
Migrating to
Swift from
Flash and
ActionScript

—
Radoslava Leseva Adams
Hristo Lesev

www.allitebooks.com

http://www.allitebooks.org

 Migrating to Swift from
Flash and ActionScript

 Radoslava Leseva Adams
Hristo Lesev

www.allitebooks.com

http://www.allitebooks.org

Migrating to Swift from Flash and ActionScript

Radoslava Leseva Adams Hristo Lesev
London, United Kingdom Kazanlak, Bulgaria

ISBN-13 (pbk): 978-1-4842-1667-5 ISBN-13 (electronic): 978-1-4842-1666-8
DOI 10.1007/978-1-4842-1666-8

Library of Congress Control Number: 2016955434

Copyright © 2016 by Radoslava Leseva Adams and Hristo Lesev

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: Chris Nelson
Technical Reviewer: Robert Otani
Editorial Board: Steve Anglin, Pramila Balen, Aaron Black, Laura Berendson, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text is available to readers at
 www.apress.com . For detailed information about how to locate your book’s source code, go to www.apress.com/
source-code/ .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.allitebooks.org

 Radoslava: To Sophia, who was born with the early chapters of this book,
and to Steve for the many hats he wears.

 Hristo: To Dani for her endless support, Radoslava for her patience when I was behind schedule,
and the strong black coffee that kept my engine running . . . and to MS Word for the constant

crashes, which taught me to make backups.

 Hristo and Radoslava: In loving memory of our dad, Iliyan Lesev, who first sparked our interest in
computers.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ...xxi

About the Technical Reviewer ..xxiii

Acknowledgments ...xxv

Preface ..xxvii

 ■Part I: Tool Migration .. 1

 ■Chapter 1: Setting Up Your Environment ... 3

 ■Chapter 2: Hello, Xcode! .. 15

 ■Chapter 3: Introducing the Xcode Debugger ... 39

 ■Chapter 4: Additional Development Tools .. 51

 ■Part II: Workfl ow Migration .. 69

 ■Chapter 5: “Hello, Swift!”—A Tutorial for Building an iOS App 71

 ■Chapter 6: Adding a More Complex UI ... 105

 ■Chapter 7: Concurrency ... 171

 ■Chapter 8: Debugging and Testing Your App ... 191

 ■Part III: Making Apps with Swift—Applied Examples 219

 ■Chapter 9: Communicating: E-mail, Text Messages, and Calls 221

 ■Chapter 10: Getting Social: Posting to Facebook and Twitter 233

 ■Chapter 11: Knowing Your Location .. 245

 ■Chapter 12: Working with the Camera and Images ... 257

 ■Chapter 13: Working with Data ... 273

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS AT A GLANCE

vi

 ■Chapter 14: Networking .. 305

 ■Chapter 15: Adverts and Push Notifi cations .. 327

 ■Chapter 16: Using the High-End Graphics APIs ... 351

 ■Part IV: Language Migration ... 371

 ■Chapter 17: Swift Language Basics ... 373

 ■Chapter 18: Operators ... 389

 ■Chapter 19: Types .. 399

 ■Chapter 20: Control Flow ... 421

 ■Chapter 21: Object-Oriented Programming Topics .. 441

 ■Chapter 22: New and Different Concepts ... 467

 ■Chapter 23: Releasing Your App in the App Store ... 483

Index ... 503

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors ...xxi

About the Technical Reviewer ..xxiii

Acknowledgments ...xxv

Introduction ...xxvii

 ■Part I: Tool Migration .. 1

 ■Chapter 1: Setting Up Your Environment ... 3

What Is Xcode? ... 3

Before You Begin .. 4

Step 1: Download Xcode .. 4

Option A: Get the Offi cial Release ... 5

Option B: Get the Latest Beta .. 5

Step 2: Run Xcode .. 6

Running Xcode for the First Time ... 6

Where Does It All Go? ... 8

Step 3: Tell Xcode Who You Are .. 10

Summary .. 13

 ■Chapter 2: Hello, Xcode! .. 15

Creating an Xcode Project .. 15

The Xcode Interface ... 17

The Toolbar Area ... 18

The Editor Area ... 19

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

The Navigator Area ... 20

The Utilities Area .. 21

Getting Your Fingertips Dirty .. 21

Running Your App in the Simulator ... 28

Running Your App on a Device, Using Free Provisioning .. 30

Provisioning .. 30

Running Your App ... 32

Summary .. 37

 ■Chapter 3: Introducing the Xcode Debugger ... 39

Preparation: Write Code to Debug .. 39

Starting Point: The HelloXcode App .. 39

Adding Action .. 40

Updating the Label .. 41

Working Out the Day of the Week ... 42

Getting Debug Information ... 44

Using Print to Output to the Console ... 44

Stepping Through Your Code .. 45

Watching Variables ... 46

Executing Commands in the Console ... 46

Changing a Value at Runtime .. 47

Inspecting Memory ... 48

Summary .. 49

 ■Chapter 4: Additional Development Tools .. 51

Keeping Track of Changes .. 51

Measuring Performance ... 60

Managing Devices .. 65

More Development Tools .. 67

Summary .. 68

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Part II: Workfl ow Migration .. 69

 ■Chapter 5: “Hello, Swift!”—A Tutorial for Building an iOS App 71

Developing a Project for the iOS .. 71

Xcode mobile project anatomy ... 72

Using Assets ... 74

Working with the Storyboard .. 76

Model-View-Controller Design Pattern ... 81

MVC in Theory ... 81

Creating a Model .. 82

Setting Up the Controller .. 84

Creating a View ... 85

UI Layout Techniques .. 87

Auto Layout ... 87

Size Classes .. 98

Summary .. 103

 ■Chapter 6: Adding a More Complex UI ... 105

Setting Up the App .. 105

Defi ning a Data Model .. 106

Adding a Custom View Controller ... 108

Designing the Vote View UI ... 111

Linking the UI with the View Controller .. 116

Handling Choices with a Table View ... 118

Adding a Second View .. 122

Working with the Launch Screen .. 124

Developing VoteLite .. 125

Setting up the VoteLite Project ... 125

Adding Buttons to Trigger Transitions ... 127

Transitioning between views with segues .. 131

Displaying Data ... 132

Taking Votes .. 134

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

Using Segues to Pass Data Between View Controllers ... 135

Using a Navigation View Controller ... 137

Developing VotePro .. 141

Setting Up the VotePro Project .. 141

Adding a Tab Bar Controller .. 142

Passing Data Between Tabs ... 145

Showing Alerts .. 149

Working with User Preferences .. 152

Creating and Managing UI Programmatically ... 159

Summary .. 170

 ■Chapter 7: Concurrency ... 171

Understanding Concurrency ... 171

Benefi ts of Concurrency ... 172

Challenges of Concurrency ... 172

A few words on multithreading .. 173

Setting Up the App .. 174

Nonconcurrent Implementation .. 180

Concurrent Implementation with GCD .. 180

Performing a Search in the Background .. 181

Displaying Progress .. 183

Controlling Access to Shared Resources with Dispatch Barriers ... 185

Cancelling Lengthy Tasks ... 187

If You Do Need to Use Threads ... 188

Measure, Measure, Measure .. 189

Summary .. 189

 ■Chapter 8: Debugging and Testing Your App ... 191

Preparing the Project ... 191

Making the Best of the Debugger ... 192

Inspecting the Debug Gauges ... 192

Setting up breakpoints ... 194

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

xi

Communicating with the Debugger .. 196

Checking the Type of a Symbol ... 198

Inspecting Memory—A Workaround .. 199

Debugging Concurrent Code ... 203

Testing Your Code ... 210

Adding a Functional Unit Test ... 214

Adding a Performance Test ... 216

Tracking Code Coverage ... 217

Diagnosing Release Builds ... 218

Summary .. 218

 ■Part III: Making Apps with Swift—Applied Examples 219

 ■Chapter 9: Communicating: E-mail, Text Messages, and Calls 221

Setting Up the App and Designing the UI ... 221

Composing and Sending E-mail ... 223

Composing and Sending SMS .. 225

Making a Call .. 228

Using the Address Book ... 229

Summary .. 232

 ■Chapter 10: Getting Social: Posting to Facebook and Twitter 233

Setting Up the App and Designing the UI ... 233

Confi guring Your Social Media Accounts on a Device .. 235

Composing and Posting a Facebook Post .. 237

Composing and Posting a Twitter Message.. 240

Other Types of Interaction with the Social Medias ... 244

Summary .. 244

 ■Chapter 11: Knowing Your Location .. 245

Motion Sensors .. 245

Setting Up the App .. 246

Motion Manager ... 248

 ■ CONTENTS

xii

Maps and Location ... 250

Setting Up the App .. 250

Location Manager and Location Manager Delegate ... 252

Permissions .. 253

Receiving Location Updates ... 254

Summary .. 256

 ■Chapter 12: Working with the Camera and Images ... 257

Setting Up the App and Designing the UI ... 257

Taking Pictures and Browsing the Gallery .. 260

Editing an Image by Applying a Filter ... 266

Summary .. 271

 ■Chapter 13: Working with Data ... 273

Reading and Writing Data Locally .. 273

The iOS File System .. 273

Preparation: Setting Up the App.. 274

Working with File Paths .. 275

Saving a Text File .. 276

Reading a Text File .. 277

Serializing Objects with NSCoder ... 278

Persisting Data with NSUserDefaults ... 281

Dealing with Larger Data: A Word About CoreData ... 281

Working with the Cloud .. 282

CloudKit Basics ... 282

Building a CloudKit-Powered Application ... 287

Summary .. 303

 ■Chapter 14: Networking .. 305

Setting Up the App and Designing the UI ... 305

The Weather Forecast Web Service .. 307

Preparing the Forecast Data Model .. 311

 ■ CONTENTS

xiii

Writing the Network Communication Logic .. 313

Downloading Images from a URL ... 315

Requesting JSON from a Server ... 316

Populating the Data Model ... 318

Creating Error Messages .. 320

Showing the Forecast in a Table View .. 321

Summary .. 325

 ■Chapter 15: Adverts and Push Notifi cations .. 327

Adverts ... 328

Setting Up the App .. 328

Banner Ads ... 328

Interstitial Ads ... 330

Confi guring iAds Test Settings .. 333

Remote Notifi cations .. 335

Remote Notifi cations Overview .. 335

Setting Up the App .. 337

Requesting a Device Token ... 338

Creating Certifi cates for Push Notifi cations .. 341

Setting Up the Provider ... 346

Sending a Notifi cation .. 348

Bonus Step: Display the Notifi cation on the Device .. 348

Summary .. 349

 ■Chapter 16: Using the High-End Graphics APIs ... 351

Creating 2D Games with SpriteKit .. 351

Learning the Structure of the SpriteKit ... 352

Setting Up a SpriteKit App .. 352

Dissecting the Project ... 354

Moving the Sprite Around ... 356

Using the SpriteKit Scene Editor ... 358

 ■ CONTENTS

xiv

Developing 3D Apps with SceneKit .. 361

Learning the Structure of SceneKit .. 361

Setting Up the App .. 362

Examining the SceneKit Project’s Structure ... 363

Summary .. 369

 ■Part IV: Language Migration ... 371

 ■Chapter 17: Swift Language Basics ... 373

What Swift encourages You to Do .. 373

Be Concise .. 373

Be Explicit ... 374

Take Advantage of the Compiler ... 375

Coming from ActionScript: Advantages and Surprises ... 375

Syntax ... 375

Programming Concepts .. 376

Memory Management .. 376

How to Use the Code Examples: Playgrounds .. 376

First Things About Swift ... 378

Declaring Variables and Constants ... 378

Making Comments .. 379

Printing in the Console ... 379

Defi ning and Calling Functions ... 379

Access Control Rules .. 384

Handling Errors .. 384

Summary .. 387

 ■Chapter 18: Operators ... 389

Operators You (Almost) Know from ActionScript .. 389

Comparison Operators .. 389

Assignment Operator (a = b) .. 390

Compound Assignment Operators .. 390

Arithmetic Operators .. 390

 ■ CONTENTS

xv

Logical Operators ... 391

Bitwise Operators ... 392

Ternary Conditional Operator .. 392

New Operators in Swift .. 392

Nil Coalescing Operator .. 393

Range Operators ... 393

Pattern-Matching Operator (~=) ... 393

Overfl ow Operators ... 394

Operator Overloading ... 394

Overloading an Infi x Operator ... 394

Overloading a Compound Assignment Operator ... 395

Overloading a Prefi x or a Postfi x Operator .. 395

Providing a Custom Operator .. 396

Summary .. 397

 ■Chapter 19: Types .. 399

Type Safety and Type Inference .. 399

Primitive Types ... 399

Integers... 400

Floating-Point Types ... 400

Booleans ... 400

Characters .. 401

Strings .. 402

Optionals .. 404

What Is an Optional Type? .. 405

Why Use Optionals? .. 405

Unwrapping an Optional ... 406

Optional Binding ... 407

Forced Unwrapping .. 407

Implicitly Unwrapped Optionals .. 408

Optional Chaining ... 409

 ■ CONTENTS

xvi

What’s Your Type? .. 410

Using the is Operator .. 410

Type Queries ... 410

Type Casting ... 411

Nested Types .. 412

Some Types Worth Getting to Know ... 412

Container Types: Array, Set, Dictionary ... 412

Tuples ... 417

Function Types .. 419

Type Aliases .. 420

Summary .. 420

 ■Chapter 20: Control Flow ... 421

Loops .. 421

for ... 422

for-in ... 423

while ... 427

repeat-while ... 428

Conditional Statements .. 430

if ... 430

guard .. 432

The Mightier Switch ... 432

Jumping Around: Control Transfer .. 438

continue .. 438

break .. 438

fallthrough .. 439

return .. 439

Labels ... 439

Summary .. 440

 ■ CONTENTS

xvii

 ■Chapter 21: Object-Oriented Programming Topics .. 441

Classes ... 441

Syntax for Defi ning a Class ... 442

Access and Visibility ... 442

Adding Properties ... 442

Getting Notifi ed About Changes: Property Observers ... 445

Accessing Properties .. 447

The Self Property .. 447

Adding Methods .. 448

Adding Subscripts .. 452

Memory Management for Classes: ARC.. 452

Comparing References ... 455

Extending Functionality .. 456

Structures ... 459

Instantiating a Structure ... 459

Memory Management for Structures and Enumerations ... 460

Mutating Methods... 461

When to Prefer Structures .. 461

Enumerations ... 461

Protocols .. 461

Defi ning a Protocol ... 462

Conforming to a Protocol .. 462

Facts About Protocols ... 463

The Merit of Protocols .. 465

Summary .. 465

 ■Chapter 22: New and Different Concepts ... 467

Enumerations ... 467

Why Use Enumerations? ... 467

Using an enum with Raw Values to Handle Value Mapping .. 468

More Facts About Raw Values .. 469

 ■ CONTENTS

xviii

Adding Associated Values to Handle Variable Information ... 470

More Facts About Enumerations ... 471

Subscripts .. 471

Defi ning a Subscript ... 472

Subscript Overloading .. 472

Subscript Varieties .. 472

Closures ... 474

Closures in Swift Can Be Very Concise ... 474

An ActionScript Example .. 474

Literal Translation to Swift .. 475

Optimization 1: Inlining a Closure Expression ... 475

Optimization 2: Letting the Compiler Infer Types from Context .. 475

Optimization 3: Using an Implicit Return .. 476

Optimization 4: Using Shorthand Names for Parameters ... 476

Optimization 5: Using an Operator Function ... 476

More Facts About Closures ... 477

Generics ... 478

A Generic Function in Swift .. 478

A Generic Type in Swift ... 480

You Use Generics in Swift Whether You Know It or Not .. 480

Setting Constraints ... 480

More facts About Generics ... 481

Summary .. 482

 ■Chapter 23: Releasing Your App in the App Store ... 483

Understanding the App Store Submission Process .. 483

Submitting an App: A Step-by-Step Guide .. 484

Registering an App ID ... 485

Generating a Distribution Certifi cate .. 487

Generating a Distribution Provisioning Profi le .. 490

Confi guring the App and Building an Archive ... 492

Creating a Record for the App in iTunes Connect ... 494

 ■ CONTENTS

xix

Uploading the App to iTunes Connect ... 498

Submitting Your App for Review ... 500

Summary .. 502

Index ... 503

xxi

 About the Authors

 Radoslava Leseva Adams is a software developer and programming book
author. Her affair with programming languages began in the early 1990s,
when her father handed her a book on Basic as a form of summer holiday
entertainment. Since then she has built a career out of freely jumping
between different languages and platforms, including C, C++, Delphi, Java,
ActionScript, Objective-C, and most recently Swift. She passionately hates
wordy manuals and having to click more than once to do a build.
Radoslava and her brother Hristo run EasyNativeExtensions.com and
DiaDraw.com, where they help ActionScript developers do cross-platform
programming with AIR Native Extensions.

 Dr. Hristo Lesev is a software developer at heart, passionate speaker,
educator, and entrepreneur. Having had long experience with C++, C#, and
ActionScript for desktop and mobile platforms, lately he can be heard more
and more often advocating for Swift as the latest and greatest. When not
busy developing mobile apps, Hristo enjoys teaching other developers as
an assistant professor at Plovdiv University, Bulgaria. He is obsessed with
computer graphics and can often be found coding 3D stuff late at night.

xxiii

 About the Technical Reviewer

 Robert Otani grew up in Los Angeles helping to repair cars in the family
business, where got away with playing with welding torches and dangerous
chemicals. He earned a B.S. in Physics from California State Polytechnic
University and then entered the Ph.D. program at Arizona State University.
He dropped out to pursue fortunes in the San Francisco Bay Area
during the great Internet boom. Since then, he’s worked as a designer
and engineer for Sony Entertainment, Vitria, AvantGo (acquired by
Sybase/SAP), Yahoo!, and virtual world startup IMVU. Most recently,
he was iOS Lead at Mix.com (an Expa portfolio company) and is now an
Engineering Lead for a yet-to-be named brand out of Silicon Valley. He’s
married to an amazing wife, with whom he’s raising two children and a
strange dog. He plans to update his site, otanistudio.com , sometime within
the next decade.

http://mix.com/
http://otanistudio.com/

xxv

 Acknowledgments

 Deciding to write a book while running a business full time and with one of us eight months pregnant
was what a lot of our friends politely called “adventurous.” They were right; working on this book was an
adventure. We are indebted to our families for their support throughout this project and especially to
Radoslava’s husband, Steve, for reading all chapter drafts and offering helpful advice while being on
full-time dad duty every weekend.

 This project would not have been possible without the hard work of the Apress editorial team. We would
like to thank Steve Anglin for the idea for this book and Ben Renow Clarke and Nancy Chen for keeping us
on track.

 Special thanks go to Robert Otani and Chris Nelson. Robert’s constructive input ensured technical
accuracy and helped us stay ahead of changes in the rapidly evolving language that is Swift and Chris burned
the midnight oil to help us improve the text.

 Some of our most indispensable resources have been Apple’s book The Swift Programming
Language (https://goo.gl/1GRVRM) and the online project “Swift Programming Language Evolution”
(https://github.com/apple/swift-evolution).

 Last, but not least, we are grateful to all contributors on stackoverflow.com who tirelessly shine light in
the darker corners of Swift and Xcode.

https://goo.gl/1GRVRM
https://github.com/apple/swift-evolution

xxvii

 Introduction

 The Swift programming language has eased the learning curve for iOS development, compared with the
early days when one had to become familiar with Objective-C. A lot of the Swift philosophy and syntax will
be familiar to an ActionScript developer and will allow a rapid transition. This book offers the quickest way
not just to learn a new programming language but also to migrate your whole workflow to a new platform.

 Who Is This Book For?
 Migrating to Swift from Flash and ActionScript is for developers who are transitioning to Swift for iOS. In
particular, it has been written with the Adobe AIR community in mind to help bridge the gap between
ActionScript and Swift for mobile devices.

 You do not need background in ActionScript in order to benefit from this book, however. Basic
experience with any object-oriented language would ensure that you adapt to Swift in no time.

 Personally we tend to learn much quicker by following screenshots and diagrams and getting our
hands dirty with code, rather than from reading pages and pages of text. So we have prepared examples and
tutorials for you to do the same.

 How to Use This Book
 There is a lot to learn when you migrate your development process to a new platform: besides a new
language, you have to become familiar with new tools and a new operating system, change your workflow,
and learn what the best practices are in specific situations. This book is really four books in one, each part
addressing an aspect of the migration process.

 You don’t need to read the material from cover to cover before you start coding with Swift. When you
set your teeth into making native apps, we want this book to be your companion and provide guidance by
walking you through a tutorial or two or by being a quick reference.

 The book shows you how to make 16 different apps. Each chapter in the first three parts of the book
offers a self-contained tutorial, so you are not dependent on having read and implemented the tutorials that
come before it. The chapters on debugging and releasing your app are an exception and use code you have
written in previous chapters.

 ■ INTRODUCTION

xxviii

 Here is how the book is organized:

• Part I: Tool Migration . We recommend that you start here and go through the four
chapters of Part I in order. We have intentionally kept this part brief. It will help you
configure your environment and development devices, so that you are on your way
to making your first app with Swift.

• Part II: Workflow Migration . This part walks you through the main parts of the
programming workflow and shows you how to structure your user interface and use
Xcode’s help with layout, how to take advantage of concurrency, and how to use the
debugger and automated testing tools. Apart from Chapter 8 , which builds on the
example of the preceding chapter to demonstrate debugging and testing techniques,
each of the rest of the chapters comes with its own example. This means that you can
go through this part in the order you find you need each topic as you migrate your
workflow. Where there are new Swift concepts in the examples we have included
pointers to the language reference part of this book, Part IV , so you can quickly find
details on syntax or language idioms.

• Part III: Making Apps with Swift—Applied Examples . This is probably the most fun
part of the book. It offers a series of tutorials that cover a lot of common scenarios
you may want to include in your apps. Here you build 12 self-contained practical
apps and learn how to

• send e-mail, SMS, and make phone calls from your application.

• post to social networks.

• use the motion sensors and show a user’s location on a map.

• take photos, manipulate them, and communicate with the photo gallery.

• work with local data and iCloud.

• connect to and communicate with network services.

• monetize your apps with advertisements and stay in touch with your users
through push notifications.

• build 2D and 3D games with iOS SDK’s graphics frameworks.

• Part IV: Language Migration . This part was the most fun for us to write. In it we
have tried to distill the main ideas that underpin the Swift programming language:
it encourages you to be concise and at the same time forces you to be explicit and
take maximum advantage of the compiler in order to ensure correct code. This is not
meant to be a comprehensive Swift manual but to help you hit the ground running
when it comes to language specifics. We recommend that you read the introductory
 Chapter 17 first and then use the rest as a reference, which you can come back to
whenever you need a Swift concept explained. There are no apps to build in this
part of the book. Instead, we help you set up a Swift playground, where you can
experiment with individual pieces of code. We have tried to make the explanations of
the language concepts simple, so that our baba Ani can understand them too. 1

 1 Baba (Bulgarian for “grandmother”) Ani doesn’t have ActionScript experience and is not even a programmer. She is one
smart cookie, though.

http://dx.doi.org/10.1007/978-1-4842-1666-8_8
http://dx.doi.org/10.1007/978-1-4842-1666-8_17

 ■ INTRODUCTION

xxix

• Bonus Chapter: Publishing your app in the app store. The point of making an
app is to share it with the world and allow millions of users to enjoy your creation.
Apple’s process for releasing apps in the App Store, however, is far from intuitive. We
thought that a book that that shows you how to create apps for iOS devices would not
be complete without a walk through this process and some tips on how to keep it as
smooth as possible.

 A Note on Swift Versions
 To say that Swift evolves quickly would be an understatement. A lot has changed in the language itself and
in the iOS SDK since the first version of Swift was released in 2014. The examples in this book are consistent
with version 2.2, which is the state of the art as we are finishing the last chapter. However, with Swift 3 just
around the corner, we want you to be ahead of the wave of changes, so we have added notes and extra
examples where code will be affected.

 Note that some of the application programming interfaces (APIs) in the iOS SDK may be renamed when
Swift 3 is released. We maintain a list of changes and source code for download for each of the tutorials in
this book at www.apress.com/9781484216675 . If you would like to be notified when updates are made, we
encourage you to join our mailing list at http://diadraw.com/migrating-swift-flash-actionscript/ .

 Now let us get on with some work, shall we? We will see you in Chapter 1 .

http://www.apress.com/9781484216675
http://diadraw.com/migrating-swift-flash-actionscript/
http://dx.doi.org/10.1007/978-1-4842-1666-8_1

 PART I

 Tool Migration

3© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_1

 CHAPTER 1

 Setting Up Your Environment

 Imagine a craftsman’s workbench with tools nicely laid out and labeled, a cup of steaming coffee at one end
. . . ideally the kind of image that gives you an itch to start a fresh project you can pour your heart into. This
chapter is all about setting up that workbench by sourcing, installing, and configuring the tools that you will
need for native iOS development.

 In this chapter you will do the following:

• Learn about what Xcode can offer you as an iOS developer.

• Download and install Xcode.

• Set up Xcode for use with your Apple ID.

 When you are done, you will have a fully set up IDE for developing iOS applications with Swift.

 What Is Xcode?
 Xcode is an integrated development environment (IDE) . It is free and is developed by Apple. With it comes
the development toolset for making apps for Apple devices: Mac, iPhone, iPod, iPad, Apple Watch, Apple TV.

 FLASH ANALOGY

 You have probably used one or more of the following IDEs to create Flash or AIR applications. They come
with a source code editor, user interface editor, and integrated debugger and some even have a profiler,
which you can use to measure your apps’ performance.

• Adobe Flash Professional CC

• Adobe Flash Builder

• FlashDevelop

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1666-8_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1666-8_1

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

4

 Xcode provides the usual features you would expect from an IDE and more. If you have developed iOS
applications with AIR, you will find that Xcode improves and speeds up your workflow considerably. It offers
all the tools you will need along the way: from rapid prototyping using Swift Playgrounds, through managing
devices and debugging your app on them, to automated testing and even submitting your finished app to
Apple’s App Store. Xcode’s profiling instruments could have a whole new book dedicated to them and will
leave no doubt about your apps’ performance by measuring speed, memory, energy and network usage,
GPU and CPU utilization, file activity and lots more.

 Before You Begin
 To download, install, and run Xcode you will need the following:

• An Apple ID . If you don’t have one, you can register at https://appleid.apple.
com/account . This ID identifies you as an Apple user, just like an Adobe ID identifies
you as an Adobe user. It will stand you in good stead for developing and testing
simple apps and you won’t need to enroll in any paid development program until
you decide to use advanced SDK features or to publish your apps in the App Store—
more on that in Chapter 2 .

• A Mac computer . At the time of this writing Xcode 7.3 is the current release and
requires that you run OS X 10.11 or later.

• At least 10 GB of free space on your hard disk.

 Step 1: Download Xcode
 You have several choices for how to get Xcode, depending on whether you want an official release or a pre-
release version. When new versions of Apple software are made available, they typically go through three
stages: beta, seed, and official release. The main differences between versions in different stages are how stable
they are, who can use a given version, and whether it can be used to build apps for release in Apple’s App Store.

• Beta . This is a pre-release version, which is still under development and is available
for download to anyone who has an Apple ID. Using a beta version puts you ahead
of changes, as it allows you to update and test your apps with the latest tools and
SDKs before they are officially available. There are a couple of drawbacks, however.
Although they are close to the final thing, beta versions are by definition not as
polished as official releases, so you may encounter bugs or inconsistencies. Another
drawback is that apps that were built using beta tools are not accepted in Apple’s App
Store: to be able to release your app in the store, you will need to use either an official
Xcode and iOS SDK release or a GM seed (see the next bullet).

• Seed . A seed version also comes out before the official release but, unlike a beta, is
available only to participants in Apple’s testing and feedback program, AppleSeed .
Taking part in the program is voluntary and by invitation only. As a participant you
are in effect taking part in shaping Apple’s software, so you are expected to give
active feedback. In fact, failure to do so may get you excluded from the program.
Similarly to betas, you cannot release an app built with a seed, unless it has been
labeled Gold Master (GM).

https://appleid.apple.com/account
https://appleid.apple.com/account
http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

5

• Official release . An official release is made after Apple’s new or updated
development tools have undergone rigorous testing and customer feedback as
betas and as seeds, so you can expect it to be as stable and as polished as it gets. The
release version is the one you are expected to build your apps with before you release
them in Apple’s App Store. Note that to publish your apps in the store you will need
to be a member of the Apple Developer Program, which requires paid membership.

 We will go through the steps for obtaining an official Xcode release and a beta.

 Option A: Get the Official Release
 If you want to build apps for the app store, you will need the latest official version of Xcode and the iOS SDK.
Open the Store app on your Mac and do a search for Xcode. Then click Install (Figure 1-1) . This will take
care of the download and the installation in one go.

 Option B: Get the Latest Beta
 If the timeline for releasing your app is further in the future, you might prefer an even newer version of
Xcode with the latest additions to Apple’s SDKs, You can go for an early beta, usually available from Apple’s
web site at https://developer.apple.com/xcode/download/ (Figure 1-2). This will download a .dmg file,
which you can double-click to start the installation.

 Figure 1-1. Option 1: Download Xcode from Apple’s App Store

https://developer.apple.com/xcode/download/

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

6

 Step 2: Run Xcode
 Now that you have downloaded and installed Xcode, let us run it and see what it looks like out of the box.
We will also lift the curtain a bit and have a look at where the SDK files are, as well as other locations that will
come in handy when you start developing apps.

 Running Xcode for the First Time
 The very first thing you see when you run Xcode after its installation is a License Agreement , which starts
with the preemptive “Please scroll down and read all of the following terms and conditions carefully. . .”
(Figure 1-3).

 Figure 1-2. Option 2: Download an Xcode beta from Apple’s web site

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

7

 After scrolling down, reading carefully for about a whole of five lines, then clicking Agree anyway,
Xcode’s welcome screen appears (Figure 1-4). If you are anxious to begin development, jump straight to
 Chapter 2 , which shows you how to make and run your first iOS application.

 Figure 1-3. You need to agree with Xcode’s License Agreement before you can use it

 Figure 1-4. Xcode’s welcome screen

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

8

 Where Does It All Go?
 If you like to be in control of your machine and development environment, take a detour with me and let us
see where Xcode installs things. This is useful for when you want to do more advanced maintenance of your
tools: check what’s in the SDK, find logs when Xcode crashes (yes, it does . . .); know where it places your
projects’ temporary files among other things.

 The Xcode Installation Folder
 To find where Xcode was installed, open Terminal on your Mac and run the following command:

 xcode-select --print-path.

 This will give you the path to Xcode’s installation folder, typically /Applications/Xcode.app/Contents/
Developer/ . To explore it in Finder , navigate to Xcode.app , right-click on it, select Show Package Contents
and open the Contents folder.

 The iOS SDK
 You can find the iOS SDK that comes with Xcode in the Developer/Platforms/iPhoneOS.platform/
Developer/SDKs folder inside the Xcode installation.

 Location Settings
 Xcode gives you control over where certain things should be found or stored. From Xcode’s main menu
select Xcode ➤ Preferences ➤ Locations to see what you can set (Figure 1-5).

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

9

 Following is a brief description of each of the locations you can control:

• Derived Data. Xcode uses two folders for putting temporary files when building a
project: one is the build folder, which is always located in your project’s directory;
the other one is called Derived Data and you have a choice of where this goes: in the
same location as the project or in the folder shared by all of your projects. It is good
to know the location of this folder for dealing with compilation problems where a
simple project clean doesn’t seem to do the job. Deleting a project’s Derived Data
and build folders is equivalent to doing a manual clean.

• Archives. This is the location of the .xcarchive files Xcode creates for your projects:
these contain your app executable and a .DSYM file—a file with debug information,
which allows you to symbolicate a crash log, for example. You may have also used
this to debug iOS native extensions for AIR.

• Command-Line Tools. Here you can choose the path to Xcode’s command-line
tools, in case you have more than one Xcode installation, thus more than one
toolchain.

 Figure 1-5. Open Xcode ➤ Preferences ➤ Locations to see paths to important folders for your projects

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

10

 Documentation Settings
 One thing you will not find in your fresh Xcode installation is documentation, as Apple provides
comprehensive guides and manuals online. Sometimes, however, it is useful to be able to look things up
when you are not connected to the Internet (long plane rides and family holidays in remote locations
come to mind). To make any part of the documentation available offline open Xcode ➤ Preferences ➤
 Components ➤ Documentation and click the arrow next to a document to download it (Figure 1-6).
Documentation is stored in ~/Library/Developer/Shared/Documentation/DocSets .

 Figure 1-6. Make documentation available for offline reading from Xcode ➤ Preferences ➤ Components

 Use the same pane to keep your offline documentation up to date: click the Check and Install Now
button to get an update if one is available.

 Step 3: Tell Xcode Who You Are
 “Are we nearly there yet?” I can almost hear you say . . . I can’t blame you: I am a coder at heart and to
say that I don’t enjoy following lengthy setup procedures would be putting it mildly. If you want to run
applications on a physical device, there is one more thing left to do: Xcode needs to know about you. This
section explains why and shows you how to finish the setup.

 If, on the other hand, you would like to jump straight to creating your first native iOS app and see it run
in a simulator, you can go to Chapter 2 and come back to this step when you need to.

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

11

 Before you can install and test your apps on physical devices the apps will need to be cryptographically
signed. A code signature uses a signing identity to ascertain that an app was developed and built by you and
a certificate , created specifically for that app or for a group of apps, which allows the group members to use
particular services. A signing identity is based on your Apple ID: Xcode can create one for you and install it
in Keychain Access automatically.

 To help Xcode create a signing identity , you need to let it know your Apple ID: from Xcode’s main menu
select Xcode ➤ Preferences and in the dialog that appears open the Accounts tab (Figure 1-6). Click the +
button to add a new account and enter your Apple ID and password.

 After your account has been added and appears in the Apple ID column, select it, then select the
relevant Team in the right part of the dialog shown in Figure 1-7 —this could be a development team your
Apple ID is part of or just your Apple ID. Then click the View Details… button. This will open another dialog
with a list of signing identities (Figure 1-8).

 Figure 1-7. Let Xcode know who you are by adding your Apple ID in Xcode ➤ Preferences ➤ Accounts

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

12

 A signing identity is effectively a certificate that will be installed in the keychain of your development
machine and is used to sign the apps you build. For the purposes of the tutorials in this book we will need an
iOS Development signing identity. Select it from the list and click the Create button.

 To see what Xcode has created, launch the Keychain Access app on your Mac. Under Keychains select
 login and under Category select My Certificates . Your signing identity should appear in the list on the right
as iPhone Developer: <The name you registered your Apple ID with> and should say certificate in the Kind
column (Figure 1-9).

 Figure 1-8. Xcode 7 can create a signing identity for you

CHAPTER 1 ■ SETTING UP YOUR ENVIRONMENT

13

 Summary
 Remember the workbench image, with which we opened this chapter? I hope that this is how your
development machine looks and feels now: the tools for native iOS development laid out and ready to start
crafting beautiful code. I’m afraid you will have to make the cup of coffee yourself, though.

 With your choice of motivational drink ready, let us get on with making your first application in
 Chapter 2 .

 Figure 1-9. Check what Xcode has created in Keychain Access ➤ login ➤ My Certificates

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

15© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_2

 CHAPTER 2

 Hello, Xcode!

 We begin our journey into iOS development with Swift by making an app, for which you will not have
to write a line of Swift code. . . . If you are a coder at heart, as I suspect you are, you probably can’t wait
to get your hands on Swift and start making applications, rather than allow an integrated development
environment (IDE) to create them for you.

 With that said, the purpose of this chapter is to show you the lay of the land and give you a map of where
things are in the new IDE you downloaded and set up in Chapter 1 . I promise to be brief and get you to
 Part II , where you can dip your hands in code sooner than you might expect.

 In this chapter you will do the following:

• Set up an iOS app project.

• Explore Xcode’s user interface.

• Run your first native iOS app in Xcode’s simulator.

• Learn what provisioning is.

• Set up your iOS device for development and run the app on it.

 When you are done, you will have a map of the Xcode IDE and a clear idea of its main tools and settings
that will help you get started on app development.

 Creating an Xcode Project
 Start Xcode. If the first thing you see is the Welcome to Xcode screen, select Create a new Xcode project .
Or, create a new project by selecting File ➤ New ➤ Project… from Xcode’s main menu. This starts a wizard,
the first step in which is to choose an operating system and a product type for your project. We will start with
something fairly simple: select iOS ➤ Application ➤ Single View Application , as shown in Figure 2-1 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_1

CHAPTER 2 ■ HELLO, XCODE!

16

 At the next step of the wizard name the project HelloXcode . Make sure that Swift is selected as the
 Language and Devices are set to Universal, and for this project don’t tick any of the checkboxes for creating
tests (see Figure 2-2).

 Figure 2-1. Start a new iOS Single View Application project in Xcode

CHAPTER 2 ■ HELLO, XCODE!

17

 Click Next , choose where to save the new project and let Xcode create it for you. Now let us see what’s
inside.

 The Xcode Interface
 Our tour of Xcode starts with the big picture. If you set up your iOS Single View Application project following
the steps above, your screen should look like Figure 2-3 when the project first appears.

 Figure 2-2. Name your project and select Swift as the programming language

CHAPTER 2 ■ HELLO, XCODE!

18

 There are four main areas in the IDE (Figure 2-3):

• The toolbar area

• The editor area

• The navigator area

• The utilities area

 The Toolbar Area
 On the left-hand side of the toolbar area you have controls for running your app and for choosing which
device or simulator it should run on (see Figure 2-4).

 Figure 2-3. The main IDE areas for an Xcode iOS appication project

 Figure 2-4. Controls for running and quitting your app

CHAPTER 2 ■ HELLO, XCODE!

19

 In the middle you can see a brief summary of your app’s status (Figure 2-5). This answers questions like
the following:

• Did the project compile?

• Were there any errors or warnings?

• Is the app running?

 At the right end of the toolbar area there are buttons for showing or hiding the other IDE areas and for
toggling various views in them (Figure 2-6).

 The Editor Area
 This is where you will do most of your work: writing code, designing a user interface (UI), and controlling
your project settings. Xcode has three editor modes:

• The Standard editor shows you one thing at a time: you can load a source file, a
storyboard, assets, or project settings.

• The Assistant editor displays two files side by side. You can have two source files
open, for example, if you want to have a glance at a function call in one and its
definition in the other. Or, you can have a look together at a storyboard (UI file) and
the source file, in which you implement the storyboard’s actions—we will see how
this works later, when we add a bit of UI to our app project.

• The Version editor is useful when your projects are under version control (as they
should be): in this view you can see two revisions of the same file and compare what
has changed.

 Figure 2-5. The toolbar area is the place to get information about the state of your app at a glance

 Figure 2-6. You can show or hide the main areas of the IDE and choose how they are displayed

CHAPTER 2 ■ HELLO, XCODE!

20

 If you select the main project in Project navigator, the project settings will appear in the editor area.
Under Targets you can see the products that building the project should produce: at the moment we have
one: the HeloXcode app. Across the top of the Editor area the project and target settings are distributed
between several different tabs (Figure 2-7).

 The Navigator Area
 Here you can switch between various navigators (Figure 2-8):

• Project navigator : shows the files in your project. You can organize files in groups
that logically belong together. Note that the groups don’t have to correspond to
folders on disc.

• Find navigator : lets you search for strings in your project.

• Symbol navigator : shows the class hierarchies in your code.

• Issue navigator : has a list of errors and warnings if any appeared during a build.
Clicking an issue takes you to the file it was found in.

• Test navigator : if you choose to include unit or UI tests in your project, you can
browse them here.

• Debug navigator : this navigator is active during a debug session and lets you drill
into stack traces for each thread that is running in your app, as well as see statistics
about how your app is utilizing system resources.

 Figure 2-7. Project and target settings

CHAPTER 2 ■ HELLO, XCODE!

21

• Breakpoint navigator : this is where you can see and manage all of the breakpoints
you have put in your code.

• Report navigator : shows you a list of reports about builds, debug sessions, and tests.

 Figure 2-8. Your app source files in Project navigator

 You can also switch between navigators from the main menu by choosing View ➤ Navigators .
 If you open Project navigator, you will see the files Xcode has created for you: in the HelloXcode group

there are two source files (AppDelegate.swift and ViewController.swift), two UI files (Main.storyboard
and LaunchScreen.storyboard), an Assets folder, and a file called Info.plist , which contains the settings for
your app. There is a second group, called Products, where the app executable file will appear when we build it.

 The Utilities Area
 This area shows different types of tools and utilities, depending on what’s in the Editor area. For example, if
you are editing a storyboard, one of the things you will see in the Utility area is the Object library—use it to
drag and drop UI elements onto the storyboard.

 Getting Your Fingertips Dirty
 Even when you are not expected to write code for your first native app, it doesn’t mean you can’t customize
the app. Adding something as simple as a label to the main view can be an excuse to explore one way of
designing UI in Xcode 7. We will add a label and a date picker to our app and have Xcode generate code that
will let us access them programmatically.

 In Project navigator select the Main.storyboard file . In this context a storyboard is the visual
representation of your app’s interface and workflow. It shows you and lets you define not only what the screens
of your app will look like but also how they will flow from one to the other: the flow is shown with arrows.

CHAPTER 2 ■ HELLO, XCODE!

22

 ■ Note If you are used to IDEs like Flash Builder, your instinct will be to open a file by double-clicking its
name in Project navigator. Xcode might surprise you by opening a new window every time you double-click a
file. Its default behavior is to load a file in the main window the moment you select it in the navigator and to
load the file in a new window when you double-click it. You can change this behavior in Xcode ➤ Preferences
➤ Navigation ➤ Double Click Navigation .

 FLASH ANALOGY

 Storyboards are similar to scenes in Flash and to MXML user interface files in Flex, where you can add
UI elements and partly define their behavior.

 With Main.storyboard selected you will notice that the Editor area changes to show you the application’s
main screen. The gray arrow coming from the left and pointing to it in effect says, “Here is where the action starts.”

 Let us leave a little fingerprint on this app. In the Utility area locate the Object library (see Figure 2-9): it
has a list of UI elements you can drag and drop onto the storyboard.

 ■ Tip You can also use the main menu to show the Object library: View ➤ Utilities ➤ Show Object Library .

 Find a Date Picker controller in the Object library and add it to the storyboard by doing a drag-and-
drop as shown in Figure 2-9 . You should see the date picker appear both in the UI view and in the Document
outline on the left. Select it and let’s change it to show the date, but not the time: in the Attributes inspector
on the right set Mode to Date and leave the rest of the properties as they are (Figure 2-10).

