, as you see in a moment). This
mapped to a SQL Server stored procedur
Click here to view co de image

[Function(Name="HR.uspDelet
public int
uspDeleteEmployee([Paramete
DbType="Int")]

employeeID)
{

IExecuteResult result =
this.ExecuteMethodCall(this

((MethodInfo)
(MethodInfo.GetCurrentMetho

return ((int)(result.Ret
}

LINQ comes in several flavors, each targ
LINQ to SQL—This enables you
LINQ to XML—This enables you
objects to XML document elements
LINQ to Obje cts—This specifica
language syntax that enables querie
objects (as in our previous example

You need to be aware of one important fa
Microsoft fully supports the technology, i
Entity Framework. Some developers mig
because it is a lighter weight and simpler

implement.

Note
In 2007, Microsoft released a technology preview of a version of
LINQ designed specifically for parallel execution. This
technology, called PLINQ (for Parallel LINQ), has now been
officially released. In essence, PLINQ builds on the LINQ
concepts by accepting any LINQ to XML or LINQ to Objects
query and executes those queries by optimizing for multiple CPU
or multiple core scenarios.

If you are interested more in PLINQ or parallel programming in general, the
Parallel Computing Center on MSDN is a great start:
http://msdn.microsoft.com/en-us/concurrency/default.aspx.
LINQ is a fairly broad and deep set of technology pieces, and covering even
one in depth is beyond the scope of this book. We do, however, dig into the
primary Visual Studio tool used when writing LINQ to SQL applications: the
O/R designer.

Mapping Using the O/R Designer
The first step in creating a LINQ to SQL application is typically the
construction of an object model that is based on a given database definition.
This is the exact function of the O/R designer. It enables you to select a
database and generate an object model that maps to the database’s structure.
Table 13.3 shows how the database components are mapped to object
components.

TABLE 13.3 Default Database to Object Mappings

Adding Database Entities
The O/R designer is the design surface for project items known as LINQ to
SQL Classes, so the first step in using the designer is to add a new LINQ to
SQL Classes project item to a project. Figure 13.51 shows where this project
item lives in the Add New Item dialog box.

http://msdn.microsoft.com/en-us/concurrency/default.aspx

FIGURE 13.51 Adding a LINQ to SQL Classes item to an existing project.
After you’ve selected the LINQ to SQL Classes item and added it to the
project, the O/R designer immediately launches.
There isn’t much to see yet because we haven’t selected which database
entities we want to represent within our object model. This involves the use of
the second primary tool for performing the O/R mapping: Server Explorer.
By selecting a valid data source in Server Explorer, we can simply drag and
drop a table onto the left side (the “data class” side) of the O/R designer (see
Figure 13.52).

FIGURE 13.52 The AdventureWorks PurchaseOrderHeader
table added to the O/R design surface.

Although nothing obvious happens after the table is dragged onto the data class
pane (beyond having its visual representation in the designer), in reality
potentially thousands of lines of code have been automatically generated to
implement a class structure that mimics the table structure. In addition, all the
attribute-based wiring has been implemented so that the LINQ engine can

understand and process updates between the class object and the table’s rows
and columns.
This exact process is used to create methods within our object model. We can,
for instance, drag a stored procedure onto the right pane of the designer (the
“methods” pane) to map a method within our object model to the stored
procedure (see Figure 13.53).

FIGURE 13.53 A stored procedure mapped as a method.

LINQ Code
Let’s examine exactly what has taken place behind the scenes as a result of the
drag-and-drop operation between Server Explorer and the O/R designer.
For one, the connection string necessary to open a connection to the selected
database is automatically stored in the app.config (or web.config) file
for you. This is then leveraged by LINQ to make calls into the database when
needed. In addition, a new class has been defined, in this case one named
PurchaseOrderHeader.

Note
The O/R designer actually “depluralizes” entity names for you
automatically. Many HR databases, for instance, choose to
implement an employee table and call it Employees because it
stores the data records for more than one worker. In an attempt to
further push through the object model to data model impedance
mismatch, the O/R designer actually creates a class called
Employee and not Employees; this correlates much better
with the true intent of the class (which is to contain a single
row/instance from the table and not the entire table).

If you look at the resulting LINQ code (in our example, by viewing the code
inside the file DataClasses1.designer.cs), you will see that LINQ
marks up the object model with attributes to perform the magic linking between

the objects and the database. Via the Table attribute, this class has been
identified as a direct map to the Purchasing.PurchaseOrderHeader
table.
Each column in the PurchaseOrderHeader table has also been
implemented as a property on the Employee class. This snippet shows the
PurchaseOrderID property:
Click here to view code image

[global::System.Data.Linq.Mapping.ColumnAttribute(Storage="_PurchaseOrderID",
AutoSync=AutoSync.OnInsert, DbType="Int NOT NULL
IDENTITY", IsPrimaryKey=true,
IsDbGenerated=true)]
public int PurchaseOrderID
{

get
{

return this._PurchaseOrderID;
}
set
{

if ((this._PurchaseOrderID != value))
{

this.OnPurchaseOrderIDChanging(value);
this.SendPropertyChanging();
this._PurchaseOrderID = value;
this.SendPropertyChanged("PurchaseOrderID");
this.OnPurchaseOrderIDChanged();

}
}

}

Beyond the PurchaseOrderHeader class, there has also been code
generated for the data context. Here is a snippet of the class definition created
automatically for us.
Click here to view code image

[global::System.Data.Linq.Mapping.DatabaseAttribute(Name="AdventureWorks2008")]
public partial class DataClasses1DataContext :
System.Data.Linq.DataContext
{

private static
System.Data.Linq.Mapping.MappingSource mappingSource

= new AttributeMappingSource();
#region Extensibility Method Definitions
partial void OnCreated();
partial void
InsertPurchaseOrderHeader(PurchaseOrderHeader
instance);
partial void
UpdatePurchaseOrderHeader(PurchaseOrderHeader
instance);
partial void
DeletePurchaseOrderHeader(PurchaseOrderHeader
instance);
#endregion

public DataClasses1DataContext() :

base(global::AWL2S.Properties.Settings.Default.
AdventureWorks2008ConnectionString,

mappingSource)
{

OnCreated();
}

public DataClasses1DataContext(string
connection) :

base(connection, mappingSource)
{

OnCreated();
}

public
DataClasses1DataContext(System.Data.IDbConnection
connection) :

base(connection, mappingSource)
{

OnCreated();
}

public DataClasses1DataContext(string
connection,

System.Data.Linq.Mapping.MappingSource
mappingSource) :

base(connection, mappingSource)
{

OnCreated();
}

public
DataClasses1DataContext(System.Data.IDbConnection
connection,

System.Data.Linq.Mapping.MappingSource
mappingSource) :

base(connection, mappingSource)
{

OnCreated();
}

public
System.Data.Linq.Table<PurchaseOrderHeader>

PurchaseOrderHeaders
{

get
{

return this.GetTable<PurchaseOrderHeader>
();

}
}

}

You can think of DataContext as the LINQ manager: it handles the connection
back to the database, manages the in-memory entities, and marshals the calls
necessary for data updates and any issues that might arise from concurrency
and locking conflicts. In total, more than 500 lines of functioning code were
emitted to make all this work. So how do you actually use a LINQ object
within your application? Read on.

Working with LINQ Objects
The goal with LINQ, again, is simplicity; LINQ classes look and behave just
like any other class in our object model. If we wanted to add a new employee
to the system, we would create a new Employee object and set its properties
like this.
Click here to view code image

Employee emp = new Employee();

emp.BirthDate = new DateTime(1965, 4, 4);
emp.Gender = 'F';
emp.LoginID = "templogin";
emp.MaritalStatus = 'M';
emp.Title = "Project Resource Manager";
...

To commit this new Employee object to the Employee table, we need to
add the object to the Employees collection held by our data context and then
call the SubmitChanges method. Remember that the type is simply the
default name given by the O/R designer to our data context class; we can
change this to anything we want.
Click here to view code image

DataClasses1DataContext db = new
DataClasses1DataContext();
db.Employees.InsertOnSubmit(emp);
db.SubmitChanges();

In a similar fashion, employees can be removed from the collection (and then
from the database).
Click here to view code image

db.Employees.DeleteOnSubmit(emp);
db.SubmitChanges();

We have really just scratched the surface here with regard to the intricacies
and complexities of O/R application development using LINQ; but hopefully
this overview of the O/R designer can be used as a starting point for your O/R
explorations in Visual Studio. Let’s move on to the Entity Framework.

Working with the Entity Framework
Like LINQ to SQL, Entity Framework (EF) is a technology that enables you to
program against objects that are backed by tables within a relational database.
And because they share that same overall goal, most of the concepts we
covered with LINQ to SQL apply to EF-based applications as well. The
notable difference with EF is the level of abstraction it provides. Whereas
LINQ to SQL is a direct map of objects to database tables, EF maps database
tables to an Entity Data Model (EDM). From there, you can map objects to the
EDM.
Within an EF’s EDM, there are actually two discrete models that are
maintained by Visual Studio: the conceptual model (think application objects)
and the storage model (the database that stores those application objects).

In Visual Studio, the EF models are used by adding an ADO.NET EDM item to
your project. Just like our previous look at the LINQ to SQL Data Classes
project item, the EF project item is located under the Data category in the Add
New Item dialog box (see Figure 13.54).

FIGURE 13.54 Adding the Entity Data Model item to a project.

When you add an entity model to your project, a wizard launches (see Figure
13.55). There are three primary approaches of development with the entity
framework: code first, model first, and database first. In the code first
approach, you start your application design by writing code to define your
classes. With model first, you start your application design by visually
“drawing” the design of your application using Visual Studio. Finally, with
database first, you are allowing the EF tools to build out your application
structure by creating it based on an existing data model. Regardless of your
starting approach, once an application has been initially constructed, EF will
keep the code and data models in sync. In our case, we continue our walk-
through by selecting the EF Designer from Database option (the database first
approach). We will again use the AdventureWorks database.

FIGURE 13.55 The Entity Data Model Wizard.

Editing the Entity Data Model
After the entity model is added to your project, you can make changes to it
using the Entity Data Model designer. This is the visual design surface for your
model. There are also two other windows displayed in conjunction with the
model designer. The Model Browser provides a Solution Explorer-like view
of both the conceptual model and the storage model for your entities, and the
Mapping Details window shows exactly how objects in the conceptual model
are mapped and linked to tables in the storage model. Figure 13.56 shows all
three windows open within the IDE. Note that when we added the entity model
to our project, we opted to build out the model using every existing table
within the AdventureWorks database, under the Human Resources schema.
Let’s take a closer look at each of these windows.

FIGURE 13.56 Editing an Entity Data Model.

The Designer
The designer shows a familiar, visual view of the conceptual model. Each
object is depicted, along with its properties/fields, and relationships between
objects are clearly visible. In Figure 13.56, we see the now familiar Employee
to EmployeeDepartment to Department relationships. These relationships were
copied directly from the database foreign key relationships. On the design
window itself, there is a small set of navigation buttons set just under the
vertical scrollbar (highlighted for you in Figure 13.57). Because you might be
dealing with hundreds or even thousands of objects within the designer, you
need a way to zoom in and out on the design surface. From top to bottom, these
buttons enable you to zoom in, zoom the diagram to 100%, zoom out, and zoom
the diagram so that all objects are visible at once.

FIGURE 13.57 The design surface controls.
You can move around objects on the design surface, but you can also use the
designer to directly make changes to the model. For instance, you can select a
property and change its name.

The Model Browser
The model browser window shows you all the elements that are contained
within both the conceptual model and the storage model. This includes entities,
tables, and relationships. You can use the model browser window to directly
delete items from your models or modify their properties. With large models, it
is often easier to locate the entity you are looking for with the model browser
than try to visually find the object within the Entity Data Model designer pane.

Tip
You can immediately show any model element within the designer
by right-clicking the element within the Model Browser and
selecting Show in Designer.

One of the coolest things about the Model Browser window is its search
functionality. By typing a search term into the search box at the top of the
window, you can see every instance of that term anywhere within the model.
The vertical scrollbar actually graphically depicts everywhere within the
models that a search hit was found. If you examine Figure 13.58 closely, you
see the results of a search for “Employee”; 74 matches were found. Within the
vertical scrollbar, you see “blocks” that represent where the match was found
within the model hierarchy. Hovering over those blocks gives you a ToolTip
that identifies the exact name that contains the match. This enables you to
quickly jump around your search matches within large models.

FIGURE 13.58 Searching within the Model Browser window.

The Mapping Details Window
We have discussed the idea of the conceptual model and the storage model. But
if these models lived in isolation, EF wouldn’t be able to achieve its ultimate
goal of linking code objects to database tables because there wouldn’t be a
way to map between the two models. The Mapping Details window is the tool
within the IDE that lets you view and edit all the conceptual-to-storage model
mappings.
Figure 13.59 shows the mapping details for the Employee object. All the
mapping properties were preset for us because we chose to build out our
conceptual model based on an existing database. When you select an entity
with the designer, the mapping window will show an alphabetic list of all of
the table columns. To the right of each column is displayed the property that the
column maps to on the object.

FIGURE 13.59 Mapping details for the Employee object/table.

The Mapping Details window is also used to map an object to your own,
custom functions for performing inserts, updates, or deletes. Click the two
icons on the top-left border of the Mapping Details window to change between
these two modes.

Note
You aren’t limited to performing just a one-to-one map between
objects and database tables. You could decide, for instance, that
your conceptual model contains two Employee classes:
HourlyEmployee and SalariedEmployee. You have the
capability to create a function that filters the rows in the
underlying Employee table and maps those rows to one or the
other of these two objects. This is done quite easily in the
Mapping Details window by adding a condition. Click the Add a
Condition link within the window, and then specify a condition to
apply against the SalariedFlag field on the table.

We have now covered the high-level overview of what the EF platform is and
the tools and project items you use within Visual Studio to create EF-based
projects. Now let’s dig a bit deeper to see how we would use these tools to
perform common EF tasks.

Querying Against the Entity Data Model
The real power of EF is the ability to perform SQL-like operations against a
set of objects (for example, the objects you have defined in your entity data
model) using a variety of different methods.
Because every object in EF is LINQ enabled, we could use LINQ to Entities to
query for a list of salaried employees, like this.
Click here to view code image

using (AdventureWorksEntities entities = new
AdventureWorksEntities())

{
List<Employee> employees =

(from e in entities.Employees
where e.SalariedFlag == true select

e).ToList();
}

The AdventureWorksEntities object seen on the first line of code
above represents our conceptual model; LINQ provides the syntax we need to
iterate over those objects within the AdventureWorksEntities object.
EF also supports the ability to construct queries using the ObjectQuery
class. This class lives within the System.Data.Objects namespace and
enables us to use standard SQL-like syntax for generating queries. Here is that
same query, rewritten using the ObjectQuery class.
Click here to view code image

using (AdventureWorksEntities entities = new
AdventureWorksEntities())

{
ObjectQuery<Employee> query =

entities.Employees.Where("it.SalariesFlag=@flag");

query.Parameters.Add(new
ObjectParameter("flag", "True"));

List<Employee> employees = query.ToList();

}

We could even query our objects using nothing more than standard stored
procedures. This would be a two-step process. First, we create a stored
procedure in our underlying database (and thus our store model). Second, we
map that stored procedure to a function within our model. With the function in
place (here we have named it GetSalariedEmployees), we can call that
function like this.
Click here to view code image

using (AdventureWorksEntities entities = new
AdventureWorksEntities())

{
List<Employee> employees =

entities.GetSalariedEmployees().ToList();
}

Updating Data in the Entity Data Model
Because we are simply programming against standard .NET objects within the
entity data model, updating data that resides in those objects is as simple as
setting the object properties.
We can create a new employee like this.
Click here to view code image

Employee newEmp = new Employee();

We can set its properties like we would for any other object.
Click here to view code image

newEmp.SalariedFlag = true;
newEmp.HireDate = DateTime.Today;
newEmp.Title = "HR Manager";

We then add the new employee to the Entity Data Model like this.
Click here to view code image

entities.Employees.AddObject(newEmp);

Finally, we would need to tell the Entity Data Model to persist these changes
to the database.

entities.SaveChanges();

In a similar fashion, we can delete an object by first referencing it and then
calling the DeleteObject method from our entities object. This code
deletes the first employee in the Employee table.

Click here to view code image

Employee firstEmp = entities.Employees.First();
entities.DeleteObject(firstEmp);

Note
We have discussed how to change data within the Entity Data
Model, but what happens if either the database schema changes or
you want changes within your conceptual model to be made at the
storage level as well? If you right-click the Entity Data Model
designer, you see two options that essentially sync schema of the
database with the object model or vice versa: Generate Database
from Model and UpdateModelFromDatabase.

As you have probably guessed by now, Entity Framework is a vast and deep
ORM platform. We have really only been able to scratch the surface here. If
you intend to leverage EF inside your applications, we wholeheartedly
recommend a book dedicated to the subject, such as Julia Lerman’s
Programming Entity Framework from O’Reilly.

Summary
In this chapter, you read about the broad and deep support that Visual Studio
has for building and managing databases and for creating applications that
access data in a database. We discussed the suite of SQL Server Data Tools,
available right within the IDE, that function in synergy with one another and
with the various Visual Studio designers to provide a seamless experience for
writing queries, creating table structures, and crafting stored procedures. We
also investigated the newfound support for writing SQL Server database
procedures and functions using entirely managed code.
We spent some time discussing the basics of data binding: how it is a core
problem space with many application development efforts and how the Visual
Studio web, Windows Form Designers, and WPF Designers and controls
provide first-class support for simple to complex data-binding scenarios. In
particular, we examined the role that these Visual Studio designers play in the
data-binding world by enabling developers to rapidly build forms-based
applications with sophisticated data needs without writing a single line of
code.
Finally, we examined the built-in support that Visual Studio provides for
mapping entire object models to a database using two different technologies:
LINQ2SQL and Entity Framework.
Hopefully, by exposing you to all these great built-in tools, we have started you
on the road to becoming even more efficient in leveraging Visual Studio across
a range of database interactions.

 Part IV: Extending Visual Studio
	

Chapter 14. Introducing the Automation Object
Model

In This Chapte r
An Overview of the Automation Object Model
Solution and Project Objects
Working with Windows
Command Bars
Documents
Command Objects
Debugger Objects

Visual Studio is built to be extensible. It ships with its own application
programming interface (API) to enable you, the developer, to control many of
the pieces of the IDE.
This API is called the Visual Studio automation object model, and
understanding its capabilities is the key to unlocking your ability to program
and control the IDE itself by writing code in the form of “packages” (discussed
in Chapter 15, “Extending the IDE”).
This is a reference chapter. It discusses the layout and structure of the
automation object model and provides details on their properties and methods.
As such, it is light on code. To truly understand the step-by-step process of
extending the IDE, you may want to skip ahead to the next chapter and refer
back here for object reference information.
For now, don’t worry too much about the mechanics of writing a package;
concentrate instead on understanding the automation objects and how they are
referenced and used.

An Overview of the Automation Object M odel
The automation object model is a structured class library with a top-level root
object called DTE (or DTE2; more on this in a bit), which stands for
Development Tools Environment. By referencing the assembly that defines the
DTE/DTE2 types, you can write code that instances this root object and use its
members and child classes to access the IDE components.

Object Model Versions
The automation object model is actually defined across four different,
complementary primary interop assemblies (PIAs): EnvDTE, EnvDTE80,
EnvDTE90, and EnvDTE100. EnvDTE is the original automation assembly
distributed with Visual Studio .NET 2003. EnvDTE80 was the library
distributed with Visual Studio 2005. EnvDTE90 is distributed with Visual
Studio 2008. (Yet another assembly, EnvDTE90a is installed with Visual
Studio 2008 Service Pack 1.) Finally, EnvDTE100 made its first appearance
with Visual Studio 2010. Each version of Visual Studio ships with the
cumulative set of libraries. Starting with Visual Studio 2012, no new versions
of the interop assembly have been introduced. Visual Studio 2012 and beyond
ships with all four PIAs.
The reason for multiple assemblies is simple: they help balance the need for
new features against the need to preserve backward compatibility. For
instance, with Visual Studio 2008, Microsoft was faced with a common design
decision: replace or upgrade the previous assembly shipped with Visual
Studio 2005 (EnvDTE80) and risk introducing incompatibilities with current
macros and add-ins, or ship a new assembly that could be leveraged when the
new functionality was desired. (Existing code would still target the previous,
unchanged library.)
The latter path was chosen; thus, EnvDTE100 (100 represents version 10.0)
contains automation types and members that are new to Visual Studio 2010,
while EnvDTE90 (for Visual Studio 2008) and EnvDTE80 (for Visual Studio
2005) provide the base level of functionality and backward compatibility.
Within the EnvDTE100 assembly, you find types that supersede their
predecessors from the EnvDTE90 assembly. The same is true for types within
EnvDTE90 that supersede types implemented in EnvDTE80, all the way back
to the original EnvDTE assembly. In these cases, the type name has been
appended with a number to indicate the revised version. Therefore, we have
DTE and DTE2; Solution, Solution2, and Solution3; and so on.
Table 14.1 provides a side-by-side listing of some of the most important types
implemented in the EnvDTE libraries. This type list is incomplete and should
be considered for reference only. This table is useful, however, for identifying
some of the newly minted types in the new automation assembly; in the next
section, we see how these types can be organized into broad Visual Studio
automation categories and how they map onto physical IDE constructs.

TABLE 14.1 Partial List of Automation Types

Automation Categories
Because any automation effort with Visual Studio starts with the object model,
you should first understand how it maps onto the IDE constructs and determine
the exact capabilities it exposes.

In general, you can think of the object model classes as being organized into
categories that directly speak to these IDE concepts:

Solutions and projects
Windows and command bars (toolbars and menu bars)
Documents
Commands
Debugger
Events

Each of the objects in these categories touches a different piece of the IDE, and
access to each object is typically through the root-level DTE2 object.

The DTE/DTE2 Root Object
The DTE/DTE2 object represents the tip of the API tree. You can think of it as
representing Visual Studio itself, with the objects under it mapping to the
various constituent parts of the IDE.
As mentioned previously, DTE2 is the most current version of this object, with
DTE providing compatibility with earlier versions. In this chapter, unless we
specifically need to differentiate between their capabilities, we generically
refer to the DTE and DTE2 objects as simply DTE.
The DTE properties are used to gain a reference to a specific IDE object (or
collection of objects). Methods on the object are used to execute commands in
the IDE, launch wizards, or close the IDE.
Table 14.2 shows the major properties and methods defined on the DTE2
object; they have been organized within the six object categories itemized in
the preceding section.

TABLE 14.2 DTE2 Properties and Methods for IDE Access

In summary, the DTE object is a tool for directly interacting with certain IDE
components and providing access to the deeper layers of the API with its
property collections. If you move one level down in the API, you find the
major objects that form the keystone for automation.

Solution and Project Objects
The Solution object represents the currently loaded solution. The
individual projects within the solution are available via Project objects
returned within the Solution.Projects collection. Items within a project
are accessed in a similar fashion through the Project.ProjectItems
collection.

As you can see from Figure 14.1, this hierarchy exactly mirrors the
solution/project hierarchy that we first discussed in Chapter 4, “Solutions and
Projects.”

FIGURE 14.1 Mapping the solution/project hierarchy.

There are some mismatches here (solution folders, for instance, are treated as
projects), but for the most part, the object model tree closely resembles the
solution project tree that you are used to.
The Solution object and members enable you to interact with the current
solution to perform common tasks such as these:

Determining the number of projects in the solution (Count property)
Adding a project to the solution based on a project file (AddFromFile
method)
Creating a new solution or closing the current one (Create and Close
methods)
Saving the solution (SaveAs method)
Removing a project from the solution (Remove method)

You can directly retrieve a reference to any of the projects within the currently
loaded solution by iterating over the Solution.Projects collection. As
an example of interacting with the Solution and Project objects, this C#
code snippet removes the first project from the current solution.
Click here to view co de image

Solution solution = _applicationObject.Solution;

Project project = solution.Projects.Item(0) as

Project;

if (project.Saved)
{

solution.Remove(project);
}
else
{

//
}

Note
Most of the code snippets you see in this chapter are merely meant
to reinforce how you would access the API component being
discussed. We get into the specifics of exactly how to leverage
these concepts within the next chapter. If you want to get a head
start by playing with the code as we go along, you need to skip
ahead to Chapter 15, create a Visual Studio package project, and
then return here to follow along.

Table 14.3 provides the combined list of the most commonly used properties
and methods implemented by the Solution objects.

TABLE 14.3 Primary Solution/Solution2/Solution3 Type
	
Members
	

Controlling Projects in a Solution
One of the things that the Solution object is good for is retrieving
references to the various projects that belong to the solution. Each Project
object has its own set of useful members for interacting with the projects and
their items. By using these members, you can interact with the projects in
various, expected ways, such as renaming a project, deleting a project, and
saving a project.
See Table 14.4 for a summary of the most common Project members.

TABLE 14.4 Primary Project Object Members

Accessing Code Within a Project
Beyond the basic project attributes and items, one of the cooler things that can
be accessed via a Project instance is the actual code within the project’s
source files. Through the CodeModel property, you can access an entire line
of proxy objects representing the code constructs within a project. For
instance, the CodeClass interface enables you to examine and edit the code
for a given class in a given project.

Note
Support for the different CodeModel entities varies from
language to language. The Microsoft Developer Network
(MSDN) documentation for each CodeModel type clearly
indicates the source language support for that element.

After grabbing a CodeModel reference from a Project instance, you can
access its CodeElements collection (which is, not surprisingly, a collection
of CodeElement objects). A CodeElement is nothing more than a generic
representation of a certain code structure within a project. The
CodeElement object is generic, but it provides a property: Kind. This
property is used to determine the exact native type of the code object contained
within the CodeElement.
The CodeElement.Kind property is an enumeration (of type
vsCMElement) that identifies the specific type of code construct lurking

within the CodeElement object. Using the Kind property, you can first
determine the true nature of the code element and then cast the CodeElement
object to its strong type. Here is a snippet of C# code that does just that.
Click here to view co de image

if (element.Kind == vsCMElement.vsCMElementClass)
{

CodeClass myClass = (CodeClass)element;
}

For a better grasp of the code model hierarchy, consider the C# code presented
in Listing 14.1; this is a “shell” solution that merely implements a namespace,
a class within that namespace, and a function within the class.

LISTING 14.1 A Simple Namespace and Class Implementation

Click here to view co de image

using System;
using System.Collections.Generic;
using System.Text;

namespace MyNamespace
{

class MyClass
{

public string SumInt(int x, int y)
{

return (x + y).ToString();
}

}

}

If you map the code in Listing 14.1 to the code object model, you end up with
the structure shown in Figure 14.2.

FIGURE 14.2 A simple code model object hierarchy.
To get an idea of the complete depth of the code model tree that can be
accessed through the CodeElements collection, consult Table 14.5; this
table shows all the possible vsCMElement values, the type they are used to
represent, and a brief description of the type.

 TABLE 14.5 Mapping the vsCMElement Enumeration Values
	

Working with Windows
The visible content portion of Visual Studio is represented by Window
objects, which are instances of open windows within the IDE, such as the
Solution Explorer, the Task List window, an open Code Editor window, and so
on. Even the IDE itself is represented by a Window object.
Any given window is either a document window or a tool window. Document
windows host documents that are editable by the Text Editor. Tool windows
contain controls that display information relevant to the current context of the
IDE; the Solution Explorer and Task List windows are examples of tool
windows, and a VB source code file open in an editor is an example of a
document window.

Referencing Windows
If you need to retrieve an instance of a specific window, you have a few
different options, each optimal for a given situation. For starters, the main IDE
window is always available directly from the DTE object.
Click here to view co de image

Window IDE = _applicationObject.MainWindow;

Obviously, if you need to perform a specific action against the IDE window,
	
this is your quickest route.
	
The DTE.ActiveWindow property also provides direct and quick access to
	
a Window object, in this case the currently active window.
	
Click here to view co de image

Window currentWindow =

_applicationObject.ActiveWindow;

The tool windows within the IDE (that is, the Command window, the Error
List window, the Output window, the Solution Explorer, the Task List window,
and the Toolbox) also have a direct way to retrieve their object model
instances: you use the DTE.ToolWindows property. This property returns a
ToolWindows object that exposes a separate property for each of the tool
windows.
This code grabs a reference to the Task List window and closes it.
Click here to view co de image

Window taskwin =

_applicationObject.ToolWindows.TaskList;

taskwin.Close();

Finally, the fourth way to access an IDE window is through the
DTE.Windows collection; this collection holds an entry for each IDE
window. You can access a window from the collection either by using an
integer representing the window’s position within the collection or by
providing an object or a string that represents the window you are trying to
retrieve.
The following code grabs a handle to the Solution Explorer window.
Click here to view co de image

Windows windows = _applicationObject.Windows;

Window window =

windows.Item(Constants.vsWindowKindSolutionExplorer);

Interacting with Windows
Table 14.6 itemizes the properties and methods available on each Window
object.

TABLE 14.6 Window Object Members
Beyond the basics (such as using the Height and Width properties to query
or affect a window’s dimensions or setting focus to the window with the
SetFocus method), a few properties deserve special mention:

The Document property gives you a way to programmatically interact
with the document that the window is hosting (if any).
The Project and ProjectItem properties serve to bridge the
Window portion of the API with the Project/Solution portion; in
a similar vein to the Document property, you can use these properties
to interact with the project that is related to the window or the project
item (such as the Visual Basic code file, text file, or resource file).
If you are dealing with a tool window, the SetTabPicture method
provides a way to set the tab icon that is displayed when the tool
window is part of a group of tabbed windows. (For instance, the
Toolbox window displays a wrench and hammer picture on its tab when
part of a tabbed group.)
Again, specifically for tool windows only, the
SetSelectionContainer can be used to supply one or more
objects for display within the Properties window. This capability is
useful if you have a custom window where you need to control what is
displayed in the Properties window when the window has focus. (All the
standard VS windows already do this for you.)

Listing 14.2 contains an excerpt from a C# package; the method
QueryWindows illustrates the use of the Window object. In this example,
each window is queried to determine its type, and then a summary of each
window is output in a simple message box.

LISTING 14.2 A C# Routine for Querying the Windows Collection

Click here to view co de image

using System;

using Extensibility;

using EnvDTE;

using EnvDTE80;

using Microsoft.VisualStudio.CommandBars;

using System.Resources;

using System.Reflection;

using System.Globalization;
using System.Windows.Forms;

public class Connect : IDTExtensibility2,
IDTCommandTarget
{

public void QueryWindows()

{

Windows windows =

_applicationObject.DTE.Windows;

Window window;
int count = windows.Count;

string results =
count.ToString() + " windows open..." +

"\r\n";

//Iterate the collection of windows
for (int index = 1; index <= count; index++)
{

window = windows.Item(index);

string title = window.Caption;

//If the window is hosting a document, a
valid Document

//object will be returned through
Window.Document

if (window.Document != null)
{

//Write this out as a document window
string docName = window.Document.Name;
results =

results + "Window '" + title + "' is
a document window" + "/r/n";

}
else
{

//If no document was present, this is a
tool window

//(tool windows don't host documents)
results =

results + "Window '" + title + "' is
a tool window" + "/r/n";

}

}

//Show the results

MessageBox.Show(results, "Window Documents",
MessageBoxButtons.OK,

MessageBoxIcon.Information);

}

http:MessageBoxButtons.OK

}

Note
If you want to embed your own custom control inside a tool
window, you have to write a package and use the
Windows.CreateToolWindow method. We cover this
scenario in Chapter 15.

Text Windows and Window Panes
Text windows have their own specific object abstraction in addition to the
generic Window object: the TextWindow object is used to represent text
editor windows. To obtain a reference to a window’s TextWindow object,
you retrieve the Window object’s value and assign it into a TextWindow
type.
Click here to view co de image

TextWindow textWindow = DTE.ActiveWindow.Object;

The TextWindow object doesn’t provide much functionality over and above
the functionality found in the Window type; its real value is the access it
provides to window panes.
Text editor windows in Visual Studio can be split into two panes; with a text
editor open, simply select Split from the Window menu to create a new pane
within the window. The TextWindow.ActivePane property returns a
TextPane object representing the currently active pane in the window, and
the TextWindow.Panes property provides access to all the panes within a
text window.
Click here to view co de image

//Get pane instance from collection

TextPane2 newPane = textWindow.Panes.Item(1);

//Get currently active pane

TextPane2 currPane = textWindow.ActivePane;

One of the more useful things you can do with the TextPane object is to
scroll the client area of the pane (for example, the visible portion of the
document within the pane) so that a specific range of text is visible. This is
done via the TextPane.TryToShow method.
Here is the definition for the method.
Click here to view co de image

bool TryToShow([InAttribute] TextPoint Point,
[OptionalAttribute] [InAttribute]

vsPaneShowHow How,
[OptionalAttribute] [InAttribute] Object

PointOrCount)

The TextPoint parameter represents the specific location within the text
document that you want visible in the text pane. (We discuss TextPoint
objects in depth later in this chapter, in the section “Editing Text Documents.”)

The vsPaneShowHow value specifies how the pane should behave when
scrolling to the indicated location:

vsPaneShowHow.vsPaneShowCentered causes the pane to
center the text/text selection in the middle of the pane (horizontally and
vertically).
vsPaneShowHow.vsPaneShowTop places the text point at the top
of the viewable region in the pane.
vsPaneShowHow.vsPaneShowAsIs shows the text point as is
with no changes in horizontal or vertical orientation within the viewable
region in the pane.

The last parameter, the PointOrCount object, is used to specify the end of
the text area that you want displayed. If you provide an integer here, this
represents a count of characters past the original text point; if you provide
another text point, the selection is considered to be that text that resides
between the two text points.
The TextPane object is also used to access the Incremental Search feature
for a specific window pane. Listing 14.3 provides code that demonstrates one
approach to searching a text window using the TextPane and
IncrementalSearch classes.

LISTING 14.3 Controlling Incremental Search

Click here to view co de image

using System;
using Extensibility;
using EnvDTE;
using EnvDTE80;

public class Connect : IDTExtensibility2
{

private DTE2 _applicationObject;
private AddIn _addInInstance;

public void IncrementalSearchDemo()
{

//Grab references to the active window;
//we assume, for this example, that the

window
//is a text window.
Window window =

_applicationObject.ActiveWindow;

//Grab a TextWindow instance that maps to
our

//active window
TextWindow txtWindow =

(TextWindow)window.Object;

//Get the active pane from the text window
TextPane2 pane =

sc('I'));
sc('M'));

(TextPane2)txtWindow.ActivePane;

//Using the active pane, get an
IncrementalSearch object

//for the pane
IncrementalSearch search =

pane.IncrementalSearch;

//Try to find our IMessageMapper interface
by looking

//for the string "IM"
//Configure the search:
// search forward in the document
// append the chars that we are searching

for
// quit the search

search.StartForward();
search.AppendCharAndSearch((short)Strings.A
search.AppendCharAndSearch((short)Strings.A

//To remove us from incremental search
mode,

//we can call IncrementalSearch.Exit()...
search.Exit();

}

}

The Tool Window Types
In addition to having a Window object abstraction, each default tool window
in the IDE (the Command window, Output window, Toolbox window, and Task
List window) is represented by a discrete type that exposes methods and
properties unique to that tool window. Table 14.7 lists the default tool
windows and their underlying types in the automation object model.

TABLE 14.7 Tool Windows and Their Types

To reference one of these objects, you first start with its Window
representation and then cast its Window.Object value to the matching type.
For instance, this C# snippet starts with a Window reference to the Task List
window and then uses that Window object to obtain a reference to the
TaskList object.
Click here to view co de image

Windows windows = _applicationObject.Windows;

Window twindow =

WindowKindTaskList);

cs",

_applicationObject.Windows.Item(EnvDTE.Constants.vs

Tasks and the Task List Window
The TaskList object enables you to access the items currently displayed in
the Task List window; each item in the window is represented by its own
TaskItem object. The TaskItem object exposes methods and properties
that enable you to manipulate the task items. For instance, you can mark an item
as complete, get or set the line number associated with the task, and change the
priority of the task.
You remove tasks from the list by using the TaskItem.Delete method and
add them by using the TaskItems.Add method. The Add method allows
you to specify the task category, subcategory, description, priority, icon, and so
on.
Click here to view co de image

TaskList tlist = (TaskList)twindow.Object;

tlist.TaskItems.Add("Best Practices", "Coding Style",
"Use of brace indenting is inconsistent",
vsTaskPriority.vsTaskPriorityMedium,
vsTaskIcon.vsTaskIconUser, True,
"S:\ContosoCommonFramework\Contoso.Fx.Common\Class1.

_

7, True, True);

Table 14.8 provides an inventory of the TaskItem members.

TABLE 14.8 TaskItem Members

The Toolbox
Four objects are used to programmatically interface with the Toolbox:

http:applicationObject.Windows.Item(EnvDTE.Constants.vs

oolbox).Object;

mponent);

ToolBox—An object representing the Toolbox itself
ToolBoxTabs—A collection representing the tab panes on the
Toolbox
ToolBoxItems—A collection representing the items within a tab on
the Toolbox
ToolBoxItem—A discrete item displayed within a Toolbox tab

Figure 14.3 illustrates the Toolbox object hierarchy.

FIGURE 14.3 Mapping the solution/project hierarchy.
These objects are used primarily to add, remove, or alter the items hosted by
the Toolbox. For instance, you can easily add a custom tab to the Toolbox by
using the ToolBoxTabs collection.
Click here to view co de image

ToolBox tbox;

ToolBoxTab myTab;

tBox =

_applicationObject.Windows.Item(Constants.vsWindowKindT

myTab = tBox.ToolBoxTabs.Add("My TBox Tab");

You can also add items to a tab with the ToolBoxItems.Add method,
which accepts a name for the item to add, a “data” object representing the item,
and a vsToolBoxItemFormat enum, which specifies the format of the
item. The Add method uses the vsToolBoxItemFormat to determine how
to interpret the data object value. For instance, if you want to add a .NET
control to the tab created in the preceding code snippet, you can accomplish
that with just one line of code.
Click here to view co de image

myTab.ToolBoxItems.Add("ContosoControl",
"C:\Contoso\Controls\CalendarControl.dll",
vsToolBoxItemFormat.vsToolBoxItemFormatDotNETCo

Notice that the item, in this case, is represented by a path to the assembly that
implements the control, and it has an item format of
vsToolBoxItemFormatDotNETComponent.

.Object;

Executing Commands in the Command Window
The command window is a tool window used to execute IDE commands or
aliases. IDE commands are essentially ways to tell the IDE to perform some
action. Some commands map directly to menu items (such as File Open),
whereas others don’t have menu equivalents.
The CommandWindow object permits you to programmatically pipe
commands into the command window and execute them. You can also output a
text string (for informational purposes) to the window and clear its current
content.
Click here to view co de image

//Get a reference to the command window
CommandWindow cmdWindow =

_applicationObject.Windows.Item(

Constants.vsWindowKindCommandWindow).Object;

//Display some text in the command window

cmdWindow.OutputString("Hello, World!");

//Clear the command window

cmdWindow.Clear();

Listing 14.4 shows how to programmatically execute commands in the
CommandWindow object.

LISTING 14.4 Executing Commands in the Command Window

Click here to view co de image

using System;
using Extensibility;
using EnvDTE;
using EnvDTE80;
using Microsoft.VisualBasic;
using System.Windows.Forms;

public class Connect : IDTExtensibility2
{

private DTE2 _applicationObject;
private AddIn _addInInstance;

public void ExecCommandWindow()
{

CommandWindow cmdWindow = (CommandWindow)
_applicationObject.Windows.Item(

EnvDTE.Constants.vsWindowKindCommandWindow)

//Display some text in the command window
cmdWindow.OutputString("Executing command

from the automation OM...");

//Send some command strings to the command
window and execute

put

;

put

ndOutput).Object;

//them...

//This command will start logging all
input/output in the

//command window to the specified file
cmdWindow.SendInput("Tools.LogCommandWindowOut

cmdwindow.log", true);

//Open a file in a code editor:
// 1. We use an alias, 'of', for the

File.OpenFile command
// 2. This command takes quote-delimited

parameters (in this case,
// the name of the editor to load the

file in)
string cmd = @"of ";
cmd = cmd +

@"""C:\Contoso\ContosoCommonFramework\Integration.cs"""
cmd = cmd + @"/e:""CSharp Editor""";

cmdWindow.SendInput(cmd, true);

cmdWindow.SendInput("Edit.Find MessageTrxId",
true);

//Turn off logging
cmdWindow.SendInput("Tools.LogCommandWindowOut

/off", true);
}

}

Output Window
The Output window displays messages generated from various sources in the
IDE. A prime example is the messages generated by the compiler when a
project is being built. For a deeper look at the functionality provided by the
Output window, see Chapter 10, “Debugging Code.”
The Output window is controlled through three objects:

OutputWindow is the root object representing the Output window.
OutputWindowPanes is a collection of OutputWindowPane
objects.
OutputWindowPane represents one of the current panes within the
Output window.

Using these objects, you can add or remove panes from the Output window,
output text to any one of the panes, and respond to events transpiring in the
window.
The following C# code fragment retrieves a reference to the Output window
and writes a test string in the Build pane.
Click here to view co de image

OutputWindow outWindow = (OutputWindow)
_applicationObject.Windows.Item(Constants.vsWindowKi

http:C:\Contoso\ContosoCommonFramework\Integration.cs

OutputWindowPane pane = (OutputWindowPane)

outWindow.OutputWindowPanes.Item("Build");

pane.OutputString("test");

Using the OutputWindowPane object, you can also add items
simultaneously to a specific output pane and the Task List window. The
OutputWindowPane.OutputTaskItemString method writes text
into the Output window and simultaneously adds that text as a task to the Task
List window.
Click here to view co de image

string output = "Exception handler not found";

string task = "Add exception handler";

pane.OutputTaskItemString(output,

vsTaskPriority.vsTaskPriorityMedium,

"", vsTaskIcon.vsTaskIconNone,

"", 0, task, true);

Because most of the Output window actions are conducted against a specific
pane, most of the useful methods are concentrated in the
OutputWindowPane object. For your reference, the
OutputWindowPane members are itemized in Table 14.9.

TABLE 14.9 OutputWindowPane Members

Linked Windows
Tool windows can be positioned in various ways within the IDE: you can float
tool windows around within the overall IDE container, you can dock a tool
window to one of the sides of the IDE, you can join windows and pin and
unpin them, and so on. (See the section “Managing the Many Windows of the
IDE” in Chapter 2, “The Visual Studio IDE,” for an introduction to window
layout.)
A linked window refers to two or more tool windows that have been
aggregated together. Figure 14.4 shows one common example of this; the
Toolbox window and the Solution Explorer window have been joined in a
common frame. You can view each window that is part of the frame by clicking

its tab.
	

FIGURE 14.4 Linked windows.

By joining two or more tool windows, you actually create an additional
window object (called a linked window or window frame) that functions as
the container for its hosted tool windows and is available as part of the
DTE.Windows collection.
By using the Window.LinkedWindows and Window.WindowFrame
properties and the Windows2.CreateLinkedWindowFrame method,
you can programmatically link and unlink any available tool windows. The C#
code in Listing 14.5 demonstrates this process by doing the following:

1. Selecting the window objects for the Toolbox window and the Solution
Explorer window.

2. Programmatically joining these two windows, effectively creating the
linked window shown in Figure 14.4.

3. Obtaining a reference to the newly created linked window and using its
LinkedWindows property to unlink the windows that were previously
linked.

LISTING 14.5 Linking and Unlinking Tool Windows

Click here to view co de image

using System;
using Extensibility;
using EnvDTE;
using EnvDTE80;
using Microsoft.VisualBasic;
using System.Windows.Forms;

public class Connect : IDTExtensibility2
{

private DTE2 _applicationObject;

SolutionExplorer);

private AddIn _addInInstance;

public void LinkUnLink()
{

Windows windows = _applicationObject.Windows;

//Grab references to the Solution Explorer
and the Toolbox

Window solExplorer =
windows.Item(EnvDTE.Constants.vsWindowKind

Window toolbox =
windows.Item(EnvDTE.Constants.vsWindowKindToolbox);

//Use the Windows2 collection to create a
linked window/window

//frame to hold the Toolbox and Solution
Explorer windows

Window windowFrame;
windowFrame =

windows.CreateLinkedWindowFrame(solExplorer,
toolbox,

vsLinkedWindowType.vsLinkedWindowTypeTabbed);

//At this point, we have created a linked
window with two tabbed

//"interior" windows: the Solution Explorer,
and the Toolbox...

MessageBox.Show("Press OK to Unlink the
windows", "LinkUnLink",

MessageBoxButtons.OK,
MessageBoxIcon.None);

//To unlink the windows:
// — Use the window frame's LinkedWindows

collection
// — Remove the window objects from this

collection

windowFrame.LinkedWindows.Remove(toolbox);
windowFrame.LinkedWindows.Remove(solExplorer);

}

}

Command Bars
A command bar is a menu bar or toolbar; from an object model perspective,
these are represented by CommandBar objects. Because menu bars and
toolbars are hosted within a window, you reference specific CommandBar
objects via the Window object through the Window.CommandBars
property. In turn, every CommandBar plays host to controls such as buttons
and drop-downs. Figure 14.5 shows the Solution Explorer tool window with
its command bar highlighted.

http:MessageBoxButtons.OK

FIGURE 14.5 The Solution Explorer ’s command bar.
	

Note
Unlike the Windows collection, which holds only an instance of
each open window, the CommandBars collection holds
instances for every registered command bar, regardless of
whether the command bar is currently being shown in the window.
Also note that working with the CommandBar and
CommandBars objects will require a reference to
Microsoft.VisualStudio.CommandBars. This using
statement is not included by default with add-in project class
templates.

Tip
Use the CommandBar.Type property to determine whether a
command bar is a toolbar or a menu bar. A value of
MsoBarType.msoBarTypeNormal indicates that the
command bar is a toolbar, whereas a value of
MsoBarType.msoBarTypeMenuBar indicates that the
command bar is a menu bar.

The CommandBar object properties and methods are documented in Table
14.10.

 TABLE 14.10 CommandBar Members
	

Note
Earlier versions of Visual Studio actually relied on a Microsoft
Office assembly for the CommandBar object definition
(Microsoft.Office.Core). Visual Studio 2005 and later
versions provide their own implementation of the CommandBar
object that is defined in the
Microsoft.VisualStudio.CommandBars namespace,
although you will find some types that carry their nomenclature
over from the Microsoft Office assembly, such as the various
MsoXXX enums.

Documents
Document objects are used to represent an open document in the IDE. To
contrast this abstraction with that provided by the Window object, a Window
object is used to represent the physical UI aspects of a document window,
whereas a Document object is used to represent the physical document that is
being displayed within that document window.
A document could be a designer, such as the Windows Forms Designer, or it
could be a text-based document such as a ReadMe file or a C# code file open
in an editor.
Just as you get a list of all open windows using the DTE.Windows
collection, you can use the DTE.Documents collection to retrieve a list of
all open documents.
Click here to view co de image

Dim documents As Documents = DTE.Documents

The Documents collection is indexed by the document’s Name property,
which is, in effect, the document’s filename without the path information. This
makes it easy to quickly retrieve a Document instance.
Click here to view co de image

Dim documents As Documents = DTE.Documents

Dim readme As Document = documents.Item("ReadMe.txt")

Documents documents = DTE.Documents;

Document readme = documents.Item["ReadMe.txt"];

Using the Document object, you can do the following:
Close the document (and optionally save changes)
Retrieve the filename and path of the document
Determine whether the document has been modified since the last time it
was saved
Determine what, if anything, is currently selected within the document
Obtain a ProjectItem instance representing the project item that is
associated with the document
Read and edit the contents of text documents

Table 14.11 contains the member descriptions for the Document object.

TABLE 14.11 Document Members

Text Documents
As previously mentioned, documents can have textual or nontextual content.
For those documents with textual content, a separate object exists:
TextDocument. The TextDocument object provides access to control
functions specifically related to text content.
If you have a valid Document object to start with, and if that Document
object refers to a text document, then a TextDocument instance can be
referenced from the Document.Object property like this:

TextDocument doc;

Document myDocument;

doc = myDocument.Object;

Table 14.12 contains the TextDocument members.

TABLE 14.12 TextDocument Members
	

Tip
A text document is represented by both a Document instance and
a TextDocument instance. Nontext documents, such as a
Windows form, open in a Windows Forms Designer window and
have a Document representation but no corresponding
TextDocument representation. Unfortunately, there isn’t a
great way to distinguish whether a document is text based during
runtime. One approach is to attempt a cast or assignment to a
TextDocument object and catch any exceptions that might
occur during the assignment.

Two TextDocument methods are useful for manipulating bookmarks within
the document: ClearBookmarks removes any unnamed bookmarks from the
document, and MarkText performs a string pattern search and places
bookmarks against the resulting document lines. A simple package to bookmark
For loops in a Visual Basic document is presented in Listing 14.6.

LISTING 14.6 Bookmarking For Loops in a Visual Basic Document

Click here to view co de image

using System;

using Extensibility;

using EnvDTE;

using EnvDTE80;

using Microsoft.VisualBasic;

using System.Windows.Forms;

using Microsoft.VisualStudio.CommandBars;

public class Connect : IDTExtensibility2

{

private DTE2 _applicationObject;
private AddIn _addInInstance;

public void BookmarkFor()
{

Document doc;
TextDocument txtDoc;

//Reference the current document
doc = _applicationObject.ActiveDocument;

//Retrieve a TextDocument instance from
//the document
txtDoc = (TextDocument)doc.Object();

//Call the MarkText method with the 'For'
string

bool found =
txtDoc.MarkText("For",

(int)vsFindOptions.vsFindOptionsFromStart);

//MarkText returns a Boolean flag indicating
whether or not

//the search pattern was found in the
TextDocument

if (found)
{

MessageBox.Show("All instances of 'For'
have been bookmarked.");

}
else
{

MessageBox.Show("No instances of 'For'
were found.");

}

}

}

The other key functionality exposed by the TextDocument object is the
capability to read and edit the text within the document.

Editing Text Documents
From a Visual Studio perspective, text in a text document actually has two
distinct “representations”: a virtual one and a physical one. The physical
representation is the straight and unadulterated code file that sits on disk. The
virtual representation is what Visual Studio presents on the screen; it is an
interpreted view of the text in the code file that takes into account various
editor document features such as code outlining/regions, virtual spacing, and
word wrapping.
Figure 14.6 shows this relationship. When displaying a text document, Visual
Studio reads the source file into a text buffer, and then the text editor presents
one view of that text file to you (based on options you have configured for the
editor).

FIGURE 14.6 Presentation of text documents within the IDE.
Text in a document is manipulated or read either on the buffered text or on the
“view” text that you see in the editor. Four different automation objects enable
you to affect text; two work on the text buffer, and two work on the editor view.
For the text buffer:

TextPoint objects are used to locate specific points within a text
document. By querying the TextPoint properties, you can determine
the line number of the text point, the number of characters it is offset from
the start of a line, the number of characters it is offset from the start of the
document, and its display column within the text editor window. You can
also retrieve a reference to a CodeModel object representing the code
at the text point’s current location.
The EditPoint object inherits from the TextPoint object; this is
the primary object used for manipulating text in the text buffer. You can
add, delete, or move text using edit points, and you can move the edit
points around within the text buffer.

And, for the editor view:
The VirtualPoint object is equivalent to the TextPoint object
except that it can be used to query text locations that reside in the
“virtual” space of the text view. (Virtual space is the whitespace that
exists after the last character in a document line.) VirtualPoint
instances are returned through the TextSelection object.
The TextSelection object operates on text within the text editor
view as opposed to the text buffer and is equivalent to the EditPoint
interface. When you use the TextSelection object, you are actively
affecting the text that is being displayed within the text editor. The
methods and properties of this object, therefore, end up being
programmatic approximations of the various ways that you would
manually affect text: you can page up or page down within the view; cut,
copy, and paste text; select a range of text; or even outline and expand or
collapse regions of text.

Because the VirtualPoint object is nearly identical to the TextPoint
object, and the TextSelection object is nearly identical to the
EditPoint object, we won’t bother to cover each of these four objects in
detail. Instead, we focus on text buffer operations using EditPoint and

TextPoint. You should be able to easily apply the concepts here to the text
	
view.
	
Because EditPoint objects expose the most functionality and play the
	
central role with text editing, we have provided a list of their type members in
	
Table 14.13.
	

TABLE 14.13 EditPoint2 Members

Now let’s look at various text manipulation scenarios.

Adding Text
EditPoint objects are the key to adding text. You create them by using
either a TextDocument object or a TextPoint object.
A TextPoint instance can create an EditPoint instance in its same
location by calling TextPoint.CreateInstance. With the
TextDocument type, you can call the CreateEditPoint method and
pass in a valid TextPoint.
Because TextPoint objects are used to locate specific points in a
document, a TextPoint object is leveraged as an input parameter to
CreateEditPoint. In essence, the object tells the method where to create
the edit point. If you don’t provide a TextPoint object, the edit point is

created at the start of the document.
	
This code snippet shows an edit point being created at the end of a document.
	
Click here to view co de image

Document doc = _applicationObject.ActiveDocument;

TextDocument txtDoc = (Textdocument)doc.Object();

TextPoint tp = txtDoc.EndPoint;

EditPoint2 ep = txtDoc.CreateEditPoint(tp);

//This line of code would have the same effect

ep = tp.CreateEditPoint();

After creating an edit point, you can use it to add text into the document.
(Remember, you are editing the buffered text whenever you use an
EditPoint object.) To inject a string into the document, you use the
Insert method:
Click here to view co de image

//Insert a C# comment line

ep.Insert("// some comment");

You can even grab the contents of a file and throw that into the document with
the EditPoint.InsertFromFile method:
Click here to view co de image

//Insert comments from a comments file

ep.InsertFromFile("C:\Contoso\std comments.txt");

Editing Text
The EditPoint object supports deleting, replacing, cutting, copying, and
	
pasting text in a document.
	
Some of these operations require more than a single point to operate. For
	
instance, if you want to cut a word or an entire line of code from a document,
	
you need to specify a start point and end point that define that range of text (see
	
Figure 14.7).
	

FIGURE 14.7 Using points within a document to select text.

This snippet uses two end points—one at the start of a document and one at the
end—to delete the entire contents of the document.
Click here to view co de image

Document doc = _applicationObject.ActiveDocument;
TextDocument txtDoc = (TextDocument)doc.Object();

TextPoint tpStart = txtDoc.StartPoint;

TextPoint tpEnd = txtDoc.EndPoint;

EditPoint2 epStart = txtDoc.CreateEditPoint(tpStart);
EditPoint2 epEnd = txtDoc.CreateEditPoint(tpEnd);
epStart.Delete(epEnd);

Besides accepting a second EditPoint, the methods that operate on a range
of text also accept an integer identifying a count of characters. This has the
effect of defining a select. For example, this snippet cuts the first 10 characters
from a document.

epStart.Cut(10);

Repositioning an EditP oint
After establishing an EditPoint, you can move it to any location in the
document by using various methods. The CharLeft and CharRight
methods move the point any number of characters to the left or right, and the
WordLeft and WordRight methods perform the same operation with
words.
Click here to view co de image

// Move the edit point four words to the right

epStart.WordRight(4);

The LineUp and LineDown methods jog the point up or down the specified
number of lines. You can also move EditPoints to any given line within a
document by using MoveToLineAndOffset. In addition, this method
positions the point any number of characters into the line.
Click here to view co de image

// Move the edit point to line 100, and then

// in 5 characters to the right

epStart.MoveToLineAndOffset(100, 5);

To illustrate some of these text editing concepts, consider the task of
programmatically adding a comment “flower box” immediately preceding a
routine open in a code editor. To accomplish this, we would need to go through
the following process:

1. Obtain a reference for the current document in the IDE.
2. Get the active cursor location in that document via the
	
TextDocument.Selection.ActivePoint property.
	

3. Create an EditPoint using the VirtualPoint object.
4. Create a second EditPoint to act as the other “book end” for the text.

In other words, these two edit points will represent the start and the end
of the routine definition line (ex: public void
DoSomething(int someArg)).

5. Parse the routine definition text (encapsulated by the endpoints) to try to
ferret out items such as its name, return value, and parameter list.

6. Build a string using the routine information and then insert that string into
the code editor/text document using an EditPoint.

Listing 14.7 demonstrates the preceding actions.

LISTING 14.7 Inserting Comments into a Text Window

Click here to view co de image

t();

using System;

using Extensibility;

using EnvDTE;

using EnvDTE80;

using Microsoft.VisualBasic;

using System.Windows.Forms;

using Microsoft.VisualStudio.CommandBars;

public class Connect : IDTExtensibility2

{

private DTE2 _applicationObject;

private AddIn _addInInstance;

//This routine demonstrates various text editing
scenarios

//using the EditPoint and TextPoint types. If you
place your

//cursor on a Visual Basic subroutine or
function, it will build

//a default "flower box" comment area, insert it
immediately

//above the sub/function, and outline it.
//
//To use:
// 1) put cursor anywhere on the Sub/Function

line
// 2) run add-in command
// This will fail silently (e.g., will not

insert any
// comments) if it is unable to determine the

start
// of the Sub/Function
//
public void InsertVBTemplateFlowerbox()
{

//Get reference to the active document
Document doc =

_applicationObject.ActiveDocument;
TextDocument txtDoc =

(TextDocument)doc.Object();
bool isFunc;

try
{

EditPoint2 ep =
(EditPoint2)txtDoc.Selection.ActivePoint.CreateEditPoin

ep.StartOfLine();
EditPoint2 ep2 =

(EditPoint2)ep.CreateEditPoint();
ep2.EndOfLine();

string lineText = ep.GetText(ep2).Trim();

if (lineText.IndexOf(" Function ") > 0)
{

isFunc = true;

}

else

{

if (lineText.IndexOf(" Sub ") > 0)
{

isFunc = false;
}

else
{

throw new Exception();
}

}

//Parse out info that we can derive from
the routine

//definition: the return value type (if
this is a function),

//the names of the parameters, and the
name of the routine.

string returnType = "";

if (isFunc)
{

returnType =
ParseRetValueType(lineText);

}

string[] parameters =
ParseParameters(lineText);

string name = ParseRoutineName(lineText);
string commentBlock =

BuildCommentBlock(isFunc, name,
returnType, parameters);

//Move the edit point up one line (to
position

//immediately preceding the routine)
ep.LineUp(1);

//Give us some room by inserting a new
blank line

ep.InsertNewLine();

//Insert our comment block
ep.Insert(commentBlock.ToString());

}
catch (Exception ex)
{

}

}

private string BuildCommentBlock(bool isFunc,

string name,

string returnType,

string[] parameters)

{

try

{

string comment = "";

//Build up a sample comment block using
the passed-in info

comment +=
"///\r\n";

comment += "// Routine: " + name;
comment += "\r\n";
comment += "// Description: [insert

routine desc	 here]";
comment += "\r\n";
comment += "//";
comment += "\r\n";

if (isFunc)

{

comment += "// Returns: A " +
returnType +
"[insert return value description

here]";
}

comment += "\r\n";

comment += "//";

comment += "\r\n";

comment += "// Parameters:";

comment += "\r\n";

for (int i = 0; i <=
parameters.GetUpperBound(0); i++)

{
comment += "// ";
comment += parameters[i];
comment += ": [insert parameter

description here]";
comment += "\r\n";

}

comment +=
"///\r\n";

return comment;

}

catch (Exception ex)

{

return "";

}

}

private string ParseRetValueType(string code)
{

try

{

//Parse out the return value of a
function (VB)

//Search for //As', starting from the end
of the string

int length = code.Length;
int index = code.LastIndexOf(" As ");

string retVal = code.Substring(index + 3,
length - (index + 3));

return retVal.Trim();

}

catch (Exception ex)

{

return "";

}

}

private string[] ParseParameters(string code)
{

try{
//Parse out the parameters specified (if

any) for
//a VB sub/func definition
int length = code.Length;
int indexStart = code.IndexOf("(");
int indexEnd = code.LastIndexOf(")");

string parameters =
code.Substring(indexStart + 1, indexEnd -

(indexStart + 1));

return parameters.Split(',');

}

catch (Exception ex)

{

return null;

}

}

private string ParseRoutineName(string code)

{

try

{

string name;

int length = code.Length;
int indexStart = code.IndexOf(" Sub ");
int indexEnd = code.IndexOf("(");

if (indexStart == -1)
{

indexStart = code.IndexOf(" Function
");

if (indexStart != -1)
{

indexStart = indexStart + 9;
}

}

else

{

indexStart = indexStart + 5;
}

name = code.Substring(indexStart,
indexEnd - indexStart);

return name.Trim();

}

catch (Exception ex)

{

return "";

}

}

}

Command Objects
Every action that is possible to execute through the menus and toolbars in
Visual Studio is generically referred to as a command. For example, pasting
text into a window is a command, as is building a project, toggling a
breakpoint, and closing a window.
For each command supported in the IDE, there is a corresponding Command
object; the DTE.Commands collection holds all the valid Command object
instances. Each command is keyed by a name that categorizes, describes, and
uniquely identifies the command. The Paste command, for instance, is
available via the string key "Edit.Paste". If you want to retrieve the
Command object mapping to the Paste command, you pull from the
Commands collection using that string key.
Click here to view co de image

Commands2 commands =

(Commands2)_applicationObject.Commands;

Command cmd = commands.Item["Edit.Paste"];

You can query a command’s name via its Name property.

//name would = "Edit.Paste"

string name = cmd.Name;

Table 14.14 contains the members declared on the Command interface.
	

TABLE 14.14 Command Members
The list of all available commands is extremely long (nearly 3,000 total), so it
is impossible to cover every one of them, or even a large portion of them, here.
To get an idea of the specific commands available, however, you can use the
dialog box used that customizes the Visual Studio toolbars. If you select the
Customize option from the View, Toolbars menu and then click the Commands
tab, you can investigate all the various commands by category (see Figure
14.8). Another alternative is to programmatically iterate the DTE.Commands
collection and view them that way.

Window");

FIGURE 14.8 Using the Customize dialog box to view commands.
So, although we can’t cover all the commands, you can learn how to perform
common tasks with the Command objects, such as executing a command,
checking on a command’s current status, and even adding your own commands
to the command library.

Executing a Command
You can execute commands in two ways. The DTE object has an
ExecuteCommand method you can use to trigger a command based on its
name.
Click here to view co de image

_applicationObject.ExecuteCommand("Window.CloseDocument

The Commands collection is also a vehicle for launching commands through
its Raise method. Instead of using the command’s name, the Raise method
uses its GUID and ID to identify the command.
Click here to view co de image

Commands2 commands =

(Commands2)_applicationObject.Commands;

Command cmd =

commands.Item["Window.CloseDocumentWindow"];

object customIn;

object customOut;

commands.Raise(cmd.Guid, cmd.ID, customin, customout);

Some commands accept arguments. The Shell command is one example. It is
used to launch an external application into the shell environment and thus takes
the application filename as one of its parameters. You can launch this command
by using the ExecuteCommand method like this.
Click here to view co de image

Commands2 commands = _applicationObject.Commands;

Command cmd = commands.Item("Tools.Shell");

string arg1 = "MyApp.exe";

_applicationObject.ExecuteCommand(cmd.Name, arg1);

The Raise method also works with arguments. The last two parameters
provided to the Raise method are used to specify an array of arguments to be
used by the command and an array of output values returned from the
command.

Mapping Key Bindings
You can invoke most commands with a keyboard shortcut in addition to a menu
entry or button on a command bar. You can set these keyboard shortcuts on a
per-command basis by using the Command.Bindings property. This
property returns or accepts a SafeArray (essentially an array of objects)
that contains each shortcut as an element of the array.
Key bindings are represented as strings with the following format:
[scopename]::[modifier+][key].
Scopename is used to refer to the scope where the shortcut is valid, such as
Text Editor or Global. The modifier token is used to specify the key
modifier, such as Ctrl+, Alt+, or Shift+. (Modifiers are not required.) And the
key is the keyboard key that is pressed (in conjunction with the modifier if
present) to invoke the command.
To add a binding to an existing command, you need to retrieve the current array
of binding values, add your binding string to the array, and then assign the
whole array back into the Bindings property like this.
Click here to view co de image

Commands2 commands As =

(Commands2)_applicationObject.Commands;

Command cmd =

commands.Item("File.SaveSelectedItems");

object[] bindings;

bindings = cmd.Bindings;

// Increase the array size by 1 to hold the new

binding

Array.Resize<object>(ref bindings,

bindings.GetUpperBound(0) + 1);

// Assign the new binding into the array

bindings(bindings.GetUpperBound(0)) =

"Global::Shift+F2";

// Assign the array back to the command object
cmd.Bindings = bindings;

Note
You can create your own named commands that can be launched
from a command bar in the IDE (or from the command window
for that matter). The Command object itself is added to the
Commands collection by calling
Commands.AddNamedCommand. The code that runs when the
command is executed has to be implemented by an add-in. We
cover this scenario in Chapter 15.

Debugger Objects
The automation object model provides a Debugger object that enables you to
control the Visual Studio debugger. You can obtain a Debugger instance
through the DTE.Debugger property.
Click here to view co de image

Dim debugger As EnvDTE.Debugger

debugger = DTE.Debugger

With a valid Debugger object, you can do the following:
Set breakpoints
Start and stop the debugger for a given process
Control the various execution stepping actions supported by the
debugger, such as Step Into, Step Over, and Step Out
Issue the Run to Cursor command to the debugger
Query the debugger for its current mode (for example, break mode,
design mode, or run mode)

The following code starts the debugger if it isn’t already started.
Click here to view co de image

Debugger2 debugger =

(Debugger2)_applicationObject.Debugger;

If (debugger.CurrentMode != dbgDebugMode.dbgRunMode)
{

debugger.Go();
}

Summary
The Visual Studio automation object model is a deep and wide API that
exposes many of the IDE components to managed code running as an add-in in
the IDE. This chapter documented how this API is organized and described its
capabilities in terms of controlling the Visual Studio debugger, editors,
windows, tool windows, solutions, and projects.
We also discussed the eventing model exposed by the API and looked at the
API’s capabilities with regard to accessing the underlying code structure for a

http:debugger.Go

project, issuing commands inside the IDE, and editing text documents
	
programmatically.
	
Using the methods and properties expressed on the automation objects, you can
	
automate common tasks in the IDE and extend Visual Studio in ways that
	
address your specific development tool needs.
	
In the next chapter, we directly build on the concepts discussed here and
	
specifically walk you through the process of writing Visual Studio add-ins.
	

Chapter 15. Extending the IDE
	

In This Chapte r
Creating Your First Extension
The Structure of an Extension
A Sample Extension: Color Selector

As robust as Visual Studio is in terms of features and capabilities, its designers
cannot anticipate every possible scenario. Nor can Microsoft move at a fast
enough clip to deliver enough versions of Visual Studio to satisfy all the
various requirements that individual developers or companies might have. So
Visual Studio has been constructed in a way that allows .NET developers to
reach out and customize the behavior of the IDE or even add new behaviors.
This is done via extensions: compiled and deployable modules that are
capable of hooking into the Visual Studio IDE to provide new functionality.
You can craft your extensions using Visual Basic, Visual C#, or even Visual
C++. Extensions have a variety of potential uses and allow you to surface your
own custom forms, tool windows, and designers within the IDE. Here are just
a few of the things possible with add-ins:

Create and display custom tool windows
Expose a custom user interface to end users
Implement a property page hosted in the Visual Studio Options dialog
box
Publish new commands onto one or more Visual Studio menus
Add a debugger visualizer
Dynamically enable or disable menu and toolbar items in the IDE

Creating Your First Extension
Before getting started, you will need to take care of one prerequisite: installing
the Visual Studio software development kit (SDK). The SDK provides the
VSIX project template, along with various project item templates, that we will
use to build our extension. To start, create a new project; with the SDK
installed, you will see a VSIX Project entry under the Extensibility category of
your language of choice. Select the project template, and click OK in the New
Project dialog (see Figure 15.1).

FIGURE 15.1 Selecting the VSIX project type.
	

Note
VSIX is simply the name for the deployable package that contains
the components of one or more Visual Studio extensions.
Physically, they are created as .vsix files. Each file, in addition
to its extension payload, will contain metadata that is recognized
by the Visual Studio Extension Manager, allowing the extension to
be properly installed.

Once the project has been created, the first thing you will notice is the relative
lack of content. In fact, initial VSIX projects contain only a single file: the
manifest file. This manifest will open by default inside a property editor (see
Figure 15.2).

FIGURE 15.2 Editing the project manifest information.
	

Setting Package Parameters
Using the manifest editor, we can set various pieces of metadata for our
extension, including its description, version level, supported languages, author,
and so on. Most of this information will show up in your extension’s About
box. Others are used for true packaging and labeling information.
Packages (and their contained extensions) can target, and run within, a wide
range of Visual Studio version and SKU levels. You can explicitly call out the
target versions using the Install Targets tab in the manifest editor (see Figure
15.2).
For example, we could elect to target only Visual Studio 2015 Pro users, or we
could support a range of all SKUs from Visual Studio 2010 and later. The
decision is ours; the desire to reach a large number of potential users by
targeting a range of Visual Studio versions is typically tempered by the need to
exploit extension features that are only available in a new version of the IDE.
The real content for any extension is created through the use of project item
templates. For this first "Hello, World" type sample, we can leave all
our manifest details with default values and get on to the business of writing
our extension’s functionality.

Adding Project Items
Every major piece of potential extension capability is represented by its own
project item. As we discussed earlier, creating a command that can be
triggered from a custom Visual Studio menu selection is one potential way to
surface an extension inside of the IDE. And this would be crafted and added
into our VSIX project by using a tool window project item. Figure 15.3 shows
the available project items.

FIGURE 15.3 VSIX project items.
The available project items prefixed with Custom are the traditional Visual
Studio extension items. You will see others in the list prefixed with Editor.
These are project items that leverage a slightly different framework (the
Managed Extensions Framework, MEF) to allow you to customize the code
editor inside of Visual Studio. We cover those types of extensions in the next
chapter.
Let’s add a custom command item.

Custom Commands
A custom command is nothing more than a menu or toolbar item that kicks off a
specific piece of code. To implement a traditional Hello World
application, we can first create a menu command within the IDE and then, in
response to someone clicking on that command, we can show a MessageBox
with our "Hello World" text.
Select the Custom Command project item from the Add New Item dialog (see
Figure 15.3), give it a name, and then click OK to add it to the project.
The first thing you will notice is that this one project item template actually
creates multiple files for us: a command class file that implements the
specifics of our command, image files to use as menu icons, and various
package files that integrate and map our command into the IDE. (We’ll talk
more about these in a bit.)
To implement our command logic, we simply need to write code within the
command C# code file. Specifically, because the command class already has
plumbing in place to write the command to an event handler, we will add our
code to the event handler.

);

uiShell.ShowMessageBox(

Click here to view co de image

private void ShowMessageBox(object sender, EventArgs
e)
{

//Show a MessageBox to prove we were here
IVsUIShell uiShell =

(IVsUIShell)Package.GetGlobalService(typeof(SVsUIShell)
Guid clsid = Guid.Empty;
int result;
Microsoft.VisualStudio.ErrorHandler.ThrowOnFailure(

0,

ref clsid,

"MyCommand1Package",

"Hello, World!",

string.Empty,

0,

OLEMSGBUTTON.OLEMSGBUTTON_OK,

OLEMSGDEFBUTTON.OLEMSGDEFBUTTON_FIRST,

OLEMSGICON.OLEMSGICON_INFO,

0, //false

out result));

}

At this stage, the package doesn’t actually do anything. You still have to
implement your custom logic. What the project item template has done,
however, is implement much (if not all) of the tedious plumbing required to do
the following:

Wire the extension into the IDE
Expose it via a menu command
Intercept the appropriate extensibility events to make the extension work

Our VSIX project is actually ready to run at this stage because all the required
integration and wrapper code is included for you within files that the project
item template created.
Debugging the extension project launches a separate instance of Visual Studio
(called the “experimental instance”); the extension will be registered and
installed into that instance. We are free to then test our extension.
By default, menu commands will show up under the IDE’s Tools menu. Figure
15.4 shows our new menu command displayed within the experimental Visual
Studio instance. And Figure 15.5 shows the results of clicking on that menu
item.

 FIGURE 15.4 A custom command entry in the Tools menu.
	

FIGURE 15.5 A custom command triggered message box.

Tool Windows
Creating a custom tool window is just as easy as creating a custom command:
just add the custom tool window project item to your project.
Figure 15.6 shows a new VSIX project after adding the tool window project
item. Just as with our prior command example, this project item template adds
all the various, required files to your project. In addition to the plumbing and
integration code and the class that implements the tool window’s user interface
(UI), you get a custom command added to the project that will, by default,
display the tool window.

FIGURE 15.6 VSIX project implementing a custom tool window.
Tool windows are nothing more than user controls that implement their UI
using XAML. (We introduce the core concepts of XAML in Chapter 21,
“Building WPF Applications,” and in Chapter 23, “Developing Windows
Store Applications.”
Figure 15.7 shows the default tool window running as an extension in the IDE.
Custom tool windows are, by default, launched through the View, Other
Windows menu.

FIGURE 15.7 A basic custom tool window running as an extension in Visual
	
Studio.
	

To change the tool window UI, edit the user control class (in this case,
ToolWindow1Control is defined within the
ToolWindow1Control.xaml and
ToolWindow1Control.xaml.cs files).
Now that you have a baseline of code to work with, you’re ready to examine
the source to understand the overall structure and layout of an extension.

The Structure of an Extension
As we’ve seen, the VSIX extension project is composed of a few different
files, all paved down by adding an extensibility project item. The core package
class file contains the logic for our package.
Because packages are dynamic link libraries (DLLs), VSIX projects are class
library projects. The core code file that is created implements a class called
Microsoft.VisualStudio.Shell.Package. This class contains all
the necessary interfaces to make the package work within the context of the
IDE.
Referring back to our "Hello, World" example of a custom command,
Listing 15.1 shows the core Package class as it was generated by the
custom command project item template.

LISTING 15.1 Package Code Generated by the Custom Command Project Item

http:ToolWindow1Control.xaml.cs

s",
tly",

Click here to view co de image
	

using System;
using System.Diagnostics;
using System.Globalization;
namespace HelloWorldExtension
{

/// <summary>
/// This is the class that implements the package

exposed
/// by this assembly.
/// </summary>
/// <remarks>
/// <para>
/// The minimum requirement for a class to be

considered a
/// valid package for Visual Studio is to

implement the
/// IVsPackage interface and register itself with

the shell.
/// This package uses the helper classes defined

inside the
/// Managed Package Framework (MPF) to do it: it

derives from
/// the Package class that provides the

implementation of the
/// IVsPackage interface and uses the registration

attributes
/// defined in the framework to register itself

and its
/// components with the shell. These attributes

tell the
/// pkgdef creation utility what data to put into

the .pkgdef file.
/// </para>
/// <para>
/// To get loaded into VS, the package must be

referred by
/// <Asset

Type="Microsoft.VisualStudio.VsPackage" ...>
/// in .vsixmanifest file.
/// </para>
/// </remarks>
[PackageRegistration(UseManagedResourcesOnly =

true)]
// Info on this package for Help/About
[InstalledProductRegistration("#110", "#112",

"1.0",
IconResourceID = 400)]

[ProvideMenuResource("Menus.ctmenu", 1)]
[Guid(MyCommand1PackageGuids.PackageGuidString)]
[SuppressMessage("StyleCop.CSharp.DocumentationRule

"SA1650:ElementDocumentationMustBeSpelledCorrec
Justification = "pkgdef, VS and vsixmanifest

are valid VS terms")]
public sealed class MyCommand1Package : Package
{

/// <summary>
/// Initializes a new instance of the <see

cref="MyCommand1"/> class.
/// </summary>
public MyCommand1Package()
{

//Inside this method you can place any
initialization

//code that does not require any Visual
Studio service

//because at this point the package object
is created but

//not sited yet inside Visual Studio
environment.

//The place to do all the other
initialization is the

//Initialize method.
}

#region Package Members

/// <summary>
/// Initialization of the package; this method

is called right
/// after the package is sited, so this is the

place
/// where you can put all the initialization

code that relies
/// on services provided by Visual Studio.
/// </summary>
protected override void Initialize()
{

MyCommand1.Initialize(this);
base.Initialize();

}

#endregion
}

}

The first thing to notice is that your package class (which will, by default, be
named after the project item that you added) inherits from the Package class:
Click here to view co de image

public sealed class MyCommand1Package : Package

The Package class, in turn, implements the IVsPackage interface that
provides the functionality necessary to expose the package and its functionality
within the IDE.
This interface provides the eventing glue for packages. It is responsible for all
the events that constitute the life span of an add-in.
Beyond the Package class itself, there are other files created within the
package project. There are resource files for defining string and bitmap
resources and a .vsct file and code files that define important commands for
your package.

Defining and Reacting to Commands
One of the primary ways you interact with a package-based extension is by
issuing it a command (perhaps via a Visual Studio menu, or a toolbar button
press event). A command, in the VSPackage environment, is nothing more than
a message to the extension that triggers an action. For example, if we have an
extension that computed the total lines of executable code within a code editor
window, we would probably trigger that computation via a command. Or, if
our extension was capable of printing out a file loaded into Visual Studio, we
would initiate the printing via a print command.
Listing 15.2 shows the command file code that was generated with our
"Hello, World" custom command project.

LISTING 15.2 Command Class Generated by the Custom Command Project
Item

Click here to view co de image

using System;
using System.ComponentModel.Design;
using System.Globalization;
using Microsoft.VisualStudio.Shell;
using Microsoft.VisualStudio.Shell.Interop;

namespace HelloWorldExtension
{

/// <summary>
/// Command handler
/// </summary>
internal sealed class MyCommand1
{

/// <summary>

/// Command ID.

/// </summary>

public const int CommandId = 0x0100;

/// <summary>

/// Command menu group (command set GUID).

/// </summary>

public static readonly Guid MenuGroup =

new Guid("00527dbc-b05f-4ba5-b30b-
b780795bbcf6");

/// <summary>

/// VS Package that provides this command, not

null.
/// </summary>
private readonly Package package;

/// <summary>

/// Initializes a new instance of the <see

cref="MyCommand1"/>
/// class.
/// Adds our command handlers for menu

(commands must exist

/// in the command table file)

/// </summary>

/// <param name="package">Owner package, not

null.</param>
private MyCommand1(Package package)
{

if (package == null)
{

throw new
ArgumentNullException("package");

}

this.package = package;

OleMenuCommandService commandService =
this.ServiceProvider.GetService(

typeof(IMenuCommandService)) as
OleMenuCommandService;

if (commandService != null)
{

CommandID menuCommandID =
new CommandID(MenuGroup,

CommandId);
EventHandler eventHandler =

this.ShowMessageBox;
MenuCommand menuItem =

new MenuCommand(eventHandler,
menuCommandID);

commandService.AddCommand(menuItem);
}

}

/// <summary>

/// Gets the instance of the command.

/// </summary>

public static MyCommand1 Instance

{

get;

private set;

}

/// <summary>

/// Gets the service provider from the owner

package.
/// </summary>
private IServiceProvider ServiceProvider
{

get

{

return this.package;

}

}

/// <summary>
/// Initializes the singleton instance of the

command.
/// </summary>

peof(SVsUIShell));

Failure(

/// <param name="package">Owner package, not
null.</param>

public static void Initialize(Package package)
{

Instance = new MyCommand1(package);
}

/// <summary>

/// Shows a message box when the menu item is

clicked.
/// </summary>
/// <param name="sender">Event sender.</param>
/// <param name="e">Event args.</param>
private void ShowMessageBox(object sender,

EventArgs e)
{

//Show a MessageBox to prove we were here
IVsUIShell uiShell =

(IVsUIShell)Package.GetGlobalService(ty
Guid clsid = Guid.Empty;
int result;
Microsoft.VisualStudio.ErrorHandler.ThrowOn

uiShell.ShowMessageBox(

0,

ref clsid,

"MyCommand1Package",

"Hello, World!",

string.Empty,

0,

OLEMSGBUTTON.OLEMSGBUTTON_OK,

OLEMSGDEFBUTTON.OLEMSGDEFBUTTON_FIRST,

OLEMSGICON.OLEMSGICON_INFO,

0, //false

out result));

}
}

}

Looking at Listing 15.2: within the constructor routine, there is a block of code
that effectively links a callback event to our command, allowing us to respond
when the command menu item is clicked.
First, a command handler is created via the OleMenuCommandService.
You can find more info on this object in MSDN, but it is essentially a managed
class that shell extensions use to add menu command handlers and define
“verbs” for those menu commands. Let’s look at the code:
Click here to view co de image

//Add our command handlers for menu

//(commands must exist in the .vsct file)

OleMenuCommandService mcs = GetService(

typeof(IMenuCommandService)

) as OleMenuCommandService;

Assuming that we have managed to obtain a valid
OleMenuCommandService object, the routine then creates a reference to

a">

the menu command itself with the following code:
Click here to view co de image

//Create the command for the menu item.

CommandID menuCommandID = new CommandID(

GuidList.guidMyFirstPackageCmdSet,

(int)PkgCmdIDList.cmdidMyCommand);

The CommandID object is created using a GUID and an ID that uniquely
represent that command. In other words, the GUID and ID used in conjunction
are a key that uniquely identifies the command; the CommandID object is best
understood as a wrapper for that key.
To define a command for our package, we need to modify something called the
Visual Studio Command Table (VSCT).

Editing the VSCT
As we have already discussed, a command is nothing more than a trigger that
causes the extension to do something. The VSCT shows a list of the commands
supported by the extension and their corresponding definitions. Commands are
fairly useless without a way to trigger them. The VSCT also contains
information about how commands are exposed within the IDE (typically as a
menu item or a toolbar button).
Physically, the VSCT is implemented as an XML file with a .vsct extension.
This file is created automatically when you use the package wizard to generate
your project. Listing 15.3 contains the command table XML that was generated
for us as a result of completing the package wizard.

LISTING 15.3 A VSCT File Generated by the Package Wizard

Click here to view co de image

<?xml version="1.0" encoding="utf-8"?>

<CommandTable

xmlns="http://schemas.microsoft.com/VisualStudio/2005-
10-18/CommandTable"

xmlns:xs="http://www.w3.org/2001/XMLSchem

<!--This is the file that defines the actual layout
and type

of the commands. It is divided in different
sections

(e.g. command definition, command placement,
...), with

each defining a specific set of properties. See
the

comment before each section for more details
about	 how to

use it. -->

<!--The VSCT compiler (the tool that translates this
file

into the binary format that Visual Studio will
consume)

has the ability to run a preprocessor on the
vsct file;

this preprocessor is (usually) the C++
preprocessor, so

it is possible to define includes and macros
with the

same syntax used in C++ files. Using this
ability of the

compiler here, we include files defining some of
the

constants that we will use inside the file. -->

<!--This is the file that defines the IDs for all
the commands

exposed by Visual Studio. -->
<Extern href="stdidcmd.h"/>

<!--This header contains the command ids for the
menus provided

by the shell. -->
<Extern href="vsshlids.h"/>

<!--The Commands section is where the commands,
menus, and menu

groups are defined. This section uses a Guid to
identify

the package that provides the command defined
inside it. -->

<Commands package="guidMyFirstPackagePkg">

<!--Inside this section we have different
subsections: one

for the menus, another for the menu groups, one
for the

buttons (the actual commands), one for the combos,
and the last

one for the bitmaps used. Each element is
identified by a

command id that is a unique pair of guid and
numeric identifier;

the guid part of the identifier is usually called
"command set"

and is used to group different commands inside a
logically related

group; your package should define its own command
set in order to

avoid collisions with command ids defined by
other

packages. -->

<!--In this section you can define new menu
groups. A menu group

is a container for other menus or buttons

g>
ag>

(commands);
from a visual point of view you can see the

group as the
part of a menu contained between two lines.

The parent of a
group must be a menu. -->

<Groups>

<Group guid="guidMyFirstPackageCmdSet"
id="MyMenuGroup"

priority="0x0600">
<Parent guid="guidSHLMainMenu"

id="IDM_VS_MENU_TOOLS"/>
</Group>

</Groups>

<!--Buttons section. -->
<!--This section defines the elements the user can

interact with,
like a menu command or a button or a combo box

in a toolbar. -->
<Buttons>

<!--To define a menu group you have to specify
its ID, the parent

menu, and its display priority. The command
is visible and enabled

by default. If you need to change the
visibility, status, etc., you

can use the CommandFlag node.
You can add more than one CommandFlag node

e.g.:
<CommandFlag>DefaultInvisible</CommandFla
<CommandFlag>DynamicVisibility</CommandFl

If you do not want an image next to your
command, remove the Icon

node /> -->

<Button guid="guidMyFirstPackageCmdSet"
id="cmdidMyCommand"

priority="0x0100" type="Button">
<Parent guid="guidMyFirstPackageCmdSet"

id="MyMenuGroup" />
<Icon guid="guidImages" id="bmpPic1" />
<Strings>

<ButtonText>My First Package
Command</ButtonText>

</Strings>
</Button>

</Buttons>

<!--The bitmaps section is used to define the
bitmaps that are used for

the commands.-->
<Bitmaps>

<!--The bitmap id is defined in a way that is a
little bit

different from the others: the declaration
starts with a guid

for the bitmap strip, then there is the
resource id of the

bitmap strip containing the bitmaps and then
there are the

numeric ids of the elements used inside a
button definition.

An important aspect of this declaration is
that the element id

must be the actual index (1-based) of the
bitmap inside the

bitmap strip. -->
<Bitmap guid="guidImages"

href="Resources\Images.png"
usedList="bmpPic1, bmpPic2,

bmpPicSearch, bmpPicX, bmpPicArrows"/>

</Bitmaps>

</Commands>

<Symbols>
<!--This is the package guid. -->
<GuidSymbol name="guidMyFirstPackagePkg"

value="{4f99ea1f-b906-4e30-a40a-
26f217a6b9ab}" />

<!--This is the guid used to group the menu
commands together -->

<GuidSymbol name="guidMyFirstPackageCmdSet"
value="{25e4d809-1d51-4bc4-b35c-

d54e82d71907}">

<IDSymbol name="MyMenuGroup" value="0x1020" />
<IDSymbol name="cmdidMyCommand" value="0x0100"

/>
</GuidSymbol>

<GuidSymbol name="guidImages"
value="{e1e9e76f-29b9-43b0-b2e2-

80d7cdea6bc3}" >
<IDSymbol name="bmpPic1" value="1" />
<IDSymbol name="bmpPic2" value="2" />
<IDSymbol name="bmpPicSearch" value="3" />
<IDSymbol name="bmpPicX" value="4" />
<IDSymbol name="bmpPicArrows" value="5" />
<IDSymbol name="bmpPicStrikethrough" value="6"

/>
</GuidSymbol>

</Symbols>

</CommandTable>

The Symbols and the Commands nodes are the two important parts of the file
	
to pay attention to. Within the Symbols node, we set up the unique globally
	
unique identifiers (GUIDs) and IDs that are used to refer to various elements of
	
our commands. Each of these is represented using an IDSymbol element
	
within the VSCT. In Listing 15.2, you can clearly see multiple IDSymbol

entries created for a variety of things including icons, menu groups, and actual
	
commands.
	
The Commands node defines the commands themselves, including how they are
	
displayed within the Visual Studio UI.
	
Because the Symbols node ends up defining the keys to our commands (and to
	
other items referenced within the file), we have to start the processing of
	
adding a command by first adding its compound key to the Symbols node.
	
Then we add corresponding entries into the Commands node to configure
	
menus, buttons (which are best thought of as menu items), combos (combo
	
boxes), bitmaps (icons to be associated with the command), and groups
	
(logical groupings of different commands).
	
We’ll tie all this together in the sample extension project later in the chapter.
	
For now, understand that adding a command to your extension will always
	
involve the following steps:
	

1. Define the GUID/ID composite key for your command by adding an
IDSymbol element into the VSCT file. You will need a separate
IDSymbol entry for every command, menu, group, and so on.

2. Define the UI for the command by adding an appropriate entry in the
Commands node within the VSCT file. For example, to expose your
command via a button (for example, a menu item or button on a toolbar),
create a Button element. If you also want to attach an icon to your
command UI, you would define a Bitmap element within the Bitmaps
node.

3. Implement the code to execute the command. Add code to the
	
MenuItemCallback routine.
	

A Sample Extension: Color Selector
To cap this discussion of add-ins, let’s look at the process of developing a
functioning package from start to finish. This extension is a color picker. It
enables users to click an area of a color palette, and the package emits code to
create an instance of a color structure that matches the selected color from the
palette. Here is a summary list of requirements for the add-in:

In a tool window, it displays a visual color palette representing all the
possible colors.
As the mouse pointer is moved over the palette, the control displays the
Red, Green, and Blue values for the point directly under the mouse
pointer.
If a user clicks the palette, it takes the current RGB values and copies the
correct C# code to implement a matching Color struct onto the clipboard

so that it can be easily pasted into an open code window.

Getting Started
To start the development process, you create a new solution and a VSIX
project called ColorSelector.
	
Once it’s created, as we saw earlier, we will be left with a basic, essentially
	
empty, project.
	

Creating the User Control
We start by creating a User Control class that encapsulates the user
interface for our tool window and the processing logic for the extension. Add a
Custom Tool Window project item to the project; call it MyToolWindow.
The first thing to note is that the project item has already created the shell of
our user control for us. After we added this project item, the design surface of
the user control is loaded and ready to go (see Figure 15.8). As we noted
before, the user control is a XAML-based user interface. If you need to
familiarize yourself with Windows Presentation Foundation (WPF)/XAML
development concepts, you may want to skip ahead and read Chapter 21 or
Chapter 23.

FIGURE 15.8 The default user control.
Within the user control, there is already a StackPanel container created for us
inside a grid. It currently contains a TextBlock and a Button control. We won’t
need the Button control, so delete it. We want to add an Image control (within
the StackPanel, after the TextBlock) to display the palette of colors, stored as a
simple .jpg file. In this case, we’re using a color palette from a popular
Paint program as our source for the bitmap; grab your own palette “picture”

from wherever you like, copy it over into your project folder, and add it to
your project. Set the Source property of the Image control to the relative path
of your image file. Our path looks like this: color-spectrum.jpg.
With the palette in place, you now need a TextBlock control to display the
RGB values. (Set its name property to TextBlockRGB). This can be added
directly into the existing StackPanel container immediately after the Image
control. Finally, in the finest tradition of gold-plating, you also add a Border
control (named BorderSelectedColor) that will have its background
color set to the current color selection and another TextBlock control
(TextBlockCode) that shows the code you would generate to implement
that color in a color structure. Both of these can be added, one after another, to
the StackPanel.
Figure 15.9 provides a glimpse of the user control after these controls have
been situated on the design surface.

FIGURE 15.9 Designing the user control.

Handling Movement over the P alette
With the UI in place, you can now concentrate on the code. First, you can add
an event handler to deal with mouse movements over the top of the palette
picture box. Within the MouseMove event handler, we will update the
TextBlock control and the Border control background as the pointer roves over
the palette bitmap. This is easily accomplished by first establishing the event
within the XAML markup, like this:
Click here to view co de image

<Image Name="ImagePalette" Source="color-spectrum.jpg"

Margin="10"

MouseMove="ImagePalette_MouseMove" />

If you let Visual Studio do the work for you and select <New Event

Handler> as you are typing the MouseMove property into the XAML, you
will get the C# event handler created for you for free. Within the handler, the
code will need to look something like this:
Click here to view co de image

private void ImagePalette_MouseMove(object sender,

MouseEventArgs e)

{

//Get the color under the current pointer position
UIElement SelectedObject = e.Source as UIElement;

Color color = GetPointColor();

DisplayColor(color);

DisplayCode(color, false);

}

We also need a way to react when the user clicks on the palette (triggering a
copy of the code to the Clipboard). So in the same fashion, add a new event
handler in the XAML for the MouseDown event so that the Image element
now looks like this:
Click here to view co de image

<Image Name="ImagePalette" Source="color-spectrum.jpg"

Margin="10"

MouseMove="ImagePalette_MouseMove"

MouseDown="ImagePalette_MouseDown" />

And within the event handler C# code, write the clipboard action:
Click here to view co de image

private void ImagePalette_MouseDown(object sender,

MouseButtonEventArgs e)

{

//On mouse click within the palette, copy
//the Color code to the Clipboard
Clipboard.Clear();
Clipboard.SetText(TextBlockCode.Text);

}

We haven’t implemented the GetPointColor, DisplayColor, or
DisplayCode routines yet; let’s do that now.

Implementing the Helper Routines
Whenever the mouse pointer moves over the picture box region, you need to
capture the color components of the point directly below the cursor
(GetPointColor), update the label controls and the border control to
reflect that color (DisplayColor), and then generate the code to implement
a matching color structure (DisplayCode). Here are the implementations of
these routines.
Click here to view co de image

/// <summary>

/// Returns a Color structure representing the color

of

/// the pixel at the current mouse x and y

coordinates.

/// </summary>

/// <returns>A Color structure</returns>

private Color GetPointColor()

{

//Retrieve the relative coordinate of the mouse
position \

//in relation to the current window.
Point point = Mouse.GetPosition(this);

//Grab a bitmap of the current window

var renderTargetBitmap =

new RenderTargetBitmap((int)this.ActualWidth,
(int)this.ActualHeight,
96, 96,

PixelFormats.Default);
renderTargetBitmap.Render(this);

//Determine if we are in bounds
if ((point.X <= renderTargetBitmap.PixelWidth) &&

(point.Y <= renderTargetBitmap.PixelHeight))
{

//Crop a pixel out of the larger bitmap.
var croppedBitmap =

new CroppedBitmap(renderTargetBitmap,
new Int32Rect(
(int)point.X,
(int)point.Y, 1, 1));

//Copy the pixel to a byte array.
var pixels = new byte[4];
croppedBitmap.CopyPixels(pixels, 4, 0);

//Convert the RGB byte array to a Color
structure.

Color SelectedColor = Color.FromRgb(pixels[2],
pixels[1],
pixels[0]);

//Return the Color struct
return SelectedColor;

}

else

{

//Return black if we are out of bounds

return Colors.Black;

}

}

/// <summary>
/// Given a Color struct, update the UI controls
/// to show the RGB values, and repeat the selected

/// color within the BorderSelectedColor control.
/// </summary>
/// <param name="color">The current color under
/// the mouse cursor.</param>
private void DisplayColor(Color color)
{

//Set the border color to match
//the selected color
SolidColorBrush brush =

new SolidColorBrush(color);

BorderSelectedColor.Background = brush;

//Display the RGB values
string rgb = color.R.ToString() + ", "

+ color.G.ToString() + ", "
+ color.B.ToString();

TextBlockRGB.Text = rgb;

}

/// <summary>

/// Display the VB or C# code to implement the

/// provided Color

/// </summary>

/// <param name="color">The color to implement</param>

/// <param name="isVB">True to generate VB; false

/// for C#</param>

private void DisplayCode(Color color, bool isVB)

{

string code = "";

if (isVB)
{

code = "Dim color As Color = ";

}

else

{

code = "Color color = ";

}

code = code + @"Color.FromArgb(" +
color.R.ToString() + ", " +

color.G.ToString() + ", " +
color.B.ToString() + ");";

TextBlockCode.Text = code;

}

Tip
To isolate and test the user control, you might want to add a WPF
project to the solution and host the control within a XAML
window for testing. Just drop the control onto the design window
and run the project.

With the user control in place, you are ready to proceed to the second stage of
the add-in’s development: wiring the user control into the IDE.

Finishing the Package
The package class already has all the basic code we need; with the user
control/tool window UI and code finished, we are essentially done. If we run
our package at this stage, a sandbox copy of Visual Studio will start up with
the package loaded. We just need to know how to trigger our tool window to
display. The launching code is already there inside the ShowToolWindow
routine.

Note
A tool window, in Visual Studio parlance, is nothing more than a
simple window that can be docked or floated within the IDE.

The custom tool window project item has already provided us with a
straightforward routine that will display a tool window. This routine is already
wired up to a menu command, and it is already configured to display our
custom user control within the tool window. For reference, here is the default
implementation you’ll find within the package class.
Click here to view co de image

/// <summary>
/// This function is called when the user clicks the
/// menu item that shows the tool window. See the
/// Initialize method to see how the menu item is
/// associated to this function using the
/// OleMenuCommandService service and the MenuCommand
class.
/// </summary>
private void ShowToolWindow(object sender, EventArgs
e)
{

//Get the instance number 0 of this tool window.

//This window is single instance, so this instance

//is actually the only one.

//The last flag is set to true so that if the tool

//window does not exist, it will be created.

ToolWindowPane window =

this.FindToolWindow(typeof(MyToolWindow), 0, true);

if ((null == window) || (null == window.Frame))
{

throw new
NotSupportedException(Resources.CanNotCreateWindow);

windowFrame.Show());

}

IVsWindowFrame windowFrame =
(IVsWindowFrame)window.Frame;

Microsoft.VisualStudio.ErrorHandler.ThrowOnFailure(
}

The VSCT file has been built for you; here is the snippet inside the .vsct file
that wires the command to show the tool window to a menu item and places it
inside the Other Windows menu.
Click here to view co de image

<Button guid="guidColorSelectorCmdSet"
id="cmdidColorSelectorToolWindow"

priority="0x0100" type="Button">
<Parent guid="guidSHLMainMenu"

id="IDG_VS_WNDO_OTRWNDWS1"/>
<Icon guid="guidImages" id="bmpPic1" />
<Strings>

<ButtonText>Color Selector Tool
Window</ButtonText>

</Strings>
</Button>

If you examine the Parent element, you will see an id attribute set to
IDG_VS_WNDO_OTRWNDWS1. This is a constant that references the standard
Other Windows menu within Visual Studio. There are predefined GUIDs and
IDs for every standard Visual Studio menu. Visit MSDN and search for
“GUIDs and IDs of Visual Studio Menus” for the full reference.
Our package is fully functional. Figure 15.10 shows the package UI running as
a tool window within an instance of Visual Studio. Listings are provided next
for the key components of the tool window: Listing 15.4 provides the tool
window extension code, and Listings 15.5 and 15.6 provide the XAML and
code-behind (respectively) for the tool window control itself.

FIGURE 15.10 The ColorSelector package running in Visual Studio.

LISTING 15.4 The ColorSelectorPackage Class

Click here to view co de image

using System;

using System.Diagnostics;

using System.Globalization;

using System.Runtime.InteropServices;

using System.ComponentModel.Design;

using Microsoft.Win32;

using Microsoft.VisualStudio;

using Microsoft.VisualStudio.Shell.Interop;

using Microsoft.VisualStudio.OLE.Interop;

using Microsoft.VisualStudio.Shell;

namespace VisualStudioUnleashed.ColorSelector

{

/// <summary>
/// This is the class that implements the package

exposed by this
/// assembly.
///
/// The minimum requirement for a class to be

considered a valid package

/// for Visual Studio is to implement the
IVsPackage interface and register
itself

/// with the shell. This package uses the helper
classes defined in the

/// Managed Package Framework (MPF) to do it: it
derives from the

/// Package class that provides the implementation
of the IVsPackage

/// interface and uses the registration attributes
defined in the

/// framework to register itself and its
components with the shell.

/// </summary>
//This attribute tells the PkgDef creation utility

(CreatePkgDef.exe)
//that this class is a package.
[PackageRegistration(UseManagedResourcesOnly =

true)]
//This attribute is used to register the

information needed to show
//this package in the Help/About dialog of Visual

Studio.
[InstalledProductRegistration("#110", "#112",

"1.0",
IconResourceID = 400)]

//This attribute is needed to let the shell know
that this package

//exposes some menus.
[ProvideMenuResource("Menus.ctmenu", 1)]
//This attribute registers a tool window exposed

by this package.
[ProvideToolWindow(typeof(MyToolWindow))]
[Guid(GuidList.guidColorSelectorPkgString)]
public sealed class ColorSelectorPackage : Package
{

/// <summary>
/// Default constructor of the package.

namespace ColorSelectorExtension
{

using System;
using System.Runtime.InteropServices;
using Microsoft.VisualStudio.Shell;

/// <summary>
/// This class implements the tool window exposed

by this package
/// and hosts a user control.
/// </summary>
/// <remarks>
/// In Visual Studio, tool windows are composed of

a frame
/// (implemented by the shell) and a pane,
/// usually implemented by the package

implementer.
/// <para>
/// This class derives from the ToolWindowPane

Control

class provided
/// from the MPF in order to use its
/// implementation of the IVsUIElementPane

interface.
/// </para>
/// </remarks>
[Guid("a320ef24-e22a-41de-9d6b-7eece4f50e61")]
public class ColorSelectorToolWindow :

ToolWindowPane
{

/// <summary>
/// Initializes a new instance of the
/// <see cref="ColorSelectorToolWindow"/>

class.
/// </summary>
public ColorSelectorToolWindow() : base(null)
{

this.Caption = "ColorSelectorToolWindow";

//Set the image that will appear on the
tab of the

//window frame when docked with another
window.

//The resource ID corresponds to the one
defined

//in the resx file, while the Index is the
offset

//in the bitmap strip. Each image in the
strip

//is 16x16.
this.BitmapResourceID = 301;
this.BitmapIndex = 1;

//This is the user control hosted by the
tool

//window; note that, even if this class
implements

//IDisposable, we are not calling Dispose
on this object.

//This is because ToolWindowPane calls
Dispose on

//the object returned by the Content
property.

this.Content = new
ColorSelectorToolWindowControl();

}
}

}

LISTING 15.5 The UserControl XAML

Click here to view co de image

<UserControl
x:Class="ColorSelectorExtension.ColorSelectorToolWindow
"

presentation"
l"

nd/2008"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
xmlns:x="http://schemas.microsoft.com/winfx/2006/xam
xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/ble
Background="{DynamicResource VsBrush.Window}"
Foreground="{DynamicResource VsBrush.WindowText}"
mc:Ignorable="d"
d:DesignHeight="350" d:DesignWidth="300"
Name="MyToolWindow">
<Grid>

<StackPanel Orientation="Vertical">

<TextBlock Margin="10"

HorizontalAlignment="Center">
Color Selector Tool Window</TextBlock>
<Image Name="ImagePalette" Source="color-

spectrum.jpg"
Margin="10"

MouseMove="ImagePalette_MouseMove"
MouseDown="ImagePalette_MouseDown" />

<TextBlock Name="TextBlockRGB"
HorizontalAlignment="Center"

Margin="10">(R, G, B values)</TextBlock>
<Border Name="BorderSelectedColor"

Height="25"
Margin="10,0,10,10"

Background="Transparent" />
<TextBlock Name="TextBlockCode"

HorizontalAlignment="Center"
Margin="10">(code goes here)</TextBlock>

</StackPanel>

</Grid>
</UserControl>

LISTING 15.6 The UserControl Code Behind (C#)

Click here to view co de image

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace VisualStudioUnleashed.ColorSelector
{

/// <summary>

e("Microsoft.Globalization",

/// Interaction logic for MyControl.xaml
/// </summary>
public partial class MyControl : UserControl
{

public MyControl()

{

InitializeComponent();

}

[System.Diagnostics.CodeAnalysis.SuppressMessag
"CA1300:SpecifyMessageBoxOptions")]

private Color GetPointColor()
{

//Retrieve the coordinate of the mouse
position in relation to

//the window.
Point point = Mouse.GetPosition(this);

//Use RenderTargetBitmap to get the
visual, in case the

//image has been transformed.
var renderTargetBitmap =

new
RenderTargetBitmap((int)this.ActualWidth,

(int)this.ActualHeight,
96, 96, PixelFormats.Default);

renderTargetBitmap.Render(this);

//Make sure that the point is within the
dimensions of the

//image.
if ((point.X <=

renderTargetBitmap.PixelWidth)
&& (point.Y <=

renderTargetBitmap.PixelHeight))
{

//Create a cropped image at the
supplied point coordinates.

var croppedBitmap =
new

CroppedBitmap(renderTargetBitmap,
new Int32Rect((int)point.X,

(int)point.Y, 1, 1));

//Copy the sampled pixel to a byte
array.

var pixels = new byte[4];
croppedBitmap.CopyPixels(pixels, 4,

0);

//Assign the sampled color to a
SolidColorBrush and

//return as conversion.
Color SelectedColor =

Color.FromRgb(pixels[2],

pixels[1], pixels[0]);

return SelectedColor;
}
else
{

return Colors.Black;
}

}

private void ImagePalette_MouseMove(object
sender, MouseEventArgs e)

{
//Get the color under the current pointer

position
UIElement SelectedObject = e.Source as

UIElement;

Color color = GetPointColor();

DisplayColor(color);
DisplayCode(color, false);

}

/// <summary>
/// Given a Color struct, update the UI

controls
/// to show the RGB values, and repeat the

selected
/// color within the BorderSelectedColor

control.
/// </summary>
/// <param name="color">The current color

under
/// the mouse cursor.</param>
private void DisplayColor(Color color)
{

//Set the border color to match
//the selected color
SolidColorBrush brush =

new SolidColorBrush(color);

BorderSelectedColor.Background = brush;

//Display the RGB values

string rgb = color.R.ToString() + ", "

+ color.G.ToString() + ", "
+ color.B.ToString();

TextBlockRGB.Text = rgb;

}

/// <summary>

/// Display the VB or C# code to implement the
/// provided color
/// </summary>
/// <param name="color">The color to

implement</param>
/// <param name="isVB">True to generate VB;

false
/// for C#</param>
private void DisplayCode(Color color, bool

isVB)
{

string code = "";

if (isVB)

{

code = "Dim color As Color = ";
}
else
{

code = "Color color = ";
}

code = code + @"Color.FromArgb(" +
color.R.ToString() + ", " +

color.G.ToString() + ", " +
color.B.ToString() + ");";

_code = code;
TextBlockCode.Text = _code;

}

private void ImagePalette_MouseDown(object
sender, MouseButtonEventArgs e)

{
//On mouse click within the palette, copy
//the Color code to the Clipboard
Clipboard.Clear();
Clipboard.SetText(TextBlockCode.Text);

}
}

}

Note
If you have previously written Visual Studio add-ins, it is a
relatively straightforward conversion process to turn those into
package extensions. Search MSDN for the article titled
“Converting Add-Ins to VSPackage Extensions.”

Summary
This chapter described how to leverage the power of Visual Studio extensions
to functionally add to Visual Studio’s features.

You investigated the custom command project item and how to use the project
	
item to quickly and easily define a new menu command.
	
You also saw how to use XAML UI technologies to create a completely custom
	
user control from the ground up and surface that control as a tool window
	
hosted by Visual Studio.
	
In the next chapter, we explore another way to extend Visual Studio by using
	
the same VSIX project techniques with the code editor and a technology called
	
the Managed Extensibility Framework.
	

Chapter 16. Extending the Code Editor
	

In This Chapte r
The Extensibility Problem
MEF Architecture
The Visual Studio Editor and MEF
Creating Your Own MEF-Based Editor Extension

You have seen in the preceding chapter that Visual Studio Extension (VSIX)
projects provide an easy way to extend the capabilities of the IDE with custom
commands, custom tool windows, and overall broad and deep integration
points into the Visual Studio shell. There is another set of options available to
us with VSIX projects that target customizations and extensions of the code
editor. These project items leverage something called the Managed
Extensibility Framework (MEF).
MEF is actually a generic architecture pattern, application programming
interface (API), and .NET class library for enabling easy “plug-in” extensions
for any .NET application. Visual Studio allows for MEF-based extensions in
the code editor and will likely embrace MEF more broadly across the entire
IDE as time goes on.
This chapter introduces Microsoft’s MEF and how the framework can be
applied to extend the Visual Studio code editor.

The Extensibility Problem
Before getting into the architecture and code-level details of MEF, it is useful
to understand the problem or question that MEF is trying to answer. Put simply,
that question is this: how can developers allow their applications to be easily
extended by others, or conversely how can developers extend existing
applications in a simple way?
A variety of hurdles have to be overcome in this space. For instance, how can
an application be open for extensions yet closed so that its core functionality
cannot be usurped against the intentions of its designers? What developers are
really after is a consistent solution that enables dynamic applications to be
created and thus enables other developers to extend those dynamic
applications using well-known and understood mechanisms.

Creating Dynamic Applications
Prior to MEF, the work required to create a so-called open-ended .NET
application (that is, an application that allows others to contribute code and
alter or add to its functionality) was far from a trivial effort. The main issue
here is one of discovery and instantiation. The “host” application (the
application that supports extensions) needs to have a standard way of
identifying and validating code meant to extend the host. And there needs to be
a runtime activation approach: how is the plug-in code executed, and what
portions of the host app can be affected by the plug-in?

This is where MEF enters the scene. It provides an architecture pattern and
framework/API that host application developers and plug-in developers can
use to enable these dynamic application scenarios.
In fact, MEF explicitly targets developers who are creating any of three
different classes of applications:

Exte nsions—Chunks of compiled code that enhance the functionality of
an existing application. Extension developers need to be able to
implement their components without having access to the host
applications’ source or even specialized knowledge of that source.
Exte nsible frame works/host applications—Applications that need to
support the dynamic addition of functionality via extensions.
Programming mode l—The least common scenario; in this case, a
developer is interested in creating a potentially new way of developing
against an application platform. In this case, MEF can provide the
building blocks that developers need to build their own extensible
application platform.

Visual Studio is merely one example of a host application that clearly benefits
from its ability to support rich add-ins that add value to the core feature areas
that Microsoft delivers out of the box.

M EF Architecture
MEF achieves its goals through three different, but related, mechanisms:

Dependency injection
Structural matching
Naming and activation

Let’s walk through each of these concepts in an abstract sense and then see
how they are physically implemented with MEF.

MEF Principles
Dependency injection is a software architecture term that refers to the concept
of a framework or runtime “injecting” an external dependency into another
piece of software. Handling this process is a core requirement for an
extensibility framework.
Structural matching, also sometimes referred to as duck typing, is a style of
feature discovery and typing in which a host determines the type of an object
based on the properties and methods it exposes as opposed to its actual type in
the object-oriented sense.
Finally, naming and activation is the “last-mile” feature that puts all the
pieces together and enables an application to load and run the plug-in code
predictably.
When all three of these mechanisms are in place, you have a reasonable
platform for building applications that can be dynamically composited at
runtime. In other words, by exploiting an extensibility framework, you can
deliver a flexible application that is capable of leveraging new features that
are added dynamically over time—functionality that does not, in fact, require a
wholesale replacement or upgrade of a core, monolithic executable.

Container

Working with MEF
MEF applications are based around a small set of core concepts: the
composition container, catalog, and parts. These are both abstract concepts and
a physical API that you can interact with from managed code. All the MEF
classes live within the System.ComponentModel.Composition
namespace and its children namespaces, such as
System.ComponentModel.Composition.Hosting.

P arts
An MEF part is the primary unit of functionality. Parts have a set of features
they provide (called exports); parts might also depend on features that other
parts provide (termed imports).
Parts verbalize their exports and imports through contracts. At the code level,
contracts are specified by using declarative attributes to declare their imports
and exports
(System.ComponentModel.Composition.ImportAttribute
and
System.ComponentModel.Composition.ExportAttribute,
respectively).
Here is an example of a C# class declaring an export.
Click here to view co de image

[Export(typeof(IMyExtensionProvider))]

internal class TestExtensionProvider

Composition Container
The composition container is the core of an MEF application that does all the
heavy lifting. It holds all the available parts, handles the instantiation of those
parts, and is the primary composition engine in MEF. In this context,
composition can be thought of as the process of matching required services
(imports) with published services (exports).
Host applications can instantiate a container via the
System.ComponentModel.Composition.Hosting.Composition
class like this:
Click here to view co de image

private CompositionContainer _container;

Catalog
The catalog is a sort of Registry and discovery mechanism for parts that the
composition container uses. MEF provides a default set of catalogs, each one
designed to discover parts from a particular source or target. There is a type
catalog for discovering parts from a given .NET type (via the TypeCatalog
class), an assembly catalog for discovering parts from an assembly (via the
AssemblyCatalog catalog), and a directory catalog (via the
DirectoryCatalog class) for discovering parts that exist in a specified
folder.
A fourth class, AggregateCatalog, enables you to combine multiple

catalogs so that parts from multiple catalog sources can be combined into one
master catalog.
A catalog instance can be passed into the constructor for a
CompositionContainer object. You could write the following code to
both create a new composition container and specify a catalog of parts that are
to be discovered from within the specific assembly.
Click here to view co de image

var catalog = new TypeCatalog(typeof(MyExtension));

CompositionContainer container =

new CompositionContainer(catalog);

Figure 16.1 shows a diagram of the abstract MEF architecture.

FIGURE 16.1 A simplified view of the MEF architecture.

The Visual Studio Editor and M EF
Although the MEF is a general-purpose extensibility framework applicable
across a wide range of application scenarios, it is particularly applicable to
extending the Visual Studio code editor for one simple reason: the editor itself
was built by Microsoft using MEF. In other words, the code editor consists of
a series of MEF parts. Adding additional parts to extend and change editor
behavior is simply a matter of using the MEF design patterns and writing your
own MEF parts to be discovered and used by the editor.
If you want to extend the editor, you need to know the exact editor extensibility
points; in other words, you need to know which editor feature areas can be
easily replaced or enhanced using your own MEF parts.
With our basic primer on MEF out of the way, it’s time to examine how to
create an MEF-based project within Visual Studio and review the numerous
extension points the editor exposes.

Editor Extension Points
The Visual Studio code editor has its own sort of API that it exposes via MEF.
In MEF terms, the editor publishes a set of exports that you can then use within
your own MEF parts to extend the editor in virtually unboundless ways.
With nearly 100% coverage of the editor ’s features, the following feature areas
are valid extension points that the Visual Studio editor exposes:

Conte nt type s—A content type in the context of a Visual Studio code
editor is the type of text and syntax that the editor can parse and
understand. If you think about this from a languages perspective, Visual
Studio content types map directly to the various syntax and text formats
that Visual Studio understands, such as C#, plain text, Hypertext Markup
Language (HTML), XML, XAML, and so on.
Classification type s and classification formats—Classification types
are the types of text, appearing within a document, that the Visual Studio
editor understands and looks for. In a typical C# file, for example, the
editor recognizes numerical and string instances within the document
because those are default classification types built in to Visual Studio.
For each classification type, a format can be defined as well. A classic
example of this is the highlighting and text coloring that you see within
the editor for things like string literals or comments.
Margins and scrollbars—If you think of the physical layout of a code
editor, its visual surface is dominated by the text area where the code
actually lives, and this is surrounded by scrollbars and by a margin area
(for instance, the area where you see breakpoint information). Both the
margins and scrollbars are artifacts that can be customized with MEF
parts.
Tags—Tags are objects that enable you to associate data with different
recognized types of text within an editor. For instance, the SquiggleTag is
implemented by Visual Studio to associate things like syntax errors with
a chunk of text that is unrecognized. In this case, the data associated with
the squiggle is the actual syntax error generated by the compiler; this data
is manifested as a tooltip when you hover the mouse over the squiggle.
Adornme nts—Adornments are visual objects that can appear within an
editor. Physically, they are implemented as Windows Presentation
Foundation (WPF) objects, and they can exist at several different
“layers” within the editor, so the adornment can actually occupy the same
physical space as the text within the editor or float above text within the
editor.
Mouse proce ssors—Mouse processors are extension points that enable
you to capture and handle mouse input.
Drop handle rs—Drop handlers enable you to react to different types of
objects as they are dropped on the editor surface. Visual Studio has a
library of stock format types that it recognizes, including files, pen data,
XAML, and TIFF or bitmap images.
Options—Using MEF, it is possible to define, store, and react to your
own set of custom options within the editor.
Inte lliSe nse —Chapter 7, “Working with Visual Studio’s Productivity
Aids,” discusses IntelliSense extensively. You can write your own
IntelliSense functionality using MEF.

Using the Visual Studio SDK
In Chapter 15, “Extending the IDE,” we introduced the concept of VSIX
projects and Visual Studio extensions. We discussed the fact that extensions are
built by adding different project item types to a VSIX project. Code Editor
extensions are built the same way: we add project items to a VSIX project.
This means that code editor extensions also require the Visual Studio software
development kit (SDK) to be installed.

Note
The Visual Studio SDK, generally speaking, is a collection of
tools and project templates that help developers customize the
IDE. The SDK is particularly germane to the topic of editor
extensions because it ships with a set of project templates and
code samples that help kick-start your extension development
efforts.
The SDK download links for Visual Studio 2015 are located at
the Visual Studio Extensibility center on MSDN:
https://www.visualstudio.com/integrate/explore/explore-vside-
vsi.

To review from Chapter 15: after downloading and installing the SDK, you see
a new set of project templates—including the VSIX project type—available
(under the Extensibility category) when you launch the New Project dialog box
(see Figure 16.2).

FIGURE 16.2 The VSIX Project template added by the Visual Studio SDK.
Once a VSIX project has been created, editor extensions are built by adding
specific project items (which also live under the Extensibility category in the
Add New Item dialog).
There are four MEF-centered project types: the Editor Classifier, Editor

https://www.visualstudio.com/integrate/explore/explore-vside-vsi

Margin, Editor Text Adornment, and Editor Viewport Adornment.
	
Based on their names and the prior list of extension points, you can get a good
	
idea for the specific capabilities of each template. Seeing the extensions in
	
action is as simple as running the template project; just as we saw with general
	
extensions in Chapter 15, a new instance of Visual Studio launches with the
	
extension running.
	
Keep in mind that extensions can be deployed by simply copying their binaries;
	
they do not need to be deployed to the Global Assembly Cache (GAC) or
	
otherwise registered. The default mechanism for deployment of extensions is
	
the VSIX file. (To refresh your memory on what VSIX is, see Chapter 11,
	
“Deploying Code.”) The VSIX file, when run, automatically creates the correct
	
folder in the correct location and copies the extension binaries.
	
After an extension has been deployed in this fashion, you can manage via the
	
Extensions and Updates window (located under the Tools menu), discussed
	
later in this chapter.
	

Editor Classifier
The Editor Classifier template creates an MEF part that exports a classifier;
this classifier handles syntax highlighting within the editor. This is
implemented with a set of default classes that can be customized to implement
your own classifier. By using this project as a starting point, you can direct the
editor to recognize certain syntax and display the matching text in a certain
way.

Note
As you examine the content generated by these extension projects,
notice that the code generated for you maps directly back to the
extension points previously discussed. For example, the Editor
Classifier template relates directly back to the classification
types/formats extension point.

The Editor Classifier project exports a new classifier type that the editor uses
when it’s loaded in the IDE. The definition of the classifier (that is, the type of
text that the classifier recognizes) is implemented in the
EditorClassifier1 class. This class implements the IClassifier
interface and has a GetClassificationSpans property that is
responsible for recognizing a certain class of text. By default, this template
recognizes any text, but you are free to tweak this code to parse out and match
any sort of text pattern you want.

e;

Note
All these MEF extension templates end up creating classes and
types that are named after the project. By using the default
EditorClassifier1 project name, you end up with classes
such as EditorClassifier1,
EditorClassifier1Form, and so on. If you have used a
different name for your project, your type names should look
different from those presented here.

Besides recognizing a class of text, a classifier is responsible for how that text
is displayed within the editor. For instance, keywords are shaded a different
color, comments are colored, and so on. All this work is performed within the
EditorClassifier1Format class. The code generated for us sets the
background color to blue violet and underlines the text, but you can change
those details to whatever you want.
Click here to view co de image

/// <summary>
/// Defines an editor format for the EditorClassifier1
type
/// that has a purple background
/// and is underlined.
/// </summary>internal sealed class
EditorClassifier1Format

: ClassificationFormatDefinition
{

/// <summary>
/// Initializes a new instance of the
/// <see cref="EditorClassifier1Format"/>

class.

/// </summary>

public EditorClassifier1Format()

{

// human readable version of the name
this.DisplayName = "EditorClassifier1";
this.BackgroundColor = Colors.BlueViolet;
this.TextDecorations =

System.Windows.TextDecorations.Underlin
}

}

Editor Margin
The Editor Margin template creates a project that exports a margin displayed
on one of the editor ’s borders. The main class here is EditorMargin1,
which derives from the WPF Canvas class and places a canvas with a child
text box (with the text "Hello World!") at the bottom of the editor
window (see Figure 16.3).

FIGURE 16.3 A "Hello World" margin added to the bottom of the code
editor.

Here is the code responsible for displaying the margin. Again, if you had a
need to display meaningful data within a margin (code review comments? bug
counts?), you could easily use the code here as a building block.
Click here to view co de image

/// <summary>

/// Creates a <see cref="EditorMargin1"/> for a given

/// <see cref="IWpfTextView"/>.

/// </summary>

/// <param name="textView">The <see

cref="IWpfTextView"/> to

/// attach the marginto.</param>

public EditorMargin1(IWpfTextView textView)

{

_textView = textView;

this.Height = 20;

this.ClipToBounds = true;

this.Background = new

SolidColorBrush(Colors.LightGreen);

//Add a green colored label that says "Hello
World!"

Label label = new Label();

label.Background = new

SolidColorBrush(Colors.LightGreen);

label.Content = "Hello world!";

this.Children.Add(label);

}

Editor Text Adornment
A text adornment is just what it sounds like: a graphical “markup” of text
within the editor window. The Editor Text Adornment template creates a
project that adorns every instance of the character A with a purple background
and a red bordered box (see Figure 16.4). As with the editor margin project,
you use WPF objects.

FIGURE 16.4 Creating a text adornment in the editor.
Adornments reside on different “layers” within the editor. In this case, the
adornment is implemented on the same layer that the text is rendered in, and
that’s what makes this specifically a text adornment implementation. Note that
this isn’t actually a case of the editor changing the font of those A’s to include
the background decoration. The adorner uses WPF to paint a red block behind
the text. This block is then synced to any movements of the text within the
editor (by re-creating its visuals every time the layout of the editor window
changes).
Click here to view co de image

public TextAdornment1(IWpfTextView view)
{

_view = view;
_layer = view.GetAdornmentLayer("TextAdornment1");

//Listen to any event that changes the layout
(text changes, scrolling,

//etc.)
_view.LayoutChanged += OnLayoutChanged;

//Create the pen and brush to color the box behind
the A's

Brush brush = new
SolidColorBrush(Color.FromArgb(0x20, 0x00,

0x00, 0xff));
brush.Freeze();
Brush penBrush = new SolidColorBrush(Colors.Red);
penBrush.Freeze();
Pen pen = new Pen(penBrush, 0.5);
pen.Freeze();

_brush = brush;
_pen = pen;

}

Editor Viewport Adornment
The viewport adornment project is similar to the text adornment project, but it
applies to a different layer of the editor (one where the text does not reside,
which is a small but important distinction). Adorning the viewport in this
fashion enables you to introduce visuals within the editor that aren’t tied to any
particular piece of text and can float in front of or in back of the text layer.
The sample effect produced by this template places a simple purple box in the
upper-right corner of the editor (see Figure 16.5).

FIGURE 16.5 Example of Editor Viewport Adornment

Structurally, the code differs only slightly from the code for the text adornment
sample. The adornment class (ViewportAdornment1) uses the same WPF
brush objects to paint its adornment. The key difference is the visual layer used
by the factory class (ViewportAdornment1Factory). To compare and
contrast the two, first examine the previous project’s factory.

Click here to view co de image

[Export(typeof(IWpfTextViewCreationListener))]

[ContentType("text")]

[TextViewRole(PredefinedTextViewRoles.Document)]

internal sealed class TextAdornment1Factory :

IWpfTextViewCreationListener

{

/// <summary>

/// Defines the adornment layer for the adornment.

This layer is ordered

/// after the selection layer in the Z-order

/// </summary>

[Export(typeof(AdornmentLayerDefinition))]

[Name("TextAdornment1")]

[Order(After =

PredefinedAdornmentLayers.Selection,
Before = PredefinedAdornmentLayers.Text)]

[TextViewRole(PredefinedTextViewRoles.Document)]
public AdornmentLayerDefinition

editorAdornmentLayer = null;

/// <summary>

/// Instantiates a TextAdornment1 manager when a

textView is created.

/// </summary>

/// <param name="textView">The <see

cref="IWpfTextView"/> upon which the
/// adornment should be placed</param>
public void TextViewCreated(IWpfTextView textView)
{

new TextAdornment1(textView);

}

}

And now, here is the viewport adornment factory.
Click here to view co de image

[Export(typeof(IWpfTextViewCreationListener))]

[ContentType("text")]

[TextViewRole(PredefinedTextViewRoles.Document)]

internal sealed class PurpleBoxAdornmentFactory :

IWpfTextViewCreationListener

{

/// <summary>

/// Defines the adornment layer for the scarlet

adornment. This layer is ordered
/// after the selection layer in the Z-order
/// </summary>
[Export(typeof(AdornmentLayerDefinition))]
[Name("ViewportAdornment1")]
[Order(After = PredefinedAdornmentLayers.Caret)]
[TextViewRole(PredefinedTextViewRoles.Document)]
public AdornmentLayerDefinition

editorAdornmentLayer = null;

/// <summary>

/// Instantiates a ViewportAdornment1 manager when
a textView is created.

/// </summary>
/// <param name="textView">The <see

cref="IWpfTextView"/> upon which the
/// adornment should be placed</param>
public void TextViewCreated(IWpfTextView textView)
{

new ViewportAdornment1(textView);
}

}

Note the different layer order defined by each via the Order attribute
([Order(After = PredefinedAdornmentLayers.Caret)]
versus [Order(After =
PredefinedAdornmentLayers.Selection, Before =
PredefinedAdornmentLayers.Text)]).

Managing Extensions and Updates
Before we detailed the editor extension points, we briefly mentioned the
Extensions and Updates window. This dialog is launched via the Tools menu,
Extensions and Updates. The user interface (UI) used by the extension manager
is clean and simple (see Figure 16.6).

FIGURE 16.6 The Visual Studio Extension and Updates Manager.

You can manage installed extensions, browse extensions available online, or
view updates available to any currently installed extensions. The left pane
selects the location/category of the extensions or updates you want to manage.
The center pane provides a list of the appropriate extensions; from here you
can disable or enable an extension and install or uninstall an extension. In
Figure 16.6, you can clearly see all the extensions that were installed as a
result of running the four different extension template projects. The right pane
provides general information about the currently selected extension.
Selecting Online in the left pane enables you to browse and install extensions

that are hosted online (see Figure 16.7). You can post your own extensions
	
online as well by visiting http://visualstudiogallery.msdn.microsoft.com/.
	

FIGURE 16.7 Finding extensions online.
	

Note
The Visual Studio gallery and Visual Studio only fully support
extensions packaged with VSIX. MSI-based extensions can be
viewed here and installed, but Visual Studio can’t enable or
disable them through this UI. VSI-based extensions are not
supported at all via the Extensions and Updates window.

Creating Your Own M EF-Based Editor Extension
You have now learned all the ingredients necessary to build your own
extension. Let’s walk through a simple example, end to end, and build an
extension that displays some basic code metrics in a window in the corner of
the editor. Functionally, you need to accomplish the following:

Compute the required code stats by parsing the currently loaded code
file
Expose a set of properties on a WPF user control to hold those metrics
(and which also displays those metrics)
Display the WPF user control as an editor viewport adornment

Because this involves creating a new adornment pegged to the editor ’s
viewport, you have the luxury of starting with the code produced for us by the
Viewport Adornment template.
Create a new project called CodeMetricAdornment using the VSIX
project template. Then add a new Editor Viewport Adornment item to the
project and call it CodeMetricViewportAdornment. Finally, you will
add a WPF user control titled CodeMetricDisplayControl. (If you
are unfamiliar with WPF or XAML development in general, you may want to
read through portions of Chapter 21, “Building WPF Applications.”)

http://visualstudiogallery.msdn.microsoft.com/

Your baseline project structure should look like Figure 16.8.
	

FIGURE 16.8 Creating a new adornment project.

Now open the CodeMetricViewportAdornment class itself. Within the
class, you add a field to hold a WPF user control object, and you get rid of the
current Image field that the template code uses.
Click here to view co de image

private CodeMetricDisplayControl _displayControl =
new CodeMetricDisplayControl();

We’ll get to our code counting algorithm in a bit. Let’s first focus on creating
the content within our user control (CodeMetricDisplayControl). We
need to display the three metrics and their three labels within the control; a
grid works nicely for this.
Because the grid is already included by default as the root arrangement element
of the control, you just need to tweak its display a bit. Add three rows and two
columns to the grid.
Click here to view co de image

<Grid>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="auto" />

<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

</Grid>

Within the grid, add six TextBlock objects—three to hold the labels, and
three to hold the actual counts.
Click here to view co de image

<TextBlock Grid.Column="0" Grid.Row="0"

VerticalAlignment="Center"

x:Name="TextBlockLOC"

Padding="5">Total Lines of Code:

</TextBlock>
<TextBlock Grid.Column="0" Grid.Row="1"

x:Name="TextBlockComments"
VerticalAlignment="Center"
Padding="5">Comment Lines:</TextBlock>

<TextBlock Grid.Column="0" Grid.Row="2"
x:Name="TextBlockWhitespace"
VerticalAlignment="Center"
Padding="5">Whitespace Lines:</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="0"
VerticalAlignment="Center">0</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="1"
VerticalAlignment="Center">0</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="2"
VerticalAlignment="Center">0</TextBlock>

Within the CodeMetricDisplayControl class, add a property for each
of these integers as well.
Click here to view co de image

public partial class CodeMetricDisplayControl :

UserControl

{

private int _loc = 0; //total lines of code
private int _whitespace = 0; //whitespace (empty)

lines
private int _comments = 0; //total lines that are

comments

public int LinesOfCode
{

get { return _loc; }

set { _loc = value; Refresh(); }

}

public int CommentLines
{

get { return _comments; }
set { _comments = value; Refresh(); }

}

public int WhitespaceLines
{

get { return _whitespace; }
set { _whitespace = value; Refresh(); }

}

public CodeMetricDisplayControl()

{

InitializeComponent();

}

}

Note that, in each setter, you are calling a Refresh routine. Let’s write that
routine, which updates the value of our TextBlocks to the current value held
by our field for each of the code metrics.
Click here to view co de image

private void Refresh()

{

this.TextBlockComments.Text =

_comments.ToString();

this.TextBlockLOC.Text = _loc.ToString();

this.TextBlockWhitespace.Text =

_whitespace.ToString();

}

Disregarding any look and feel refinements, the WPF user control is now ready
to go. Let’s turn our attention back to the adorner class and write the code to
actually count our lines of code, comments, and whitespace lines.
In CodeMetricViewportAdornment, strip out all the current drawing
code from the constructor. In its place, add three lines that set the user control’s
properties based on the return values from a few private routines (which we
implement next). The constructor should now look like this:
Click here to view co de image

public CodeMetricAdornment(IWpfTextView view)

{

_view = view;

_displayControl.LinesOfCode = CountLOC(view);

_adornmentLayer =

view.GetAdornmentLayer

("CodeMetricAdornment");

_view.ViewportHeightChanged += delegate {

this.onSizeChange(); };

_view.ViewportWidthChanged += delegate {

this.onSizeChange(); };

}

The code to actually count our lines of code is straightforward. We take the
IWpfTextView object provided by our adorner and get the string
representation for all the current text in the editor window like this:
Click here to view co de image

string code = view.TextSnapshot.GetText();

Now we can parse that string and return the various counts.