 Figure 2-9. Drag and drop a Date Picker onto Main.storyboard

CHAPTER 2 ■ HELLO, XCODE!

23

 Add a Label from the Object library to the storyboard and place it above the date picker. Double-click
the label to change its text to “Day of the week” (Figure 2-11).

 Figure 2-10. Select the Date Picker to change its properties

 Figure 2-11. Add a label to the storyboard

CHAPTER 2 ■ HELLO, XCODE!

24

 You have probably noticed that the storyboard we are working with is square and doesn’t match the
size or the aspect ratio of any iOS device known to man. Before Xcode 7 you needed to provide separate
storyboards for the different devices your app was expected to run on. Now we have one storyboard to work
with, which has an abstract size. Xcode can help us make our UI adaptive: let us do that.

 With the View selected in the Document outline, open File inspector in the Utility area and locate
the Interface Builder Document section. Make sure that you tick Use Auto Layout and Use Size Classes
(Figure 2-12).

 Now select the date picker and click the Pin button at the bottom right of the screen where the
storyboard is. We will constrain the date picker to move and resize itself, so that there is always the same
distance between it and its nearest neighbor: the label and the edges of the view in this case. Set Spacing to
nearest neighbor to 10 pixels on each side and click Add 4 Constraints . You will see the constraints appear
in the Document outline on the left (Figure 2-13).

 Figure 2-12. Set up the view to Use Auto Layout and Use Size Classes

CHAPTER 2 ■ HELLO, XCODE!

25

 Add the same constraints to the label (Figure 2-14).

 Figure 2-13. Add constraints to the date picker

 Figure 2-14. Add constraints to the label

CHAPTER 2 ■ HELLO, XCODE!

26

 FLASH ANALOGY

 Using size and layout constraints in Xcode is similar to how you would set up size rules and spacers in
an MXML file.

 Next, click the Resolve Auto Layout Issues button and let Xcode move the label and the date picker around,
so that they fall within the constraints we defined: in the pop-up menu select Update Frames (Figure 2-15).

 The constraints on the storyboard should now appear blue, indicating that there are no layout issues
(Figure 2-16). When there is ambiguity or conflicts in the layout, you will see them turn orange and red.

 Figure 2-15. Click Update Frames and let Xcode move the UI around to match the constraints

 Figure 2-16. Make sure that constraints on the storyboard appear blue

CHAPTER 2 ■ HELLO, XCODE!

27

 The last thing we will do before running the app is to create outlets for the two UI elements we put
on the storyboard. An outlet is defined as “a property of an object that references another object.” In this
case we will create properties in the ViewController class that will reference the date picker and the label.
Correction: we will help Xcode create these properties. I made a promise that you will have an app without
writing a line of code and I’m sticking with it.

 With the storyboard still in the editor area, activate the Assistant editor. This will split the editor area in
two: in one half you have the storyboard and in the other the ViewController.swift file. If a different file
or no file appears in the second half, you can manually select ViewController.swift to be loaded there by
clicking the strip above the file, which shows a file path (Figure 2-17).

 On the storyboard select the label, then Ctrl + drag it into ViewController.swift and drop it at the top
of the ViewController class definition.

 In the pop-up dialog that appears name the outlet dayOfTheWeek and click Connect (Figure 2-18).
This creates a property in the ViewController class of type UILabel , which will let us access the label
programmatically—we will do this in Chapter 3 .

 Repeat the steps to create an outlet for the date picker and name it datePicker . The ViewController
class should now look like Listing 2-1 .

 Figure 2-17. Create properties in ViewController.swift that will reference the label and the date picker

 Figure 2-18. Name the outlet and let Xcode create a definition for it in the ViewController class

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1666-8_3
http://www.allitebooks.org

CHAPTER 2 ■ HELLO, XCODE!

28

 Listing 2-1. The ViewController Class After the Outlets Have Been Added

 class ViewController: UIViewController{

 @IBOutlet weak var dayOfTheWeek: UILabel!
 @IBOutlet weak var datePicker: UIDatePicker!

 override func viewDidLoad(){
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 // typically from a nib.
 }

 override func didReceiveMemoryWarning(){
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 }

 Running Your App in the Simulator
 Time to see this app in action. Let us run it in Xcode’s simulator first. Click the device drop-down next to
your project’s name on the Toolbar (Figure 2-4) . If any of your iOS devices are plugged in your machine,
their names will appear in the top part of the list under the Device category. The iOS Simulators category
contains a number of options: select one, for example iPhone 6 (Figure 2-19).

CHAPTER 2 ■ HELLO, XCODE!

29

 Click the Run button. This starts the simulator, which does a pretty convincing job of showing you (and
making you wait for) the device booting up for the first time. Once the simulated iOS has booted, your app
will start and you should be able to see the label you added to its main screen (Figure 2-20).

 Figure 2-19. Select an iOS simulator from the list on the toolbar

CHAPTER 2 ■ HELLO, XCODE!

30

 Running Your App on a Device, Using Free Provisioning
 Now that we are satisfied that the app builds and runs on a simulator, let us have Xcode install and run it on
an actual iOS device.

 Provisioning
 If you have done iOS development with ActionScript, you know that an app needs to be provisioned in
order to be run on a physical device and what that means and thus you can skip this section and move on to
the practical part in “Running your app.” But if you are new to programming for iOS, the following sections
briefly describe how an app is prepared for installation and what you need to do.

 What Is Provisioning ?
 An app must match certain criteria in order to launch on an iOS device. Provisioning is Apple speak for what
you need to do in order to prepare your app to match these criteria: the information about them is stored
in a provisioning profile . A provisioning profile is an encrypted file, which is embedded in the app and is
checked when the app tries to install itself on a device.

 So, what criteria must be met?

• The app needs to have a unique identifier, App ID . The App ID can be specific
to only one app, for example, com.diadraw.ideadrawapp . Alternatively, during
development, the App ID can contain a wildcard in the place of the app name and be
shared between several apps you are working on, for example : com.diadraw.* .

 Figure 2-20. Your app in the iOS simulator

CHAPTER 2 ■ HELLO, XCODE!

31

• Apple must know about you, the developer: this is where the Apple ID you registered
before downloading Xcode comes in. Your Apple ID is used to create a signing
identity —we helped Xcode create this for you at the end of Chapter 1 . When Xcode
builds your app it also cryptographically signs it using this identity and this serves to
certify that the app was built by you and not modified by anyone else.

• Before your app is ready for distribution, it can run only on devices that are known to
Xcode, are registered for development, and have been set to trust your code signing
identity. A third kind of ID helps with that: each iOS device has its own unique
device identifier (UDID) that Xcode can access when the device is plugged in your
development machine.

• If your app uses special features like push notifications, for example, it must have
permission for that: the respective feature entitlements must be enabled in its
provisioning profile.

 Figure 2-21 illustrates this.

 Where Does Free Provisioning Come In?
 Until recently provisioning an app for development involved a lot of steps: you needed to source the
information for the provisioning profile, register your app and device in Apple’s Developer Member Center,
create and download the profile, then point Xcode to it. To be able to do all of this also required that you
enroll and pay a yearly subscription for Apple’s iOS Development Program.

 In contrast to this, Xcode 7 comes as a breath of fresh air: provisioning an app during development has
been automated for you and done by the IDE and for the most part you don’t need a paid membership.

 Free Lunch?
 Maybe. Did you notice in the previous section how I said, “for the most part you don’t need a paid membership”?
That’s right: while you develop your apps you can provision and test them for free, as long as they use only the
basic iOS features. You will have to purchase membership in the iOS Development Program when you need
to include more advanced features, also known as entitlements, or when you want to release your apps on the
market. Following is a list of the entitlements that at the moment require you to be a member of the program:

• Apple Pay

• App Sandbox

 Figure 2-21. Criteria an app’s provisioning profile must meet

http://dx.doi.org/10.1007/978-1-4842-1666-8_1

CHAPTER 2 ■ HELLO, XCODE!

32

• Associated Domains

• Game Center

• iCloud

• In-App Purchase

• Personal VPN

• Push Notifications

• Wallet

 You can keep up to date with changes and additions to this list on Apples’ web site.

 ■ Note The code in this book can be built and run using free provisioning. The two exceptions are the
tutorials for using Push Notifications and iCloud in Part III: being able to implement these will need an iOS
Development Program membership.

 Running Your App
 Before you run your app on a device, ensure that Xcode knows your Apple ID: it should appear in Xcode ➤
 Preferences ➤ Accounts . If your account is not there, see the end of Chapter 1 for how to add it.

 Now, select the main project in Project navigator. In the editor select the HelloXcode target, go to the
 General tab and choose your Apple ID from the Team drop-down (Figure 2-22).

 At this point you are likely to see a warning under the Team setting, saying “No code signing identities
found.” If this appears, click the Fix Issue button and let Xcode resolve the problem: it will create a signing
identity for you (Figure 2-23).

 Figure 2-22. Select your Apple ID in the project settings: General ➤ Identity ➤ Team

http://dx.doi.org/10.1007/978-1-4842-1666-8_1

CHAPTER 2 ■ HELLO, XCODE!

33

 Connecting Your iOS Device
 Now connect an iOS device to your Mac. The device’s name should appear in the Scheme toolbar as shown
in Figure 2-24 .

 The device doesn’t appear on the toolbar?

 If this is the first time you are using this device for iOS development, you will need to do a bit of preparatory
work. From Xcode’s main menu select Window ➤ Devices . This opens Xcode’s central point for managing
devices, which we will take a more detailed look at in Chapter 4 . Register your device for development by
adding it to the list of devices known to Xcode: click the + button at the bottom of the window and follow the
instructions (Figure 2-25).

 Figure 2-23. Let Xcode create a signing identity for you by clicking Fix Issue

 Figure 2-24. Select your device on the toolbar

http://dx.doi.org/10.1007/978-1-4842-1666-8_4

CHAPTER 2 ■ HELLO, XCODE!

34

 The device appears grayed out?

 If you can see your device on the toolbar but it appears grayed out, it’s likely that the iOS version that our
HelloSwift project is built for is higher than the iOS on your device. When this is the case, Xcode 7 displays
a friendly warning next to the device’s name, saying “Unavailable Device” and “(OS version lower than
deployment target).”

 To fix that, open your app target settings (select the main project in Project navigator, then select the
HelloSwift target in the editor), go to the General tab and in the Deployment Info section set Deployment
Target to be the same or lower than the iOS version on your device (Figure 2-26).

 Figure 2-25. Register your device for development

CHAPTER 2 ■ HELLO, XCODE!

35

 Seeing Your App Running
 Now, when you click the Run button, Xcode should automatically install and launch the app on your device
(Figure 2-27).

 Figure 2-26. Check if Deployment Target matches the iOS version on your device

CHAPTER 2 ■ HELLO, XCODE!

36

 App won’t launch?

 If this is the first time you have used the combination of this device and your Apple ID to do iOS
development, there is yet another step you need to take.

 If you see an error message like the one in Figure 2-28 , open Settings ➤ General ➤ Device
Management on your device. The signing identity Xcode created for you in Chapter 1 should be listed there:
tap it and then tap Trust <Your Apple ID➤ .

 Figure 2-27. Your first native app running on an iOS device

 Figure 2-28. To fix this, get the device to trust your signing identity

http://dx.doi.org/10.1007/978-1-4842-1666-8_1

CHAPTER 2 ■ HELLO, XCODE!

37

 Summary
 In this chapter we created an app in Xcode and ran it in the simulator and on a physical device. This gave
us an opportunity to explore the main parts of the Xcode IDE that you will use when you develop apps for
iOS. Surprisingly, most of the work that needed to be done had nothing to do with coding but with what is
necessary to prepare the app, your Apple account, and your development devices for testing.

 With all of this in the bag, we can now move on to another development topic: debugging your apps,
which is the subject of the next chapter.

39© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_3

 CHAPTER 3

 Introducing the Xcode Debugger

 Having an integrated debugger is one of the best parts of using an integrated development environment
(IDE). The easier and the more convenient a debugger is to use, the more regularly it will be put to work:
without one you are shooting in the dark.

 As you saw in the previous chapter, Xcode’s debugger automatically installs and runs apps for you on
devices or in a simulator. Here you will familiarize yourself with the basic things the debugger can help you
with: stepping through your code and inspecting values.

 In this chapter you will do the following:

• Extend the app you created in Chapter 2 and add Swift code to it.

• Step through your code in the debugger.

• Inspect variables and change their values at runtime.

• Learn how to execute commands in Xcode’s console for simple diagnostics.

• Have a peak at Xcode’s Memory view.

 When you are done, you will have an idea of the debugging tools available to you in Xcode to help you
stay in control of your code. In Chapter 8 , we will drill down into more advanced debugging topics.

 Preparation: Write Code to Debug
 In Chapter 2 we made a simple app that shows a date picker and a label. Let’s breathe some life into it by
getting these user interface (UI) elements to do something interesting and make the label say what day of the
week the date shown by the date picker is.

 Starting Point: The HelloXcode App
 If you followed the tutorial in Chapter 2 , you have an Xcode project, called HelloXcode , which builds an iOS
app. Open it and in Project navigator find the ViewController.swift file. It contains the definition of a class
called ViewController , which is responsible for the app’s main view and looks like Listing 3-1 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_2
http://dx.doi.org/10.1007/978-1-4842-1666-8_8
http://dx.doi.org/10.1007/978-1-4842-1666-8_2
http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

40

 Listing 3-1. The ViewController Class with Outlets for a Label and a Date Picker

 class ViewController: UIViewController {
 // Outlets for accessing the label and the date picker in Main.storyboard:
 @IBOutlet weak var dayOfTheWeek: UILabel!
 @IBOutlet weak var datePicker: UIDatePicker!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 // typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 }

 The two viewDidLoad and didReceiveMemoryWarning methods were put there by Xcode when it defined
the ViewController class for us upon setting up the project. viewDidLoad is called when the view has been
fully created and presented on the screen. didReceiveMemoryWarning will be executed in low-memory
conditions, giving us a chance to release any unused memory.

 In the course of Chapter 2 we added two UI controls to the main view’s storyboard: a date picker and
a label. The IBOutlet members of the ViewController class give us access to these controls: dayOfTheWeek
references the label and datePicker references the date picker. We had Xcode generate the IBOutlet
definitions by dragging and dropping references from the storyboard into code.

 Adding Action
 The first piece of code we will add is an event handler, also known as action . It will be called when the date
picker’s value changes. With Main.storyboard and ViewController.swift open in the Assistant editor side
by side select and right-click the date picker on the storyboard. In the pop-up menu find the Value Changed
event , then drag and drop the circle next to it into the ViewController class (Figure 3-1). This generates a
method that will listen to and handle the Value Changed event for the date picker.

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

41

 Name the event handler dateChanged and add the code in Listing 3-2 to it.

 Listing 3-2. Implement the dateChanged Event Handler

 @IBAction func dateChanged(sender: AnyObject) {
 updateDayOfWeek()
 }

 Updating the Label
 At this point Xcode will complain that updateDayOfWeek is an “unresolved identifier.” This is because
 updateDayOfWeek is a method we haven’t implemented yet. Let us do that: add a new method to the
 ViewController class and have it update the label’s text (Listing 3-3).

 Figure 3-1. Add a Value Changed event handler for the date picker

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

42

 Listing 3-3. Add a Method That Will Update the Label’s Text

 func updateDayOfWeek() {
 // Change the label's text
 // to show what day of the week the date in the picker is:
 dayOfTheWeek.text = getDayOfWeek(date: datePicker.date)
 }

 It would be good if our label is synchronized with the date picker and shows the correct day of the
week when the app first launches, so let us add a call to updateDayOfWeek to ViewController ’s viewDidLoad
method too (Listing 3-4).

 Listing 3-4. Update the Label When the View Is First Loaded

 override func viewDidLoad() {
 super.viewDidLoad()

 // Update the label when the view is first loaded:
 updateDayOfWeek()
 }

 Working Out the Day of the Week
 getDayOfWeek (called in Listing 3-3) is another method that we need to implement: this is where we will
work out the day of the week for the date shown by the picker. Listing 3-5 shows you the implementation
of this method: it creates an instance of NSCalendar , which is part of the iOS SDK. The NSCalendar gives us
access to the components (NSDateComponents) for a given date (NSDate) and these include the day of the
week. Let us see how this works: implement the method as shown in Listing 3-5 .

 Listing 3-5. Work Out the Weekday from a Given Date

 func getDayOfWeek(date date: NSDate) -> String {
 // The NSCalendar instance can give us access to the date components,
 // which have the weekday information:
 let gregorianCalendar =
 NSCalendar(calendarIdentifier: NSCalendarIdentifierGregorian)!

 // weekDay in an integer between 1 and 7:
 let weekDay =
 gregorianCalendar.components
 (NSCalendarUnit.Weekday, fromDate: date).weekday

 // Now turn the integer into a day's name.
 // Keep in mind that the week in our chosen calendar starts on Sunday.
 switch weekDay {
 case 1: return "Sunday"
 case 2: return "Monday"
 case 3: return "Tuesday"
 case 4: return "Wednesday"
 case 5: return "Thursday"
 case 6: return "Friday"
 case 7: return "Saturday"

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

43

 // This will print out an error message in Xcode's console:
 default: print("weekDay must be between 1 and 7")
 }

 // We haven't been able to work out the weekday for some reason:
 return "Unknown"
 }

 ■ Note You may have noticed the additional date in getDayOfWeek(date date: NSDate) -> String . This
is a parameter label. Labels help you document your code, especially at the point where you call a function that
takes parameters. For example, getDayOfWeek would be called like this: getDayOfWeek(date: someDate) .
Here the label date serves as a reminder for what the parameter is intended to do. You can find out more about
labeling parameters in Chapter 17 .

 Now, if you run the app in the simulator or on a device, you should be able to see the label get updated
when you flick the date picker (Figure 3-2).

 Figure 3-2. The app now shows the day of week for the date in the picker

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

44

 Getting Debug Information
 Let us go over a few simple ways of getting inside information on what’s going on inside the app.

 Using Print to Output to the Console
 The simplest way to output runtime information in Xcode’s console is to call the print function. 1 Activate
the Standard editor (Figure 3-3); in Project navigator find the ViewController.swift file and open it. Locate
and change the updateDayOfWeek function to print out what it’s doing (Listing 3-6).

 Figure 3-3. Using print to output to the console

 Listing 3-6. Output Values to Xcode’s Console Using Print

 func updateDayOfWeek() {
 // Change the label's text to show
 // what day of the week the date in the picker is:
 dayOfTheWeek.text = getDayOfWeek(date: datePicker.date)

 1 We actually used it already (sneakily): have another look at Listing 3-5 .

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

45

 // Construct a string for the date in the date picker:
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateStyle = .MediumStyle
 let dateString = dateFormatter.stringFromDate(datePicker.date)

 // Print out the date and what day of the week it is in Xcode's console:
 print("\(dateString) is a \(dayOfTheWeek.text!)")
 }

 The first three lines that we added to this function take the current date value from the date picker and
run it through an instance of the NSDateFormatter class (part of the iOS SDK), so that we can get a nicely
formatted string from it.

 The last line is the interesting one: here we call the print function and ask it to output a string in
Xcode’s console. This string is constructed from the value of the dateString variable and the label’s text.
To insert a given value in a string literal, you wrap the value’s name in parentheses and prefix it with a
backslash: \(variableOrConstant); this goes inside the string literal quotes.

 Run the app on your device or in a simulator to see the effect of printing into Xcode’s console. If the
Debug area is not visible at the bottom of the screen, toggle it as shown on Figure 3-3 .

 The Debug area is split in two parts: the left part, called the Variables view , is where you can watch the
values of variables: we will look at it later. The right part is Xcode’s console , which shows you two types of
information: anything you choose to print out with the print function and messages from iOS about any
runtime issues in your app. With the app running flick through the date picker to see the print messages
pouring into the console.

 FLASH ANALOGY

 Using print in Swift is similar to using trace in ActionScript to output to Flash Builder’s Console view
(available in Debug Perspective) or to the Output window in Flash.

 Stepping Through Your Code
 You can set a breakpoint in Xcode by single-clicking the gray strip to the left of a line of code. Clicking for a
second time deactivates the breakpoint. If you want to delete a breakpoint, right-click it and select Delete
breakpoint from the pop-up menu.

 Let us set a breakpoint somewhere inside the getDayOfWeek function in ViewController.swift and run
the app. As soon as the breakpoint is hit you can see several changes on the screen (Figure 3-4):

• The Debugger controls appear at the top of the Debug area: use these to step over
or into code, pause the execution, simulate location on the device, or move up and
down the stack trace.

• The Debug navigator is populated with information on the state of system resources,
the state of the UI, and stack traces for each thread running in your app.

• The Variables view contains variables you can inspect: you can switch between
monitoring all variables and registers or only local variables, or let Xcode
automatically choose what is available for inspection at a given breakpoint.

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

46

 Click the Step over button in the Debugger controls strip or press F6 to step through your code. Use F8
to continue execution.

 Watching Variables
 With the debugger still paused at the breakpoint, have a look at the Variables view (Figure 3-4) and switch
between the filters to see different sets of variables and registers reported: Auto , Local Variables, and All .
Use the Debugger controls to step through your code and see the values change.

 If you right-click inside the Variables view, you will be given the option to add values for inspection by
selecting Add Expression… from the pop-up menu.

 Executing Commands in the Console
 The console allows you to type and execute commands at runtime. For example, you can manually
output the value of a variable. Try this: type print weekDay in the console to get the value of the
 weekDay variable (Figure 3-5).

 ■ Tip We will look at console commands and their shortcuts in more detail in Chapter 8 .

 Figure 3-4. Xcode’s screen gets updated with debug information when a breakpoint is hit

http://dx.doi.org/10.1007/978-1-4842-1666-8_8

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

47

 Changing a Value at Runtime
 A useful command you can type in the console is expression (or expr for short). It lets you change the value
of a variable at runtime: this way you can experiment and test different values without having to rebuild and
restart your app. Let us try this: put a breakpoint at the line where we call print inside the updateDayOfWeek
method (Figure 3-6). When the debugger stops at the breakpoint, type the following:

 expression dayOfTheWeek.text = "day for coffee"

 Figure 3-5. You can manually call commands in the console to output values at runtime

 Figure 3-6. Use the expression command to set an expression’s value at runtime

 This will change the label’s text to “day for coffee.”

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

48

 ■ Warning You may find that the expression command doesn’t always have an effect: Xcode sometimes
optimizes where values are copied and read from, which gets in the way of changing them at runtime.

 Inspecting Memory
 You can see what an expression looks like in memory at a given point of the execution by right-clicking it in
the Variables view and selecting View Memory of “nameOfTheExpression” .

 ■ Note The View Memory of option may not always work for Swift data structures. This has been a known
issue since Xcode 6. Apple suggests a workaround for this, which we will see how to implement in Chapter 8 .

 Let us see what the dateString variable looks like in memory. We declared dateString in the
 updateDayOfWeek method. Set a breakpoint at the line after the variable’s declaration and run the app in the
debugger. When the breakpoint is hit, find dateString in the Variables view, right-click it, and select View
Memory of “dateString” (Figure 3-7).

 Figure 3-7. You can see the memory layout of an expression in the Variables view

http://dx.doi.org/10.1007/978-1-4842-1666-8_8

CHAPTER 3 ■ INTRODUCING THE XCODE DEBUGGER

49

 This will load the memory view in the Editor. If it looks like Figure 3-8 , then you have nothing
further to do: you can see the memory layout of dateString as hexadecimal numbers on the right and as
characters on the left.

 Figure 3-8. Memory view

 If, however, instead of lots of memory addresses and data you see a blank window and the address
shown on top is 0x0, we will show you how to work around that when we get into more advanced debugging
topics in Chapter 8 .

 Summary
 With Chapters 1 , 2 , and 3 in the bag you are now set to start implementing and testing apps for iOS with
Xcode. In this chapter we covered the basic use of Xcode’s debugger—your best friend when it comes to
making sure code does what you intend it to do. We saw how to manage breakpoints, how to step through
code, and how to inspect and change runtime information.

 Before we plunge into migrating your whole workflow to Xcode, we have a few more useful tools to
show you in Chapter 4 , which will help you with further diagnosing your apps and with releasing them to
the app store.

http://dx.doi.org/10.1007/978-1-4842-1666-8_8
http://dx.doi.org/10.1007/978-1-4842-1666-8_1
http://dx.doi.org/10.1007/978-1-4842-1666-8_2
http://dx.doi.org/10.1007/978-1-4842-1666-8_3
http://dx.doi.org/10.1007/978-1-4842-1666-8_4

51© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_4

 CHAPTER 4

 Additional Development Tools

 So far in this part of the book we covered the essentials: the development tools you must have in order
to program apps for iOS. Xcode is a big package and this is only a small part of what it has to offer. In this
last chapter of Part I we continue to unwrap this package and familiarize ourselves with the integrated
development environment (IDE).

 In this chapter you will do the following:

• Learn about version control.

• Modify one of Xcode’s game templates.

• Measure the game’s performance and make improvements.

• Discover how Xcode can support your app development every step of the way.

 When you are done, you will have an app project, which is version-controlled and will have gained
experience in profiling it.

 Keeping Track of Changes
 Keeping a history of changes in your source code and having it backed up on a regular basis is vital for creating an
effective workflow. This is traditionally done via version control , also known as source control or revision control .

 You have probably used a version control system (VCS) in your development practice. But in case you
are new to it: version control is a system that keeps track of changes in files over time. Work files are kept
in a repository and there are specific rules for how they are accessed: in order to modify part of a project, a
developer needs make the modification in a local copy. Then the developer needs to commit the modification
to the repository. This leaves a record of what the change was, when it was made, and by whom. In this way
code is backed up along with the history of how it evolved. You can go back and inspect older versions of the
project to see where a bug first appeared, for example. 1 You can also correct changes you made by mistake.
When more than one person modifies the same file, a VCS assists with merging these changes, so that no
one’s work gets lost. Not only can code evolve linearly over time but it can branch out into different versions
when necessary. For instance, if you want to keep the latest released version of an app stable but also want to
introduce new features in the new version, you can make the changes in a new branch: this is a copy of the
project, which evolves separately and can be optionally merged back into the main source tree.

 There are three types of VCSs with respect to where the files and versioning information are stored:

• Local . A local VCS is useful if you work on your own and want to take advantage of
the automatic backup and tracking of changes in your code.

 1 And, more important, who introduced it.

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

52

• Centralized . Centralized VCSs help with collaboration by keeping source code in a
repository on a server and requiring that each developer check out a copy of the file
they currently work on.

• Distributed . Distributed systems push this requirement further: each collaborator
needs to have a local copy of the whole repository and first commit changes to it
before pushing them to the central repository. This creates multiple source code
backups, which eliminates issues with a VCS server being down, for example. It also
allows developers to take advantage of version control locally without muddying
everyone else’s waters until they are confident in their changes.

 Xcode offers version control from within the IDE and supports two distributed VCSs: Git and
Subversion . We will have a look at how to use Git by setting up a project that uses source control.

 In Xcode create a new game project: from the main menu select File ➤ New ➤ Project… and then
 iOS ➤ Application ➤ Game . Name it FibonacciSpaceships , make sure its Language is set to Swift and set
 Game Technology to SpriteKit (Figure 4-1).

 At the last step of the wizard set Source Control to Create Git repository on My Mac (Figure 4-2).

 Figure 4-1. Creating a new game project

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

53

 When the project appears in Xcode, you will see that quite a lot has already been done: there are
a couple of source code files, storyboards, and even assets. Run the app to see the result: there is a gray
background with the words “Hello, World!” in the middle of the screen and whenever you tap, a rotating
spaceship appears under your finger (Figure 4-3).

 Figure 4-2. Putting a new project under version control

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

54

 It would be a good idea to have a look at where Xcode has created the repository for our project. In order
to see it, navigate to the project folder in the Terminal app on your Mac and list the files in it by running

 ls -a

 The –a option instructs the ls command to show all files, including invisible ones. This reveals an
otherwise hidden folder, called .git , where the local repository for our project is (Figure 4-4).

 Figure 4-3. The SpriteKit game project out of the box

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

55

 You can inspect .git further by navigating to it and running the ls command again or by running open
.git , which will show the folder’s contents in Finder. Be careful not to manually change any of the files you
find there—this job is best left to the VCS.

 Let us make some modifications to the source code in Xcode and see how Git handles these. We will give
each spaceship a code name. The code name will be the Fibonacci number, which corresponds to the order
in which the ship was added to the scene. 2 The text on the screen will change to greet each spaceship with its
code name when it first appears. So, for the first and the second ship the text will read “Welcome, 1!” 3 ; for the
third it will change to “Welcome, 2!,” for the eighth, to “Welcome, 21!,” and so on. Just because we can.

 In the Project navigator open GameScene.swift . It contains a class definition, which looks like Listing 4-1
(we have omitted the method implementations for brevity).

 Listing 4-1. The Definition of the GameScene Class

 import SpriteKit

 class GameScene: SKScene {
 override func didMoveToView(view: SKView) {
 /* method definition */
 }

 override func touchesBegan(touches: Set<UITouch>,
 withEvent event: UIEvent?) {
 /* method definition */
 }

 override func update(currentTime: CFTimeInterval) {
 /* method definition */
 }
 }

 Figure 4-4. Inspecting the GIT repository that Xcode has created

 2 Fibonacci numbers form the following sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21 . . ., where each number after the first two is
calculated as the sum of the previous two numbers in the sequence.
 3 These two will wreck havoc in space traffic control.

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

56

 The text on the screen is controlled by a label (of type SKLabelNode), which is added dynamically to the
scene on this line in the didMoveToView method:

 let myLabel = SKLabelNode(fontNamed:"Chalkduster")

 The first modification we will do is to make myLabel a property of the GameScene class. At the moment it
is a local variable in didMoveToView . Cut its definition and paste it outside the method, so that the GameScene
class looks like Listing 4-2 .

 Listing 4-2. Making myLabel Accessible by Other Methods

 class GameScene: SKScene {
 let myLabel = SKLabelNode(fontNamed:"Chalkduster")

 override func didMoveToView(view: SKView) {
 myLabel.text = "Hello, World!"
 myLabel.fontSize = 45
 myLabel.position =
 CGPoint(x:CGRectGetMidX(self.frame), y:CGRectGetMidY(self.frame))

 self.addChild(myLabel)
 }

 // The rest of the class definition
 }

 We will add two more properties to GameScene : a variable that will keep track of how many spaceships
have been added to the scene and a constant to limit their number to a maximum of 47. (The 47th number
in the Fibonacci sequence is the last one we can store in an unsigned integer before we get overflow.) Add
these two under the definition of myLabel as shown in Listing 4-3 .

 Listing 4-3. Adding Properties to GameScene to Keep Track of Spaceships

 let myLabel = SKLabelNode(fontNamed:"Chalkduster")
 var spaceshipCount: UInt = 0
 let maxSpaceships: UInt = 47

 Next, modify the touchesBegan method to do the following. At the start it needs to check how many
spaceships have been added to the scene and not allow more than the maximum we just defined. If another
spaceship can be added, it needs to give it a code name and use that code name to display a greeting. The
rest of the method we will leave as it is. Listing 4-4 shows you the modified version of touch esBegan .

 Listing 4-4. Modifying touchesBegan to Greet Each New Spaceship

 override func touchesBegan(touches: Set<UITouch>, withEvent event: UIEvent?) {
 if spaceshipCount >= maxSpaceships {
 // If we have reached the maximum number of spaceships,
 // stop adding them to the scene.
 return
 }

 for touch in touches {
 let location = touch.locationInNode(self)

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

57

 let sprite = SKSpriteNode(imageNamed:"Spaceship")

 sprite.xScale = 0.5
 sprite.yScale = 0.5
 sprite.position = location

 let action = SKAction.rotateByAngle(CGFloat(M_PI), duration:1)

 sprite.runAction(SKAction.repeatActionForever(action))

 self.addChild(sprite)

 // Keep track of how many spaceships there are:
 spaceshipCount += 1

 // Give the newcomer a code name:
 let spaceshipCodeName = findFibonacciNumber(atPosition: spaceshipCount)

 // Greet the newcomer with its code name:
 myLabel.text = "Welcome, \(spaceshipCodeName)"
 }
 }

 Finally, let us implement a method , which will take a spaceship index and produce a code name by
finding the corresponding Fibonacci number (Listing 4-5). It is called findFibonacciNumber and we already
added a call to it in touchesBegan .

 Listing 4-5. Implementing findFibonacciNumber

 func findFibonacciNumber(atPosition position: UInt) -> UInt {
 // The first two Fibonacci numbers are 0 and 1:
 if position <= 1 {
 return position
 }

 // After the first two, each number in the Fibonacci sequence
 // is calculated as the sum of its two preceding numbers
 // by calling findFibonacciNumber recursively:
 let fibonacciNumber =
 findFibonacciNumber(atPosition: position - 1) +
 findFibonacciNumber(atPosition: position - 2)

 return fibonacciNumber
 }

 Save the changes to GameScene.swift and notice how an “M” appears next to its name in the Project
navigator (Figure 4-5).

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

58

 “M” stands for “modified” and this is Git telling us that we need to review our changes and commit them
to the repository. Let us do that. From Xcode’s main menu select Source Control ➤ Commit… Figure 4-6
shows you the commit window. On the left there is a list of files, which have changed. When you select one of
the files, you can see two versions of it, called revisions , side by side. In the left half of the window is the version
you just modified and in the right half, the last version that was committed to the local repository. Individual
changes are highlighted, so you can quickly locate them. There is space at the bottom of the screen for typing
a message: this is a short description of the changes you are about to commit. It will appear in the history of
the committed files in the repository and make it easier for you to track how they evolved over time and why
certain modifications were made. Click the Commit 1 File button to send your changes to the local repository.

 Figure 4-5. An M appears next to GameScene.swift to let you know it has been modified

 Figure 4-6. The commit window shows you the changes you made

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

59

 Let us have a look at the history of our project now. From Xcode’s main menu select Source Control ➤
 History… This opens the history window, which shows a list of revisions. You can see the initial commit that
Xcode made for us when it created the project, as well as the commit we last made (Figure 4-7).

 Next to each revision in the list there is a button, which lets you browse and see what changes were
committed. If you click Show 3 modified files next to the latest revision, you will see something very similar
to the commit window we used earlier, this time read-only (Figure 4-8).

 Figure 4-7. The history window shows a list of the commits that were made to the repository

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

60

 You are now all set with version control. You can go back in time with revisions or create branches in
your repository to test new functionality. For details on how to do this and more refer to “Using Source Code
Control” in Xcode’s manual. It is available online or from Help ➤ Xcode Overview (see Chapter 1 for how to
download Xcode’s documentation).

 In the next section we will run the app to see the effect of our changes.

 Measuring Performance
 If you run the app we just made, you will notice that we did not cover ourselves in glory with the change we
introduced to it. As you keep tapping the screen and adding more spaceships, each new spaceship takes
longer and longer to appear and the action on the screen “hiccups” just before a new spaceship is spat out.
In this section we will see how you can measure your source code’s performance to find bottlenecks and
make improvements.

 Xcode comes with a large set of tools, called Instruments , which help you collect data about your code:
its speed, memory usage, utilization of system resources and network connections, and even how its user
interface behaves. The instruments are available from Xcode’s main menu: Xcode ➤ Open Developer Tool…
➤ Instruments . You can also run your project through a particular instrument by selecting Product ➤ Profile .

 Let us do just that: with the FibonacciSpaceships project open in Xcode select Product ➤ Profile . This
will build the project and open the Instruments window, where you can choose what kind of data to collect.
Note that the list you see does not show the instruments themselves but templates, each of which has been
configured to work with a particular instrument.

 Another thing to note is that you need to profile (i.e., run and collect statistics about) your app on the
types of devices you expect users to have, as its performance in a simulator and on a device can differ quite
a lot. As you can see in Figure 4-9 , the FibonacciSpaceships project has been prepared for profiling on an
iPad running iOS 9.3.1. For the same reason it makes sense to profile a release, rather than a debug build, so
a release build is what Xcode produces when you build your project for profiling.

 Figure 4-8. Inspecting the changes that were last committed to the repository

http://dx.doi.org/10.1007/978-1-4842-1666-8_1

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

61

 Select the Time Profiler and click Choose to load the profiler template. The Time Profiler has a Record
button: clicking it will run the project on your device and start recording performance statistics (Figure 4-10).

 When you start the profiler you will see the Details pane and the CPU Usage graph change: the Details
pane shows stack traces of the threads running in your app (see Chapter 7 on threads and concurrency) and
CPU Usage tracks the load on the processor as your app runs. Give the app a hard time: tap away and don’t
go gentle on the tapping—add ships until the user interface visibly slows down. You will probably see that
the CPU is working quite hard—something like Figure 4-11 .

 Figure 4-9. Xcode’s instrument templates

 Figure 4-10. Click the Record button to start profiling the app

http://dx.doi.org/10.1007/978-1-4842-1666-8_7

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

62

 The pane on the right-hand side lets you set up how data is recorded and displayed. You can also use it
to see details about the recording once it is in progress or has completed. Select Display Settings as shown
in Figure 4-12 .

 Let us have a look at the Call Tree options in the Display Settings pane.

• Separate by Thread . This gives you the option of seeing separate call trees for each
of the threads running in the app. Leave it unchecked for this project.

• Invert Call Tree . By default the calls at the bottom of a stack trace are showed on
top of the tree. This option inverts it. Check it to see how the methods we defined in
 GameScene.swift show up at the top. Then leave it turned off.

• Hide System Libraries . This option is useful when you want to focus exclusively on
calls made to your code and not have to hunt for them in a big list of calls to system
libraries. Turn this option on.

 Figure 4-11. The Call Tree and CPU usage show real-time information about the game’s performance

 Figure 4-12. The Display Settings pane lets you control the amount and the type of information you see

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

63

• Flatten Recursion . This option lets you see recursive functions as single
entries, instead of one big tree of calls. To see what it does, find GameScene.
findFibonacciNumber in the call tree and expand it, then turn Flatten recursion on
and off. Leave the option unchecked.

• Top Functions . This option switches between including time spent only in a
function itself and including time spent in functions it calls. Leave it turned off.

 Next, open the Extended Detail pane as shown in Figure 4-13 . It shows the heaviest stack trace and
what a surprise to find our findFibonacciNumber method on top of it...

 If you look at the call tree in the main window, you will see that findFibonacciNumber and the method
that calls it, touchesBegan , are where the app has spent most of its time. Right-click findFibonacciNumber
and from the pop-up menu select Reveal in Xcode , as shown in Figure 4-14 . This takes us back to GameScene.
swift in Xcode, where we can make improvements to the culprit for the hiccups in the user interface.

 Figure 4-13. The Extended Detail pane lets you drill down and find details about the call stack

 Figure 4-14. You can navigate from the Call Tree back to the source code

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

64

 Let us change findFibonacciNumber into something more efficient. Listing 4-6 shows you the iterative
version of the method. Replace findFibonacciNumber with it and let us have another go at profiling the app
to see if this has improved performance.

 Listing 4-6. Implementing an Iterative Version of findFibonacciNumber

 func findFibonacciNumber(atPosition position: UInt) -> UInt {
 var fibonacciNumber = position

 if position > 1 {
 var a: UInt = 0
 var b: UInt = 1

 for _ in 2...position {
 fibonacciNumber = a + b
 a = b
 b = fibonacciNumber
 }
 }

 return fibonacciNumber
 }

 Note that if you clicked the Record button in the Time Profiler now, it would run the last build that
Xcode sent to it, which does not have our latest changes. To run a fresh build, start it in Xcode: Product ➤
 Profile . This will rebuild the project and send it to the profiler.

 Start a new recording session and once the app launches, tap away until the greeting in the middle of
the screen stops changing. The difference is noticeable in the app’s performance: no more hiccups. 4 You
can also see the difference in the CPU Usage graph in the Time Profiler, where you can visually compare
recording sessions (Figure 4-15).

 Figure 4-15. Visually comparing recording sesssions

 4 If you knew all along what would happen ever since we first implemented that wretched recursive function, apologies
for the anticlimax. We are happy to receive “I told you so” e-mails.

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

65

 Something else has changed too, though. Have a look at the call tree on Figure 4-15 to see if you can spot
it. findFibonacciNumber has disappeared. Although actual timings will probably differ, the call probably
disappeared from your profiler session too. This missing method is a good excuse to make a note about how
Xcode’s Time Profiler works.

 There are various ways to collect statistical data about source code. The two most widely used are
 instrumentation and sampling . Following is a brief description of both methods.

• Instrumentation . With instrumentation additional code is inserted into the binary,
in order to track how long a certain function call takes or how many times the call
was made. The information collected in this way can be very precise down to lines of
code, but at a cost: the inserted code adds time and memory overhead.

• Sampling . Sampling uses a different principle: execution is interrupted at regular
intervals and call stack snapshots are taken to see what is running at that particular
moment. This sacrifices precision but can give a feel for where time is spent and
reveal problem areas. Xcode’s Time Profiler uses sampling and probes an app every
millisecond by default. So if a function takes less than that and is not called many times,
it is likely to be missed by the sampler, which is the case with findFibonacciNumber .

 You can control the sample interval from the Record Settings pane (Figure 4-16). The shortest interval
you can set it to is half a millisecond (500 μs).

 Before closing the project, you can save the statistics from the Time Profiler to a . trace file. And do not
forget to commit the optimized function to Git.

 With this short tutorial we have barely scratched the surface of what is available through Xcode’s
instruments and profilers. A whole book can be dedicated solely to that. It is important, however, to know what
is available and where to go for more information when you need it. Xcode’s manual is a good place for that.

 Managing Devices
 Back in Chapter 2 we had a brief look at Xcode’s Devices window. It can be your friend when it comes to
managing development devices and gathering information about your apps, so we will have a more detailed
overview of it. Figure 4-17 points out the main things with which it can help you.

 Figure 4-16. Setting how frequently the Time Profiler samples the code

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

66

 On the left side of the Devices window there is a list of devices and simulators. When a device is
selected, details about it are shown on the right side. There you can find your unique device identifier
(UDID) or take screenshots of apps running on it. You can also manually delete or install apps you have
developed and want to test. Viewing device logs can help you drill down in crash reports—you know the
kind of crash that is hard to reproduce in debug builds.

 In the device console at the bottom you can see real-time information about processes that are running on
the device. In the past this was especially useful for tracking installation issues, when an app would fail to install
on a device. In its latest version Xcode has become better at letting you know when there is a problem and
what the problem is, but it is still a good idea to know where to dig for more information. Keep in mind that this
console receives messages from pretty much everything that is active on the device at any given moment, so
you may have to find your way through quite a lot of noise (or what appears to be noise when you are interested
in what the matter is with a particular app). One useful tip is to use the search bar on top of the console (make it
show up with Cmd + F) and search for the name of the app, about which you need information.

 At the bottom of the left pane there is a settings button, which lets you inspect the provisioning profiles
installed on a device (we became familiar with provisioning in Chapter 2) (see Figure 4-18).

 Figure 4-17. The Devices window

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

67

 More Development Tools
 Xcode offers a collection of other tools you might find useful at different stages of the development process.
We will finish the chapter with a summary of some of the most widely used ones and a pointer for where you
can find more information.

 Figure 4-18. Viewing the provisioning profiles, which are installed on a device

CHAPTER 4 ■ ADDITIONAL DEVELOPMENT TOOLS

68

• Application Loader , available from Xcode ➤ Open Developer Tool ➤ Application
Loader . This is the tool traditionally used for uploading builds to the App Store, as
well as any in-app-purchase content. Some of its functionality now overlaps with
Organizer.

• Organizer , available from Window ➤ Organizer . The Organizer window helps you
manage your archives (i.e., app release builds) and lets you upload them to Apple’s
App Store.

• File Merge , available from Xcode ➤ Open Developer Tool ➤ File Merge . This tool
lets you compare files side by side and merge changes in them. It is similar to the
file comparison we saw in the commit window of Xcode’s source control, but a bit
more sophisticated than it. It lets you pick and choose changes and is very useful for
merging different branches of code together.

• Tools for internationalization . As the name suggests, this is not a single tool but
a whole set, which can help you make your app available on different markets
around the world. You can get help not just with translations but with adapting
your user interface to different layouts (e.g., making sure it displays right-to-left
languages correctly) and using the relevant metric system and currency. Refer
to the “Internationalization and Localization Guide,” which comes with Xcode’s
documentation.

 There is also a huge list of additional tools on Apple’s web site. Selecting Xcode ➤ Open Developer
Tool ➤ More Developer Tools… from Xcode’s main menu will take you there.

 Summary
 Now that you have completed Part I of the book you should have a good overall idea of what Xcode can
do for you and where things are. In this chapter we explored some tools, which a lot of other IDEs do not
include: integrated version control and profilers for measuring performance. We also had a peek at what else
is available with Xcode and where to find more tools.

 Of course, no amount of theory beats practice, so enough of the introductions, let us get on with work.
We will see you in Part II, where we get on with app development by exploring options for user inferface (UI)
 design first.

 PART II

 Workflow Migration

71© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_5

 CHAPTER 5

 “Hello, Swift!”—A Tutorial for
Building an iOS App

 Xcode and the iOS SDK encourage you to use certain software design patterns when structuring and
implementing an app. We are about to have a look at these patterns and learn how to take advantage of
them. If you have fought your way through any of the theory books on design patterns 1 and your first thought
is “Oh, no, not another one!,” fret not. The goal of this chapter is that you learn by doing rather than by
reading through pages of theory. We will make an app project and along the way cover the basics you will
need for iOS app development in Xcode: from how to structure your project to how to work with storyboards
and make your user interface (UI) adaptive.

 In this chapter you will do the following:

• Learn about several software design patterns: Delegation , Target-Action and Model-
View-Controller (MVC) .

• Learn how to structure your apps to take full advantage of MVC.

• Handle image assets in Xcode and create a custom view class.

• Use Auto Layout and Size Classes to make responsive UIs for different screen sizes.

 When you are done, you will have an app with an adaptive UI that will run on any iOS device. We will
have it display a cute panda and let the user change the panda’s name.

 Developing a Project for the iOS
 In Chapter 2 we had a go at setting up, provisioning, and running an iOS app, which didn’t require a single
line of code on your part. You saw how Xcode can generate and structure a working project for you and
where the main tools at your disposal are. Now we will set up another app and will first spend some time
dissecting the project and files that Xcode creates automatically: knowing how your project is structured will
give you the best start.

 1 “The gang of four” famously opened their book on design patterns with “Don’t worry if you don’t understand this book
completely on the first reading. We didn’t understand it all on the first writing!” Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley 1995).

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

72

 Xcode mobile project anatomy
 Create an iOS Single View Application project (File ➤ New ➤ Project , then iOS ➤ Application ➤ Single
View Application) and name it iOSProject . Select Swift as the language and set Devices to Universal . Click
 Create and let us see what Xcode has generated for us: there are a bunch of Swift files, folders, a storyboard,
and resource files in Project navigator.

 iOSProject
 This is the root entry in the Project navigator and represents the project we have just created. It contains all
source files, resources, and build settings.

 iOSProject Group
 All project files are organized in groups. A group is used to keep files that logically belong together, but it
doesn’t have to correspond to an actual folder in the file system. You can create a new group by right-clicking
inside Project navigator and selecting New Group from the pop-up menu.

 AppDelegate.swift
 This file contains a single class, called AppDelegate , which serves as a helper to the application and gets
notified about changes in the application’s state. This class, in other words, acts as a delegate for the app,
which gives it a special role. Following is a short explanation of the Delegation design pattern , which you will
encounter many times in the iOS SDK.

 DELEGATION DESIGN PATTERN

 The Delegation design pattern is used a lot in the iOS SDK. Its idea is to allow an object to delegate
one of its tasks to a helper. The helper object provides an implementation for performing the task. In
other words, the responsibility for the decision making is delegated to the helper object.

 Let us take the class called UIApplication as an example. It is part of the iOS SDK and represents your
app. Being part of the SDK, it needs to be pretty generic and leave room for you to define the behavior
of your own app. For example, what happens before an app gets closed may vary: you may want to
save the level a user reached in a game or to let go of the microphone or the camera. UIApplication
can’t provide for every possible scenario, so instead of deciding what should happen upon termination,
it hands over that task to a helper class, which you implement: AppDelegate . If you have a look at the
class in AppDelegate.swift you will see a method called applicationWillTerminate . As its name
suggests, this method will be called just before the app terminates: this is UIApplication delegating
the task to your class, so you can implement the behavior you need.

 You have noticed that UIApplication is a class that has already been defined in the iOS SDK, whereas
 AppDelegate is part of your code (albeit generated for you by Xcode): you can name it Eric , if you like. For
 UIApplication to know how to hand over a task to AppDelegate or to Eric, as it happens, AppDelegate
or Eric needs to be delegable (i.e., each needs to have a certain interface that can take tasks).

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

73

 This is where protocols come in. A protocol defines an interface, which a type (a class, a structure, or an
enumeration) can implement. That type is then said to conform to the protocol. In our case AppDelegate
conforms to the UIApplicationDelegate protocol: applicationWillTerminate , as well as the
rest of the methods which have been stubbed out for us to implement are part of the interface that
 UIApplicationDelegate delegate defines and that UIApplication expects to talk to.

 For the time being you can think of protocols as an analogy to ActionScript’s interfaces . You can find
more on protocols in Chapter 21 .

 ViewController.swift
 Every screen (view) in the app is paired with a controller class. A controller supplies the view with data,
responds to user actions, and is in charge of behavior when transitioning between screens. If you open
 ViewController.swift you will see a ViewController class already defined for you, which has a couple
of methods:

• viewDidLoad : this method is called after the view has been created and loaded
on screen. Here you can add code for the initial setup of your view: show user
information, for example.

• didReceiveMemoryWarning : when called, this method gives you a chance to save
any critical data and release resources when the operating system is running low on
memory. Your app may get slapped on the wrist otherwise and get closed down.

 Both of these methods override those in UIViewController : this class is part of the iOS SDK and is the
base class that your ViewController inherits.

 You can override another couple of methods of UIViewController , in order to customize what the view
does just before and just after it is shown on screen:

• viewWillAppear: here you can perform operations before the view becomes visible.
For example, you can refresh the displayed data.

• viewDidAppear : it is called when the view has just become visible. It may be a good
place to notify the user if any heavy tasks are taking place, like fetching data from
a server.

 Main.storyboard
 A storyboard defines the app’s user interface. Everything you create with the Interface builder: every screen,
control, and so on. is stored inside this file. If you open a storyboard file in a text editor you will see that it is
an XML file, containing the descriptions of UI elements, transitions, and connections.

 Typically there will be one main storyboard per project. However, for applications with lots of screens
or for situations where workload needs to be distributed between developers you can divide the UI between
several storyboards.

 LaunchScreen.storyboard
 This is the storyboard for your launch screen. Before iOS 8.0 this used to be a bunch of launch screen
images instead.

http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

74

 Assets.xcassets
 This is not a single file, but a resource bundle, which contains the image assets for the app. It can contain
your app’s icon, launch screen, and all the images or textures that will be used in the views. In the Editor you
can manage the bundle and provide different image resolutions for different screen sizes. We will see how to
use image assets in the example later in this chapter.

 Info.plist
 This file stores the settings of your app and lists the capabilities or entitlements that the app needs, for
example the capability of using cloud services. The format of the file is XML key-value pairs.

 Next comes the practical part: we will add an image and will get familiar with the Model-View-
Controller paradigm by creating a custom View and Controller, as well as a custom Model, which will
provide data to be displayed by the View.

 Using Assets
 Apps often use a lot of images as part of their UI. We will see how to add and manage them.

 First let us find an image that we can use in the example. If you go to pixabay.com , you can find
thousands of free images under the Creative Commons license. I’m a bear lover, so I searched for “panda
bear cute.” Find your equivalent to a cute panda and download it 2 —any JPEG or PNG will do. I renamed the
downloaded file to bear.png for short and this is how I will refer to it in the steps that follow.

 Let us add bear.png to the project’s assets. Click Assets.xassets in Project navigator to open the Asset
Catalog editor. From there right-click inside the left panel and choose Import (Figure 5-1).

 2 Here is the link to the image I’m using, in case you want to download the same one:
 https://pixabay.com/en/panda-bear-cute-happy-young-151587 .

https://pixabay.com/en/panda-bear-cute-happy-young-151587

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

75

 Figure 5-1. Adding an image asset to the project

 Find the image file using the Open dialog (Figure 5-2).

 Figure 5-2. Choosing an image file

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

76

 This will create an image set for your image file (Figure 5-3). Importing the image also copies it in your
project on disc: if you explore your project in Finder, you will find that bear.png has been put in iOSProject/
Assets.xcassets/bear.imageset .

 Figure 5-3. An image set with the panda image inside

 To show this image on the user interface we need to load it in an Image View. Views are normally
composed on a storyboard, so that’s what we will do next. You already gained some experience with
storyboards from Chapter 2 . Here we will build on it and go a bit further.

 Working with the Storyboard
 Xcode has a powerful visual editor, which lets you edit an application’s screens, arrange views, and connect
UI elements with code in the corresponding view controller source file.

 A storyboard consists of a sequence of scenes . Each scene represents a screen in the app and is
composed of views such as buttons, labels, text views, and so on. Scenes also have corresponding view
controller source files.

 Transitions between scenes are also defined on the storyboard, using segue objects. Figure 5-4 shows an
example of a storyboard with views, scenes and transitions between them.

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

77

 Figure 5-4. Storyboard elements

 I know what you are thinking: can I create UI programmatically? The answer is yes, you can.
Storyboards are usually preferred however. Not only do they let you rapidly design UI by dragging and
dropping components onto a scene, but they also help visualize the appearance and the flow of your app.

 Before we start creating the UI, let me make a quick note about the word “view” and its usage. In this
chapter depending on the context a view can refer to an element of the user interface of the application, an
implementation of type that inherits UIView class or an abstract entity, which displays information to the user.

 Let us add an Image View to show the panda: Figure 5-5 illustrates the steps. Select Main.storyboard
to open it in the storyboard editor. In Object library find an Image View and then drag and drop it onto the
scene: initially it’s just a rectangle, which says “Image View.” To load the picture of the panda, with the Image
View selected open Attributes inspector and set the Image drop-down to “bear.” The image is likely to be
stretched and look out of proportion. In Attributes inspector set Mode to Aspect Fit to fix that.

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

78

 Figure 5-5. Add an Image View and display an image in it

 Let us finish designing the UI by adding a Label and a Text Field below the panda Image View. In
Object library search for a Label and drag and drop it onto the storyboard. With the Label selected go to
Attributes inspector and change its text to “My name is.” If the Label’s text appears shortened, resize the label
horizontally until you see the text without trailing ellipses (Figure 5-6). Now search for a Text Field view in
the Object library and drag and drop it below the label.

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

79

 For now, do not worry if the UI is aligned or not: we will take care of this later on in the chapter.
 Next are outlets and actions: you saw how to create them in Chapter 2 , now we will see why we need them.

 Creating Outlets
 All UI elements (views) we add onto the storyboard are instantiated as objects in memory when the app
starts. The instances are created behind the scenes and we can’t access them unless we create references to
them, called outlets .

 An outlet is typically added as a property in a view controller class. It is marked with the @IBOutlet
attribute, which makes it accessible to the storyboard: this serves as a connection between the storyboard
and the code.

 Create outlets for the Label and the Text Field in the ViewController class in ViewController.swift
the way we learned to do it in Chapter 2 : open Main.storyboard and ViewController.swift side by side
in Assistant editor and Ctrl+drag each UI element into the definition of the ViewController class. Name the
Label outlet label and the Text Field outlet textField .

 The ViewController class should now look like this (Listing 5-1):

 Figure 5-6. Add a label view and resize it

http://dx.doi.org/10.1007/978-1-4842-1666-8_2
http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

80

 Listing 5-1. Creating Outlets for the UI Elements

 class ViewController: UIViewController
 {
 @IBOutlet weak var label: UILabel!
 @IBOutlet weak var textField: UITextField!

 override func viewDidLoad()
 {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 // typically from a nib.
 }

 override func didReceiveMemoryWarning()
 {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 }

 Using the Target-Action Pattern
 Target-Action is another design pattern, which the iOS SDK encourages you to use. It enables a system of
objects to notify each other that an event has occurred and to target that event to an object that can act on it.
You will typically see the pattern in situations where the app needs to react to an action done by the user, for
example, tapping a button. The button view that receives the tap notifies a target object, which can perform
an action in response.

 In our context the target object is the ViewController instance. We will add a method to it, which will
serve as the action to be performed when the user enters text in the text field: you can think of it as an event
handler. This method has the following signature and is marked with the @IBAction attribute, which serves
as a link between the storyboard and the code.

 Listing 5-2. Signature of an Action Method

 @IBAction func actionName(sender: AnyObject)

 You gained some experience with adding actions to view controllers from Chapter 2 . Here is a quick
reminder for how to do it: with Main.storyboard and ViewController.swift opened side by side, Ctrl+drag
the Text Field from the storyboard into the definition of ViewController . Set the Connection in the pop-up
dialog to Action , set Event to Editing Changed , name the action nameHasChanged , and click Connect to
create the action method in ViewController (Figure 5-7).

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1666-8_2
http://www.allitebooks.org

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

81

 Leave action body empty for now. We will add logic to it in the next section, which shows you how to
divide your code into layers of responsibilities with the Model-View-Controller pattern.

 Model-View- Controller Design Pattern
 This is the third pattern, which abounds in iOS programming and the iOS SDK is designed to let you take
advantage of it. Whole applications are designed using this pattern. MVC is not new to the Flash and
ActionScript world, so you may have already used it a number of times. The next section provides a quick
intro, in case you would like a refresher.

 MVC in Theory
 The idea behind MVC is that the application is separated into three different functional layers: a model layer,
which manages data; a view layer, which shows the data; and a controller layer, which controls how data is
interacted with (Figure 5-8).

 Figure 5-8. Model-View-Controler pattern

 Figure 5-7. Creating an action

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

82

 The three layers are

• Model —this is the part of the app that is responsible for managing data. It can
include different data representations, business logic, and rules for how data is
stored, retrieved, and edited.

• View —this is what the user sees on the screen: the user interface. The View layer
of your app should care about how it looks (how data is presented visually) but
not where the data comes from or what happens when the user taps a button, for
example.

• ViewController —it binds the Model and the View together. The Controller gets the
data from the Model and uses it to update the View. It also controls the logic of what
happens when a button is tapped or an edit box text gets changed. When the user
makes changes to the data presented by the View, the Controller commits these
changes back to the Model.

 The MVC pattern is such a common practice, that it won’t be very far from the truth if we said that it is
present in any program with a graphical user interface. Note that MVC has many incarnations, each of which
is subtly different from the rest. You will find versions where the View and the Model communicate directly,
for example. Here we have presented Apple’s implementation of the pattern.

 ACTIONSCRIPT ANALOGY

 Those of you who have worked with Adobe Flash Builder will already be familiar with structuring a
project using the MVC paradigm. A typical application project in Flash Builder consists of an .mxml file,
which represents the View; an ActionScript class, which serves as the Controller and often another class
for the Model.

 Let us structure our project in a way that will illustrate how MVC is meant to be used in iOS mobile apps.

 Creating a Model
 We will start by creating separate groups in the project tree for each part of the MVC triad . While this
is not mandatory, it is considered to be a good practice to logically separate files for easy navigation
around the project.

 Create three new file groups by right-clicking the iOSProject folder in Project navigator and selecting
 New Group from the context menu (Figure 5-9). Name the groups Model, View, and Controller.

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

83

 As the names of the file groups imply, each group will hold the source files of the corresponding part of
the MVC pattern. Drag the ViewController.swift file to move it to the Controller group. The project tree
should look like Figure 5-10 .

 Figure 5-9. Creating a new file group

 Figure 5-10. Move ViewController.swift file to Cotroller group

 Next we will create a Panda class that will hold data about our panda and will act as the Model in the
application. Right-click the Model group and choose New File from the context menu. In the wizard that
appears choose iOS ➤ Source ➤ Swift file and name the file Panda.swift . Inside we will define the Panda
class. The class will have one property of type String for the name of the panda: not a huge amount of data,
but this will suffice to illustrate how to separate the data into the Model layer of the app. You can see the
 Panda class in Listing 5-3 .

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

84

 Listing 5-3. Panda Class Representing the Model from the MVC

 import Foundation

 class Panda {

 var name : String

 init(pandaName : String){

 name = pandaName
 }
 }

 Setting Up the Controller
 Next comes the Controller. The Controller’s task is to load the name of the panda from the Model, to commit
the changes back to the Model when the user types a new name for the panda, and to update the View when
the panda’s name changes (Listing 5-4).

 Open ViewController.swift in the Code editor. First we will declare a constant property panda of type
 Panda and will set its name in the initializer to Cute . Not too original, but hey, look at that image: how could
one resist? Go to the viewDidLoad() function and set the text property of the label outlet to "My name is \
(panda.name)" so when the app starts the label on the screen will say My name is Cute

 The last thing to do in the Controller is to edit the model and to refresh the Label view when a change
has been made. Remember the nameHasChanged(:) action we created earlier? It is called every time the user
changes the text in the Text Field view. This is where we will update the data in the Model: that is, we set
the name property of panda to what the user typed in the Text Field, which we access through the textField
outlet. After the Model has been updated, we change label to show the modified data.

 Listing 5-4. Filling Up the Controller

 class ViewController: UIViewController {

 @IBOutlet weak var label: UILabel!
 @IBOutlet weak var textField: UITextField!

 //
 let panda : Panda = Panda(pandaName: "Cute")

 @IBAction func nameHasChanged(sender: AnyObject) {

 //Edit the model when text field view changes
 panda.name = textField.text!

 //Display the new name of the panda
 label.text = "My name is \(panda.name)"
 }

 override func viewDidLoad() {
 super.viewDidLoad()

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

85

 //Display panda's name when the view is loaded
 label.text = "My name is \(panda.name)"
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 }

 Creating a View
 The final piece of the MVC puzzle is the View . While there are plenty of ready-to-use view components, there
will be times when you need to implement a view with custom design and functionality. The good news is
that you do not need to start writing the view from scratch, but you can use an existing view and extend it in
a subclass. This is what we will do here. Imagine we want all of our panda images to have rounded corners
and on a green background. The iOS SDK UIImageView class has properties that control the background and
the radius of the corners, but if we want all panda images in the project to be rounded and green by default
we can achieve this by creating a new view class.

 Add a new file to the View group in the Project navigator. When the new file wizard appears select
 iOS ➤ Source ➤ Cocoa Touch Class and click Next. At the next step set the class name to RoundedImageView
and make it a subclass of UIImageView . Click Next to create the new Swift file.

 Figure 5-11. Create a custom view class

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

86

 3 During the build phase of the project all views and storyboards you have created are archived in .nib files. When a .nib
file is loaded in memory, all of its contents get unachieved or awakened . If instead of a .nib you stumble upon an .xib ,
do not panic: they both have the exact same information inside; just store it in a different way. So you can think about
 .nib and .xib as synonyms.

 When you open the new file, you will see that Xcode has already generated most of the code for the
class. What is left for us to do is to access and modify the properties of the parent class that control the
appearance of the view. We will do this in the awakeFromNib() method (Listing 5-5), which is called when
the view is loaded from the Interface Builder archive. 3 In this method we will modify the view a bit by setting
its color to green and its corner radius to 10.0. We will also get the Image View to clip itself, so we can see the
rounded corners.

 Listing 5-5. RoundedImageView Class Implemetation

 class RoundedImageView: UIImageView {

 override func awakeFromNib() {
 self.backgroundColor = UIColor.greenColor()
 self.layer.cornerRadius = 10.0;
 self.clipsToBounds = true;
 }
 }

 To use the newly created view class, open Main.storyboard and select the Image View. Open the
Identity inspector and change Class to RoundedImageView as shown in Figure 5-12 .

 Figure 5-12. Setting custom class to the image view

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

87

 Now if you run the app in the simulator you will see how our cute panda sits on top of a green
background with rounded corners (Figure 5-13).

 Figure 5-13. The app running in a simulator

 So far in this chapter you learned how to structure your project using the MVC paradigm, what the
Delegate pattern is, how to lay out the UI, and how to connect it to code using outlets and actions.

 UI Layout Techniques
 Now it is time to see how to align the views on the screen and how to set up the UI to look good on different
screen sizes.

 Auto Layout
 When you design the UI of an application, you need to consider what its UI will look like on devices with
different screen sizes and resolutions. Making it adaptive to different screen orientations is also a good thing:
 Auto Layout is a tool that does that by automatically recalculating the size and position of every element on
the screen, taking into account any predefined constraints you have set.

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

88

 FLASH ANALOGY

 If you have experience with Flex, you have definitely used layouts before. Flex uses several different
layout containers: absolute, horizontal, vertical, tile, and so on. Each of them resizes and repositions the
views it contains the way its name suggests. You can think of an Auto Layout as a layout container, but
with more general rules, where each view is aligned and sized relative to its neighbors.

 We will do a bit of planning for the UI of our app. Let’s say we want the panda image to be
horizontally centered on the screen and to have its top edge at 20 pixels from the top of the screen. We
also want the vertical gap between all views to be 20 pixels. The Label view will take all the available
width of the screen and the width of the Text Field view will be half of the width of the Label. See the UI
sketch in Figure 5-14 .

 Figure 5-14. Sketching out the sizes and positions of the elements in the app’s UI

 We also want these constraints to hold on every iOS device and for every screen orientation. If your lips
are forming the question “Why?!,” let’s assume that this is what the client who has commissioned this app
wants. This probably raises another “Why?!,” but let’s not go there. . . .

 To see what the design looks like on different devices while we are still working on it, toggle the
storyboard Preview window (Figure 5-15): select Main.storyboard and open the Assistant editor. Find the
Assistant menu button and select Preview ➤ Main.storyboard .

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

89

 Figure 5-15. Show the Preview window

 You can add multiple previews for different devices by clicking the + button at the bottom. Click it and
select iPad and iPhone5.5 from the pop-up menu (Figure 5-16). You can see how the panda is not centered
on the iPhone preview and all of the views (Image View, Label, and Text Field) appear clipped.

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

90

 Let’s add some constraints that will keep the views aligned. You can think of a constraint as a rule that
you want a view to follow. For example, you can say that you want the top edge of the view to be positioned
at a certain distance from the top edge of the screen or that two views should always maintain the same
height.

 All of the constraints put together form a system of linear equations. When solved, they result in actual
numbers for the views’ widths, heights and positions. Solving the system is Auto Layout’s job.

 There are two types of constraints . The first type is applied to a single view, for example, to give it a fixed
width or height. The second type is defined as requirements for one view, relative to another view.

 You had a go at using the Auto Layout tools back in Chapter 2 and we will put them to use again. Start
by selecting the Image View and click the Pin button. Set Spacing to nearest neighbor to 20 pixels to the
top of the scene. Set Height to 98 pixels, tick Aspect ratio, and click Add 3 Constraints . You will see the
constraints appear in the document outline on the left (Figure 5-17). A note: we only added the Aspect ratio
constraint temporarily: it will prevent Auto Layout from stretching the image while we are adding other
constraints (i.e. while the system of equations is still underdefined); we will get rid of it later.

 Figure 5-16. Add devices for preview

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

91

 Next, select the Label and open the Pin dialog again. Pin the Label at 20 pixels vertically away from
the Image View by setting the top Space to nearest neighbor to 20 pixels. Set the left and the right spaces
to 10 pixels each: this will be the distance that the Label will maintain from the edges of its parent view.
Click Add 3 constraints to apply them to the scene (Figure 5-18).

 Figure 5-17. Pin the image view

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

92

 Pin the Text Field 20 pixels away from its nearest neighbor at the top and at 10 pixels from the left and
from the right edge of its parent view.

 To set the width of the Text Field to half that of the Label, select both views, open the Pin dialog and
check the Equal Widths checkbox, then click Add 1 Constraint (Figure 5-19).

 Figure 5-18. Pin the label view

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

93

 Setting the two UI elements to have equal widths when we are aiming to have one of them half the
width of the other may seem a bit confusing. We will fix this in a minute.

 With the Text Field selected open Size inspector (Figure 5-20), find the Equal Widths constraint, and
double-click to edit it.

 Figure 5-19. Constrain the width of the Text Field view

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

94

 The first three fields in the Equal Widths Constraint form determine the two UI elements that the
constraint will take into account or affect (Figure 5-21): First item should be set to Mlabel.Width and
 Second Item should be set to MText Field.Width .

 Figure 5-20. Size inspector

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

95

 If you have a look further down the form, you will see a setting called Multiplier : this is what will help us
set the correct proportion for the widths. The Multiplier setting is used to calculate a property proportional
to another property. In this case it will be used for setting the width of the Text Field proportional to the
width of the Label. The Multiplier, as its name implies, multiplies the selected property of the Second Item
and applies the result to the selected property of the First item . We can set the Multiplier value to any
floating point number: 1.0 means that the two properties should be equal. To make Text Field half the width
of the Label, we need to set Multiplier to 0.5.

 The last thing left to do is to center the panda horizontally on the screen. Select the Image View and its
parent view (the screen in this example) and click the Align button (Figure 5-22). Tick Leading Edges and
 Trailing Edges and click Add 2 Constraints .

 Figure 5-21. Adjusting the width multiplier

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

96

 Figure 5-22. Align the Image View and the Superview leading and trailing edges

 In the Document outline panel select the leading edge constraint you just created (Figure 5-23). Then,
with the constraint selected, in Size inspector set Second item to Superview.Center.X and Multiplier to 0.5.
This sets the left edge of the Image View in the middle of the first 50% of its containing view.

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

97

 To actually center the Image View, we have to set its right edge to be in the middle of the second 50% of
its containing view. To apply this logic select the Trailing Edge constraint in Document outline (Figure 5-24),
then in Size inspector set Second item to Superview.Center.X and Multiplier to 1.5.

 Figure 5-23. Align the Image View’s leading edge to 50% to the left of the Superview center

 Figure 5-24. Align Image View trailing edge to 50% to the right of the Superview center

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

98

 You may have noticed that even after editing the Multiplier setting the panda is still not centered
properly. This is because the system now has one constraint too many. Select the Aspect Ratio constraint
that we temporarily set earlier for the Image View and delete it. Now you should see the panda image
centered on all devices in the Preview window (Figure 5-25).

 Figure 5-25. The app’s user interface on different screen sizes

 And thus we made the UI of the app responsive. Next we will see how to enhance an Auto Layout, so we
can fully master the real estate of different screen sizes.

 Size Classes
 Having an adaptive UI is not always the whole story. Sometimes you want your application to make
different use of different screen sizes and change its look (not just resize itself) depending on what device
and what orientation it is used in. For example, a video chat app that shows video in its top half and a
text area for typing in its bottom half on an iPad and on an iPhone in portrait orientation may be better
presented with the video view taking the whole screen when the iPhone is rotated to landscape. Before
iOS 8 providing these two different looks meant creating and maintaining two storyboards, which often
resulted in duplicated work.

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

99

 Table 5-1. Size Classes–Devices Correspondence

 Horizontal Size Class

 Vertical Size Class Regular Compact

 Regular Device: iPad
 Orientation: portrait, landscape

 Device: iPhone
 Orientation: portrait

 Compact Device: iPhone
 Orientation: landscape

 Size Classes were introduced to help with that. Here the word “class” is used to mean “category” rather
than the object-oriented programming concept. They work together with Auto Layout: instead of having the
same constraints apply to your UI all the time, you can categorize them. In other words, you can choose a
constraint to only be applied in a certain case by setting it to belong to a given Size Class.

 There are two main types of Size Classes: horizontal and vertical. They can be set to one of three
options: Regular, Compact or Any. Each combination corresponds to a different device and screen
orientation, summarized in Table 5-1 .

 Figure 5-26. Set Size Classes to match iPad (Regular | Regular)

 We will set constraints for the cute panda app and classify them with Size Classes to get a different look
on the iPad. Imagine a client called to ask that only on the iPad all views be moved toward the bottom of the
screen by 500 pixels.

 Before we set the new constraints, we need to specify that we are now designing for the iPad screen size.
With the storyboard open click the Size Class button and select Regular row and Regular column (Figure 5-26).

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

100

 Select the panda image view and pin its top at 500 pixels from the top edge of its parent view (Figure 5-27).
You might notice that the bottom bar of the Interface builder has changed to blue: this is Xcode’s way of
reminding us that we are working in a Size Class mode different than Any | Any.

 Figure 5-27. Pin the Image View to Top with 500 pixels for the iPad

 Now if you look at the Preview window, you will see how all the views appear lower down only on the
iPad preview (Figure 5-28).

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

101

 This is the power of Size Classes.

 Resolving Layout Issues
 While designing the UI of the app you will inevitably stumble upon some red and orange lines around some
of the view elements (Figure 5-29). This is how Interface Builder informs you about possible issues in the
layout that you must consider resolving.

 Figure 5-28. The iPad preview now looks different from the rest

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

102

 The orange lines are used as a warning that there might be a missing constraint or that the Interface
Builder has a suggestion for changing a constraint value. The red lines appear when there are conflicting
constraints.

 There are two ways to handle layout issues. You can try to edit the constraints manually until the Interface
Builder is satisfied, or you can use the Resolve Auto Layout Issues tools, a button placed at the bottom of the
storyboard editor panel (Figure 5-30).

 Figure 5-30. Resolve Auto Layout Issues

 Figure 5-29. Constraints issues indicator lines

 There are several options from which we can choose:

• Update Frames. This will update the frame of the selected view to match the
constraints that were added.

• Update Constraints. This will do the opposite and change the values of the
constraints to match what you see in the scene.

• Add Missing Constraints. If the applied constraints are not enough to resolve the
layout, this operation will try to add the necessary constraints in order to satify the
layout engine.

CHAPTER 5 ■ “HELLO, SWIFT!”—A TUTORIAL FOR BUILDING AN IOS APP

103

• Reset to Suggested Constraints. This will replace all constraints applied to the
selected view with new ones suggested by the layout engine.

• Clear Constraints. This does what its name implies and removes all constraints from
the selected view.

 Try to avoid issues by adding just enough constraints to the views. If you add too little, you will create
ambiguities; if you overconstrain the views, the chance to have conflicting constraints increases.

 Summary
 In this chapter you saw how to apply three different design patterns, very much encouraged and employed
by the iOS SDK: Delegation, Target-Action, and Model-View-Controller.

 You used the MVC pattern to structure an application and implemented a custom view in it. You then
made its UI responsive and adaptive with Auto Layout and Size Classes.

 You should be proud of yourself. Now buckle up and prepare to enter the deep waters of the advanced
UI presented in the next chapter.

105© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_6

 CHAPTER 6

 Adding a More Complex UI

 In this chapter we dig deeper in designing user interfaces (UIs) for iOS with Swift by making another app.
There is a lot of ground to cover both on the UI front and on the language front. To make things easier, we
will point out some of the Swift concepts that may look new or strange, explain them along the way, and let
you know where you can find more information.

 In this chapter you will do the following:

• Learn how to add views to your app and transition between them.

• Try out different navigation patterns.

• Learn how to pass data between view controllers.

• Learn one more way of making adaptive UIs.

• Learn how to work with a table view and use it to present interactive choices.

• Handle user settings.

• Learn how to customize your app’s launch screen.

• Learn about the Observer design pattern.

• Create and manage a UI programmatically.

• Learn how to use annotations to make your code easier to navigate.

 When you are done, you will have an app that lets you collect votes from your friends when trying to
decide where to go for dinner or which film to see.

 ■ Swift reference Look for notes like this one throughout the chapter. They contain brief descriptions of
Swift language features that we use in the code and will point you to the relevant chapters in Part IV, which
is dedicated to language migration. Or, if you would prefer to dig into the language first, you can go to Part
IV of this volume (chapters 17 to 22) and come back to the tutorials in this chapter later with an even better
understanding of Swift.

 Setting Up the App
 In the course of this chapter we will develop two versions of the same app:

• a Lite version, which lets users vote on a single topic and shows them the results of
the vote; and

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

106

• a Pro version, which adds a settings screen and also allows for new voting topics and
choices to be created.

 Both apps will start off with the same logic and UI and on top of that we will add Lite and Pro
functionality. In this section we will build this common logic and UI in a project, which we will later clone to
create the two different versions of the app.

 Start by making a new Single View Application iOS project in Xcode (File ➤ New ➤ Project… , then iOS
➤ Application ➤ Single View Application). Call it SimpleVote and set its language to Swift. This will create
the boilerplate project, with which you are intimately familiar by now (Figure 6-1).

 Defining a Data Model
 The voting app will use a simple data model, which contains a topic for the vote, a list of choices, and the
number of participants who cast their votes or abstained. Each choice has a title and keeps track of how
many votes it receives.

 Let us define a structure that will represent a choice first. Create a new group in your project and call it
 Data model . Select the new group and create a new Swift file in it (File ➤ New ➤ File … ➤ iOS ➤ Source ➤
 Swift File). Call the file Choice.swift . Then add the following definition (Listing 6-1).

 Listing 6-1. Defining a Structure to Represent a Choice for Voting

 struct Choice {
 let title: String
 var votes: Int = 0

 init(title: String) {
 self.title = title
 }
 }

 The Choice structure represents a single option users can vote on. It has a constant member, called title ,
which we can set to “Pizza,” “Thai food,” and so on, and a variable member votes , which keeps track of how
many votes the choice has received. The init method we have added is similar to a constructor in ActionScript:
in Swift it is called initializer and its purpose is to ensure that all properties of Choice have initial values.

 Figure 6-1. The boilerplate Single View Application project

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

107

 ■ Swift reference For the moment you can think of structures as similar to classes: they are types, which
keep together data (member variables and constants) and behavior (methods). We look at structures and
initializers in detail in Chapter 21 .

 Add another Swift file to the Data model group and call it VoteData.swift . Let us define another
structure in it, called VoteData . This one will store the vote topic and choices, as well as information on a
voting session: how many participants there were and how they voted (Listing 6-2).

 Listing 6-2. Defining a Structure for Keeping Data on the Voting Session

 struct VoteData {
 // Set a default topic for voting:
 var topic = "Which one would you choose?"

 // An array of choices for voting:
 var choices: [Choice] = []

 // The number of participants, who voted or abstained:
 var participants = 0

 var votes: Int {
 get {
 var numVotes = 0

 // Each choice keeps track of the number of votes
 // it receives, so just sum them all up:
 for choice in choices {
 numVotes += choice.votes
 }

 return numVotes
 }
 }

 var abstains: Int {
 get {
 // Work out how many participants abstained:
 return participants - votes
 }
 }

 mutating func resetVotes() {
 // Clear the vote information for a new session:
 participants = 0

 for i in 0 ..< choices.count {
 choices[i].votes = 0
 }
 }
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

108

 Before we put this structure to use, let us look at its members and what each of them does, clarifying a
few Swift concepts along the way.

 The first property in VoteData is topic and is initialized with a literal string. The initialization helps the
Swift compiler infer the type of topic .

 ■ Swift reference Swift is a strongly typed language, but you do not have to explicitly declare types if they
can be inferred. For more information on type inference, see Chapter 19 .

 The second property, choices , is an array of Choice instances. The following line,

 var choices: [Choice] = []

 declares choice and also initializes it with an empty array.

 ■ Swift reference For details on arrays and other container types see Chapter 19 .

 The votes and abstains members are computed properties .

 ■ Swift reference A computed property is like a hybrid between a property and a method: it does not store
its value but rather works it out it on the fly. For more details see Chapter 21 .

 The resetVotes method has been defined with the keyword mutating , because inside it we change the
properties of VoteData . Its task is to clear the data about the last voting session, so the user can start a new one.

 ■ Swift reference By default, methods defined in a structure have read-only access to the structure’s
properties. To allow modification, a method must be declared as mutating. See Chapter 21 for more information.

 The for loop in resetVotes uses the half-open range operator (..<) . The syntax you see is equivalent to
this for loop declaration in ActionScript :

 for (var i : int = 0; i < choices.count; i++)

 ■ Swift reference Range operators in Swift define intervals of values you can iterate over. For details on how
they work see Chapter 18 , and for more information on loops see Chapter 20 .

 Adding a Custom View Controller
 If you open the main storyboard of the project, Main.storyboard , you will see that there is currently a view
controller on it: it controls the view of the app’s main screen. In Project navigator there is also a source
file, called ViewController.swift . It contains the definition of ViewController : a class, which inherits
 UIViewController —the base class for view controllers in the iOS SDK. The view controller on the storyboard
and the ViewController class are not one and the same, but they are linked—we will see how shortly.

http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_18
http://dx.doi.org/10.1007/978-1-4842-1666-8_20

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

109

 So far in the examples in this book we have modified and added code to ViewController . This time we
will create our own class and will link it with the view controller on the storyboard.

 In Project navigator create a new group , call it View controllers and add a new Swift file to it. Name
the file VoteViewController.swift . Your project should now look like Figure 6-2 .

 Open VoteViewController.swift and replace the following line,

 import Foundation

 with Listing 6-3 , which declares VoteViewController as a subclass of UIViewController .

 Listing 6-3. Declaring a Custom View Controller

 import UIKit

 class VoteViewController: UIViewController {
 }

 ■ Tip Foundation and UIKit are both iOS SDK frameworks. The Foundation framework contains the basis
of Objective-C classes and UIKit defines classes that deal with the user interface, such as UIViewController .

 Next we will connect the main screen of the app with our custom VoteViewController class. Open Main.
storyboard in the Editor and select the view controller, which is on it. With the controller selected, open the
Identity Inspector, locate the Custom Class section, and set Class to VoteViewController (Figure 6-3).

 Figure 6-2. The app project with the new view controller

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

110

 ■ Tip It may be easier to select the view controller in the Document Outline (Figure 6-3).

 We have now replaced the ViewController class. Let us delete it. In Project navigator right-click
 ViewController and select Delete from the pop-up menu (or press Backspace). You will see a dialog, which
asks whether you want to delete the file or to remove its reference from the project. Go ahead and click Move
to Trash (Figure 6-4).

 Now run the app on your iOS device or in the simulator to make sure it compiles and runs without errors.

 Figure 6-3. Assigning a custom class to the view controller on the storyboard

 Figure 6-4. Deleting the view controller file generated by Xcode

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

111

 Designing the Vote View UI
 We will now design the UI of the view, for which our Vote View Controller is responsible. This time we will
use stack views : yet another technique for making UIs adaptive, which is good to have under your belt.

 Open Main.storyboard in the Editor. In Object library find a Vertical Stack View and drag it onto the
view on the storyboard (Figure 6-5).

 FLEX ANALOGY

 A Vertical Stack View is similar to the VerticalLayout class from the Spark library in Flex. It is a
container view, which arranges its children vertically and repositions and resizes them to adapt to the
available space. You can define rules about how elements are sized and positioned and set spacing
between them.

 Add constraints for the stack view: set the distance between it and the top and bottom layout guides
to 20 and set zero for the distance between it and the parent view leading (left) and trailing (right) margins.
Have a look at Chapter 2 if you need a reminder for how to do that. When you are done, four constraints
should appear under the stack view in the Document outline (Figure 6-6).

 Figure 6-5. Adding a Vertical Stack View to the storyboard

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

112

 With the stack view selected, open the Attributes inspector to set it up. Under Stack View leave
 Alignment and Distribution both to Fill and set Spacing to 10 (Figure 6-7).

 Now let us add more UI elements : drag a Label, a Table View, and a Horizontal Stack View from the
Object library and position them in this order from top to bottom in the vertical stack view.

 Constrain the height of the label and the height of the horizontal stack view to 30.
 Select the horizontal stack view and set Stack View ➤ Distribution to Fill Equally and its Spacing to 10.
 Add two buttons to the horizontal stack view and set their titles to Abstain and Vote: you can double-

click each button on the storyboard and type a title directly. Alternatively, you can set their titles in the
Attributes inspector under Button ➤ Title .

 Have a look at Figure 6-8 to check if your storyboard looks like it.

 Figure 6-6. Adding constraints for the vertical stack view

 Figure 6-7. Set up the vertical stack view in the Attributes inspector .

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

113

 If you run your app now it should look like Figure 6-9 .

 Figure 6-8. The vote view on the storyboard

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

114

 The buttons we added show just titles by default. To make them more visible, let us add borders. Back
on the storyboard in Xcode, if you select one of the buttons and have a look at the Attributes inspector ,
however, you will notice that there are no properties exposed that allow us to control borders. This is a good
excuse to get familiar with another of Xcode’s features: the User Defined Runtime Attributes , which you will
find in the Identity inspector. Here you can set properties that would be available at runtime. The format is
key-type-value, where the key, called Key Path , is the fully qualified property name: it could be a property of
the class we are modifying or a property of one of its members.

 In this case we will be setting up properties of UIButton ’s layer member . This is an instance of the
 CALayer class, which manages the visual content of a view. UIButton inherits its layer property from
 UIView —the base class for user interface elements in iOS.