Click here to view co de image

private int CountLOC(IWpfTextView view)
{

string code = view.TextSnapshot.GetText();

int count = 1;

int start = 0;

while ((start = code.IndexOf('\n', start)) != -1)

{

count++;

start++;

}

return count;

}

private int CountWhitespaceLines(IWpfTextView view)
{

string code = view.TextSnapshot.GetText();
int count = 0;

using (StringReader reader = new
StringReader(code))

{
string line;

while ((line = reader.ReadLine()) != null)
{

if (line.Trim() == "")
count++;

}

return count;
}

}

private int CountCommentLines(IWpfTextView view)
{

string code = view.TextSnapshot.GetText();
int count = 0;

using (StringReader reader = new
StringReader(code))

{
string line;

while ((line = reader.ReadLine()) != null)
{

if (line.TrimStart().StartsWith("//"))
count++;

}

return count;

}

ve,

}

We are almost done. The final piece that we need to change from the template
code is to rewrite a piece of the OnSizeChange event handler. This was
wired to position and display the WPF Image control originally used by the
template. Instead, we want this code to position and place our WPF user
control. Change the code within OnSizeChange to this:
Click here to view co de image

public void onSizeChange()

{

//Clear the adornment layer of previous

adornments

_adornmentLayer.RemoveAllAdornments();

//Place the image in the top-right corner of
the viewport

Canvas.SetLeft(_displayControl,
_view.ViewportRight -

_displayControl.ActualWidth);
Canvas.SetTop(_displayControl,

_view.ViewportTop +
_displayControl.ActualHeight);

//Add the image to the adornment layer and
make it	 relative to the

//viewport

_adornmentLayer.AddAdornment(

AdornmentPositioningBehavior.ViewportRelati
null, null, _displayControl, null);

}

Now the control is positioned and is in the adornment view layer. If you run the
project and then open a code file from within the IDE instance that is launched,
you should immediately see the fruits of your labor in the upper-right corner of
the editor.
There is still one problem with this implementation. Although the code stats
are displayed correctly, they aren’t updated when we change the text within the
editor. To fix this, we need to react to the adornment layer ’s IWpfTextView
LayoutChanged event. We can hook this event inside our
CodeMetricViewportAdornment constructor like this.
Click here to view co de image

_view.LayoutChanged += this.OnLayoutChanged;

And then we create the event handler that updates our counts.
Click here to view co de image

private void OnLayoutChanged(object sender,

TextViewLayoutChangedEventArgs e)

{

_displayControl.LinesOfCode = CountLOC(_view);
_displayControl.CommentLines =

CountCommentLines(_view);
_displayControl.WhitespaceLines =

CountWhitespaceLines(_view);

}

We can make our WPF user control more compelling to look at by tweaking the
	
XAML to add things like a background gradient and text coloring.
	
Figure 16.9 shows the final product, and Listing 16.1 contains the viewport
	
adornment class code. The full source listing for this project is available at
	
this book’s website: http://informit.com/title/9780672337369.
	

FIGURE 16.9 A simple code metric adornment in the editor.

LISTING 16.1 The CodeMetricViewportAdornment Class

Click here to view co de image

using System.IO;
using System.Windows.Controls;
using System.Windows.Media;
using Microsoft.VisualStudio.Text.Editor;

namespace CodeMetricViewportAdornment
{

/// <summary>
/// Adornment class that draws a square box in the

top-right corner of
/// the viewport
/// </summary>
class CodeMetricAdornment
{

private IWpfTextView _view;
private IAdornmentLayer _adornmentLayer;
private CodeMetricDisplayControl

http://informit.com/title/9780672337369
http:System.IO

lative,

_displayControl =
new CodeMetricDisplayControl();

public CodeMetricAdornment(IWpfTextView view)
{

_view = view;

_displayControl.LinesOfCode =
CountLOC(view);

_displayControl.CommentLines =
CountCommentLines(view);

_displayControl.WhitespaceLines =
CountWhitespaceLines(view);

_adornmentLayer =
view.GetAdornmentLayer("CodeMetricAdornment");

_view.LayoutChanged +=
this.OnLayoutChanged;

_view.ViewportHeightChanged += delegate {
this.onSizeChange(); };

_view.ViewportWidthChanged += delegate {
this.onSizeChange(); };

}

public void onSizeChange()
{

//Clear the adornment layer of previous
adornments

_adornmentLayer.RemoveAllAdornments();

int buffer = 50;

//Place the image in the top-right corner
of the viewport

Canvas.SetLeft(_displayControl,
_view.ViewportRight -

(_displayControl.ActualWidth
+ buffer));

Canvas.SetTop(_displayControl,
_view.ViewportTop +

(_displayControl.ActualHeight
+ buffer));

_adornmentLayer.AddAdornment(
AdornmentPositioningBehavior.ViewportRe
null, null, _displayControl, null);

}

private void OnLayoutChanged(object sender,
TextViewLayoutChangedEventArgs
e)

{
_displayControl.LinesOfCode =

CountLOC(_view);
_displayControl.CommentLines =

CountCommentLines(_view);
_displayControl.WhitespaceLines =

CountWhitespaceLines(_view);
}

private int CountLOC(IWpfTextView view)
{

string code = view.TextSnapshot.GetText();

int count = 1;
int start = 0;
while ((start = code.IndexOf('\n', start))

!= -1)
{

count++;
start++;

}

return count;

}

private int CountWhitespaceLines(IWpfTextView
view)

{
string code = view.TextSnapshot.GetText();
int count = 0;

using (StringReader reader = new
StringReader(code))

{
string line;

while ((line = reader.ReadLine()) !=
null)

{
if (line.Trim() == "")

count++;
}

return count;

}

}

private int CountCommentLines(IWpfTextView
view)

{
string code = view.TextSnapshot.GetText();
int count = 0;

using (StringReader reader = new
StringReader(code))

{
string line;

while ((line = reader.ReadLine()) !=

null)
{

if
(line.TrimStart().StartsWith("//"))

count++;
}

return count;

}
}

}
}

Summary
This chapter covered the Managed Execution Framework and illustrated how
you can use it to write extensions for the Visual Studio code editor. You
learned the overall architecture of MEF, including its extension discovery
mechanisms and the core concepts of parts and imports/exports.
This chapter also examined all the specific Visual Studio 2015 editor
extension points and outlined the value that the Visual Studio SDK provides
with its prestocked set of extension templates that target those editor extension
points.
Finally, this chapter provided a walk-through of the creation of an editor
extension that exploits the editor ’s adornment layer to display a running total of
three different code metrics, all through the use of a WPF-based user control.

 Part V: Building Web Applications
	

Chapter 17. Building Modern Websites with
ASP.NET 5

In This Chapte r
ASP.NET Website Fundamentals
Introducing ASP.NET 5
Creating a Web Application with ASP.NET 5/MVC 6
Writing ASP.NET Server Code (Models and Controllers)
Coding for the UI (Views and Related Web UI Elements)

Modern website development is about building applications that take
advantage of the client device using common client-side frameworks; render
the UI appropriately based on screen size; and help developers build solutions
for corporate websites, collaboration portals, enterprise business solutions,
and mobile apps/games. Visual Studio 2015 and ASP.NET 5 give developers
the flexibility to build all types of these web-based solutions. This includes
support for the traditional ASP.NET Web Forms model, the Razor Web Pages
approach, sites built on the Model-View-Controller (MVC) pattern, service
applications built on Web API, single-page applications (SPAs) that leverage
client-side frameworks such as AngularJS, and mobile solutions that use
HTML5 and Cordova to run natively on a device.
Visual Studio supports all these various models, approaches, and templates for
building web applications. We cover a number of these in this book. This
chapter is about web fundamentals, ASP.NET 5, and MVC sites. Chapter 18,
“Using JavaScript and Client-Side Frameworks,” covers client-side
frameworks used to build single-page applications (SPA). We cover Web API
(and WCF) services in Chapter 19, “Building and Consuming Services with
Web API and WCF.” The final chapter in the book, Chapter 25, “Writing
Cross-Platform Mobile Applications with Apache Cordova,” covers building
mobile applications with HTML5 and Cordova.

Note
The ASP.NET/web topic is huge. We are not able to dig in on its
every aspect. Instead, we choose to concentrate on areas where
modern web development happens, including ASP.NET 5, client
frameworks, web services, and mobile.
One notable omission is ASP.NET Web Forms. Microsoft
continues to invest in this approach; it is very much part of Visual
Studio 2015. However, we have observed that, like ASP before
it, Web Forms is becoming a legacy technology. There are great
resources available on the web (as well as prior editions of this
book) should you need to work with Web Forms.
We also expect that, as you build your ASP.NET applications, you
will discover places that require further exploration. Again, this
is a large topic with many twists and turns. To that end, we point
out some of these as we move through these web chapters. Some
additional examples include user membership, caching, website
administration, and more.

ASP.NET Website Fundamentals
For those just starting to build web applications, we thought it useful to
provide a high-level overview of how ASP.NET works to service user
requests. Web development is a large and diverse topic. However, at its core,
it is just Hypertext Markup Language (HTML) web pages pushed to browsers
from web servers over Hypertext Transfer Protocol (HTTP) request/response.
Understanding these fundamental concepts makes it easier to work with the
greater complexities of web development (which we cover throughout this
chapter). If you are familiar with writing web applications, we expect you to
glance at Figure 17.1 and skip this section.

FIGURE 17.1 A high-level overview of how ASP.NET uses the various
.NET web components (such as the HTTP stack) and protocols to handle

user requests routed to the server, process them, and return the results to the
user ’s browser.

Web development is about writing code to respond to a user request by first
processing that request on the server, packaging a result back to the user, and
allowing that result to execute on the client and ultimately render text, graphics,
and behavior to the user. The code we write includes code for server-side
processing of data and logic and client-side code to make the application
dynamic and responsive to the user. Most of the other items we develop focus
on making things look nice using HTML markup and Cascading Style Sheets
(CSS). The following outlines how a web request is processed and results are
rendered through the numbered items shown in Figure 17.1.

1. A compute device such as a PC, phone, tablet, or game console presents
a web client application to the user. This could be a web browser or a
native client application that speaks HTTP. The user then triggers a
request to your web application. This request is defined by a unique
uniform resource locator (URL).

2. The request is sent from the compute device network adapter using
HTTP (Hypertext Transfer Protocol), typically through a local
network/router, and then on to the user ’s Internet service provider (ISP).
The URL is looked up against a DNS (domain name server) in order to
find a unique IP (internet protocol) address that maps to the domain
name. The ISP then forwards the HTTP request on to your web server
based on the IP address.

3. A web server receives the request (typically via a network at the hosting
provider). The server is typically running a web server host application,
such as Microsoft Internet Information Server (IIS). This application sits
waiting for HTTP requests and is ready to route them to the right web
application that will process them and prepare a response to the web
server.
The request typically goes through an HTTP pipeline processer. This
pipeline will validate the request and authorize user credentials (if any).
The request is then routed to your code.
As you will see shortly, in an ASP.NET MVC application, the request is
routed to a controller class library you write. The controller processes
the request. This processing typically includes reaching out to a database
server to get requested data, selecting a view for the HTML markup,
executing any data to view binding, applying any other server-side code
to build the response, and then returning the results to the server to be
sent to the requesting client. These results include the view (as HTML)
to be rendered, JavaScript to be run on the client, and images to be sent
back to the client.

4. The web server bundles the response for a return trip to the user ’s
compute device (browser or native client application).

5. The response is routed back through the user ’s ISP to the compute
device. This routing is also done through the IP address.

6. The response is received by the user ’s network and routed to the
compute device’s network adapter. Ultimately, the response is sent to the
HTTP handler (typically a web browser but could be a native client
application) that made the request.

7. The HTTP handler (typically a web browser) on the compute device
receives the results, processes them, and renders the visual
representation of the markup to the user. Processing includes interpreting
styles, loading images, executing JavaScript code, and more. Of course,
the client application then stands ready to process any additional client-
side JavaScript based on user action (and to generate the corresponding
next request).

This fundamental understanding of web requests, processing, and response is
meant to provide a high-level overview to orient web developers as they start
working with ASP.NET 5. There are, of course, many additional complexities
that make this work, such as caching, routers, load balancers, and the like. We
hope to provide a general overview for developers. The sections (and other
web chapters) that follow illustrate how ASP.NET 5 leverages these concepts
to enable developers to build great things.

Introducing ASP.NET 5
In late 2014, Microsoft released all of .NET to open source under the MIT
license. Visual Studio 2015 and ASP.NET 5 (previously referred to as vNext)
represent the first released versions of the products since Microsoft open
sourced ASP.NET and the .NET Core framework. This includes the core .NET
base class libraries, the Common Language Runtime (CLR), the Just-In-Time
compiler (JIT), and the Garbage Collector (GC). This new approach has
resulted in many exciting changes to the product, including these:

Cross-platform support for both developing and hosting ASP.NET
website on non-Windows machines
ASP.NET allowing self-hosting (also called host-anywhere) of a web
application on any device (in addition to web server hosting such as IIS)
Cloud-ready, modular versions of the framework that can ship with your
application as packages; can run side-by-side other versions; require
only portions of the framework you intend to use (or no framework at
all); and do not require machine upgrades to work
A new, unified, open-source ASP.NET compiler (Roslyn) that supports
C# and Visual Basic languages and works in the background (dynamic
compilation) to save you time during debug and eliminate slow startups
for users following site updates
Adoption of many popular third-party client frameworks like jQuery,
AngularJS, Ember, Knockout, and others
Client-side packaged management using popular web tools like Bower
and Gulp
Support for responsive design with Twitter Bootstrap
Support for developing using additional code editors (like Sublime Text,
Vi, and others) on different operating systems such as Mac and Linux
Cloud-ready configuration for environment variables, session, and cache

ASP.NET Ope n Source
You can view the source code for ASP.NET at
https://github.com/aspnet/home.

ASP.NET Code Editors
.NET is coming to additional code editors (like Sublime Text, Vi,
Emacs, and the new Visual Studio Code) thanks to the work done
by a group of open source projects. To learn more, check out the
site http://www.omnisharp.net/.

ASP.NET 5 also unifies the programming and execution models of MVC 6,
Web Pages, Web API, caching, SignalR, and Entity Framework. In prior
versions, many of these programming models overlapped, resulting in
duplicate features that were implemented separately. This often meant
unexpected behavior from similar classes. Thankfully, all these technologies
are now merged, duplication has been removed, and you can write your code
against a single framework.

The .NET Foundation
The .NET Foundation is an independent organization that manages
the open source projects for .NET. To get more information and to
access these projects, check out their website at
http://www.dotnetfoundation.org/.

The .NET Core Framework and Execution Environment
Microsoft continues to evolve the .NET Framework; in doing so, it is now
tackling the significant issue of the full framework being required (and
installed machine wide) to get your applications to run properly. This has
presented many problems over the years. For one, to take advantage of a new
framework’s features, you needed to upgrade the entire machine and thus
anything else on that machine that relied on the .NET Framework. You also did
not have a choice in the amount of the framework you wanted to use; instead, it
was all or nothing. This added unnecessary overhead (and sometimes
performance hits) to your application. With the latest version, the .NET
Framework has answers for these dilemmas. It is moving from a single,
machine-wide framework for all Windows programming to a framework that
can be specialized (and optimized) to an application’s needs. The following
outlines the versions of the framework available to ASP.NET developers:

.NET Frame work—This is the full version of the .NET Framework that
we have all been using to-date. It runs on Windows; it supports all
existing applications without modification, and it includes ASP.NET.
You can write ASP.NET 5 applications that target the full, NET
Framework (version 4.6 at current release). This is also the default
runtime for nearly all new projects created in Visual Studio.
.NET Core Frame work—This is the new, modular, cloud-optimized
version of the framework and CLR runtime. This is referred to as .NET

https://github.com/aspnet/home
http://www.omnisharp.net/
http://www.dotnetfoundation.org/

Core 5. Developers can pick and choose only the components and
features (packages) on which their application depends. You do so using
the familiar NuGet package manager. You can then ship those features
along with your application (instead of requiring a full machine install).
This provides a couple advantages: you can run various versions of
.NET Core 5 and the .NET Framework side by side on a single machine;
and, individual components of the .NET Core can be upgraded, installed,
and used separately without requiring a full revision of the framework
(or patching on the server).
The .NET Core consists of a subset of .NET libraries called CoreFX. It
also includes an optimized runtime called CoreCLR. The CoreFX
libraries can be installed as individual NuGet packages (as System.
[module]).
The .NET Core has a much smaller footprint (11 MB instead of nearly
200), and its memory requirements are also much smaller. It has been
specifically optimized for running ASP.NET applications in the cloud by
requiring lower memory consumption and higher throughput.
.NET Core 5 on othe r platforms—Microsoft is also releasing the .NET
Core 5 framework for both Linux and Mac OS X. This gives developers
the ability to develop and execute .NET applications on these platforms.
Microsoft has worked with the Mono community to develop these
versions of the framework.

The .NET Execution Environment (DNX)
Microsoft has created the .NET Execution Environment (DNX) to bundle
versions of the framework, the CLR, and an SDK to provide the necessary bits
to build and execute ASP.NET applications on Windows, Mac, and Linux.
DNX simplifies the packaging of these items. It also allows you to build on
one platform and run the application on another platform, provided you are
using the same DNX version.
Upcoming sections will examine targeting various versions of the framework
and runtime using DNX while developing, debugging, and releasing code. We
will also cover using NuGet to select the right modular framework packages
for your application.

Porting Existing We b Apps
Your web applications built on prior versions of ASP.NET
including Web Forms, Web API 2, MVC 5, Entity Framework 6,
Web Pages 3, and so on will all still work in Visual Studio 2015
and the latest version of the .NET Framework, without
modification. Of course, you likely will have to use the full .NET
Framework (and not the new .NET Core Framework) because it
maintains backward compatibility.
You can, of course, take advantage of the newer features of
ASP.NET 5 and the Core Framework with your existing sites. To
do so, you will need to port your applications to the new
framework. Porting does not mean rewriting; it typically only
involves fixing specific issues in the app.

Choosing an ASP.NET Project Template
Websites in Visual Studio start with a project template. The website project
represents a connection between Visual Studio, the source code of your
website, and a web server (be it local or otherwise). What the project template
contains, however, continues to evolve and expand to support multiple web
application scenarios.
Simple Hypertext Markup Language (HTML) sites with just text, hyperlinks,
and a few images are rarely created anymore or even discussed seriously as
websites. Instead, ASP.NET along with HTML 5, CSS 3, and various client-
side JavaScript libraries have pushed the definition of website well beyond
the original ASP (active server pages) model that combined HTML with some
server-side script.
Today, we build websites (and web applications) that mimic user interactivity
previously possible only with native code. This means client-side code
interacting with compiled code on the server, database connectivity and
binding, configurable user membership, responsive user interfaces, and so on.
The Visual Studio 2015 tooling brings these concepts together to enable you to
create these rich, modern web applications.

We b Application Ve rsus We bsite Proje cts
Visual Studio enables you to create both websites (File, New,
Web Site) and web application projects (File, New, Project).
Both are represented by project templates that define default
directories, configuration, pages, and other related files and
settings. Both are nested in a solution. Both allow you to control
properties and manage external references.
A website works well for developers who typically deploy their
site as a set of files. A web application project should be used
when you want to deploy compiled code and need specialized
control over compilation and output assemblies. Presently, you
can only create ASP.NET 5, MVC, and Web API sites as web
applications. They are the preferred option for the majority of
ASP.NET developers. Therefore, this chapter focuses on web
application templates.

You create a new ASP.NET web application using the New Project dialog
(File, New, Project). You start by selecting the Web node under your chosen
language. From there, you select the template titled ASP.NET Web
Application, given your project a name and location, and hit the OK button.
This brings up the New ASP.NET Project dialog, as shown in Figure 17.2. It
allows you to refine your ASP.NET project type selection. Notice the
templates are grouped by those that target ASP.NET 4.6 and those that are built
on ASP.NET 5. Of course, you pick a template based on your specific needs.
The following list provides an overview of many of the ASP.NET web
application templates.

FIGURE 17.2 You can select from one of the many ASP.NET project
templates in Visual Studio 2015.

The Empty P roject Templates
There are two empty project templates shown in Figure 17.2 (one for
ASP.NET 4.6 and one for ASP.NET 5). Like they sound, these templates are
used to create projects that are free of the basic template files and
configuration. The Empty template for ASP.NET 4.6 targets the full .NET
framework and follows that approach for development. It contains a
web.config file for managing configuration. You use the template to create
applications based on MVC 5, Web Forms, or similar web development
approaches from prior versions.
The ASP.NET 5 Empty template can target different versions of DNX (dnx451
for the full .NET Framework or dnxcore50 for the .NET Core 5 Framework). It
includes the .json JSON style configuration files and the new package
managers (see upcoming section), and it can be used to create MVC 6 or Web
API projects.

Web F orms
The ASP.NET Web Forms template has been around for a long while and
offers developers ease of use, a strong set of controls, and a rich framework to
extend. You build Web Forms using HTML and the ASP.NET controls using
markup and a design-time editor. Each file has a code-behind class that
includes server-side code executed in response to events on the page (such as
page load and form postback).
The template includes a directory for storing data (App_Data), a default page
(Default.aspx), a configuration file (web.config), a master page
(Site.master), a style sheet (Content/Site.css), a page for

intercepting application events (Global.asax), code for managing which
scripts are loaded (BundleConfig.cs), and more. The template also
includes an Account directory that contains pages for managing login and
user accounts. The jQuery library is also provided by default in this template
(inside the Scripts folder). Of course, additional folders and files can be
added as you build out your site.
Web Forms tends to abstract the basic HTML and JavaScript from the
developer, leaving us to work with controls that do much of the work for us. In
addition, Web Forms combines UI code with presentation, making it difficult to
test your UI code or to get good reuse of many of your UI methods. ASP.NET
MVC was created as an alternative to get developers back in control of their
HTML (the view) and to separate this view from the actual logic (the
controller) and the data (the model). As a result, MVC (and related client
frameworks) has become the preferred choice of ASP.NET developers over
Web Forms.

Note
Your Web Forms 4.6 applications will still run in Visual Studio
2015 without modifications. They do require the full .NET
Framework/Runtime. Microsoft continues to evolve the
technology. You will see new features including the
implementation of HTTP 2 for better request handling, async
model binding, and the Roslyn compilers for code-behind files.

Web P ages
The ASP.NET Web Pages technology and project template were created the
same time Microsoft introduced the Razor syntax for working with server-side
code and basic HTML in the same page. This is the way MVC sites work.
However, with Web Pages, you do not need the complexities of the MVC
pattern. Instead, you create a URL-addressable page as a .cshtml page (no
controller or models required). You then write basic HTML (no server-side
controls) and embed C# code directly within the page itself. You use the Razor
syntax throughout your HTML to display variable values, do conditional
checks, loop through collections, and similar activities.
The ASP.NET Web Pages with Razor syntax gives developers a simple, easy-
to-learn model for creating web pages. By contrast, ASP.NET Web Forms is
largely based on controls that render their HTML and JavaScript to the
browser at runtime. This is feature-rich but also carries with it a steep learning
curve and some heavyweight pages. Web Pages with Razor eliminates these
controls in favor of just HTML (including HTML 5). You can still add server-
side code to your page to affect how the HTML is written to the browser and to
respond to user requests. The results are web pages that are easier to
understand, a technology that is faster to learn, and a lightweight processing
engine.
You create a Web Pages template in Visual Studio from the File, New, Website
menu and then select ASP.NET Web Site (Razor v3) as your template. This
template includes a few .cshtml pages to get you started. Like the MVC
template, it also defines a master layout called _SiteLayout.cshtml.

http:BundleConfig.cs

This page contains common elements for your page, such as navigation, style
sheet links, jQuery inclusion script tags, and a footer. You then need only add
your specific page content to the new pages you create.
We cover the details of the Razor syntax later in this chapter. These details
apply to Web Pages and MVC sites.

MVC
The ASP.NET MVC template leverages the MVC design pattern to separate the
view (your HTML), the model (your data), and the logic that combines data
with the right view (the controller). This separation increases opportunities for
code reuse, makes your code more understandable, and supports unit testing of
controller code.
The MVC template is based on a prior versions of ASP.NET and thus includes
a web.config file and is set to target the full .NET Framework. However,
outside of configuration and package management, the majority of development
concepts and programming techniques are the same between the MVC template
of old and the new ASP.NET 5 template. We cover the latter in depth later in
this chapter. However, much of what we cover is also applicable to the MVC
template.

Web AP I
There are two Web API templates: one targeting ASP.NET 4.6 and the other
for ASP.NET 5. Both templates allows you to easily create HTTP REST-based
services. The 4.6 template requires the full .NET Framework and is backward
compatible with prior versions of the framework.
Microsoft has unified the technologies of Web API and MVC within ASP.NET
5. Therefore, you can use the Web API 5 template or simply build HTTP
services with one of the other ASP.NET 5 templates. We cover creating
services with Web API in Chapter 19.

Single-P age Application (SPA)
The SPA template focuses on building a rich web client that uses HTML 5 and
JavaScript to provide an interactive user experience. This template is based on
the MVC template. However, it focuses on client-side libraries of Knockout,
jQuery, Twitter Bootstrap, and others. It was created to help you build a site
using these client frameworks, HTML 5, CSS 3, and JavaScript.
You can create a SPA using any of the templates; you need only include the
right client-side libraries and be ready to write JavaScript. We cover more on
building SPAs in Chapter 18.

ASP.NET 5 Web Site
The ASP.NET 5 Web Site is the new template for building ASP.NET 5
applications. This template is also focused squarely on the MVC pattern.
However, it uses the new versions of the .NET Framework and includes tools
for working with client-frameworks. That makes it a great candidate for a new
website, Web API projects, and SPAs.
This template (along with the DNX and ASP.NET 5) is the focus of this
chapter; thus, the primary details are covered within.

Understanding the ASP.NET 5 Project Template and Related Files
A typical website contains a number of different files including web pages,
class files, scripts, style sheets, configuration files, images, JavaScript client
libraries, and more. Visual Studio works to keep these many files organized
and grouped together so that you may focus on building your site. As an
example, the ASP.NET 5 Web Site project template (created as shown back in
Figure 17.2) has a default structure in Solution Explorer, including many
special directories and file types. Figure 17.3 show the default structure and
contents when using this template.

FIGURE 17.3 The ASP.NET 5 Web Site template contains folders, client
libraries, configuration, and related structure for your website.

The many folders, special directories, configuration files, and web pages come
together at runtime to provide a response to a user ’s browser request. The
following walks you through the key elements shown in Figure 17.3. Later in
the chapter we walk through using these file types and directories to build an

actual site.

wwwroot and Other Significant Directories
An ASP.NET website groups files using conventions and “special” directories
(as shown in Figure 17.3). The regular folders such as Controllers,
Models, and Views allow you to easily organize your code. The special
directories represent a convention on how ASP.NET works and where it stores
required items that are outside your project code.
One such directory is wwwroot, which is new to ASP.NET 5. It represents the
actual root of your site as in http://mydomain/. It is used for the static files in
your project, such as images, style sheets, JavaScript files, and the like. Putting
static files in this common location makes referencing them easier; it also
allows ASP.NET to serve these static files directly to clients (knowing it does
not need to process or compile them).
The wwwroot of the default ASP.NET 5 Web Site template already contains
your style sheet (css/site.css) as well as key client-side JavaScript
frameworks such as Bootstrap and jQuery in the lib folder (placed there at
compile time by a Gulp task). Other items will end up in the wwwroot folder,
too. This includes processed CSS files, minified JavaScript, optimized images,
compiled TypeScript to JavaScript, and more. Typically, the source for these
items sits outside of wwwroot while you create, edit, and refine them. You
then write tasks (using tools like Gulp, as you will see shortly) to process or
compile these files and put the results in the wwwroot for serving to clients.
For example, you may have a JavaScript library that you have written yourself
for your specific website. You would keep that code outside of the wwwroot
while you work to edit and refine it over time. When it is time to run (or
release) the code, you would want to optimize it for faster processing through a
process called minifying. This takes the JavaScript file and removes
whitespace (among other things) to make it process much faster. To do so, you
would write a Gulp task to tell it to minify your code at compile time and push
the results to wwwroot.
ASP.NET includes a number of special folders like wwwroot. The following
provides a reference for the many directories that are used as convention to
define an ASP.NET website:

Properties—Used to define settings and properties for your
application. This folder contains a class, AppSettings. Here you can
define properties that are useful across your site.
References—Controls the other .NET libraries referenced by your
application. By default, the ASP.NET 5 templates reference both the full
DNX and the DNX Core. References are typically managed through
NuGet but could also be a project specific reference or a connected
service reference.
wwwroot—The root of your website. Used for containing and serving
up static files. (See earlier discussion.)
Dependencies—Groups the client-side libraries that your
application depends on and their build tasks. These dependencies are
managed in the bower.json configuration file; the tasks are managed
in the Task Runner Explorer. See the upcoming section, “ASP.NET 5

http://mydomain

Dependencies and Package Managers.”
Compiler—Store compilation configuration code. In the current
release, this is a file that enables pre-compilation of Razor views to cut
down on compile time for the first use.
Migrations—Works with the Entity Framework and contains code
used to migrate changes and updates to your database as your code
evolves.
The MVC folde rs (Models, Views, and Controllers)—Folders
for grouping the key code items in your website. The Models folder
contains class files that represent your data model. The Views folder is
where you store .cshtml markup pages for rendering your user
interface. The Controllers folder is used for writing code to
intercept web requests and return the response (usually by working with
Models and Views). See the upcoming section, “Creating a Web
Application with ASP.NET 5/MVC 6.”

P roject F iles
Numerous files and file types define a typical ASP.NET website. You need
only look at the Add New Item dialog (right-click Website in Solution
Explorer and choose Add, New Item) to see the many file types you can add to
your site. There are files that you use often, such as web views/partial views
and classes. You might also work with configuration files and write a lot of
JavaScript. Table 17.1 lists some of the more common files that might exist in
any given ASP.NET 5/MVC 6 web application. The table includes the given
item template name (from the Add New Item dialog), the file extension, and a
short description.

TABLE 17.1 ASP.NET Files

The Configuration F iles
ASP.NET 5 introduces the JSON configuration files. JSON stands for
JavaScript Simple Object Notation and is used by developers to exchange
data. It replaced XML for most HTTP web services because XML is viewed
as too large and complex. Microsoft has now replaced the .config files that
were based on XML with new .json files for doing configuration. The
section that follows (“ASP.NET 5 Dependencies and Package Managers”)
illustrates working with and editing these various configuration files. The
following provides a reference for some of the many .json configuration
files you will encounter in an ASP.NET 5.0 site:

global.json—Used to define settings at the solution level (file is
inside the Solution Items folder); it also allows for project-to-project
references.
project.json—This is the primary configuration file for your
project. Here you define the version of the framework on which your site
depends, other dependent packages (from NuGet), your intended web
host, your web root, client package managers, and more.
config.json—A configuration file you can use for your project
configuration items, such as database connection strings. This relies on
Microsoft.Framework.ConfigurationModel.Json for
reading values from your configuration file.

bower.json—Used to manage the client-side JavaScript packages on
which your site might depend, such as jQuery and Bootstrap.
package.json—Configures NPM (Node Package Manager)
packages. NPM is another JavaScript client-side library package
manager. It is used for libraries like Node, AngularJS, and Gulp.
gulpfile.js—A JavaScript file used by Gulp to define and
configure automated processing tasks. Gulp tasks are used for processing
client files for deployment, such as minifying JavaScript or processing
Sass into CSS.
Startup.cs—This is not a .json file but an actual class file that is
compiled with your application. That said, the class file is used to define
various configuration elements through code. You use Startup.cs to
configure the ASP.NET request pipeline. This includes defining your
application host, configuring application services (such as MVC), setting
URL routing conventions, and more.

Given that so many of the configuration files are written as JSON, it is
important that you have a feel for how this notation works. At its most basic
level, you define an object using curly brackets {}. Inside the brackets you
define properties of that object using name and value pairs separated by a
colon, as in "name": "value". Each of these properties could also define
another object following the same semantics. Each property is separated by a
comma. The following shows a basic example of a customer object in JSON
notation. Notice the email property inside the customer contact object; its
values are defined by an array enclosed with square brackets ([]).
Click here to view co de image

{
"customer": {

"name": "Jane Smith",

"id": 123456,

"age": 38,

"contact": {

"street": "One Microsoft Way",

"city": "Redmond",

"state": "Washington",

"postalCode": "98052",

"email": [

"jsmith@contoso.com",

"jane@fabrikam.com"

]

}

}

}

mailto:jane@fabrikam.com
mailto:jsmith@contoso.com
http:Startup.cs

ASP.NET 5 Dependencies and Package Managers
Visual Studio 2015 and ASP.NET 5 make it easier to manage the many
libraries and code packages on which a modern web application depends. This
includes compiled server code libraries such as the .NET Framework itself
(see the earlier section “The ASP.NET Framework”) using NuGet. Microsoft
has also added support for handling client-side libraries using the popular,
open source projects Bower, NPM, and Gulp. This section takes you through
using each of these package managers to add features and functionality to your
site.

F ramework Dependencies and References (Using project.json
and NuGet)
As discussed in “The ASP.NET Framework,” you can configure your web
application to target the full, machine-wide .NET Framework using DNX
4.5.1. Or you can decide to target the more modular, application-specific .NET
Core using DNX Core 5.0. The ASP.NET 5 Web Site template is set to dual-
compile to both versions by default. This enables you to verify that your
application supports both scenarios. Of course, you can change this behavior
and only target the framework version (and packages) on which your
application is intended to depend.
You manage your .NET Framework configuration using project.json, the
References folder in Solution Explorer, project properties, and the NuGet
package manager. Let’s start by examining configuration with
project.json.
The project.json file replaces assembly references in favor of this new,
lightweight approach to managing dependencies through references to NuGet
packages. Recall that a NuGet package represents a server-side code library
on which your application depends. The packages could be from a third party
or created and available directly from Microsoft (EntityFramework and
AspNet.WebApi, for example). Figure 17.4 shows an example of the default
project.json file inside Visual Studio (for a Web Site set to no
authentication).

FIGURE 17.4 The project.json file is used to configure the
frameworks, package dependencies, and compile options for your web

application.
Package dependencies are defined inside the “dependencies” data element.
Notice in Figure 17.4 this section includes dependency references to
AspNet.Mvc, the ConfigurationModel.Json, and many others. The
project.json file includes many additional configuration sections; the
following list provides an overview of many of these:

De pe nde ncie s—Used to define the NuGet packages on which your
application depends. These are defined by package name : version. You
can edit this list, and NuGet will work behind the scenes in Visual Studio
to update your installed packages accordingly.
Frame works—Indicates the target frameworks against which your
application should be built. By default, this includes both the full,
machine-wide .NET Execution Environment (dnx451) and the core
version (dnxcore50).
Note that the dependencies you add to the “dependencies” element
discussed earlier apply to both DNX versions. You can also add
framework-specific dependencies here. Recall that the core framework
is highly modular; therefore, should you target just the core framework,
you would then need to add package dependencies for the base class
libraries you intend to leverage, such as System.Linq,
System.Collections, and the like.
Commands—Used to indicate command-line tasks that should be run
when your application executes. This could be a host server for the

application, unit tests, or any other commands you need executed to run
your application.
We bRoot—Indicates the root of the webserver; by default, this is
wwwroot.
Scripts—Allows you to run scripts when the project is built. This
includes events for pre-build, post-build, pre-pack, post-pack, and more.
These events are used by tools such as NPM and Gulp to install client-
side packages and execute tasks to prepare these scripts for release.
Exclude —Used to indicate folders for the compiler to ignore when
building your application.

Let’s look at an example of adding a package dependency to
project.json. We start with the default ASP.NET 5 Web Site template. In
this case, however, we are going to configure project.json to only
support DNX Core 5. The following walks you through this process:

1. Create a new web application based on the ASP.NET 5 Web Site
template. You can run the application and click around to see how things
work by default (including registering as a new user).

2. Inside Solution Explorer, expand the References node and both the DNX
4.5.1 and DNX Core 5.0 folders. Notice that both contain similar
references. These are the ones defined at the top of project.json in
the Dependencies section.
However, notice that the core reference does not include the system
references. That is because the core framework is modular and only
needs the portions required for your site. Should you need something
inside those frameworks, you would add just it specifically (instead of
adding the full framework).

3. Open the project.json file. Find the Frameworks section and
remove the dnx451 reference. Save the file; when you do, notice the
References node in Solution Explorer. It should now include the text
(Restoring...). You will see this a lot as edits to
project.json kick off NuGet to update your package. Figure 17.5
shows an example.

FIGURE 17.5 Edits to project.json will kick off NuGet to update your
references and installed assemblies accordingly.

When complete, you should now only see DNX Core 5.0 under the
References node in Solution Explorer.

4. The last thing you need to do is to set the appropriate runtime version for
your application. It will no longer run against the full .NET Framework
(because you removed this dependency). Instead, it needs you to select a
version of the core runtime.
The .NET runtimes are referred to as a DNX version. By default, the
template sets your project to run against the x86 version of the.NET
Framework. This is the full version of the .NET Framework and
Runtime.
To change the runtime, right-click the project node in Solution Explorer
and choose Properties. This will bring up the Properties window for the
application, as shown in Figure 17.6. Here you can set the target DNX
version to the .NET Core as shown.

FIGURE 17.6 Use project properties to select the target runtime (DNX
version) for your application (in this case, the .NET CORE).

5. You can now build and run your application. Notice that, by default, the
template code works against the core. Should you need additional
libraries, you can add them as you need them (as you will see next).

The application is now ready for cloud deployment. (It targets only the core
framework.) Recall that one of the key benefits of the core is that it will install
and run along with your application. It does not require your server admins to
upgrade and patch a machine (and thus potentially break other things). This
includes cloud-ready for Azure.
The dependencies shown in Figure 17.4 may not look like enough to allow
your application to execute. However, it is important to note that these are
packages (and not namespace imports). A package contains everything
required for the package to run. The project.json file does not show
these additional dependencies (in order to keep things cleaner). If you expand
the packages in Solution Explorer, you will see just how much of the
framework you depend on by using these packages. Figure 17.7 shows an
example. Note that if you uninstall a given package, the subitems under the
package are uninstalled as well (unless another package is also using it).

FIGURE 17.7 Each dependent package includes the other portions of the
framework on which the package depends.

You can add dependencies directly to the project.json file. This is the
equivalent of using NuGet to select a package and install it. Visual Studio
provides IntelliSense to make setting these dependencies easier. As an
example, suppose you want to add support for the popular SignalR package.
(SignalR allows you to push content real-time from your web server to a client
using WebSockets.) To add this support, you open project.json and start
typing in either the full set of dependencies at the top of the file or the
framework-specific dependencies near the middle of the file. Figure 17.8
shows the latter. Notice that you get IntelliSense as you peruse packages. Once
you select the package, you get IntelliSense on the various versions available.
When you save project.json, NuGet will install the package and add the
reference to your project.

FIGURE 17.8 The project.json file in Visual Studio gives you NuGet
inside the editor.

You can, of course, still use NuGet. To do so, right-click the References node
in Solution Explorer and choose Manage NuGet Packages. This brings up the
package manager, as shown in Figure 17.9. Notice that you can search for the
package or just browse. Once you’ve selected it, you indicate a version and
click either the Install or the Update button. Visual Studio will then add the
dependency to your project.json file.

FIGURE 17.9 You can use NuGet to add project dependencies to
project.json.

Visual Studio has added a Framework Selection drop-down to the code editor
in the event you do need to program against multiple versions of the .NET
Framework. Figure 17.10 shows an example. If you select the DNX Core 5.0
framework, for example, any code that would not work under this condition is
compiled as an error and shown in the editor. The Debug tab allows you to
switch which version of the framework you are targeting.

FIGURE 17.10 The code editor allows you to set a target framework against
	
which your code will be debugged.
	

Tip: Supporting Multiple Frame work Ve rsions
If you do need to target multiple versions of the .NET Framework,
each with different dependencies, you can often code around any
conflicts or issues. You do so using #if statements in your code
to create conditional compilation around code that is different
between framework versions. You can use the configuration
labels #if DNXCORE50 and #if DNX451.

Add P roject Reference
Recall from the early chapters in this book that a Visual Studio solution can
support multiple projects. You can reference one project from another. As an
example, you may have your web and a shared class library in the same
solution. To add a reference from the web project to the shared library, you
right-click the References node in Solution Explorer and select Add
Reference. This brings up the Reference Manager dialog shown in Figure
17.11. Here, you select the project containing the code you intend to reference.

FIGURE 17.11 Adding project references using the Reference Manager.

Visual Studio adds the reference to the References node in Solution Explorer.
It also updates your project.json file with the new dependency.

Using Bower for Managing Client F ramework Dependencies
Visual Studio and ASP.NET 5 have embraced developing with popular open
source client frameworks such as Bootstrap, AngularJS, and jQuery. You can
also write your own project-specific JavaScript libraries. These libraries have
their own package and task managers: Bower, NPM, and Gulp. Like NuGet,
these package managers make the business of installing and updating shared
frameworks much easier. The following provides a high-level overview of
each:

NPM—NPM stands for Node Package Manager because it was
originally designed for Node.js. It is a JavaScript package manager used
by Visual Studio for installing Bower and Gulp.
Bowe r—Bower is a package manager for web libraries and client-side

frameworks. Visual Studio uses Bower like NuGet for installing client-
side frameworks. The bower.json file works in a similar way to
project.json (including IntelliSense).
Gulp—Gulp executes tasks to automate the packaging of your JavaScript
code, CSS, and related items for release. Tasks include minification of
JavaScript, compilation of CoffeeScript to JavaScript, conversion of
Sass to CSS, and many others. Visual Studio provides the Task Runner
Explorer for working with Gulp.

Let’s look at a couple of examples. First, we will add a JavaScript library to
our project using Bower. In this example, we will add the CoffeeScript
JavaScript library to our project. This library makes writing JavaScript easier.
The CoffeeScript code is output as actual JavaScript when sent to a client. Of
course, we could use any of the dozens of libraries available through Bower
for our example:

1. To get started, open the bower.json file from Solution Explorer.
2. Inside the dependencies group, add a line for coffee-script. Notice that

the editor uses IntelliSense to reach out to the Bower library and show
you what is available.

3. Once coffee-script is selected, type a colon (:), and you will get a drop-
down showing available versions. Figure 17.12 shows an example.
Select version ~1.9.3.

FIGURE 17.12 Editing the bower.json file provides IntelliSense on
	
available JavaScript packages.
	

Notice that all three versions have the same version number. These
versions are marked with upgrade symbol options. The version is written
as major.minor.patch. The use of the caret (^) indicates that you
want to at least match to the latest major version specified. The use of
the tilde (~) indicates that you want to at least match the minor version.
Omitting the caret and tilde indicates that you want to use the exact
version.

4. Next, save bower.json. This will instruct Bower to reach out and
install CoffeeScript. You can verify installation by opening Solution
Explorer and navigating to the Dependencies/Bower folder. You
should see the new library here. You can also right-click this entire
folder and choose Restore Packages. Figure 17.13 shows an example.

FIGURE 17.13 You can open the Bower folder and choose Restore
Package to force install of a new package or version.

Note that you can use this same method to remove an installed package
(right-click the package and choose Uninstall Package). Also, should you
remove a reference from Bower.json, your installed package will
now be marked “extraneous” indicating you can uninstall.
You can now work with CoffeeScript in your application.

Note that Visual Studio automatically restores packages when you open the
solution. This includes getting updates based on your version numbers. Bower
libraries are stored in your website directory under the folder
bower_components. This folder is not in your solution because it is
updated for you. You would not typically check in Bower components to
source code control. Instead, these components are managed for you by Bower

via the checked-in file bower.json.

Using Gulp to Manage Client Build Tasks
Let’s take a look at using Gulp for creating and executing an automated build
task in our application. These tasks are not about building your server code.
Instead, Gulp tasks help you with your client-side code, such as JavaScript and
CSS. The following walks you through creating a style sheet using LESS and
then creating a Gulp task to output that styles sheet as standard CSS:

1. To get started, we will add a LESS style sheet to our project. Recall that
static files like a style sheet should exist inside wwwroot. LESS,
however, is a preprocessor language for writing style sheets using
variables and other constructs. The LESS file must be processed to a
CSS file before being stored in wwwroot. Therefore, we will create a
folder in which to store our LESS file until Gulp processes it and outputs
it to wwwroot.
Right-click your project in Solution Explorer and choose Add, New
Folder. Name the folder Assets.
	
Right-click the new Assets folder and choose Add, New Item. Select
	
the item template LESS Style Sheet. Name your style sheet
	
site.less.
	

2. Open site.less in the editor. One of the features of LESS is the
ability to define variables and use those variables in your style
definitions. The following shows a simple example of declaring the
variable @light-gray and using it as the background color for the
body tag.

Click here to view co de image

@light-gray: #d5d5d5;

body {

background-color: @light-gray;

}

3. You now need to output this .less file to a .css file so you can use it
with your application. This is where Gulp helps. Gulp allows you to
create a processing task and bind the task to the Visual Studio build
event.
You could write a custom Gulp task. However, there are already Gulp
tasks for pre-processing LESS files into CSS. To include the Gulp task,
open package.json from Solution Explorer. This file manages the
NPM (Node Package Manager) libraries. Under devDependencies, type
gulp-less to select the LESS task for Gulp, as shown in Figure 17.14
(current version is 3.0.3).

FIGURE 17.14 The package.json file is used to install NPM packages
such as Gulp.

4. Saving the package.json file will automatically install the gulp-less
library under Dependencies/NPM. Like the Bower package folder, you
can right-click NPM and select Restore Packages to force an install.

5. The next step is to define the Gulp task. To start, open the file
gulpfile.js from Solution Explorer. This is a JavaScript file for
defining Gulp task information and Gulp task plug-in options.
To start, add the less definition line to the top of the code. This sets a
variable pointing to the gulp-less plugin. The code is as shown below:

Click here to view co de image

var gulp = require("gulp"),

rimraf = require("rimraf"),

fs = require("fs"),

less = require("gulp-less");

Next, you add configuration options to the Gulp task by defining the Gulp
task for the less object. Listing 17.1 shows the full contents of
gruntfile.js after this addition. Notice the
gulp.task('less',... code; it indicates that the file
site.less should be output to the wwwroot/css folder as part of
the preprocessing of LESS to CSS.

Tip
Listing 17.1 also shows the clean and copy Gulp tasks. These
tasks are for cleaning out your wwwroot/lib folder and then
copying the appropriate JavaScript files from the
bower_components folder to the wwwroot/lib folder.
Should your site stop behaving (and looking right) you can
execute these tasks in Task Runner Explorer to clean things up and
copy over fresh files.

http:gruntfile.js
http:gulpfile.js

LISTING 17.1 The gulpfile.js Configuration to Use a LESS
Preprocessing Task

Click here to view co de image

var gulp = require("gulp"),
rimraf = require("rimraf"),
fs = require("fs"),
less = require("gulp-less");

eval("var project = " +
fs.readFileSync("./project.json"));

var paths = {
bower: "./bower_components/",
lib: "./" + project.webroot + "/lib/"

};

gulp.task('less', function () {
return gulp.src('./Assets/site.less')

.pipe(less())

.pipe(gulp.dest('./wwwroot/css'));

});

gulp.task("clean", function (cb) {
rimraf(paths.lib, cb);

});

gulp.task("copy", ["clean"], function () {
var bower = {

"bootstrap": "bootstrap/dist/**/*.
{js,map,css,ttf,svg,woff,eot}",

"bootstrap-touch-carousel": "bootstrap-touch-
carousel/dist/**/*.{js,css}",

"hammer.js": "hammer.js/hammer*.{js,map}",
"jquery": "jquery/jquery*.{js,map}",
"jquery-validation": "jquery-

validation/jquery.validate.js",
"jquery-validation-unobtrusive": "jquery-

validation-unobtrusive/jquery.validate.unobtrusive.js"
}

for (var destinationDir in bower) {
gulp.src(paths.bower + bower[destinationDir])

.pipe(gulp.dest(paths.lib + destinationDir));
}

});

6. The next step is to run the Gulp task. Visual Studio provides the Task
Runner Explorer for doing so. To access it, right-click gulpfile.js
in Solution Explorer and choose Task Runner Explorer. Figure 17.15
shows an example. You may have to use the refresh button on the left side
of the window pane to update the Gulp tasks.

http:validation-unobtrusive/jquery.validate.unobtrusive.js
http:validation/jquery.validate.js
http:hammer.js
http:gulpfile.js

FIGURE 17.15 The Task Runner Explorer is used to manage and execute
	
Gulp tasks.
	

Notice that you can right-click the less element defined in
gulpfile.js. Here you can choose to run the processor now or bind
it to run based on IDE events of Before Build, After Build, and more.
Select After Build from the context menu.

7. You can now run your application. When you do so, the Task Runner
Explorer shows the output from the various tasks (including our less
task).
After running the application, you can open the site.css file under
wwwroot/css. The contents of the site.less file is now output to
site.css as follows.

Click here to view co de image

body {

background-color: #d5d5d5;

}

You should also see the results by running the application in your
browser window. (You may need to refresh if styles were cached.)

This section has illustrated the many features of package management and
project settings in ASP.NET 5 applications. As you will see, these skills are
useful when building ASP.NET 5/MVC 6 websites, JavaScript SPA clients,
and Web API projects. As we discuss these application types in the next
sections and chapters, we will point back to configuration items discussed
herein.

http:gulpfile.js

Creating a Web Application with ASP.NET 5/M VC 6
The MVC design pattern is at the core of most of the ASP.NET templates. If
you have worked with it in past editions, you find that it works in a similar
way under Visual Studio 2015 and ASP.NET 5/MVC 6. In fact, some of the
bigger changes (those surrounding the framework and project structure) have
been discussed already. This section takes a look at the MVC pattern and
illustrates creating websites using it with ASP.NET.

Understanding the MVC Pattern
The ASP.NET MVC application template works to separate your code and
markup into three distinct layers: the model represents your application domain
objects (or data), the view is how you render data to the user and request their
input, and the controller is where you write logic to handle user requests and
combine model data with the right view when responding to users. Putting
code into layers has been a good practice for many years. Layered separation
increases opportunities for code reuse, makes your code more understandable,
and supports test-driven development. The ASP.NET MVC framework
requires this separation. Figure 17.16 shows an illustration of the ASP.NET
MVC implementation.

FIGURE 17.16 An ASP.NET MVC application abstracts the model (data)
	
from the view (user interface markup) and the controller (code to connect
	

the model and view).
	

Note
If you are used to Web Form development, you will quickly notice
that ASP.NET MVC does not use the ASP.NET Web Forms
control model. Instead, it gives developers greater control of their
HTML output using standard HTML <input/> and related tags.
This ensures lightweight, simple markup that is easier to write,
understand, and test.

The following provides additional details on the three layers that make up an
ASP.NET MVC web application:

Mode l—A model represents the code that is used for managing the
domain model (or data) of your application. A modern model is defined
by simple classes that represent your domain objects and the Entity
Framework for persisting those classes to, and retrieving them from, a

data store. Note that model state is referred to as the actual data stored in
a relational database (or similar data store).
As an example, you might create a Customer class that is used to
represent a customer in your application. This class would define
business rules surrounding a customer along with field-level validation.
To round out your model, you need code to persist the Customer
instance to a data store and retrieve it when required. You could, of
course, write this code yourself or leverage a data access layer that
already knows how to work with your data store.
A more common scenario for ASP.NET MVC sites is to leverage the
Entity Framework as the data access layer for the model. We will look at
such an example later in this chapter. You may also refer to Chapter 13,
“Working with Databases,” for more information about using Entity
Framework with databases.
The ASP.NET MVC framework does not require a model. If you do not
have (or need) domain objects, you might not write a lot of code in the
model. For example, you may rely on arrays or other collections for
working with information. In that case, these objects might exist directly
within your controller (and thus act as the model). Similarly, you may
have a wholly contained view that does not rely on a model. In this case,
you would process a request with a controller and display the results in a
view without ever instantiating a model object.
Vie w—A view displays data to a user for consumption and interaction.
Views are the user interface markup in your site. A view usually uses
model data as its source information for display. This data is set by the
controller. For example, a controller might set a Customer model data
to a customer edit view. That page might present the Customer data for
editing using basic HTML controls like input and select, along with
JavaScript for client-side validation. The view is processed by the
rendering engine (Razor) to generate HTML that will be returned to the
client.
Controlle r—A controller is code you write to handle the user
interaction and events inside an MVC application (often called input
logic). Requests to your site are routed to a controller class via a routing
engine based on the URL. Your controller code knows how to handle a
user ’s request, work with the model, and connect results to the right
view. For example, when a user request a page for editing customer
details, a method of the controller is called. This method works with the
model to get the customer details, selects the appropriate view, and
provides the model data to that view. When the user clicks the Save
button, the controller again takes over to move the data back into the
model (and the model moves it to the database). The controller then
sends the results (as another view) back to the user.

The Execution Model of an ASP.NET MVC Request
An application written using the ASP.NET MVC framework has a different
processing model than that of an ASP.NET Web Form or Web Page. One of the
biggest differences is how user requests are mapped to your pages. For
example, Web Forms maps a user request via a URL directly to a folder and
file on the web server. A request for http://www.
[mydomain] .com/customer/edit.aspx would map to your web root, the
Customer folder, and a page actually called edit.aspx.
That is not the case with MVC. Instead, an MVC request goes through a routing
engine (that uses a routing table to define routing convention), which maps the
request to a method on your controller class (and not a web page in a folder).
Your controller method then processes the request. It understands the user ’s
requested action, works with the model, and selects the appropriate view to
display back to the user. The view and model are processed on the server and
output as HTML (and JavaScript, CSS, and so on) to be sent back to the user ’s
browser for rendering. The following provides an overview of the ASP.NET
MVC processing model:

1. Your application is deployed and started on the web server. When this
happens, the configuration code inside your Startup.cs file is
executed. This includes the hosting environment (as
IHostingEnvironment). It also includes configuring services (as
IServiceCollection) and the services you add to the startup
pipeline (such as a data context and MVC itself), including the routing
definition.

2. A user sends a request via a URL to the server (see fundamentals
above). The web server (typically IIS) understands the request is meant
for your application and ASP.NET, so it sends the request to the
UrlRoutingModule class. This is an HTTP module that serves as
the front controller for routing requests.

3. The UrlRoutingModule parses the request and performs route
selection, ultimately using the MvcRouteHandler class to select one
of the controller objects in your site to receive the request.
You can manage the way requests are mapped to your controllers by
editing the Startup.cs Configure method in your project (more
on this later).

Note
If no route is found, the request passes to ASP.NET. This enables
you to mix both MVC and standard ASP.NET code in a single
site.

4. After a controller class is identified, the MVC framework creates an
instance of the controller and calls its Execute method.

5. An action method (a method you write in your controller to handle the
request and connect the model with the view) inside your controller is
identified based on the request URL and the routing definition. The
request URL is mapped to the controller method via the HTTP verb (such

http:Startup.cs
http:Startup.cs
http://www

as GET or POST). Also, any parameters sent with the request URL (on
the query string or in the POST message) are mapped to the parameters
of the action method.
The ASP.NET MVC framework then calls the identified action method.

6. An action method receives user input from the request (query string or
POST data) as a parameter, connects that information to the model, and
then passes any response back as a specific MVC return type. The most
common return types implement
Microsoft.AspNet.Mvc.IActionResult. Using this interface
allows you to return one of many result types, including ViewResult,
RedirectResult, JsonResult, ObjectResult (for Web API
services), and more. (See “The Result Objects” later in this chapter.)

Note
ASP.NET Web Forms and ASP.NET MVC can coexist; neither
excludes the other. If you build on ASP.NET MVC, there still
might be times you create a standard ASP.NET page, perhaps to
use a specific server control.

Creating a New ASP.NET 5 MVC 6 Project
You can create an ASP.NET 5 MVC 6 application using the Visual Studio
template ASP.NET 5 Web Site. You can access this application template from
File, New, Project. You select the Web node in the template tree. You then
select ASP.NET Web Application. Figure 17.17 shows an example.

FIGURE 17.17 You first select ASP.NET Web Application as your project
template.

The next step is to select from one of the many ASP.NET project templates
(refer to Figure 17.2). These templates were covered in the section “Choosing
an ASP.NET Project Template.” Here we focus on the ASP.NET 5 Web Site
template. However, much of what is discussed is applicable to the templates:

MVC, ASP.NET 5 Empty, SPA, and the Web API.
One additional option you may notice when selecting an ASP.NET template is
the button Change Authentication (refer back to Figure 17.2). Most of these
templates include code for user membership and account management. You use
this button to configure how you want to handle this in your application. Figure
17.18 shows an example. Notice that you have four options for site
authentication:

No Authe ntication—Used for public sites that do not require user
authentication.
Individual Use r Account—Used for forms-based authentication against
a SQL Server database store. This also supports using Facebook,
Twitter, Google, Microsoft, and other providers.
Organiz ational Accounts—Allows you to create applications that rely
on Active Directory (AD) for authentication. This includes on-premises
AD as well as cloud AD services in Azure and Office 365. You can use
this screen to configure an AD connection and domain.
Windows Authe ntication—Used for local intranet applications.

FIGURE 17.18 Use Change Authentication when creating your ASP.NET
application to set the way your site intends to authenticate users.

Notice, too, in Figure 17.2 that Visual Studio gives you the option to create a
related unit test project for your MVC site. Recall that one of the advantages of
ASP.NET MVC is that you can more easily unit test your web logic
(controllers). Therefore, we suggest you select this option and allow Visual
Studio to create a test project that references your web application. We are not
going to re-cover unit testing in this chapter. For more information, refer to
Chapter 8, “Testing Code.”
The ASP.NET MVC template organizes your code into a different structure.
Recall this structure was discussed in the section “Understanding the ASP.NET
5 Project Template and Related Files.” That section showed the structure in
Figure 17.3. This includes the folders where you write most of the code for
your website: Models, Views, and Controllers. The following
provides additional details on each of these key folders inside your ASP.NET
MVC site:

Mode ls—Use the Models folder for class files that define your
business logic and work with your database. For example, you might

write a Customer.cs class and store it here. You might also define an
Entity Framework Code First DbContext class for working between
your model and data store and keep it in the root of Models. You are
not bound to this folder; you may choose to create your model as a
separate class library (.dll) and reference it from your website.
Controlle rs—Use this folder for all controller classes in your
application. Controller classes contain action code that connects user
actions to the model and selects the appropriate response (typically a
view). The ASP.NET MVC framework uses the convention of appending
the word Controller to the end of each controller class, such as
CustomerController.cs.
An ASP.NET 5 controller class inherits
Microsoft.AspNet.Mvc.Controller by default. (Note the
namespace has changed with this latest release and the unification of
Web API, Web Pages, and MVC.) With ASP.NET 5, you are not required
to inherit from Controller. However, the class does provide a
number of benefits, such as access to session state, user context,
ViewBag data, request data, and more. If you do not need these
benefits, you can define a simple class, and ASP.NET will still route to
your class and method.
Vie ws—Use the Views folder for files related to the user interface for
your site. These are .cshtml files that contain HTML markup and
Razor code that includes HTML helper objects for processing the view
on the server (more on this shortly).
A site will have multiple subfolders under the Views folder. The
standard convention for ASP.NET MVC sites is that each controller has
its own corresponding Views folder. For example, if you have a
CustomerController.cs, you will likely have a corresponding
Views\Customer folder. This is where the ASP.NET MVC
framework looks when trying to determine the view you are returning
from a controller method.
The Views folder also contains the Shared folder for defining partial
views that are shared throughout the site. A partial view is typically
reused within multiple pages (and thus shared). This folder also contains
the primary layout page for the site, _Layout.cshtml. This page
defines the overall layout for your site (header, navigation, footer, styles,
scripts, and so on).
Another convention is to name your views the same as you name the
action methods in the corresponding controller. As an example, the
Account controller has the method Register. There is a
corresponding Register.cshtml view inside the Account view
folder. In this way, the MVC framework will try to map requests to
http://www.[mydomain].com/account/register to the Account
controller ’s Register method. When you return a view from this
method, it will look first for a view in the Views\Account folder
with the same name as the method (Register) unless, of course, you
specify otherwise.

http://www.[mydomain
http:CustomerController.cs
http:CustomerController.cs
http:Customer.cs

An ASP.NET MVC Request in Action
Let’s take a look at an MVC page in action. To start, we will examine the files
the ASP.NET 5 Web Site template generated. This will provide a feel for how
an ASP.NET MVC application processes a web request.
We will start by looking at the HomeController.cs class file. The
HomeController class in the template has four methods: Index, About,
Contact, and Error. None of these methods actually rely on a model, so no
model is required in this example. Each method return an IActionResult.
The IActionResult interface is implemented by the many action result
types in the Framework. This allows you to return a result that the ASP.NET
pipeline will process accordingly. This includes the common ViewResult
for returning a view page, a JsonResult instance to return a JSON message
in the case of a Web API call, the HttpStatusCodeResult to return a
HTTP status, or one of the many other result objects. (See “The Result
Objects” later in this section.)
Listing 17.2 shows the code. Notice that each of these methods returns a
ViewResult object using the Controller.View() method.
ViewResult inherits from ActionResult. (ActionResult
implements IActionResult.)

LISTING 17.2 The HomeController.cs Class and Related Action
Methods

Click here to view co de image

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Mvc;

namespace AspNet5Unleashed.Controllers
{

public class HomeController : Controller
{

public IActionResult Index()

{

return View();

}

public IActionResult About()
{

ViewBag.Message = "Your application description
page.";

return View();

}

public IActionResult Contact()
{

ViewBag.Message = "Your contact page.";

http:HomeController.cs
http:HomeController.cs

return View();

}

public IActionResult Error()
{

return View("~/Views/Shared/Error.cshtml");
}

}
}

Only the Error() action method explicitly specifies the cshtml to process
via ViewResult. The other methods rely on ASP.NET MVC naming
conventions to return the expected view. For example, a call to
http://www.contoso.com/home/index will be routed to the
HomeController.Index method (based on the URL); the method will
return an empty ViewResult understood by MVC as the Index.cshtml
view stored in the Home folder (again, based on the name taken from the URL
convention—controller name and action method).
Note that the Index page in a folder and the HomeController are special
in the MVC routing engine. MVC will look for an Index method (and page) if
you simply send the URL http://www.contoso.com/home/ (regardless of which
controller you are specifying). Similarly, the home controller is routed in a
special way; a call to the domain such as http://www.contoso.com/ will route
to the HomeController.Index method. Note that you can control how
MVC handles routing inside the Startup.cs class using the
asp.UseMvc(routes) method call.
Notice that the About and Contact methods are settings values to
ViewBag.Message. This is a simple means for the controller to set data
that the view will use to display this data. The ViewBag is a dynamic
container used as a key/value pair dictionary.
Again, the HomeController does not use a Model. So the only item left to
discuss for this template-driven example is the views themselves. (We will
discuss models shortly.) We cover views in the section “Coding for the UI
(Views and Related Web UI Elements).”
The Index.cshtml view in the template is a lengthy listing of HTML and
Razor code. We suggest that you peruse this in the IDE to familiarize yourself
with the HTML. To round out this example, however, let’s take a quick look at
the much shorter About.cshtml. Listing 17.3 shows an example.

LISTING 17.3 The About.cshtml View Page

Click here to view co de image

@{
ViewBag.Title = "About";

}
<h2>@ViewBag.Title.</h2>
<h3>@ViewBag.Message</h3>

<p>Use this area to provide additional information.
</p>

http://www.contoso.com/home/
mailto:h3>@ViewBag.Message</h3
mailto:h2>@ViewBag.Title.</h2
http:Startup.cs
http:http://www.contoso.com
http://www.contoso.com/home/index

The About.cshtml includes simple markup that displays the
@ViewBag.Message content as set by the controller (Listing 17.2,
About() method). It does so using the @ symbol. This is ASP.NET Razor
syntax indicating that this bit of code should execute on the server before
returning the final HTML to the requestor. (We cover Razor in the subsection
“The Razor Syntax.”)
You run the application like you would any other .NET project. Just click the
Run (or Play) button on the toolbar. You can see the requested URL and the
result in Figure 17.19.

FIGURE 17.19 The About.cshtml view rendered in a browser.
As you can see from Figure 17.19, the markup in Listing 17.3 is not a lot
compared to the output of the page. This is because pages in this site are set to
work with a shared content page called _Layout.cshtml. The layout page
provides the header, footer, navigation, style sheet, and default JavaScript
libraries for pages in the site. (To see how this works, read the upcoming
subsection “Page Layout with Razor.”)

Tip
Visual Studio 2015 and ASP.NET now use the new Roslyn
compiler. This compiler speeds debugging as it builds your
application and changes. Thus, you can often make a change in
your code and simply refresh your browser to see the results. (No
recompile step is necessary.)
You can test this by making a change to one of the
ViewBag.Message() calls in the HomeController while
your application is running. Save the change and refresh the
browser to see the results.

Writing ASP.NET Server Code (M odels and Controllers)
You’ve now looked at the basics of creating, running, and working with an
ASP.NET 5/MVC 6 application. It’s time to dig a little deeper. This section
explores implementing a model for a sample application (a model that works
with a database). We then discuss handling requests and returning results using
controllers and the many action methods available in the framework. For
views, however, we created a separate section that follows this one. “Coding
for the UI (Views and Related Web UI Elements)” covers many aspects of
building a web UI inside ASP.NET MVC.

Defining a Model (Using Entity Framework 7)
Recall that a model is the code used to interact with the data in your
application. If you work with a database, this code typically returns a list of
data or a single record. The code also supports user interaction on that data
(create, update, and delete). If you already have a set of classes for working
with your database and expressing your business logic, you can use them for
your model. If you don’t have these classes, you need to create them.
As an example, imagine that you have a database that contains a Customers
table. You could write a custom class to express the properties and validation
rules of a Customer object. You might also write functionality to get a list of
customers, read a single customer, update a customer in the database, and
more. Alternatively, you can let the Entity Framework handle much of this
work on your behalf. This saves you from writing the data access, update,
storage, and delete code from scratch. In this example, we use the Entity
Framework 7 Code First. (See Chapter 13 for more details on working with
databases.)

Creating a Simple Class
With Code First, you write very little code, and you do not have a bunch of
generated code in your solution. Instead, you write plain old CLR objects
(POCOs) classes to represent your model. These classes define objects,
properties, and business rules. The database access is taken care of for you
with Entity Framework. The following walks you through building the
Customer model.

1. Start by creating a new project (File, New Project) based on the
ASP.NET 5 Web Site template (or, if you’ve been following along, you
can use the project you’ve already created for the other examples earlier
in the chapter).
The examples assume your site is named, AspNet5AppSample. This
name is used in the namespace definitions for class files.

2. Inside Visual Studio Solution Explorer, right-click the Models folder
and choose Add, New Item. Select the Class template from the Add New
Item dialog. Name the class Customer.cs.

3. Create the properties to represent a simple Customer instance. Listing
17.4 shows an example.

LISTING 17.4 The Customer.cs POCO Model Class

http:Customer.cs
http:Customer.cs

Click here to view co de image
	

using System;

namespace AspNet5AppSample.Models
{

public class Customer
{

public int Id { get; set; }

public string Name { get; set; }

public string Email { get; set; }

public bool OptInEmail { get; set; }

public string Notes { get; set; }
}

}

Adding Model Validation Rules
ASP.NET includes support for data annotations. A data annotation is metadata
that you assign to the properties of your class using data attributes. This
metadata is then interpreted by ASP.NET at runtime as validation rules for the
properties in your class. For example, you might annotate a property with the
RequiredAttribute. ASP.NET will then validate your model both on the
client (using JavaScript) and on the server. If the model state is not valid, the
object is not valid and the user should be notified.
The data attributes are found in the
System.ComponentModel.DataAnnotations namespace. There are
dozens of attribute classes available to you. However, the following provides
an overview of many of the common data attribute classes. (The word
Attribute is omitted from the class name for clarity.)

Association—Used to indicate the property works as a data
relationship (or foreign key).
Compare—Used to compare the values of two properties (such as
password and password match).
CreditCard—Used to indicate that a given property should be a
credit card number.
DataType—Used to mark a property as a specific data type. This is
useful if the actual type you intend is different from the one stored in your
database. For example, you may have a PostalCode property you
store as a string in the database but want to validate it as numeric.
Editable—Used to indicate if a given property should be allowed to
be changed by a user. You can use this attribute to mark a property read
only or allow an initial value.
Email—Validates a property as containing an email address.
Key—Used to indicate if a property represents a primary key for the
item.

MinLength, MaxLength—Used to validate against a min or max
length of a property that represents a string or array.
Phone—Validates a given property contains a valid phone number.
Range—Used to validate against an allowable numeric range for the
property.
RegularExpression—Allows you to write a regular expression
against which the property should be validated.
Required—Used to mark a property as requiring a value.
StringLength—Used to set the min and max length of characters in a
property of type string.
Url—Validates a property as a URL.

The attribute classes just listed all work in a similar way. You use them to
annotate properties of your object. A simple validation attribute will require
no additional configuration and will include a default message to be displayed
when the validation fails. However, some data annotation attributes require
additional configuration to work properly, such as setting the
maximumLength on StringLength. Each attribute also includes the
ErrorMessage property that allows you to set a custom error message if
	
validation fails.
	
Let’s add a few data annotations to the Customer class created previously.
	
The following walks you through this process:
	

1. Add a using statement at the top of Customer.cs for
	
System.ComponentModel.DataAnnotations.
	

2. Annotate the Name property with the Required attribute.
3. Add both the Required and the EmailAddress to the Email

property. You can do so by separating them with a comma.
	
Configure the ErrorMessage property for the EmailAddress

attribute to set a custom message to be displayed when the property is
	
not valid.
	

4. Mark the Id property with the Key attribute to indicate this is the
primary key for the object.

5. Constrain the Notes property using StringLength. Set the
maximumLength to 250.

Listing 17.5 shows an example of what your model should now look like
following the addition of these data annotations.

LISTING 17.5 The Customer.cs Model with Data Annotations

Click here to view co de image

using System;
using System.ComponentModel.DataAnnotations;

namespace AspNet5AppSample.Models
{

public class Customer
{

http:Customer.cs
http:Customer.cs

[Key]

public int Id { get; set; }

[Required]

public string Name { get; set; }

[Required, EmailAddress(
ErrorMessage ="Please use email format,

name@domain.com")]
public string Email { get; set; }

public bool OptInEmail { get; set; }

[StringLength(maximumLength:250)]
public string Notes { get; set; }

}
}

ASP.NET will use these data annotations to execute validation on the client
(using the jQuery.validate plug-in). They will also be part of the model
state validation on the server (inside your controller). You will see these in
action later in the chapter as we round out this sample.

Creating the Data Context
The next step with Entity Framework 7 (EF7) is to create a database context
class that derives from Microsoft.Data.Entity.DbContext. Entity
Framework uses the database context class to get enough information about
your objects so it can work with the entities in your database. You can do a lot
with DbContext and related Entity Framework code (including handling
object to data entity migrations/updates). However, this example simply uses
this approach for writing Customer objects to a database.
Recall that EF7, like ASP.NET Core 5, is now modular. The project template
in our sample already includes a reference to EF7 for SQL Server. You can
open the project.json file to see this
("EntityFramework.SqlServer": "7.0.0-beta4"). You could
replace this, for example, with SQLite using NuGet and installing
EntityFramework.SQLite. For our example, however, we will stick to the SQL
Server version. The following walks you through this process of creating the
DbContext object:

1. Add a class to the Models folder called
CustomerDbContext.cs. To do so, right-click the Models folder
in Solution Explorer and choose Add, New Item. Select the Class
template.

2. Add a using statement at the top of the class for
	
Microsoft.Data.Entity.
	

3. Update the CustomerDbContext class definition to inherit from
DbContext.

4. Create a public property of type DbSet<Customer> called
Customers.

Listing 17.6 shows the new CustomerDbContext class.

http:CustomerDbContext.cs
mailto:name@domain.com

LISTING 17.6 The Data Context Class

Click here to view co de image

using System;
using Microsoft.Data.Entity;

namespace AspNet5AppSample.Models
{

public class CustomerDbContext : DbContext
{

public DbSet<Customer> Customers { get; set; }
}

}

Connecting to the Database
Of course, we need a database with which to work. EF7 supports working
with an existing database or using the tools to create one based on your model.
In past versions of the Entity Framework, you could simply run your
application; if EF did not find the database, it automatically created one for
you. However, this database generation at project runtime was problematic and
difficult to keep in synch beyond the initial database generation. EF7 addresses
these issues. You no longer get a database just by running some code. Instead,
you can use console commands to generate a database migration script based
on your model. You can then execute that script to create your database. These
migration scripts are code files stored in the Migrations folder of an
ASP.NET MVC project. You can use these files to keep your database and
model in sync during development and deployments.
To get started, we will define a connection string for working with the
database. There are many places we can put the database connection. For this
example, we will use the config.json file for storing a database
connection string for our project. The following walks you through the process:

1. Open the config.json file from Solution Explorer. Notice there is
already a Data group with a DefaultConnection item. This was
created by the template for working with the ASP.NET user profile and
membership services.
In the example, however, we plan to store membership data and
application data in the same database. Therefore, edit the connection in
the file to point at a new database named AspNet5Unleashed.
(Database=AspNet5Unleashed). We will generate this database
in a moment.
Note that you may also have to change your server name in the
connection string depending on your installation. To get your server
name, open SQL Server Object Explorer in Visual Studio (View, SQL
Server Object Explorer). Your local database server should show in the
tree (along with its name).
You can also right-click the server and choose Properties. Here you can
find the “Connection string” property to use as a guide. For example, you
can use the first section, Data Source=

(localdb)\\ProjectsV12; to get the server name,
(localdb)\\ProjectsV12 and update the default connection
string to Server=(localdb)\\ProjectsV12;.
When complete, your connection string should look similar to the one
shown at the top of Figure 17.20.

FIGURE 17.20 Create a database connection string inside config.json.

2. Now open Startup.cs from Solution Explorer. Recall that this is
where you configure the ASP.NET request pipeline. Navigate to the
ConfigureServices method.
You should see a call to services.AddEntityFramework().
There are methods on this object that use dependency injection to add
additional dependent services at runtime. Use this call to add registration
for the CustomerDbContext instance as shown here.

Click here to view co de image

services.AddEntityFramework()
.AddSqlServer()
.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration
["Data:DefaultConnection:ConnectionString"]))

.AddDbContext<CustomerDbContext>(options =>
options.UseSqlServer(Configuration

["Data:DefaultConnection:ConnectionString"]));

Creating the Database Using EF 7 Migrations
Now that you have defined a connection to the database, you need to actually
create the database. You can do so manually using SQL Server Object
Explorer. You can also use the EF7 migration commands in Visual Studio to
generate your database from your model. You will see an example of both
scenarios. Some developers like to use the SQL tools and create the database
manually. Others prefer to keep their database in synch with their models using
tools.
Let’s start by looking at how you would automate database schema updates
using EF migration. To do so, you will use commands that are part of the
EntityFramework.Commands package installed by the default template.
You can see this package in the References folder in Solution Explorer and

http:Startup.cs

in project.json. In the latter, these commands get mapped to the ef
variable. You will use this in the command window to generate a migration file
and execute it.
The Commands package makes working with data migrations (object to entity
mapping) easier. However, this NuGet package is optional; you do not need to
use it. In addition, there is no need to deploy it once you are done doing
development. Instead, you can set the package as a dev-time dependency.
Visual Studio also includes tools called the DNVM (.NET Version Manager)
and DNU (.NET Development Utility). These are command-line tools that uses
the EntityFramework.Commands package to help you generate code for
a migration based on your model. The following walks you through creating the
database from your models using commands from these tools:

Note
The EF7 code was in beta (beta 4) at the time of writing. In
addition, the supporting tools were also in development. This
section walks you through what was available at the time of
writing: the command line approach to creating and applying a
migration based on your model. However, it is possible the
tooling will also be integrated directly into the Visual Studio IDE.
That said, this command line approach should still operate as
outlined.

1. Open the Developer Command Prompt for VS2015 (Windows Start,
Developer Command Prompt for VS 2015). This opens a command
window setup to work with Visual Studio command line tools.

2. To get started, you need to change the active directory in the command
prompt to folder that contains your project.json file. In our
example, you use the cd command to navigate to the project folder. You
then use the following to get to the folder containing project.json:

cd .\src\aspnet5appSample

3. Next, you need to use DNVM to add a .NET runtime for use by the
command window. You can do so using the use command. To see a list
of available runtimes, type dnvm list. To bind a runtime to the path,
use the following command at the prompt (where your version number
matches that found in the dnvm list):

dnvm use 1.0.0-beta4 coreclr

4. You may also have to use the DNU to restore NuGet packages before
continuing. You can do so using the following command:

dnu restore

5. You are now ready to execute a command to create an EF7 migration.
You do so using the DNX tool and the ef command. The ef command is
defined inside project.json under Commands to point to
EntityFramework.Commands.
The first step is to generate migration code based on your data context

object. The following command does so. You can see that we name the
migration InitialSchema; the migration class will contain this
name. We also explicitly indicate which class
(CustomerDbContext) we want to use as a basis for the generated
migration code (as there may be more than one in your project).

Click here to view co de image

dnx . ef migration add InitialSchema -c

CustomerDbContext

6. Upon success, return to Visual Studio and navigate to the Migrations
folder for your project. You should now have two new files in the folder:
one that ends with the name, _InitialSchema.cs; and another with
the name, CustomerDbContextModelSnapshot.cs.

7. The DNX tool will use these classes to apply this migration to your
database. The database connection will be gleaned from your project
file, config.json. Enter the following apply command inside the
command window.

Click here to view co de image

dnx . ef migration apply -c CustomerDbContext

You can now return to Visual Studio and open the database (View, SQL Server
Object Explorer). You may have to use the refresh button on the tool pane
window. You should then see the AspNet5Unleashed database and the
dbo.Customer table.
This EF7 migration method can be used to keep your model and database in
synch. As you make changes to the model, you can use the commands discussed
here to create migration scripts. You can then apply these scripts as required to
various environments in order to deploy your database changes.

Creating the Database Manually
Some developers prefer to create the database manually using script or the
tools themselves to generate script. Visual Studio and EF7 support this
scenario. The following walks you through creating the database manually
using Visual Studio:

1. Open SQL Server Object Explorer from the View menu; navigate to your
database and the Databases folder.
	
Right-click the Databases folder and choose Add New Database.
	
Name the database AspNet5Unleashed.
	

2. Expand the node that represents your newly created database. Navigate
to the Tables folder and right-click it. Select Add New Table.

3. Use the table designer to create fields for the Customers table. Use
the T-SQL script editor to change the name of the table to Customer
(singular).
Figure 17.21 shows an example of what your table should look like.

http:CustomerDbContextModelSnapshot.cs
http:InitialSchema.cs

FIGURE 17.21 Use the database tools to create the AspNet5Unleashed
database and the Customer table.

4. Right-click the Id property and choose Properties. Set this primary key
as an Identity column with an Identity Seed of 1 and an Identity
Increment of 1. See the right side of Figure 17.21 as an example.

5. Click the Update button on the table designer to update the database.
This brings up the Preview Database Updates dialog. If all looks right,
click the Update Database button to submit your changes. You should see
the changes as they are being made inside the Data Tools Operations
window. Note that Visual Studio will ask you if you want to save the
.sql script file. This is not necessary for most workflows as you can
always regenerate this if necessary.

You should now have a database, a data context class, and a class that
represents your data model. Entity Framework should also now be configured
to connect to and work with your database. The next step is to write a
controller for handling requests for customer data and views.

Developing Controllers
An ASP.NET 5 MVC controller handles user requests to your site. Recall that
the routing engine uses the URL convention to route a request to your controller
and on to a method on that controller. For example, a request for
./customer/edit/5 will, by default, route to your
CustomerController.Edit(id) method; the value 5 will be passed
as the id parameter.
The controller method is then responsible for connecting the request to your
model and returning the appropriate view result. The Edit(id) method, for
example, will likely use a DbContext (created in the prior section) to find a
specific customer from the database.

The controller would pass the Customer instance from the model to the
Customer/Edit view page and return a ViewResult. Finally, the runtime
would then likely look for a view called Edit inside the Views/Customer
folder. As part returning results, ASP.NET would generate on the server, based
on the view code, the appropriate HTML and JavaScript to be sent back as the
response to the user machine.
This section covers creating controllers, working with the model, and returning
an IActionResult to let MVC generate the right web response.

The Result Objects
An action method on an ASP.NET 5 MVC controller should return results that
can be processed by ASP.NET and sent back to the user ’s browser as a valid
HTTP response. For the most part, these methods should return an object that
implements either the IActionResult or IViewComponentResult
interface (found in the Microsoft.AspNet.Mvc namespace). The former
includes classes used to return HTML and JavaScript (ViewResults,
PartialViewResult), JSON formatted messages (JsonResult), Files
(FileResult, FileContentResult), and other result objects. The
latter is new to ASP.NET 5 MVC. It is used to return a portion of the response.
(See the section “View Components, View Models, and Partial Views.”)
You typically define your controller action methods as returning one of these
interfaces (IActionResult being the most common). You then return an
actual object that implements the interface as the response to the MVC runtime.
When you do so, you use a method on the Controller class from which
your controller inherits. It contains method names that match the action result
objects, minus the word Result, as in View(), Json(), Redirect(),
Content(), and so on.
These methods know how to act on your behalf. They find the view, often find
a model, and return the related action result object. The MVC framework
defines many of these action result classes as listed here:

ContentResult—Used to return a custom content type as the result
of the action method. This is an HTTP content type, such as text/plain.
EmptyResult—Used to return nothing (void) as the result.
FileResult (FileContentResult, FilePathResult,
FileStreamResult)—Used to send back binary output (and files)
as the response.
HttpNotFoundResult—Used to send an HTTP status indicating
that the requested resource was not found.
HttpStatusCodeResult—Used to send a specific HTTP status
code (from the many available) as the result.
JsonResult—Used to return a message formatted as JSON.
NoContentResult—Used to indicate that the response has no actual
content.
ObjectResult—Used to return an object as the result. (See Chapter
19.)
RedirectResult—Used to redirect to another URI.

RedirectToRouteResult (RedirectToActionResult)—
Used to redirect to another action method.
PartialViewResult—Used to send a section of a partial view
(portion of HTML) to be rendered inside another view.
ViewViewcomponentResult—Used to return a view component
(portion of the response) as a result (implements
IViewComponentResult).
ViewResult—Used to return a web page generated from a view.

Let’s now take a look at using these action result objects inside a controller.

Creating the Controller
Visual Studio 2015 provides an ASP.NET 5 MVC template for adding a
controller to your project. This template already derives from Controller.
You store controllers in the Controllers folder. When creating a new
controller, you use the naming standard FeatureAreaController, where
FeatureArea is the name of your feature (in our example,
CustomerController). The following walks you through creating a
controller:

1. Right-click the Controllers folder in Solution Explorer. Choose
Add, New Item.

2. From the Add New Item dialog (see Figure 17.22), select MVC
Controller Class. Name your controller CustomerController.cs.
Click the Add button to continue.

FIGURE 17.22 You add a new controller to an ASP.NET MVC project
using the Add New Item dialog box.

3. Visual Studio creates a basic controller with an Index() method that
returns an IActionResult (in this case, a ViewResult). Listing
17.7 shows an example.

LISTING 17.7 The CustomerController.cs Class Generated by the
Controller Template

http:CustomerController.cs
http:CustomerController.cs

Click here to view co de image
	

using Microsoft.AspNet.Mvc;

namespace AspNet5AppSample.Controllers
{

public class CustomerController : Controller
{

//GET: /<controller>/

public IActionResult Index()

{

return View();
}

}
}

Adding a DbContext
The CustomerController class will work closely with the model (your
data access classes) to handle requests to read and write customer data.
Therefore, the class needs an instance of your DbContext object,
CustomerDbContext. Recall that you added this to the request pipeline
earlier using the Startup.cs file ConfigureServices method.
ASP.NET will pass this content to your controller provided you request it in
the constructor. The following walks you through creating this code:

1. Open the CustomerController class file from Solution Explorer.
2. Add a using statement at the top of the class file for
	
AspNet5Unleashed.Models.
	

3. Define a class-level variable to hold an instance of
CustomerDbContext. Name this variable db, as in the following:

Click here to view co de image

private CustomerDbContext db;

4. Create a constructor at the top of the class (under the class definition).
You can use the snippet ctor as a shortcut.
	
Indicate that the constructor takes an instance of
	
CustomerDbContext and then assigns that to the class-level
	
variable db as in the following:
	

Click here to view co de image

public CustomerController(CustomerDbContext
context)
{

db = context;
}

ASP.NET will now provide the database context object as part of the request
when creating an instance of your controller. The next step is to define actual
action methods on the controller for returning, editing, creating, and deleting
customers. The following sections examine each in turn.

http:Startup.cs

the controller to return a list of
view page called Index.cshtml
ple method. Remember, we already

ble called db. Therefore, the
ex() action method.

)

;

Result instance. This is common
The Result Objects” section) and

n this case, the action will be to create
troller.View() method to
ual view page is not named because
convention and look for a view called
r.
o the view using the model and data
ll be strongly typed to expect a list of

hod is one that only returns a view. In
ew customer. The data context is not
t and posted back to the server
View. The following shows an

()

w called Create.cshtml in the
self will know to bind to the
n rules and error messages. It will
k customer so the user can enter new

t
od to find a customer in the database
.cshtml view page (which we

r is passed to the action method from
e convention. For example, a user
. The value 2 will be passed to
as a parameter.
t to the top of the

Returning a List of Customers
We will use the Index action method of
customers from the model and pass it to a
(which we will create later). This is a sim
set up the database context inside a varia
following is all that is needed for the Ind

Click here to view co de image

public IActionResult Index(
{

return View(db.Customers)
}

This method is set to return an IAction
for most of your action methods (see the “
indicates the result should be an action. I
a view. Therefore, the code uses the Con
return a ViewResult instance. The act
you can rely on the framework to follow
Index in the Views/Customer folde
Notice that a list of customers is passed t
context. The view, as you’ll see later, wi
customers.

Returning a New Customer P age
Likely, the most simplistic controller met
our example, a user requests to create a n
needed for this (until the form is filled ou
anyway). Therefore, you simply return a
example.
Click here to view co de image

public IActionResult Create
{

return View();
}

In this case, ASP.NET will look for a vie
Views/Customer folder. The view it
Customer class for outputting validatio
then return a view with essentially a blan
customer information.

Returning a Single Customer for Edi
We will now create an Edit(id) meth
using the Id property and return an Edit
will also create later). This id paramete
the URL using the ASP.NET routing engin
may the request ./customer/edit/2
CustomerController.Edit(id)
The first step is to add a using statemen

CustomerController class to add support for the LINQ query engine.
The following shows an example.

using System.Linq;

Next, we write the method. The method should use LINQ to look up a customer
from the DbContext. If it exists, it will return a ViewResult object. If
not, it returns the HttpNotFound error (resulting in an HTTP 404 error
page). An example of the code is shown here.
Click here to view code image

public IActionResult Edit(int id)
{

Customer customer =
db.Customers.FirstOrDefault(x => x.Id == id);

if (customer == null)
{

return HttpNotFound();
}
return View(customer);

}

Accepting a Customer Edit (POST)
So far we have looked at action methods that simply return views. These
action methods are called as part of HTTP GET requests. In the case of
Edit(id) and Create(), a user must fill out a form. The form is then sent
back to the server as an HTTP POST. What is needed then are action methods
to handle these POST requests.
The convention is to define these action methods with the same name as their
corresponding request action method. The difference is that these action
methods include the attribute HttpPost to indicate the method should be
called as part of an HTTP POST request. These action methods also take
different parameters. The Create and Edit methods, for example, take a
Customer object.
The following code shows an example of the additional Edit method.
Click here to view code image

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Edit(

[Bind(new string[] { "Id", "Name", "Email",
"OptInEmail", "Notes"})]

Customer customer)
{

if (ModelState.IsValid)
{

db.Customers.Update(customer);
db.SaveChanges();
return RedirectToAction("Index");

}
return View(customer);

}

The Edit method uses the Bind model binder attribute to map form post
fields to the Customer instance properties explicitly. This is a security
precaution to prevent something called over posting. Over posting occurs
when you maintain a property on your object that you do not expose on the
form. This allows someone to post extra data to your form and, if lucky enough,
set properties on your object you did not intend for him to be able to set. Using
Bind is essentially whitelisting which properties you allow to be set; only
those form fields will be bound to the Customer instance passed as a
parameter to the action method. That is not required in this case because we
allow all properties to be written. However, it is a good practice, and
consistency is key. You may add a property later you do not want to bind, for
example.
Notice that inside the method we first check to confirm the model state is valid.
This executes the business rules you added to the model class as data
annotations. If not valid, the Edit.cshtml view is returned and the errors
are shown to the user. If the model is valid, we use the Update method to
mark the customer for update and SaveChanges to commit the update to the
database. Finally, upon completion, we return the user to the
Customer/Index.cshtml page using the RedirectToAction action
method.

Cross Site Request Forgery
Notice that the Edit method is decorated with the
ValidateAntiForgeryToken attribute. This is to help
prevent the security threat Cross Site Request Forgery (CSRF).
CSRF is when another application tries to post to your controller.
This attribute, along with the AntiForgeryToken() HTML
helper in the view, helps validate calls to your controller.

Accepting a New Customer (POST)
Handling a HTTP POST for a new customer is nearly the same as handling a
POST for customer edit. In fact, the only difference is the call to the
DbContext; instead of Update, we use Add. The following shows the
Create method for the Customer controller.
Click here to view code image

[HttpPost]
[ValidateAntiForgeryToken]
public IActionResult Create(

[Bind(new string[] { "Name", "Email", "OptInEmail",
"Notes"})]

Customer customer)
{

if (ModelState.IsValid)
{

db.Customers.Add(customer);
db.SaveChanges();
return RedirectToAction("Index");

}
return View(customer);

}

Processing a CustomerDelete Request
The last method we will add to the CustomerController is a method to
handle a request to delete a customer. The method is similar to the one that
simply returns a customer based on Id. In this case, the call will take an id
parameter, use it to find the customer instance, and then use the DbContext
to remove this customer. The following shows the code.
Click here to view code image

public IActionResult Delete(int id)
{

Customer customer =
db.Customers.FirstOrDefault(x => x.Id == id);

db.Customers.Remove(customer);
db.SaveChanges();

return RedirectToAction("Index");
}

Note that in an actual application, you may not want to make it this easy to
delete data. Instead, you might require this via a form submit (and HTTP
POST), only by an authorized user, and provide an “are you sure” message for
committing the data deletion.
You now have a model, a database, and a controller for working with customer
objects. We have not, however, created views yet. Therefore, you cannot
simply run this code and see your results. Let’s take a look at creating the
views.

Coding for the UI (Views and Related Web UI Elements)
Writing a UI view can seem like a complex endeavor. You need to know a lot
of different server-side and web technologies to make everything work. This
includes client-side JavaScript, HTML markup, CSS for visual styling, server-
side Razor code, multiple client-side JavaScript libraries, page layouts and
partial views, and even more. Thankfully, Visual Studio and ASP.NET help to
abstract a lot of this complexity so we can focus on building our actual pages
for rendering.
This section starts with the basics of building a view in ASP.NET 5 MVC,
including HTML, Razor, helper methods, page layout, and the like. We then
look at using these basics to build the sample pages based on the
CustomerController (and related model) created in the previous
section. Of course, if you are already familiar with many of these concepts, you
can skip this section and go to “Creating the Customer Example Pages.” We
cover JavaScript in more detail in the coming chapters.

The HTML Tags
It all starts with HTML. The ASP.NET MVC template gives developers
control again of HTML markup (contrasted with web server controls). We
assume that most readers will have a basic understanding of HTML. However,
we cover a few core concepts here should you need a brush-up or are new to
web development and need to understand how to use HTML to build views as
discussed later in this chapter.

Learning HTMLand CSS
If you are starting at the beginning, there are many good books,
videos, and tutorials on learning the basics of HTML and CSS.
These cover layout and styling. (Here we only cover forms and
input controls.) You should not have to look far for good material.
For example, you might check www.w3schools.com; they have
been helping with HTML for years and include tutorials on HTML
and CSS.

The HTML controls start with the ubiquitous <input> tag. This tag is used to
define text boxes, buttons, check boxes, radio buttons, and more. The following
shows an example of the <input> tag and a few key attributes.
Click here to view code image

<input type="text" name="Notes" maxlength="250"
value="Some notes ..." />

Notice that the <input> tag uses the name property to name the element. This
allows you to refer to the tag using jQuery selectors. It also helps ASP.NET
MVC map the form element back to the object when working on the server. The
tag also sets the initial value attribute. The key attribute, however, is type.
The type here is set to text. Therefore, this will render as a text box for
user input. You use <input> and type to define many different HTML form
controls. The following lists the most common type attribute definitions:

button—Used to create a button object. A button, by default, does not
submit the form. Instead, use it to call some JavaScript or something
similar. Use the Submit type to create a button that posts the form back to
the controller.
checkbox—Used to create a check box for the user to click. Use the
checked attribute to indicate whether the check box should be checked
or not upon display.
file—Used to create a file upload input element. Allows a user to
select a file and have it uploaded to the server.
hidden—Used to create a hidden form field. You might do so if you do
not want user input but do want the form field passed as part of the form
submit.
password—Used to create a text box for entering passwords. (Text is
blanked out with bullets.)
radio—Used to provide users with a selection of choices as radio
buttons. A user is expected to select only one. You name each of these

http://www.w3schools.com

input items the same but set the values differently.
reset—Used to create a button for resetting a form on the client. This
erases any user input and sets things back to default values.
submit—Used to define a button that will submit the form back to the
server when it’s pressed.
image—Used to create a Submit button whose visual is an image.
text—Used to create a single-line text box for user entry.

HTML 5 defines many, newer input types. However, most of these newer types
are not supported in earlier browsers. This includes types like URL,
DateTime, Search, Email, Color, and many more. If you are targeting
browsers that support these types, you can use them. Otherwise, you will have
to provide an alternative. As you will see shortly, the HTML helpers can help
handle this decision on your behalf.
Outside of the <input> tag, there are many other markup elements you are
likely going to encounter when creating views and user input forms. The
following provides a high-level overview of some of these additional tags:

<div>—Used to group other markup into sections within your page. In
general, everything goes within one <div> tag or another. You can also
nest <div> tags within each other. CSS often uses <divs> to apply
styles to various sections of your page.
<table>—Used to create a table of columns and rows within your
HTML page. You use the <thead> tag to define a table head (top row);
the <th> tag to define columns within your table head. You use <tr> to
indicate a table row; <td> is used to indicate table data for the given
column in the row.
<a>—Called an anchor tag, <a> is used to define a hyperlink from one
page to another. You can also use an anchor tag and some JavaScript to
submit a form (like a button might).
<select> / <option>—Used to create a drop-down list of
options for the user. You use the <option> tag within <select> to
present each option.
<textarea>—Used to create a larger text entry form field. You use
the attributes rows and cols to indicate how big the text area should
be (rows = height based on rows text; cols = width based on width of
characters).
<label>—Used for defining a label for a form element. The
<label> tag does not render any differently than just text in HTML, by
default. However, using a <label> can make styling easier and gives
you something to leverage should you need to reference the <label> in
JavaScript.
<fieldset>, <legend>—Used to group related HTML elements
(typically form input fields). The <legend> tag provides a name for
the grouping. Both fields are useful for styling a section with CSS.

The last HTML tag we want to discuss in this overview is the <form>
element. You nest your user input elements inside a <form> tag. The <form>
tag is used to define how your input elements should be sent to the server

(HTTP GET or POST) and where they are to be sent. The following shows an
example of a <form> element.
Click here to view code image

<form id="form-create" action="create" method="post">

Notice that you use the action attribute to indicate what should receive the
action of the form. This is typically something in your site (such as a page or a
controller method). You use the method attribute to indicate how that data is
to be sent to your site—in this case as a POST. There are many other options
when working with a form, such as processing JavaScript and submitting as
JSON (as you will see in Chapter 19).
Now that you have a basic refresher on working with HTML, let’s take a look
at how the ASP.NET Razor syntax and the related HTML helper classes make
creating and working with HTML views even easier.

CSS / Responsive Design
The ASP.NET 5 template includes a basic style sheet,
site.css, under the wwwroot/css folder. It also leverages
Twitter Bootstrap for a basic theme and what is called responsive
design. Responsive design leverage styles and JavaScript to
render your pages correctly regardless of device size (see
Chapter 18). The Bootstrap files are also under the
bower_components folder (hidden by default in Solution
Explorer). CSS and responsive design is a big topic, and we do
not have the space to cover it here. However, you will notice that
we touch on this (and styles in general) throughout this chapter
and the next.

The Razor Syntax
The Razor syntax refers to how you write code mixed inside your view
markup. Remember that this code is meant to run on the server. The Razor
syntax strives to make it easy to embed code throughout your page. If you have
done this in earlier versions of ASP, you will recall things like brackets and
percent signs (<% ... %>) to indicate code start and end blocks. These
statements were painful to write and hard to read. Razor makes it much easier.
Razor uses the at sign, @, to indicate an inline expression of code. Typically,
this is all you need to tell the engine that you intend it to process some code on
your page. If you have just a single line of code, you can embed it right within
your HTML. The following markup with Razor shows an example. Here you
can see markup (the div and p tags) combined with code as written using the
@ character. This code simply uses the server-side object, DataTime, to get
the current year and add it to the output, as in © 2015 – VS Unleashed.
Click here to view code image

<div class="float-left">
<p>© @DateTime.Now.Year – VS Unleashed</p>

</div>

Note
Note that in the example, @DateTime.Now.Year, we are
using the Razor syntax to indicate the year should be written to the
page. ASP.NET makes sure to HTML-encode this output before
displaying it to the user. This protects you from inadvertently
sending HTML or script to the page from an object. Of course, if
this is your intent, you can use an HTML helper, @Html.Raw, to
send unencoded content to the browser.

If you have code that runs across multiple lines, you can use brackets {}. (VB
developers can go without the brackets and simply use things like End If
and Next.) You can, of course, still mix markup with this code. Consider the
following markup and code from the default template partial view,
_LoginPartial.cshtml.
Click here to view code image

@using System.Security.Principal

@if (User.Identity.IsAuthenticated)
{

using (Html.BeginForm("LogOff", "Account",
FormMethod.Post,

new { id = "logoutForm", @class = "navbar-right"
}))

{
@Html.AntiForgeryToken()
<ul class="nav navbar-nav navbar-right">

@Html.ActionLink("Hello " +

User.Identity.GetUserName() +
"!", "Manage", "Account", routeValues: null,
htmlAttributes: new { title = "Manage" })

Log off

}

}
else
{

<ul class="nav navbar-nav navbar-right">
@Html.ActionLink("Register", "Register",

"Account", routeValues: null,
htmlAttributes: new { id = "registerLink" })

@Html.ActionLink("Log in", "Login", "Account",
routeValues: null,

htmlAttributes: new { id = "loginLink" })

}

There is a lot going on in this partial view. However, notice that the page starts
out with code that uses Razor to call an @if statement. This @if statement’s

true portion is then defined inside brackets. However, the brackets contain
markup and more code (including HTML helpers, which you will read about in
a moment). The Razor engine can parse all this just fine. This leaves
developers free to easily express server-side code and client markup on the
same page.
For longer sections of code, you can declare the @ character followed directly
by a bracket. This is typically used when you only want to write code (no
markup). Inside the brackets, you can make server-side calls, declare variables
to be used later, run other code, create loops; pretty much anything you can
write in C# or VB can be added to your web page using the Razor syntax.
Click here to view code image

@{
ViewBag.Title = "Home Page";
var requestTime = DateTime.Now.TimeOfDay;

}

Notice that in the previous examples, all the code and markup combinations
include markup inside of HTML tags (like <p> and). This makes it easy
for the Razor engine to distinguish between what is code and what is markup.
Sometimes, however, you might want to output text to the page from within
your code that is not surrounded by tags. In this case, you need to use the @ sign
with a colon, also called the @: operator. The following code shows an
example.
Click here to view code image

@if(WebSecurity.IsAuthenticated) {
@: Current time:
 @DateTime.Now

}

Another key part of the Razor syntax is the @Html helper objects. Let’s take a
look at these next.

HTML Helpers
HTML helpers are lightweight methods that execute on the server and return a
string to be used as standard HTML on your page. They are accessed using
@Html, which is essentially a property on your view. The HTML helper
classes and related methods are found in the namespace
Microsoft.AspNet.Mvc.Rendering.
These helper methods generate UI markup and should only be used on your
pages (and not in the controller). Of course, you do not need to use HTML
helpers. You can code all your view as actual HTML markup. In addition,
many of the HTML Helpers have evolved into TagHelpers (see next section).
However, these methods can simplify writing a lot of repetitive, basic HTML
markup. The methods run on the server, but they are also lightweight. (Unlike
web form controls, they do not have an event model or view state.)
As an example, consider the following @Html helper inside a view page. Its
job is to generate a drop-down list for user input based on a list of name-value
pairs.
Click here to view code image

@Html.DropDownList(name: "Confirmed", selectList:
confirmOptions)

Running this inside a view page outputs the following HTML to the browser.
Click here to view code image

<select id="Confirmed" name="Confirmed">
<option value="1">Yes</option>
<option value="2">No</option>
<option value="3">Maybe</option>

</select>

Note that the preceding example requires a list of SelectListItems. You
can either return them from your controller (most likely scenario) or embed the
list in your page. The following shows an example of the latter just to clarify
the example.
Click here to view code image

@{
List<SelectListItem> confirmOptions = new

List<SelectListItem>();

confirmOptions.Add(new SelectListItem { Text =
"Yes", Value = "1" });

confirmOptions.Add(new SelectListItem { Text = "No",
Value = "2" });

confirmOptions.Add(new SelectListItem { Text =
"Maybe", Value = "3" });
}

The HTML helper methods include one that maps to each of the form input (and
related) tags covered in the earlier section, “The HTML Tags.” This includes
the following helper methods: @Html.CheckBox,
@Html.DropDownList, @Html.Hidden, @Html.Label,
@Html.ListBox, @Html.Password, @Html.RadioButton, and
@Html.TextArea. Each of these helper methods also defines a similar
method that includes the word For appended to the end, as in
@Html.TextBoxFor. You use the “For” HTML helper methods for model
binding—that is, when you want to have ASP.NET output-specific HTML for a
given property in your model. The following shows an example.
Click here to view code image

@Html.EditorFor(model => model.Email,
new { htmlAttributes = new { @class = "form-control"

} })

Notice that this example uses model binding inside a strongly typed view
(more on this in a moment). Notice, too, that you can use one of the additional
overloads of the helper method to set specific HTML attributes on the HTML
to be output (in this case, the style class name).
There are many additional HTML helpers designed to take advantage of the
server-side ASP.NET engine and make writing HTML easier. The following
provides a list of some of these key helper methods you are likely to encounter:

@Html.BeginForm—Used to create a <form> tag inside your view.

@Html.AntiForgeryToken—Used to generate an anti-forgery key
to be validated back on the controller (provided you decorate your
controller method with the ValidateAntiForgeryToken
attribute). See the example later in this section.
@Html.ValidationSummary—Used to create an error on your
page to display a summary of field validation errors on the page.
@Html.LabelFor—Used to generate a label for one of your input
items.
@Html.EditorFor—Used to create an editor (typically an
<input> tag) for a given property of your model. This allows the
framework to select the editor on your behalf (based on data type).
@Html.ValidationMessageFor—Used to create messages that
display when a field has an error (and hide when it does not).
@Html.ActionLink—Used to create a hyperlink on your page that
can also call your controller (including using HTTP POST).
@Html.Encode—Used to convert a value to an HTML-encoded string
for output.

You will use these helper methods throughout the remainder of this section to
write sample view pages for the customer example discussed earlier.

Create CustomHtml Helpers
You can build your own Razor HTML helpers. You create these
helpers to make writing markup easier for you or your team of
developers. A custom helper can contain both code and markup. It
will show up in IntelliSense and work the same way as other
HTML helpers to generate markup for you.

ASP.NETMVC TagHelpers
ASP.NET MVC 6 introduces TagHelpers to provide a more markup-based
approach to extending HTML with server-side code processing. Like HTML
Helpers, TagHelpers process on the server and simplify the writing of
repetitive code. What makes them different is that they look and feel more like
HTML markup. There is no need for the @Html signal in your markup to
indicate a server-side helper method is being called. Instead, the TagHelpers
add custom attributes to existing HTML tags. This makes them look and feel
like HTML markup (but can be color coded for easy identification in the IDE).
These attributes then execute on the server much the same way a HTML helper
would. The TagHelper classes are found in the namespace
Microsoft.AspNet.Mvc.TagHelpers.
Let’s look at an example. The following is a call inside markup to an HTML
Helper for creating a hyperlink that works with the CustomerController
(based on convention of the URL) and the Edit action method. This looks and
acts like code inside of markup.
Click here to view code image

@Html.ActionLink("Edit", "Edit", new { id = item.Id })

The same link can be written as follows using a TagHelper:
Click here to view code image

<a asp-controller="Customer" asp-action="Edit"
asp-route-id="@item.Id">Customer

Notice this is just HTML markup with two custom attributes: asp-
controller and asp-action. This can be easier to write and to read for
developers used to writing and working with markup. This also includes the
optional, asp-route-id to append an id parameter to the controller
request. There are additional attributes as well, such as asp-fragment, for
pointing to a section of the page being linked.
There are many such TagHelpers available in the new ASP.NET MVC 6. They
can be identified easily in markup by their default attribute color, purple. The
following outlines the TagHelpers available. We will use TagHelpers
throughout the rest of this chapter and in some upcoming chapters.

Anchor—Used to create hyperlinks using the <a/> tag as shown above.
Cache—A special tag that supports partial page caching.
Environment—A special tag that allows you to control the page
rendering based on runtime environments such as development, staging,
and production.
Form—Augments the <form/> tag for creating forms bound to MVC
models.
Input—Extends the <input/> tag for creating input elements based on
strongly typed model data.
Label—Used on the <label/> tag to create labels for model elements.
Link—Used to process link elements.
Option—Used to work with individual options in a select list.
Script—Simplifies writing script tags.
Select—Extends the <select/> tag to generate dropdown lists.
TextArea—Augments the <textarea/> tag for model elements.
ValidationMessage—Used to display validation messages inside a
 for individual model elements.
ValidationSummary—Used to show a validation summary of validation
issues for a given model.

Create CustomTag Helpers
You can write your own TagHelpers for ASP.NET to generate
code based on markup. This is very similar to creating HTML
Helpers. You will also see TagHelpers available from various
control vendors.

Page Layout with Razor
Much of your page markup is common across views such as navigation,
header, footer, general look and feel, and more. You want to write this markup
once and use it everywhere. ASP.NET MVC provides
_ViewStart.cshtml and _Layout.cshtml for this purpose. Note that
the underscore used in the name of a page is a common way to indicate that the
page is shared (and not accessed directly by a user).
The default _ViewStart.cshtml page sits inside the root of your Views
folder in Solution Explorer. The ASP.NET runtime knows to look there to find
a common layout for your pages. The following shows an example of the
content in this page.
Click here to view code image

@{
Layout = "_Layout.cshtml";

}

Notice that this default view start page simply points to the actual layout page,
_Layout.cshtml, that is stored in the /Views/Shared directory. You
might also define different view start pages inside your Views folders. This is
helpful if a given set of views should render with a different layout. ASP.NET
will look in your Views folders first; if not found, it will look for this default
view start page. Note that you can also explicitly define your layout page at the
top of a specific view.

Areas
You can further group your code inside what are called areas.
These are useful when your site changes based on a specific area
such as Shopping and Account. Inside this area, you would have
folders for models, views, and controllers. You would likely use
a separate _ViewStart.cshtml page as well to define the
layout for the area.

The _Layout.cshtml page inside the Views/Shared folder works as
the master layout page for your site. It includes your opening <html>,
<head>, and <body> tags. It links to style sheets, loads any default
JavaScript files, and defines your navigation. The layout page is then combined
with a view at runtime to render a full set of HTML to the browser. We suggest
that you open the page in Visual Studio and examine the markup.
The page uses the Razor call @RenderBody() to tell ASP.NET to embed
the view in this exact section of the page. The following shows an example
from within the markup for _Layout.cshtml with the integration of the
current year.
Click here to view code image

<div class="container body-content">
@RenderBody()
<hr />
<footer>

<p>© @DateTime.Now.Year -

@AppSettings.Options.SiteTitle</p>
</footer>

</div>

Similarly, there is another Razor call near the bottom of the layout:
@RenderSection("scripts", required: false). This tells
ASP.NET to render your scripts inside a section called "scripts". The
following shows how you would use this in a view page. (will see an example
of this in moment.)
Click here to view code image

@section Scripts {
<script src="..."></script>

}

Strongly Typed Views
A strongly typed view is one that is designed to work with an object from your
model (or view model, as discussed later in this chapter). You create a
strongly typed view by adding the @model definition at the top of your view
page. For example, you would add the following line to the top of view that
works with a Customer instance.
Click here to view code image

@model AspNet5Unleashed.Models.Customer

This definition at the top of your page indicates to the MVC framework that the
view expects a Customer object when the controller creates it. The
controller passes this model data to the view and the runtime will assign this
object to the view’s @model definition. It will also post this same customer
object back to your POST action method on the controller when a user submits
the form.
A strongly typed view allows you to use the model inside your markup (and
with the @Html helper classes). For example, the following markup shows
creating a label, text box, and validation message for the Name field from a
model.
Click here to view code image

<div class="editor-label">
@Html.LabelFor(model => model.Name)

</div>
<div class="editor-field">

@Html.EditorFor(model => model.Name)
@Html.ValidationMessageFor(model => model.Name)

</div>

User Input Validation
Pages written using the Razor syntax can take advantage of both client-side and
server-side validation. This validation is actually provided by the
jQuery.validate.js plug-in (script files) included with the default
project template. Recall that the model already includes field-level validation
rules using data annotations. These rules will be applied to the client code by
ASP.NET when binding the model fields to the view. Of course, these same
rules will process on the server, too.
The HTML helper methods and TagHelpers can be used to define validation;
they require the jquery.validate plug-in to be added to the view. Recall
that the shared _Layout.cshmtl page defined a section called scripts
for adding script files to the page. You can use that section to add these
validation scripts. Note that if you intend to use these on all the pages in your
site, you might add them directly to the layout page.
The following shows the markup required to add the two validation scripts to a
single view page.
Click here to view code image

@section Scripts {
<script src="@Url.Content("~/lib/jquery-

validation/jquery.validate.js")">
</script>
<script src="@Url.Content(

"~/lib/jquery-validation-
unobtrusive/jquery.validate.unobtrusive.js")">

</script>
}

The ASP.NET 5 template includes a file that makes adding these scripts to a
view even easier. This file is in the Views/Shared directory; it is called
_ValidationScriptsPartial.cshtml. This file makes use of the
<environment/> TagHelpers to deploy a version of these scripts that can
be debugged during development and minified (think optimized) versions for
staging and production. These scripts can be included in your view page using
Html.RenderPartialAsync as follows:
Click here to view code image

@section Scripts {
@{await

Html.RenderPartialAsync("_ValidationScriptsPartial");
}
}

The next step is to reserve a spot within the view for any validation message.
To do so, you can use the @Html.ValidationMessageFor HTML
helper. The following shows an example of creating a validation message for
the model’s Email property:
Click here to view code image

@Html.ValidationMessageFor(model => model.Email, "",
new { @class = "text-danger" })

You can also use a TagHelper to add validation for a field. The validation

information above would be written as follows using a TagHelper:
Click here to view code image

In addition to the message that is added to each field, we can add an overall
summary message to the page using the @Html.ValidationSummary
helper method. This will also allow you to show a message to the user should
the form post to the server and result in errors that were not trapped on the
client. The following shows an example of this Razor call.
Click here to view code image

@Html.ValidationSummary(true, "", new { @class =
"text-danger" })

This summary can also be written using a TagHelper. The following shows an
example.
Click here to view code image

<div asp-validation-summary="ValidationSummary.All"
class="text-danger"></div>

Creating the Customer Example Pages
The prior sections should have given you a good overview of writing
ASP.NET 5 MVC 6 views. We will now use this information (helper methods,
TagHelpers, Razor syntax, HTML input tags, layout, and the like) to create
views using the customer example model and controller created previously.
This section steps you through writing each of the customer sample views. It
contains complete listing for the two views. It then walks you through the
salient points for creating the final view. Of course, the code for all this is
available from the download for this book.

Add Basic Navigation
The first thing we are going to do is add navigation support for customers to
the menu bar. The following walks you through this process:

1. With the project open in Visual Studio, use Solution Explorer to open the
_Layout.cshtml page from the Views/Shared folder.

2. Find the menu items inside the page markup. They are near the middle
inside a tag nested inside a <div> tag whose class is set to
navbar-collapse collapse.

3. Add a navigation menu item using the anchor TagHelper. This helper
allows you to write a simple <a/> tag but include the controller and
action name. The following shows an example of navigating to the
Index() action of the CustomerController.

Click here to view code image

<a asp-controller="Customer" asp-
action="Index">Customers

You should now see the menu link within your site (top navigation). You

can run the application; it should look similar to Figure 17.23.

FIGURE 17.23 The Customers action link added to the page-level
navigation layout.

Display a List of Customer
When a user clicks the Customers link, the Index method of the
CustomerController will fire. Recall that this method returns a view
with a list of customer objects. What is needed now is to create that view. The
following walks you through the process:

1. Right-click the Views folder in Solution Explorer and choose Add,
New Folder. Name the folder Customer.

2. Right-click the newly created Customer folder and choose Add, New
Item.
From the Add New Item dialog, select the MVC View Page template.
Name the page Index.cshtml and click the Add button.

3. Remove the default contents of Index.cshtml.
4. Strongly type the view by adding a model reference to the top of the

page. This should be for a list of Customer objects. The following
shows an example.

Click here to view code image

@model
IEnumerable<AspNet5AppSample.Models.Customer>

5. Use a TagHelper to create a link that takes the user to the new customer
page. This should look as follows.

Click here to view code image

<a asp-controller="Customer" asp-
action="Create">Create New

6. Use HTML to define a table for holding customer data. This should
include a table head for each of the columns (excluding Id).
For the rows, use Razor HTML Helpers to write a For...Each
statement to loop through the model as you create a row, as in:
@foreach (var item in Model). Use the HTML Helper,

@Html.DisplayFor inside the loop to show each field the data set.
Add a final column to the table rows to include a link using TagHelpers
for both editing and deleting a customer.

Listing 17.8 shows an example of what a completed Index.cshtml page
might look like. You can now run the application and click the Customers
link in the navigation bar at the top of the page. This should bring up the view
as shown in Figure 17.24.

FIGURE 17.24 The list of customers returned from the model, processed by
the Index method on the controller, and shown in the Index.cshtml

view.

LISTING 17.8 The Index.cshtml Page Used to Display a List of
Customers

Click here to view code image

@model IEnumerable<AspNet5Unleashed.Models.Customer>

@{
ViewBag.Title = "Customers";

}

<h2>@ViewBag.Title</h2>

<a asp-controller="Customer" asp-
action="Create">Create New

<table class="table">
<thead>

<tr>
<th>Name</th>
<th>Email</th>
<th>Opt In</th>
<th>Notes</th>

</tr>
</thead>
@foreach (var item in Model)
{

<tr id="row-@item.Id">

<td>
@Html.DisplayFor(modelItem => item.Name)

</td>
<td>

@Html.DisplayFor(modelItem => item.Email)
</td>
<td>

@Html.DisplayFor(modelItem => item.OptInEmail)
</td>
<td>

@Html.DisplayFor(modelItem => item.Notes)
</td>
<td>

<a asp-controller="Customer" asp-action="Edit"
asp-route-id="@item.Id">Edit |

<a asp-controller="Customer" asp-
action="Delete"

asp-route-id="@item.Id">Delete
</td>

</tr>
}

</table>

Create a New Customer
We can now build a view to allow a user to create a new customer. The prior
example embedded a hyperlink TagHelper on the customer list page for calling
the Create method on the controller. The following walks you through key
steps of building this view:

1. Right-click the Views/Customer folder and choose Add, New Item.
From the Add New Item dialog, select the MVC View Page template.
Name the page Create.cshtml and click the Add button.

2. Remove the default contents of Create.cshtml.
3. Strongly type the view by adding a model reference to the top of the

page. This should be for a single Customer object that will be created.
We need the model to help build and validate the form. The following
shows an example.

Click here to view code image

@model AspNet5AppSample.Models.Customer

4. Use the TagHelper for <form/> to help define the form for the page, as
in the following. Notice you set the controller and action method for the
form using TagHelper attributes.

Click here to view code image

<form asp-controller="Customer" asp-action="Create"
method="post"

class="form-horizontal" role="form">

5. Use a TagHelper on a <div/> tag to add a section at the top of the form
to display any client-side validation errors or those sent back by the
server. The following shows an example.

Click here to view code image

<div asp-validation-summary="ValidationSummary.All"
class="text-danger"></div>

6. Add a <div> tag for each customer field on the page. Inside the <div>
tag, use the TagHelpers for creating a label, an HTML input, and a
validation message. The following shows one such field. Repeat this
process for each field of Customer (except Id).

Click here to view code image

<div class="form-group">
<label asp-for="Name" class="col-md-2 control-

label"></label>
<div class="col-md-10">

<input asp-for="Name" class="form-control" />
<span asp-validation-for="Name" class="text-

danger">
</div>

</div>

7. At the bottom of the form, add a button for submitting the form as in the
following markup:

Click here to view code image

<div class="form-group">
<div class="col-md-offset-2 col-md-10">

<input type="submit" value="Create" class="btn
btn-default" />

</div>
</div>

8. After the form, add an anchor tag using a TagHelper to allow navigation
for cancelling the request, as in the following.

Click here to view code image

<div>
<a asp-controller="Customer" asp-

action="Index">Back to List
</div>

9. Finally, include the jQuery.validate plug-in script to the page
using the Scripts section (see the example in the earlier section “User
Input Validation”). The following shows an example.

Click here to view code image

@section Scripts {
@{await

Html.RenderPartialAsync("_ValidationScriptsPartial");
}
}

Your page should be complete. Listing 17.9 shows a full example of the page.

LISTING 17.9 The Create.cshtml Page Used to Create a New Customers

Click here to view code image

@model AspNet5AppSample.Models.Customer

@{
ViewBag.Title = "Create Customer";

}

<h2>@ViewBag.Title</h2>
<form asp-controller="Customer" asp-action="Create"
method="post"

class="form-horizontal" role="form">

<h4>Create a new customer.</h4>
<hr />
<div asp-validation-summary="ValidationSummary.All"

class="text-danger"></div>

<div class="form-group">
<label asp-for="Name" class="col-md-2 control-

label"></label>
<div class="col-md-10">

<input asp-for="Name" class="form-control" />
<span asp-validation-for="Name" class="text-

danger">
</div>

</div>

<div class="form-group">
<label asp-for="Email" class="col-md-2 control-

label"></label>
<div class="col-md-10">

<input asp-for="Email" type="email" class="form-
control" />

<span asp-validation-for="Email" class="text-
danger">

</div>
</div>

<div class="form-group">
<label asp-for="Notes" class="col-md-2 control-

label"></label>
<div class="col-md-10">

<input asp-for="Notes" class="form-control" />
<span asp-validation-for="Notes" class="text-

danger">
</div>

</div>

<div class="form-group">
<label asp-for="OptInEmail" class="col-md-2

control-label"></label>
<div class="col-md-10">

<input asp-for="OptInEmail" class="form-control"
/>

<span asp-validation-for="OptInEmail"
class="text-danger">

</div>
</div>

<div class="form-group">
<div class="col-md-offset-2 col-md-10">

<input type="submit" class="btn btn-default"
value="Create" />

</div>
</div>

</form>

<div>
<a asp-controller="Customer" asp-action="Index">Back

to List
</div>

@section Scripts {
@{await

Html.RenderPartialAsync("_ValidationScriptsPartial");
}
}

Run the application and click the Customers link. From the customer list page,
select the Create New link (upper left). This should show the view as
displayed in Figure 17.25. Enter a customer and click the Create button. You
should be returned to the list of customers and should see your newly created
customer in the list. You can also verify client-side validation by filling out an
invalid form and trying to submit it to the server.

FIGURE 17.25 The Create.cshtml view for creating a new customer
and posting it back to the controller.

Edit an Existing Customer
The Edit view is pretty much the same as the Create view. In fact, you can copy
the markup inside the Create.cshtml page created in the prior example,
add a line of code, change a couple cosmetic things, and you will have an
Edit.cshtml page. The following walks you through this simple process
(assuming you built the Create view earlier):

1. Right-click the Customer folder and choose Add, New Item.
From the Add New Item dialog, select the MVC View Page template.
Name the page Edit.cshtml and click the Add button.

2. Remove the default contents of Edit.cshtml.
3. Open the file you created in the prior example, Create.cshtml.

Copy all the markup for the view. Paste this markup inside

Edit.cshtml.
4. At the top of the page, change the page title (ViewBag.Title) to

“Edit Customer.” You can also change the contents of the <h4/> tag to
“Edit an existing customer.”

5. Edit the <form/> tag to point to the Edit action of the Customer
controller as in the following.

Click here to view code image

<form asp-controller="Customer" asp-action="Edit"
method="post"

class="form-horizontal" role="form">

6. Add a hidden field inside the form for working with the Customer.Id
property. You can use the TagHelper for <input/> to do so as in the
following example.

Click here to view code image

<input asp-for="Id" type="hidden" />

7. Near the bottom of the markup, edit the Submit button value attribute to
read Save (instead of Create).

The Edit.cshtml page is now complete. Run the application, and then
click the Customers link at the top of the page. Select a customer from the
list and click the Edit link. This brings up the page shown in Figure 17.26.
Make a few changes and click the Save button.

FIGURE 17.26 The Edit.cshtml view for editing an existing customer
and saving the results to the database via the controller.

Delete a Customer
There is nothing more you need to do to process a delete request. Recall that
the customer list view already includes an ActionLink for Delete. The
controller accepts a GET request using a customer Id as a parameter. Simply
run the code and select a customer you want to delete.

View Components, View Models, and Partial Views
The customer example presented thus far shows working with a complete
model class (Customer) and single views (Index, Create, Edit) that
represent a full page. However, there are times when you need to reuse part of
a view across different pages. For these occasions, ASP.NET allows you to
create partial views and the new view components. Similarly, you may find
yourself needing only a portion of a model class or a mix of a couple different
objects and their properties. This is often the result of a specific view that
does not map well to your individual model classes. In this case, you can
create a view model. Let’s take a look at each of these modular components.

Partial View
A partial view is markup that does not represent a full body section of your
page. Instead, the markup is meant to be used inside another view. This solves
the problem of view reuse across multiple pages in your site. Partial views can
also be strongly typed to a model (or a view model). The convention for
creating partial views is using the underscore in front of the file name, as in
_LoginPartial.cshtml.
A common way that partial views are added to a page is using an @Html
helper inside the parent page’s markup. The helpers for displaying partial
views are @Html.Partial and @Html.RenderPartialAsync.
An action method on your controller can also return partial views. This is
typically used when sending an AJAX (asynchronous JavaScript) request from
your page to the server (controller). The partial result is returned, and only a
portion of the page is updated. (The page does not fully refresh.) In this case,
you use the PartialViewResult action.
Let’s consider an example. Suppose you are writing a page to allow a user to
look up a customer by name. You might then display the results as a partial
view. Creating a partial view that shows customer details may also be useful
on other views where customer details are needed. The following walks you
through creating this partial view and calling it asynchronously from the client.

1. This walkthrough builds on the site previously created called,
AspNet5AppSample. It uses an ASP.NET 5 MVC 6 Web Site template. It
also is configured with a model, controller, and views for working with
customer data. If you have not created this site, you can also download
this example from the source code for this book.

2. You can store all your partial views in the Shared folder as a common
convention. Or you can reserve this folder just for site-wide partial
views. In this case, the partial view is specific to the customer domain;
therefore, we will store it in the Customer folder.
Right-click the Customer folder and choose Add, New Item.
From the Add New Item dialog, select the MVC View Page template.
Name the page _DetailsPartial.cshtml and click the Add
button.
Remove the default contents from the view.

3. The markup for this partial view is straightforward. You start by strongly
typing the partial view to a Customer instance. You then use the

@Html helpers to create labels and values for the customer object. You
can wrap the results in an If statement to verify a valid customer.
Listing 17.10 shows an example.

LISTING 17.10 The _DetailsPartial.cshtml Partial View

Click here to view code image

@model AspNet5AppSample.Models.Customer

<hr />
<h3>Customer Details:</h3>

@if (Model != null)
{

<div>
@Html.LabelFor(model => Model.Name):

@Html.DisplayFor(model => Model.Name)

@Html.LabelFor(model => Model.Email):

@Html.DisplayFor(model => Model.Email)

@Html.LabelFor(model => Model.Notes):

@Html.DisplayFor(model => Model.Notes)
</div>

}
else
{

<div>Customer not found.</div>
}

4. Next, create a view for entering a customer name and looking up the
results. Create the view as an MVC View Page inside the Customer
folder; name it Lookup.cshtml.
The markup should include a text box for entering a customer name, a
button for submitting a request, and a <div> tag to be a placeholder for
the partial view. Listing 17.11 shows an example.
Notice that the button is set to <input type="button" ... />
instead of Submit. This is to prevent the form from submitting to the
server. Instead, we will add some JavaScript code to load the partial
view when the button is pressed.

LISTING 17.11 The Lookup.cshtml View

Click here to view code image

@{ ViewBag.Title = "Lookup Customer"; }

<h2>Lookup Customer</h2>

<form id="form-lookup">
<div class="form-horizontal">

<hr />

<div class="form-group">
@Html.Label("LookupName", "Customer name",

htmlAttributes: new { @class = "control-label
col-md-2" })

<div class="col-md-10">
@Html.TextBox("LookupText", "",

htmlAttributes: new { @class = "form-
control" })

</div>
</div>
<div class="form-group">

<div class="col-md-offset-2 col-md-10">
<input type="button" id="buttonLookup"

value="Lookup"
class="btn btn-default" />

</div>
</div>

</div>
</form>

<!--placeholder for the customer details-->
<div id="CustomerDetails">
</div>

5. Add a Scripts section to the bottom of Lookup.cshtml. Here you
will use jQuery to trap the button click event. (jQuery is covered in
greater detail in the following two chapters.) The jQuery load event will
also be used to call the controller and load the partial view into the tag
<div id="CustomerDetails">. Listing 17.12 shows an
example.
Notice the use of @Url.Action. This is server-side Razor code to
create a URL for the partial view. The jQuery load event takes this URL
along with any parameters you want to send. In this case, the parameters
come from a jQuery selector for the text box. The parameter is defined as
an object in the load method. Therefore, the jQuery method will send the
request as an HTTP POST to the controller.
This call maps to the controller method DetailsPartial(string
lookupText), which you will create in a moment. This method
returns a partial view to be loaded into the <div> tag asynchronously
(thanks to jQuery).

LISTING 17.12 The Button Click Event Loads the Partial View into the
<div> Tag

Click here to view code image

@section Scripts {
<script type="text/javascript">

$('#buttonLookup').click(function () {

//clear customer details
$('#CustomerDetails').html("");

$('#CustomerDetails').load(
'@Url.Action("DetailsPartial", "Customer")',
{ lookupText: $('#LookupText').val() }

);
});

</script>
}

6. Now let’s add a method to the CustomerController to return the
customer lookup page. This method is named Lookup and is
straightforward, as shown here.

Click here to view code image

public IActionResult Lookup()
{

return View();
}

7. Next, add another controller method for returning the partial view. Name
this method DetailsPartial. It should take a string parameter to
hold the text to look up from the customer database.
Decorate the method with HttpPost to indicate it should be called
using a POST method.
After looking up the customer, use PartialView as the return value.
This method can take the name of the partial view
(_DetailsPartial) and the object you want to bind to this view (a
Customer instance).
The following shows an example of this controller method.

Click here to view code image

[HttpPost]
public IActionResult DetailsPartial(string
lookupText)
{

//get customer based on name
Customer customer =

db.Customers.FirstOrDefault(n => n.Name ==
lookupText);

//return partial view
return PartialView("_DetailsPartial", customer);

}

This partial view example is now complete. Run the application and
navigate to http://localhost:[your-port]/Customer/lookup (you can also
add a link to this page). Type a name in the text box and click the Lookup
button. Figure 17.27 shows the results.

FIGURE 17.27 The _DetailsPartial.cshtml view being rendered
inside the Lookup.cshtml view via the jQuery.load call to the

controller.

View Component
ASP.NET 5 MVC introduces the concept of view components. A view
component is a class that is responsible for rendering a portion of the
response. This is similar to a partial view as discussed in the prior section.
However, a view component has its own class that works like a controller.
This keeps the code for the component separate from your regular controllers
and self-contained. In addition, the class derives fromViewComponent,
which makes coding and using these component views for complex tasks a bit
easier.
Let’s look at an example. The following builds on the customer example we
created previously. Here, we will add a view to confirm the user’s request to
delete a customer. This page will use a view component we create. The view
component consists of a class that derives fromViewComponent and a
Razor view. The view can be any markup; in this case, we will leverage the
_DetailsPartial.cshtml created in the earlier partial view example.
Let’s get started:

1. You can store your view components anywhere in your project. You
might create a separate folder in which you store all of them, for
example. In this case, we will simply store it inside the existing

Controllers folder.
Right-click the Controllers folder and choose Add, New Item.
From the Add New Item dialog, select the class template. Name the class
file CustomerDetailsViewComponent.cs and press the Add
button.

2. Add using statements to the top of the class file for all of the
following.

Click here to view code image

using Microsoft.AspNet.Mvc;
using System.Linq;
using AspNet5AppSample.Models;

3. Mark the class as inhering fromViewComponent, as in the following.
Click here to view code image

public class CustomerDetailsViewComponent :
ViewComponent

4. Like the CustomerController, this ViewComponent will
require a database context. Add a local variable to hold the
CustomerDbContext instance and a constructor to set this instance.
Listing 17.12 includes this code.

5. The ViewComponent class uses the methods Invoke and
InvokeAsync to create and return an instance of the view.
Add an Invoke method that takes an id parameter as int. The method
should return the IViewComponentResult interface.
Listing 17.13 shows the completed ViewComponent class.

LISTING 17.13 The CustomerDetailsViewComponent Class

Click here to view code image

using Microsoft.AspNet.Mvc;
using System.Linq;
using AspNet5Unleashed.Models;

namespace AspNet5AppSample.Controllers
{

public class CustomerDetailsViewComponent :
ViewComponent

{
private CustomerDbContext db;

public
CustomerDetailsViewComponent(CustomerDbContext
context)

{
db = context;

}

public IViewComponentResult Invoke(int id)
{

Customer customer =
db.Customers.FirstOrDefault(x => x.Id == id);

return View("_DetailsPartial", customer);
}

}
}

6. You can use the _DetailsPartial.cshtml created in the prior
example as the actual view markup. However, this page must be placed
in a specific directory for ASP.NET to find your view based on the view
component.
Add a Components folder under Views/Customer. Then add a
folder called CutomerDetails under the newly created
Components folder.
Copy a version of _DetailsPartial.cshtml into the
CustomerDetails folder. We make a copy so as not to break the
prior example. Figure 17.28 shows what Solution Explorer should look
like.

FIGURE 17.28 Place your view components in a folder named the same as
your actual view component class (minus the words ViewComponent).

This folder should itself be in a Components folder.

7. Add a new MVC View Page to the Views/Customer folder. Name the
page ConfirmDelete.cshtml. This will serve as a confirmation
page for deleting a customer (and not a view component or partial view).
This view can be strongly typed to an int (customer ID). The customer
ID will be bound to this page. The page will then use
Component.Invoke method to call the view component, pass the
customer ID, and display the partial view. Listing 17.14 shows an
example of this view page.
Note also that this page used an ActionLink to delete the customer.
This calls the CustomerController.Delete method discussed
earlier in the chapter.