 Select the Abstain button and in the Identity inspector find the User Defined Runtime Attributes section.
Click the + button to add an attribute and set its Key Path to layer.borderWidth , its Type to Number , and
 Value – to 1 . Add another Number attribute, called layer.cornerRadius , and set its value to 6 (Figure 6-10).

 Do the same for the Vote button.

 Figure 6-9. The vote view at runtime

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

115

 Run the app to see the buttons styled with a border (Figure 6-11).

 Figure 6-10. Adding a runtime attribute to show a border around the button

 Figure 6-11. The buttons with borders

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

116

 Linking the UI with the View Controller
 In this section we will wire the UI we created on the storyboard to code by adding outlets and actions to the
 VoteViewController class . Have a look back at Chapter 2 if you need a reminder about what outlets and
actions are, how to create them, and how to work with the Assistant editor.

 Open Main.storyboard and VoteViewController.swift side by side in the Assistant editor.
Ctrl-drag the label from the storyboard into the definition of VoteViewController to create an outlet for it
and call the outlet topicLabel . Create an outlet for the table view and call it choicesTable . Create handlers
for the Touch Up Inside action for the Vote and Abstain buttons. When you are done, the definition of
 VoteViewController should look similar to Listing 6-4 .

 Listing 6-4. VoteViewController with Outlets and Actions Added to It

 class VoteViewController: UIViewController {
 // MARK: Outlets
 // The label shows the topic of the vote.
 @IBOutlet weak var topicLabel: UILabel!

 // The table lists the choices for voting
 // and lets the user select one.
 @IBOutlet weak var choicesTable: UITableView!

 // MARK: Actions
 @IBAction func vote(sender: AnyObject) {
 // User has voted.
 // TODO: Increment the votes for the selected choice.
 // TODO: Increment the number of participants.
 // TODO: Clear the selection to prepare for the next participant.
 }

 @IBAction func abstain(sender: AnyObject) {
 // User has decided not to vote.
 // TODO: Increment the number of participants.
 // TODO: Clear the selection to prepare for the next participant.
 }
 }

 What your version is probably missing are the comments. Some of those deserve a special mention
here: the MARK and TODO annotations can help you navigate your code in the Jump bar . The Jump bar is
located at the top of the Editor and is called thus for a reason: it lets you quickly jump to specific places in
your project and in your code (Figure 6-12).

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

117

 For an annotation to show up in the Jump bar it must appear in a comment (this can be a single-line
comment or a comment block) and must be followed by a colon; it does not have to be the first string in the
comment. You can use the following annotations:

• // MARK: Heading . This will create a section heading in the Jump bar. It is good
practice to keep related methods under the same heading.

• // MARK: - Heading , // MARK: Heading – , or // MARK: - Heading - . These will
add separators before, after, or before and after a heading.

• // TODO: Reminder about an unfinished task .

• // FIXME: Reminder about a known issue .

 ■ Tip Use MARK , FIXME, and TODO annotations to organize your code and make it easy to navigate.

 Let us replace a couple of the TODO annotations with code. Use the Jump bar to go to the following line
in the vote action:

 // TODO: Clear the selection to prepare for the next participant.

 Add a call to a function, named clearSelection : we will implement it later on, when we learn how to
work with the table view. Remove the TODO annotation, but leave the comment in as documentation. Do the
same in the abstain action (Listing 6-5).

 Listing 6-5. Replacing TODO Annotations

 // MARK: Actions
 @IBAction func vote(sender: AnyObject) {
 // User has voted.
 // TODO: Increment the votes for the selected choice.
 // TODO: Increment the number of participants.

 // Clear the selection to prepare for the next participant:
 clearSelection()
 }

 Figure 6-12. Using annotations to organize your code

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

118

 @IBAction func abstain(sender: AnyObject) {
 // User has decided not to vote.
 // TODO: Increment the number of participants.

 // Clear the selection to prepare for the next participant:
 clearSelection()
 }

 Before we move on with implementing how choices will appear on the screen, let us add another call to
 clearSelection to make the compiler properly angry.

 Shortly we will add another view controller to our app to show results from the vote. We want the vote
screen to be clear of any selected choices whenever we return to it. To achieve that, a good place to call
 clearSelection is in the view controller’s viewWillAppear method. It is inherited from the base class,
 UIViewController , and is called every time the view is about to be displayed.

 Let us add an override for viewWillAppear . Add another MARK annotation, which will let us keep base
class overrides together (Listing 6-6). Let us also add a TODO annotation as a reminder for something else we
will want to do when the view appears: restart voting by clearing the results of the last vote.

 Listing 6-6. Override the View Controller’s viewWillAppear Method and Clear the Vote Screen

 // MARK: UIViewController
 override func viewWillAppear(animated: Bool) {
 // Call the base class method first
 // to make sure we won't miss out on any preparation done by it:
 super.viewWillAppear(animated)

 // Then clear the selection:
 clearSelection()

 // TODO: reset the vote results
 }

 Handling Choices with a Table View
 As an ActionScript developer you may be used to presenting mutually exclusive choices with radio buttons,
especially if you have developed desktop apps. However, radio buttons are well suited to a precise mouse
cursor and less so to a chunky thumb on a small phone screen. The iOS SDK offers several different controls
that help implement the same logic and feel more natural under the hand: you can use a segmented control
(UISegmentedControl)—like the All/Missed filter controls in your recent iPhone calls list; a picker (UIPickerView)
like the date picker we used in Chapters 2 and 3 ; or a table view (UITableView), which we are about to use.

 The UITableView control is designed for presenting lists of items and receiving 1 user interaction,
including making mutually exclusive selections, so it will do very well for handling votes.

 Let us start setting up our table view by making sure it only allows one item to be chosen at a time: with
the table view selected on the storyboard, open the Attributes inspector find Table View ➤ Selection and set
it to Single Selection.

 The next thing we will set up would be the table cells.

 1 It is worth making a distinction between receiving and handling user interaction events. The table view receives but does
not handle gesture events. Instead, it uses delegation to hand over this task (we covered the Delegation design pattern in
Chapter 5). A delegate needs to conform to the UITableViewDelegate protocol.

http://dx.doi.org/10.1007/978-1-4842-1666-8_2
http://dx.doi.org/10.1007/978-1-4842-1666-8_3
http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

119

 Designing the Cells
 Select the table view on the storyboard. In the Attributes inspector set TableView ➤ Prototype Cells to 1.
This will add a Table View Cell entry under Choices Table in the Document outline. Select the new cell (this
might be easier to do in the Document outline than on the storyboard) and in the Attributes inspector set
 Table View Cell ➤ Style to Basic (Figure 6-13).

 When you change the cell style, you will see the cell change on the storyboard: now it says “Title.” Cells
in a table view can have very sophisticated design with various other UI controls added to them (image
views, blocks of styled text, rating controls, etc.). A basic cell only has a label in it: this is what we will use to
display choices for voting.

 Next, set the cell’s Identifier to ChoiceCell in the Attributes inspector (Figure 6-14).

 In the next section we will see what we have just done and why.

 Figure 6-13. Adding a basic prototype cell

 Figure 6-14. Setting up the prototype cell

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

120

 How Cells Work in a Table View
 Table views in iOS are optimized for displaying large lists of ordered items. Also, as we mentioned earlier,
each cell in the table can be designed to have a very custom look: you can add all sorts of UI elements to it.
Cells in the same table don’t even have to all look the same, but can each have a different layout.

 The way to achieve this is to design what a prototype cell for each separate layout you want to display
in the table. Think of it as designing a custom view that will be shown when a cell is displayed. The cell
Identifier property we set in the previous section is used to distinguish between these custom views.

 For performance reasons table views are designed to reuse cell objects. Say you have a list of 100 items
you want to display in a table view. Out of the 100 only a few would be visible on the screen at any time, so
memory-wise it would not be very effective to keep cell instances for all of them. On the other hand, each
time you scroll up or down to see more items, creating cells from scratch for those that have just come into
view might hurt performance.

 A table view balances those time and memory costs by reusing cells: once they have been requested
and created, the table view keeps a number of cell objects at hand (in a queue) that can be used again and
again. It is only their content that changes: for example, instead of recreating a label in the cell, the table view
will change its text.

 Displaying data in the table view
 UITableView is designed to be used as the View in the now familiar Model-View-Controller (MVC) pattern,
which we discussed in Chapter 5 . Being merely a view, its responsibility is to display data but not to provide
it. For that it relies on an external source. We will make our VoteViewController that source. “But isn’t
 VoteViewController the controller in the MVC pattern?” you might be thinking. . . . You are right, this
sounds confusing. But bear with me: in this case the view controller’s role as a data source is to be the vehicle
for the data from the data model it contains.

 To start with, let us assign the view controller to the dataSource property of the table view (Listing 6-7).
For that purpose we will override UIViewController ’s viewDidLoad method and do the assignment in it.
You have already used viewDidLoad in previous chapters: it is called when the view has been loaded for
displaying for the first time.

 Listing 6-7. Set VoteViewController as the Data Source for the Table View

 // MARK: UIViewController
 override func viewDidLoad() {
 // Call the base class method first
 // to make sure we won't miss out on any preparation done by it:
 super.viewDidLoad()

 // This will cause the methods required
 // by the UITableViewDataSource to be called:
 choicesTable.dataSource = self
 }

 If you Cmd + click dataSource in the line of code we just added to see its definition, you will see that it is
of type UITableViewDataSource ?. UITableViewDataSource is a protocol from the iOS SDK, which provides
an interface that the table view knows how to use to query for data. For VoteViewController to be used as
the data source for the table view, it needs to conform to this protocol.

http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

121

 ■ Swift reference -For details on protocols see Chapter 21 and for the meaning of the question mark after
UITableViewDataSource see Chapter 19 .

 To make VoteViewController conform to UITableViwDataSource , we will first add the protocol to the
view controller’s inheritance list:

 class ViewController: UIViewController, UITableViewDataSource {

 Then we will implement two of the protocol’s methodsw , which the table view will call when it is about
to display its cells and needs to know what data to put in them.

 The first method, tableView(_:numberOfRowsInSection:) , tells the table view how many rows to
display in each of its sections . Here a section represents a group of rows, for example, the group for contacts
starting with the letter “A” in your address book.

 The second method, tableView(_:cellForRowAtIndexPath:) , fires each time a cell from the table needs
to be shown on the screen. This is where we take advantage of the reusing of cells we saw in the previous
section: instead of creating a new cell each time, we call the table view’s dequeueReusableCellWithIdentifier
method , which will only create a cell from scratch if there is not one available in the queue. Every time after that
we will have a ready-made instance we can just populate with data. Listing 6-8 shows the implementation of
both methods.

 Listing 6-8. Implementing Methods of the UITableViewDataSource Protocol

 // MARK: UITableViewDataSource
 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 // Query the data model for the number of choices to present for voting:
 return choiceCount
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 // Ask the table view for a cell that looks like
 // the one we prototyped ("ChoiceCell"):
 let cell = tableView.dequeueReusableCellWithIdentifier("ChoiceCell",
 forIndexPath: indexPath)

 // Fill in the cell with data from the data model:
 setUpCell(cell: cell, atRow: indexPath.row)

 return cell
 }

 The two methods access a property, choiceCount and a method, setUpCell , which we have not
implemented yet. We will take care of this in the next section.

http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

122

 Adding Placeholders for Querying the Data Model
 The property and the method that we now need to define will both access the data model: choiceCount is
responsible for telling the table view how many rows to display and setUpCell populates a given cell with
data. The Lite and the Pro versions of our app will each deal with the data model differently and so will need
slightly different implementations for choiceCount and setUpCell . So at this stage of the app development
we will just add placeholders and provide implementation later on for each app version.

 Let us define choiceCount as a computed property to VoteViewController and annotate it with MARK:
Data . For the moment we will have it return 1 (Listing 6-9).

 Listing 6-9. Adding a Placeholder for the Number of Options for Voting

 // MARK: Data
 var choiceCount: Int {
 get {
 // Query the data model for the number of choices for voting.
 // TODO: Replace this row with a query to the data model:
 return 1
 }
 }

 Next, add a placeholder for the setUpCell method under the same annotation (Listing 6-10). It takes
two parameters: an instance of UITableViewCell and the row that the cell is on. The row number lets find
the relevant item in the choices array in the data model we defined back in Listing 6-2 .

 Listing 6-10. Adding a Placeholder for Filling in Vote Options

 func setUpCell(cell cell: UITableViewCell, atRow row: Int) {
 // TODO: Populate the cell with data
 }

 Clearing the Selection in the Table
 Remember the calls to clearSelection we added earlier, when we were setting up the UI? We will
implement clearSelection here to do what it says: if the user has tapped a cell in the table to select it,
this method will clear this selection, so that the next user can vote. Add this method under MARK: Helper
methods (Listing 6-11).

 Listing 6-11. Clearing the Selection in the Table View

 // MARK: Helper methods
 func clearSelection() {
 if let selectedIndexPath = choicesTable.indexPathForSelectedRow {
 choicesTable.deselectRowAtIndexPath(selectedIndexPath, animated: true)
 }
 }

 Adding a Second View
 Add a new Swift file to the View controllers group in your project and name it ResultsViewController.
swift . Open the new file and replace the import Foundation line with the class declaration from Listing 6-12 :
we are declaring another UIViewController subclass.

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

123

 Listing 6-12. Declaring a View Controller Class , Which Will Be in Charge of the Results View

 import UIKit

 class ResultsViewController: UIViewController {
 }

 ■ Tip You can also let Xcode declare the class for you when you add the new file. To do that, from the main
menu select File ➤ New… , then iOS ➤ Source ➤ Cocoa Touch Class and in the wizard set Subclass of to
 UIViewController . This will create the new class and stub out the following two methods: viewDidLoad and
 didReceiveMemoryWarning .

 Next, we will add a view controller to the storyboard , which we will link with this new class. Open
 Main.storyboard , find a View Controller element in the Object library, and add it to the storyboard. Then
add a Vertical Stack View to the new view controller and set the same constraints we used for the vertical
stack view in Vote View Controller : set the distance between the stack view and the top and bottom layout
guides to 20 and set zero for the distance between it and the parent view leading and trailing margins. In the
Attributes inspector set the stack view’s Spacing property to 10.

 Add a Text View to the vertical stack view and in the Attributes inspector leave its Text property to Plain,
but delete the default text it comes with. Uncheck Editable and Selectable in the Behavior section: we will
use this text view as read-only (Figure 6-15).

 Let us link the new UI elements we just added with the ResultsViewController class . On the
storyboard select the new view controller (or select it in the Document outline) and in the Identity inspector,
under Custom Class , set its Class to ResultsViewController .

 Open Main.storyboard and ResultsViewController.swift side by side in the Assistant editor and Ctrl
+ drag the text view from the storyboard into the definition of the ResultsViewController class to create an
outlet for it. Name the outlet resultsTextView (Listing 6-13).

 Figure 6-15. Setting up the text view

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

124

 Listing 6-13. Adding an Outlet for the Text View

 class ResultsViewController: UIViewController {
 // MARK: Outlets
 @IBOutlet weak var resultsTextView: UITextView!
 }

 Add a placeholder method for presenting the results of a vote and call it displayVoteResults : we will add
different implementations for it in the two versions of the app. Then add an override for UIViewController ’s
 viewWillAppear method and in it call displayVoteResults —we want to refresh the information every time we
switch to this view. The definition of ResultsViewController should now look like Listing 6-14 .

 Listing 6-14. Adding a Placeholder for Displaying Vote Results

 class ResultsViewController: UIViewController {
 // MARK: Outlets
 @IBOutlet weak var resultsTextView: UITextView!

 // MARK: Data
 func displayVoteResults() {
 // TODO: Display a vote summary in resultsTextView
 }

 // MARK: UIViewController
 override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 // Results will be refreshed every time the view appears on screen:
 displayVoteResults()
 }
 }

 Working with the Launch Screen
 You have probably noticed that the SimpleVote project contains two storyboard files created by Xcode:
 Main.storyboard and LaunchScreen.storyboard . We have so far been working with Main.storyboard
to design the user interface of the app. LaunchScreen.storyboard is what you would guess by its name: a
storyboard, where you can design the launch screen of your app.

 In Project navigator find LaunchScreen.storyboard and open it. It should look familiar: this is what
 Main.storyboard looked like before we added UI elements to it. We will not do anything fancy with the
launch screen, just a little tweak to demonstrate that you can work with it the way you do with the rest of
your app’s user interface.

 Drag a Label from the Object library and drop it onto the view on LaunchScreen.storyboard . Change
the label’s title to Cast your vote! and click the Align button at the bottom of the editor to constrain the label
to the middle of its containing view both vertically and horizontally. When you are done, your storyboard
and Document outline should look like Figure 6-16 .

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

125

 If you run your app now , you should see Cast your vote! for a few seconds before the main screen of the
app loads.

 Developing VoteLite
 In the Lite version of our application we will hard-code data for voting on, enable voting, and show results.
For transitioning between the vote view and the results view we will initially set up segues and will then see
how adding a navigation bar can save some of the work.

 Setting up the VoteLite Project
 We will reuse the code and user interface we created in our SimpleVote project. This requires a bit of work,
as there is no straightforward way to duplicate a project in Xcode. Following are the steps for setting up the
new project and adding the files we created or modified in the first part of this chapter.

 1. Create a new Single View Application project (File ➤ New ➤ Project… ➤ iOS ➤
 Application ➤ Single View Application) and call it VoteLite .

 2. In Project navigator select and delete ViewController.swift the way you did in
 SimpleVote (Figure 6-4).

 3. Open both projects in Finder and copy the following files and folders from
 SimpleVote/SimpleVote to VoteLite/VoteLite (Figure 6-17):

• The Base.lproj folder, which contains the storyboard files. When asked, agree
to replace the Base.lproj folder in VoteLite .

 Figure 6-16. Designing the launch screen in LaunchScreen.storyboard

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

126

• Choice.swift

• VoteData.swift

• VoteViewController.swift

• ResultsViewController.swift

 4. Now let us add the newly copied files in Xcode and structure the project:

a. Back in Xcode create two file groups and name them Data model and View
controllers .

 b. Right-click the Data model group and from the popup menu select Add
Files to Vote Lite… (or, with the group selected, use Xcode’s main menu:
 File ➤ Add Files to Vote Lite…).

c. Then, from the dialog select Choice.swift and VoteData.swift . Add
 VoteViewController.swift and ResultsViewController.swift to the
 View controllers group.

 Your project’s structure should now resemble Figure 6-18 .

 Figure 6-17. Copying the reusable source and storyboard files in Finder

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

127

 5. Clean the project (Product ➤ Clean). This will remove any files that normally
result from a build or are created by Xcode when it initially sets up your project .
(If you are curious, have a look at the project’s build and DerivedData folders
beforehand. Even before you build the project for the first time they contain
intermediate and cached files.)

 6. Build and run the VoteLite app. It should now look identical to SimpleVote .

 Adding Buttons to Trigger Transitions
 We will add a button to each of the screens in our app and will use the buttons for navigating between the
two screens.

 Open Main.storyboard and from the Object library drag a Button control and drop it at the bottom
of the vertical stack view in Vote View Controller. Title the button See results and add a border and corner
radius to it the way we did for the buttons in the SimpleVote project.

 ■ Tip It might be easier to drop the button in the tree in the Document outline.

 Figure 6-18. VoteLite in Project navigator

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

128

 Figure 6-19. The two buttons on the storyboard and in the Document outline

 Do the same in Results View Controller: add a button at the bottom of the vertical stack view and style it
with a border and corner radius. Title this one Back to voting (Figure 6-19). Add a height constraint to each of
the buttons and set it to 30.

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

129

 ■ Tip If a newly added UI element initially appears in a funny place on the storyboard, select the view
controller whose view you added it to and click the Resolve Auto Layout Issues button. Then from the pop-up
menu select All Views in * View Controller ➤ Update Frames.

 We will now add segues : transitions between the two views. A segue can be defined programmatically or
in Interface builder. We will use Interface builder in this tutorial, so we can visualize the transitions.

 First, let us make the See results button trigger a transition to the results view. Open Main.storyboard ;
in the Document outline select the See results button and Ctrl + drag from it to the Results View Controller
(you can also do this on the storyboard). From the pop-up menu select Action Segue ➤ Show (Figure 6-20).

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

130

 Figure 6-20. Adding a segue between the two app screens

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

131

 Transitioning between views with segues
 You will see the segue on the storyboard show up as an arrow between the two view controllers. It will also
appear in the Document outline (Figure 6-21).

 Run your app and tap the See results button to test the segue. This should take you to the results view.
But hey, you are locked there and you can’t go back!

 We will remedy that with an unwind segue . An unwind segue is a way of “exiting” a view to return to the
view that was shown before it. It is set up somewhat differently from the show segue we created earlier. While
we did not have to write any code to make that segue work, to implement an unwind segue, we will first
need to create an action that handles it. Note that this action needs to be in the view controller we want to
transition back to, not the one that triggers the transition.

 Open VoteViewController.swift , the view controller our unwind segue will lead back to, and add this
action method to the VoteViewControler class (Listing 6-15). We do not need to add any more code to make
the segue work.

 Listing 6-15. Adding an Unwind Segue to VoteViewController

 // MARK: Segues
 @IBAction func unwindToVoting(unwindSegue: UIStoryboardSegue) {
 }

 Now let us create the unwind segue and connect it with this action. Open Main.storyboard . In the
Document outline select the Back to voting button and Ctrl + drag from it to the Exit icon of Results View
Controller. When you release the mouse, you should see a pop-over, which lists the unwindToVoting action
under Action segue (Figure 6-22).

 Figure 6-21. The segue on the storyboard and in the Document outline

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

132

 In order to let you select the appropriate action, Interface Builder scans your code for methods with this
signature and adds them to the pop-over list:

 @IBAction func unwindMethodName(unwindSegue: UIStoryboardSegue)

 Select unwindToVoting and the unwind segue will appear in the Document outline at the bottom of the
Results View Controller Scene. Run the app again to test going back and forth between the two views.

 Displaying Data
 It is time to make this app do something useful. To start with, we will hard-code some data in
 VoteViewController .

 Open VoteViewController.swift and add a property of type VoteData to the ViewController class.
Then add a method, called createVoteData , in which we will populate the VoteData instance with a topic
for voting and some choices (Listing 6-16).

 Listing 6-16. Hard-Coding Data in the VoteViewController Class

 // MARK: Data
 var voteData = VoteData()

 func createVoteData(){
 voteData.topic = "Gandalf or Dumbledore?"
 voteData.choices = å
 [Choice(title: "Gandalf"), Choice(title: "Dumbledore")]
 }

 Figure 6-22. Creating an unwind segue

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

133

 ■ Swift reference In Listing 6-16 you can see the syntax for initializing an array in Swift: [item1, item2, ...,
itemN] . For details on how to create and use arrays see Chapter 19 .

 Then, let us make a call to createVoteData in the view controller’s viewDidLoad method we overrode
earlier. We will also set the label at the top of the view to display the vote topic (Listing 6-17).

 Listing 6-17. Calling the createVoteData to Initialize

 override func viewDidLoad() {
 // Call the base class method first
 // to make sure we won't miss out on any preparation done by it:
 super.viewDidLoad()

 // This will cause the methods required
 // by the UITableViewDataSource to be called:
 choicesTable.dataSource = self

 // Populate the model with data:
 createVoteData()

 // Get the label to display the vote topic
 // that was set in the data model:
 topicLabel.text = voteData.topic
 }

 Earlier in the chapter, when we set up the SimpleVote project , we added a couple of placeholders,
whose role is to query the data model for data (see Listing 6-9 if you need a reminder). One was a property,
 choiceCount , which needs to work out how many choices there are to display in the table view. The other
one was a method, setUpCell —it populates a given cell from the table view with data. Add the following
implementation (Listing 6-18). Note the textLabel property of the cell that we set to display a choice: this
comes from the label that the Basic cell style makes available to us.

 Listing 6-18. Implementing Methods for the UITableViewDataSource Protocol

 var choiceCount: Int {
 get{
 // Query the data model for the number of choices for voting.
 // Replace this row with a query to the data model:
 return voteData.choices.count
 }
 }

 func setUpCell(cell cell: UITableViewCell, atRow row: Int) {
 // Populate the cell with data
 if row >= 0 && row < voteData.choices.count {
 let choice = voteData.choices[row]

 // textLabel is a property of the Basic table view cell:
 cell.textLabel?.text = choice.title
 }
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

134

 Taking Votes
 Now that we have data and a topic with two choices for voting, let us implement the voting functionality. Use
the Jump bar to locate the TODO annotations we left in the vote and abstain methods and let us replace these
with code (Listing 6-19).

 Listing 6-19. Implementing the Logic for the Voting

 // MARK: Actions
 @IBAction func vote(sender: AnyObject) {
 // User has voted.
 // Increment the votes for the selected choice:
 if let selectedIndexPath = choicesTable.indexPathForSelectedRow {
 assert(selectedIndexPath.row < voteData.choices.count)
 voteData.choices[selectedIndexPath.row].votes += 1
 }

 // Increment the number of participants:
 voteData.participants += 1

 // Clear the selected choice
 // to prepare the screen for the next participant:
 clearSelection()
 }

 @IBAction func abstain(sender: AnyObject) {
 // User has decided not to vote.
 // Increment the number of participants.
 voteData.participants += 1

 // Clear the selected choice
 // to prepare the screen for the next participant:
 clearSelection()
 }

 When the Vote button is tapped, we check if a row in the table has been selected. If it has, we find the
corresponding choice and increment its votes. Then we increment the total number of participants in the
vote. If the user taps Abstain, we just increment the total number of participants. At the end of both methods
we clear the selection, so that the next user can vote.

 With this functionality the user has two ways to abstain: by tapping the Abstain button or by leaving
all choices unselected and tapping the Vote button. This implicit abstaining is not obvious and may even
be confusing. Later on in the chapter we will improve this by alerting the users, so that they don’t abstain
accidentally.

 ■ Swift reference The if let construct in Listing 6-19 does conditional binding . It is effectively a shortcut
for doing several operations: first, declaring a constant, selectedIndexPath , then checking if choicesTable.
indexPathForSelectedRow is nil and if it is not, making an assignment to the constant. Conditional binding
works with Swift’s Optional type. For more details see Chapter 19 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

135

 The line in vote , on which we call assert , is worth noting:

 assert(selectedIndexPath.row < voteData.choices.count)

 This is a basic check, which ensures that the selected cell is on a row that has a match in the voteData.
choices array—that is, that we will not access an index in the array, which is out of bounds 2 . We will look at
asserts in Chapter 8 .

 Using Segues to Pass Data Between View Controllers
 Let us take stock of the app we have created so far: it has a couple of views, has ways to transition back
and forth between them, displays data, and lets the user vote. There is one thing missing: we have not yet
implemented a way of showing the results of a vote. We will do so in this section. The implementation will
use one of the segues to get the results to the relevant screen, which is one way of passing data between view
controllers.

 In order to be able to access a segue programmatically, we need to give it an identifier. Open Main.
storyboard and select the segue we created for transitioning to the Results View Controller. In the Attributes
inspector set Storyboard Segue ➤ Identifier to ShowResults (Figure 6-23).

 Next, we will change the ResultsViewController to keep a copy of the vote data and display it. Open
 ResultsViewController.swift and add a VoteData member. Then replace the TODO annotation we added in
 displayVoteResults earlier in Listing 6-14 with the implementation from Listing 6-20 .

 Listing 6-20. Displaying the Vote Results in a Text View

 // MARK: Data
 var voteData = VoteData() // This will receive a copy of the data

 func displayVoteResults() {
 // Check if we have something to report and return if not:
 if voteData.participants == 0 {

 Figure 6-23. Adding an identifier to the segue

 2 You can do better than calling assert here and extend the Array type to use indices in a safe way. If you are up for a
little challenge, do a search on the Internet for “Swift safe array indexing” to see some cool implementations.

http://dx.doi.org/10.1007/978-1-4842-1666-8_8

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

136

 resultsTextView.text = "No voting took place"
 return
 }

 // Create a string, which will accumulate a summary of the votes:
 var voteInformation = "Vote topic: \(voteData.topic)\n"

 voteInformation += "\nParticipants: \(voteData.participants)"
 voteInformation += "\nAbstained: \(voteData.abstains)\n"

 // Iterate through the options array
 // to read the votes each option received:
 for choice in voteData.choices {
 voteInformation +=
 "\n - \(choice.title) received \(choice.votes) votes"
 }

 // Display the string in the text view:
 resultsTextView.text = voteInformation
 }

 Now let us see how ResultsViewController can get a copy of the data for displaying. We will override
a method, called prepareForSegue in VoteViewController ,that will trigger the transition . This is a method
of the base class UIViewController , so add its implementation under the MARK: UIViewController
annotation in VoteViewController.swift. prepareForSegue is called before the segue passes navigation
to its destination view controller and gives us access to this destination view controller (Listing 6-21).

 Listing 6-21. Overriding prepareForSegue in VoteViewController.swift

 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 // Check if we are preparing for the "ShowResults" segue:
 if segue.identifier == "ShowResults" {
 // Check if our destination is the ResultsViewController:
 if let resultsController =
 segue.destinationViewController as? ResultsViewController {
 // Copy data over to the results controller:
 resultsController.voteData = voteData
 }
 }
 }

 ■ Swift reference In Listing 6-21 , in addition to the conditional binding in the second if statement, you can
see an example of type casting. For more details and what the question mark after the as operator means see
Chapter 19 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

137

 Finally, let us make sure that the voting session is reset every time we go back to the vote screen. Find
the TODO annotation you added to VoteViewController ’s viewWillAppear method and replace it with a call
to voteData.resetVotes() to clear the data from the last vote (Listing 6-22).

 Listing 6-22. Clear Vote Results Every Time We Go Back to the Vote Screen

 override func viewWillAppear(animated: Bool) {
 // Call the base class method first
 // to make sure we won't miss out on any preparation done by it:
 super.viewWillAppear(animated)

 // Then clear the selection
 clearSelection()

 // Reset the vote results
 voteData.resetVotes()
 }

 Run your app and test it. You should be able to cast votes and see the results.

 Using a Navigation View Controller
 As you might guess, the way we implemented navigation between our two views is not necessarily the most
efficient. If we add more views to the app, it will quickly become hard work to create and maintain segues
between all of them. Instead of doing all of this work ourselves, we can use a view controller, which manages
some or all of the transitions between the views.

 A navigation view controller is an example of that. It is a container view controller: instead of managing
a single view, it manages many views and the transitions between them. The views are treated like a stack:
there is a root view, which sits at the bottom of the stack and other views can be pushed on top (shown on
the screen) or popped out of the stack (dismissed from the screen). The navigation view controller also
decorates its child views with space for navigation controls—you will see what this looks like in a bit.

 We will add a navigation view controller to the VoteLite app. Open Main.storyboard , select the Vote
View Controller , and from Xcode’s main menu select Editor ➤ Embed in ➤ Navigation Controller . This
adds the navigation view controller to the storyboard, moves the storyboard entry point to it, and makes Vote
View Controller a child of the navigation view controller. You will also see a navigation bar appear on top of
the Vote View Controller (Figure 6-24).

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

138

 If you ran the app now, you would notice a difference immediately: the Back to voting button has
become obsolete, as a Back button appears on the navigation bar by default when we go to the vote results
screen (Figure 6-25).

 Figure 6-24. Embedding the Vote View Controller in a navigation view controller

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

139

 Let us make the Show results button obsolete too. First, we will add a title that will appear in the
navigation bar of the vote view—this title will be used in navigation later. If you look at Vote View Controller
in the Document outline, you will see that a Navigation Item has appeared in the tree. Select it and in the
Attributes inspector set Navigation Item ➤ Title to Vote. Alternatively, you can double-click the navigation
bar that has appeared on top of the Vote View Controller and set the title there (Figure 6-26).

 Figure 6-25. The navigation view controller adds a Back navigation button

 Figure 6-26. Adding a title to the navigation bar of Vote View Controller

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

140

 Next, find a Bar Button Item in the Object Library and drop it onto the right end of the navigation bar in
the Vote View Controller or under Right Bar Button Items in the Document outline (Figure 6-27). Double-
click to title it Results.

 As magical as our navigation view controller is, this time we will need to help it work out where the bar
button should lead. Select the bar button and Ctrl + drag from it toward the Results View Controller: you know
how to do this two ways now: on the storyboard and in the Document outline. From the pop-up menu select
 Action Segue ➤ Show to create a segue to the results view. Select the segue and in the Attributes inspector
set its Identifier to ShowResults . This is the same identifier we gave the segue triggered by the Show results
button: reusing it will allow us to take advantage of the prepareForSegue method we implemented earlier in
Listing 6-21 .

 If you run the app now, you should be able to go to the results screen by tapping Results on the
navigation bar. When the results screen shows up, there should be a button for going back to the vote view,
which reads < Vote (Figure 6-28).

 Figure 6-27. Adding a bar button

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

141

 This completes our work on VoteLite and we are ready to move on to developing its Pro version.

 Developing VotePro
 In the Pro version of the voting app we will add more screens to allow composing new votes and managing
user settings. Even with only four screens using the navigation approach we applied to VoteLite would be
counterproductive for managing the transitions between them.

 The iOS SDK offers various container view controllers , which can manage multiple views. For example, your
default mail client app uses master-detail design: the master view contains e-mail snippets and the detail view—
the contents of the e-mail selected in the master view. The default weather app organizes its views as pages .
Another popular app design is to make views accessible via tabs —this is what we are going to use for VotePro .

 Setting Up the VotePro Project
 Once again we will reuse the code and UI we created in the SimpleVote project . Create a new Single View
Application project and name it VotePro . Then repeat the steps we took for setting up VoteLite : delete
 ViewController.swift and add the files with custom code and UI from SimpleVote . Organize the files in
two groups: View controllers and Data model . Add another group under View controllers and name it
 Containers . Your project should have the following structure (Figure 6-29).

 Figure 6-28. Using the navigation view controller

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

142

 Adding a Tab Bar Controller
 Open Main.storyboard and select the Vote View Controller, then from Xcode’s main menu select Editor
➤ Embed In ➤ Tab Bar Controller . This adds another view controller to the storyboard and moves the
storyboard entry point to it (Figure 6-30).

 Figure 6-29. VotePro in the Project navigator

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

143

 Notice also how a tab bar appears at the bottom of the Vote View Controller with an icon placeholder
and a title Item. Double-click the title and change it to Vote (Figure 6-31).

 Figure 6-30. Adding a tab bar controller to the storyboard

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

144

 So far we have a tabbed application with one tab. Let us add the Results View Controller to the list of
controllers managed by the tab bar controller; this will make both our views accessible via tabs. Select the
Tab Bar Controller either on the storyboard or in the Document outline and Ctrl + drag from it to the Results
View Controller. From the pop-up menu select Relationship Segue ➤ view controllers (Figure 6-32).

 Figure 6-31. Changing the title of the tab

 Figure 6-32. Adding the Results View Controller to the list that the tab view controller manages

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

145

 This will cause a tab bar item to appear at the bottom of Results View Controller too. Change its title to
 Results . Then run the app to test the navigation. You should see two tabs at the bottom of the app and be
able to switch between the Vote and the Results screens (Figure 6-33).

 Passing Data Between Tabs
 A tab bar makes views in an app accessible in a random order. This means that when we add more views
to our app, the user will be able to go from any view to any other view. So a transition between the Vote
View Controller and the Results View Controller is no longer guaranteed and thus not a good place to pass
data between them, unlike it was in VoteLite . Instead, we will keep the data someplace where both view
controllers can access it.

 One candidate is the tab bar controller. By adding the two view controllers to its list of managed view
controllers we created parent-child relationships, where the tab bar controller is the parent. The base class
 UIViewController has a property, which will help us access this parent from our two child view controllers.

 Let us create a class that we will link with the tab bar controller first. Add a new Swift file to the View
controllers/Containers group in your project (File ➤ New ➤ File … ➤ iOS ➤ Source ➤ Swift File) and
call it VoteTabBarController.swift .

 Open VoteTabBarController.swift and replace the line

 Figure 6-33. Switching between views using tabs

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

146

 import Foundation

 with the definition of the VoteTabBarController class from Listing 6-23 . This class inherits
 UITabBarController and overrides its viewDidLoad method to initialize an instance of VoteData . It is the
 voteData property of VoteTabBarController that we want its child view controllers to access.

 Listing 6-23. Define the VoteTabBarController Class

 import UIKit

 class VoteTabBarController: UITabBarController {

 var voteData = VoteData()

 override func viewDidLoad() {
 super.viewDidLoad()

 voteData.topic = "Who would you have lunch with?"
 voteData.choices = [Choice(title: "Batman"),
 Choice(title: "Wonder Woman"), Choice(title: "Superman")]
 }
 }

 On the storyboard select the tab bar controller and in the Identity inspector set Custom Class ➤ Class to
 VoteTabBarController . This will link the tab bar controller on the storyboard with the class we just defined.

 As a next step we will have both VoteViewController and ResultsViewController access their tab
view controller parent. Open VoteViewController.swift and add a weakly referenced implicitly unwrapped
optional for VoteTabBarController under the MARK: UIViewController annotation (Listing 6-24) and call it
 tabManager . Initialize tabManager in VoteViewController ’s viewDidLoad method. Each UIViewController
has a tabBarController property, which gives it access to a tab bar controller, if it is embedded in one—this
is what we will use to initialize tabManager with.

 Listing 6-24. Add a Reference to the VoteTabBarController Instance in the VoteViewController Class

 class VoteViewController: UIViewController, UITableViewDataSource {

 // MARK: UIViewController
 weak var tabManager: VoteTabBarController!

 override func viewDidLoad() {
 super.viewDidLoad()

 // Get a reference to the tab bar controller
 // and cast it to the class we created for it:
 tabManager = self.tabBarController as! VoteTabBarController

 // Access the vote data in tabManager
 // to initialize the topic label:
 topicLabel.text = tabManager.voteData.topic

 // This will cause the methods required

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

147

 // by the UITableViewDataSource to be called:
 choicesTable.dataSource = self
 }

 // The rest of the class definition
 }

 ■ Swift reference We threw in a couple of terms in the previous paragraph that need explaining. “Implicitly
unwrapped” is term used for Swift variables and constants declared as Optional. An optional type has the option
of having a value or having no value (i.e., being nil) . Getting to the value, or finding out its absence, is called
unwrapping. For details on how all this works and the syntax used see Chapter 19 .

 Another term that might need an explanation is “weak reference.” In Chapter 21 we will see that, much like
in ActionScript, class instances in Swift are always passed by reference, while other types are passed by
value. In the example above this means that the assignment to tabManager does not cause a new instance of
 VoteTabBarController to be created; instead, it makes tabManager refer to the same instance that self.
tabBarController does. A weak reference has memory-management implications. When the instance of
 VoteViewController gets deallocated, normally this will result in its properties being deallocated too. Making a
reference weak prevents that. For more details on memory management, see Chapter 21 .

 Let us use tabManager to display choices in the table view. First, find the two placeholders, which we
defined earlier to help display options in the table view: setUpCell and optionCount . Their implementation
in Listing 6-25 will look very familiar: it is almost the same as what we provided in VoteLite , only this time
 voteData is accessed via tabManager .

 Listing 6-25. Display Vote Data in the Table View in VoteViewController

 // MARK: Data
 func setUpCell(cell cell: UITableViewCell, atRow row: Int) {
 // Populate the cell with data:
 if row >= 0 && row < tabManager.voteData.choices.count {
 let choice = tabManager.voteData.choices[row]
 cell.textLabel?.text = choice.title
 }
 }

 var choiceCount: Int {
 get{
 // Query the data model for the number of choices
 // to present for voting:
 return tabManager.voteData.choices.count
 }
 }

 Still in VoteViewController.swift find the viewWillAppear method and add a call to reset the number
of votes, so that each transition to the vote screen will start a new voting session. The method should now
look like Listing 6-26 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

148

 Listing 6-26. Refresh the Topic Label and Start a New Session Every Time the View Appears on Screen

 override func viewWillAppear(animated: Bool) {
 // Call the base class method first
 // to make sure we won't miss out on any preparation done by it:
 super.viewWillAppear(animated)

 // Then clear the selection
 clearSelection()
 tabManager.voteData.resetVotes()
 }

 We will implement the vote logic for the two action handlers we added earlier: vote and abstain . Use the
Jump bar to find the two actions and add the code from Listing 6-27 . This is again the same as the implementation
we had in VoteLite , except for how we access voteData , which now lives in VoteTabBarController .

 Listing 6-27. Implement the Vote and Abstain Actions

 @IBAction func vote(sender: AnyObject) {
 // User has voted.
 // Increment the votes for the selected choice:
 if let selectedIndexPath = choicesTable.indexPathForSelectedRow {
 assert(selectedIndexPath.row < tabManager.voteData.choices.count)
 tabManager.voteData.choices[selectedIndexPath.row].votes += 1
 }

 // Increment the number of participants:
 tabManager.voteData.participants += 1

 // Clear the selected choice to prepare the screen
 // for the next participant:
 clearSelection()
 }

 @IBAction func abstain(sender: AnyObject) {
 // User has decided not to vote.
 // Increment the number of participants.
 tabManager.voteData.participants += 1

 // Clear the selected choice to prepare the screen
 // for the next participant:
 clearSelection()
 }

 Next, open ResultsViewController.swift and add a reference to the tab bar controller, called
 tabManager . Then, add an overload for viewDidLoad and initialize tabManager in it (Listing 6-28).

 Listing 6-28. Add a Reference to the VoteTabBarController Instance in the ResultsViewController Class

 class ResultsViewController: UIViewController{

 // MARK: UIViewController

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

149

 weak var tabManager: VoteTabBarController!

 override func viewDidLoad() {
 super.viewDidLoad()

 // Get a reference to the tab bar controller
 // and cast it to the class we created for it:
 tabManager = self.tabBarController as! VoteTabBarController
 }

 // The rest of the class definition
 }

 Now let us implement displayVoteResults —this method is currently a placeholder, which we added
when we set up SimpleVote . The implementation looks the same as the one in the Lite version of the app,
again, the only difference being how we access the data (Listing 6-29).

 Listing 6-29. Implement the Method That Will Display Vote Results in ResultsViewController

 func displayVoteResults() {
 // Check if we have something to report and return if not:
 if tabManager.voteData.participants == 0 {
 resultsTextView.text = "No voting took place"
 return
 }

 // Create a string, which will accumulate a summary of the votes:
 var voteInformation = "Vote topic: \(tabManager.voteData.topic)\n"

 voteInformation += "\nParticipants: \(tabManager.voteData.participants)"
 voteInformation += "\nAbstained: \(tabManager.voteData.abstains)\n"

 // Iterate through the options array
 // to read the votes each option received:
 for choice in tabManager.voteData.choices {
 voteInformation +=
 "\n - \(choice.title) received \(choice.votes) votes"
 }

 // Display the string in the text view:
 resultsTextView.text = voteInformation
 }

 This is a good time to run the app, cast some votes, and switch between the tabs to see them update in
real time.