LISTING 17.14 The ConfimDelete.cshtml File

Click here to view code image

@model int?

<hr />
<h3>Confirm Delete</h3>

@if (Model != null || Model != 0)
{

<p>Are you sure you wish to delete this customer?
</p>

@Component.Invoke("CustomerDetails", Model)

@Html.ActionLink("Delete", "Delete", new { id =

Model })
}
else
{

<div>Customer not found.</div>
}

8. Open the CustomerController class and add a method to show the
ConfirmDelete.cshtml page. This method should take an id parameter
and pass that id parameter to the page (which will then pass it to the
view component). The following shows an example.

Click here to view code image

public IActionResult ConfirmDelete(int id)
{

return View(id);
}

9. Open the Customer\Index.cshtml page and add another link to the
navigational elements inside the table rows (near the bottom). This will
be for the Confirm Delete view. You can leave the other Delete link in
the table as a reference to the prior example. This markup should look
like this:

Click here to view code image

<a asp-controller="Customer" asp-
action="ConfirmDelete"

asp-route-id="@item.Id">Confirm Delete

Run the application to see the results. Select Customers from the top-level
navigation. Select Confirm Delete for one of the existing customers. You
should be presented with the page, as shown in Figure 17.29. Click the Delete
button to delete the selected customer.

FIGURE 17.29 A view component showing customer details on the Confirm
Delete page.

ViewModels
Not all your models will align directly to your views as they have thus far in
the Customer model sample. Many times, you will have a page that needs to
use multiple model classes to show a complete picture to the user. In this case,
you create a view model with one property for each required model. It is
called a view model because it only exists to service your views (and is not a
representation of your data domain).
A view may also need page-specific values or calculations that have little to
do with your model. Again, the approach here is to create a view model with
properties specific to the requirements of the view.
View models are typically stored in their own folder in the solution called

ViewModels. You create a view model by simply defining a class file (like
other POCO models). This class will contain the properties for your view-
specific model. These properties often extend one or more existing models
from your regular model classes. You can then use that view model (in lieu of
your actual model classes).
Using a view model involves strongly typing your view (as you have seen in
the other examples) to this view model class. You then pass it to the view
inside your controller method that handles the request. When the data is posted
back to the controller, the controller is responsible for dealing with the model
and making sure any database records are updated accordingly.

Using Scaffolding to Generate a Controller and Views
This chapter has presented the details of building a controller and views
manually. However, Visual Studio 2015 ASP.NET 5 MVC 6 include a tool for
generating a controller class and a set of basic views (create, delete, details,
edit, and index) based on your model. This tool is found in the DNX command
line (discussed previously) and is called gen. This can save a lot of time
generating the basics. You can then adapt these files to your specific needs.
You can use dnx . gen from the Developer Command Prompt for VS2015
console. The following walks you through this process using the Customer
and CustomerDbContext model classes created previously:

1. Start by creating a new project based on the ASP.NET 5 MVC 6 Web
Site template. Name the project DNXGenControllerViews.
You can open project.json and scroll to the “commands” section.
There you will see the gen command definition for your project as,
"gen": "Microsoft.Framework.CodeGeneration".

2. Use Windows File Explorer to copy the Customer and
CustomerDbContext classes from the prior model example (or the
code download for this book) into the Models folder. Open each file
and change the namespace definition to match your new project name.

3. Recall that in the prior model example you then set the database
connection string inside config.json. You should repeat this process
here. You should also have created the AspNet5Unleashed database in
the prior model example. You will use that here too.
The dnx . gen tool will need you to set the connection string in your
DbContext class as well (at least until the code gen is complete). We
will look at that in a moment.

4. As in the prior model example, open Startup.cs and add the
CustomerDbContext to the ConfigureServices method as in
the following.

Click here to view code image

services.AddEntityFramework()
.AddSqlServer()
.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration
["Data:DefaultConnection:ConnectionString"]))

.AddDbContext<CustomerDbContext>(options =>

options.UseSqlServer(Configuration
["Data:DefaultConnection:ConnectionString"]));

5. Open CustomerDbContext. Add an override for the DbContext
OnConfiguring method. Here use the
DbContextOptionsBuilder.UseSqlServer method to pass a
connection string to the generator during configuration. This is a viable
approach. However, post code generation you can remove this method.
The following shows an example of this override.

Click here to view code image

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)

{
optionsBuilder.UseSqlServer(@"Server=

(localdb)\ProjectsV12;
Database=AspNet5Unleashed;Trusted_Connection=True;
MultipleActiveResultSets=true");
}

6. You can now use dnx . gen to generate your controller and views
from the CustomerDbContext object and related Customer
model. To get started, open the Developer Command Prompt for VS2015
console (accessed from Windows Start, Developer Command Prompt for
VS2015).
Use the cd command to Navigate the prompt to the folder that contains
your project.json file.

7. Next, you need to use DNVM to add a .NET runtime for use by the
command window. You can do so using the use command. To see a list
of available runtimes, type dnvm list. To bind a runtime to the path,
use the following command at the prompt (where your version number
matches that found in the dnvm list):

dnvm use 1.0.0-beta4

8. Next, execute the dnx . gen command. You tell the command to
create a controller (views come along for the ride) by specifying the –
name parameter. You then use --model parameter to set your model
class. Finally, use --dataContext to point to your data context
object. The following shows an example.

Click here to view code image

dnx . gen -name CustomerController --model Customer
-dataContext
CustomerDbContext

You should now have a CustomerController class in the Controllers
folder and a set of views in the Views/Customer folder. Figure 17.30 shows an
example of the new files in Solution Explorer.

FIGURE 17.30 The generated controller and views for the Customer
model.

Note that at the time of writing, the DNX tools generated scaffolding using the
HTML Helper classes (and not the TagHelpers). These templates also require
some cleanup for use with the ASP.NET 5 MVC 6 project template. The
following walks you through this process (for the templates at the time of
writing). You can also download this code from the book’s source.

1. Each template includes a call to Layout at the top of the page. This is
already in _ViewStart.cshtml and thus needs to be removed from each
generated page.

2. Each view generated includes markup for <html> and <body>. All of
this needs to be removed from each page (as it is already defined by
_Layout.cshtml. Only the actual page elements and related Razor code
should remain.

3. The Create.cshtml page is generated with an edit field for the Id

property. This needs to be removed.
4. The pages do not include references to the validation script files. You

need to add these to both Create.cshtml and Edit.cshtml at the bottom of
the page. The following shows an example:

Click here to view code image

@section Scripts {
@{await

Html.RenderPartialAsync("_ValidationScriptsPartial");
}
}

Future versions may improve on the templates generated. In addition, this is an
extensible framework. Therefore, look for additional templates to become
available. You can now run the application and navigate to /customer to
see the results.

Summary
This chapter started by showing the basics of a website processing from client
to server using ASP.NET. We then introduced the new ASP.NET 5, which
works with both the full .NET Framework and the new .NET Core. You can
use it to build and run applications on Windows, Mac/iOS, and Linux/Android.
The new project template for ASP.NET 5 includes package managers for both
server and client libraries. The server libraries are managed through the
familiar NuGet. Client libraries now use the open source package manager,
Bower (along with NPM and Gulp for related tasks).
ASP.NET 5 MVC 6 projects provide a powerful programming model for
handling user requests. This includes a controller for processing a routed
request, selecting a model object, and combining model with view to return to
the user. We also looked at reuse with partial views, component views, and
view models.
Visual Studio provides tooling that makes adding ASP.NET MVC features
straightforward. You can use the Razor syntax and @Html helper methods for
easily creating page markup. There is support for generating your database
using EF7 migrations and the dnx . ef commands. You can also use the
dnx . gen tool to create a controller and set of views based on your data
model.
In the end, web developers should be excited by this latest release—the first
since Microsoft open sourced ASP.NET.

Chapter 18. Using JavaScript and Client-Side
Frameworks

In This Chapte r
JavaScript Fundamentals
Developing with jQuery
Building Single-Page Applications (SPAs) with Client-Side
JavaScript Frameworks

JavaScript has become the key language for client-side development of web
applications. It runs in all browsers on all platforms on all device types, and it
delights users with the increased interactivity, responsiveness, animations, and
native-like feel it allows us to produce. JavaScript is required for writing
client applications for ASP.NET or any other web server platform (PHP, Ruby,
Python, and so on) because it runs on the client—all clients. JavaScript even
extends to mobile applications, including Windows Store (WinJS) and cross-
platform apps built with Cordova (see Part VII, “Creating Mobile Apps”). It’s
fair to say that if there is a Hypertext Transfer Protocol (HTTP) call involved,
there is a good chance you’ll need JavaScript skills to write a portion of the
user interface.
There was a time when web developers all but ignored JavaScript. These
developers wrote a lot of code that ran on the server, spent time making things
look nice with Hypertext Markup Language (HTML) and Cascading Style
Sheets (CSS), but used JavaScript sparingly for two reasons. First, JavaScript
seemed complex because it is a dynamic language (and not very object-
oriented). Second, the implementation of JavaScript to work with an HTML
document object model (DOM) was different across browsers. This meant
writing code for one browser and then fallback code to support other browsers
and older versions. This was too much work. However, it resulted in the rise
of JavaScript client frameworks.
JavaScript client frameworks ease the burden of writing cross-browser
compliant JavaScript. They unlock the power of the ubiquitous nature of the
language. These frameworks (such as the popular jQuery) make it easy to work
with the DOM for partial-page updates, animations, touch, responsive design
based on screen size, client-side data interactivity, and similar. These
frameworks continue to evolve and make developers more productive.
This chapter is not as much about Microsoft Visual Studio features as it is
about using Visual Studio to write client-side code. Our intent is to give Visual
Studio web developers a foundation for using these technologies in their
applications to delight their users.

JavaScript Fundamentals
JavaScript and jQuery have become synonymous with web development. You
use HTML to define content, CSS for presentation, and JavaScript for client-
side behavior. We assume you have a good understanding of the first two; this
section covers some of the key fundamentals of using the JavaScript language.
We then cover what is now a key framework: jQuery.
Visual Studio, of course, supports client-side web development with
JavaScript, jQuery, and many related client frameworks. Following these
introductory sections, we explore building applications with Visual Studio that
leverage JavaScript and some of the key client frameworks.

Storing and Using Scripts
JavaScript can be embedded directly inside a web page or stored as a separate
script file. Before getting started with the language, let’s look at where you can
write JavaScript, how you store it, and how you can include it in your pages.

Embed Script on a P age
You can embed JavaScript code directly inside a page. This is true of .html
pages and .cshtml views (and other .NET pages). The JavaScript will
execute where it is found within the page. Later in this chapter, you will see
how you can use events to determine when your JavaScript code should
execute.
The JavaScript code placed inside a page should be contained within a
<script> tag. The <script> tag looks like this.
Click here to view co de image

<script type="text/javascript">

//my client-side code

</script>

This <script> tag can sit anywhere within your HTML markup. However, it
is recommended that you place the <script> tag (and JavaScript it contains)
at the end of your page just before the closing </body> tag. Placing it
elsewhere in the page makes the page load slower. This also ensures the DOM
is loaded before your script is executed.
Code encountered by the browser ’s JavaScript parser that is not within a
function (see “Functions” later in this chapter) will be executed as it is found.
For example, the following alert will pop up as the page loads or is refreshed.
Click here to view co de image

<script type="text/javascript">

alert('hello world');

</script>

Code should be placed in functions and then called as part of a page or user
event. We cover both functions and events later in the chapter. In fact, if you do
need to run code when the page loads, there is an event for that purpose.

Create a Script F ile
If you are writing more than a few lines of JavaScript for your pages, it is often
a best practice to store this code in its own file. This keeps your view markup
separate from your code. It also increases the likelihood that you may be able
to write some reusable JavaScript.
You create a JavaScript code file as any text file using the .js extension.
Visual Studio allows you to create a JavaScript file for your project by right-
clicking the project in Solution Explorer and choosing File, New Item. You can
store your JavaScript files anywhere in your solution. It is common to create a
directory named src (for source) to do so.
To use a JavaScript file on a web page, you can again use the <script> tag.
In this case you use the src attribute of <script> to indicate the location of
the script you want to use. The following shows an example. Again, be sure to
place this at the end of your HTML markup, before the closing </body> tag.
Click here to view co de image

<script src="~/lib/jquery/jquery.js"></script>

Visual Studio is not required for anything we discuss in this section. You can
create everything here in a standard .html page, edit it in Notepad, add your
JavaScript, and open the page in a browser. Of course, Visual Studio makes it
easier to write JavaScript; this includes IntelliSense for the language.
JavaScript is also part of the ASP.NET Model-View-Controller (MVC)
projects you write using Visual Studio.

Writing JavaScript
JavaScript is not unlike C#. In fact, they both have their roots in Java. Hence,
you will find many similarities—if you can read and write C#, you can read
and write JavaScript. They both use brackets to group sections of code; end
lines with semicolons; concatenate strings with +; use the logic operators &&
(and), || (or), ! (not); call properties and methods with dot notation; and use
this as a keyword. The similarities continue from there: global and local
scoping rules, switch statements, looping constructs (for...next, do
...while), conditions (If...Else), objects with properties and methods,
functions with parameters, events, comments, operators, variables, functions,
and more.
JavaScript does simplify data types using only numeric, string, and Boolean for
simple types. Of course, you can create complex objects that include these
types (and other objects). JavaScript also simplifies collections using only an
array. However, all these items pretty much work the same as they do in C#. In
fact, take a look at the following two code segments: one C# and one
JavaScript. Notice that they are essentially the same; the primary exception is
that the C# code is written inside a class (in this case, a Console application
with the Main() method). The JavaScript code is just script (a class
definition is not required). The other difference is that C# requires a delegate
for a lambda expression (findBike). JavaScript simplifies this by allowing
you to assign the function to a variable. In general, however, you should be
able to read and write using both languages with a few semantic differences.
C#

Click here to view co de image

delegate int search(string text);

static void Main(string[] args)
{

string[] bikes = new string[]
{ "BMX", "10-Speed", "Cruiser", "Road", "Mountain"

};
var searchBike = "Road";

//Lambda expression using a delegate
search findBike = (string text) => {

for (int i = 0; i < bikes.Length; i++)

{

if (text == bikes[i])

{

return i;

}

}

return -1;

};

Console.WriteLine("Bike found at: " +

findBike(searchBike).ToString());

Console.ReadLine();

}

JavaScript
Click here to view co de image

var bikes =
["BMX", "10-Speed", "Cruiser", "Road", "Mountain"

];
var searchBike = "Road";

//Assign a function to a variable.
var findBike = function(text) {

for (i = 0; i < bikes.length; i++)

{

if (text == bikes[i])

{

return i;

}

}

return -1;

};

alert("Bike found at: " + findBike(searchBike));

The power of JavaScript is not necessarily the language; it is what you are
able to do with the language. These tasks include manipulating the browser
window and the document object model (DOM) on the user ’s computer running
your page. This is the true power of JavaScript.
There are many ways to write functions, create objects, and manipulate the
DOM; this variety is what makes JavaScript sometimes difficult to read and

understand. The core language, however, should be pretty familiar. First, let’s
start with a deeper overview of some of the unique elements of JavaScript that
make it different to C# developers. We will then look at harnessing some of the
power to work with web pages inside a client’s browser. Once you have
adapted to working with JavaScript, you should become effective very quickly.

Note
If you really do need to start at the beginning with JavaScript, we
hope you use this chapter as a primer. There are many other great
resources out there, such as Sams Teach Yourself Java in 24
Hours.

Functions
We start with functions as that is the primary script code that JavaScript
developers write. C# developers will notice that functions are not bound by
namespaces or classes. Instead, they are just defined as script. You can then
call these functions inside your page as a response to a user action or similar.
A JavaScript declarative function is code you write to execute an action and
possibly return a value(s). Again, this should be familiar to server-side
developers. Functions can be declared anywhere in your script, including as a
method of a JavaScript object (more on this in a moment). You declare a
function with the keyword function. You then name it, set any parameters
inside parentheses, and use the return keyword to return a value from the
function.
As an example, the following JavaScript function calculates the average speed
(as miles/hour). Notice that it takes two parameters and uses the return
keyword to provide the results.
Click here to view co de image

//Calculate average speed using named function.
function averageSpeed(distanceMiles, timeMinutes) {

return distanceMiles / (timeMinutes / 60)
}

You can call this function (inside the same script file or web page) by name.
The following shows an example. Of course, in most cases a call to this
function happens as the result of user action (clicked a button, navigated away
from a field, etc.). And, the values you pass into the function would likely
come from user input. We will see that shortly.
Click here to view co de image

var speed = averageSpeed(22, 90);

Note that functions can return more than one value. You can do so using an
array as the return type. However, if you need to return more than one value, it
is often cleaner to return an object with multiple properties (see the “Objects”
section later in this chapter).
The averageSpeed function is known as a named function. It has a name;
can exist anywhere in your script; and can be called from anywhere in your
script or on the web page. JavaScript interpreters look for named functions

before executing any code. The interpreter finds these functions and loads then.
It then looks for any script that is meant to be executed immediately (including
those that call a named function) and then begins executing your code line by
line as we will see next. Some functions are only called based on user action
(click a button, select a value, etc.). The browser works with the JavaScript
interpreter to execute those functions too.

Anonymous F unctions
You will often write functions without names; a function without a name is
known as an anonymous function. You write anonymous functions when you
need the power of a function but do not intend to reuse that function throughout
your code. These functions can also help prevent name conflict between
multiple scripts used in the same page (as there is less likely a conflict if the
function is unnamed).
For example, assigning a function to a variable uses an anonymous function.
However, this creates a function expression. A function expression is when a
function is used where the interpreter might normally expect to see an
expression. The interpreter does not find these in advance of running your
script. Instead, the interpreter encounters them as it executes your code, line by
line. Therefore, you must declare your function expression (using an
anonymous function) first, before calling it. The following shows the prior
example now written (and executed) using a function expression.
Click here to view co de image

//Calculate average speed with function expression.
var speed = function(distanceMiles, timeMinutes) {

return distanceMiles / (timeMinutes / 60)
}
var mySpeed = speed(22, 90);

Immediately Invoked F unction Expressions (IIF E)
There are also times when you will need the power of an anonymous function
directly inside a line of executing code. These type of functions are known as
immediately invoked function expressions, or IIFE (pronounced “iffy”). You
write an IIFE by enclosing the function in parentheses, as in
(myFunction(){});. You call the function directly using parentheses after
the declaration, as in (myFunction(){}());.
The following shows the average speed calculation as an IIFE. In this case, the
function is immediately executed by the interpreter when it encounters the line
of code. It returns the value to the variable bikeSpeed. This value is then
used in the alert message. (The function is not and cannot be called a second
time.)
Click here to view co de image

var bikeSpeed = (function (distanceMiles, timeMinutes)
{

return distanceMiles / (timeMinutes / 60)
}(22, 90));

alert(bikeSpeed);

Functions are everywhere in JavaScript. It is important that you understand
these few key differences to work with them effectively. Functions can also be
assigned to an object. In doing so, the function becomes a method of that
object. Let’s look at that next.

Objects
JavaScript can be used to define objects. These objects act like classes in that
they contain properties and methods. Like other languages, you use objects in
JavaScript to make your code more readable, easier to understand, and thus
more maintainable. There are two primary ways to create objects in
JavaScript: using the literal notation, and using the object construction
notation. Let’s look at each.

Literal Notation
You create an object using the literal notation by assigning a variable as the
object name and then using brackets to contain the properties and method for
the object. Each property and method is defined using a colon and separated by
a comma. The methods are defined as a function. The following shows an
object created in JavaScript using literal notation.
Click here to view co de image

var ride = {

bikeType: 'Road',

weather: 'Clear',

distanceMiles: 22,

timeMinutes: 90,

averageSpeed: function () {

return this.distanceMiles / (this.timeMinutes /
60);

}
}

Notice that in this example, the method averageSpeed used the this

keyword to reference properties of the object.
	
You can also assign properties and methods directly to a blank object (or add
	
properties and methods to an existing object). You do so with the dot notation.
	
The following code starts by defining an object using empty brackets. It then
	
adds properties and a method using assignment (=).
	
Click here to view co de image

var ride = { };

ride.bikeType = 'Road';

ride.weather = 'Clear';

ride.distanceMiles = 22;

ride.timeMinutes = 90,

ride.averageSpeed = function () {

return this.distanceMiles / (this.timeMinutes / 60);
};

Object Constructor Notation
The constructor notation allows you to create objects using a constructor (a
method that is used to define an object). You can do so in two ways. First, you
can create an instance of an Object type using the new keyword. You can
then add your properties and methods to that object. The following shows an
example.
Click here to view co de image

var ride = new Object();

ride.bikeType = 'Road';

ride.weather = 'Clear';

ride.distanceMiles = 22;

ride.timeMinutes = 90,

ride.averageSpeed = function () {

return this.distanceMiles / (this.timeMinutes / 60);
};

Second, you can use a function to write a named constructor for an object. This
function will take the object values as parameters. It then uses the this
keyword to define properties and methods. You can then use this constructor to
create one or more instances of your object using the new keyword. The
following shows this example.
Click here to view co de image

function Ride(bikeType, weather, distanceMiles,
timeMinutes) {

this.bikeType = bikeType;

this.weather = weather;

this.distanceMiles = distanceMiles;

this.timeMinutes = timeMinutes,

this.averageSpeed = function () {

return this.distanceMiles / (this.timeMinutes /
60);

};

}

var myRide = new Ride('Road', 'Clear', 22, 90);

JavaScript and Inte llise nse
Visual Studio provides IntelliSense when working with
JavaScript in the IDE. Figure 18.1 shows an example calling the
Ride function with constructor notation.

FIGURE 18.1 Visual Studio provides IntelliSense when working with
	
JavaScript.
	

Using, Adding, and Removing Items
You can use an object’s properties in methods with the dot notation. For
example, to get the weather property for the ride object, you would write this.

var w = ride.weather;

You can also access this property using braces, as in the following.

var w = ride['weather'];

You can follow this same syntax for writing values like this:

ride.weather = 'Cloudy';

You can clear a property by setting it to a blank string as in this example.

ride.weather = '';

Alternatively, you can remove a property from an object. You do so using the
delete keyword, as in the following.

delete ride.weather;

Finally, you can add new properties and methods to an object simply by
defining them using the dot notation. The following shows an example of
adding a method to an existing instance of Ride created using the constructor
notation (last example of the prior subsection).
Click here to view co de image

myRide.ToString = function () {
return 'Bike type: ' + this.bikeType + ' Weather: '

+
this.weather + ' Average Speed: ' +

this.averageSpeed();
};

alert(myRide.ToString());

Built-In Objects
As you will discover, JavaScript does a lot with a select few built-in objects.
It is not as rich as the base class libraries found in the .NET Framework, for
example. Instead, it is streamlined for working with client-side constructs. Of
course, jQuery and the many other client-side frameworks have evolved to fill
any feature gap that might have existed. These allow you to select framework
code which is applicable to your scenario(s). Before we get into those
frameworks, however, let’s take a look at the objects built into JavaScript by
default.
The built-in objects in JavaScript can be classified into three categories:

Global JavaScript Obje cts—These include a set of objects for
handling data types (string, number, Boolean) and for processing real-
world concepts (date, math, and regex).
Browse r Obje ct Mode l (BOM)—An object that represents the user ’s
browser (or tab). The topmost object is window. From there you can
access window.document, window.history,
window.location, window.navigator, and
window.screen.
Docume nt Obje ct Mode l (DOM)—A built-in object for working with
the active web page in which your script is running. You use the
document object for accessing the portions of the page, such as body,
head, and forms.

In this section we cover the global objects. The section that follows discusses
working with the BOM and DOM.

Working with Data Types
You have already encountered the JavaScript built-in objects representing data
types of String, Number, Boolean, and Object. JavaScript is not
typed, however. It is only when you assign a variable a string or numeric value
does it know the variable is of a specific, built-in object. These are global
objects in JavaScript. As such, they contain properties and methods for
working with them. For example, the String object includes the property
length for returning the number or characters in the string. Of course, it also
contains many methods for doing basic string manipulation. Table 18.1 lists the
properties and methods of the JavaScript String type.

TABLE 18.1 The Javascript string Object Properties and Methods
The Number object also has a few methods you can use. Table 18.2 lists these
for reference.

TABLE 18.2 The Javascript Number Object Methods
JavaScript also includes the data type definitions of Undefined and Null.
Undefined indicates that a variable has been declared but has not been
assigned a value. Null indicates that the given variable had a value at one
time but currently does not.

Working with Math, Date, and Regex
JavaScript defines actual, global objects of Date, Math, and Regex for
working with these concepts. The Math object, for example, contains
properties and methods for doing math inside your JavaScript. Table 18.3 lists
these items.

TABLE 18.3 The Javascript Math Object
As an example, suppose you needed to use the Math object to return random
numbers between 1 and 10. The Math.random() method returns a number
between 0 and 1 but with many decimal places. You can use the returned value,
multiply it by 10, and then use floor() to round down the result. This will
give you a number between 0 and 9. You can add 1 to get a number between 1
and 10. The following shows an example.
Click here to view co de image

var rnd = Math.floor((Math.random() * 10) + 1);

The Date object is used to create an instance of a date (either the current date
on the user ’s computer or a date you specify). The date is represented as the
number of milliseconds since midnight on January 1, 1970. Of course, you can
format this date to appear as you like.
For example, the following code create a Date instance based on the current
date. The result is an alert box showing Sun Mar 08 2015.
Click here to view co de image

var today = new Date();

alert(today.toDateString());

Table 18.4 lists the many methods of the Data object. You can, of course, use
these in your code when working with a date concept.

TABLE 18.4 The Javascript Date Object
The Regex object is used to creating and executing regular expressions with
JavaScript. These expressions help with pattern-matching and doing search
and replace functions on text. For example, you can write a regular expression
to determine if a given string matches a valid email address. Regex uses its
own notation for describing patterns. This is a specialized notation of its own.
Therefore, we do not cover it here. However, there are many good regular
expression references available on the Web.

Working with the Browser Object Model (BOM)
One of the key purposes of JavaScript is to work with the BOM and the DOM.
You use these objects to change your application inside the user ’s browser.
This includes manipulating look and feel, navigating to other pages, modifying
content on the page, and more. Let’s start by looking at what you can do with
the BOM.
The browser object model is a model of the current browser or tab in which
your page is running. You access this model using the object window. This
object gives you access to many of the features of the actual browser. For
example, the JavaScript code window.print(); will launch the browser ’s
print dialog from your page. There are many such methods and properties of
window—too many to list them all here. However, the following walks you
through a few examples of using window in various scenarios.

Alert the User
You may have noticed that we’ve used the alert method a few times already
in this chapter. This method allows you to display text to the screen. This can
often be helpful when you’re debugging JavaScript. The alert method is off
the window object. You send an alert dialog as follows.
Click here to view co de image

window.alert('Hello World');

Confirm User Action
You can use the confirm method to confirm whether a user wants to take a
given action. This displays a dialog with an OK and Cancel button. The results
are returned as true if the user presses OK. The following shows an
example.
Click here to view co de image

var isConfirmed = window.confirm('Are you sure?');
if (isConfirmed) {

//Do something on true.
}

Open (and Close) a New Window
The window.open method allows you to create a new browser window.
When you do so, you can load a page in the window. You can also set
properties of the window itself, such as height and width. The following shows
opening a new window and loading an About page.
Click here to view co de image

var newWin = window.open("home/about", "newWin",

"width=400, height=500", false);

newWin.focus();

You can then close the window using the window.close method. For
example, you might add an anchor tag to the About page (as loaded in the prior
example). This anchor tag can get set to call the window.close method, as
in the following.
Click here to view co de image

Close

Open a Window Relative to Another Window
The window object provides information on positioning. This includes
determining the active windows left and top coordinates relative to the current
screen. The following code shows an example of using this information to open
a new window slightly offset inside the parent window.
Click here to view co de image

var winWidth = 400;

var winHeight = 500;

var left = (window.screenLeft + 50);

var top = (window.screenTop + 50);

window.open('home/about', 'newWin', 'resizable=no,' +
'width=' + winWidth + ', height=' + winHeight +
', top=' + top + ', left=' + left, false);

These are just a few of the things you can do using the window object. The
window object also provides access to a number of child objects. These
objects offer even more core features for manipulating the browser. For
example, the screen object allows you to get the height and width of the screen,
excluding the user ’s task bar (as availHeight and availWidth). Figure

d

18.2 shows the child objects of window and a brief description of each.
	

FIGURE 18.2 The Browser Object Model.

Let’s look at a few more examples. Each of the following uses the window
object along with its child objects shown in Figure 18.2.

Navigate with history
This history object allows you to work with URLs navigated by the user in
the current browser, current session. This includes the back and forward
methods for going to the previous URL and the next one in history. It also
includes the go method for moving to a specific item in history.
The following example creates a back and forward link on your page. This is
the equivalent of using the browser ’s Back and Forward buttons. If there is no
page to go back or forward to, nothing happens.
Click here to view co de image

<

Back

Forwar

>

Control the URL with location
The window.location object allows you to get information for the current
URL as well as navigate to new URLs. You can use the href property to
return the full URL, for example. You can also use it to send the user to a new
URL. The following shows using the reload method to refresh a page when a
user hits a link. (Of course, you could do the same for a button.)
Click here to view co de image

Refresh

Use the screen Object
The screen object gives you details about height (height and
availHeight), width (width and availWidth), color resolution
(pixelDepth), and color palette depth (colorDepth). You can use these
properties to size make decisions about colors and window sizes. For
example, the following shows using the colorDepth property to load a logo
optimized for a user ’s screen.
Click here to view co de image

if (screen.colorDepth <= 8) {

//Load a logo optimized for 8-bit screens.
}
else {

//Load a logo optimized for modern screens.
}

Check Browser Details with navigator
The navigator object gives you details about the current browser running
your page. This includes whether the user has cookies enabled
(cookieEnabled), the name of the browser (appName), the version of the
browser (appVersion), the computer platform running the browser
(platform), and more.
A common use of navigator is browser detection. All browsers are
different; they all support the HTML, CSS, JavaScript standards in different
ways. Sometimes you will have to program your JavaScript and HTML around
the version of a given browser. You may also expect cookies to be enabled to
run your application. With navigator, you can check in advance and notify
the user if there are unmet constraints for using your application.
The previous BOM examples illustrate using the child objects of window.
That is, with one notable exception: document. The document object
gives you access to the actual document object model of the page. This is a
much bigger (and widely used) object. Let’s look at it next.

Document Object Model (DOM)
The DOM is created by a browser to represent the HTML of your current web
page. You can then use this model in your JavaScript code to update elements.
This includes changing values, updating styles, adding content to various
sections of your page, and more.
Every browser implements the DOM differently. This inconsistent
implementation gave rise to jQuery. In fact, most web developers now rely on
jQuery where they would have previously used DOM methods. The jQuery
framework takes these different DOM implementations into account and
abstracts them from the developer. That said, it is still important to understand
the DOM and be able to work with it either directly or with jQuery. This
section presents an overview of working with the DOM before we dig into
jQuery.
The DOM is represented by an object (window.document) with a standard
set of methods for accessing nodes in the model. The model is the markup for a
web page that is broken down into a hierarchy of nodes called a DOM tree.
These nodes consist of four main types:

docume nt node —The topmost node representing the entire page of
markup. All other nodes for the page are under the document node.
e le me nt node s—Nodes that represent elements in your HTML, such as
<h1>, <div>, <a>, and <p>. Element nodes contain other element
nodes. They can also contain attributes and text nodes.
attribute node s—An attribute node provides descriptive information
about the element that contains the attribute. In the markup <div
id="header">, for example, the DOM creates a node for <div> that

contains an attribute, id.
te xt node s—Node representing the text contained within the element
node. For example, <h1>My Page Title</h1> contains the text
node “My Page Title” inside the element node for <h1>.

Let’s look at how a DOM is built form a standard web page. Listing 18.1 show
a simple HTML page.

LISTING 18.1 Markup of an HTML Page

Click here to view co de image

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<title>Biking Ride Log - Home</title>

</head>
<body>

<div id="header"
style="background-color: lightgray; padding:

20px 20px 20px 20px;">
VS

Unleashed |
About

</div>
<div id="content">

<hr />
<h1 class='pageTitle'>Biking Ride Log</h1>
<ul id="navbar">

View logs
by month

Log new
ride

Edit ride options / metadata

</div>
<div id="footer">

<hr />
<footer>

<p>© 2015 - VS Unleashed</p>
</footer>

</div>
</body>
</html>

The markup for this page is broken into DOM nodes. Figure 18.3 shows a
hierarchical tree representation of the HTML markup in Listing 18.1. (A few
attributes are omitted from the diagram for clarity.) These nodes are then
accessible to your code using the document object. Each node has its own
set of properties and methods for working with the node. You use these
properties and methods to make changes to the content of the node and thus
update the browser ’s rendering of your page. There are also methods for

traversing the DOM via child nodes of an element, sibling nodes, and going
back to parent nodes if needed.

FIGURE 18.3 The DOM as a visual tree.

Accessing Elements (and Subnodes)
You use the many methods of the document object to access the items in the
DOM tree. The method you should use depends on how you intend to access
the node. You might query the DOM for a single element
(getElementById), or you might be searching for a group of elements
(getElementByTagName). Once you have a node, you can use other
methods to traverse its child/sibling nodes. Let’s look at a few examples.

Note
Everything discussed here is supported in the current version of
modern browsers. However, there are some spotty support issues
through the years. If you are using DOM methods, you should
determine your target browsers fist. You should then verify
support for your usage and test against your targets.

Select a Single Node
There are two primary methods for selecting a single node from the DOM. The
first, getElementById, uses the unique nature of the id attribute to find an
element based on its ID value. This is often the easiest method for finding a
single node in the DOM. For example, the following JavaScript returns the
node representing <div id="header"> from Listing 18.1.
Click here to view co de image

var divh = document.getElementById('header');

The second method for accessing a single node is querySelector. This
method allows you to write specific CSS selectors to find the first matching
element in the DOM. There may be more than one matching element, however,
this method returns the first (if you need them all, see
querySelectorAll). For example, to find a node using its ID, you can use
the hash (#), as in the following.
Click here to view co de image

var divh = document.querySelector('#header');

There are many such query selectors. Let’s examine a few more. To get the
<h1> in Listing 18.1 by CSS class name, you would write the following.
Click here to view co de image

var hTitle = document.querySelector('.pageTitle');

You can use querySelector to get even more specific in your selection.
For example, the following looks for an <h1> tag with the CSS class
.pageTitle inside a <div> tag.
Click here to view co de image

document.querySelector('div > h1.pageTitle')

You can also find a form element on your page. For example, if you were
searching for the <input> of type checkbox that is checked, you might
write this.
Click here to view co de image

document.querySelector('#myform

input[type="checkbox"]:checked')

You can use document.querySelector to select against the entire
document. However, you can also use this method from a node to search only
within that node. For example, the following uses getElementById to find
the header node. You can then use querySelector to search within that

node—in this case, to find the first anchor tag within the node (<div>).
Click here to view co de image

var divh = document.getElementById('header');

var anchor = divh.querySelector('a');

Select a List of Nodes
There are times when you want to select all the nodes that match certain
criteria. You may want to highlight certain required form fields on a page by
changing their style, for instance. For these occasions, the document object
includes methods that return all nodes that match a given criteria.
Nodes are returned as a NodeList, which is a special JavaScript collection
object (not an array) containing nodes. Some objects return a static version of
NodeList, which is essentially a snapshot of the list at the time the query
was run. Others return a live NodeList. The live NodeList is updated as
nodes inside your code change, are added, or are removed. The live
NodeList has better performance, so be sure to choose a selection method
accordingly.
You use the getElementByClassName method to return a live
NodeList of elements that have the same CSS class. The following returns a
list of nodes with the same CSS class named hlink. In Listing 18.1, this
would be all the anchor tags. You might then use this list to disable some of
these elements or change their style to highlight them in some way.
Click here to view co de image

var cssList = document.getElementByClassName('hlink');

The getElementByTagName method allows you to select a live
NodeList of elements based on the same HTML tag. You can use this to
select a group of , <div>, <a>, or any HTML element. Like the other
node selection methods, you can use this method from document or from a
given node. For example, the following selects a table by its ID. It then uses
getElementByTagName to select each row in the table. You can then loop
through each row and take action as required.
Click here to view co de image

var tbl = document.getElementById('bikes-table');
var rws = tbl.getElementByTagName('tr');
for (var i = 0; i < rws.length; i++) {

//Take some action with the row.
}

The querySelectorAll method works like the querySelector
method but returns a NodeList (as a snapshot, not live). For example, the
following returns the list items () under the tag, inside the <div>
tag with the ID of content.
Click here to view co de image

var listItems = document.querySelectorAll('#content >
ul > li');

There are other object properties and methods that return NodeList, such as

childNodes (which is a live NodeList). We look at some of this in the
next section when discussing traversing elements (or nodes).

Traverse Nodes
Once you have selected a node, you may need to access its child nodes, sibling
nodes, or parent. For example, you might search for a list definition such as
; you can then access its children nodes as list items . The DOM
exposes methods for traversing your HTML model from one node to the other.
Let’s take a look.

White space Node s
Most browsers treat whitespace (spaces or carriage returns)
between nodes in your markup as actual text nodes. This means
they are child nodes and siblings. You must take this into account
in your DOM JavaScript. This is another reason libraries like
jQuery exist; they take care of this issue on your behalf.

The following shows the code for the example just discussed. This code using
the markup in Listing 18.1. It finds the by its ID and then loops through
each child node using the childNodes property. We use nodeName to
verify that the child node is a list item. Note that nodeName uses uppercase to
reference nodes. We can then take action on that item (in this case, sending an
alert to the user).
Click here to view co de image

var list = document.getElementById('navbar');

for (var i = 0; i < list.childNodes.length; i++) {
var listItem = list.childNodes[i];
if (listItem.nodeName == 'LI') {

//Do something with each list item ...
alert(listItem.textContent);

}
}

Many similar properties allow you to traverse the DOM based on its
hierarchical structure. The parentNode property can be used to reference
the containing element of a node, such as the element for a given
element. The nextSibling and previousSibling properties allow
you to move from one node in a group to the next. For instance, if you have
selected the first item, a call to listItem.nextSibling would
give you the next item in the list. Finally, you can use the
firstChild/lastChild properties to access a node’s child nodes. This
is similar to the childNodes mentioned earlier. However, it simply takes
you directly to the first child in the group (or the last one).

Working with Elements (and Subnodes)
Once you have selected a node or a NodeList, you likely want to take action
on that element (or elements). The JavaScript DOM provides methods for
accessing the text of an element, the value, an attribute within the element, or
the actual HTML contained within the element. There are also methods for
adding and removing elements to the DOM. Let’s take a look at working with
selected nodes.

Update Text of a Node
The textContent property gives you the actual text contained within a
given node. You can use this property to both read and write text. As an
example, the following finds the <h1> in Listing 18.1. It then uses
textContent to change the title of the page.
Click here to view co de image

var titleNode = document.querySelector('div > h1');
titleNode.textContent = "Bike Page Title";

Change a Node Attribute
Sometimes you will need to look within a given element at its attributes. The
DOM exposes methods for checking attributes (hasAttribute), reading
attributes (getAttribute), writing/adding new attributes
(setAttribute), and removing attributes (removeAttribute).
As an example, the following uses getAttribute to verify that the given
element has a class defined as pageTitle. It then uses setAttribute to
add a style definition to the <h1> element. Notice that when it does so, it
sets parameters as name, value.
Click here to view co de image

var titleNode = document.querySelector('div > h1');
if (titleNode.getAttribute('class') == 'pageTitle') {

titleNode.setAttribute('style', 'font-size: xx-
large; color: red;');
}

Edit the HTML Content of a Node
The DOM provides the innerHtml property to get, set, and even replace the
entire contents of an element with new HTML you expect the browser to
render. A common use is to replace a portion of your page based on an AJAX
call to your server. You use the innerHtml property (or the equivalent
jQuery.html property) to do so.
However, innerHtml can be used to execute code you did not intend for
your site (cross-site scripting attack). Therefore, be sure to only insert strings
obtained from a trusted source. Untrusted strings include the query string,
cookies, or user input (forms). If you use content that a user can manipulate,
you must escape that content using an encoding method. We will look at using
innerHtml (and jQuery.html) in coming sections.

Note
A common mistake is using innerHtml when you only need to
insert plain text within your page. In this instance, the
textContent property is more secure because the parser does
not interpret the text as HTML but just as raw text. Use
innerHtml when you are in full control of the string to be
output to the page (see earlier).

There are other ways to add HTML to your page more specifically. We look at
those next.

Add/Remove Elements from the DOM
You can use specific methods for adding nodes to the DOM. These methods
include createElement and createTextNode. When you use these
methods, you add the created node to the DOM. You then tell the DOM where
you want the items to be placed within the DOM tree using insertBefore
or appendChild.
As an example, the following creates a new hyperlink to be used in the
navbar list, as defined in Listing 18.1. It uses createElement,
createTextNode, setAttribute, and appendChild to do so.
Click here to view co de image

//Add an HREF to the DOM.

var hlink = document.createElement("a");

hlink.href = "Map.html";

hlink.setAttribute('class', 'hlink');

//Create text for the link.

var linkTxt = document.createTextNode("Map new ride");

//Add text to the link.

hlink.appendChild(linkTxt);

//Create a list item and add the HREF.

var listItem = document.createElement("li");

listItem.appendChild(hlink);

//Find the list on the page.

var list = document.getElementById('navbar');

//Add the li link to the list.

navbar.appendChild(listItem);

You can also use removeChild to remove a given node from the DOM.
Every node in the DOM is a child of another node (the outermost node being
document). Therefore, every child can be removed.

Tip: Exploring the DOM
You can explore the DOM generated for your web page from
within most modern web browsers. Internet Explorer (IE) allows
you to access the DOM via the F12 debug tools. Figure 18.4
shows an example of the DOM Explorer for the page shown back
in Listing 18.1. Here you can select an element and view
information such as styles and layout.

FIGURE 18.4 Use IE’s F12 tools to explore the DOM.
	

Events
JavaScript is used to run client code in the browser as a reaction to a user
taking action or something on the page happening. These actions are triggered
events to which you can subscribe by writing event-handling functions. There
are dozens of events, such as the page loading, the user clicking a button, the
Tab key being pressed, a hyperlink being selected, and the browser being
resized.
Events are based on a publisher-subscriber pattern. Objects already expose
events that will be triggered when certain things happen. You can then write
code to subscribe to these events. In doing so, your code will then be called
when the event bubbles up.
Let’s take a look at an example. Imagine that you have the markup shown in
Listing 18.2. This page provides a text box to enter a distance (miles) and a
text box to enter time (in minutes).

Note
This code can be found in the download for the book in the
JavaScriptSamples project, VsUnleashedSampleCode folder,
average-speed-dom.html page.

LISTING 18.2 HTML Markup for a Calculator Page for Average Speed

Click here to view co de image

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<title>Biking Ride Log - Average Speed</title>

</head>
<body>

<div id="header"
style="background-color: lightgray; padding:

20px 20px 20px 20px;">
VS

Unleashed |
About

</div>
<div id="content">

<hr />
<h1 class='pageTitle'>Calculate Average Speed</h1>
<form action="/" method="post">

<label>Distance:</label>
<input id="distance" type="text" name="distance"

value="" />

<label>Time (minutes):</label>
<input id="time" type="text" name="time"

value="" />

<div id="calculation">

<label>Average speed (miles/hour): </label>
<label id="averageSpeed"></label>

</div>
</form>

</div>
<div id="footer">

<hr />
<footer>

<p>© 2015 - VS Unleashed</p>
</footer>

</div>
</body>
</html>

Now suppose you want to add client-side code to calculate average speed
anytime a user enters a new value into one of the text boxes. You can do so
using events. The following walks you through this process:

1. Add an event listener to the page to respond to the page load event.
When the page loads, you want a custom function you will write called
winLoad to execute. The following shows an example.

Click here to view co de image

window.addEventListener('load', winLoad);

2. Inside the winLoad function, you want to add event listeners to both the
Distance and the Time text box. The event you want to trap is lost focus.
This event is called blur in JavaScript. When you trap this event, you
plan to call another custom function you will write called
calculateSpeed. The following shows an example of winLoad.

Click here to view co de image

function winLoad() {
var distTxt =

document.getElementById('distance');
var timeTxt = document.getElementById('time');

distTxt.addEventListener('blur', calculateSpeed);
timeTxt.addEventListener('blur', calculateSpeed);

}

3. You need to write the calculateSpeed event handler function. This
event handler will look up the values from the text boxes. It then verifies
that each value is numeric using !isNaN (which means “not is not a
number”). The following shows an example.

Click here to view co de image

function calculateSpeed(e) {

var dist =
document.getElementById('distance').value;

var time = document.getElementById('time').value;

if (!isNaN(dist) && !isNaN(time)) {
var avg =

document.getElementById('averageSpeed');
avg.textContent = (dist / (time / 60));

}
}

You can now run this sample in the browser. When you enter valid numbers
into both the Distance and Time text boxes, notice that the average speed is
updated on the page as soon as focus changes from one of the text boxes to
anything else on the page.
The prior example used the addEventListener method for adding events
to a given object. This is the explicit (and often preferred) method for
registering your events. However, you can also use what is called inline event
subscription to register an event. This simply means attaching the event as an
attribute of the markup or as a property of the object. For example, you could
register the text box blur events for Listing 18.2 directly in the markup as
follows.

Click here to view co de image

<input id="distance" type="text" name="distance"
value=" "

onblur="javascript: calculateSpeed();" />
<input id="time" type="text" name="time" value=" "

onblur="javascript: calculateSpeed();" />

Alternatively, you could register these events using the object. The following
shows edits to the winLoad method written previously.
Click here to view co de image

distTxt.onblur = calculateSpeed;

timeTxt.onblur = calculateSpeed;

Stopping Events
There are a few more things you can do when working with events. First, you
can remove an event handler you have already registered using
removeEventListener. This method works just like
addEventListener (but has the opposite result).
Next, most events have a default action. For example, if you trap the click
event of an <input> whose type is check box, the default action is to check
the box. You can cancel default event actions using the method
preventDefault. Recall that the event handler we wrote in the example
calculateSpeed(e) took the argument e. JavaScript sends you the
event object should you need it in your handler. In this case, a call to
e.preventDefault(); will stop the event’s default action.
Finally, events are said to “bubble up” the event chain and thus call any
subscribers in the chain. For example, you may have an event handler
subscribing to a button click. You may have another global event defined at the
document level for handling such actions. You can use the
stopPropagation method of the event object if you need to cancel an
event from bubbling up the chain.

The Many DOM Events
There are events for nearly everything that can happen on a given web page.
These events are connected to the window object, the form, the mouse, and the
keyboard. The following lists just some of the many events to which you might
need to subscribe. (This is not a complete reference.)

Window e ve nts—load, beforeonload, blur, error, focus,
resize, unload

Form e ve nts—blur, contextmenu, focus, invalid, submit

Ke yboard e ve nts—keydown, keypress, keyup

Mouse e ve nts—click, dblclick, drag (and related), drop,
mouseover, scroll

Me dia e ve nts (such as vide o playback)—canplay,
durationchange, ended, pause, playing, progress,
volumechange

Developing with jQuery
The jQuery client-side framework simplifies the tasks of working with the
DOM as described in the prior section. This includes providing easier access
to elements and their attributes using the jQuery CSS-style selectors. It also
makes working with these selected elements easier. For example, you can act
on a group of selected items with a single line of code; no looping code is
required. jQuery also makes creating event listeners easier. And it provides
methods for calling the server asynchronously from the client (AJAX). Best of
all, it makes the DOM code you write compliant with both new and older
browsers—without the need to write fallback code.
It is important that you also understand the default JavaScript DOM selectors,
events, and actions discussed in the prior section. These traditional techniques
make you even more effective when writing JavaScript and working with
jQuery.
jQuery is by far the single most used client-side framework on the Web. It is
estimated that nearly one-third of all websites use jQuery. This number is much
higher for newly created sites. If you are doing web development today, it is
highly likely that you are writing JavaScript using the jQuery framework.

Note
There is a lot you can do with jQuery. We cover the core concepts
here. You can also use it to quickly build small controls like
panels, centered model dialogs, accordions, image rotators, and
more. There are also jQuery plug-ins available. For a full
reference, see the site, jQuery.com.

jQuery in Your Visual Studio Project
The jQuery framework is part of nearly all the Visual Studio web project
templates. This includes the readable version of the file (useful for debugging)
jquery.js and the minified version (for faster processing in production)
jquery-min.js. Recall from Chapter 17, “Building Modern Websites with
ASP.NET 5” that these files are stored in the bower_components folder of
the ASP.NET 5 Web Site template and end up in the
wwwroot/lib/jquery folder. Chapter 17 also introduced Bower and the
bower.js file for including client scripts in your project. The ASP.NET 5
template uses this approach to include jQuery in the project.
Recall from the prior section that you need to add a reference to your page for
any JavaScript files you intend to use. Again, you do this using the <script>
tag at the bottom of your HTML markup, before the closing </body> tag.
Of course, adding this reference to every page in your site can be tedious.
Chapter 17 also introduced the concept of the _Layout.cshtml page in
your project. Recall that this page controls common layout items for each page
in the ASP.NET 5 MVC 6 template. Thankfully, this page also includes the
jQuery <script> tags based on deployment environment, as shown in Figure
18.5. This means all your pages in the site that use _Layout.cshtml
already have access to jQuery.

http://jQuery.com
http:bower.js

FIGURE 18.5 The jQuery library is included in all your pages by default
when using the ASP.NET 5 MVC 6 project template (and others).

Selecting Elements
As you saw in the prior section, the DOM provides methods such as
getElementById and querySelector for accessing element nodes.
jQuery exposes similar methods but with a more straightforward and powerful
syntax for doing DOM selection. It allows more finite selection based on
element, ID, class, or CSS. It also allows you to filter your selection. Finally,
it allows you to select a single node or multiple nodes using the same selection
syntax.

The jQue ry Obje ct and $
Like the JavaScript document object for working with the
DOM, jQuery provides the object jquery for calling the many
methods of jQuery. This includes doing selection. jQuery also
provides the shortcut $ as a replacement for jquery. This
means that jquery.hide() and $.hide() are equivalent.

Basic Selectors
The jQuery framework includes a single method for doing selection, $('').
This method is flexible with respect to what you pass as your selection. It also
returns a jQuery object that includes a reference to each node in your selection.
You do not, therefore, need to use separate methods for selecting a single node
or multiple nodes. Let’s look at examples of a few basic jQuery selectors you
will use often.
First, recall the HTML markup from Listing 18.1. That listing was followed by
the subsection “Accessing Elements (and Subnodes).” Here we access those

same elements using jQuery for comparison.

Select an Element
jQuery can be used to select all elements either within another selection or
within your entire page. The following, for example, selects all anchor tags
<a> in a given document.

var sel = $('a');

Select Based on ID
You can use the # syntax to select a node in jQuery based on its ID. This is
similar to using document.querySelector (which was added to
modern browsers after jQuery was created). The following shows an example
using jQuery.

var sel = $('#header');

Select Using CSS
The jQuery framework selection is made especially powerful by allowing
finite selection based on the CSS for a given item. You can select all items
with the same CSS class. However, many times you are looking for a specific
element within other elements. The following example selects an <h1> tag
with the CSS class pageTitle nested inside a <div> tag.
Click here to view co de image

var sel = $('div > h1.pageTitle');

Combination Selections
You can use jQuery to return a group of items that match more than one single
selection. To do so, you simply separate your selections by a comma. The
following selects all <a> tags and the <title> tag with the class name
.pageTitle (from Listing 18.1).
Click here to view co de image

var sel = $('a, .pageTitle');

Selection F ilters
The jQuery selectors allow you to filter your selection by a variety of criteria.
This allows you to further narrow your selection to the item for which you are
seeking. Selection filters are created with a colon, as in :filter. For
example, the following selects an anchor tag using the :contains() filter to
find only elements containing the given text.
Click here to view co de image

var sel = $('a:contains("ride")');

There are many jQuery filters you can add to your selectors—more than we
can list here. However, Table 18.5 lists some common filters you might find
yourself using. Some of these use the colon notation inside the selector; others
are written using the dot notation following the actual selector. Note that form
item filters are listed in Table 18.6.

TABLE 18.5 The jQuery Selection Filter
	

TABLE 18.6 The jQuery form Element Selection Filters

F orm Selectors
Another common use of jQuery selectors is finding form elements. You often
need to work with these as the user is working with them. For example, the
following finds all the input tags on the page inside the <div> tag with the ID
of userForm.
Click here to view co de image

var sel = $('#userForm :input')

You can refine your form searches further with other filters. Table 18.6 lists a
number of additional form-based jQuery select filters.

Acting on Your Selection
You can act on your selection results immediately, within the same line of
code. jQuery allows you to simply call a method of the returned selection (or
another jQuery method) directly from the selection. Alternatively, you can
store the results in a variable for use later in your code (as the preceding
examples have shown).
This example finds the selection and then acts on it immediately, as a group,
using the jQuery addClass method to add a CSS class to each item in the
selection.

$('a').addClass('alink');

You can also store your selection for later use. When you do so, jQuery stores
a reference (not a copy) to the elements in the selection. You can then use the
returned jQuery object to call other jQuery methods, as in the following:

var sel = $('a');

sel.addClass('alink');

The examples in the following sections will use both approaches to acting on
your jQuery selections.

Traversing Your Selections
As with the DOM, you can traverse jQuery selected results based on child,
sibling, or parent nodes. In fact, traversing your jQuery results is nearly the
same as the DOM but with a few more methods at your disposal. The methods
for traversing jQuery object nodes include .parent(), .parents(),
.children(), .siblings(), .next(), and .prev().
As an example, the following shows finding all child nodes of inside the
navbar shown back in Listing 18.1. Recall that this example in the
“Document Object Model (DOM)” section of the chapter was more than five
lines of code to get this selection.
Click here to view co de image

var sel = $('#navbar').children('li');

Looping Through Your Selection
As you saw previously, you do not often need to loop through items in your
results. Instead, you can act on them as a whole using the jQuery methods.
However, there are times when you do need to access each item in your
results. The jQuery framework provides the .each() method for this
purpose.
The .each() method takes a function as a parameter. This function is
executed for each item in your selection. You can access each item inside the
function using $(this).
The following shows an example (again from Listing 18.1). Here, a selection
is made for all the items in a list. We then loop through each item in the list. If
the text contained within the item (in this case, the anchor text) starts
with the substring View, we add a class to the given anchor tag (child of the
).

Click here to view co de image

var sel = $('#navbar').children('li');

sel.each(function () {

if ($(this).text().substring(0, 4) == 'View') {

$(this).children().addClass('alink');

}

});

You can also access specific items within your selected results by index value
in the collection. To do so, you use the .eq(0) method and pass the index of
the item you want to access as an argument.

Accessing Selection Content
Your selected objects in jQuery are returned as a jQuery object that maintains
a reference to the DOM node. This is different from objects returned by the
document selectors. Therefore, jQuery provides its own methods for
working with your selected results. Chief among them are .html(),
.text()., and .val().
The .html() method returns the HTML inside the selected element. If more
than one element is in your results, only the HTML contained inside the first
element is returned. As an example, the following selection returns all the
 items inside the in Listing 18.1.
Click here to view co de image

var sel = $('#navbar').children('li');

var ht = sel.html();

However, the call to .html() in the preceding code returns only the markup
that follows. Of course, you can use .each() to return each item in the given
selection, one by one.
Click here to view co de image

View logs by

month

The jQuery .text() method returns all the text found within your selection.
This means if you select more than a single element with text, you will get all
the text appended to each other with no spaces. Consider the following
example.
Click here to view co de image

$('#navbar').children('li').text();

This example returns the string View Logs by monthLog new
rideEdit ride options / metadata. This is useful if you intend to
search this string or work with it as a whole. However, you can refine your
selection (or use .each()) if you intend to work with just a single element’s
text.
You use the .val() method to get at the content contained in a form element
or <input> tag. For example, the following returns the value entered in the
<input id='distance' /> from Listing 18.2.

Click here to view co de image

var val = $('#distance').val();

You can use the selected HTML, text, and value methods to change your
content, too. You do so simply by passing the new value into the given method.
The following shows a couple examples.
Click here to view co de image

$('.pageTitle').text('New Page Title');

$('#distance').val('50');

Changing Elements/Attributes
You can replace or modify your HTML using .html(). However, the more
likely scenarios is to add more information to the HTML, remove something,
or append other elements. Let’s look at these examples next.

Append/Remove Items
jQuery supports building parts of your HTML using code. Once you have a
selection, you can use the methods .remove, .replaceWith(),
.before, .after, .prepend, and .append. This is true if your
selection is an element node or the HTML content.
For example, the following code appends an additional item to the
navbar list from Listing 18.1.
Click here to view co de image

$('#navbar').append('Import ride date from race
computer');

As another example, suppose you want to work with each HTML element
within a selection. You can do so by defining a function as an argument to the
.html() method. This will cause jQuery to work in each child node found
within the selection. The following shows the code. Within the function we set
the <a> tag between a tag using $(this).html() for the
given <a> tag.
Click here to view co de image

$('#navbar').html(function () {
return '' + $(this).html() + '';

});

Changing Element Attributes
You can use the jQuery framework to change element attributes in your markup.
This includes getting and setting attribute values using .attr() and
.addClass(), as well as adding and removing attributes with
.removeAttr() and .removeClass(). Let’s view an example.
The following adds an id attribute to the <h1> tag (the only tag in Listing
18.1 with the class of .pageTitle). It then uses the id attribute to access
the text contained within the tag.
Click here to view co de image

$('.pageTitle').attr('id', 'page-title');

alert($('#page-title').text());

As another example, suppose you have the following style defined on your
page (or in your .css file).
Click here to view co de image

<style>

.danger { border: 1px solid #ff0000; }

</style>

You can use this style to highlight an element within your page. You might use
the style to turn the border of an input element of type text to the color red. You
might do so if you validate the form and want to highlight input items with bad
values. You use the .addClass() method to add the CSS class to the
element.
The code that follows is an example based on the HTML in Listing 18.2.
Recall that the sample code associated with Listing 18.2 used the event model
to validate input based on the blur event (lost focus) for each text box. We
replaced the calculateSpeed() method with the following code. We also
added an isErr method to validate each text box (and use the .addClass
method with the .danger style if the text box input is in error). Note, too, the
use of the jQuery function $.isNumeric() as a more usable form of the
DOM style !isNaN().
Click here to view co de image

function calculateSpeed(e) {

var dist = $('#distance');

var time = $('#time');

var avg = $('#averageSpeed');

//Clear average speed.

avg.text('');

//Validate each text object and store it in an error
array.

var err = [false, false];

err[0] = isErr(dist);

err[1] = isErr(time);

if (!err[0] && !err[1]) {

avg.text((dist.val() / (time.val() / 60)));

}

}

function isErr(inputCheck) {

inputCheck.removeClass('danger');

if ($.isNumeric(inputCheck.val()) == false) {

inputCheck.addClass('danger');
return true;

}

return false;

}

CSS Rules
jQuery provides the .css() method for accessing CSS styles and making
updates to them. You use this method for specific CSS styles and not the entire
CSS class (as in .addClass()). As an example, the following gets the
background style value associated with header in Listing 18.1.
Click here to view co de image

var clr = $('#header').css('background-color');

You can then add a CSS style (or change an existing one) using name-value as
arguments to .css(). The following uses the selected value in the preceding
code to apply it to the page footer <div> tag.
Click here to view co de image

$('#footer').css('background-color', clr);

Handling Events
jQuery helps you add event listeners to the objects you select. These are
similar to the DOM events but are somewhat easier to work with and provide
greater flexibility. In addition, jQuery defines its own events for animating the
display of information. These animations make your page more appealing to
users.
Let’s start by looking at the .ready() function. This is a key jQuery event
that can be used to wrap code you want to execute when the DOM has fully
loaded and is ready for work. You write this event as
$(document).ready(function(){...}). There is also a shorthand
version of this method written as $(function(){...}). The following
shows an example.
Click here to view co de image

$(document).ready(function () {
$('#footer').css('background-color', 'lightgray');

});

Wait for an Asse t to Load
Note that the $(document).ready() method will execute
once the DOM tree has loaded. It will not wait for other assets
such as images to finish loading. Typically, this is preferred.
However, if you need to run your code only after a certain asset is
loaded (such as checking the size of an image), you can attach
your event directly to the image load using either $('#my-
img').load(function(){...}) or the similar
$('#my-img').on('load', function(){...}).

jQuery, like the DOM, allows you to listen for events raised by elements of the
page. The biggest difference, however, is that jQuery abstracts all the cross-
browser issues that can often make working with events difficult. It handles
these issues on your behalf.
Recall that there are a few options for adding events from the DOM: using

addEventListener() (preferred), adding to the selected element using
dot notation (distTxt.onblur = calculateSpeed), and adding
directly inside the HTML (<input id="distance"
onblur="javascript: calculateSpeed();" />. Each approach
is applicable to jQuery, too.
First, jQuery uses .on() to explicitly add an event listener method to an
event. Consider the Event sample from the “Document Object Model (DOM)”
section that used Listing 18.2. The following registers events for both input
elements once the DOM has loaded.
Click here to view co de image

$('document').ready(function () {
$('#distance').on('blur', calculateSpeed);
$('#time').on('blur', calculateSpeed);

});

This explicit event registration can be replaced with a less formal version
using jQuery, as in the following.
Click here to view co de image

$(function () {
$('#distance').blur(calculateSpeed);
$('#time').blur(calculateSpeed);

});

jQuery defines its own events for working with a web page and its actions.
Most of these map to a similar DOM event. The following lists just some of the
many events to which you might need to subscribe. (This is not a complete
reference.)

Window (browse r) e ve nts—error, resize, scroll

Docume nt e ve nts—ready, load, unload

Form e ve nts—select, change, submit, blur

Ke yboard e ve nts—keydown, keypress, keyup, focusout

Mouse e ve nts—click, dblclick, mouseover, hover, toggle

Me dia e ve nts (such as vide o playback)—canplay,
durationchange, ended, pause, playing, progress,
volumechange

Animations and Effects
Users like a fluid user interface (UI) that quickly responds to their actions. The
jQuery framework provides a set of animations and effects for enhancing the
way your UI transitions based on user input. As these effects happen, the other
markup on the page moves in response. If you slide a new bullet into a list, for
example, the other bullets move to make space for the new one. The jQuery
animations and effects are an easy way to add more “feel” to the look of your
UI.
A simple example is to use the .hide() and .show() methods of jQuery.
Recall the average speed calculator example markup (refer to Listing 18.2).
You can mark the <div id='calculation'> with the hidden attribute.

You can then add the following line to calculateSpeed to hide the results
by default.

$('#calculation').hide();

Next, you can use .show() to animate the display of the <div> tag if the
user input is valid. You would add this line under the actual calculation inside
the if statement. The .show() method can be used without arguments; or, it
can take the number of milliseconds it should use to fade the item into display.
It can also take a named speed such as fast or slow (as in the following).
Click here to view co de image

$('#calculation').show('slow');

You need only run this once to notice the improvement this gives to the “feel”
of the page. There are many similar effects to .show() and .hide()
available. The following provides an overview of these standard effects.
Again, most of these take the milliseconds as the duration you want the animate
to spread over. You can also use named speeds like slow and fast. Of
course, there are many other parameters available should you want to really
customize some of these effects:

Basic e ffe cts—.show(), .hide(), .toggle()

Fading e ffe cts—.fadeIn(), .fadeOut(), .fadeTo(),
.fadeToggle()
Sliding e ffe cts—.slideDown(), .slideToggle(),
	
.slideUp()

You can also use jQuery to create custom animations. The framework provides
the method .animate() (and similar supporting methods) for doing custom
animations. Generally, you create a custom animation using specific CSS styles
on a selection. You then tell jQuery the speed at which you want to make the
changes, how you want to see the changes (linear or swing), and what to do
when the animation completes.
As an example, we add the following animation to the calculateSpeed
example after the call to .show(). This animates the text moving left to right
from small to large. Note that once you animate something, you may have to
reset the CSS if you want to reanimate the item the next time the user takes an
action.

$('#calculation').animate(
{

width: "50%",
opacity: 0.4,
marginLeft: "0.25in",
fontSize: "2em"

}, 1000, 'swing');

jQuery and AJAX
The jQuery framework includes methods that make writing Asynchronous
JavaScript (AJAX) much easier. These methods are used to call a service on
the server and receive the results (typically as a JSON message or an HTML
partial view). You then use these results to update sections of your page.

The jQuery AJAX methods are key components of building applications that
are perceived as responsive to the user ’s eyes. A lot of your code has to
execute on the server to get data, save results, and more. Typically, this means
page refresh. With AJAX, you do not need to refresh an entire page on post.
Instead, it can simply update a portion of the page much like a native
application.
Writing and calling services are covered in Chapter 19, “Building and
Consuming Services with Web API and WCF.” jQuery is used throughout that
chapter. The subsection “Use jQuery to Create a New Customer” covers the
jQuery AJAX methods of $.get(), $().post, $.getJson(), and
$.ajax(). You may want to scan that section of the chapter before
continuing. Some of the techniques discussed in Chapter 19 are used throughout
the rest of this chapter.

Building Single-Page Applications (SPAs) with Client-Side
JavaScript Frameworks
JavaScript client frameworks have flourished primarily based on the initial
success and popularity of jQuery. There are now dozens of quality frameworks
you can use to solve all kinds of issues building websites, single-page
applications (SPAs), and even mobile applications (see Chapter 25, “Writing
Cross-Platform Mobile Applications with Apache Cordova”). Most of these
frameworks simplify what are otherwise difficult tasks to accomplish with
JavaScript.
Alongside the rise in JavaScript frameworks came the adoption of the SPA. An
SPA by its strict definition is a web application that loads a single page and
then responds to user activity to chunk or push page updates to the browser.
This is akin to a native application that loads a primary screen and then shows
subscreens or modal dialogs contained within the primary window.
In reality, however, most modern web applications use the techniques of an
SPA and not its strict definition. You might, for instance, create a website
based on various features for orders, customers, and shipments. Instead of one
SPA to manage these items, you might write a more standard site and then use
the techniques of SPA within a given subarea of the application (manage
orders, for example).
This section introduces the rich set of client libraries available for building
modern sites. We then show how to use a few of these frameworks inside of
Visual Studio and ASP.NET to solve certain scenarios.

Selecting a Client Framework
Picking the right framework can be a challenge. Nearly all modern sites
include jQuery and Bootstrap. ASP.NET sites also include .validate (among a
few others). From there, you are left to review and pick which framework you
might need for your given scenario. When picking a framework, we suggest
you verify that the framework really solves your specific needs; pick one that
has a large support base (and good documentation/samples).
The following is an overview of just some of the many client frameworks that
have recently grown in popularity. We are certain that by the time you read this
there will be more, and existing frameworks will be doing more.

Adding Clie nt Library Support with Bowe r
Visual Studio 2015 and ASP.NET 5 include Bower by default for
managing the many client-side JavaScript frameworks. This is
similar to NuGet, but for JavaScript. We cover using Bower in
Chapter 17 (subsection “Using Bower for Managing Client
Framework Dependencies”).

AngularJS (angularjs.org)
This JavaScript framework allows you to write MVC inside the browser. It is
similar to the MVC you might write on the server in an ASP.NET MVC
application. However, it is all client-based and written as JavaScript. Of
course, the client code can call back to the server to get and post data.
Google controls and supports Angular. However, Microsoft and Google have
recently joined forces to bring the next version of AngularJS to market with
TypeScript. (We introduce TypeScript later in this chapter.)
The AngularJS templates are included inside Visual Studio by default. These
templates can be used for SPAs, WinJS store applications, and Cordova
mobile solutions. We walk through an example of using this framework later in
this chapter.

Bootstrap (getbootstrap.com)
Bootstrap combines CSS and JavaScript to allow you to create sites that are
responsive to device size by default. Using Bootstrap correctly will ensure that
your site works well on large screens down to small mobile devices such as
phones.
Like jQuery, Bootstrap includes add-ins or derivatives. There are dozens of
reusable components available to help with icons, controls, playing media, and
more.
Bootstrap is included by default in many of the ASP.NET templates. We walk
through an example of using this framework later in the chapter.

Knockout (knockoutjs.com)
This library uses the Model-View-ViewModel (MVVM) pattern inside the
browser for creating models based on the given view (called a ViewModel)
and then using declarative data binding to connect the ViewModel to the view.
Knockout takes care of managing any dependencies. This way, if two or more
items in your page are dependent on the same item in the ViewModel and an
update occurs, all items automatically get the update.
Even more powerful, you can bind the ViewModel to any markup elements,
including input tags. You can also write functions inside your ViewModel for
handling various computed scenarios. You can then use the data binding
features to bind these functions in your model to an element in your markup. We
walk through an example of using this framework later in this chapter.

http://angularjs.org
http://getbootstrap.com
http://knockoutjs.com

Sammy.js (sammyjs.org)
This is a small framework designed around making Representational State
Transfer (REST)-based calls to the server (a route) using AJAX. Results
(JSON or HTML) are then used to update the page.

Modernizer (modernizr.com)
A library that allows you to determine if a browser executing your code
supports certain features of HTML, CSS, and JavaScript. It can be used to
verify whether the executing browser supports your intent; if it doesn’t, you can
write fallback code to handle a certain scenario differently.

jQuery UI (jqueryui.com)
This is another library from the jQuery foundation; it contains jQuery plug-ins
for specific user interface features such as widgets (tabs, accordion, slider,
data picker, autocomplete, and more), new effects such as color animation, and
interactions such as drag, drop, resize, and sort.

jQuery.validate (jqueryvalidation.org)
This is used for client-side form validation. ASP.NET uses this framework to
handle form field validation on the client. This is included by default in most
ASP.NET project templates.

Respond.js (Download from GitHub.com)
This provides a responsive CSS framework for browsers that do not support
CSS3.

Hammer.js (hammerjs.github.io)
This is a JavaScript library for working with touch gestures in the browser.
Hammer.js is included with the ASP.NET 5 Web Site template by default.

Backbone.js (backbonejs.org)
This is a JavaScript library for building MVC applications in the browser.
Like Knockout and AngularJS, you create JavaScript models, and Backbone.js
provides assistance with binding the model and calling back to the server.

Breeze (getbreezenow.com)
This is a JavaScript library for managing your database entities in JavaScript.
It allows you to use JavaScript to write data queries against your objects
persisted on the server. Breeze handles database updates on the server and
data binding on the client. It works with Knockout, Backbone, and AngularJS
(among others).

Ember.js (emberjs.com)
This is a framework for building client-side MVC applications in JavaScript.
Ember defines a specific, repeatable pattern for building highly interactive
web applications. It is similar to AngularJS, Backbone.js, and others.
Views in Ember are written as templates (using Handlebars.js). Models
represent your data and are loaded using REST and JSON. A controller is used

http://sammyjs.org
http://modernizr.com
http://jqueryui.com
http://jqueryvalidation.org
http://GitHub.com
http://backbonejs.org
http://getbreezenow.com
http://emberjs.com
http:Handlebars.js
http:Backbone.js
http:Ember.js
http:Backbone.js
http:Backbone.js
http:Hammer.js
http:hammerjs.github.io
http:Hammer.js
http:Respond.js
http:Sammy.js

to store application state about a given template. As a model is updated, the
template knows about the update and is responsible for updating itself.

Chart.js (chartjs.org)
This is a library of responsive, interactive, HTML5-based graphical charts you
use when displaying data in your application.

Less (lesscss.org)
Less is not a JavaScript library. Instead, Less extends the capabilities of the
CSS language to allow variables, functions, and other techniques. Less is
preprocessor in that a Less file is ultimately output to a standard .css file.
See Chapter 17 for a small example.

Sass (sass-lang.com)
Sass is another CSS language extension (see “Less” in the previous
paragraph). It, too, adds features to your CSS, such as variables. It also works
as a preprocessor and ultimately spits out .css files based on your Sass files.

Node.js (nodejs.org)
This is a JavaScript library for doing real-time, nonblocking input/output (I/O)
between a browser and a server. Node uses Transfer Control Protocol (TCP)
sockets to communicate real time with a server across the Web.

SignalR (signalr.net)
SignalR is a JavaScript library for ASP.NET that enables real-time, socket-
based web development (similar to Node.js). This includes doing chat,
auctions, or any real-time transaction with the server.

CoffeeScript (coffeescript.org)
CoffeeScript is a version of the JavaScript language that attempts to simplify
common JavaScript development techniques. It cuts down on the amount of
code you need to write by adding support for simplified syntax. A CoffeeScript
file is preprocessed as JavaScript before being output to the browser.

TypeScript (typescriptlang.org)
TypeScript is a superset of JavaScript that allows you to write JavaScript as
strongly typed code (whereas JavaScript does not enforce type checking).
Think of TypeScript as its own language that is compiled into JavaScript for
production code.
The TypeScript language was created and is supported by Microsoft as an
open source language product. Microsoft has therefore added support inside
the Visual Studio tools. This means you get IntelliSense, compiler type
checking, code-refactoring, code navigation, and more. TypeScript simplifies
writing large JavaScript libraries.
You can learn more about TypeScript, download the language, and get the
TypeScript Visual Studio tools from their website. In addition, you can peruse
the TypeScript source or even contribute thoughts to the product if you like.
The TypeScript website can be found at typescriptlang.org.

http://chartjs.org
http://lesscss.org
http://sass-lang.com
http://nodejs.org
http://coffeescript.org
http://typescriptlang.org
http://typescriptlang.org
http:signalr.net
http:Chart.js

Responsive Web Layout with Bootstrap 3
The Bootstrap framework is made up of CSS and JavaScript (using jQuery)
that work together to create a mobile-first, responsive design for a website by
default. Mobile-first means that Bootstrap is built to check the screen size of
the device requesting your page and then only render the portions of the CSS
that can be displayed by the device. This keeps the CSS lean based on the
device. Of course, a larger device (with more processing power) will load the
richer CSS.
Responsive design is part of this mobile-first strategy. It refers to the ability of
the design to respond to screen real estate. This typically means collapsing the
layout, simplifying the navigation (even moving it off the page into a foldout
menu), and more. The mobile-first, responsive design allows your website to
automatically adapt to phone, tablets, and larger screens without writing
different HTML or CSS.
Bootstrap is extremely popular because it solves a key issue with websites.
Users now expect this type of behavior from the sites they visit. Thankfully,
Bootstrap makes it easy to implement mobile-first, responsive designs. Let’s
take a look.

The Bootstrap F iles in the ASP.NET Templates
Bootstrap is included by default in many of the ASP.NET templates. This
includes the ASP.NET 5 Web Site template. Recall from Chapter 17 that these
files are installed in the wwwroot/lib folder under the folder named
bootstrap. Figure 18.6 shows these files in Solution Explorer. Notice too
the bower_component folder (accessed via the Solution Explorer, Show all
Files option). This folder contains all of Bootstrap. Gulp then generates what
is required for the given build and target environment.

FIGURE 18.6 The Bootstrap files inside the standard ASP.NET 5 Web Site
template in Visual Studio.

The many files shown in Figure 18.6 make up the typical Bootstrap package for
a given site. The following describes the files in each of the three folders:

css—The files inside the css folder include the Bootstrap CSS in both
readable form (bootstrap.css) and optimized-for-production form
(bootstrap-min.css). There are also readable and minified
Bootstrap theme files. This is the standard Bootstrap theme; however,
you can download and create additional themes (more on themes to
come).
fonts—The fonts folder contains a number of common glyphs as
common icons used for most sites and devices. For example, there is a
down arrow for drop-down lists, a “hamburger” icon for displaying a
menu on small devices, and dozens more. There are multiple sizes of
each to be used based on screen size.
js—The js folder contains the readable and minified version of the

Bootstrap JavaScript that works with the CSS for adaptive rendering.
Recall from Chapter 17 that Bootstrap is installed in your project using the
Bower package manager. You can see the dependency by opening
bower.json from Solution Explorer. Bootstrap uses either Less or Sass as a
processor for CSS. You can write your own files to override default Bootstrap
and then compile it for your project (using Less or Sass and Gulp). More on
this later in the chapter.
Bootstrap is included in your project via the _Layout.cshtml page. Inside
the <head> tag of this page, you will find the following two references
(among others).
Click here to view co de image

<link rel="stylesheet"

href="~/lib/bootstrap/css/bootstrap.css" />

<link rel="stylesheet" href="~/css/site.css" />

The first <link> tag indicates the Bootstrap style sheet. The second <link>
tag is for your site-specific CSS, which often includes overrides for Bootstrap
styles (more on this to come).
Near the bottom of _Layout.cshtml is where the Bootstrap JavaScript is
included for pages within the site. (Note that Bootstrap requires jQuery.) This
is done via that following call.
Click here to view co de image

<script src="~/lib/bootstrap/js/bootstrap.js">

</script>

For the most part, Bootstrap does not style much of your site by default.
Instead, you use the many, many class definitions inside Bootstrap for your
HTML elements. These style classes work to handle layout, responsiveness,
and visual design of your site. We will examine some of these classes in the
coming sections.

How the Bootstrap Grid Layout Works
It is important to understand how Bootstrap works to lay out your pages to
maximize responsiveness and readability. Page layout is a key decision you
will make when starting a Bootstrap site. You need to determine your target
device displays and the way you intend to divide your pages into vertical and
horizontal sections using the Bootstrap grid system.
The Bootstrap layout is built on a grid made up of columns and rows. There
are 12 logical columns in the grid. However, you typically choose the number
of columns in the grid to apply to a specific vertical section of your page. For
example, you might define the primary content area of your page as a single
row with 3 sections of equal width across the page when shown on larger
displays. In this case, you would assign each section 4 columns of the grid. As
your page narrows, Bootstrap will wrap each column underneath the others
until ultimately you are showing only a single column of the row. (The other
columns will wrap under each other, right to left.) It will then compress this
single column (including fonts and images) as the screen further narrows. This
is the page being responsive to the screen size and keeping the page readable

http:src="~/lib/bootstrap/js/bootstrap.js

and easy to navigate. (A user can scroll up and down versus having to scroll
left and right to view your page.)
Figure 18.7 shows an example of the grid applied to the ASP.NET 5 Web Site
template Index.cshtml page. The page is displayed on a desktop screen
with the resolution of 1024 wide. The top and bottom of the page consist of
sections that are meant to span the entire grid. The highlighted area is a
Bootstrap row (defined as <div class="row">). Within the row, you can
see the 12 columns across the page. Each section takes up four of these
columns (defined as <div class="col-md-4">).

FIGURE 18.7 The Bootstrap logical grid applied to a page template.
Bootstrap will wrap each column in the row under one another when the same
page is displayed on a smaller screen (< 768 wide). However, it will maintain
a single column section on the page and further shrink that section (through
scaling) as the page narrows. The logical columns of each row are wrapped
under one another. Each row is then stacked on the other. Figure 18.8 shows
the same page with a width similar to a phone.

FIGURE 18.8 The Bootstrap grid wraps columns as the page narrows.
The Bootstrap 3 grid layout system always uses 12 columns; however, you
specify a grid size and the way you intend your page to be displayed on that
grid. You can target a single grid size and let Bootstrap do the work to render
your site on the other sizes. You might develop and test against the one grid
size you believe users will view your site with most often. Figure 18.7 targets
the medium grid. In this case, the page shows all three sections of columns
when viewed using this grid. Figure 18.8 shows the way the site renders using
an extra-small grid; it wraps the columns. The Bootstrap grids are defined by
screen resolution. The following lists the grids in Bootstrap by their style
name. (xx refers to the number of columns you intend for the style definition.)

col-lg-xx—screens >= 1200px, typically large desktop displays
col-md-xx—screens >= 992px, typically standard desktops and
tablets used in the landscape mode (held horizontally)
col-sm-xx—screens >= 768px, typically tablets used in portrait
mode (held vertically)
col-xs-xx—screens < 768px, typically phones used in portrait mode

Page layout is a specific choice you will make for your site. It is not
predetermined by Bootstrap. Instead, you use the grid system to define an
overall layout for your page based on a given grid. The Bootstrap site does
include a number of templates for various scenarios. However, these are easy
enough to customize. Let’s take a look at the Bootstrap-specific markup for the
ASP.NET Web Site template.
Figure 18.9 shows the two primary files that make up layout for the ASP.NET

5 Web Site template home page: _Layout.cshtml and Index.cshtml.
The former defines the overall layout shared across the site. The latter is
layout specific to the home page. Let’s walk through this layout using line
numbers from the markup.

_Layout, line 25—Uses the navbar class to indicate that <div>
defines navigation for the site (more on navbars to come).
_Layout, line 26—Marks the <div> as a container. A Bootstrap
container is meant to represent the full width of the page (the entire grid
with padding). You typically stack containers on one another and use
rows within containers. The container then scales based on page size.
_Layout, line 45—Marks the <div> as another container—in this
case, the body-container for styling the main body portion of your site.
_Layout, line 46—ASP.NET Razor syntax indicating where the body
of the page that uses the given layout will be rendered (in this case,
Index.cshtml).
Index, line 5—Uses the style class, carousel slide, to indicate the use
of the Bootstrap carousel component (see “Component” section below).
Index, line 68—Marks this <div> as a Bootstrap row in the grid
system.
Index, lines 69, 76, and 89—Each line indicates that the given <div>
should be part of the grid system using the medium screen and targeting
four columns when shown on that screen (col-md-4).

FIGURE 18.9 Bootstrap layout styles applied to the ASP.NET 5 Web Site
template.

As you may have noticed in the earlier walk-through, each page can define its
own layout in the grid system. It will then render inside the body container,
which spans the full page width. In fact, for content that is meant to take the full

http:46�ASP.NET

page, you do not need to specify grid layout rendering. Grid layout is used
when you need to show different sections of the page as vertical columns when
rendered at the appropriate width.
You should test your site against each grid (or page size) you intend to target.
As you have seen, Bootstrap will, by default, adjust your layout automatically
for different screen sizes. However, you can also have fine control over how
your page is laid out on the different screen sizes. You do so by specifying
additional column styles for the given screen size.
As an example, the home page shown thus far shows three sections at the
medium and large grid sizes. It wraps to a single section when rendered at the
small and extra-small screen sizes. Figure 18.10 shows an example. However,
you may want to change this to show two sections when at the small size (and
leave the others as-is). You can do so by setting the style definition for the first
two <div> tags as follows.
Click here to view co de image

<div class="col-md-4 col-sm-6">

FIGURE 18.10 The template wraps all sections when rendered as small.

This definition tells Bootstrap that when the page is shown on the small grid,
you want the first and second <div> sections to take up 6 columns each (and
the third <div> can wrap). You might then indicate the third <div> to also
render at the same width (6 columns) when shown on the small grid.
Furthermore, you can use the offset style to indicate the third <div> should
center by offsetting 3 columns to the left (3 left columns + 6 display columns +
3 remaining columns = 12). When you use offset, you will also need to indicate
an offset for the medium grid (0 in this case). The following shows the markup
for this third section.
Click here to view co de image

<div class="col-md-4 col-md-offset-0 col-sm-6 col-sm-
offset-3">

The page will now be displayed differently for small grids. Figure 18.11
shows the same page size as 18.9 with the new results.

FIGURE 18.11 The template rendering differently for small grids.

How the Bootstrap Navigation Bars Work
A primary element of Bootstrap is the navbar class. This class indicates a
form of navigation for your site. Typically, you have a single navbar for your
page. However, you can use navbar anywhere a toolbar is needed on your
site.
A navbar is made up of many elements, each with its own class definition.
These elements and classes allow you to control the visual aspects and
behavior of the navbar. This includes keeping the navbar at the top of the
page regardless of how far down the user scrolls. You can also add a logo to
your page and icons to the individual navigation elements. It also allows the
navbar to collapse into a foldout menu if the screen is too small to reliably
show the full navbar.
Let’s take a look at the markup for the navbar in the ASP.NET 5 Web Site
template. This will help you understand the styles and resulting behavior when
working with Bootstrap navbars. Figure 18.12 shows the markup.

FIGURE 18.12 The markup for a Bootstrap navbar.
Figure 18.2 shows specific markup lines highlighted. The following walks you
through each of these lines by line number:

Line 26—Indicates the <div> contains markup for a navigation bar
using the style navbar. The style navbar-fixed-top indicates the
given navbar should always be fixed to the top of the page.
Line 30—Defines the <div> that contains the header information for the
given navbar—in this case, a button (line 32) that will show
navigation elements (line 44) and a logo (line 38).
Line 32—Used to indicate a button for displaying navigation elements
when the page width is small. The navigation elements themselves are
referenced by line 44, class="nav navbar-nav".
The class definition, class="navbar-toggle", indicates that this
button should be shown as a toggle button (click to open/close). Toggle
buttons for navigation are only shown when the navigation does not fit
the width of the screen.
The button itself is rendered as glyphs. These glyphs are defined inside
the tags under button. In this case, three icon bars are shown.
This is often referred to as a “hamburger” menu. You could, of course,
use a different icon of your choosing.
The data-toggle="collapse" and data-
target=".navbar-collapse" indicates that the content for the
menu when toggled is contained in the element marked with these styles
(line 42).
Line 38—Represents the logo inside the navbar. This item uses the
navbar-brand class to indicate that this item represents the brand for
the site. It is also outside the collapsed region; it will therefore stay on

the page as it shrinks.
Line 42—Marks the <div> that contains the collapsed navigation items.
This includes the list of items (line 44) and the Login link (line 50).
Line 44—Marks the actual navbar list of navigation elements.

These styles allow you to show and hide navigation elements as the screen size
changes. Refer to Figure 18.11 to see the navigation in full view. Figure 18.8
shows the navigation collapsed inside the hamburger menu with the application
name still displayed. Clicking the menu icon shows the menu, as demonstrated
by Figure 18.13.

FIGURE 18.13 The navigation collapsed and toggled opened for a smaller
	
screen.
	

ootstrap navbar. This
ation elements, creating drop-
items, changing colors and
ls at the Bootstrap site
s/#navbar.

on is just one of the many Bootstrap
ootstrap component is simply
efinitions in Bootstrap to help make
ive. Other components include
, badges, breadcrumbs, thumbnails,
ot cover them all here, but the
few more of these components to

hem and their power.
e the contact page in the ASP.NET 5
n example of what this page looks

can use this for comparison.

contact page with minor Bootstrap
g.

More Info
There is more you can do with a B
includes supplying icons for navig
down menus for various top-level
fonts, and more. You can find detai
http://getbootstrap.com/component

Bootstrap Components
The navbar discussed in the prior secti
components available to developers. A B
standard HTML markup with CSS class d
your page visually appealing and respons
buttons, drop-downs, input groups, alerts
panels, progress bars, and more. We cann
following provides a brief overview of a
give you an understanding of how to use t
The examples that follow are used to styl
Web Site template. Figure 18.14 shows a
like by default. As we proceed along, you

FIGURE 18.14 The default looks of the
stylin

http://getbootstrap.com/components/#navbar

Working with Text
Bootstrap provides a number of styles you can use to change the font and font
size and draw your attention to text elements on the page. This includes the
standard heading tags of <h1>, <h2>, and so on for defining titles, subtitles,
and subsections of pages. However, there are many additional classes that help
make the text of your page visually appealing and easy to consume. The
following walk-through identifies a number of these:

1. Using the ASP.NET 5 Web Site template, open the Contact.cshtml
page from Solution Explorer.

2. Replace the <h3> tag with a <p> tag under the <h2> title tag. Mark
this tag with the Bootstrap CSS class, text muted. This will serve as a
muted subtitle under the actual page title. The following shows an
example.

Click here to view code image

<p class="text-muted">Contact us; we ...</p>

3. Create a new <div> tag with the class of row, as in <div
class="row">.

4. Create two <div> tags inside the row <div> tag. The first tag will
represent the main content of the page. The second will be a sidebar
containing the address information. Set the class for each of these new
<div> tags to work with the Bootstrap grid system as follows.

Click here to view code image

<div class="row">
<div class="col-md-7">
</div>
<div class="col-md-4 col-md-offset-1">
</div>

</div>

5. Add two <p> tags inside the main content <div> for the page (col-
md-7). Set the class to lead for the first <p> tag to indicate this is a
lead paragraph. You do not need to set the class on the second <p> tag.

6. Copy and paste the address content inside sidebar <div>. At the top,
add an <h3> to title the address information.

7. Add a <p> tag under the address information inside the sidebar <div>.
You can offset this paragraph with class="well" to give it a
highlighted, sunken look.

Listing 18.3 shows an example of what your final markup should look like. We
have excluded some of the text content here for clarity. Figure 18.15 shows the
new contact page running in a browser. The browser has been narrowed to a
small grid size.

FIGURE 18.15 The Contact page using a few Bootstrap text styles to
highlight specific areas of the page.

LISTING 18.3 The Contact Markup Demonstrating Bootstrap Text Styling

Click here to view code image

@{
ViewBag.Title = "Contact";

}
<h2>@ViewBag.Title</h2>
<p class="text-muted">Contact us; we love to speak
with users.</p>

<div class="row">
<div class="col-md-7">

<p class="lead">Use this form to ...</p>
</div>
<div class="col-md-4 col-md-offset-1">

<h3>Address, Phone, and Email</h3>
<address>

One Microsoft Way

Redmond, WA 98052-6399

<abbr title="Phone">P:</abbr>
425.555.0100

</address>
<address>

Support:

Support@example.com

Marketing:
Marketing@example.com
</address>
<p class="well">Please use the contact form to ...

</p>
</div>

</div>

Standard Form Elements
Bootstrap also helps you create good-looking user input forms. There are
styles for labels, input controls, buttons, and more. The following walks you
through adding and styling a few controls on the Contact form. You’ll notice
that ASP.NET MVC pages use these styles inside the Razor syntax. Here,
however, we simply use the styles in standard markup:

1. Open the Contact.cshtml page you created in the prior section.
2. Form elements are grouped by Bootstrap using the class form-group.

This class typically styles a <div> to indicate a group of controls such
as a label and a text box. Start by adding this <div> to the page inside
the main content area as follows: <div class="form-group">
</div>.

3. Add a <label> and an <input> tag to the <div>. The <label>
uses the class control-label. The <input> uses the class form-
control. You can also set the placeholder attribute of the
<input> tag to create default text for the user. The following shows an
example.

Click here to view code image

<div class="form-group">
<label for="name" class="control-

label">Name</label>
<input type="text" name="name" class="form-

control"
placeholder="your name" />

</div>

4. Repeat Steps 2 and 3 for a <textarea> control to allow the user to
type her feedback. The following shows an example.

Click here to view code image

<div class="form-group">
<label for="feedback" class="control-

label">Feedback</label>
<textarea name="feedback" class="form-control"

placeholder="your feedback" rows="6"
cols="40"></textarea>
</div>

5. Finally, add an <input> button to the bottom, after the last form-

group. Use the class btn to stylize it with Bootstrap, as in the
following.

Click here to view code image

<input type="submit" class="btn" value="Send" />

You can now run the page and view the results. Figure 18.16 shows the page
with our developing form. The browser is set a medium grid size.

FIGURE 18.16 The Contact page with a basic form stylized by Bootstrap.

Button Drop-Downs
You can use standard <select> tags to create drop-downs and have them
stylized by Bootstrap. However, Bootstrap includes a more powerful drop-
down component that allows a user to select from a menu of items based on a
user clicking a button or an icon or taking some other action. The following
walks you through using the Bootstrap drop-down component:

1. Open the Contact.cshtml page you created in the prior section.
2. Add a new <div> styled as a form-group class between the name

and the feedback groups. Add a label and name it Reason. The
following shows an example.

Click here to view code image

<div class="form-group">
<label class="control-label">Reason</label>

</div>

3. Add another <div> under the <label> control. Style this <div> as
class="dropdown".

4. We will create a drop-down that consists of two buttons. The first button
will tell the user to select an item. Once selected, this button will display

the item selected. This button will be styled as btn. We give this button
an ID because we will use it in some JavaScript we need to write. The
following shows an example.

Click here to view code image

<button class="btn"
id="selectedBtn">Select</button>

The second button uses a down arrow (or caret) to give the user a visual
indication to click for selection. This caret is set using a tag.
We use the data-toggle attribute to reference the container for the
actual menu when the user toggles the button. The following shows an
example.

Click here to view code image

<button class="btn" data-toggle="dropdown">

</button>

5. We now add a list of items for the menu as a . We style that list as
class="dropdown-menu". We give this an ID as well to make it
easy to select using jQuery. Each of the items in the we
make as <a> tags. This gives Bootstrap a way to style the items as a user
hovers over them. The following shows the full group of controls for the
drop-down component.

Click here to view code image

<div class="form-group">
<label class="control-label">Reason</label>
<div class="dropdown">

<button class="btn"
id="selectedBtn">Select</button>

<button class="btn" data-toggle="dropdown">

</button>
<ul class="dropdown-menu" id="reasonsList">

Question
Comment
Error

</div>

</div>

6. We now need to write a small JavaScript function that uses jQuery to
update the Select button text based on the selected menu item. You can do
so in a separate file or within the same page in a scripts section at the
bottom of the page. The following shows the code added to the same
page.

Click here to view code image

@section Scripts {
<script type="text/javascript">

$('document').ready(function () {
var resultBtn = $("#selectedBtn");
$("#reasonsList li a").on("click", function ()

{
var selected = $(this).text();
resultBtn.text(selected);

});
});

</script>
}

You can now run the page and view the results. Figure 18.17 shows the page
executing in a browser with the drop-down being selected.

FIGURE 18.17 The Bootstrap drop-down component in action.
Note that the sample for the book uses the same technique to add a drop-down
menu to the navbar (one for each of the contact pages listed in the examples).

More Info
The preceding examples will get you started building stylized
components in Bootstrap. However, there are many additional
items with which you will likely need to work. For more
information, see http://getbootstrap.com/components/.

Changing the Bootstrap Visual Design
At the time of writing this chapter, it is estimated that Bootstrap is used on
nearly one-third of all websites. This number is significantly higher for new
sites; nearly all of them use Bootstrap. You do not have to go far on the Internet
to find a site built with Bootstrap. One drawback is that if not done right, many
sites start to look the same. You can fix this. Bootstrap is meant to provide
mobile-first, responsive design. However, the visual design (fonts, colors,
look and feel) is still very much in your control. Here we take a look at ways
to implement new designs for sites that use Bootstrap.

http://getbootstrap.com/components/

There are four primary ways you can change your default Bootstrap design.
Each comes with its own trade-offs and support overhead. You may also
decide to mix these approaches for various reasons. We explore each option
here. But first, a warning: you do not want to simply overwrite your Bootstrap
files. This will make it painfully difficult to upgrade to the latest version of
Bootstrap in the future. Instead, follow any of the approaches listed next.

Override Styles Using site.css
You can still write custom styles using a site-specific style sheet. The style
sheet, site.css, is loaded after Bootstrap inside the _Layout.cshtml page.
Therefore, any styles placed in site.css will override the themed styles of
Bootstrap. This is the easiest (and most widely used) form of creating a custom
look for Bootstrap.
There is a lot of guidance available on both the Bootstrap site and related
blogs for writing custom CSS for Bootstrap. This includes making changes to
fonts and colors, buttons, the navbar, and form elements. All you need is a
good understanding of CSS, and you can write customizations.
As an example, suppose you wanted to modify the background of the navbar.
You might start by switching from the navbar-inverse Bootstrap theme to
the default. You would do so by editing the first navbar <div> in
_Layout.cshtml as follows.
Click here to view code image

<div class="navbar navbar-default navbar-fixed-top">

Next, you can open site.css and add an override for the background color for
the navbar. The following shows this style override along with an override
for the logo text (.navbar-brand) to be black.
Click here to view code image

.navbar-default {
background-color: azure;

}

.navbar-default .navbar-brand {
color: black;

}

This simple change is shown in Figure 18.18. Of course, you can apply this
process for more dramatic changes to the look of your site. The benefit of this
approach is that you are not impacting your Bootstrap files and thus can
upgrade at a later date. However, you now are maintaining multiple style
definitions for the elements in your site.

FIGURE 18.18 Use site.css to override Bootstrap style definitions (or
create your own).

Download a Custom Theme
There are many free and paid Bootstrap themes available for use. A good
place to start is bootswatch.com. Here you will find more than a dozen
Bootstrap themes. You can use these as is, or you can further customize them
using the techniques listed in this section.
To use a theme from bootswatch.com, you simply download it and copy over
your existing Bootstrap files (after backing them up, of course). This includes
bootstrap.min.css and bootstrap.css.
There are also source files available for these themes. If you use Less, there
are variables.less and bootswatch.less files used to compile a
new version of Bootstrap. (See “Create Bootstrap Customizations and
Compile with Less/Sass” later in this chapter). If you use Sass, the
_variables.scss and _bootswatch.scss files can be used.

Create a Custom Build of Bootstrap
The Bootstrap site provides a customization page
(http://getbootstrap.com/customize/) that allows you to edit the many features
of Bootstrap and then compile to a customized version. One of the features is
setting the many variables used to define colors in your site. For example,
Figure 18.19 shows the Less variables that define the gray and brand colors.
You make changes here and then have them compiled and propagated
throughout the CSS.

http://bootswatch.com
http://bootswatch.com
http://getbootstrap.com/customize/

FIGURE 18.19 The Bootstrap customizer allows you to make changes and
then generate a new Bootstrap file for your site.

Once you make customizations using this site, you will have to make them
again the next time you upgrade. This is one of the drawbacks of this approach.
The site does help you keep track of your changes. It generates a
config.json file on your behalf. You can use this file in future
compilations as a starting point.
In addition to custom variables (for colors), the site allows you to select which
part of Bootstrap you want to include. You have options for portions of the
CSS, the components you intend to use, and jQuery plug-ins you want to add to
the site. This is great if you only intend to use a subset of Bootstrap. It then
works to lower the overall download footprint of Bootstrap on your site.
Once you have completed making customizations, there is a button at the
bottom of the page to compile and download. This provides a set of Bootstrap
files you can use as a replacement for your current files.

Create Bootstrap Customizations and Compile with Less/Sass
The last method for customizing Bootstrap is using the source files. This is
similar to the customizer page from the Bootstrap site but puts you in control of
the files and the compilation. This requires some setup and configuration using
Less (or Sass) and Gulp tasks for compilation (see Chapter 17 for examples).
The primary folder in the source is the less folder. It contains files for all the
many Bootstrap components, including alerts, buttons, forms, drop-downs,
navbar, and more. It also includes the variables.less file, which
defines the colors used throughout your site.
You do not want to make changes directly to these files. Again, this will make
it difficult to upgrade. Instead, you create a custom file that works like the
bootstrap.less file. The bootstrap.less file simply imports the

many less files during Less compilation and then outputs the resulting CSS.
For example, the following are just some of the import statements inside
bootstrap.less.

//Core CSS
@import "scaffolding.less";
@import "type.less";
@import "code.less";
@import "grid.less";
@import "tables.less";
@import "forms.less";
@import "buttons.less";

You want to create your own, custombootstrap.less but with a new
name such as my-theme.less. This file should sit outside the
bootstrap.less folder so it doesn’t cause confusion. However, it will
include the same imports as bootstrap.less (at least for those items you
intend to import). You will have to edit the import statements to point Less
to the bootstrap directory from your custommy-theme.less file.
Next, you create a copy of variables.less and move this outside the
Bootstrap directory. This file defines the colors for the site. You will edit this
custom version of this file for your needs. You need to then make sure your
theme file my-theme.less points to this version of variables.less.
Finally, you can add your style overrides directly to the my-theme.less
file. Or you can create another file for overrides and import that one, too. You
can then set Gulp tasks in Visual Studio to compile your Less into a new style
sheet. This gives you controlled customizations to Bootstrap without breaking
upgrades.

Minify Your JavaScript with Gulp
We covered Gulp in Chapter 17 when discussing the ASP.NET 5 template.
However, Gulp is a key component for working with your own, custom
JavaScript files. You can use Gulp to copy, combine, and minify (and take
similar actions) your development JavaScript files to files that will execute
faster in production. We will use this approach through these remaining
samples in this chapter. So let’s take a look at how you configure Gulp to
minify a JavaScript file.

1. Start with an ASP.NET 5 Web Site template in Visual Studio. You can
also view this sample from the code download for this book.

2. Gulp uses NPM for package management. The NPM configuration file is
package.json. Open this file from Solution Explorer.

3. We will use the Gulp plug-in uglify. The uglify plug-in can make a copy
of your existing JavasScript files and then minify (or uglify) them for
faster processing. This plug-in has many additional options. You can
begin reviewing these details at: https://www.npmjs.com/package/gulp-
uglify.
Add the following highlighted line to package.json and save the
file.

Click here to view code image

https://www.npmjs.com/package/gulp-uglify

{
"version": "0.0.0",
"name": "",
"devDependencies": {

"grunt": "0.4.5",
"grunt-bower-task": "0.4.0",
"grunt-uglify": "~1.2.0"

}
}

4. Visual Studio will install the plug-in upon save of the package.json
file. To force Visual Studio to download and install this new packages,
navigate to Dependencies/NPM in Solution Explorer. Right-click the
NPM folder and choose Restore Packages. You should see the new
packages installed under the NPM folder.

5. Open gulpfile.js to configure Gulp to use this new plug-in. Figure
18.20 shows the additional code. In this case, the Gulp task will be
called 'compress'. It will then look for .js files in the assets
folder. It then will copy and uglify these files. The output will go to
wwwroot.

FIGURE 18.20 Use gulpfile.js to configure gulp-uglify NPM package.

We will execute this new task using Task Runner Explorer in a moment.
6. Add a folder to the web project called Assets (under the solution

name). This is where you will store your JavaScript files to be minified.
Add a new JavaScript file to the folder and write some simple
JavaScript in the file as an example.

7. Open Task Runner Explorer from View, Other Windows. Recall that this
is the tool used for running Gulp tasks.

8. Inside Task Runner Explorer, select the compress task. Right-click it and
choose Run to execute it now. You can also use Bindings, After Build to
tell the IDE to run this task after a build of the project.

Figure 18.21 shows the results of the Gulp task inside Task Runner Explorer.
Notice the two .js files in Solution Explorer. Both are also open in the IDE.
The lower one contains the original .js source. The minified version is open
at the top of the code editor.

FIGURE 18.21 The Gulp Uglify plug-in executed inside the IDE using Task
Runner Explorer.

Using Knockout
Knockout is a popular JavaScript library that simplifies writing dynamic web
user interfaces that rely heavily on data. It provides client-side, declarative
data binding that works to keep the user interface updated as data changes.
This includes data that changes in response to a user action or an update from
the server. Knockout works to keep your UI and data in sync.
Knockout is a small JavaScript library that all browsers support. You can use
it with jQuery, but Knockout does not require jQuery. Instead, Knockout works
using data binding to automatically keep your UI and data in sync (versus using
jQuery to find DOM elements, track them, and update them for every action).

Understanding Knockout Basic
Knockout uses the MVVM pattern to keep your UI in synch with your data. This
pattern splits your UI concerns from your data into three separate parts:

Model—Like the MVC pattern, this is the model for the data in your
application. The model works to retrieve and store data. In ASP.NET
MVC, we typically create this model using Entity Framework (see
Chapter 17). We may then expose this data through a Web API interface
(see Chapter 19). Your client code makes AJAX calls to the Web API
(and thus your model) for retrieving and storing data. Once the data is on
the client, you convert it to a view model (see below) using JavaScript.

View—The view is the actual UI markup as HTML. In Knockout, your
view will contain declarative bindings to link the UI elements to the
view model. The view will often send an event to the view model, such
as a user entering a value or clicking a button. Knockout works to keep
your view updated based on changes to the view model.
ViewModel—The view model is a client-side JavaScript class
representing the model required for the given view (user interface or
page). The view model does not deal with the actual view, nor does it
know how to retrieve and persist your data. Instead, it simply is a set of
properties and methods for working with data as either a single item or a
list of items.

One item not mentioned is Knockout itself. Knockout is a JavaScript library
that keeps your data bound views in synch with your view models. There is no
need to customize or extend Knockout. Instead, you call Knockout to apply
your data binding on the client. Let’s look at a basic example.
We will leverage the calculate speed example from the JavaScript and jQuery
sections earlier in this chapter. Here, however, we will create the example
inside an ASP.NET 5 site (see the next section for creating the site and adding
Knockout) and use Knockout to do all the work. Let’s start with a simple view
page (called BasicSample.cshtml) as defined here.
Click here to view code image

@{
ViewBag.Title = "Basic Knockout Sample";

}

<h2>@ViewBag.Title</h2>

<p>Distance (miles):
</p>
<p>Time (minutes):
</p>
<hr />
<p>Calculated pace (mins/mile):
</p>

This view uses tags to set up data binding in Knockout using the
Knockout text data binder, as in <span data-bind="text:
distance">.
Next, we need to define a view model. A Knockout view model is defined as a
JavaScript class typically using function/constructor notation. In this case, we
need only two properties to start: time and distance (the properties bound
to the view above). The following shows an example of the JavaScript
embedded in the BasicSample.cshtml page.
Click here to view code image

@section Scripts {
<script type="text/javascript">

function BasicViewModel() {
this.time = '100';
this.distance = '10';

}

//Activates knockout.js
ko.applyBindings(new BasicViewModel());

</script>
}

Notice the ko.applyBindings() method call in the preceding JavaScript.
This tells Knockout to apply the defined bindings for the page. You can now
run this page in the browser (after adding a simple MVC controller and method
for the page). When run, the page will display the model. However, we want to
allow a user to enter both time and distance and see it automatically calculated
and updated by Knockout. Let’s do that next.
We start by updating the view markup to use <input> text boxes instead of
 tags. This will allow a user to enter the time and distance on the
page. The following shows an example.
Click here to view code image

<p>Distance (miles): <input type="text" data-
bind="value: distance" /></p>
<p>Time (minutes): <input type="text" data-
bind="value: time" /></p>
<hr />
<p>Calculated pace (mins/mile):

</p>

Notice when using <input> tags that we switch from the Knockout text
binder to its value binder. In addition, we added the binder for the calculated
speed as a text binder inside a tag.
The form is now bound to the view model. However, we need to modify the
view model to add the pace (minutes/mile) attribute as a calculated value. We
also need to understand another piece of Knockout called observables. An
observable is a special Knockout property definition that works like an event
to update any items that are bound to the property when the property value
changes. To define an observable, you use ko.observable() as a method
call. The following shows these changes to the view model along with the
calculated field pace. Notice that the calculated field is defined using
ko.computed(), which takes a function.
Click here to view code image

function BasicViewModel() {
this.time = ko.observable('100');
this.distance = ko.observable('10');

this.pace = ko.computed(function () {
return (this.time() / this.distance()).toFixed(2);

}, this);
}

Running this application results in an immediate update to the calculated pace
as a user changes a value (and navigates off the input box as in lost focus or
blur). Knockout handles all the binding from the view model to the view.
Making the property observables ensures that updates occur as values change.

Figure 18.22 shows an example running in the browser. We will look at a more
detailed example in the coming sections.

FIGURE 18.22 The Knockout calculate pace example running in the
browser.

Adding Knockout to YourASP.NET Project
Knockout is not installed by default in the ASP.NET Visual Studio templates.
However, thanks to Bower support in ASP.NET, it is easy to add to your
project. The following walks you through adding Knockout to an ASP.NET 5
MVC 6 template:

1. Start with a new or existing site built off the ASP.NET 5 Web Site
template (which includes support for Bower, Gulp, and other items).

2. Open bower.json from Solution Explorer. Recall from Chapter 17
that this is where you can add client framework dependencies.

3. Inside the “Dependencies” section at the top of the file, add Knockout as
a dependency. You should get IntelliSense here and see the Knockout
framework as well as version 3.3.0 (latest at the time of writing). Figure
18.23 shows an example.

FIGURE 18.23 Add Knockout to your site using bower.json.

4. Saving bower.json should install the package. You can check by
going to Solution Explorer and navigating to the Dependencies,
Bower folder. You can also right-click the folder and choose Restore
Packages to force Visual Studio to download Knockout.
Knockout is now installed. You can see it as a package under
Dependencies/Bower. Figure 18.24 shows both inside Solution
Explorer. You can also see the actual source files inside
bower_components/knockout/dist. This folder is hidden in
Solution Explorer by default (requires Show All Files from the toolbar).

FIGURE 18.24 Knockout installed in the solution as a Bower dependency.

5. The next step is to add Knockout to the copy task in gulpfile.js.
Gulp will use the copy task to move the knockout.js and
knockout.debug.js files to the wwwroot/lib folder.
Open gulpfile.js and find the code for
gulp.task("copy")...; add the following to the end of the list in
this method call:

Click here to view code image

"Knockout": "knockout/dist/knockout*.js"

This tells the Gulp task to copy the knockout.js source from the
bower_components folder to the wwwroot/lib.

6. Open Task Runner Explorer and run the clean and copy tasks to move
the knockout.js file into wwwroot/lib.

7. You also need to add Knockout to your page before you can use it. In

ASP.NET MVC, this can be done site-wide inside the
_Layout.cshtml page provided you intend to use the framework
across your site. (Otherwise, you can add to specific pages where you
intend to use it.).
Inside the _Layout.cshtml, scroll to near the bottom of the page.
Find the <environment names="Development"> tag. Add the
following <script> tag inside this tag to include a reference to the
Knockout library.

Click here to view code image

<script src="~/lib/knockout/knockout.debug.js">
</script>

As an optional step, you can add Knockout to the <environment
names="Staging,Production"> section of the page. Here you
can point to a CDN (content delivery network) and use your local source
as a backup. In both cases, you should pint to the minified version of
Knockout. The following shows this <script/> tag:

Click here to view code image

<script
src="//ajax.aspnetcdn.com/ajax/knockout/knockout-
3.3.0.js"

asp-fallback-
src="~/lib/knockout/knockout.js"

asp-fallback-test="window.Knockout">
</script>

Creating an App with Knockout
Let’s look at a larger example using Knockout. We will start with an ASP.NET
5 MVC 6 project based on the ASP.NET 5 Web Site Template. We assume
Knockout is installed to start (see prior section). In this example, we will
continue building on the bike ride log sample used earlier in the book.
However, we will use Knockout to bind data to an editable list, allow new
entries, and support delete.

Create the Model (on the Server)
To get started, let’s first create the code that runs on the server. This is an
ASP.NET MVC project (see Chapter 17), so this code will include a model to
represent the server-side data and a controller for displaying pages and
exposing a Web API. Creating these classes should be familiar to you from the
prior chapter, so we will not walk through each step here. Listing 18.4 shows
the model for a bike log entry.

Knockout and Destroy
Knockout can add an additional property to your objects called
_destroy to help you work with arrays of data. For example,
suppose you are working with a list of data on the client and want
to remove one or more items from the list. This works fine with
the .remove() method. However, you may need to know these
items were removed when submitted back to the server. For this
case, Knockout provides the .destroy() method.
Knockout will add the property _destroy: true to your
object when you call the .destroy() method on a Knockout
collection. The Knockout binding knows to ignore these items in
your collection. However, these items are passed back to the
server for update.
You need to add a _destroy property to your server-side
model to account for this instance (provided you need this
functionality). You can do so by creating a view model on the
client or by adding the property and marking it as NotMapped to
indicate to Entity Framework that it should ignore this property
when mapping to your database. Listing 18.4 takes this approach
as this example uses bulk updates on the array (including deletes).

LISTING 18.4 The BikeLog Model Inside an ASP.NET MVC Application

Click here to view code image

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace KnockoutSample.Models
{

public class BikeLogModel
{

[Required, Key]
public int Id { get; set; }

[Required]
public string Description { get; set; }

public double TimeMinutes { get; set; }

public double DistanceMiles { get; set; }

[NotMapped]
public bool _destroy { get; set; }

}
}

Create the Controller
Next, we need to add a controller (called BikeLogController) to the
application for working with the bike log pages. In this example, we will
include all features on a single page called Index.cshtml. Therefore, we
only need a single method in the controller to return this view: Index() (see
Figure 18.25).

FIGURE 18.25 Use the BikeLogController to contain both methods to
show pages as well as Web API methods for working with

BikeLogModel data.
We can use Knockout with traditional GET and POST HTTP page calls or
AJAX calls against web services (using Web API) for retrieving and saving
data. Web API is covered in the next chapter; therefore, we do not cover it
here. However, Figure 18.25 shows the BikeLogController where we
have combined both page calls (Index and BasicSample) and the Web
API methods Get and Post. This controller works with a static collection
(instead of a database) to simulate working with the bike log data. The Get
method returns the collection of bike log entries. The Post method takes a
string formatted as JSON as an argument. It then uses the
Newtonsoft.Json library (included with the ASP.NET 5 template) to
deserialize the JSON string into an IEnumerable<BikeLogModel> list.
The method then iterates over this list and makes the appropriate updates (add,
remove, update). We do not cover these methods in detail here because Web
API is covered in the next chapter. However, you can download the sample
from this book’s website for reference.

Create Bike Log List View
Now that we have an ASP.NET MVC model and controller, let’s look at
creating the view and view model. The view will use Knockout and the
MVVM pattern on the client. Recall that the model in MVVM is the model we
created on the server (BikeLog and the collection class used to work with
it). We will call this model through the Web API using AJAX and jQuery on
the client. The view represents our page markup. We also need to create the
view model as JavaScript that runs on the client. The following walks you
through creating the initial view model and related view for displaying an
editable list of bike log entries.

1. Create the view model. The view model will be JavaScript stored in a
separate .js file. In Solution Explorer, right-click the project names and
choose Add, New Folder. Name this folder Assets. We will use it to
store our project source code for JavaScript files.
Next, configure Gulp to copy the JavaScript files to wwwroot upon
project build. See the prior section “Minify Your JavaScript with Gulp”
for defining this exact configuration. Be sure to use Task Runner
Explorer to bind the compress task to After Build.

2. Right-click the newly created Assets folder and choose Add, New
Item. Select the JavaScript File template. Name this file app.js.

3. Create a JavaScript class with constructor notation called BikeLog.
This class takes an argument that passes in data for creating a new
instance of BikeLog. This object will be similar to the object created
in the earlier sample.
Add properties for description, timeMinutes, and
distanceMiles as Knockout observables. Include an id property
and the computed field pace. Listing 18.5 shows an example.

LISTING 18.5 The BikeLog Knockout Object

Click here to view code image

function BikeLog(logEntry) {
this.id = logEntry.Id;
this.description =

ko.observable(logEntry.Description);
this.timeMinutes =

ko.observable(logEntry.TimeMinutes);
this.distanceMiles =

ko.observable(logEntry.DistanceMiles);

this.pace = ko.computed(function () {
return (this.timeMinutes() /

this.distanceMiles()).toFixed(2);
}, this);

}

4. Create the actual view model to work with the BikeLog class. Define
a new class in the same app.js file; call this class
BikeLogListVm.

This class should include a Knockout array of BikeLog entries as a
property; name this property logItems. Knockout defines the object
observableArray. This allows you to create an array in which each
item in the array is an observable.
The view model should also include a jQuery call to $.getJSON().
This method will self-execute when a new instance of the class is
created. It will use AJAX to call the Web API created previously in the
controller class to return the current list of bike log entries.
The results from$.getJSON() can be passed into a function for
mapping the results to the Knockout array. Create this function as a
separate method on the object called mapRides. You will need to reuse
this function following a post to the server to update the data.
The mapRides function should use the jQuery function $.map() to
map each item returned from the Web API call to a BikeLog instance.
This method maps JSON data to JavaScript objects. Finally, we will
update the array logItems with these mapped objects.
Listing 18.6 shows the Knockout view model object.

LISTING 18.6 The BikeLogListVm Knockout View Model Object

Click here to view code image

function BikeLogListVm() {
var self = this;
self.logItems = ko.observableArray([]);

//Get data from server.
$.getJSON("/api/bikelog/", function (rides) {

self.mapRides(rides);
});

self.mapRides = function(rideData){
var mappedRides = $.map(rideData, function (item)

{
return new BikeLog(item)

});
self.logItems(mappedRides);

};
}

Note
Note that JavaScript and the $.map jQuery function are case
sensitive. Therefore, if your MVC model uses uppercase (as in
Id and not id), your JSON data will be returned as uppercase.
Also, your mapping will look for uppercase values in your
JavaScript code. Notice that BikeLog (Listing 18.5) takes the
logEntry parameter and then uses these uppercase values for
mapping.

5. Add the Knockout call to applyBindings to the JavaScript file

(outside the class definitions) as follows.
Click here to view code image

ko.applyBindings(new BikeLogListVm());

6. Define the actual view page, its markup, and Knockout binding. Inside
Solution Explorer, navigate to the Views folder. Right-click this folder
to add a new folder called BikeLog.

7. Right-click the BikeLog folder and choose Add, New Item. Select the
template MVC View Page. Name this new page Index.cshtml and
click the Add button.

8. Add a <script> tag pointing to the app.js file at the end of the
page, inside a Scripts section. Recall that the file will be the one output
to wwwroot by Gulp. The file will include the view model JavaScript
created previously. This script section should look as follows.

Click here to view code image

@section Scripts {
<script src="~/app.js"></script>

}

9. Next, create a <table> to hold each bike log entry as a row. We will
use the Knockout foreach data binder. This binds to an array
(logItems) and will loop for each item in the array. In this case, we
will apply that binder to the <tbody> tag, which indicates that each
row <tr> inside the <tbody> represents an item in the collection.

Next, we create the template row and its columns. Each column will use a
Knockout binder to bind to the view model. For id and pace, use the text
binder. We want to allow editing of other properties, so there you use
<input> tags and the value binder.
Listing 18.7 shows the completed view page bound to the view model (minus a
few style class definitions).

LISTING 18.7 The Markup for the Bike Log Index.cshtml Page Bound to
the View Model Using Knockout

Click here to view code image

@{
ViewBag.Title = "Bike Log Sample App";

}

<h2>@ViewBag.Title</h2>
<p>See the bike log data for recent rides and track
new ones.</p>

<div class="row">
<div class="col-md-12">

<hr />
<table>

<thead>
<tr>

<td>Id</td>
<td>Description</td>
<td>Time (minutes)</td>
<td>Distance (miles)</td>
<td align="center">Pace (min/mile)</td>

</tr>
</thead>
<tbody data-bind="foreach: logItems, visible:

logItems().length > 0">
<tr>

<td data-bind="text: id"></td>
<td>

<input type="text" data-bind="value:
description" />

</td>
<td>

<input type="text" data-bind="value:
timeMinutes" />

</td>
<td>

<input type="text" data-bind="value:
distanceMiles" />

</td>
<td align="center" data-bind="text: pace">

</td>
<td><a href="#" data-bind="click:

$parent.removeEntry">delete</td>
</tr>

</tbody>
</table>
<hr />

</div>
</div>
@section Scripts {

<script src="~/app.js"></script>
}

You can now run the application and view the results. Figure 18.26 shows an
example. Notice that the computed field pace is automatically updated by
Knockout as you change values in the grid. The next steps are to allow a user
to add, edit, and delete items and then save their changes.

FIGURE 18.26 The bike log view page bound to model data from the server
using an AJAX call and Knockout.

Add a New Ride Entry
This sample will do all the adds, edits, and deletes in the memory of the
browser. We will then ask the user to click the Save button to commit his
changes. Of course, we could write this to work one data item at a time if we
preferred. The following walks you through including support for adding an
item.

1. Add a button near the top of the Index page (after the <div> tag).
This button will allow a user to add a new item to the grid. Use the
Knockout click binding to bind the button to a method on the view model
called addEntry (which you will write next). The following shows an
example of this markup.

Click here to view code image

<button type="button" data-bind="click: addEntry"
class="btn">Add New Entry</button>

2. Open the App.js file and add the addEntry method to the
BikeLogListVm object. This method will simply use the .push
method of the array to add a new instance of the BikeLog class to the
collection. Knockout binding will take care of the rest (adding the item to
the bound grid on the page). The following shows this method.

Click here to view code image

//Add a new entry to the collection.
self.addEntry = function () {

self.logItems.push(new BikeLog({
Id: 0,
Description: "",

TimeMinutes: 0,
DistanceMiles: 0

}));
};

Run the code and view the results. You can now add entries to the grid by
clicking the Add New Entry button. Figure 18.27 shows an example. Notice
that these items work like the others in the list. However, they do not have a
value for their ID. We will fix this when we add support for saving the view
model updates back on the server.

FIGURE 18.27 The bike log view page including the Add New Entry
feature.

Delete an Entry
Deleting an entry with Knockout is just a matter of removing the item from the
collection. Knockout will handle the rest. In this case we will use .destroy
and not .remove (see the Knockout and Destroy sidebar above). The
following walks you through adding this feature:

1. On the Index page, add a new column to the table to hold an <a> tag
for allowing a user to delete a row. This will also use the Knockout click
binder. Here we will point to a function named removeEntry that you
will write in a minute. The following shows the markup.

Click here to view code image

<td><a href="#" data-bind="click:
$parent.removeEntry">delete</td>

2. Open the App.js file and add the removeEntry method to the
BikeLogListVm object. This method uses the Knockout destroy
method to mark the item in the collection as removed. The Knockout

binding takes care of keeping the UI up to date. The following shows this
method.

Click here to view code image

//Remove item from collection.
self.removeEntry = function (bikeLog) {

self.logItems.destroy(bikeLog);
};

You can now run the code again and see the results. You should be able to add,
edit, and delete records from the table. However, there is still no means for a
user to save her changes. Let’s add that feature now.

Save Changes
Changes will be saved back to the server in bulk. Recall that the controller
contains the method Post that takes a JSON string and deserializes it into bike
log entries for processing. It then returns the updated collection as a result of
the Web API call. Let’s look at adding the save feature.

1. Add a button to the Index page after the </table> tag. This button
should use the Knockout click binding to bind to a saveChanges
method you will write in a moment.
In addition, after the button, add a tag to bind to a new property
you will create called saveResult. This will show results to the user
when saving the data.
The following shows these two additional markup elements.

Click here to view code image

<button type="button" data-bind="click:
saveChanges"

class="btn">Save Changes</button>
<span data-bind="text: saveResult"

class="text-success" id="success">

2. Open the App.js file and add the property saveResult to
BikeLogListVm as follows:

Click here to view code image

self.saveResult = ko.observable('');

3. Add the saveChanges method to the BikeLogListVm object. This
method will use $.ajax to call the Web API controller’s Post
method. When doing so, you pass the array data using Knockout’s utility
method toJson, which converts the array to JSON.
After the call to the Web API succeeds, update the collection with the
results from the server. This will add the Id field values for new entries
and resynch the collection with the right data.
Finally, write code to update saveResult upon success of saving the
data. In the next example, we use the jQuery show and fadeout
methods to first show saveResult to the user and then fade the
message off the screen.

Click here to view code image

//Save data back to the server.
self.saveChanges = function () {

self.saveResult('');
$.ajax({

type: "POST",
url: "/api/bikelog/",
data: { logEntriesJson:

ko.toJSON(self.logItems) },
success: function (response) {

self.mapRides(response);
self.saveResult('Saved');
$('#success').show();
$('#success').fadeOut(3000);

}
});

};

You can now run the completed application. Figure 18.28 shows the
application in action. Notice that item 2 has been deleted; items 5 and 6 were
added. Save Changes was executed (and is fading away in the image).

FIGURE 18.28 The completed bike log view page demonstrating a
Knockout application working with JavaScript, jQuery, MVC, and the Web

API.

Doing More with Knockout
You should now have a solid foundation on using the power of Knockout for
form binding with MVVM. Knockout provides even more binding options.
Thankfully, all the bindings work in a similar way to what you have seen thus
far. The following lists a few additional Knockout bindings to go with those
you have used thus far (text, value, click, foreach). This is not a
complete reference, but an overview. See the Knockout documentation on its
website for a complete reference to all other bindings.

visible—This binding makes the element show or hide based on a
Boolean value you pass to the binding from the view model. The values
false, 0, null, and undefined cause the element not to display.
css and style—The css binding will bind a new class value to an
estimate based on the data in your view model. Similarly, the style
binder adds an inline to an element based on a view model binding. This
is similar to using jQuery selectors in your JavaScript to change a style.
However, it makes use of the binding in Knockout to do so.
attr—The attr binding allows you to set an attribute of an element
based on view model data.
if/ifnot—The Knockout if binder works to display a section only
if a certain value from your view model is true. You can apply it to a
<div>, for example, to show and hide the content contained in the
<div> if the view model property is true. This is similar to visible.
However, the if binding actually adds or removes the markup from the
DOM based on binding (whereas visible simply uses CSS to show or
hide an element).
enable/disable—These bindings enable or disable elements based
on the value of the bound item in the view model.
textInput—Works like the value binding to bind an <input>
element to a property of the view model. However, textInput will
update the view model real time as a user types in the input. This is
useful for situations such as real-time validation and autocomplete
(among others).
hasFocus—This binding will set focus to an item on the page when
the value from the view model is true. In addition, should the user
manually set focus to the element, the view model will update the
property to true (and you may then take additional action if required,
such as changing the items style).

There are additional bindings available beyond those just listed and shown
thus far. Knockout also support creating your own custom bindings using its
binding framework.

More Info
This section introduced the core features of Knockout. However,
there are more details about binding, control flow, and extensions
with Knockout. To learn more, you can visit the Knockout site at
knockoutjs.com, where you’ll find good documentation of key
techniques.

Creating a Site with AngularJS
The AngularJS client-side JavaScript framework is a powerful (and popular)
library that allows you to more easily create SPAs that do not refresh for every
user action. This provides a better user experience without the use of a
browser plug-in.
AngularJS can be used with just an HTML page as your view. The JavaScript
works to call the server Web API as needed to update the model and persist
data. However, you can also combine Angular with ASP.NET MVC (and
similar technologies). This section will walk you through the basics of
AngularJS and a sample using it with an ASP.NET 5 MVC 6 project template.

Understanding AngularJS Basics
AngularJS leverages the MVC pattern on the client to keep your JavaScript
code organized. It also provides a repeatable pattern for handling data and
binding that data to views. This is similar to Knockout (shown in the prior
section) but takes a different approach to organizing your code and binding
your model and view.
The following outlines the basics of the MVC pattern in AngularJS. Each item
is also shown with its AngularJS directive preceded with ng. (The ng is just
a way to refer to the word “Angular.”) A directive in Angular is markup that
instructs Angular as to what you are trying to accomplish. You will see that
there are a lot of directives in Angular.

Model (ng-model)—The model is a JavaScript client representation
of the data used by your view. You typically still maintain an API on the
server for retrieving and persisting the data (also called a model).
However, you work with that data on the client as a JavaScript model
object. The model gets exposed by the controller (which is sometimes
referred to as a view model).
You use the ng-model directive to indicate that a given section (like a
<div> tag) works with a specific model from your Angular application.
View (ng-app)—The view represents your HTML markup for the
page. You use Angular to bind items from your model to the view. This
way, as the model updates, so does the view. Angular defines the view
as a projection of your model using an HTML template.
You use the directive ng-app to wire a specific application to your
view. You can do so inside the <html> tag for the page or inside a
specific page section, such as a <div>.
Controller (ng-controller)—A JavaScript function that you write
to create an instance of your model (typically defined as $scope). The

http://knockoutjs.com

controller works to bind properties of your model to the page and keep
the page and model in sync. You can think of the controller like a view
model. Angular does not use a strict version of MVC; rather, it is a
variation designed for a specific purpose. The controller allows you to
move your application logic out of the page and into code (where it
belongs). This also makes your front end more testable.
You use the ng-controller directive to attach a controller to your
page. You can do so inside the <body> tag or another tag such as
<div>. You cannot use items of the controller outside the scope of
where the controller is used in the markup. You can add multiple
controllers to a page, each within its own page section. You can also
work with multiple controllers in the same page section.

Let’s start by looking at a simple example. We will again leverage the
“calculate pace” example from the prior sections to show comparison
(between JavaScript, jQuery, Knockout, and now AngularJS). We will create
the example inside an ASP.NET 5 site (see the next section for creating the site
and adding AngularJS to your project), but we will use AngularJS to do most
of the work.
The view page (called BasicSample.cshtml) uses AngularJS for binding
to a model via a controller. The view page we are examining is an ASP.NET
MVC view that uses a _Layout.cshtml page as its base (which includes a
<script> tag pointing to the AngularJS library). This sample page is shown
in Listing 18.8 (which includes line numbers for reference).
There are a number of AngularJS-specific directives to point out; the following
walks you through each:

Line 07—Use the ng-app directive to indicate the module (or
AngularJS application) that this page is using (<div ng-
app="basic-sample">). It is possible to register multiple modules
on a page, each specific to an app and a section of the page.
Line 08—The ng-controller directive indicates that the given
<div> and (its contents) is to be used within the application’s
controller, BasicSampleCtrl. The controller is part of the module
(ng-app="basic-sample"). You can have multiple controllers in
an application and use multiple controllers within the same page for
different purposes. (This helps keep your code clean and maintainable.)
Line 09 and 11—This is a user form that uses <input> tags to be
bound to the AngularJS model. There are a number of binding directives
in AngularJS. The most used is one-way data binding. The syntax for this
is as follows: <input type="text" value="{{
basicModel.distance }}" />.
However, in this case, we want two-way data binding that updates the
model as a user enters data into a given field. Therefore, we use the ng-
model directive. This represents two-way data binding in Angular
(from the code to the UI and from the UI back to the code). Without two-
way data binding, we would have to scrape the input from the form
elements after a user executes an action such as changing focus (blur) and
using jQuery (or, we could process the data on the server via a POST,
but that is not responsive).

Line 17—This uses the ng-bind directive to bind a to the
results of the model’s method, pace(). This is also a two-way binding.
The method calculates based on user input. It will update real time given
our use of ng-model binding and ng-bind.
Line 24—This line simply includes the AngularJS script for the page.
You will see that script in a moment. It includes definitions for the
AngularJS module, controller, and a JavaScript model.

LISTING 18.8 A Simple Angular View That Uses Two-Way Data Binding

Click here to view code image

01 @{
02 ViewBag.Title = "Basic Angular Sample";
03 }
04
05 <h2>@ViewBag.Title</h2>
06
07 <div ng-app="basic-sample">
08 <div ng-controller="BasicSampleCtrl">
09 <p>Distance (miles): <input type="text" ng-
model="basicModel.distance"
10 class="form-
control" /></p>
11 <p>Time (minutes): <input type="text" ng-
model="basicModel.time"
12 class="form-control"
/></p>
13 <hr />
14 <p>
15
16 Calculated pace (mins/mile):
17

18
19 </p>
20 </div>
21 </div>
22
23 @section Scripts {
24 <script src="~/app.js"></script>
25 }

The AngularJS code defines a module, a controller, and a model. This code is
shown in Listing 18.9 (again, with line numbers for reference). The following
highlights key areas within this code (by line number):

Line 05—This line uses the angular object to register an angular module
called basic-sample. Think of an Angular module as an application.
You typically create a new module for each main feature of your
application. Modules contain Angular controllers. You can also mark a
given module as dependent on one or more other modules using the
parameter array in the second argument.
Line 06—This creates a controller called BasicSampleCtrl that is

added to the module. You can also use the syntax
moduleName.controller() to add a new module to a given
controller.
Line 10—The $scope for a given controller is used to represent the
model (or view model). You can define $scope inside the controller.
Alternatively, you can keep your models separate (as in this example)
and instantiate an instance and assign it to $scope. The content of
$scope is what can be bound to your page by Angular.
Lines 14–21—This is the actual model. It is just the class we have used
in previous examples.

LISTING 18.9 The AngularJS Code for the Page Inside a File Called app.js

Click here to view code image

01 (function () {
02 'use strict';
03
04 //The angular module definition
05 angular.module('basic-sample', [])
06 .controller(BasicSampleCtrl, BasicSampleCtrl);
07
08 //The controller defining the model as $scope
09 function BasicSampleCtrl($scope) {
10 $scope.basicModel = new BasicModel();
11 }
12 })();
13
14 //The model
15 function BasicModel() {
16 this.time = 100;
17 this.distance = 10;
18 this.pace = function () {
19 return (this.time / this.distance).toFixed(2);
20 };
21 };

When you run this application, you get the screen shown in Figure 18.29.
Again, because we are using two-way binding, as a user types in the input
fields, the pace is calculated and updated automatically by Angular binding.
We will look at some of the concerns of building a larger Angular example
with ASP.NET 5 next.

FIGURE 18.29 The basic pace sample running as an AngularJS project.

Adding AngularJS to Your Project
There are file templates for AngularJS built into Visual Studio. There is also
IntelliSense by default. However, Angular is not installed by default as a client
framework in the ASP.NET template. This is where Bower support in
ASP.NET can again help. The following walks you through adding AngularJS
to an ASP.NET 5 MVC 6 template:

1. Start with a new or existing site built off the ASP.NET 5 Web Site
template (which includes support for Bower).

2. Open bower.json from Solution Explorer. Inside the Dependencies
section at the top of the file, add Angular as a dependency. You should
get IntelliSense here and see the framework as well as version 1.4.1
(latest at the time of writing). Refer to Figure 18.23 as an example (for
Knockout).

3. The next step is to add Angular to the copy task in gulpfile.js.
Gulp will use the copy task to move the Angular.js file to the
wwwroot/lib folder.
Open gulpfile.js and find the code for gulp.task("copy")...;
add the following to the end of the list in this method call:

Click here to view code image

"angular": "angular/angular*.{js,map}"

This tells the Gulp task to copy the .js source files from the
bower_components folder to the wwwroot/lib. This will include
the debug version of Angular (angular.js) and the minified version

(angular.min.js).
4. Open Task Runner Explorer and run the clean and copy tasks to move

the Angular files into wwwroot/lib. After running the tasks, use
Solution Explorer to navigate to wwwroot/lib/Angular to see the
results.

5. You also need to add Angular to your page before you can use it. In
ASP.NET MVC, this can be done site-wide inside the
_Layout.cshtml page provided you intend to use the framework
across your site. (Otherwise, you can add to specific pages where you
intend to use it.).
Inside the _Layout.cshtml, scroll to near the bottom of the page.
Find the <environment names="Development"> tag. Add the
following <script> tag inside this tag to include a reference to the
Knockout library.

Click here to view code image

<script src="~/lib/angular/angular.js"></script>

As an optional step, you can add the minified version to the
<environment names="Staging,Production"> section.
The following is the additional <script/> tag to add to this section.
Note, you could also point to a content delivery network (CDN) instead
of a local file.

Click here to view code image

<script src="~/lib/angular/angular.min.js">
</script>

Creating an App with AngularJS
We will now look at building a larger application with AngularJS. We will
stick with a similar application that we used in the Knockout sample to allow
for comparison between the two frameworks. The application starts with an
ASP.NET 5 starter web template. We assume that the project is set up to
include the AngularJS library as shown in the prior section. We also assume
you are using a Gulp task to output your script files to the wwwroot directory.
(See the prior section, “Minify (or Copy) Your JavaScript with Gulp”). Once
you’ve completed those tasks, it is time to get started.

Create the Model (on the Server)
The model for the server-side MVC code will be the same as the model
created in the Knockout example (BikeLog). Refer to Listing 18.4 for an
example.

Create the Controller (on the Server)
The ASP.NET MVC controller will be the same as the one used in the
Knockout sample. Refer to Figure 18.25 for an example. You can get the
details of this controller from the source code for the book.

Create the AngularJS Application, Controller, and Initial Service
We will write the server-side elements by first focusing on the initial Angular
JavaScript to define the application. The following walks you through these
steps:

1. This example will need to call the Web API RESTful services inside the
controller. Like many things in Angular, there are a few ways to do so.
You can use the $http method that exists inside of Angular and works
similarly to jQuery. Alternatively, you can use the Angular $resource
service, which can make your code somewhat easier to understand and
maintain.
We will use this $resource approach to call our Web API services.
This feature is part of a separate angular library called angular-resource.
We need to include this library in our project.
Open Bower.json and add "angular-resource": "~1.4.1"
to the dependencies list (under the Angular dependency). Save the file.
You should see the package under Dependencies/Bower.
Open gulpfile.js and find the code for
gulp.task("copy")...; add the following to the end of the list in
this method call:

Click here to view code image

"angular-resource": "angular-resource/angular-
resource*.{js,map}"

Finally, add this library to the markup inside the shared file
_Layout.cshtml, <environment
names="Development"> section as in the following.

Click here to view code image

<script src="~/lib/angular-resource/angular-
resource.js"></script>

You may also add the minified version of this file to the
<environment names="Staging,Production"> section as
in the following.

Click here to view code image

<script src="~/lib/angular-resource/angular-
resource.min.js"></script>

2. Create an Assets folder inside your project. Add a JavaScript file
called app.js inside this folder.

3. Next, we will configure Gulp to copy the JavaScript files from the
Assets folder to the wwwroot upon project build. In this case, we will
not minify the files. Instead, we will just copy them as the gulp-uglify
plugin in its current version does not always work well with Angular
(without customizations).
Start by opening gulpfile.js. Add the highlighted lines below to the
paths object. This will setup paths for the Assets folder and the
wwwroot.

Click here to view code image

var paths = {
bower: "./bower_components/",
lib: "./" + project.webroot + "/lib/",
root: "./" + project.webroot + "/",
assets: "./assets/"

};

Next, create a Gulp task inside gulpfile.js to copy files from
Assets to wwwroot. This task should look as follows:

Click here to view code image

gulp.task("copyAssets", function () {
var assets = {

"assets": "*.js"
}
for (var file in assets) {

gulp.src(paths.assets + assets[file])
.pipe(gulp.dest(paths.root + file));

}
});

Finally, use Task Runner Explorer to bind the new copyAssets to the
After Build action. This will ensure this file is output upon a new
build.

Note
We put all the Angular code for the project in this example inside
a single file, app.js. You could, however, create separate
folders under Assets for Controllers, Services, and the like.
You can then use Gulp to either output these files separately at
build or “uglify” them together as a single file. Each development
group has a specific way it likes to organize its code, including
the many JavaScript files used by an AngularJS application.

4. Open app.js and define an AngularJS module (application) as an
anonymous function nested inside another anonymous function. Call this
module rideLog-app, as in the code that follows. Notice that the
module definition includes the dependency ngResource. This
indicates that the module is dependent on angular-resource (for creating
services).

Click here to view code image

//The rideLog-sample module, controller, and
services
(function () {

'use strict';

//The angular application definition
var app = angular.module('rideLog-app',

['ngResource']);

})();

5. Define an Angular service for calling the Web API Get method to return
a list of ride log entries (defined back in Figure 18.25). We add this code
to the same app.js file.
The code uses the app reference created earlier when defining the
module. It uses app.factory to add a service called LogSrv as a
$resource. Notice that we pass the URL to $resource. We also
define the service using the query argument. Here we state that the HTTP
method is GET, there are no parameters, and we expect an array as a
return value.

Click here to view code image

app.factory('LogSrv', ['$resource',
function ($resource) {

return $resource('/api/bikelogsrv/', {}, {
query: { method: 'GET', params: {}, isArray:

true }
});

}]);

6. We now need to define the controller for this page. We add the controller
to the module again using the app reference. This controller will use
$scope to set the model data (logEntries). It will also depend on
the LogSrv created earlier to retrieve this data from the HTTP call
(query). Angular automatically decodes JSON from the service into a
JavaScript model (in this case, an array). The following shows an
example of this code.

Click here to view code image

//The controller defining the model as $scope
app.controller('RideLogCtrl', ['$scope', 'LogSrv',
function ($scope, LogSrv) {

$scope.logEntries = LogSrv.query();
}]);

The next step is to bind this application to an HTML view.

Tip
Visual Studio ships with item templates for key AngularJS
features. These templates create new .js files stubbed to work
with AngularJS. Templates include controller, controller using
$scope, directive, factory (for working with services), and
module. This example uses a single file, app.js. These
templates are useful if you write a lot of AngularJS and maintain
separate files.

Bind the AngularJS Application to a Bike Log List View
Let’s now look at how you can bind the angular module, controller, and data to
an HTML view. The following walks you through this task:

1. Inside Solution Explorer, navigate to the Views folder. Right-click this
folder to add a new folder called BikeLog.

2. Right-click the BikeLog folder and choose Add, New Item. Select the

template MVC View Page. Name this new page Index.cshtml and
click the Add button.

3. Add a <script> tag pointing to the app.js file at the end of the
page, inside a Scripts section. Recall that the file will be the one that
Gulp outputs to wwwroot. The file will include the JavaScript created
previously. This Script section should look like this:

Click here to view code image

@section Scripts {
<script src="~/assets/app.js"></script>

}

4. Indicate that the page uses the Angular application rideLog-app by
adding the following <div> tag (also marks the tag as a Bootstrap row).

Click here to view code image

<div class="row" ng-app="rideLog-app">

5. Add another <div> tag inside the previous one for defining the
controller, as in the following (also marks the tag width using Bootstrap).

Click here to view code image

<div class="col-md-12" ng-controller="RideLogCtrl">

6. Create a <table> to hold each bike log entry as a row. We will use the
Angular directive ng-repeat to indicate a template for the table body.
This directive will then repeat for each item (entry) in the array
defined in our scope (logEntries).
We will then use one-way binding to bind items (as entry) from the
logEntries array. Angular creates and maps these objects to the
array automatically when we call the service.
Listing 18.10 shows the completed view page bound to view app,
controller, and model (controller data).

LISTING 18.10 The Markup for the Bike Log Index.cshtml page Bound
Using AngularJS

Click here to view code image

@{
ViewBag.Title = "Bike Log Sample - Angular";

}

<h2>@ViewBag.Title</h2>
<p>See the bike log data for recent rides and track
new ones.</p>

<div class="row" ng-app="rideLog-app">
<div class="col-md-12" ng-controller="RideLogCtrl">

<hr />
<table>

<thead>
<tr>

<td>Id</td>
<td>Description</td>
<td>Time (minutes)</td>
<td>Distance (miles)</td>
<td align="center">Pace (min/mile)</td>
<td></td>

</tr>
</thead>
<tbody ng-repeat="entry in logEntries">

<tr>
<td>{{entry.Id}}</td>
<td>{{entry.Description}}</td>
<td>{{entry.TimeMinutes}}</td>
<td>{{entry.DistanceMiles}}</td>

</tr>
</tbody>

</table>
<hr />

</div>
</div>
@section Scripts {

<script src="~/app.js"></script>
}

You can now run the application and view the results. Figure 18.30 shows the
page and its table bound to the Web API data by Angular.

FIGURE 18.30 The Web API data bound to the page using Angular.

Turn the Page into a Form
Let’s now turn the view into a form using two-way data binding. We will also
add the calculation for pace. The following walks you through this process:

1. Open app.js. Inside the app.controller definition, add the
method setPace to the $scope. This method should take time and
distance as parameters. The following shows an example.

Click here to view code image

$scope.setPace = function (t, d) {
return (t / d).toFixed(2);

};

2. Next, open Index.cshtml. Change the data inside the <tr> template
to use <input> tags and two-way binding using the directives ng-
bind and ng-model. Add a new column that calls the setPace
method for each entry in logEntries passing in both time and
distance. This binding will allow the page to automatically update as a
user changes a value. The following shows an example.

Click here to view code image

<tbody ng-repeat="entry in logEntries">
<tr>

<td></td>
<td>

<input type="text" ng-
model="entry.Description" />

</td>
<td>

<input type="text" ng-
model="entry.TimeMinutes" />

</td>
<td>

<input type="text" ng-
model="entry.DistanceMiles" />

</td>
<td align="center">

<span ng-bind="setPace(entry.TimeMinutes,
entry.DistanceMiles)">

</td>
@*<td>delete</td>*@

</tr>
</tbody>

You can again run the page. Figure 18.31 shows an example. Notice that as you
type in the <input> fields, the Pace value is automatically updated thanks
to two-way data binding in AngularJS.

FIGURE 18.31 The Angular page turned into a form using two-way data
binding.

Add a New Log Entry
Next, we will create a button to allow a user to add a new ride entry to the
form. To do so, we will use the ng-click Angular directive to define what
happens when a user presses a button. Let’s get started.

1. Inside app.js, add the method called addEntry() to the $scope
inside the controller definition. This method should just push a new item
on to the logEntries array (already bound to our form). The
following shows an example.

Click here to view code image

$scope.addEntry = function () {
this.logEntries.push(

{ Id: 0, Description: '', TimeMinutes: 0,
DistanceMiles: 0 });
};

2. Add a button to the Index.cshtml page near the top (before
<table>). Use the ng-click directive to set the click event of the
button to the addEntry method of the $scope, as in the following.

Click here to view code image

<button type="button" class="btn"
ng-click="addEntry()">Add New

Entry</button>

Run the page and view the results. Figure 18.32 shows an example. Notice that
you can add new items every time you click the Add New Entry button. These
items are automatically bound to the form using the same template as the other
items in the array.

FIGURE 18.32 Adding new rows to the page using the ng-click
directive to bind to a method defined in the model.

Delete an Entry
Let’s now take a look at deleting an entry from the list of bike log items. Recall
that Knockout used a special array to mark an item as _destroy. This
allowed us to not show the item in the UI and have this information available
to us when the data was posted to the server. Unfortunately, Angular does not
have anything built in along those lines. However, we can create a similar
feature to track an item as being deleted and filter the view accordingly. The
following steps you through this process:

1. The model on the server already contains a property called _destroy.
Therefore, the object sent to Angular by the service also includes this
property. We will use it here.

2. Open app.js and add a function called deleteEntry to the
$scope inside the controller. This function should take an entry item as
a parameter. It then simply sets the _destroy property to true, as in
the following.

Click here to view code image

$scope.deleteEntry = function (entry) {
entry._destroy = true;

};

3. Inside the page markup of Index.cshtml, add a column with an <a>
tag for deleting a row. This tag should use the ng-click directive to
bind to the deleteEntry method, as in the following:

Click here to view code image

<td><a href="#" ng-
click="deleteEntry(entry)">delete</td>

4. Next, use the ng-hide directive to show the row based on the value of
_destroy. The following shows an example.

Click here to view code image

<tr ng-hide="entry._destroy">

You can run the application and view the results, as shown in Figure 18.33.
Notice that as you click Delete, the view is filtered to no longer show the
deleted item. However, the item is still in the array so that the delete can be
processed back on the server.

FIGURE 18.33 Use ng-hide to indicate that an item should be hidden
based on a Boolean value in your model.

Note
Another option is to remove the item directly from the server
using another service and calling it with HTTP DELETE. In that
case, we would create an Angular service that knew how to pass
an id parameter and call HTTP DELETE. The source code for
this book includes this example as well; it is commented in the
app.js file under the deleteEntry method.

Save Changes
Let’s take a look at saving the form changes back to the database using the Web
API. This is the same web service call we used in the Knockout sample. The
following walks you through setting this up with Angular:

1. Start by adding a new button to the Index.cshtml form to allow a
user to save changes. This button should use the directive ng-click to
bind to a saveChanges method you will create in a moment. We will
also include a tag for displaying the results of the save action

to the user.
Click here to view code image

<button type="button" class="btn"
ng-click="saveChanges()">Save

Changes</button>
{{
saveResult }}

2. Inside app.js, extend the app.factory to include the additional
service call to send a POST request to the Web API. This following
shows this addition (along with an optional remove addition from the
prior example).

Click here to view code image

app.factory('LogSrv', ['$resource',
function ($resource) {

return $resource('/api/bikelogsrv/:id', {}, {
query: { method: 'GET', params: {}, isArray:

true },
remove: { method: 'DELETE', params: { id: '@id'

} },
post: { method: 'POST',

params: { logEntriesJson:
'@logEntriesJson' } }
});
}]);

3. Add the saveChanges method to the model (using $scope). This
method should call the post service and pass the logEntries data
as a JSON string. Recall that the Web API method will use
Newtonsoft.Json to deserialize the string into strong types on the
server.
After making the call to post, we call the LogSrv.query() again to
reset the list view. We then set the saveResult message and show it
to the user using jQuery.
The following shows an example of saveChanges.

Click here to view code image

$scope.saveChanges = function () {
//Post the save data.
LogSrv.post({ logEntriesJson:

JSON.stringify($scope.logEntries) });

//Update the log entries array.
$scope.logEntries = LogSrv.query();

//Update the UI to show value saved.
$scope.saveResult = 'Saved';
$('#success').show();
$('#success').fadeOut(2000);

};

Note
Internet Explorer (IE) will cache the query call from Angular.
(Chrome will not.) You can fix this by setting the
ResponseCache attribute on the Web API service to not allow
caching. We have done so here in the sample code for the book.

You can again run the application and view the results. You can now edit,
delete, and add new items and then save the changes to the server.

Tip
Remember that when using Gulp to output your code to
wwwroot, the code running in the client is the code pushed to
wwwroot (not the code inside your Scripts folder). If you
need to debug your JavaScript, you set a breakpoint in the code
file in wwwroot (and not the one in Scripts).

Doing More with AngularJS
This section should give you a good grasp of using the power of the Angular
client framework. However, there is a lot more to Angular than we are able to
show here. This includes many additional directives and filters that make
writing responsive user interfaces easier. The following provides a few
additional areas for further exploration.

Form Validation
Angular has built-in support for validating form field items. You can use
Angular to set specific rules on <input> elements such as email, date,
number, required, URL, and more. Angular will then validate these items on
your behalf.
You can also tell Angular not to submit the form if it is not valid using the
directive ng-submit on a <form> tag as in the following (where
submitMethod is a method on your model that is called when the form is
submitted).
Click here to view code image

<form name="myForm" ng-submit="myForm.$valid &&
submitMethod">

Angular also keeps track of each field using CSS classes that tell you if a value
has not been changed (ng-pristine), has been changed and is not valid
(ng-dirty.ng-invalid), or has been changed and is valid (ng-
dirty.ng-valid). You can use these classes inside your site.css to
create styles that highlight your form elements based on these validation
conditions.

AngularDirectives
The examples thus far have presented many of the AngularJS directives such as
ng-app, ng-model, ng-controller, ng-bind, ng-repeat, ng-
click, and more. However, there are many more. In addition, Angular
supports creating your own custom directives that allow you to write more
expressive, easy-to-read HTML that shows behavior and intent.
The following lists additional Angular directives. (It is not a complete
reference.)

ng-model—Bind to form elements such as text box, check box, text
area, and radio buttons.
ng-submit—Allows you to bind an angular expression to an
onsubmit event for a <form>.
ng-show, ng-hide—Used to show and hide elements within your
form based on a Boolean value from your model.
ng-src—Used to map data in your model to the src attribute of an
 tag.
ng-click, ngChange, ngBlur, ngFocus (andmore)—Used to
bind user events to methods in your model.
ng-class—Used to set the CSS class based on a value from your
model or an expression.

Filters
Angular includes a set of built-in filters that make displaying data in the UI
much easier. These filters are used in your markup using the “pipe” style, as in
{{ data | filter:options }}. There are filters for currency, date,
number, orderby, uppercase, and more. The following shows a model binding
that uses a filter to ensure the value is shown as currency format.
Click here to view code image

{{price | currency}}

Note
Microsoft and Google announced that they are going to leverage
TypeScript as the new language for Angular development. Expect
to see the next version of Angular made even easier to use with
TypeScript.

Summary
This chapter covered a lot of ground around JavaScript and client-side
development. This included writing basic JavaScript. We also covered using
the popular client- framework, jQuery. From there, we presented the many
other client frameworks that build on JavaScript and jQuery. These
frameworks are available to help make developers more successful. Core
frameworks discussed were as follows:

Bootstrap—You can use Bootstrap to build fluid, responsive user
interfaces. Bootstrap makes your web app work well on any device size.

Bootstrap is part of the ASP.NET templates. You can customize
Bootstrap to match any look and feel or design for your site.
Bower andGulp—Bower is the client-side package manager for web
development. It allows you to easily install and maintain the many shared
libraries that make up a modern web application. Gulp is a task manager
for these libraries. You can use it to minify your code (among other
things).
Knockout—The Knockout library provides easy-to-use, declarative
data binding to your JavaScript model. This binding is based on MVVM
and is two-way binding by default. Knockout is easy to use and
powerful.
AngularJS—The AngularJS library allows you to create complex client
code that works as MVC. Angular uses directives in your markup to
make binding and showing/hiding data much easier. Angular is powerful.
However, there is a steeper learning curve when trying to master
Angular.

You can combine the many client-side techniques learned in this chapter for
your own, project-specific web architecture. This will help you build mobile-
first, responsive, and user-pleasing sites.

Chapter 19. Building and Consuming Services
with Web API and WCF

In This Chapte r
Service Fundamentals
Use ASP.NET Web API to Build HTTP Services
WCF Service Applications

Services have transformed the way we think of the Web and how we leverage
it to build software. Prior to services, the Web was mostly a means to deliver
content across platforms with low deployment costs. Of course, that was a
huge deal (and remains so) for Internet websites and applications. Services,
however, have harnessed the power and ubiquity of the web to change the way
software is written. For example, it is common for developers to write rich,
native clients on tablets, phones, and gaming consoles that leverage the Web
via services. Services enable software that is highly distributed, interactive,
and always available while making use of a device’s power to render a great
user experience.
At their core, services represent an interface (or set of methods) that provides
black-box-like access to shared functionality using common formats and
protocols. By this definition, a service should be loosely coupled with its
clients and work across boundaries. These boundaries have, for a long time,
prevented the true promise of reusable application components such as
services. By working across boundaries such as process, machine, language,
and operating system, services can truly be leveraged by the many potential
clients that an organization might have today and tomorrow.
Visual Studio 2015 enables developers to create services that enable cross-
platform applications and integration. In this chapter, we cover the two
primary service technologies built into Visual Studio: the ASP.NET Web API
(application programming interface) for creating Hypertext Transfer Protocol
(HTTP) services and the Windows Communication Foundation (WCF)
technology for building services that work over the Web, a network, or a
related endpoint.

Service Fundamentals
A service defines a contract between a calling client and the service itself. In
English, this contract states something like this: “If you send me data in this
format, I will process it and return you the results in this other format.” The
format of this data and the communication parameters of these calls are based
on open standards (such as HTTP, XML, JSON, SOAP, and WSDL). These
service standards apply across technology boundaries and therefore make
services attractive for exchanging data between heterogeneous environments.
To frame the benefits of services, it can be helpful to think of them within the
context of the problems they were designed to solve. For example, many large
companies have multiple applications that need to access and update similar

information. They might, for instance, rely on customer data records inside a
customer relationship management (CRM) system, an order-processing
application, a logistics tool, an enterprise resource planning (ERP) system, and
a reporting package. In this case, the customer record is duplicated per system.
This means the data may be contradictory (or out of date) in any one system.
Companies might have band-aids in place, such as batch processing that tries
to keep the data in sync on a regular basis. Figure 19.1 illustrates this problem
example.

FIGURE 19.1 Heterogeneous applications often share data and have similar
needs around that data. Nightly batch processing to update data across

applications is not the best way to solve this dilemma.

What’s worse, a company might have multiple systems that offer the same
functionality (such as two CRM systems). This can happen if the company has
grown through acquisition and merger activities or if each department has
chosen its own technology. In fact, even if a company wrote all these
applications from scratch, you often see duplicate (or similar) code in each
application for doing the same thing. This code, of course, has to be
maintained, and changes to it can often have unintended consequences on the
other systems.
These problems are what service-oriented solutions are intended to solve.
Consider that each of the applications in the earlier example might work on
different servers running different code on different operating systems. They
often even have different database technologies. Therefore, a reusable

component that could be plugged into each application could not be easily
created. Even if it did, the need to centralize this information into a common
view would still exist. For example, an update to a customer record in one
system needs to somehow be recorded in the other systems.
What is required to solve this problem (and problems like it) is a common
shared interface into a centralized view of the data (in this example, customer
data). This interface should be able to work across application boundaries
such as protocols, data types, and processes. Architects recognized this
problem but did not see a viable solution until the advent of the Web. With web
technologies, the HTTP protocol was ubiquitous. Servers could talk to each
other. Then along came the XML standard for describing messages and later
the more lightweight JavaScript Object Notation (JSON). With a ubiquitous
protocol such as HTTP and standard message formats like XML and JSON,
applications running on different platforms had a way to communicate.

Why ASP.NET Web API and WCF
Before comparing the technologies of ASP.NET Web API and WCF, it is
important to understand there are actually two styles/standards for creating
web services: REST (Representational State Transfer) and SOAP/WSDL. The
latter was the original standard on which web services were built. However, it
was difficult to use and had bulky message formats (like XML) that degraded
performance. REST-based services quickly became the alternative. They are
easier to write because they leverage the basic constructs of HTTP (GET,
POST, PUT, DELETE) and typically use smaller message formats (like
JSON). As a result, REST-based HTTP services are now the standard for
writing services that strictly target the Web.
ASP.NET Web API is Microsoft’s technology for developing REST-based
HTTP web services. (It long ago replaced Microsoft’s ASMX, which was
based on SOAP/WSDL.) The Web API makes it easy to write robust services
based on HTTP protocols that all browsers and native devices understand.
This enables you to create services to support your application and call them
from other web applications, tablets, mobile phones, PCs, and gaming
consoles. The majority of applications written today to leverage the ever-
present Web connection use HTTP services in some way.
That said, communicating across the Internet is not always the most efficient
means. For example, if both the client and the service exist on the same
technology (or even the same machine), they can often negotiate a more
efficient means to communicate (such as TCP/IP). Service developers found
themselves making the same choices they were trying to avoid. They now
would have to choose between creating efficient internal services and being
able to have the broad access found over the Internet. And, if they had to
support both, they might have to create multiple versions of their service or at
least separate proxies for accessing their service. This is the problem
Microsoft solved with WCF.
With WCF, you can create your service without concern for boundaries. You
can then let WCF worry about running your service in the most efficient way,
depending on the calling client. To manage this task, WCF uses the concept of
endpoints. Your service might have multiple endpoints (configured at design

time or after deployment). Each endpoint indicates how the service might
support a calling client: over the Web, via remoting, through Microsoft
Message Queuing (MSMQ), and more. WCF enables you to focus on creating
your service functionality. It worries about how to most efficiently speak with
calling clients. In this way, a single WCF service can efficiently support many
different client types.
Consider the example from before. The customer data is shared among the
applications. Each application might be written on a different platform, and it
might exist in a different location. You can extract the customer interface into a
WCF service that provides common access to shared customer data. This
centralizes the data, reduces duplication, eliminates synchronization, and
simplifies management. In addition, by using WCF, you can configure the
service endpoints to work in the way that makes sense to the calling client.
Figure 19.2 shows the example from before with centralized access of
customer data in a WCF service.

FIGURE 19.2 A centralized, service-oriented implementation of the
	
customer data and service contract using WCF and multiple endpoints.
	

Choosing Between Web AP I and WCF
There is no denying that REST-based HTTP services like those created using
ASP.NET Web API have become the standard for building web services.
These services offer an easy, straightforward approach for web developers
building services. Web developers understand HTTP GET and POST and thus
adapt well to these types of services. Therefore, if you are writing services
strictly targeted to HTTP, ASP.NET Web API is the logical choice.
The WCF technology is useful when you need to support multiple service
endpoints based on different protocols and message formats. Products like
Microsoft BizTalk leverage WCF for creating robust services that can be used
over the Web as well via different machine-to-machine configurations. Web
developers often view WCF as more difficult and complex to develop against.
Therefore, if you do not foresee the need for multiprotocol services, you would
likely stick with ASP.NET Web API. If, however, you do need to write an
application that communicates over TCP/IP when connected to the local
network and works over HTTP when outside the network, WCF is your
answer.
In the coming sections, we cover both creating HTTP services using the
ASP.NET Web API and creating services using WCF. Visual Studio 2015 and
the .NET Framework do a lot to abstract the intricacies or “plumbing” of
building services away from everyday programming tasks. The result is a more
productive development experience. You spend less time worrying about how
to negotiate content types or building communications channels and more time
developing real business value.

Key Web Service Terms
It can be important for developers to understand the key concepts and standard
terms around web services. This knowledge ensures that you know what is
happening in your application. It also helps when you are reading the .NET
documentation and articles related to building web service applications.
Therefore, we have put together the following glossary of key terms related to
web services:

We b se rvice —A web service represents a cohesive set of application
logic that performs actions and provides data. A web service groups this
logic as methods that can be called over HTTP. Not all services are web
services; only those that work over the Internet are considered web
services.
We b se rvice me thod (or we b me thod)—A web service method
represents a method exposed by a web service. A web method can take
parameters and return a response.
XML (Exte nsible Markup Language)—XML is used to both represent
and describe data in a platform-neutral manner. XML can represent both
simple and complex data elements and relationships. It is the XML
standard that makes web services possible.
JSON (JavaScript Obje ct Notation)—JSON was created as a reaction
to overly large XML messages. It is a lightweight data-interchange
format that is human readable and built on simple collections of name-

value pairs.
WSDL (We b Se rvice De scription Language)—WSDL is used to
describe the contents of a web service and its web methods. The WSDL
provides the message data contracts that enable clients to work with a
given service.
XSD (XML Sche ma Docume nt)—XSD contains a set of predefined
types (string, decimal, and so on) and a standard language for describing
your own complex types. An XML Schema Document (also referred to as
an XSD) uses these types to describe (and restrict) the contents of an
XML message.
SOAP—SOAP is an XML-based protocol for communicating between
the client and the web service. It is helpful to think of SOAP as
representing the format of the messages as they pass over the wire.
SOAP wraps XML messages (in envelopes) for communication across
the Web. Most SOAP messages are sent over HTTP. However, they can
also be sent with transport protocols such as Simple Mail Transfer
Protocol (SMTP) and File Transfer Protocol (FTP).
HTTP (Hype rte xt Transfe r Protocol)—HTTP represents the
communication protocol used by web services to transfer SOAP-
formatted (or encoded) messages. HTTP is also the way standard web
page requests (GET and POST) communicate.
UDDI (Unive rsal De scription, Discove ry, and Inte gration)—UDDI is
used to define a registry of web services. This capability is useful for the
publication of services for developers to find and consume.
URI (uniform re source ide ntifie r)—URIs provide a means for locating
items on the web. In most cases, URIs are URLs (uniform resource
locators) that point to a given service.
DISCO (Discove ry Docume nt)—A DISCO file provides information
that links to other key elements of a web service. This includes links to
XSDs, SOAP bindings, and namespaces. A program can use a DISCO
file to determine how to work with a given web service.
WS-*—This term represents the overall standards for web services.

Use ASP.NET Web API to Build HTTP Services
Nearly all compute devices created these days speak HTTP. This includes
computers, game consoles, and mobile devices running on all platforms,
including Windows, iOS, Android, and more. These devices use HTTP
because users want access to the Internet. In addition, HTTP is open on
firewalls across nearly all networks. For this reason, HTTP web services
based on REST have emerged as a default standard that is highly accessible on
nearly all client devices and increases interoperability across platforms.
The Microsoft ASP.NET Web API eases the development of HTTP services.
You can use the skills you learned in Chapter 17, “Building Modern Websites
with ASP.NET 5,” regarding web development with MVC (Model-View-
Controller) to build service-oriented websites that work with nearly all
clients.
The Web API framework takes care of all the plumbing code for you. For

example, it includes features such as content negotiation, which allows a client
and service to negotiate the right message format, including XML and JSON.
Furthermore, ASP.NET Web API services are fully asynchronous and task
based. They also have a lightweight hosting model, which gives you a lot of
hosting options, including the cloud.

Note
We cover the new ASP.NET 5 Web API in this chapter. You can
still use the older version of the ASP.NET application stack to
create Web API applications in Visual Studio 2015. In fact, the
prior versions work in a similar way, following the MVC pattern.
They simply have a different project model and target different
framework features (such as not supporting the new .NET Core
CLR runtime). Please refer to Chapter 17 for a detailed
discussion about the ASP.NET 5 application stack and prior
versions.

Creating an ASP.NET Web API Project
The ASP.NET Web API services are built on the basic nature of HTTP: GET
and POST. In this way, you can send a request to a service the same way you
would type a uniform resource locator (URL) into your browser. This request
can pass parameters on the query string. Of course, you can get a response
from the service, too. You can also post data to a service, work with Secure
Sockets Layer (SSL) for security, and do most of the basic web-like things you
would do in any website.
You can add ASP.NET Web API services to any ASP.NET web application.
The services can be hosted on the same server and domain as another website.
(Of course, there are other hosting options, too.) This means you can define a
Web API service inside your ASP.NET MVC sites, Razor web page sites,
single-page applications (SPAs), and ASP.NET Web Form sites. To do so, you
simply right-click the website in Solution Explorer and choose Add, New
Item. From here, you select the Web API Controller Class template. The
version of the Web API Controller template you use is dependent on the
version of the ASP.NET application stack your project targets. If you’re using
the prior version of ASP.NET, for example, the template is called Web API
Controller Class (v2.1). If you’re using ASP.NET 5.0, the template is simply
called Web API Controller Class. We leverage this template in a moment.
Microsoft has unified the MVC and Web API frameworks with ASP.NET 5.0.
However, Visual Studio has a separate template for Web API projects based
on the ASP.NET 5.0 framework application stack. This template is accessed
by creating a new ASP.NET web application. Recall that you do so via File,
New, Project and selecting ASP.NET Web Application. This brings up the
secondary dialog for selecting a specific web template, as shown in Figure
19.3. In this case, you select the Web API template.

FIGURE 19.3 Select the ASP.NET 5 Web API template to create a project
for writing REST-based services.

Notice in Figure 19.3 that there are a number of ASP.NET templates. You can
create web services using all these templates. There is a Web API template
targeted at using the ASP.NET 4.6 application stack to create HTTP services.
There is another for ASP.NET 5. The ASP.NET 5 Web Site template includes
everything you need to create Web API services that target the new 5.0
application stack. This template, as discussed in Chapter 17 and 18, includes
the basics of a website, too.
Figure 19.4 shows the Solution Explorer for a new project using the ASP.NET
5 Web API template. Notice that the project contains a Controllers folder; this
is where you write your Web API methods following the ASP.NET MVC
pattern. The figure also shows the referenced libraries of the DNX Core 5.0
framework relative to service applications. Not shown is Startup.cs; this
includes the ASP.NET request pipeline configured for MVC and the HTTP
request pipeline.

http:Startup.cs

FIGURE 19.4 Start with the ASP.NET 5 Web API template for building a
project for just REST-based services.

Defining a Model
Chapter 17 presented the ASP.NET MVC application. Recall that, in this
pattern, there is a Model that represents your business objects and their
persistence layer. The Controller is used to manage requests and response from
the HTTP traffic to your site. Views, of course, allow you to render a user
interface (UI) to the user. The ASP.NET Web API service model leverages this
same pattern. You define models for your data and a controller for handling
service requests and response. (There is no real UI, of course, and hence no
views.)
The framework for the ASP.NET Web API handles the plumbing of turning
your model objects into serialized data that can be embedded in the HTTP
response message. This serialization is typically JSON or XML but can be
other formats, too. In this way, clients that can make a basic HTTP GET or
POST request and read the response as JSON, XML, or a related format can
work with your service. In fact, a client call may indicate which format it
needs (called content negotiation) as part of the Accept header in the HTTP
request.
For example, let’s work to create a set of services for managing customer
objects. To get started, we will create a simple class to represent our model: in
this case, a customer. To do so, we start with the ASP.NET 5 Web API
template project called WebApiService and follow these basic steps:

1. Add a folder named Models to the project in Solution Explorer.

2. Add a class to the Models folder and name the class Customer.
3. Write a using statement at the top of Customer for
	
System.ComponentModel.DataAnnotations.
	

4. Write simple properties to represent the customer.
5. Add data annotations to add field level validation.

Listing 19.1 shows an example of this simple Customer model class. Notice
that this is similar to the model created back in Chapter 17. Next, we will use
this model to create HTTP services.

LISTING 19.1 The Customer.cs Model Class

Click here to view co de image

using System;
using System.ComponentModel.DataAnnotations;

namespace WebApiService.Models
{

public class Customer
{

public int Id { get; set; }

[Required]

public string Name { get; set; }

[Required, EmailAddress]

public string Email { get; set; }

public bool OptInEmail { get; set; }

public string Notes { get; set; }
}

}

Creating the Services (Controller)
We will start with an example of coding the service from scratch. For starters,
we are going to add a controller class to the project we’ve been working with.
The following walks you through this process:

1. Right-click the Controllers folder and choose Add, New Item.
From the Add New Item dialog, select Web API Controller Class. Figure
19.5 shows an example. Notice the left side of the dialog that ASP.NET
5 is selected.

http:Customer.cs

FIGURE 19.5 Select Web API Controller Class from the Add New Item
dialog.

2. Name the file CustomerController and click the Add button.
Visual Studio will then create a controller class on your behalf,
specifically configured for the Web API. Listing 19.2 shows an example. There
are a few items to note. First, notice this class inherits from the new
Microsoft.AspNet.Mvc.Controller (and not the previous
namespace, System.Web.Http.ApiController). Also, notice that the
class has default methods stubbed out for Get, Post, Put, and Delete.
Finally, notice the Route attribute at the top of the class. This controls the
way your URLs are routed to the controller and its methods (more on this in a
moment).

LISTING 19.2 The Default Web API Controller Template Class

Click here to view co de image

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Mvc;

namespace WebApiService.Controllers
{

[Route("api/[controller]")]
public class CustomerController : Controller
{

//GET: api/values.

[HttpGet]

public IEnumerable<string> Get()

{

return new string[] { "value1", "value2" };
}

//GET api/values/5.
[HttpGet("{id}")]

public string Get(int id)

{

return "value";

}

//POST api/values.

[HttpPost]

public void Post([FromBody]string value)

{

}

//PUT api/values/5.

[HttpPut("{id}")]

public void Put(int id, [FromBody]string value)

{

}

//DELETE api/values/5.

[HttpDelete("{id}")]

public void Delete(int id)

{

}

}
}

The next step is to write code inside these stubbed-out methods to service
requests for Customers and return the appropriate results. Just like an MVC
application, these methods can be called by addressing a URL and passing
parameters in the query string as part of the request. The response will be sent
as the body of the HTTP response message (more on all this in a moment).
Before writing these methods, it is important to note a little more about our
HTTP services written with ASP.NET 5.0.
HTTP web services leverage the standard HTTP verbs of GET, PUT, POST,
and DELETE. These HTTP verbs indicate the required HTTP actions. For
example, if a user is requesting a page, the browser issues an HTTP GET to the
server; if the user posts data to the page, the browser issues an HTTP POST.
Services work the same way: the calling client issues an HTTP request (GET,
POST, and so on). The request is mapped to your code via a route (more on
this in a moment). Your code then returns the HTTP results as a response.

Note
You can get by with just GET and POST for all your web service
needs. In fact, there are many proponents of this approach. There
was a time when not all browsers and corporate firewalls
allowed PUT and DELETE. (All modern browsers do.) This
chapter leverages all these HTTP verbs as Microsoft’s template
does the same. In fact, you can decorate a method as accepting
both verbs (POST and DELETE, for example).

You use attributes to decorate methods in your controller with the appropriate
HTTP verb. This allows ASP.NET to route the request appropriately. The
following outlines these attributes and their usages:

[HttpGet]—Indicates a request for data and is used to retrieve a
single object instance (typically as JSON message) or a list of objects.
[HttpPost]—Marks a method as HttpPost when you intend to
post data to an existing URL/service. The method will receive the
submitted data, and you can use it as you see fit within the method
(typically adding or updating an item in your model).
[HttpPut]—Can be used like POST (to send data to the server).
Notice in the template (Listing 19.2) it is being used as the CRUD
(create, read, update, and delete) operations. However, the PUT verb is
more a part of the HTTP standard than anything else. PUT was meant for
accessing a resource that does not exist (think page or image). If not
found, the PUT will create the resource on the server (and thus the URL
would be formed). If found, PUT simply was to replace the resource.
You can still use PUT to do a CRUD update if that makes your code
cleaner. However, you can also just use POST.
[HttpDelete]—Used to indicate an item in your model should be
deleted.

Note
If you used prior editions of ASP.NET Web API, you recall that
methods were mapped to HTTP verbs primarily based on method
naming conventions. For example, you would write
GetCustomer() or PostCustomer(). Decorating the
method with an attribute was optional. With ASP.NET 5.0 Web
API, attributes are required to map HTTP verbs to method names
(at least in the version used when writing this book).

The use of these HTTP verb-based attributes aligns your services clearly with
the HTTP specification and makes the intent of your code clear. This makes the
code easier to understand and work with. Let’s look at writing a few of these
service methods for accessing our Customer model.

Tip
When you’re building a web service, it is best to group
functionality into coarse-grained interfaces. You don’t want web
methods that do a number of fine-grained operations, such as
setting properties. This chatty nature can be expensive when
communicating across the Internet.
Of course, this approach is also contrary to most object-oriented
application designs. Therefore, the use of a proxy object to bundle
operations around a business object is ideal. The business object
is serialized and passed across the wire. On the other side, it can
be deserialized and then worked with in an in-process manner (in
which chatty calls are not expensive).

Get a Customer (HttpGet)
The first method we will add to our service is Get(int id). It will return a
customer object and its values based on the id parameter passed on the URL.
The customer will be returned from a collection of customers. This allows us
to simulate looking up the customer from a database and thus extract that
complexity. The following walks you through this first step:

1. Open CustomerController.cs.
2. Add a using statement to the top of the class for your model as
	

follows: using WebApiService.Models;

3. Add a static variable as a generic collection of Customer objects to
simulate data table results, as in the following:

Click here to view co de image

//Simulate getting customers from a database.
static readonly List<Customer> _customers = new
List<Customer>()
{

new Customer { Id = 1, Name = "Customer 1", Email
= "c1@contoso.com" },

new Customer { Id = 2, Name = "Customer 2", Email
= "c2@contoso.com" },

new Customer { Id = 3, Name = "Customer 3", Email
= "c3@contoso.com" }
};

Next up is the method itself. The generated method for GET that takes an id
parameter returns a string. In our case, we want to return a Customer object.
Therefore, we replace the string return type with IActionResult. We
then write some LINQ to look up the customer by ID from the collection
class created previously. If we don’t find it, we return an instance of
HttpNotFoundResult. Listing 19.3 shows the new web service method.
Notice also that we added the type (id:int) to the HttpGet attribute to
constrain (strongly type) the parameter passed. Passing a string value for the
ID, for instance, would result in a 404 error (resource not found).

LISTING 19.3 The Get Method to Return a Customer from the Collection

Click here to view co de image

[HttpGet("{id:int}")]
public IActionResult Get(int id)
{

var customer = _customers.FirstOrDefault(x => x.Id
== id);

if (customer == null)
{

return HttpNotFound();

}

return new ObjectResult(customer);

}

You can now run this basic service and view the results. Before you do, you
	

mailto:c3@contoso.com
mailto:c2@contoso.com
mailto:c1@contoso.com
http:CustomerController.cs

should configure what happens when Visual Studio launches the browser in
debug mode. You can do so by right-clicking the project in Solution Explorer
and choose properties. Here you will see the Debug node on the left. One of
the configuration settings is Launch Browser. Remember, this is a service and
there is no UI to be shown in a browser. However, we will use the browser to
call service methods as URLs and view the results. Use this screen to clear the
URL for Launch Browser (removing the default, “api/values”) as shown in
Figure 19.6.

FIGURE 19.6 Use the project properties to indicate how a service
application is launched by Visual Studio in debug mode.

Now, run the web application in debug mode (Start button set to IIS Express).
This will launch a web browser pointed at your site (localhost). Again,
because we have no pages in the site, a 403 (forbidden) error will display; the
server thinks you are trying to list contents of the directory.
To invoke the service, you need to enter a URL that points to it. Recall from
Listing 19.2 that comments above each service method actually describe the
URL format required to invoke the method. These URL formats, like the rest of
MVC, follow a routing convention that we will discuss momentarily.
To access the Get service by ID, you need to enter a URL in the form
http://localhost: xxxxx/api/customer/1, where xxxxx is
the random port number IIS Express has assigned to your site. The value 1
simply indicates a possible value for the id parameter.
Doing so invokes the service from Internet Explorer (IE). IE then asks you if
you want to open or save the JSON result as a file. The lower part of Figure
19.7 shows an example.

http://localhost

FIGURE 19.7 Your services will return a JSON-formatted result to an IE
request for a Customer.

Clicking the Open option in Figure 19.7 will open the file inside of Visual
Studio. The file contains the customer object as represented by JSON. The
following shows the result (formatted with line breaks). You can now use this
service from JavaScript, a mobile device, or a similar client.
Click here to view co de image

{"Id":1,"Name":"Customer
1","Email":"c1@contoso.com","OptInEmail":false, "
OptInPhone":false,"Notes":null}

Note that the same request in Firefox and Chrome will, by default, return the
message in the browser (versus a separate file). Figure 19.8 shows the result
from Chrome.

FIGURE 19.8 Chrome formats your service result as XML by default.
	

When debugging HTTP services, it is useful to view the HTTP request and
response messages sent to and from your service. You can use the F12 tools
built in to IE 9 and later to help. Then click the Network tab and click the
Enable Network Capturing button (green arrow). You can now call your web
service, and IE will capture the messages for you. To view them, find the entry
in the list and double-click it. You should now have tabs to view the request
and response headers and bodies. Figure 19.9 shows an example.

FIGURE 19.9 Use the F12 tools in IE to examine your service requests and
response.

Get a List of Customers (HttpGet)
To return a list of customers, we simply need to return a collection of
customers (in this case, based on the collection class used to simulate a
data query). ASP.NET Web API takes care of wrapping this collection into an
HTTP service response message format such as JSON or XML.
Recall the simple Get method from Listing 19.2. It returned an
IEnumerable generic collection string type. We only need to change this
from string to Customer. Listing 19.4 shows the new method code.

LISTING 19.4 The Get() Method to Return a List of Customer Objects

Click here to view co de image

//GET: api/customer

[HttpGet]

public IEnumerable<Customer> Get()

{

return _customers;
}

A call to http://localhost:xxxxx/api/customer now returns the
full customer collection. The following shows the results (formatted with line
breaks for spacing).
Click here to view co de image

[{"Id":1,"Name":"Customer
1","Email":"c1@contoso.com","OptInEmail":false,
"OptInPhone":false,"Notes":null},
{"Id":2,"Name":"Customer 2",
"Email":"c2@contoso.com",
"OptInEmail":false,"OptInPhone":false,"Notes":null},
{"Id":3,"Name":"Customer
3","Email":"c3@contoso.com","OptInEmail":false,
"OptInPhone":false,"Notes":null}]

Create a New Customer (HttpPost)
The HTTP POST verb is used to post data to a URL as part of a request. Web
developers should be used to this because they typically write forms that users
submit back to the server for processing. An HTTP service works the same
way. You use POST to send data to the service as part of the request body.
To get started, we can leverage the POST method generated by the template
(see Listing 19.2). Notice that this method is already decorated with
HttpPost. We change the parameter from a string to a Customer
instance.
We also remove the cast of Customer to FromBody. The FromBody
attribute works great if you are posting data to the service as JSON (as is
typical). It basically tells Web API to look in the body of the request message
for data that matches the parameter type (Customer). However, as you will
see shortly, we are going to post an HTML form to the service from jQuery.
The form would need to be converted into JSON (or similar) to comply with
the FromBody attribute. Unfortunately, there is no method to convert form
data directly to JSON (but you could write one or download one of the many
that do exist). So, in this example, we will eliminate FromBody here and
serialize the form for posting using jQuery.
Listing 19.5 shows the full method. Notice that the method does not return a
value. Instead, it adds a code to the response (either bad request or
created).

LISTING 19.5 The Post() Method to Add a New Customer Object

Click here to view co de image

//POST api/customer.

[HttpPost]

public void Post(Customer customer)

{

if (!ModelState.IsValid)
{

//Send 400 - bad request.
Context.Response.StatusCode = 400;

}

mailto:Email":"c2@contoso.com
http://localhost:xxxxx/api/customer

else
{

//Get next customer id for collection.
customer.Id = 1 + _customers.Max(x => (int?)x.Id)

?? 0;

_customers.Add(customer);

//Send 201 - created code.
Context.Response.StatusCode = 201;

}
}

The Post method uses the HTTP POST verb; therefore, you need a client
capable of sending a POST to the server to call the method. This could be a
web page with a form that posts data, JavaScript, a unit test, or a native
application capable of sending an HTTP POST. Microsoft has also written a
default ASP.NET Web API Help Page that you can use to call and test your
service without writing additional code. We look at these client options in an
upcoming section.

Update an Existing Customer (HttpPut)
You can send an update request to the server using the PUT verb. In our
example, it would be an update to an existing customer record. The Web API
Controller template assumes this approach. However, recall that PUT was not
meant specifically for this purpose. Instead, the Web API has adopted it as a
possible convention. You do not need to use PUT to process an update. In fact,
if you were writing a web form, you would use the HTTP POST to update data
to the server (and not use PUT).
If you intend to use POST for your Web API (instead of PUT), you could
simply change the method signature to include both an ID and a Customer
instance (as in the PUT method signature in the template shown in Listing
19.2). Or, you could use the same method created in Listing 19.5 but add logic
to check whether a valid ID is passed on the given object; if so, look up the
Customer instance from _customers and update; if not, create a new
customer.
For our example, we will use PUT. Listing 19.6 shows the method. Later, you
will see how to call the PUT method using the HttpClient library.

LISTING 19.6 Use PUT to Send an Update to a Customer

Click here to view co de image

//PUT api/customer/1 to update a customer.

[HttpPut]

public void Put([FromBody]Customer customer)

{

//Get customer to be updated.
var customerToUpdate = _customers.FirstOrDefault(x

=> x.Id == customer.Id);

if (customerToUpdate == null || !ModelState.IsValid)

http:customer.Id
http:int?)x.Id
http:customer.Id

{

//Send 400 - bad request.

Context.Response.StatusCode = 400;

}

else

{

//Simulate updating the customer values.
customerToUpdate.Name = customer.Name;
customerToUpdate.Notes = customer.Notes;
customerToUpdate.Email = customer.Email;
customerToUpdate.OptInEmail = customer.OptInEmail;

//Send 201 - created code.
Context.Response.StatusCode = 201;

}
}

Note
You can actually indicate a method that allows multiple HTTP
verbs access. To do so, you use the attribute class
AcceptVerbs and pass the verbs you want the method to
accept. This would enable you to accept both PUT and POST on a
single method, for example.

Delete a Customer (HttpDelete)
To delete an item using our service, we will leverage the HTTP DELETE verb.
We do so by decorating the method with HttpDelete. The method takes an
id parameter to indicate the customer to be deleted. We again constrain the
parameter to an int value using the attribute definition at the top of the
method. All that is left is to find the customer in the collection and remove it.
Listing 19.7 shows the code. Notice that the code does not return anything.
Instead, we just add the appropriate HTTP status code to the response. We will
look at calling this method (along with POST and PUT) when we create a
service client in an upcoming section.

LISTING 19.7 The Delete() Method to Delete a Customer from the
Collection

Click here to view co de image

//DELETE api/customer/1.
[HttpDelete("{id:int}")]
public void Delete(int id)
{

var customer = _customers.FirstOrDefault(x => x.Id
== id);

if (customer == null)
{

//Send 404 - not found.

Context.Response.StatusCode = 404;

}

else
{

//Remove customer.

_customers.Remove(customer);

//Sent 204 - no content (delete successful).
Context.Response.StatusCode = 204;

}
}

Understanding Service Routing
As you saw with the method Get(id) in the CustomerController
class, service methods in ASP.NET Web API are accessed via a URL routing
convention. This convention works in a similar way to the routing in ASP.NET
MVC. The biggest difference is that Web API leverages the HTTP verb to
select the appropriate action in your controller.
A request is sent to your website, parsed for the HTTP verb (GET, POST,
PUT, DELETE), and processed through a routing engine. The routing engine
uses conventions to find your controller and map the request based on verb and
parameters to the appropriate action method. Recall that we set the route for
the CustomerController class at the top of the class using the attribute
[Route("api/[controller]")]. This is the default convention for
Web API.
The api/ portion of the construct is a convention indicating that this request is
meant for a service. The [controller] portion of the route definition is
used to find your controller based on the URL. In the example you have been
creating, this is customer. (The word controller is not necessary.) You can
then append parameter values to the request, as in /api/customer/1.
ASP.NET uses the api/ portion of the route to avoid collision with your other
controllers. For example, you might want to route requests for /customer/1
to a web page to display a customer where the customer id=1. This allows a
request to /api/customer/1 on the same domain to service customer data
interactions with your API. Of course, this is easily changed if you do not like
the convention. Just mark your service controller route attribute as [Route("
[controller]")]; this eliminate the api/ portion of the convention.

Include the Action in the Route
Sometimes your service includes multiple definitions that use the same HTTP
verb and accept the same parameter types. For example, you may have
GetCustomer(int id) and GetCustomerOrder(int id) in the
same service controller. In this case, using the default routing convention of
api/[controller] will result in an error because the request is
ambiguous and cannot be satisfied. Figure 19.10 shows the error in the
browser.

FIGURE 19.10 Two service methods in the same controller with the same
HTTP verb and parameters will result in a server error (unless you change

the route convention to include the action).
You can solve this problem by changing the route convention to include the
action method. You do so by editing the Route attribute at the top of the class
as follows: [Route("api/[controller]/[action]")]. This
changes the convention to require the action name.
Notice that the route is now mapped to your method name. ASP.NET Web API
also gives you control of your action names for the route. To change the action
name (without renaming your methods), you add the ActionName attribute
class. For example, you might use [ActionName("Get")] for the
GetCustomer method and [ActionName("GetOrder")] for the
GetCustomerOrder method. Doing so changes your URL route; now to get
a customer, you would call /api/customer/get/1.

Consuming an ASP.NET Web API Service
ASP.NET Web API services can be consumed by any client capable of
speaking HTTP. This means other websites as well as native client
applications. In the case of a website, you can use standard HTTP GET and
POST messages to work with the service. Typically, you do so using
JavaScript and the helper library, jQuery. This helper library simplifies
sending requests and receiving response messages from services.
For native clients such as iOS, Android, and Windows, you use an HTTP
framework class library. In Windows, this is the System.Net.Http
namespace (or Microsoft.Net.Http inside the DNX Core 5.0) and the
HttpClient class. This framework lets you easily make a request to an
HTTP service and consume the results. This section discusses both using
jQuery and System.Net.Http to access Web API services.

Tip
Microsoft has created the ASP.NET Web API Help Page NuGet
package to automatically generate help page content for your Web
API services. You can add this package to your application from
NuGet. You then use the help pages to exercise your methods
without writing additional code. This library also uses jQuery to
call your service methods. However, it automatically generates
forms for posting data (among other things).

Create the Client Application
A website is a likely candidate for consuming Web API services. Websites run
in the browser and thus already know how to send GET and POST requests to
the server. In this example, we will use an ASP.NET MVC application for
creating the web pages to call the services and process the results. We will
look at doing so directly from the client using jQuery and AJAX. We will also
show how to consume these services from your server-side code (inside your
controller) to simulate how native clients might access the services. (For more
information on ASP.NET MVC and JavaScript, see Chapter 17 and Chapter
18, “Using JavaScript and Creating Client-Side Frameworks”).

Note
This example uses a website as a client for Web API services.
However, if you do not have a need for services, you can simply
create a website and embed the service logic there. You can even
still use jQuery to call back to your server code the same way you
might call a web service (see Chapters 17 and 18).
In addition, you might want to have a website that also exposes an
API. In that case, there is a benefit to intermingling the website
and service code in the same project. For example, you would
only need to create a single model that could be shared by the
website and the services. Other calling clients, of course, would
have to handle the response (deserialize) in their own way.

Let’s look at creating a sample website that uses the Customer service
created previously. The following list steps you through creating the project.

1. We will start by adding a new project to the existing solution. Right-
click the solution in Solution Explorer and choose Add, New Project.
Add a new project.

2. Select the Web node on the left of the New Project dialog and find the
ASP.NET Web Application template.

3. Name the project WebApiClient and click OK.
4. Select ASP.NET 5 Web Site as your project template and again click the

OK button.
Visual Studio will create the new project template on your behalf. Notice
under the Dependencies node in Solution Explorer (see Figure 19.11) that there
is a folder called Bower. Recall from Chapter 17 that Bower is a package

manager for web frameworks (and is used by Visual Studio). Notice here that
jQuery (among other things) is an installed package for this template.

FIGURE 19.11 The web client project we intend to use for consuming our
	
HTTP services.
	

We also need to make both the client and service projects execute correctly
inside Visual Studio at startup. To do so, right-click the solution in Solution
Explorer and choose Properties. Here you will see the Startup Project options
as shown in Figure 19.12. Select Multiple startup projects as shown and set
their Action to Start. Also, use Project Dependencies to indicate that the client
project depends on the service project.

FIGURE 19.12 Use Solution Properties to set the startup projects for the
	
Visual Studio solution.
	

Create the F iles for the Customer Views and Controller
The Web Site template includes a home and about page. We are going to ignore
these items for now and create our own customer views and a related
controller for handling requests. The following walks you through the process
of creating the basic files you will need:

1. Using the WebApiClient project, open Solution Explorer, right-click
the Views folder, and choose Add, New Folder. Name the new folder
Customer.

2. Right-click the newly created folder and choose Add, New Item. From
the Add New Item dialog, select ASP.NET 5 on the left. Select the
template MVC View Page. Name the page Index.cshtml and click
the Add button.
Visual Studio will create and open this page. We will use this page
momentarily to show a list of customers and allow access to the Create
and Edit actions.

3. Repeat Steps 1–3 for adding pages for Edit.cshtml and
Create.cshtml. We will enable the Edit page to allow a user to edit
an existing customer or delete it. The Create page will allow a user to
create a new customer.

4. Finally, add the controller. Right-click the Controllers folder in
Solution Explorer and choose Add, New Item. From the Add New Item
dialog, select the template MVC Controller Class. Name the class
CustomerController.cs.

The last step is to code the three views (Index, Create, Edit), the controller,
and any related JavaScript we want to use. We discuss each view and the
corresponding jQuery and controller code in the upcoming sections.

http:CustomerController.cs

Note
The ASP.NET 5 Web Site template is based on MVC. MVC has
its own pattern for calling a controller, getting model data, and
associating that data with a view as part of the response (see
Chapter 17). In this example, we are going to mix the MVC
pattern with jQuery. We will show calling services from both the
controller (using System.Net.Http) and directly from the
client with jQuery AJAX calls.
You might prefer a cleaner approach that uses either all MVC
controller calls or all jQuery client calls. You could, of course,
also use standard HTML pages, Web Forms, or an SPA built on
things like AngularJS (see Chapter 18).

Use HttpClient to Call the Web AP I Service and Display a List of
Customers
The first example will be to call an HTTP service from the server using MVC.
Think of the server like you would a native device (Windows phone or tablet).
In the case of a native device, you use a library that knows how to send HTTP
requests and process the results. In this case, we will use
Microsoft.Net.Http.
We are going to leverage the ASP.NET MVC pattern for this example. This
means creating a Model to represent the Customer, a View to display the
customers, and logic in the controller to handle the request (and call the Web
API customer services). The following walks you through creating the Model,
View, and Controller.

1. Add the Customer model class to the WebApiClient project. Open
Solution Explorer, right-click the Models folder, and choose Add, New
Item. Select a Class template and name the class file Customer.cs.
Remember, the web service is going to return a JSON message and not a
strong type. We will use HttpClient to deserialize the JSON
message into a collection of Customer instances.

2. Create a new definition of the Customer class to match the one
defined by the service (or simply copy the definition from the
WebApiSampleEmpty project; refer to Listing 19.1). Be sure to add a
using statement for
System.ComponentModel.DataAnnotations.

3. Define the view. Open the file Index.cshtml under the project
folder Views/Customer (and delete the template contents). Add the
model definition for the page to the top as in, @model
IEnumerable<WebApiClient.Models.Customer>.
Recall that this tells the page to expect a list of Customer instances as the
model, set by the controller.

4. Add HTML markup and Razor syntax (or TagHelpers) that defines a
table to hold the customer data. Listing 19.8 shows an example using
Razor syntax (see Chapter 17 on how you could also use TagHelpers
instead). Notice that the table body is enclosed by a for each loop to

http:Customer.cs

iterate over the model that contains the customer list.

LISTING 19.8 The Markup for the Index Page to Show a List of Customers

Click here to view co de image

@model IEnumerable<WebApiClient.Models.Customer>
@{

ViewBag.Title = "Customers";
}
<h2>Customers</h2>
<p>

@Html.ActionLink("Create New", "Create")
</p>
<table class="table">

<thead>
<tr>

<th>Name</th>

<th>Email</th>

<th>Opt In</th>

<th>Notes</th>

</tr>
</thead>

@foreach (var item in Model)
{

<tr>

<td>

@Html.DisplayFor(modelItem => item.Name)
</td>
<td>

@Html.DisplayFor(modelItem => item.Email)
</td>
<td>

@Html.DisplayFor(modelItem => item.OptInEmail)
</td>
<td>

@Html.DisplayFor(modelItem => item.Notes)
</td>
<td>

@Html.ActionLink("Edit", "Edit", new { id =
item.Id }) |

@Html.ActionLink("Delete", "Delete", new { id =
item.Id })

</td>
</tr>

}
</table>

5. Open _Layout.cshtml and add a link in the navigation bar to
Customers as in the following:

Click here to view co de image

<a asp-controller="Customer" asp-
action="Index">Customers

6. Before we create the controller method to handle the request for the

customer index view, we need to add a reference to the NuGet package
Microsoft.AspNet.WebApi.Client to the WebApiClient
project. To do so, right-click the References node in Solution Explorer
under WebApiClient and choose Manage NuGet Packages.
Search for Microsoft.AspNet.WebApi.Client and click the
Install button. Figure 19.13 shows an example.

FIGURE 19.13 Install the NuGet package for
	
Microsoft.AspNet.WebApi.Client.
	

Notice the package added to the DNX frameworks references. This
package references Microsoft.Net.Http inside the DNX Core 5.0
framework and System.Net.Http inside DNX 4.51. The former is a
newer package targeted at Core 5.0 development. The latter is a fuller
version; we will use it in our examples (you could switch to the core
version but would have to modify the code accordingly).
Notice too the reference to Newtonsoft.json (an open-source
framework for working with JSON and .NET).

7. Because we are only using System.Net.Http in the client
application you need to remove the reference to the DNX Core 5.0
framework. Open project.json and remove the reference,
"dnxcore50": { } from the "frameworks" section.

8. Open the CustomerController class by double-clicking it in the
Solution Explorer window and add a number of using statements to the
top of the file. These will be for working with the System.Net.Http
and System.Net.Http.Headers namespaces to call the service
and the WebApiClient.Models namespace for working with the
Customer model. The following shows an example.

Click here to view co de image

using System;

using Microsoft.AspNet.Mvc;

using System.Net.Http;

using System.Threading.Tasks;

using WebApiClient.Models;

using System.Net.Http.Headers;

9. Add a line at the top of the class as a variable to store the service URL.
You would likely store this in a configuration file. In this sample code,
however, we are going to hard-code it at the top of the file, like this
(where XXXXX represents to port number to the Web Api project).

Click here to view co de image

string baseUri = "http://localhost:XXXXX/";

10. Edit the Index method signature to be called asynchronously. The
following shows an example.

Click here to view co de image

public async Task<IActionResult> Index()

{

}

11. Add code that tells HttpClient to call the URL to the customer
service call, api/customer. Listing 19.9 shows the full code listing
for the method. Notice that we tell the HttpClient instance to accept
JSON headers. We then call GetAsynch to execute the Web API
service call. The results are read into a list of Customer instances
using ReadAsAsync. Finally, we send the Customer list to the view
as the result of the request.

LISTING 19.9 The CustomerController Class Index() Method That
Uses HttpClient to Call the Web API Service to Return a List of
Customers and the Customer Index View

Click here to view co de image

using System;
using Microsoft.AspNet.Mvc;
using System.Net.Http;
using System.Threading.Tasks;
using WebApiClient.Models;
using System.Net.Http.Headers;
using System.Collections.Generic;

namespace WebApiClient.Controllers
{

public class CustomerController : Controller
{

string baseUri = "http://localhost:13982/";

//Display list of customers.
public async Task<IActionResult> Index()
{

//Call web service (/api/customer) and return

http://localhost:13982
http://localhost:XXXXX

result (view)
using (var hClient = new HttpClient())
{

hClient.BaseAddress = new Uri(baseUri);
hClient.DefaultRequestHeaders.Accept.Clear();
hClient.DefaultRequestHeaders.Accept.Add(

new
MediaTypeWithQualityHeaderValue("application/json"));

//Call HTTP GET api/customer to get all
customers.

HttpResponseMessage response = await
hClient.GetAsync("api/customer");

//Verify response and map JSON to Customer
instance.

if (response.IsSuccessStatusCode)
{

List<Customer> customers =
await

response.Content.ReadAsAsync<List<Customer>>();

return View(customers);

}

else

{

ModelState.AddModelError("",
response.ReasonPhrase);

return View();
}

}
}

}
}

You can now use Visual Studio to run both projects and view the results.
Navigate to the /customer page. You should be taken to a page similar to that
shown in Figure 19.14.

FIGURE 19.14 The ASP.NET Web Client calling the Web API service from
	
the Controller and displaying the customer list results.
	

Use HttpClient to Get and Edit a Customer
We will now add a view for displaying a customer to edit. Recall that the
customer index view included the Edit ActionLink for each row in the
table (refer to Listing 19.8). This sends a request to the controller as
/customer/edit/1. We will create an Edit method in the controller that
takes an ID to handle this request by calling the Web API service. The View
will then post back to the controller; we will use HttpClient to send a
PUT request to the Web API to update the customer. Let’s get started:

1. We need to define the Edit.cshtml view. Start by adding a model
definition for the Customer class to the top of the page, as in: @model
WebApiClient.Models.Customer.
The rest of the view follows standard HTML/Razor syntax, including a
form field and validation message for each property of Customer.
Note: this markup is lengthy and thus omitted here. Please check the
source code download for the book to examine this view more closely.
You can also jump ahead to Figure 19.15 to see the view in action.

FIGURE 19.15 The customer edit page in action.

2. Open CustomerController and add an Edit method signature to be
called asynchronously, return an action result, and take an id parameter.
The following shows an example.

Click here to view co de image

public async Task<IActionResult> Edit(int? id)
{
}

3. Add code to call the web method, passing the id parameter (using the
URL), casting the results into a Customer instance, and returning the Edit
view. This code is similar to the code written previously to return a list
of customers. Listing 19.10 shows an example.

LISTING 19.10 The Edit(id) Method in the Customer Controller to Call
the Web API Get(id) Web Method Using HttpClient

Click here to view co de image

public async Task<IActionResult> Edit(int? id)
{

//Verify id parameter.
if (id == null)
{

return new HttpStatusCodeResult(400); //bad
request

}

//Call web service (/api/customer) and return result
(view).

using (var hClient = new HttpClient())
{

hClient.BaseAddress = new Uri(baseUri);
hClient.DefaultRequestHeaders.Accept.Clear();
hClient.DefaultRequestHeaders.Accept.Add(

new
MediaTypeWithQualityHeaderValue("application/json"));

//Call HTTP GET api/customer/1.
HttpResponseMessage response = await

hClient.GetAsync(
string.Format("api/customer/{0}",

id.ToString()));

//Verify response and map JSON to Customer
instance.

if (response.IsSuccessStatusCode)
{

Customer customer = await
response.Content.ReadAsAsync<Customer>();

return View(customer);

}

else

{

return HttpNotFound();
}

}
}

4. Write another Edit controller method to receive the form postback. The
form itself is already set to post back to the controller. In this case, you
mark the Edit method with the HttpPost attribute to indicate that the
method should be called for a postback. The method signature can take a
Customer instance. MVC will handle mapping the postback data to the
Customer parameter. The following shows the method signature.

Click here to view co de image

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<IActionResult> Edit(Customer

customer)

{

}

5. We now need to call the service to update the given customer. The code
to call the service is again similar to the code shown to call the other
two services thus far. The big difference is that this code calls the Web
API PUT method; we therefore use the HttpClient call
PutAsJsonAsync. Listing 19.11 shows the full method.

LISTING 19.11 The Edit(customer) Method in the Customer Controller
to Call the Web API Put([FromBody]Customer customer) Web
Method Using HttpClient

Click here to view co de image

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<IActionResult> Edit(Customer

customer)

{

if (ModelState.IsValid)

{

using (var hClient = new HttpClient())
{

hClient.BaseAddress = new Uri(baseUri);
hClient.DefaultRequestHeaders.Accept.Clear();
hClient.DefaultRequestHeaders.Accept.Add(

new
MediaTypeWithQualityHeaderValue("application/json"));

//Post customer to the Web API service.
HttpResponseMessage response =

await hClient.PutAsJsonAsync("api/customer",
customer);

//Check response.

if (response.IsSuccessStatusCode)

{

return RedirectToAction("Index");

}

else

{

ModelState.AddModelError("",
response.ReasonPhrase);

}

}

}
return View(customer);

}

We can now run the application. Again, make sure the Web API services
application is running. You can click on a customer Edit link in the customer
list (see Figure 19.14). This brings up the page shown in Figure 19.15.
Clicking the Save button posts the page back to the controller, off to the
service, and returns the customer list view with the updated change.

Use jQuery to Create a New Customer
The jQuery library is a JavaScript library that makes the business of using
JavaScript to write AJAX calls much easier. It is a framework that wraps
some repetitive, complex JavaScript for client-side programming. jQuery is
included with all Visual Studio web templates. (For more details on jQuery,
see jQuery.com and our discussion in Chapter 18.)
jQuery is especially useful because it contains helper methods that allow you
to make HTTP GET and POST requests. These methods are part of the jQuery
AJAX capabilities. The following are key methods here:

jQuery.get() sends a GET request to a server and manages the
results.
jQuery.post() sends data via a POST to a server and handles the
response.
jQuery.getJSON() sends a GET request and processes the results
as JSON-encoded data.
jQuery.ajax() is the low-level method for performing
asynchronous HTTP requests. Note that the methods just listed are
shorthand methods that can be used in place of jQuery.ajax().
However, the ajax method can also be used for GET and POST
requests. Its biggest benefit is that it can be used when sending requests
using the HTTP verbs PUT and DELETE (for which there are no
shorthand methods).

Notice that each of these methods is prefixed by a call to the jQuery object.
The shorthand for this call is a dollar sign ($), as in $.post. The post
method takes a URL to the service, data that is to be sent to the service, and a
callback function that is executed when the request completes. The following
outlines using the $.post method to call the Web API service to save a
newly created customer:

1. Using the WebApiClient project, open the Create.cshtml page
(created earlier) and remove the template content from the page.

2. Add a model definition for Customer at the top of the page as we did
with the Edit page. This will make it easier to write the markup and

http://jQuery.com

validation for the form. The following shows an example.
Click here to view co de image

@model WebApiClient.Models.Customer

3. Define the HTML form tag to nest the input controls. The following
shows an example. In this case, we set the ID of the form so we can
select it using jQuery. The action and the method are set. However, we
are not going to write corresponding logic in the controller. Instead, we
will intercept the post using our jQuery call.

Click here to view co de image

<form id="form-create" action="create"

method="post">

4. The rest of the view should be similar to the Edit view created earlier.
This is again just standard HTML/Razor syntax for each property of
Customer.
Note: this markup is also lengthy and thus omitted here. Please check the
source code download for the book to examine this view more closely.
You can also jump ahead to Figure 19.16 to see the view in action.

5. Write the JavaScript that will call the service (POST to
/api/customer) using jQuery. We will add the script to the bottom
of the Create.cshtml file.
For starters, mark the script section using the @section Scripts
identifier. This tells ASP.NET that your script should be loaded in the
Scripts section of the page. Recall that the _Layout.cshtml page in
Views/Shared defines when and where page sections are rendered.
Listing 19.12 shows an example of the section, the inclusion of the
validation libraries for the form, and the newly created JavaScript code
to call the service. (We will walk through this code in a moment.)

LISTING 19.12 The jQuery Code to Call the Web API Post(customer)
Method

Click here to view co de image

@section Scripts {
<script src="@Url.Content(

"~/lib/jquery-validation/jquery.validate.js")">
</script>

<script src="@Url.Content(
"~/lib/jquery-validation-

unobtrusive/jquery.validate.unobtrusive.js")">
</script>

<script type="text/javascript">

var url = "http://localhost:xxxxx/api/customer";

$('#form-create').submit(function () {

//Clear result message.

http://localhost:xxxxx/api/customer
http:unobtrusive/jquery.validate.unobtrusive.js
mailto:src="@Url.Content
http:lib/jquery-validation/jquery.validate.js
mailto:src="@Url.Content

$('#result').html("");

//Verify form is valid.
if ($('#form-create').valid()) {

//Serialize the form data and post to the web
service.

$.post(url, $('#form-create').serialize())
.success(function () {

window.location = "/customer";
})
.error(function () {

$('#result').html("Error saving
customer.");

});
return false;

}
});

</script>
}

The JavaScript starts by defining the variable, url, that points to our
service method (note you need to include your port number instead of
xxxxx). Next, notice that the code is set to run when the form posts,
$('#form-create').submit. This uses the jQuery to find the
form and attach a method to the submit event.
Inside the form submit function, we use the jQuery $.post to call
our web service. We pass in the URL and the form as serialized,
$.post(url, $('#form-create').serialize()).
Upon success, we navigate back to the customer list page. If there is an
error, we add a message to the top of the form using the jQuery selector
call $('#result').html. (See the HTML for the page.)

6. Add a method to the CustomerController class to return the page,
as in the following.

Click here to view co de image

public IActionResult Create()

{

return View();

}

You can now run the page and create new customers. Make sure to run the Web
API services project first. Navigate your browser to /customer to see a list
of customers. Click the Create New link (refer to Figure 19.14). This
should bring up the form shown in Figure 19.16. Notice that the validation
works without a post to the service. Enter valid form data and click Save. Your
new record will be added to the collection associated with the Web API
service.

FIGURE 19.16 The Create New Customer page uses jQuery to call the Web
	
API service to save a new customer.
	

Use jQuery to Delete a Customer
The last Web API client example is a call to the Delete(id) service (refer
to Listing 19.7). Again, we have the choice of making this call from the client
app’s controller on the server using HttpClient or directly from the user ’s
web browser using jQuery and AJAX. For this example, we will demonstrate
the later. The following walks you through a few simple steps (assuming you
have completed the prior tasks in this section).

1. Using the WebApiClient project, open the Index.cshtml page
(created earlier to show a list of customers in a table).

2. Add markup at the top of the page as a container that displays an error if
the web service delete call fails.

Click here to view co de image

<div id="result" class="text-danger"></div>

3. Add an identifier for each table row. This will allow the row to be
selected using jQuery and removed on a successful delete. The following
shows the addition to the row definition inside the foreach loop.

<tr id="row-@item.Id">

4. Remove the ActionLink for Delete in the column at the bottom of the
table row definition. Replace this with a standard anchor tag that calls a

mailto:id="row-@item.Id

>

new JavaScript function you will write, deleteCustomer(id). The
following shows an example.

Click here to view co de image

Delete</a

5. The last step is to write the JavaScript function and call the jQuery
$.ajax function. Listing 19.13 shows an example. Notice that we set
the $.ajax call type to DELETE to send the HTTP DELETE verb
request. Notice too that the URL is simply a call to
/api/customer/id (note you need to include your port number
instead of xxxxx), The Web API routes this call to the proper method by
the HTTP verb used.
Finally, the results are processed in a function called when the call
completes. If the status code is 204 (no content, we use a jQuery selector
to find the row and remove it. Otherwise, we display an error to the user.

LISTING 19.13 The jQuery Code to Call the Web API Delete(id) Method

Click here to view co de image

@section Scripts {
<script type="text/javascript">

function deleteCustomer(id) {

//Clear result message.

$('#result').html("");

//Send delete request to web service.
$.ajax({

url: "http://localhost:xxxxx/api/customer/" +
id,

type: 'DELETE',
complete: function (response) {

if (response.status == 204) {
$('#row-' + id).remove();

} else {
$('#result').html("Error deleting

customer.");
}

},
});

};
</script>

}

WCF Service Applications
WCF services have become less prevalent because web developers prefer the
more straightforward programming model of REST-based services (and the
Web API). However, WCF still has its place for writing robust services that
can be called by multiple clients using multiple endpoints/protocols.
Like web services, WCF services have their own set of terms. It is important

http://localhost:xxxxx/api/customer
mailto:href="javascript:deleteCustomer(@item.Id)">Delete</a

that you have a baseline understanding of these before trying to understand the
key concepts related to WCF service applications:

Note
It is not imperative that you understand all these terms to work
with WCF. However, it can be helpful to have a cursory
understanding when you are creating and configuring these
services.

WCF se rvice —A WCF service is a set of logic that you expose to
multiple clients as a service. A service might have one or more service
operations (think methods). A WCF service is exposed to clients through
one or more endpoints that you define. Each endpoint has a binding and
behaviors (see the “Endpoint” entry in this list). In this way, you can
create a single service and configure it to work efficiently with multiple
clients (such as HTTP, TCP, and named pipes).
WCF clie nt—A WCF client is an application that Visual Studio
generates to call a WCF service. You can create a WCF client by adding
a service reference to a client application. The client application is the
actual application that consumes the results of the WCF service. Think of
the WCF client as the go-between or proxy that helps connect your client
code to the WCF service.
Host—A host is a process that runs (or hosts) the WCF service. This
	
process controls the lifetime of the service. It’s similar to the way
	
ASP.NET provides a host for web services. You can write your own
	
service host or allow a service to be self-hosted.
	
Contract—Contracts define your WCF services. This is essentially the
public contract you guarantee between your service and any clients.
There is a service contract that defines the content of the service (such as
its operations). There is also an operation contract for each service
operation. This contract indicates the parameters and return type of the
service operation. There are also message, data, and fault contracts.
Endpoint—Endpoints are configured for each service operation. An
endpoint is where messages for your service are sent and received. Each
endpoint defines both an address and binding for communicating with a
service. For example, you might have one endpoint that works with
SOAP over HTTP. You might have another endpoint for the same service
that enables the service to work with MSMQ. In this way, you can add
and configure endpoints to your service independently of actually coding
the service. This ensures that your service can be configured to work
efficiently with both existing and new clients.
Addre ss—An address is a unique URI for a given service. The address
is used by calling clients to locate the service. The URI also defines the
protocol that is required to reach the address, such as HTTP or TCP.
Each endpoint you define for your service can have its own address.
Be haviors—A behavior defines the way an entire service, a specific
	
endpoint, or a specific service operation behaves. You can define
	

behaviors for such things as security credentials and service throttling.
Binding, binding e le me nt, and channe l—Endpoints have bindings that
define the way the endpoint communicates. A binding includes
information about transport, encoding, and security. For example, you
can configure an endpoint’s binding to work with the HTTP transport
encoded as text.
A binding is made up of binding elements. Each element represents a
single portion of the binding. You might, for example, have a binding
element for the encoding and another for the transport. Binding elements
and their configuration are implemented as channels. The binding
elements are stacked together to create this channel. In this way, the
channel represents the actual implementation of the binding.

Visual Studio provides various tools that make building WCF services easier.
If you know that you intend to host your WCF service inside a website under
IIS, you can actually add a WCF service to a website using the item templates.
However, if you want to host outside of IIS or to decide on hosting at a
different time, you can create a WCF project. In either case, you then define
your service contract (as an interface). Next, you implement the service
contract. Finally, you configure communication endpoints for the service. After
your service is complete, you pick a hosting model and deploy it accordingly.
Clients can then access the service. Let’s take a look at each of these steps.

The WCF Project Template
You can use Visual Studio to create a WCF service project in much the same
way as you define other projects (File, New, Project). From the Add New
Project dialog box, you can select the WCF node under either C# or Visual
Basic. This enables you to choose a WCF service project template. Figure
19.17 shows this dialog box.

FIGURE 19.17 Use the WCF project templates to define your WCF service
	
application.
	

Notice that there are a few WCF service templates from which to choose.
These templates enable you to create WCF services based on your specific
needs. There is a template for working with Windows workflow called WCF
Workflow Service Application. The Syndication Service Library enables you
to create a syndication service like an RSS feed. The template, WCF Service
Library, enables you to create a basic WCF service and then deploy it to a host
at a later time. (See “Hosting and Deploying a WCF Service,” later in this
chapter.) The final template, WCF Service Application, creates an ASP.NET
website and a WCF service. This template provides a default host for the
service (IIS). We use this template in the example.

Note
You can also create an ASP.NET web project and add WCF
services to it. In that case, your host for the service has been
determined by the website definition (and callers communicate
with your service using IIS and ASP.NET).

WCF Service Application F iles
The actual WCF Service Application project that is created through the Visual
Studio template contains an interface for defining your service contract
(IService1.cs), a file that represents the URI of your service
(Service1.svc), and a related class file for implementing the service code
(Service1.svc.cs). The project template also includes a Web.config
file for configuring the service and the appropriate .NET references. Figure
19.18 shows a new project based on the template. Note that the default
filenames have been changed from Service1.svc and IService1.cs to
CustomerProfile.svc and ICustomerProfile.cs. The generated
code for the start of the ICustomerProfile interface is depicted in the
code window.

http:ICustomerProfile.cs
http:IService1.cs
http:Service1.svc.cs
http:IService1.cs

FIGURE 19.18 The WCF Service Application creates a service that can be
hosted as a website.

The service interface class (shown as ICustomerProfile.cs in the
figure) is an interface you use to define your service contract. A contract
includes the service operations and the data contract. Having the interface split
into a separate file helps abstract all the WCF attributes and contract items
away from your actual service logic.
The class is defined as a WCF service through the use of the
ServiceContract attribute at the top of the class. In addition, the service
operations (or service methods) are indicated as such through the
OperationContract attribute applied to the method (GetData).
The actual service class (listed in the Solution Explorer as
CustomerProfile.svc.cs) implements the service interface as follows.
Click here to view co de image

namespace CustomerServices
{

public class CustomerProfile : ICustomerProfile
{ ...

You place your application logic for the service inside the class that
implements the service interface. You might decide to actually put business
code here, or you might choose to call out to another library that contains the
actual implementation code. Let’s look at an example.

http:CustomerProfile.svc.cs
http:ICustomerProfile.cs

Creating a WCF Service
This section illustrates creating an actual WCF service with Visual Studio
2015. We will develop an implementation for a WCF customer profile service.
This example is similar to the Web API service example created earlier to
allow comparison between the two methods for developing services. The
following steps outline the process of exposing this functionality as a WCF
service:

1. Start by creating a new WCF Service Application project. Name the
project CustomerServices.

2. Use Solution Explorer to rename the interface and service files to
ICustomerProfile.cs and CustomerProfile.svc,
respectively.
Note that the service also contains a markup file (not shown in Solution
Explorer). You will need to right-click the service,
CustomerProfile.svc, in Solution Explorer and choose View
Markup. Here you need to change the Service attribute to point to your
actual service name. Figure 19.19 shows an example.

FIGURE 19.19 Change the markup in the .svc class after renaming.

3. Add a class to the project to represent the customer. (Consider this the
model class for the customer, as you saw in the Web API example.)
Name the class Customer.cs.

4. Define the Customer class as shown in Listing 19.14. Notice that this
class uses the attribute DataContract to indicate that the class
represents a WCF service data contract. Each property of the class must
also be marked as DataMember.

LISTING 19.14 The Customer Class to Represent Our Data Model

Click here to view co de image

using System.Runtime.Serialization;

namespace CustomerServices
{

[DataContract]
public class Customer
{

http:Customer.cs
http:ICustomerProfile.cs

[DataMember]

public int Id { get; set; }

[DataMember]

public string Name { get; set; }

[DataMember]

public string Email { get; set; }

[DataMember]

public bool OptInEmail { get; set; }

[DataMember]
public string Notes { get; set; }

}
}

5. Open the ICustomerProfile.cs file and remove the template
code in the file. Here you will define an interface for working with the
customer profile service. Start by marking the interface with the
ServiceContract attribute. Next, add method definitions for
working with a Customer instance. Each method definition should be
marked with the OperationContract attribute.
Your code should look similar to that in Listing 19.15. (Notice the
similarities between this class and the Customer model class created
earlier in this chapter in the Web API sample.)

LISTING 19.15 The ICustomerProfile Interface Definition

Click here to view co de image

using System.Collections.Generic;
using System.ServiceModel;

namespace CustomerServices
{

[ServiceContract]
public interface ICustomerProfile
{

[OperationContract]
IEnumerable<Customer> GetList();

[OperationContract]

Customer Get(int id);

[OperationContract]

void Delete(int id);

[OperationContract]
void Create(Customer customer);

[OperationContract]
void Update(Customer customer);

}
}

http:ICustomerProfile.cs

6. Open the CustomerProfile.svc.cs class file. Here you
implement the code for the interface defined in the preceding step. To
start, remove the template code inside the class definition. Next, add a
class definition that implements the ICustomerProfile interface.
You should see a lightbulb in the code editor to help you stub out the
implementation methods. Figure 19.20 shows an example.

FIGURE 19.20 Use the lightbulb in the code editor to implement the service
interface.

7. Write code for each of the service methods to work with the data
contract. Listing 19.16 shows the complete code. Notice that it looks a
lot like the code created for the Web API sample. It, too, simulates
database lookup by using a static list of customers in lieu of a database
connection. It then just works with this collection through CRUD
operations to get a customer, get a list of customers, create a new
customer, update an existing customer, and delete a customer.
Notice that neither the class nor method definitions need to be marked
with attributes. Instead, the interface takes care of that on our behalf.

LISTING 19.16 The CustomerProfile.svc.cs Implementation

Click here to view co de image

using System;
using System.Collections.Generic;
using System.Linq;

http:CustomerProfile.svc.cs
http:CustomerProfile.svc.cs

using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;

namespace CustomerServices
{

public class CustomerProfile : ICustomerProfile
{

static readonly List<Customer> _customers = new
List<Customer>()

{
new Customer { Id = 1, Name = "Customer 1",

Email = "c1@contoso.com" },
new Customer { Id = 2, Name = "Customer 2",

Email = "c2@contoso.com" },
new Customer { Id = 3, Name = "Customer 3",

Email = "c3@contoso.com" }
};

public Customer Get(int id)
{

var customer = _customers.FirstOrDefault(x =>
x.Id == id);

if (customer == null)
{

throw new NullReferenceException(
string.Format("Customer {0} not found.",

id.ToString()));
}
return customer;

}

public IEnumerable<Customer> GetList()

{

return _customers;

}

public void Create(Customer customer)
{

//Get next customer ID for collection.
customer.Id = 1 + _customers.Max(x =>

(int?)x.Id) ?? 0;

_customers.Add(customer);

}

public void Update(Customer customer)
{

//Get customer to be updated.

var customerToUpdate =

_customers.FirstOrDefault(
x => x.Id == customer.Id);

if (customerToUpdate == null)
{

throw new NullReferenceException(

http:customer.Id
http:int?)x.Id
http:customer.Id
mailto:c3@contoso.com
mailto:c2@contoso.com
mailto:c1@contoso.com

string.Format("Customer {0} not found.",
customer.Id.ToString()));

}
else
{

//Simulate updating the customer values.
customerToUpdate.Name = customer.Name;
customerToUpdate.Notes = customer.Notes;
customerToUpdate.Email = customer.Email;
customerToUpdate.OptInEmail =

customer.OptInEmail;
}

}

public void Delete(int id)
{

var customer = _customers.FirstOrDefault(x =>
x.Id == id);

if (customer == null)
{

throw new NullReferenceException(
string.Format("Customer {0} not found.",

id.ToString()));
}
_customers.Remove(customer);

}

}
}

Running and Testing Your WCF Service
Whether you create a WCF Service Application (hosted in a website) or a
WCF Service Library (hosted independently of the service definition), Visual
Studio provides a mechanism for running and debugging your services without
your having to deploy them first or write your own service client.
In the example, we created a WCF Service Application. Visual Studio
leverage IIS Express to host this service. Visual Studio provides you a test
client to run and debug the service. To use this test client, select your service in
Solution Explorer (CustomerProfile.svc) and, from the Debug menu,
select Start Debugging (or just press F5). Visual Studio will run the code in
debug mode using the WCF Test Client, as shown in Figure 19.21.

FIGURE 19.21 The WCF Test Client can help you test and debug your
services.

Notice in Figure 19.21 that the WCF Test Client shows your service and all its
operations. The operations marked with the red ‘x’ indicate the async versions
of your service (which cannot be accessed by the test client).
You double-click a given service to go to the test client for that service (right-
side of Figure 19.21). Notice that there are multiple tabs at the top of this form
section. These are all the services currently being tested. You can also see the
Get(id) service in action. Notice that the test client gives you a place to
define parameters (Request section) and a button to invoke the service. The
bottom section shows the response from the service.
Notice, too, that at the bottom of the form in the Response area, you can toggle
between the formatted results and XML. The XML view shows both the
Request and the Response as markup. This can be useful when debugging. To
stop testing, select File, Exit in the WCF Test Client.

Tip: Configure Endpoints
After your service exists, you can edit its configuration to support
various clients. This means adding endpoints and related
configuration information. Remember, the promise of WCF is that
you can create a single service and then optimize it to work with
multiple clients. One client might access via HTTP, another
through TCP, and yet another with named pipes. You can support
all of these clients (and more) through configuration.
The WCF Service Library template contains an App.config
file. The WCF Service Application contains the file
Web.config. Both files define your service configuration.
Typically, you edit the Web.config file using the XML editor
in Visual Studio. However, when dealing with Service Library
projects and multiple endpoints, it can be easier to edit this
information using the Service Configuration Editor tool. To access
this tool, right-click the config file and choose Edit WCF
Configuration.
If you’re using Web.config, you want to click the Create a
	
New Service link in this configuration editor. A wizard then
	
walks you through the process to connect to configuration
	
information about your service. From there, you can add
	
endpoints and bindings as appropriate.
	

Consuming a WCF Service
You consume a WCF service from a .NET client by adding a service reference
to your project. Visual Studio then generates a proxy class for calling your
service. You use this proxy class to call your service from your .NET client
application. Your client application could be a website, any variety of
Windows application, or an application on another platform. Let’s look at an
example of calling WCF from an ASP.NET MVC site.

Note
ASP.NET 5 does not currently have the concept of a Service
Reference (at least at the time of writing). Therefore, the example
that follows uses an MVC application that targets ASP.NET MVC
6 (and not ASP.NET 5). This allows you to see the Service
Reference concept in action.
You can also consume WCF services using HttpClient and
jQuery (without a Service Reference proxy). This requires
additional configuration on your services/endpoints to make them
work as REST-based services.

1. Open a new instance of Visual Studio and create a new web project
(File, New, Project). Select the ASP.NET Web Application, name the
project WcfClientMvc, and click the OK button. Select the MVC
template (and not an ASP.NET 5 template; we will use that later) and

click OK again.
2. Make sure your customer services application is running in another

instance of Visual Studio. (You can run in debug mode.)
	
Inside the WcfClientMvc project, Right-click the References node in
	
Solution Explorer and choose Add Service Reference to launch the Add
	
Service Reference dialog box.
	
Type the address to your running service in the Address line of the Add
	
Service Reference dialog. You can get the address from the WCF Test
	
Client, right-click the service and choose Copy Address. With the
	
address in the Add Service Reference dialog, click the Go button. Visual
	
Studio will find your service and display the methods, as shown in
	
Figure 19.22.
	
Set the Namespace to CustomerProfile and click the OK button to
add the service reference to your project.

FIGURE 19.22 Use the Add Service Reference dialog to set a reference
from your project to an existing WCF service.

3. Visual Studio will create a Service Reference folder in your
solution and add the CustomerProfile reference (as a proxy class
for working with the service). It will also add a reference to your
project, including System.NET.Http, for working with
HttpClient, as we did in the Web API client example. The proxy
class generated on your behalf uses this to work with the WCF service.
Note that if you double-click the CustomerProfile service reference,
Visual Studio shows the Object Browser. Here, you can view the
contents of the service reference proxy.
In addition, if you open the Web.config file, you will see a node

called <system.serviceModel>; this represents your service
configuration data, including bindings and client endpoints.
Right-click the Web.config file in Solution Explorer and choose Edit
WCF Configuration to open the configuration (as shown in Figure
19.23). Select the Client folder, Endpoints,
BasicHttpBinding_ICustomerProfile. Note the client
endpoint name and address (as you use them shortly) and close the
configuration editor.

FIGURE 19.23 You can use the WCF service configuration editor to view
and edit WCF client configurations for your web application.

4. Create the controller for handling requests to the WCF service and
serving up views. Right-click the Controllers folder and choose
Add, Controller. Select the MVC 5 Controller – Empty and click the Add
button. When prompted, name your controller
CustomerController.

5. Write the code for the Index method to call the WCF service, get a list
of customers, and return the Index view with the customer data. Start
by adding a using statement for System.Threading.Tasks; to
the top of the CustomerController.cs file.
Remove the Index() stubbed-out method in the template class.
Replace it with code similar to Listing 19.17. Notice that we first create
an instance of the proxy class,
CustomerProfile.CustomerProfileClient as custSrv.
We then use that class to get a list of customers by calling
custSrv.GetListAsync();.

LISTING 19.17 The CustomerController Index() Method Used to
Call the WCF Service via the Service Reference Proxy and Return the
Corresponding Index View

http:CustomerController.cs

Click here to view co de image
	

public async Task<ActionResult> Index()
{

CustomerProfile.CustomerProfileClient custSrv =
new CustomerProfile.CustomerProfileClient(
"BasicHttpBinding_ICustomerProfile");

CustomerProfile.Customer[] customers =

await custSrv.GetListAsync();

return View(customers);
}

6. Create the view for showing a list of customers. Make sure you have a
Customer folder under Views in Solution Explorer (if not, add one).
Right-click the Customer folder and choose Add, View.
In the Add View dialog (see Figure 19.24), set the view name to Index.
Under template, choose List. Under Model class, find the Customer
object that was generated when you created the service reference.
Finally, select the layout page for the application and click Add.

FIGURE 19.24 Use MVC scaffolding to generate a view based on the
	
Customer model in the Service Reference proxy.
	

Visual Studio will generate a working view for Index. You need only
to change the page title (optional).

You can now run the client application and navigate to the customer page.
Make sure the WCF service application created earlier is also running (inside
another instance of Visual Studio). Figure 19.25 shows the results.

Sample Code
We end the example here. However, the sample code for the book
contains all the services in WCF (Get, GetList, Create,
Update, and Delete) wired to the MVC client project.

running against the WCF services.
me way (WinForms and WPF, for
o the project and then use the service
nt. Remember, WCF services can
ludes REST-based HTTP services.
his popular approach with WCF.

F Services
rvices allow your services to be
TTP (which is nearly everything).

b API. However, WCF can also be
ces. REST makes your services URL-
T, POST, PUT, and DELETE. They
nd can then be called using jQuery

ttributes on the WCF service methods.
ke, are described as follows:
n be called using HTTP GET
ce as supporting the HTTP verbs of

UriTemplate. This property is
eb-hosted, URL-addressable service

s is just like the MVC and Web API
ou define the UriTemplate

fy your service, and then the
le, the following interface method

the URL
rvice.svc/Get/1 to return a
r. You can indicate additional
ending them to the URL using

FIGURE 19.25 The MVC application
Other Windows .NET clients work the sa
example). You add a Service Reference t
reference to call the service from the clie
support multiple endpoint types. This inc
The next section shows how to leverage t

Creating/Calling REST-Based WC
As discussed previously, REST-based se
called by any device that communicates H
We demonstrated this approach using We
configured to work as REST-based servi
accessible from HTTP requests using GE
can also support JSON message format a
and AJAX.
You indicate support for REST through a
These attributes, WebGet and WebInvo

WebGet—Indicates the service ca
WebInvoke—Identifies the servi
POST, PUT, and DELETE

Both of these attributes have the property
used to route URL requests to a specific w
and pass the appropriate parameters. Thi
routing with which you may be familiar. Y
property to your domain, a name to identi
parameters you intend to pass. For examp
indicates a call to the Get method using
http://localhost/CustomerSe
Customer instance by the id paramete
parameters with UriTemplate by app
/{parameter}.
Click here to view co de image

[OperationContract]

http://localhost/CustomerSe

[WebGet(UriTemplate = "Get/{id}")]
Customer Get(int id);

The WebGet and WebInvoke attributes also include the
ResponseFormat property. This allows you to indicate the format (XML or
JSON) you want to use when sending a response back to the request, as in
ResponseFormat = WebMessageFormat.Json.
You must also configure an HTTP endpoint for the services to be called. You
can do this in your service web.config file by editing the XML, or you can
use the WCF Configuration editor. The example that follows walks you through
both options.

Update WCF Services to Accept RESTRequests
Let’s look at an example. We are going to update the WCF project
CustomerServices created earlier to support REST services. Recall that
this project is a WCF Services Application and contains the Customer class
as a DataContract, the ICustomerProfile interface for the service,
and the CustomerProfile class that implements the interface. (Refer to
Listings 19.15 through 19.17.)
We need to update the ICustomerProfile interface to indicate support for
REST. Listing 19.18 shows the completed example. First, we added a using
statement to the top for System.ServiceModel.Web (if it was not
already there). Next, notice the use of WebGet and WebInvoke. We set the
UriTemplate to work similar to a Web API request. The
ResponseFormat is set to return JSON for those services that return
customer data. Notice that WebInvoke includes the parameter Method to
indicate the HTTP verb we want to respond to (POST, PUT, or DELETE).

LISTING 19.18 The ICustomerProfile Interface Definition

Click here to view code image

using System.Collections.Generic;
using System.ServiceModel;
using System.ServiceModel.Web;

namespace CustomerServices
{

[ServiceContract]
public interface ICustomerProfile
{

[OperationContract]
[WebGet(ResponseFormat = WebMessageFormat.Json)]
IEnumerable<Customer> GetList();

[OperationContract]
[WebGet(UriTemplate = "Get/{id}", ResponseFormat =

WebMessageFormat.Json)]
Customer Get(string id);

[OperationContract]
[WebInvoke(Method = "DELETE", UriTemplate =

"Delete/{id}")]

void Delete(string id);

[OperationContract]
[WebInvoke(Method = "POST", UriTemplate =

"Create")]
void Create(Customer customer);

[OperationContract]
[WebInvoke(Method = "PUT", UriTemplate =

"Update")]
void Update(Customer customer);

}
}

Notice in Listing 19.18 that we changed the Get and Delete methods to
accept a string value instead of an int. This is required by the WCF
REST-based HTTP web services. We must also then edit the code in
CustomerProfile for both these service methods to accept a string and
not an int. Of course, we convert the string to int as a first step within
the method.
The final step to set up the CustomerProfile WCF services as REST
based is to add an HTTP binding to the web.config file. You can do so
either by manually editing the XML in the config file or by using the WCF
config editor. Let’s look at the latter option first.

1. In Solution Explorer, right-click Web.config and choose Edit WCF
Configuration.

2. Under the Configuration tree (left side), choose the Advanced folder,
Endpoint Behaviors. Click the link New Endpoint Behavior
Configuration (or right-click the folder and choose the same).

3. In the Behavior edit screen, name the behavior web. Click the Add
button to add an element. From the Stack Element drop-down, choose
webHttp. Figure 19.26 shows an example.

FIGURE 19.26 Add a webHttp behavior to the WCF configuration.

4. Navigate to the Services folder. If you do not see the
CustomerProfile service, you will need to add it. Click the
Create a New Service link. This will launch the New Service
Element Wizard.
For the first dialog, select
CustomerServices.CustomerProfile (you can browse to this
by selecting your compiled dll in the bin folder) and click Next.
On the service contract page of the wizard, select
CustomerServices.ICustomerProfile and click the Next
button.
Select the communication mode of HTTP and select Next.
Select Basic Web Service interoperability and click Next.
Set the address to your service endpoint as
http://localhost:PORT#/CustomerProfile.svc and click Finish. You
should now have the CustomerServices.CustomerProfile
Service in the WCF configuration editor (see the left side of Figure
19.27).

5. If an endpoint exists, use it to configure as follows. If not, right-click
Endpoints and choose New Service Endpoint. Configure the service as
shown in Figure 19.27.
This includes setting the Name to REST-based, the
BehaviorConfiguration to web (the behavior you just created in the
wizard), the Binding to webHttpBinding, and the Contract to
CustomerServices.ICustomerProfile.

FIGURE 19.27 Configure an HTTP endpoint for the service.
The WCF service is now configured to work as an HTTP, REST-based
service. You can review your configuration by opening web.config.
The following shows the system.serviceModel section post-
configuration. (Note that you can use this to simply edit the
web.config file by hand.)

Click here to view code image

<system.serviceModel>
<services>

<service
name="CustomerServices.CustomerProfile">

<endpoint address=""
behaviorConfiguration="web"
binding="webHttpBinding"

name="REST-based"
contract="CustomerServices.ICustomerProfile" />

</service>
</services>
<behaviors>

<endpointBehaviors>
<behavior name="web">

<webHttp />
</behavior>

</endpointBehaviors>
<serviceBehaviors>

<behavior name="">
<serviceMetadata httpGetEnabled="true"

httpsGetEnabled="true" />
<serviceDebug

includeExceptionDetailInFaults="false" />
</behavior>

</serviceBehaviors>

</behaviors>
<protocolMapping>

<add binding="basicHttpsBinding"
scheme="https" />

</protocolMapping>
<serviceHostingEnvironment

aspNetCompatibilityEnabled="true"
multipleSiteBindingsEnabled="true" />

</system.serviceModel>

Note
Configuring your WCF service in this way will prevent the WCF
Test Client from working with your services. However, you can
now access them directly from a web browser. To do so, run the
application and navigate to
http://localhost:xxxxx/CustomerProfile.svc/GetList (where xxxxx
represents your port number).

Update ASP.NET 5 Client to CallWCF Services Using REST
We can now write client code to call the REST-based WCF services using
HTTP. As an example, consider the client application we wrote for consuming
the REST-based Web API services using ASP.NET 5. (See the section,
“Consuming an ASP.NET Web API Service.”) We can create a similar site for
working with these WCF services.
To get started, this example assumes you copy the WebApiClient project
created earlier (or download the sample code for the book). To follow along
reading, you might refamiliarize yourself with Listings 19.8 through 19.13.
The changes to the code are minimal and involve mostly updating the URL
addresses for calling the services. The following steps you through the code
changes for the CustomerController class:

1. Open the CustomerController class. At the top of the class,
change the baseUri variable to point to the new
CustomerProfile service as follows (your port number will likely
differ). Note the slash (/) at the end of the Uri.

Click here to view code image

string baseUri =
"http://localhost:6795/CustomerProfile.svc/";

2. In the Index() method, change the GetAsync call to use the new
service path as the following illustrates.

Click here to view code image

HttpResponseMessage response = await
hClient.GetAsync("GetList");

3. In the Edit(int? id) method, change the GetAsync method as
follows.

Click here to view code image

HttpResponseMessage response = await

hClient.GetAsync(
string.Format("get/{0}", id.ToString()));

4. In the Edit(Customer customer) method, change the
PutAsJsonAsync call as follows.

Click here to view code image

HttpResponseMessage response =
await hClient.PutAsJsonAsync("update", customer);

That’s it for the controller changes. Recall that the Web API project we used as
a basis for this sample made the calls for creating a new customer and deleting
an existing customer from the user’s browser using JavaScript, jQuery, and
AJAX. The following steps you through making these modifications:

1. Open the Create.cshtml page from the Views/Customer folder
in Solution Explorer.

2. Navigate to the bottom of the page and edit the url variable as follows
(your port number may vary).

Click here to view code image

string url =
"http://localhost:6795/CustomerProfile.svc/Create";

3. Open the Index.cshtml (shows a list of customers).
4. Rewrite the formsubmit function to use the jQuery method, $.ajax

(instead of $.post). In this case, we need to send the data to the
service as JSON (instead of a serialized form as we did with the Web
API sample; note that this approach can also work with Web API POST
requests).
Listing 19.19 shows the full example. The JSON message is created by
defining a type, formData, and adding the form values to the type. We
then use JSON.stringify(formData) to convert the type to
JSON.

LISTING 19.19 The Create.cshtml JavaScript and jQuery Code to Send
a POST Message with Customer Form Data on Submit

Click here to view code image

<script type="text/javascript">
$('#form-create').submit(function () {

//Clear result message.
$('#result').html("");

//Verify form is valid.
if ($('#form-create').valid()) {

//Create formData to be converted to JSON.
var formData = {

"Name": $("#Name").val(),
"Email": $("#Email").val(),
"OptInEmail": $("#OptInEmail").val(),

"Notes": $("#Notes").val()
}

//Post the data as JSON and verify response code
200 - OK.

$.ajax({
url:

'http://localhost:6795/CustomerProfile.svc/Create',
type: 'POST',
data: JSON.stringify(formData),
dataType: 'json',
contentType: 'application/json; charset=utf-

8',
processData: true,
complete: function (response) {

if (response.status == 200) {
window.location = '/customer';

} else {
$('#result').html('Error saving

customer.');
}

}
});

return false;
}

});
</script>

The final step is to run the application. Be sure to have the WCF REST-based
service application running in a host. (A Visual Studio debug session using IIS
Express will work.) Figure 19.28 shows the client running against the WCF,
REST-based services. Notice the additional customer added to the default
collection (using the client-side code in Listing 19.19).

FIGURE 19.28 The ASP.NET 5 application running against the WCF
services configured to support REST.

Hosting and Deploying a WCF Service
For your services to accept requests, they have to be active and running, which
means they need to be hosted in some runtime environment. Recall that when
we covered web services, they were hosted for us by IIS. You can host your
WCF services there, too. However, you do have other options.
You want to pick your host based on your needs. For example, if you have a
peer-to-peer application, you might already know that each peer can host its
own services. You also need to consider issues such as deployment, flexibility,
monitoring, process lifetime management, security, and more. Here is a brief
overview of the WCF host options available to you:

Self-hosted—A self-hosted service contains the service within a running
executable. The executable is managed code you write. You simply
embed one or more services within the executable. In this way, the
service is self-hosted. It does not require an additional process to
execute. Instead, its lifetime is managed by the lifetime of the executable.
When the executable is running, the service is listening for requests and
responding accordingly. If not, the service is out of commission.
Self-hosted services are great when your clients need to communicate
with one another. This is the case with peer-to-peer applications like
Microsoft’s Groove. Each client has services that can speak with the
other clients.
To create a self-hosted service, you create an instance of the
ServiceHost class inside your application. This class is passed an
instance of your service. You then call the Open method of
ServiceHost to begin hosting the service. When you’re finished, you
call the Close method.
Windows service—You can host your WCF service inside a Windows
service application. A Windows service application is one that is
installed as a service on a given machine. A Windows service can be
configured to start, stop, and start up again on system reboot. In this way,
it is reliable and robust when you need a service to simply stay up and
running. It is also supported on all versions of Windows and Windows
server.
To create a Windows service to host your WCF service, you create a
class derived fromServiceBase. You then override the OnStart
and OnStop methods to set up your service host. In the OnStart
method, you create a global ServiceHost instance and then call the
Open method to begin listening for requests. You then simply call the
Close method in the OnStop method.
Finally, you create an Installer class for your service to install it in a
machine’s service directory. This class derives from the Installer class.
You then compile the code and run installutil to get the service
installed on a machine.
IIS—IIS can host your WCF services. In this way, you can take
advantage of the many features built in to this platform, including
monitoring, high availability, high scalability, and more. You saw how to
create services hosted in a website in the preceding section.

WAS (Windows Process Activation Service)—WAS was introduced
with Windows Server 2008. It gives you the benefits of IIS (health
monitoring, process recycling, message-based activation, and so on)
without the limitations of HTTP only. WAS works with HTTP, TCP,
named pipes, and MSMQ. In addition, WAS does not require that you
write hosting code (like the self-hosted and Windows Service options
do). Instead, you simply configure WAS to be a host of your service (as
you would IIS).

As you can see, you have many options for hosting your service. Each has its
own plusses and minuses with respect to setup, coding, configuration, and
deployment. Depending on your needs, spend some time learning more about
your host options. You can find a how-to on each option inside the Microsoft
Developer Network (MSDN). Simply search for “WCF hosting options.”

Summary
This chapter presented both ASP.NET Web API services and those built on
WCF. You saw how .NET abstracts the programming of services and provides
tools to make your life easier. In this way, you can concentrate on building
business functionality (and not writing plumbing code). Some key points in this
chapter include the following:

Web services are based on open standards. .NET adheres to these
standards to ensure that heterogeneous applications can work together
with web services.
An ASP.NET Web API service helps you write REST-based HTTP
services that can be called from any application that speaks HTTP,
including web and native clients.
The ASP.NET Web API is built on ASP.NET MVC and therefore
includes a controller and routing engine for accessing your service
methods. These service methods are written to leverage the HTTP verbs
GET, POST, PUT, and DELETE.
You can use jQuery to call an HTTP service asynchronously directly
from a web browser on the client.
A WCF service can be created with multiple endpoints to efficiently
support multiple clients across different communication protocols. WCF
services work across HTTP, TCP, named pipes, sockets, and more.
Use WebGet and WebInvoke attributes to mark a WCF service as
supporting REST-based HTTP verb calls.
You consume a service by adding a service reference to a .NET
application. This generates a local proxy client for your code to call.
You can also consume a service by using other HTTP client libraries
such as System.Net.HttpClient.

 Part VI: Building Windows Client
	
Apps
	

Chapter 20. Building Windows Forms
Applications

In This Chapte r
The Basics of Form Design
Creating a Form
Adding Controls and Components
Creating Your Own Controls

One of the core goals for Visual Studio is enabling rapid Windows Forms
construction. Using the Windows Forms Designer, the Controls Toolbox, and
the various common controls provided by the .NET Framework, this chapter
serves as your guide to the drag-and-drop creation of rich form-based
applications. Specifically, we look at how best to leverage the built-in
capabilities of the Forms Designer and the Visual Studio project system to
quickly build a baseline form from scratch.
We don’t worry about the code behind the form at this point; instead, the focus
is on the user interface and Visual Studio’s inherent rapid application
development (RAD) capabilities with the Windows Forms Designer. In other
words, this chapter ’s focus is on the design-time capabilities of the IDE as
opposed to the runtime capabilities of the form and control classes.

The Basics of Form Design
Designing the appropriate user interface for a Windows application is still part
art and part science. In the Windows Forms world, a user interface is a
collection of images, controls, and window elements that work in synergy.
Users absorb information through the user interface (UI) and use it as the
primary vehicle for interacting with the application.
The task in front of any developer when creating a user interface is primarily
one of balance: balancing simplicity of design with the features that the
application is required to implement. Also thrown in the mix is the concept of
standards, both formal and experiential.

Note
Although we use the term developer in this chapter, much of the
UI design and layout process is squarely in the camp of the
designer. Although many development teams don’t have the
luxury of employing a full-time UI designer (developers handle
this area on many teams), this is rapidly becoming a key
competitive differentiator as software development firms look to
distinguish their applications and rise above their competitors at
the “look and feel” level.

Considering the End User
You can’t start the design process unless you understand how the application
will be used and who its intended audience is. Even applications that surface
similar feature sets might need to provide significantly different user
experiences. An application designed to store medical information might have
the same data points and functions but would likely have a different persona if
it was designed for the ordinary consumer as opposed to a physician or
registered nurse.
Use cases and actual usability labs are both great tools for understanding user
expectations, and they provide great data points for preserving that function
versus simplicity of design balance.

Location and Culture
Location and culture figure into the equation as well. The typical form
application used in the United States caters to this culture’s expectations by
anticipating left-to-right, top-to-bottom reading habits. In this environment, the
most important elements of the UI are typically placed in the most prominent
position: top and left in the form. Other cultures require this strategy to change
based on right-to-left and even bottom-to-top reading traits.
Most controls in Visual Studio directly support right-to-left languages through
a RightToLeft property. By setting this property to an appropriate
RightToLeft enum value, you can indicate whether the control’s text
should appear left to right or right to left or should be based on the setting
carried on the parent control. Even the Form class supports this property.
Beyond the RightToLeft property, certain controls expose a
RightToLeftLayout property. Setting this Boolean property affects the
overall layout within the control. As an example, setting
RightToLeftLayout to True for a Form instance causes the form to
mirror its content.

Tip
Search for “Best Practices for Developing World-Ready
Applications” in the Microsoft Developer Network (MSDN) for
more detailed information on how to design an application for an
international audience.

In addition, simple things such as the space allocated for a given control are
affected by language targets. A string presented in U.S. English might require
drastically more space when translated into Farsi. Again, many controls
support properties designed to overcome this design issue; setting the
AutoSize property on a control to True automatically extends the client
area of the control based on its contained text.

Understanding the Role of UI Standards
Applications must also strive to adhere to any relevant standards associated
with their look and feel. Some standards are documented for you by the
platform “owner.” Microsoft, for example, has a set of UI design guidelines
documented within MSDN. The book Microsoft Windows User Experience,
published by Microsoft Press, is included in its entirety within MSDN. By
tackling topics such as data-centered design, input basics, and design of
graphic images, this book provides a structured baseline of UI design
collateral for Windows application developers.
Design guidelines and UI standards are often specific to a given platform. The
current look and feel expected from a Windows application trace primarily
back to the “new” design that debuted with Windows 95. Windows XP further
refined those expectations. Windows Vista and Windows 7 offered a new set
of design principals and now, Windows 8 and Windows 10 offer up the most
radical set of changes in recent history with their focus on the touch experience
and Modern UI/Windows Store-style applications.
Visual Studio surfaces some of these design guidelines and standards to make
it easy to develop conforming interfaces. For instance, default button heights
match the recommended standard, and Visual Studio assists developers with
standard control positioning relative to neighboring controls by displaying
snaplines as you move controls on the form surface. We cover this topic more
fully later in this chapter.

De F acto Standards
Sometimes the influence of a particular application or suite of applications is
felt heavily in the UI design realm. One example here is Microsoft Outlook.
Various applications now in the wild mimic, for instance, the structure and
layout of Microsoft Outlook even though they are not, per se, email
applications. The Microsoft Outlook designers struck a vein of usability when
they designed its primary form, and now other companies and developers have
leveraged those themes in their own applications. A similar comment can be
made about the appearance of the “ribbon” toolbar that debuted with Microsoft
Office 2007.
Although there are limits, Visual Studio enables developers to achieve the
same high-fidelity UIs used in Microsoft Office and other popular applications.
In fact, if you look at the official Windows Forms website, you see demo
applications written with Visual Studio showcasing how you can develop
replicas of the Microsoft Outlook, Quicken, or even Microsoft Money facades.
(Visit the Downloads page at http://www.windowsclient.net.)

Planning the User Interface
Before you embark on the design process in Visual Studio, it is probably a
decent idea to first draft a mock-up of the form’s general landscape. This can
be a simple pen and paper sketch; what we are looking for is a simple, rough
blueprint for the application.
As a sample scenario, consider a Windows Forms application written for
Contoso customer service representatives. The application needs to expose a
hierarchical list of orders placed with Contoso, and it should enable the reps

http://www.windowsclient.net

to search on orders and edit data.

P reliminary Design
A few basic components have been established as de facto standards for a
Windows form: menus, toolbars, and status bars are all standard fare and can
certainly be leveraged within this fictional order application.
Beyond those staples, you know that you need to list orders on the screen and
provide for a region that shows order details. By borrowing liberally from an
existing layout theme à la Microsoft Outlook, you might arrive at a tentative
form layout plan like the one shown in Figure 20.1.

FIGURE 20.1 An initial layout plan.

It is important to pay some attention to the concept of resizing. How do the
form’s constituent controls respond relative to one another when a user resizes
the form? What if a control element is resized because of a language change or
a change in the underlying data? By fleshing out some of the resizing design
intent now, you can save a mountain of work later. The prototype sketch in
Figure 20.1 includes some simple text to remind you how to accommodate the
different form regions during resizing.

Creating a Form
Although there are many different ways of approaching form design, the
starting point for all of them within Visual Studio is the Windows Forms
Application project template. From the New Project dialog box, select this
template, give the project an appropriate name, and click OK (see Figure
20.2).

FIGURE 20.2 Creating a new Windows Forms project.
	

The Windows Forms Application Project Type
	
Windows Forms Application projects consist of a default form class and, in
the case of C#, a default static Program class. After creating the project, you
are immediately presented with a blank, default form opened in the Windows
Forms Designer. For a refresher on the basic capabilities and components of
the Windows Forms Designer, see Chapter 6, “Introducing the Editors and
Designers.”

Setting the Startup F orm
Although the default project creates only a single form, you can add multiple
forms at any time. This then raises the question of how to indicate at design
time which form you initially want displayed at runtime (if any). There are two
methods:

For Visual Basic projects, the startup form is set using the Project
Properties dialog box. The Startup Object drop-down in this dialog box
contains a list of all valid form objects. You simply select the form you
want launched on startup, and you’re all set.
For Visual C# projects, a slightly more complex approach is needed.
The notion of a C# startup object is simply any class that implements a
Main() method. Within the body of the Main method, you need to
place a line of code that passes in a form instance to the
Application.Run method, like this: Application.Run(new
OrderForm()). Assuming that you have a class that implements
Main and code that calls Application.Run in that Main method,
you can then select the specific startup object via the Project Properties
dialog box. The Program class, which is created for you during the
project creation process, already implements the Main method and by
default runs the default form (Form1) on startup.

Inheriting Another F orm’s Appearance
If your form looks similar to another form that you have already developed,
you have the option of visually inheriting that other form’s appearance. Visual
Studio provides an Inherited Form project item template to help you along this
path.
To create a form that visually inherits another, select Project, Add New Item.
In the Add New Item dialog box, select the Inherited Form item type (located
under Visual C# Items, under the Windows Forms category). The Inheritance
Picker dialog box then lists the available forms within the current project that
you can inherit from. Note that you also have the option of manually browsing
to an existing assembly if you want to inherit from a form that doesn’t appear in
the list. After you select the base form, Visual Studio creates the new form
class; its code already reflects the base class derivation.

Form Properties and Events
A form is like any other control: you can use the Properties window in the IDE
to control its various properties. Although we don’t touch on all of them here,
you should consider a few key properties as you begin your form design
process.

Startup Location
You use the form’s StartPosition property to place the form’s window
on the screen when it is first displayed. This property accepts a
FormStartPosition enumeration value; the possible settings are
documented in Table 20.1.

TABLE 20.1 FormStartPosition Enumeration Values

Appearance
Given our discussion on the priority of UI design, it should come as no
surprise that the appearance of the form is an important part of the overall
application’s user experience. For the most part, the default appearance
property values are sufficient for the typical application. You should set the
ForeColor and BackColor properties according to the color scheme
identified for your application. Note that when you add controls to the form,
most of them have their own ForeColor values set to mimic that of the form.
Some properties enable you to implement a more extravagant user interface.
The Opacity property enables you to implement transparent or
semitransparent forms. This capability might be useful when users want to see

a portion of the screen that actually sits behind the form’s window. In addition
to the Opacity property, you use the Form.BackgroundImage property
to set an image as the form’s background. This property is best used to display
subtle color gradients or graphics that are not possible with just the
BackColor property.
In keeping with our goal of rapidly crafting the form, most of the activities
within the designer described in this chapter consist of tweaking the form’s
properties and adding controls from the Toolbox to the form.

F orm Events
Forms inherit the same event-driven architecture as other controls do. Certain
public events defined on the Form class are useful as injection points across
the continuum of a form’s life.
Figure 20.3 shows the various stages (and corresponding events) from form
inception to close. To react to a form event, you first need to create an event
handler.

FIGURE 20.3 The events in the life of a Windows form.

Creating an Event Handler
Visual Studio’s Properties window provides a speedy mechanism for defining
an event handler. First select the form of interest. Then click the Events button
in the Properties window’s toolbar. The window now shows a list of every
event defined on the form. Double-clicking the event creates a blank event
handler routine and opens it in the code editor for you. The event handler has
the correct arguments list and follows established standards for event handler
naming (typically, classname_eventname).

Note
The form needs to be opened in the IDE before the events can be
accessed in the Properties window. If the form is selected in the
solution explorer but not opened in the IDE, you can still edit the
form properties, but you won’t be able to access the events in this
fashion.

Figure 20.4 depicts the form events within the Properties window.
	

FIGURE 20.4 Accessing form events in the Properties window.
With the form in place, you can start placing controls onto its surface.

Adding Controls and Components
When you are building a form-based application, the user interface design
really involves three separate tools within Visual Studio: the Forms Designer
tool, which provides the canvas for the form; the Toolbox, which contains the
controls to be placed onto the canvas; and the property browser, which is used
to affect the form and its child controls, appearance, and behavior. This triad
of IDE tools provides the key to rapid form construction with Visual Studio,
especially as it relates to building a form’s content.
The term control technically refers to any .NET object that implements the
Control class. In practice, we use the term to refer to the visual controls
hosted by a form. This is in contrast to a component, which has many of the
same characteristics of a control but doesn’t expose a visual interface. A
button is an example of a control; a timer is an example of a component.
Controls and components alike live in the Toolbox window. (See additional
coverage of the Toolbox in Chapter 6.) Adding either a control or a component
to a form is as easy as dragging its likeness from the Toolbox and dropping it
onto the form’s surface.

After you place a control on a form, the Windows Forms Designer paints the
control onto the form to give you a WYSIWYG view of how the form will look
at runtime. As noted in Chapter 6, components are handled in a slightly
different fashion. The Forms Designer has a special region called the
component tray; any components placed onto the form are represented here.
This enables you to interact in a point-and-click fashion with the component as
you would with a control, but it doesn’t place a representation onto the form
itself because a component has no visual aspect to it.
Figure 20.5 highlights the component tray area of the Windows Forms
Designer.

FIGURE 20.5 The component tray.
	

Tip
The Toolbox is customizable. You can add or remove controls
from the Toolbox within any of the Toolbox tabs. Right-click
anywhere in the interior of the Toolbox window and select
Choose Items to launch the Choose Toolbox Items dialog box;
from here, you can select or deselect the Toolbox control
population. If a control doesn’t show up in the .NET Framework
Components tab or the COM Components tab of the dialog box,
you can browse to the control’s assembly and add it directly.

Control Layout and Positioning
When a few controls are on a form, the Windows Forms Designer can help
automate some of the more common layout tasks, such as aligning a group of
controls vertically to one another. Again, refer to Chapter 6 to see how you can
leverage these productivity tools. But these layout functions, although nice
from a design perspective, do nothing for you at runtime.
As previously noted, a control’s runtime behavior within its parent form is an

important area that needs attention if you are to implement your form according
to your design intent. That is, you not only want controls to look a certain way;
you also want them to act a certain way when the form is resized.
The simplest way to underscore the issue presented during a form resize is to
look at a few figures. Figure 20.6 shows the simplest of forms: a label, a text
box, and OK and Cancel buttons. The controls on the form have been carefully
placed to maintain equal spacing; the controls are nicely aligned in the vertical
and horizontal planes; and, in short, this form looks just like the developer
intended it to look.

FIGURE 20.6 Controls aligned on a form.
But then a user becomes involved. Figure 20.7 shows the results of resizing the
form horizontally and vertically.

FIGURE 20.7 Form resize effects on design.
This appearance is clearly not what was intended; the nice clean design of the
form has failed to keep up with the form’s size. Perhaps the user resized the
form in an attempt to get more room to type in the text box. Or perhaps the user
tiled this application’s window with other applications, causing its size to
change. Whatever the reason, it is clear that further intervention by the
developer is needed to keep the design “valid,” regardless of the size of the
form.
Just by viewing the before and after figures, you can decide on a strategy and
answer the question, “What should happen when a user resizes the form?”
Figure 20.8 is a snapshot of the ideal; the text box has “kept pace” with the
resize by horizontally extending or shrinking its width. The command buttons
have kept their alignment with one another and with the text box, but they have
not altered their overall dimensions. Plus, the label has stayed in its original
location.

FIGURE 20.8 Reacting to a form resize.
Every form object has a resize event that fires whenever the form boundary
size changes (most commonly as the result of a user dragging the form’s border
to increase or decrease the size of the form). Because every control has
positioning properties such as Top, Left, Height, and Width, you could
implement a brute-force approach to achieving the form shown in Figure 20.8.
By writing several lines of code for each control, you can manually move or
redimension the controls in response to the form size and the position of the
other controls. But this approach is tedious at best and results in brittle code
that has to be touched every time the layout and placement of controls are
tweaked.
Thankfully, the Visual Studio Windows Forms Designer, in conjunction with
some standard control properties, enables you to take all the common resize
optimizations into account during the layout of the form. By anchoring and
docking your controls, you can dictate their position relative to one another and
to their position within the borders of the form.

Anchoring
Anchoring, as its name implies, is the concept of forcing a control’s left, top,
right, or bottom border to maintain a static, anchored position within the
borders of the form. For instance, anchoring a label control to the top and left
of a form (this is the default) causes the label to maintain its exact position
regardless of how the form is resized. Each control’s Anchor property can be
set to any combination of Top, Left, Bottom, and Right. The control’s property
browser provides a convenient property editor widget, shown in Figure 20.9,
which graphically indicates the sides of the control that are anchored.

FIGURE 20.9 Setting the Anchor property.
Anchoring opposite sides of a control has an interesting effect. Because each
side must maintain its position relative to the sides of the form, the control
itself stretches either vertically or horizontally depending on whether the Top
and Bottom or Right and Left anchors have been set. In fact, this is the exact
behavior you want with the text box: you want its width and height to adjust
whenever the form is resized. By anchoring all sides of the control, you get the
behavior shown with the TextBox control in Figure 20.8; the control has
automatically adjusted its dimensions (by stretching both horizontally and
vertically) with no code required from the developer.

Note
By default, controls are typically anchored on their top and left
sides. You might be wondering what happens if no anchors are
specified at all. In that case, the control maintains its exact
position regardless of form resize actions. This is, in effect, the
same behavior as top and left anchors would have because forms
have their top-leftmost points as their “origin.”

Anchoring also solves the positioning problem with the OK and Cancel
buttons. If you change their Anchor properties to Bottom, Right, they anchor
themselves to the bottom right of the form, which is consistent with their
recommended placement on a form. Because you aren’t anchoring opposing
sides of the control, you aren’t forcing the buttons to resize; the buttons are
merely repositioned to keep station with the right and bottom edge of the form.
Contrast this with the anchoring performed for the text box: because you
anchored all sides, you are not only keeping a uniform border between the
edge of the text box and the form but also causing the text box to stretch itself in

both dimensions.

Docking
For the simple form in Figure 20.8, you can implement most of your layout
logic using the Anchor property. But if you refer to the overall plan for the
CSR screen (refer to Figure 20.1), you can see that you have some positioning
needs that would be cumbersome to solve using anchors. For instance, the data
entry region of the form should automatically expand vertically and
horizontally to fill any space left between the list of requests, the status bar,
and the command bar. This is where the concept of docking comes to the
rescue. Docking is used either to stick a control to a neighboring control’s edge
or the form’s edge or to force a control to fill all the available space not taken
by other controls.
As with the Anchor property, the property browser provides a graphical tool to
set a control’s Dock property (shown in Figure 20.10).

FIGURE 20.10 Setting the Dock property.

Control Auto Scaling
The Windows Forms engine supports the capability to dynamically adjust a
control’s dimensions to preserve its original design proportions. This
capability is useful if the form or control is displayed at runtime on a system
with different display characteristics (resolution, DPI, and so on) than the
system the form or control was designed on.
A simple example of this occurs when an application that uses a reasonable 9-
pt. font during design becomes almost unusable when displayed on a system
whose default font size is larger. Because many UI elements auto-adjust based
on the font of their displayed text (such as window title bars and menus), this
can affect nearly every visual aspect of a form application.
Container controls (for example, those deriving from the

ContainerControl class, including the Form class and UserControl
among others) starting with .NET 2.0 support two properties that enable them
to counter these issues automatically without a lot of developer intervention:
AutoScale and AutoScaleDimensions. AutoScaleMode specifies
an enumeration value indicating what the scaling process should use as its base
reference (DPI or resolution). Table 20.2 shows the possible
AutoScaleMode values.

TABLE 20.2 AutoScaleMode Enumeration Values

AutoScaleDimensions sets the dimensions (via a SizeF structure) that
the control was originally designed to. This could refer to a font size or the
DPI.

Using Containers
Containers are .NET controls designed to hold other controls. You can use
containers in conjunction with the Anchor and Dock control properties to
create intricate design scenarios. Although there are various container
controls, the ones most applicable to control layout are FlowLayoutPanel,
TableLayoutPanel, and SplitContainer.
Both the TableLayoutPanel and the FlowLayoutPanel containers
derive from the more generic Panel class. The Panel class provides high-
level capabilities for grouping controls. This is beneficial from a placement
perspective because you can aggregate a bunch of controls into one group by
positioning them within a panel. This way, you can act on them as a group; for
instance, disabling a panel control disables all its child controls. The
TableLayoutPanel and FlowLayoutPanel build on that functionality
by also providing the capability to dynamically affect the positioning of their
child controls.

The TableLayoutPanel
Consider a series of labels and text boxes for entering address information.
They are typically arrayed in a column-and-row fashion. The
TableLayoutPanel is ideal for implementing this behavior because it
automatically forces the column and row assignment that you make for each of
the controls. Figure 20.11 shows a series of Label and TextBox controls
embedded within a TableLayoutPanel. Notice that resizing the form (and
thus the panel, which is docked to fill the form interior) causes the panel’s
controls to auto-adjust their alignment.

FIGURE 20.11 Using the TableLayoutPanel.

If an item within one of the cells extends beyond the cell’s boundaries, it
automatically overflows within the cell. This provides you with the same
layout capabilities that HTML offers for web browser-based interfaces.

Note
When a control is added to a TableLayoutPanel, it is
decorated with five additional properties: Cell, Column, Row,
ColumnSpan, and RowSpan. These properties can be used to
change the control’s row/column position within the layout panel
at runtime. The ColumnSpan and RowSpan properties are used
the same way as their namesakes in the HTML world. In .NET,
controls that imbue other controls with additional properties are
called extender providers.

The FlowLayoutPanel
The FlowLayoutPanel has a simpler layout algorithm. Items are ordered
either vertically or horizontally by wrapping control sets across rows or
columns as needed. The two screens shown in Figure 20.12 illustrate the effect
of resizing a flow layout panel containing a series of radio buttons.

FIGURE 20.12 The FlowLayoutPanel.
	

The SplitContainer
The SplitContainer control is a much enhanced alternative to the
original Splitter control that was included with .NET 1.0/1.1/Visual
Studio 2003. This control represents the marriage of two panels and a splitter;
the splitter separates the two panels either horizontally or vertically and
enables a user to manually adjust the space (in the horizontal or vertical) that
each panel consumes within the overall container.
Figure 20.13 shows the versatility of this control; two split containers, one
embedded within a panel hosted by the other, are used to provide both vertical
and horizontal resizing capabilities for the panels on a form. (Panel 2 isn’t
visible because it is the panel functioning as the container for the split
container with panels 3 and 4.) By dragging the split line to the right of panel
1, you can increase or decrease the horizontal real estate it occupies on the
form. The same is true for the split line between panel 3 and panel 4; dragging
this adjusts the ratio of space that both panels vertically occupy in relation to
one another.

FIGURE 20.13 Resizing with the SplitContainer: a horizontal
SplitContainer embedded in a vertical SplitContainer.