 Showing Alerts
 You are familiar with alerts: these are modal pop-up views, which you can use to show messages to the user
or ask them to make a choice. We will create an alert to make the voting process a bit more user-friendly.

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

150

 In the logic we implemented for voting in Listing 6-27 we increment the number of participants in the
session when the Vote button gets tapped even if the user has not made a choice. And this, as we pointed
out when we used the same logic in VoteLite , means that the user implicitly abstains, possibly without
even realizing it. Showing an alert that warns the user about this abstention and asks if the user does want to
abstain will make things more obvious and prevent abstaining by accident.

 FLEX ANALOGY

 Alerts in the iOS SDK are similar to the Alert control in Flex, though the iOS ones are a bit more flexible.
Excuse the pun. Whereas in Flex you are limited to one to three buttons to present different choices
(usually a combination of OK, Cancel, Yes and No), you can add as many actions as you like to an iOS
alert to handle multiple choices. It also allows you different alert styles, suited to mobile devices.

 Let us modify the vote action to only increment the number of participants when an actual vote has
been cast. Then make it show an alert if the user has not made a choice (Listing 6-30). To show the alert we
will add a call to showAbsentVoteAlert —a function we will implement shortly.

 Listing 6-30. Modifying the Vote Action in VoteViewController to Alert the User If No Choice Was Made

 @IBAction func vote(sender: AnyObject) {
 // User has voted.
 // Increment the votes for the selected choice:
 if let selectedIndexPath = choicesTable.indexPathForSelectedRow {
 assert(selectedIndexPath.row < tabManager.voteData.choices.count)
 tabManager.voteData.choices[selectedIndexPath.row].votes += 1

 // Increment the number of participants:
 tabManager.voteData.participants += 1
 } else {
 // The user tapped Vote, but didn't select an option to vote for.
 showAbsentVoteAlert()
 }

 // Clear the selected choice
 // to prepare the screen for the next participant:
 clearSelection()
 }

 The next piece of code in Listing 6-31 shows the implementation of showAbsentVoteAlert . It creates an
instance of UIAlertController , an iOS SDK class, and sets it up to show a title and a message to the user.

 Note that you can choose a style for the alert: you have a choice between UIAlertControllerStyle.
Alert and UIAlertControllerStyle.ActionSheet . Alerts are like small dialogs: they pop up in the middle
of the screen and are suited for short messages or choices between two options. Action sheets, on the other
hand, emerge from the bottom of the screen on narrow screens or show as pop-overs on larger screens and
are useful for longer lists of choices.

 We will use the Alert style for our purposes. The alert will warn users that no choice was made and ask
if they want to abstain, showing two choices: “No” and “Yes.” These choices are represented by instances of
the UIAlertAction class, which we add to the alert. An alert action shows up as a button that the user can
tap. It has a title, a style, and a handler, which we can optionally implement to execute code when the option
is tapped.

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

151

 The style we can set for an action in the alert is of type UIAlertActionStyle and can be Default ,
 Cancel , or Destructive . These styles define what the action buttons look like and in what order they appear
in the alert. A default action represents the most likely choice a user would make (e.g., save her progress
through a game). An example of a destructive action would be deleting photos from Camera Roll or cleaning
up your inbox.

 Add the code in Listing 6-31 to the VoteViewController class under MARK: Helper methods .

 Listing 6-31. Showing an Alert

 func showAbsentVoteAlert()
 {
 // Create an alert to ask if they want to abstain:
 let alert = UIAlertController(title: "You didn't cast a vote",
 message: "Do you want to abstain?",
 preferredStyle: UIAlertControllerStyle.Alert)

 // Add a cancel action and a default action to the alert:
 // these will appear as buttons.
 let cancelAction = UIAlertAction(title: "No",
 style: .Cancel, handler: nil)
 alert.addAction(cancelAction)

 // The default action will be trigerred when the uer wants to abstain.
 // Add a handler for that, so we can count this
 // toward the total number of participants:
 let defaultAction = UIAlertAction(title: "Yes",
 style: .Default, handler: {
 // Increment the total number of votes:
 action in self.tabManager.voteData.participants += 1 })
 alert.addAction(defaultAction)

 // Show the alert on screen:
 self.presentViewController(alert, animated: true, completion: nil)
 }

 ■ Swift reference If you have a look at how defaultAction is instantiated in Listing 6-31 , you may find
syntactic strangeness, namely, the code in the curly brackets after the handler label. This is a block of code is
called when the user taps the button that represents defaultAction —in other words, it is an action handler. In
this case it is implemented as a closure . We will look at closures and how to use them in Swift in Chapter 22 .

 Run the app, leave the choices in the table unselected, and tap the Vote button to see the alert pop up
(Figure 6-34). Then do an experiment and change the style of the alert to ActionSheet . What does it look
like now?

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

152

 Working with User Preferences
 In this section we will furnish the app with a Settings screen and learn how to use NSUserDefaults to store
and read user preferences.

 Start by adding another View Controller from the Object library to Main.storyboard . Then add the
controller to the list of children of the tab bar controller (Ctrl + drag from the tab bar controller to the new
view controller and from the pop-up menu select Relationship Segue ➤ view controllers). Set its tab bar
item title to Settings.

 You are now experienced with laying out user interface, so instead of walking you through each step, we
will use a couple of diagrams to show you how to design the settings view.

 First, find two Labels, a Switch and a Stepper in the Object library , and position them as shown in
Figure 6-35 .

 Figure 6-34. Showing an alert when the user taps the Vote button but has not voted

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

153

 Next, add the following constraints (Figure 6-36):

• Set the space to the leading margin to 0 for both labels.

• Set the space to the nearest neighbor at the top to 20 for both labels.

• Set the space to the trailing margin to 0 for the switch and for the stepper.

• Select the top label and the switch and align their vertical centers.

• Select the bottom label and the stepper and align their vertical centers.

 Figure 6-35. Designing the settings view

 Figure 6-36. Adding constraints to the settings view

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

154

 Select the stepper and in the Attributes inspector set its Minimum value to 2, Maximum value to 5 and
Current value to 5. Leave its Step setting set to 1 (Figure 6-37).

 Now let us back this all up with code. Add a new Swift file to the View controllers group in Project
navigator and call it SettingsViewController.swift . Open the new file and declare a subclass of
 UIViewController , called SettingsViewController (Listing 6-32).

 Listing 6-32. Defining the SettingsViewController

 import UIKit

 class SettingsViewController: UIViewController {
 }

 Open Main.storyboard and SettingsViewController.swift side by side in the Assistant editor.
First select the new view controller on the storyboard and set its Class to SettingsViewController (in the
Identity inspector find the Custom Class ➤ Class setting). Then create the outlets for the switch, created
the label for the maximum options setting and the stepper, and call them resultsAsPercentSwitch ,
 maxOptionsLabel , and maxOptionsStepper , respectively (Listing 6-33).

 Listing 6-33. Adding Outlets for the Settings UI

 // MARK: Outlets
 @IBOutlet weak var resultsAsPercentSwitch: UISwitch!
 @IBOutlet weak var maxChoicesLabel: UILabel!
 @IBOutlet weak var maxChoicesStepper: UIStepper!

 Add two actions: one to handle the Value Changed event for the switch, called
 resultsAsPercentToggled , and one to handle the Value Changed event for the stepper, called
 maxChoicesChanged (Listing 6-34).

 Listing 6-34. Adding Actions for the Settings UI

 // MARK: Actions
 @IBAction func resultsAsPercentToggled(sender: AnyObject) {
 }

 @IBAction func maxChoicesChanged(sender: AnyObject) {
 }

 Figure 6-37. Setting up the stepper control

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

155

 Storing User Preferences
 We will implement these actions to save the user’s preferences to the defaults system. This is Apple’s term for
the storage space specifically dedicated to keeping such information. We can access the defaults system with
the help of the NSUserDefaults class, which has convenience methods for storing and retrieving values of
various types.

 Each value stored in the defaults system must be identified by a key, so we will define a couple of
keys first: one for the value of the switch and one for the value of the stepper control. A key in this case
is a string, which we need to choose. We will access these keys from several view controllers in our app:
 SettingsViewController will use them for writing to the defaults system and the ResultsViewController
will need a read access, in order to decide how to present the results—as percentages or as number of votes.
Later on, when we allow the user to set up his own vote topic and choices, the view controller that will help
with that will need to know the maximum number of choices that the app allows.

 To make the settings keys available to these view controllers, we will define them as constants in the
 VoteTabBarController class in VoteTabBarController.swift (Listing 6-35).

 Listing 6-35. Defining Keys for the User Settings in VoteTabBarController

 class VoteTabBarController: UITabBarController {
 // MARK: Settings keys
 let resultsAsPercentKey = "ResultsAsPercent"
 let maxChoicesKey = "MaximumChoices"

 // The rest of the class definition
 }

 Go back to SettingsViewController. swift and add a reference to the VoteTabBarController instance
the way we did for the other two view controllers. Don’t forget to override UIViewController ’s viewDidLoad
method and initialize the reference (Listing 6-36).

 Listing 6-36. Ading a Reference to the Tab Bar controller in SettingsViewController and Initializing It

 // MARK: UIViewController
 weak var tabManager: VoteTabBarController!

 override func viewDidLoad() {
 super.viewDidLoad()

 // Get a reference to the tab bar controller
 // and cast it to the class we created for it:
 tabManager = self.tabBarController as! VoteTabBarController
 }

 Next we will add an implementation for the resultsAsPercentToggled action. It uses the setBool
convenience method of the NSUserDefaults class to store the state of the switch (Listing 6-37).

 Listing 6-37. Saving the State of the Switch

 @IBAction func resultsAsPercentToggled(sender: AnyObject) {
 // Get a reference to the defaults system
 let defaults = NSUserDefaults.standardUserDefaults()

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

156

 // ... and use it to save the state of the switch:
 defaults.setBool(resultsAsPercentSwitch.on, forKey:
 tabManager.resultsAsPercentKey)
 }

 The implementation of the second action, maxChoicesChanged , uses setInteger —another method of
the NSUserDefaults class —to save the value of the stepper. Note that the value we read from the stepper is of
type Double , so we need to convert it to an integer before storing it (allowing 4.5 choices, for example, is not
very meaningful). This action does one more thing: it calls updateMaxChoicesLabel —a method we will add
next to show to the user the value that was set. Listing 6-38 shows the implementation of maxChoicesChanged .

 Listing 6-38. Saving the Value of the Stepper in SettingsViewController

 @IBAction func maxChoicesChanged(sender: AnyObject) {
 // Get a reference to the defaults system
 let defaults = NSUserDefaults.standardUserDefaults()

 // The stepper value is of type Double,
 // but we want to store an Int, so create an Int:
 let maxChoices = Int(maxChoicesStepper.value)

 // Store the maximum preferred choices as an integer:
 defaults.setInteger(maxChoices, forKey: tabManager.maxChoicesKey)

 // Finally, update the label
 // to show the user the value they set:
 updateMaxChoicesLabel()
 }

 Next comes the implementation of updateMaxChoicesLabel . It is fairly simple: we read the value that
the stepper has been set to and display as part of the maxOptionLabel ’s text (Listing 6-39).

 Listing 6-39. Updating the Label to Show the Value of the Stepper in SettingsViewController

 // MARK: Helper methods
 func updateMaxChoicesLabel() {
 maxChoicesLabel.text = "Maximum options: \(Int(maxChoicesStepper.value))"
 }

 Loading User Preferences
 Let us make sure that the settings screen displays the correct user preferences when it first loads. For that
purpose we will use two of the convenience methods of NSUserDefaults for reading values: boolForKey and
 integerForKey.

 The very first time we run the app there will be no keys and values stored in the system defaults for us
to read. Conveniently, boolForKey and integerForKey both return values even if the relevant keys haven’t
been found, so we will have default settings to start with. However, note that the default value returned by
 integerForKey is 0 , which is not a valid value for our purposes. Later on, when we allow the user to change
the topic of the vote and add choices, we will want there to be at least two choices for voting on. We can also
add a number to cap choices to. Let us do that by adding a couple of constants to VoteTabBarController in
 VoteTabBarController.swift (Listing 6-40)—we want to keep these data constraints with the rest of the data.
Later on we will need to have them accessible from a new view, in which the user will set up their own vote.

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

157

 Listing 6-40. Adding Constraints to the Data Model in VoteTabBarController

 // MARK: Data constraints
 let minChoices = 2
 let maxChoices = 5

 Back in SettingsViewController.swift add a helper function, called loadSettings , which queries
the system defaults for the two settings we have stored. This will use two of the convenience methods of
 NSUserDefaults for reading values: boolForKey and integerForKey.

 The very first time we run the app there will be no keys and values stored in the system defaults to read.
Conveniently, boolForKey and integerForKey both return values even if keys haven’t been found, so we will
have default settings to start with. A detail to pay attention to: the default value returned by integerForKey
is 0 , which is not a valid value for our purposes. We want the choices for voting to be at least two, so we must
check and adjust the result we get from integerForKey (Listing 6-41).

 Listing 6-41. Displaying the Settings When the View Is Loaded by SettingsViewController

 // MARK: Helper methods
 func loadSettings()
 {
 // Get a reference to the defaults system
 let defaults = NSUserDefaults.standardUserDefaults()

 // Read the Boolean stored for the state of the switch.
 // If no value is found for the key,
 // boolForKey will return false by default.
 resultsAsPercentSwitch.on =
 defaults.boolForKey(tabManager.resultsAsPercentKey)

 // Read the value stored for the steper.
 // If no value is found, integerForKey will return 0.
 // When this is the case,
 // set the stepper to the maximum choices allowed.
 let maxOptions = defaults.integerForKey(tabManager.maxChoicesKey)
 maxChoicesStepper.value =
 0 == maxOptions ? Double(tabManager.maxChoices) :
 Double(maxOptions)

 // Update the label to show the value we set the switch to:
 updateMaxChoicesLabel()
 }

 We will call loadSettings from the view controller’s viewDidLoad method to ensure that the view can
display user preferences the first time it is loaded (Listing 6-42).

 Listing 6-42. Updating viewDidLoad in SettingsViewController to Call loadSettings

 override func viewDidLoad() {
 super.viewDidLoad()

 // Get a reference to the tab bar controller
 // and cast it to the class we created for it:
 tabManager = self.tabBarController as! VoteTabBarController

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

158

 // Query the system defaults for user preferences:
 loadSettings()
 }

 Let us see what the app looks like now. Run it, go to the Settings screen, and play with the values. Then
quit and start the app again: the Settings screen should show the values you last set.

 Before we move on, let us put one of the settings to use: we will change the results screen to show the
votes as percentages or as numbers, depending on what the user prefers. Open ResultsViewController.
swift and let us add a method similar to displayVoteResults , called displayVoteResultsAsPercentages
(Listing 6-43). Note the use of NSNumberFormatter : this is an iOS SDK class, which helps with converting
numbers to strings. In this case it formats Double values to show up to two digits after the decimal point
when interpolated in a string.

 Listing 6-43. Adding a Method to ResultsViewController That Will Display the Vote Results as Percentages

 func displayVoteResultsAsPercentages() {
 // Check if we have something to report and return if not:
 if tabManager.voteData.participants == 0 {
 resultsTextView.text = "No voting took place"
 return
 }

 // Create a string, which will accumulate a summary of the votes:
 var voteInformation = "Vote topic: \(tabManager.voteData.topic)\n"
 voteInformation += "\nTotal votes: \(tabManager.voteData.participants)"

 // Work out the percent of abstain votes:
 let abstainedPercent = 100 * Double(tabManager.voteData.abstains) /
 Double(tabManager.voteData.participants)

 // Convert the percent to a string
 // with precision of two digits after the decimal point:
 let formatter = NSNumberFormatter()
 formatter.maximumFractionDigits = 2
 let abstainedPercentString = formatter.stringFromNumber(abstainedPercent)!
 voteInformation += "\nAbstained: \(abstainedPercentString)%\n"

 // Iterate through the choices array
 // to read the votes each choice received:
 for choice in tabManager.voteData.choices {
 let choiceVotePercent = 100 * Double(choice.votes) /
 Double(tabManager.voteData.participants)

 // Use the formatter to convert the percent information into a string:
 let choiceVotePercentString =
 formatter.stringFromNumber(choiceVotePercent)!
 voteInformation += "\n - \(choice.title) received
 \(choiceVotePercentString)% of the votes"
 }

 // Display the string in the text view:
 resultsTextView.text = voteInformation
 }

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

159

 Still in ResultsViewController , let us modify its viewWillAppear method to check the user settings
and call the appropriate method for displaying the results (Listing 6-44).

 Listing 6-44. Modifying ResultsViewController to Take the User Preferences into Account

 override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 // Get a reference to the defaults system
 let defaults = NSUserDefaults.standardUserDefaults()

 // Read the Boolean stored for the state of the switch.
 // If no value is found for the key,
 // boolForKey will return false by default.
 if defaults.boolForKey(tabManager.resultsAsPercentKey) {
 displayVoteResultsAsPercentages()
 } else {
 displayVoteResults()
 }
 }

 Run the app and see how the results screen changes according to what you do on the settings screen.
 I have not forgotten about the user preference we added for limiting the maximum number of voting

options. We will see what it’s about in the next section, where we let the user set a new topic for the vote and
define options.

 Creating and Managing UI Programmatically
 Enough of this hard-coding nonsense. In this section we will make the app more dynamic and allow the user
to change the voting topic and add choices.

 This will be done on a separate tab in the app’s interface, so put another view controller on the
storyboard and then add it to the tab bar controller’s list of controllers. Title it Create.

 ■ Tip You can drag and drop tab bar items in the tab view controller on the storyboard to change their order.

 Add a Label, a Text Field, two Buttons, a Scroll View, and a Vertical Stack View to the view controller as
shown on Figure 6-38 . Note that the vertical stack view needs to be inside the scroll view.

 Title the label Topic and the two buttons – + and -. We will use the buttons for adding and removing
choices. Style them the way we did with the rest of the buttons in the app: in the Identity inspector add
 layer.borderWidth and layer.cornerRadius under User Defined Runtime Attributes , set their types to
 Number and their values to 1 and 6, respectively.

 Select the stack view and, in the Attributes Inspector, set Stack View ➤ Distribution to Fill Equally and
its Spacing to 10.

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

160

 Constrain the UI elements , so that

• The vertical stack view fills up the scroll view (i.e., all of its edges go to the edges of
the scroll view).

• The label, the + button, and the scroll view’s leading edges are aligned and coincide
with their parent view’s leading margin.

• The vertical distance between the + button and the label is 20.

• The text field and the scroll view’s trailing edges are aligned and coincide with the
parent view’s trailing margin.

• The distance between the bottom edge of the scroll view and the bottom margin is 20.

• The vertical distance between the scroll view and the + button is 20.

• The vertical centers of the label and the text field are aligned.

• The vertical centers of the two buttons are aligned.

 ■ Tip The storyboard is probably getting a bit crowded now. If you right-click somewhere outside a view
controller, you can choose to zoom in and out, so that you get a better view and are able to arrange the view
controllers in a convenient way. Double-clicking on the storyboard switches between 25% and 100% zoom.

 Figure 6-38. Designing the Create view controller

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

161

 Add a new Swift file to your project’s View controllers group, called CreateViewController.swift ,
and in it declare a class, named CreateViewController , which inherits UIViewController (Listing 6-45).

 Listing 6-45. Declaring CreateViewController

 import UIKit

 class CreateViewController : UIViewController {
 }

 Back on the storyboard set the Class property of the new view controller to CreateViewController .
Then create outlets for the text field, the two buttons, and the vertical stack view and name them voteTopic ,
 addButton , removeButton , and choicesView . Add actions for the two buttons’ Touch Up Inside events
and name them addButtonTapped and removeButtonTapped . Inside addButtonTapped make a call to
 createNewChoice and inside removeButtonTapped call removeLastChoice (Listing 6-46). The two calls we
just added are to methods we will implement next.

 Listing 6-46. Adding Outlets and Actions to CreateViewController

 // MARK: Outlets
 @IBOutlet weak var voteTopic: UITextField!
 @IBOutlet weak var addButton: UIButton!
 @IBOutlet weak var removeButton: UIButton!
 @IBOutlet weak var choicesView: UIStackView!

 // MARK: Actions
 @IBAction func addButtonTapped(sender: AnyObject) {
 createNewChoice()
 }

 @IBAction func removeButtonTapped(sender: AnyObject) {
 removeLastChoice()
 }

 Creating and Removing UI Elements at Runtime
 The two methods we are about to implement will dynamically add or remove a text field from the screen,
allowing the user to create or delete choices for voting on. We will first add an array, which will keep
references to the text fields we create and delete. Add a MARK: Dynamic UI annotation and under it declare
an empty array of type UITextField (Listing 6-47).

 Listing 6-47. Declaring an Array to Keep Track of Dynamic UI in CreateViewController

 // MARK: Dynamic UI
 // This array keeps references
 // to text fields we create at runtime:
 var choiceTextFields = [UITextField]()

 Add the definition of createNewChoice under MARK: Dynamic UI (Listing 6-48). The first three lines in
this method create a new instance of UITextField and set it up. We set a text placeholder and assign our
instance of CreateViewController as the delegate for the text field. We will see later on why we need the
delegation and how to make it work.

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

162

 For the moment let us concentrate on the dynamic UI: after the text field has been created, we add it to
the choiceTextFields array , so we can keep track of it and then we call addArrangedSubView to place it on
the vertical stack view. addArrangedSubView is a method of UIStackView , which will add the text field at the
bottom of the subviews that the stack view manages.

 The last call we make in this method, updateButtonState , is to another method that we will define
later: its role is to keep track of whether the user is allowed to add or delete options, so it can enable or
disable addButton and removeButton accordingly.

 Listing 6-48. Adding Text Fields at Runtime

 func createNewChoice() {
 // Create and set up a new text field:
 let textField = UITextField()
 textField.placeholder = "Choice title"
 textField.delegate = self

 // Add it to the array of dynamic text fields:
 choiceTextFields.append(textField)

 // Add it to the vertical stack view:
 choicesView.addArrangedSubview(textField)

 // See if the addButton and the removeButton
 // need to be enabled/disabled:
 updateButtonState()
 }

 Next under the under MARK: Dynamic UI annotation comes the implementation of removeLastChoice .
To remove the last text field we added on the screen, we first take its reference out of the choiceTextFields
array and then we ask the vertical stack view to remove it from its list of arranged subviews. We assign nil
to the reference, so that the instance it refers to it can be deallocated. Finally, we make a call to the function
that will enable or disable the two buttons depending on how many choices (i.e., text fields) are left on the
screen (Listing 6-49).

 Listing 6-49. Deleting Text Fields at Runtime

 func removeLastChoice() {
 // Take out the last text field
 // we added to the array:
 var textField = choiceTextFields.popLast()

 // Remove it from the screen:
 choicesView.removeArrangedSubview(textField!)

 // Flag it for deallocating:
 textField = nil

 // See if the addButton and the removeButton
 // need to be enabled/disabled:
 updateButtonState()
 }

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

163

 ■ Swift reference The last two methods we added both use an array to add or remove items. You can find
out more about arrays in Chapter 19 .

 The last method we will add under MARK : Dynamic UI is updateButtonState . It will dynamically enable
or disable the add and remove buttons. We want the add button to be enabled only if the choices added on
the screen are below the maximum we allow and we want the remove button to be enabled only if there are
more choices than the minimum.

 For working out the maximum number of choices we will check the user defaults system, where the
Settings view may have stored a value set by the user. If no value is found, we can default to the constraints
we defined on the data in VoteTabViewController . We will check these constraints to find out the minimum
number of choices too (Listing 6-50).

 Listing 6-50. Enabling or Disabling the add and remove Buttons at Runtime

 func updateButtonState() {
 // Check the user settings
 // for the maximum number of choices allowed:
 let defaults = NSUserDefaults.standardUserDefaults()
 var maxChoices = defaults.integerForKey(tabManager.maxChoicesKey)
 if maxChoices == 0 {
 // If no value was found,
 // take the data constraint from tabManager:
 maxChoices = tabManager.maxChoices
 }

 // Only enable the addButton if we are below the maximum:
 addButton.enabled = choiceTextFields.count < maxChoices

 // Only enable the removeButton
 // if we have more than the minimum choices allowed:
 removeButton.enabled = choiceTextFields.count > tabManager.minChoices
 }

 Listing 6-50 uses something we have not defined yet: tabManager . Let us fix that. Like we did in the
rest of the view controllers, we will declare tabManager as a constant member and initialize it to refer to
 CreateViewController ’s tabBarController instance inside the viewDidLoad method (Listing 6-51).

 Listing 6-51. Adding a Reference to the Tab Bar Controller

 // MARK: UIViewController
 weak var tabManager: VoteTabBarController!

 override func viewDidLoad() {
 super.viewDidLoad()

 // Get a reference to the tab bar controller:
 tabManager = self.tabBarController as! VoteTabBarController
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

164

 We will do something else in viewDidLoad too : now that we have the means to dynamically create text
fields, let us make sure that our view starts with text fields for the minimum number of choices we allow
(Listing 6-52).

 Listing 6-52. Creating Text Fields for the Minimum Number of Choices

 override func viewDidLoad() {
 super.viewDidLoad()

 // Get a reference to the tab bar controller:
 tabManager = self.tabBarController as! VoteTabBarController

 // Create text fields for the minimum number of choices
 // that make a valid vote topic:
 for _ in 1 ... tabManager.minChoices {
 createNewChoice()
 }
 }

 Managing the Text Fields
 Before we can build and run the app, we have to do some housekeeping. Remember that line in the
 createNewChoice method that we promised to explain later?

 textField.delegate = self

 In fact, even if you tried very hard to forget it, the compiler did not let you, as it generated a compiler
error at this line. Time to put things in order.

 UITextField uses the Delegation design pattern that we learned about in Chapter 5 . One of
the reasons it needs a delegate is to dismiss the keyboard after the user finishes typing. We will make
 CreateViewController that delegate by first adding the UITextFieldDelegate protocol to its inheritance list:

 class CreateViewController : UIViewController, UITextFieldDelegate {

 And then we will implement UITextFieldDelegate ’s method that decides whether a field should
release the keyboard when the user taps the Return button (Listing 6-53).

 Listing 6-53. Implementing textFieldShouldReturn to Allow a Text Field to Release the Keyboard

 // MARK: UITextFieldDelegate
 func textFieldShouldReturn(textField: UITextField) -> Bool {
 // This will make the keyboard disappear
 // when the Return button is tapped in a text field:
 textField.resignFirstResponder()
 return true
 }

 Let us assign a delegate to the voteTopic text field. We will do this in the viewDidLoad method, which
should now look like Listing 6-54 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

165

 Listing 6-54. Modifying viewDidload to Assign a Delegate to the voteTopic Text Field

 override func viewDidLoad() {
 super.viewDidLoad()

 // Get a reference to the tab bar controller:
 tabManager = self.tabBarController as! VoteTabBarController

 // Create text fields for the minimum number of choices
 // that make a valid vote topic:
 for _ in 1 … tabManager.minChoices {
 createNewChoice()
 }

 // Set CreateViewController as the delegate of the text field,
 // so it can help it let go of the keyboard:
 voteTopic.delegate = self
 }

 You can now run the app and play with the dynamic user interface. Figure 6-39 shows you the Create
screen with a new vote topic and options added at runtime.

 Figure 6-39. The Create screen with vote options added at runtime

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

166

 Updating the Data Model
 To finish off the app we will get CreateViewController to update the data model when the user creates a
new topic and choices for voting, so that we can see the changes reflected in VoteViewController .

 First we will add a helper method to CreateViewController , called newVoteWasComposed , which will
check if the user created a valid vote: for that we want to have text in all of the text fields on the screen
(Listing 6-55).

 Listing 6-55. Adding a Method to CreateVewController to Check If a Valid Vote Was Created

 // MARK: Helper functions
 func newVoteWasComposed() -> Bool
 {
 // Check if we have a valid topic and choices for voting.
 // If any text field has been left empty,
 // we assume the composing of the new topic was not finished.

 if voteTopic.text!.isEmpty {
 return false
 }

 for textField in choiceTextFields {
 if textField.text!.isEmpty {
 return false
 }
 }

 return true
 }

 Then let us add another helper function, which updates the data model (Listing 6-56).

 Listing 6-56. Updating the Data Model from CreateViewController

 func updateDataModel() {
 // Update the data in tabManager:
 tabManager.voteData.topic = voteTopic.text!

 tabManager.voteData.choices.removeAll(keepCapacity: true)

 for textField in choiceTextFields {
 tabManager.voteData.choices.append(Choice(title: textField.text!))
 }
 }

 We will call the two helper functions when the user exits the Create view—for that purpose we will
override UIViewController ’s viewWillDisappear method (Listing 6-57).

 Listing 6-57. Updating the Data Model When the View in CreateViewController Is About to Disappear

 override func viewWillDisappear(animated: Bool) {
 super.viewWillDisappear(animated)

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

167

 if newVoteWasComposed() {
 updateDataModel()
 }
 }

 Let us add an override for viewWillAppear too. In it we will update the state of the two buttons for
adding and removing options, in case the user changed preferences for the maximum number of choices
(Listing 6-58).

 Listing 6-58. Updating the Buttons on the UI When the View in CreateViewController Appears on Screen

 override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 // Update the add and remove buttons,
 // in case the user changed preferences
 // on the Settings screen:
 updateButtonState()
 }

 Run the app and test it. You will probably notice that there is something missing: you can create a new
vote topic and options, but when you switch to the vote screen, the old vote is still there. We will add the
missing piece of the puzzle in the next section.

 Sending Notifications
 As an ActionScript developer you are intimately familiar with sending and receiving events. In this section
we will see how we can send events in iOS in order to notify parts of our code about changes in other parts of
the code.

 To send a notification on iOS we will use NSNotificationCenter —a class from the SDK, which uses the
 Observer design pattern .

 ■ Note In the Observer design pattern there are two sets of players: an object, which can send notifications,
and observers that can subscribe to receive these notifications. The notifying object maintains a list of its
observers and uses an event system to let them know when an event occurs that they are interested in.

 NSNotificationCenter lets us send notifications, which are identifiable by their name. So let us define
a name for the notification we will use to let the vote view controller know that there have been changes in
the data model. We will do this in VoteTabBarController to keep the notification name together with the
rest of the data-related code (Listing 6-59).

 Listing 6-59. Defining a Notification Name in VoteTabBarController

 class VoteTabBarController: UITabBarController {
 // MARK: Notifications
 let dataChangedNotificationName = "Vote data changed"

 // The rest of the class definition
 }

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

168

 Next, we will add a subscription for this notification in VoteViewController ’s viewDidLoad method.
Open VoteViewController.swift and modify viewDidLoad as shown in Listing 6-60 .

 Listing 6-60. Subscribing for Notifications in VoteViewConroller

 override func viewDidLoad() {
 // Call the base class method first
 // to make sure we won't miss out on any preparation done by it:
 super.viewDidLoad()

 // Get a reference to the tab bar controller
 // and cast it to the class we created for it:
 tabManager = self.tabBarController as! VoteTabBarController

 // This will cause the methods required
 // by the UITableViewDataSource to be called:
 choicesTable.dataSource = self

 // Subscribe for notifications about changes in the data model:
 let notificationCenter = NSNotificationCenter.defaultCenter()
 notificationCenter.addObserver(self,
 selector: #selector(self.dataChanged),
 name: tabManager.dataChangedNotificationName,
 object: nil)
 }

 If you look at the call to notificationCenter.addObserver , you will notice strange syntax in the
 selector parameter:

 #selector(self.dataChanged)

 Let us first explain #selector .

 ■ Swift reference Selectors are a way of identifying methods to be called and are an Objective-C legacy.
Originally they could be used with string literals to select methods by their names at runtime.

 Then we need to implement the method we pass to the selector parameter in addObserver . This
method will be the notification handler for when the data model has changed–add it under MARK: Helper
methods (Listing 6-61). In it we do two things: let the table view know that it needs to reload the data in its
cells and refresh the text of topicLabel to show the new voting topic.

 Listing 6-61. Adding a Notification Handler in VoteViewController

 func dataChanged() {
 // This will get the table view
 // to request new data for its cells:
 choicesTable.reloadData()

 // Access the vote data in tabManager
 // to initialize the topic label:
 topicLabel.text = tabManager.voteData.topic
 }

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

169

 The last thing we need to do in order to enable this notification system is to send an actual notification.
Let us do this after we update the data model in CreateViewController ’s viewWillDisappear method
(Listing 6-62).

 Listing 6-62. Sending a Notification from CreateViewController

 override func viewWillDisappear(animated: Bool) {
 if newVoteWasComposed() {
 updateDataModel()

 // Notify observers that data has changed:
 let notificationCenter = NSNotificationCenter.defaultCenter()
 notificationCenter.postNotificationName(
 tabManager.dataChangedNotificationName, object: nil)
 }
 }

 Let us run the app and create a new topic for voting (Figure 6-40).

 Figure 6-40. The finished app

CHAPTER 6 ■ ADDING A MORE COMPLEX UI

170

 And with this we wrap up our voting app . There are more thing we could do to make it foolproof, which
we will leave to you, curious reader. . . as if you need more excuses to go deeper into Swift. For example, you
could modify the Create screen to reflect changes in the user preferences: if the setting for the maximum
number of choices is set lower than the options that were last created, you could remove options, start with a
clean slate, or show a warning.

 Summary
 For the sake of getting some exercise and fresh air, we hope you did not go through this chapter in one
sitting. That was a lot of work to do. But hey, wasn’t it worth it!

 With this last app in your arsenal you now know how to choose a navigation pattern for your
applications, how to pass data between views, how to handle user settings, and how to have the flexibility of
creating and managing UIs programmatically.

 In the next chapter we will turn our attention to the nonvisual side of app development and see what
concurrency is and how it can help you. And also when to steer clear of it.

171© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_7

 CHAPTER 7

 Concurrency

 Imagine that you share a house with three housemates: Alice, Bob, and Charles; the house is a mess and
you want it cleaned up for your mother’s visit on the weekend. You could do it all yourself, starting with the
kitchen, moving on to the bathroom, then the hallway, and so on. Or you could recruit your housemates and
give each of them tasks: Alice could tidy up the living room, Bob could vacuum it, and Charles could dust,
while you water the plants, for example. Then all of you could get on with the kitchen, where you wash the
dishes, Alice sweeps the floor, Bob takes out last night’s beer bottles to be recycled. . . . Or, better still: you give
each housemate a room to clean up and leave them to it. That would work well with Alice’s sleeping until
midday, Bob’s intolerance of Charles, and your fear of spiders (best to leave the bathroom to someone else).
Your only worry is making sure there is no contention over shared resources like the vacuum cleaner . . .

 Breaking up a job into tasks, which can be done more or less independently of one another, rather than
in a particular order, makes a system concurrent . This makes sure that higher-priority tasks are not slowed
down by waiting for lower-priority tasks to complete 1 and even creates the possibility of tasks being done
simultaneously and saving time.

 In this chapter you will do the following:

• learn about designing concurrent apps and the benefits and challenges this involves.

• gain understanding of concurrency and multithreading concepts.

• design and implement an app that does the same job in both concurrent and
nonconcurrent ways, so you can contrast the two.

 When you are done, you will have an app that searches for prime numbers in several different ways and
also lets you cancel a lengthy search.

 Understanding Concurrency
 Concurrency is something that you need to consider at the design level of your app, before you start coding.
Dividing functionality into tasks that can be run concurrently requires a lot more work and possibly a lot of
code rewriting if done in an already existing code base than when you start fresh.

 1 Your mother may never even peek into Charles’s room, but the living room needs to be spotless.

CHAPTER 7 ■ CONCURRENCY

172

 ACTIONSCRIPT ANALOGY

 Although its implementation is quite subtle, the idea of concurrency is built into ActionScript. There are a
lot of asynchronous application programming interface (API) calls in both Flash and Flex that make sure
that user interface does not get blocked by slow operations. If you have developed desktop apps, you
may have also used Worker objects, which wrap sets of tasks in code that can be run in the background.

 Benefits of Concurrency
 Although it is not trivial, the effort of writing concurrent code usually pays off in one or more of the ways
shown in the following list:

• User interface responsiveness . It is best to keep computationally heavy work and
user interface (UI) updates separate, so that the UI does not freeze while the heavy
work is being done. Similarly, UI should be kept interactive and responsive while
your app waits for a response from a remote server, for example.

• Better resource utilization . In the last scenario waiting for a server response would
keep the CPU (central processing unit) idle, unless your app can do other useful
work in the meantime. For instance, instead of waiting for an entire audio file to
download, in order to be played, your app could download a chunk of it and start
playing it while the rest of the file is being downloaded.

• Improved performance . On multicore systems, such as today’s iPhones and iPads,
designing concurrent tasks makes it possible to run them in parallel, thus saving
time. It is important to keep in mind that just because tasks can run at the same time
does not mean that they will–more on that next.

 Challenges of Concurrency
 Designing concurrent apps has its flipside too–here are some of the challenges to keep in mind.

• Parallelism is not guaranteed. Unless you are prepared to exercise very low-level
control of scheduling, running, and synchronizing tasks, when and for how long
each one runs is up to the operating system. Your job as a programmer is to write
code that can be run in parallel if needed.

• Improved performance is not a given either. It is worth measuring your app’s
performance of critical jobs before and after you break them down into concurrent
tasks. Too much granularity can often hurt, rather than improve speed.

• Dealing with dependencies is important . Tasks designed to serve the same job are
rarely completely independent of each other. It is especially important to consider
scenarios where two or more tasks can get in a deadlock , each waiting for the other
one to complete, in order to continue.

• Managing shared resources is important . Tasks might need to access the same
files, network connections, data in memory, or other resources. You need to make
sure that this does not lead to data corruption, where more than one task modifies
the same resource at the same time, or to inconsistencies, where reading data
happens before writing to it has finished.

CHAPTER 7 ■ CONCURRENCY

173

• Debugging can be tricky . When there is more than one task running at the same
time, it can be challenging to replicate and trace errors in your code, because how
things happen is related to timing and order.

 A few words on multithreading
 Concurrency is traditionally linked with multithreaded programming. When making iOS apps you certainly
have the option of accessing and using threads. Apple has also provided higher-level technologies, which
can save you a lot of work related to thread scheduling and synchronization. We will use one of these
technologies, Grand Central Dispatch (GCD), to build a concurrent app in the later part of this chapter.
GCD itself uses threads, so it is worth understanding how these work, as this underpins GCD’s principles.
Moreover, whether you write multithreaded code or not, your apps are multithreaded, as a lot of iOS SDK
calls run their tasks on different threads.

 When you start an app on your iOS device, it runs in a process . Each process is virtually independent of
anything else that runs on the device: it has its own chunk of memory, which no other process can access
and can pretend that it is the only thing running on the system.

 Code in a process runs in one or more threads . You can think of a thread as a sequence of CPU
instructions to be executed one after the other. A process has at least one thread of execution. When there
are multiple threads, one of them is designated as the main thread . The main thread is where code that
updates the UI usually runs. Other tasks can be assigned to different threads and be run at the same time or
seemingly at the same time as the code on the main thread. Each thread has its own stack for instructions
but does not have designated memory–threads share the same memory space.

 Executing threads “seemingly at the same time” is what happens on single-core machines. As there
is only one CPU, which can execute a single instruction at a time, it is impossible to have instructions run
in parallel. Instead this is simulated: when a thread runs, a chunk of its instructions are executed, then the
thread is put to sleep (i.e., paused), while a chunk of instructions from another thread are executed, then
the second thread is put to sleep, so another one can run… This going to sleep and waking up require work:
before it is paused, the running thread needs to save its state (its stack) and then needs to retrieve it when it
is woken up, so it can continue from where it left off. This is called context switching and is one of the prices
you pay for using multiple threads: saving and retrieving state takes additional time and memory. In the
house-cleaning example this would be similar to the scenario, where all of your housemates have found
better places to be and have left you to tidy up on your own. You could run multiple tasks at a time and try
to wash the dishes and dust in parallel: you start the tap, put dishwashing liquid on the sponge, wash one
dish, then put the sponge down, rinse your hands, turn the tap off, pick up the dust cloth and dust the top
of the bookshelf; then start the tap again, put dishwashing liquid on the sponge. All of the preparation to
wash a dish or to dust a shelf is what you do to switch contexts and in this case creates a lot of unnecessary
overhead–you would probably be better off if you washed all of the dishes and then got on with dusting.
Figure 7-1 illustrates this: threads running on a single-core CPU, rather than the house cleaning drama.

 Figure 7-1. Multiple threads running on a single-core machine

CHAPTER 7 ■ CONCURRENCY

174

 On multicore machines there is the option to run more than one task at a time (Figure 7-2): Alice can do
the dishwashing, while you dust.

 Figure 7-2. Multiple threads running on a dual-core machine

 2 Considering that you grew up with a mother whose visit requires such levels of preparations, it is little wonder that you
ended up with pedantic housemates. Sorry.

 When more than one thread can execute a piece of code, this code needs to be thread-safe . This means
guaranteeing that there will be no unwanted side effects, such as data corruption or crashes, caused, for
example, by a thread trying to access a variable that another thread has not yet finished initializing. Or Bob
pulling the stepladder away just as you are about to climb on it to dust the chandelier.

 Another couple of tricky situations that need to be considered with multithreading and when designing
concurrent code in general are deadlocks and race conditions .

 Deadlocking happens when two or more threads (or tasks) are paused and wait for each other to finish
before they can continue execution. Say, Bob has kindly agreed to do the dishes and is waiting for you to
return the dishwashing liquid, which you grabbed to treat a suspicious stain on the carpet. You, however,
(prudently) want to use rubber gloves to do this, so you decide to wait until Bob has finished washing the
dishes has and taken the gloves off.

 A race condition typically arises when more than one thread or task can access and modify shared
memory (or another resource) and the state of this memory can vary depending on who got to it first (i.e.,
it ends up being unpredictable). If two of your housemates decided to rearrange the bookshelves and Alice
started ordering the books alphabetically, but Bob rearranged them by color and size at the same time, 2 Alice
and Bob would be in a race condition and the final state of the bookshelves would be anybody’s guess.

 When you work with multiple threads, their scheduling is typically done by the operating system, but
the communication between threads and ensuring their safety is up to you.