The ToolStripContainer
Many applications support the capability to drag and dock a toolbar, menu, and
the like to any side of a form: top, bottom, left, or right. Visual Studio itself is
an example of just such an application. By grabbing and dragging a Visual
Studio toolbar, you can reposition it, for example, to the left side of the IDE.
The ToolStripContainer control enables this functionality in your applications
as well; it is a combination of four panels, each positioned on the four different
edges of the containing form. These panels are used to host ToolStrip controls
(more on these in a bit) and (at runtime) enable users to move tool strips within
and between the four panels.

Note
Although the ToolStripContainer provides a convenient vehicle
for snapping tool strips to the sides of a form, there is
unfortunately no built-in support for “floating” tool strips.

The design experience is simple: you can shuffle controls around to the four
different panels depending on where you want them positioned within the

parent form. Figure 20.14 shows a ToolStripContainer in design mode.
The smart tag offers up control over the visibility of the top, left, right, and
bottom panels. Each panel is hidden by default. You can click any of the
arrows on the sides of the container to expand the corresponding panel and
give you room to place tool strips within the panel.

FIGURE 20.14 ToolStripContainer in design mode.

Although it is convenient to be able to place items in a
ToolStripContainer within the designer, the real benefit that you get
from the control is the automatic support for dragging and dropping between
panels at runtime. This means that, without writing a single line of layout or
positioning code, you have enabled functionality that lets users place their
menus or toolbars wherever they want within the form. Figure 20.15 shows a
toolbar, hosted in a ToolStripContainer, which has been redocked from
the top panel to the left panel at runtime.

FIGURE 20.15 A toolbar positioned at runtime within a ToolStripContainer.

Multiple ToolStrip controls can also be stacked within any of the given
panels in the ToolStripContainer. Figure 20.16 shows multiple
command bars stacked within the rightmost panel. As noted later in the chapter,
a control’s z-order dictates its place within the stack.

FIGURE 20.16 Multiple toolbars stacked within the same panel.
	

Note
The sharing of space (vertically or horizontally) within a
ToolStripContainer is sometimes referred to as rafting. The
ToolStrip controls are free to float anywhere within the panel.

A few other intricacies are involved with form/control layout and positioning,
but we have now covered the basics. With these concepts in hand and a general
design for your form, you can start using the Windows Forms Designer.

Control Appearance and Behavior
A control’s appearance is set via the same set of basic properties used to
control form appearance: Items such as ForeColor, BackColor, and
Font make an appearance on most controls.

Visual Styles
One item of interest is the capability for a control to automatically alter its
appearance to conform to the currently selected “Desktop Theme” if it’s
running on Windows XP, Windows Vista, Windows 7, or Windows 8. This
capability is enabled by a call to the
Application.EnableVisualStyles method. This line of code is
automatically included for you by default as the first line in the Main method.
This location is ideal because it must be called before the controls in the
application are actually created. If you remove the call, you can easily
compare the appearance with and without the effects enabled. Figure 20.17
shows a form without visual styles enabled (left) alongside one with visual
styles enabled (right).

FIGURE 20.17 The effects of setting
	
Application.EnableVisualStyles.
	

Tab Order
	
By default, the order in which the controls on a form receive focus (tab order)
is the same as the order in which they were placed on the form. To explicitly
set the tab order for all the controls on a form, the IDE has a tab order
selection mode.
To enter tab order selection mode, select View, Tab Order from the menu. The
Windows Forms Designer annotates every control on the form with a number.
This number represents that control’s position within the overall tab order for
the form. To set the tab order that you want, click sequentially on the controls;
their tab order numbers automatically change as you click.

ToolTips
ToolTips are small “balloons” that display text as a user moves his cursor over
a control. Typically, they are used to provide helpful hints or descriptions of a
control’s purpose, action, and so on. ToolTips are implemented with the
ToolTip class and can be assigned to controls at design time.
The ToolTip class is an example of an extender provider. (See the previous
note on extender providers in our discussion on the TableLayoutPanel control.)
When you add a ToolTip component to a form, every control on the form now
implements a ToolTip property that is used to assign a ToolTip to that specific
control.
For illustration, if you wanted to add a ToolTip to a ToolStrip button, you
would first drag the ToolTip component over to the form from the Toolbox.
You would then select the ToolStrip button that you want to add the ToolTip to,
and you would set its ToolTip property to reference the ToolTip instance on
your form.

Working with ToolStrip Controls
Many of the standard, core visual elements of a form are realized with
ToolStrip controls. A ToolStrip control functions as a container for other
controls that derive from ToolStripItem. It can host various types of controls:
buttons, combo boxes, labels, separators, text boxes, and even progress bars.
The ToolStrip class itself is used to directly implement toolbars on a form
and functions as a base class for the StatusStrip control and the MenuStrip
control.
ToolStrip controls come with an impressive list of built-in capabilities. They
intrinsically support, for example, dragging an item from one tool strip to
another, dynamically reordering and truncating items in the tool strip as users

resize the strip or its parent form, and fully supporting different operating
	
system (OS) themes and rendering schemes.
	
All the different flavors of the ToolStrip control have some common traits:
	

A design-time smart tag provides quick and easy access to common
commands.
In-place editing of child controls is supported. (For example, a point-
and-click interface is offered for adding, removing, and altering items
within the ToolStrip, StatusStrip, or MenuStrip.)
An Items Collection Editor dialog box enables you to gain more fine
control over child control properties and enables add/reorder/remove
actions against the child controls.
Tool strips support a pluggable rendering model; you can change the
visual renderer of a tool strip to a canned rendering object or to a custom
object to obtain absolute control over the appearance of the tool strip.

From the initial form design, you know that you need menus, toolbars, and
status bars, so the ToolStrip control and its descendants play a crucial role.

Creating a Menu
MenuStrip controls enable you to visually construct a form’s main menu
system. Dragging and dropping this control from the Toolbox onto the blank
form automatically docks the menu strip to the top of the form (see Figure
20.18).

FIGURE 20.18 A menu positioned on the form.
After you place this control on the form, selecting the MenuStrip control
activates the smart tag glyph. (Smart tags are covered in Chapter 7, “Working
with Visual Studio’s Productivity Aids.”) Clicking the smart tag enables you to
quickly do three things:

Automatically insert standard items onto the menu

Change the menu’s RenderMode, Dock, and GripStyle properties
Edit the menu items

Leveraging the capability to automatically equip a menu strip with a standard
set of menus shaves a few minutes of design time off the manual approach.
Figure 20.19 shows the result.

FIGURE 20.19 A menu with standard items inserted.

Not only has the designer inserted the standard File, Edit, Tools, and Help top-
level menu items, but it also has inserted subitems below each menu. Table
20.3 indicates the exact menu structure that results from using the menu’s Insert
Standard Items feature.

TABLE 20.3 Standard Menu Items

If you want to manually add menu items into the menu strip, you can use the
placeholder block within the menu strip labeled with the text “Type Here.”
Every time you type in the placeholder block, additional placeholders become
visible, and a menu item is added to the menu strip (see Figure 20.20).

FIGURE 20.20 Manually adding menu items.

Creating a Toolbar
The next item up for inclusion on the form is a toolbar. Toolbars in .NET 2.0
and later are implemented directly with ToolStrip controls. As mentioned
before, ToolStrip controls can host various child controls; each inherits from
the ToolStripItem base class. Figure 20.21 shows the controls that can be
implemented inside a tool strip.

FIGURE 20.21 Classes inheriting from ToolStripItem.
In fact, the interactive layout features of the tool strip work the same way as the
menu strip: dragging the control onto the form will result in a blank ToolStrip
control docked to the top of the form just under the existing menu control, and
you can quickly add a roster of standard items to the tool strip by using its
smart tag and selecting Insert Standard Items.

Note
Controls use the concept of z-order to determine their “depth” on
the form. If two controls occupy the same space on a form, the
control’s individual z-order determines which of the two controls
is on top and which is on the bottom. You control this layering in
the IDE by right-clicking a control and using the Send to Back and
Bring to Front menu commands.
Z-order plays an important role in the placement of docked
controls. Docked controls are arrayed in increasing order of their
z index on the form. For instance, if you select the ToolStrip and
issue the Send to Back command, the order of the MenuStrip and
ToolStrip containers is altered to place the ToolStrip first (at the
top of the form) and the MenuStrip second (just below the
ToolStrip instance).

Figure 20.22 shows the in-progress form with the added ToolStrip control.
	

FIGURE 20.22 The main form with a complete menu and toolbar.

If you want to enable users to drag and drop the toolbar or menu onto one of
the form’s four sides, you use the ToolStripContainer. In fact, there is a shortcut
option here: you can take any of the ToolStrip controls currently on the form
and add them to a ToolStripContainer with just a couple clicks of the mouse.
One of the items available via a tool strip’s smart tag is the command Embed
in a ToolStripContainer. If you issue this command against the toolbar that you
just added to the sample form, Visual Studio does two things for you: it adds a
ToolStripContainer to the form, and it places the selected ToolStrip into the
container—specifically, in the top panel of the ToolStripContainer.

Creating a Status Bar
Status bars provide the user feedback on an application’s current status,
progress within an action, details in context with an object selected on a form,
and so on. The StatusStrip control provides this functionality in starting with
.NET 2.0/Visual Studio 2005, and it supplants the StatusBar control found in
earlier versions.
As with the other ToolStrip descendants, the StatusStrip control functions as a
container; its capability to host labels in addition to progress bars, drop-
downs, and split buttons makes it a much more powerful control than the
StatusBar.
Figure 20.23 shows the fictional Contoso CSR form with a StatusStrip docked
at the bottom of the form. In design mode, you see a drop-down button that
holds a selection for each of the four supported child controls. For the
purposes of this demonstration prototype, add a label control to report general
application status and an additional label and progress bar in case you run into
any long-running retrieval or edit operations.

FIGURE 20.23 A StatusStrip in design mode.

By default, child controls are added in a left-to-right flow layout pattern within
the StatusStrip pattern. With just six clicks (two per item), you can add these
controls to the strip. The in-place editing capabilities are great for quickly
building out the look and feel of the strip; for greater control of the strip’s child
controls, you can use the Items Collection Editor dialog box.

Tip
By right-clicking any of the StatusStrip child controls and
selecting Convert To, you can quickly change the type of the
control. For instance, if you have a label control currently on the
strip but you really want a drop-down button, you right-click the
label and select Convert To, DropDownButton. This saves you the
hassle of deleting the control and adding a new one.

Editing the StatusStrip Items
You use the StatusStrip’s smart tag and select Edit Items to launch the Items
Collection Editor dialog box. The editor provides direct access to all the
hosted control’s properties and enables you to edit, delete, and reorder items
within the status strip (see Figure 20.24).

FIGURE 20.24 The StatusStrip Items Collection Editor.

By tweaking some properties here, you can improve the layout and appearance
of your items. Figure 20.25 shows the default layout of the controls you added;
ideally, you want the progress bar and its label control to sit at the far right of
the status strip and the status label to sit at the far left to consume any
remaining space.

FIGURE 20.25 Default positioning of the StatusStrip items.

To make this happen, you need to set the Spring property to True for the
leftmost label. This will cause the label to expand and contract to fill the
available space on the status strip. Next, set its TextAlignment property to
situate the text to the left of the label region and change the Text property to

something more appropriate.
Figure 20.26 shows the fruits of our labor.

FIGURE 20.26 The final StatusStrip look and feel.

Displaying Data
So far, we have only touched on form elements that provide the basic
framework user navigation, status, commands, and so on. However, the
capability to access, display, and edit data from an underlying data store
(relational or otherwise) is the real value of an application such as the
fictional Contoso CSR application. We touch on the details of working with
databases in the next chapter; here, we describe some of the basic controls
used to display data in a form.

Hierarchical Data
The TreeView control is ideal for presenting data with hierarchical
relationships and is thus a good candidate for housing the list of order records
(which can be grouped by different criteria). First, add a SplitContainer
control to partition the leftover interior space in the form into two discrete
panels. Yet another panel houses the search function for orders; this is docked
to the top of the left split panel. A TreeView dock fills the remainder of this
leftmost panel, and the right panel houses the data fields (text boxes, labels,
radio buttons, and so on) for an individual CSR record.
TreeView controls present data as a list of nodes; each node can serve as a
parent for additional nodes. Typically, with applications that front a database,
you build the contents of the TreeView by binding to a resultset from the
database or by programmatically looping through the resultset and adding to
the TreeView’s node list through its application programming interface (API).
But you also have control over the TreeView content in the designer by
launching the TreeNode Editor.

The TreeNode Editor
The TreeNode Editor (see Figure 20.27) is a dialog box that acts much the
same as the Items Collection Editor examined previously. It enables you to
add, edit, and remove items from the TreeView control. You launch the editor
dialog box by selecting Edit Nodes from the TreeView’s smart tag.

FIGURE 20.27 Using the designer to edit nodes in the TreeView control.
Using the Add Root and Add Child buttons, you can insert new nodes into the
tree’s data structure at any given nesting level. Figure 20.27 shows manually
inserted nodes with test data so that you can get an idea of what the order list
would look like using the company as a parent node and order instances as
child nodes under the corresponding company. Each item, or node, in the
TreeView consists of two parts: an image and text. The image is optional; if
you want to attach an icon to a node, you start by assigning an ImageList
control to the TreeView control.

Using an ImageList
ImageList controls function as an image provider for other controls. They
maintain a collection of Image objects that are referenced by their ordinal
position or key within the collection. Any control that provides an
ImageList property can reference an ImageList component and use its
images. ListView, ToolStrip, and TreeView are some examples of controls that
can leverage the ImageList component.

Note
Microsoft provides a large library of images that you can use with
the TreeView or any other control that requires these types of
standard graphics, such as toolbars and menus. Search
msdn.microsoft.com for “Visual Studio Image Library.”

An ImageList doesn’t have a visual presence on a form; in other words, you
can’t see the ImageList itself. Its sole use is as a behind-the-scenes component
that feeds images to other controls. Dropping an ImageList onto the designer
puts an instance of the component in the component tray. You can then use the
Images Collection Editor dialog box to add, edit, and remove the images
hosted by the component. Changing the images associated with the image list
automatically changes the images used by any controls referencing the
ImageList.

http://msdn.microsoft.com

Figure 20.28 shows a few images added within the Images Collection Editor.
To enable the TreeView to use these images, you have to do two things:

1. Assign the TreeView.ImageList property to point to the instance
of the ImageList component (in this case, ImageList1).

2. Set the image associated with a node either programmatically or via the
TreeNode Editor dialog box.

FIGURE 20.28 The Images Collection Editor.

With the ImageList component in place and the TreeView dropped in the
SplitContainer ’s left panel, the form is almost there from a design perspective.
The remaining piece is the series of fields that display the data for a record
selected in the TreeView control.
You could add this piece just by dragging a bunch of text boxes and labels over
into a TableLayoutPanel and then docking the whole mess in the open
SplitContainer panel. But because you really want to treat this as one cohesive
unit to simplify positioning, eventual data binding, and so on, you instead
create a user control for displaying a CSR record.

Tabular Data
The DataGridView control is the premium Visual Studio control for displaying
data in a tabular format. It provides a row/column format for displaying data
from a variety of data sources. Figure 20.29 shows a DataGridView with its
smart tag menu opened; the smart tag menu provides fast access to the column
properties of the grid control and enables you to directly bind the
DataGridView to a data source.

FIGURE 20.29 Configuring a DataGridView control with its smart tag.

Data Sources
The DataGridView control supports various possible data sources. For
instance, scenarios such as displaying name/value pairs from a collection are
supported, in addition to datasets returned from a relational data store. If you
select a data source for the grid, a column is added to the grid for every
column that appears in the data source, and the row data is automatically
provided inside the DataGridView control.
Data can be displayed in the grid control in an “unbound” mode as well; using
the grid’s row/column API, you can programmatically define the structure of
the grid and add data to it at runtime.

Cell Types
Each cell in a DataGridView functions as if it is an embedded control. Each
cell can express the underlying data that it contains in various ways; check
boxes, drop-downs, links, buttons, and text boxes are all supported cell types.
In addition to the data visualization possibilities, each cell has its own set of
events that can be hooked within your code. For example, you can hook the
mouse enter and leave events for a specific cell.
We cover this control in depth in Chapter 13, “Working with Databases.”

Creating Your Own Controls
If none of the stock .NET controls meets your specific needs, you can create
your own controls for use on a Windows Form in three ways:

You can subclass an existing control and modify or extend its behavior
and appearance.
You can create a user control by compositing together two or more
existing controls.
You can create a custom control from scratch, implementing your own
visuals and behavior.

Subclassing an Existing Control
Subclassing an existing control is the best approach if your needs are only
slightly different from one of the standard .NET Framework controls. By
inheriting from an existing control class, you are riding on top of its behavior
and appearance; it’s up to you to then add the specialized code to your new
control class.
For example, suppose that you want a text box that turns red anytime a numeric
(that is, nonalphabetic) character is entered. This is easy to do with just a few
lines of code sitting in the TextBox control’s TextChanged event, but
consolidating this behavior into its own class provides a reuse factor.
You start by adding a new user control to the project. User controls actually
inherit from the UserControl class; because you want to inherit from the
TextBox class, you need to change the class definition by using the code editor.
After you do that, you can place the new component on a form and use its
functionality.

Working with an Inherited Control
Because TextBox already has a UI, you don’t need to do anything about the
appearance of the control. In fact, it works just like any other text box control
within the Windows Forms Designer (see Figure 20.30).

FIGURE 20.30 A control derived from TextBox.
The Properties window for the control behaves as expected, and double-
clicking the control immediately takes you to an open code editor window. In
short, the design-time experience remains fully functional and requires no
effort on the part of the developer.

Designing a User Control
A user control is technically the same as any other class that you author as a
developer. Because a user control has a visual aspect to it, Visual Studio
provides a designer, just as with Windows Forms, to help in the drag-and-drop
creation of the control.
User controls are composite controls; that is, they are constructed from one or
more existing .NET controls. As with a derived control, their user interfaces
inherit from the native controls they are composed of, making them simple to
build and use in the designer.
There are two approaches to the user control creation process: you can create
a separate Windows Control Library project, or you can simply add a user
control class to an existing Windows Forms project.
Creating a separate project enables the user control to live in its own
assembly. If it is a separate assembly, you can treat the user control as the
quintessential black box, giving you greater flexibility from a source control

perspective and enabling you to share the control among multiple projects. For
production scenarios, this is clearly the best route. However, for simple
prototyping work, as you are doing here with the CSR form application, the
ease and simplicity of just adding a new class to the existing project make this
approach preferable to using the separate project approach. The class lives
inside the same namespace as the form class.
If you were ever in a position to transition from prototyping to actual
production development, nothing would preclude you from refactoring the
control by simply copying the user control class file and embedding it in a
separate control library project.
As soon as you add the user control class to the project, you are presented with
the User Control Designer. The designer works the same way as the Windows
Forms Designer; to build the user control, you drag components or controls
from the Toolbox onto its surface.

Adding Controls
Obviously, the controls that you use to build your composite control entirely
depend on how you envision the control’s functionality. As an example, to
create an order display control, you need to think about the underlying data
structure of an order. An order record might contain the following:

An order number
A series of dates that capture the date the order was placed, the date the
order was shipped, and so on
A list of items included on the order
The billing information and shipping address
Miscellaneous comments

Because this is a lot of information to try to cram onto one screen, you can turn
to the TabControl. A tab control is another general-purpose container control
that enables you to organize content across several pages that are accessed via
tabs. Within each tab, you can leverage the TableLayoutPanel and implement
most of the order fields with simple label and text box pairs.
As mentioned earlier, the whole process of getting these controls into the user
control works identically to the Windows Forms Designer: You drag and drop
the controls from the Toolbox onto the user control design surface. Figure
20.31 shows the OrderDisplay user control with its user interface completed.

FIGURE 20.31 Designing a user control.

Embedding the User Control
Now that you have a completed design for your user control, the only
remaining step is to embed the control into your primary form. If you compile
the project, Visual Studio automatically recognizes the user control class and
includes an entry for the control in the Toolbox. From there, you are just a drag
and drop away from implementing the OrderDisplay control.

Creating a Custom Control
Custom controls represent the ultimate in extensibility because they are built
from scratch. As a result, they are relatively hard to develop because they
require you to worry not only about functionality but also about every single
aspect of the control’s visual appearance. Because the physical user interface
of the custom control needs to be drawn 100% by custom code, a steep
learning curve is associated with authoring a custom control.
Because much of the work that goes into creating a custom control is at the
code level, we won’t try to tackle this subject with any useful degree of detail
in this book. You should note, however, that the process starts the same way as
with other control options: Visual Studio has a custom control project item
template; adding this to your project gives you a baseline of code to start with.
From there, it’s up to you.

Note
The Paint event is where you place the code to draw your
control’s user interface. Although so-called “owner draw”
controls can involve complex drawing code, the good news is that
the Windows Forms Designer leverages whatever code you place
in the Paint event to render the control at design time. This means
that you can still rely on the Windows Forms Designer to provide
you with a WYSIWYG experience even with custom controls.

Summary
This chapter described the various design-time capabilities of the Windows
Forms Designer tool. Windows Forms are a powerful presentation layer
technology, and Visual Studio 2015 provides an array of tools for quickly
building impressive, rich user interfaces based on this technology.
The role of the Windows Forms Designer, the Toolbox, and the Properties
window were introduced in the context of delivering a modern, well-thought-
out, standards-based user interface for a .NET Windows application. Using the
tools documented here, you can wring the most out of your WinForm
development experience.

Chapter 21. Building WPF Applications
	

In This Chapte r
The Windows Presentation Foundation Platform
Introducing the WPF Designer
Programming with WPF
Building a Simple Image Viewer Application

With .NET 3.0, Microsoft delivered a brand-new set of technologies for
powering the presentation layer in your applications: the Windows
Presentation Foundation (WPF). WPF was designed from the ground up to
leverage the strengths of both the Windows Forms development world and the
web forms development world. At the same time, WPF attempts to overcome
many of the obstacles that developers face when trying to build rich,
compelling user interfaces that involve media and highly customized user
interfaces and that exploit all the horsepower available in modern CPUs and
graphics processors.
WPF is intended to be a unifying platform with built-in, first-class support for
data binding, audio, video, and both 2D and 3D graphics. Because WPF likely
represents a significant learning curve for both new and experienced
developers, we spend some time up front in this chapter discussing the basics
before diving into the real target: how to use the Visual Studio WPF Designer
tool (previously known by its code name Cider) to build high-octane user
interfaces for your Windows applications.

The Windows Presentation Foundation Platform
WPF brings a lot of new concepts and new coding territory with it (and can
represent a fairly significant learning curve for developers). But let’s take a
brief look at the overall architecture of the WPF platform and then dissect the
programming model.
Physically, WPF is implemented with a series of three assemblies:

WindowsBase.dll

PresentationFramework.dll

PresentationCore.dll

Every presentation layer framework has to eventually paint pixels onto a
screen, and WPF is no different. Implemented within its binaries is a
composition and rendering engine that talks to your hardware through DirectX.
In addition to the rendering layers, there is obviously a rich programming
model that is implemented with deep support for things such as layout,
containership (the capability for one element to contain another), and
events/message dispatches. In short, it does all the heavy lifting to ensure that
some complicated user interface scenarios can be rendered on the screen with
enough performance to appeal to a wide range of solution scenarios.
Figure 21.1 shows the logical architecture of the various WPF components.
The actual rendering “engine” is contained within the Media Integration Layer

component; PresentationCore handles interop with the Media
Integration Layer, and PresentationFramework contains all the other
magic necessary to make WPF successful as an end-to-end platform such as
layout, data binding, and event notifications.

FIGURE 21.1 WPF logical architecture.
	

Note
Most of WPF itself is implemented in managed .NET code. The
exception is the Media Integration Layer. When it comes to
rendering the user interface (UI) to the screen, WPF needs to
optimize for performance over nearly all other concerns;
therefore, the Media Integration Layer is implemented as native
code.

All these WPF components work in concert to deliver an impressive laundry
list of improvements to the state of the art with regard to presentation layer
design, construction, and runtime support with .NET. Here is a small sample:

Me dia—WPF supports 2D and 3D graphics, as well as WMV, MPEG,
and AVI video.
Data binding—WPF was built from the start to fully support the entire
spectrum of data-binding scenarios, up to and including LINQ and the
Entity Framework.
Windows Forms inte rope rability—WPF applications can host
WinForms components and vice versa. This is comforting because it
means developers won’t need to abandon the hard-won knowledge that
comes with programming WinForms for many years.
Docume nt support—WPF has several native constructs for building
document-centric applications. For instance, there is a
DocumentReader class for displaying fixed-format documents and a
FlowDocumentReader class for displaying documents with a
dynamic layout. Think of a newspaper article, for instance, that
automatically repaginates while remaining true to the column structure.

Animation—Developers can create storyboard-based animations and
specify animation triggers and timers.
Control “look and fe e l”—Controls in WPF have their appearance
controlled by a template, which developers can replace or change to
fully customize nearly every aspect of a control’s “chrome.”
Te xt—There is rich typography support in WPF. Developers can
manipulate a slew of font attributes (kerning; effects such as glow, drop-
shadows, and motion blur; auto line spacing; and so on), and WPF
developers can choose to have text rendered using ClearType technology
or via two additional rendering modes introduced in WPF 4: aliased and
grayscale.

During the initial beta cycles, Microsoft produced a series of prototype
applications to showcase the new technologies in .NET 3.0, including WPF.
Figure 21.2 shows a screenshot from one of those original prototypes (in this
case, a healthcare application). Although a static shot like this doesn’t do the
application much justice, you can get a good sense for the possibilities. The UI
for this application would have been extremely difficult to implement using
Windows Forms technology.

FIGURE 21.2 An early WPF-based healthcare application prototype.

For the most part, developers are free to not worry so much about the low-
level architectural details of WPF; the programming model (and the tools
which help us leverage that model) is where most developers will focus their
energies.

Programming Model
The WPF class library consists of approximately 1,600 public types and more
than 3,500 classes. As such, it has a considerably larger application
programming interface (API) surface than either ASP.NET or Windows Forms.
As you would expect from a .NET class library, all these classes can trace
their ancestry back to System.Object. In addition, most WPF classes are
based on so-called base elements: the UIElement, FrameworkElement,
ContentElement, and FrameworkContentElement classes. These
classes are responsible for basic item presentation and layout capabilities and
are contained within the System.Windows namespace.
In addition to these four base element classes, a few other important base
classes drive a lot of the functionality found in WPF:

Visual—This class is the core rendering unit within WPF; UIElement
inherits from Visual, as do the higher-level classes such as Button.
Dispatche rObje ct—This class supports the WPF threading model.
Control—This is the base class for controls in WPF.
Application—The Application class encapsulates all WPF
applications; it provides application lifetime services, including the
basic concepts of Run (to start an application) and Exit (to quit an
application).

As you would expect, the WPF class library provides all the major controls
that you would typically find in a Windows application, such as buttons,
labels, list boxes, and text boxes.
The following snippet shows a WPF Button control being instantiated, and the
text Push Me is assigned to the button. Note that the control constructs are
familiar, but the actual object model is slightly different; the Button object in
WPF does not have a .Text property as we would expect from an ASP.NET
or WinForms button. Instead, it exposes a .Content property:
Click here to view co de image

System.Windows.Controls.Button btn = new Button();
btn.Content = "Push Me";

Besides procedural code like that shown here, WPF enables us to create and
manipulate objects in a declarative fashion using a markup syntax called
XAML.

Extensible Application Markup Language
XAML is an XML dialect that can be used to describe the structure of a WPF
application’s presentation layer (for example, control instantiation,
appearance, and layout).
XAML is the principal way in which the various WPF tools define objects and
set properties in a declarative fashion. As such, it is tempting to compare
XAML to HTML. It certainly fills a similar role in that both XAML and HTML
are declarative ways to describe objects. But XAML is actually tightly
coupled to the .NET Framework. In fact, XAML is really describing which
.NET objects to create, plus setting their properties and attaching event
handlers. WPF tools, such as the WPF Designer in Visual Studio, happen to

leverage XAML, but strictly speaking, XAML is not a part of WPF. You can
write an entire XAML application, for instance, using only the managed code
language of your choice. Because XAML, as a programming model, brings
several important advancements to the scene, it is heavily leveraged by all the
Microsoft and non-Microsoft tools in the WPF world and beyond. For
instance, Windows Workflow Foundation uses it to describe workflows. It is
also one of the ways that you can create Windows Store applications in
Windows 8/10 (and even Windows Phone).
Just as we did previously, let’s create a Button object and assign some text
to the button. But this time, let’s define it with XAML.

<Button Content="Push Me"/>

Alternatively, we could write this code like this:

<Button>Push Me</Button>

Basically, when you define an element in XAML, the WPF engine will create
an instance of the given type (Button in this example) for you. When you
give a value to an attribute, it will be translated as setting this value to the
property (Content here) with the same name as the attribute to the newly
created object.

Note
XAML functionality is a subset of what is possible in .NET code.
Or, to put it another way, anything you can define in XAML you
can do in code, but not everything done in code can be defined in
XAML.

In a typical WPF application, XAML coexists with managed code through the
same partial class paradigm introduced with ASP.NET. In other words, we
may have a MainForm.xaml file with the look and feel of a window and a
MainForm.xaml.vb (or .cs) file that contains code that reacts to a user ’s
input on that form. We see more of this in action a little later in this chapter
when we take a close look at the WPF Designer.
If XAML isn’t necessary to create a WPF application, why is it desired? Given
the fact that you can accomplish the necessary tasks to create UI objects in
XAML or in managed code, why is XAML even in the picture? There are a
few areas where the declarative syntax becomes tremendously important.

Syntax P arsing Simplicity
As is true with all XML-based languages, XAML is relatively easy for
applications to parse and understand. Several developers have used this to
their advantage and delivered lightweight tools for WPF development, such as
XAMLPad. This has also enabled tool vendors, including Microsoft, to rapidly
release products into the market that understand XAML. Adobe Illustrator, for
example, has a XAML plug-in that enables you to emit XAML, and of course
Microsoft has not one but two design tools that read and write XAML:
Expression Design and Expression Blend.
The boundary between XAML and code also turns out to be a nice dividing

http:MainForm.xaml.vb

line between appearance and behavior. In this scenario, XAML is used to
define the UI objects and the general look and feel of the application, whereas
procedural code is used to implement the business logic and to react to a
user ’s input. This leads us directly to the other important advantage of XAML:
collaboration.

Collaboration
If we separate appearance and behavior, we can also reap the benefits of
improved collaboration among project team members (specifically,
collaboration between designers and developers). Before WPF, designers
would rely on “flat” bitmaps created with drawing programs or would even
rely on applications such as PowerPoint to mock up the user experience for an
application. When that design is eventually handed off to the developer for
implementation, there is an inherent disconnect: programming tools don’t
understand 2D bitmaps or PowerPoint storyboards. They understand code and
objects. And in the reverse direction, we have the same problem: tools made
for designers don’t understand managed code. A developer can’t implement a
form in Visual Basic, for example, and hand it back to a designer for review
and tweaking.
So developers are forced to re-create, as best they can, the vision delivered
from the design team. This is a decidedly second-rate way to design and build
applications. But with XAML, this situation changes dramatically. Because
designers can now use highly visual tools that generate their design in XAML
behind the scene (such as Microsoft Expression Blend), the developer can
simply open that XAML file in Visual Studio and provide the coding “goop”
necessary to flesh out the desired features in the code behind file. In the
process, we have completely preserved the fidelity of the designers’ original
vision because the developer ’s tools are talking the same language. We also
have full collaboration in the other direction: changes that a developer makes
to the designer ’s XAML can be instantly reviewed and tweaked within the
designer ’s tools. This simple concept—the sharing of a codebase and language
between design and development roles and tools—proves to be a powerful
argument for leveraging XAML in your applications.
Now that we have covered the basics of WPF, let’s see how we can start
writing WPF applications using Visual Studio.

Introducing the WPF Designer
We introduced the WPF Designer in Chapter 6, “Introducing the Editors and
Designers.” Let’s recap the basics and then move on to a more involved
discussion of the WPF Designer.
The WPF Designer is the tool in Visual Studio that provides the WYSIWYG
design surface for building WPF windows. In many ways, it behaves just like
the designers we use for web forms and Windows forms. But it is in fact a
brand-new tool, with some subtle differences over its IDE brethren. To see the
designer in action, let’s create a new project in Visual Studio. The project
template we want to select is WPF Application, and it is located in the
Windows category on the New Project dialog box (see Figure 21.3).

FIGURE 21.3 Creating a new WPF application.
This template takes care of adding the necessary WPF namespaces for us; the
project also includes a file that implements the default window for the
application: MainWindow.xaml. Double-clicking the Window1.xaml
file launches the designer, which is shown in Figure 21.4.

FIGURE 21.4 The WPF Designer.
	

XAML and Design Panes
The WPF Designer offers two different views: the visual representation of the
window and the XAML that implements the window. You can make changes to
the window and its controls by either editing the XAML or changing elements
on the design surface. Either way, the designer keeps both panes in sync.
You can configure the position and layout of the XAML and design panes in the
following ways:

The Swap button swaps the positions of the XAML and design panes
with one another.
Vertical Split button tiles the panes vertically.
The Horizontal Split button tiles the panes horizontally.
The Collapse/Expand Pane button minimizes or restores the bottom or
leftmost pane (depending on the view mode you are in).

Figure 21.5 shows the location of these pane management buttons on the
designer.

FIGURE 21.5 Controls for configuring the XAML and designer panes.
	

Tip
If you are lucky enough to have a multimonitor setup, the vertical
split view is particularly helpful because you can display your
XAML code on one screen and your visual design surface on
another.

We interact with the designer in the same way we interact with other design
surfaces or code editors: Controls can be placed on the design pane from the
Toolbox and then manipulated, and we can use the XAML pane to handcraft or
alter XAML (with complete IntelliSense and formatting).
For the most part, control placement and positioning works the same as it does
in the Windows Forms designer. There are a few minor exceptions: the WPF
Designer has some unique visualizations for displaying snap lines and control

sizing (see Figure 21.6).
	

FIGURE 21.6 Sizing and positioning indicators.

The P roperty Window
As expected, when you have a control selected in the designer, you can
manipulate its attributes using the Properties window. The WPF Properties
window has some significant differences over its Windows Forms sibling. It
supports two unique ways for locating control properties. Besides the
categorized and alphabetic display modes, you can group and sort properties
by source. This is great for quickly looking at those properties, for instance,
that have their value set explicitly in XAML or that have values that are
currently being inherited down from a style. The WPF Properties window also
enables you to search for properties of the control by typing in a search box.
As you type, the window automatically filters the property list to just those that
match your search criteria. Figure 21.7 shows an image of the Properties
window.

FIGURE 21.7 The WPF Designer Properties window.

The Zoom Control
One additional item is present with the WPF designer: a zoom control. Perched
in the small toolbar at the bottom of the design page, this drop-down can be
used to zoom in or out on the current window from 3% to 6400% of the
window’s actual size. Figure 21.8 shows the magnification control, and Figure
21.9 shows our Push Me button (and container window) at 8 times
magnification.

FIGURE 21.8 The zoom control.
	

FIGURE 21.9 A button at 800% magnification.
	

Tip
The zoom control is particularly useful when you have a complex
form layout with a lot of snap lines and nested/layered controls
amassed in a certain area. By zooming in on the area, you can get
a crisp view of where things are positioned, and it becomes much
easier to select or position the control you want instead of one of
its neighbors. By zooming out, you can get a thumbnail look at
your window to see how your overall look and feel are shaping
up.

The XAML pane also has a zoom control; this can prove useful when you want
to zoom out to quickly drill through lines or code or zoom in for readability or
presentation purposes.

Programming with WPF
With the basics out of the way, it’s time for a more in-depth discussion of the
various controls and technologies that you typically encounter when creating a
WPF-powered application. After firmly grounding ourselves in these topics,
we then move on to build a simple application, end to end, using the WPF
Designer.

Layout
Because software needs to present controls and data on a screen for visual
consumption by users, the layout (or how things are arranged onscreen)
becomes an important design feature. Good layout systems not only have to
enable developers to structure controls in a coherent fashion, but also need to
be robust in terms of how they handle things such as window resizing and flow.

In WPF, layout is exercised through a set of container controls called panels.
Each panel is uniquely suited for a specific layout scenario, and the capability
to combine them with one another means that the layout system in WPF can
handle a large number of different control organization scenarios. The key
point to understand with panels is that, as containers, they are responsible for
the positioning (and in some cases, the sizing) of all the controls placed within.
This means that the individual child controls themselves don’t need to be
aware of the specific layout system they are participating in, which greatly
simplifies the code and architecture.
Table 21.1 lists the available layout panel controls.

TABLE 21.1 The WPF Layout Panels
Let’s examine these controls and their subtypes one by one.

The Canvas Control
The Canvas control is unique among all the layout controls because it is the
only one that actually performs no layout at all. It is functionally similar to the
GroupBox control that you might have used with a Windows Forms project:
child objects that are placed within a Canvas control are placed using
coordinates relative to the canvas itself. No automatic resizing, flow layout, or
positioning is done on behalf of the child controls by the canvas. If any such
logic is needed, you need to implement it yourself. This highlights the purpose
of the Canvas control: providing the developer with the absolute control to
position things as desired.
In Figure 21.10, we have a Canvas control with four buttons in a unique
arrangement. They are all positioned relative to the sides of the Canvas
container.

/presentation"
ml"

FIGURE 21.10 Four buttons in a Canvas.
Here is the XAML.
Click here to view co de image

<Window x:Class="ContosoAvalon.Canvas"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
Title="Canvas" Height="300" Width="300">
<Canvas>

<Button Canvas.Left="102" Canvas.Top="11"

Height="23" Name="button1"

Width="75">Button</Button>

<Button Canvas.Left="47" Canvas.Top="38"

Height="23" Name="button2"

Width="75">Button</Button>

<Button Canvas.Right="46" Canvas.Top="38"

Height="23" Name="button3"

Width="75">Button</Button>

<Button Canvas.Left="102" Canvas.Top="99"

Height="23" Name="button4"

Width="75">Button</Button>

</Canvas>

</Window>

Note that we have provided coordinates that are relative to a specified side of
the canvas. If we resize the window, the buttons move accordingly. Unless you
absolutely need to manually specify control positions (as may be the case, for
instance, if you are arranging controls in a nonstandard way or using controls
to “draw” something in a window), it is recommended that you use one of the
other panels that automatically perform the layout you need.

/presentation"
ml"

The DockP anel Control
Modern lines of business applications typically use some kind of docking
arrangement for their controls. Toolbars may be docked at the top or sides of
the window, a status bar may be docked at the bottom, and so forth. The
DockPanel in WPF provides the capability to dock controls to one of the four
sides of a window.
If we need to create a window with a toolbar docked to the top and the left
side of the window, with the remainder of the screen occupied by a canvas, we
do the following:
Click here to view co de image

<Window x:Class="ContosoAvalon.DockPanel"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
Title="DockPanel" Height="300" Width="300">
<DockPanel Name="dockPanel1">

<ToolBar DockPanel.Dock="Top">
<Button

BorderBrush="Black">Button1</Button>
</ToolBar>
<ToolBar DockPanel.Dock="Left" MaxWidth="75">

<Button
BorderBrush="Black">Button2</Button>

</ToolBar>

<Canvas>

<TextBlock>Canvas</TextBlock>

</Canvas>

</DockPanel>

</Window>

With the DockPanel, you can place more than one element in a certain dock
position. Figure 21.11 shows six regions docked in a window: three of them
are docked to the left, and three of them are docked to the top.

/presentation"
ml"

FIGURE 21.11 Docking controls within a DockPanel.
	
And here is the matching XAML.
Click here to view co de image

<Window x:Class="ContosoAvalon.DockPanel"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
Title="DockPanel" Height="300" Width="300">
<DockPanel Name="dockPanel1">

<Button DockPanel.Dock="Left">Left 1</Button>
<Button DockPanel.Dock="Left">Left 2</Button>
<Button DockPanel.Dock="Left">Left 3</Button>
<Button DockPanel.Dock="Top">Top 1</Button>
<Button DockPanel.Dock="Top">Top 2</Button>
<Button DockPanel.Dock="Top">Top 3</Button>

</DockPanel>

</Window>

All the elements within a DockPanel are resized such that they stay docked in
their designated position, and they entirely “fill” the window edge that they are
docked to.

The Grid Control
The Grid panel is used for row and column arrangements, similar to an HTML
table or the TableLayoutPanel control in WinForms.
One common use for the Grid control is with dialog boxes or data-entry forms
where labels and values exist side by side and row by row; we can use the
columns in the grid to align items horizontally and the rows to align items
vertically.
Columns are created in a grid through the use of the
Grid.ColumnDefinitions element. For example, this XAML snippet

would create a grid with three columns.
Click here to view co de image

<Grid>
<Grid.ColumnDefinitions>

<ColumnDefinition></ColumnDefinition>

<ColumnDefinition></ColumnDefinition>

<ColumnDefinition></ColumnDefinition>

</Grid.ColumnDefinitions>

</Grid>

In a similar fashion, the Grid.RowDefinitions element defines the rows
within a grid.
Click here to view co de image

<Grid>
<Grid.RowDefinitions>

<RowDefinition></RowDefinition>

<RowDefinition></RowDefinition>

<RowDefinition></RowDefinition>

</Grid.RowDefinitions>

</Grid>

The WPF Designer also has interactive features that allow for row and column
addition, deletion, and sizing. Figure 21.12 shows a three-column, eight-row
grid placed in a window. Note that the designer shows the grid lines
demarcating the rows and columns, and there is a shaded border area to the top
and to the left of the Grid control. This border area shows us the current size
(width or height) of a column or row and is used to create new rows or
columns in the grid. Moving the mouse cursor into the top border area of the
grid or to the left border area of the grid results in a visual “caret” and a line;
this provides the visual clue for inserting new rows or columns into the grid.
Just click, and Visual Studio will create the new row or column for you.

FIGURE 21.12 Working with a Grid control in the designer.
We can also drag the row or column lines to increase or decrease the size of
the row or column, and we can use the sizing drop-down box (again, refer to
Figure 21.12) to change between star, pixel, and auto-sizing modes. (We cover
these in more detail when we do a sample application walk-through later in
this chapter.)
The dialog box shown in Figure 21.13 is easily achieved using a Grid panel;
the XAML is shown in Listing 21.1. Arguably, the Grid control is the most
flexible and relevant of the panel controls for almost all layout scenarios. For
this reason, when you add a new window project item to a WPF project, the
window by default already contains a Grid control.

/presentation"
ml"

FIGURE 21.13 Implementing a dialog box using the rows and columns of a
	
Grid control.
	

LISTING 21.1 Implementing a Dialog Box with a Grid Panel

Click here to view co de image

<Window x:Class="ContosoAvalon.Grid"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
Title="Grid" Height="300" Width="300">

<Grid>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="80">
</ColumnDefinition>

<ColumnDefinition Width="*">
</ColumnDefinition>

<ColumnDefinition Width="*">
</ColumnDefinition>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>

</Grid.RowDefinitions>

<Label Grid.Column="0" Grid.Row="0">Name:
</Label>

<Label Grid.Column="0" Grid.Row="1">Street:

</Label>
<Label Grid.Column="0" Grid.Row="2">City:

</Label>
<Label Grid.Column="0" Grid.Row="3">State:

</Label>
<Label Grid.Column="0" Grid.Row="4">Postal code:

</Label>
<Label Grid.Column="0" Grid.Row="5">Date Hired:

</Label>

<TextBox Margin="5,5" BorderBrush="Gray"
Grid.Column="1" Grid.Row="0"

Grid.ColumnSpan="2"></TextBox>
<TextBox Margin="5,5" BorderBrush="Gray"

Grid.Column="1" Grid.Row="1"
Grid.ColumnSpan="2"></TextBox>
<TextBox Margin="5,5" BorderBrush="Gray"

Grid.Column="1" Grid.Row="2"
Grid.ColumnSpan="2"></TextBox>
<ComboBox Margin="5,5" Grid.Column="1"

Grid.Row="3"></ComboBox>
<TextBox Margin="5,5" BorderBrush="Gray"

Grid.Column="1" Grid.Row="4">
</TextBox>
<Label Grid.Column="1" Grid.Row="5">{Date}

</Label>

<Button Margin="5,5" Grid.Column="1"
Grid.Row="6">OK</Button>

<Button Margin="5,5" Grid.Column="2"
Grid.Row="6">Cancel</Button>

</Grid>
</Window>

There are three things to note in this XAML:
We have used the concept of column spanning to get our controls to line
up the way we want.
We are using the Margin property on the child elements to give each
label, text box, and so on some room. Without a margin specified, each
control automatically fills the bounds of the cell it resides in, meaning
that we have absolutely no border or gap between the controls (either
horizontally or vertically).
In the grid’s column definitions, we use an asterisk to denote a
proportional size. In other words, the second and third columns equally
share whatever space is left over after the first column has been
rendered. We can adjust the proportion “ratio” by including a number as
well (for example, ColumnDefinition.Width="2*"). We cover
the details on grid sizing later in this chapter when we build a sample
application.

The StackP anel Control
StackPanel controls implement a vertical or horizontal stack layout for their
child elements. Compared with the Grid control, this is a simple panel that
supports little tweaking. You can select to stack children horizontally or
vertically using the Orientation property, and then the panel takes care of
everything else. Each element within the StackPanel is resized/scaled to fit
within the height (if stacked vertically) or width (if stacked horizontally) of the
panel. Owing to the control’s simplicity, the XAML is straightforward as well.
Here, we are vertically stacking several check boxes, labels, a button, and a
text box (see Figure 21.14).
Click here to view co de image

<StackPanel>
<Label>Format Options:</Label>
<CheckBox Margin="4" Height="16"

Name="checkBox1">Perform Fast Format</CheckBox>
<CheckBox Margin="4" Height="16"

Name="checkBox2">Verify After Format</CheckBox>
<CheckBox Margin="4" Height="16"

Name="checkBox3">Enable Large Partition
Support</CheckBox>

<Label>Drive Label:</Label>
<TextBox Margin="10,0" BorderBrush="Gray"

Height="23" Name="comboBox2" />
<Button Margin="80,20" Height="23" Name="button1"

>Format</Button>
</StackPanel>

FIGURE 21.14 The StackPanel in action.
Another similar panel is the WrapPanel. This is essentially a StackPanel with
additional behavior to wrap its children into additional rows or columns if
there isn’t enough room to display them within the bounds of the panel. See

Figure 21.15 to see how the WrapPanel has auto-adjusted a series of buttons
when its window is sized smaller.

FIGURE 21.15 The WrapPanel.

Styles and Templates
The capability to customize the look of a control in WPF, without losing any of
its built-in functionality, is one of the huge advantages that WPF brings to the
development scene. Consider the two slider controls in Figure 21.16. The top
is the default style, and the bottom represents a restyled slider. Functionality is
identical. We have simply changed the appearance of the control.

FIGURE 21.16 The standard slider (top) and a restyled slider (bottom).

Style is an actual class (in the System.Windows namespace) that is used
in association with a control; it groups property values together to enable you,
as a developer, to set them once and have them applied to controls en masse
instead of having to set them individually on each control instance. Suppose,
for instance, that your application uses a nice grayscale gradient for its button
backgrounds. In addition, each button has a white border and renders its text
with the Segoe UI font. We can manipulate each of these aspects using
Button properties, but it would quickly become laborious to do this on every
button. A Style class enables us to set all these properties once and then
refer each Button control to these properties by assigning the style to the
button.
Here is the Style class defined within a window in XAML.
Click here to view co de image

<Window.Resources>
<Style x:Key="GradientButton" TargetType="Button">

<Setter Property="Margin" Value="2"/>
<Setter Property="BorderBrush" Value="White" />
<Setter Property="FontFamily" Value="Segoe UI"/>
<Setter Property="FontSize" Value="12px"/>

<Setter Property="FontWeight" Value="Bold"/>
<Setter Property="Foreground" Value="White" />
<Setter Property="Background" >

<Setter.Value>
<LinearGradientBrush StartPoint="0,0"

EndPoint="0,1" >
<GradientStop Color="Gray"

Offset="0.2"/>
<GradientStop Color="DarkGray"

Offset="0.85"/>
<GradientStop Color="Gray" Offset="1"/>

</LinearGradientBrush>
</Setter.Value>

</Setter>
</Style>

</Window.Resources>

Assigning this style to any button within the window is as simple as this:
Click here to view co de image

<Button Style="{StaticResource GradientButton}"

Height="38" Name="button1"

Width="100">OK</Button>

This works well for simplifying property sets. But what happens when we
want to customize an attribute that isn’t surfaced as a property? To continue
with our Button control, what if we wanted an oval shape rather the standard
rectangle? Because the Button class doesn’t expose a property that we can
use to change the background shape, we appear to be out of luck.
Enter the concept of templates. Templates enable you to completely replace the
visual tree of any control, giving you full control over every aspect of the
control’s user interface. A visual tree in WPF is the hierarchy of controls
inheriting from the Visual class that provide a control’s final rendered
appearance. You can find a good overview of WPF visual trees and logical
trees at http://www.msdn.microsoft.com. Search for the article “Trees in
WPF.”

Note
Earlier we mentioned that controls in WPF were “lookless”;
templates are evidence of that fact. The functionality of a control
exists separately from its visual tree. The default look for all the
controls is provided through a series of templates, one per each
Windows theme. This means that WPF controls can automatically
participate in whatever operating system (OS) theme you are
running.

Templates are created via the ControlTemplate class. Within this class
(or element, if you are implementing the template in XAML), you need to draw
the visuals that represent the button. The Rectangle class in WPF can be
used to draw our basic background shape. By tweaking the RadiusX and
RadiusY properties, we can soften the normal 90-degree corners into the
desired elliptical shape.

http://www.msdn.microsoft.com
http:Offset="0.85

Click here to view co de image

<Rectangle RadiusX="25" RadiusY="25" Width="100"

Height="50"

Stroke="Black" StrokeThickness="1" />

We can also add some more compelling visual aspects, such as a gradient fill,
to the button.
Click here to view co de image

<Rectangle.Fill>

<LinearGradientBrush>

<LinearGradientBrush.GradientStops>
<GradientStop Offset="0" Color="Gray" />
<GradientStop Offset="1" Color="LightGray" />

</LinearGradientBrush.GradientStops>

</LinearGradientBrush>

</Rectangle.Fill>

Tip
To test the look and feel so far, type your “shape” XAML into the
XAML editor, and tweak it as desired. When you are satisfied,
you can copy and paste the XAML into the template. A better tool
for designing user interfaces is Microsoft Blend for Visual Studio,
but handcrafting the XAML or relying on Visual Studio’s designer
should be sufficient for simple design scenarios.

The text within the button is easily rendered using a TextBlock object.
Click here to view co de image

<TextBlock Canvas.Top="5" Height="40" Width="100"

FontSize="20"

TextAlignment="Center">OK</TextBlock>

Once we are happy with the look and feel, we can “template-ize” this
appearance by nesting everything within a ControlTemplate element.
Because we need to refer to this template later, we associate it with a key.
Click here to view co de image

<ControlTemplate x:Key="OvalButtonTemplate">

Finally, we embed the whole thing as a resource. A resource is simply a .NET
object (written in XAML or code) that is meant to be shared across other
objects via its key. In this specific case, we want to be able to use this template
with any button we want. Resources can be declared at any level within a WPF
project. We can declare resources that belong to the overall window or to any
element within the window (such as a Grid panel), or we can store all our
resources in something known as a ResourceDictionary and allow them
to be referenced from any class in our project. For this example, we stick to a
simple resource defined in our parent window. (For reference, this is the
Window.Resources element that you see in the following code.)
Listing 21.2 pulls this all together, and Figure 21.17 shows the resulting button.

/presentation"
ml"

>

s>

FIGURE 21.17 A custom button template assigned to a button.

LISTING 21.2 Replacing a Button’s Template

Click here to view co de image

<Window x:Class="ContosoAvalon.CustomLook"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
Title="CustomLook" Height="300" Width="300"
Background="#F8F8F8">

<Window.Resources>
<ControlTemplate x:Key="OvalButtonTemplate">

<Canvas Width="100" Height="25" Margin="2">
<Rectangle x:Name="BaseRectangle"

Canvas.Top="0" RadiusX="25"
RadiusY="25" Width="100" Height="40"

Stroke="DarkGray"
StrokeThickness="1">

<Rectangle.Fill>
<LinearGradientBrush>

<LinearGradientBrush.GradientStops
<GradientStop Offset="0"

Color="Gray" />
<GradientStop Offset="1"

Color="LightGray" />
</LinearGradientBrush.GradientStop

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>
<TextBlock Canvas.Top="5" Height="40"

Width="100" FontSize="20"
TextAlignment="Center">OK</TextBlock>

</Canvas>
</ControlTemplate>

</Window.Resources>

<Canvas>

<Button Canvas.Left="49" Canvas.Top="44"

Height="38" Name="button1"
Width="93" Template="{StaticResource

OvalButtonTemplate}" />
</Canvas>

</Window>

Debugging the Visual Tree
Although the ability to replace portions of the visual tree via templates and
styles is a powerful feature, it does come with a downside. Depending on the
depth of the visual tree and the number of properties and attributes overridden
at various levels by templates, it can become exponentially difficult to actually
understand and debug issues that might arise somewhere within the tree.
Consider a template that overrides a few properties on a button and then a
series of additional templates that override different properties on the base
button and within the other templates themselves. Trying to unwind those
dependencies by simply looking at the XAML can be difficult if not
impossible. For instance, simply locating all the XAML can be a challenge
because a template could live in a multitude of places within the project.
Second, any errors within a given template may not produce a readily
identifiable exception or stack trace that tells the whole story.
Enter the Live Visual Tree window, brand new with Visual Studio 2015. The
Live Visual Tree, as its name implies, is a hierarchical view of the running
XAML application and all its elements. The “live” moniker stems from the fact
that it is reactive to changes within the visual tree as the application is running.
You access the Visual Tree window under the Debug, Windows menu. Figure
21.18 shows the visual tree associated with Listing 21.2. You will notice that
the Live Visual Tree window provides information on every element within the
visual tree, including child counts for each element. You can also click on any
element and, when possible, the IDE will immediately navigate to the XAML
that implements that element.

FIGURE 21.18 The Live Visual Tree window.
If you right-click on an element and select Show Properties, you will see the
Live Property Explorer. The Live Property Explorer works as a companion
window to the Live Visual Tree. It provides current property information for
any given element within the running application. This window has a few
attributes that make it extremely useful for debugging a running WPF
application. For one, it shows an element’s properties grouped on the scope in
which they were set. This window also lets you change properties on an

element and see those changes immediately take effect within the running
application.
Let’s see how this works using our button template example. Using Listing
21.2, run the WPF application, and then launch the Live Visual Tree window.
With the window open, expand all the nodes within the tree and locate the node
that corresponds to the button itself (button1). Right click that node, select
Show Properties, and then examine the details within the Live Property
Explorer window (see Figure 21.19).

FIGURE 21.19 The Live Property Explorer window.
Because you see those properties displayed within the Local section of the
Explorer window, it’s easy to determine that the Height and Width
properties of the button are being set within the Local scope. You can also
quickly see those attributes of the button that are being overridden by the
template that we attached to the button. For example, the default style for a
button would use the system default template. We have replaced that with our
own template, so that property within the Live Property Explorer has a line
through it, showing that we have overridden with another value.
As mentioned, you can change any of these elements right within the window.
For example, select the BaseRectangle element within the Live Visual
Tree. In the Live Property Explorer, locate the RadiusX and RadiusY
properties. (You can search for the properties using the Search Properties text
box at the top of the window.) If you recall from Listing 21.2, we tweaked
these properties in our template to create the oval structure for our button. In
the Property Explorer, change both of these values to 0, and you should see the
button instantly change to a rectangle with no rounded corners (see Figure

21.20).
	

FIGURE 21.20 Changing visual elements at runtime using the Live Property
Explorer.

Data Binding
Data binding, in its purest sense, is the capability of a control to be wired to a
data source such that the control (a) displays certain items from that data
source and (b) is kept in sync with the data source. After the connection is
made, the runtime handles all the work necessary to make this happen. It
doesn’t really matter where or how the data is stored. It could be a file system,
a custom collection of objects, a database object, and so on.
Let’s look briefly at how we can establish a data binding connection using
WPF. The key class here is System.Windows.Data.Binding. This is
the mediator in charge of linking a control with a data source. To successfully
declare a binding, we need to know three things:

What UI control property do we want to bind?
What data source do we want to bind to?
And, within the data source, what specific element or property or such
holds the data we are interested in?

We can bind to either single objects (such as binding a string property on an
object to a text box) or to collections of objects (such as binding a List<>
collection to a list box). Either way, the mechanics remain the same.
Click here to view co de image

Binding binding = new Binding();

binding.Source = _stringList;

listBox1.SetBinding(ListBox.ItemsSourceProperty,

binding);

The preceding code snippet creates a Binding object, sets the source of the
Binding object to our List<string> collection, and then calls
SetBinding on our control (a list box), passing in the exact property on the
control we want to bind to our data source and the Binding object instance.
We can also assign data sources into a special object called the data context.
Every FrameworkElement object, and those that derive from that class,
implements its own DataContext instance. You can think of this as a global
area where controls can go to get their data when participating in a data
binding arrangement.
This ends up simplifying our data binding code quite a bit. We can set the
context in our Window constructor like this:

Click here to view co de image

this.DataContext = _stringList;

Now, we just point our ListBox to this data context using a tag within the
ListBox’s XAML element.
Click here to view co de image

<ListBox Name="listBox1" ItemsSource="{Binding}" />

The Binding object in this case automatically hunts for objects stashed
within a data context somewhere within the object tree. When it finds one, it
automatically binds the objects.
This works great for our simple List<string> example, but what if we are
trying to bind a collection of custom objects to the list box? If we have a
simple Employee class with a Name property and a PhoneNbr property,
how could we bind to a collection of those objects and show the employee
name? Our process would actually remain the same. If we create an
Employee class and then create a List<Employee> collection, all this
code still works. But there is a problem. Figure 21.21 highlights an issue we
have to solve.

FIGURE 21.21 Binding a ListBox to a collection of custom objects.

We haven’t yet told the binding engine how exactly we want our data to be
represented within the list box. By default, the binding process simply calls
ToString on every object.
One quick remedy is to simply override the ToString method.
Click here to view co de image

public override string ToString()

{

return _name;

}

This corrects the problem in this instance. But a more robust approach
involves the use of a DataTemplate. We cover that approach a little later,
in the section “Building a Simple Image Viewer Application.”

Routed Events
The standard way that .NET classes and controls raise and handle events is
essentially the way that you perform these tasks in WPF. But the WPF libraries
bring an important improvement to standard events. We call these routed
events.
Consider a simple scenario. You have a Button control that consists of a
background image and some text (see Figure 21.22). If you recall from our
discussion of a controls template and visual tree, this means we actually have a
few discrete elements that make up the button: a TextBlock, an Image, and
the basic frame and background of the button.

FIGURE 21.22 A button made of multiple elements.

These are separate objects/elements unto themselves. So the event situation
becomes a little complex. It isn’t enough to react to a click on the button
background; we also have to react to a click on the button’s text or the button’s
image. This is where routed events come into play. Routed events are capable
of calling event handlers up or down the entire visual tree. This means we are
free to implement an event handler at the Button level and be confident that a
click on the button’s image or text will bubble up until it finds our event
handler.
Routed events in WPF are broken down into three categories: bubbling events,
tunneling events, and direct events:

Bubbling e ve nts—These events travel up the visual tree starting at the
initial receiving element.
Tunne ling e ve nts—These events start at the top of the control’s visual
tree and move down until they reach the receiving element.
Dire ct e ve nt—These are the equivalent of “standard” .NET events:
Only the event handler for the receiving element is called.

Events themselves, like nearly everything else in WPF, can be declared in
XAML or in code. Here we have a Button control with a MouseEnter event
defined.
Click here to view co de image

<Button MouseEnter="button1_MouseEnter" Name="button1"
>OK</Button>

The event handler itself, in C#, looks like any other .NET event handler.
Click here to view co de image

private void button1_MouseEnter(object sender,

MouseEventArgs e)

{

MessageBox.Show("MouseEnter on button1");

}

We have only scratched the surface on many of the basic programming
concepts within WPF, but you should now be armed with enough knowledge to
be productive writing a simple WPF application. Let’s do just that, using the

tools available to us in Visual Studio.
	

Building a Simple Image Viewer Application
To illustrate the role that Visual Studio plays in WPF application development,
let’s build a sample application from scratch. In the tradition of “experience
first,” let’s select something that can benefit from WPF’s strong suits—namely,
visualizations and robust control layouts and templating.
Consider an image viewer application. We can use this application to view a
list of image thumbnails and, after selecting a thumbnail, we can view the
image itself and even make changes to it.
We target the rough design shown in Figure 21.23.

FIGURE 21.23 A sketch of an image viewer UI.

Here are our base requirements:
When the application loads, it parses the images contained in the
specified folder.
Every image is listed in a list box; the list box shows image thumbnails
and no text.
When the user clicks one of the items in the list box, the image viewing
area is populated with the selected image.
The user can then choose to manipulate the image: a black-and-white
effect can be applied, the image can be rotated clockwise or
counterclockwise, the image can be flipped, and it can be mirrored.
In general, we try to use WPF’s capabilities when possible to make the
application more visually compelling; a standard battleship gray
application is not what we are looking for here.

Starting the Layout
After creating a new WPF project, we double-click the MainWindow.xaml
file and start designing our user interface. To start, a Grid panel and some
nested StackPanel or WrapPanel containers provide the initial layout.
Referring to the sketch design (see Figure 21.23), one can envision a Grid
with two rows and two columns to start. The top row holds the Menu control
(which should span both columns). The bottom row holds the list box of
images in the left column, and another parent control in the right column
displays the image and the editing buttons.
To get started on this layout, we can use the grid control that has been
automatically placed on our window during project creation. We could use the
XAML pane for our window to quickly enter some XAML tags for the right
elements, but let’s see how quickly the WPF Designer enables us to create a
layout without typing anything. Select the grid within the designer; you can do
this by either clicking within the designer or clicking within the <Grid>
element in the XAML pane. With the grid control selected, notice two shaded
border areas to the top and to the left side of the grid control. These are known
as grid rails. The grid rails enable you to quickly create columns and rows
within the grid. If you move the mouse cursor over one of the grid rails, the
cursor changes to cross-hairs. A grid splitter also appears; this visually
indicates where the exact column or row divider is positioned within the grid.
By clicking within the top grid rail, you can add a column; clicking in the left
grid rail adds a row. Figure 21.24 shows an example of a grid selected in the
designer, with the grid rails visible to the top and to the left of the grid.

FIGURE 21.24 Grid with grid rails visible to the top and left.

For this project, move your cursor over the top grid rail and move the resulting
column splitter so that it is approximately one-third of the way through the
Grid’s width. Now click within the rail to create the two columns. Note that
the designer shows us the exact width, in pixels, for each column (see Figure

21.25).
	

FIGURE 21.25 Sizing columns within a grid.

Now do the same within the left grid rail. Position the row splitter so that the
top row has a height of about 30 pixels. Don’t worry about getting this exact;
we tweak the sizing a little later.

Add the List of Images
Drag a list box into the first column, second row. Initially, this list box has a
height, width, and margin value set for it. Because we want this control to
resize itself based on the size of the column and row that it sits within, we need
to change these properties. Make sure the list box is selected within the
designer, and then delete any values within the Height and Width
properties. You should also set the VerticalAlignment and
HorizontalAlignment properties to Stretch. Finally, set the Margin
property to 5.
You should now have a design surface that looks something like the window in
Figure 21.26.

FIGURE 21.26 Our UI in progress.

Add the Top Menu
The top Menu control in our application will be used to open a folder selection
dialog box. Drag a Menu control into the first column and first row. This
control needs to span both of the columns in our grid, so resize it within the
designer so that it crosses the border between column one and column two. We
can now make adjustments similar to those we made for our list box. Using the
property window, remove any Height value, and set the Width to Auto. Set
the HorizontalAlignment and VerticalAlignment properties to
Stretch, and set the Margin to 5.
We know we need to provide folder selection capabilities, so we title a main
menu item as Folder and include a subitem under that titled Open. To
implement this design, use the property window and edit the Items property;
a collection editor dialog box opens that enables us to add the Folder menu
items. Via the Header property, we need to specify the text that is displayed
for the menu (see Figure 21.27) and the name: FolderOpenMenuItem.

FIGURE 21.27 Properties of a MenuItem.
After the Folder menu item has been created, select it and use the property
window to edit its Items collection to add the final Open menu item. For this
menu item, we also want to specify an event handler for its Click event.
Make sure you have the Events tab selected in the property window, and then
enter FolderOpenMenuItem_Click in the Click event (see Figure
21.28). Visual Studio automatically creates a stub for the event handler and
opens it within the code editor for you. Because we aren’t ready to implement
this event yet, you can simply click back to the WPF Designer within the IDE.

FIGURE 21.28 Wiring the Click event for our FolderOpenMenuItem.
	

Add the Image Viewer
The main screen area for this application is the image viewer and its
associated command buttons. This consists of a grid with two rows: the top
row holds an Image control and grows as we resize. The bottom row is a static
height and holds a StackPanel of buttons oriented horizontally.
Drag a Grid control from the Toolbox into the second row and second column
of our original parent grid. You configure the rows as indicated the same way
you did for the root grid. For the image view box, we use an Image control.
Drag one into the top row of the new grid and, as before, remove any Margin
settings or Width/Height values.
Finally, drag a StackPanel into the bottom row of the new grid, remove any
Margin settings, and set its Orientation property to Horizontal and the
HorizontalAlignment property to Center. This panel is where we place
our image manipulation buttons, which you can add now as well. Drag four
buttons into the StackPanel, and adjust their margins and height/width until you
get the workable look and feel you are after.

Note
While building this app, we have mostly relied on the WPF
Designer ’s property window to tweak our control properties. But
because the XAML code editor supports IntelliSense, and because
XAML is fairly readable, you might find it faster and more
productive to make the changes directly within the XAML. The
bottom line here is that the IDE enables you to choose how you
are most productive.

Grid Sizing Details
With all our grids, columns, and rows now in place, we can think about how
we want to handle sizing. In other words, how do we want our columns and
rows to resize themselves if a user happens to resize the parent window? To
configure the grid correctly, we need to understand the concepts of fixed, auto,
and proportional sizing.
Proportional sizing, also sometimes referred to as star sizing, is used to
apportion row height or column width as a proportion of all available space.
XAML-wise, proportional sizing is expressed with an asterisk inside of the
Row.Height or Column.Width properties. With star sizing, you indicate
the proportional “weight” that you want the column to occupy. For instance, for
a grid with two columns, if we specified a width on both columns of ".5*",
we would end up with both columns taking up half of the available space
(width-wise) of the grid. Figure 21.13 shows some example column sizes
using proportional sizing. If we just specify an asterisk with no weight (for
example, Width="*"), we are instructing that column to take all the
remaining space.
Auto sizing causes the row height or width to grow or shrink as necessary to
exactly fit whatever is currently placed within the row or column. So a row
that is auto sized would be as tall as the tallest control it hosts. Note that in
addition to the control height, other things can affect the space reserved for a

control, such as margins and padding.
	
Finally, fixed sizing works exactly like you think it would. You specify a width
	
or height in pixels, and the column or row snaps to that dimension regardless
	
of how the grid’s parent control or window is sized.
	
With these details exposed, we can formulate a strategy for our layout. Figure
	
21.29 shows a revised sketch indicating our sizing scheme.

FIGURE 21.29 UI sketch with resizing notes.

The WPF Designer provides a way to directly indicate the sizing type for each
row and column. Using the grid rails again, hover the mouse over the rail
space for a column. A small toolbar pops up directly above the rail with three
buttons. These three buttons correspond to the three sizing modes. Go ahead
and cycle through all the rows and columns in the designer, setting the height
and width properties using the designer toolbar.
Here is a look at the current XAML with all the basic elements in place.
Click here to view co de image

<Grid>
<Grid.RowDefinitions>

<RowDefinition Height="Auto" />
<RowDefinition Height="*" />

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<ListBox Grid.Row="1"

HorizontalAlignment="Stretch"

Margin="5" Name="listBox1"

VerticalAlignment="Stretch"

ItemsSource="{Binding}"

Width="175" />

<Menu Grid.ColumnSpan="2"

HorizontalAlignment="Stretch"

Margin="0" Name="menu1"

VerticalAlignment="Stretch">
<MenuItem Header="_Folder"

VerticalAlignment="Center">
<MenuItem x:Name="OpenMenuItem"

Header="_Open"
Click="FolderOpenMenuItem_Click"
VerticalAlignment="Center">

</MenuItem>
</MenuItem>

</Menu>
<Grid Grid.Row="1" Grid.Column="1">

<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />

</Grid.RowDefinitions>
<Image Grid.Row="0" Name="image1"

Stretch="UniformToFill"
Margin="5" VerticalAlignment="Center"
HorizontalAlignment="Center" />

<StackPanel Grid.Row="1"
Orientation="Horizontal"

HorizontalAlignment="Center" >
<Button Width="50" Height="50"

Margin="10">
Button</Button>

<Button Width="50" Height="50"
Margin="10">

Button</Button>
<Button Width="50" Height="50"

Margin="10">
Button</Button>

<Button Width="50" Height="50"
Margin="10">

Button</Button>
</StackPanel>

</Grid>
</Grid>

Storing the Images
With the UI elements in place, we can move on to the data binding
implementation. We’ll come back later and give the UI more polish. The first
task is to store the files in a collection of some sort. It turns out that there is a
class in the System.Windows.Media.Imaging namespace that is
suitable for our needs: BitmapSource. For a collection, a
List<BitmapSource> object should work for the moment, but we need
some way to populate the list. So let’s create a wrapper class that both loads
the list and exposes it as a property.
Add a new class to the project with the following code.
Click here to view co de image

public class DirectoryImageList
{

private string _path;
private List<BitmapSource> _images = new

List<BitmapSource>();

public DirectoryImageList(string path)
{

_path = path;

LoadImages();

}

public List<BitmapSource> Images
{

get { return _images; }

set { _images = value; }

}

public string Path
{

get { return _path; }

set

{

_path = value;

LoadImages();

}

}

private void LoadImages()
{

_images.Clear();

BitmapImage img;

foreach (string file in

Directory.GetFiles(_path))

{

try

{

img = new BitmapImage(new Uri(file));

_images.Add(img);

}

catch

{

//empty catch; ignore any files that won't
load as

//an image...
}

}
}

}

The LoadImages method in the preceding code is where most of the
important logic is found; it enumerates the files within a given directory and
attempts to load them into a BitmapImage object. If it succeeds, we know
that this is an image file. If it doesn’t, we just ignore the resulting exception
and keep on going.
Back in our MainWindow class, we need to create some private fields to
hold an instance of this new class and to hold the currently selected path. This
is something we let the user change through a common dialog box launched

from the Folder, Open menu item.
Here are the fields.
Click here to view co de image

private DirectoryImageList _imgList;
private string _path =

Environment.GetFolderPath
(Environment.SpecialFolder.MyPictures);

Note that we have defaulted our path to the Pictures folder. To load the list
object, we write a ResetList method in our MainWindow class.
Click here to view co de image

private void ResetList()

{

_imgList = new DirectoryImageList(_path);

}

Referring to our earlier discussion on data binding, we round things off by
adding a few lines of code to the MainWindow constructor: an initial call to
ResetList and a call to assign the data context to the Images property
from the DirectoryImageList instance.
Click here to view co de image

public MainWindow()
{

InitializeComponent();
ResetList();
this.DataContext = _imgList.Images;

}

If we run the application now, we see a familiar sight (as in Figure 21.30): the
data binding is working but isn’t quite the presentation format we want.

FIGURE 21.30 Initial data binding results.
	

Binding to the Images
Because our earlier trick of overriding ToString won’t give us the right
data presentation (an image, after all, is not a string), we need to turn to data
templates. The DataTemplate class is used to tell a control specifically
how you want its data to be displayed. By using a data template within the
visual tree of the control, you have complete freedom to present the bound data
in any fashion you want.
For this application, we are looking for images in the ListBox. This turns
out to be quite easy. Create a Window1.Resources element in XAML, and
create a DataTemplate that sets up the exact visualization we need.
Click here to view co de image

<Window.Resources>
<DataTemplate x:Key="ImageDataTemplate">

<Image Source="{Binding UriSource.LocalPath}"
Width="125"

Height="125" />
</DataTemplate>

</Window.Resources>

Then assign the DataTemplate to the ListBox.
Click here to view co de image

<ListBox Grid.Row="1" Name="listBox1" ItemsSource="
{Binding}"
ItemTemplate="{StaticResource ImageDataTemplate}"/>

In our data template, the Image element is expecting a source uniform
resource indicator (URI) for each image. So we use the
UriSource.LocalPath that is provided on the BitmapSource object.
If you rerun the application, you should immediately see that our ListBox is
now displaying thumbnail-sized images (125×125) for every picture it finds in
our local Pictures directory.
We aren’t done yet; clicking a thumbnail in the list box should cause the central
Image control to display the indicated picture. By creating a
SelectionChanged event handler and wiring it to the ListBox, we can
update our Image.Source property accordingly.
The event is declared as expected within the ListBox XAML element.
Click here to view co de image

<ListBox SelectionChanged="listBox1_SelectionChanged"
Grid.Row="1"
Name="listBox1" ItemsSource="{Binding}"
ItemTemplate="{StaticResource ImageDataTemplate}"/>

And for the event handler, we cast the SelectedItem from the ListBox
to its native BitmapSource representation and assign it to our image
control.
Click here to view co de image

private void listBox1_SelectionChanged(object sender,
SelectionChangedEventArgs e)

{

image1.Source = (BitmapSource)((sender as

ListBox).SelectedItem);

}

Button Event Handlers and Image Effects
With the images successfully loaded into the list box and displayed in the
central Image control, we can turn our attention to our four image
editing/effects features:

Black-and-white filter
Image blur
Rotate
Flip

Because these four functions are controlled by the four buttons, we need to add
some appropriate button images and events; we don’t cover the button stylings
here because they involve external graphics resources, but you can see how
they turn out in the final screenshot (at the end of this chapter) or by
downloading the source from this book’s website.
The code for the events, however, is fair game. First, here are the XAML event
declarations on each button.
Click here to view co de image

<Button Click="buttonBandW_Click" Margin="20,0,0,0"
Height="23"
Name="buttonBandW" Width="30"/>

<Button Click="buttonBlur_Click" Margin="20,0,0,0"
Height="23"
Name="buttonBlur" Width="30"/>

<Button Click="buttonRotate_Click" Margin="20,0,0,0"
Height="23"
Name="buttonRotate" Width="30"/>

<Button Click="buttonFlip_Click" Margin="20,0,20,0"

Height="23"

Name="buttonFlip" Width="30"/>

Notice as you type these click events into the XAML pane that the XAML
editor intervenes with IntelliSense pop-ups that not only complete our Click
declaration but also create the corresponding event handler in our code-behind
class!
Changing the image to grayscale is accomplished via the class
FormatConvertedBitmap, which allows you to specify the color depth
and format of your palette.
Click here to view co de image

private void buttonBandW_Click
(object sender, RoutedEventArgs e)

{
BitmapSource img = (BitmapSource)image1.Source;
image1.Source =

new FormatConvertedBitmap

(img, PixelFormats.Gray16,

BitmapPalettes.Gray256, 1.0);

}

To perform the image manipulations, we use something known as a transform:
the manipulation of a 2D surface to rotate, skew, or otherwise change the
current appearance of the surface. We can handle our rotation feature directly
with RotateTransform like this:
Click here to view co de image

private void buttonRotate_Click(object sender,
RoutedEventArgs e)
{

CachedBitmap cache = new
CachedBitmap((BitmapSource)image1.Source,

BitmapCreateOptions.None,
BitmapCacheOption.OnLoad);

image1.Source = new TransformedBitmap(cache, new
RotateTransform(90));
}

Our flip action ends up being just as easy but uses a ScaleTransform
instead.
Click here to view co de image

private void buttonFlip_Click(object sender,
RoutedEventArgs e)
{

CachedBitmap cache = new
CachedBitmap((BitmapSource)image1.Source,

BitmapCreateOptions.None,
BitmapCacheOption.OnLoad);

ScaleTransform scale = new ScaleTransform(-1, -1,
image1.Source.Width / 2,

image1.Source.Height / 2);
image1.Source = new TransformedBitmap(cache,

scale);
}

The image-blurring action is provided through a different mechanism known as
an effect. By creating a new BlurBitmapEffect instance and assigning
that to our image control, WPF applies the appropriate algorithm to the bitmap
to blur the picture.
Click here to view co de image

image1.Effect = new BlurEffect();

Path Selection with a Common Dialog Box
The last item on our to-do list is allowing the user to change the path of the
picture files. WPF itself doesn’t have built-in dialog box classes to manage
this, but the System.Windows.Forms namespace has just what we need:
the FolderBrowserDialog class. This is launched from within the event
handler for our FolderOpenMenuItem Click event.
Click here to view co de image

private void FolderOpenMenuItem_Click(object sender,

RoutedEventArgs e)

{

SetPath();

}

private void SetPath()

{

FolderBrowserDialog dlg = new

FolderBrowserDialog();

dlg.ShowDialog();

_path = dlg.SelectedPath;

ResetList();

}

When a user selects a folder, we update our internal field appropriately, reload
the DirectoryImageList class with the new path, and then reset our
window’s DataContext property to reflect the change. This is a perfect
example of how seamless it is to use other .NET technologies and class
libraries from within WPF. By adding the appropriate namespace and
reference to our project, we just instantiate this class like any other class in our
solution.

Tip
Because there are a fair number of controls that share the same
name between WPF and WinForms (the ListBox control is one
example), if you find yourself using classes from the
System.Windows.Controls and the
System.Windows.Forms libraries, you inevitably need to
fully qualify some of your object names to avoid operating against
the wrong class.

And with that, the application is functionally complete. For reference, we have
provided the current state of the XAML and the code-behind listings in Listing
21.3 and Listing 21.4, respectively. If you really want to dissect this
application, however, you should download the source code from this book’s
website. This enables you to see the improvements made with graphics
resources and general look and feel, producing the final polished version
shown in Figure 21.31.

xaml/presentation"
6/xaml"

FIGURE 21.31 The final app after finishing touches have been applied.

LISTING 21.3 The Image Viewer XAML Code

Click here to view co de image

<Window	 x:Class="WpfImageViewer.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/
xmlns:x="http://schemas.microsoft.com/winfx/200
Title="Image Viewer Sample Application"
Height="400" Width="550"
Background="{DynamicResource

BackgroundGradientBrush}">

<Window.Resources>
<DataTemplate x:Key="ImageDataTemplate">

<Image Source="{Binding
UriSource.LocalPath}"

Width="125" Height="125" />
</DataTemplate>

</Window.Resources>

<Grid>
<Grid.RowDefinitions>

<RowDefinition Height="Auto" />
<RowDefinition Height="*" />

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>
<ListBox	 Grid.Row="1"

HorizontalAlignment="Stretch"
Margin="5" Name="listBox1"
VerticalAlignment="Stretch"

anged"

ck"

Width="175"

ItemsSource="{Binding}"
ItemTemplate="{StaticResource

ImageDataTemplate}"
SelectionChanged="listBox1_SelectionCh

/>
<Menu Grid.ColumnSpan="2"

Background="{DynamicResource
MenuBackgroundGradientBrush}"

HorizontalAlignment="Stretch"
Margin="0"
Name="menu1"
VerticalAlignment="Stretch">

<MenuItem	 Header="_Folder"
VerticalAlignment="Center">

<MenuItem	 x:Name="OpenMenuItem"
Header="_Open"
Click="FolderOpenMenuItem_Cli
VerticalAlignment="Center">

</MenuItem>
</MenuItem>

</Menu>
<Grid Grid.Row="1" Grid.Column="1">

<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />

</Grid.RowDefinitions>
<Image	 Grid.Row="0"

Name="image1"
Stretch="UniformToFill"
Margin="5"
VerticalAlignment="Center"
HorizontalAlignment="Center" />

<StackPanel Grid.Row="1"
Orientation="Horizontal"

HorizontalAlignment="Center" >
<Button Name="buttonBandW"

Style="{DynamicResource
BWImageButtonStyle}"

Click="buttonBandW_Click"
Width="50"
Height="50"
Margin="10" />

<Button	 Name="buttonBlur"
Style="{DynamicResource

BlurImageButtonStyle}"
Click="buttonBlur_Click"
Width="50"
Height="50"
Margin="10" />

<Button	 Name="buttonRotate"
Style="{DynamicResource

RotateImageButtonStyle}"
Click="buttonRotate_Click"
Width="50"
Height="50"
Margin="10" />

<Button	 Name="buttonFlip"
Style="{DynamicResource

FlipImageButtonStyle}"
Click="buttonFlip_Click"
Width="50"
Height="50"
Margin="10" />

</StackPanel>
</Grid>

</Grid>
</Window>

LISTING 21.4 The Image Viewer Code Behind C#

Click here to view co de image

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Effects;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WpfImageViewer
{

/// <summary>
/// Interaction logic for MainWindow.xaml
/// </summary>
public partial class MainWindow : Window
{

#region	 Private fields

private	 DirectoryImageList _imgList;
private string _path =

Environment.GetFolderPath(
Environment.SpecialFolder.MyPictures);

#endregion

#region	 Ctor

public MainWindow()
{

InitializeComponent();
ResetList();
this.DataContext = _imgList.Images;

}

#endregion

#region Event handlers and delegates

private void FolderOpenMenuItem_Click
(object sender, RoutedEventArgs e)

{
SetPath();

}

private void listBox1_SelectionChanged
(object sender, SelectionChangedEventArgs

e)
{

this.image1.Source = (BitmapSource)
((sender as

ListBox).SelectedItem);
this.image1.Effect = null;

}

private void buttonBandW_Click
(object sender, RoutedEventArgs e)

{
BitmapSource img =

(BitmapSource)image1.Source;
image1.Source =

new	 FormatConvertedBitmap
(img, PixelFormats.Gray16,
BitmapPalettes.Gray256, 1.0);

}

private void buttonBlur_Click
(object sender, RoutedEventArgs e)

{
if (image1.Effect != null)
{

//if blur is current effect, remove
image1.Effect = null;

}
else
{

//otherwise, add the blur effect to
the image

image1.Effect = new BlurEffect();
}

}

private void buttonRotate_Click
(object sender, RoutedEventArgs e)

{
CachedBitmap cache =

new
CachedBitmap((BitmapSource)image1.Source,

BitmapCreateOptions.None,
BitmapCacheOption.OnLoad);

image1.Source =
new TransformedBitmap(cache,

new RotateTransform(90));

}

private void buttonFlip_Click
(object sender, RoutedEventArgs e)

{
CachedBitmap cache =

new
CachedBitmap((BitmapSource)image1.Source,

BitmapCreateOptions.None,
BitmapCacheOption.OnLoad);

ScaleTransform scale =
new ScaleTransform(-1, -1,

image1.Source.Width / 2,
image1.Source.Height / 2);

image1.Source =
new TransformedBitmap(cache, scale);

}

#endregion

#region Implementation

private void SetPath()
{

System.Windows.Forms.FolderBrowserDialog
dlg =

new
System.Windows.Forms.FolderBrowserDialog();

dlg.ShowDialog();
_path = dlg.SelectedPath;
ResetList();

}

private void ResetList()
{

if (IsValidPath(_path))

{

_imgList = new
DirectoryImageList(_path);

}

this.DataContext = _imgList.Images;

}

private bool IsValidPath(string path)
{

try
{

string folder =
System.IO.Path.GetFullPath(path);

return true;
}

catch
{

return false;
}

}

#endregion

}

}

Summary
This chapter briefly introduced the Windows Presentation Foundation (WPF).
We investigated the overall framework architecture and its programming
model, including the new concept of using declarative markup to design and
lay out a WPF client application’s user interface. You saw how the Visual
Studio WPF Designer can be used to quickly craft compelling user interfaces
using the same development processes you use when building Windows Forms
or even ASP.NET applications.
We spent some time discussing the basics of control layout (a central theme in
WPF) and covering the first-class data binding support that WPF enjoys.
As mentioned, developers trying to learn WPF and XAML-based development
in general will find that it is both a broad and a deep subject. It is highly
recommended that you spend some time with Microsoft Developer Network
(MSDN) resources (such as the WPF developer center at
www.msdn.microsoft.com/wpf) and then revisit this chapter to get a full sense
of the skills and knowledge required to come up to speed on WPF
development. Spending time with the design tools is also highly recommended;
free trials are available. See www.microsoft.com/expression for more
information.

http://www.msdn.microsoft.com/wpf
http://www.microsoft.com/expression

Chapter 22. Developing Office Business
Applications

In This Chapte r
An Overview of Office Extension Features
Creating an Office Add-In
Creating an Office Document Extension
Extending Office with Webpages

Microsoft Office is the well-known, best-selling suite of information worker
productivity applications. We are all familiar with the word processing,
spreadsheet, email, and form features provided by Microsoft Word, Microsoft
Excel, Microsoft Outlook, and Microsoft InfoPath. But these applications are
capable of more than just their stock features. They are a development platform
unto themselves, a platform that can be extended and customized to build out
line-of-business applications that leverage and build on the best-of-breed
features offered by each application.
For instance, a purchase-order application could leverage the end user ’s
familiarity with Microsoft Word to allow for data entry using a Word form, and
reports and charts can be generated against purchase-order history using Excel.
In the past, the primary tool for extending Microsoft Office applications has
been Visual Basic for Applications (VBA). With VBA, developers and even
end users could create a broad range of solutions from simple macros to more
complicated features that implement business logic and access data stored in a
database. VBA offers a simple “on ramp” for accessing the object models
exposed by every application in the extended suite of Microsoft Office:
Project, Word, Outlook, InfoPath, PowerPoint, Publisher, and so on.
But starting with the first release of the Visual Studio Tools for Office (VSTO),
Microsoft gave developers a robust way to create Office solutions in managed
code (Visual Basic and Visual C#) from directly within Visual Studio.
Visual Studio 2010 was released with the fourth generation of VSTO, and it
enabled you to target both Microsoft Office 2007 and Microsoft Office 2010
applications. Visual Studio 2015 has continued its support for Office
application development. “VSTO” is now referred to simply as Office
Developer Tools for Visual Studio. The topic of using Visual Studio for Office
development is a large one that has entire books devoted to it; in this chapter,
we hope to simply introduce the concepts involved with Office development
and show how the Visual Studio Office project types can be used to quickly
create powerful applications that leverage the existing power of Word, Excel,
and Outlook. Subjects we cover include these:

Creating custom actions panes
Creating custom task panes
Customizing the Office ribbon

We specifically do not attempt to cover the object automation models for any

of the Office applications, beyond the minimum necessary to understand the
preceding concepts. For a more complete treatment of Office as a development
platform, we recommend the VSTO team blog at http://blogs.msdn.com/b/vsto/
and, of course, the various MSDN sections that cover development for Office.
Let’s start with a quick run-through of the various Office features that are
available for customization.

An Overview of Office Extension Features
Because each Office application has a unique and specialized function, it
should come as no surprise that the ways in which you can customize an Office
application depend on the Office application. Although they all share a
common, general layout for their user interface, there are intricacies involved
with each of them that dictate different capabilities from within Visual Studio.
For instance, both Excel and Word deal with files as their central work piece,
whereas Outlook deals with emails (which might be stored locally, on a
server, or both). We can apply document-level extensions to Excel and Word,
but this is not possible in Outlook. Conversely, the Outlook object model
supports the concept of form regions, a concept absent in Excel and Word.

Office Features
Table 22.1 provides a matrix of the various features available for
customization or extension within each Office application. We discuss each of
these in the next section.

TABLE 22.1 Microsoft Office Extension Points
Some of these features are document-level features, and others are application-
level features. The detailed difference between the two is largely one of scope.
Document-level customizations are attached to, and live with, a specific
document, whether a Word .doc/ .docx file or an Excel spreadsheet file. In
contrast, application-level features are more global in reach and are
implemented as add-ins to a specific Office application in much the same way
that packages are created and implemented for Visual Studio itself. (See
Chapter 15, “Extending the IDE.”)
We look at the mechanics of how document-level and application-level
solutions are differentiated in just a bit when we overview the Office project
types. First, let’s examine the features mentioned in Table 22.1. Understanding
these features is key to determining how you might leverage Office in your
solutions.

http://blogs.msdn.com/b/vsto/

Task P anes and Actions P anes
Task panes in Office are used to expose commands and features that are central
to the task at hand without disrupting the user from focusing on the currently
loaded document. See Figure 22.1 for a screenshot of a Microsoft Word 2013
task pane for merging form letters. This task pane is able to guide the user
through a series of steps while still allowing the loaded letter document to be
visible. Task panes exist at the application level. Actions panes, in contrast,
are a type of task pane implemented at the document level.

FIGURE 22.1 A Microsoft Word 2013 actions pane.

Data Cache
A data cache refers to the capability of Office to store data locally within a
document. This cache is also sometimes referred to as a data island. Because
Visual Studio can read and write to the data cache, it is a useful tool for storing
information needed by your Office add-in or for shadowing data that resides in
a database but is needed in certain disconnected scenarios.

Ribbon
The ribbon is a user interface element that premiered with Microsoft Office
2007. It represents a new way to present features to users without using the
traditional toolbars and menus. Commands in the ribbon are grouped by task
category, and within each task category commands are visually grouped with
other similar commands. So with Word, for instance, we have a Review tab
that consolidates all the commands related to document review. Because the
ribbon makes the most-used commands immediately visible and available, the
ribbon attempts to avoid the problems caused by the menu bar paradigm in
which items could be grouped and nested several layers deep (and thus, out of
sight) within the menu system.
The tabs of the ribbon and the command groupings within a tab are free to
change from application to application depending on the context. Figure 22.2
compares the ribbon home tab for Word and PowerPoint.

FIGURE 22.2 The Microsoft PowerPoint 2013 and Word 2013 ribbons.

Visual Studio Office Project Types
In general, each Office application has a project type or family of project types
available. Figure 22.3 shows the various project types available by expanding
your chosen language node and then the Office node within the New Project
dialog box.

FIGURE 22.3 The available Office project types in Visual Studio.
For each version of Word and Excel, you see three project types: an add-in
template and two document-level templates. The document-level templates
enable you to target either document files (for Word, this is referred to as the
Word Document project template, and for Excel, this is referred to as the Excel
Workbook project template) or Office template files (for example, you can
customize a Word template).
As previously discussed, the difference between an application-level add-in
and a document extension is one of scope. When you compile an Office
project, just as with every other project type in Visual Studio, a managed code
assembly is generated. That assembly can be attached or linked to an Office
application (for example, Word or Excel) or to an Office document (for
example, a .doc/.docx file or an .xls/.xlsx file). Document-level
assemblies are loaded only when the document is loaded and are limited in
scope to the document. Application-level add-ins are loaded during
application startup (although this can be controlled by the user) and are more
global in their reach.

Note
Although Visual Studio fully supports Microsoft Office projects
right out of the box (at least with the Visual Studio Professional
version), you also need to have a copy of Microsoft Office and
potentially various other components installed on your computer.

Creating an Office Add-In
To start creating your own Office add-in, create a new project in Visual Studio
by selecting any of the Office add-in project types. Figure 22.4 shows the basic
project structure created with a Word add-in project. We have a single code-
file that establishes the startup entry point for the add-in and provides us with
the namespaces we need to access the Word automation object model.

FIGURE 22.4 A Microsoft Word 2013 add-in project.
There isn’t anything terribly compelling about the developer experience so far.
But Visual Studio does provide a set of visual designers you can use to craft
your Office solution just as you would any other project in Visual Studio. To
access these, we need to add a project item that has an associated designer. To
start, let’s see how to create a customized ribbon.

Customizing the Ribbon
Ribbon support within an Office project is enabled by adding a ribbon project
item to the project. Right-click the project within Solution Explorer and select
Add New Item. In the Add New Item dialog box (see Figure 22.5), you see two
different ribbon templates available for selection: Ribbon (Visual Designer)
and Ribbon (XML). As their names suggest, the Visual Designer template
provides you with a what-you-see-is-what-you-get (WYSIWYG) design
surface for creating your ribbon customizations. Because this design surface
can’t be used to build certain types of more advanced ribbon features, the
Ribbon (XML) item template is provided to enable you to handcraft ribbon
features in XML. You need to use the Ribbon (XML) item if you want to do any
of the following:

Add a built-in (as opposed to custom) group to a custom tab

Add a built-in control to a custom group
Customize the event handlers for any of the built-in controls
Add or remove items from the Quick Access toolbar

FIGURE 22.5 Adding a Ribbon project item.

For our purposes, let’s select the Ribbon (Visual Designer) item and add it to
our project. This adds the Ribbon1.cs file to our project. In a fashion
similar to the other Visual Studio project types, this file has a designer and a
code-behind file attached to it.
The design surface you are presented with is an exact replica of an empty
ribbon (see Figure 22.6).

http:Ribbon1.cs

FIGURE 22.6 The Office ribbon design surface.
Ribbons are composed of several elements. Tabs are used to provide the high-
level task grouping of features, groups are used within each tab to provide
more granular sectioning of the features, and controls reside within the groups
are used to build out the custom user interface for the add-in.
With the Ribbon Designer loaded, you now have access to ribbon-specific
controls in the Toolbox (see Figure 22.7). Adding controls to the ribbon or
adding new groups is as simple as dragging the desired control to the ribbon or
Group tab.

FIGURE 22.7 Office ribbon controls in the IDE toolbox.
	

Adding Items to the Ribbon
To demonstrate, you can create our own custom group within the Add-Ins tab.
Because you are presented with one group already by default, you can rename
it to something more appropriate for your add-in. All the items in the ribbon
are modified via the Properties window, just as with all other Visual Studio
project types. We just click the group and then set its label property.
Groups act as containers on the design surface, enabling us to drag and drop a
button into the group. Figure 22.8 shows the beginnings of a custom ribbon for
a purchasing system integration add-in. To duplicate this, drag three buttons
into the existing group on the ribbon, change their ControlSize property to
RibbonControlSizeLarge, set their label properties to the appropriate
text you want displayed on the button, and add some images of your choosing
to the buttons by setting the Image property.

FIGURE 22.8 Creating a custom ribbon.
	

Tip
The images used in this example were taken from the Visual
Studio 2015 Image Library, but there is actually a cool way to
reuse any of the icons that you see within Office. First, download
the Icons Gallery add-in from the Microsoft Download Center.
(Search for “Office 2010: Icons Gallery.”) This download places
a Word document file on your drive. Open the file, and then click
the File tab at the top of the ribbon. Down the column on the left,
you should see two entries labeled ImageMso 0 and
ImageMso 1. Click either of these to see the gallery of icons.
Each icon has an accompanying label—a string that you can plug
directly into a ribbon button’s OfficeImageId property. As long as
an image isn’t already set for the button, the identified Office icon
is used. This is a real boon for UI design, given the hundreds and
hundreds of high-quality icons already available within Office.
The image doesn’t show in design time but does display correctly
at runtime.

Adding more groups to your ribbon involves more of the same drag-and-drop
action from the Toolbox. You can change the order of the groups in the ribbon
by selecting and then dragging a group to the left or right of any other existing
groups.

Note
Notice that there is already a default tab implemented in the
ribbon called TabAddIns (Built-In). When you’re creating a
ribbon for your add-in, its groups are automatically displayed
under the Add-Ins tab within the target Office application. If you
want to add items to one of the other default tabs in the Office
application or create your own tab, you have to use the Ribbon
(XML) project item, and not the Ribbon Designer, to achieve that
level of customization.

Handling Ribbon Control Events
Handling the events for our buttons is easy. Again, the idea behind the Office
Developer Tools for Visual Studio is to provide Office customization
capabilities using the same development paradigms already present in Visual
Studio. This means that you can double-click a button to have the IDE
automatically create and wire up an event-handler routine, ready to accept
whatever code we need to write to implement the button’s behavior.
To test this out, let’s add the following to the Replace PO button.
Click here to view co de image

private void buttonReplacePO_Click(object sender,
RibbonControlEventArgs e)

{
MessageBox.Show("buttonReplacePO_Click fired!");

}

If you run the project now by pressing F5, Word automatically launches; you
can see your ribbon customizations by clicking the Add-Ins tab. Clicking the
Replace PO button yields the results shown in Figure 22.9.

FIGURE 22.9 Testing a ribbon button.

Customizing the Task Pane
Task panes don’t have a dedicated visual designer because they are
implemented through the creation of a user control, which already has a design
surface. To add a custom task pane to your Word add-in, right-click the project,
select Add New Item, and then select the Windows Forms User Control item.

Note
Because actions panes are document-level concepts, you’ll read
about those separately in the section “Creating an Office
Document Extension,” later in this chapter. You follow the same
general development process.

After the user control is added and the designer is loaded, you can set about
creating the UI and code-behind for the task pane. The only Office-specific
action item here is wiring the task pane user control into Word’s object model.
All that work is accomplished in code within the add-in class. First, to make
life a bit easier, you add a using statement to your add-in class (in this case,
the ThisAddIn class).
Click here to view co de image

using Microsoft.Office.Tools;

Then you declare two local objects—one for the task pane and one for the user
control.

Click here to view co de image

private PurchaseOrderTaskControl poUserControl;

private CustomTaskPane poTaskPane;

Finally, you need the code to add the custom task pane to the application
instance. You put this in the Startup event (for this example,
ThisAddIn_Startup) so that the task pane is immediately available and
visible when you run the add-in.
Click here to view co de image

poUserControl = new PurchaseOrderTaskControl();

poTaskPane = this.CustomTaskPanes.Add(poUserControl,

"Purchase Orders");

poTaskPane.Visible = true;

If you build and run the project now, you should see your task pane within the
Word environment (see Figure 22.10).

FIGURE 22.10 A custom task pane in Microsoft Word.
	

Tip
The preceding example uses a Windows Forms user control. If
you want to create your task pane using Windows Presentation
Foundation (WPF) instead, you simply add a WPF user control to
the project. Everything from a design and coding experience
would work the same. Behind the scenes, Visual Studio will
automatically create a
System.Windows.Forms.Integration.ElementHost
object and use that to parent/host your WPF controls within the
	
targeted Office application.
	

Creating Outlook Form Regions
Let’s turn our attention now to Outlook. As previously mentioned, Outlook has
a unique extension point that is not available or relevant in Word or Excel;
Outlook add-ins are capable of implementing form regions to any message
class within Outlook. A message class is best thought of as the various entities
that Outlook defines. These include notes, tasks, email, and so on. Put simply, a
form region is the principal mechanism for developers to implement custom
form fields within an existing form (for example, email, contact, or other
custom forms not included in Outlook by default). To continue with the
purchase order example from Word, perhaps a purchase order sent by email
should have a set of editable fields and another user interface (UI) associated
with it. You can implement those fields and UI in Outlook as a form region.
The best way to really understand form regions is to jump right into the task of
creating one.
Form regions are implemented by first creating an Outlook add-in project and
then adding an Outlook Form Region item. This triggers the Form Region
Wizard, which captures the information necessary to autogenerate a region
class file. The first screen in the wizard is used to indicate whether you want
to create a brand-new form region or use an existing one that was designed in
Outlook. For this example, select the Design a New Form option.
The second page in the wizard, shown in Figure 22.11, specifies where the
region presents itself. There are four options here, with a graphic that
illustrates the positioning behavior of the region. Select Adjoining to create the
purchase order UI at the bottom of the Outlook email form.

FIGURE 22.11 Selecting the Outlook form region type.
The third page of the wizard (see Figure 22.12) queries for the name of the
region and which inspector display modes the region should support. Inspector
is the Outlook term for the window used to view and edit a specific message
class. For instance, when you compose a new email message in Outlook, you
are actually seeing the email inspector in action.

FIGURE 22.12 Naming the form region and specifying the display mode.
The fourth and final page of the wizard (see Figure 22.13) associates the form
region with any of the built-in Outlook message classes or with a custom
message class implemented by a third party. For the purposes of this
example, select only the Mail Message entry and click the Finish button.

FIGURE 22.13 Associating the form region with a message class.
When finished, Visual Studio generates the code to match the form region
properties provided in the wizard. You are now ready to construct the UI for
your region.
The visual designer for an Outlook form region looks identical to the Windows
Forms Designer: It is essentially a blank canvas onto which you drag controls.
So at this point, the typical Windows Forms development process kicks in,
enabling you to create the behavior and the look and feel as you need.
No other code is necessary for Outlook to display the form region when the
associated message class is invoked. For this example, because we selected
the mail message class earlier when we executed the Form Region Wizard, the
region automatically shows up anytime we create a new email item (as shown
in Figure 22.14).

FIGURE 22.14 An Outlook form region at runtime.

Runtime Events
Outlook form regions are physically created using a factory pattern. This
means they aren’t “newed up” via simple instantiation as we did in the earlier
Word task pane example. The form region factory code is located in its code-
behind class (called, by default, FormRegion1.cs, but this would
obviously change depending on how you have named the project item). In this
code file, you find a code region labeled Form Region Factory. And that region
contains an important event: FormRegionInitializing. It is within the
context of this event that you place any code that should be executed when the
form region first loads. Again, in this example, this takes place whenever an
email item is displayed.
Click here to view co de image

#region Form Region Factory

[Microsoft.Office.Tools.Outlook.

FormRegionMessageClass

(Microsoft.Office.Tools.Outlook.

FormRegionMessageClassAttribute.Note)]

[Microsoft.Office.Tools.Outlook.FormRegionName

("OutlookAddIn2.FormRegion1")]

public partial class FormRegion1Factory

{

//Occurs before the form region is

initialized.

//To prevent the form region from

http:FormRegion1.cs

appearing, set e.Cancel to true.
//Use e.OutlookItem to get a reference to

the current Outlook item.
private void

FormRegion1Factory_FormRegionInitializing
(object sender,
Microsoft.Office.Tools.Outlook.
FormRegionInitializingEventArgs e)

{
//Code to fetch purchase order

details could go here.
}

}
#endregion

The other important event is FormRegionShowing. As its name suggests,
code within this event executes after the form region is initialized but before it
is actually displayed.
Click here to view co de image

//Occurs before the form region is displayed.
//Use this.OutlookItem to get a reference to the
current Outlook item.
//Use this.OutlookFormRegion to get a reference to the
form region.
private void FormRegion1_FormRegionShowing(object
sender, System.EventArgs e)

{
//Code to format purchase order details could go

here.
}

Creating an Office Document Extension
You can customize Office documents in various ways. You can host controls in
a document, create actions panes specific to a document, and store data within
a document.
A document-level project is created using the same process we used for add-
ins. This time, however, you select an Excel Workbook or Word Document
project type. These project types use designers that represent the look and feel
of an Excel workbook or a Word document.

Hosting Controls
Both Word and Excel have host items that function as containers for controls
and code. A host item is essentially a proxy object that represents a physical
document within either application. These are key to document-level
customizations. For Word, we have the
Microsoft.Office.Tools.Word.Document object, and for Excel,
we have the Microsoft.Office.Tools.Excel.Worksheet object.
Within Visual Studio, we build functionality using these host items through the
use of designers. Each host item can host both Windows Forms controls and
native Office controls.

Note
There is actually a third host item that represents an Excel
workbook:
Microsoft.Office.Tools.Excel.Workbook. It is a
host item for enabling workbook-level customization, but it is not
an actual controls container. Instead, Workbook functions as a
component tray and can accept components such as a DataSet.

Windows F orms Controls
You can add Windows Forms controls onto the document design surface just as
if you were designing a Windows Forms application. In this example, we use
an Excel workbook. The Excel 2010 Workbook project template automatically
adds an .xslx file to our project, which includes three worksheets, each
represented by its own class. (These are the host items we discussed
previously.) These sheets have defined events for startup and shutdown,
enabling us to perform work as the worksheet is first opened or closed.
The design surface for the worksheet looks identical to the worksheet in Excel.
From here, we can add Windows Forms controls to the worksheet by using the
Visual Studio Toolbox, and we can implement code in the code-behind file to
customize the action of those controls. Figure 22.15 shows a workbook
designer in the IDE with a few controls added.

FIGURE 22.15 Adding controls to an Excel spreadsheet.
	

Note
Creating an Office document project requires that your system
allow access to the Microsoft Office Visual Basic for
Applications project system. Normally, this type of access is
disabled for security reasons. If access is disabled, Visual Studio
prompts you to enable it before creating your Office project.

Host Controls
Host controls is the term applied to native Office controls. These controls
actually extend objects found in the Word or Excel object models to provide
additional capabilities such as event handling and data binding. Building out a
document using host controls follows the same process as with Windows
Forms controls. With a document-level project loaded, you see a tab in the
Visual Studio Toolbox that stores the host controls for the specific application
that is targeted. For Excel, there is an Excel Controls tab, and for Word, there
is a Word Controls tab.
Table 22.2 itemizes the available host controls for both Excel and Word.

TABLE 22.2 Microsoft Office Extension Points

Creating an Actions Pane
In addition to customizing the interaction with users within a document,
Windows Forms controls are used to craft custom actions panes. Actions panes
should be used to provide contextual data and command options to users as
they are editing/viewing a document (either a Word document or an Excel
workbook file).

There are several reasons why you would elect to implement your document
interface using an actions pane. One reason is that the actions pane is “linked”
to the document but is not an actual part of the document; the contents of the
actions pane won’t be printed when the document is printed. Another reason to
implement an actions pane is to preserve the application’s document-centric
focus: you can read and page through an entire document while keeping the
information and commands in the actions pane in full view at all times.
Physically, actions panes are created with user controls and are represented by
an Actions Pane Control item. Adding this item to your document project
creates a user control class; you simply build out the UI of the control as
normal. In general, though, you likely want to dynamically add or remove
controls from the actions pane depending on what the user is doing within the
document that is open in Word or Excel. Providing this level of contextual
relevance is the strong point and target of the actions pane in the first place.

Controlling Stacking Behavior
Because the actions pane functions as a toolbar container that can be docked
and moved around by the user, there is a complete control layout engine for
dictating how the controls within the actions pane should be displayed. The
ActionsPane.StackOrder property works with a StackStyle enum
to control layout behavior. The various StackStyle values are documented
for you in Table 22.3.

TABLE 22.3 StackStyle Values

As we did with the custom task pane, after you have assembled a user control
that you want to surface within the actions pane, you need to create a field
variable to hold an instance of the control and then add the control to the
actions pane.
So in the ThisWorkbook class, we add the following declaration.
Click here to view co de image

private ActionsPaneControl1 approvalPane = new

ActionsPaneControl1();

And the following line of code, inserted into the ThisWorkbook_Startup
event, adds our user control to the workbook’s actions pane.
Click here to view co de image

this.ActionsPane.Controls.Add(approvalPane);

Figure 22.16 shows a custom actions pane alongside its worksheet.

FIGURE 22.16 A custom actions pane in Excel.
	

Storing Data in the Data Cache
The data cache is a read/write location within an Office Word document or
Excel workbook that can be leveraged by your Office application to store
needed data. One common scenario is to bind host controls or Windows Forms
controls in an actions pane or on a document surface to a data set stored in the
document’s data island.
Physically, this data island is implemented as an XML document that is
embedded within the Office document. This XML container can host any data
type that meets the following two requirements:

It has to be implemented as a read/write public field on the host item (for
example, the Word ThisDocument or Excel ThisWorkbook class).
It must be serializable (the runtime uses the XmlSerializer to
verbalize the object within the data island).

Most of the built-in .NET types meet these requirements. If you have written a
custom type that also adheres to these requirements, it, too, can be stored
within the data island.
Adding data to the data cache is easy. You mark the data type you want to store
with the CachedAttribute attribute; assuming that the type meets the data
cache requirements and that you have created an instance of the type within
your document-level project, it is automatically added to the data island.
DataSet objects turn out to be useful for conveyance within a data island. To
declare a DataSet as cached, we write the following.
Click here to view co de image

ed()][Microsoft.VisualStudio.Tools.Applications.Runtime.Cach
public DataSet poDataSet;

This declaratively instructs the Office runtime to serialize the object and add it
to the current document’s data cache. The DataSet itself can be populated
any way you see fit.
There is also a way to imperatively cache an object in a document. Each host
item exposes an IsCached method and a StartCaching method. By
combining the two, you can check to see whether an object is already in the
cache, and, if it isn’t, add it. Using these two methods, we might end up with
the following code to store our poDataSet object in a document.
Click here to view co de image

if (!this.IsCached("poDataSet"))

{

this.StartCaching("poDataSet ");

}

If you use the StartCaching() method, there is no need for the class to be
decorated with the Cached attribute, but the object does still need to adhere
to the other requirements for Office data island serialization. You can also use
the StopCaching method on the host item to tell the Office runtime to
remove the object from the document’s data cache.

Tip
There is yet a third way to place an object into the data cache: the
Properties window. If you use the Data Sources window to add a
data set to your project, you can create an instance of the data set
and then select it in the designer. In the Properties window for the
data set instance, set the Cache in Document property to
True. You also need to change the access type of the data set
instance to Public.

Accessing the Data Cache
Many times, an Office business application relies on a server to function as a
central repository for documents. This introduces a dilemma: the Office
applications such as Word and Excel are not designed to be run in a server
environment where many instances might need to be spooled up to serve
multiple requests for document-level extensions. So far, we have been using
objects within the Office object model to extend Office. And this implies that
Office is installed on the machine running your assembly (something that is
certainly not the case for typical server installations). Thankfully, one of the
primary goals for document-level Office architecture is to enable the clean
separation of data from the view of the data. Or, put another way, the Office
architecture defines a way to access a document without actually using the
Office client application. Instead, the Office runtime itself is used.
The key to accessing a document server side is the ServerDocument class.
This class, which is part of the Office Developer Tools and lives in the
Microsoft.VisualStudio.Tools.Applications namespace,
allows programmatic access to a document’s data cache on machines that do

];

not have Office installed. The process running on the server passes the path for
the needed document into the ServerDocument’s constructor and then uses
the CachedDataHostItem class and the CachedDataItem class to
obtain either the schema or the XML or both from the document’s data island.
As long as the target computer has the VSTO runtime installed, the following
code could be used to access the purchase order data from a server-side
purchase order spreadsheet.
Click here to view co de image

string poFile = @"C:\ServerData\po39233202.xls";
ServerDocument poDoc = null;
poDoc = new ServerDocument(poFile);
CachedDataHostItem dataHostItem =

sd1.CachedData.HostItems["ExcelWorkbook1.DataSheet1"
CachedDataItem dataCache =
dataHostItem.CachedData["CachedPO"];
//The dataCache.Xml property will contain the XML
//from the specified data island

Using the dataCache.Xml property, you can now deserialize back into the
source data type, view the data, and so on.

Extending Office with Webpages
We have so far focused on writing extensions to the Office client applications
through the traditional “add-in” notion: you use the usercontrol/Office project
Item approach to design a user interface and code logic that is hosted within
the target Office client app. In this last section, we cover a final project type
—“App for Office”—that follows the same solution pattern but instead of
using client technology allows you to write webpages that are then hosted
within Office.

Starting with the App for Office Project Template
The first step to getting started with an App for Office project is to create a
new project and select the App for Office project template (see Figure 22.17).

FIGURE 22.17 The App for Office project templates.
Unlike the add-in projects that are broken out by specific applications such as
Excel or Word, there is only a single App for Office project template. After
you select the project template and create the new project, a two-page wizard
will launch. The first page will capture the type of the extension (see Figure
22.18).

FIGURE 22.18 The starting page of the App for Office Wizard.
There are three different extension types offered. All should look familiar
because they represent the same types of extension functionality covered

earlier in this chapter:
Task pane —The app will be hosted within the Office application’s task
pane.
Conte nt—The app will be attached to, and hosted within, an Office
document (a Word document file, an Excel worksheet, and so on)
Mail—The app will be hosted within the body of an email message (or
an appointment).

Based on your selection here, the second page will capture a second level of
detail around the type of app you are trying to create. For example, for a Mail
app the wizard will allow you to fine-tune the exact email or appointment
scenario you want to target and allow you to select if you want your app
available as part of a read form or a compose form. For a content app, you can
customize the type of Office client app you want to target as well as whether
you want to have the wizard generate some “starter code” for you.
Let’s walk through the process of creating a task pane app. Select Task pane on
the first page of the wizard (refer to Figure 22.18). On the second screen, we’ll
constrain our solution down to Excel (see Figure 22.19).

FIGURE 22.19 Selecting the target application for a task pane app.

After clicking Finish on the wizard, the project will load. The first thing you
will notice is that two projects have been created: a “manifest” project and a
web project (see Figure 22.20).

FIGURE 22.20 An App for Office solution.
The manifest project holds a single XML file that is our project’s manifest.
This is nothing more than a set of directives that allow the app to be correctly
provisioned and include information such as the display name for the app, the
publisher, and the URL to the web page. If you double-click the manifest file,
the manifest editor will load allowing you to inspect and change the various
properties.
The web project implements the code we want to use within our task pane;
from that point of view, development with an “App for Office” is no different
from the other add-in projects we discussed earlier. The one thing that has
changed here is the technology: we will write our code using HTML,
JavaScript, and Cascading Style Sheets (CSS) instead of using C#. Anything
that can be implemented in a web page—calling into a web service to retrieve
values, calling a JScript function to compute a value, and so on—is possible to
implement within our task pane.
To continue with our purchase order motif, perhaps it would be useful to offer
a way to quickly convert between currencies while Excel is open. In the
example shown in Figure 22.21, we have embedded a simple iframe
element within our project’s Home.html page. This embeds a currency
conversion calculator hosted by themoneyconverter.com.
Click here to view co de image

<body>
<div id="content-header">

<div class="padding">
<h1>Currency Converter</h1>

</div>
</div>
<div id="content-main">

<div class="padding">
<iframe id="tmcmini"

http:themoneyconverter.com

src="http://themoneyconverter.com/MoneyConverter.aspx?
from=USD&to=EUR" marginwidth="0" marginheight="0"
scrolling="no" style="border: currentColor; border-
image: none; width: 175px; height: 202px; background-
color: rgb(255, 255, 255);"></iframe>

</div>
</div>

</body>

FIGURE 22.21 A web page based task pane within Excel.

Summary
This chapter covered the capabilities present in Visual Studio 2015 for
building on top of Microsoft Office applications and customizing their
behavior at both the application level and the document level. The discussion
about Office add-ins covered the capability to add your own items, tabs, and
groupings to the ribbon; the construction of Outlook forms regions; and the
development of custom task panes. The discussion about Office document-
level extensions illustrated the concepts behind hosting Windows Forms
controls and native Office controls on a document’s surface, building custom
actions panes to provide context-aware actions and information to users, and
using the data cache architecture to both read and write data to Office
documents on the client and server side. Finally, we concluded with a brief
walk-through illustrating the process of creating an Office app by hosting a
web page within an Excel task pane.
Although this chapter focused on only a few of the Office applications that can
be customized using the Office Developer Tools for Visual Studio, you should
now have enough information about these project types and designers to get
you started on your own investigation into Visual Studio and Office as a
development platform.

 Part VII: Creating Mobile Apps
	

Chapter 23. Developing Windows Store
Applications

In This Chapte r
Introducing the Modern UI
The Windows Runtime Library
Building a Windows Store Application

Windows 8 represented a significant departure from Windows releases of the
past. For the first time in many, many years, the core development model,
application design approach, and operating system fundamentals have all
undergone a major shift. With touch-enabled devices abounding, Microsoft
needed an operating system that could cater equally well to mainstream
desktop, tablet and mobile form factors, and everything in between.
Therefore, Windows 8 ships with two distinct personalities: a desktop
personality that looks and behaves somewhat similarly to Windows 7, and a
new touch-focused and mobile device-targeted personality. This new
personality (which has been variously referred to as Metro, Immersive,
Modern UI, and most recently, simply “Windows applications”) is backed by a
Windows Store: an app store that serves as the single install source for all
such applications.
This chapter introduces you to the Visual Studio tools that enable you to write
applications that can be published into that Windows Store—applications that
leverage the technical capabilities of Windows 8 and beyond while
conforming to the new look and feel and behavior expectations that users will
have on the new UI platform. We examine the new Windows Runtime library,
also known as WinRT, and we do a deep dive into the Windows Store project
types and project item templates. Finally, we put these concepts into action by
writing a Windows Store application.

Note
Before getting into the material here, please know that to develop
Windows Store applications, you must be running Windows 8/8.1
on your development machine. And of course, you need a copy of
Visual Studio. Visual Studio 2012 is required if you need to target
Windows 8 specifically, Visual Studio 2013 and Visual Studio
2015 can target Windows 8.1 applications.

Introducing the M odern UI
To start to understand the differences between the two Windows 8 UI
personalities and the change in design approach from Windows 7 to Windows
8, one needs look no further than the Windows 8 start screen (see Figure 23.1).
As you can see, this looks nothing like the Windows of old. It has more in
common, in fact, with the tile-based UI introduced on the Windows Phone
platform. (See Chapter 24, “Creating Windows Phone Applications,” for our
coverage of Windows Phone development.) We see that applications are now
represented as tiles. The tiles themselves are not simple, static icons; they are
alive and animated, providing up-to-date information surfaced from the
prospective application. Thus, at a glance, we have information about our
email, our calendar, the weather, current sports scores, and anything else we
care to pin to our start screen.

FIGURE 23.1 The Windows 8 start screen.
The work surface can be panned, scrolled, and flicked using touch interactions.
In fact, everything on the start screen works without the need for a keyboard or
mouse if you have a touch-enabled screen/device.
System-level and application-level settings are controlled via charms. Charms
show to the right side of the screen as a sort of toolbar that slides into view
when the mouse or touch input is directed to the top-right corner of the screen
(see Figure 23.2).

FIGURE 23.2 The Windows 8 charms bar.
Within each application, commands may also be accessed via a bottom app bar
that appears on right-click or via the swipe-up gesture on the screen. Figure
23.3 shows the app bar for the Windows 8 Messaging application. Note the
Status and Invite command buttons.

FIGURE 23.3 An app bar at the bottom of the Messaging app.
You can likely infer many of the design characteristics of Windows Store
applications by looking at these figures. But let’s examine in some detail the
principles to which every Windows Store application is expected to adhere.

Modern UI Attributes
A Windows Store application is built on a core set of principles:

Pride in craftsmanship—Windows Store applications should be
ruthless in their attention to detail and their level of fit and polish
presented to the end user.
Fast and fluid—Applications should be responsive, should fully
embrace touch and gesture-driven interactions, and should be visually
engaging for users.
Authe ntically digital—Skeuomorphism is eschewed in favor of simple
colors, typography, and connections to the digital world.
Do more with le ss—Content is king; more content, less chrome is the
mantra here. Don’t let applications get between users and their content.
Win as one —Your applications should be subtly woven into the overall
user experience. This implies sharing data with other applications,
conforming to the overall UI model, and innovating within a common
framework to provide consistency.

Compare and contrast Figures 23.4 and 23.5, which show a common Windows
application, the Media Player, in both its standard and Modern UI variants.
Note how the Modern UI version (see Figure 23.5) very clearly places an
emphasis on content (songs and artists) over the presence of chrome and
application-level UI elements. The desktop Media Player (see Figure 23.4)
looks positively cluttered by comparison.

FIGURE 23.4 The Windows desktop version of the Windows Media Player.
	

FIGURE 23.5 The updated, Modern UI version of the Media Player.
	

Controls
It is important to note that a Windows Store application doesn’t just look
different; it also behaves differently from a traditional desktop application. As
a developer, this means that there is a different set of expectations and
requirements placed on any Modern UI application you may write. For
instance, standard desktop applications usually make liberal use of dialog
boxes, pop-up windows, and even multiple windows within the same
application. This is not true of the Modern UI app, where everything UI-wise
will take place within the same chunk of screen real estate. Therefore, we have
app bars, panels, and other constructs that overlay the application but that
aren’t separate windows entirely. Four of these constructs are pressed into
play regularly:

App bar—Overlays the bottom of the screen and hosts a small set of
commands that are context sensitive to what is happening in your
application at a given point in time. A navigation app bar that helps the
user go to different places in the app should be located at the top of the
screen.
Me ssage dialog—These are the Windows Store equivalents of the
modal dialog box. Even though it is called a dialog, these are not actual
window dialog boxes. Think of them as panels that will overlay your
primary UI and prevent interaction “behind” them until the dialog is
dismissed.
Conte xt me nu—These UI elements follow the typical context menu
approach by popping up to allow interaction with a specific object on
the screen.
Fly-out—Similar to a message dialog, these panels aren’t modal. The
user may elect to interact with them, or she can dismiss them by
clicking/touching someplace else within the application.

These, and others, make up a standard control set that you can use in your
applications. Figure 23.6 shows some of the many new XAML controls loaded
into the Visual Studio Toolbox.

FIGURE 23.6 The WinRT controls for XAML projects.
Along with the Windows Store design paradigm, Windows 8 brings a
completely new programming model and set of APIs: the Windows Runtime
library (WinRT).

The Windows Runtime Library
WinRT, distilled to its simplest definition, is a Windows API that sits directly
on top of the core Windows 8 services. As such, it is actually a direct peer of
the previous Win32 API. Microsoft invested in a new runtime library for a few
different reasons. For one, Win32 APIs weren’t the easiest to access and
develop against from a .NET perspective. The impedance mismatch between
the .NET Framework surface and the Win32 API/COM surface made for
sometimes confusing, and sometimes impossible, development tasks.
Figure 23.7 shows the traditional “layer cake” architecture diagram, clearly
demonstrating where the WinRT sits in relationship to the other parts of the OS
and the development platform.

FIGURE 23.7 The WinRT architecture.
With WinRT, Microsoft has gone to great lengths to wrap all the underlying
Windows behavior and surface functionality in a way that is a) straightforward
for .NET developers to understand, and b) in many cases directly mimics or
replicates the existing .NET Framework objects. This means no more
P/Invoke or COM-related attributes in your code.
Here is a simple example. The following line of XAML code performs
identical things when compiled against WinRT and the .NET Framework.
Click here to view co de image

<Button Click="Button_Click_1" Content="OK" />

Conversely, if we were to set out to write a Hello, World! application in
WinRT, we might be tempted to write this.
Click here to view co de image

MessageBox.Show("Hello, World!");

That line of C# would work great in either a standard WPF application or a
Windows Forms application. If you were to try to implement this using WinRT,
however, you would quickly discover that WinRT doesn’t have a
MessageBox class. It does, however, have a MessageDialog class.
Click here to view co de image

MessageDialog dialog = new MessageDialog("Hello,

World!");

Dialog.ShowAsync;

So, although the approach and syntax are familiar for .NET Framework
developers, there is not a 100% match between .NET Framework classes and
WinRT classes. Also note that the WinRT XAML stack has been rewritten
without .NET, and you might find some differences with advanced features of
the WPF version of XAML presented in Chapter 21, “Building WPF
Applications.”

Note
WinRT, as shorthand for the Windows Runtime library, should not
be confused with Windows RT. Windows RT was Microsoft’s
product name for the version of Windows 8 designed to run on
ARM-based devices (as opposed to Intel- or AMD-based
machines). With few exceptions, the Windows RT operating
system is only capable of running Windows Store applications.

Language Choices
As you can see from the earlier WinRT diagram (see Figure 23.7), another
benefit of having WinRT in the picture is that you are no longer limited to your
typical stable of managed code languages. So although you could develop your
application C# or Visual Basic, all the WinRT objects are also available to
JavaScript/HTML and C++ code. This widens the playing field quite a bit.
There are no second-class citizens in the equation: WinRT is an equal-
opportunity API. As a developer, you are free to concentrate on the toolset that
you feel most comfortable with from a skill set and background perspective.
The tooling and the API are there to support you.
With WinRT, you can develop a Modern UI application using DirectX,
HTML/JavaScript/CSS, C#, Visual Basic, or C++. Each language will have a
set of common and a set of unique project types.

HTML and JavaScript and CSS
For developers coming from the web side of the business, Hypertext Markup
Language (HTML), JavaScript, and Cascading Style Sheets (CSS) are familiar
and capable technologies. Building a WinRT application using these languages
results in a structure that is similar, if not identical, to a website/application:

CSS is used for the presentation (that is, the layout and styling of the user
interface).
JavaScript is used to code the behavior (the way the app handles
interactions, events, business rules, and so on).
HTML is used for the structure of the content within the UI.

To create a JavaScript application, click File, New Project, and then locate the
JavaScript language selection to the left (see Figure 23.8).

FIGURE 23.8 Creating a JavaScript application.
	
Note that there are five selections to choose from, as described in Table 23.1.
	

TABLE 23.1 The JavaScript Project Choices
Figure 23.9 shows the default project structure for an HTML/JavaScript
application.

FIGURE 23.9 The project structure of an HTML/JavaScript application.

C#/Visual Basic/XAML
Developers more familiar with WPF or Silverlight will benefit from using the
XAML with C# or Visual Basic project templates, with this choice:

XAML styles are used for the presentation.
C# or Visual Basic is used to code the behavior.
XAML is used for the structure of the content within the UI.
	

To create a XAML application, click File, New Project, and then locate the C#
	
or Visual Basic language selection to the left (see Figure 23.10); then select
	
Windows, and then Windows 8.
	

FIGURE 23.10 Creating a C# XAML application.
With C# XAML projects, note that there are four primary UI project selections
to choose from, as described in Table 23.2.

TABLE 23.2 The XAML Project Choices
	

The Application Model
As discussed earlier in the chapter, Windows 8 Modern UI applications come
with a different set of expectations and responsibilities when compared to their
desktop brethren. This means that an entirely new application model is
provided. A quick example here: traditional desktop applications are used to
doing anything that the logged-in user could do. In other words, if I write a
Windows Forms application, I could write code to easily read a document
from the user ’s document library or to access the Internet. Because the
application was running under the security context of a specific user,
application developers (and, therefore, the applications themselves) did little
to police or report on their actions. In the WinRT/Windows Store world, this is
no longer the case. Applications must now ask for permission by requesting
specific capabilities. By default, a Windows Store application will have
access to its own local file folder but cannot randomly access data anywhere
else in the OS without user consent. The same is true for accessing the network
connection, interacting with the camera or microphone, and so forth. These are
referred to in the Windows 8/WinRT world as capabilities, and applications
must be given explicit permission at install time to use the capabilities they are
requesting but also, for some of them, the first time they are used.
Another difference involves the concept of application lifecycles. Desktop
applications would generally be launched and, barring an application crash,
would stay there, chewing up UI real estate, memory, and CPU cycles until the
user explicitly closed them. Again, there is a big change with Modern UI
applications. To provide an application model that would work effectively
under adverse memory or processing conditions (as you might find on low-
powered tablets, for instance), Windows Store applications are carefully
managed by the OS. If an application isn’t in the foreground (that is, has focus
and is receiving user interaction), the application will be suspended.
A suspended application’s threads are no longer running, although it is kept
loaded into memory. Once suspended, the OS may elect to actually terminate
the application at any point in time without notification. This frees the OS to do
what it needs to do to optimize system resources and frees the user from ever
having to worry about physically closing an application.
Implied in this lifecycle is the concept of implicit data storage. With desktop
applications, data is typically stored when the user issues the Save command,
and not before. But if the OS could suspend or terminate an application at any
time, it would lead to severe data loss potential (or at the very least, an
intrusive message to the user along the lines of “this app is about to be killed,
do you want to save your data?”). So Modern UI applications must embrace
the concept of implicit saves. That is, the application will take full
responsibility for persisting whatever data has been entered; this includes
things such as current page/navigation state.

Lifecycle States
Figure 23.11 shows the various lifecycle states that a WinRT Modern UI
application can progress through. Note that although the OS could terminate an
application at any time and for any reason (but mostly when memory is
needed), the intent is to keep apps in suspended mode for as long as possible.

FIGURE 23.11 The application lifecycle.

Building a Windows Store Application
As with most concepts in the IDE, the best way to truly understand how the
Visual Studio tools work is to go through the process of creating an application
using those tools. Our inspiration will be the WPF image viewer application
that we built in Chapter 21. But instead of just constructing the same image
editor, we’ll create an application that enables you to rate pictures. We’ll try to
reuse as many of the concepts and actual code as we can from our earlier WPF
effort, but we’ll have some unique constructs to deal with in the WinRT world.
As a base set of requirements, here are the capabilities we will try to deliver:

Display a list of pictures from the user ’s Pictures library.
Click a photo that will provide details about it.
Edit the picture’s rating value and save it back to disk.
Make everything inherently usable on touch-enabled devices. (That is,
the application will work as well for touch only as it will for keyboard
and mouse setups.)

The application will make use of the GridView and the app bar and will use
capabilities to tie into the Pictures library. With the end goal now in sight,
let’s get started.

Note
It is worthwhile to reinforce the fact that the Windows Runtime
Library (WinRT), although powerful in many different ways, is
not a complete replacement either for Win32 or for the .NET
Framework. In other words, there will still be some things that
are extremely difficult or impossible to do with WinRT. For
example, our WPF sample application from Chapter 21 was able
to do some simple image manipulations (such as blurring an
image) in just a few lines of code. WinRT, however, doesn’t have
the required pixel shader classes to do this. Trying to implement
that same functionality using C#, XAML, and WinRT is nearly
impossible (or at best, prohibitively difficult without third-party
libraries).
Keep in mind that WinRT was first and foremost designed to
equip a certain class of applications with what they need to
implement their feature set. Writing a full-fledged image-editing
application like Adobe Photoshop is an exercise still best left in
the desktop, and not Windows Store, world.

Selecting the Project Type
The language selection for us is easy. Because we are starting with an existing
XAML-based C# WPF application, we should select a XAML-based C#
WinRT project. Click File, New Project, Visual C# (as the language), and then
under the Windows Store template, select the Blank App template. We’ll call
this XamlImageViewer (see Figure 23.12). Click OK to create the project
structure.

FIGURE 23.12 Creating the new project.
	

As mentioned previously, the only way to install Windows Store applications
is via the Windows Store itself. Each application published to the Windows
Store is actually validated, verified, and then certified by Microsoft before it
is made available. This has some ramifications. One is that you need a
developer license to even deploy things to your own Windows 8 device as part
of the normal code and debug process.
During the new project operation, if you don’t have an existing and valid
developer license, you are prompted to get one (see Figure 23.13). The
process itself is automated; you merely need to click through a series of
dialogs before your project will be created. These culminate in a notification
dialog (see Figure 23.14) that indicates if your request for a license was
successful or not and what the expiration date is for that license.

FIGURE 23.13 Obtaining a developer license.
	

FIGURE 23.14 Developer licenses have an expiration date.

With the license out of the way and the project structure in place, let’s worry
about the design and layout.

Designing the Layout
Our prior WPF image viewer application relied on a relatively simple layout.
Images from a selected folder were presented in a vertically scrolled list box
to the left of the screen, and the right, main portion of the screen showed the
selected image and allowed the user to alter the image in four basic ways: you
could make the image grayscale, you could apply a blur effect to the image, you
could rotate the image, and you could flip the image vertically.
Instead of using a single-page approach as we did with the original
application, we now use two pages: a grid page that shows all the available
images in the targeted folder (grouped by their rating value), and an
edit/details page that shows the image selected from the grid and allows us to
apply a new rating.
Figure 23.15 shows a sketch of the new application starting page, and Figure
23.16 shows the editing page.

FIGURE 23.15 The grid of images.
	

FIGURE 23.16 The image detail page.
	

Implementing the Grid P age UI
Because we chose the Blank App template, we have only a single page added
to our project at this stage: MainPage.xaml. It’s currently empty, so we
have some work to do to implement our initial grid display (see Figure 23.17).
Note that in the page designer, we have a graphical representation of a
landscape-oriented tablet. This is nonfunctional chrome added to the window
to enable developers to clearly visualize their application on the intended
device. To the left of the designer window is a new tool window (the Device
window) that changes the way the designer displays its content. You can
remove the device border chrome, change the screen size or resolution of the
emulated device screen, and even put the display into different orientation
modes.