 Apple’s GCD saves you some of this work by helping you think about your code in terms of tasks and
queues of tasks, rather than low-level threads and their relation to hardware. In order to explore GCD and
see what is available through it, we will design an app that uses it to accomplish a task concurrently. The next
section will guide you through setting up the app.

 Setting Up the App
 The app we will use to demonstrate some of GCD’s concurrency techniques will find and display all prime
numbers smaller than a number chosen by the user.

 To start, create a new iOS Single View Application project in Xcode and name it FindPrimeNumbers (File
➤ New ➤ Project… , then iOS ➤ Application ➤ Single View Application).

 Open Main.storyboard and add three labels, a slider, a switch, a text view, a progress view, and two
buttons. Figure 7-3 shows you how to lay out these UI elements and what names to give to the outlets you
create for them in ViewController.swift . Don’t forget to constrain the layout, so that it adapts its size to
different screens (see Chapter 5 for how to work with Auto Layout and Size Classes).

http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 7 ■ CONCURRENCY

175

 When the app is run, the user will move the slider to select a number and tap the Start button to get a
list of all prime numbers smaller than the chosen one. Tapping the Cancel button will stop a search for prime
numbers.

 Some of the UI elements will need their properties set up in the Attributes inspector. The list below will
guide you through doing this.

• Select the text view, delete its default text under Text View ➤ Text and uncheck
 Editable and Selectable under Text View ➤ Behavior .

• Select the slider and set Minimum to 2, Maximum to 100, 000 and Current to 200
under Slider ➤ Value .

• Select the progress view and set Progress View ➤ Progress to 0.

 In ViewController.swift add actions for the Touch Up Inside events for both buttons and call them
 startSearch and cancelSearch , respectively. Then add an action for the Value Changed event of the slider
and call it searchValueChanged .

 The definition of ViewController should now look like Listing 7-1 . We have added MARK annotations
to organize the code and TODO annotations to help us plan what we need to do next. See Chapter 6 for a
reminder about how these can help you navigate your source files more easily.

 Listing 7-1. Adding Outlets and Actions to ViewController.swift

 class ViewController: UIViewController {

 // MARK: Outlets
 @IBOutlet weak var resultsTextView: UITextView!
 @IBOutlet weak var searchLabel: UILabel!
 @IBOutlet weak var searchSlider: UISlider!
 @IBOutlet weak var cancelButton: UIButton!

 Figure 7-3. Laying out the app screen on the storyboard

http://dx.doi.org/10.1007/978-1-4842-1666-8_6

CHAPTER 7 ■ CONCURRENCY

176

 @IBOutlet weak var startButton: UIButton!
 @IBOutlet weak var concurrencySwitch: UISwitch!
 @IBOutlet weak var searchProgress: UIProgressView!

 // MARK: Actions
 @IBAction func searchValueChanged(sender: AnyObject) {
 // TODO: Update the search label to show the new value.
 }

 @IBAction func startSearch(sender: AnyObject) {
 // TODO: Reset any previous results shown on the screen.
 // TODO: Check if the concurrency switch is on.
 // TODO: Start a prime number search.
 // TODO: Enable the Cancel button if cancel is allowed.
 }

 @IBAction func cancelSearch(sender: AnyObject) {
 // TODO: Cancel the search for prime numbers
 // TODO: Update the screen to show that the search was cancelled.
 // TODO: Disable the Cancel button.
 }

 // MARK: UIViewController
 override func viewDidLoad() {
 super.viewDidLoad()

 // TODO: Disable the Cancel button initially.
 // TODO: Make sure that the search label and the slider are in sync.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
 }

 Let us take care of some of these TODO s, which we have left sprinkled around the code. First we will
implement a method to keep the search label and the search slider in sync: when the user moves the slider,
the label will update to show the new value that the slider was set to (Listing 7-2).

 Listing 7-2. Updating the Search Label When the Slider Is Moved

 // MARK: User interface helper methods
 func updateSearchLabel() {
 searchLabel.text = "Find prime numbers less than
 \(Int(searchSlider.value))"
 }

 Another couple of UI helper methods will take care of displaying the result from a search and resetting
the screen before a new search begins (Listing 7-3). We will implement the search for prime numbers to
produce an array of them, which can then be passed to the displayResults method shown in the listing.

CHAPTER 7 ■ CONCURRENCY

177

 Listing 7-3. Displaying and Resetting the Search Results

 func displayResults(resultsArray primes: [UInt]) {
 if primes.isEmpty {
 resultsTextView.text = "No prime numbers were found."
 return
 }

 // Iterate through the primes array and construct a string,
 // which will be displayed in the text view:
 var resultStr = "\(primes.count) prime numbers were found:\n\n"
 for i in primes.indices {
 resultStr += "Prime [\(i + 1)] = \(primes[i])\n"
 }

 resultsTextView.text = resultStr

 // Reset the two buttons, so we can start another search:
 cancelButton.enabled = false
 startButton.enabled = true
 }

 func resetResults() {
 // Delete the results of the last search:
 resultsTextView.text = ""
 searchProgress.progress = 0.0
 }

 ■ Swift reference displayResults in Listing 7-3 takes an array of unsigned integers as a parameter.
See Chapter 19 for information on arrays and other collection types in Swift.

 Let us add one last method to the user interface helpers: this one will update the progress view and the
text view to show the percentage of work done during a prime number search (Listing 7-4).

 Listing 7-4. Showing Progress

 func displayProgress(amountDone: Float) {
 searchProgress.progress = amountDone
 resultsTextView.text = "Progress: \(Int(100.0 * amountDone))%"
 }

 Now let us put to use some of the methods we have just added. We will add calls to updateSearchLabel
to the searchValueChanged action and to viewDidLoad . Inside viewDidLoad we will also disable the Cancel
button (Listing 7-5).

 Listing 7-5. Adding Calls to updateSearchLabel

 // MARK: Actions
 @IBAction func searchValueChanged(sender: AnyObject) {
 updateSearchLabel()
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 7 ■ CONCURRENCY

178

 // MARK: UIViewController
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 // typically from a nib.

 updateSearchLabel()
 cancelButton.enabled = false
 }

 Next come a couple of functions that will help us with the search for prime numbers:
 findPrimeNubersInRange takes a range of unsigned integers and iterates through them: if a number is found
to be prime, it gets added to an array, which the method then returns as a result. findPrimeNumbersInRange
calls isItPrime –a method, which performs a brute-force 3 check on a given number and returns true if the
number is prime (Listing 7-6).

 Listing 7-6. Defining Methods for Finding Prime Numbers

 // MARK: Prime numbers helper methods
 func isItPrime(number number: UInt) -> Bool {
 // We know that 0 and 1 are not prime:
 if number < 2 {
 return false
 }

 // Do a brute-force check for the rest of the numbers:
 for div: UInt in 2 ..< number {
 if (number % div) == 0 {
 return false
 }
 }

 return true
 }

 func findPrimeNumbersInRange(range r: Range<UInt>) -> [UInt] {
 // We will collect the results in this array:
 var primeNumbers = [UInt] ()

 for i in r {
 if isItPrime(number: i) {
 primeNumbers.append(i)
 }
 }

 return primeNumbers
 }

 3 A number is prime if it is greater than 1 and has no positive divisors other than 1 and itself. isItPrime naively iterates
through the interval [2, number)–that is, starting at and including 2 and up to, but not including, number –to check if
 number has any divisors in it.

CHAPTER 7 ■ CONCURRENCY

179

 ■ Swift reference The code in Listing 7-6 makes use of the Range type, which defines an interval of values.
You can see how a range can be defined and iterated through in the for-in loop of the isItPrime method: 2
..< number uses the half-open range operator to define a range starting at and including 2 and up to, but not
including number . For details on Swift’s range operators see Chapter 18 . For interesting ways of using them in
cycles and switch statements see Chapter 20 .

 Run the app on a device or in Xcode’s simulator to test the UI. Does the search label update when you
move the slider?

 Next we will add two method placeholders: one to search for prime numbers and display the results
sequentially and one that will use concurrency to do the same thing (Listing 7-7). Implementing and
contrasting these methods are the main goals of this chapter.

 Listing 7-7. Adding Placeholders for Trying Out Concurrent and Nonconcurrent Searches for Primes

 // MARK: Search for prime numbers without concurrency
 func findPrimeNumbersLessThan(number limit: UInt) {
 // Make sure we have been given a valid limit:
 assert(limit > 0)

 // TODO: Find all prime numbers smaller than limit and display them.
 }

 // MARK: Search for prime numbers, using concurrency
 func concurrentlyFindPrimeNumbersLessThan(number limit: UInt) {
 // Make sure we have been given a valid limit:
 assert(limit > 0)

 // TODO: Find all prime numbers smaller than limit and display them.
 }

 Before we get on with implementing these two methods, let us add calls to them in the action we
created for the Start buttons: find startSearch and replace the TODO annotations in it with the code from
Listing 7-8 .

 Listing 7-8. Implementing the Start Button Action

 @IBAction func startSearch(sender: AnyObject) {
 // Reset any previous results shown on the screen.
 resetResults()

 // Check if the concurrency switch is on
 // and start a search for prime numbers accordingly:
 if concurrencySwitch.on {
 concurrentlyFindPrimeNumbersLessThan(number UInt(searchSlider.value))

 // Enable the Cancel button, so we can cancel a concurrent search:
 cancelButton.enabled = true

http://dx.doi.org/10.1007/978-1-4842-1666-8_18
http://dx.doi.org/10.1007/978-1-4842-1666-8_20

CHAPTER 7 ■ CONCURRENCY

180

 // Make sure we can't hit Start again before the search has completed:
 startButton.enabled = false

 } else {
 findPrimeNumbersLessThan(number: UInt(searchSlider.value))
 }
 }

 The app has been set up. Run it to make sure that there are no compile errors and then let us get on with
implementing the main part of it: finding prime numbers in several different ways.

 Nonconcurrent Implementation
 We will first see how the search for prime numbers might work without any concurrency. The
implementation of findPrimeNumbersLessThan is simple: obtain an array of prime numbers from
 findPrimeNumbersInRange and then pass it to displayResults (Listing 7-9).

 Listing 7-9. Searching for Prime Numbers Without Employing Concurrency

 // MARK: Search for prime numbers without concurrency
 func findPrimeNumbersLessThan(number limit: UInt) {
 // Make sure we have been given a valid limit:
 assert(limit > 0)

 // Find all prime numbers smaller than limit:
 let primes = findPrimeNumbersInRange(range: 0...(limit - 1))

 // and then display them:
 displayResults(resultsArray: primes)
 }

 Run the app, make sure that the Use concurrency switch is turned off, and tap the Start button. You
do not have to move the slider very far up before you notice that it takes a while for the results to appear and
that the user interface freezes while the search is under way. In the next section we will see how splitting the
work into concurrent tasks can help keep the user interface responsive, while a lengthy search is in progress.

 Concurrent Implementation with GCD
 GCD is one of the libraries that Apple has provided to help with concurrent programming. It adds
an abstraction layer above raw threads and saves you the need to think about how threads and their
interactions are managed. Instead, you are encouraged to imagine your app’s functionality as individual
tasks, which can be placed on queues for execution. Each app (process) has a main queue, on which tasks
end up by default, unless you dispatch them to a different queue to be done concurrently.

 ■ Note Calls that modify the UI can only be executed on the main queue.

 When choosing a queue to dispatch tasks to, we have the option of using one of the queues that iOS
already has running, called global queues , or to create a custom one.

CHAPTER 7 ■ CONCURRENCY

181

 Queues can also be serial or concurrent . A serial queue waits for a task to finish before it starts the next
one, so all tasks are guaranteed to start and finish in FIFO (first in, first out) order. The main queue is an
example of a serial queue: tasks on it are executed one by one.

 In contrast, a concurrent queue starts its tasks in FIFO order but does not wait for one task to finish
before it can start the next one. So, if tasks A, B, and C were queued in that order, the queue will start A, start
B, and finally start C. However the order in which they finish may be different: if task C is shorter, it may
complete before A or B, for example.

 Figure 7-4 shows you the difference between serial and concurrent queues.

 Figure 7-4. Contrasting serial and concurrent queues

 It is worth mentioning that there is not necessarily a one-to-one correspondence between queues and
threads. A serial queue will typically run one thread, but a concurrent queue might employ multiple threads
to run its tasks. This is managed for you by GCD and you rarely have to think about the underlying threads in
a queue.

 With this in mind let us see how we can keep the UI responsive, while the search for prime numbers is
going on in the background.

 Performing a Search in the Background
 A simple way of concurrently searching for prime numbers is to split the job into two tasks: one to find prime
numbers and another one to show the results on the screen. The task of displaying the results will need
to be part of the main queue, as it involves updating the UI. The search however can be performed on a
concurrent queue. Listing 7-10 shows you the implementation, which we explain step by step below.

 Listing 7-10. Adding the Search Task to a Background Queue

 // MARK: Search for prime numbers, using concurrency
 func concurrentlyFindPrimeNumbersLessThan(number limit: UInt) {
 // Make sure we have been given a valid limit:
 assert(limit > 0)

 // Obtain a reference to one of the existing queues:
 let queue =
 dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)

CHAPTER 7 ■ CONCURRENCY

182

 // Create a block of code that will be added to the queue:
 let block = dispatch_block_create(DISPATCH_BLOCK_INHERIT_QOS_CLASS) {
 let primes = self.findPrimeNumbersInRange(range: 0...(limit - 1))

 // When the search is done,
 // obtain a reference to the main queue
 // and dispatch the task of updating the UI to it:
 let mainQueue = dispatch_get_main_queue()
 dispatch_async(mainQueue, {
 self.displayResults(resultsArray: primes)
 })
 }

 // Add the code block to the background queue,
 // so it can be scheduled for execution:
 dispatch_async(queue, block)
 }

 First we obtain a reference to one of the global queues, using the GCD function dispatch_get_global_
queue and specifying an identifier for the queue we need. The queue identifier distinguishes between
queues by the quality of service (QOS) they offer. Quality of service affects the priority with which tasks in
the queue are run. How tasks are run also has an effect on the device’s battery life. You can normally choose
between the following QOS classes 4 :

• QOS_CLASS_USER_INTERACTIVE . Tasks with this QOS are treated as critical for keeping
UI responsive and are thus executed with the highest priority for accessing system
resources. They are the most energy-hungry.

• QOS_CLASS_USER_INITIATED . Tasks on such a queue have usually been triggered by
a user action and the user is assumed to be waiting for a result. They get a relatively
high priority for execution but are not treated as critical.

• QOS_CLASS_UTILITY . This QOS is for tasks that may or may not have been initiated by
the user and have even lower priority. This allows them to be executed in a way that
preserves energy (i.e., battery life).

• QOS_CLASS_BACKGROUND . Tasks in background queues are run with the lowest priority
and in the most energy-efficient way. This QOS is for doing work from which the user
does not expect an immediate result and may not even be aware of altogether.

 Our intent is for the user to start the search for prime numbers and keep the user interface responsive
while he or she waits for the result, so we request a queue with QOS_CLASS_USER_INITIATED .

 Next, we define the task that we will put on the queue and assign it to a constant called block . This is
done by creating a dispatch block : a piece of code that can be assigned to a variable or a constant and be
passed around as an argument to function calls.

 Inside the code block we call the findPrimeNumbersInRange method we implemented earlier and when
it returns its result, we create another task that will display it on the screen. We add this task to the main
queue, as it needs to update the UI. Note that we can define a block of code inline without assigning it to a
variable or a constant first–this is what the curly brackets in the call do:

 dispatch_async(mainQueue, {/*Code for the task comes here*/})

 4 The word “class” here comes from “classification” and is not to be confused with the Object-Oriented concept.

CHAPTER 7 ■ CONCURRENCY

183

 Finally we call dispatch_async , which adds the task in block to the queue to be executed (Listing 7-10) .

 ■ Swift reference The code that is assigned to block and the code that is added to the main queue
in Listing 7-10 have both been defined as closures and need to access methods and properties of
 ViewController through its implied property, called self . For more information on closures in Swift see
Chapter 22 and for what the self property is see Chapter 21 .

 Run the app again and this time start the search for prime numbers with the Use concurrency switch
turned on. There is an improvement: finding prime numbers still takes a while, but the app’s user interface
does not freeze.

 Displaying Progress
 It would be nice to inform the user about how the search is going while he or she waits for the results. For
that purpose we will first overload the findPrimesInRange function to report progress as it goes, which can
then be displayed on the screen. We will have progress reported in a callback that is passed as an argument
to the function.

 On Listing 7-11 we first create a typealias (i.e., an alias for the type of callback we want to use), in
this case a function that takes one argument of type Float and does not return a result. We then define
 findPrimeNumbersInRange to be almost like the original version we coded earlier, but with one extra
argument that takes the callback, which is called with progress information as the search for prime numbers
is going on.

 Listing 7-11. Defining a Search Method That Reports Progress

 // Define an alias for the callback
 // we want to use to report progress:
 typealias ProgressHandler = (Float) -> ()

 func findPrimeNumbersInRange(range r: Range<UInt>,
 progressHandler: ProgressHandler) -> [UInt] {
 // We will collect the results in this array:
 var primeNumbers = [UInt] ()

 for i in r {
 if isItPrime(number: i) {
 primeNumbers.append(i)

 // Calculate the proportion of work done
 // and call the progress handler
 let progress = Float(i - r.first!) / Float(r.count)
 progressHandler(progress)
 }
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 7 ■ CONCURRENCY

184

 // Job done:
 progressHandler(1.0)

 return primeNumbers
 }

 ■ Swift reference This version of findPrimeNumbersInRange is an overload of the original one: they both
have the same name, but their signatures differ. When we call findPrimeNumbersInRange the compiler knows
which version to use, based on the number of arguments we pass. More on overloading functions in Chapter 17
and on overloading operators in Chapter 18 .

 A quick note on syntax: we defined the typealias in Listing 7-11 for ease of reading, but this is not
compulsory. Instead, you can declare findPrimeNumbersInRange like this by using the callback signature as
the second argument’s type:

 func findPrimeNumbersInRange(range r: Range<UInt>,
 progressHandler: ((Float) -> ())) -> [UInt]

 All we need to do in our concurrentlyFindPrimeNumbersLessThan method is call the new overload of
 findPrimeNumbersInRange and pass it the displayProgress method we defined earlier; the rest of the code
is exactly the same as it was (Listing 7-12).

 Listing 7-12. Modifying concurrentlyFindPrimeNumbersLessThan to Use the New Search Method

 // MARK: Search for prime numbers, using concurrency
 func concurrentlyFindPrimeNumbersLessThan(number limit: UInt) {
 // Make sure we have been given a valid limit:
 assert(limit > 0)

 // Obtain a reference to one of the existing queues:
 let queue = dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)

 // Create a block of code that will be added to the queue:
 let block = dispatch_block_create(DISPATCH_BLOCK_INHERIT_QOS_CLASS) {
 let primes =
 self.findPrimeNumbersInRange(range: 0…(limit - 1),
 progressHandler: self.displayProgress)

 // When the search is done,
 // obtain a reference to the main queue
 // and dispatch the task of updating the UI to it:
 let mainQueue = dispatch_get_main_queue()
 dispatch_async(mainQueue, {
 self.displayResults(resultsArray: primes)
 })
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_17
http://dx.doi.org/10.1007/978-1-4842-1666-8_18

CHAPTER 7 ■ CONCURRENCY

185

 // Add the code block to the background queue,
 // so it can be scheduled for execution:
 dispatch_async(queue, block)
 }

 Before you can safely run the app, however, there is something we need to do. Can you guess what it is?
Have a look at Listing 7-13 to see if you guessed right.

 Listing 7-13. Ensuring That Displaying Progress Happens on the Main Queue

 func displayProgress(percent amountDone: Float) {
 dispatch_async(dispatch_get_main_queue(), {
 self.searchProgress.progress = amountDone
 self.resultsTextView.text = "Progress: \(Int(100.0 * amountDone))%"
 })
 }

 The displayProgress method we defined earlier updates the UI, so we need to ensure that the update
happens on the main queue. We have changed displayProgress and wrapped the UI modifications in a
 dispatch_async call that adds them to the main queue.

 Controlling Access to Shared Resources with Dispatch Barriers
 If we had to check a huge interval of numbers to find out which ones are prime, we could divide the job even
further. Instead of having one task that iterates over all of the numbers, we could split the interval between
several tasks–if run in parallel, they could, in theory, complete the job faster.

 I hedged with throwing “in theory” there, as there is no universal recipe for improving performance.
Making tasks more granular is a double-edged sword: it could speed up your code, but it could also just as
easily slow it down if there is a lot of synchronization to do. Sharing resources between tasks is one tricky
situation, which might require synchronization techniques that get in the way of performance.

 In this section we will contrive a scenario to demonstrate how we can control access to shared resources
between tasks with dispatch barriers . We will split the search for prime numbers into several tasks, which
we will add to a queue to be run concurrently. But we will require that all results are combined in the same
array in the end (and will not care if we end up with a sorted array of prime numbers or not). Access to this
array will need to be limited to one task at a time within the queue–this is achieved by putting the code that
modifies the array in a dispatch_barrier_async call.

 Dispatch barriers are normally used to synchronize tasks in the same queue. The code in the barrier
is executed only after all previous tasks that were submitted to the queue have finished. No other tasks are
started before the barrier code completes.

 We will do a few changes to concurrentlyFindPrimeNumbersLessThan to illustrate this. Listing 7-14 will
guide you through these modifications.

 Listing 7-14. Splitting the Search for Prime Numbers into Subtasks

 // MARK: Search for prime numbers, using concurrency
 func concurrentlyFindPrimeNumbersLessThan(number limit: UInt) {
 // Let us split the search into four:
 let concurrentTaskCount: UInt = 4
 // Based on the numer of concurrent tasks we want,
 // calculate the size of the interval
 // that each task will need to search through:
 let rangeSize = limit / concurrentTaskCount + limit % concurrentTaskCount

CHAPTER 7 ■ CONCURRENCY

186

 // Keep track of how many tasks have completed:
 var tasksDone: UInt = 0

 // An array to combine results in the end:
 var primes = [UInt]()

 // Create a custom concurrent queue:
 let queue =
 dispatch_queue_create("com.diadraw.primeNumberSearchQueue",
 DISPATCH_QUEUE_CONCURRENT);

 for i in 0 ..< concurrentTaskCount {
 // Work out the interval for the search:
 let rangeStart = i * rangeSize
 if rangeStart >= limit {
 // If we have already covered the whole interval,
 // mark the task as complete:
 tasksDone += 1
 continue
 }
 let rangeEnd = min(UInt(rangeStart + rangeSize - 1), limit - 1)

 // Define a block of code to perform the search:
 let block = dispatch_block_create(DISPATCH_BLOCK_INHERIT_QOS_CLASS) {
 let primesInCurrentRange =
 self.findPrimeNumbersInRange(range: rangeStart ... rangeEnd)

 // Set a barrier around writing to the primes array,
 // so that no more than one task can write to it
 // at the same time:
 dispatch_barrier_async(queue, {
 primes.appendContentsOf(primesInCurrentRange)

 // Keep track of how many tasks have completed:
 tasksDone += 1

 // When we've got the last chunk of results in, display them:
 if tasksDone == concurrentTaskCount {
 dispatch_async(dispatch_get_main_queue(), {
 self.displayResults(resultsArray: primes)
 })
 }
 })
 }

 // Add the block to the background queue:
 dispatch_async(queue, block)
 }
 }

CHAPTER 7 ■ CONCURRENCY

187

 First we declare an array of unsigned integers, called primes , which will contain the results from all the
tasks–this will be the shared resource between the queues. We also add a constant, concurrentTaskCount ,
which will determine into how many subtasks we want to split the search for prime numbers –let us
arbitrarily set it to 4 . In a loop from zero to concurrentTaskCount we do mostly the same as before: define
a code block, which calls findPrimeNumbersInRange and receives from it an array of prime numbers. This
time we will have several blocks, each of which does the search in its own subinterval of numbers. Instead
of displaying the results as soon as they arrive, however, each task will add its results to the primes array and
only when all tasks are done will we send the results to the main queue to be displayed on the screen. This is
the code we put in a dispatch barrier.

 Something to note about dispatch barriers is that they only make sense to use with custom concurrent
queues. As a barrier serializes access to a resource, it will not make a difference on a serial queue. Put on
a global queue, barriers are likely to be ignored: the priority of iOS’s scheduler is to keep things running
and not allow your app to block the execution of other processes. For that reason, instead of requesting a
reference to a global queue like we did earlier, Listing 7-14 creates a custom queue with dispatch_queue_
create .

 In this version of concurrentlyFindPrimeNumbersLessThan we have opted out of displaying progress to
keep things simple.

 Cancelling Lengthy Tasks
 It is nice to allow the user to cancel a task that can take a while, especially if the user managed to start it
accidentally or with the wrong input. You know the moment of “Oh, £@%^. I meant to download the latest
Xcode, not all of the ‘X-Men’ series. . . .”

 Let us modify the concurrentlyFindPrimeNumbersLessThan method, so that tasks can be cancelled.
In order to do that, we will need access to the blocks of code that we add to the queue outside of
 concurrentlyFindPrimeNumbersLessThan . To help with that we will define an array to keep references to
them. Add this array, called blocks , as a property to ViewController (Listing 7-15).

 Listing 7-15. Defining an Array to Keep References to the Code Blocks That Are Running Concurrently

 // MARK: Search for prime numbers, using concurrency
 // An array of execution blocks:
 var blocks = [dispatch_block_t]()

 The only modification we need to make to concurrentlyFindPrimeNumbersLessThan is at the end of the
 for-in cycle that creates and adds each code block to the queue. Find this line,

 dispatch_async(queue, block)

 and replace it with the code after the last comment in Listing 7-16 . In this new version we first add a
reference to the block of code in the blocks array, so we can access it for cancellation later. Then we send
it to the concurrent queue, but instead of dispatch_async , we call dispatch_after . This call delays the
execution of the block with a given time interval, specified in nanoseconds. Note that this is not a guarantee
that the task in the block will be executed exactly after that long but only that it will not start before the time
interval has passed.

 We have added this delay, so we can test the cancellation. One thing to keep in mind when cancelling
tasks in a queue is that they can only be cancelled before they have started executing. Cancelling a task that
is already running has no effect. The five-second delay we have added should give us enough time to tap
the Cancel button and see the effect. To reflect that, a nice addition to the UI would be to disable the Cancel
button once the concurrent tasks start executing. We have omitted this from Listing 7-16 , in order to keep it
simple, and are leaving it as a little homework to you.

CHAPTER 7 ■ CONCURRENCY

188

 Listing 7-16. Modifying concurrentlyFindPrimeNumbersLessThan, So That We Can Test Cancelling Tasks

 func concurrentlyFindPrimeNumbersLessThan(number limit: UInt) {
 // Make sure we clear the blocks array from any old task references:
 blocks.removeAll()
 // The rest of the code below this line stays the same.

 for i in 0 ..< concurrentTaskCount {
 // The rest of the code in the for-in loop stays the same.

 // Add the block to the queue, but after a delay:
 blocks.append(block)

 let delayInSeconds = 5.0
 let startTime = dispatch_time(DISPATCH_TIME_NOW,
 Int64(delayInSeconds * Double(NSEC_PER_SEC)))
 dispatch_after(startTime, queue, block)
 }
 }

 Now let us implement the actual cancellation. Find the cancelSearch action we added earlier and
replace the TODO annotations inside it with the code from Listing 7-17 . As you can see, cancelling a block of
code is quite simple–it is done with a call to dispatch_block_cancel .

 Listing 7-17. Cancelling the Execution of Blocks of Code

 @IBAction func cancelSearch(sender: AnyObject) {
 // Cancel any blocks that have not been run yet:
 for block in blocks {
 dispatch_block_cancel(block)
 }

 // Update the screen to show that the search was cancelled.
 resultsTextView.text.appendContentsOf("\nSearch cancelled.")

 // Disable Cancel, but enable Start:
 cancelButton.enabled = false
 startButton.enabled = true
 }

 Run the app, set the search limit with the slider, and tap the Start button. If you tap the Cancel button
within five seconds after that, you should be able to cancel the search.

 If You Do Need to Use Threads
 You might find yourself in a situation where you do need lower-level control over the concurrency in your
apps. Apple’s Threading Programming Guide , available online at https://goo.gl/A2Z7zh , will help you get
familiar with and start using threads on iOS with Swift.

https://goo.gl/A2Z7zh

CHAPTER 7 ■ CONCURRENCY

189

 Measure, Measure, Measure
 A parting word on concurrency: when doing optimizations in your code, it is always a good idea to measure
its performance before and after making changes. What sometimes seems like a more efficient way of doing
things can surprise you by slowing your app down or making your UI appear less responsive than before.
For example, you may find that while the search for prime numbers is going on in the background, trying to
report each prime number as it is found may not work very well, as scheduling UI updates is not entirely up
to you. This perceptively hurts performance: not only is more time spent constructing strings and sending
them to the text view to be shown but also strings don’t necessarily appear when you want them to.

 While we are at it, here are some observations and measurements from the various versions of
 concurrentlyFindPrimeNumbersLessThan that we implemented in this chapter. I timed how long it took to
find all prime numbers smaller than 100, 000 on an iPad 3:

• The version, in Listing 7-10 , which defines one task to search for prime numbers in
the background did its job in about 80 seconds.

• The version, in Listing 7-14 , which runs four tasks to do the same job took about 40
seconds.

• Splitting the job between more tasks hardly gains us any improvement at all: 10 tasks
took 37 seconds and 100 took 34 seconds.

 The initial 50% increase in speed is better than nothing, but it may not be enough to justify making code
more complex.

 Summary
 In this chapter we covered some of the techniques and abstractions that Apple has provided to help Swift
developers design concurrent applications. We outlined the pros and cons of writing concurrent code and
put it to the test with the help of GCD. We hope it will be a good starting point for your exploration of this
wide and varied subject.

 In the next chapter we will look at some of the tools that Swift and Xcode can offer in order to help you
write better and more robust code.

191© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_8

 CHAPTER 8

 Debugging and Testing Your App

 Migrating your workflow to Xcode and Swift would not be complete without an overview of the tools
available to help you diagnose issues, debug and test your code.

 In this chapter you will do the following:

• See how to use Xcode’s debug gauges to track your app’s usage of CPU, energy,
memory and other system resources.

• Learn about setting up different types of breakpoints.

• Try out debugger commands.

• Implement a workaround for the Memory view issue we discovered in Chapter 3 .

• See techniques for debugging concurrent code.

• Explore Xcode’s automated testing framework and add tests to your project.

 When you are done, you will have moved your workflow to Xcode and iOS with Swift and will be ready
to move on to real-world app development with Part III .

 Preparing the Project
 In order to try the more sophisticated features of the debugger and to see how automated testing works in
Xcode, we will use the app we created in the previous chapter as our guinea pig. In that app the user moves
a slider to choose a number and then starts a search for all prime numbers smaller than the chosen number
(Figure 8-1) . In Chapter 7 we implemented a couple of different ways of structuring the search: with and
without concurrency.

http://dx.doi.org/10.1007/978-1-4842-1666-8_3
http://dx.doi.org/10.1007/978-1-4842-1666-8_7

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

192

 To prepare for the tutorials in this chapter, make a backup copy of the FindPrimeNumbers project from
 Chapter 7 and then open FindPrimeNumbers.xcodeproj in Xcode.

 Making the Best of the Debugger
 If by now Xcode is beginning to seem less like a Swiss Army knife and more like a space shuttle, you are not far
from the truth. It is equipped with so many gadgets you may not need to leave it for weeks, and you may never
reach for a tool outside it. While the last statement may or may not be true in your case, it is worth getting
to know the shuttle’s equipment and the various ways it can help you write better code. In this part of the
chapter we look at some useful debugger features and techniques you can use to diagnose issues in your apps.

 Inspecting the Debug Gauges
 We will first run the FindPrimeNumbers project without making any changes to it and have a look at the
Debug navigator. At the top there is a list of debug gauges , which show you how the state of system resources

 Figure 8-1. The FindPrimeNumbers app

http://dx.doi.org/10.1007/978-1-4842-1666-8_7

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

193

changes over time as your app is running. You can inspect processor load (CPU), memory usage, energy
impact, disk usage, traffic over the network, iCloud, and graphics processing unit (GPU) usage.

 For example, when you initially run the app, it hardly uses any CPU time at all. But set it up to do a lengthy
prime number search by moving the search slider up and you will see some impact on the CPU (Figure 8-2).

 Figure 8-2. Show or hide the debug gauges at the top of the Debug navigator

 Figure 8-3. Select a gauge to see a detailed report in the Editor

 When you select a gauge, the Editor changes to show you a detailed report of the respective system
resource (Figure 8-3).

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

194

 Note how, for some gauges , a button appears at the top left of the Editor, called Profile in Instruments .
Clicking it prepares your project for profiling and launches Xcode’s instruments, which include profilers for
time, memory, and network usage among other things. We had a look at these in Chapter 4 .

 Setting up breakpoints
 Back in Chapter 3 we learned how to add breakpoints in the Editor. Let us now see what control we have
over them.

 You can add breakpoints not only at lines of code in your source files but also breakpoints that will be
triggered by events, such as errors or exceptions. You can also add breakpoints for calls into the SDK or third-
party libraries, for which you may not have the source code: these are set up as symbolic breakpoints .

 Open the Breakpoint navigator and click the + button at the bottom to see the kinds of breakpoints that
are available (Figure 8-4).

 Figure 8-4. Adding a breakpoint in the Breakpoint navigator

http://dx.doi.org/10.1007/978-1-4842-1666-8_4
http://dx.doi.org/10.1007/978-1-4842-1666-8_3

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

195

 Let us add a symbolic breakpoint to see how these work. Select Add Symbolic Breakpoint... from
the pop-up menu you saw in Figure 8-4 . We will have the debugger stop inside the isItPrime method we
implemented in the ViewController class, but only after it has been called 100 times. In the setup dialog set
 Symbol to isItPrime and Ignore to 100 times before stopping.

 Apart from determining when the breakpoint will be hit, we can also set up actions to be triggered
when it happens. Let us set up two actions: one will play a sound to alert us when the debugger stops at
the breakpoint and the other one will execute a command. Click the Add Action button next to Action . Set
 Action to Sound and choose one of the available sound effects (we like the frog . . .) Then click the + button
on the right of the sound action you just added, in order to add another one. Select Debugger Command as
the action type and in the text field underneath put the following command:

 expr "Checking if \(number) is prime"

 Figure 8-5 shows how the breakpoint is set up.

 Figure 8-5. Setting up a symbolic breakpoint

 Run the app through the debugger and when it loads, tap the Start button. After a few moments there
should be a (slightly shy sounding) frog call and you should be able to see the result of the command in
Xcode’s console (Figure 8-6).

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

196

 Figure 8-6. Executing a debugger command when a breakpoint is hit

 What we just did was to execute a debug command in Xcode’s console: expr is short for expression , which
we used in Chapter 3 to change values at runtime. We will have another look at debugger commands next.

 Communicating with the Debugger
 Xcode uses the LLDB debugger and, in addition to controlling it from the user interface, it gives us the option
to talk to it by running commands in the console. The format of an LLDB command is:

 command options -- arguments

 The double dash (--) serves as a divider between any options and arguments you may pass to the
command.

 Let us try a few commands. With the debugger paused at the breakpoint we defined earlier type this in
the console:

 e self

 This command uses an abbreviation: e is another short form of expression . You can see the result in
the console: expression infers the meaning of self from the context, in which we have paused the debugger,
and prints out a hierarchical description of the instance of ViewController we are using (Figure 8-7).

http://dx.doi.org/10.1007/978-1-4842-1666-8_3

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

197

 Let us try another one:

 e –O -- self

 Executing this evaluates self again, this time only displaying a top-level description of the
 ViewController object without its members: <FindPrimeNumbers.ViewController: 0x15d940d0> .

 The last version of the command we ran is equivalent to

 po self

 Here po is a shortcut for e -O (the command expression , run with the option –O). In fact, the print
command we used in Chapter 3 to print out values of objects is also a variation of the same command and is
equivalent to expression -- .

 Here are a couple more commands for you to try when the debugger stops at the breakpoint in
 isItPrime :

 finish

 The finish command is a shortcut for thread step-out . It completes the running of the current
function (stack frame) and goes back to its caller. When you run it, you will see execution go to
 findPrimeNumbersInRange and pause there.

 continue

 This command is short for process continue and instructs the debugger to proceed with the execution
until another breakpoint is hit.

 You can, of course, use the debugger user interface (UI) to control execution, as shown in Figure 8-8 .

 Figure 8-7. Printing out a description of ViewController’s instance

http://dx.doi.org/10.1007/978-1-4842-1666-8_3

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

198

 Finally, if you remember only one LLDB command, make it this one:

 help

 As its name suggests, help will give you a hand with any other command you may want to learn about.
Running help will print out a list of all available commands and help command-name will give you details
about the options and syntax for a particular command.

 Checking the Type of a Symbol
 In the previous chapters we mentioned a few times and you have seen in examples that you do not always
need to specify a type when you declare a symbol (a constant, a variable, a function, etc.) The Swift compiler
is good at inferring type from the context, in which a symbol is declared (see Chapter 17 for details). The
code that you end up with if you omit all type declarations wherever possible can be very concise, but also a
bit harder to read. It can also leave you wondering about what type a symbol is.

 There are a couple of ways to reveal the type of a symbol at runtime while the debugger is paused at a
breakpoint. You can option-click the symbol in the Editor to see its declaration as shown in Figure 8-9 .

 Figure 8-8. Using the debugger controls

 Figure 8-9. Using Alt + click to see the declaration of a symbol

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

199

 You can also toggle symbol types in the Variables view: right-click inside the view and from the pop-up
menu select Show Types (Figure 8-10).

 Figure 8-10. Showing symbol types in the Variables view

 ■ Tip Before we move on it may be a good idea to disable the breakpoint we set for isItPrime . To do that,
find the breakpoint in the Breakpoint navigator, right-click it, and select Disable breakpoint . This will leave the
breakpoint in, in case you want to switch it on again by selecting Enable breakpoint . Note that you can also
select Delete breakpoint when you want to remove a breakpoint permanently.

 Inspecting Memory—A Workaround
 We have not forgotten our promise to show you how to inspect the memory of a symbol, in case the
straightforward way we demonstrated in Chapter 3 does not work. We will see how to deal with this scenario
here.

 First, let us set a breakpoint on this line in the displayResults method:

 resultsTextView.text = resultStr

 We want to see the memory of resultStr . Run the app through the debugger and when the breakpoint
is hit, find resultStr in the Variables view. Right-click it and from the pop-up menu select View Memory of
“resultStr” (Figure 8-11).

http://dx.doi.org/10.1007/978-1-4842-1666-8_3

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

200

 If you remember back from Chapter 3 , what we expect to see is the Memory view with the memory
footprint of the variable. However, what you are likely seeing instead is this: the screenshot in Figure 8-12
shows the memory for address zero.

 Figure 8-11. Selecting a variable in the Variables view to inspect in the Memory view

 Figure 8-12. Inspecting the memory for a variable someitimes results in showing address 0x0

http://dx.doi.org/10.1007/978-1-4842-1666-8_3

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

201

 This is a known issue, which Apple describes in the Xcode 6 Release Notes (https://goo.gl/Pki8UV):

 View Memory for Swift data structures in the debugger may show memory location zero.

 The following workaround is suggested:

 Pass the structure to a function expecting a reference to an UnsafePointer<Void>, and
print it within the function. Enter this address as the memory location to view.

 Xcode is ever-evolving and helping make Swift development easier, so this issue will probably be fixed
in a release very soon. Since it is still present in Xcode 7, however, let us see how to implement the suggested
workaround.

 Add the following method to the ViewController class (Listing 8-1):

 Listing 8-1. Printing Out the Address of a Symbol

 // MARK: Debugging helper methods
 func printAddressOf(symboToInspect: UnsafePointer<Void>) {
 print("Actual address in memory: \(symboToInspect)")
 }

 ■ Swift reference Pointers are part of Swift, in order to make it compatible and allow it to interact with C
and Objective-C code. For the most part you will rarely need to use pointers, but it is worth being aware of how
they work. A pointer is an object, which keeps the memory address of another object and thus “points” to it.
Using pointers can save both time and memory when large objects have to be passed around. It is much more
expensive to copy an object and all its data than to copy its address and dereference it (i.e., find the object by
its address). There are risks when using pointers, however. For example, a pointer can hold an address of an
object, which was deallocated or can point to memory that has not been initialized yet. The name of Swift’s
 UnsafePointer type signals just that: this type of pointer does not automatically change when changes happen
at the memory location, to which it points.

 Let us add a call to printAddressOf just after we have finished composing resultStr in the
 displayResults method as shown in Listing 8-2 .

 Listing 8-2. Adding a Call to printAddressOf

 func displayResults(primes: [UInt]) {
 if primes.isEmpty {
 resultsTextView.text = "No prime numbers were found."
 return
 }

https://goo.gl/Pki8UV

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

202

 // Iterate through the primes array and construct a string,
 // which will be displayed in the text view:
 var resultStr = "\(primes.count) prime numbers were found:\n\n"
 for i in primes.indices {
 resultStr += "Prime [\(i + 1)] = \(primes[i])\n"
 }

 // Workaround for the Memory view issue:
 printAddressOf(resultStr)

 resultsTextView.text = resultStr

 // The search has finished, now disable the Cancel button:
 cancelButton.enabled = false
 }

 Now, with the breakpoint we added earlier still in place, run the app through the debugger, and tap the
Start button. When the breakpoint is hit, have a look at the console: there you should see the result of the
 print statement we put in the body of printAddressOf :

 Actual address in memory: 0x15bace14

 The hexadecimal number you see is the memory location (address) of the resultStr variable. 1 We will
copy and paste it in the Address field in the Memory view as shown in Figure 8-13 . Hit Enter and you should
now see the memory footprint of the variable: it is shown as hexadecimal numbers on the left and as string
in the right part of the Memory view.

 Figure 8-13. Manually entering an address to inspect in the Memory View

 1 Note that the actual address in memory will most likely be different on your device and may change between runs of the
application.

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

203

 ■ Tip Now that you have implemented the official workaround, here are a couple of quicker ways to get the
address of a symbol, which don’t require additional code.

 With a breakpoint active, you can print out the address in the console by running the following command:

 po resultStr._core._baseAddress

 Alternatively, you can expand resultStr in the Variables view, right-click its _baseAddress and from the menu
select Print Description of _baseAddress . This too will print the address in the console, which you can then
copy and paste in the Memory view.