FIGURE 23.17 Getting started with the Blank App template.
With MainPage.xaml open, look at the XAML code. We need to modify the
existing Grid element so that it has two rows. The top row will contain our
app name, and the bottom will contain the GridView of images.
Click here to view co de image

<Grid.RowDefinitions>

<RowDefinition Height="140" />

<RowDefinition Height="*" />

</Grid.RowDefinitions>

Next comes the implementation of the GridView. There will be three basic
attributes of the GridView that will require XAML: we need to create an

event handler for the GridView’s SelectionChanged event, we need an
ItemTemplate that will display our images, and we need to set the
GridView’s ItemsSource to our list of images. Let’s defer that last one
for a bit and instead concentrate on the event handler and the item template.
Create a GridView element inside the existing Grid and name it
ImagesGridView; now let Visual Studio do the work for you on the event
handler side by adding the SelectionChanged event and selecting New
Event Handler (see Figure 23.18). Visual Studio will stub out the code for us
in the code-behind file.

FIGURE 23.18 Creating the SelectionChanged event handler.
Also within the GridView element, we need to establish the link to our data
model. Set the ItemsSource property to bind to an object called Images.
(This object doesn’t exist yet, but we will get around to creating it in a short
while.)
Click here to view co de image

ItemsSource="{Binding Images}"

Your GridView declaration should now look like this:
Click here to view co de image

<GridView x:Name="ImagesGridView" Grid.Row="1"
HorizontalAlignment="Left" VerticalAlignment="Top"
SelectionMode="Single"
Padding="120,126,120,50"
SelectionChanged="ImagesGridView_SelectionChanged"
ItemsSource="{Binding Images}"
/>

An item template is now needed. Templates provide the structure around the
way data is displayed within the GridView. In our case, we are simply

/presentation"
ml"

showing an image, and XAML has an Image element designed to do just that.
To embed an Image element within the GridView, the syntax looks like this:
Click here to view co de image

<GridView.ItemTemplate>
<DataTemplate>

<Grid HorizontalAlignment="Stretch">
<Grid.RowDefinitions>

<RowDefinition Height="175"/>
</Grid.RowDefinitions>
<Image Grid.Row="0" Height="175"

Width="275"
Source="{Binding Image}"

Stretch="UniformToFill"/>
</Grid>

</DataTemplate>
</GridView.ItemTemplate>

One last minor piece of housekeeping: open the App.xaml file and add a
static string to the resource dictionary with the key AppName for storing the
name of our application. This will be used across pages within the header
area.
Click here to view co de image

<Application
x:Class="XamlImageViewer.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
xmlns:local="using:XamlImageViewer">

<Application.Resources>
<ResourceDictionary>

<ResourceDictionary.MergedDictionaries>

<!--
Styles that define common aspects

of the platform look
and feel.
Required by Visual Studio project

and item templates
-->

<ResourceDictionary
Source="Common/StandardStyles.xaml"/>

</ResourceDictionary.MergedDictionaries>

<x:String x:Key="AppName">Xaml Image

Viewer</x:String>

</ResourceDictionary>

</Application.Resources>

</Application>

We will reference the application name within the header area of the page (in
other words, the top row of our outermost Grid) by using a simple
TextBlock bound to that static string.
Click here to view co de image

<TextBlock x:Name="pageTitle" Grid.Row="0"

IsHitTestVisible="false"

Style="{StaticResource PageHeaderTextStyle}"

Text="{StaticResource AppName}"

Margin="50,0,0,50"

/>

And with that, the structure of our main page’s UI is in place.

Creating the Data Model
With our base UI in place, we turn our attention to the classes that will hold
our image information. We need two of them: one to store the list of images
(obtained from the Pictures library) and a second to wrap each image file.
Add a new class to the project and call it ImageFile. To this class, add
three properties: a string property called FileName, an ImageSource
property called Image, and an integer property called Rating. All of
these should be backed by private fields (called _fileName, _image, and
_rating, respectively) and should implement getters and setters.
Click here to view co de image

string _fileName;

private ImageSource _image = null;

private int _rating = 0;

public string FileName
{

get { return _fileName; }

set {_fileName = value; }

}

public int Rating
{

get { return _rating; }

set {_rating = value; }

}

public ImageSource Image
{

get { return this._image; }

set { this._image = value; }

}

Because this object will be contained within a collection and we will want to
know if properties change so that they can be signaled back to the parent
collection, we will use the INotifyPropertyChanged pattern here.
First inherit the ImageFile class from INotifyPropertyChanged.
Then declare an event handler called PropertyChanged.
Click here to view co de image

public event PropertyChangedEventHandler

PropertyChanged;

Next, implement an OnPropertyChanged routine.
Click here to view co de image

private void OnPropertyChanged(string propertyName)
{

if (PropertyChanged != null)
PropertyChanged(this, new

PropertyChangedEventArgs(propertyName));

}

In each of the property sets, include a call to OnPropertyChanged,
passing in the name of the property.
Click here to view co de image

public string FileName
{

get { return _fileName; }

set { _fileName = value;

OnPropertyChanged("FileName"); }

}

public int Rating
{

get { return _rating; }
set {_rating = value; OnPropertyChanged("Rating");

}

}

public ImageSource Image
{

get { return this._image; }

set { this._image = value;

OnPropertyChanged("Image"); }

}

The actual bitmap that is the image file is assigned via the Image property.
Let’s write a SetImage routine that will take in the file, create a bitmap
object from that file, and then assign it to our Image property.
Click here to view co de image

public async void SetImage(StorageFile file)

{

IRandomAccessStream fileStream =

await

file.OpenAsync(Windows.Storage.FileAccessMode.Read);
BitmapImage bitmap = new BitmapImage();
bitmap.SetSource(fileStream);
Image = bitmap;

}

Before moving on, there is one last piece of functionality to add: a method that
will examine the file’s Rating property, transform it from its 0-100 value
into a 0-5 value, and then assign that to our ImageFile’s Rating
property. Image properties are held in the WinRT class
ImageProperties, which we populate directly from the StorageFile
instance via its GetImagePropertiesAsync method.
Click here to view co de image

public async void SetRating(StorageFile file)

{
//Get the image properties for the file.
ImageProperties imageProps =

await
file.Properties.GetImagePropertiesAsync();

//We are looking for the Rating property.

uint rating = imageProps.Rating;

//Rating is a number 0-100.

//We need to factor this down to a 0-5 rating.

//0 == 0

//1-24 = 1

//25-49 = 2

//50-74 = 3

//75-98 = 4

//99 = 5

if (rating == 0)

{

Rating = 0;

}

else if (rating > 98)

{

Rating = 5;

}

else if (rating >= 75)

{

Rating = 4;

}

else if (rating >= 50)

{

Rating = 3;

}

else if (rating >= 25)

{

Rating = 2;

}

else

{

Rating = 1;

}

}

Note
We are making liberal use of the new async and await C#
keywords in our code to reinforce app responsiveness via async
processing. We touch on these keywords a bit in Chapter 3, “The
.NET Languages,” but it will be well worth your while to
understand these patterns in detail to support your WinRT
development efforts. Here is the best place to start:
http://msdn.microsoft.com/en-
us/library/hh191443(v=VS.140).aspx.
	

http://msdn.microsoft.com/en-us/library/hh191443(v=VS.140).aspx

Creating the Collection Class
Now on to the class that will hold our collection of images. Add a new class to
the project, called ImageList. This class is simple in structure. It will hold
an internal ObservableCollection of type ImageFile and expose
this collection via a property called Images. Just as with the ImageFile
class, we want to implement the INotifyPropertyChanged pattern here.
Click here to view co de image

private ObservableCollection<ImageFile> _imageList =
new ObservableCollection<ImageFile>();

public ObservableCollection<ImageFile> Images
{

get { return _imageList; }

set

{

_imageList = value;

OnPropertyChanged("ImageList");

}

}

We also need a method to actually load the collection with ImageFile
instances. File and folder access in WinRT is accomplished via the
StorageFile and StorageFolder classes. There is also a handy helper
class, KnownFolders, that can be used to get a reference to specific
libraries such as the Music library or the Pictures library. We will get a
reference to the Pictures library and then iterate through its collection of
StorageFile instances. For each, we create a new ImageFile instance
and populate its properties accordingly.
Click here to view co de image

public async void LoadImages()
{

//Folder and file objects

StorageFolder folder;

ImageFile imageFile;

IReadOnlyList<IStorageFile> files;

//Get reference to Pictures library.
folder = KnownFolders.PicturesLibrary;

//Get the files within the Pictures library.

files = (IReadOnlyList<IStorageFile>)await

folder.GetFilesAsync();

//Iterate each file and create a new ImageFile to
wrap it.

foreach (StorageFile file in files)

{

imageFile = new ImageFile();

var stream = await

file.OpenAsync(FileAccessMode.Read);

imageFile.FileName = file.Name;
imageFile.SetImage(file);

imageFile.SetRating(file);

this.Images.Add(imageFile);

}

}

Binding the Data
We should have a fully functioning set of data objects at this stage. But we have
to bind those images to our UI. First create an instance of our data model
within the MainPage.xaml.cs file. Open the code-behind and add a
private field to the page class for our ImageList object.
Click here to view co de image

private ImageList _imageList;

In the page constructor, we need to set the data context for our page to the
ImageList and make the call to load the image list.
Click here to view co de image

public MainPage()
{

this._imageList = new ImageList();

this.DataContext = this._imageList;

this.InitializeComponent();

}

At this stage, our data model should be functionally complete. However, if you
try to run the application now, you will get the error message shown in Figure
23.19.

FIGURE 23.19 An unauthorized access exception.

If you recall from our earlier discussion around the concept of capabilities,
Windows Store applications do not, by default, have permission to access file
directories. We need to request that permission. And that is done via
capabilities.

http:MainPage.xaml.cs

Requesting Capabilities
Capabilities, put simply, are access categories that an application must first be
granted permission to. This includes file system access, network access, and
access to hardware devices such as cameras and microphones. Capabilities
are requested via the applications package manifest file. Find this file in
Solution Explorer, and double-click it to open the manifest editor (see Figure
23.20). For our application to work, we need to place a check mark next to the
Pictures Library entry on the Capabilities tab.

FIGURE 23.20 Gaining access to the Pictures library.
In a normal situation in which a user is downloading your application from the
Windows Store, these special permission requests are clearly identified within
the store and again when the application is installed. The user has the option, at
that point, of disallowing the access or not installing the app at all. The user is
in the driver ’s seat here, not the application. When you are debugging
applications under Visual Studio, the access is automatically granted at runtime
provided you have checked the appropriate box and saved the manifest file.
With that done, run the application. Assuming you have images in the root of
your Pictures library, the application should look like Figure 23.21.

FIGURE 23.21 The main page with images loaded.
Now we can focus on the second page, which will allow us to view and
change the rating for the selected image.

Implementing the Image Editor P age
Right-click the project in the Solution Explorer window and select Add, New
Item. From the Templates list, we want to add an Items Detail page, as shown
in Figure 23.22. Name the page ImagePage.

FIGURE 23.22 Adding the Image Detail page.

When you add this page to your project, you will see a warning dialog (see
Figure 23.23). The template for this page is preplumbed to do a variety of
things for you, the developer. To do those things, it relies on a bunch of
standard helper classes and XAML constructs. These are normally placed

within the Common folder of your project and in the project root. Because we
haven’t added these yet (remember, we started with a basic blank project),
Visual Studio has detected that they are missing and offers to add them for you.
Click Yes.

FIGURE 23.23 Automatically adding common dependencies.

The first thing we do in this page is fix up the app name header (find the
TextBlock with the name pageTitle and bind its Text to "
{StaticResource AppName}" just as we did on MainPage). Then
we clear out everything sitting within the outermost Grid element except for
the VisualStateManager markup you will see; we won’t be using any of
those default UI elements, although we will keep some of the code structure
that was created as part of the items detail template.
So, with an empty Grid consisting of two columns, we can get to work on our
layout. We want a large Image element to the left of the screen in the left
column (to hold the selected image from MainPage) and a form area to the
right (in the right column) that will display the image’s rating value and its
filename. For now, we are going to use a standard slider control to display and
edit the image’s rating value.
Here is the XAML for the image area within the root Grid. This contains both
the display of the image and its filename and rating values. Note that we are
binding the controls to properties off of our ImageFile class.
Click here to view co de image

<Grid x:Name="ImageGrid" Grid.Row="1">
<Grid.ColumnDefinitions>

<ColumnDefinition Width=".65*" />

<ColumnDefinition Width=".35*" />

</Grid.ColumnDefinitions>

<Image	 x:Name="SelectedImage" Grid.Column="0"
Margin="50,0,25,25"
Source="{Binding Image}"/>

<Grid Grid.Column="1">

<Grid.ColumnDefinitions>
<ColumnDefinition Width="100" />
<ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition Height="auto" />
<RowDefinition Height="auto" />

http:Width=".35
http:Width=".65

</Grid.RowDefinitions>

<!--Image rating and filename display -->
<Slider Grid.Row="0" Grid.Column="1"

Grid.ColumnSpan="2"
x:Name= "RatingSlider"
Style="{StaticResource

RatingSliderStyle}"
TickPlacement="Inline"

TickFrequency="1" Minimum="0"
Maximum="5"
HorizontalAlignment="Left"

Orientation="Horizontal"
Width="300"
Margin="15,0,0,0"
Value="{Binding Rating}"
SnapsTo="Ticks"/>

<TextBlock Grid.Column="0" Grid.Row="1"
Margin="5,5,0,5"

Style="{StaticResource
BasicTextStyle}"

HorizontalAlignment="Left"
VerticalAlignment="Center"

Height="20">File name:</TextBlock>

<TextBlock Grid.Column="1" Grid.Row="1"
x:Name="FileNameTextBlock"

Style="{StaticResource
BasicTextStyle}" Margin="5,5,0,5"

HorizontalAlignment="Left" Text="
{Binding FileName}"

Width="auto"/>

</Grid>

</Grid>

This page isn’t done yet. We have two major areas to work on: passing the
selected image into the page, and then saving the rating information back to the
image file. Let’s tackle these in that order.

P age Navigation and P assing State
If you examine the code in ImagePage.xaml.cs, you will notice a routine
called LoadState. This was stubbed out for us as part of this page’s
template. This routine is called when the page is navigated to and provides
something crucial: a navigation parameter that enables us to pass objects
around between pages. To make this work, we have to take a quick trip back to
MainPage.xaml.cs and write some code in our SelectionChanged
event handler to navigate to the details page and pass along the ImageFile
object we need.
Click here to view co de image

private void ImagesGridView_SelectionChanged(object
sender,

SelectionChangedEventArgs e)

http:MainPage.xaml.cs
http:ImagePage.xaml.cs

{
//Navigate to the next page, passing the selected

image along.

//Cast selected item to ImageFile.
ImageFile image =

(ImageFile)ImagesGridView.SelectedItem;
this.Frame.Navigate(typeof(ImagePage), image);

}

With that code in place, we are ready to fill out the LoadState routine in
ImagePage.xaml.cs. Add a private field and property in the page to hold
the passed-in ImageFile.
Click here to view co de image

private ImageFile _imageFile;

public ImageFile ImageFileInstance
{

get { return _imageFile; }
set { _imageFile = value; }

}

Now assign ImageFileInstance within the LoadState routine.
Because we have bound our UI controls to the ImageFile properties, we
also need to update our page’s data context to point to the
ImageFileInstance property.
Click here to view co de image

protected override void LoadState(Object

navigationParameter,

Dictionary<String, Object> pageState)

{

ImageFileInstance = navigationParameter as

ImageFile;

this.DataContext = ImageFileInstance;

}

As a quick check, let’s run the app. With the navigation state passing and data
binding working, we have a page that does everything but save rating
information back to the file (see Figure 23.24).

http:ImagePage.xaml.cs

FIGURE 23.24 The image detail page.
	

Creating an App Bar
	
Even though we have discussed the fact that Windows Store applications will
generally save data implicitly and not explicitly, in this case we want our users
to actively tell the application that they want a changed rating value to be
saved back to the file. So we start by implementing a simple app bar with a
single Save button to execute that process.
App bars can appear at either the top of the page or the bottom. The convention
is that navigation-related commands go on top and application commands go
on the bottom. Our app bar with its solitary Save button will live at the bottom.
In the ImagePage.xaml, create a Page.BottomAppBar element
outside the outermost layout grid but within the page itself. Within that element,
we want to nest an actual AppBar element. AppBar objects are typically
structured using a simple StackPanel containing your app bar buttons.
Remember that our UI should work well with touch devices, including tablets.
For that reason, we want to actually avoid centering our button in the middle of
the bar. With a tablet device, a user will want to be able to press the button
using only the thumbs of the hands gripping the tablet. And that means that
buttons should be placed to the far right or far left of the app bar. We’ll go to
the right with ours.
Click here to view co de image

<Page.BottomAppBar>
<AppBar x:Name="BottomAppBar1" Padding="10,0,10,0"

AutomationProperties.Name="Bottom App Bar">
<Grid>

<StackPanel x:Name="AppBarStackPanel"
Orientation="Horizontal"
Grid.Column="0"

HorizontalAlignment="Right">

<Button x:Name="SaveButton"

Style="{StaticResource

SaveAppBarButtonStyle}"

Tag="Edit"

Click="SaveButton_Click"/>

leName);

</StackPanel>

</Grid>

</AppBar>

</Page.BottomAppBar>

If you carefully examine the Button that we have defined, you will notice a
style reference to SaveAppBarButtonStyle. With WinRT XAML
projects, a StandardStyles.xaml resource dictionary is included for you by
default. And within that XAML file are many, many style resources for a wide
spectrum of app bar buttons for commands ranging from save to search to
rename to volume. They are all commented out to start; simply pick the ones
you need, copy them into your page, or uncomment them.
That’s all the XAML we need. The app bar is now fully functioning. We are
now just missing the save routine.

Tip
The app bar button styles use a unique approach to their
embedded icons. These buttons are intrinsically aware of the
Segoe UI Symbol character set. By setting their Content
property to an offset value, WinRT will automatically grab the
appropriate glyph/icon from that character set and use it. Because
that font has hundreds of basic Metro-style icons, it is a perfect
match and is simple to implement. The best way for you to find
icons this way is to fire up the charmap.exe program on
Windows 8. Select Segoe UI Symbol in the top drop-down, and
then click the icon you want. Its offset will display in the status
bar. For instance, a “star” icon is located at offset E113.
Therefore, we would have a content tag set to .

We’ll call the save routine from the SaveButton_Click event; the routine
itself will retrieve the file property information, change the Rating property
to whatever the current value of the rating slider is, and then save the
properties back out using the SavePropertiesAsync() method call.
Click here to view co de image

private void SaveButton_Click(object sender,

RoutedEventArgs e)

{

SaveRating();

}

private async void SaveRating()
{

var file =
await

KnownFolders.PicturesLibrary.GetFileAsync(_imageFile.Fi

var fileProperties = await

file.Properties.GetImagePropertiesAsync();

fileProperties.Rating =

(uint)this.RatingSlider.Value;

http:KnownFolders.PicturesLibrary.GetFileAsync(_imageFile.Fi

await fileProperties.SavePropertiesAsync();

}

Reacting to Lifecycle Events
We have already discussed the application model and its attendant lifecycle.
Refer to Figure 23.11. We have three possible application states:

Activated
Suspended
Not Running

At the application level, you are notified of app changes via a series of events
that correspond to the arrows you see in Figure 23.11. Handling these events
and reacting appropriately means you need to write some event handlers; your
project’s App class is your vehicle for hooking these events. In fact, the
standard App.xaml.cs file created for you already contains code to wire up
the Suspending event.
Click here to view co de image

public App()
{

this.InitializeComponent();
this.Suspending += OnSuspending;

}

private void OnSuspending(object sender,
SuspendingEventArgs e)
{

var deferral =
e.SuspendingOperation.GetDeferral();

//TODO: Save application state and stop any
background activity

deferral.Complete();
}

The use of the deferral object may seem confusing at first, but its job is
fairly simple. While running your program, when the end of the
OnSuspending routine is reached, the runtime will assume that you have
taken care of everything that needs to be taken care of and will promptly
suspend the application. But if your application has followed good practice,
your state saving activity will be executed asynchronously. And that means that
the OnSuspending routine could conclude before your async activity has
actually completed.
The SuspendingDeferral object, which is returned from the call shown
above to e.SuspendingOperation.GetDeferral, is used to signal
to Windows that you want to explicitly tell the runtime when you are done with
your state housekeeping. There is a caveat here: Windows will suspend your
application regardless of your deferral object if you take longer than
approximately 5 seconds to complete your work. So in essence, having the
deferral object created means “don’t suspend the application until I tell you to,
or until my 5 seconds are up, whichever comes first.”
The flip side of the Suspending event, when an application is being

http:App.xaml.cs

resumed, is the Resuming event, which looks similar. (You need to add this
yourself; it isn’t included automatically.)
Click here to view co de image

this.Resuming += OnResuming;

Finally, the OnLaunched routine is called when your application is
launched. This could be by a user clicking/tapping the app tile, or it could be
because a user is going back to your app after it has been suspended and then
terminated.
Click here to view co de image

protected override void
OnLaunched(LaunchActivatedEventArgs args)
{

Frame rootFrame = Window.Current.Content as Frame;

//Do not repeat app initialization when the Window
already has content,

//just ensure that the window is active.
if (rootFrame == null)
{

//Create a frame to act as the navigation
context and

//navigate to the first page
rootFrame = new Frame();

if (args.PreviousExecutionState ==

ApplicationExecutionState.Terminated)

{

//TODO: Load state from previously

suspended application.

}

//Place the frame in the current window.
Window.Current.Content = rootFrame;

}

if (rootFrame.Content == null)
{

//When the navigation stack isn't restored
navigate to the first page,

//configuring the new page by passing required
information as a

//navigation parameter.
if (!rootFrame.Navigate(typeof(MainPage),

args.Arguments))
{

throw new Exception("Failed to create
initial page");

}
}
//Ensure the current window is active.
Window.Current.Activate();

}

sync(filename,

ring,

eamForWrite(),

Storing State
Once your application is aware of these events, you can react to them
appropriately. There is no stock answer here in terms of how you should read
and write your applications state. But the simple high-level pattern is this:
when your application is suspending, do a final save of its state, and when it is
restarted after termination, restore the state. One attractive option is the use of
local storage. Each application has default permissions to access the local
storage area. (In other words, it isn’t a capability that needs to be explicitly
declared.) For our image viewing app, if we wanted to store the page name of
the current page, along with the filename of any currently loaded image, we
could do that quite easily by a) creating a general object to store those items
and b) serializing that object into local storage.
Saving into the application storage area can be accomplished via the familiar
StorageFile class and serializer (commonly,
DataContractSerializer). A great way to bootstrap your application
state storage development is to take a look at a helper class delivered by
Microsoft, called SuspensionManager. This class maintains a
Dictionary object that in turn contains the objects making up your
application’s state. If you add your state information to its dictionary, you can
then call a SaveAsync method on the class, which will take care of
serializing everything to disk:
Click here to view co de image

//Save the current session state.
static async public Task SaveAsync()
{

//Get the output stream for the SessionState file.
StorageFile file = await

ApplicationData.Current.LocalFolder.CreateFileA
CreationCollisionOption.ReplaceExisting);

using (StorageStreamTransaction transaction =
await

file.OpenTransactedWriteAsync())
{

//Serialize the session state.
DataContractSerializer serializer = new

DataContractSerializer(typeof(Dictionary<st
object>),

knownTypes_);

serializer.WriteObject(transaction.Stream.AsStr
sessionState_);

await transaction.CommitAsync();

}

}

Similarly, you can rehydrate your state information via its RestoreAsync
method.
Click here to view co de image

//Restore the saved session state.

sync(filename);

<string,

sStreamForRead());

static async public Task RestoreAsync()
{

//Get the input stream for the SessionState file.
try
{

StorageFile file = await
ApplicationData.Current.LocalFolder.GetFileA

if (file == null) return;

using (IInputStream inStream = await
file.OpenSequentialReadAsync())

{
//Deserialize the session state.
DataContractSerializer serializer = new

DataContractSerializer(typeof(Dictionary
object>),

knownTypes_);

sessionState_ = (Dictionary<string,
object>)serializer.ReadObject(inStream.A

}
}
catch (Exception)
{

//Restoring state is best-effort. If it fails,
the app will

//just come up with a new session.
}

}

As mentioned previously in this chapter, remember that if you are dealing with
anything more than a moderate amount of data in your application, you should
consider saving that data regardless of whether any of the lifecycle events have
been triggered. You don’t want to get into a scenario in which the time it takes
to save your data is longer than the allotted window for either application
startup or suspension. In the case of the former, Windows will assume that the
app is hung and will kill it. And in the case of the latter, you might not get all
your data committed before the application process disappears. If the
application is then subsequently terminated, you have now permanently lost
data.

Publishing to the Windows Store
When your application is complete and you want to share it with the rest of the
world (for profit or not), it is time to publish it into the Windows Store. That
means you will need a developer ’s account. The process itself is
straightforward. Using your Microsoft Account, you register for access to the
store as a developer. After your registration has been approved, you can
reserve your application’s name, establish a price, and upload your packaged
application into the store.
Once again, Visual Studio makes this process seamless with development.
From within the IDE, you can select Store under the Project menu and execute
all the activities needed to go from no account to published application (see

Figure 23.25).
	

FIGURE 23.25 Using the Store menu.

There are several actions available to us from the Store menu:
Ope n De ve lope r Account—To publish into the Windows Store, you’ll
need a developer account to get you started.
Re se rve App Name —All applications within the Windows Store are
required to have a unique name. Because the app name may be featured
prominently in various pieces of your UI, it is wise to settle on and
reserve a name before you even begin development. (You can always
change things down the road.)
Acquire De ve lope r Lice nse —As you build out your application, you
will need to run that application within one or more development
environments to construct and test your code. And that requires a
developer license for each machine that you want to deploy your “in
progress” code to.
Edit App Manife st—This opens the package manifest window (refer to
Figure 23.20).
Associate App with the Store —This launches a wizard that will
automatically download details from your store account (including your
publisher ID, publisher name, and so on) and then include those details
into your local app manifest file.
Capture Scre e nshots—Applications should have screenshots included
in their Window Store entries to enable potential users/purchasers to see
what the app is like before downloading. Selecting this option will run
the current project within the emulator and allow you to capture

/presentation"
ml"

end/2008"

screenshots on your machine as you navigate through the application
pages. You will upload them when you publish the application.
Cre ate App Package s—An app package is just what it sounds like: it is
a package that contains all the components of your application. This is
actually what Windows Store users will download when they choose to
install your app. Selecting this option will create the appropriate
package on your machine so you can upload it to the store later.
Upload App Package s—This option enables you to create a new
release of your app into the Windows Store with the latest and greatest
package.

When your application is finally published, you can expect its landing page to
look something like Figure 23.26.

FIGURE 23.26 The Kindle app in the Windows Store.

As a final word, please visit this book’s download site
(http://informit.com/title/9780672337369 or just search for the book title on
InformIt.com) to get the complete source code for the XAML image viewer
application. The final application adds some fit and finish to the walk-through
presented here, including an app tile and a restyled rating slider control.
Listings 23.1 and 23.2 provide the XAML and C# code for the MainWindow
page, and Listings 23.3 and 23.4 provide the XAML and C# code for the
ImageDetails page.

LISTING 23.1 The Image Viewer XAML Code: MainPage.xaml

Click here to view co de image

<Page
x:Class="XamlImageViewer.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
xmlns:local="using:XamlImageViewer"
xmlns:d="http://schemas.microsoft.com/expression/bl
xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

http://informit.com/title/9780672337369
http:InformIt.com

="Single"

ctionChanged"

>

mc:Ignorable="d">

<Grid Background="{StaticResource
ApplicationPageBackgroundThemeBrush}">

<Grid.RowDefinitions>
<RowDefinition Height="140" />
<RowDefinition Height="*" />

</Grid.RowDefinitions>

<TextBlock x:Name="pageTitle" Grid.Row="0"
IsHitTestVisible="false"

Style="{StaticResource
PageHeaderTextStyle}"

Text="{StaticResource AppName}"
Margin="50,0,0,50"/>

<GridView x:Name="ImagesGridView" Grid.Row="1"
HorizontalAlignment="Left"

VerticalAlignment="Top"
SelectionMode

Padding="120,126,120,50"
SelectionChanged="ImagesGridView_Sele
ItemsSource="{Binding Images}"
>

<GridView.ItemContainerStyle>
<Style TargetType="GridViewItem">

<Setter
Property="HorizontalContentAlignment"

Value="Stretch"/>
<Setter

Property="VerticalContentAlignment" Value="Top"/>
<Setter

Property="HorizontalAlignment" Value="Stretch"/>

<Setter

Property="VerticalAlignment" Value="Top"/>
</Style>

</GridView.ItemContainerStyle>
<GridView.ItemTemplate>

<DataTemplate>
<Grid

HorizontalAlignment="Stretch">
<Grid.RowDefinitions>

<RowDefinition
Height="175"/>

</Grid.RowDefinitions>
<Image Grid.Row="0"

Height="175" Width="275"
Source="{Binding

Image}"
Stretch="UniformToFill"/

</Grid>
</DataTemplate>

</GridView.ItemTemplate>

</GridView>

</Grid>

</Page>

LISTING 23.2 The Image Viewer XAML Code: MainPage.xaml.cs

Click here to view co de image

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

namespace XamlImageViewer
{

/// <summary>
/// An empty page that can be used on its own or

navigated to within a frame.
/// </summary>
public sealed partial class MainPage : Page
{

private ImageList _imageList;

public MainPage()
{

this._imageList = new ImageList();
this.DataContext = this._imageList;
this._imageList.LoadImages();

this.InitializeComponent();
}

/// <summary>

/// Invoked when this page is about to be

displayed in a frame.
/// </summary>
/// <param name="e">Event data that describes

how this page was reached.
/// The Parameter property is typically used

to configure the page.</param>
protected override void

OnNavigatedTo(NavigationEventArgs e)
{
}

private void
ImagesGridView_SelectionChanged(object sender,

http:System.IO
http:MainPage.xaml.cs

/presentation"
ml"

end/2008"

SelectionChangedEventArgs e)
{

//Navigate to the next page, passing the
selected image along.

//Cast selected item to ImageFile.
ImageFile image =

(ImageFile)ImagesGridView.SelectedItem;
this.Frame.Navigate(typeof(ImagePage),

image);

}
}

}

LISTING 23.3 The Image Viewer XAML Code: ImagePage.xaml

Click here to view co de image

<common:LayoutAwarePage
x:Name="pageRoot"
x:Class="XamlImageViewer.ImagePage"
DataContext="{Binding DefaultViewModel,

RelativeSource={RelativeSource Self}}"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
xmlns:local="using:XamlImageViewer"
xmlns:common="using:XamlImageViewer.Common"
xmlns:d="http://schemas.microsoft.com/expression/bl
xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"
mc:Ignorable="d">

<Page.Resources>
<ResourceDictionary

Source="SliderStyle.xaml"/>
</Page.Resources>

<Page.BottomAppBar>
<AppBar x:Name="BottomAppBar1" Padding="10,0,10,0"

AutomationProperties.Name="Bottom App Bar">
<Grid>

<StackPanel x:Name="AppBarStackPanel"
Orientation="Horizontal"

Grid.Column="0"
HorizontalAlignment="Right">

<Button x:Name="SaveButton"
Style="{StaticResource

SaveAppBarButtonStyle}"
Tag="Save"

Click="SaveButton_Click" />
</StackPanel>

</Grid>
</AppBar>

</Page.BottomAppBar>
<!--

This grid acts as a root panel for the page
that defines two rows:

* Row 0 contains the back button and page
title

* Row 1 contains the rest of the page layout
-->
<Grid Style="{StaticResource LayoutRootStyle}">

<Grid.RowDefinitions>
<RowDefinition Height="140"/>
<RowDefinition Height="*"/>

</Grid.RowDefinitions>

<!-- Back button and page title -->
<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>
<Button x:Name="backButton" Click="GoBack"

IsEnabled="{Binding
Frame.CanGoBack, ElementName=pageRoot}"

Style="{StaticResource
BackButtonStyle}"/>

<TextBlock x:Name="pageTitle"
Grid.Column="1"

Text="{StaticResource AppName}"
Style="{StaticResource

PageHeaderTextStyle}"/>

</Grid>

<Grid x:Name="ImageGrid" Grid.Row="1">
<Grid.ColumnDefinitions>

<ColumnDefinition Width=".65*" />
<ColumnDefinition Width=".35*" />

</Grid.ColumnDefinitions>

<Image x:Name="SelectedImage"
Grid.Column="0"

Margin="50,0,25,25"
Source="{Binding Image}"/>

<Grid Grid.Column="1">

<Grid.ColumnDefinitions>
<ColumnDefinition Width="100" />
<ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition Height="auto" />
<RowDefinition Height="auto" />

</Grid.RowDefinitions>

<!--Image rating and filename display
-->

http:Width=".35
http:Width=".65

ton"
le">

<Slider Grid.Row="0" Grid.Column="1"
Grid.ColumnSpan="2"

x:Name="RatingSlider"
TickPlacement="Inline"

TickFrequency="1"
Minimum="0" Maximum="5"
HorizontalAlignment="Left"
Orientation="Horizontal"

Width="300"
Style="{StaticResource

RatingSliderStyle}"
Margin="15,0,0,0"
Value="{Binding Rating}"
SnapsTo="Ticks"/>

<TextBlock Grid.Column="0"
Grid.Row="1" Margin="5,5,0,5"

Style="{StaticResource
BasicTextStyle}"

HorizontalAlignment="Left"
VerticalAlignment="Center"

Height="20">File name:
</TextBlock>

<TextBlock Grid.Column="1"
Grid.Row="1"

x:Name="FileNameTextBlock"
Style="{StaticResource

BasicTextStyle}"
Margin="5,5,0,5"
HorizontalAlignment="Left"

Text="{Binding FileName}"
Width="auto"/>

</Grid>

</Grid>

<VisualStateManager.VisualStateGroups>

<!--Visual states reflect the
application's view state -->

<VisualStateGroup
x:Name="ApplicationViewStates">

<VisualState
x:Name="FullScreenLandscape"/>

<VisualState x:Name="Filled"/>

<!--The entire page respects the
narrower 100-pixel margin convention for portrait -->

<VisualState
x:Name="FullScreenPortrait">

<Storyboard>
<ObjectAnimationUsingKeyFrames
Storyboard.TargetName="backBut
Storyboard.TargetProperty="Sty

<DiscreteObjectKeyFrame

>

Button"
Style">

>

Title"
Style">

yle}"/>
>

KeyTime="0"
Value="{StaticResource

PortraitBackButtonStyle}"/>
</ObjectAnimationUsingKeyFrames

</Storyboard>
</VisualState>

<VisualState x:Name="Snapped">
<Storyboard>

<ObjectAnimationUsingKeyFrames
Storyboard.TargetName="back
Storyboard.TargetProperty="
<DiscreteObjectKeyFrame

KeyTime="0"
Value="{StaticResource

SnappedBackButtonStyle}"/>
</ObjectAnimationUsingKeyFrames
<ObjectAnimationUsingKeyFrames

Storyboard.TargetName="page
Storyboard.TargetProperty="
<DiscreteObjectKeyFrame

KeyTime="0"
Value="{StaticResource
SnappedPageHeaderTextSt

</ObjectAnimationUsingKeyFrames
</Storyboard>

</VisualState>
</VisualStateGroup>

</VisualStateManager.VisualStateGroups>
</Grid>

</common:LayoutAwarePage>

LISTING 23.4 The Image Viewer C# Code: ImagePage.xaml.cs

Click here to view co de image

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.Storage;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

namespace XamlImageViewer
{

/// <summary>

http:System.IO
http:ImagePage.xaml.cs

/// A page that displays details for a single item
within a group while

/// allowing gestures to flip through other items
belonging to the

/// same group.
/// </summary>
public sealed partial class ImagePage :

XamlImageViewer.Common.LayoutAwarePage
{

private ImageFile _imageFile;

public ImageFile ImageFileInstance
{

get { return _imageFile; }
set { _imageFile = value; }

}

public ImagePage()
{

this.DataContext = ImageFileInstance;
this.InitializeComponent();

}

/// <summary>
/// Populates the page with content passed

during navigation.
/// Any saved state is also provided when re-

creating a
/// page from a prior session.
/// </summary>
/// <param name="navigationParameter">The

parameter value
/// passed to
/// <see cref="Frame.Navigate(Type, Object)"/>

when this page was
/// initially requested.
/// </param>
/// <param name="pageState">A dictionary of

state preserved
/// by this page during an earlier

session. This will be null
/// the first time a page is visited.</param>
protected override void LoadState(Object

navigationParameter,
Dictionary<String, Object> pageState)

{
ImageFileInstance = navigationParameter as

ImageFile;
this.DataContext = ImageFileInstance;

}

/// <summary>
/// Preserves state associated with this page

in case the
/// application is suspended or the page is

discarded
/// from the navigation cache. Values must

nc(_imageFile.FileName);

();

conform to

/// the serialization

/// requirements of <see

cref="SuspensionManager.SessionState"/>.
/// </summary>
/// <param name="pageState">An empty

dictionary to be
/// populated with serializable state.</param>
protected override void

SaveState(Dictionary<String, Object> pageState)
{

//TODO: Derive a serializable navigation
parameter

//and assign it to
pageState["SelectedItem"]

}

private void SaveButton_Click(object sender,
RoutedEventArgs e)

{
SaveRating();

}

private async void SaveRating()
{

var file = await
KnownFolders.PicturesLibrary.GetFileAsy

var fileProperties = await
file.Properties.GetImagePropertiesAsync

fileProperties.Rating =
(uint)this.RatingSlider.Value;

await
fileProperties.SavePropertiesAsync();

}

}
}

Summary
This chapter introduced you to the new Windows Runtime library (WinRT) and
the new Visual Studio project and item templates for creating Windows Store
applications for Windows 8. We discussed the fundamentals of WinRT,
including its goals, its high-level architecture, its programming model, and the
Application Lifecycle Model for WinRT applications.
We visited the primary design principles that underlie Modern UI applications
and discussed how those principles are enabling a new class of applications to
run on the Windows 8 operating system.
The various language choices for doing WinRT development were explored,
and the basics of control layout were bridged from the existing WPF world to
the XAML/WinRT world.
Finally, we explored in depth the construction of a WinRT/Windows Store

application from the ground up, expanding on XAML concepts first explored in
Chapter 21.
Although WinRT will look familiar and be comfortable, for .NET developers
at large, the devil is in the details. Before you embark on any serious WinRT
development projects, we highly recommend that you start your journey with
the Windows Dev Center website, located at dev, windows.com.
In the next chapter, as we discuss Windows Phone development, we will
further explore Windows Store applications with the concept of a “universal
app,” capable of running on multiple Windows devices.

http:windows.com

Chapter 24. Creating Windows Phone
Applications

In This Chapte r
Windows Phone Fundamentals
Moving from Silverlight to WinRT
Building a Universal App

In November 2010, Microsoft introduced a new platform to compete in the
fast-moving mobile device market: Windows Phone 7. This was an all-new
hardware and software platform for Microsoft at the time; this new platform
represented a whole new set of application development opportunities, and
challenges, for developers. Today, the Microsoft mobile platform has matured
with version 8.1 of its mobile operating system and application development
framework. Over the years, the platform has grown in depth and breadth and
shares many synergies today with the Windows Store app platform that we
covered in the previous chapter.
In this chapter, we examine the fundamental concepts associated with Windows
Phone applications and the Visual Studio project types, tools, and controls that
you will use to design, construct, test, and deploy Windows Phone 8.1
applications. We will also introduce the concept of Universal apps:
applications that can be written and structured in a way to enable them to run
on many different device formats from tablets, to phones, to desktop
computers.

Windows Phone Fundamentals
Like other phone platforms, Windows Phone consists of an operating system
and an application development framework. Both clearly reflect the constraints
typically found with mobile devices: memory, storage, and battery life are all
precious resources that need to be conserved and balanced, and screen size is
a driving factor in terms of application design. It should come as no surprise,
then, that the Windows Phone development model can be very different from
the other development technologies that we have discussed in this book. But as
we mentioned in the introduction to this chapter, it is also tightly related to
Window Store development. Consider the following shared characteristics of
Windows Phone and Windows Store apps:

Applications can be written using either XAML + C#/Visual Basic or by
using Hypertext Markup Language (HTML) stack technologies
Applications have an operating system (OS)-governed execution model
and lifecycle
Application development is fully supported through the use of specific
project types and project items in Visual Studio
Applications can be packaged and published into a store for download
and install by end users

Let’s first focus on some of the unique aspects of Windows Phone applications.

The UI Basics
The Windows Phone user experience is centered on the concept of tiles. Tiles
are chunks of UI real estate that can either be static representations of an app
or dynamic tiles that show live, useful information related to an app. Figure
24.1 shows the Windows Phone start screen; here you see tiles pinned to the
start screen. Some of them are functioning merely as icon-based app launchers.
Others are displaying useful, contextual information (such as the calendar tile,
which is showing live appointments for the day). You can clearly see that this
tile-based UI joins together the user experience between Windows 8 and
Windows Phone 8. Refer back to Figure 23.1 in Chapter 23, “Developing
Windows Store Applications,” for the Windows 8 comparative screen shot.

FIGURE 24.1 The Windows Phone start screen.
Applications themselves are composed of a few basic user interface elements.
There is a system tray at the top of the device screen that displays global
information about signal strength, wireless signal strength, remaining battery,
and so on. Toward the bottom of the screen is an optional application bar; this
is where some applications will host buttons and menu items for issuing

commands to the application. And then, between the system tray and the
application bar, there is the client/frame area that hosts an application’s page-
based UI (see Figure 24.2).

FIGURE 24.2 The UI structure of a Phone app.

Device Orientation
The UI is capable of changing its layout based on the orientation of the device
(landscape versus portrait). For those applications that expose an app bar, this
will typically migrate to the right side of the screen, and the system tray will
occupy the left strip of screen real estate. Applications can also react
intelligently to orientation changes. For instance, in the case of the built-in
calculator app, the app will switch to a scientific mode when used in the
landscape orientation, offering more computation buttons using the available
screen area (see Figure 24.3).

FIGURE 24.3 Portrait versus landscape orientation modes.

The Programming Model
Just like other Visual Studio development scenarios, application architecture
for the Windows Phone platform consists of three major components:

Events, application user interfaces (APIs), UI elements, and code models
exposed by the operating system
The runtime libraries for implementing functionality
Logic, custom code, and UI elements that you write (in other words, your
app)

All those components are running on top of the operating system kernel itself
(see Figure 24.4).

FIGURE 24.4 Windows Phone architecture.
For Phone apps, there are two different runtimes that you can choose if you
want to focus on managed code, XAML applications: the Silverlight
framework or the Windows Runtime Library (WinRT). For either, you have the

traditional C# and Visual Basic language options.
We focus this chapter on C#/XAML applications built using WinRT. Silverlight
was the only framework option available for .NET developers with Windows
Phone 7 through Windows Phone 7.5 and will be familiar to developers who
have prior exposure to those platforms. However, WinRT is the roadmap focus
for device development going forward given its cross-platform nature
(Windows 8 and Windows Phone 8). This is also a crucial change point if you
want to write Universal apps (applications that are capable of running on
either Windows or Windows Phone).

Note
Silverlight started life as a modernized version of the Windows
Presentation Framework, specifically designed for rich Internet
application development. As a sort of WPF “light,” it was an
ideal development framework for Windows Phone, which
required extensive capabilities (including immersive UI elements)
all while running in a resource-constrained device environment.
WinRT is coming from the opposite direction: it was first
delivered as a core component of Windows 8 and is now moving
downstream to Windows Phone and other devices such as
HoloLens.

Applications that target the Windows Phone runtime have unique attributes and
a unique structure.

Application Anatomy
Windows Phone applications, just like a website, consist of one or more
pages. Each of these pages (which are physically instances of
System.Windows.Controls.Page) will have a XAML file and a
code-behind file. They all run within the context of a “frame” (an instance of
System.Windows.Controls.Frame). This is analogous to a web
browser: it provides the system tray and application bar regions, and it
displays the application page and page content (see Figure 24.5).

FIGURE 24.5 An application’s frame, page, and page content areas.

P age Navigation
Users (or logic within your app) can navigate forward and backward through
the pages of the app. As navigation happens, a stack of pages (called the back
stack) is built up, in just the same way that your web browser maintains history
when you browse the web. Clicking the Back button (a Back button is required
on all Windows Phone devices) will cause the Windows Phone runtime to
page back through that stack of pages.
As discussed in Chapter 23, you can also programmatically navigate between
pages by using the Navigate method on the Frame class. For example, consider
an application that helps you to file expense reports. The application may
allow you to navigate from the main list of expense reports directly to a page
that allows you to input notes. In this case, we might want to wire up the click
event of a button to load that next page like this:
Click here to view co de image

private void ButtonEditNotes_Click(object sender,

RoutedEventArgs e)

{

this.Frame.Navigate(typeof(ReportDetailPage));
}

You can also pass data between pages using an alternate form of the Navigate
method. By supplying an object as a second parameter into Navigate, the target
page can retrieve that object and act on it. We saw this in action with our
sample Windows Store application from the previous chapter: selecting an
image on the main page caused that image to be loaded onto a detail page. The
image itself was passed as an object using the following code.
Click here to view co de image

this.Frame.Navigate(typeof(ImagePage), image);

If we needed to pass a collection of objects, we would simply add those
objects to a container collection object. (Any will do: List, Collection,
Array, and so on.)
In the destination page, the passed object is available in the
OnNavigatedTo. Retrieving it is as simple as pulling it from the
NavigationEventArgs object.
Click here to view co de image

protected override void

OnNavigatedTo(NavigationEventArgs e)

{

base.OnNavigatedTo(e);

//Retrieve the passed-in object, and cast as

necessary.

var myObject = e.Parameter as MyObject;

}

App Lifecycle
WinRT applications on the phone participate in the same, common lifecycle of
WinRT Windows applications (Chapter 23); at any time, a Windows Phone
application will be in one of three different states: Activated, Suspended, or
Not Running:

Activate d—The application is currently executing, although it may be
idle.
Suspe nde d—Applications reach this state when they are deactivated.
This could happen as the result of many different actions. For example,
the user may navigate out of the application. Suspended apps aren’t
executing code, but they are still loaded into memory and can thus be
quickly reactivated.
Not Running—Applications that have been terminated completely are,
of course, not running.

Events are defined on the Windows.UI.Xaml.Application class (in
other words, the App.Xaml and App.Xaml.cs code files) that correspond
to these state changes. See Figure 24.6 for a visual map of the various states

and the events that correspond to the state transitions.
	

FIGURE 24.6 Application lifecycle and Application events.
	

Note
If you look at Figure 24.6, you will notice that there isn’t an event
associated with the application moving to the Not Running state.
The operating system will not notify your application that it is
being terminated. This means that you have to take care of all state
persistence when the application is suspended. In other words,
you have to react as if the application is actually being terminated
every time it is suspended because you have no control over that
state transition.

Understanding the lifecycle is important because you will need to react to
changes between states within your code. It is also important to recognize that
you, the developer, are not in control of when your application moves between
these states. The Windows Phone OS itself may choose to suspend or terminate
an application based on memory conditions or other application activity. One
simple example of this is the OS taking control and suspending the currently
running app when a phone call comes in.

Reacting to State Change Events
Defensive programming is in order here. You need to know when these various
state transitions happen; this, again, is a topic we covered in Chapter 23. The
Windows Phone environment exposes the same set of state change events in
App.Xaml.cs. The Suspending event handlers are connected for you by
default within the App constructor, and you have to manually add the handler
for Resuming.

http:App.Xaml.cs

Click here to view co de image

public App()
{

this.InitializeComponent();

this.Suspending += OnSuspending;

this.Resuming += OnResuming;

}

Note that the Resuming event handler is stubbed out with an exception that
you must replace by your own implementation.
Click here to view co de image

void OnResuming(object sender, object e)

{

throw new NotImplementedException();

}

/// <summary>

/// Invoked when the application is launched normally

by the end user.

/// </summary>

/// <param name="args">Details about the launch

request and process.</param>

protected override void

OnLaunched(LaunchActivatedEventArgs args)

{

}

/// <summary>

/// Invoked when application execution is being

suspended. Application state is

/// saved without knowing whether the application will

be terminated or resumed

/// with the contents of memory still intact.

/// </summary>

/// <param name="sender">The source of the suspend

request.</param>

/// <param name="e">Details about the suspend request.

</param>

private void OnSuspending(object sender,

SuspendingEventArgs e)

{

var deferral =

e.SuspendingOperation.GetDeferral();

//TODO: Save application state and stop any

background activity

deferral.Complete();

}

Note
As a reminder: keep in mind that the two different frameworks,
Silverlight and WinRT, will have different lifecycles, APIs,
events, and more. We are explicitly covering WinRT in this
chapter.

Suspended Versus Terminated
If an application is put into the Suspended state and then reactivated, all of the
objects that were previously loaded in memory will be automatically restored
for you. There is no need to explicitly save any of their state information.
There will be exceptions, however, where you need to do some extra lifting
here. For example, you may have had a network connection open to a resource
somewhere, and that network connection may have timed out during the period
in which the app was dormant. Your reactivation code (for example, code
within OnResuming) should try to correct this scenario before making
assumptions about that network connection.
If an application is terminated, it is officially unloaded from memory. If the
application is reactivated, you need to explicitly repopulate your app’s state
(including navigation position). Clearly, this implies the need to “save state” at
various points within an application’s life time to be able to restore it.

Application State and the Model-View-ViewModel P attern
Windows Phone applications deal with both transient data (control state and
“work in progress” un-saved data) and data that is meant to be persisted long
term. Applications need to implement their own logic to save both types of
data.
How and when to save transient data and persistent data is tightly reliant on the
lifecycle events that we just discussed. Your app will need to be smart enough
to store transient data along the way. If we have a list of string entries within
our application, for example, we would want to save the state (contents) of that
list when the app is suspended. In a similar fashion, when we move between
pages, we want to save the transient data that might be represented within the
page. For example, users will expect the contents of a text box that they just
typed in to still be there if they navigate away from, and then back to, a page in
your application. We also need to write persistent data so that the next time the
app is launched, it will read in the prior saved data.
There is an architecture pattern that helps significantly with application data
loading, saving, and binding: the Model-View-ViewModel (MVVM) pattern.
MVVM is a terrific pattern for binding data within application pages and
centralizing an application’s state so that it can be easily persisted and loaded.
MVVM, as its name implies, consists of three different (but related) constructs:

Mode l—This represents a data entity used within an application. For an
expense report application, one of the models would likely be an
expense report. There is generally no logic contained within a model,
and it is sometimes best implemented as a simple class with some
properties.
Vie w—This is the user interface for the application; for Windows Phone
applications, this is manifested as the page .xaml files that define the
various UI control elements on each page.
Vie wMode l—This is the glue that holds everything together in the
MVVM architecture. Code within the ViewModel is responsible for
handling events, performing data binding, encapsulating any business
logic in the app, and encapsulating our Models.

MVVM (see Figure 24.7) is relevant to the state discussion with Windows
Phone because it allows us to wrap up all the data entities that our app cares
about (in other words, all the Models) into a single ViewModel. We can then
load/save that single ViewModel in reaction to the various lifecycle events.

FIGURE 24.7 The Model-View-ViewModel architecture.
	

We’ll pull all this together in a bit when we build our first sample application.
	

Note
Although its core concepts are simple, it can take some active
development time with MVVM before you fully understand its
moving parts. It’s beyond the scope of this chapter to furnish a full
and in-depth treatment of MVVM, although it is core to Windows
Phone—and XAML/WinRT development—in general. We
recommend that you watch the brief video “Practical MVVM for
Windows Phone” available on the Microsoft Channel 9 website
(channel9.msdn.com).

M oving from Silverlight to WinRT
Moving onto the new WinRT platform is not a zero-cost exercise for existing
applications. The UI controls that you interact with are just one example of the
API change between Windows Phone Silverlight and Windows Phone WinRT
applications. Silverlight controls live within the Microsoft.Phone.Controls
namespace, whereas WinRT components live under Windows.UI.Xaml. The UI
elements are similar, but not the same.
There is another fact that is important to understand: WinRT for Windows and
WinRT for Windows Phone are very similar APIs, but they are not identical.
Although there is considerable overlap, there are items that exist in the phone
library that don’t exist in the windows library, and vice versa. You can

http://channel9.msdn.com

envision the Venn diagram (see Figure 24.8). This is not unexpected. Device
capabilities will be different between laptops and desktops and tablets and
large format phones and small format phones. This sliding window of
capabilities is a core focus of Microsoft as it tries to homogenize its OS and
deliver a core environment that scales across all devices.

FIGURE 24.8 WinRT for Phone versus Windows.

There are, of course, other differences to consider. WinRT offers you the
ability to build your applications using HTML. So one decision you will be
faced with is whether to continue down the XAML path or adopt an
HTML/JavaScript-centric view of the world. Page navigation and lifecycle
events are similar but certainly changed. And there are a score of equivalent,
but different, classes residing in different areas of both the Phone class
libraries and .NET proper. The MSDN dev center offers up an article titled
“Windows Phone Silverlight to Windows Runtime Namespace and Class
Mappings” that is highly suggested reading.
We’ve covered some of these controls already in our Chapter 23 coverage of
building a Windows Store application. We’ll cover some more here and
review some of the new WinRT control equivalents to their “old” Silverlight
counterparts.

Porting a Simple Silverlight Phone App to WinRT
Windows Phone and its corresponding Silverlight platform introduced a
handful of new controls that formed an essential part of its user experience.
These controls represented new approaches that didn’t have stock equivalents
in the WPF or Windows Forms or Web worlds. As the development platforms
and operating systems have started to converge, WinRT replacement controls
have come onto the scene. This represents new work on the part of the
developer who wants to move his current Silverlight application to WinRT.

Building a Universal App
With the basics out of the way, let’s put our combined knowledge of Windows
Phone apps (covered in the first part of this chapter) and Windows Store apps
(covered in Chapter 23) and build a simple Universal app. To demonstrate the
Visual Studio project templates and the core concepts of lifecycle management,
data persistence, and the MVVM approach, we’ll build a simple master-detail
application that allows you to keep track of restaurant bills, compute a tip, and
determine the total for each party if you decide to “split the tab.”

Note
Although we provide extensive code listings in this chapter and
walk through the major pieces of this project, we explicitly do not
cover every little element or line of code needed to assemble the
full, cross-platform, Universal app. Our recommendation is that
you open the full sample application from this book’s website and
then use that as a backdrop as you work through this Universal
app content: www.informit.com/title/9780672337369.

The application should support the following three end user requirements:
A meal bill/tab can be split equally among two or more parties; the app
should also be able to handle a single party.
The app will generate the grand total by adding a specific tip
(percentage) onto the total; the app will also compute the total owed by
each party.
Once the meal cost has been allocated and computed, the details will be
added to the master list of meal bills.

And for our purposes here, we’ll cater to the following nonfunctional
requirements:

The app should use an MVVM approach to simplify maintenance of the
code and optimize the built-in data binding features in XAML apps.
The app will save the meal data to a form of persistent storage.
The app will run equally well, with no loss of functionality, between
Windows 8.1 and Windows Phone 8.1.

The goal is to have a similar look and feel across devices but also to cater to
each device. If we were to sketch out a quick design for both the phone version
and the Windows 8 version, we would quickly see that we likely need two
pages to make this work on the phone: the master list page and then a details
page for each entry. For the Windows version, with additional screen real
estate available (and with a common landscape orientation to that real estate),
we will likely find it better to create just a single page. Figures 24.9 through
24.11 show our quick and dirty prototype.

http://www.informit.com/title/9780672337369

FIGURE 24.9 Windows Phone design—master list page.
	

FIGURE 24.10 Windows Phone design—details page.
	

FIGURE 24.11 Windows design.
As always, we start the adventure by selecting a project type in Visual Studio.

The Universal Project Types
There are four different Universal app project templates that ship with Visual
Studio 2015: Blank App, Hub App, Class Library, and Windows RunTime
Component.
The Blank App is self-explanatory. It creates blank phone and Windows pages
for you without any predefined layout or control set. The Hub App is used to
create multilevel hub-type user experiences where multiple items can be
grouped in different ways, and drilling down on an item will allow you to
view the item detail. This is similar to the approach we adopted with the
XAML Image Viewer app. Class Library is also self- explanatory; it is meant
for creating a standard .dll/class library with no UI components.
Finally, the Windows Runtime Component template allows you to create
components that can be reused across C++ and HTML/JavaScript in addition
to the managed frameworks.
For our purposes, the Hub app comes closest to our design intent, but it is also
overkill. We’ll start with the Blank App template. With Visual Studio open,
select New Project, and then select the Universal App category. Then select
the Blank App template from the list, name the project, and click OK (see
Figure 24.12).

FIGURE 24.12 The Universal app templates.
When Visual Studio is done processing the template, you should have a single
solution with three different projects: a Windows 8.1 project for our Windows
UI, a Windows Phone 8.1 project for our phone UI, and a “shared” project that
will contain as much logic (and XAML) as possible for sharing between the
two target platforms (see Figure 24.13).

FIGURE 24.13 The Universal app solution and projects.
	

Creating the Data Model and View Model
As discussed, we are going to pursue an MVVM approach to this application.
Recall that this means a separation of concern between the objects that hold
our data (the Model), the objects that display our data (the View), and the
objects that glue the display and the data together (the ViewModel).
Because our model simply needs to store a few properties that represent the
meal data we want to track, this is something safe and simple to add into the
Shared project. Likewise, the ViewModel won’t implement any platform-
specific logic, so it can live in the Shared project as well. To stay organized,
we’ll create two new folders in the Shared project: DataModel and
ViewModel. With the folders created, right-click on the DataModel folder,
select Add New Item, and add a C# class called Meal. Do the same for our
view model class, called MainViewModel. It gets added to the
ViewModel folder.
Because we want our views to know when something changes within our
model and view model, we will use a pattern typically referred to as INPC
(INotifyPropertyChanged). This is an interface that we can implement within
our classes that will send a notification to the visual tree and any bound pieces
of the view to let them know that they need to redisplay the data.
First we inherit from the interface.
Click here to view co de image

public class Meal : INotifyPropertyChanged

Then we implement the required event and event handler.
Click here to view co de image

public event PropertyChangedEventHandler

PropertyChanged;

private void NotifyPropertyChanged(String
propertyName)
{

PropertyChangedEventHandler handler =
PropertyChanged;

if (null != handler)
{

handler(this,
new

PropertyChangedEventArgs(propertyName));
}

}

Now we are all set to be able to notify any of the views that care when a
property changes. From within every property “setter” in our class, we will
include a call out to NotifyPropertyChanged, like this:
Click here to view co de image

NotifyPropertyChanged("SubTotal");

We need a handful of read/write properties on the Meal class: SubTotal,
Date, Parties, TipPercent. We will also need to expose a few read-

only properties. These will be computed internal to the class: GrandTotal,
PerPartyGrandTotal, DateString, and Description.
Description and DateString are convenience properties; we can
generate those internal to the model class and get our UI/view to quickly
display the information we are looking for without having to do any necessary
conversion activities within our view or the view model. You can see how we
will use both of these properties within the view by referring back to Figure
24.9.
	
Our view model class is nothing more than a holder for a collection of Meal

objects. The class can hold an ObservableCollection instance of meals
	
and thus function as our data source for our list of meals.
	
Click here to view co de image

private ObservableCollection<Meal> _meals;

public ObservableCollection<Meal> Meals
{

get { return _meals; }

set

{

_meals = value;

NotifyPropertyChanged("Meals");

}

}

Because our view model and model objects live in their own, separate project,
we have to have a way for something durable to instantiate them and make
them available to our other UI projects. To make this happen, we’ll create an
app-level field called ViewModel that will create the view model and hold
its instance. Because this is an app-level property, it is defined within the
Shared project’s App.xaml.cs file.
Click here to view co de image

private static ViewModel.MainViewModel viewModel =
null;

/// <summary>

/// A static ViewModel used by the views to bind

against.

/// </summary>

/// <returns>The MainViewModel object.</returns>

public static ViewModel.MainViewModel ViewModel

{

get
{

//Delay creation of the view model until
necessary

if (viewModel == null)
viewModel = new ViewModel.MainViewModel();

return viewModel;

}

}

With that final piece in place, we can turn our attention to the UI projects.

http:App.xaml.cs

d"

Creating the Windows Phone UI
Thinking back to our prototype, we know that we need two pages within our
Phone app: a master “list” page and a details page. When Visual Studio
created the Windows Phone 8 project, it added a MainPage.xaml by
default. We’ll make that our master list page.
We have a few options for controls to display our list of meals. ListView is a
great choice; it’s easy to work with but still provides enough flexibility for
multiple line templates, and so on.

The Master P age
With the MainPage open, create a new ListView control within the XAML.
You can hand-craft the code or drag the control over from the toolbox. With the
control in place, we need to tweak a few things. First, we need to bind the
control to the view model that we previously created. We also need to react
when the user selects an item in the list, so we have to wire up an event for
that. And we have to provide a quick set of data templates for showing the
data.
Here is an initial declaration for our ListView.
Click here to view co de image

<ListView x:Name="ListViewMeals"
ItemsSource="{Binding Meals}"
SelectionChanged="ListViewMeals_SelectionChange
Tapped="ListViewMeals_Tapped" >

<ListView.ItemTemplate>
<DataTemplate>

<StackPanel Margin="0,0,0,17">
<TextBlock Text="{Binding DateString}"

TextWrapping="Wrap"
Style="{StaticResource

ListViewItemTextBlockStyle}" />

<TextBlock Text="{Binding

Description}"

TextWrapping="Wrap"

Margin="12,-6,12,0"

Style="{StaticResource

GroupHeaderTextBlockStyle}"

FontSize="14" />

</StackPanel>

</DataTemplate>

</ListView.ItemTemplate>

</ListView>

Note that we have added an event handler for the Tapped event on the
ListView control. We’ll use that later to start the editing process for that
selected meal. The styles we are using are built-in, WinRT styles. Because
IntelliSense is supported inside of XAML, you can get the list of available
styles by starting to fill out the syntax for the Style property; then just select
from the available list of StaticResource entries.
If you look at our binding syntax within the DataTemplate elements, you will
see that we are referencing the DateString and Description property.
But in order for the view to pick up on that binding, we have to set an overall

data context to our page. That is done in the code-behind file like this:
Click here to view co de image

public MainPage()

{

this.InitializeComponent();

this.NavigationCacheMode =

NavigationCacheMode.Disabled;

DataContext = App.ViewModel;

}

When everything is wired up and working, our collection of meals (for
example, our view model) will automatically connect to the ListView, which
will automatically display all the Meal objects contained within the
collection.
We need one more piece of functionality to allow users to add a new meal to
the list. We’ll trigger that action via an app bar placed at the bottom of the
page. Dragging and dropping a Command Bar control from the toolbox will
add the initial XAML to our page, which we can then tweak.
Click here to view co de image

<Page.BottomAppBar>

<CommandBar x:Name="BottomAppBar1"

Padding="10,0,10,0">

<AppBarButton x:Name="AddButton"

Icon="Add"
Label="Add"
Click="AddButton_Click" />

</CommandBar>

</Page.BottomAppBar>

The AddButton_Click event handler simply creates a new Meal instance
and adds it to our view model.
Click here to view co de image

private void AddButton_Click(object sender,

RoutedEventArgs e)

{

Meal newMeal = new Meal();

newMeal.Date = DateTime.Today;

newMeal.Parties = 1;

newMeal.TipPercent = .20;

newMeal.SubTotal = 50.00;

App.ViewModel.Meals.Add(newMeal);

this.Frame.Navigate(typeof(MealPage), newMeal);

}

Now we have to worry about how we will deal with a user clicking on an item
in the ListView and adding a new item to the ListView. Both require the details
page to be in place, so let’s build that next.

The Details P age
Right-click on the Windows Phone 8.1 project and select Add New Item. Then
select a blank XAML page. Name the page MealPage, and click OK. Your
solution/project tree should now look similar to Figure 24.14.

FIGURE 24.14 The Universal app solution and projects.
On the details page, we need to build out a series of controls for displaying,
and allowing the editing of, the data from a selected Meal object. A Grid
offers an easy way to position the items on the page. Within the Grid, we’ll
need items like TextBlock, TextBox, and Button controls to implement our UI
design (refer to Figure 24.10). We also need a DatePicker control to allow us
to display and edit the date. All the controls that are meant to display dynamic
data associated with the selected will have to have the appropriate binding
setup within the XAML.
For instance, the TextBox that holds the subtotal amount will look something
like this:
Click here to view co de image

<TextBox	 x:Name="TextBoxTotal"

Grid.Column="1"

Grid.Row="2"

VerticalAlignment="Center"

Text="{Binding SubTotal}"/>

The bindings that we establish are a direct link back to the model and view
model properties that are exposed.
The Button controls need to have their click events wired up to enable the end
user to change the values for SubTotal and TipPercent. That is a
straightforward effort. Add the event handler in the XAML, and let Visual
Studio create the code-behind C# routine for you automatically. Then add the

code in the event handler to increment or decrement the property. Here is the
“decrease tip” code.
Click here to view co de image

<Button x:Name="ButtonDownTip"

Grid.Row="4"

Grid.Column="0"

VerticalAlignment="Center"

HorizontalAlignment="Center"

FontSize="60"

Click="ButtonDownTip_Click"

>-

</Button>

private void ButtonDownTip_Click(object sender,

RoutedEventArgs e)

{

this.MealInstance.TipPercent =

this.MealInstance.TipPercent - .05;

}

When the user adjusts any of these properties, we will need to recompute the
totals. A brute force approach would just make those calculations in the button
click events based on the adjusted values. But here, inside of the view, is
exactly where we don’t want the code to live. That would mean re-
implementing the code again within the Windows UI project. Because this is
simple arithmetic and code that doesn’t need to change based on the
deployment platform, the best place for this code to live is within the Shared
project as part of our data model (part of the Meal class itself).
First add a routine to the Meal class that performs the required arithmetic to
adjust all our read-only properties anytime one of our writable properties
changes.
Click here to view co de image

/// <summary>

/// Update the GrandTotal and PerPartyGrandTotal

properties based on

/// changes to either subtotal or tip percent.

/// </summary>

private void ComputeGrandTotals()

{

_grandTotal = _subTotal + (_subTotal *
_tipPercent);

_grandTotal = Math.Round(_grandTotal, 2);
_perPartyGrandTotal = _grandTotal / _parties;
_perPartyGrandTotal =

Math.Round(_perPartyGrandTotal, 2);

NotifyPropertyChanged("GrandTotal");
NotifyPropertyChanged("PerPartyGrandTotal");

}

Note that we are raising the property changed event via

NotifyPropertyChanged for our two properties. Because this routine
needs to be called every time we touch SubTotal, TipPercent, or
Parties, we will add a call to the routine from each of the property setters.
Here is the example for SubTotal.
Click here to view co de image

public double SubTotal
{

get

{

return _subTotal;

}

set

{

if (value != _subTotal)
{

_subTotal = value;
ComputeGrandTotals();
NotifyPropertyChanged("SubTotal");

}

}

}

With the UI for the detail page in place, we now need to ensure that our page is
being passed the correct object from the master page. As we mentioned
previously in the chapter, data can be passed from one page to another using
the Frame.Navigate method. This is how we will capture the currently
selected Meal object from the master page and display its details on the detail
page.
Revisit MainPage.xaml, and put the appropriate Navigate call into the
previously created ListView_Tapped event.
Click here to view co de image

private void ListViewMeals_Tapped(object sender,

TappedRoutedEventArgs e)

{

//Cast selected item to Meal.

Meal meal = (Meal)ListViewMeals.SelectedItem;

this.Frame.Navigate(typeof(MealPage), meal);

}

This will pull the Meal object from the item in the list that was clicked/tapped
and pass it onto the details page by way of the second Navigate parameter.
Then, within the MealPage.xaml, we add the code within
OnNavigatedTo to pull the passed Meal object out and then bind it to the
data context of the page (thus making all our bound controls “live”).
Click here to view co de image

protected override void

OnNavigatedTo(NavigationEventArgs e)

{

base.OnNavigatedTo(e);

var mealInstance = e.Parameter as Meal;
MealInstance = mealInstance;
DataContext = MealInstance;

}

Barring some minor clean-up and debugging here and there, the Windows
Phone project should now be complete. Figures 24.15 and 24.16 show the
project running in the Phone emulator. We won’t provide all the code here, but
Listing 24.1 shows the MainPage.xaml content, and Listing 24.2 has the
MainPage.xaml.cs. The other code files are available at this book’s
website.

FIGURE 24.15 The app running in the Phone emulator.
	

http:MainPage.xaml.cs

/presentation"
ml"

end/2008"

FIGURE 24.16 The detail page in the Phone emulator.

LISTING 24.1 The MainPage.xaml Code

Click here to view co de image

<Page
x:Class="SplitTheTab.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
xmlns:local="using:SplitTheTab"
xmlns:d="http://schemas.microsoft.com/expression/bl
xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"
mc:Ignorable="d"
Background="{ThemeResource

ApplicationPageBackgroundThemeBrush}">

<Grid x:Name="LayoutRoot"
Background="Transparent">

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="*"/>

</Grid.RowDefinitions>

<!--TitlePanel contains the name of the
application and page title-->

<StackPanel Grid.Row="0"
Margin="12,17,0,28">

<TextBlock Text="SPLIT THE TAB"
Style="{StaticResource

TitleTextBlockStyle}" />
</StackPanel>

<!--ContentPanel contains ListView and its
data templates -->

<Grid	 x:Name="ContentPanel"

Grid.Row="1"

Margin="12,0,12,0">

<ListView x:Name="ListViewMeals"
ItemsSource="{Binding Meals}"
Tapped="ListViewMeals_Tapped" >

<ListView.ItemTemplate>
<DataTemplate>

<StackPanel Margin="0,0,0,17">
<TextBlock Text="{Binding

DateString}"
TextWrapping="Wrap"
Style="

{StaticResource ListViewItemTextBlock
Style}" />

<TextBlock Text="{Binding
Description}"

TextWrapping="Wrap"
Margin="12,-6,12,0"
Style="

{StaticResource GroupHeaderTextBlock
Style}"

FontSize="14" />
</StackPanel>

</DataTemplate>
</ListView.ItemTemplate>

</ListView>
</Grid>

</Grid>
</Page>

LISTING 24.2 The MainPage.xaml.cs Code

Click here to view co de image

using System;
using Windows.ApplicationModel;
using Windows.ApplicationModel.Activation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media.Animation;
using Windows.UI.Xaml.Navigation;

http:MainPage.xaml.cs

//The Blank Application template is documented at
//http://go.microsoft.com/fwlink/?LinkId=234227.

namespace SplitTheTab
{

/// <summary>
/// Provides application-specific behavior to

supplement
/// the default Application class.
/// </summary>
public sealed partial class App : Application
{

#if WINDOWS_PHONE_APP
private TransitionCollection transitions;

#endif
private static ViewModel.MainViewModel

viewModel = null;

/// <summary>
/// Initializes the singleton application

object.
/// This is the first line of authored code
/// executed, and as such is the logical

equivalent of
/// main() or WinMain().
/// </summary>
public App()
{

this.InitializeComponent();
this.Suspending += this.OnSuspending;

}

/// <summary>
/// A static ViewModel used by the views to

bind against.
/// </summary>
/// <returns>The MainViewModel object.

</returns>
public static ViewModel.MainViewModel

ViewModel
{

get
{

// Delay creation of the view model
until necessary

if (viewModel == null)
viewModel = new

ViewModel.MainViewModel();

return viewModel;

}

}

/// <summary>
/// Invoked when the application is launched

normally by the end user.

http://go.microsoft.com/fwlink/?LinkId=234227

er

d)

/// Other entry points will be used when the
application is launched

/// to open a specific file, to display search
results, and so forth.

/// </summary>
/// <param name="e">Details about the launch

request and process.</param>
protected override void

OnLaunched(LaunchActivatedEventArgs e)
{

#if DEBUG
if

(System.Diagnostics.Debugger.IsAttached)
{

this.DebugSettings.EnableFrameRateCount
= true;

}
#endif

Frame rootFrame = Window.Current.Content
as Frame;

//Do not repeat app initialization when
the window already has

//content; just ensure that the window is
active.

if (rootFrame == null)
{

//Create a frame to act as the
navigation context and

//navigate to the first page.
rootFrame = new Frame();

//TODO: Change this value to a cache
size that is appropriate

//for your application.
rootFrame.CacheSize = 1;

if (e.PreviousExecutionState ==
ApplicationExecutionState.Terminate

{
//TODO: Load state from previously

suspended
//application.

}

//Place the frame in the current
window.

Window.Current.Content = rootFrame;
}

if (rootFrame.Content == null)
{

#if WINDOWS_PHONE_APP
//Removes the turnstile navigation for

startup.
if (rootFrame.ContentTransitions !=

null)
{

this.transitions = new
TransitionCollection();

foreach (var c in
rootFrame.ContentTransitions)

{
this.transitions.Add(c);

}
}

rootFrame.ContentTransitions = null;
rootFrame.Navigated +=

this.RootFrame_FirstNavigated;
#endif

//When the navigation stack isn't
restored navigate to the

//first page,
//configuring the new page by passing

required information
//as a navigation parameter.
if

(!rootFrame.Navigate(typeof(MainPage),
e.Arguments))

{
throw new

Exception("Failed to create
initial page");

}
}

//Ensure the current window is active.
Window.Current.Activate();

}

#if WINDOWS_PHONE_APP
/// <summary>
/// Restores the content transitions after the

app has launched.
/// </summary>
/// <param name="sender">The object where the

handler is attached.</param>
/// <param name="e">Details about the

navigation event.</param>
private void RootFrame_FirstNavigated(object

sender, NavigationEventArgs e)
{

var rootFrame = sender as Frame;
rootFrame.ContentTransitions =

this.transitions ??
new TransitionCollection() { new

NavigationThemeTransition() };
rootFrame.Navigated -=

this.RootFrame_FirstNavigated;
}

#endif

private void OnSuspending(object sender,
SuspendingEventArgs e)

{
var deferral =

e.SuspendingOperation.GetDeferral();

// TODO: Save application state and stop
any background activity.

deferral.Complete();
}

}
}

Creating the Windows UI
Now we’re ready to tackle the Windows UI project. As specified in our
prototype, our goal is to provide a single-page experience with the Windows
project; we won’t need a details page—just a single main page that allows us
to both list and edit details of an item in the list.
Because of the overlap in the XAML control library for Windows and for
Windows Phone, we can quickly assemble much of the Windows user interface
by copying what we have already implemented within the phone project.

The Master and Detail Regions
Open the MainPage.xaml file in the Windows project. Using the blank
canvas of the design surface, we’ll first establish the separate regions for our
list of meals and then detail edit/display controls. Within the existing grid, use
the XAML designer to drop a column into the existing Grid control. (Refer to
Chapters 21, “Building WPF Applications” and 23 for guidance on the XAML
design surface.) We want the rightmost column to use auto width sizing,
whereas the leftmost column will use star-sizing to occupy the remaining area
of the screen.
Click here to view co de image

<Grid Background="{ThemeResource
ApplicationPageBackgroundThemeBrush}">

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="Auto" />

</Grid.ColumnDefinitions>

Due to slight differences in the way we want to present our data and
inconsistencies between the ListView control between the two different
platforms, we are going to use a GridView control instead of a ListView
control here. This will enable the more standard horizontal display that you
would typically see on a larger screened device.
Our GridView will share many attributes, however, with our phone UI. It will
still use a two-line data template to display the meal information, and it will
implement a Tapped event handler. Other than that, our bindings stay the same.
Click here to view co de image

ft"

ft"

<GridView x:Name="GridViewMeals"

Grid.Column="0"

ItemsSource="{Binding Meals}"

Tapped="GridViewMeals_Tapped" >

<GridView.ItemTemplate>
<DataTemplate>

<Grid HorizontalAlignment="Stretch">
<Grid.RowDefinitions>

<RowDefinition Height="auto"/>
<RowDefinition Height="auto"/>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="250" />
</Grid.ColumnDefinitions>
<TextBlock Text="{Binding DateString}"

Grid.Row="0"
TextWrapping="Wrap"

HorizontalAlignment="Le
Style="{StaticResource

HeaderTextBlockStyle}"
FontSize="32"/>

<TextBlock Text="{Binding
Description}"

Grid.Row="1"

TextWrapping="Wrap"

HorizontalAlignment="Le
Margin="12,-6,12,0"
Style="{StaticResource

SubtitleTextBlockStyle}"

FontSize="14" />

</Grid>

</DataTemplate>

</GridView.ItemTemplate>

</GridView>

Over in the right column, add a Border control. This will be the parent control
of our editing region of the screen (functioning as a sort of replacement for the
Phone page that implemented this in the phone project). Set the background
color to white.
Click here to view co de image

<Border	 x:Name="DetailsPaneBorder"

Width="450"

Background="White"

Grid.Column="1"

>

Inside the Border parent container, you can go back to the phone project and
copy and paste the entire Grid object that contained our editing controls. We’ll
want to make some tweaks to account for the white background (setting border
brushes to black, setting Foreground properties to black, and so on), but by and
large the entire chunk of XAML can come over intact. We also want to copy
over all our eventing code-behind for the plus and minus buttons.
The remaining item on the to-do list is fixing the data context for our XAML
page. In the Phone world, we set the context of our main page to the main view

model and then passed in the selected Meal object (using Navigate); then, in
the detail page we set our data context from the passed-in Meal object within
the OnNavigatedTo event. In the Windows project, we have only the single
page. So there is no need to pass data around. But we still need to maintain
two different data contexts: the main view model and the selected item. Within
the MainPage.Xaml.cs code, place a member field to hold our Meal
object.
Click here to view co de image

private Meal _mealInstance;

public Meal MealInstance
{

get { return _mealInstance; }
set { _mealInstance = value; }

}

Then we can use the phone ListView’s Tapped code as a starting point. In the
Tapped event in the Window's MainPage.xaml.cs, copy over the
ListView Tapped code and remove the Navigate command. Then set the
MealInstance object to the object pulled from the SelectedItem
property.
Click here to view co de image

//Cast selected item to Meal.

Meal MealInstance = (Meal)GridViewMeals.SelectedItem;

this.DetailsPaneBorder.DataContext = MealInstance;

With that final data context mapping in place, our app should be fully data
aware and ready to run. To test the app, we will want to change the startup
project to the Windows project and then make sure we have the Windows 8.1
simulator selected in the IDE (see Figure 24.17).

FIGURE 24.17 Switching between the Windows Phone emulator and the
Windows simulator.

Figure 24.18 shows our app now running in the Windows 8 simulator.

http:MainPage.xaml.cs
http:MainPage.Xaml.cs

/presentation"
ml"

end/2008"

FIGURE 24.18 The app running in the Windows 8.1 simulator.
The application is now fully functional, and ready to be deployed to either a
Windows Phone 8.1 or Windows 8.1.
	
The Windows MainPage.xaml listing is provided in Listing 24.3, and the
	
MainPage.xaml.cs listing is provided in Listing 24.4.
	

LISTING 24.3 The MainPage.xaml Code (Windows)

Click here to view co de image

<Page
x:Class="SplitTheTab.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml
xmlns:x="http://schemas.microsoft.com/winfx/2006/xa
xmlns:local="using:SplitTheTab"
xmlns:d="http://schemas.microsoft.com/expression/bl
xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"
mc:Ignorable="d"
>

<Page.Resources>
<local:DateTimeToDateTimeOffsetConverter

x:Key="DateTimeToDateTimeOffsetConverter"/>
</Page.Resources>
<Page.BottomAppBar>

<CommandBar x:Name="BottomAppBar1"
Padding="10,0,10,0">

<AppBarButton x:Name="AddButton"
Icon="Add"
Label="Add"
Click="AddButton_Click" />

</CommandBar>

</Page.BottomAppBar>

<Grid Background="{ThemeResource

http:MainPage.xaml.cs

ment="Left"

ment="Left"

ApplicationPageBackgroundThemeBrush}">
<Grid.ColumnDefinitions>

<ColumnDefinition Width="*" />
<ColumnDefinition Width="Auto" />

</Grid.ColumnDefinitions>

<GridView x:Name="GridViewMeals"
Grid.Column="0"
ItemsSource="{Binding Meals}"
Tapped="GridViewMeals_Tapped" >

<GridView.ItemTemplate>
<DataTemplate>

<Grid
HorizontalAlignment="Stretch">

<Grid.RowDefinitions>
<RowDefinition

Height="auto"/>
<RowDefinition

Height="auto"/>
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition

Width="250" />
</Grid.ColumnDefinitions>
<TextBlock Text="{Binding

DateString}"
Grid.Row="0"
TextWrapping="Wrap"

HorizontalAlign
Style="

{StaticResource HeaderTextBlockStyle}"
FontSize="32"/>

<TextBlock Text="{Binding
Description}"

Grid.Row="1"
TextWrapping="Wrap"

HorizontalAlign
Margin="12,-6,12,0"
Style="

{StaticResource SubtitleTextBlockStyle}"
FontSize="14" />

</Grid>
</DataTemplate>

</GridView.ItemTemplate>
</GridView>

<Border	 x:Name="DetailsPaneBorder"
Width="450"
Background="White"
Grid.Column="1"
>

<Grid Margin="20,0,20,0">
<Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition />
<ColumnDefinition />

er},

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition Height="15" />
<RowDefinition Height="Auto" />
<!-- Date -->
<RowDefinition Height="Auto" />
<!-- Sub Total -->
<RowDefinition Height="Auto" />
<!-- Tip -->
<RowDefinition />
<!-- Tip -->
<RowDefinition Height="Auto" />
<!-- Parties -->
<RowDefinition />
<!-- Parties -->
<RowDefinition />
<!-- Final totals -->

</Grid.RowDefinitions>

<StackPanel Grid.Row="0"
Margin="12,17,0,28">

<TextBlock Text="SPLIT THE TAB"
Style="{StaticResource

TitleTextBlockStyle}" />
</StackPanel>

<!-- Date -->
<DatePicker x:Name="DatePickerMeal"

Header="Date:"
Grid.Column="0"

Grid.ColumnSpan="3"
Grid.Row="1"
VerticalAlignment="Center"
Foreground="Black"

BorderBrush="Black"
Date="{Binding Date,
Converter={StaticResource
DateTimeToDateTimeOffsetConvert

Mode=TwoWay}"/>

<!-- Sub Total -->
<TextBlock Text="Total:"

Grid.Row="2"
Grid.Column="0"
Style="{StaticResource

TitleTextBlockStyle}"
VerticalAlignment="Center"

Foreground="Black" />
<TextBox x:Name="TextBoxTotal"

Grid.Column="1"
Grid.Row="2"
VerticalAlignment="Center"
Text="{Binding SubTotal}"

Foreground="Black" />

<TextBlock Grid.Row="3"

Style="{StaticResource
BodyTextBlockStyle}"

Text="Tip:"
Margin="0,15,0,0"

Foreground="Black" />

<!-- Tip -->
<Button x:Name="ButtonDownTip"

Grid.Row="4"
Grid.Column="0"
VerticalAlignment="Center"
HorizontalAlignment="Center"
FontSize="60"
Click="ButtonDownTip_Click"

Foreground="Black"
BorderBrush="Black"

>-

</Button>
<TextBlock x:Name="TextBlockTip"

Grid.Column="1" Grid.Row="4"
VerticalAlignment="Center"

HorizontalAlignment="Center"
Style="{StaticResource

HeaderTextBlockStyle}"
Text="{Binding

TipPercentString}"
Foreground="Black"/>

<Button x:Name="ButtonUpTip"
Grid.Row="4"
Grid.Column="2"
HorizontalAlignment="Center"
VerticalAlignment="Center"
FontSize="60"
Click="ButtonUpTip_Click"

Foreground="Black"
BorderBrush="Black"

>+
</Button>

<!-- Number of Parties -->
<TextBlock Grid.Row="5"

Grid.ColumnSpan="2"
Grid.Column="0"
Style="{StaticResource

BodyTextBlockStyle}"
Text="Number of Parties:"
Margin="0,15,0,0"

Foreground="Black" />

<Button x:Name="ButtonDownParties"
Grid.Row="6"
Grid.Column="0"

m"
ter"

VerticalAlignment="Center"
HorizontalAlignment="Center"
FontSize="60"
Click="ButtonDownParties_Click"

Foreground="Black"
BorderBrush="Black"

>-
</Button>

<TextBlock x:Name="TextBlockParties"
Grid.Column="1"
Grid.Row="6"
VerticalAlignment="Center"
HorizontalAlignment="Center"
Style="{StaticResource

HeaderTextBlockStyle}"
Text="{Binding Parties}"

Foreground="Black"/>
<Button x:Name="ButtonUpParties"

Grid.Row="6"
Grid.Column="2"
HorizontalAlignment="Center"
VerticalAlignment="Center"
FontSize="60"
Click="ButtonUpParties_Click"

Foreground="Black"
BorderBrush="Black"

>+
</Button>

<Border Background="Gray"
Grid.Row="7"
Grid.Column="0"
Grid.ColumnSpan="3"
Margin="-20,15,-20,0"
>
<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition
Height="Auto" />

<RowDefinition />
</Grid.RowDefinitions>
<TextBlock Text="Total"

Grid.Column="0"
Foreground="White"
VerticalAlignment="Botto
HorizontalAlignment="Cen
Style="{StaticResource

HeaderTextBlockStyle}"
FontSize="24"
/>

<TextBlock Text="Per Party"
Grid.Column="1"

m"
ter"

ter"

ter"

Foreground="White"
VerticalAlignment="Botto
HorizontalAlignment="Cen
Style="{StaticResource

HeaderTextBlockStyle}"
FontSize="24"
/>

<TextBlock Text="{Binding
GrandTotal}"

Grid.Column="0"
Grid.Row="1"
Foreground="White"
VerticalAlignment="Top"
HorizontalAlignment="Cen
Style="{StaticResource

HeaderTextBlockStyle}"
FontSize="48"
/>

<TextBlock Text="{Binding
PerPartyGrandTotal}"

Grid.Column="1"
Grid.Row="1"
Foreground="White"
VerticalAlignment="Top"
HorizontalAlignment="Cen
Style="{StaticResource

HeaderTextBlockStyle}"
FontSize="48"
/>

</Grid>

</Border>

</Grid>

</Border>

</Grid>
</Page>

LISTING 24.4 The MainPage.xaml.cs Code (Windows)

Click here to view co de image

using System;
using System.Collections.Generic;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;
using SplitTheTab.DataModel;

namespace SplitTheTab
{

public sealed partial class MainPage : Page

http:MainPage.xaml.cs

{

private Meal _mealInstance;

public Meal MealInstance
{

get { return _mealInstance; }
set { _mealInstance = value; }

}

public MainPage()

{

this.InitializeComponent();

this.NavigationCacheMode =
NavigationCacheMode.Disabled;

DataContext = App.ViewModel;
}

private void AddButton_Click(object sender,
RoutedEventArgs e)

{
Meal newMeal = new Meal();
newMeal.Date = DateTime.Today;
newMeal.Parties = 1;
newMeal.TipPercent = .20;
newMeal.SubTotal = 50.00;

App.ViewModel.Meals.Add(newMeal);
}

private void ButtonDownTip_Click(object
sender,

RoutedEventArgs e)
{

this.MealInstance.TipPercent =
this.MealInstance.TipPercent - .05;

}

private void ButtonUpTip_Click(object sender,
RoutedEventArgs e)

{
this.MealInstance.TipPercent =

this.MealInstance.TipPercent + .05;
}

private void ButtonDownParties_Click(object
sender,

RoutedEventArgs e)
{

this.MealInstance.Parties =
this.MealInstance.Parties - 1;

}

private void ButtonUpParties_Click(object
sender,

RoutedEventArgs e)

{
this.MealInstance.Parties =

this.MealInstance.Parties + 1;
}

private void GridViewMeals_Tapped(object
sender,

TappedRoutedEventArgs e)
{

//Cast selected item to Meal.
Meal MealInstance =

(Meal)GridViewMeals.SelectedItem;
this.DetailsPaneBorder.DataContext =

MealInstance;
}

}
}

Summary
This chapter built on the foundational concepts of XAML and the Visual Studio
designers that were covered in Chapter 21, and the Windows Store application
development concepts in Chapter 23, to enable you to write XAML
applications for Windows Phone. We discussed the various components of the
Windows Phone application and system architecture, including a brief
comparison between the “old” Silverlight approach to Phone development and
the new roadmap, which relies heavily on WinRT XAML libraries. We
discussed the Windows Phone application lifecycle and some of the subtle
differences between the Phone and Windows version of the XAML
components. Finally, we pulled the phone information together with the prior
WPF and Windows Store information in this book and pressed that into play to
build a fully functional “Universal app” that compiles and runs against either
Windows Phone 8.1 or Windows 8.1.
In the next chapter, the last in the book, we take the cross-platform device
development story to the next stage with a discussion of Cordova and writing
for non-Windows platforms.

Chapter 25. Writing Cross-Platform Mobile
Applications with Apache Cordova

In This Chapte r
Fundamentals of Cordova Development
Using Cordova Frameworks and Plug-Ins
Developing a Cordova App with Ionic and Angular

Cordova is a set of device application programming interfaces (APIs) that
allow you to build mobile apps for iOS, Android, and Windows. These
applications run natively on the device. However, they are built using the web
technologies Hypertext Markup Language (HTML), Cascading Style Sheets
(CSS), and JavaScript. This includes support for client frameworks such as
Angular, Bootstrap, and Knockout. A mobile app, like a website, also typically
calls backend services such as those built with the Web API. Cordova allows
you to adapt your web skills to mobile development. (See Chapters 17,
“Building Modern Websites with ASP.NET 5,” 18, “Using JavaScript and
Client-Side Frameworks,” and 19, “Building and Consuming Services with
Web API and WCF,” for a discussion on web technologies.)
As native applications, they can access features of the native device such as
the camera, the file system, the accelerometer, and local storage (to allow the
application to work offline). Cordova supports APIs written in JavaScript for
working with the device. A native application also means you can build for the
mobile app store and thus monetize your creations.
Cordova also solves the big problem of building a mobile application targeted
at a single device (such as iOS) and then having to completely rebuild it to
support other device types (such as Android and Windows). Building native
mobile applications often means writing an app three times, in three different
languages, on three different platforms. This is time consuming and expensive
to create, maintain, and evolve. With Cordova, you write once and deploy to
multiple platforms. This decreases your development and maintenance costs
significantly.
Microsoft has made a big investment in supporting Cordova with tools built
into Visual Studio 2015. These tools simplify getting an environment up and
running (and keeping it that way). For example, Cordova requires more than a
dozen tool chain dependencies to set up and start developing. Thankfully,
Visual Studio has built-in support to solve this problem for developers. This
chapter introduces you to building cross-platform mobile applications using
Cordova and Visual Studio.

Note
Microsoft is not only including Apache Cordova in Visual Studio;
it is also contributing back to the community with numerous
updates that help all developers on all platforms. This includes
security improvements, support for Windows 8.1 / 10 Universal
Apps, and platform-specific configuration.

Fundamentals of Cordova Development
If you are a web developer, you will be happy to know that your CSS, HTML,
and JavaScript client framework skills all come into play when building
Cordova apps. This means you do not have to work with multiple languages
such as Objective C, C++, Java, Swift, and C# to build a single application.
Instead, you can build with the web development tools with which you are
already familiar.
Apache Cordova is an open-source, top-level project from the Apache
Software Foundation (http://www.apache.org/). This foundation is committed
to building open-source software products for the public good. They manage
the project and ensure it remains free and open source. Microsoft has also
become a key contributor to the project.

How Cordova Works
Cordova is an application container that runs natively on supported mobile
devices. The container wraps a web application that you write using standard
HTML, CSS, and JavaScript. Figure 25.1 provides an overview of how
Cordova works.

http://www.apache.org/

FIGURE 25.1 Cordova is a native application container for a web
application. It provides access to the native device capabilities through

plug-ins.
The Cordova application container wraps a web view that takes up the entire
screen of the application. This web view uses the native operating system’s
web view container (UIWebVew in iOS, android.webkit.WebView in
Android, and WebView in Windows and Windows Phone). Each of these web
views provides different web view rendering engines based on operating
system and version. This means that building a Cordova application is similar
to building a website targeted to a mobile device. You must account for
differences in the DOM implementation within your HTML, JavaScript, and
CSS. The good news is, like website development, you can take advantage of
the frameworks that help you do this already, such as Bootstrap, jQuery,
Angular, and more (see Chapter 18).
Your Cordova app gets compiled to a native application on the target device.
For iOS, this is an .ipa (iPhone Application Archive), for Android an .apk
(Android Application Package), and for Windows an .xap (x-Application
Package). Cordova packages your application as a native app that can then be

installed as any other native application. Remember, this native application
wraps a web view and then runs your application like a hosted web page.
Cordova provides plug-ins that work as native device APIs for calling on
device-specific features such as the camera, GPS, network, and sound. These
plug-ins work to abstract the per-device complexity and serve as an interface
between your application and the native device. Cordova ensures the APIs are
consistent across device. This means you can write your code (as JavaScript)
once, and it will work on each device thanks to the Cordova APIs.
The Cordova framework does not provide special user interface (UI)
components for building your applications. Instead, you get the browser ’s
HTML rendering. However, like a website, there are many tools out there that
you can use to make your UI look more native on a device. We will look at
some of these in coming sections.

Cordova Apps
There are hundreds of apps used every day that are built on
Cordova. You can find a sample list at http://phonegap.com/app/.
(PhoneGap is a distribution of Apache Cordova.)

Cordova Dependencies
Cordova applications rely on a number of different technologies, frameworks,
and tools. Just to get started developing code, you often need to spend days
setting up an environment. The Cordova tool chain includes Node.js, Google
Chrome, Git Command-Line Tools, Apache Ant, Java 7, Android SDK
(Software Development Kit), Apple iTunes, SQLite, WebSocket4Net, and
more. You need to be able to set up and configure this environment so you can
build, deploy, and run your applications. Thankfully, Visual Studio can help.
The Visual Studio 2015 installer includes support for Cordova. It installs and
configures the baseline set of tools and environments needed to develop an
application Note that these Visual Studio tools are also available for Visual
Studio 2013 as a separate install. Figure 25.2 shows the many tools added with
the installer.

http://phonegap.com/app/

FIGURE 25.2 The Visual Studio 2015 installer includes support for
installing and configuring the many tool chain dependencies required for

Cordova applications.

The Cordova Project Template
Visual Studio 2015 ships with two project templates for creating Cordova
applications. These templates provide full IntelliSense in the JavaScript code
editor, special tools such as a plug-in manager, and support for your
application markup with tools like the DOM Explorer and CSS editor.
Cordova applications in Visual Studio also get the full debugging experience
across emulators, simulators, and test devices; this means breakpoints, watch
windows, the immediate window, and more. It all starts with the project
template; let’s take a look.

Creating a New Cordova P roject
You can develop Cordova applications with Visual Studio using either
JavaScript or TypeScript. Recall that TypeScript is a superset of JavaScript
that allows you to develop strongly typed applications that are ultimately
processed (compiled) to JavaScript when executed. This chapter focuses on
the more familiar JavaScript. However, the two are similar.
To create a Cordova project in Visual Studio, you start with File, New Project.

This brings up the New Project dialog, as shown in Figure 25.3. Notice the
project type is under either the JavaScript or the TypeScript language. Note
that when you create a Cordova application, Visual Studio may ask you to
create or renew your Windows Developer license for creating apps for the
Windows Store.

FIGURE 25.3 Use the Add New Project dialog to create a Cordova
application based in either the JavaScript or the TypeScript language.

When the project launches in the IDE, you are shown a getting started page.
This provides helpful information and links on developing with Cordova. This
page is actually the Project_Readme.html file inside Solution Explorer.
Like all projects in Visual Studio, Solution Explorer offers you access to the
elements that make up the code for your Cordova application. Figure 25.4
shows a blank app template inside the IDE. Let’s take a look at the folders and
files of the solution.

FIGURE 25.4 A blank Cordova application inside Solution Explorer.

P roject F olders
There are five main folders in the default project template for Cordova. Each
is there to help you manage the assets that make up your app. Many of these
folders can be found inside the www directory. This is the core directory that
represents your application pages, styles, images, and script. The following
provides an overview of each folder (as shown in Figure 25.4):

www/css—Contains the style sheet information for your project.
www/images—Used to house the image assets that make up your
project. Like a Bootstrap web application, a Cordova app may require
multiple image sizes to support multiple device sizes and orientation.
merges—Where you put code that overrides default behavior for a
specific platform. Includes a folder per specific platform, as in Android,
iOS, Windows, and wp8.
res—Contains graphics that will be shown natively on the device. The
Images folder contains images shown on a web page running in
Cordova. The Res folder is where you put icons and splash screens you
want to deploy with your application to be run locally (by the native
device versus through a web view).
www/scripts—Contains the JavaScript code you write to enable the
features of your application.

P roject F iles
The files inside a Cordova project are similar to those found in a website.
These files make up your user interface, the code required to make the UI
execute, and configuration information. The following highlights key files in a
Cordova app:

.html—These are your UI pages. Your UI pages typically sit at the root
of the special www folder. The main page for a Cordova application is
index.html. It shows the first screen in your app and then works with
your code (or a client library such as Angular) to load additional views.
index.css—Represents the styles used to define the look of your
application. This file can be found in the www/css folder.
config.xml—The config.xml file provides the configuration
information for your app. This includes defining common elements such
as start page, version, splash screen, default orientation, and more. This
file is stored in the root of your app (see Figure 25.4). Visual Studio
ships with a designer for editing config.xml. The common
application properties are shown in this designer in Figure 25.5.

FIGURE 25.5 Use the Common section of the Config.xml designer to
change basic properties of your application.

The .config designer for Cordova also enables adding plug-ins to
your project. (See the “Cordova Plug-Ins (for Accessing Native Device
Capabilities)” section later in this chapter.) Finally, this designer
supports setting platform-specific properties of your application. Notice
the links on the left side of Figure 25.5. Each exposes a form for setting
properties for the selected platform (such as target version/device).
index.js—This file (stored in the www/scripts directory)
provides special Cordova events that execute code when the application

starts (onDeviceReady), is paused (onPause), and is resumed
(onResume). You can use the events to initialize parts of your
application on startup, save state on pause, and restore state on resume.
We demonstrate using this file later in this chapter.
taco.json—This file is used by Visual Studio to specify the version
of the Cordova CLI used to build your application. This is useful when
building on a remote machine.

Creating a Basic Cordova App
One of the best ways to understand Cordova (or any new technology) is to
walk through writing that first application to get moving with the basics. We
are going to start with what should be familiar to web developers looking to
do mobile: HTML, CSS, JavaScript, Bootstrap, and jQuery. We are aware that
the current popular frameworks for Cordova applications are Ionic and
AngularJS. We will walk through building an application on those, too.
However, we start with these well-understood web technologies to ensure
your first application feels comfortable. Note that we do not cover the details
of web development because you can find those in Part V, “Building Web
Applications.”

P roject Setup
If you do not have a Cordova project ready, start by creating a new one in
Visual Studio 2015. (See the prior section on creating a Cordova project.) The
following walks you through getting the project ready for development:

1. Add the client-side frameworks of Bootstrap and jQuery. The Visual
Studio template does not include anything like Bower (as does ASP.NET
5). Therefore, you will have to download and add these manually.
Right-click the www/scripts folder and choose Add, New Folder to
create a new folder named lib. This is where you can store the
Bootstrap and jQuery libraries.
Copy the Bootstrap and jQuery folders from your download (or a prior
ASP.NET 5 project template) to the lib folder.

2. Open www/index.html to add the client-side library references.
First add the Boostrap.css link in the <head> section of the page.
(Make sure it comes before index.css because this is where you
typically put your Bootstrap overrides, so it must come second). The
following shows an example.

Click here to view co de image

<link rel="stylesheet"
href="scripts/lib/bootstrap/css/bootstrap.css"

/>
<link href="css/index.css" rel="stylesheet" />

3. At the bottom of Index.html, add the <script> tags to include
jQuery and the Bootstrap script file. Remember to keep the reference to
your custom script for the page (index.js) last in this list. (It will
likely rely on the other scripts being loaded first.) The following shows
an example of this complete section (including the default items in the

http:index.js

template).
Click here to view co de image

<!-- script references -->

<script src="cordova.js"></script>

<script src="scripts/platformOverrides.js">

</script>

<script src="scripts/lib/jquery/jquery.js">

</script>

<script

src="scripts/lib/bootstrap/js/bootstrap.js">

</script>

<script src="scripts/index.js"></script>

The project and initial page should now be set up. We will look at building the
user interface next.

Creating the Main App P age
The mobile application you create here is based on the samples from Chapter
18. It allows a user to log data related to a bike ride or run. Here, however, we
are going to log each entry using a mobile device running Cordova. There is
one primary page for this application: index.html. The following walks
you through creating this user interface:

1. Start with the index.html page you used in the prior walk-through
(where you added the client-side scripts). The markup for this page will
include five primary sections between the opening and closing <body>
tags. These sections are shown in Listing 25.1 highlighted with a
preceding, bold comment tag, as in <!-- comment -->. Notice that
we are using Bootstrap styles throughout the markup. We will look at
each section of the markup as we proceed.

LISTING 25.1 The <body> of the Index.html Page

Click here to view co de image

<!-- the header + navigation -->
<div id="navbar"></div>

<div class="container body-content">
<h2>Track My Pace</h2>

<!-- user input form -->
<div class="row">

<div class="col-md-4">
<label class="control-label">Distance (miles):

</label>
<input type="text" id="distance" class="form-

control" />
<label class="control-label">Time (minutes):

</label>
<input type="text" id="time" class="form-

control" />
<button type="button" class="btn"

id="btnCalc">calculate</button>

http:src="scripts/lib/bootstrap/js/bootstrap.js
http:src="scripts/lib/jquery/jquery.js
http:src="scripts/platformOverrides.js

</div>

</div>

<div class="row col-md-4">

<!-- pace calculation results -->
<div id="paceDisplay" style="display: none;">

<hr />
<p>Calculated pace (mins/mile):

</p>

<button type="button" class="btn btnSave"

id="btnSave">save</button>
</div>

<!-- results log -->
<div id="logDisplay" style="display: none;">

<hr />
<p>Pace log (date, dist, time, pace):

</p>
<ul id="logData">
<button type="button" class="btn"

id="btnClear">clear</button>
</div>

</div>

<!-- the footer -->
<div id="footer"></div>

</div>

2. The header and footer <div> tags in Listing 25.1 are empty. This is
because our app is being designed to work like a website in that it will
contain multiple pages. Each page will have a common header and
footer. (We will look at building a single-page application with Cordova
in a coming section.) We will write some simple jQuery to add the
header and footer to these <div> sections.
Start by adding a new page to the application for the navigation. You can
do so by right-clicking the www folder in Solution Explorer and
choosing Add, New Item. Select the HTML Page template. Name the
page navbar.html.
Repeat this process for a page named footer.html.

3. Open navbar.html and add a standard Bootstrap navbar. This will
contain the main header for the application as well as three navigational
elements (Home, About, Contact). The following shows an example.

Click here to view co de image

<div class="navbar navbar-inverse navbar-fixed-
top">

<div class="container">
<div class="navbar-header">

<button type="button" class="navbar-toggle"
data-toggle="collapse" data-

target=".navbar-collapse">

</button>

My

Run	 / My Ride

</div>

<div class="navbar-collapse collapse">

<ul class="nav navbar-nav">
Home
About
Contact

</div>

</div>

</div>

4. Open footer.html and add the following simple content to represent
the footer in our application. (Note that the app does not require a
footer.)

Click here to view co de image

<footer>

<hr />

<p>© VS 2015 Unleashed</p>

</footer>

5. Make sure the header and footer are displayed on each page in the
application. Open index.js from the www/scripts folder. Inside
the main closure function, add the following jQuery calls just before the
end of the function (after onResume). These two lines of code find the
given <div> tag for either the header or the footer and load the contents
of the appropriate file.

Click here to view co de image

//Load the HTML common to all pages.

$("#navbar").load("navbar.html");

$("#footer").load("footer.html");

6. Notice that the sections from Listing 25.1, “pace calculation results” and
“results log,” are marked with a style to hide these <div> tags and their
contents. We do not want to show these sections unless the user adds
content to them.

7. You can add a page to the application for about.html and
contact.html. Simply use the markup created earlier in Listing 25.1
as a basis. Replace the content within the <body> tags with a simple
title for these pages. We are showing them here just to illustrate
navigation and page refresh using a standard web model to build a
Cordova application.
We also added a few overrides to www/css/index.css. These are
styles to make the application look a bit nicer. We do not cover those
here, but you can review these style changes from the code download for
this book.

http:index.js

Writing the JavaScript for the App
The last step is to create some basic JavaScript (also using jQuery) to wire up
the application to user input. The following walks you trough each of these
steps:

1. Calculate the pace —The UI contains a button called Calculate that
should calculate and show the user her pace based on her entered time
and distance. You need to wire the click event for this button to a
JavaScript function you will write. Open index.js and add the
following two lines to the onDeviceReady() function:

Click here to view co de image

var btnCalc = document.querySelector('#btnCalc');
btnCalc.addEventListener('click', onCalculate);

Also inside index.js, add the following method to get the input
values, calculate pace, and display the information to the user
(provided pace is numeric). You should add this method inside the main
closure of the page (under the onResume() function).

Click here to view co de image

function onCalculate() {

var paceDisplay = $('#paceDisplay');

paceDisplay.hide();

//Get values from input fields.

var time = $('#time').val();

var dist = $('#distance').val();

var pace = (time / dist);

if (!isNaN(parseFloat(pace)) && isFinite(pace)) {
//Update UI.
$('#pace').text(pace.toFixed(2));
paceDisplay.fadeIn();

}

};

2. Save log data—After a user has calculated her pace, she can either
calculate another pace or save her calculation to the log. The UI contains
a button called Save inside the Pace Calculation Results section. Again,
add the click event to the button inside the onDeviceReady()
function of index.js. The following shows an example.

Click here to view co de image

var btnCalc = document.querySelector('#btnSave');
btnCalc.addEventListener('click', onSave);

Add a method to index.js called onSave() (under the prior
method) to handle the save button click event. This method should create
an entry as a list item () and prepend that item to the list in the
application. The list should include the date of the entry, the actual time
and distance, and the calculated pace. The following shows an example.

Click here to view co de image

http:index.js
http:index.js
http:index.js
http:index.js

function onSave() {
var pace = $('#pace').text();
if (!isNaN(parseFloat(pace)) && isFinite(pace)) {

//Get values from input fields.

var time = $('#time').val();

var dist = $('#distance').val();

//Build string to add to .

var date = (new Date()).toDateString();

var list = $("#logData");
list.prepend('' + date + ' - D: ' + dist +

', T: ' + time + ', P: ' + pace + '');
$('#logDisplay').fadeIn();

}
};

3. Cle ar log data—The Results Log section of the UI contains a Clear
button. Use index.js and the onDeviceReady() function to bind
to this click event as you did the prior two buttons. The following is an
example.

Click here to view co de image

var btnCalc = document.querySelector('#btnClear');
btnCalc.addEventListener('click', onClear);

Add a method inside index.js to clear the log when the user presses
the Clear button. The following is an example.

Click here to view co de image

function onClear() {

$("#logData").empty();

$('#logDisplay').fadeOut();

};

The application is now complete. We can run and debug using Visual Studio.
Of course, Cordova requires emulators, simulators, or actual devices to
execute your code properly. We look at these features of the tool next.

Running and Debugging Your App
Visual Studio works with the Cordova command-line interface (CLI) to allow
you to build an application for deployment to a native device. You configure
the build process to target a specific platform such as Windows, iOS, or
Android, and Visual Studio and the CLI create the appropriate app package for
the device. You can then run your app on a device tethered to your machine, an
emulator, or a simulator. We will look these scenarios next.
Visual Studio uses MSBuild to call out to the CLI through a layer called vs-
mda. These tools then deliver the appropriate Cordova package (along with
your app) that the native device can execute. When developing on a Windows
machine, this works great for building Windows Phone/Store apps and apps
for Android. However, iOS requires Xcode components that only work on a
Mac. Visual Studio include the vs-mda-remote agent to get past this problem.
You can set a Mac as a build server, target it from Visual Studio, execute the
build, and then debug on the same device, a tethered device, or an emulator

http:index.js
http:index.js

running on a Mac. Of course, you can develop the same Cordova apps directly
on a Mac.

Note
For more details on the Cordova build process inside Visual
Studio, see “How the Cordova Build Process Works in Visual
Studio” on msdn.microsoft.com.

Selecting Your Target Run Environment
There are a large number of options in Visual Studio for deploying your device
for debugging and verification. These many options mimic the variety of
devices, sizes, versions, and types available on the market. You will want to
run and debug your application on each platform you intend to support, the
version of the operating system (OS) you intend to support, and the device type
(phone, tablet, PC).
Figure 25.6 illustrates the run options for Cordova applications in Visual
Studio. The Debug menu should be familiar; this is where you select what type
of compilation you want to execute. Debug is used for debugging because it
allows you to step through your code. Release allows you to run your code in a
full release mode. Distribution creates the packages required to distribute your
application to an app store.

FIGURE 25.6 Use the debug options to select a compilation, target platform,
and target device/simulator when running your application in debug mode.

Notice the second menu option in Figure 25.6. This is where you pick your
target platform. The options are Android, iOS, and the many configurations of
Windows. The Windows options are there to support both Phone 8 and Phone
8.1 (universal apps) as well as Windows 10 universal apps. The other

http://msdn.microsoft.com

Windows options are there to support apps written for the Windows Store on
the Win8 desktop or table (such as the Surface).
The third option in Figure 25.6 shows the options available for deployment
and debugging your application based on your selected platform. In this
instance, the platform selected is iOS. Notice the many Ripple simulators
available. Ripple, like Cordova itself, is an open source project from Apache.
It creates native device simulators that run in a browser for the many platforms
and device types out there (more on Ripple in a moment). The other options in
this list include Local Device and the simulators available for iOS. If targeting
iOS, Visual Studio supports targeting the many Ripple simulators (currently
through iPhone 5). However, if you want to use a local device or one of the
many simulators available, you need to configure a Mac as a build server to
work with Visual Studio. (See the following Note.)

Build and De bug for MAC
To configure a Mac as a build server and to run your simulators
on the same machine or a tethered device, you use the Visual
Studio Options dialog (Tools, Options). Under the section Tools
for Apache Cordova, you will find Remote Agent Configuration.
Here you set the Host, Port, and Security PIN properties to enable
a remote configuration on a Mac.
You must also install and configure the vs-mda-remote agent on
the same Mac and set your Security PIN. For a walk-through of
this scenario, see the MSDN article, “Install Tools to Build for
iOS.” This walk-through illustrates setting up the vs-mda-remote
build on a Mac and connecting it to Visual Studio for the debug
experience.

Selecting a different environment (Windows or Android) from the second
drop-down in Figure 25.6 changes your options for emulators and devices.
There are currently no Ripple simulators for Windows. However, Microsoft
ships with multiple emulator environments for phones. You can also tether a
device to your PC or even use the local machine (for Windows 8 store). Your
Android options also include a tethered device, Ripple simulators, and the two
new Android emulators created by Microsoft that ship with Visual Studio (one
for phone, one for tablet).

Debugging with Apache Ripple
We will start by running the basic sample application created earlier in this
chapter using Apache Ripple. We use the drop-downs shown in Figure 25.6 to
select Debug, iOS, and Ripple iPhone 5. You then press the Play button (green
arrow) or F5. This will build the application, deploy it to the Ripple simulator,
and open it within a browser window. It also binds the Visual Studio debugger
to the running application.
Figure 25.7 shows the application running in the Ripple iPhone 5 simulator.
Notice the menu bar at the top right. Clicking this “hamburger” button drops
down the menu options (because this uses Bootstrap). Also notice that here we
have calculated a pace and saved it to the list.

FIGURE 25.7 The Cordova sample running in the iPhone 5 simulator from
	
Ripple.
	

The Ripple simulators use Chrome as the default browser. Figure 25.7 shows
just the application. However, Ripple provides a number of options for
simulating a user working with the device. These options are available in the
actual browser window, as shown in Figure 25.8. The following highlights
some of these many options:

De vice s—Allows you to select a different device. You should stay with
the device selected if running in debug mode. However, you can also run
inside of Ripple without debugging (Ctrl+F5) in Visual Studio. In that
scenario, you can easily flip devices and see how your application may
look and behave on those devices.
You can also change the orientation of the screen from this section. This
will show how your application behaves in Portrait and Landscape
mode. Recall that you can choose if you intend to support both modes
from the config.xml file in your project.

Information—Provides detailed information about the environment of
the simulator including versions and screen size information. It also
provides details on the actual native browser used in the web view (user
agent).
Acce le rome te r—Allows you to mimic what happens when a user
activates the device’s accelerometer by tilting, rotating, and shaking the
device. You may expect certain behavior in different scenarios (such as a
driving game).
Batte r Status—Supports simulating what happens when the device is
running low on battery. You may have code you expect to run in this
scenario.
Se ttings, De vice and Ne twork Se ttings—Allow you to set various
	
options for the simulated device.
	
Ge o Location—Supports changing the user location on the device. This
is helpful if you are using geo location in your application for various
scenarios.
Config—Illustrates how your application configuration is seen by the
device.
Eve nts—Allows you to fire events on the device and then see the
results. Events include Back button, Pause, Resume, Online/Offline, and
more.

FIGURE 25.8 Use the Ripple simulators to mimic working with a device.

Remember that you can set breakpoints in Visual Studio and have them fired
from the simulators, devices, and emulators. Figure 25.9 shows a breakpoint
inside index.js for the onAdd() method. Notice that the Ripple
application is running in the browser (background of the image). The Locals
window (bottom left) allows you to interrogate variables. The JavaScript

http:index.js

Console (bottom right) provides a log of JavaScript activities in your
application.

FIGURE 25.9 You can debug Cordova applications with Visual Studio as
they run in the various simulators, emulators, and devices.

Ripple should be used for testing applications quickly without going to an
actual device or emulator. However, the next level of testing should be an
emulator because it tends to be more precise. Of course, you should test all
applications using an actual device before deploying for user consumption.
Let’s look at these options next.

Emulators
Visual Studio provides emulators running in Windows for Windows Phone
8/8.1 and Android (phone and tablet). There are emulators for iOS, too, but
they run on a Mac. (See prior note on building for the Mac.) You need to run
Visual Studio with elevated privileges to use these emulators. (Right-click the
Visual Studio shortcut and choose Run as Administrator.) You also must have a
desktop processor capable of running HyperV emulations. Finally, you should
have sufficient memory (4GB+) and available disk space (2GB+).

Note
Older processors do not always support the emulators. If you are
getting errors when trying to run an emulator, it is likely that your
processor does not support the technology required to run the
emulator or your BIOS has not enable this feature. There is
guidance online for checking your processor ’s support for running
emulation.

You select an emulator using the drop-downs, as shown in Figure 25.6. Visual
Studio launches the selected emulator at debug time. It then packages your

application and deploys it to the emulator. Figure 25.10 shows the sample
application running in a Windows Phone 8.1 emulator, with the Additional
Tools window open.

FIGURE 25.10 The Windows Phone 8.1 emulator works to closely mimic
user interaction with an actual device.

You can work with the emulator as you would an actual device. This means the
buttons and other applications all work as if it were an actual device. Notice
that in Figure 25.10 the keyboard shows when the user navigates to a text box
(as it would in an actual device). The thin vertical toolbar in the emulator
(middle of Figure 25.10) allows you to simulate touch (hand icon), rotate the
view (circle arrows), zoom (magnifying glass), and open the Additional Tools
menu (double arrows icon).
The Additional Tools work in a similar fashion to the extra tools in Ripple
(see prior section). You can use the Accelerometer tab, for instance, to
simulate moving the device side to side or shaking it. The Location tab allows
you to set geo location. The Screenshot tab supports taking a screenshot of your
device (useful when debugging). The other tabs inside the Additional Tools
window provide even more options for working with the emulated device.

Local Device
Visual Studio supports debugging against actual devices. You can do so using
tethering (with a USB connection). You can also communicate with the device
remotely (over a network). You select the device option from the same options
you saw back in Figure 25.6. Figure 25.11 shows the application being
debugged on an actual Windows Phone. Note that you can do the same for
Windows tablets, Android devices, and iOS devices.

FIGURE 25.11 You can debug your applications directly on connected
devices.

Visual Studio also supports running your application as a Windows Store app
(see Chapter 23, “Developing Windows Store Applications”) that runs directly
on your machine, a remote machine, or a simulation of your current machine.
You again use the drop-downs shown in Figure 25.6 to configure this scenario.
Figure 25.12 shows the app running as a store app in the Windows-x64
simulator. The toolbar on the right allows you to work with the device for
capturing screenshots, simulating touch, and more. Also, notice that Bootstrap

spreads out the menu when using a wider screen.
	

FIGURE 25.12 Visual Studio supports debugging your Cordova
	
applications as Windows Store applications.
	

Tip
Remember, Cordova apps work like web pages running inside a
native container using the device’s web view. Like debugging
web pages, it can often be useful to access the browser tools (F12
in IE) for inspecting the DOM and related styles. This is hard to
do on a device. Thankfully, Visual Studio includes the DOM
Explorer window to help. You access this window from Debug,
Windows, DOM Explorer. (It also works for websites.) Figure
25.13 shows an example. Notice here that the Bootstrap
background-color and color styles for the <body> tag
are being overridden by index.css.

FIGURE 25.13 Use the DOM Explorer to debug DOM and style
	
issues in your Cordova application.
	

Next Steps
So far we have looked at building, running, and debugging a basic Cordova
application using standard web technologies. This works great and is an option
for building your application. However, there are some issues with apps like
this. They tend to feel to the user more like a webpage and less like a native
application. For example, when you click a new page in the sample app, the
screen reloads and thus flickers like navigating to a new web page. Also, the
application is currently not storing any data locally (or on a server). There are
no icons or splash screens. The application does not take advantage of native
device features. Thankfully, we can solve a lot of these issues with Cordova.
We will look at using Angular and Ionic along with Cordova plug-ins for help.

Using Cordova Frameworks and Plug-Ins
JavaScript client-side frameworks increase your productivity when building a
Cordova app. They are not required but, as in building a website, they can be
very useful. We covered many of these framework back in Chapter 18; they
help with data binding, responsive UI, look and feel, organizing code, and
more. The prior sample used Bootstrap and jQuery. Here we highlight a few
more of the frameworks common to Cordova applications.

Choosing Cordova Client Frameworks
The JavaScript framework choices are similar between a Cordova app and a
website. These choices are split between frameworks that help you build a
better user experience and those that define application framework structure.
The following discusses each group of frameworks:

Use r e xpe rie nce (UX) frame works—Bootstrap is often used to
provide better-looking and responsive UIs on Cordova. Web developers
are comfortable using it and often leverage it for mobile web
development. However, earlier versions of Bootstrap were seen as too
heavy and slow for mobile. Later versions have made great
improvements.
Ionic is a mobile-first UI framework. It is typically not used by websites
but often has become the popular framework for building mobile apps on
Cordova. It provides a more native user experience on a device. It
includes UI elements and “formulas” for tackling common design
problems. Ionic also relies on AngularJS for UI logic such as loading
pages, data binding, gestures, animations, and other user interactions.
Ionic + AngularJS has become a popular set of frameworks for building
Cordova apps. (We look at using this approach later in this chapter.)
There are other great UX frameworks out there, such as jQuery mobile
and Sencha Touch. Nearly all of them provide great components based
on HTML5 and user interaction with JavaScript.
Application frame works—The frameworks are created to help manage
how your pages load, events fire, and data is bound. They are often
referred to as SPA (single-page application) frameworks. Popular
application frameworks for Cordova include these:

AngularJS provides an MVC pattern on the client. It supports two-
way data binding and page loading through a routing engine. See
Chapter 18 for more details on building with AngularJS.
Backbone is another MVC, client-side framework. It, too, supports
databinding and custom events. Learn more at backbonejs.org.
WinJS is an open-source project from Microsoft that eases building
JavaScript client-side apps. It combines both UI controls and an
application framework. You can use it to build Cordova apps,
websites, and Windows native applications. You can learn more at
http://try.buildwinjs.com/#get.

All the frameworks mentioned here are open source. However, there are also
commercial options available. Of course, you are not limited to any specific
framework and may combine more than one for your solution. This chapter

http://backbonejs.org
http://try.buildwinjs.com/#get

explores building a Cordova app with AngularJS and Ionic.

Cordova Plug-Ins (for Accessing Native Device Capabilities)
Recall the Cordova plug-in layer from Figure 25.1. This layer represents
native plug-ins you can use in your application that serve as a bridge between
the native web view and the actual device features (such as the camera, audio,
geo-location, and even the app status bar).
There are nearly 1,000 plug-ins available from the Apache Cordova Plugins
Registry (plugins.cordova.io). It can be hard to sort through that many options.
Thankfully, Microsoft has vetted a number of great Cordova plug-ins and has
made them available right from within Visual Studio. These are plug-ins
Microsoft has tested for compatibility and use.
You add a plug-in to your application from the config.xml designer. You access
this designer simply by double-clicking the app’s config.xml file inside
Solution Explorer. Figure 25.14 shows an example. Notice the many plug-ins
available under the Core heading. Currently there are 25 listed here (out of
nearly 1,000 possible).

FIGURE 25.14 The config.xml designer provides access to installing the
Cordova plug-ins to your application.

You click the Add button to add the plug-in to your open application. We will
look at doing so in the next section.

Tip
You can find more information (and documentation) about each
plug-in from the Cordova Plugins Registry at plugins.cordova.io.

http:plugins.cordova.io
http:plugins.cordova.io

Developing a Cordova App with Ionic and Angular
Ionic is a SDK for developing hybrid mobile applications using Cordova. It is
not required (as we saw in the prior example). There are many similar
products and open-source project out there. However, Ionic has become a
popular (and powerful) way to build Cordova applications that have a more
native look at feel.
This section illustrates the setup and configuration of Ionic inside a Visual
Studio project. We then look at rebuilding an app written in the prior sample
using Ionic and Angular (covered in Chapter 18). This should provide a good
comparison. We also extend the features of our app to include a few more
common items (like local storage). Let’s get started.

Note
Ionic requires AngularJS (and includes it as part of its package).
It also requires Cordova, of course. Ionic makes use of Node.js,
NPM, Gulp, and Bower (among other things). Thankfully, most of
these items also ship with Visual Studio 2015 as part of ASP.NET
5 and are thus likely already installed and configured on your
machine.

Set Up Your Project
You have a few options for creating applications with Ionic. You can start with
a blank Cordova template in Visual Studio and then add Ionic into your project
as you would any other JavaScript library. You then hand-code your UI and
JavaScript from scratch following the examples they set forth in their
documentation. This is not a bad route to follow if you are building a custom
application from the ground up.
Alternatively, you can start with an Ionic sample project. Ionic ships with three
project templates for Cordova: blank, tabs based, and side menu. Blank is
similar to the Visual Studio blank project (with Ionic installed). Tabs provides
a tab-based user interface with a header and buttons at the bottom of the
application. The header and button toolbar are fixed at the top and bottom of
the application, but the content area will scroll (like a web page). Side menu
uses a foldout menu pattern for navigation. You can start with one of these
project templates and customize it to your needs. Each template is already set
up to work and illustrate how to use common features. Or you can simply
create your own user interface paradigm from scratch.
For our example, we are going to start with the tabs project template.
However, this template is designed to work with the Ionic Cordova tools (and
not necessarily the Visual Studio blank template). We can fix this. The
following walks you through creating the Ionic tabs template and then stealing
what you need for the Visual Studio default template to work as a tabs project
template.

1. Start by launching a command prompt on your Windows machine.
Remember, Node.js, NPM, Bower, and more all ship with Visual Studio
2015. We can use these tools to install Ionic and create a project based
on their templates.

2. Inside the command prompt, type the following to do a global install of
Ionic on your machine.

npm install – g ionic

3. Next, create a new project based on the tabs Ionic template.
Make sure you first use the command prompt to navigate to a folder
where you want the application created. Then type the following to
create a new Cordova tabs project with Ionic.

ionic start yourAppName tabs

4. Launch Visual Studio and create a new Cordova project based on
JavaScript (using the blank template).

5. We now walk through a series of steps to align the Ionic template
structure to structure defined in Visual Studio. Start by first creating a
folder called lib in the www/scripts directory.

6. In File Explorer, navigate to the Ionic generated tabs project created
earlier. Copy the ionic folder from www/lib/ to the new
www/scripts/lib directory just created. This folder includes Ionic
and Angular.
If you use the file system to copy and paste, be sure to use the Solution
Explorer toolbar to show all files, find the ionic folder, right-click,
and choose Include in Project.

7. Copy the application code (written for AngularJS) from the Ionic tabs
template project directory www/js. Paste these three files (app.js,
controller.js, and services.js) into the root of the
www/scripts directory of your project.
You can delete the index.js file in the scripts directory. This
sample will rely on AngularJS, so this file is not needed.

8. The Ionic template uses the AngularJS routing system for page
navigation. This navigation is based on page templates (more on this to
come). From the Ionic generated project, copy the www/templates
folder and paste it into the www folder of the Cordova app.

9. The Ionic template includes a working shell for the application inside
the file index.html. This file loads all of Ionic, the CSS, AngularJS,
and more. Copy this page from the www folder in the Ionic template and
overwrite www/index.html inside the Visual Studio Cordova
sample.

10. Finally, open the newly pasted index.html file in Visual Studio.
There are a number of references here you now have to edit to point to
the new directory structure in Visual Studio. Figure 25.15 shows the
modifications. (Modified lines are highlighted with the bookmark icon.)
You can also see Solution Explorer, which includes the new directories
and files for the project.

http:index.js
http:services.js
http:controller.js

FIGURE 25.15 Edit index.html from the Ionic template to point to the
items now in the new directory structure inside Visual Studio.

You can now run the application to see the results. Figure 25.16 shows the
default Ionic tabs template being run from Visual Studio. We will now make
use of this default template as we rebuild the sample application.

FIGURE 25.16 The Ionic Cordova tabs template running from Visual
	
Studio.
	

Ionic Visual Studio Te mplate s
The code download for this book includes the three Ionic
templates (blank, tab, and sidemenu) in both their default state (as
generate by Ionic using the command-line) and as Visual Studio
projects. We converted each template to its own Visual Studio
2015 Cordova project, including a shim for working with Ionic
and Windows Phone/Store. (See “Running on Windows Phone”
later in this section.)

Anatomy of the Ionic-Angular-Cordova App
The Ionic template relies heavily on AngularJS. We covered Angular back in
Chapter 18; however, we want to illustrate here how Angular is used inside
this Cordova project. First, Figure 25.15 showed how the various script
libraries are loaded for the project. Ionic and Angular are loaded by
ionic.bundle.js. Next, the code for the application follows the Angular
pattern. It gets loaded by the three .js files you added to scripts. The
following provides a refresher on each of these:

app.js—This is the main code file for your application. It defines the
Angular module (as angular.module()); Ionic has called the
module starter. Remember, the module is essentially the name of
your application. This module is then used inside the markup of
index.html. The <body> tag (line 26 in Figure 25.15) includes the
directive ng-app="starter".
The same line of code in app.js that creates the module also defines
the controllers (starter.controllers) and the services
(starter.services). We will look at these files next.
This file also includes a .run function. This function works as the Ionic
equivalent of the Cordova onDeviceReady() function you saw in the
prior sample. You use it for app initialization code.
The .config function uses the Angular UI router to load partial pages
(called templates in Angular) as a user navigates through the app.
controllers.js—This file contains the AngularJS controllers for
the application. Recall that controllers work to bind the model data, or
$scope, to the views (or templates). In this case, the model data is
served by calling methods of services.js.
Controllers are bound to your page templates using the .config
method inside app.js (and not through a directive on the page as you
saw in the samples in Chapter 18). This is how the Angular router
works. It loads the requested page and its controller. The controller then
loads the required model data (from services.js as $scope).
services.js—This script file defines the services that your
application uses to retrieve and save data for your application. This
Ionic template simply reads data from an array. However, your
applications would likely get and save data from either device local
storage or from a Web API service (or both).

All the Ionic UI elements are built as Angular directives. Your markup, for
instance, will use these directives such as <ion-view> and <ion-
content>. This makes your UI code much easier to write, read, and
maintain. Notice that index.html (refer to Figure 25.15) includes the line
near the bottom of the page: <ion-nav-view>. The Angular UI router will
load the pages from the templates directory into this container.
The Template files themselves represent just the markup required for the
requested view. This markup is loaded into index.html. Listing 25.2
shows an example. Notice the use of the many Ionic Angular directives
(<ion...>). You can also see that this template takes advantage of Angular
binding using the syntax {{chat.name}}. In addition, the template uses the

http:services.js
http:services.js
http:ionic.bundle.js

Angular directive ng-click to bind code from the button to a method in the
app.

LISTING 25.2 The tab-chats.html Template Page Built with Angular-
Ionic

Click here to view co de image

<ion-view view-title="Chats">
<ion-content>

<ion-list>
<ion-item class="item-remove-animate item-avatar

item-icon-right"
ng-repeat="chat in chats" type="item-

text-wrap"
href="#/tab/chats/{{chat.id}}">

<h2>{{chat.name}}</h2>
<p>{{chat.lastText}}</p>
<i class="icon ion-chevron-right icon-

accessory"></i>
<ion-option-button class="button-assertive"

ng-click="remove(chat)">
Delete

</ion-option-button>
</ion-item>

</ion-list>
</ion-content>

</ion-view>

The page shown in Listing 25.2 is loaded by the Angular UI router found inside
app.js. The code for loading this page is as follows. Notice that it uses a
url route (/chats) to point to the actual page using templateUrl. It then
uses controller to bind the controller to the template.
Click here to view co de image

.state('tab.chats', {

url: '/chats',

views: {

'tab-chats': {
templateUrl: 'templates/tab-chats.html',
controller: 'ChatsCtrl'

}

}

})

This is the standard way most Angular and Ionic Cordova apps are built. We
will further examine this application pattern as we build on the tabs template
throughout the rest of this chapter.

http:href="#/tab/chats/{{chat.id

Rebuild the Sample App
We will now discuss building out the basic sample application created in the
prior section. Recall that this app allows a user to enter details about a run or a
ride and then track those details. You will see that we can quickly build a more
full-featured version of this application using Ionic, Angular, and Cordova.

Develop the Overall App Structure
The app structure is provided by the tab template in Ionic. However, we want
to replace the pages, icons, and navigation used by the template with our own
application-specific content. Once we have this structure, we can start building
the application. The following walks you through this process:

1. Start with the Visual Studio project as set up in the prior section (Visual
Studio Cordova Blank project converted to use the Ionic tabs template).
In Solution Explorer, navigate to the www/templates directory. This
directory contains view templates that are loaded by Angular UI routing.
Delete each .html file in this directory with the exception of
tabs.html. We are going to create our own pages.

2. Add the following pages to the templates directory by right-clicking
the directory in Solution Explorer and choosing Add, New Item: tab-
about.html, tab-calculate.html, tab-log.html.
Open each of the new pages and delete the contents. Add simple Ionic
directives in the markup to show the page title when running a test of the
application. This tag might look like this. (Replace [PageName] with
the actual name of the template.)

Click here to view co de image

<ion-view view-title="My Run / My Ride - About">
<ion-content class="padding">

<div class="item item-body">
<h1>[PageName]</h1>

</div>
</ion-content>

</ion-view>

3. Open the tabs.html file. This file defines the icons on the bottom of
the screen (see Figure 25.16) and sets up the navigation between tabs. It
does so using the Ionic-created Angular directive <ion-tab>. Edit this
file as shown next to point to the names for our tabs and use new icons.
(See the following Tip on Ionic icons and colors.)