 Debugging Concurrent Code
 In Chapter 7 we implemented a method, called concurrentlyFindPrimeNumbersLessThan , to look for prime
numbers smaller than a given number. It keeps the UI responsive by creating a new custom concurrent
queue, which is separate from the main execution queue, and using it to execute tasks to search for prime
numbers. (Have a look at Chapter 7 for a reminder of how queues work on iOS.) Each concurrent task
searches for prime numbers in a portion of the range between zero and the given number and collects its
results in an array. When a task completes, it adds those results to another array, which accumulates the
prime numbers found by all tasks. In order to restrict access to this array to one task at a time, we put a
dispatch barrier around the code, which accesses it.

 To see how we can inspect concurrent code, we will do something naughty. You probably remember
when we discussed deadlocks in Chapter 7 : when two or more tasks each wait for one another to finish, in
order to continue execution, they are in a deadlock. We will introduce one to see how we can detangle
it—useful to know when your app hangs, for example.

 Let us make a few changes to the code, in order to artificially create a deadlock situation . Listing 8-3
shows the new implementation of the concurrentlyFindPrimeNumbersLessThan method.

 Listing 8-3. Modifying concurrentlyFindPrimeNumbersLessThan, So We Create a Deadlock

 func concurrentlyFindPrimeNumbersLessThan(number limit: UInt) {
 // Make sure we clear the blocks array from any old task references:
 blocks.removeAll()

 // Let us split the search into four:
 let concurrentTaskCount: UInt = 4

 // Based on the numer of concurrent tasks we want,
 // calculate the size of the interval
 // each task will need to search through:
 let rangeSize = limit / concurrentTaskCount + limit % concurrentTaskCount

 // Keep track of how many tasks have completed:
 var tasksDone: UInt = 0

 // An array to combine results in the end:
 var primes = [UInt]()

http://dx.doi.org/10.1007/978-1-4842-1666-8_7
http://dx.doi.org/10.1007/978-1-4842-1666-8_7
http://dx.doi.org/10.1007/978-1-4842-1666-8_7

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

204

 // Create a custom serial queue:
 let queue =
 dispatch_queue_create("com.diadraw.primeNumberSearchQueue",
 DISPATCH_QUEUE_SERIAL);

 for i in 0 ..< concurrentTaskCount {
 // Work out the interval for the search:
 let rangeStart = i * rangeSize
 if rangeStart >= limit {
 // If we have already covered the whole interval,
 // mark the task as complete:
 tasksDone += 1
 continue
 }
 let rangeEnd = min(UInt(rangeStart + rangeSize - 1), limit - 1)

 // Define a block of code to perform the search:
 let block = dispatch_block_create(DISPATCH_BLOCK_INHERIT_QOS_CLASS) {
 // Tasks have now started executing and we cannot cancel them,
 // so disable the Cancel button:
 dispatch_async(dispatch_get_main_queue(), {
 self.cancelButton.enabled = false
 })

 let primesInCurrentRange =
 self.findPrimeNumbersInRange(range: rangeStart ... rangeEnd)

 // Perform the writing to the primes array synchronously,
 // so that no more than one task can write to it
 // at the same time:
 dispatch_sync(queue, {
 primes.appendContentsOf(primesInCurrentRange)

 // Keep track of how many tasks have completed:
 tasksDone += 1

 // When we've got the last chunk of results in, display them:
 if tasksDone == concurrentTaskCount {
 dispatch_async(dispatch_get_main_queue(), {
 self.displayResults(resultsArray: primes)
 })
 }
 })
 }

 // Enqueue the block to be executed asynchronously:
 dispatch_async(queue, block)
 }
 }

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

205

 Figure 8-14. Pausing the debugger

 Let us walk through the changes we made and explain them. First, we replaced the custom concurrent
queue with a serial one:

 let queue =
 dispatch_queue_create("com.diadraw.primeNumberSearchQueue",
 DISPATCH_QUEUE_SERIAL)

 Then, instead of putting the code, which writes to the results collection in a dispatch barrier (dispatch_
barrier_async), we just dispatch it to the queue in a synchronous way:

 dispatch_sync(queue, { /*Collect results and display them on the screen.*/ })

 In the original implementation, at the end of the for-in loop, we used to add tasks to the queue after a
delay. This time we enqueue each task immediately with dispatch_async for simplicity:

 dispatch_async(queue, block)

 Let us run the app and tap the Start button. Can you see what happens? Probably not, as nothing seems
to be happening. To find out what is going on, we will pause the execution. Click the Pause button in the
Debug area as shown in Figure 8-14 .

 This immediately changes the view to show the Debug navigator, as if we have hit a breakpoint. Let
us now have a look at the Debug navigator: underneath the debug gauges there are stack traces, listed by
thread. Each stack trace shows what code a particular thread was running when we paused the execution.
Use the button at the top right-hand corner to switch to viewing queues (select View Process by Queue from
the pop-up menu) as shown in Figure 8-15 .

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

206

 Figure 8-15. Switch the debug view to show dispatch queues

 Inspecting queues takes us to more familiar territory. In the list of queues we can see the one we
created, listed with its name, its type, and the number of code blocks currently in it:

 com.diadraw.primeNumberSearchQueue (serial) 1 Running Block, 3 Pending Blocks

 Let us expand the queue entry and see the call stack for each of the blocks. At the top there is a call to
 semaphore_wait_trap . The cogwheel icon next to it means that this is a system call.

 ■ Tip For a full list of debugger icons, see Debugging with Xcode in Apple’s online documentation at
 https://goo.gl/3cgkSt .

 In order to understand what semaphore_wait_trap means, let us explain what semaphores are. This is
a technique for controlling access to common resources from multiple threads or processes. Say we have
a block of code and want to ensure that only one thread at a time can execute it, such as when we write
results to the primes array in the concurrentlyFindPrimeNumbersLessThan method. A semaphore could be
a Boolean flag, which signals true if the code is available for running. When a thread begins executing the
block, the semaphore flag is set to false and any other thread that needs to execute the same block of code
will be suspended and wait until the flag becomes true again. The call to semaphore_wait_trap at the top
of the stack means that the thread, on which the custom queue has placed our block of code, is currently
suspended and waiting for a semaphore to signal that it is allowed to continue execution. For information on
threads and queues look back at Chapter 7 .

 If we look down the call stack , shown in Figure 8-16 , we can find where in our code the execution has
been suspended. Calls that are made into our (user) code appear with a blue icon with a person outline on it.
The topmost one we can see reads

 ViewController.(concurrentlyFindPrimeNumbersLessThan(UInt) -> ()).(closure #1)

https://goo.gl/3cgkSt
http://dx.doi.org/10.1007/978-1-4842-1666-8_7

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

207

 If you click on this call, you will be taken to a line of code in the Editor (Figure 8-17). This line of code
happens to be at the end of the block of code we enqueued synchronously on our serial queue. We did that
in order to make sure that only one task can modify the primes array at a time and write its results to it.

 Figure 8-16. Inspecting the call stack

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

208

 Looking further down the call stack we can see more blocks of code, which have been placed on the
same queue. Do you see how the icon next to each call in these blocks has been grayed out? This is because
the blocks are pending execution (i.e., they are not running at the moment). In Figure 8-18 we can see four
blocks of code, one of which contains another, nested, block.

 Figure 8-18. Inspecting blocks of code on the call stack

 Figure 8-17. Going from the call stack to a particular line of code

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

209

 It is only the nested block (marked as “Inner running block” in Figure 8-18) that is active. This is the
block we matched to the dispatch_sync call in concurrentlyFindPrimeNumbersLessThan . Listing 8-4 shows
it in context.

 Listing 8-4. The Block of Code, Which Is Currently Running

 func concurrentlyFindPrimeNumbersLessThan(limit: UInt) {
 // ...

 for i in 0 ..< concurrentTaskCount {
 // ...

 // Perform the writing to the primes array synchronously,
 // so that no more than one task can write to it
 // at the same time:
 dispatch_sync(queue, {
 primes.appendContentsOf(primesInCurrentRange)

 // Keep track of how many tasks have completed:
 tasksDone += 1

 // When we've got the last chunk of results in, display them:
 if tasksDone == concurrentTaskCount {
 dispatch_async(dispatch_get_main_queue(), {
 self.displayResults(primes)
 })
 }
 })
 }

 // ...
 }
 }

 This block of code is nested inside the definition of the block constant: another code block, which we
later add to the same queue by calling dispatch_async (Listing 8-5).

 Listing 8-5. The Outer Block of Code, Which Is Pending Execution

 func concurrentlyFindPrimeNumbersLessThan(limit: UInt) {
 // ...

 for i in 0 ..< concurrentTaskCount {
 // ...

 // Define a block of code to perform the search:
 let block = dispatch_block_create(DISPATCH_BLOCK_INHERIT_QOS_CLASS) {
 // The definition of the block,
 // containing the nested call to dispatch_sync from Listing 8-4
 }

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

210

 // Enqueue the block to be executed asynchronously:
 dispatch_async(queue, block)
 }
 }

 If you click the top user call in the grayed-out part of the call stack as shown in Figure 8-19 , it will take
you to that same line.

 dispatch_async(queue, block)

 Figure 8-19. Finding out where the block of code is waiting

 Here is what has happened. We create the first block of code and dispatch it asynchronously on our
custom serial queue. The block starts executing and gets to the inner block of code, which it tries to dispatch
to the same queue synchronously. Before that inner block of code can start execution, however, it needs
to wait for the block, currently executing, to finish. But for that to happen, the inner block of code must be
executed. Thus the two blocks of code end up in a deadlock.

 Diagnosing deadlocks, race conditions, and other conflicts in concurrent code is not easy. Finding a
call to semaphore_wait_trap is not necessarily an indication of a deadlock. Instead, the waiting block of
code might just temporarily have ended up there until the resource it needs becomes available. However,
it is a good place to start and if you find your app spending a long time in such calls, a deadlock could be a
primary suspect.

 Testing Your Code
 Testing is an important part of any development workflow and does not necessarily have to happen at the
end of a development cycle. In fact, proponents of Test-Driven Development (TDD) like Kent Beck would
urge you to “[not] write a line of new code unless you first have a failing automated test.” 2 Coming up with a
test strategy and designing tests before you have even written the code has important benefits .

• It forces you to consider real-world usage and corner cases in advance.

• Tests can document your intentions for the code you are about to write.

• Regularly running automated tests can help with catching issues with newly
checked-in code early and save development time.

 2 Kent Beck, Test-Driven Development by Example (Boston: Addison Wesley, 2002).

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

211

• The tests you design might even uncover bugs! It is important to keep in mind the old
principle that no amount of testing can prove your code bug-free. Testing can only
prove bugs’ existence.

 There is always a trade-off between the amount of time invested in designing and putting test strategies
in practice and the time it takes you to maintain your code without testing. 3 It would be hard for an integrated
development environment (IDE) to offer automated tools for any test imaginable. For example, user experience
is best evaluated through . . . well, letting users experience your app and give you feedback. What Xcode has to
offer via its XCTest framework, however, makes certain types of tests so easy to automatically integrate in your
projects that it would be inexcusable not to put them to use. The types of tests you can include are

• Unit tests . Apple divides these into functional unit tests and performance tests .
Functional unit tests exercise part of your code by running it and comparing the
output to an expected result—that is, they treat code as a black box. Performance
tests help you measure how long it takes your code to perform selected tasks and
keep track of whether performance changes over time.

• User interface tests . Xcode lets you record a sequence of actions that a user would
perform in the UI and define the expected state of the app after these actions. The
sequence can then be replayed automatically, in order to check if the app is in the
expected state.

 We will add two unit tests: a functional one and a performance one to the same project we have been
abusing in the previous sections of this chapter.

 Tests are usually created in a separate project target. If you ticked the Include Unit Tests box when you
created the project for Chapter 7 , a test target has already been created for you by Xcode. To check if this
is the case, in Project navigator select the main project and see if FindPrimeNumbersTests appears under
Targets in the Editor. You should also be able to see FindPrimeNumbersTests in the project tree as shown
later on in Figure 8-21 .

 If there is no test target in the project, let us create one. With the FindPrimeNumbers project open in
Xcode select File ➤ Target... Then, at the first step of the wizard select iOS ➤ Test ➤ iOS Unit Testing
Bundle (Figure 8-20).

 3 As testing consultant and speaker James Lyndsay puts it: “An organisation's greatest investment in testing with any tool
is likely to be the cost of understanding the tool and developing plus maintaining the tests.”

http://dx.doi.org/10.1007/978-1-4842-1666-8_7

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

212

 Figure 8-21. The test target in the Project navigator

 Figure 8-20. Adding a unit testing bundle to your project

 At the next step the wizard offers to name the new target after the project with Tests appended to the
name (i.e., FindPrimeNumbersTests). Accept that, as well as the rest of the settings that have been set by
default, then click Finish .

 The new target is added to the project with its own Info.plist settings file and a source file, called
 FindPrimeNumbersTests.swift (Figure 8-21).

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

213

 Inside FindPrimeNumbersTests.swift you will find the definition of a class, called
 FindPrimeNumbersTests . It is a subclass of XCTestCase from the XCTest framework in the iOS SDK.

 FLASH ANALOGY

 Flash Builder offers FlexUnit —a unit test environment, which lets you generate and run tests within
the IDE.

 This is what FindPrimeNumbersTests looks like out of the box (Listing 8-6).

 Listing 8-6. FindPrimeNumbersTests, Defined by Xcode

 class FindPrimeNumbersTests: XCTestCase {

 override func setUp() {
 super.setUp()
 }

 override func tearDown() {
 super.tearDown()
 }

 func testExample() {
 }

 func testPerformanceExample() {
 self.measureBlock {
 }
 }
 }

 The testExample and testPerformanceExample methods are where we add test code. The other two
methods, setUp and tearDown , are called before and after each of the test methods are run and we can use
them to do initialization and cleanup.

 You can add as many test methods as you need to. As a general rule, make each method test one thing
and one thing only and keep related tests together (i.e., as methods of the same XCTestCase subclass).

 Before we add our first test, let us see how the test code can access the code in the app target. In Swift,
 access control is defined in terms of source files and modules . A module is a collection of source files that
are built and shipped together as an application or as a framework. By default, only declarations, which are
made public , are visible (i.e., accessible) to code outside the module where they have been defined (more
details on that in Chapter 17 and Chapter 21). This means that the test module we added does not see
the source code in our app module by default. In order to give it access to them, we need to import the app
module, FindPrimeNumbers , in our test code with the @testable keyword. Open FindPrimeNumbersTests.
swift and add the following line at the top of the file under import XCTest :

 @testable import FindPrimeNumbers

 This line does two things: it lets the test code know about the app code but also gives it access even to
entities in FindPrimeNumbers , which have been declared private .

http://dx.doi.org/10.1007/978-1-4842-1666-8_17
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

214

 Next, we will add an instance of ViewController as a property to the FindPrimeNumbersTests class and
initialize it inside the setUp method (Listing 8-7). Note that this will create a new instance of the class every
time we run a test. Although this is not too much of a hassle for our simple scenario, it is good to keep in
mind. Depending on what you test, you may or may not want to start with a fresh instance before each test
case is run.

 Listing 8-7. Adding an Instance of ViewController

 var viewController: ViewController!

 override func setUp() {
 super.setUp()

 let storyboard = UIStoryboard(name: "Main", bundle: NSBundle.mainBundle())
 viewController =
 storyboard.instantiateInitialViewController() as! ViewController
 }

 Adding a Functional Unit Test
 Let us now add a test. Replace the testExample method in FindPrimeNumbersTests with the method from
Listing 8-8 .

 Listing 8-8. Adding a Test

 func testIsItPrime_0() {
 let result = viewController.isItPrime(number: 0)
 XCTAssertFalse(result)
 }

 testIsItPrime_0 tests the isItPrime method of ViewController by treating it like a black box. It calls
 isItPrime with zero as the parameter and expects to receive a negative result. The result is checked in the
 XCTAssertFalse call. If the argument of XCTAssertFalse evaluates to false , the test passes, otherwise the
test fails.

 ■ Swift reference The XCTAssertFalse call in Listing 8-8 uses an assertion : a programming technique that
helps you state and check assumptions about the correctness of your code.

 In general, an assertion takes a Boolean argument and does nothing if this argument evaluates to true , but in
the case of false it alerts you by outputting a diagnostic message and throwing an error or even terminating
the app. Using assertions helps you define clear responsibilities for each function you implement. Say that a
function relies on a certain condition to be true, in order to do its job—for example, a variable having a value
and not being nil . Instead of silently handling the case when the variable is nil and allowing it to cause
issues down the line, the function can assert for the condition and alert you sooner and closer to the cause of

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

215

 Figure 8-22. Tests appear in the Test navigator

the trouble. It is important to note that assertions are a debugging technique and are disabled (i.e., do nothing)
when your app is built for release. This means that your diagnostic code can be left in without bloating the final
product. Remember, assertions are a diagnostic tool rather than a tool for error handling.

 To use assertions in your functional code, call the global assert function, like we did in
 findPrimeNumbersLessThan in the ViewController class.

 When writing tests, you have a whole arsenal of convenience assertions at your disposal: they are part of the
 XCTest framework and are prefixed with XCT . We just used XCTAssertFalse , which, in contrast to traditional
assert statements, expects its argument to evaluate to false . You can also use XCTAssertTrue , the more
general XCTAssert , XCTAssertEqual , and so on. For a full list have a look at the XCTTest API (application
programming interface).

 The Test navigator offers you a dashboard for running and inspecting the results of your tests. New
tests normally appear in the navigator as you add them in the code and save your changes. You can also
make sure that the list in the navigator is up to date by running a build from Xcode’s main menu: Product ➤
 Build For ➤ Testing . As Figure 8-22 shows, each test appears with a button next to it, which lets you run it
separately from the rest of the suite.

 Figure 8-23. A test is marked with a green icon when it has passed

 When you click the button, Xcode builds the project, installs it on your device (or in a simulator), and
runs the test. You will see your app loading and then quickly disappearing, as this test does not actually take
very long.

 If the test passes, a green tick appears next to its name in the Editor and in the Test navigator (Figure 8-23).

 You can add more tests as a homework exercise: for example, make sure you run isItPrime with other
interesting cases: 1, 2, UInt.max , a large prime number . . .

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

216

 Adding a Performance Test
 In order to see how performance tests work, we will replace testPerformanceExample with our own test,
called testPerformanceFindPrimeNumbersInRange . You can see its implementation in Listing 8-9 . There
is an interesting call to note there: self.measureBlock is a method of the base XCTestCase class, which
measures the performance of the code block inside the curly brackets that follow it. In our test we will
measure how long it takes ViewController ’s findPrimeNumbersInRange method to find the prime numbers
between 0 and 1000.

 Listing 8-9. Adding a Performance Test

 func testPerformanceFindPrimeNumbersInRange() {
 self.measureBlock {
 self.viewController.findPrimeNumbersInRange(range: 0...1000)
 }
 }

 When you run the test, you will again see your app appearing on the device or in the simulator and then
disappearing after the test has run. Xcode actually executes the test ten times in a row and calculates the
average running time and the standard deviation for those runs.

 Results are conveniently reported in the Editor next to the test declaration (Figure 8-24). When you click
the results, a pop-up dialog shows you a more visual representation. The first time you run the test, there is
no baseline to compare the results to, and so you are prompted to set it. Once set, it will be used as a criteria
for the test passing: this way you will be alerted if the code you are testing suddenly becomes much slower as
the project evolves.

 Figure 8-24. Displaying performance test results

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

217

 Figure 8-25. Enabling Xcode to gather code coverage data

 Tracking Code Coverage
 In addition to automating part of your testing process, Xcode can help you keep track of how much of your
code is actually exercised by automated tests. To enable this from the main menu select Product ➤ Scheme
➤ Edit Scheme and then open the Test scheme. Enable Gather coverage data next to Code Coverage
(Figure 8-25).

 After you have run a test, open the Report navigator, select the test report, and then go to the Coverage
pane in the Editor. This will show you visually how much of the code is currently covered by tests (Figure 8-26).

CHAPTER 8 ■ DEBUGGING AND TESTING YOUR APP

218

 As you can see, the coverage for FindPrimeNumbers can be improved quite a lot. We hope that you
would enjoy doing this as homework.

 Diagnosing Release Builds
 It is all very well to rely on the debugger and make the most of automated testing while your app is in
development. Once it is in the real world, however, your job for maintaining it and fixing issues on time becomes
a bit harder, as you rely on user feedback. You will probably not be surprised that Apple has provided tools and
services for that too. Apple makes it easy for users to report issues and for you to track and fix them. We will close
this chapter with a few words on a couple of tools that help you maintain your release builds.

• TestFlight . This is a service, available to members of the iOS Developer Program. It
makes it very easy for beta testers to install your app on their devices and send you
feedback, crash logs, and usage statistics.

• The Organizer window . Once you have published your apps in the App Store, you
can receive crash reports in Xcode’s Window ➤ Organizer ➤ Crashes . These are
 symbolicated for you by Xcode—that is, the addresses from the crash report are
linked with lines of code to allow you to inspect and diagnose issues.

 Summary
 This is the final chapter in Part II of this book, which helps you port your workflow and start making the
most of what Xcode has to offer to iOS developers. Here we covered some powerful features of the debugger
and ways they can help you keep an eye on how your app utilizes system resources, step through your
code with sophisticated breakpoints, and detangle concurrent code issues. We also had a look at Xcode’s
automated test frameworks and how they can be a valuable asset to your workflow.

 You are now ready to move on to the more exciting Part III , where we will build some fun apps. The first
one will allow users to send e-mail and text messages, as well as make phone calls from within the app.

 Figure 8-26. Displaying performance test results

 PART III

 Making Apps with Swift—Applied
Examples

221© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_9

 CHAPTER 9

 Communicating: E-mail, Text
Messages, and Calls

 In their early days mobile phones were used only for making calls and later on for sending short text
messages. Today we don’t even call them phones any more: a mobile device is a computer that fits in your
pocket. Still, communication is one of the core purposes of a mobile device and this is what we will focus
on in this chapter by making an app that can make phone calls and send e-mail and text messages (SMS, or
short message service).

 In this chapter you will do the following:

• Learn how to use the MessageUI framework for composing and sending e-mail and
text messages.

• Learn how to make a phone call from an app.

• Learn how to work with the iOS address book, iterate through contacts, and read
contact information with the AddressBookUI framework.

• Build an app that does all of the above.

 When you are done, you will have an app that can send e-mail and text messages, can make phone calls,
lets you choose contact info from the address book, and assists you with message composition.

 Setting Up the App and Designing the UI
 The app you will develop has two main objectives. The first one is to help the user compose and send
messages without leaving the app. The second objective is to make sending messages quicker by presenting
the main bits of information already populated: the recipient’s address or phone number, a template for the
message body, and so on.

 Start by creating a Single View iOS application project (File ➤ New ➤ Project… , then iOS ➤ Application
➤ Single View Application) and naming it MessageComposer . We will design the user interface (UI) of the
application as part of the setup, so we can focus on code in the rest of the chapter.

 Figure 9-1 shows you what the UI will look like: on the left there is a mock-up with the UI elements you
will need to place in the view on the storyboard and on the right is a screenshot of the storyboard with the
elements already positioned on it.

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

222

 Open Main.storyboard and arrange the UI as shown in Figure 9-1 by adding three text fields, a text view, four
buttons, and four labels. The text fields and the text view will be used for inputting a message and information
about the recipient. Do not forget to add constraints, so that the app adapts its look to whatever device it runs on.
If you need a reminder for how to set constraints and make an adaptive UI, have a look at Chapter 5 .

 Next, open ViewController.swift and import the MessageUI framework to start with. Then create
outlets for all the text fields you added to the storyboard (see Chapter 2 for how to create outlets). Your code
should look like Listing 9-1 .

 Listing 9-1. Adding Outlets for the Text Fields to the ViewController Class

 import UIKit
 import MessageUI

 class ViewController: UIViewController {

 @IBOutlet weak var recipientEmail: UITextField!
 @IBOutlet weak var phoneNumber: UITextField!
 @IBOutlet weak var messageSubject: UITextField!
 @IBOutlet weak var messageBody: UITextView!

 //The rest of the code goes here
 }

 With the UI of the app laid out we are ready to focus on writing code and adding functionality to the app.

 Figure 9-1. The app’s user interface

http://dx.doi.org/10.1007/978-1-4842-1666-8_5
http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

223

 Composing and Sending E-mail
 Making it easy for the user to send an e-mail without leaving your app has two advantages: it is convenient
for the user and allows you to spread the word about your app and brand by providing a custom template for
the message body.

 The MessageUI framework offers an easy way of doing that: it lets you show the standard iOS e-mail
composer UI within your app with the help of a view controller class, called MFMailComposeViewController .
We will see how to use it in a bit.

 The e-mail interface will be shown when the user taps the E-mail button on the app’s screen, so let us
first add a handler for that. On the storyboard select the button and create a Touch Up Inside action for it,
called sendEmail , in ViewController.swift . (For details on how to create actions for storyboard elements
see Chapter 2 .)

 Listing 9-2 has the implementation you should put inside the action. First, we check if the device has been set
up to send e-mail by calling canSendMail —a static method of the MFMailComposeViewController class. If sending
e-mail is possible, we create an instance of MFMailComposeViewController , set it up, and present it on screen.

 The setup includes providing initial values for the e-mail’s subject (setSubject), body
(setMessageBody), and recipients (setToRecipients). To fill these in, we use the text that the user has
provided in the text fields and the text view we added to the app earlier. Note that setToRecipients takes
an array of String : this lets you specify more than one e-mail recipient. We get an array, containing all the
recipients’ e-mails by dividing the original string into substrings using comma as the separator.

 You can be creative with the message body and use HTML tags to make it prettier, include hyperlinks,
and so on. To turn HTML on, you need to set the second parameter of setMessageBody to true . We will keep
things simple in this example and only use plain text.

 When all the setup is done, the e-mail composer is shown on screen with presentViewController .

 Listing 9-2. Creating and Configuring an E-mail Composer Instance

 @IBAction func sendEmail(sender: AnyObject) {
 //Check if the device is configured to send e-mail
 if MFMailComposeViewController.canSendMail() {
 let emailController = MFMailComposeViewController()
 //Set a delegate responsible for the dismissal of the view controller
 emailController.mailComposeDelegate = self

 //Extract recipients in an array of String items
 //by dividing the string using comma as a separator
 let recipientList =
 recipientEmail.text!.componentsSeparatedByString(",")
 //Use the resulting array to set the To field
 emailController.setToRecipients(recipientList)
 //Copy the subject from the messageSubject text field
 emailController.setSubject(messageSubject.text!)
 //Copy the message body from the messageBody text view
 emailController.setMessageBody(messageBody.text, isHTML: false)

 //Show emailController on the screen
 presentViewController(emailController, animated: true, completion: nil)
 }
 else {
 print("Cannot send e-mail.")
 }
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

224

 You may have noticed that there is a line in Listing 9-2 I haven’t explained yet:

 emailController.mailComposeDelegate = self

 We talked about delegation in Chapter 5 . It is a design pattern, which is used a lot in the iOS SDK
and lets an object delegate tasks to another object. In this case the mail composer will delegate to our
 ViewController class the task of handling what happens when the user is done composing an e-mail. For
the delegation to work, ViewController needs to have an interface that the mail composer recognizes, so we
will have it conform to the MFMailComposeViewControllerDelegate protocol , which is part of the iOS SDK.
Let us add the protocol to ViewController ’s inheritance list:

 class ViewController: UIViewController, MFMailComposeViewControllerDelegate {

 ■ Note For more information on protocols and conforming to them, see Chapter 21 .

 The protocol we have just added requires that any conforming type implement a method, named mailC
omposeController(_:didFinishWithResult:) . This method serves as a callback and is executed when the
user decides whether to send, save, or delete the e-mail by tapping one of the buttons in the mail composer:
Send or Cancel. The user’s decision is delivered in one of the callback’s parameters, called result of type
 MFMailComposeResult . For simplicity, all our callback will do is print the result from the user’s choice and
dismiss the mail composer (i.e., hide it from the screen). You can see the implementation in Listing 9-3 .

 Listing 9-3. Dismissing the E-mail Compose View Controller

 func mailComposeController (controller: MFMailComposeViewController,
 didFinishWithResult result: MFMailComposeResult, error: NSError?) {

 //Print the result of the user's action
 switch (result) {
 case MFMailComposeResultCancelled:
 print("Cancelled.")
 case MFMailComposeResultSaved:
 print("Saved as a Draft.")
 case MFMailComposeResultSent:
 print("Sent.")
 case MFMailComposeResultFailed:
 print("Failed \(error?.localizedDescription)")
 default:
 print("Result code: \(result.rawValue)")
 }

 //Dissmiss the view controller from the screen
 controller.dismissViewControllerAnimated(true, completion: nil)
 }

 That’s it: you have an app that lets the user send e-mail with just a few lines of code. Now let us run it
and test it by sending an e-mail or two.

http://dx.doi.org/10.1007/978-1-4842-1666-8_5
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

225

 ■ Caution At the time of this writing there is a bug in the iOS 9 simulator, which results in a crash when you
try to use MFMailComposeViewController . Apple is aware of it and will likely provide a fix in the next simulator
update. If you do get a crash in the simulator, you can test the app on a device instead. See Chapter 2 if you
need a reminder for how to deploy apps on an iOS device.

 Run the application; fill in the e-mail address, subject, and body fields; and tap the E-mail button. You
should see the e-mail compose view controller modally presented on the screen (Figure 9-2) and be able to
send an e-mail by tapping Send.

 Figure 9-2. Sending e-mail from your application

 Composing and Sending SMS
 Sending text messages from your app is so similar to sending e-mail, you are likely to have a déjà vu while
writing the code.

 To start with, create an action handler for the Touch Up Inside action of the SMS button you added
to the storyboard earlier. Call the action handler sendSMS . Now look at Listing 9-4 , which shows the
implementation of sendSMS : does it look familiar?

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

226

 Listing 9-4. Create and Configure SMS Compose View Controller

 @IBAction func sendSMS(sender: AnyObject) {
 //Check if the device can send SMS
 if MFMessageComposeViewController.canSendText() {
 let smsController = MFMessageComposeViewController()
 //Set a delegate responsible for the dismissal of the view controller
 smsController.messageComposeDelegate = self
 //Extract recipients in an array of String items
 //by dividing phoneNumber using comma separator
 let recipientList = phoneNumber.text!.componentsSeparatedByString(",")
 //Use the resulting array to set the To field
 smsController.recipients = recipientList
 //Copy the message body from the messageBody text view
 smsController.body = messageBody.text

 //Show smsController on the screen
 presentViewController(smsController, animated: true, completion: nil)
 }
 else {
 print("Cannot send sms.")
 }
 }

 The iOS SDK has a class, called MFMessageComposeViewController , which we can use to show an SMS
composer inside the app. The code first calls MFMessageComposeViewController.canSendText() to check
if the device can send text messages. Then it creates an instance of MFMessageComposeViewController
and sets it up with the information that the user typed in the app’s UI: the SMS content (body) and a list of
recipients in the form of a String array. Finally, the SMS composer is presented on the screen.

 The task of dismissing the SMS composer from the screen will be delegated to our ViewController class
by the SMS composer, which is what this line is about:

 smsController.messageComposeDelegate = self

 To implement the interface for the delegation, make ViewController conform to the
 MFMessageComposeViewControllerDelegate protocol by first adding the protocol to ViewController ’s
inheritance list:

 class ViewController: UIViewController, MFMailComposeViewControllerDelegate,
MFMessageComposeViewControllerDelegate {

 Then add an implementation for the only method required by the protocol: messageComposeView
Controller(_:didFinishWithResult:) . You can see the method implemented in Listing 9-5 : again, it looks
very similar to the callback method we implemented for handling e-mail sending in the previous section.
In it we print the result from the user’s action and dismiss the SMS composer from the screen.

 Listing 9-5. Dissimss the SMS Compose View Controller

 func messageComposeViewController(controller: MFMessageComposeViewController,
 didFinishWithResult result: MessageComposeResult) {

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

227

 //Print the result of the user's action
 switch (result) {
 case MessageComposeResultCancelled:
 print("Cancelled.")
 case MessageComposeResultSent:
 print("Sent.")
 case MessageComposeResultFailed:
 print("Failed.")
 default:
 print("Result code: \(result.rawValue)")
 }

 //Dissmiss the view controller off the screen
 controller.dismissViewControllerAnimated(true, completion: nil)
 }

 When you run the app on your device and tap the SMS button, you should see the message compose
view controller appear as shown in Figure 9-3 .

 Figure 9-3. Compose SMS view controller

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

228

 ■ Note In order to test sending text messages you will need to run the app on an iPhone with a SIM card.
The simulator will not do in this case. If you try to run the app in the simulator or on a phone without a SIM card
the MFMessageComposeViewController.canSendText() will always returns false .

 Making a Call
 Initiating a telephone call from an app is actually pretty easy and can be done with a single line of code.
There is no dedicated iOS SDK framework specifically for making phone calls. Instead, to call a number, you
need to treat it like a URL (uniform resource locator).

 The same way that a URL scheme like http lets you open a web browser and navigate to a web page by
doing http://mywebsite.com/mywebpage , defining a custom URL scheme for an app allows that app to be
opened and to receive information from other apps.

 Let us say, for example, that you are building a treasure-hunting app, which leads the user to discover a
prize by following clues that you have hidden in the local park. You could encode the clues in QR codes and
attach them to trees, benches, and posts in the park, which can be uncovered and scanned with a phone.
Each QR code could contain a URL (for instance, myTreasureHuntingApp) and a piece of information (say,
 clue_1), which can be assembled in a string: myTreasureHuntingApp://clue_1 . The first part of the string,
the URL followed by //, tells iOS to look for an app that responds to this URL and start it. 1 The second part is
much a command-line parameter list that you can pass to an app when you start it.

 Most of the standard applications and services that iOS comes with have custom URLs. The service for
making phone calls uses the tel URL and this is what we are going to use: navigating to tel://some_phone_
number should start the service and get it to call the given telephone number.

 We will again first add an action for handling when the Call button has been tapped. Select the Call
button on the storyboard and add a handler for its Touch Up Inside action it to the ViewController class.

 Listing 9-6 shows the implementation of the action handler. First we extract the string that the user
typed in the phoneNumber text edit and use it to create an instance of NSURL . The NSURL class is part of the iOS
SDK, which helps with handling and parsing paths to resources—remote and local. The URL we obtain can
be used to ask our application instance to navigate to it. We can get a reference to our app instance by calling
iOS SDK’s UIApplication.sharedApplication() . Before we navigate to the telephone number URL, we
check if it’s actually valid by calling UIApplication ’s canOpenURL method.

 Listing 9-6. Making a Call Using a URL Scheme

 @IBAction func makeCall(sender: AnyObject) {

 if let phoneCallURL = NSURL(string: "tel://\(phoneNumber.text!)") {
 let application = UIApplication.sharedApplication()

 if application.canOpenURL(phoneCallURL) {
 application.openURL(phoneCallURL)
 }
 }
 }

 1 For an app to be invoked with a custom URL, it needs to register this URL with iOS first. You can enable this in the app
settings. For more information see “Using URL Schemes to Communicate with Apps” on Apple’s web site: https://
developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-
AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1 .

http://mywebsite.com/mywebpage
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

229

 Figure 9-4. Making a phone call

 ■ Note As was the case with sending text messages, testing phone calls in your app will require the app to
run on a device with a SIM card, rather than in a simulator.

 Run the app on your phone, enter a valid telephone number in the Phone Number text field, and tap
Call. This should start the call service (Figure 9-4).

 Using the Address Book
 There is one more thing we could add to our app to make it even more convenient for making phone calls
and sending messages. Instead of having the user input phone numbers and e-mail addresses by hand,
we could grab the information from the device’s address book. You can think of the address book as a
centralized database of contact information, which can be accessed by multiple applications.

 iOS lets you access this information programmatically for reading and modifying contacts. If you choose
to do that, your app will first need to ask the user’s permission.

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

230

 If your app doesn’t need to browse through all of the contacts but just have them displayed
on the screen for the user to select one, you can use a ready-made view controller, called
 CNContactPickerViewController , which is part of the AddressBookUI framework. It displays the standard
iOS address book screen, where the user can browse through the contact list. In this case the app itself
doesn’t have access to the whole address book but gets a copy of the selected contact, so it doesn’t need to
ask for permission.

 In this example we will have our app use CNContactPickerViewController to present an instance of
it on the screen and let the user choose a contact. Then the app will auto-fill its text fields with the selected
contact’s information.

 We start by first importing the ContactsUI framework and then adding an action handler for one of
the buttons on the screen: in this action handler we will present the contact picker view controller. Add
a handler to ViewController for the Touch Up Inside action of the button titled Pick a contact from the
address book and call it selectContact .

 Inside selectContact first obtain an instance of CNContactPickerViewController and set it up for
displaying a contact’s email address and phone number by setting the instance’s displayedPropertyKeys
property as shown in Listing 9-7 . Then show the view controller on the screen.

 Listing 9-7. Create and Configure a Contact Picker View Controller

 @IBAction func selectContact(sender: AnyObject) {
 let contactPicker = CNContactPickerViewController()
 //Tell contactPicker that we want to use e-mail and phone number
 contactPicker.displayedPropertyKeys = [CNContactEmailAddressesKey,
 CNContactPhoneNumbersKey]
 //Set a delegate which will recieve the selected person's info
 contactPicker.delegate = self

 //Show contactPicker on the screen
 presentViewController(contactPicker, animated: true, completion: nil)
 }

 When the user selects a contact in the contact picker, the picker’s view controller will need to delegate
the task of handling that contact’s information to our ViewController class. For that purpose we will
make ViewController conform to yet another protocol, called CNContactPickerDelegate by adding it to
 ViewController ’s inheritance list:

 class ViewController: UIViewController, MFMailComposeViewControllerDelegate,
MFMessageComposeViewControllerDelegate, CNContactPickerDelegate {

 In Listing 9-7 you can see the line that sets our ViewController as the delegate for the contact picker
view controller:

 contactPicker.delegate = self

 Now let us implement the callback that CNContactPickerDelegate requires, in order to pass contact
information back to us: contactPicker(_:didSelectContact) . The second parameter of the callback is an
instance of CNContact , a class, which represents a record in the address book. We will use that instance to
read the selected contact’s e-mail address and telephone number and fill them in the main screen of our app
(Listing 9-8).

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

231

 An interesting thing to note here is how e-mail addresses and phone numbers are represented.
 A contact in the address book can have multiple e-mail addresses (e.g., a work one and a personal

one). We can access these e-mail addresses through CNContacts ’s emailAddresses property, which is an
array of CNLabeledValue instances. CNLabeledValue is very similar to a key-value pair in that it combines a
value with a given label, for example, ‘06658907432’ and ‘Work’. In our example we will use the first available
e-mail address from the array.

 A contact can also have multiple phone numbers stored for it, again labeled ‘Work’, ‘Home’, and so
on. CNContacts ’s phoneNumbers property gives us access to them in the form of an array of CNPhoneNumber
instances. We can get a phone number as a String by reading CNPhoneNumber ’s stringValue property
(Listing 9-8).

 Listing 9-8. Reading Data from the Selected Contact

 func contactPicker(picker: CNContactPickerViewController,
 didSelectContact contact: CNContact) {
 //Check if there are any e-mails for this contact
 if contact.emailAddresses.count > 0 {
 //Get the first e-mail entry
 let email = contact.emailAddresses.first?.value as! String
 //Show the e-mail address in the UI
 recipientEmail.text = email
 }

 //Check if there are any phone numbers for this contact
 if contact.phoneNumbers.count > 0 {
 //Get the first phone number entry
 let phone = contact.phoneNumbers.first?.value as! CNPhoneNumber
 //Extract a string from the phone number and show it in the UI
 phoneNumber.text = phone.stringValue
 }
 }

 Figure 9-5 shows you what you should see when you run your app with this last bit of functionality
added to it. When you tap the Pick a contact from the address book button, the contact picker controller
shows you all of your contacts. After you select one, you are taken back to the main screen of the app with
the contact’s information filled in.

CHAPTER 9 ■ COMMUNICATING: E-MAIL, TEXT MESSAGES, AND CALLS

232

 Summary
 In this chapter you saw how to use default iOS user interface to compose e-mails, send SMS, and make
phone calls. You learned about the MessageUI framework and implemented a way of sending messages and
making calls from within an app. As a bonus, you saw how to harness the AddressBookUI framework to read
and display information about the user’s contacts.

 In the following chapter we continue the topic of communication and look at how to compose and post
messages on popular social networks. Let me just update my Facebook profile first . . .

 Figure 9-5. Pick a person from the address book

233© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_10

 CHAPTER 10

 Getting Social: Posting to
Facebook and Twitter

 One of the significant events in the last decade was the rise of social networks. They transformed not only
how we communicate with each other but also how ideas spread. If your app gives a compelling reason and
an easy way for users to share thoughts and creations with their social network tribes, it can get the benefit of
word of mouth and instantly be in front of the eyes of many more potential users.

 In this chapter you will do the following:

• Learn how to use the Social framework to post messages to Facebook and Twitter
from your app.

• Learn how to link a device with social media accounts.

• Build an app that posts messages to Facebook and Twitter using the Social
framework built-in composer user interface (UI).

 When you are done, you will have an app that can post messages to the two most popular social
networks: Facebook and Twitter. Note that to be able to test the app you will need Facebook and Twitter
accounts.

 Setting Up the App and Designing the UI
 Apple recognized the power of the social media early on and introduced integration with Twitter as early
as iOS 5. The next iOS release brought us the Social framework, which has continued to evolve since. In its
current version the Social framework makes it easy to integrate several social network platforms with your
app: Facebook, Twitter, Sina Weibo, and Tencent Weibo.

 The app we are going to build will let the user compose and post messages with text and images to
Facebook and Twitter. To do that we will use the built-in composer of the Social framework.

 Create a Single View iOS application project (File ➤ New ➤ Project… , then iOS ➤ Application ➤ Single
View Application). Name it SocialSharingApp .

 Open Main.storyboard and place two buttons and a text view on the main view of the app, as shown
in Figure 10-1 . Have a look back at Chapter 5 if you need a reminder for how to constrain the UI elements to
make the design adapt to different screen sizes and orientations.

http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

234

 Next, open ViewController.swift and first import the Social framework at the top of the file. This will
let us use the application programming interface (API) that posts to social networks.

 Then create an outlet for the text view and name it postBody . Add actions for the two buttons’ Touch Up
Inside events. (See Chapter 2 for how to create outlets and actions.) Name the first action postToFacebook
and the second action postToTwitter .

 Your code should look like that in Listing 10-1 .