Click here to view co de image

<ion-tabs class="tabs-icon-top tabs-dark">
<!-- calculate tab -->
<ion-tab title="Calculate" icon-off="ion-ios-

calculator-outline"
icon-on="ion-ios-calculator"

href="#/tab/calculate">
<ion-nav-view name="tab-calculate"></ion-nav-

view>
</ion-tab>
<!-- log tab -->

<ion-tab title="Log" icon-off="ion-ios-analytics-
outline"

icon-on="ion-ios-analytics"
href="#/tab/log">

<ion-nav-view name="tab-log"></ion-nav-view>
</ion-tab>
<!-- about tab -->
<ion-tab title="About" icon-off="ion-ios-

information-outline"
icon-on="ion-ios-information"

href="#/tab/about">
<ion-nav-view name="tab-about"></ion-nav-view>

</ion-tab>
</ion-tabs>

4. Notice in the prior markup that each tab includes an href attribute
pointing to a named page. This name is translated by the Angular UI
router to load the correct template. Open scripts/app.js and
modify the contents of the .config method to point to the current
template based on the tab url. The following shows an example.

Click here to view co de image

.config(function ($stateProvider,

$urlRouterProvider) {

//Ionic uses the AngularUI router, which uses the
concept of states.

//Learn more here: https://github.com/angular-
ui/ui-router.

//Set up the various states where the app can be.
//Each state's controller can be found in

controllers.js.

$stateProvider

//Set up an abstract state for the tabs

directive.

.state('tab', {
url: "/tab",
abstract: true,
templateUrl: "templates/tabs.html"

})

//Each tab has its own nav history stack:

.state('tab.calculate', {

url: '/calculate',

views: {

'tab-calculate': {

templateUrl: 'templates/tab-

calculate.html',

controller: 'CalculateCtrl'

}

}

})

.state('tab.log', {

url: '/log',

http:controllers.js
https://github.com/angular
http:scripts/app.js

views: {
'tab-log': {

templateUrl: 'templates/tab-log.html',
controller: 'LogCtrl'

}

}

})

.state('tab.about', {

url: '/about',

views: {

'tab-about': {
templateUrl: 'templates/tab-about.html',
controller: 'AboutCtrl'

}

}

});

//If none of the above states is matched, use
this as the fallback.

$urlRouterProvider.otherwise('/tab/calculate');

5. Set up the default controllers for use by the application. Open the
controller.js file from the scripts folder. Delete the contents
and replace them with the following JavaScript. You now have one
AngularJS controller per page template. Note that we are not using these
controllers yet; we are simply defining them for later.

Click here to view co de image

angular.module('starter.controllers', [])

.controller('CalculateCtrl', function ($scope) {
})

.controller('LogCtrl', function ($scope) {

})

.controller('AboutCtrl', function ($scope) {
});

6. Open services.js and delete the sample contents. Add the
following JavaScript to this file. Remember that an AngularJS service
typically works to get and save data for the application. We will use it
later to define the data for the actual run/ride log.

Click here to view co de image

angular.module('starter.services', [])

.factory('Log', function() {

});

You can now run the revised application template. Your app should look like
Figure 25.17. We can now start building the actual content for each page
template. In doing so, we will walk through building the application one
template view at a time. However, as we discuss a specific view (or tab in our
template), we will also cover the supporting controller and service code (if

http:services.js
http:controller.js

required). Let’s get started.
	

FIGURE 25.17 The newly defined application structure for the Cordova
	
sample.
	

Tip: Ionic Icons and Colors
Ionic provides an icon library. You can view the icons available
to you from ionicons.com. You can search this library by name. Of
course, you can use another icon library (there are many out there)
or create your own custom icons.
Notice, too, that we changed the overall color scheme for the
tabs.html template by setting the tabs-dark style class on the
outer element: <ion-tabs>. Ionic ships with a number of
default styles for items such as tabs, buttons, and more. You can
find more info on these at ionicframework.com/docs/components/.

Calculate Tab
We now have the application basic structure. We can start building features
with the main page of the application, tab-calculate.html. This page
uses Ionic to build a form to allow the user to enter his date. It has a Calculate
button to calculate the pace. The user can then decide to save the data to his
log. Upon save, we show an Ionic pop-up dialog indicating that the data has
been saved. The following walks you through this template and related code:

1. Start with the project template as built thus far in the chapter.
Alternatively, the source for this book includes a template configured to
this starting point in the folder Cordova Ionic Sample - App
Structure.

2. Open the tab-calculate.html page (from www/templates)
and replace the markup with that shown in Listing 25.3. Notice the use of
Ionic markup elements combined with standard HTML. We have
included line numbers to make it easy to point out a few things in the
markup.
Line 03—Notice the Angular controller definition ng-
controller="CalculateCtrl".
	
Line s 10 and 14—The <input> tags use the Angular ng-model to bind
to a $scope.entry object you will define inside the
CalculateCtrl.
Note that Ionic gives you many options for how the form is built. Here
we use the “Stacked Labels” approach by setting the class of the
<label> element in Lines 8 and 12 to item item-input item-
stacked-label.
Line 17—The Calculate button is bound to a method you will write in
CalculateCtrl called calculatePace(). It uses the Angular
ng-click directive to do so.
Ionic has a number of options for creating buttons of various sizes,
shapes, and colors. Here we set the button class in Line 18 to
button button-block button-calm. The first style indicates
this it has the look of a button. The second style, button-block, indicates
the button should fill up the width of the container. The last style, button-
calm, sets the color of the button based on the Ionic theme. Of course, we
could use a small button instead (or any number of button types).

http://ionicons.com
http://ionicframework.com/docs/components/

Line 21—The <div> identified as paceDisplay is set to be hidden
	
by default. This element will be shown when a user calculates a valid
	
pace.
	
Line 22—The markup here is bound to $scope.pace from the
	
CalculateCtrl using {{ pace }}.
	
Line 23—The Save to Log button uses ng-click to bind to the
	
addEntry() event you will create inside CalculateCtrl.
	

LISTING 25.3 The tab-calculate.html Template Page

Click here to view co de image

01 <ion-view view-title="My Run / My Ride">

02 <ion-content class="padding">

03 <div class="item item-body" ng-
controller="CalculateCtrl">

04 <h1>Track My Pace</h1>

05

06 <!-- user input form -->

07 <div class="list">

08 <label class="item item-input item-
stacked-label">

09 <span class="input-
label">Distance

10 <input type="text" placeholder="miles"

ng-model="entry.distance">

11 </label>

12 <label class="item item-input item-
stacked-label">

13 Time

14 <input type="text" placeholder="minutes"

ng-model="entry.time">

15 </label>

16 </div>

17 <button id="btnCalc" ng-
click="calculatePace()"

18 class="button button-block button-
calm">calculate</button>

19

20 <!-- pace calculation results -->

21 <div id="paceDisplay" style="display:

none;">

22 <div class="pace">Your Pace: {{ pace }}

</div>

23 <button type="button" ng-

click="addEntry()"

24 class="button button-block button-
calm">save to log</button>

25 </div>

26 </div>

27 </ion-content>

28 </ion-view>

3. Write the supporting code required to make the tab-calculate page
	

splay

display

operate. This code will go inside the CalculateCtrl definition
	
inside www/scripts/controllers.js. Listing 25.4 shows the
	
code with line numbers.
	
The following walks you through this code:
	
Line 01—Initializes the controller using $ionicPopup, which is part
	
of the Ionic AngularJS extensions (ionicframework.com/docs/api/) for
	
showing a pop-up modal dialog to a user. Notice, too, that the Log
	
service is being loaded with this controller.
	
Line s 04–06—These lines initialize the $scope items used by the
	
page. Line 06 calls the Log service to get the list of saved entries.
	
Line 08—This is the method for calculatePace() that fires based
	
on the calculate button click. Notice that it uses binding to get the values
	
for time and distance. It then shows the paceDisplay <div>

provided the calculation is valid.
	
Line 22—The addEntry() method fires when the user clicks the Add
	
button for the given item to log. Notice that we have not fully
	
implemented this method here. We will do so in a coming section. It will
	
call the Log service to get the data from storage. The method then resets
	
the form for the user to add another entry. Finally, it calls
	
showAlert() to give a user the message that the item was added to
	
the log.
	
Line 33—The showAlert() method shows an alert message to the
	
user after adding an item to the log.
	

LISTING 25.4 The CalculateCtrl Controller Inside controller.js

Click here to view co de image

01 .controller('CalculateCtrl', function ($scope,
$ionicPopup, Log) {

= 'none';

02
03
04
05
06
07

//Define overall scope.
$scope.entry = { distance: '', time:
$scope.pace = '';
$scope.log = Log.all();

'' };

08
09
10

$scope.calculatePace = function () {
$scope.pace = '';
document.getElementById('paceDisplay').style.di

11

12 //Get data from .entry and calculate.

13 var pace = ($scope.entry.time /

$scope.entry.distance);

14

15 //If a number, show results.

16 if (!isNaN(parseFloat(pace)) &&

isFinite(pace)) {

17 $scope.pace = pace.toFixed(2);

18 document.getElementById('paceDisplay').style.

= 'block';

http://ionicframework.com/docs/api/
http:controller.js
http:www/scripts/controllers.js

splay

19
20
21

}
};

22
23
24

$scope.addEntry = function () {
//TODO: add the item to the log scope.

25
26
27
28

//Clear form; show success.
$scope.pace = '';
$scope.entry = { distance: '', time: '' };
document.getElementById('paceDisplay').style.di

= 'none';

29 $scope.showAlert();

30

31 };

32

33 $scope.showAlert = function () {

34 var alertPopup = $ionicPopup.alert({

35 title: 'My Run / My Ride',

36 template: 'Item saved to log!'

37 });

38 };

39 })

4. Finally, open services.js from the scripts folder. Replace the
contents with code to create the Log service. For now, this service
should return a simple array of log items. It should also support clearing
the log (which we will use on the tab-log.html page). Listing 25.5 shows
an example. Note that we will replace this sample code in a coming
section to save and retrieve this data from storage.

LISTING 25.5 The services.js File Contents

Click here to view co de image

angular.module('starter.services', [])
.factory('Log', function() {

//Fake data.
var log = [

{ date: "Date: Sun Apr 05 2015",
data: "Distance: 24, Time: 345, Pace: 14.38",

},
{

date: "Date: Sun Apr 05 2015",
data: "Distance: 24, Time: 345, Pace: 14.38"

},
{

date: "Date: Sun Apr 05 2015",
data: "Distance: 24, Time: 345, Pace: 14.38"

},
{

date: "Date: Sun Apr 05 2015",
data: "Distance: 24, Time: 345, Pace: 14.38"

},
];

http:services.js
http:services.js

return {
all: function() {

return log;
},
clear: function () {

this.log = [];
}

};
});

You can now run the application and start working with the first page. Figure
25.18 shows the form in action. Be sure to click the Save to Log button to see
how the Ionic pop-up behaves.

FIGURE 25.18 The tab-calculate.html view working inside a Ripple
	
simulator.
	

Note
Right now our application simply hides or shows elements based
on user interaction. Recall that jQuery includes the ability to
animate these transitions. We could, of course, include jQuery in
our project to make use of these features. However, Ionic is
working to provide an animations library. It was in beta at the
time of writing this chapter.

Log Tab
The tab-log.html page will give a user a list of all her saved run/ride
entries. Ionic provides many options for showing items in a list because this is
a common feature of most mobile applications. These options include lists
with icons, lists with buttons, clickable lists, organized lists, and much more.
Here we create a simple list with an icon next to each element. The following
walks you through creating this page template.

1. Open tab-log.html. Add markup to the page for showing an Ionic
list using Angular binding. Listing 25.6 shows an example. Line numbers
are included for reference:
Line 02—The view is connected to LogCtrl from
	
controllers.js.
	
Line 03—The “clear log” button is connected to the
LogCtrl.clear() method using ng-click.
Line 07—Here we use ng-repeat to iterate over each item inside of
logItems (from the $scope defined inside LogCtrl).
Line s 11 and 12—These lines bind to properties of the logItem
objects using ng-bind.

LISTING 25.6 The tab-log.html Markup

Click here to view co de image

01 <ion-view view-title="My Run / My Ride - View

Log">

02 <ion-content class="padding" ng-
controller="LogCtrl">

03 <button type="button" ng-click="clear()"

04 class="button button-block button-
calm">

05 clear log

06 </button>

07 <div class="list" ng-repeat="item in

logItems">

08 <div class="item item-icon-left">

09 <p>

10 <i class="icon ion-ios-calendar"></i>

11 </p>

12 <p span ng-bind="item.data"></p>

13 </div>

14 </div>

http:controllers.js

15 </ion-content>
16 </ion-view>

2. Add the code to the controller.js file to support the log view
template. Listing 25.7 shows an example. The following walks you
through this code by highlighted line number:
Line 01—The controller is initialized using the $ionicPopup

Angular extension and the Log service.
	
Line 02—The controller loads by setting the $scope.logItems to
	
the result of the service call, Log.all() (see Listing 25.5).
	
Line 04—The clear() method uses a confirm dialog to verify that the
user wants to clear the form. If he does, we call the service
Log.clear() method.

LISTING 25.7 The LogCtrl Code Inside the controller.js File

Click here to view co de image

01 .controller('LogCtrl', function ($scope,

$ionicPopup, Log) {

02 $scope.logItems = Log.all();

03

04 $scope.clear = function () {

05 var confirmPopup = $ionicPopup.confirm({

06 title: 'My Run / My Ride',

07 template: 'Are you sure you want to clear

your entire log?'

08 });

09 confirmPopup.then(function (res) {

10 if (res) {

11 //Clear the log.

12 $scope.logItems = Log.clear();

13 } else {

14 //Do nothing.

15 }

16 });

17 }

18 })

You can now run the app and click the Log item from the tab bar at the bottom
of the application. Notice that the form loads with some default data (from the
data defined in Listing 25.5). Figure 25.19 shows an example. This is showing
the confirm pop-up after a user has asked to clear the form. Notice the log in
the background.

http:controller.js

FIGURE 25.19 The Log tab after the Clear Log button has been pressed.

About Tab
The tab-about.html page is there just to add a simple About page to the
application and show navigation with the tab layout. Open this page and
change the markup as follows. (No additional changes are required.)
Click here to view co de image

<ion-view view-title="My Run / My Ride - About">

<ion-content class="padding">

<div class="item item-body">
<h1>About</h1>
<p>Sample for the book, Microsoft Visual Studio

2015 Unleashed.</p>

</div>

</ion-content>

</ion-view>

 ay

Note
Like Bootstrap, you can customize the look at feel of Ionic using
Sass. It also provides a variables file listing the many colors in
the application. This file is called Variables.scss. You
change these values and then recompile the Ionic theme to meet
your needs. Of course, you can also override Ionic styles using
your own CSS inside index.css.

Support Storage
You saw back in Chapters 17 through 19 that we can create a Web API for
storing data and accessing it with web code. The same is true for mobile
applications. They can connect to your Web API (running on Azure or another
cloud platform). This API can then save data to a database or some other
storage mechanism. You can make further API calls to retrieve the data.
Here, however, we are going to look at storing data locally on the device. We
have a couple options to do so. First, we can use HTML5 Web Storage
(localStorage). Alternatively, we could use a small database that is pushed to
the device, such as SQLite. We are going to work with the former approach
(HTML 5 Web Storage). Of course, you might consider a hybrid approach in
which users can work offline (local storage) and then synch through a Web API
(cloud storage). This is a popular model for many applications.
We are going to add storage support to the application created to this point. If
you have not been following along, you can start with a version of the
application to this point from the download for this book. This version is
inside the folder CordovaIonicSample - BeforeStorage. The
following walks you through adding local storage to an application:

1. Clean up the addEntry() method inside the CalculateCtrl to
make it add a real item to the log. Open controllers.js and
navigate to addEntry(). Change the method to mimic the code that
follows.
Notice that the only difference here is that we create a real item based on
the bound $scope. We then call the Log service to add the item.

Click here to view co de image

$scope.addEntry = function () {
//Add the item to the log scope.
var item = {

date: (new Date().toDateString()),
data: 'Distance: ' + $scope.entry.distance +

', Time: ' + $scope.entry.time +
', Pace: ' + $scope.pace

};

Log.addItem(item);

//Clear the form; show success.

$scope.pace = '';

$scope.entry = { distance: '', time: '' };

document.getElementById('paceDisplay').style.displ

http:controllers.js

y))

=	 'none';

$scope.showAlert();

};

2. Modify the services.js file to work with HTML Web Storage.
Listing 25.8 shows an example with line numbers for reference. The
following walks through this code:
Line 07—We set a key to be used by this application for storing and
retrieving data from the HTML Web Storage.
Line 10—The loadFromStorage method uses Angular to load
JSON into an array. The data is loaded from the
localStorage.getItem method of $window (passed into the
service by Angular).
Line 15—The saveToStorage method uses
	
$window.localStorage to save the data as JSON
	
(angular.toJson).
	
Line 23—The Log.all() method simply calls loadFromStorage
to return all items from local storage.
	
Line 28—The Log.addItem() method takes an item as a parameter.
	
It then loads the data from local storage, adds an item, and saves the data
	
back.
	
Line 35—The Log.clear() method loads the data from storage,
	
removes all items in the array (using JavaScript splice) and then saves
	
the empty results back to local storage.
	

LISTING 25.8 The Log Service Code Inside the services.js File

Click here to view co de image

01
02

angular.module('starter.services', [])

03
04

.factory('Log', ["$window", function ($window) {

05
06
07
08

//Init objects and methods.
var log = [];
var storageKey = "appMyRunMyRide";

09
10
11

//Load from local storage.
var loadFromStorage = function () {

return
angular.fromJson($window.localStorage.getItem(storageKe

|| [];

12 };

13

14 //Save all to local storage.

15 var saveToStorage = function (items) {

16 $window.localStorage.setItem(storageKey,

angular.toJson(items));

17 }

18

19 //Define services.

http:services.js
http:services.js

20 return {

21

22 //Get all items from storage.

23 all: function() {

24 return loadFromStorage();

25 },

26

27 //Add an item to storage and save.

28 addItem: function (item) {

29 var items = loadFromStorage();

30 items.push(item);

31 saveToStorage(items);

32 },

33

34 //Delete the local storage and save.

35 clear: function () {

36 var items = loadFromStorage();

37 items.splice(0, items.length);

38 saveToStorage(items);

39 }

40 };

41 }]);

3. IMPORTANT: By default, Ionic caches views in your application to
help make performance better. However, this can often cause issues such
as adding a new item to the Log, navigating to the log, and not seeing the
item. Thankfully, you can control the Ionic cache inside the AngularUI
router code found in app.js. Edit the tab.log state call as follows in
order to add cache: false to the parameters list.

Click here to view co de image

.state('tab.log', {
cache: false,
url: '/log',

views: {

'tab-log': {
templateUrl: 'templates/tab-log.html',
controller: 'LogCtrl',

}

}

})

You can again run the application to see the changes. You should now have a
persistent log of items. Figure 25.20 shows the app after some actual items
have been logged. You should be able to close the app and return to it and find
that your logged items are still stored locally.

FIGURE 25.20 The sample app storing and retrieving data from the HTML
	
Web Storage (local storage).
	

Running on Windows Phone
The application created to this point runs fine inside the iOS and Android
simulators and emulators. However, you will get an error if you try to run it on
Windows Phone. This is because frameworks such as AngularJS, EmberJS,
and KnockoutJS (among others) use properties of JavaScript that Microsoft has
flagged as unsafe because they can cause common security issues (properties
such as innerHTML and outerHTML). Thankfully, there is a fix.
The Microsoft Open Technologies (MS Open Tech) group has released a
JavaScript shim called the Dynamic Content shim for Windows Store apps. It
is a JavaScript file you run to mitigate the errors when using client-side
scripts. The shim still achieves the fundamental goal set by the security model,
but it allows your client side framework code to run.
The following walks you through using this shim.

1. Start by downloading the shim from the Git repository. It is a single file
called winstore-jscompat.js. You can download it from the
following URL:

http:winstore-jscompat.js

Click here to view co de image

https://github.com/MSOpenTech/winstore-jscompat.git

2. Open your project in Visual Studio. Copy the winstore-
jscompat.js file into the scripts/lib directory.
	

3. Open the index.html file from the root of your project. Add a
<script> tag near the top of the file (inside the <head> tag) before
any other .js scripts are executed. This <script> tag should look
like this.

Click here to view co de image

<!-- dynamic content shim for Windows Store apps --
>

<script src="scripts/lib/winstore-jscompat.js">

</script>

You should now be able to run your application on a Windows Phone emulator
or an actual device. Figure 25.21 shows the application running on a Windows
Phone emulator.

http:src="scripts/lib/winstore-jscompat.js
http:jscompat.js
https://github.com/MSOpenTech/winstore-jscompat.git

FIGURE 25.21 Use the winstore-jscompat.js shim to run your
	
AngularJS (and related frameworks) on a Windows Phone.
	

At the time of writing, Ionic mentions that Windows Phone is on its roadmap.
Most of it works. (It is just HTML5 and JavaScript.) However, Ionic does not
currently support Windows Phone. This should change in the near future (and
likely has already since this book was written). Therefore, you might run into
anomalies with their controls. You can work through most of these.

http:winstore-jscompat.js

Additional Items to Consider
The application created thus far is a great start to building a Cordova mobile
application. However, it is just a start. There are many additional things to
consider when building commercial application. These include loading data on
pause and resume, handling user accounts, creating push notifications, storing
your data in the cloud, creating custom icons for the app and a splash screen,
and more. Thankfully, Microsoft, Cordova, Ionic, and Angular all have
prescriptive guidance on adding these features to your application.

Summary
Visual Studio 2015 and the tools for Apache Cordova allow you to write
mobile applications that run on iOS, Android, Windows, and other mobile
platforms. This approach provides native applications that can be deployed to
(and sold through) the various app stores.
We started this chapter by going through the fundamentals of Cordova. This
included discussing how HTML, CSS, and JavaScript can be used to create
apps that run on native devices. Visual Studio provides tool support,
application dependencies, and project templates to get you started.
This chapter presented building a simple Cordova application using the
standard template in Visual Studio. In this example, we leveraged the common
developer web tools of Bootstrap and jQuery. We then examined how you can
package, deploy, run, and debug Cordova applications using simulators,
emulators, and even actual devices.
Finally, we wrapped up the chapter by building a rich sample that leveraged
the popular Ionic and AngularJS frameworks for creating mobile apps with
Cordova. You can use these frameworks inside Visual Studio. Angular
provides an MVC pattern for your application logic. Ionic provides UI
components that make your application look and behave similar to a native
app.

Index

Symbols
+ (addition) operator, 114
& (And) operator, 116
&& (And Also) operator, 116
< >(angle brackets), 126, 323
&= (assignment of string value with concatenation) operator, 113
+= (assignment with addition) operator, 113
*= (assignment with multiplication) operator, 113
-= (assignment with subtraction) operator, 113
@ (at sign), Razor syntax, 763
: (colons)

jQuery filters, 822
JSON notation, 720

, (commas), JSON notation, 720
& (concatenation) operator, 115
{ } (curly brackets)

brace matching, 323
JSON notation, 720
Razor syntax, 763

/ (division to return floating point) operator, 114
/ (division to return integers) operator, 114
$ (dollar sign), jQuery, 821
=, == (equal) operators, 113, 115
> (greater than) operator, 115
>= (greater than or equal to) operator, 115
(hashtag), jQuery ID-based selections, 822
< (less than) operator, 115
$(‘ ’) method (jQuery), 822
* (multiplication) operator, 114
< >, != (not equal) operators, 115
! (Not) operator, 116
| (Or) operator, 116
|| (OrElse) operator, 116
() (parentheses), brace matching, 323
| (pipes), Angular filters, 889
“” (quotation marks), brace matching, 323
[] (square brackets), 126

brace matching, 323
JavaScript dot notation, 801
JSON notation, 720

- (subtraction) operator, 114
_ (underscores), page names, 768

^ (Xor operator), 116

A
<a> HTML tag, 762
About() method, 742
About.cshtml view page, 742-743
AbsoluteCharOffset property (EditPoint objects), 636
access signal icons (Class View window objects pane), 204
AccessDataSource controls, 583
accessibility standards compliance, 277
Accessibility Validation dialog box, 277
accessing

arrays, 122-123
	
Azure services from Server Explorer, 523
	
BOM, 805
	
breakpoint conditions/actions, 402
	
class members, 97-98
	
classes from Solution Explorer, 198
	
data cache (Office), 1058-1059
	
Diagnostic Tools window, 439
	
DOM tree nodes, 811
	

list of nodes, selecting, 812-813
	
single, selecting, 811-812
	
traversing, 813
	

Encapsulate Field refactor operation, 387-388
	
Extract Interface refactor operation, 383
	
Extract Method refactor operation, 375
	
files/folders (WinRT), 1088
	
jQuery selection content, 825-826
	
project code, 610-612
	
Project Designer, 185
	
Quick Find, 237
	
refactoring from Quick Actions menu, 363
	
Rename operation, 368-371
	

Class View and Properties window, 368
	
keyboard shortcuts, 369
	
Quick Actions menu, 370
	

text editors, 226
	
visualizers, 441
	
Watch windows, 435
	
Web Publishing tool, 469
	

accounts (Azure)
creating, 477-478
linking to Visual Studio, 478
pricing, 477

Acquire Developer License command (Windows Store menu), 1101
action methods

ASP.NET MVC applications, 742
customers, finding, 757-758
list of customers, returning, 756-757
new customer page, returning, 757
POST requests, handling, 758-759

action panes (Office), 1039, 1055-1057
action result objects, 754-755
actions

breakpoint, 402
	
user, confirming, 806
	

Activate() method (objects)
documents, 631
OutputWindowPane, 626

activation (MEF), 685
active hyperlinking, 295
ActiveDocument property (DTE objects), 605
ActiveSolutionProjects property (DTE objects), 605
ActiveWindow property (objects)

documents, 631
DTE, 605

AdaptiveMenu property (CommandBar objects), 629
Add Command dialog box, 65
Add Connection dialog box, 538
Add New Item dialog box

ASP.NET website file types, 719
	
class diagrams, creating, 281
	
EDM, 591
	
WinForms components, creating, 278
	

Add New Item - Solution Items dialog box, 171
Add New Project dialog box, 330
Add New Test dialog box, 357
Add New User Control dialog box, 278
Add Style Rule dialog box, 258
Add to References button (Object Browser toolbar), 216
addClass() method (jQuery), 827
AddControl() method (commands), 646
addEntry() method, 1187
addEventListener() method, 818
AddFromFile() method (solutions), 608
AddFromTemplate() method (solutions), 608
AddFromTemplateEx() method (solutions), 608
AddIn automation type, 602
add-ins (Office), 19

document extensions, compared, 1041
Outlook form regions, 1049-1052

message class association, 1050
region types, 1049
runtime events, 1052
UI, 1050

ribbons, 1043-1047
button events, handling, 1046-1047
design surface, 1043
IDE Toolbox controls, 1044
items, adding, 1045-1046

task panes, 1047-1048
AddIns property (solutions), 608
addition (+) operator, 114
addition with assignment (+=) operator, 113
addresses (WCF services), 929
AddResultFile() method (TestContext class), 339
AddSolutionFolder() method (solutions), 608
adornments (code editor)

extension point, 688
text, 692-693
viewport, 693-695, 703-706

AdventureWorks sample database, 546
AJAX (Asynchronous JavaScript)

GET/POST methods, 924
jQuery, 831

Alert Rules Startboard item, 507
alerts

browser windows, 805
managing in Azure, 507-509

ALM (Application Lifecycle Management), 6, 1076-1077
image viewer Windows Store app events, 1096-1100

application states, 1096
launching applications, 1097-1098
resuming applications, 1097
storing state, 1098-1100
suspending applications, 1097

services, 6-7
Team Explorer, 8
Test Professional, 8
VSO, 6
Windows Phone apps, 1119-1120
WinRT

Windows Store, 1076-1077
Windows Phone, 1119-1120

ampersand (&) concatenation operator, 115
analysis (code)

debugging, 393
settings, 175

Analyze menu, 57
Anchor TagHelper, 767
anchoring controls, 964-965
And (&) operator, 116
And Also (&&) operator, 116
angle brackets (< >), 126
AngularJS, 832, 873

adding, 877-878
	
changes, saving, 887-888
	
controllers, 876-877
	

defining, 881
files, 719
	

Cordova apps, 1175
	
data binding, 881-883
	
directives
	

files, 719
	
Ionic UIs, 1180
	
listing of, 889
	
models, binding, 875
	

entries
	
adding, 885-886
	
deleting, 886-887
	

filters, 889
	
form validation, 889
	
Ionic-Angular anatomy, 1180-1181
	
Ionic-Angular-Cordova sample app
	

About tab, 1192
calculate tab, creating, 1186-1190
local storage, adding, 1193-1195
log tab, 1190-1192
running on Windows Phone, 1196-1197
structure, 1182-1184

models, 876-877
modules
	

code, 876-877
	
defining, 880
	
files, 719
	

MVC pattern, 874
	
pages, turning into forms, 883-885
	
server models, creating, 879
	
two-way data binding, 874-876
	

Web API services, calling, 879
animate() method, 830
:animated jQuery filter, 822
animations

jQuery, 830
WPF, 989

annotations, adding to classes, 746-747
anonymous data types, creating, 137-138
anonymous functions, 798
Apache

Cordova. See Cordova
Cordova Plugins Registry, 1175
Ripple (Cordova debugging), 1168-1170
Software Foundation website, 1154

APIs
UI delivery solutions, 13
Web API. See Web API services
WinRT

application lifecycles, 1076-1077
architecture, 1071
capabilities, 1076
C#/VB/XAML, 1075
defined, 1071
file/folder access classes, 1088
HTML/JavaScript/CSS, 1073-1074
.NET Framework, compared, 1072
Silverlight apps, porting, 1124

app bars, 1070
creating, 1095-1096
Universal app, 1116

App for Office, 1059
extension types, 1060
starting page, 1059
task pane app, creating, 1060-1062
template, 1059

appearance
form controls, 971
properties, 959
status bars, 977-978
WinForms forms, customizing, 260
WPF projects, customizing, 270

appendChild() method (DOM), 815
Application class, 991
Application Insights, 510-512
Application Lifecycle Management. See ALM

Application property (CommandBar objects), 629
Application property page, 186
applications

cloud
	
applications, creating, 29
	
Azure. See Azure
	
publishing to, 30-31
	
overview, 29
	

Cordova. See Cordova
	
cross platform mobile, 14
	
deploying
	

ClickOnce, 464-465
InstallShield, 465
	

dynamic, extensibility problem, 684
	
launching, 1097-1098
	
lifecycles. See ALM
	
LINQ to SQL
	

drag-and-drop operation LINQ code, 588-590
LINQ objects, 590-591
O/R designer, 586-588

mobile. See mobile applications
multithreaded, debugging, 445
	

breaking on threads, 450
	
flagging threads, 447
	
individual threads, inspecting, 448-450
	
managing threads, 447-448
	
MSDN code example, 445
	
processes, managing, 447
	
viewing threads, 445-446
	

.NET faces, 11
	
Office. See Office
	
parallel, debugging, 451
	

Parallel Stacks Task view, 452-455
Parallel Stacks Threads view, 451-453
Parallel Stacks window, 451
Parallel Tasks window, 454-456

project settings, 189
self-checking, 393-394

applications in debug mode, starting, 394
breaking on exceptions, setting, 397-398
breakpoints, 401-402
continuing after breakpoints, 403
Contoso University sample application, 393
debug mode, starting, 396
different processes, 400-401

errors, debugging, 398-399
stepping through code, 403-405
website debugging, enabling, 394-395

SharePoint, 20
	
SPA. See SPAs
	
state
	

change events, 1120-1121
	
launching, 1097-1098
	
resuming, 1097
	
storing, 1098-1100
	
suspending, 1097, 1122
	
terminated, 1122
	
transient/persistent data, 1122
	
Windows Phone apps, 1119-1120
	

web. See web applications
Windows client, developing, 258
Windows Phone. See Windows Phone apps
Windows Store. See Windows Store applications
WinForms. See WinForms
WPF. See WPF
XAML browser (XBAP), 17

Applications namespace, 1058
AppServices template, 525
architecture

MEF, 686
	
catalog, 686
	
composition container, 685-686
	
MEF classes, 685
	
parts, 685
	

MVC. See MVC
MVVM
	

Knockout, 857
	
Universal app, 1128-1130
	
Windows Phone apps, 1122-1123
	

Windows Phone apps, 1116-1117
	
WinRT, 1071
	
WPF, 988
	

areas (pages), 769
AreEqual() method (Assert class), 344
AreNotEqual() method (Assert class), 344
AreNotSame() method (Assert class), 344
AreSame() method (Assert class), 344
arguments

Raise method, 648
	
unused, deleting, 147
	

arithmetic operators, 114
arrays, 122-123

accessing, 122-123
defining, 122
jagged, 123
multidimensional, 123
size, 122
values, defining/initializing, 123, 136-137

ASP.NET
backward compatibility, 712
client build tasks, managing, 731-734
client framework dependencies, managing, 728-731
code editors support, 711
configuration file, 719-721
controllers, 753

action result objects, 754-755
creating, 755-756
customer delete requests, processing, 759
customers, finding, 757-758
DbContext objects, adding, 756
generating with dnx . gen tool, 788-791
list of customers, returning, 756-757
new customer page, returning, 757
POST requests, handling, 758-759

high-level overview, 708
	
linked to Azure, creating, 481-485
	
models
	

classes, creating, 744-745
data context, creating, 748
database connections, 748-750
databases, creating manually, 752-753
databases, creating with EF7 migrations, 750-752
validation rules, 745-747

MVC architecture. See MVC
	
.NET Foundation, 711
	
.NET Framework
	

configuration, 721
	
multiple versions, targeting, 727-728
	
versions, 711-712
	

new features, 21, 710
package dependencies, 723-727
	

adding to project.json files, 723-724, 726
	
adding with NuGet, 726
	
viewing, 725
	

project references, 728

project.json file configuration sections, 722-723
publishing, 469

connections, configuring, 471
deployment settings, configuring, 472-473
previewing, 473-474
targets, selecting, 470-471

responsive design, 763
source code website, 711
SPA. See SPAs
templates, 713-716

AngularJS, adding, 877-878
ASP.NET 5 Web Site. See ASP.NET 5 Web Site template
Bootstrap files, 835-837
empty, 714
Knockout, adding, 860-861
MVC, 715
SPA, 716
Web API, 716, 897-899
Web Forms, 714-715
Web Pages, 715

UI delivery solutions, 13
unit tests

MVC/Web API projects, 350-354
Pages, 355-357

views
areas, 769
components, 784-788
customer example. See customer example pages
generating with dnx . gen tool, 788-791
HTML helpers, 765-766
HTML tags, 760-762
models, 788
page layout, 768-769
partial, 780-784
Razor syntax, 763-765
strongly typed, 769-770
TagHelpers, 767-768
user input validation, 770-771

Web API services. See Web API services
Web Forms, 21-24, 708

design/development synchronization, 22-23
master pages, 23-24
server-side controls, 22

web requests, processing and responding, 709-710
websites

Compiler directory, 718
	
Dependencies directory, 718
	
JSON configuration files, 720-721
	
Migrations directory, 718
	
MVC folders, 718
	
project files, 719
	
Properties directory, 718
	
References directory, 718
	
wwroot directory, 717-718
	

ASP.NET 5 Web Site template
AngularJS, adding, 877-878
Bootstrap

files, 835-837
layout styles, 839
	

default structure, 716
	
directories, 718
	
JSON configuration files, 720-721
	
Knockout, adding, 860-861
	
MVC folders, 718
	
overview, 716
	
project files, 719
	
wwroot directory, 717-718
	

AspNetDevelopmentServerHost attribute (ASP.NET unit tests), 356
AspNet.WebApi.Core package, installing, 353
assemblies

managed, 563
	
references, adding, 216
	
WPF, 988
	

AssemblyCleanup class, 341
AssemblyInitialize class, 341
Assert class, 344-345

assertion methods, 344
	
collections of objects, verifying, 345
	
overloads, 345
	
strings, verifying, 345
	

assertions (unit tests), 344-345
collections of objects, verifying, 345
strings, verifying, 345

assets, loading, 828
assignment operators, 113-114
Associate App with the Store command (Windows Store menu), 1101
AssociationAttribute class, 746
associations (classes), 285-286
async keyword, 158, 1087
Asynchronous JavaScript. See AJAX

asynchronous programming, 157-159, 1087
at sign (@), Razor syntax, 763
AtEndOfDocument property (EditPoint objects), 636
AtEndOfLine property (EditPoint objects), 636
AtStartOfDocument property (EditPoint objects), 636
AtStartOfLine property (EditPoint objects), 636
Attach to Process command (Debug menu)

active debug session, 408
at rest, 406

attr binding (Knockout), 872
attribute node (DOM tree), 809
attributes, 126

ASP.NET unit tests, 355
C# brackets, 126
CachedAttribute, 1057
classes, 745-746
CSS, defining, 258
CustomerProfile class, 932
declarative, 126
DOM nodes, 814
ExpectedException, 345-346
HTTP verb-based (Web API service controllers), 902-903

HttpDelete, 910-911
	
HttpGet, 904-908
	
HttpPost, 908-909
	
HttpPut, 909-910
	

jQuery HTML elements, 826-828
	
names, 126
	
test attribute classes, 341-342
	
TestMethod, 333
	
type, 760-762
	
VB brackets, 126
	
WCF service methods, 943
	

authentication, 739
Author node (XML), 316
auto properties, 88-90
auto scaling controls, 966-967
auto sizing, 1021
AutoGenerateDeleteButton property (GridView control), 582
AutoGenerateEditButton property (GridView control), 582
autogenerating data-bound controls, data sources, 565-569

mapping, 567-569
selecting, 565-567

AutoHides property (windows), 615
auto-implemented properties, 147-148

automation
build, 7
Task List, 328

automation object model
categories, 604
code model object hierarchy, 611-612
CommandBar objects, 628-630

CommandBars collection, 629
menu bar versus toolbar, 629
methods, 629
properties, 629

commands, 645
executing, 647-648
key bindings, mapping, 648-649
methods, 646
properties, 646

Debugger objects, 649
documents, 631

Documents collection, 631
features, 631
methods, 631
properties, 631
TextDocument. See TextDocument objects

DTE object, 605-606
methods, 605
properties, 605

PIAs, 602
projects

code, accessing, 610-612
methods, 609
properties, 609

solutions, 606
hierarchy, 166, 606
methods, 608
projects, deleting, 607
properties, 608
tasks, 607

type list, 602
vsCMElement enumeration values, 612
windows, 614

linked windows, 626-628
methods, 615
panes, 619-620
properties, 615
queries, 617-618

referencing, 614
text windows, 618
tool windows. See tool windows

Autos window, 434-435
AutoScale property, 966
AutoScaleDimensions property, 966
availHeight property (screen object), 807
availWidth property (screen object), 807
average speed calculator

events, creating, 817-818
HTML markup, 817

await keyword, 158, 1087
Azure, 29

accounts
creating, 477-478
linking to Visual Studio, 478
pricing, 477

Activity Log window, 534
benefit levels, 29
cloud applications, creating, 29
cloud services, 529

Azure website hosting, compared, 529
creating projects, 530-532
deploying projects, 533-534
running locally, 532

Compute Emulator, 532
databases

adding, 500
details, configuring, 500
management, 519-521
managing, 502
viewing, 502

download website, 29
features, 475-476
hosting

options website, 530
platform, 481

IaaS, 475
PaaS, 475
portal

blades, 496-498
databases, 500-503
deployment, 503
Startboard, 494
web app toolbar, 499

web apps creating, 494-496
	
Publish Web dialog box, 30
	
publishing, 30-31, 484-489
	

connection information, 486
	
deployment settings, 486
	
existing applications, 489-491
	
previews, 487
	
publish profiles, selecting, 485
	

remote debugging, configuring, 442-444
SDK

accessing services from Server Explorer, 523
downloading/installing, 522
nodes, selecting, 523
QuickStart templates, 524-526
resource groups, 526-529

Server Explorer interaction, 212
services, accessing from Server Explorer, 523
subscriptions, managing, 479-480
templates, 29
web apps

cloud services, compared, 529
creating in Visual Studio, 481-485
debugging, 494
Server Explorer management, 492-493

website management, 503-504
	
alerts, 507-509
	
Application Insights, 510-512
	
diagnostic logs, 516-519
	
scalability, 514-516
	
traffic monitoring, 505-506
	
web tests, 512-514
	

B
Back button

Class View window toolbar, 202
Solution Explorer toolbar, 194

back() method (history object), 807
back stack, 1118
Backbone, 833, 1175
BackColor property, 959
BackgroundImage property, 959
BeginTimer() method (TestContext class), 339
behaviors

action pane control stacking, 1056
	
classes, overriding, 101-102
	

form controls
	
tab order, 971
	
ToolTips, 972
	

bike ride log sample application
AngularJS
	

adding entries, 885-886
	
changes, saving, 887-888
	
controllers, defining, 881
	
data binding, 881-883
	
deleting entries, 886-887
	
modules, defining, 880
	
pages, turning into forms, 883-885
	
server models, creating, 879
	
Web API services, calling, 879
	

Knockout
adding entries, 869-870
changes, saving, 870-871
controller (BikeLogController), creating, 863
deleting entries, 870
list view, creating, 864-868
server models, creating, 862-863

BikeLogListVm class, 865
binder parameter (TryGetMember() method), 152
Binding class, 1012
binding data, 564-565

AngularJS, 874-876, 881-883
autogenerating controls, 565-569
	

mapping data sources, 567-569
	
selecting data sources, 565-567
	

complex, 564-565
	
defined, 564
	
image viewer WS app, 1089
	
images, storing (WPF), 1023-1025
	
Knockout, 872-873
	
manually binding controls, 571-575
	

cell edits, customizing, 572-574
	
Data Sources window, 575
	
DataGridView data source, 571
	

simple, 564
	
typed data sets, 570-571
	
WCF services, 930
	
web controls, 579-583
	

controls, selecting, 579-580
	
data-source, 583
	
GridView, 580-583
	

WPF, 575-579, 989, 1012-1014
data sources, 576
drop-down list, 577
master-detail data source, adding, 578
XAML, 576-577

Bindings property (commands), 646
BitmapSource class, 1023
blades (Azure), 496-498

databases, 500-503
adding, 500
details, configuring, 500
managing, 502
viewing, 502

Metric, 505-506
Monitoring, 505
options, 497-498
toolbar, 499
Web test, 512-514

Blank App template
JavaScript, 1074
XAML, 1075

blank solutions, creating, 164
BlurBitmapEffect class, 1028
blurring images, 1028
BOM (Browser Object Model), 805

accessing, 805
alerts, 805
browser details, viewing, 808
navigation, 807
opening/closing, 806
positioning, 806
screen optimization, 807
URLs, controlling, 807
user actions, confirming, 806

Bookmark control, 1054
bookmarks, 234-235

adding, 234
code navigation, 234
folders, 235
For loops in text documents, 633-634
names, 235
toggling, 235

Bookmarks window, 234
Bootstrap, 832

components, 844

drop-downs, 849-850
files, 835-837
grid layout, 837-842

ASP.NET 5 Web Site template layout styles, 839
columns, wrapping, 838
grids, 839
screen size adjustments, 840-842

SPA support, 27
user input forms, 847-848
visual design, customizing, 851-854

customizer, 853
source files, 854
styles, overriding, 851-852
themes, 852

bottom app bars (Windows), 1067
Bower

client framework dependencies, managing, 728-731
defined, 729
JSON Configuration files, 719

bower.json files, 720
brace matching, 322-324
brackets ([], < >) (brace matching), 323
brackets ({ }) (brace matching), 323
Break All button (Debug toolbar), 416
Break All command (Debug menu), 408, 416
breaking on exceptions, setting, 397-398
Breakpoint Settings dialog box

conditions, setting, 427
filters, 429
hit count condition, 429

Breakpoint2 automation type, 602
breakpoints

actions, 402
automation type, 602
Breakpoints window, 405, 423
C#, 246
clearing, 404
conditions, 402, 426-427

combining, 430
conditional expression, 427-428
filters, 428-429
hit count, 429-430

configuring, 245-246
debugging, continuing after, 403
defined, 244

disabling, 245
function, setting, 421-422
icons, 422
labeling, 425-426
managing, 424
searching, 426
setting, 244-245, 401
stopping, 246
threads, adding, 450
VB, 246
virtual, creating, 248

Breakpoints window, 405, 423
conditions, setting, 426
managing breakpoints, 424
searching/sorting breakpoints, 426
toolbar, 423

Breeze, 834
Browse button (Azure web apps toolbar), 499
browsers

Object Model. See BOM
output/validation, 276-277

browsing
code snippets online, 322
objects, 215

bubbling events, 1015
build automation (TFS), 7
Build Configuration property page, 176
build configurations, 176-177
Build Events property page, 187
Build menu, 57
Build property page, 187
BuildDependencies automation type, 602
BuildDependency automation type, 602
BuildEvents automation type, 602
BuildingBlockGaleryContentControl control, 1054
BuiltIn property (CommandBar objects), 629
business logic, adding, 140-141
button class, 1186
:button jQuery filter, 822
buttons

app bars, 1096
Class View window toolbar, 202
Debug toolbar, 412
event handlers (WPF), 1027
Ionic, creating, 1186

C

ribbons
	
customizing, 1045
	
handling, 1046-1047
	

Solution Explorer toolbar, 194
Windows Forms Document Outline toolbar, 218

Buy Domains button (Azure web apps toolbar), 499

C#, 9
anonymous types, 137-138
async keyword, 1087
asynchronous programming, 157-159
attributes, 126
auto-implemented properties, 147-148
await keyword, 1087
brace matching, 324
breakpoints, triggering, 246
classes

behaviors, overriding, 101-102
	
constructors, 98-99
	
defining, 93
	
fields/properties, 94-96
	
hiding members, 102
	
inheritance, 100-101
	
member accessibility, 97-98
	
overloading methods, 103
	
static members, 99
	

code editor, 68, 229
	
code snippets, adding, 312
	
collection initializers, 136-137
	
comment tasks example, 326
	
constants, defining, 113
	
constructor snippet XML format, 316
	
covariance/contravariance
	

custom generic classes, 156
	
defined, 155
	
delegates, 156
	
generic collections, 156
	

.csproj extension, 181
	
custom code snippet code listing, 319-320
	
data types
	

common, listing of, 110
	
conversions, 111-113
	

decision structures, 116
	
If...Then...Else, 116-117
	

switch...Case, 118
dynamic data type, 149
dynamic objects

calling, 153-154
	
creating, 150-153
	
executing, throwing objects, 154
	

enumerations, 99-100
events

defining, 128-130
listening for, 131
raising, 130

exceptions
filtering, 128
handling, 127-128

extension methods, 138-139
friend assemblies, 145-146
groups

arrays, 122-123
	
collections, 123-125
	
tuples, 125-126
	

image viewer application code, 1031-1034
ImagePage.xaml.cs code listing, 1108-1110
interfaces, defining, 104
JavaScript similarities, 795-797
lambda expressions, 143-145
LINQ, 142-143
local type inference, 132-134
logical/conditional operators, 116
loops

Do...While, 121
	
For...Each, 120
	
For...Next, 119
	

methods
defining, 96
returns values, defining, 96-97

namespaces, 106-109
new features, 85-86

index initializers, 92-93
lambda expressions, 92
NameOf expression, 90-91
null-conditional operators, 86-88
read-only auto properties, 88-90
string interpolation, 91-92
using statement, 91

object initializers, 134-136

http:ImagePage.xaml.cs

operators, 113
	
arithmetic, 114
	
assignment, 113-114
	
comparison, 115
	
concatenation, 115
	

Organize Usings (IntelliSense), 311
	
partial methods, 140-141
	
stored procedures, creating, 560-564
	

starting managed code, 561
	
T-SQL coded update query, 563
	
update query, 562-563
	

structures, 105-106
	
user control code behind, 678-681
	
variables, declaring, 111
	
WinRT, 1075
	

C++, 9
Cache TagHelper, 767
CachedAttribute attribute, 1057
CachedDataHostItem class, 1058
CachedDataItem class, 1058
CalculateCtrl controller, 1187-1188
calculatePace() method, 1186
Call Hierarchy window, 236-237
CallBase() function, 318
camel casing (strings), 200
Canvas control, 999-1000
capabilities, requesting, 1090
Caption property (windows), 615
Capture Screenshots command (Windows Store menu), 1102
casting, 112
catalogs (MEF), 686
categories (automation), 604
Category property (TaskItem object), 621
CDbl keyword, 112
ceil() method (Math object), 804
cell edits, customizing, 572-574
Change app service plan button (Azure web apps toolbar), 499
Change Signature dialog box, 364
change tracking, 292
ChangeCase() method (EditPoint objects), 636
charAt() method (strings), 802
CharLeft() method (EditPoint objects), 636
charms (Windows), 1066
CharRight() method (EditPoint objects), 636
Chart.js library, 834

http:Chart.js

:checkbox jQuery filter, 822
:checked jQuery filter, 822
Checked property (TaskItem object), 621
childNodes property (document object), 813
CInt keyword, 112
class designer, 281

class diagrams, creating, 281
class relationships, 284
	

associations, 285-286
	
inheritance, 284
	
interfaces, implementing, 285
	

classes, adding, 283
code
	

adding to classes, 287
	
comments, creating, 287
	

items
	
adding, 282-283
	
hiding, 287
	

launching, 281
	
members, displaying, 282
	
methods, creating, 287
	
refactoring code, 366-367
	
Toolbox, 282
	

Class Details window, 287
Class keyword, 94
Class View and Properties window, 368
Class View New Folder button (Class View window toolbar), 202
Class View Setting button (Class View window toolbar), 202
Class View window, 201

panes
	
members, 205
	
objects, 203-205
	

search bar, 203
toolbar, 202

ClassCleanup class, 341
classes

accessing from Solution Explorer, 198
	
action result, 754
	
ASP.NET models, creating, 744-745
	
AssemblyCleanup, 341
	
AssemblyInitalize, 341
	
Assert, 344-345
	

assertion methods, 344
	
collections of objects, verifying, 345
	
overloads, 345
	

strings, verifying, 345
associations, 285-286
behaviors, overriding, 101-102
BikeLogListVm, 865
Binding, 1012
BitmapSource, 1023
BlurBitmapEffect, 1028
button, 1186
CachedDataHostItem, 1058
CachedDataItem, 1058
class designer, adding, 283
ClassCleanup, 341
ClassInitialize, 341
code, adding, 287
CodeMetricDisplayControl, 698
CodeMetricViewportAdornment, 704-706
CollectionAssert, 345
collections, 123-125

generic, 125
standard, 124

ColorSelectorPackage, 675-677
Command, 660-663
constructors, 98-99
Control, 278
ControlTemplate, 1008
Customer, 933
CustomerDetailsViewComponent, 785
CustomerProfile, 932
data

annotations, adding, 746-747
	
attribute, 745-746
	
context, creating, 748
	

DataGridViewComboBoxColumn, 572
DataSource, 341
DataTemplate, 1025
defining, 93
DeploymentItem, 341
diagrams, creating, 281
DyanmicObject, 150
EditorClassifier1, 690
EditorClassifier1Format, 690
EditorMargin1, 691
ExpectedException, 341
fields, defining, 94-95
files, 719

FolderBrowserDialog, 1028
FormatConvertedBitmap, 1027
FormRegion1, 1052
Frame, 1093, 1118
generic, 156
GridView

data model link, 1083
item templates, 1083
SelectionChanged event handler, 1082

HomeController, 741
action methods, 742
code listing, 741

HostType, 341
Ignore, 341
ImageFile, 1085
ImageList, 1088
inheritance, 100-101, 284
interfaces

defining, 104
	
implementing, 285
	

Invoice, 334
ComputeTotal method, 334
totals unit test, adding, 335-336

KnownFolders, 1088
MainWindow, 1024
MEF, 685
members

accessibility, 97-98
	
class designer, displaying, 282
	
hiding, 102
	
static/shared, 99
	

message, 1050
methods

defining, 96
overloading, 103
returns values, defining, 96-97

navbar, 842
Package, 658-660
Panel, 967
read-only properties, 95-96
RotateTransform, 1027
ScaleTransform, 529
ServerDocument, 1058
SqlCommand, 561
SqlConnection, 561

StorageFile, 1088
	
StorageFolder, 1088
	
StringAssert, 345
	
structures, compared, 105
	
Style, 1007
	
SuspensionManager, 1099
	
test, 331
	
test attribute, 341-342
	
TestClass, 341
	
TestCleanup, 341
	
TestContext, 339-340
	

accessing, 340
	
methods, 339
	
properties, 339
	

TestInitialize, 341
	
TestMethod, 341
	
TestProperty, 341
	
Timeout, 341
	
ToolStrip, 972
	
ToolStripItem, 975
	
ToolTip, 972
	
Tuple, 125
	
UserControl, 278, 982
	
ViewportAdornment1, 694
	
WCF service, creating, 933
	
Web API services
	

controller, 901
model, 899

WMI classes node (Server Explorer), 209-210
WPF

Application, 991
	
base element, 990
	
Control, 990
	
DispatcherObject, 990
	
Visual, 990
	

classification types (code editor), 687
classifiers, exporting, 690-691
ClassInitialize class, 341
ClassName() function, 318
cleaning up unit tests, 343-344
Clear All DataTips command (Debug menu)

active debug session, 408
at rest, 406

clear() method
LogCtrl controller, 1191

OutputWindowPane objects, 626
ClearBookmark() method (EditPoint objects), 636
ClearBookmarks() method (TextDocument objects), 633
Click events, 1019
ClickOnce

methods, 464-465
overview, 464-465
publication properties, 466
Publish Wizard, 466-468

clients
build tasks, managing, 731-734
frameworks

AngularJS. See AngularJS
Backbone, 833, 1175
Bootstrap. See Bootstrap
Breeze, 834
Chart.js, 834
CoffeeScript, 719, 729-730, 834
Cordova. See Cordova
dependencies, managing, 728-731
Ember.js, 834
Hammer.js, 833
jQuery UI, 833
jQuery.validate, 833
Knockout. See Knockout
Less, 834
Modernizer, 833
Node.js, 834
Respond.js, 833
Sammy.js, 833
Sass, 834
selecting, 832-835
SignalR, 834
TypeScript, 834-835

WCF, 929
client-side scripts, debugging, 456
Close() method

documents, 631
solutions, 608
windows, 615, 806

cloud computing
applications, creating, 29
Azure. See Azure
publishing to, 30-31
overview, 29

http:Sammy.js
http:Respond.js
http:Hammer.js
http:Ember.js
http:Chart.js

coarse-grained interfaces, 903
code

analysis phase (debugging), 393
analysis settings, 175
classes, adding, 287
comments, 287
component designer generated (WinForms), 279-280
counting algorithm, creating, 700-702
debugging. See debugging
definition window, 250
deploying. See deployment
flow, controlling, 246-248
metrics extension, creating, 697-706

baseline project structure, 697
code counting algorithm, creating, 700-702
viewport adornment, 703-706
WPF user control, 698-700, 702

model object hierarchy, 611-612
navigating
	

bookmarks, 234-235
	
Call Hierarchy window, 236-237
	
line numbers, 233-234
	

outlining, 296-298
	
printing, 248-249
	
problem indicators, 293
	
projects, accessing, 610-612
	
refactoring
	

benefits, 362
	
class designer, 366-367
	
defined, 361
	
field encapsulation, 387-388
	
interface extraction, 382-385
	
method extraction, 375-382
	
operations, 362
	
overview, 361-362
	
previewing/making changes, 364-365
	
Quick Actions menu access, 363
	
renaming code, 367-371
	
tools, invoking, 363-364
	
variable assignments, 372-375
	

reviewing, 393
snippets, 311
	

Code element, implementing, 319
	
adding, 321-322
	
adding with Code Snippet Inserter, 312-313
	

browsing/sharing online, 322
C# constructor snippet XML format, 316
Code Snippets Manager, 321
custom C# snippet code, 319-320
form names, 314
functions, 318
header information, 319
literals/variable replacements, 318
placeholder values, 314
storing, 316
Surround With snippets feature, 314
Toolbox storage, 322
XML schema reference, 316

stepping, 403-405
	
into, 416-418
	
breaking into debugger, 416
	
debugging, starting, 414-415
	
ending, 420-421
	
execution, continuing, 420
	
out, 419
	
over, 419
	
running to cursor position, 415-416
	
into specific, 418-419
	

tables, writing, 543
	
testing. See unit tests
	
WinForms, writing, 264-267
	

Code Analysis Settings property page, 175
code editor, 68

bookmarks, 234-235
brace matching, 322-324
breakpoints

C#, 246
	
configuring, 245-246
	
defined, 244
	
disabling, 245
	
setting, 244-245
	
stopping, 246
	
VB, triggering, 246
	
virtual, creating, 248
	

C# UI elements, 229
	
call hierarchy, 236-237
	
classifiers, exporting, 690-691
	
code
	

definition window, 250
	
flow, controlling, 246-248
	

metrics extension, creating, 697-706
code pane, 229

code navigation, 236-237
	
bookmarks, 234-235
	
line numbering, 233-234
	

debugging, 244-248
	
defined, 226
	
extensions
	

building, 688-689
classifiers, exporting, 690-691
code metrics, creating, 697-706
deploying, 689
extension points, 687-688
managing, 696
margins, displaying, 691-692
online, finding/posting, 696
text adornments, 692-693
viewport adornment, 693-695

Hello World function, writing, 226-228
line numbering, 233-234
outlining, 296-298
printing, 248-249
refactoring

operations, 362
previewing/making changes, 364-365
tools, invoking, 363-364

search and replace, 237
	
Find in Files, 239
	
Find Results window, 240-241
	
Incremental Search, 242-243
	
Quick Find, 237-238
	
Quick Replace, 238-239
	
Replace in Files, 241-242
	
search folder sets, creating, 240
	

smart tasks/light bulbs, 302-305
	
text adornments, 692-693
	
vertical scrollbar, 231-233
	
viewport adornment, 693-695
	
window components, 228
	

code pane, 229
	
indicator margin, 230
	
selection margin, 230-231
	

zooming, 228
Code First (EF)

existing databases, generating, 32-37

overview, 32
Code node (XML), 316
code pane (code editor), 229
Code Snippets Manager, 321
CodeClass interface, 610
CodeElement objects, 610-611
CodeElement property (EditPoint objects), 636
CodeElements collection, 610

code model object hierarchy, 611-612
vsCMElement enumeration values, 612

CodeMetricDisplayControl class, 698
CodeMetricViewportAdornment class, 704-706
CodeModel property (projects), 609
CodeSnippet node (XML), 316
CodeSnippets node (XML), 316
coding phase (debugging), 393
.coffee file extension, 719
CoffeeScript, 834

files, 719
	
JavaScript library, adding, 729-730
	

collaboration
TFS, 7
WPF, 992-993

Collapse all button (Solution Explorer toolbar), 194
Collapse button (Windows Forms Document Outline toolbar), 218
Collection property

commands, 646
	
documents, 631
	
OutputWindowPane objects, 626
	
projects, 609
	
TaskItem object, 621
	
windows, 615
	

CollectionAssert class, 345
collections, 123-125

CodeElements, 610
	
code model object hierarchy, 611-612
	
vsCMElement enumeration values, 612
	

CommandBars, 629
	
Commands, 646
	
documents, 631
	
generic, 125, 156
	
Get requests, 907-908
	
initializers, 136-137
	
ProjectItems, 606
	
projects, 606
	

standard, 124
	
verifying, 345
	

colons (:)
jQuery filters, 822
JSON notation, 720

colorDepth property (screen object), 807
colors

code
	
printing, 248-249
	
problem indicators, 293
	

forms, 959
	
Ionic, 1185
	
picker extension
	

ColorSelectorPackage class, 675-677
helper routines, implementing, 671-673
mouse movements over palette, handling, 670-671
package, running, 675
requirements, 668
tool window, displaying, 673-675
user control code behind (C#), 678-681
user control XAML, 677
user controls, creating, 668-670

text editors, customizing, 295-296
	
themes, customizing, 45
	

ColorSelector extension
ColorSelectorPackage class, 675-677
helper routines, implementing, 671-673
mouse movements over palette, handling, 670-671
package, running, 675
requirements, 668
tool window, displaying, 673-675
user controls

code behind (C#), 678-681
	
creating, 668-670
	
XAML, 677
	

ColorSelectorPackage class, 675-677
columns

grid
	
creating, 1002
	
sizing, 1017
	

mode selection, 222
	
tables, adding, 541
	
wrapping (page layout), 838
	

commas (,) JSON notation, 720
combination selections (jQuery), 822

ComboBoxContentControl control, 1054
Command automation type, 602
command bars, 628-630

CommandBars collection, 629
menu bar versus toolbar, 629
methods, 629
properties, 629
Solution Explorer, 629

Command class, 660-663
Command window, 623-625
CommandBar objects, 628-630

CommandBars collection, 629
menu bar versus toolbar, 629
methods, 629
properties, 629

CommandBars collection, 629
CommandBars property (objects)

DTE, 605
windows, 615

commands, 645
automation type, 602
Command window execution, 624-625
custom extensions, 654-655
Debug menu

active debug session, 408
at rest state, 406

executing, 647-648
extensions, adding

defining, 192-667
GUIDs/IDs, defining, 667
reactions, 663
UI, defining, 667

key bindings, mapping, 648-649
methods, 646
names, 646
properties, 646
viewing, 646
Windows Store menu, 1101-1102

Commands collection, 646
Commands package, 750
Commands property (DTE objects), 605
Commands2 automation type, 602
CommandWindow automation type, 602
CommandWindow object, 623
comments

class designer, creating, 287
tasks, 326-327
	

C# example, 326
	
custom tokens, 327
	
removing from Task List, 326
	
tokens, 326
	

Community edition, 2-3
CompareAttribute class, 746
comparison operators, 115
Compile property page, 187
Compiler directory, 718
compiling phase (debugging), 393
Complete Word, 306-308

completion list transparency, 307
	
completion mode, 308
	
content support, 307
	
manually launching, 307
	
suggestion mode, 308
	

compliance (website design), 277
components

ASP.NET MVC view, 784-788
Bootstrap, 844
sets, 214
WinForms

code, generating, 279-280
	
creating, 278-279
	
defined, 278
	
designer, 278-280
	

WPF, 989
composition container (MEF), 685-686
Compute template, 525
ComputeTotal() method (Invoice class), 334
concatenation operators, 115
concatenation with assignment of string value (&=) operator, 113
conditional expression breakpoints, setting, 427-428
conditional operators, 116
conditions

breakpoints, 402, 426-427
	
combining, 430
	
conditional expression, 427-428
	
filters, 428-429
	
hit count, 429-430
	

config.json files, 720
Configuration automation type, 602
configuration files (JSON), 720-721

configuring
breakpoints. See breakpoints
Cordova projects, 1160-1161
extension package parameters, 653
Ionic projects, 1177-1179
.NET Framework, 721, 727
Query/View designer, 545
remote debugging, 442-444
startup forms, 958
symbol file paths, 459-460
tracepoints, 431
unit tests, 343-344
WCF services as REST-based

client code for calling, writing, 947-949
REST requests, accepting, 943-947

web applications
	
deployment settings, 472-473
	
publication connections, 471
	

XAML/design panes (WPF), 994-996
config.xml files, 1159
ConfimDelete.cshtml file, 786
confirm() method (windows), 806
connections

databases, 748-750
web application publication, configuring, 471

constants
code expressions, converting, 372-374
defining, 113

constructors
creating, 98-99
notation, 800

consuming services
WCF, 938-942
Web API, 912

client application, creating, 913-915
deleting records, 927-928
edit page, creating, 921-924

data, getting, 922-924
form postback, receiving, 922-923

posting new records, 924-925
services, calling, 916-920

models, creating, 916
	
view controller, 917-919
	
views, creating, 916-917
	

view/controller files, creating, 915-916

Contact() action method, 742
containers, 967

FlowLayoutPanel, 968
SplitContainer, 968-969
TableLayoutPanel, 967-968
ToolStripContainer, 969-971

content app (Office), 1060
Content Model View (XML Schema Designer), 255
content types (code editor extension point), 687
ContentResult class, 754
context menus

Class View window
	
members pane, 205
	
objects pane Sort/Group, 204-205
	

Solution Explorer
	
projects, 197
	
solutions, 196
	

Windows, 1070
Context property (CommandBar objects), 629
ContextAttributes property (windows), 615
Continue command (Debug menu), 408, 420
contracts (WCF services), 929
Control class, 278, 990
controllers

AngularJS, defining, 881
ASP.NET

customer delete requests, processing, 759
customers, finding, 757-758
POST requests, handling, 758-759

ASP.NET MVC, 736, 753
	
action result objects, 754-755
	
creating, 755-756
	
DbContext objects, adding, 756
	
generating with dnx. gen tool, 788-791
	
list of customers, returning, 756-757
	
new customer page, returning, 757
	

CalculateCtrl, 1187-1188
	
Knockout, creating, 863
	
Web API
	

adding, 351-352
class, creating, 900-903
creating, 900-903
delete requests (Delete() method), 910-911
get requests (Get() method), 904-908
HTTP verb-based attributes, 902-903

post requests (Post() method), 908-909
test method, writing, 353-354
update requests, 909-910

Controllers folder, 718, 740
controls

actions panes stacking behaviors, 1056
container layout, 967

FlowLayoutPanel, 968
	
SplitContainer, 968-969
	
TableLayoutPanel, 967-968
	
ToolStripContainer, 969-971
	

data binding, 564-565
	
autogenerating, 565-569
	
complex, 564-565
	
manually, 571-575
	
simple, 564
	
typed data sets, 570-571
	
web controls, 579-583
	
WPF applications, 575-579
	

DataGridView, 981-982
	
docking, 1000-1001
	
forms
	

alignment, 963
anchoring, 964-965
appearance, 971
auto scaling, 966-967
custom, creating, 985
docking, 965-966
resize effects, 963-964
subclassing existing, 982-983
tab order behavior, 971
ToolStrip controls. See ToolStrip controls
ToolTips, 972
user, designing, 983-985
z-order, 976

host, 1053-1054
	
items, 1053
	
native Office controls, 1054
	
WinForms controls, 1053-1054
	

ImageList, 980-981
	
ListView, 1130-1131
	
ribbon, 1044
	
styles, 992-1008
	
ToolStrip, 972-973
	

built-in capabilities, 972

MenuStrip, 973-975
	
StatusStrip, 976-978
	
toolbars, 975-976
	
traits, 972
	

TreeView, 979
	
user. See users, controls
	
web, 579-583
	
web forms
	

adding, 272
arranging, 272-273
	

Windows Store applications, 1070
	
WinForms, 1053-1054
	

adding, 260
creating, 278-279
custom versus user, 278
defined, 278
layout, 262
layout grid, 262-263
snap lines, positioning, 263-264

WPF, 989
	
adding, 270
	
Canvas, 999-1000
	
DockPanel, 1000-1001
	
Grid, 1001-1005
	
StackPanel, 1005-1006
	
WrapPanel, 1006
	

Controls property (CommandBar objects), 629
ControlSize property (custom ribbons), 1045
ControlTemplate class, 1008
converting data types, 111-113
Copy method (EditPoint objects), 636
copying text, 222
Cordova, 1153

apps, writing, 38-39
	
JavaScript, 1164-1165
	
project setup, 1160-1161
	
UIs, 1161-1163
	

apps website, 1156
	
benefits, 1154
	
CLI, 1165
	
client frameworks, 1174-1175
	
debugging
	

emulators, 1170-1171
	
local devices, 1172-1174
	
Ripple simulators, 1168-1170
	

dependencies, 1156
Ionic
	

Angular anatomy, 1180-1181
	
overview, 1176
	
projects, configuring, 1177-1179
	

Ionic-Angular-Cordova sample app
	
About tab, 1192
	
calculate tab, creating, 1186-1190
	
local storage, adding, 1193-1195
	
log tab, creating, 1190-1192
	
running on Windows Phone, 1196-1197
	
structure, 1182-1184
	

local storage, 1193-1195
	
Mac, configuring, 1167
	
overview, 37-38, 1154-1156
	
plug-ins, 1155, 1175-1176
	
Plugins Registry, 1175
	
running, 1166-1167
	
templates, 1157-1159
	

files, 1159-1160
folders, 1158-1159
	

UI components, 1156
	
web views, 1155
	

Count property (solutions), 608
counters (performance), 211
covariance/contravariance

custom generic classes, 156
	
defined, 155
	
delegates, 156
	
generic collections, 156
	

Create App Packages command (Windows Store menu), 1102
Create() method

POST requests, handling, 759
solutions, 608

CreateEditPoint() method (objects)
EditPoint, 636
TextDocument, 633

createElement() method (DOM), 815
CreateLinkedWindowFrame() method (windows), 627
createTextNode() method (DOM), 815
Creator property (CommandBar objects), 629
CreditCardAttribute class, 746
Criteria pane (Query/View designer), 545
cross platform mobile applications, 14
.cs file extension, 719

.cshtml file extension, 719

.csproj file extension, 181
CSS

binding (Knockout), 872
editor
	

attributes, defining, 258
	
overview, 257
	
rules, adding, 258
	

jQuery
	
rules, 828
	
selections, 822
	

LESS style sheets, 719, 731-734
	
overriding, 851-852
	
responsive design, 763
	
website design, managing, 275-276
	
WinRT, 1073-1074
	

.css file extension, 719
css() method (jQuery), 828
Cstr keyword, 112
curly brackets ({ })

JSON notation, 720
Razor syntax, 763

CurrentTestOutcome property (TestContext class), 339
CustomController.cs class, 755
Customer class, 933
customer example pages, 771

customer list, displaying, 772-773
	
deleting customers, 779
	
existing customers, editing, 778-779
	
navigation, adding, 771-772
	
new customer views, creating, 774-777
	

Customer Experience Program, 84
Customer.cs POCO model class, 745
CustomerDetailsViewComponent class, 785
CustomerProfile class, 932
Customize dialog box, 64
customizing

Bootstrap visual design, 851-854
	
customizer, 853
	
source files, 854
	
styles, overriding, 851-852
	
text, 845-846
	
themes, 852
	

cell edits, 572-574
	
code editors, 70-71
	

http:Customer.cs
http:CustomController.cs

colors
	
text editor, 295-296
	
themes, 45
	

command extensions, 654-655
	
comment task tokens, 327
	
component sets, 214
	
controls
	

forms, 985
	
WinForms, 278
	

data source mapping, 569
	
database projects, 557-559
	
debugging default behaviors, 419
	
EDM, 593
	
fonts, 295-296
	
IDE fonts, 81-82
	
IntelliSense, 324
	
Office
	

ribbons, 1043-1047
	
task panes, 1047-1048
	

project dependencies, 174
	
Solution Explorer views, 200-201
	
startup options, 52-53
	
status bar items, 977-978
	
text editors, 226
	
toolbars, 64-66
	
Toolbox, 73, 962
	
typed data sets, 570-571
	
window layouts, 77-79
	
WinForms forms appearance, 260
	
WPF Designer appearance, 270
	

Cut() method (EditPoint objects), 636
	
cutting text, 222
	

D
data
	

annotations, 746-747
	
attribute classes, 745-746
	
binding. See binding data
	
cache (Office), 1057-1059
	

accessing, 1058-1059
	
data, adding, 1057-1058
	
extending, 1040
	

connections, 207-208
	
context classes, creating, 748
	
Entity Data Model (EDM)
	

editing, 593
EF designer, 594
EF updates, 597-598
items, adding, 591
Mapping Details window, 595-596
Model Browser, 594-595
queries, 596-598
Wizard, 592

forms, viewing, 979
cell types, 982
hierarchical relationships, 979-980
image lists, 980-981
sources, 982
tabular format, 981

set designer, 570-571
sources

data-bound controls, 565-569
master-detail, adding, 578
window, 566, 575
WPF application data binding, 576

templates, 1025-1026
types
	

anonymous, creating, 137-138
	
common, listing of, 110
	
conversions, 111-113
	
dynamic, 149
	
local type inference, 132-134
	

Data Source Configuration Wizard, 565
DataAnnotations namespace, 745
databases

AdventureWorks sample, 546
Azure, 500-503
	

databases, adding, 500
	
details, configuring, 500
	
managing, 502, 519-521
	
viewing, 502
	

Code First development, 32-37
	
connections, creating, 748-750
	
context classes, creating, 748
	
creating, 537
	

EF7 migrations, 750-752
	
manually, 752-753
	

data binding, 564-565
autogenerating controls, 565-569
complex, 564-565

defined, 564
	
manually binding controls, 571-575
	
simple, 564
	
typed data sets, 570-571
	
web controls, 579-583
	
WPF applications, 575-579
	

deploying, 472-473
existing, connecting, 538-539
importing, 555-557
managed assemblies, 563
O/R mapping

defined, 584
drag-and-drop operation LINQ code, 588-590
EF. See EF
LINQ objects, 590-591
O/R designer, 586-588

projects
creating, 554
customizing, 557-559
database development workflow, 553
databases, importing, 555-557
publishing databases, 559
scripts, 553

publishing, 559
queries, writing, 544-548

joins, 547
Query designer panes, 545
SQL statements, fine-tuning, 545-547
tables, adding, 544
types supported, 548

SSDT, 535
stored procedures, 549-551

debugging, 550-551
managed, creating with C#, 560-564
writing with T-SQL, 549

tables, 536
adding, 540
adding to queries, 544
cell edits, customizing, 572-574
code, writing, 543
columns, adding, 541
contents, viewing, 548
database update, 542
foreign keys, 544
indexes, 542

primary keys, 540
	
renaming, 540
	
table designer, 539
	

triggers, creating, 551-552
	
user-defined functions, 552
	
views, creating, 548
	

DataConnection property (TestContext class), 339
data-driven unit tests, creating, 346-349
DataGridView control

cell edits, customizing, 572-574
	
data source, selecting, 571
	
form data, displaying, 981-982
	

DataGridViewComboBoxColumn class, 572
DataList controls, 580
DataRow property (TestContext class), 339
DataServices template, 525-526
DataSet objects, 1057
DataSet visualizer, 440
DataSource class, 341
data-source controls, 583
DataTemplate class, 1025
DataTips

exporting/importing, 438
	
pinning, 437
	
viewing data in debugger, 436-437
	

DataTypeAttribute class, 746
Date object, 804
DatePickerContentControl control, 1054
DateString property, 1131
DbContext objects, 756
Debug Location toolbar, 447
Debug menu commands, 57, 405

active debug session, 408
at rest state, 406

Debug property page, 188
Debug Source Files property page, 175
Debug toolbar buttons, 412

Break All, 416
	
Run to Cursor, 415-416
	
Show Next Statement, 403
	
Start Debugging, 414
	
Step Into, 403, 414
	
Step Over, 415
	
Stop, 404
	

Debugger objects, 649

Debugger property (DTE objects), 605
DebuggerEvents automation type, 602
debugging

automation types, 602
	
Azure web apps, 494
	
breakpoints
	

actions, 402
Breakpoints window, 405, 423
C#, 246
clearing, 404
combining conditions, 430
conditional expression, 427-428
conditions, 402, 426-427
configuring, 245-246
defined, 244
disabling, 245
filters, 428-429
function, setting, 421-422
hit count, 429-430
icons, 422
labeling, 425-426
managing, 424
searching, 426
setting, 244-245, 401
stopping, 246
VB, triggering, 246
virtual, 248

client-side scripts, 456
	
code editor, 244-248
	
code flow, controlling, 246-248
	
Cordova apps
	

emulators, 1170-1171
local devices, 1172-1174
Ripple simulators, 1168-1170

data, viewing, 433
DataTips, 436-438
Diagnostic Tools window, 439-440
PerfTips, 438-439
QuickWatch window, 436
variables, watching, 433-435
visualizers, 440-441
Watch windows, 435

Debug menu commands, 405
	
active debug session, 408
	
at rest, 406
	

Debug toolbar buttons, 412
Break All, 416
Run to Cursor, 415-416
Show Next Statement, 403
Start Debugging, 414
Step Into, 403, 414
Step Over, 415
Stop, 404

default behaviors, customizing, 419
different processes, 400-401
dump files, 457

creating, 457-458
	
debug with mixed data option, 460
	
defined, 457
	
summary information, viewing, 458
	
symbol file paths, setting, 459-460
	

Edit and Continue feature, 441-442
ending, 420-421
Exception Assistant window, 399
Locals window, 399
multithreaded applications, 445

breaking on threads, 450
flagging threads, 447
individual threads, inspecting, 448-450
managing threads, 447-448
MSDN code example, 445
processes, managing, 447
viewing threads, 445-446

Options dialog box, 413-414
parallel applications, 451

Parallel Stacks Task view, 452-455
Parallel Stacks Threads view, 451-453
Parallel Stacks window, 451
Parallel Tasks window, 454-456

phases, 392-393
remote, 442-444
self-checking applications, 393-394

applications in debug mode, tarting, 394
breaking on exceptions, setting, 397-398
continuing after breakpoints, 403
Contoso University sample pplication, 393
debug mode, starting, 396
different processes, 400-401
errors, debugging, 398-399
setting breakpoints, 401-402

stepping through code, 403-405
website debugging, enabling, 394-395

source file locations, 175-176
stack, 399
starting, 396, 414-415
stepping through code

into, 416-418
breaking into debugger, 416
debugging, starting, 414-415
execution, continuing, 420
out, 419
over, 419
running to cursor position, 415-416
into specific, 418-419

stored procedures, 550-551
tracepoints, 431-432
	

action/condition combinations, 432
	
setting, 431
	

unit tests, running, 336
	
Watch windows, 399
	
WCF services, 444, 937-938
	
Web API services, 905-907
	

Chrome/Firefox Get request results, 906
IE Get service request results, 905
project properties, 905
requests/responses, 907
service, invoking, 905

Windows Store apps, 460-461
	
WPF visual trees, 1010-1012
	

decision structures, 116
If...Then...Else, 116-117
Select...Case/switch...Case, 118-119

Declarations node (XML), 316
declarative attributes, 126
declaring variables, 111
Default node (XML), 316
deferral objects, 1097
definition files

projects, 181-183
solutions, 167-170

delegates, 156
Delete All Breakpoints command (Debug menu)

active debug session, 408
at rest, 406

Delete button (Azure web apps toolbar), 499

Delete() method
objects

commands, 646
CommandBar, 629
EditPoint, 636
projects, 609
TaskItem, 621

Web API services, 910-911, 927-928
delete queries, 548
DeleteWhitespace() method (EditPoint objects), 636
deleting

comment tasks from Task List, 326
DOM tree nodes, 815
Knockout entries, 870
projects from solutions, 607
tasks from task lists, 621
unused arguments, 147

delimiters (brace matching), 323-324
dependencies

client framework, managing, 728-731
Cordova, 1156
directory, 718
Image Editor page (WS app), 1092
injection, 685
packages, 723-727

adding to project.json files, 723-724, 726
adding with NuGet, 726
viewing, 725

deployment
ASP.NET web applications, 469

connections, configuring, 471
deployment settings, configuring, 472-473
previewing publications, 473-474
targets, selecting, 470-471

Azure
cloud service projects, 533-534
portal, 503
resource groups, 528-529

ClickOnce
methods, 464-465
overview, 464-465
publication properties, 466
Publish Wizard, 466-468

code editor extensions, 689
Cordova apps, 1166-1167

databases, 472-473
	
InstallShield, 465, 469
	
MSI packages, 465
	

DeploymentDirectory property (TestContext class), 339
DeploymentItem class, 341
Description node (XML), 316
description pane (Object Browser), 215-216
Description property, 621, 1131
designers

class, 281
	
associations, 285-286
	
class diagrams, creating, 281
	
classes, adding, 283
	
code, adding to classes, 287
	
hiding items, 287
	
inheritance, 284
	
interfaces, implementing, 285
	
items, adding, 282-283
	
launching, 281
	
members, displaying, 282
	
methods, creating, 287
	
refactoring code, 366-367
	
Toolbox, 282
	

code comments, creating, 287
component
	

code, generating, 279-280
	
components, creating, 278
	

data set, 570-571
	
defined, 221, 225
	
Entity Framework, 594
	
graphical perspectives, 225
	
O/R, 586-590
	
Query/View
	

configuring, 545
	
queries, writing, 544-548
	
Query panes, 545
	
views, creating, 548
	

table, 539
	
columns, adding, 541
	
database update, 542
	
foreign keys, 544
	
indexes, 542
	
primary keys, setting, 540
	
renaming tables, 540
	

web, 272

browser output/validation, 276-277
control layout, 272-273
controls, adding, 272
HTML, editing, 273
HTML formatting, 274
smart tasks/light bulbs, 301
standards compliance, 277
styles/CSS management, 275-276
tables, 274
tag navigator, 299

WinForms
aligning controls, 963
anchoring controls, 964-965
auto scaling controls, 966-967
component tray, 962
docking controls, 965-966
end user considerations, 954-955
planning, 956
resizing, 957
tab order, 971
ToolTips, 972
UI standards, 955
visual styles, 971

WPF, 268-269, 993-994
appearance, customizing, 270
grid controls, 1002
Properties window, 996
viewing, 268-269
XAML/design panes, configuring, 994-996
zooming, 997-998

XML Schema
defined, 254
views, 254-256

destroy property (Knockout), 862
Detach All command (Debug menu), 408, 420
DetailsView controls, 579
Development Tools Environment. See DTE
device orientation, 1116
diagnostic logs, 516-519
Diagnostic Tools window, 439-440
Diagram pane (Query/View designer), 545
dialog boxes

Accessibility Validation, 277
Add Command, 65
Add Connection, 538

Add New Item
ASP.NET website file types, 719
class diagrams, creating, 281
EDM, 591
WinForms components, creating, 278

Add New Item - Solution Items, 171
Add New Project, 330
Add New Test, 357
Add New User Control, 278
Add Style Rule, 258
Azure Publish Web, 30
Breakpoint Settings

conditions, setting, 427
filters, 429
hit count conditions, 429

Change Signature, 364
Code Snippets Manager, 321
Customize, 64
Edit Breakpoint Labels, 425
Edit Columns, 572
Editor Options, 223
Extract Interface, 384
Feedback, 83
Fonts and Colors Options, 248
Go To Line, 234
IE Options, 456
Images Collection Editor, 980
implementing with Grid control, 1003-1005
Insert Table, 274
Items Collection Editor, 977
Join, 547
New ASP.NET Project, 482
New Breakpoint, 421-422
New Class, 283
New Deployment, 579
New File, 226
New Project

database project template, 554
launching, 177
Office project types, 1041
solutions, creating, 164-165

New Web Site, 180
Options

debugging, 413-414
editor customizations, 70

IDE fonts, 81-82
startup options, 52
	

Preview Changes, 364
	
Preview Database Updates, 753
	
Project Properties, 557
	
Publish Azure Application, 533
	
Reference Manager, 728
	
Rename, 371
	
Select Azure Template, 527
	
Solution Property Pages, 173
	
Style Builder, 258
	
TreeNode Editor, 979
	

direct events, 1015
directives (AngularJS)

files, 719
Ionic UIs, 1180
listing of, 889
models, binding, 875

directories
Compiler, 718
Dependencies, 718
Migrations, 718
Properties, 718
References, 718
wwroot, 717-718

Disable All Breakpoints command (Debug menu)
active debug session, 408
at rest, 406

:disabled jQuery filter, 822
DISCO (Discovery Document), 896
DisplayColumn property (EditPoint objects), 636
Displayed property (TaskItem object), 621
<div> HTML tag, 762
division to return floating point (/) operator, 114
division to return integers (/) operator, 114
DNU (.NET Development Utility), 750
DNVM (.NET Version Manager), 750
DNX (.NET Execution Environment), 712
dnx . gen tool, 788-791
docking

controls, 965-966, 1000-1001
windows, 75-76

DockPanel control, 1000-1001
document node (DOM tree), 808
Document Object Model. See DOM

45

Document Outline window, 216
tag navigation, 300-301
web forms, 216
WinForms toolbar buttons, 218
WPF forms, 216

Document property (windows), 615-616
documents, 631

automation type, 602
collection, 631
DOM tree nodes, accessing, 811

list of nodes, selecting, 812-813
single nodes, selecting, 811-812
traverse nodes, 813

extensions (Office)
actions pane, creating, 1055-1057
add-ins, compared, 1041
data cache, 1057-1059
hosting controls, 1053-1054

features, 631
	
host item, 1053
	
methods, 631
	
projects, 19
	
properties, 631
	
text, 632
	

adding text, 638-639
buffer objects, 635
edit points, repositioning, 640
editing text, 639
editor view objects, 635-636
end point properties/methods, 636
For Loops, bookmarking, 633-634
methods, 633
properties, 633
representations, 635
window comments, inserting, 640-6

WPF support, 989
Documents property (DTE objects), 605
dollar sign ($), jQuery, 821
DOM (Document Object Model), 808

events, 819
Explorer command (Debug menu), 408
exploring, 815
HTML page markup, 809
nodes

accessing, 811

adding, 815
attributes, 814
deleting, 815
HTML content, 814
list of nodes, selecting, 812-813
listing of, 808-809
single, selecting, 811-812
text, updating, 814
traversing, 813
visual, 810

whitespace, 813
dot notation, 801-802
Do...While/Until loops, 120-121
dragging and dropping, 211
dragging/docking toolbars/menus, 969-971
drop handlers, 688
drop-down lists

Bootstrap, 849-850
data-bound, 577

DropDownListContentControl control, 1054
DTE (Development Tools Environment)

automation type, 602
objects, 605-606

methods, 605
properties, 605

DTE property (objects)
commands, 646
documents, 631
EditPoint, 636
OutputWindowPane, 626
projects, 609
solutions, 608
TaskItem, 621
TextDocument, 633
windows, 615

dump files, 457
creating, 457-458
debug with mixed data option, 460
defined, 457
summary information, viewing, 458
symbol file paths, setting, 459-460

dynamic applications, extensibility problem, 684
dynamic data type, 149
dynamic keyword, 149
dynamic objects

calling, 153-154
creating, 150-153
executing, throwing errors, 154

DynamicObject class, 150

E
each() method (jQuery), 823
Edit and Continue feature (debugger), 441-442
Edit App Manifest command (Windows Store menu), 1101
Edit Breakpoint Labels dialog box, 425
Edit Columns dialog box, 572
Edit menu, 57
Edit() method

customers, finding, 757-758
POST requests, handling, 758-759
Web API services

Get() method, calling, 924
Put() method, calling, 922-923

EditableAttribute class, 746
editions

Community, 2-3
comparison website, 3
Enterprise, 4-5
listing of, 2-3
MSDN subscriptions, 5
Professional, 2, 4
Test Professional, 8
Visual Basic, 2

Editor Classifier template, 690-691
Editor Margin template, 691-692
Editor Options dialog box, 223
Editor Text Adornment template, 692-693
editor view objects, 635-636
Editor Viewport Adornment template, 693-695
EditorClassifier1class, 690
EditorClassifier1Format class, 690
EditorMargin1 class, 691
editors. See text editors
EditPoint objects, 635

automation type, 602
methods, 636
properties, 636
repositioning, 640
text

adding, 638-639

editing, 639
window comments, inserting, 640-645

EDM (Entity Data Model)
editing, 593
EF designer, 594
EF updates, 597-598
items, adding, 591
Mapping Details window, 595-596
Model Browser, 594-595
queries, 596-598
Wizard, 592

EF (Entity Framework), 31, 591
Code First. See EF Code First
designer, 594
EDM

editing, 593
EF designer, 594
EF updates, 597-598
items, adding, 591
Mapping Details window, 595-596
Model Browser, 594-595
queries, 596-598
Wizard, 592

Mapping Details window, 595-596
Model Browser, 594-595
queries, 596-598
updates, 597-598
version 7, 32

EF Code First
ASP.NET models

classes, creating, 744-745
data context, creating, 748
database connections, 748-750
validation rules, 745-747

databases, creating
EF7 migrations, 750-752
manually, 752-753

existing databases, generating, 32-37
overview, 32

effects (jQuery), 830
element node (DOM tree), 808
EmailAttribute class, 746
embedding user controls, 985
Ember.js, 834
empty ASP.NET project templates, 714

EmptyResult class, 754
emulators

Azure Compute, 532
Cordova apps, 1170-1171

Enable All Breakpoints command (Debug menu)
active debug session, 408
at rest, 406

Enabled property (CommandBar objects), 629
enable/disable bindings (Knockout), 873
Encapsulate Field refactor operation, 387-388

accessing, 387-388
applying, 388

ending debugging, 420-421
EndOfDocument() method (EditPoint objects), 636
EndOfLine() method (EditPoint objects), 636
EndPoint property (TextDocument objects), 633
endpoints (WCF services), 894, 929
EndTimer() method (TestContext class), 339
Enterprise edition, 2, 4-5
Entity Data Model. See EDM
Entity Data Model Wizard, 32-35
Entity Framework. See EF
enum keyword, 99
enumerations, 99-100
Environment TagHelper, 767
environments, targeting, 54-56
equal operators (=),(==), 113, 115
equal to (>=) operator, 115
Equals() method (Assert class), 344
EqualTo() method (EditPoint objects), 636
Error() action method, 742
errors

breaking on exceptions settings, 397-398
debugging, 398-399

events, 128
application lifecycles, 1119-1121
automation type, 602
defining, 128-130
forms, 959-961
handlers. See handlers
image viewer Windows Store app lifecycle, 1096-1100

application states, 1096
launching applications, 1097-1098
resuming applications, 1097
storing state, 1098-1100

suspending applications, 1097
JavaScript, 816-819

average speed calculator example, 817-818
DOM, 819
handlers, 818
listeners, adding, 818
online subscription, 818
stopping, 819

jQuery, handling, 828-829
listeners, 131, 818
logs, 209
management, 210
mouse movements, handling, 670-671
Outlook form region runtime, 1052
raising, 130
Resuming, 1097
ribbon buttons, handling, 1046-1047
state change, 1120-1121
Suspending, 1097
unused arguments, deleting, 147
WPF routed, 1014-1015

Events property (DTE objects), 605
Excel extensions

actions pane, creating, 1055-1057
data cache, 1057-1059

accessing, 1058-1059
data, adding, 1057-1058

extension points, 1038
hosting controls, 1053-1054

host items, 1053
native Office controls, 1054
WinForms controls, 1053-1054

task pane app, creating, 1060-1062
Exception Assistant window, 399
Exception Settings command (Debug menu)

active debug session, 408
at rest, 406

Exception Settings pane (debugger), 397-398
ExceptionGroups automation type, 602
exceptions

breaking on settings, 397-398
filtering, 128
handling, 127-128
testing, 345-346

ExecuteCommand() method (DTE objects), 605, 647

Expand All button (Windows Forms Document Outline toolbar), 218
ExpectedException class, 341, 345-346
Experience Improvement Program, 84
explicit conversions, 112
Export DataTips command (Debug menu)

active debug session, 408
at rest, 406

exporting
classifiers, 690-691
DataTips, 438
IDE settings, 46-50

expressions
lambda, 92
NameOf, 90-91

Extender property (documents), 631
ExtenderCATID property (documents), 631
ExtenderNames property (documents), 631
Extensibility center website, 688
Extension and Updates window, 696
extensions, 651

code editor
building, 688-689
classifiers, exporting, 690-691
code metrics, creating, 697-706
deploying, 689
extension points, 687-688
managing, 696
margins, displaying, 691-692
online, finding/posting, 696
text adornments, 692-693
viewport adornment, 693-695

color picker example
ColorSelectorPackage class, 675-677
helper routines, implementing, 671-673
mouse movements over palette, handling, 670-671
package, running, 675
requirements, 668
tool window, displaying, 673-675
user control code behind (C#), 678-681
user control XAML, 677
user controls, creating, 668-670

commands
defining, 192-667
file code, 660-663
GUIDs/IDs, defining, 667

reacting, 663
UI, defining, 667

extensibility
center website, 688
problem, 683

manifest file, 652
MEF

architecture, 686
catalog, 686
composition container, 685-686
dependency injection, 685
naming/activation, 685
parts, 685
structural matching, 685
System.ComponentModel.Composition namespace, 685
target applications, 684

methods, 138-139
Office. See Office
Package class code generated by custom command project item, 658-660
package parameters, 653
project items, adding, 653-658

custom commands, 654-655
tool windows, 657-658

VSIX project template, 652
Extract Interface dialog box, 384
Extract Interface refactor operation, 382

accessing, 383
new extracted interfaces

creating, 383-384
implementing, 384-385

Extract Method Refactor operation, 375
accessing, 375
code to refactor, selecting, 377-378
long static method example, 376-377
method stubs, creating, 382
new methods code listing, 379-380
original long static method after extraction, 379
refactored method, creating, 378
single lines of code, 380-382

F
F# language, 9, 93
fading effects (jQuery), 830
Fail() method (Assert class), 344
failures (unit tests), 337-338

feedback, providing, 82-83
Feedback dialog box, 83
fields

defining, 94-95
encapsulating into properties, 387-388

applying, 388
Encapsulate Field operation, accessing, 387-388

private, 94
public, defining, 94

<fieldset> HTML tag, 762
File filter button (Solution Explorer toolbar), 194
File menu, 57
FileName property

ImageFile class, 1085
TaskItem object, 621

FileResult class, 754
files

access classes, 1088
ASP.NET website, 719
Bootstrap, 835-837
ConfimDelete.cshtml, 786
Cordova template, 1159-1160
dump, 457

creating, 457-458
debug with mixed data option, 460
defined, 457
summary information, viewing, 458
symbol file paths, setting, 459-460

gulpfile.js LESS preprocessing task configuration, 733
ImagePage.xaml, 1105-1108
ImagePage.xaml.cs, 1108-1110
JavaScript, 794-795, 854-856
JSON configuration, 720-721
MainPage.xaml, 1103-1104
MainPage.xaml.cs, 1104-1105
paths, selecting, 1028
project definition, 181-183
project.json

default example, 721
package dependencies, adding, 723-727

services.js, 1189
solution

definition, 167-170
supported, 171
user options, 168

source locations, 175-176
symbol, 459-460
test project

adding, 332
default, 331

Universal app
MainPage.xaml, 1136, 1144-1150
MainPage.xaml.cs, 1137-1141, 1150-1152

ValidationScriptsPartial.cshtml, 770
VSCT, 664-667
WCF services, 931-932
Web.config, 394

:filter() jQuery filter, 822
filters

AngularJS, 889
breakpoints, 428-429
exceptions, 128
jQuery selection, 822

Find automation type, 602
Find in Files tool, 239
:find() jQuery filter, 822
Find Results window, 240-241
FindControl() method (CommandBar objects), 629
FindPattern() method (EditPoint objects), 636
FindProjectItem() method (solutions), 608
:first jQuery filter, 822
firstChild property (documents), 813
Fixed Layout App template, 1074
fixed sizing, 1021
flagging threads, 447
flipping images, 529
floor() method (Math objects), 804
flow of code, controlling, 246-248
FlowLayoutPanel control, 968
fly-outs (Windows), 1070
:focus jQuery filter, 822
FolderBrowserDialog class, 1028
folders

access classes, 1088
bookmarks, 235
Cordova template, 1158-1159
MVC, 718, 740
projects, 184
search folder sets, creating, 240
solutions, 172-173

ViewModels, 788
fonts

code, printing, 248-249
IDE, customizing, 81-82
text editors, customizing, 295-296

Fonts and Colors Options dialog box, 248
For loops, 633-634
ForceItemsToTaskList() method (OutputWindowPane objects), 626
For...Each loops, 120
ForeColor property, 959
foreign keys, 544
<form> HTML tag, 762
Form Region Wizard, 1049-1050

message class association, 1050
region type, 1049

Form TagHelper, 767
FormatConvertedBitmap class, 1027
formatting HTML, 274
FormRegion1 class, 1052
FormRegionInitializing event, 1052
FormRegionShowing event, 1052
forms

AngularJS
pages, turning into, 883-885
validation, 889

containers, 967
FlowLayoutPanel, 968
SplitContainer, 968-969
TableLayoutPanel, 967-968
ToolStripContainer, 969-971

controls
alignment, 963
anchoring, 964-965
appearance, 971
auto scaling, 966-967
custom, creating, 985
docking, 965-966
resize effects, 963-964
subclassing existing, 982-983
tab order behavior, 971
ToolTips, 972
user, designing, 983-985
z-order, 976

data, displaying, 979
cell types, 982

hierarchical relationships, 979-980
image lists, 980-981
sources, 982
tabular format, 981

data-bound controls, autogenerating, 565-569
mapping data sources, 567-569
selecting data sources, 565-567

data-bound controls, manually binding, 571-575
cell edits, customizing, 572-574
Data Sources window, 575
DataGridView data source, 571

design
appearance properties, 959
end user considerations, 954-955
events, 959-961
inheritance, 958
planning, 956
resizing, 957
StartPosition property, 958
startup forms, setting, 958
UI standards, 955
Windows Forms template, 957

events, 819
jQuery selectors, 822-823
menus, creating, 973-975
Outlook form region add-ins, 1049-1052

message class association, 1050
region types, 1049
runtime events, 1052
UI, 1050

status bars
creating, 976-977
items, customizing, 977-978

toolbars, creating, 975-976
ToolStrip controls, 972-973

built-in capabilities, 972
menus, 973-975
StatusStrip, 976-978
toolbars, 975-976
traits, 972

user input, creating, 847-848
web, 271

browser output/validation, 276-277
control layout, 272-273
controls, adding, 272

Document Outline window view, 216
HTML, editing, 273
HTML formatting, 274
standards compliance, 277
styles/CSS management, 275-276
tables, 274
web designer, 272

WinForms
appearance, customizing, 260
code, writing, 264-267
control layout, 262
controls, adding, 260
creating, 258-259
Designer, 258-259
Document Outline toolbar buttons, 218
layout grid, 262-263
snap lines, 263-264
Toolbox, 261

FormView controls, 579
For...Next loops, 119-120
Forward button (Class View window toolbar), 202
forward() method (history object), 807
Frame class, 1093, 1118
frameworks

client
AngularJS. See AngularJS
Backbone, 833, 1175
Bootstrap. See Bootstrap
Breeze, 834
Chart.js, 834
CoffeeScript, 719, 729-730, 834
Cordova. See Cordova
dependencies, managing, 728-731
Ember.js, 834
Hammer.js, 833
jQuery UI, 833
jQuery.validate, 833
Knockout. See Knockout
Less, 834
Modernizer, 833
Node.js, 834
Respond.js, 833
Sammy.js, 833
Sass, 834
selecting, 832-835

SignalR, 834
TypeScript, 834-835

Entity. See EF
Managed Extensibility Framework. See MEF
.NET. See .NET Framework
unit test

assertions, 344-345
attribute classes, 341-342
data-driven, creating, 346-349
exceptions, testing, 345-346
namespace, 339
setting up/cleaning up, 343-344
TestContext class, 339-340

user experience (UX), 1174
friend assemblies, 145-146
FullName property (objects)

documents, 631
projects, 609
solutions, 608

function breakpoints, setting, 421-422
Function node (XML), 316
functions

code snippet, 318
JavaScript, 797-798

anonymous, 798
declaring, 797
IIFE, 798-799
named, 798
values, returning, 798

user-defined, creating, 552

G
GenerateSwitchCases() function, 318
generic classes, 156
generic collections, 125, 156
Get() method

calling with Edit() method, 922-924
Web API services, 904-908

Get publish profile button (Azure web apps toolbar), 499
getAttribute() method (DOM), 814
GetClassificationSpans property (EditorClassifier1 class), 690
getDate() method (Date objects), 804
getDay() method (Date objects), 804
getElementByClassName() method (NodeList objects), 812
getElementById() method (documents), 811

getElementByTagName() method (NodeList objects), 812
getFullYear() method (Date objects), 804
getHour() method (Date objects), 804
GetLines() method (EditPoint objects), 636
getMilliseconds() method (Date object), 804
getMinutes() method (Date object), 804
getMonth() method (Date object), 804
GetProjectItemTemplate() method (solutions), 608
GetProjectTemplate() method (solutions), 608
getSeconds() method (Date object), 804
GetText() method (EditPoint objects), 636
getTime() method (Date objects), 804
getTimezoneOffset() method (Date objects), 804
global JavaScript objects

data types, handling, 802-803
Number, 803
String, 802

Date, 804
Math, 804
Regex, 805

global.json file, 720
Globals property (solutions), 608
go() method (history objects), 807
Go To Line dialog box, 234
Graph View (XML Schema Designer), 255
Graphics command (Debug menu), 406
grayscale images, creating, 1027
greater than (>) operator, 115
GreaterThan() method (EditPoint objects), 636
Grid App template

JavaScript, 1074
XAML, 1075

grids
columns, sizing, 522
control, 1001-1005
image viewer, adding, 1020
layout (Bootstrap), 837-842

ASP.NET 5 Web Site template layout styles, 839
columns, wrapping, 838
grids, 839
screen size adjustments, 840-842

rails, 1017
sizing, 1020-1023

GridView class
data model links, 1083

item templates, 1083
SelectionChanged event handler, 1082

GridView controls, 579
adding, 580
auto-formatting options, 581
data updates, 582-583

groups, 122
arrays, 122-123

accessing, 122-123
defining, 122
jagged, 123
multidimensional, defining, 123
size, 122
values, initializing, 123

collections, 123-125
generic, 125
standard, 124

tuples, 125-126
Grunt Configuration files, 719
Guid property (objects)

commands, 646
OutputWindowPane, 626

GUIDs, 667
Gulp

client build tasks, managing, 731-734
configuration files, 719
defined, 729
files, 733
JavaScript, minify, 854-856

H
Hammer.js, 833
handlers (events)

application lifecycles, 1119-1121
buttons, 1027
command, creating, 663
drop, 688
forms, 960-961
image viewer Windows Store app lifecycle, 1096-1100

application states, 1096
launching events, 1097-1098
resuming applications, 1097
storing state, 1098-1100
suspending applications, 1097

JavaScript, 818

jQuery, 828-829
menu items, 1019
mouse movements, 670-671
POST requests, 758-759
ribbon buttons, 1046-1047
routed events, 1015
SelectionChanged, 1082
state change, 1120-1121

handling exceptions, 127-128
:has() jQuery filter, 822
hasAttribute() method (DOM), 814
hasFocus binding (Knockout), 873
hashtags (#), jQuery ID-based selections, 822
Header node (XML), 316
Header property, 1019
headers/footers

code snippets, 319
Cordova apps, 1163

healthcare WPF application prototype, 989
Height property

CommandBar objects, 629
list boxes, 1018
screen object, 807
top Menu control, 1019
windows, 615

Hello World function, writing, 226-228
Help menu, 9
helper routines, implementing, 671-673
:hidden jQuery filter, 822
hide() method (jQuery), 830
hiding

class members, 102
items (class designer), 287

hierarchy
code model object, 611-612
form data, viewing, 979-980
solutions, 166, 606
Toolbox objects, 622

history object, 807
hit count breakpoints, 429-430
Home button (Solution Explorer toolbar), 194
HomeController class, 741

action methods, 742
code listing, 741

HorizontalAlignment property, 1018, 1020

hosting
Azure, 481

cloud applications, creating, 29
publishing to, 30-31

cloud computing, 29
controls, 1053-1054

host items, 1053
native Office controls, 1054
WinForms controls, 1053-1054

WCF services, 929, 950
HostType attribute (ASP.NET unit tests), 356
HostType class, 341
href property (locations), 807
HTML

Bootstrap
grid layout styles, 839
navigation bars, 843
text styling, 846

DOM tree
node content, 814
page markup, 809

editor
formatting options, 274
markup, editing, 273

helpers, 765-766
jQuery markup

appending/deleting items, 826
attributes, 826-828
CSS rules, 828

Page files, 719
tags, 760-762
visualizer, 440
WinRT, 1073-1074

.html file extension, 719, 1159
html() method (jQuery), 825
HTMLWindow automation type, 602
HTMLWindow3 automation type, 602
HTTP

verb-based attributes, 902-903
Web API service requests

DELETE, 910-911
GET, 904-908
POST, 908-909
PUT, 909-910

HttpClient (Web API services)

calling, 916-920
models, creating, 916
view controller, 917-919
views, 916-917

consuming, 921-924
HttpNotFoundResult class, 754
HttpStatusCodeResult class, 754
Hub App template, 1075
hyperlinks, 295

I
IaaS (infrastructure as a service), 475
	

icons
	

Class View window panes
	

Solution Explorer
	

IDE
	

color picker example. See ColorSelector extension
	

IActionResult interface, 741
	
IComponent interface, 278
	

breakpoints, 422
	

members, 205
	
objects, 204
	

Ionic, 1185
	
Office, reusing, 1045
	
ribbons, customizing, 1045
	

listing of, 192-194
	
version control signal, 194
	

ICustomerProfile interface, 932
	
defining, 933-934
	
implementing, 934-937
	
REST requests, accepting, 944
	

ID node (XML), 316
	
ID property (commands), 646
	

extensions, 651
	

command file code, 660-663
	
command GUIDs/IDs, defining, 667
	
defining commands, 664-667
	
manifest file, 652
	
Package class code generated by custom command project item, 658-660
	
package parameters, 653
	
project items, adding, 653-658
	
reacting to commands, 663
	
UI, defining, 667
	
VSIX project template, 652
	

fonts, customizing, 81-82
	
integration (TFS), 7
	
navigating, 56-57
	

menus, 57-63
	
Properties window, 73-74
	
Solution Explorer, 66-67
	
text editors, 68-71
	
toolbars, 63-66
	
Toolbox, 72-73
	
visual designers, 72
	

Navigator, 80
settings, 44

color themes, customizing, 45
default settings collections, resetting, 46-50
storing/synchronizing, 44
users, switching, 50

Start Page, 51-53
startup options, customizing, 52-53
Toolbox. See Toolbox, 1044
touch support, 81
windows

docking, 75-76
layouts, customizing, 77-79
navigating, 80
pinning, 74-75

IDs (commands), 667
IE (Internet Explorer)

DOM, exploring, 815
Get service request, 905
Options dialog box, 456

if/ifnot bindings (Knockout), 873
If...Then...Else decision structure, 116-117
Ignore class, 341
IIFE (Immediately Invoked Function Expressions), 798-799
IIS, WCF services, hosting, 950
Image Editor page (WS app)

dependencies, adding, 1092
image area layout, 1092-1093
implementing, 1091-1093
navigation state passing, 1093-1095

:image jQuery filter, 822
Image property

custom ribbons, 1045
ImageFile class, 1085

image viewer Windows Store app
C# ImagePage.xaml.cs code listing, 1108-1110
developer licenses, 1079
layout

app bar, creating, 1095-1096
capabilities, requesting, 1090
collection class creating, 1088-1089
columns, sizing, 1017
data binding, 1089
data model, creating, 1085-1087
image details page, 1081

http:ImagePage.xaml.cs

Image Editor page implementation, 1091-1093
main page UI, 1081-1084
navigation state passing, 1093-1095
starting page, 1081

lifecycle events, 1096-1100
	
application states, 1096
	
launching applications, 1097-1098
	
resuming applications, 1097
	
storing state, 1098-1100
	
suspending applications, 1097
	

publishing, 1100-1102
	
requirements, 1078
	
template selection, 1078
	
XAML code listings
	

ImagePage.xaml, 1105-1108
	
MainPage.xaml, 1103
	
MainPage.xaml.cs, 1104-1105
	

image viewer WPF application
button event handlers, 1027
C# code, 1031-1034
data presentation, 1025-1026
grayscale effect, 1027
image files, path selection, 1028
images

blurring, 1028
	
flipping, 529
	
rotating, 1027
	
storing, 1023-1025
	

layout, 1017-1023
	
grid rails, 1017
	
grid sizing, 1020-1023
	
image viewer, adding, 1020
	
list box, adding, 1018
	
menu item event handlers, 1019
	
top menu, adding, 1019
	

requirements, 1016
	
UI sketch, 1015
	
XAML code, 1029-1031
	

ImageFile class, 1085
ImageList class, 1088
ImageList controls, 980-981
ImagePage.xaml file, 1105-1108
ImagePage.xaml.cs file, 1108-1110
images

blurring, 1028

http:ImagePage.xaml.cs
http:MainPage.xaml.cs

Collection Editor, 980
flipping, 529
grayscale conversion, 1027
ribbon customizations, 1045
rotating, 1027

Immediately Invoked Function Expressions (IIFE), 798-799
implicit data conversions, 112
implicit line continuation, 148
implicit typing, 132-134
Import and Export Settings Wizard, 46-50
Import DataTips command (Debug menu)

active debug session, 408
at rest, 406

Import tool (databases), 555
importing

databases, 555-557
DataTips, 438
IDE settings, 46-50
namespaces, 108-109

Imports keyword, 108
Imports statement, 91
Include Comments checkbox (Rename dialog box), 371
Include Strings checkbox (Rename dialog box), 371
Inconclusive() method (Assert class), 344
Incremental Search, 242-243, 619-620
Indent() method (EditPoint objects), 636
Index() action method, 742, 756-757
Index property (CommandBar objects), 629
index.css files, 1159
indexes

initializers, 92-93
tables, 542

columns, adding, 542
defining, 542

index.js files, 1160
indexOf() method (strings), 802
indicators

light bulbs, 301
code editor, 302-305
web designer, 301

margins, 230
individual user account site authentication, 739
InfoPath extension points, 1038
infrastructure as a service (IaaS), 475
inheritance

http:index.js

classes, 100-101, 284
forms, 958

Inherits keyword, 100
initializing

array values, 123
	
collections, 136-137
	
indexes, 92-93
	
objects, 134-136
	

inline functions, 552
Inline temporary variable operation, 375
innerHtml property (DOM), 814
<input> HTML tag, 761
Input TagHelper, 768
Insert() method (EditPoint objects), 636
insert results queries, 548
Insert Table dialog box, 274
insert values queries, 548
insertBefore() method (DOM), 815
InsertFromFile() method (EditPoint objects), 636
inspecting threads, 448-450
installing

Azure SDK, 522
Visual Studio, 41-42
	

optional features, 43
	
rerunning, 42
	
signing in, 43-44
	

InstallShield
deployment overview, 465
Limited Edition, 463
project publication, 469

IntelliSense, 305-306
brace matching, 322-324
code editor extension point, 688
code snippets, 311

Code element, implementing, 319
adding, 321-322
adding with Code Snippet Inserter, 312-313
browsing/sharing online, 322
C# constructor snippet XML format, 316
custom C# snippet code, 319-320
form names, 314
functions, 318
header information, 319
literals/variable replacements, 318
Manager, 321

placeholder values, 314
storing, 316
Surround With snippets feature, 314
Toolbox storage, 322
XML schema reference, 316

Complete Word, 306-308
completion list transparency, 307
Completion mode, 308
content support, 307
manually launching, 307
suggestion mode, 308

customizing, 324
JavaScript, 800
List Members, 309-310
Organize Usings, 311
Parameter Info, 310
Quick Info, 308
triggering, 306

IntelliTest, 330
Interface keyword, 104
interfaces

coarse-grained, 903
CodeClass, 610
defining, 104
extracting, 382

creating interfaces, 383-384
Extract Interface refactor operation, accessing, 383
implementation, 384-385

IActionResult, 741
IComponent, 278
ICustomerProfile, 932

defining, 933-934
implementing, 934-937
REST requests, accepting, 944

implementing, 285
IVsPackage, 660
WCF services

defining, 933-934
implementing, 934-937

internal class member accessibility level, 97
Internet Explorer. See IE
Introduce constant operation, 372-374
Introduce local operation, 374
Invoice class, 334

ComputeTotal method, 334

totals unit test, adding, 335-336
invoices

Invoice class, 334
total price, calculating, 334
unit test, adding, 335-336

Ionic
buttons, creating, 1186
colors, 1185
icon library, 1185
Ionic-Angular anatomy, 1180-1181
Ionic-Angular-Cordova sample app

About tab, 1192
calculate tab, creating, 1186-1190
local storage, adding, 1193-1195
log tab, 1190-1192
running on Windows Phone, 1196-1197
structure, 1182-1184

overview, 1176
projects, configuring, 1177-1179

IsAvailable property (commands), 646
IsFalse() method (Assert class), 344
IsFloating property (windows), 615
IsInstanceOfType() method (Assert class), 344
isNaaN() method (Number objects), 803
IsNotInstanceOfType() method (Assert class), 344
IsNotNull() method (Assert class), 344
IsNull() method (Assert class), 344
IsOpen property (solutions), 608
IsSettable property (TaskItem objects), 621
IsTrue() method (Assert class), 344
Item() method (solutions), 608
Item Preview mode (Solution Explorer), 199
items

projects, 184, 653-658
	
Solution Explorer, 192-194
	
solutions, 170-171
	

Items Collection Editor dialog box, 977
IVsPackage interface, 660

J
jagged arrays, 123
JavaScript

AngularJS, 873
	
adding, 877-878
	
adding entries, 885-886
	

changes, saving, 887-888
	
controllers, 876-877, 881
	
data binding, 881-883
	
deleting entries, 886-887
	
directives, 875, 889
	
filters, 889
	
form validation, 889
	
models, 876-877
	
modules, 876-877, 880
	
MVC pattern, 874
	
pages, turning into forms, 883-885
	
server model, creating, 879
	
two-way data binding, 874-876
	
Web API services, calling, 879
	

Asynchronous. See AJAX
C# similarities, 795-797
client frameworks

AngularJS. See AngularJS
	
Backbone, 833, 1175
	
Bootstrap. See Bootstrap
	
Breeze, 834
	
Chart.js, 834
	
CoffeeScript, 719, 729-730, 834
	
Ember.js, 834
	
Hammer.js, 833
	
jQuery UI, 833
	
jQuery.validate, 833
	
Knockout. See Knockout
	
Less, 834
	
Modernizer, 833
	
Node.js, 834
	
Respond.js, 833
	
Sammy.js, 833
	
Sass, 834
	
selecting, 832-835
	
SignalR, 834
	
TypeScript, 834-835
	

code files, creating, 795
Cordova apps, 1164-1165
Dynamic Content shim for Windows Store apps, 1196
embedding on pages, 794-795
events, 816-819

average speed calculator example, 817-818
	
DOM, 819
	
handlers, 818
	

http:Sammy.js
http:Respond.js
http:Hammer.js
http:Ember.js
http:Chart.js

inline subscription, 818
	
listeners, adding, 818
	
stopping, 819
	

files, 719
functions, 797-798
	

anonymous, 798
	
declaring, 797
	
IIFE, 798-799
	
named, 798
	
values, returning, 798
	

IntelliSense, 800
	
jQuery. See jQuery
	
Knockout, 857
	

adding entries, 869-870
ASP.NET templates, adding, 860-861
bindings, 872-873
changes, saving, 870-871
controllers, creating, 863
deleting entries, 870
list views, creating, 864-868
MVVM pattern, 857
server models, creating, 862-863
SPA support, 27
view models, 858-859
views, 857

minify with Gulp, 854-856
objects, 799
	

BOM. See BOM
	
constructor notation, 800
	
data types, handling, 802-803
	
Date, 804
	
DOM. See DOM
	
dot notation, 801-802
	
literal notation, 799-800
	
Math, 804
	
Number, 803
	
Regex, 805
	
String, 802
	

Simple Object Notation. See JSON
WinRT, 1073-1074

JavaScript Console command (Debug menu), 408
Join dialog box, 547
joins (database queries), 547
jQuery, 820

AJAX, 831

animations/effects, 830
assets, loading, 828
events, handling, 828-829
GET/POST helper methods, 924
HTML elements

appending/deleting items, 826
attributes, 826-828
CSS rules, 828

jquery object, 821
selections, 821-822

basic selectors, 822
combination, 822
content, accessing, 825-826
CSS, 822
elements, selecting, 822
filters, 822
forms, 822-823
ID-based, 822
looping through, 823-825
result actions, 824
traversing, 823-825

SPA support, 27
UI library, 833
validate framework, 833
Web API services

consuming, 913-915, 921-924
deleting content, 927-928
posting new records, 924-925

web project templates, 820
jquery object, 821
JSON (JavaScript Simple Object Notation), 719, 720, 795

configuration files, 719-721
syntax, 720
web services, 895
visualizer, 440

.json file extension, 719
JsonResult class, 754
jumping to lines of code, 234

K
key bindings, mapping, 648-649
KeyAttribute class, 746
keyboard events, 819
keyboard shortcuts

copying text, 222

jumping to lines of code, 234
Rename operation, accessing, 369
toolbars, assigning, 65-66

keywords
async, 158, 1087
await, 158, 1087
CDbl, 112
CInt, 112
Class, 94
Cstr, 112
dynamic, 149
enum, 99
Imports, 108
Inherits, 100
Interface, 104
new, 102
override, 102
Overrides, 102
Partial, 140
Private, 94
Return, 96
Shadows, 102
Shared, 99
Sub, 96
var, 133

Kind property (objects)
CodeElement, 610-611
documents, 631
projects, 609

Knockout, 833, 857
adding to ASP.NET templates, 860-861
bindings, 872-873
changes, saving, 870-871
controllers, creating, 863
entries

adding, 869-870
deleting, 870

list views, creating, 864-868
MVVM pattern, 857
server models, creating, 862-863
SPA support, 27
view models, 858-859
views, 857

KnownFolders class, 1088

L
<label> HTML tag, 762
Label TagHelper, 768
labeling breakpoints, 425-426
lambda expressions, 92, 143-145

LINQ queries, 144-145
	
multiple statements, 144
	
writing, 143-144
	

:last jQuery filter, 822
lastChild property (documents), 813
lastingness() method (strings), 802
LaunchWizard() method (DTE objects), 605
layout

action pane control stacking behaviors, 1056
ASP.NET MVC views, 768-769
containers, 967

FlowLayoutPanel, 968
TableLayoutPanel, 967-968
	

form controls, arranging, 272-273
	
image viewer Windows Store app, 1081
	

app bar, creating, 1095-1096
capabilities, requesting, 1090
collection class, creating, 1088-1089
data binding, 1089
data model, creating, 1085-1087
Image Editor page implementation, 1091-1093
main page UI, 1081-1084
navigation state passing, 1093-1095
starting page, 1081

image viewer WPF application, 1017-1023
	
columns, sizing, 1017
	
grid rails, 1017
	
grid sizing, 1020-1023
	
image viewer, adding, 1020
	
list box, adding, 1018
	
menu item event handlers, 1019
	
top menu, adding, 1019
	

responsive web with Bootstrap, 835
	
components, 844
	
drop-downs, 849-850
	
files, 835-837
	
grid layout, 837-842
	
navigation bars, 842-843
	
text, styling, 845-846
	

user input forms, 847-848
visual design, customizing, 851-854

text, styling, 845-846
Universal app

details page, 1132-1136
master page, 1130-1132

user input forms, creating, 847-848
windows, customizing, 77-79
WinForms

controls, arranging, 262
grid, 262-263
snap lines, 263-264

WPF panels, 998
Canvas, 999-1000
DockPanel, 1000-1001
Grid, 1001-1005
StackPanel, 1005-1006
WrapPanel, 1006

Left property (objects)
CommandBar, 629
windows, 615

<legend> HTML tag, 762
length property (strings), 802
.less file extension, 719
Less framework, 834
LESS style sheets, 719

creating, 731
output to CSS Gulp processing task, creating, 731-734

less than (<) operator, 115
LessThan() method (EditPoint objects), 636
libraries

AngularJS. See AngularJS
Backbone, 833, 1175
Breeze, 834
Chart.js, 834
CoffeeScript JavaScript, adding, 729-730
Hammer.js, 833
HttpClient. See HttpClient
jQuery UI, 833
Knockout, 833, 857

adding entries, 869-870
ASP.NET templates, adding, 860-861
bindings, 872-873
changes, saving, 870-871
controllers, creating, 863

http:Hammer.js
http:Chart.js

deleting entries, 870
	
entries, adding, 869-870
	
list views, creating, 864-868
	
MVVM pattern, 857
	
server models, creating, 862-863
	
view models, 858-859
	
views, 857
	

Modernizer, 833
	
Node.js, 834
	
SignalR, 834
	
WinRT. See WinRT
	

lifecycles. See ALM
light bulbs, 301

code editor, 302-305
web designer, 301

line numbers (code), 233-234
Line property (objects)

EditPoint, 636
TaskItem, 621

line wrapping, 223
LineCharOffset property (EditPoint objects), 636
LineDown() method (EditPoint objects), 636
LineLength property (EditPoint objects), 636
LineUp() method (EditPoint objects), 636
Link TagHelper, 768
Linkable property (windows), 615
LinkedWindowFrame property (windows), 615
LinkedWindows property (windows), 615, 627
linking windows, 626-628
LINQ, 142-143

overview, 585-586
	
parallel execution (PLINQ), 586
	
queries, 585
	

creating, 142-143
lambda expressions, 144-145
	

runtime support, 585
	
System.Linq namespace, 160
	
technologies, 585
	

LINQ to SQL applications
Classes items, 586
drag-and-drop operation LINQ code, 588-590
LINQ objects, 590-591
O/R designer, 586-588

list boxes, adding, 1018
List Members (IntelliSense), 309-310

listening for events, 131, 818
listings

About.cshtml view page, 743
AngularJS

page inside file code, 876
two-way data binding, 875
	

ASP.NET unit test, 356
	
bike log app
	

BikeLog Knockout object, 865
	
BikeLog model, 863
	
BikeLogListVm Knockout view model object, 866
	
data binding with AngularJS, 882
	

button template (WPF), 1009
C#
	

constructor snippet, 316
	
custom code snippet, 319-320
	

C# stored procedures
	
starting managed code, 561
	
T-SQL coded update query, 563
	
update query, 562
	

CodeMetricViewportAdornment class, 704-706
ColorSelector user controls, 678-681
ColorSelectorPackage class, 675-677
Command class generated by custom command project item, 660-663
Command window command execution, 624-625
component designer generated code, 279-280
ConfimDelete.cshtml file, 786
Cordova Index.html page body, 1161
CustomController.cs class, 755
customer pages example

customer list Index.cshtml, 773
	
new customer page Create.cshtml, 776
	

Customer.cs model class
	
code, 745
	
data annotations, 747
	

CustomerDetailsViewComponent class, 785
	
data context class, 748
	
data-driven unit test CSV file, 348
	
dialog boxes, implementing with Grid control, 1003
	
extracted interface example, 384
	
extractions, 379-380
	
gulpfile.js LESS preprocessing task configuration, 733
	
HomeController class/action methods, 741
	
HTML
	

markup average speed calculator page, 817

http:gulpfile.js
http:Customer.cs
http:CustomController.cs

page markup, 809
image viewer Windows Store app

ImagePage.xaml, 1105-1108
ImagePage.xaml.cs, 1108-1110
MainPage.xaml, 1103
MainPage.xaml.cs, 1104-1105

image viewer WPF application
C# code, 1031-1034
XAML code, 1029-1031

incremental search, 619
Index.cshtml file, 867
invoice totals, testing, 335
Ionic-Angular-Cordova app

CalculateCtrl controller, 1188
	
Log service code, 1194
	
LogCtrl code, 1191
	
services.js file, 1189
	
tab-calculate.html template, 1186
	
tab-chats.html template page, 1181
	
tab-log.html markup, 1191
	

long static method, 376
long static method after extractions, 379
For loops, bookmarking, 633
namespace/class implementation, 611
Package class code generated by custom command project items, 658-660
partial views

DetailsPartial.cshtml, 781
	
load button click event, 782
	
Lookup.cshtml, 781
	

project definition file, 181-183
solution definition file, 168-170
text styling with Bootstrap, 846
text window comments, inserting, 640-645
tool windows, linking/unlinking, 627-628
Universal app

MainPage.xaml Windows Phone, 1136
	
MainPage.xaml Windows Store, 1144-1150
	
MainPage.xaml.cs Windows Phone, 1137-1141
	
MainPage.xaml.cs Windows Store, 1150-1152
	

VSCT files generated by Package Wizard, 664-667
WCF services

client code for calling REST-based, 948
consuming, 941
Customer class, 933
ICustomerProfile interface definition, 934

http:MainPage.xaml.cs
http:MainPage.xaml.cs
http:services.js
http:MainPage.xaml.cs
http:ImagePage.xaml.cs

ICustomerProfile interface implementation, 935
ICustomerProfile interface REST request update, 944

Web API services
controller class, 901
controller test method, 354
Delete() method, 911
deleting content, 928
Edit() method, 922, 924
Get() method, 904, 908
Index page (customer list) HTML markup, 916
model class, 900
Post() method, 909
posting new records, 925
Put() method, 910
services, calling from controller, 919

window queries, 617
WinForms code, writing, 265-267
XAML WPF application data binding, 577

ListObject control, 1054
ListView controls, 1130-1131
Literal node (XML), 316
literals

code snippets, creating, 318
notation, 799-800

Live Property Explorer, 1011-1012
Live Property Explorer command (Debug menu), 408
Live Visual Tree command (Debug menu), 408
LoadImages() method (BitmapSource class), 1024
loading assets, 828
local storage (Cordova), 1193-1195
local type inference, 132-134
local variables, 374
LocalizedName property (commands), 646
Locals window

errors, debugging, 399
variables, watching, 433-434

locations, 807
logical operators, 116
logs

adding entries
AngularJS, 885-886
Knockout, 869-870

deleting entries
AngularJS, 886-887
Knockout, 870

diagnostic, 516-519
	
events, 209
	

loops, 119
For, 633-634
Do...While/Until, 120-121
For...Each, 120
For...Next, 119-120
jQuery selections, 823-825

M
mail app (Office), 1060
MainPage.xaml file

image viewer XAML, 1103
Universal app

Windows Phone, 1136-1137
	
Windows Store, 1144-1150
	

MainPage.xaml.cs file
image viewer XAML, 1104-1105
Universal app

Windows Phone, 1137-1141
Windows Store, 1150-1152

MainWindow class, 1024
MainWindow property (DTE objects), 605
make table queries, 548
Manage Styles window, 276
Managed Extensibility Framework. See MEF
management events, 210
managing

Azure, 503-504
	
accounts, 479-480
	
alerts, 507-509
	
Application Insights, 510-512
	
databases, 519-521
	
diagnostic logs, 516-519
	
scalability, 514-516
	
traffic monitoring, 505-506
	
web tests, 512-514
	

breakpoints, 405, 424
client build tasks, 731-734
client framework dependencies, 728-731
code editor extensions, 696
Code Snippets Manager, 321
databases in Azure, 502
DOM tree nodes, 814
IDE settings, 44

http:MainPage.xaml.cs

color themes, 45
default settings collections, resetting, 46-50
startup options, customizing, 52-53
storage/synchronization, 44
users, switching, 50

processes, 447
projects, 6
release, 7
requirements, 7
test cases, 7
threads, 447-448
web apps with Azure Server Explorer, 492-493

mapping
data sources, 567-569
key bindings (commands), 648-649
O/R

defined, 584
drag-and-drop operation LINQ code, 588-590
EF. See EF
LINQ objects, 590-591
O/R designer, 586-588

Mapping Details window, 595-596
margins (code editor)

displaying, 691-692
extension point, 687

MarkText() method (TextDocument objects), 633
master pages (Web Forms), 23-24
master-detail data sources, adding, 578
Math object, 804
MaxLengthAttribute class, 746
media

events, 819
WPF, 989

MEF (Managed Extensibility Framework), 683
architecture, 686
catalog, 686
classes, 685
code editor extensions

building, 688-689
classifiers, exporting, 690-691
code metrics, creating, 697-706
deploying, 689
extension points, 687-688
managing, 696
margins, displaying, 691-692

online, finding/posting, 696
	
text adornments, 692-693
	
viewport adornment, 693-695
	

composition container, 685-686
dependency injection, 685
dynamic applications, 684
extensibility problem, 683
naming/activation, 685
parts, 685
structural matching, 685
System.ComponentModel.Composition namespace, 685
target applications, 684

members (classes) See also methods/properties
accessibility, 97-98
accessing, 198
class designer, displaying, 282
hiding, 102
static/shared, 99

members pane (Class View window), 205
context menu, 205
icons, 205

menu bars, 629
menus

Analyze, 57
Build, 57
Debug, 57, 405

active debug session commands, 408
at rest state commands, 406
	

Edit, 57
	
File, 57
	
forms, creating, 973-975
	
Help, 9
	
listing of, 57-63
	
Outlining, 297-298
	
Project, 57
	
Quick Actions
	

Encapsulate Field refactor operation, 388
	
Extract Interface refactor, accessing, 383
	
method stubs, creating, 382
	
refactoring code, invoking, 363
	
Rename operation, accessing, 370
	

repositioning, 969-971
Solution Explorer context
	

projects, 197
	
solutions, 196
	

standard items, 974
	
Task List shortcut, 325
	
Test, 57, 333
	
Tools, 57
	
View, 57
	
Website, 57
	
Window, 57
	
Windows context, 1070
	
Windows Store, 1101-1102
	

MenuStrip controls, 973-975
merges folder, 1158
messages

classes, 1050
	
dialogs, 1070
	
queues, 210
	

methods
addEntry(), 1187
addEventListener(), 818
ASP.NET MVC action, 742
calculatePace(), 1186
clear(), 1191
CommandBar objects, 629
commands, 646-648
ComputeTotal(), 334
creating, 287
Date objects, 804
defining, 96
documents, 631

getElementById(), 811
	
querySelector(), 811-812
	

DOM tree nodes
	
adding, 815
	
attributes, managing, 814
	
deleting, 815
	

DTE objects, 605
	
EditPoint(), 636
	
extension, 138-139
	
extracting, 375
	

code to refactor, selecting, 377-378
Extract Method Refactor operation, accessing, 375
long static method example, 376-377
new methods code listing, 379-380
original long static method after extraction, 379
refactored method, creating, 378
single lines of code, 380-382

history objects, 807
HTML helpers, 765-766
jQuery

$(‘ ‘), 822
addClass(), 827
AJAX GET/POST requests, 924
animate(), 830
css(), 828
hide(), 830
ready(), 828
selection content, accessing, 825-826
selections, traversing, 823-825
show(), 830

LoadImages(), 1024
locations, 807
Math objects, 804
NodeList objects, 812-813
Number objects, 803
OutputWindowPane objects, 626
overloading, 103
partial, 140-141
projects, 609
removeEventListener(), 819
RestoreAsync(), 1099
returns values, defining, 96-97
SaveAsync(), 1099
showAlert(), 1187
solutions, 608
StartCaching(), 1058
strings, 802
stubs, creating, 382
TaskItem objects, 621
test assertions, 344-345
TestContext class, 339
TextDocument objects, 633
TryGetMember(), 150
TryToShow(), 619
WCF service, 943
Web API services

controller test, 353-354
	
Delete(), 910-911, 927-928
	
Edit(), 923-924
	
Get(), 904-908
	
Post(), 908-909, 925
	
Put(), 909-910
	

web service, 895
windows, 615
	

alert(), 805
	
close(), 806
	
confirm(), 806
	
open(), 806
	

Metric blade (Azure portal), 505-506
Microsoft Office. See Office
Microsoft Visual Studio 2015 Unleashed website, 703
migrations

directory, 718
EF7, 750-752

MinLengthAttribute class, 746
mobile applications

Cordova, 1153
apps website, 1156
benefits, 1154
CLI, 1165
client frameworks, 1174-1175
debugging with local devices, 1172-1174
debugging with Ripple simulators, 1168-1170
dependencies, 1156
emulators, 1170-1171
Ionic, 1176-1179
Ionic-Angular app anatomy, 1180-1181
JavaScript, 1164-1165
local storage, 1193-1195
Mac, configuring, 1167
overview, 37-38, 1154-1156
plug-ins, 1155, 1175-1176
project setup, 1160-1161
running, 1166-1167
templates, 1157-1159
UIs, creating, 1156, 1161-1163
web views, 1155

Ionic. See Ionic
Ionic-Angular-Cordova sample app
	

About tab, 1192
	
calculate tab, creating, 1186-1190
	
local storage, adding, 1193-1195
	
log tab, 1190-1192
	
running on Windows Phone, 1196-1197
	
structure, 1182-1184
	

responsive design, 835
	
Bootstrap components, 844
	

Bootstrap files, 835-837
drop-downs, 849-850
grid layout, 837-842
navigation bars, 842-843
text, styling, 845-846
user input forms, 847-848
visual designs, customizing, 851-854

technologies
cross platform applications, 14
UI delivery solutions, 13-14

Windows Phone
application anatomy, 1117
application lifecycles, 1119-1120
architecture, 1116-1117
device orientation, 1116
Ionic-Angular-Cordova app, running, 1196-1197
MVVM, 1122-1123
page navigation, 1118-1119
runtimes available, 1117
Silverlight to WinRT transition, 1123-1124
start screen UI, 1114
state change events, 1120-1121
suspending versus terminating, 1122
transient/persistent data, 1122
UI structure, 1115
Universal app. See Universal app
Windows Store app similarities, 1114

Windows Store. See Windows Store applications
Model Browser window, 594-595
models

ASP.NET
classes, creating, 744-745
data context, creating, 748
database connections, 748-750
databases, creating manually, 752-753
databases, creating with EF7 migrations, 750-752
MVC, 736
validation rules, 745-747

folder, 718, 740
server

AngularJS, creating, 879
creating (Knockout), 862-863

view
ASP.NET MVC, 788
image viewer WS app, 1085-1087

Knockout, 858-859
Web API services
	

adding, 351-352
	
calling, 916
	
creating, 899-900
	

Model, View, Controller. See MVC
Model, View, View Model pattern. See MVVM pattern
Modernizer library, 833
Monitoring blade (Azure portal), 505
mouse

events, 819
	
movements, handling, 670-671
	
processors, 688
	

Move Down in Container button (WinForms Document Outline toolbar), 218
Move into Next Container button (WinForms Document Outline toolbar), 218
Move Out of Current Container button (WinForms Document Outline toolbar),
218
Move Up in Container button (WinForms Document Outline toolbar), 218
MoveToAbsoluteOffset() method (EditPoint objects), 636
MoveToLineAndOffset() method (EditPoint objects), 636
MoveToPoint() method (EditPoint objects), 636
moving text, 222
MSDN accounts

signing in, 43-44
subscriptions, 5

MSI packages, 465
multithreaded applications, debugging, 445

breaking on threads, 450
	
flagging threads, 447
	
individual threads, inspecting, 448-450
	
managing threads, 447-448
	
MSDN code example, 445
	
processes, managing, 447
	
viewing threads, 445-446
	

multidimensional arrays, 123
multiplication (*) operator, 114
multiplication with assignment (*=) operator, 113
MVC (Model, View, Controller), 24

AngularJS, 874
applications, creating
	

About.cshtml view page, 742-743
	
action methods, 741-742
	
Controllers folder, 740
	
HomeController class, 741
	
IActionResult interface, 741
	

Models folder, 740
	
site authentication, 739
	
template selection, 738
	
unit tests, 739
	
Views folder, 740-741
	

Controller Class files, 719
controllers, 736, 753

action result objects, 754-755
creating, 755-756
customer delete requests, processing, 759
customers, finding, 757-758
DbContext objects, adding, 756
generating with dnx . gen tool, 788-791
list of customers, returning, 756-757
new customer page, returning, 757
POST requests, handling, 758-759

folders, 718
framework, 735
models, 736
SPA support, 26
TagHelpers, 767-768
template, 715
user requests, processing, 737-738
View Page files, 719
views, 736

areas, 769
components, 784-788
customer example. See customer example pages
generating with dnx . gen tool, 788-791
HTML helpers, 765-766
HTML tags, 760-762
models, 788
page layout, 768-769
partial, 780-784
Razor syntax, 763-765
strongly typed, 769-770
user input validation, 770-771

WCF services, consuming, 938-942
Web API services, calling

models, creating, 916
view controller, 917-919
views, 916-917

Web API services, consuming
deleting content, 927-928
edit page, creating, 921-924

posting new records, 924-925
	
services, calling, 916-920
	

web applications
	
controller test method, writing, 353-354
	
testing, 350-354
	

core client objects, referencing, 353
Web API model/controller, adding, 351-352

websites, creating, 24
MVVM (Model, View, View Model)

Knockout, 857
Universal app, 1128-1130
Windows Phone apps, 1122-1123

N
Name property (objects)

commands, 646
CommandBar, 629
documents, 631
OutputWindowPane, 626
projects, 609

named functions, 798
NamedRange control, 1054
NameLocal property (CommandBar objects), 629
NameOf expression, 90-91
names

attributes, 126
	
bookmarks, 235
	
code snippet form, 314
	
commands, 646
	
databases, 540
	
MEF, 685
	
pages, 768
	
solutions, 167
	
test projects, 331
	
threads, 446
	

namespaces, 106-109
DataAnnotations, 745
defining, 106
fully qualified definition, 107
importing, 108-109
.NET Framework

Activities, 161
	
AddIn, 159
	
CodeDom, 159
	
Collections, 160
	

ComponentModel, 160
Configuration, 160
Data, 160
Diagnostics, 160
Diagnostics.Contracts, 160
Drawing, 160
Dynamic, 160
EnterpriseServices, 160
Globalization, 160
IO, 160
Linq, 160
Media, 160
Messaging, 160
Net, 161
Security, 161
ServiceModel, 161
Threading, 161
Timers, 161
Web, 161
Windows, 161
Workflow.Activities, 161
Xml, 161

root, setting, 107
System.ComponentModel.Composition, 685
TagHelpers, 767

navbar class, 842
Navigate() method

Frame class, 1093, 1118
TaskItem object, 621

navigation, 56-57
bars (Bootstrap), 842-843
browser windows, 807
code

bookmarks, 234-235
Call Hierarchy window, 236-237
line numbers, 233-234

Cordova apps, 1162
customer example pages, adding, 771-772
image viewer Windows Store app, 1093-1095
menus, 57-63

Analyze, 57
Build, 57
Debug, 57
Edit, 57
File, 57

Help, 9
	
Project, 57
	
Test, 57
	
Tools, 57
	
View, 57
	
Website, 57
	
Window, 57
	

multiple text editor windows, 226
	
navigator object, 808
	
Properties window, 73-74
	
Solution Explorer, 66-67
	
text editors, 68
	

C# code editor, 68
	
code editor, 68
	
customizing, 70-71
	
Visual Basic code editor, 69-70
	

Toolbox, 72-73
	
visual designers, 72
	
windows, 80
	
Windows Phone apps, 1118-1119
	

Navigation App template, 1074
nest object initialization, 136
Nest related files button (Solution Explorer toolbar), 194
.NET Core framework, 10-11, 712
.NET Foundation, 711
.NET Framework, 10, 85

anonymous types, 137-138
	
application faces, 11
	
asynchronous programming, 157-159
	
attributes, 126
	
auto-implemented properties, 147-148
	
collections, 136-137
	
configuring, 721
	
constants, defining, 113
	
covariance/contravariance
	

custom generic classes, 156
	
defined, 155
	
delegates, 156
	
generic collections, 156
	

C#/VB new features, 85-86
	
index initializers, 92-93
	
lambda expressions, 92
	
NameOf expression, 90-91
	
null-conditional operators, 86-88
	
read-only auto properties, 88-90
	

string interpolation, 91-92
	
using/Imports statements, 91
	

data types
common, listing of, 110
conversions, 111-113

decision structures, 116
If...Then...Else, 116-117
Select...Case/switch...Case, 118-119

Development Utility (DNU), 750
dynamic data type, 149
dynamic objects

calling, 153-154
	
creating, 150-153
	
executing, throwing errors, 154
	

events, 128
defining, 128-130
listening for, 131
raising, 130

exceptions
filtering, 128
handling, 127-128

Execution Environment (DNX), 712
extension methods, 138-139
F#, 93
friend assemblies, 145-146
groups, 122

arrays, 122-123
	
collections, 123-125
	
tuples, 125-126
	

implicit line continuation, 148
lambda expressions, 143-145
LINQ, 142-143
local type inference, 132-134
loops, 119

Do...While/Until, 120-121
	
For...Each, 120
	
For...Next, 119-120
	

multiple versions, targeting, 727-728
namespaces

Activities, 161
AddIn, 159
CodeDom, 159
Collections, 160
ComponentModel, 160
Configuration, 160

Data, 160
Diagnostics, 160
Diagnostics.Contracts, 160
Drawing, 160
Dynamic, 160
EnterpriseServices, 160
Globalization, 160
IO, 160
Linq, 160
Media, 160
Messaging, 160
Net, 161
Security, 161
ServiceModel, 161
Threading, 161
Timers, 161
Web, 161
Windows, 161
Workflow.Activities, 161
Xml, 161

object initializers, 134-136
object-oriented programming. See OO programming
operators, 113

arithmetic, 114
assignment, 113-114
comparison, 115
concatenation, 115
logical/conditional, 116

partial methods, 140-141
UI delivery solutions, 12-14

mobile, 13-14
web, 13
Windows, 12

unused arguments, deleting, 147
variables, declaring, 111
Version Manager (DNVM), 750
versions, 711-712
WinRT, compared, 1072
XML, embedding, 146-147

New ASP.NET Project dialog box, 482
New Breakpoint, Break at Function command (Debug menu), 406
New Breakpoint, Data Breakpoint command (Debug menu), 406
New Breakpoint command (Debug menu), 408
New Breakpoint dialog box, 421-422
New Class dialog box, 283

New Deployment dialog box, 528
new features

ASP.NET 5, 710
C#/VB, 85-86

index initializers, 92-93
	
lambda expressions, 92
	
NameOf expression, 90-91
	
null-conditional operators, 86-88
	
read-only auto properties, 88-90
	
string interpolation, 91-92
	
using/Imports statements, 91
	

Visual Studio, 21
New File dialog box, 226
new keyword, 102
New Project dialog box

database project template, 554
	
launching, 177
	
Office project types, 1041
	
solutions, creating, 164-165
	

New Web Site dialog box, 180
NewWindow() method (documents), 631
Next button (Solution Explorer toolbar), 194
NextBookmark() method (EditPoint objects), 636
nextSibling property (documents), 813
no authentication site authentication, 739
NoContentResult class, 754
Node Package Manager (NPM), 719, 729
Node.js library, 834
NodeList object, 812-813
nodes (DOM tree)

accessing, 811
	
adding, 815
	
attributes, 814
	
deleting, 815
	
HTML content, 814
	
list of, selecting, 812-813
	
listing of, 808-809
	
single, selecting, 811-812
	
text, updating, 814
	
traversing, 813
	
visual, 810
	

not equal (< >), (!=) operators, 115
:not() jQuery filter, 822
Not operator, 116
NPM (Node Package Manager), 719, 729

NuGet
package dependencies, 726
Web API package, installing inside unit test, 353

null-conditional operators, 86-88
Number object, 803

O
Object Browser, 213

assemblies, adding as reference, 216
custom component sets, customizing, 214
description pane, 215-216
objects, browsing, 215
scoping options, 213

Object() method (documents), 631
Object property (windows), 615
ObjectDataSource controls, 583
ObjectKind property (windows), 615
object-oriented programming. See OO programming
object/relational mapping. See O/R mapping
ObjectResult class, 754
objects

action result, 754-755
automation object model
	

categories, 604
	
DTE object, 605-606
	
PIAs, 602
	
type list, 602
	

browsing (Object Browser), 215
	
CodeElement, 610-611
	
collections, verifying, 345
	
command, 645
	

commands, executing, 647-648
	
key bindings, mapping, 648-649
	
methods, 646
	
properties, 646
	

CommandBar, 628-630
	
CommandBars collection, 629
	
menu bar versus toolbar, 629
	
methods, 629
	
properties, 629
	

core client in unit tests, referencing, 353
	
DataSet, 1057
	
DbContext, 756
	
debugger, 649
	
deferral, 1097
	

document. See documents
dynamic

calling, 153-154
creating, 150-153
executing, throwing errors, 154

EditPoint, 635
adding text, 638-639
editing text, 639
methods, 636
properties, 636
repositioning, 640
text window comments, inserting, 640-645

history, 807
host item, 1053
initialization, 134-136
JavaScript, 799

BOM. See BOM
constructor notation, 800
data types, handling, 802-803
Date, 804
DOM. See DOM
dot notation, 801-802
literal notation, 799-800
Math, 804
Number, 803
Regex, 805
String, 802

jquery, 821
LINQ, 590-591
location, 807
navigator, 808
NodeList, 812-813
OleMenuCommandService, 663
Output window, 625
POCOs (plain old CLR objects), 32
project. See projects
relational mapping. See O/R mapping
screen, 807
solution. See solutions
SuspendingDeferral, 1097
TaskItem

methods, 621
properties, 621
tasks, adding/deleting, 621

TaskList, 328

TaskListEvents, 328
	
TextBlock, 699
	
TextPane, 619-620
	
TextPoint, 635, 638
	
TextSelection, 636
	
TextWindow, 618
	
Toolbox window, 622-
VirtualPoint, 635
	
window See also windows
	

BOM, 805-806
	
DOM, 819
	

objects pane (Class View window), 203-205
icons, 204
scope/access signal icons, 204
Sort/Group shortcut menu options, 204-205

Office
add-ins, 19

document extensions, compared, 1041
Outlook form regions, 1049-1052
ribbon, 1043-1047
task panes, 1047-1048

App for Office, 1059
	
extension types, 1060
	
starting page, 1059
	
task pane app, creating, 1060-1062
	
template, 1059
	

benefits, 18
	
Developer Tools, 1038
	
document extensions, 1038, 1053
	

actions pane, creating, 1039, 1055-1057
add-ins, compared, 1041
data cache, 1040, 1057-1059
hosting controls, 1053-1054
ribbon, 1040
task panes, 1039

document projects, 19
	
icons, reusing, 1045
	
Office Developer Tools, 1038
	
productivity tools, 12
	
project types, 178, 1041
	
SharePoint, 20
	
templates
	

listing of, 18
projects based on, creating, 19

OleMenuCommandService objects, 663

Omnisharp website, 711
online event subscription, 818
OnSizeChange event handler, 702
OO programming (object-oriented)

classes
	
behaviors, overriding, 101-102
	
constructors, 98-99
	
defining, 94
	
fields/properties, 94-96
	
hiding members, 102
	
inheritance, 100-101
	
member accessibility, 97-98
	
methods, 96-97
	
overloading methods, 103
	
static/shared members, 99
	

enumerations, 99-100
	
interfaces, defining, 104
	
namespaces, 106-109
	

defining, 106
	
fully qualified definition, 107
	
importing, 108-109
	
root, setting, 107
	

structures, 105-106
Opacity property, 959
Open Developer Account command (Windows Store menu), 1101
open() method

solutions, 608
windows, 806

OperationContract attribute (CustomerProfile class), 932
operations, refactoring, 362

Encapsulate Field, 387-388
	
Extract Interface, 382-385
	
Extract Method, 375-382
	
Inline temporary variable, 375
	
Introduce constant, 372-374
	
Introduce local, 374
	
Rename, 367-371
	

operators, 113
arithmetic, 114
assignment, 113-114
comparison, 115
concatenation, 115
logical/conditional, 116
null-conditional, 86-88

<option> HTML tag, 762

Option TagHelper, 768
optional features, installing, 43
options code editor extension point, 688
Options command (Debug menu)

active debug session, 408
	
at rest, 406
	

Options dialog box
debugging, 413-414
editor customization, 70
IDE fonts, 81-82
startup options, 52

O/R (object/relational) mapping
defined, 584
designer, 586-590
drag-and-drop operation LINQ code, 588-590
EF, 591

designer, 594
	
EDM, editing, 593
	
EDM items, adding, 591
	
EDM Wizard, 592
	
Mapping Details window, 595-596
	
Model Browser, 594-595
	
queries, 596-598
	
updates, 597-598
	

LINQ objects, 590-591
Or operator, 116
Ordered Test template, 357
ordered tests, creating, 357-358
OrElse operator, 116
organizational accounts site authentication, 739
Organize Usings (IntelliSense), 311
orientation modes (mobile devices), 1116
Orientation property (StackPanel), 1020
Other Debug Targets command (Debug menu), 406
OutlineSection() method (EditPoint objects), 636
outlining code, 296-298
Outlining menu, 297-298
Outlook form region add-ins, 1038, 1049-1052

message class association, 1050
	
region types, 1049
	
runtime events, 1052
	
UI, 1050
	

Output window, 625-626
OutputString() method (OutputWindowPane objects), 626
OutputTaskItemString() method (OutputWindowPane objects), 626

OutputWindow automation type, 602
OutputWindow objects, 625
OutputWindowPane objects

defined, 625
methods, 626
properties, 626

OutputWindowPanes objects, 625
overloading methods, 103
override keyword, 102
overrides keyword, 102
overriding style sheets, 851-852

P
PaaS (platform as a service), 475, 529

Azure website hosting, compared, 529
cloud service projects, 530-532

Package class, 658-660
Package Wizard, 664-667
package.json files, 720
packages

ColorSelector, running, 675
commands, 750
dependencies, 723-727

adding to project.json files, 723-724, 726
adding with NuGet, 726
viewing, 725

extensions, parameters, 653
PadToColumn method (EditPoint objects), 636
page layout. See layout
Panel class, 967
panels (WPF layout), 998

Canvas, 999-1000
DockPanel, 1000-1001
Grid, 1001-1005
StackPanel, 1005-1006
WrapPanel, 1006

panes
actions, creating, 1055-1057
Class View window

members, 205
objects, 203-205

code, 229
Exception Settings, 397-398
Object Browser, 215-216
Query designer, 545

task/action (Office), 1039
windows, 619-620
	

incremental searches, 619-620
	
specific text area, displaying, 619
	

WPF Designer, 268-269
parallel applications, debugging, 451

Parallel Stacks window, 451
	
Task view, 452-455
	
Threads view, 451-453
	

Parallel Tasks window, 454-456
parallel execution, 586
Parallel Stacks window, 451

Task view, 452-455
Threads view, 451-453

Parallel Tasks window, 454-456
Parameter Info (IntelliSense), 310
parameters

extension packages, 653
	
TryGetMember() method, 152
	
TryToShow() method, 619
	

Parent property (objects)
CommandBar, 629
EditPoint, 636
TextDocument, 633

parentheses (), brace matching, 323
parentNode property (documents), 813
ParentProjectItem property (projects), 609
Partial keyword, 140
partial methods, 140-141
partial views, 780-784

load button click event, 782
results, looking up, 781
returning, 783
strongly typing to Customer instances, 780

PartialViewResult class, 754
parts (MEF), 685
Pascal-casing breaks, 200
:password jQuery filter, 822
Paste() method (EditPoint objects), 636
pasting text, 222
Path property (documents), 631
path selection (files), 1028
peek definition, 250
performance counters, 211
PerfTips, 438-439

phases (debugging), 392-393
PhoneAttribute class, 746
Phonegap website, 1156
PI property (Math objects), 804
PIAs (automation object model), 602
PictureContentControl control, 1054
pinning

DataTips, 437
windows, 74-75

pipes (|), Angular filters, 889
pixelDepth property (screen object), 807
placeholders, 314
plain old CLR objects (POCOs), 32, 744-745
PlainTextContentControl control, 1054
platform as a service. See PaaS
PLINQ (Parallel LINQ), 586
plug-ins (Cordova), 1155, 1175-1176
POCOs (plain old CLR objects), 32, 744-745
PointOrCount parameter (TryToShow() method), 619
polymorphism, 101-102
portal (Azure)

Alert Rules Startboard item, 507
	
Application Insights, 510-512
	
blades, 496-498
	

Metric, 505-506
	
options, 497-498
	
toolbar, 499
	
Web tests, 512-514
	

databases, 500-503
	
adding, 500
	
details, configuring, 500
	
managing, 502
	
viewing, 502
	

deployment, 503
	
Startboard, 494
	
web apps, creating, 494-496
	

porting web apps, 712
Position property (CommandBar objects), 629
positioning toolbars/menus, 969-971
Post() method (Web API services), 908-909, 925
POST requests, handling, 758-759
PowerPoint extension points, 1038
Preview Changes checkbox (Rename dialog box), 371
Preview Changes dialog box, 364
Preview Database Updates dialog box, 753

Preview selected item button (Solution Explorer toolbar), 194
previewing

publications, 473-474
refactoring changes, 364-365

PreviousBookmark() method (EditPoint objects), 636
previousSibling property (documents), 813
primary keys, 540
printing code, 248-249
Priority property (TaskItem objects), 621
private class member accessibility level, 97
private fields, 94
Private keyword, 94
problem indicators (code), 293
Process2 automation type, 602
processes

components, creating, 278
	
different, debugging, 400-401
	
managing, 447
	
TFS templates, 6
	

processing web requests, 709-710
productivity aids

code outlining, 296-298
IntelliSense, 305-306

brace matching, 322-324
	
code snippets. See snippets
	
Complete Word, 306-308
	
customizing, 324
	
List Members, 309-310
	
Organize Usings, 311
	
Parameter Info, 310
	
Quick Info, 308
	
triggering, 306
	

overview, 289-291
smart tasks/light bulbs, 301
	

code editor, 302-305
	
web designer, 301
	

tag navigation, 299-301
	
document outline window, 300-301
	
tag navigator, 299-300
	

Task List, 325
	
automation, 328
	
comment tasks, 326-327
	
shortcut menu, 325
	
shortcut tasks, 326
	
window, launching, 325
	

text editors, 291
active hyperlinking, 295
change tracking, 292
coding problem indicators, 293
fonts/color options, 295-296

Professional edition, 2, 4
Profiler command (Debug menu), 406
Program automation type, 602
Project Designer

accessing, 185
properties, setting, 184
property pages

Application, 186
Build, 187
Build Events, 187
Compile, 187
Debug, 188
Publish, 188
Reference Paths, 188
References, 188
Resources, 188
Security, 188
Settings, 189
Signing, 189

Project menu, 57
(Project) Properties command (Debug menu)

active debug session, 408
at rest, 406

Project Properties dialog box, 557
Project property (windows), 615-616
ProjectItem automation type, 602
ProjectItem property

documents, 631
windows, 615-616

ProjectItems automation type, 602
ProjectItems collection, 606
ProjectItems property (projects), 609
project.json files, 720

default example, 721
package dependencies, adding, 723-727

projects
ASP.NET MVC, creating

About.cshtml view page, 742-743
action methods, 741-742
Controllers folder, 740

HomeController class, 741
	
IActionResult interface, 741
	
Models folder, 740
	
site authentication, 739
	
template selection, 738
	
unit tests, 739
	
Views folder, 740-741
	

ASP.NET templates, 713-716
ASP.NET 5 Web Site. See ASP.NET 5 Web Site template
empty, 714
MVC, 715
SPA, 716
Web API, 716
Web Forms, 714-715
Web Pages, 715

assembly references, adding, 216
automation type, 602
Azure cloud

creating, 530-532
	
deploying, 533-534
	
running locally, 532
	

code, accessing, 610-612
Cordova

files, 1159-1160
folders, 1158-1159
JavaScript, 1164-1165
setup, 1160-1161
templates, 1157-1158
UIs, 1161-1163

creating, 53-54, 177-180
current solutions, adding, 180
database

creating, 554
	
customizing, 557-559
	
database development workflow, 553
	
databases, importing, 555-557
	
publishing databases, 559
	
scripts, 553
	

definition files, 181-183
deleting from solutions, 607
dependencies, setting, 174
environments, targeting, 54-56
folders, 184
Ionic, 1177-1179
item extensions, adding, 653-658

items, 184
LINQ to SQL Classes items, 586
managing, 6, 196-198
methods, 609
Office application types, 1041
properties, 184-185, 609

application, 186
	
application settings, 189
	
build, 187
	
build events, 187
	
compile, 187
	
debug, 188
	
publish, 188
	
reference paths, 188
	
references, 188
	
resources, 188
	
security, 188
	
signing, 189
	

publishing. See publishing
references, adding, 728
Solution Explorer navigation, 67
structure, 184
types supported, 178-179
VSIX

custom commands, adding, 654-655
custom tool windows, adding, 657-658
template, 652

web application versus website, 181
website

creating, 180-181
web application, compared, 713

WinForms
appearance properties, 959
code, writing, 264-267
control layout, 262
controls, adding, 260
creating, 258-259
events, 959-961
form appearance, customizing, 260
inheritance, 958
layout grid, 262-263
snap lines, 263-264
StartPosition property, 958
startup forms, setting, 958
Toolbox, 261

WinForms Designer, 258-259
WPF
	

appearance, customizing, 270
	
controls, adding, 270
	
creating, 268
	
Designer, 268-269
	

Projects collection, 606
Projects property (solutions), 608
properties

associations, 286
	
auto-implemented, 147-148
	
build configurations, 176-177
	
ClickOnce publication, 466
	
commands, 646
	
CommandBar objects, 629
	
database projects, 557
	
DateString, 1131
	
Description, 1131
	
destroy, 862
	
documents, 631
	
DOM, traversing, 813
	
DTE object, 605
	
EditPoint object, 636
	
field encapsulation, 387-388
	
form controls
	

Anchor, 965
	
AutoScale, 966
	
AutoScaleDimensions, 966
	
Dock, 966
	

forms
	
appearance, 959
	
StartPosition, 958
	

GetClassificationSpans (EditorClassifier1 class), 690
GridView control, 582
ImageFile class, 1085
innerHtml, 814
JavaScript objects, 801-802
Kind (CodeElement object), 610-611
list box, 1018
locations, 807
Math objects, 804
OutputWindowPane objects, 626
projects, 184-185, 609

application, 186
	
application settings, 189
	

build, 187
	
build events, 187
	
compile, 187
	
debug, 188
	
publish, 188
	
reference paths, 188
	
references, 188
	
resources, 188
	
security, 188
	
signing, 189
	

read-only, 95-96
	
read-only auto, 88-90
	
RightToLeft, 954
	
RightToLeftLayout, 954
	
screen object, 807
	
solutions, 173, 608
	

code analysis settings, 175
	
source file locations, 175-176
	
startup project, 173-174
	

strings, 802
	
TableLayoutPanel control, 968
	
TaskItem object, 621
	
TestContext class, 339
	
text documents, 633
	
textContent, 814
	
UpdateQuery, 582
	
UriTemplate, 943
	
windows, 615
	

Properties button (Solution Explorer toolbar), 194
Properties directory, 718
Properties property

projects, 609
solutions, 608

Properties window, 73-74, 996
Property automation type, 602
PropertyChanged event handler, 1085
proportional sizing, 1021
protected class member accessibility level, 97
protected internal class member accessibility level, 97
Protection property (CommandBar objects), 629
public class member accessibility level, 97
public fields, 94
Publish Azure Application dialog box, 533
Publish property page, 188
Publish Web Wizard, 485

connection information, 486
deployment settings, 486
existing applications, publishing to Azure, 489-491
previews, 487
publish profiles, 485

Publish Wizard (ClickOnce), 466-468
publishing

ASP.NET web applications, 469
	
connections, configuring, 471
	
deployment settings, configuring, 472-473
	
publications, previewing, 473-474
	
targets, selecting, 470-471
	

Azure, 30-31
ClickOnce
	

publication properties, 466
	
Publish Wizard, 466-468
	

databases, 559
	
InstallShield, 469
	
web applications to Azure, 484-489
	

connection information, 486
	
deployment settings, 486
	
existing applications, 489-491
	
previews, 487
	
publish profiles, selecting, 485
	

Windows Store applications, 1100-1102
Put() method

calling with Edit() method, 922-923
Web API services, 909-910

Q
queries

databases, writing, 544-548
	
joins, 547
	
Query designer panes, 545
	
SQL statements, fine-tuning, 545-547
	
tables, adding, 544
	
types supported, 548
	

EF, 596-598
LINQ, 585
	

creating, 142-143
	
lambda expressions, 144-145
	

management events, 210
	
query selectors (DOM), 811-812
	
windows, 617-618
	

Query Builder window, 582

querySelector() method (documents), 811-812
querySelectorAll() method (NodeList objects), 812
Query/View designer

configuring, 545
	
queries, writing, 544-548
	
Query designer panes, 545
	
views, creating, 548
	

Quick Actions menu
Encapsulate Field refactor operation, accessing, 388
Extract Interface refactor, accessing, 383
method stubs, creating, 382
refactoring code, invoking, 363
Rename operation, invoking, 370

Quick Find, 237-238
accessing, 237
results, finding, 238
searches, fine-tuning, 238

Quick Info (IntelliSense), 308
Quick Replace, 238-239
QuickStart templates

AppServices, 525
Azure SDK, 524-526
	

Compute, 525
	
DataServices, 525-526
	

QuickWatch command (Debug menu), 408
QuickWatch window, 436
Quit method (DTE objects), 605
quotation marks (“”), brace matching, 323

R
:radio jQuery filter, 822
Raise() method (Commands collection), 647-648
raising events, 130
random() method (Math object), 804
RangeAttribute class, 746
Rating property (ImageFile class), 1085
Razor syntax, 25, 763-765

@ (at sign), 763
	
{ } (curly brackets), 763
	
HTML helpers, 765-766
	
page layout, 768-769
	

ReadOnly() method (EditPoint objects), 636
read-only properties

auto, 88-90
creating, 95-96

ready() function (jQuery), 828
RedirectResult class, 754
RedirectToRouteResult class, 754
Redo() method (documents), 631
refactoring

class designer, 366-367
	
defined, 361
	
field encapsulation, 387
	

applying, 388
Encapsulate Field refactor operation, accessing, 387-388

interface extraction, 382
	
creating interfaces, 383-384
	
Extract Interface refactor operation, accessing, 383
	
implementation, 384-385
	

method extraction, 375
	
code to refactor, selecting, 377-378
	
Extract Method Refactor operation, accessing, 375
	
long static method example, 376-377
	
method stubs, creating, 382
	
new methods code listing, 379-380
	
original long static method after extraction, 379
	
refactored method, creating, 378
	
single lines of code, 380-382
	

operations, 362
	
overview, 361-362
	
previewing/making changes, 364-365
	
Quick Actions menu access, 363
	
renaming code, 367
	

Rename dialog box, 371
	
Rename operation, accessing, 368-371
	

tools
	
benefits, 362
	
invoking, 363-364
	

variable assignments, 372
Introduce constant, 372-374
Introduce local, 374
temporary variables into inline code conversions, 375

Reference Manager, 728
Reference Paths property page, 188
references

directory, 718
	
projects, adding, 728
	
windows, 614
	

References property page, 188
Refresh button (Solution Explorer toolbar), 194

Refresh routines, 700
Regex object, 805
RegularExpression class, 746
release management, 7
reload() method (locations), 807
Remote Debugger Monitor, 443
remote debugging, 442-444
Remove() method (solutions), 608
removeAttribute() method (DOM), 814
removeChild() method (DOM), 815
removeEventListener() method, 819
Rename dialog box, 371
Rename operation, 367

accessing, 368-371
Class View and Properties window, 368
keyboard shortcuts, 369
Quick Actions menu, 370

Rename dialog box, 371
renaming code, 367

Rename dialog box, 371
Rename operation, accessing, 368-371

Class View and Properties window, 368
keyboard shortcuts, 369
Quick Actions menu, 370

Repeater controls, 579
Replace in Files tool, 241-242
replace() method (strings), 802
ReplacePattern() method (objects)

EditPoint, 636
TextDocument, 633

ReplaceText() method (EditPoint objects), 636
replacing text

Quick Find window, 238-239
Replace in Files tool, 241-242

Representational State Transfer. See REST
RequestedPage property (TestContext class), 339
requesting capabilities, 1090
requests

MVC processing, 737-738
POST, handling, 758-759

RequiredAttribute class, 746
requirements management, 7
rerunning installation, 42
res folder, 1158
Reserve App Name command (Windows Store menu), 1101

Reset() method (CommandBar objects), 629
Reset publish profile button (Azure web apps toolbar), 499
resetting IDE default settings collections, 46-50
resizing forms, 963-964
resource groups (Azure), 526-529

creating, 526-527
deployments, 528-529

Resources property page, 188
responding

bugs phase (debugging), 393
web requests, 709-710

Respond.js framework, 833
responsive web layout (Bootstrap), 763, 835

components, 844
drop-downs, 849-850
files, 835
navigation bars, 842-843
text, styling, 845-846
user input forms, 847-848
visual design, customizing, 851-854

REST (Representational State Transfer)
WCF as, 943

client code for calling, writing, 947-949
REST requests, accepting, 943-947

Web API. See Web API services
Restart button (Azure web apps toolbar), 499
Restart command (Debug menu), 408
RestoreAsync() method, 1099
result parameter (TryGetMember() method), 152
results

objects, 754-755
unit tests, viewing, 336-337

Results pane (Query/View designer), 545
ResultsDirectory property (TestContext class), 339
Resuming event, 1097
Return keyword, 96
reviewing code phase (debugging), 393
RibbonControlSizeLarge property (custom ribbons), 1045
ribbons (Office), 1040, 1043-1047

button events, handling, 1046-1047
design surface, 1043
IDE Toolbox controls, 1044
items, adding, 1045-1046

RichTextContentControl control, 1054
RightToLeft property, 954

http:Respond.js

RightToLeftLayout property, 954
Ripple simulators (Cordova debugging), 1168-1170
root namespaces, setting, 107
Roslyn compiler, 744
RotateTransform class, 1027
rotating images, 1027
round() method (Math objects), 804
routed events (WPF), 1014-1015
routing Web API services, 911-912
RowIndex property (CommandBar objects), 629
rows (grids), creating, 1002
rules

ASP.NET model validation, 745-747
CSS, adding, 258

Run button (Standard toolbar), 415
Run to Cursor button (Debug toolbar), 415-416
Run to Cursor command (Debug menu), 415-416

S
Sammy.js framework, 833
Sass, 719, 834
Save Dump As command (Debug menu), 408
Save() method

documents, 631
	
projects, 609
	

SaveAs() method
projects, 609
solutions, 608

SaveAsync() method, 1099
Saved property

documents, 631
projects, 609
solutions, 608

saving
AngularJS changes, 887-888
changes, 870-871

scalability (Azure), 514-516
scalar-valued functions, 552
ScaleTransform class, 529
schemas (XML)

code snippet reference, 316
	
Schema Designer, 254-256
	
Schema Explorer, 254
	
views, 253
	
XSDs, creating, 252
	

http:Sammy.js

objects pane), 204scope signal icons (Class View window
scoping options (Object Browser), 213
screen objects, 807
screen optimization (BOM), 807
<script> HTML tag, 794
Script TagHelper, 768
scripts, creating, 794-795
scrollbars (code editor)

extension point, 687
vertical, 231-233

.scss file extension, 719
SCSS Style Sheet files, 719
search folder sets, creating, 240
searches

breakpoints, 426
	
Class View window, 203
	
incremental, 242-243, 619-620
	
Solution Explorer, 199-200
	
text, 237
	

Find in Files tool, 239
Find Results window, 240-241
Incremental Search, 242-243
Quick Find, 237-238
Quick Replace, 238-239
search folder sets, creating, 240

Security property page, 188
Select Azure Template dialog box, 527
<select> HTML tag, 762
Select method (TaskItem objects), 621
select queries, 548
Select TagHelper, 768
Select...Case decision structure, 118
:selected jQuery filter, 822
SelectedItem automation type, 602
selection margin (code editor), 230-231
Selection property (objects)

documents, 631
	
TextDocument, 633
	
windows, 615
	

SelectionChanged event handler, 1082
selections (jQuery), 821-822

basic selectors, 822
combination, 822
content, accessing, 825-826
CSS, 822

elements, selecting, 822
filters, 822
forms, 822-823
ID-based, 822
looping through, 823-825
result actions, 824
traversing, 823-825

self-checking applications, 393-394
applications in debug mode, starting, 394
breaking on exceptions, setting, 397-398
breakpoints

conditions/actions, 402
setting, 401

continuing after breakpoints, 403
Contoso University sample application, 393
debug mode, starting, 396
different processes, 400-401
errors, debugging, 398-399
stepping through code, 403-405
website debugging, enabling, 394-395

self-hosted services, 950
Server Explorer, 206-213

Azure
node, 212
services, accessing, 523

components, 208-209
event logs, 209
management events, 210
message queues, 210
performance counters, 211
servers, adding, 208
services, 211
WMI classes, 209-210

data connections, 207-208
databases, creating, 537
drag-and-drop operation with O/R designer LINQ code, 588-590
existing databases, connecting, 538-539
items, dragging and dropping, 211
SQL Server Object Explorer, compared, 536
tables

adding, 540
contents, viewing, 548

toolbar, 206
triggers, creating, 551-552
website management, 492-493

ServerDocument class, 1058
servers

adding to Servers node, 208
models

AngularJS, creating, 879
Knockout, creating, 862-863

Servers node (Server Explorer), 208-209
event logs, 209
items, dragging and dropping, 211
management events, 210
message queues, 210
performance counters, 211
servers, adding, 208
services, 211
WMI classes, 209-210

ServiceContract attribute (CustomerProfile class), 932
services

benefits, 892-893
coarse-grained interfaces, 903
defined, 892
DISCO, 896
HTTP, 896
JSON, 895
methods, 895
REST-based HTTP, 893
Server Explorer, 211
SOAP, 896
TFS, 6-7
UDDI, 896
URIs, 896
WCF

addresses, 929
application files, 931-932
behaviors, 929
benefits, 894
bindings, 930
clients, 929
consuming, 938-942
contracts, 929
creating, 932-937
debugging, 444, 937-938
defined, 929
endpoints, 894, 929
hosting, 929, 950
REST-based, configuring. See WCF, REST-based

templates, 930-932
Web API, compared, 895

web, 895
Web API. See Web API services
Windows, hosting, 950
WS, 896
WSDL, 896
XML, 895
XSD, 896

services.js file, 1189
setAttribute() method (DOM), 814
SetBookmark() method (EditPoint objects), 636
setDate() method (Date objects), 804
setFullYear() method (Date objects), 804
setHours() method (Date objects), 804
setMilliseconds() method (Date objects), 804
setMinutes() method (Date objects), 804
setMonth() method (Date objects), 804
setSeconds() method (Date objects), 804
SetSelectionContainer() method (windows), 615-616
SetTabPicture() method (windows), 615-616
setTime() method (Date objects), 804
settings

IDE, 44
color themes, customizing, 45
default settings collections, resetting, 46-50
storing/synchronizing, 44
users, switching, 50

unit tests, controlling, 338
Settings button (Azure web apps toolbar), 499
Settings property page, 189
Shadows keyword, 102
Shared folder, 740
Shared keyword, 99
shared members (classes), 99
SharePoint

applications, creating, 20
templates, 18
UI delivery solutions, 12

sharing code snippets online, 322
Shortcut node (XML), 316
shortcut tasks, 326
Show all files button (Solution Explorer toolbar), 194
Show Diagnostic Tools command (Debug menu)

active debug session, 408

at rest, 406
show() method (jQuery), 830
Show Next Statement button (Debug toolbar), 403
showAlert() method, 1187
ShowPopup() method (CommandBar object), 629
signal icons

scope/access, 204
version control, 194

SignalR, 834
signing in, 43-44
Signing property page, 189
Silverlight to WinRT, porting, 1124
SimpleTypeName() function, 318
single lines of code, extracting, 380-382
Single Page Application. See SPAs
SiteMapDataSource controls, 583
sizing

arrays, 122
grids

columns, 1017
image viewer application, 1020-1023

sliding effects (jQuery), 830
smart tasks, 301

code editor, 302-305
web designer, 301

snap lines, 263-264
Snippet node (XML), 316
snippets, 311

adding with Code Snippet Inserter, 312-313
browsing/sharing online, 322
Code Snippets Manager, 321
creating

Code element, implementing, 319
adding to Visual Studio, 321-322
C# constructor snippet XML format, 316
custom C# snippet code, 319-320
functions, 318
header information, 319
literals/variable replacements, 318
XML schema reference, 316

form names, 314
placeholder values, 314
storing, 316
Surround With snippets feature, 314
Toolbox storage, 322

SnippetType node (XML), 316
SnippetTypes node (XML), 316
SOAP, 896
Solution Explorer

classes, accessing, 198
command bar, 629
history, 198
icons, 192-194

listing of, 192-194
version control signal, 194

Item Preview mode, 199
overview, 191
projects

managing, 196-198
navigation, 67
references, adding, 728

Rename refactor operation, accessing, 369
searches, 199-200
solutions, managing, 195-196
text editors, launching, 226
toolbar buttons, 194
viewing, 66, 192
window contents, customizing, 200-201

Solution property (DTE objects), 605
Solution Property Pages dialog box, 173
Solution2 automation type, 602
Solution3 automation type, 602
Solution4 automation type, 602
SolutionBuild property (solutions), 608
solutions

automation type, 602
benefits, 164
blank, creating, 164
build configuration properties, 176-177
creating, 164-167

hierarchy, 166
names, 167
New Project dialog box, 164-165

definition file, 167-170
folders, 172-173
hierarchy, 166, 606
items, 170-171
managing with Solution Explorer, 195-196
methods, 608
projects

adding, 180
deleting, 607
dependencies, setting, 174
properties/methods, 609

properties, 173
code analysis settings, 175
source file locations, 175-176
startup project, 173-174

tasks, 607
user options file, 168

Sort/Group shortcut menu options (Class View window objects pane), 204-
205
source file locations, 175-176
SourceControl automation type, 602
SourceControl2 automation type, 602
SPAs (Single Page Applications), 13, 26-27

AngularJS, 873
adding, 877-878
adding entries, 885-886
changes, saving, 887-888
controllers, 876-877, 881
data binding, 881-883
deleting entries, 886-887
directives, 875, 889
filters, 889
form validation, 889
modules, 876-877, 880
models code, 876-877
MVC pattern, 874
pages, turning into forms, 883-885
server model, creating, 879
tow-way data binding, 874-876
Web API services, calling, 879

client frameworks. See clients, frameworks
JavaScript frameworks support, 26-27
Knockout, 857

adding entries, 869-870
ASP.NET templates, adding, 860-861
bindings, 872-873
changes, saving, 870-871
controllers, creating, 863
deleting entries, 870
list views, creating, 864-868
MVVM pattern, 857
server models, creating, 862-863

view models, 858-859
views, 857

minify JavaScript files, 854-856
MVC/Web API support, 26
responsive web layout with Bootstrap, 835

components, 844
drop-downs, 849-850
files, 835-837
grid layout, 837-842
navigation bars, 842-843
text, styling, 845-846
user input forms, 847-848
visual design, customizing, 851-854

template, 716
Split App template

JavaScript, 1074
XAML, 1075

split containers, 968-969
split() method (strings), 802
SplitContainer control, 968-969
SQL Editor

stored procedures, 549-551
debugging, 550-551
writing, 549

user-defined functions, creating, 552
SQL pane (Query/View designer), 545
SQL Server

CLR (Common Language Runtime), C# stored procedures, 560-564
object types supported, 560
starting managed code, 561
T-SQL coded update query, 563
update query, 562-563

Data Tools. See SSDT
Object Explorer, 536
project types, 178

SQL Server databases
Azure

adding, 500
details, configuring, 500
managing, 502, 519-521
viewing, 502

code, writing, 543
creating, 537
data binding, 564-565

autogenerating controls, 565-569

complex, 564-565
defined, 564
manually binding controls, 571-575
simple, 564
typed data sets, 570-571
web controls, 579-583
WPF applications, 575-579

existing, connecting, 538-539
managed assemblies, 563
queries, writing, 544-548

joins, 547
Query designer panes, 545
SQL statements, fine-tuning, 545-547
tables, adding, 544
types, supported, 548

SSDT. See SSDT
stored procedures, 549-551

debugging, 550-551
managed, creating with C#, 560-564
writing with T-SQL, 549

tables
adding, 540
adding to queries, 544
cell edits, customizing, 572-574
columns, adding, 541
contents, viewing, 548
database update, 542
foreign keys, 544
indexes, 542
primary keys, 540
renaming, 540
table designer, 539

triggers, creating, 551-552
user-defined functions, creating, 552
views, creating, 548

SQL statements
database queries, writing, 544-548

fine-tuning, 545-547
joins, 547
Query designer panes, 545
tables, adding, 544
types supported, 548

databases
triggers, creating, 551-552
user-defined functions, creating, 552

views, creating, 548
stored procedures, 549-551

debugging, 550-551
writing, 549

SqlCommand class, 561
SqlConnection class, 561
SqlDataSource controls, 583
sqrt() method (Math objects), 804
square brackets ([]), 126

JavaScript dot notation, 801
JSON notation, 720

squiggles (code problem indicators), 293
SSDT (SQL Server Data Tools), 535

Query/View designer
configuring, 545
queries, writing, 544-548
Query designer panes, 545
views, creating, 548

Server Explorer
adding tables, 540
databases, creating, 537
existing databases, connecting, 538-539
SQL Server Object Explorer, compared, 536
table contents, viewing, 548
triggers, creating, 551-552

table designer, 539
columns, adding, 541
database update, 542
foreign keys, 544
indexes, 542
primary keys, 540
renaming tables, 540

stack window, 399
StackOrder property (StackStyle enum), 1056
StackPanel controls, 1005-1006
StackStyle enumeration, 1056
standard collections, 124
Standard toolbar, 63-64
standards

compliance, 277
UI form design, 955
web services (WS), 896

star sizing, 1021
Start button (Azure web apps toolbar), 499
Start Debugging button (Debug toolbar), 414

Start Debugging command (Debug menu), 406
Start Page, 51-53
Start View (XML Schema Designer), 254
Start Windows Phone Application Analysis command (Debug menu), 406
Start Without Debugging command (Debug menu), 406
Startboard (Azure)

Alert Rules Startboard item, 507
SQL database, 519
viewing, 494
web apps, creating, 494-496

StartCaching() method, 1058
StartOfDocument() method (EditPoint objects), 636
StartOfLine() method (EditPoint objects), 636
StartPoint property (TextDocument objects), 633
StartPosition property, 958
startup

forms, configuring, 958
options, customizing, 52-53

Startup Class files, 719
Startup Project property page, 173-174
Startup.cs files, 720
state (applications)

change events, 1120-1121
launching, 1097-1098
passing, 1093-1095
resuming, 1097
storing, 1098-1100
suspended versus terminated, 1122
suspending, 1097
transient/persistent data, 1122
Windows Phone apps, 1119-1120

statements
Imports, 91
SQL. See SQL statements
Stop, 246
using, 91, 108

static keyword, 99
static members (classes), 99
status bars (forms)

creating, 976-977
items, customizing, 977-978

StatusBar property (DTE objects), 605
StatusStrip control, 976-978
Step Into button (Debug toolbar), 403, 414
Step Into command (Debug menu), 414, 417

active debug session, 408
at rest, 406

Step Into Specific command (Debug menu), 418
Step Out command (Debug menu), 408, 419
Step Over button (Debug toolbar), 415
Step Over command (Debug menu), 415, 419

active debug session, 408
at rest, 406

stepping through code, 403-405
into, 416-418
breaking into debugger, 416
debugging, starting, 414-415
ending, 420-421
execution, continuing, 420
out, 419
over, 419
running to cursor position, 415-416
into specific, 418-419

Stop button
Azure web apps toolbar, 499
Debug toolbar, 404

Stop Debugging command (Debug menu), 408
Stop statement, 246
StorageFile class, 1088
StorageFolder class, 1088
stored procedures

managed, creating in C#, 560-564
starting managed code, 561
T-SQL coded update query, 563
update query, 562-563

T-SQL, creating, 549-551
debugging, 550-551
writing, 549

StringAssert class, 345
StringLengthAttribute class, 746
strings

database connection, creating, 748-750
interpolation, 91-92
properties/methods, 802
Solution Explorer searches, 200
verifying, 345

strongly typed views, 769-770
structures, 105-106

classes, compared, 105
defining, 105-106

matching, 685
projects, 184

style binding (Knockout), 872
Style Builder dialog box, 258
Style class, 1007
style sheets

CSS. See CSS editor
files, 719
LESS

creating, 731
output to CSS Gulp processing task, creating, 731-734

overriding, 851-852
website design management, 275-276
XSLT, 256-257

styles
website design, managing, 275-276
WPF, 992-1008

Sub keyword, 96
SubCategory property (TaskItem objects), 621
subclassing existing controls, 982-983
:submit jQuery filter, 822
subscriptions (Azure), 479-480
substring() method (strings), 802
subtraction (-) operator, 114
subtraction with assignment (-=) operator, 113
Surround With snippets feature (IntelliSense), 314
Suspending event, 1097
SuspendingDeferral objects, 1097
SuspensionManager class, 1099
Swap button (Azure web apps toolbar), 499
switch...Case decision structure, 118
switching IDE users, 50
symbol files, 459-460
Sync button (Solution Explorer toolbar), 194
synchronizing IDE settings, 44
System.Activities namespace, 161
System.AddIn namespace, 159
System.CodeDom namespace, 159
System.Collections namespace, 160
System.ComponentModel namespace, 160
System.ComponentModel.Composition namespace, 685
System.Configuration namespace, 160
System.Data namespace, 160
System.Diagnostics namespace, 160
System.Diagnostics.Contracts namespace, 160

System.Drawing namespace, 160
System.Dynamic namespace, 160
System.EnterpriseServices namespace, 160
System.Globalization namespace, 160
System.IO namespace, 160
System.Linq namespace, 160
System.Media namespace, 160
System.Messaging namespace, 160
System.Net namespace, 161
System.Security namespace, 161
System.ServiceModel namespace, 161
System.Threading namespace, 161
System.Timers namespace, 161
System.Web namespace, 161
System.Windows namespace, 161
System.Workflow.Activities namespace, 161
System.Xml namespace, 161

T
tab order (form controls), 971
tab-calculate.html template, 1187
table designer, 539

columns, adding, 541
	
database update, 542
	
foreign keys, 544
	
indexes, 542
	
primary keys, setting, 540
	
renaming tables, 540
	

<table> HTML tag, 762
TableLayoutPanel control, 967-968
tables

cell edits, customizing, 572-574
databases, 536
	

adding, 540
	
adding to queries, 544
	
code, writing, 543
	
columns, adding, 541
	
contents, viewing, 548
	
database update, 542
	
foreign keys, 544
	
indexes, 542
	
primary keys, 540
	
renaming, 540
	
table designer, 539
	

websites, creating, 274
table-valued functions, 552
tabs (Toolbox), adding, 623
taco.json files, 1160
TagHelpers, 767-768
tags

code editor extension point, 688
navigation, 299-301
	

document outline window, 300-301
	
tag navigator, 299-300
	

targets
environments, 54-56
.NET Framework multiple versions, 727-728
publish, selecting, 470-471

Task List, 325
automation, 328
comment tasks, 326-327

C# example, 326

custom tokens, 327
default tokens, 326
removing from list, 326

shortcut menu, 325
shortcut tasks, 326
window, 325, 621

task panes (Office), 1039
app, creating, 1060-1062
customizing, 1047-1048

Task view (Parallel Stacks window), 452-455
TaskItem objects

automation type, 602
methods, 621
properties, 621
tasks, adding/removing, 621

TaskItems automation type, 602
TaskItems2 automation type, 602
TaskList automation type, 602
TaskList objects, 328
TaskListEvents objects, 328
tasks

adding/deleting, 621
automation, 328
client build, managing, 731-734
comment, 326-327

C# example, 326
custom tokens, 327
default tokens, 326
removing from Task List, 326

shortcut, 326
Task List, 325-326

Team Explorer, 8
templates

Apache Cordova project, 38
App for Office, 1059
ASP.NET, 713-716

AngularJS, adding, 877-878
ASP.NET 5 Web Site. See ASP.NET 5 Web Site template
Bootstrap files, 835-837
empty, 714
Knockout, adding, 860-861
MVC, 715
SPA, 716
Web API, 716, 897-899
Web Forms, 714-715

Web Pages, 715
	
automation type, 602
	
Azure, 29
	
Azure SDK QuickStart, 524-526
	

AppServices, 525
	
Compute, 525
	
DataServices, 525-526
	

Blank Solution, 164
Cordova, 1157-1159
	

files, 1159-1160
	
folders, 1158-1159
	

data, 1025-1026
	
database project, 554
	
Ionic, 1177-1179
	
MEF-centered
	

Editor Classifier, 690-691
Editor Margin, 691-692
Editor Text Adornment, 692-693
Editor Viewport Adornment, 693-695

Office, 18-19
	
Ordered Test, 357
	
SharePoint, 18
	
test projects, 330-331
	
TFS process, 6
	
Universal app, 1126-1127
	
VSIX project, 652
	
WCF services, 930-932
	
Web API, 897-899
	
Windows Forms, 957
	
Windows Store image viewer app, 1078
	
WinRT
	

JavaScript, 1074
	
XAML, 1075
	

WPF, 1008-1009
	
creating, 1008
	
visual trees, debugging, 1010-1012
	

temporary variables, 375
Terminate All command (Debug menu), 408, 420
test attribute classes, 341-342
test classes

test projects, creating, 331
TFS, 7

Test Explorer window, 336-337
Test menu, 57, 333
Test Professional, 3, 8

test projects
creating, 330-333
	

default project files, 331
	
policies, defining, 331
	
templates, 330-331
	
test classes, 331
	
test files, adding, 332
	
Test menu, 333
	

naming convention, 331
types, 178

TestClass class, 341
TestCleanup class, 341
TestContext class, 339-340

accessing, 340
	
methods, 339
	
properties, 339
	

testing See also debugging
exceptions, 345-346
ordered tests, creating, 357-358
unit tests. See unit tests
web applications, 350

ASP.NET Pages, 355-357
	
MVC/Web API projects, 350-354
	

web tests (Azure), 512-514
TestInitalize class, 341
TestMethod attribute, 333
TestMethod class, 341
TestName property (TestContext class), 339
TestProperty class, 341
TestResultsDirectory property (TestContext class), 339
TestRunDirectory property (TestContext class), 339
TestRunResultDirectory property (TestContext class), 339
text

adornments, 692-693
	
color, customizing, 295-296
	
cutting/copying/pasting, 222
	
documents, 632
	

adding text, 638-639
	
edit point properties/methods, 636
	
edit points, repositioning, 640
	
editing text, 639
	
editor view objects, 635-636
	
For loops, bookmarking, 633-634
	
methods, 633
	
properties, 633
	

text buffer objects, 635
text representations, 635
text window comments, inserting, 640-645

DOM nodes, updating, 814
	
fonts, customizing, 295-296
	
moving, 222
	
searching and replacing
	

Find in Files, 239
	
Find Results window, 240-241
	
Incremental Search, 242-243
	
Quick Find, 237-238
	
Quick Replace, 238-239
	
Replace in Files, 241-242
	
search folder sets, creating, 240
	

selecting, 222
	
virtual spacing, 224
	
web pages, styling, 845-846
	
WPF, 989
	
wrapping, 223
	

text editors, 68
code editor. See code editor
colors, customizing, 295-296
CSS editor

attributes, defining, 258
	
overview, 257
	
rules, adding, 258
	

customizing, 70-71, 226
	
defined, 221
	
fonts, customizing, 295-296
	
HTML editor
	

formatting options, 274
	
markup, editing, 273
	

IntelliSense, 305-306
	
brace matching, 322-324
	
code snippets. See snippets
	
Complete Word, 306-308
	
customizing, 324
	
List Members, 309-310
	
Organize Usings, 311
	
Parameter Info, 310
	
Quick Info, 308
	
triggering, 306
	

launching, 226
	
multiple windows, navigating, 226
	
printing, 248-249
	

productivity aids, 291
	
active hyperlinking, 295
	
change tracking, 292
	
code problem indicators, 293
	
fonts/color options, 295-296
	

search and replace, 237
Find in Files, 239
Find Results window, 240-241
Incremental Search, 242-243
Quick Find, 237-238
Quick Replace, 238-239
Replace in Files, 241-242
search folder sets, creating, 240

SQL editor
stored procedures, 549-551
user-defined functions, creating, 552

text
	
cutting/copying/pasting, 222
	
line wrapping, 223
	
moving, 222
	
selecting, 222
	
virtual spacing, 224
	

toolbar, 231
	
touch support, 81
	
Visual Basic code editor, 69-70
	
windows, 618
	
XML editor
	

overview, 251-252
Schema Designer, 254-256
Schema Explorer, 254
schema views, 253
XSDs, creating, 252
XSLT style sheets, 256-257

zooming, 228
:text jQuery filter, 822
text() method (jQuery), 825
text node (DOM tree), 809
Text visualizer, 440
text windows, 618
<textarea> HTML tag, 762
TextArea TagHelper, 768
TextBlock objects, 699
textContent property (DOM), 814
TextDocument automation type, 602
TextDocument objects, 632

edit points, repositioning, 640
	
editor view, 635-636
	
EditPoint
	

methods, 636
properties, 636
	

For loops, bookmarking, 633-634
	
methods, 633
	
properties, 633
	
text
	

adding, 638-639
buffer, 635
editing, 639
representations, 635
window comments, inserting, 640-645

textInput binding (Knockout), 873
TextPane automation type, 602
TextPane objects, 619-620
TextPane2 automation type, 602
TextPoint objects, 635, 638
TextPoint parameter (TryToShow() method), 619
TextSelection objects, 636
TextWindow automation type, 602
TextWindow objects, 618
TFS, 6

services, 6-7
	
Team Explorer, 8
	
Test Professional, 8
	
VSO, 6
	

themes
Bootstrap, 852
color, customizing, 45

threads
breaking on, 450
flagging, 447
individual, inspecting, 448-450
managing, 447-448
naming, 446
viewing, 445-446
window, 447

Threads view (Parallel Stacks window), 451-453
Timeout class, 341
timer components, creating, 278
Title node (XML), 316
toDateString() method (Date objects), 804
toExponential() method (Number objects), 803

toFixed() method (Number objects), 803
Toggle Bookmark button (Bookmarks window), 235
Toggle Breakpoint command (Debug menu)

active debug session, 408
at rest, 406

toggling bookmarks, 235
tokens (comment tasks)

custom, 327
default, 326

toLowerCase() method (strings), 802
tool windows

code-behind, 678-681
ColorSelector extension
	

code, 675-677
	
XAML, 678-681
	

ColorSelector extension, displaying, 673-675
Command, 623-625
custom, adding, 657-658
linking, 626-628
Output, 625-626
Task List, 621
Toolbox, 622-623
types, 620

toolbars, 63
Azure web app, 499
Breakpoints window, 423
Class View window, 202
command bars as, 629
creating, 65
customizing, 64-66
Debug, 412

Break All button, 416
	
Run to Cursor button, 415-416
	
Show Next Statement button, 403
	
Start Debugging button, 414
	
Step Into button, 403, 414
	
Step Over button, 415
	
Stop button, 404
	

Debug Location, 447
	
Document Outline window, 218
	
forms, creating, 975-976
	
keyboard shortcuts, assigning, 65-66
	
Object Browser, 215
	
repositioning, 969-971
	
Run button, 415
	

Server Explorer, 206
	
Solution Explorer, 194
	
Standard, 63-64
	
text editors, 231
	

Toolbox, 72-73, 622-623
	
automation type, 602
	
class designer, 282
	
code snippet storage, 322
	
customizing, 73, 962
	
ribbon controls, 1044
	
tabs, adding, 623
	
WinForms, 261
	

ToolBoxItem automation type, 602
	
ToolBoxItem objects, 622
	
ToolBoxItem2 automation type, 602
	
ToolBoxItems object, 622
	
ToolBoxTab automation type, 602
	
ToolboxTab2 automation type, 602
	
ToolboxTab3 automation type, 602
	
ToolBoxTabs object, 622-623
	
tools
	

designers. See designers
	
dnx . gen, 788-791
	
Find in Files, 239
	
Import (databases), 555
	
Office Developer, 1038
	
productivity aids, 289-291
	

active hyperlinking, 295
	
change tracking, 292
	
code outlining, 296-298
	
code problem indicators, 293
	
IntelliSense. See IntelliSense
	
smart tasks/light bulbs, 301-305
	
syntax coloring, 295-296
	
tag navigation, 299-301
	
Task List, 325-328
	

refactoring
	
benefits, 362
	
class designer, 366-367
	
Encapsulate Field, 387-388
	
Extract Interface, 382-385
	
Extract Method, 375-382
	
Inline temporary variable, 375
	
Introduce constant, 372-374
	
Introduce local, 374
	

invoking, 363-364
Rename operation, 367-371
	

Remote Debugger Monitor, 443
	
Replace in Files, 241-242
	
Run to Cursor, 415-416
	
SSDT, 535
	
Test Professional, 3
	
TFS, 6
	

services, 6-7
	
Team Explorer, 8
	
Test Professional, 8
	
VSO, 6
	

Visual Studio Code, 3
Web Publishing

connections, configuring, 471
deployment settings, configuring, 472-473
launching, 469
publication previews, 473-474
targets, selecting, 470-471

Tools button (Azure web apps toolbar), 499
Tools menu, 57
ToolStrip class, 972
ToolStrip controls, 972-973

built-in capabilities, 972
	
MenuStrip, 973-975
	
StatusStrip, 976-978
	
toolbars, 975-976
	
traits, 972
	

ToolStripContainer control, 969-971
ToolStripItem class, 975
ToolTip class, 972
ToolTip node (XML), 316
ToolTips, 972
ToolWindows property (DTE objects), 605
Top property (objects)

CommandBar, 629
window, 615

ToPrecision() method (Number objects), 803
toString() method (Date objects), 804
toTimeString() method (Date objects), 804
touch support, 81
toUpperCase() method (strings), 802
tracepoints, 431-432

action/condition combinations, 432
	
setting, 431
	

traffic monitoring (Azure), 505-506
transforms, 1027
traversing

DOM tree nodes, 813
jQuery selections, 823-825

TreeNode Editor, 979
TreeView controls, 979
triggers (databases), 551-552
trim() method (strings), 802
TryGetMember() method, 150
TryToShow() method (objects)

EditPoint, 636
TextPane, 619

tunneling events, 1015
Tuple class, 125
tuples, 125-126
two-way data binding (AngularJS), 874-876
type attribute (<input> tag), 760-762
Type Name Display Style button (Windows Forms Document Outline toolbar),
218
Type property (CommandBar objects), 629
typed data sets, customizing, 570-571
TypeScript, 9, 834-835

U
UDDI (Universal Description, Discovery, and Integration), 896
UIs (user interfaces)

C# code editor elements, 229
Cordova

components, 1156
	
creating, 1161-1163
	

delivery solutions, 12-14
	
mobile, 13-14
	
web, 13
	
Windows, 12
	

extension commands, defining, 667
form design
	

appearance properties, 959
	
end user considerations, 954-955
	
events, 959-961
	
inheritance, 958
	
planning, 956
	
resizing, 957
	
StartPosition property, 958
	
startup forms, setting, 958
	

Windows Forms template, 957
jQuery
	

animations/effects, 830
	
UI library, 833
	

standards, 955
	
Universal app, 1141-1144
	
UX (user experience) frameworks, 1174
	
views, 760-762
	
web forms. See forms
	
Windows client solutions
	

Office, 18-19
	
SharePoint, 18, 20
	
WinForms applications, 14-15
	
WPF, 16-18
	

Windows modern. See Windows, modern UI, 1066
Windows Phone
	

device orientation, 1116
	
start screen, 1114
	
structure, 1115
	
Universal app, 1130-1141
	

Windows Store applications
	
app bars, 1070
	
attributes, 1068
	
bottom app bars, 1067
	
context menus, 1070
	
control set, 1070
	
fly-outs, 1070
	
image viewer app main page, 1081-1084
	
Media Player example, 1069
	
message dialogs, 1070
	
start screen tiles, 1066
	

underscores (_), page names, 768
Undo() method (documents), 631
undocking windows, 76
uniform resource identifiers (URIs), 896
Unindent() method (EditPoint objects), 636
unit tests, 330

ASP.NET MVC applications, 739
	
data-driven, creating, 346-349
	
debugging phase, 393
	
framework
	

assertions, 344-345
	
attribute classes, 341-342
	
exceptions, testing, 345-346
	
namespace, 339
	

setting up/cleaning up, 343-344
TestContext class, 339-340

ordered, creating, 357-358
running, 336-338

debugger, activating, 336
failures, 337-338
results, viewing, 336-337

settings, controlling, 338
test projects, creating, 330-333

default project files, 331
naming convention, 331
policies, defining, 331
templates, 330-331
test classes, creating, 331
test files, adding, 332
Test menu, 333

web applications, 350
ASP.NET Pages, 355-357
MVC/Web API projects, 350-354

writing, 333-336
Universal app, 1125

design sketch, 1125
MainPage.xaml

Windows Phone, 1136
Windows Store, 1144-1150

MainPage.xaml.cs
Windows Phone, 1137-1141
Windows Store, 1150-1152

MVVM architecture, 1128-1130
Phone emulator, running, 1135
requirements, 1125
templates, 1126-1127
Windows Phone UI, 1130-1141

details page, creating, 1132-1135
master page, creating, 1130-1132
page navigation, 1135

Windows Store UI, 1141-1144
Universal Description, Discovery, and Integration (UDDI), 896
unlinking windows, 627-628
update queries, 548
UpdateQuery property, 582
updates

DOM node text, 814
EF, 597-598
WCF services to accept REST requests, 943-947

http:MainPage.xaml.cs

Upload App Packages command (Windows Store menu), 1102
URIs (uniform resource identifiers), 896
UriTemplate property (WCF service methods), 943
UrlAttribute class, 746
URLs, controlling, 807
UrlToTest attribute (ASP.NET unit tests), 356
UserControl class, 278, 982
users

actions, confirming, 806
controls, 983-985
	

color picker extension example, 671-673
	
ColorSelector extension, 678-681
	
creating, 668-670
	
designing, 984
	
embedding, 985
	
WinForms, 278
	
WPF
	

content, creating, 698-700
displaying as viewport adornments, 704-706
positioning, 702

defined functions, 552
	
experience (UX) frameworks, 1174
	
form design considerations, 954-955
	
IDE, switching, 50
	
input, validating, 770-771
	
input forms, 847-848
	
requests, processing, 737-738
	

using statement, 91, 108
UX (user experience) frameworks, 1174

V
val() method (jQuery), 826
validation

browsers, 276-277
forms, 889
rules, 745-747
user input, 770-771

ValidationMessage TagHelper, 768
ValidationScriptsPartial.cshtml file, 770
ValidationSummary TagHelper, 768
var keyword, 133
variables

anonymous types, creating, 137
	
declaring, 111
	
refactoring, 372
	

constants, 372-374
local variables, 374
temporary variables into inline code conversions, 375

watching (debugger), 433-435
VB (Visual Basic)

anonymous types, 137-138
asynchronous programming, 157-159
attributes, 126
auto-implemented properties, 147-148
breakpoints, triggering, 246
classes

behaviors, overriding, 101-102
	
constructors, 98-99
	
defining, 93
	
fields/properties, 94-96
	
hiding members, 102
	
inheritance, 100-101
	
member accessibility, 97-98
	
overloading methods, 103
	
shared members, 99
	

code editor, 69-70
	
code snippets, adding, 312
	
collection initializers, 136-137
	
constants, defining, 113
	
covariance/contravariance
	

custom generic classes, 156
	
defined, 155
	
delegates, 156
	
generic collections, 156
	

data types
	
common, listing of, 110
	
conversions, 111-113
	

decision structures, 116
	
If...Then...Else, 116-117
	
Select...Case, 118
	

dynamic data type, 149
dynamic objects
	

calling, 153-154
	
creating, 150-153
	
executing, throwing objects, 154
	

enumerations, 99-100
events
	

defining, 128-130
	
listening for, 131
	
raising, 130
	

exceptions
	
filtering, 128
	
handling, 127-128
	

extension methods, 138-139
	
friend assemblies, 145-146
	
groups
	

arrays, 122-123
	
collections, 123-125
	
tuples, 125-126
	

implicit line continuation, 148
	
interfaces, defining, 104
	
lambda expressions, 143-145
	
LINQ, 142-143
	
local type inference, 132-134
	
logical/conditional operators, 116
	
loops
	

Do...While/Until, 121
	
For...Each, 120
	
For...Next, 120
	

methods
	
defining, 96
	
returns values, defining, 96-97
	

namespaces, 106-109
	
new features, 85-86
	

Imports statement, 91
	
NameOf expression, 90-91
	
null-conditional operators, 86-88
	
read-only auto properties, 88-90
	
string interpolation, 91-92
	

object initializers, 134-136
	
operators, 113
	

arithmetic, 114
	
assignment, 113-114
	
comparison, 115
	
concatenation, 115
	

Organize Usings (IntelliSense), 311
	
partial methods, 140-141
	
structures, 105-106
	
unused arguments, deleting, 147
	
variables, declaring, 111
	
.vbproj file extension, 181
	
WinRT, 1075
	
XML, embedding, 146-147
	

.vb file extension, 719
	
VB.NET (Visual Basic.NET), 9
	

http:Basic.NET

.vbproj file extension, 181
verifying

collections of objects, 345
strings, 345

version control
signal icons, 194
TFS, 7

vertical scrollbar (code editor), 231-233
VerticalAlignment property, 1018
View Class Diagram button (Class View window toolbar), 202
View code button (Solution Explorer toolbar), 194
View menu, 57
viewing

class members in class designer, 282
	
code editor margins, 691-692
	
commands, 646
	
data in debugger, 433
	

DataTips, 436-438
	
Diagnostic Tools window, 439-440
	
PerfTips, 438-439
	
QuickWatch window, 436
	
variables, watching, 433-435
	
visualizers, 440-441
	
Watch windows, 435
	

databases in Azure portal, 502
ViewModels folder, 788
viewport adornment

code editor, 693-695
WPF controls, displaying as, 703-706

ViewportAdornment1 class, 694
ViewResult class, 754
views

ASP.NET
	
customer example. See customer example pages
	
Razor syntax, 763-765
	

ASP.NET MVC, 736
	
About.cshtml, 742-743
	
areas, 769
	
components, 784-788
	
controllers, 757
	
generating with dnx . gen tool, 788-791
	
HTML helpers, 765-766
	
HTML tags, 760-762
	
models, 788
	
page layout, 768-769
	

partial, 780-784
strongly typed, 769-770
TagHelpers, 767-768
user input validation, 770-771

controllers, calling, 917-919
	
databases, creating, 548
	
debugger, 433
	

DataTips, 436-438
Diagnostic Tools window, 439-440
PerfTips, 438-439
QuickWatch window, 436
variables, watching, 433-435
visualizers, 440-441
Watch windows, 435

dump file summary information, 458
edit pages, creating, 921-924

data, getting, 922-924
form postback, receiving, 922-923

form data, 979
hierarchical relationships, 979-980
image lists, 980-981
sources, 982
tabular format, 981

Knockout, 857
list, creating, 864-868
models, 858-859
package dependencies, 725
publication previews, 473-474
Solution Explorer, customizing, 200-201
table contents, 548
threads, 445-446
tool windows, 673-675
unit test results, 336-337
Web API services, calling, 916-917

Views folder, 718, 740-741
virtual breakpoints, creating, 248
virtual spacing, 224
VirtualPoint objects, 635
visible Knockout binding, 872
Visible property (objects)

CommandBar, 629
windows, 615

Visual Basic.NET (VB.NET), 9
Visual class, 990
visual cues (Solution Explorer)

http:Basic.NET

item types, 192-194
version control signal icons, 194

visual designers, 72
Visual Studio

Code, 3
editions
	

Community, 2-3
	
comparison website, 3
	
Enterprise, 2, 4-5
	
listing of, 2-3
	
MSDN subscriptions, 5
	
Professional, 2, 4
	
Test Professional, 8
	

Extensibility center website, 688
installing, 41-42
	

optional features, 43
	
rerunning, 42
	

Online (VSO), 6
	
signing in, 43-44
	
Test Professional, 3
	

Visual Tree window, 1010
visual trees (WPF)

debugging, 1010-1012
defined, 1008

visualizers
debugger data, viewing, 440-441
launching, 441
listing of, 440

vsCMElement enumeration values, 612
VSCT files, 664-667
VSIX projects

ColorSelector example. See ColorSelector extension
custom commands, adding, 654-655
custom tool windows, adding, 657-658
MEF-centered

Editor Classifier, 690-691
	
Editor Margin, 691-692
	
Editor Text Adornment, 692-693
	
Editor Viewport Adornment, 693-695
	

template, 652
VSO (Visual Studio Online), 6
VSTO team blog, 1038

W
WAS (Windows Process Activation Service), 950

Watch windows, 399, 435
WCF (Windows Communication Foundation)

addresses, 929
application files, 931-932
behaviors, 929
benefits, 894
bindings, 930
clients, 929
consuming, 938-942
contracts, 929
creating, 932-937

classes, adding, 933
	
defining interfaces, 933-934
	
implementing interfaces, 934-937
	

debugging, 444, 937-938
	
defined, 929
	
endpoints, 894, 929
	
hosting, 929, 950
	
REST-based, 943
	

client code for calling, writing, 947-949
REST requests, accepting, 943-947
	

System.ServiceModel namespace, 161
	
templates, 930-932
	
Test Client, 937
	
Web API services, compared, 895
	

web
controls, 579-583
designer, 272

smart tasks/light bulbs, 301
tag navigator, 299

project types, 178
requests, processing and responding, 709-710
services. See services
tests (Azure), 512-514
UI delivery solutions, 13

Web API services
adding to ASP.NET web applications, 897
AngularJS, calling, 879
benefits, 893
consuming, 912

client application, creating, 913-915
deleting content, 927-928
edit page, creating, 921-924
posting new records, 924-925
services, calling from native devices, 916-920

view/controller files, creating, 915-916
	
Controller Class files, 719
	
controllers
	

class, creating, 901
creating, 900-903
delete requests, 910-911
get requests, 904-908
HTTP verb-based attributes, 902-903
post requests, 908-909
update requests, 909-910

debugging, 905-907
Chrome/Firefox Get service request, 906
IE Get service request results, 905
project properties, 905
requests/responses, 907
service, invoking, 905

HTTP GET/POST requests foundation, 897
models, creating, 899-900
routing, 911-912
services, creating, 27-28
SPA support, 26
templates, 716, 897-899
UI delivery solutions, 13
unit tests, 350-354

controller test method, writing, 353-354
core client objects, referencing, 353
model/controller, adding, 351-352

WCF services, compared, 895
web applications

AngularJS. See AngularJS
ASP.NET. See ASP.NET
Azure

blades, 496-498
cloud services, compared, 529
creating, 494-496
creating in Visual Studio, 481-485
databases, 500-503
debugging, 494
hosting platform, 481
management. See Azure, website management
managing with Server Explorer, 492-493
toolbar, 499

data-bound controls, 579-583
	
data-source controls, 583
	
GridView, 580-583
	

selecting, 579-580
	
debugging, enabling, 394-395
	
existing, porting, 712
	
Knockout. See Knockout
	
publishing, 469
	

connections, configuring, 471
deployment settings, configuring, 472-473
previewing, 473-474
targets, selecting, 470-471

publishing to Azure, 484-489
	
connection information, 486
	
deployment settings, 486
	
existing applications, 489-491
	
previews, 487
	
publish profiles, selecting, 485
	

Razor syntax, 25
unit tests, 350
	

ASP.NET Pages, 355-357
	
MVC/Web API projects, 350-354
	

web requests, processing and responding, 709-710
website projects, compared, 181, 713

web forms. See also forms
browser output/validation, 276-277
controls

adding, 272
arranging, 272-273
	

design/development synchronization, 22-23
	
designing, 272
	
Document Outline window view, 216
	
HTML
	

editing, 273
formatting, 274
	

master pages, 23-24
	
server-side controls, 22
	
standards compliance, 277
	
styles/CSS management, 275-276
	
tables, 274
	
template, 714-715
	
web designer, 272
	
websites, creating, 21-24
	

Web Pages template, 715
Web Publish tool

connections, configuring, 471
deployment settings, configuring, 472-473
launching, 469

publication previews, 473-474
targets, selecting, 470-471

Web Service Description Language (WSDL), 896
Web.config file, 394
WebGet attribute (WCF service methods), 943
WebInvoke attribute (WCF service methods), 943
website development, 272

AngularJS, 873
ASP.NET

client framework dependencies, managing, 728-731
Compiler directory, 718
default structure, 716
Dependencies directory, 718
JSON configuration files, 720-721
Migrations directory, 718
MVC folders, 718
.NET Framework configuration, 721
.NET Framework multiple versions, targeting, 727-728
package dependencies, 723-727
project files, 719
project references, 728
project.json file configuration sections, 722-723
Properties directory, 718
References directory, 718
wwroot directory, 717-718

Azure management, 503-504
	
alerts, 507-509
	
Application Insights, 510-512
	
diagnostic logs, 516-519
	
scalability, 514-516
	
traffic monitoring, 505-506
	
web tests, 512-514
	

Bootstrap, 832
	
components, 851
	
customizer, 853
	
navigation bars, 844
	
themes, 852
	

controls
	
adding, 272
	
layout, 272-273
	

HTML
	
editing, 273
	
formatting, 274
	

MVC. See MVC
	
projects
	

creating, 180-181
debugging, enabling, 394-395
web application projects, compared, 181

publishing, 469
	
connections, configuring, 471
	
deployment settings, configuring, 472-473
	
previewing, 473-474
	
targets, selecting, 470-471
	

responsive layout with Bootstrap, 835
	
components, 844
	
drop-downs, 849-850
	
files, 835-837
	
grid layout, 837-842
	
navigation bars, 842-843
	
text, styling, 845-846
	
user input forms, 847-848
	
visual design, customizing, 851-854
	

styles/CSS management, 275-276
	
tables, 274
	
web application projects, compared, 713
	
Web Forms, creating, 21-24
	

design/development synchronization, 22-23
master pages, 23-24
server-side controls, 22

Website menu, 57
websites

AdventureWorks sample database, 546
AngularJS, 832
Apache

Cordova, 37
Software Foundation, 1154

ASP.NET source code, 711
async processing with async/await keywords, 1087
authentication, 739
Azure

benefit levels, 29
	
download, 29, 522
	
hosting options, 530
	
pricing, 477
	

Backbone.js, 833, 1175
	
Breeze, 833
	
browser output/validation, 276-277
	
Chart.js, 834
	
CoffeeScript, 834
	
Community edition, 3
	

http:Chart.js
http:Backbone.js

Cordova apps, 1156
edition comparison, 3
Ember.js, 834
extensions, posting, 696
Hammer.js, 833
HTML, learning, 760
InstallShield Limited Edition content, 463
IntelliTest, 330
jQuery UI, 833
jQuery.validate, 833
Knockout, 832
Less framework, 834
managing with Azure Server Explorer, 492-493
Microsoft Visual Studio 2015 Unleashed, 703
Modernizer, 833
MSDN benefits, 5
.NET Foundation, 711
Node.js, 834
Omnisharp, 711
Phonegap, 1156
Respond.js download, 833
Sammy.js, 833
Sass, 834
SignalR, 834
SPAs, 26-27

JavaScript frameworks support, 26-27
MVC/Web API support, 26

standards compliance, 277
TypeScript, 834-835
Visual Studio Code, 3
Visual Studio Extensibility center, 688
VSO relative to TFS, 6
VSTO team blog, 1038
WinJS, 1175
WPF visual trees, 1008

whitespace (DOM), 813
width property

CommandBar objects, 629
list boxes, 1018
screen objects, 807
top Menu control, 1019
windows, 615

Window menu, 57
Window2 automation type, 602
WindowConfiguration property (DTE objects), 605

http:Sammy.js
http:Respond.js
http:Hammer.js
http:Ember.js

WindowFrame property (windows), 627
windows

automation type, 602
Autos, 434-435
Azure Activity Log, 534
Bookmarks, 234
Breakpoints, 405, 423

conditions, setting, 426
managing breakpoints, 424
sorting/searching breakpoints, 426
toolbar, 423

browsers
	
alerts, 805
	
browser details, viewing, 808
	
navigating, 807
	
opening/closing, 806
	
positioning, 806
	
screen optimization, 807
	
URLs, controlling, 807
	
user actions, confirming, 806
	

Call Hierarchy, 236-237
	
Class Details, 287
	
Class View, 201
	

members pane, 205
	
objects pane, 203-205
	
search bar, 203
	
toolbar, 202
	

Class View and Properties, 368
	
code definition, 250
	
code editor components, 228
	

code pane, 229
indicator margin, 230
selection margin, 230-231
vertical scrollbar, 231-233

Data Sources, 566, 575
DataTips

pinning DataTips, 437
viewing data in debugger, 436-437

Diagnostic Tools, 439-440
	
docking, 75-76
	
Document Outline, 216
	

tag navigation, 300-301
web forms, 216
Windows Forms toolbar buttons, 218
WPF form, 216

events, 819
Exception Assistant, 399
Extension and Updates, 696
Find results, 240-241
layouts, customizing, 77-79
linked, 626-628
Live Property Explorer, 1011-1012
Locals

errors, debugging, 399
variables, watching, 433-434

Manage Styles, 276
Mapping Details, 595-596
methods, 615
Model Browser, 594-595
multiple text editor, navigating, 226
navigating, 80
Object Browser. See Object Browser
panes, 619-620

incremental searches, 619-620
specific text area, displaying, 619

Parallel Stacks, 451
Task View, 452-455
Threads view, 451-453

Parallel Tasks, 454-456
pinning, 74-75
positioning, 806
properties, 73-74, 615
queries, 617-618
Query Builder, 582
QuickWatch, 436
referencing, 614
Server Explorer, 206-213

Azure node, 212
	
data connections, 207-208
	
Servers node. See Servers node
	
toolbar, 206
	

Solution Explorer. See Solution Explorer
stack, 399
Task List, 325
Test Explorer, 336-337
text, 618
Threads, 447
tool

code-behind, 678-681
	
ColorSelector code, 675-677
	

ColorSelector extension, displaying, 673-675
ColorSelector extension XAML, 678-681
Command, 623-625
custom, adding, 657-658
linking, 626-628
Output, 625-626
Task List, 621
Toolbox, 622-623
types, 620

undocking, 76
	
Visual Tree, 1010
	
Watch, 399, 435
	
WinForms Designer
	

code, writing, 264-267
	
control layout, 262
	
layout grid, 262-263
	
snap lines, 263-264
	
Toolbox, 261
	
visual elements, 260
	

WPF Designer, 17
	
appearance, customizing, 270
	
properties, 996
	
viewing, 268-269
	

XML Schema
	
Designer, 254-255
	
Explorer, 254
	

Windows (OS)
client applications, developing, 258
Communication Foundation. See WCF
Desktop project types, 178
Forms controls

autogenerating, 565-569
manually binding, 571-575
	

Installer, 469
	
modern UI
	

app bars, 1070
	
attributes, 1068
	
bottom app bars, 1067
	
charms, 1066
	
context menus, 1070
	
control set, 1070
	
fly-outs, 1070
	
Media Player example, 1069
	
message dialogs, 1070
	
start screen tiles, 1066
	

Office solutions
add-ins, 19
benefits, 18
document projects, 19
template projects, 19
templates, 18

Presentation Foundation. See WPF
Process Activation Service (WAS), 950
Runtime library. See WinRT
SharePoint, 18
site authentication, 739
Store applications. See Windows Store applications, 14
UI delivery solutions, 12

Windows, Autos command (Debug menu), 408
Windows, Breakpoints command (Debug menu)

active debug session, 408
at rest, 406

Windows, Call Stack command (Debug menu), 408
Windows, Exception Settings command (Debug menu), 408
Windows, GPU Threads command (Debug menu), 408
Windows, Immediate command (Debug menu)

active debug session, 408
at rest, 406

Windows, Locals command (Debug menu), 408
Windows, Memory command (Debug menu), 408
Windows, Modules command (Debug menu), 408
Windows, Output command (Debug menu)

active debug session, 408
at rest, 406

Windows, Parallel Stacks command (Debug menu), 408
Windows, Parallel Tasks command (Debug menu), 408
Windows, Parallel Watch command (Debug menu), 408
Windows, Processes command (Debug menu), 408
Windows, Registers command (Debug menu), 408
Windows, Threads command (Debug menu), 408
Windows, Watch command (Debug menu), 408
Windows Disassembly command (Debug menu), 408
Windows Phone apps

applications
anatomy, 1117
lifecycles, 1119-1120

architecture, 1116-1117
Ionic-Angular-Cordova app, running, 1196-1197
MVVM, 1122-1123
page navigation, 1118-1119

runtimes available, 1117
	
Silverlight to WinRT transition, 1123-1124
	
state change events, 1120-1121
	
suspending versus terminating, 1122
	
transient/persistent data, 1122
	
UIs
	

device orientation, 1116
	
start screen, 1114
	
structure, 1115
	

Universal app
	
creating, 1125
	
design sketch, 1125
	
MainPage.xaml code, 1136
	
MainPage.xaml.cs, 1137-1141
	
MVVM architecture, 1128-1130
	
Phone emulator, running, 1135
	
requirements, 1125
	
templates, 1126-1127
	
UI, 1130-1141
	
Windows Store UI, 1141-1144
	

Windows Store app similarities, 1114
Windows property (documents), 631
Windows Store applications, 14

application lifecycles, 1076-1077
	
capabilities, 1076
	
debugging, 460-461
	
image viewer app
	

app bar, creating, 1095-1096
C# ImagePage.xaml.cs code, 1108-1110
capabilities, requesting, 1090
collection class, creating, 1088-1089
data binding, 1089
data model, creating, 1085-1087
developer licenses, 1079
image detail page, 1081
Image Editor page implementation, 1091-1093
ImagePage.xaml, 1105-1108
lifecycle events, 1096-1100
main page UI, 1081-1084
MainPage.xaml code, 1103
MainPage.xaml.cs code, 1104-1105
navigation state passing, 1093-1095
publishing, 1100-1102
requirements, 1078
starting page, 1081

http:MainPage.xaml.cs
http:ImagePage.xaml.cs
http:MainPage.xaml.cs

template, selecting, 1078
Ionic-Angular-Cordova app, running, 1196-1197
modern UI

app bars, 1070
	
attributes, 1068
	
bottom app bars, 1067
	
charms, 1066
	
context menus, 1070
	
control set, 1070
	
fly-outs, 1070
	
Media Player example, 1069
	
message dialogs, 1070
	
start screen tiles, 1066
	

publishing, 1100-1102
	
requirements, 1066
	
Universal app, 1125
	

design sketch, 1125
	
MainPage.xaml code, 1144-1150
	
MainPage.xaml.cs code, 1150-1152
	
MVVM architecture, 1128-1130
	
requirements, 1125
	
templates, 1126-1127
	
Windows Phone UI, 1130-1141
	
Windows Store UI, 1141-1144
	

Windows Phone app similarities, 1114
WinRT
	

architecture, 1071
	
C#/VB/XAML, 1075
	
defined, 1071
	
HTML/JavaScript/CSS, 1073-1074
	
.NET Framework, compared, 1072
	

Windows2 automation type, 602
WindowState property (windows), 615
WinForms (Windows Forms)

applications, creating, 14-15
	
code, writing, 264-267
	
components
	

code, generating, 279-280
	
component designer, 278
	
creating, 278-279
	
defined, 278
	

containers, 967
	
FlowLayoutPanel, 968
	
SplitContainer, 968-969
	
TableLayoutPanel, 967-968
	

http:MainPage.xaml.cs

ToolStripContainer, 969-971
	
controls
	

adding, 260
	
alignment, 963
	
anchoring, 964-965
	
appearance, 971
	
auto scaling, 966-967
	
creating, 278-279
	
custom, creating, 985
	
custom versus user, 278
	
defined, 278
	
docking, 965-966
	
hosting with Office, 1053-1054
	
layout, 262
	
resize effects, 963-964
	
subclassing existing, 982-983
	
tab order behavior, 971
	
ToolTips, 972
	
user, designing, 983-985
	
z-order, 976
	

data, displaying, 979
	
cell types, 982
	
data sources, 982
	
hierarchical relationships, 979-980
	
image lists, 980-981
	
tabular format, 981
	

designer
	
aligning controls, 963
	
anchoring controls, 964-965
	
auto scaling controls, 966-967
	
code, writing, 264-267
	
component tray, 962
	
control layout, 262
	
docking controls, 965-966
	
end user considerations, 954-955
	
layout grid, 262-263
	
planning, 956
	
resizing, 957
	
snap lines, 263-264
	
tab order, 971
	
Toolbox, 261
	
ToolTips, 972
	
UI standards, 955
	
visual elements, 260, 971
	

Document Outline toolbar buttons, 218
	

events, 959-961
form appearance, customizing, 260
inheritance, 958
layout grid, 262-263
projects, creating, 258-259
properties

appearance, 959
starting position, 958
	

snap lines, 263-264
	
startup forms, setting, 958
	
template, 957
	
Toolbox, 261
	
ToolStrip controls, 972-973
	

built-in capabilities, 972
	
menus, 973-975
	
StatusStrip, 976-978
	
toolbars, 975-976
	
traits, 972
	

UI delivery solutions, 12
WPF interoperability, 989

WinJS, 1175
WinRT (Windows Runtime library), 1071

application lifecycles, 1076-1077
	
architecture, 1071
	
capabilities, 1076
	
defined, 1071
	
file/folder access classes, 1088
	
languages, 1073
	

C#/VB/XAML, 1075
HTML/JavaScript/CSS, 1073-1074

.NET Framework, compared, 1072
Silverlight apps, porting, 1124
templates

JavaScript, 1074
	
XAML, 1075
	

wizards
Data Source Configuration, 565
EDM, 592
Entity Data Model, 32-35
Form Region, 1049-1050
Import and Export, 46-50
Package, 664-667
Publish (ClickOnce), 466-468
Publish Web, 485

connection information, 486

deployment settings, 486
existing applications, publishing to Azure, 489-491
previews, 487
publish profiles, 485

Word
add-ins
	

ribbon customizations, 1043-1047
	
task pane, 1047-1048
	

extensions
	
actions pane, creating, 1055-1057
	
data cache, 1057-1059
	
extension points, 1038
	
hosting controls, 1053-1054
	

WordLeft() method (EditPoint objects), 636
WordRight() method (EditPoint objects), 636
Workbook objects, 1053
Worksheet objects, 1053
WPF (Windows Presentation Foundation)

animation, 989
	
appearance, customizing, 270
	
applications, creating, 17-18
	
assemblies, 988
	
components, 989
	
controls, 270, 989
	
data binding, 575-579, 989, 1012-1014
	

data sources, 576
	
drop-down list, 577
	
images, storing, 1023-1025
	
master-detail data source, adding, 578
	
XAML, 576-577
	

Designer, 268-269, 993-994
	
appearance, customizing, 270
	
grid controls, 1002
	
Properties window, 996
	
viewing, 268-269
	
XAML/design panes, configuring, 994-996
	
zooming, 997-998
	

displaying user controls as viewport adornment, 704-706
Document Outline window view, 216
document support, 989
healthcare application prototype, 989
image viewer application, creating

blurring images, 1028
	
button event handlers, 1027
	
C# code, 1031-1034
	

data presentation, 1025-1026
flipping images, 529
grayscale effect, 1027
image files path selection, 1028
image rotations, 1027
images, storing, 1023-1025
layout, 1017-1023
requirements, 1016
UI sketch, 1015
XAML code, 1029-1031

layout panels, 998
Canvas, 999-1000
DockPanel, 1000-1001
Grid, 1001-1005
StackPanel, 1005-1006
WrapPanel, 1006

logical architecture, 988
media, 989
positioning user controls, 702
programming model, 990-993

Application class, 991
base element classes, 990
collaboration, 992-993
Control class, 990
DispatcherObject class, 990
syntax parsing, 992
Visual class, 990
XAML, 991-992

projects, creating, 268
routed events, 1014-1015
styles, 992-1008
System.Windows namespace, 161
technology, 258
templates, 1008-1009

creating, 1008-1009
visual trees, debugging, 1010-1012

text, 989
Tree visualizer, 440
UI delivery solutions, 12
user controls

content, creating, 698-700
displaying as viewport adornment, 704-706
positioning, 702

visual trees
debugging, 1010-1012

defined, 1008
	
windows, designing, 17
	
WinForms interoperability, 989
	
XAML-based UI, 16
	

WrapPanel control, 1006
wrapping

columns, 838
text, 223

WriteLine() method (TestContext class), 339
writing

assertions, 344-345
code

Hello World function, 226-228
	
WinForms, 264-267
	

unit tests, 333-336
WS (web services standards), 896
WSDL (Web Service Description Language), 896
wwroot directory, 717-718
www/css folder, 1158
www/images folder, 1158
www/scripts, 1159

X-Y
XAML

browser application (XBAP), 17
ColorSelector

extension, 678-681
	
user control, 678-681
	

image viewer Windows Store app
	
ImagePage.xaml, 1105-1108
	
MainPage.xaml, 1103
	
MainPage.xaml.cs, 1104-1105
	

image viewer WPF application, 1029-1031
mouse movements, handling, 670-671
WinRT, 1075
WPF, 991-992

application data binding, 576-577
	
Canvas control, 999
	
columns, creating, 1002
	
dialog box implementation, 1003
	
DockPanel control, 1001
	
StackPanel, 1005
	
Style class definition, 1007
	

XBAP (XAML browser application), 17
XHTML compliance, 277

http:MainPage.xaml.cs

XML
editor
	

overview, 251-252
	
Schema Designer, 254-256
	
Schema Explorer, 254
	
schema views, 253
	
XSDs, creating, 252
	
XSLT style sheets, 256-257
	

embedding, 146-147
schemas, 316
	

designer, 254-256
	
documents (XSDs), 252, 896
	
Explorer, 254
	

snippet format, 316
	
visualizer, 440
	
web services, 895
	

XmlDataSource controls, 583
Xor operator, 116
XSD (XML Schema Document), 252, 896
XSLT style sheets, 256-257

Z
zooming

text editors, 228
WPF Designer, 997-998

z-order, 976

 Code Snippets
	

Inhaltsverzeichnis

About This eBook 2
	
Title Page 3
	
Copyright Page 4
	
Contents at a Glance 6
	
Table of Contents 8
	
About the Authors 23
	
Dedication 24
	
Acknowledgments 25
	
We Want to Hear from You! 26
	
Reader Services 27
	
Introduction 28
	

Who Should Read This Book? 28
	
How Is This Book Organized? 29
	

Part I: Introducing Visual Studio 2015 29
	
Part II: An In-Depth Look at the IDE 29
	
Part III: Working with the Visual Studio Tools 30
	
Part IV: Extending Visual Studio 30
	
Part V: Building Web Applications 30
	
Part VI: Building Windows Client Apps 30
	
Part VII: Creating Mobile Apps 30
	

Conventions Used in This Book 30
	
Source Code 31
	

Part I: Introducing Visual Studio 2015 32
	
Chapter 1. A Quick Tour of Visual Studio 2015 33
	

The Visual Studio Product Line 34
	
Community Edition 35
	
Professional Edition 36
	
Enterprise 36
	
MSDN 37
	
TFS and Related Tools 37
	

Languages and Frameworks 40
	
Programming Language Choices 41
	
The .NET Framework 42
	

The Many Faces of a .NET Application 43
	
Windows 44
	
Web 45
	
Mobile 46
	

Developing Windows 8/10 Clients 46
	

Windows (WinForms) 46
	
Windows Presentation Foundation (WPF) 48
	
Office/SharePoint Solutions 50
	

Creating Web Applications with ASP.NET 5 52
	
Building Websites with Web Forms 53
	
Developing with MVC/Razor 56
	
Creating a Single Page Application (SPA) 58
	
Coding Web Services with Web API 59
	

Coding for Azure 60
	
Creating a Cloud Application 61
	
Publishing to Azure 62
	

Working with Data 63
	
Model as Code (Code First) 64
	

Writing Mobile Apps 69
	
Create an Apache Cordova App 70
	

Summary 72
	
Chapter 2. The Visual Studio IDE 73
	

Installing Visual Studio 73
	
Installing Optional Features 75
	
Signing In to Visual Studio 76
	

Managing Your IDE Settings 76
	
Specify Stored and Synchronized Settings 76
	
Change Color Theme 77
	
Manually Import/Export and Change Default IDE Settings 78
	
Switch IDE User 82
	

Getting Started 84
	
Startup Options 84
	

Creating Your First Project 85
	
Targeting Your Environment 86
	

Navigating the IDE 88
	
The Menus 89
	
The Many Toolbars 93
	
Customizing Toolbars 94
	
The Solution Explorer 96
	
The Text Editors 98
	
The Visual Designers 102
	
The Toolbox 103
	
The Properties Window 104
	

Managing the Many Windows of the IDE 105
	
Pinning 105
	
Docking 106
	
Custom Window Layouts 108
	

Navigating IDE Windows 111
	

Touch Support 112
	
Customize Your IDE Font 112
	

Providing Feedback on Visual Studio 113
	
The Customer Experience Program 114
	

Summary 114
	
Chapter 3. The .NET Languages 115
	

What’s New in C# 6.0 and VB 14 115
	
Null-Conditional Operators 116
	
ReadOnly Auto Properties 117
	
NameOf Expression 119
	
Using (Imports) Statics 120
	
String Interpolation 121
	
Lambda Expressions as Methods (C# Only) 122
	
Index Initializers (C# Only) 122
	

Language Primer 122
	
Programming Objects 123
	
Types, Variables, and Constants 138
	
Understanding Operators 142
	
Making Decisions and Branching Code 145
	
Looping 148
	
Working with Groups of Items 150
	
Programming with Attributes 155
	
Creating and Raising Events 157
	

Language Features 160
	
Infer a Variable’s Data Type Based on Assignment 161
	
Create an Object and Initialize Its Values (Object Initializers) 163
	
Define a Collection and Initialize Its Values 165
	
Creating an Instance of a Nonexistent Class 165
	
Add Methods to Existing Classes (Extension Methods) 167
	
Add Business Logic to Generated Code (Partial Methods) 168
	
Access and Query Data Using the .NET Languages 170
	

172 Write Simple Unnamed Functions Within Your Code (Lambda
	
Expressions)
	
Splitting an Assembly Across Multiple Files 174
	
Working with XML Directly Within Your Code (VB Only)
Removing Unused Arguments from Event Handlers (VB
	

174
	

176 Only)
	
Creating an Automatically Implemented Property 176
	
Dropping the Underscore in VB for Line Continuation 177
	
Working with Dynamic Languages/Objects 177
	
Covariance and Contravariance 183
	

Asynchronous Programming 185
	

The .NET Framework 187
	
A Map to the .NET Framework 187
	

Summary 189
	

Part II: An In-Depth Look at the IDE 190
	
Chapter 4. Solutions and Projects 191
	

Understanding Solutions 191
	
Creating a Solution 192
	
Working with Solutions 198
	

Getting Comfortable with Projects 205
	
Creating a Project 205
	
Working with Project Definition Files 209
	
Working with Projects 211
	

Summary 217
	
Chapter 5. Browsers and Explorers 219
	

Leveraging the Solution Explorer 219
	
Visual Cues and Item Types 220
	
Interacting with Items 222
	
Inspecting Objects 225
	

Class View 229
	
Toolbar 230
	
Search Bar 230
	
Objects Pane 231
	
Members Pane 232
	

Server Explorer 233
	
Data Connections 234
	
Server Components 235
	
Azure 238
	

Object Browser 240
	
Changing the Scope 240
	
Browsing Objects 241
	

Document Outline 243
	
Editing Elements 244
	

Summary 245
	
Chapter 6. Introducing the Editors and Designers 246
	

Getting Started with the Basics 246
	
The Text Editor 247
	
Visual Studio Designers 250
	

Coding with the Code Editor 250
	
Opening an Editor 251
	
Writing Code in the Code Editor 251
	
Anatomy of the Code Editor Window 253
	
Code Navigation Tools 258
	

Searching Documents 261
	
Debugging in the Text Editor 268
	
Printing Code 272
	
Using the Code Definition Window 273
	

Creating and Editing XML Documents and Schema 275
	
Inferring Schema 276
	
Designing XML Schemas 276
	
Editing XSLT Style Sheets 279
	

Working with Cascading Style Sheets 280
	
Adding Style Rules 281
	
Defining Style Sheet Attributes 281
	

Developing Windows Client Applications 281
	
Creating a Windows Forms Project 282
	
Creating a Windows Presentation Foundation Project 290
	

Developing Web Forms 294
	
Designing a Web Form Application 295
	

Authoring WinForms Components and Controls 300
	
Creating a New Component or Control 301
	
Further Notes on Writing Component Code 302
	

Creating Classes with the Class Designer 304
	
Creating a Class Diagram 304
	
Adding Items to the Diagram 305
	
Defining Relationships Between Classes 307
	
Defining Methods, Properties, Fields, and Events 309
	

Summary 311
	

Part III: Working with the Visual Studio Tools 312
	
Chapter 7. Working with Visual Studio’s Productivity Aids 313
	

Basic Aids in the Text Editor 315
	
Change Tracking 315
	
Coding Problem Indicators 316
	
Active Hyperlinking 318
	
Syntax Coloring 318
	

Outlining and Navigation 319
	
Code Outlining 319
	
Tag Navigation 322
	

Smart Tasks and Light Bulbs 324
	
HTML Designer 324
	
Windows Forms Designer 324
	
Code Editor 325
	

IntelliSense 328
	
Complete Word 329
	
Quick Info 331
	

List Members 331
	

Parameter Info 332
	
Organize Usings 333
	
Code Snippets and Template Code 333
	
Brace Matching 344
	
Customizing IntelliSense 345
	

The Task List 346
	
Shortcut Tasks 347
	
Comment Tasks 347
	

Summary 349
	
Chapter 8. Testing Code 350
	

Unit Testing Basics 351
	
Creating a Test Project 351
	
Writing a Unit Test 354
	
Running Your Tests 357
	
Controlling Test Settings 359
	

The Unit Testing Framework 360
	
The TestContext Class 360
	
The Test Attribute Classes 362
	
Unit Test Setup and Teardown 364
	
The Assert Classes 365
	
Testing Your Exceptions 366
	
Creating Data-Driven Unit Tests 367
	

Testing Web Applications 371
	
Unit Testing MVC and Web API Projects 372
	
Unit Testing ASP.NET Pages 377
	

Creating Ordered Tests 379
	
Summary 380
	

Chapter 9. Refactoring Code 381
	
Visual Studio Refactoring Basics 382
	

Invoking the Refactoring Tools 382
	
Making (and Previewing) Changes 384
	
Using the Class Designer to Refactor 386
	

Renaming Code 387
	
Accessing the Rename Operation 388
	
Working with the Rename Dialog Box 392
	

Refactoring Variable Assignments 392
	
Introduce Constant 393
	
Introduce Local 394
	
Inline Temporary Variable 395
	

Extract Method 395
	
Accessing the Extract Method Refactor 396
	

Extracting Methods 396
	
Extracting a Single Line of Code 400
	

Generate Method Stub 402
	
Extract Interface 402
	

Accessing the Extract Interface Refactor 402
	
Extracting Interfaces 403
	

Change Signature 405
	
Removing a Parameter 406
	
Reorder Parameters 407
	

Encapsulate Field 408
	
Accessing Encapsulate Field 408
	

Summary 409
	
Chapter 10. Debugging Code 410
	

Debugging Basics 411
	
The Scenario 411
	
The Many Phases of Debugging 411
	
Debugging the Application (Self-Checking) 412
	
Debugging Basics Summary 425
	

The Visual Studio Debugger 425
	
The Debug Menu and Toolbar 425
	
Debug Options 432
	
Stepping In, Out, and Over Code 434
	
Indicating When to Break into Code 441
	
Working with Tracepoints (When Hit Option) 451
	
Viewing Data in the Debugger 453
	
Using the Edit and Continue Feature 461
	

Advanced Debugging Scenarios 462
	
Remote Debugging 462
	
Debugging WCF Services 464
	
Debugging Multithreaded Applications 465
	
Debugging Parallel Applications 471
	
Debugging a Client-Side Script 476
	
Debugging Crash Information (Dump Files) 477
	
Debugging Windows Store Apps 481
	

Summary 482
	
Chapter 11. Deploying Code 483
	

An Overview of Client Deployment Options 484
	
Introducing ClickOnce Deployments 484
	
Introducing Windows Installer and InstallShield Deployments 485
	

Publishing a Project with ClickOnce 486
	
Publishing a Project with InstallShield Limited Edition 488
	
Publishing an ASP.NET Web Application 489
	

Selecting a Target 490
	
Configuring a Connection 491
	

Configuring Deployment Settings 491
	
Previewing the Publication 493
	

Summary 494
	

495 Chapter 12. Developing Applications in the Cloud with Windows
	
Azure
	

Create Your Azure Account 496
	
Azure Account Sign-Up

Set Up an Existing Application to Publish to an Azure web
	

496
	
Link Your Account to Visual Studio 498
	
Manage Azure Subscriptions 499
	

Create and Deploy an Azure Web Apps in Visual Studio 500
	
The Azure Hosting Platform 501
	
Create the ASP.NET Application and Azure Hosting 501
	
Deploy/Publish an Application to Azure 505
	

510 app
	
Website Management with Azure Server Explorer 513
	
Debug an Azure web app 515
	

Create Your Web App from the Azure Portal 515
	
Create the Application Hosting Environment 516
	
Configuring Your New Azure web app 518
	
The Website Toolbar 521
	
Creating a Database 522
	
Deploying to the New Environment from Visual Studio 526
	

Monitor and Manage Applications in Azure 526
	
Monitor and Manage a Website 527
	
Monitor and Manage a SQL Database 547
	

The Azure SDK for Visual Studio 2015 551
	
Download, Install, and Sign In 551
	
QuickStart Templates 554
	
Azure Resource Group Deployment Projects 556
	

Azure Cloud Services (PaaS) 560
	
Creating a Cloud Service Project 560
	
Running Your Cloud Service Project Locally 563
	
Deploy the Cloud Service Project 564
	

Summary 566
	
Chapter 13. Working with Databases 567
	

Creating Tables and Relationships 568
	
Creating a New SQL Server Database 568
	
Defining Tables 570
	

Working with SQL Statements 575
	

Writing a Query 576
	
Creating Views 580
	
Developing Stored Procedures 580
	

Creating Triggers 583
	
Creating User-Defined Functions 584
	

Using Database Projects 584
	
Creating a Database Project 585
	
Changing the Database 589
	
Building and Deploying 591
	

Creating Database Objects in Managed Code 592
	
Creating a Stored Procedure in C# 593
	

Binding Controls to Data 596
	
An Introduction to Data Binding 597
	
Autogenerating Bound Windows Forms Controls 597
	
Editing Typed Data Sets 603
	
Manually Binding Windows Forms Controls 604
	
Data Binding in WPF Applications 609
	
Data Binding with Web Controls 613
	

Object Relational Mapping 618
	
An Overview of LINQ 619
	
Mapping Using the O/R Designer 620
	
LINQ Code 622
	
Working with the Entity Framework 625
	
Querying Against the Entity Data Model 631
	

Summary 633
	

Part IV: Extending Visual Studio 634
	
Chapter 14. Introducing the Automation Object Model 635
	

An Overview of the Automation Object Model 635
	
Object Model Versions 636
	
Automation Categories 637
	
The DTE/DTE2 Root Object 638
	

Solution and Project Objects 639
	
Controlling Projects in a Solution 642
	
Accessing Code Within a Project 643
	

Working with Windows 647
	
Referencing Windows 647
	
Interacting with Windows 648
	
Text Windows and Window Panes 651
	
The Tool Window Types 653
	
Linked Windows 658
	

Command Bars 660
	
Documents 663
	

Text Documents 664
	
Command Objects 676
	

Executing a Command 678
	

Mapping Key Bindings 679
	
Debugger Objects 680
	
Summary 680
	

Chapter 15. Extending the IDE 682
	
Creating Your First Extension 682
	

Setting Package Parameters 684
	
Adding Project Items 684
	

The Structure of an Extension 690
	
Defining and Reacting to Commands 693
	

A Sample Extension: Color Selector 700
	
Getting Started 701
	
Creating the User Control 701
	
Finishing the Package 706
	

Summary 714
	
Chapter 16. Extending the Code Editor 716
	

The Extensibility Problem 716
	
Creating Dynamic Applications 716
	

MEF Architecture 717
	
MEF Principles 717
	
Working with MEF 718
	

The Visual Studio Editor and MEF 719
	
Editor Extension Points 719
	
Using the Visual Studio SDK 721
	
Managing Extensions and Updates 728
	

Creating Your Own MEF-Based Editor Extension 729
	
Summary 738
	

Part V: Building Web Applications 739
	
Chapter 17. Building Modern Websites with ASP.NET 5 740
	

ASP.NET Website Fundamentals 741
	
Introducing ASP.NET 5 743
	

The .NET Core Framework and Execution Environment 744
	
Choosing an ASP.NET Project Template 746
	

751 Understanding the ASP.NET 5 Project Template and Related
	
Files
	
ASP.NET 5 Dependencies and Package Managers 756
	

Creating a Web Application with ASP.NET 5/MVC 6 771
	
Understanding the MVC Pattern 771
	
Creating a New ASP.NET 5 MVC 6 Project 774
	

Writing ASP.NET Server Code (Models and Controllers) 780
	

Defining a Model (Using Entity Framework 7) 780
	
Developing Controllers 788
	

Coding for the UI (Views and Related Web UI Elements) 795
	
The HTML Tags 796
	

The Razor Syntax 798
	
HTML Helpers 800
	
Page Layout with Razor 804
	
Strongly Typed Views 805
	
User Input Validation 806
	
Creating the Customer Example Pages 807
	
View Components, View Models, and Partial Views 817
	
Using Scaffolding to Generate a Controller and Views 826
	

Summary 829
	
Chapter 18. Using JavaScript and Client-Side Frameworks 830
	

JavaScript Fundamentals 831
	
Storing and Using Scripts 831
	
Writing JavaScript 832
	
Functions 834
	
Objects 836
	
Built-In Objects 839
	
Working with the Browser Object Model (BOM) 842
	
Document Object Model (DOM) 845
	
Events 853
	

Developing with jQuery 857
	
jQuery in Your Visual Studio Project 857
	
Selecting Elements 858
	
Acting on Your Selection 861
	
Traversing Your Selections 861
	
Accessing Selection Content 862
	
Changing Elements/Attributes 863
	
Handling Events 865
	
Animations and Effects 866
	
jQuery and AJAX 867
	

868 Building Single-Page Applications (SPAs) with Client-Side
	
JavaScript Frameworks
	

Selecting a Client Framework 868
	
Responsive Web Layout with Bootstrap 3

Chapter 19. Building and Consuming Services with Web API and
	

872
	
Minify Your JavaScript with Gulp 892
	
Using Knockout 894
	
Creating a Site with AngularJS 912
	

Summary 929
	

931

WCF
	
Service Fundamentals 931
	

Why ASP.NET Web API and WCF 933
	
Key Web Service Terms 935
	

Use ASP.NET Web API to Build HTTP Services 936
	

Creating an ASP.NET Web API Project 937
	

Programming Model 1031
	
Introducing the WPF Designer 1033
	

Defining a Model 939
	
Creating the Services (Controller) 940
	
Understanding Service Routing 951
	
Consuming an ASP.NET Web API Service 952
	

WCF Service Applications 968
	
The WCF Project Template 970
	
Creating a WCF Service 973
	
Running and Testing Your WCF Service 977
	
Consuming a WCF Service 979
	
Creating/Calling REST-Based WCF Services 983
	
Hosting and Deploying a WCF Service 991
	

Summary 992
	

Part VI: Building Windows Client Apps 993
	
Chapter 20. Building Windows Forms Applications 994
	

The Basics of Form Design 994
	
Considering the End User 995
	
Understanding the Role of UI Standards 996
	
Planning the User Interface 996
	

Creating a Form 997
	
The Windows Forms Application Project Type 998
	
Form Properties and Events 999
	

Adding Controls and Components 1001
	
Control Layout and Positioning 1002
	
Using Containers 1007
	
Control Appearance and Behavior 1011
	
Working with ToolStrip Controls 1012
	
Displaying Data 1020
	

Creating Your Own Controls 1023
	
Subclassing an Existing Control 1024
	
Designing a User Control 1024
	
Creating a Custom Control 1026
	

Summary 1027
	
Chapter 21. Building WPF Applications 1028
	

The Windows Presentation Foundation Platform 1028
	

XAML and Design Panes 1035
	
Programming with WPF 1038
	

Layout 1038
	
Styles and Templates 1048
	
Data Binding 1054
	

Routed Events 1056
	

Publishing to the Windows Store 1141
	
Summary 1151
	

Building a Simple Image Viewer Application 1057
	
Starting the Layout 1058
	
Storing the Images 1064
	
Binding to the Images 1067
	
Button Event Handlers and Image Effects 1068
	
Path Selection with a Common Dialog Box 1069
	

Summary 1076
	
Chapter 22. Developing Office Business Applications 1077
	

An Overview of Office Extension Features 1078
	
Office Features 1078
	
Visual Studio Office Project Types 1080
	

Creating an Office Add-In 1082
	
Customizing the Ribbon 1082
	
Customizing the Task Pane 1087
	
Creating Outlook Form Regions 1089
	

Creating an Office Document Extension 1094
	
Hosting Controls 1094
	
Creating an Actions Pane 1096
	
Storing Data in the Data Cache 1098
	

Extending Office with Webpages 1100
	
Starting with the App for Office Project Template 1100
	

Summary 1104
	

Part VII: Creating Mobile Apps 1105
	
Chapter 23. Developing Windows Store Applications 1106
	

Introducing the Modern UI 1107
	
Modern UI Attributes 1109
	

The Windows Runtime Library 1112
	
Language Choices 1114
	
The Application Model 1118
	

Building a Windows Store Application 1119
	
Selecting the Project Type 1120
	
Designing the Layout 1122
	
Reacting to Lifecycle Events 1138
	

Chapter 24. Creating Windows Phone Applications 1153
	
Windows Phone Fundamentals 1153
	

The UI Basics 1154
	
The Programming Model 1156
	

Moving from Silverlight to WinRT 1163
	
Porting a Simple Silverlight Phone App to WinRT 1164
	

Building a Universal App 1165
	

The Universal Project Types 1167
	
Creating the Data Model and View Model 1169
	
Creating the Windows Phone UI 1171
	
Creating the Windows UI 1182
	

Summary 1192
	

1193 Chapter 25. Writing Cross-Platform Mobile Applications with
	
Apache Cordova
	

Fundamentals of Cordova Development 1194
	
How Cordova Works

Cordova Plug-Ins (for Accessing Native Device
	

1194
	
Cordova Dependencies 1196
	
The Cordova Project Template 1197
	
Creating a Basic Cordova App 1201
	
Running and Debugging Your App 1206
	

Using Cordova Frameworks and Plug-Ins 1216
	
Choosing Cordova Client Frameworks 1216
	

1217 Capabilities)
	
Developing a Cordova App with Ionic and Angular 1218
	

Code Snippets 1417
	

Set Up Your Project 1218
	
Anatomy of the Ionic-Angular-Cordova App 1222
	
Rebuild the Sample App 1224
	
Support Storage 1236
	
Running on Windows Phone 1239
	
Additional Items to Consider 1242
	

Summary 1242
	

Index 1243
	

	About This eBook
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	Who Should Read This Book?
	How Is This Book Organized?
	Part I: Introducing Visual Studio 2015
	Part II: An In-Depth Look at the IDE
	Part III: Working with the Visual Studio Tools
	Part IV: Extending Visual Studio
	Part V: Building Web Applications
	Part VI: Building Windows Client Apps
	Part VII: Creating Mobile Apps

	Conventions Used in This Book
	Source Code

	Part I: Introducing Visual Studio 2015
	Chapter 1. A Quick Tour of Visual Studio 2015
	The Visual Studio Product Line
	Community Edition
	Professional Edition
	Enterprise
	MSDN
	TFS and Related Tools

	Languages and Frameworks
	Programming Language Choices
	The .NET Framework

	The Many Faces of a .NET Application
	Windows
	Web
	Mobile

	Developing Windows 8/10 Clients
	Windows (WinForms)
	Windows Presentation Foundation (WPF)
	Office/SharePoint Solutions

	Creating Web Applications with ASP.NET 5
	Building Websites with Web Forms
	Developing with MVC/Razor
	Creating a Single Page Application (SPA)
	Coding Web Services with Web API

	Coding for Azure
	Creating a Cloud Application
	Publishing to Azure

	Working with Data
	Model as Code (Code First)

	Writing Mobile Apps
	Create an Apache Cordova App

	Summary

	Chapter 2. The Visual Studio IDE
	Installing Visual Studio
	Installing Optional Features
	Signing In to Visual Studio

	Managing Your IDE Settings
	Specify Stored and Synchronized Settings
	Change Color Theme
	Manually Import/Export and Change Default IDE Settings
	Switch IDE User

	Getting Started
	Startup Options

	Creating Your First Project
	Targeting Your Environment

	Navigating the IDE
	The Menus
	The Many Toolbars
	Customizing Toolbars
	The Solution Explorer
	The Text Editors
	The Visual Designers
	The Toolbox
	The Properties Window

	Managing the Many Windows of the IDE
	Pinning
	Docking
	Custom Window Layouts
	Navigating IDE Windows
	Touch Support
	Customize Your IDE Font

	Providing Feedback on Visual Studio
	The Customer Experience Program

	Summary

	Chapter 3. The .NET Languages
	What’s New in C# 6.0 and VB 14
	Null-Conditional Operators
	ReadOnly Auto Properties
	NameOf Expression
	Using (Imports) Statics
	String Interpolation
	Lambda Expressions as Methods (C# Only)
	Index Initializers (C# Only)

	Language Primer
	Programming Objects
	Types, Variables, and Constants
	Understanding Operators
	Making Decisions and Branching Code
	Looping
	Working with Groups of Items
	Programming with Attributes
	Creating and Raising Events

	Language Features
	Infer a Variable’s Data Type Based on Assignment
	Create an Object and Initialize Its Values (Object Initializers)
	Define a Collection and Initialize Its Values
	Creating an Instance of a Nonexistent Class
	Add Methods to Existing Classes (Extension Methods)
	Add Business Logic to Generated Code (Partial Methods)
	Access and Query Data Using the .NET Languages
	Write Simple Unnamed Functions Within Your Code (Lambda Expressions)
	Splitting an Assembly Across Multiple Files
	Working with XML Directly Within Your Code (VB Only)
	Removing Unused Arguments from Event Handlers (VB Only)
	Creating an Automatically Implemented Property
	Dropping the Underscore in VB for Line Continuation
	Working with Dynamic Languages/Objects
	Covariance and Contravariance

	Asynchronous Programming
	The .NET Framework
	A Map to the .NET Framework

	Summary

	Part II: An In-Depth Look at the IDE
	Chapter 4. Solutions and Projects
	Understanding Solutions
	Creating a Solution
	Working with Solutions

	Getting Comfortable with Projects
	Creating a Project
	Working with Project Definition Files
	Working with Projects

	Summary

	Chapter 5. Browsers and Explorers
	Leveraging the Solution Explorer
	Visual Cues and Item Types
	Interacting with Items
	Inspecting Objects

	Class View
	Toolbar
	Search Bar
	Objects Pane
	Members Pane

	Server Explorer
	Data Connections
	Server Components
	Azure

	Object Browser
	Changing the Scope
	Browsing Objects

	Document Outline
	Editing Elements

	Summary

	Chapter 6. Introducing the Editors and Designers
	Getting Started with the Basics
	The Text Editor
	Visual Studio Designers

	Coding with the Code Editor
	Opening an Editor
	Writing Code in the Code Editor
	Anatomy of the Code Editor Window
	Code Navigation Tools
	Searching Documents
	Debugging in the Text Editor
	Printing Code
	Using the Code Definition Window

	Creating and Editing XML Documents and Schema
	Inferring Schema
	Designing XML Schemas
	Editing XSLT Style Sheets

	Working with Cascading Style Sheets
	Adding Style Rules
	Defining Style Sheet Attributes

	Developing Windows Client Applications
	Creating a Windows Forms Project
	Creating a Windows Presentation Foundation Project

	Developing Web Forms
	Designing a Web Form Application

	Authoring WinForms Components and Controls
	Creating a New Component or Control
	Further Notes on Writing Component Code

	Creating Classes with the Class Designer
	Creating a Class Diagram
	Adding Items to the Diagram
	Defining Relationships Between Classes
	Defining Methods, Properties, Fields, and Events

	Summary

	Part III: Working with the Visual Studio Tools
	Chapter 7. Working with Visual Studio’s Productivity Aids
	Basic Aids in the Text Editor
	Change Tracking
	Coding Problem Indicators
	Active Hyperlinking
	Syntax Coloring

	Outlining and Navigation
	Code Outlining
	Tag Navigation

	Smart Tasks and Light Bulbs
	HTML Designer
	Windows Forms Designer
	Code Editor

	IntelliSense
	Complete Word
	Quick Info
	List Members
	Parameter Info
	Organize Usings
	Code Snippets and Template Code
	Brace Matching
	Customizing IntelliSense

	The Task List
	Shortcut Tasks
	Comment Tasks

	Summary

	Chapter 8. Testing Code
	Unit Testing Basics
	Creating a Test Project
	Writing a Unit Test
	Running Your Tests
	Controlling Test Settings

	The Unit Testing Framework
	The TestContext Class
	The Test Attribute Classes
	Unit Test Setup and Teardown
	The Assert Classes
	Testing Your Exceptions
	Creating Data-Driven Unit Tests

	Testing Web Applications
	Unit Testing MVC and Web API Projects
	Unit Testing ASP.NET Pages

	Creating Ordered Tests
	Summary

	Chapter 9. Refactoring Code
	Visual Studio Refactoring Basics
	Invoking the Refactoring Tools
	Making (and Previewing) Changes
	Using the Class Designer to Refactor

	Renaming Code
	Accessing the Rename Operation
	Working with the Rename Dialog Box

	Refactoring Variable Assignments
	Introduce Constant
	Introduce Local
	Inline Temporary Variable

	Extract Method
	Accessing the Extract Method Refactor
	Extracting Methods
	Extracting a Single Line of Code
	Generate Method Stub

	Extract Interface
	Accessing the Extract Interface Refactor
	Extracting Interfaces

	Change Signature
	Removing a Parameter
	Reorder Parameters

	Encapsulate Field
	Accessing Encapsulate Field

	Summary

	Chapter 10. Debugging Code
	Debugging Basics
	The Scenario
	The Many Phases of Debugging
	Debugging the Application (Self-Checking)
	Debugging Basics Summary

	The Visual Studio Debugger
	The Debug Menu and Toolbar
	Debug Options
	Stepping In, Out, and Over Code
	Indicating When to Break into Code
	Working with Tracepoints (When Hit Option)
	Viewing Data in the Debugger
	Using the Edit and Continue Feature

	Advanced Debugging Scenarios
	Remote Debugging
	Debugging WCF Services
	Debugging Multithreaded Applications
	Debugging Parallel Applications
	Debugging a Client-Side Script
	Debugging Crash Information (Dump Files)
	Debugging Windows Store Apps

	Summary

	Chapter 11. Deploying Code
	An Overview of Client Deployment Options
	Introducing ClickOnce Deployments
	Introducing Windows Installer and InstallShield Deployments

	Publishing a Project with ClickOnce
	Publishing a Project with InstallShield Limited Edition
	Publishing an ASP.NET Web Application
	Selecting a Target
	Configuring a Connection
	Configuring Deployment Settings
	Previewing the Publication

	Summary

	Chapter 12. Developing Applications in the Cloud with Windows Azure
	Create Your Azure Account
	Azure Account Sign-Up
	Link Your Account to Visual Studio
	Manage Azure Subscriptions

	Create and Deploy an Azure Web Apps in Visual Studio
	The Azure Hosting Platform
	Create the ASP.NET Application and Azure Hosting
	Deploy/Publish an Application to Azure
	Set Up an Existing Application to Publish to an Azure web app
	Website Management with Azure Server Explorer
	Debug an Azure web app

	Create Your Web App from the Azure Portal
	Create the Application Hosting Environment
	Configuring Your New Azure web app
	The Website Toolbar
	Creating a Database
	Deploying to the New Environment from Visual Studio

	Monitor and Manage Applications in Azure
	Monitor and Manage a Website
	Monitor and Manage a SQL Database

	The Azure SDK for Visual Studio 2015
	Download, Install, and Sign In
	QuickStart Templates
	Azure Resource Group Deployment Projects

	Azure Cloud Services (PaaS)
	Creating a Cloud Service Project
	Running Your Cloud Service Project Locally
	Deploy the Cloud Service Project

	Summary

	Chapter 13. Working with Databases
	Creating Tables and Relationships
	Creating a New SQL Server Database
	Defining Tables

	Working with SQL Statements
	Writing a Query
	Creating Views
	Developing Stored Procedures
	Creating Triggers
	Creating User-Defined Functions

	Using Database Projects
	Creating a Database Project
	Changing the Database
	Building and Deploying

	Creating Database Objects in Managed Code
	Creating a Stored Procedure in C#

	Binding Controls to Data
	An Introduction to Data Binding
	Autogenerating Bound Windows Forms Controls
	Editing Typed Data Sets
	Manually Binding Windows Forms Controls
	Data Binding in WPF Applications
	Data Binding with Web Controls

	Object Relational Mapping
	An Overview of LINQ
	Mapping Using the O/R Designer
	LINQ Code
	Working with the Entity Framework
	Querying Against the Entity Data Model

	Summary

	Part IV: Extending Visual Studio
	Chapter 14. Introducing the Automation Object Model
	An Overview of the Automation Object Model
	Object Model Versions
	Automation Categories
	The DTE/DTE2 Root Object

	Solution and Project Objects
	Controlling Projects in a Solution
	Accessing Code Within a Project

	Working with Windows
	Referencing Windows
	Interacting with Windows
	Text Windows and Window Panes
	The Tool Window Types
	Linked Windows

	Command Bars
	Documents
	Text Documents

	Command Objects
	Executing a Command
	Mapping Key Bindings

	Debugger Objects
	Summary

	Chapter 15. Extending the IDE
	Creating Your First Extension
	Setting Package Parameters
	Adding Project Items

	The Structure of an Extension
	Defining and Reacting to Commands

	A Sample Extension: Color Selector
	Getting Started
	Creating the User Control
	Finishing the Package

	Summary

	Chapter 16. Extending the Code Editor
	The Extensibility Problem
	Creating Dynamic Applications

	MEF Architecture
	MEF Principles
	Working with MEF

	The Visual Studio Editor and MEF
	Editor Extension Points
	Using the Visual Studio SDK
	Managing Extensions and Updates

	Creating Your Own MEF-Based Editor Extension
	Summary

	Part V: Building Web Applications
	Chapter 17. Building Modern Websites with ASP.NET 5
	ASP.NET Website Fundamentals
	Introducing ASP.NET 5
	The .NET Core Framework and Execution Environment
	Choosing an ASP.NET Project Template
	Understanding the ASP.NET 5 Project Template and Related Files
	ASP.NET 5 Dependencies and Package Managers

	Creating a Web Application with ASP.NET 5/MVC 6
	Understanding the MVC Pattern
	Creating a New ASP.NET 5 MVC 6 Project

	Writing ASP.NET Server Code (Models and Controllers)
	Defining a Model (Using Entity Framework 7)
	Developing Controllers

	Coding for the UI (Views and Related Web UI Elements)
	The HTML Tags
	The Razor Syntax
	HTML Helpers
	Page Layout with Razor
	Strongly Typed Views
	User Input Validation
	Creating the Customer Example Pages
	View Components, View Models, and Partial Views
	Using Scaffolding to Generate a Controller and Views

	Summary

	Chapter 18. Using JavaScript and Client-Side Frameworks
	JavaScript Fundamentals
	Storing and Using Scripts
	Writing JavaScript
	Functions
	Objects
	Built-In Objects
	Working with the Browser Object Model (BOM)
	Document Object Model (DOM)
	Events

	Developing with jQuery
	jQuery in Your Visual Studio Project
	Selecting Elements
	Acting on Your Selection
	Traversing Your Selections
	Accessing Selection Content
	Changing Elements/Attributes
	Handling Events
	Animations and Effects
	jQuery and AJAX

	Building Single-Page Applications (SPAs) with Client-Side JavaScript Frameworks
	Selecting a Client Framework
	Responsive Web Layout with Bootstrap 3
	Minify Your JavaScript with Gulp
	Using Knockout
	Creating a Site with AngularJS

	Summary

	Chapter 19. Building and Consuming Services with Web API and WCF
	Service Fundamentals
	Why ASP.NET Web API and WCF
	Key Web Service Terms

	Use ASP.NET Web API to Build HTTP Services
	Creating an ASP.NET Web API Project
	Defining a Model
	Creating the Services (Controller)
	Understanding Service Routing
	Consuming an ASP.NET Web API Service

	WCF Service Applications
	The WCF Project Template
	Creating a WCF Service
	Running and Testing Your WCF Service
	Consuming a WCF Service
	Creating/Calling REST-Based WCF Services
	Hosting and Deploying a WCF Service

	Summary

	Part VI: Building Windows Client Apps
	Chapter 20. Building Windows Forms Applications
	The Basics of Form Design
	Considering the End User
	Understanding the Role of UI Standards
	Planning the User Interface

	Creating a Form
	The Windows Forms Application Project Type
	Form Properties and Events

	Adding Controls and Components
	Control Layout and Positioning
	Using Containers
	Control Appearance and Behavior
	Working with ToolStrip Controls
	Displaying Data

	Creating Your Own Controls
	Subclassing an Existing Control
	Designing a User Control
	Creating a Custom Control

	Summary

	Chapter 21. Building WPF Applications
	The Windows Presentation Foundation Platform
	Programming Model

	Introducing the WPF Designer
	XAML and Design Panes

	Programming with WPF
	Layout
	Styles and Templates
	Data Binding
	Routed Events

	Building a Simple Image Viewer Application
	Starting the Layout
	Storing the Images
	Binding to the Images
	Button Event Handlers and Image Effects
	Path Selection with a Common Dialog Box

	Summary

	Chapter 22. Developing Office Business Applications
	An Overview of Office Extension Features
	Office Features
	Visual Studio Office Project Types

	Creating an Office Add-In
	Customizing the Ribbon
	Customizing the Task Pane
	Creating Outlook Form Regions

	Creating an Office Document Extension
	Hosting Controls
	Creating an Actions Pane
	Storing Data in the Data Cache

	Extending Office with Webpages
	Starting with the App for Office Project Template

	Summary

	Part VII: Creating Mobile Apps
	Chapter 23. Developing Windows Store Applications
	Introducing the Modern UI
	Modern UI Attributes

	The Windows Runtime Library
	Language Choices
	The Application Model

	Building a Windows Store Application
	Selecting the Project Type
	Designing the Layout
	Reacting to Lifecycle Events
	Publishing to the Windows Store

	Summary

	Chapter 24. Creating Windows Phone Applications
	Windows Phone Fundamentals
	The UI Basics
	The Programming Model

	Moving from Silverlight to WinRT
	Porting a Simple Silverlight Phone App to WinRT

	Building a Universal App
	The Universal Project Types
	Creating the Data Model and View Model
	Creating the Windows Phone UI
	Creating the Windows UI

	Summary

	Chapter 25. Writing Cross-Platform Mobile Applications with Apache Cordova
	Fundamentals of Cordova Development
	How Cordova Works
	Cordova Dependencies
	The Cordova Project Template
	Creating a Basic Cordova App
	Running and Debugging Your App

	Using Cordova Frameworks and Plug-Ins
	Choosing Cordova Client Frameworks
	Cordova Plug-Ins (for Accessing Native Device Capabilities)

	Developing a Cordova App with Ionic and Angular
	Set Up Your Project
	Anatomy of the Ionic-Angular-Cordova App
	Rebuild the Sample App
	Support Storage
	Running on Windows Phone
	Additional Items to Consider

	Summary

	Index
	Code Snippets