 Listing 10-1. Adding an Outlet and Two Actions to the ViewController Class

 import UIKit
 import Social

 class ViewController: UIViewController {

 @IBOutlet weak var postBody: UITextView!

 //The rest of the code goes here

 @IBAction func postToFacebook(sender: AnyObject) {
 }

 Figure 10-1. The app's user interface

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

235

 @IBAction func postToTwitter(sender: AnyObject) {
 }

 }

 We will see how to post not just text but also pictures to social media. To keep things simple, we will add
an image to the app’s assets and include it in posts. If you did the tutorial in Chapter 5 , you already know
how to add an image as an asset: in Xcode’s Project navigator open Asset.xassets , then drag and drop an
image file inside (Figure 10-2). We will use the same cute panda image we used there (you can download
it from https://pixabay.com/en/panda-bear-cute-happy-young-151587 ; rename the file to bear.png to
keep it short).

 Figure 10-2. Adding a panda bear image to the project’s assets

 Configuring Your Social Media Accounts on a Device
 To be able to post a message to Facebook or Twitter from our app, the user must link iOS with his or her
social media accounts first, using the device settings.

 Stepping into the user’s shoes for a moment, let us do just that—you can use a device or one of the
iOS simulators in Xcode. Go to Settings and find Facebook in the list. Tap it, enter your Facebook account
details, and tap Sign In . On the next screen you will see a list of the ways that your device (or simulator) will
be able to interact with your Facebook account. Tap Sign In again and you are ready. You can see the steps
shown in Figure 10-3 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_5
https://pixabay.com/en/panda-bear-cute-happy-young-151587

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

236

 Figure 10-4. Signing in with a Twitter account

 Figure 10-3. Signing in with a Facebook account

 Repeat the same steps to link your device (or the simulator) with Twitter. You can follow Figure 10-4 .

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

237

 Before we continue with the back end of the application, make sure your device or the simulator is
connected to both social networks. We will need that in order to share posts.

 Composing and Posting a Facebook Post
 The Social framework has standard composer user interface, which we will use. It is controlled by the
 SLComposeViewController class and offers several helper methods that are designed to assist with writing a
post, adding an image, creating hyperlinks, and handling user interaction. In fact, this is quite similar to how
we used the MessageUI framework to compose and send e-mail back in Chapter 9 .

 Listing 10-1 will guide you through the implementation of posting a message on the user’s Facebook
timeline. Open ViewController.swift , find the postToFacebook action we added earlier and let us begin.

 The first thing we do is call isAvailableForServiceType(_:) —a method of SLComposeViewController ,
which checks if a Facebook account has been set up on the device. Note the use of the
 SLServiceTypeFacebook constant: isAvailableForServiceType(_:) handles several different social
networks, so we must specify which one we are interested in. To tell the composer view controller that we are
interested in working with Facebook we use SLServiceTypeFacebook .

 If a Facebook account has been found, we set up an instance of SLComposeViewController and present
it on the screen.

 The setup includes optionally providing default content for the post by calling setInitialText ,
 addImage and addURL . To use it with addImage , we wrap our cute panda picture in an instance of UIImage
and load it from the app’s assets using its file name.

 There is an interesting line towards the bottom of the listing: facebookVC ’s property completionHandler
takes a block of code, which will be executed when the user finishes working with the composer either by
posting to Facebook or by cancelling the post. We will look at that syntax in detail when we discuss closures
in Chapter 22 .

 When all the setup is done the composer is shown on the screen with presentViewController .

 Listing 10-2. Setting Up a Compose View Controller to Post to Facebook

 @IBAction func postToFacebook(sender: AnyObject) {
 //Check if a Facebook account has been set up
 if false == SLComposeViewController.isAvailableForServiceType(➤ SLServiceTypeFacebook
) {
 print("Facebook service is not available.")
 return
 }

 //Create an instance of the view controller,
 //which will show the post compoer on the screen
 let facebookVC = SLComposeViewController(
 forServiceType: SLServiceTypeFacebook)

 //Set post's message body
 facebookVC.setInitialText(postBody.text)
 //Add an image to the post
 facebookVC.addImage(UIImage(named: "bear"))

 //Add a url to the post
 let url = NSURL(string: "http://diadraw.com")
 facebookVC.addURL(url)

http://dx.doi.org/10.1007/978-1-4842-1666-8_9
http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

238

 //Handle post completion
 facebookVC.completionHandler = {
 result in

 switch result {
 case .Cancelled:
 print("Message cancelled.")
 case .Done:
 print("Message sent.")
 }
 }

 //Show facebookVC on the screen
 presentViewController(facebookVC, animated: false, completion: nil)
 }

 ■ Note You can add but also remove content from a post programmatically by calling removeAllImages and
 removeAllURLs . These are methods of the SLComposeViewController class.

 Note also this line: facebookVC.completionHandler = { /*...*/ } . The curly brackets define a closure—a
block of code that will be executed only after posting to Facebook completes. We will look at closures in detail
in Chapter 22 .

 And that is all we need to do to allow the user to post to Facebook without leaving the app. Let us test
it: run the application, fill in the message body, and tap the Post to Facebook button. The compose view
controller will pop up as shown in Figure 10-5 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

239

 Figure 10-5. Posting a message to Facebook from your application

 Notice how you can tag your post with a geographical location and specify who can see it (define its
audience). If the post contains an image, you can also add it to one of your Facebook photo albums.

 Tap Post and open your Facebook account (use the Facebook app or a browser) to see the post with the
smiling panda on your timeline (Figure 10-6).

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

240

 Composing and Posting a Twitter Message
 We will use the same idea and code structure to create a post for Twitter as we did for Facebook. The
implementation of the postToTwitter action is shown in Listing 10-3 .

 We start by checking if a Twitter account has been set up on the device. If there is one available, we
proceed with setting up the composer UI and presenting it on the screen. Note that this time we instantiate
 SLComposeViewController with SLServiceTypeTwitter .

 Listing 10-3. Setting Up a Compose View Controller to Post to Twitter

 @IBAction func postToTwitter(sender: AnyObject) {
 //Check if a Twitter account has been set up
 if false == SLComposeViewController.isAvailableForServiceType(å SLServiceTypeTwitter)
{
 print("Twitter service is not available.")
 return
 }

 Figure 10-6. See the post on your Facebook timeline

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

241

 //Create a composer view controller
 let twitterVC = SLComposeViewController(
 forServiceType: SLServiceTypeTwitter)

 //Set post's message body
 twitterVC.setInitialText(postBody.text)
 //Add an image to the post
 twitterVC.addImage(UIImage(named: "bear"))

 //Add a url to the post
 let url = NSURL(string: "http://diadraw.com")
 twitterVC.addURL(url)

 //Handle post completion
 twitterVC.completionHandler = {
 result in

 switch result {
 case .Cancelled:
 print("Message cancelled.")
 case .Done:
 print("Message sent.")
 }
 }

 //Show twitterVC on the screen
 presentViewController(twitterVC, animated: false, completion: nil)
 }

 Let us test this. Run the app and tap the Post to Twitter button to see the composer UI show up on the
screen (Figure 10-7). This being Twitter, you are limited to posts of up to 140 characters—notice how the Post
button becomes inactive if you go over that count.

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

242

 Figure 10-7. Posting a message to Twitter from your application

 If there is more than one Twitter account set up on the device, the composer UI will let the user choose
which account to post to (Figure 10-8).

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

243

 When you finish posting, you should see the new post in your Twitter account in a matter of seconds
(Figure 10-9).

 Figure 10-8. Choosing to which of the active Twitter accounts to post

CHAPTER 10 ■ GETTING SOCIAL: POSTING TO FACEBOOK AND TWITTER

244

 Other Types of Interaction with the Social Medias
 Besides posting to the user’s timeline, the Social framework can help you with getting data back from social
media platforms.

 The SLRequest class can send HTTP requests to a social networking service. You can use it to retrieve
user information from the HTTP API of each of the supported social media platforms. For example, you can
send a request to Twitter and ask it to give you the activity feed for the currently logged in user.

 Keep in mind that the SLRequest class is just a wrapper around the standard HTTP connection routines.
The request endpoints and the format of the data returned by each social network service will be different.

 Summary
 In this chapter you used the built-in iOS functionality for sharing information on Facebook and Twitter.
You learned about the Social framework and created an app that uses it to let users create posts with text,
images, and hyperlinks on their social network timelines.

 In the next chapter you will see how to access the device motion sensors, how to get a GPS location, and
how to show it on a map.

 Figure 10-9. See the post in your Twitter account

245© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_11

 CHAPTER 11

 Knowing Your Location

 It’s good to know where you stand. In this chapter—literally. A mobile app that helps you with that can be
priceless: from being able to summon a taxi by just sending your location to the taxi company (useful when
leaving drinking establishments in a not entirely verbal state) to finding your way to the family picnic before
your cousins get to the marshmallows.

 One of my friends laughed uncontrollably when he saw me using my phone as a spirit level to hang a
picture on the wall. But, hey, isn’t this the idea when you have a digital Swiss Army knife like the iPhone?

 In this chapter you will do the following:

• Learn how to read the device’s motion and location sensors.

• Set up a project that uses the accelerometer, the magnetometer, and the gyroscope
sensors.

• Get familiar with the MapKit framework and how to use it to visualize your location
on a map.

• Get your GPS location in real time.

 When you are done, you will have two applications receiving data from the device’s motion and
location sensors. The first app is focused on using the accelerometer, the magnetometer, and the gyroscope
for querying motion data. The second one asks the device for its GPS location and uses it to visualize your
position on a map.

 Motion Sensors
 Before we start talking to them, it would be good to get acquainted with the motion sensors that an iPhone
or an iPad gives us access to and see the format of data they offer and its analogs in the physical world. There
are three motion sensors at your disposal:

• The accelerometer gives you the changes in the device’s position along the three
Cartesian axes: x, y, and z, relative to the ground.

• The gyroscope measures the rate of rotation around the three axes.

• The magnetometer works like a digital compass and can tell you the direction of the
Earth’s magnetic North.

 The data you get from the sensors is mapped to the x, y, and z axes, which run through the device as
shown on Figure 11-1 .

CHAPTER 11 ■ KNOWING YOUR LOCATION

246

 Following is how the sensor’s data values are measured:

• The x axis runs from left to right with negative values to the left of the device’s
vertical middle and positive ones to the right.

• The y axis runs from top to bottom with negative values running down from the
device’s center and positive ones running up.

• The z axis runs perpendicularly to the device’s screen with negative values starting
away from the device’s back and positive ones running toward you from the screen.

 The rotational data from the gyroscope is measured around each axis in radians with the direction of
positive and negative angles as shown on Figure 11-1 . 1

 The iOS SDK framework that gives you access to the data is called CoreMotion and gives you two
options. You can listen for raw data provided separately by each of the sensors or you can receive processed
data, which combines information from all of the sensors at once.

 Setting Up the App
 Start by creating an empty Single View Application in Xcode. Name the project DemoCoreMotion . Locate
the Main.storyboard file in the Project navigator and click to open it. Drag six Label components from the
Object library onto the storyboard and arrange and name them as shown on Figure 11-2 . To ensure that the
labels are resized properly on different screen sizes select the View Controller element on the storyboard,
click Resolve Auto Layout Issues button, and select Add Missing Constraints.

 Figure 11-1. Motion data representation

 1 You can also use the right-hand rule to determine the direction of positive and negative rotation: make a fist with your
right hand and have your thumb point in the positive direction of the axis. The rest of your fingers will then point in the
direction of growing angle values.

CHAPTER 11 ■ KNOWING YOUR LOCATION

247

 Figure 11-2. Project storyboard

 ■ Tip For more information on constraints and storyboards, see Chapter 5 .

 The labels prefixed with acc- will output accelerometer data and the labels prefixed with gyro- will show
gyroscope data.

 To make use of these labels open the ViewController.swift file and add the corresponding outlets in
the beginning of the ViewController class (Listing 11-1).

 Listing 11-1. Add an Outlet for Each Label to the ViewController Class

 class ViewController: UIViewController
 {
 @IBOutlet weak var accXAxisLabel: UILabel!
 @IBOutlet weak var accYAxisLabel: UILabel!
 @IBOutlet weak var accZAxisLabel: UILabel!
 @IBOutlet weak var gyroXAxisLabel: UILabel!
 @IBOutlet weak var gyroYAxisLabel: UILabel!
 @IBOutlet weak var gyroZAxisLabel: UILabel!

 // Leave the rest of the code inside ViewController unchanged
 }

 To connect each label with its corresponding outlet open Main.storyboard in the Standard editor
and ViewController.swift in the Assistant editor. Then Ctrl + Drag each label from the storyboard to the
corresponding outlet in the code.

http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 11 ■ KNOWING YOUR LOCATION

248

 Motion Manager
 To access the accelerometer and the gyroscope, you first need to import the CoreMotion framework. Add the
line in Listing 11-2 to the import section of ViewController.swift file.

 Listing 11-2. Import the CoreMotion Framework

 import CoreMotion

 The CMMotionManager class, part of the CoreMotion network, enters the scene next. It is the gateway to
the motion services provided by the iOS SDK. Create an instance of it as a member of the ViewController
class right after the outlet declarations (Listing 11-3).

 Listing 11-3. Instantiate CMMotionManager

 let motionManager : CMMotionManager = CMMotionManager()

 This line declares the mMotionMmanager variable and initializes it to be a CMMotionManager object.

 ■ Caution Apple’s manual suggests that you only have one instance of CMMotionManager at a time and
warns that having more than one can affect the rate at which motion data is received.

 The code that works with the motion manager will go inside the viewDidLoad() function, as shown in
Listing 11-4 .

 Listing 11-4. Using the Motion Manager

 override func viewDidLoad() {
 // This line was generated for us by Xcode:
 super.viewDidLoad()

 // Set data sampling rate for the two sensors:
 motionManager.accelerometerUpdateInterval = 0.1 // ten times per second
 motionManager.gyroUpdateInterval = 0.1 // ten times per second

 // Check if the device has an accelerometer:
 if motionManager.accelerometerAvailable {

 // An accelerometer is present, now start listening for updates:
 mMotionManager.startAccelerometerUpdatesToQueue(
 NSOperationQueue.mainQueue()) {
 // Data is captured inside this closure (callback).
 data, error in

 // print acceleration (x, y, z) data:
 self.accXAxisLabel.text = "\(data!.acceleration.x)"
 self.accYAxisLabel.text = "\(data!.acceleration.y)"
 self.accZAxisLabel.text = "\(data!.acceleration.z)"
 }
 }

CHAPTER 11 ■ KNOWING YOUR LOCATION

249

 // Check if the device has a gyroscope:
 if motionManager.gyroAvailable {

 // A gyroscope is present, now start listening for updates:
 motionManager.startGyroUpdatesToQueue(NSOperationQueue.mainQueue()) {
 // Data is captured inside this closure (callback).
 data, error in

 //print rotationRate (x, y, z) data:
 self.gyroXAxisLabel.text = "\(data!.rotationRate.x)"
 self.gyroYAxisLabel.text = "\(data!.rotationRate.y)"
 self.gyroZAxisLabel.text = "\(data!.rotationRate.z)"
 }
 }
 }

 This code first sets the motion sensors’ sampling rate to ten times per second. In other words, that’s
how often you will be getting updates about your device’s position. Then it checks if the device actually has
an accelerometer and if one is present, it calls CMMotionManager ’s startAccelerometerUpdatesToQueue
method, which provides the updates. startAccelerometerUpdatesToQueue takes two parameters:

• A queue, on which to send the updates. In this example you will use the queue
associated with the app’s main thread.

• A closure (callback function) to receive and process the data. The closure takes two
parameters: data and error . The next few lines of code use data.acceleration.x ,
etc. to extract data about the device’s position and to update the top three labels on
the screen.

 ■ Tip For more information on closure syntax, see Chapter 22 .

 The exact same logic applies to getting data from the gyroscope. This time you are interested in
 data.rotationRate.x , data.rotationRate.y , and so on.

 ■ Caution Apple strongly discourages using the .mainQueue for heavy data operations or for frequently
updating data like that coming from the motion sensors, because this could affect the rendering of the user
interface. With that in mind, this example uses the main thread to read the motion data in the example, in
order to keep the focus on working with data, rather than on managing threads. For more information on using
background threads see Chapter 7 .

 You are ready to start the app! It needs to run on an actual device, rather than in the simulator, in order
to use the motion sensors. When the app starts, shake and move your device to see the accelerometer and
gyroscope data updating on the screen between -1.0 and 1.0 for each of the three axes.

http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_7

CHAPTER 11 ■ KNOWING YOUR LOCATION

250

 Maps and Location
 In this tutorial you will build an app that retrieves the current geo coordinates of the device and displays them
on a map. Quite useful for building apps that show the user nearby restaurants, hotels, ATMs, and so on.

 Setting Up the App
 Start by creating an empty Single View Application in Xcode. Name the project DemoCoreLocation .

 Being able to display a map in your application requires the use of the MapKit framework. And, to
be able to use that, you first need to add Maps to your app’s capabilities . To do that select your project in
the Project navigator, then in the list of targets select the target for your app, DemoCoreLocation . Click the
 Capabilities tab, scroll down to find Maps, and turn it on, as shown on Figure 11-3 .

 Figure 11-3. Adding map capabilities

 Note that when you turned on the Maps capability switch, the MapKit framework was automatically
added to the project.

 Find Main.storyboard in Project navigator and click to open it. Then drag the following user interface
(UI) components from the Object library onto the storyboard and arrange them as shown in Figure 11-4 :

• Label —it will display geo coordinates as plain text.

• Button —tapping it will retrieve the device’s location. Set its caption to “Get location.”

• Map Kit View —this will display a local map and the location of your device on it.

CHAPTER 11 ■ KNOWING YOUR LOCATION

251

 Do not forget to manually constrain all views in the storyboard or to use Xcode’s Add Missing
Constraints feature. Now open the ViewController.swift file from Project navigator and add the
 CoreLocation and MapKit frameworks to its import section (Listing 11-5). These contain the application
programming interfaces (APIs) you will later work with.

 Listing 11-5. Import the CoreLocation and MapKit Frameworks

 import CoreLocation
 import MapKit

 Next, add the corresponding outlets to the top of the ViewController class and bind them to the UI
components you placed on the storyboard. Listing 11-6 shows you how to define the outlets.

 Listing 11-6. Add UI utlets to the ViewController

 class ViewController: UIViewController {

 @IBOutlet weak var label: UILabel!
 @IBOutlet weak var mapView: MKMapView!
 // Leave the rest of the code inside ViewController unchanged
 }

 Figure 11-4. DemoCoreLocation storyboard

CHAPTER 11 ■ KNOWING YOUR LOCATION

252

 To connect the storyboard components with the outlets, open Main.storyboard in the Standard editor
and ViewController.swift in the Assistant editor. Then Ctrl + Drag each component from the storyboard to
its outlet in the code.

 Location Manager and Location Manager Delegate
 Location data is managed by the CLLocationManager class. For ViewController to be able to work
with an instance of CLLocationManager we will have it implement some of the methods of the
 CLLocationManagerDelegate protocol. Listing 11-7 shows you how to modify ViewController : first, add the
 CLLocationManagerDelegate protocol to it and then add a CLLocationManager instance as a member of the
class.

 Listing 11-7. Getting the ViewController Class to Conform to the CLLocationManagerDelegate Protocol

 class ViewController: UIViewController, CLLocationManagerDelegate {

 // Create an instance of the location manager class:
 let locationManager : CLLocationManager = CLLocationManager()

 // Leave the rest of the code inside ViewController unchanged
 }

 You will set up locationManager as soon as the app’s main view is loaded. Find the viewDidLoad
method of ViewController and modify it as shown in Listing 11-8 .

 Listing 11-8. Configuring locationManager Inside the viewDidLoad() Function

 override func viewDidLoad() {

 // This line was generated for us by Xcode:
 super.viewDidLoad()

 // Set this ViewController instance as the delegate
 // that will receive the location service callbacks:
 locationManager.delegate = self

 // Set the desired accuracy level:
 locationManager.desiredAccuracy = kCLLocationAccuracyBest

 // Ask the user for permission to use location services:
 locationManager.requestAlwaysAuthorization()
 }

 The first thing this code does is to set the location manager’s delegate to self . This tells the Swift
compiler to look for a specific location manager delegate function in the ViewController class. The next line
sets the accuracy level (i.e., the precision with which you want location coordinates reported). Last, but not
least, you need to ask the user to allow your app to use location services and this is what the last line of this
setup does.

CHAPTER 11 ■ KNOWING YOUR LOCATION

253

 ■ Caution The LocationManager can use various techniques to determine your location, from Wi-Fi to GPS.
Using the actual GPS of the device gives the most accurate results, but it can impact battery life dramatically.
Apple states that the GPS chip is used when you set the desiredAccuracy property to less than 100 meters, so
be aware and set it to lower accuracy when you can.

 Permissions
 The user must give permission to your app to use location services. Prior to iOS 8 a prompt was shown
automatically once the location manager made a query. In iOS 8 you need to add a couple of settings to your
app in order for that to happen.

 In Project navigator find and open the Info.plist file and add either one of the following keys or both:
 NSLocationWhenInUseUsageDescription and NSLocationAlwaysUsageDescription (Figure 11-5). As their
names suggest, the first key requests permission to use location services only when the app is running and
the second key asks if the app can track the user’s location in the background. The value you define for each
key is the message that will be shown in the permission dialog to let the user know how the app intends to
use location services.

 Figure 11-5. Setting permission requests

 An important thing to note here is that if you don’t define either of these keys in Info.plist , no prompt
will be shown to the user, your application will not be granted permissions and will be unable to use the
location service.

CHAPTER 11 ■ KNOWING YOUR LOCATION

254

 Receiving Location Updates
 Before your app is complete you will need to make sure that ViewController complies with
the CLLocationManagerDelegate protocol. For that it will need to implement a function called
 locationManagerdidUpdateLocations , which takes two parameters:

• manager , which is a reference to the location manager that made a call to the
delegate function;

• locations , an array composed of CLLocation elements that store the updated geo
locations.

 Listing 11-9 shows you the implementation of locationManagerdidUpdateLocations .

 Listing 11-9. Location Manager Delegate Function

 func locationManager(manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {

 // Print out the location array:
 label.text = "locations = \(locations)"

 // Read the first set of locations from the array:
 let location = locations.first!

 // Show the device's location on the map:
 setMapViewLocation(location: location)
 }

 This method is called by the location manager, which passes to it the location information, expressed
as latitude and longitude, and packed in an array. The function uses the label you put on the storyboard to
display these.

 To display the device’s position on the map you need to pass the last received location from the array to
the setMapLocation function, which you are about to define (Listing 11-10).

 Listing 11-10. setMapViewLocation Function

 func setMapViewLocation(location location : CLLocation) {

 // Define a distance in meters:
 let locationDistance : CLLocationDistance = 100;

 // Create a region on the map, the center of which is our location
 // and its radius – the distance we defined above:
 let region = MKCoordinateRegionMakeWithDistance(location.coordinate,
 locationDistance, locationDistance)

 // Show the region on the map:
 mMapView.setRegion(region, animated: true)
 }

CHAPTER 11 ■ KNOWING YOUR LOCATION

255

 This function uses the location data and a distance that you define to create a region on the map, which
has its center at the given location and its radius—the given distance. The last line of this function asks the
Map Kit View to show this location, using animation.

 If you try to run the application at this point you will notice that a zoomed-out map is displayed, but
nothing else happens. For your location to be found, you need to ask the location manager to do it for you.
Let us do that on the touch event of the button you put on the storyboard.

 With Main.storyboard open in the Standard editor and ViewController.swift open in the Assistant
editor, select the button and open the Connections inspector panel on the right. Find the button’s Touch
Up Inside event and Ctrl + Drag it inside the ViewController class in the ViewController.swift file. This
creates an action (event handler) for you. Name it buttonTouched , leave the rest of the settings in the pop-up
dialog as they are and click Connect. Add the code in Listing 11-11 to the event handler.

 Listing 11-11. Location Manager Start Update

 @IBAction func buttonTouched(sender: AnyObject) {
 label.text = "Searching location…"
 locationManager.startUpdatingLocation()
 }

 When the user taps the button, the label will first tell them that the app is busy searching for the device’s
location. Then the location manager is asked to start updating the location data.

 And voilà, your app is ready for testing (Figure 11-6).

 Figure 11-6. Running location app

 Enjoy.

CHAPTER 11 ■ KNOWING YOUR LOCATION

256

 Summary
 This chapter showed you how to use the CoreMotion , CoreLocation , and MapKit frameworks to capture the
information from your device’s motion sensors and to display your location on a map.

 The next chapter will focus on how to take a picture with the camera and how to manipulate it.

257© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_12

 CHAPTER 12

 Working with the Camera and
Images

 When cameras were added to mobile devices and image-editing apps started appearing, we were all
transformed into artists overnight. Taking a photo of an interesting object, applying a filter, and immediately
sharing the resulting creation is so easy, it would probably inspire Andy Warhol to recreate his Marilyn
Diptych. On the following pages we will see how to take pictures with the camera and edit them with the
power of Swift.

 In this chapter you will do the following:

• Learn about the Photos framework.

• See how to programmatically take photos with the camera and browse the gallery.

• Learn how to use the CoreImage framework to apply filters and edit photos.

• Learn how to save an image back to the gallery.

• Build an app that does all of the above.

 When you are done, you will have an app that takes photos; lets users browse the gallery; and changes
the color, brightness, and saturations of selected photos and saves them back to the gallery.

 Setting Up the App and Designing the UI
 The app we are about to develop will let the user take a photo, make changes to it, and save the modified
photo to the photo gallery.

 Following is a list of the main features we will focus on:

• Taking a photo by using the camera user interface (UI) API (application
programming interface) of the Photos framework.

• Choosing a photo from the gallery with the help of the default gallery browsing
UI on iOS.

• Editing the brightness, contrast, and saturation of the photo by applying a filter.

• Saving the edited copy back to the photo gallery.

 In Xcode create a Single View iOS application project (File ➤ New ➤ Project… , then iOS ➤
 Application ➤ Single View Application) and name it ImageEditor .

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

258

 Open Main.storyboard and position the UI elements to look like the right half of Figure 12-1 . Add a
Navigation Bar and drop a Bar Button Item on its right side, then add a Button, three Labels, three Sliders,
and an Image view to the main view of the app. Constrain the layout to make it adaptive (see Chapter 5 for a
reminder of how to use Auto Layout and Size Classes to help with that).

 Figure 12-1. The app's user interface

 Title the three labels “Brightness,” “Contrast,” and “Saturation.” The sliders next to each label will change
the corresponding properties of the image we will load in the image view.

 To add a camera icon to the bar button, select it and in the Attributes inspector set System Item to Camera.
 Select the Image View and in the Attributes inspector set its Mode to Aspect Fit. This will ensure that the

photo we choose to display will fit in the bounding box of the image view.
 Adjust the range of each slider in the Attributes inspector:

• Select the brightness slider and set its Minimum Value to -1, Maximum Value to 1
and Current to 0.

• Select the contrast slider and set its Current to 1.

• Select the saturation slider and set its Current to 1.

 Open ViewController.swift and add imports for the Photos and CoreImage frameworks. The Photos
framework has the definitions of the default view controllers for taking pictures with a camera and for
browsing the photo gallery. The CoreImage framework gives us plenty of image processing tools. Now get
ready to add some actions.

http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

259

 Start with the button: create an action for its Touch Up Inside event and name it saveToGallery .
For the Bar Button Item create an action named showChooseImageOptions . Add an action for the Value
Changed event of each of the Sliders and call them brightnessValueChanged , contrastValueChanged , and
 saturationValueChanged , respectively. Then add an outlet for the Image View and call it imageView . Your
code should look similar to that in Listing 12-1 .

 Listing 12-1. Adding an Outlet and Actions to the ViewController Class

 import UIKit
 import Photos
 import CoreImage

 class ViewController: UIViewController {

 @IBOutlet weak var imageView: UIImageView!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 @IBAction func brightnessValueChanged(sender: UISlider) {
 // TODO: Adjust the filter's brightness property.
 }

 @IBAction func contrastValueChanged(sender: UISlider) {
 // TODO: Adjust the filter's contrast property.
 }

 @IBAction func saturationValueChanged(sender: UISlider) {
 // TODO: Adjust the filter's saturation property.
 }

 @IBAction func saveToGallery(sender: AnyObject) {
 // TODO: Save a copy of the filtered image back to the photo gallery
 }

 @IBAction func showChooseImageOptions(sender: UIBarButtonItem) {
 // TODO: Ask the user from where he wants to pick an image
 }
 }

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

260

 Taking Pictures and Browsing the Gallery
 Apple knows how important it is for developers to be able to use the device’s camera in their apps. To allow
easy access to it without the bother of setting up a UI, the iOS SDK provides a ready-made view controller. It
is called UIImagePickerController and is part of the Photo framework.

 The UIImagePickerController lets the user choose the source of an image: the device’s built-in
camera or the gallery. Once an image is chosen, it can be obtained programmatically via a method of the
 UIImagePickerControllerDelegate protocol. We will now see how to use the image picker controller in our app.

 First we need to make our ViewController class conform to the UIImagePickerControllerDelegate
protocol by adding the protocol to ViewController ‘s inheritance list. In order to be used as a
delegate for the image picker controller, ViewController will need to conform to one more protocol:
 UINavigationControllerDelegate .

 ■ Caution This could be a potential point of confusion. Note that conforming to UINavigationControllerDelegate
is required, in order to make ViewController a delegate for the image picker, not for the app’s navigation bar.

 We set ViewController as the delegate for the image picker controller in viewDidLoad . Then we
implement one of the methods of UIImagePickerControllerDelegate , which receives a copy of the image
that the user chose from the gallery or took with the camera: imagePickerController(_:didFinishPicking
Image:_) . You can see the implementation in Listing 12-2 .

 ■ Note For more information about delegation and how it works, see Chapter 5 . We will look at protocols
and conformance in Chapter 21 .

 Listing 12-2. Implementing UIImagePickerControllerDelegate Protocol and Setting Up the Image Picker

 class ViewController: UIViewController, UINavigationControllerDelegate,
 UIImagePickerControllerDelegate {

 //Create an instance of the image picking controller:
 let imagePicker = UIImagePickerController()

 override func viewDidLoad() {
 super.viewDidLoad()

 //Set the delegate, which will recieve the chosen image:
 imagePicker.delegate = self
 //Hide any editing options from the default UI:
 imagePicker.allowsEditing = false
 }

 func imagePickerController(picker: UIImagePickerController,
 didFinishPickingImage image: UIImage, editingInfo: [String : AnyObject]?) {
 // TODO: Manipulate the image
 }

 //The rest of the code comes here
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_5
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

261

 The imagePickerController(_:didFinishPickingImage:_) is called when the user has finished taking
a photo with the camera or has picked one from the gallery. A copy of the image gets passed in the image
parameter of the function. The parameter is of type UIImage . This means that the received image is ready to
be used in the UI of our application.

 To show the image picker UI on the screen we have to set it up first. Since we want to be able to obtain
images from both the camera and the photo gallery, we will implement the setup logic in two separate
functions. The functions are called openCameraVC and openGalleryVC , respectively. You can see the
implementation in Listing 12-3 .

 Listing 12-3. Implementing openCameraVC and openGalleryVC Functions

 func openCameraVC(action: UIAlertAction) ->Void {
 //Tell the image picker that we want to take a picture with the camera:
 imagePicker.sourceType = UIImagePickerControllerSourceType.Camera
 //Show imagePicker on the screen:
 presentViewController(imagePicker, animated: true,
 completion: nil)
 }

 func openGalleryVC(action: UIAlertAction) ->Void {
 //Tell the image picker that we want to browse the photo gallery:
 imagePicker.sourceType = UIImagePickerControllerSourceType.SavedPhotosAlbum
 //Show imagePicker on the screen:
 presentViewController(imagePicker, animated: true,
 completion: nil)
 }

 These two functions are very similar. First we set the sourceType property of the imagePicker to the
location from which we want to obtain an image. Then we show the image picker view controller on the
screen.

 In order to let the user choose between taking a new photo and using one from the gallery, we will use
an action sheet, which will show up when the user taps the camera button on the navigation bar. We will
implement this in the showChooseImageOptions method we stubbed out earlier.

 First we create an instance of the UIAlertController class, set its preferedStyle property to
 UIAlertControllerStyle.ActionSheet , and set up a message that the user will see.

 ■ Note UIActionSheet used to be a popular choice for showing action sheets, but it was deprecated in
iOS 8. Since then, UIAlertController is what is used for the same purpose. For more details on using alerts,
see Chapter 6 .

 Next we set alert actions to handle the three options. The first two actions, cameraAction and
 galleryAction , will result in calls to openCameraVC and openGalleryVC , respectively. The third alert
action is called closeAction and is used to dismiss the action sheet. To do that we set its style property to
 UIAlertActionStyle.Cancel and provide an empty action callback.

 Before we present the actions on the action sheet , it is a good idea to check if all of the options are
actually available on the device. For example, the iOS simulator does not support camera, so in that
case we can only offer the user to pick an image from the gallery. To perform the check we make a call to
 isSourceTypeAvailable —a static method of the UIImagePickerController class.

http://dx.doi.org/10.1007/978-1-4842-1666-8_6

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

262

 You can see the implementation of the showChooseImageOptions in Listing 12-4 .

 Listing 12-4. Setting Up an Action Sheet with Three Options

 @IBAction func showChooseImageOptions(sender: UIBarButtonItem) {
 //Create an action sheet with options:
 let actionSheet = UIAlertController(title: "", message: "Get an image",
 preferredStyle: UIAlertControllerStyle.ActionSheet)

 //Configure a new action for taking a photo with the camera:
 let cameraAction = UIAlertAction(title: "Use the camera", style:
 UIAlertActionStyle.Default,handler: openCameraVC)

 //Configure a new action for picking an image from the gallery:
 let galleryAction = UIAlertAction(title: "From the gallery", style:
 UIAlertActionStyle.Default, handler: openGalleryVC)

 //Configure an empty action to close the action sheet:
 let closeAction = UIAlertAction(title: "Done", style:
 UIAlertActionStyle.Cancel){ (action) -> Void in
 }

 //Check if the device has a camera:
 if UIImagePickerController.isSourceTypeAvailable(
 UIImagePickerControllerSourceType.Camera) {
 //Add the cameraAction to the action sheet
 actionSheet.addAction(cameraAction)
 }

 //Check if a gallery is available:
 if UIImagePickerController.isSourceTypeAvailable(
 UIImagePickerControllerSourceType.SavedPhotosAlbum) {
 //Add the galleryAction to the action sheet
 actionSheet.addAction(galleryAction)
 }

 //Add the close action to the sheet:
 actionSheet.addAction(closeAction)

 //For devices with bigger screens
 //set the pop over controller to be the bar button instance.
 //This is needed by iOS to calculate the screen position
 //of the action sheet controler.
 if let popoverController = actionSheet.popoverPresentationController {
 popoverController.barButtonItem = sender
 }

 //Show the action sheet on the screen:
 presentViewController(actionSheet, animated: true, completion: nil)
 }

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

263

 If I were you, I would already be eager to see the result of all the code we wrote so far. In order to do that,
we need to show an image on the screen: we will assign the UIImage that gets passed to imagePickerControl
ler(_:didFinishPickingImage:_) to the image property of imageView (see Listing 12-5).

 Listing 12-5. Showing an Image on the Screen

 func imagePickerController(picker: UIImagePickerController, didFinishPickingImage image:
UIImage,
 editingInfo: [String : AnyObject]?) {

 //Dismiss the image picker view controller:
 dismissViewControllerAnimated(true, completion: nil)

 //Show the image in the image view:
 imageView.image = image
 }

 Let us run the app and pick an image from the gallery, as shown in Figure 12-2 .

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

264

 Figure 12-2. Picking an image from the gallery

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

265

 Or you can take a photo with the camera as shown in Figure 12-3 . 1

 Figure 12-3. Taking a photo with the camera

 1 Thanks to Mushana the cat for agreeing to appear in the shot!

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

266

 In the next section we will see how we can edit the image.

 Editing an Image by Applying a Filter
 When it comes to editing an image Apple has provided us with an arsenal of frameworks and tools for the
task. Their vast number can empower you, as well as make you wonder which one is best for what task. Each
of the available frameworks comes with pros and cons in different areas of the image manipulation world.
You can choose to edit an image pixel by pixel, use high-level frameworks such as CoreGraphics , CoreImage ,
 ImageProcessingKit , or opt for third-party libraries. 2

 The best choice for what we want our app to do, manipulate an image’s brightness, contrast, and
saturation, would be the filters in the CoreImage framework. It offers outstanding performance, a great
abstraction layer over the low-level image-editing operations, and comes with a huge number of ready-to-
use filters.

 A filter in the CoreImage framework is treated as a black box: it takes input data, processes it, and spits
out an output image. All built-in filters are of type CIFilter . Their input comes in the form of one or more
images and parameters in key-value format. Based on the parameters, a filter can combine the input images
and make alterations. When it is ready, it produces a result of type CIImage . We can create a filter by passing
a filter name to CIFilter ’s initializer.

 To control the brightness, the contrast, and the saturation of our input image we will use the
 CIColorControls filter . It has the following input parameters:

• inputImage —a CIImage instance, which contains the original image data.

• inputSaturation —a floating point number, which controls saturation.

• inputBrightness —a floating point number, which controls brightness.

• inputContrast —a floating point number, which controls contrast.

 The time needed for filtering an image heavily depends on the image size. For large-resolution files
applying a filter could take several seconds to complete, which is not ideal. We would like the user to see
results in real time, when they move a slider. To achieve that, we will implement a couple of tricks.

• The first trick involves the use of a special rendering context that will offload the
work from the CPU and will use the graphics processing unit (GPU) of the device to
do the calculations.

• The second trick is to make our app lazy and not actually apply a filter to the original
image while it is being edited. In order to show the effects of a filter in real time,
we will display a downsampled copy of the image as a preview and apply the filter
to it. The heavy work of modifying the original file will be done only when the user
decides to save the changes to the image. We will then show an activity indicator to
let the user know that a potentially lengthy operation is in progress.

 Let us start by declaring an instance of the CIFilter class and calling it colorFilter . Then we will need
one UIImage instance for the original image and another one for the preview. We will also need an instance
of the view controller, which will display the activity indicator. You can see all declarations in Listing 12-6 .

 2 You can find more info about image manipulation frameworks here: https://developer.apple.com/library/ios/
documentation/GraphicsImaging/Conceptual/CoreImaging/ci_intro/ci_intro.html .

https://developer.apple.com/library/ios/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_intro/ci_intro.html
https://developer.apple.com/library/ios/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_intro/ci_intro.html

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

267

 Listing 12-6. Declaring Instances

 //The filter we will use to controll the brightness, contrast and saturation of the image
 let colorFilter = CIFilter(name: "CIColorControls")

 //The original full sized image
 var originalImage:UIImage?
 //A downscaled image for preview
 var previewImage:UIImage?

 //An allert controller with activity indicator
 //to show that the app is busy saving an image
 var savingImageVC:UIAlertController?

 //A context to render the filter on the GPU
 var filterContext:CIContext = CIContext(EAGLContext: EAGLContext(API: .OpenGLES2),
 options:[kCIContextWorkingColorSpace : NSNull()])

 Note the use of the filterContext variable: by passing the EAGLContext(API: .OpenGLES2) as an
argument we instruct the framework to perform calculations on the GPU instead of on the CPU. This is our
first performance trick done.

 As a next step we will take the image that the user has chosen with the image picker, make a
downsampled copy of it, and feed it to the filter.

 Find the imagePickerController(_:didFinishPickingImage:_) method. In it we will downsample the
chosen image by drawing a scaled-down copy of it and converting it to a UIImage . We need to do the drawing
inside a graphics context, which is managed by these two calls: UIGraphicsBeginImageContextWithOptions
 and UIGraphicsEndImageContext . To create a scaled-down copy of our image we call drawInRect and
specify the size of the rectangle, in which the image should fit. We use CGSizeApplyAffineTransform to
calculate the desired size of the image, so that it matches the size of imageView , where we show the preview.
Finally, we store the two copies of the image as follows: the original is kept in the originalImage variable
and the previewImage variable stores the smaller copy. We pass that smaller copy as an input to the filter.
To set an input parameter we use the filter’s setValue(_:forKey) function and specify the name of the
parameter and its value. You can see the implementation in Listing 12-7 .

 Listing 12-7. Create a Preview for the Selected Image and Set It as an Input to the Filter

 func imagePickerController(picker: UIImagePickerController, didFinishPickingImage image:
UIImage,
 editingInfo: [String : AnyObject]?) {

 //Dismiss the image picker view controller
 dismissViewControllerAnimated(true, completion: nil)

 //Calculate a scale factor for the preview image
 //scale the original image so that it fits inside the imageView frame
 let scaleFactor:CGFloat = CGFloat(imageView.frame.size.height / image.size.height)

 //Calculate the size of the preview image
 let size = CGSizeApplyAffineTransform(image.size,
 CGAffineTransformMakeScale(scaleFactor, scaleFactor))

 //Create a context to draw the image inside

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

268

 UIGraphicsBeginImageContextWithOptions(size, false, CGFloat(0.0))
 //Draw the image downsampled to the new size
 image.drawInRect(CGRect(origin: CGPointZero, size: size))
 //Get the downsampled image from the context
 let scaledImage = UIGraphicsGetImageFromCurrentImageContext()
 //Destroys the context
 UIGraphicsEndImageContext()

 //Store the original image from the gallery
 originalImage = image

 //Store the downsampled image and use it for preview
 previewImage = scaledImage

 //Set the preview image as an input image to the filter
 colorFilter!.setValue(CIImage(image:previewImage!), forKey:kCIInputImageKey)

 applyFilter()
 }

 At the end of the Listing 12-7 you might have noticed a call to a function, which we have not
implemented yet: applyFilter . Its role is to get the output from the filter and display it on the screen. You
can see the implementation in Listing 12-8 .

 Listing 12-8. Implementing the applyFilter Function

 func applyFilter() {
 //Get the filtered (output) image
 if let ciiOutput = colorFilter?.valueForKey(kCIOutputImageKey) as? CIImage {
 //Create an CGImage using the provided context
 let cgiOutput = filterContext.createCGImage(ciiOutput, fromRect: ciiOutput.

extent)

 //Create an UIImage from the CGImage
 let result = UIImage(CGImage: cgiOutput)

 //Show the output image in the image view
 imageView?.image = result
 }
 }

 Let us now set values for the brightness, contrast, and saturation properties. We will do this in the
corresponding actions for each of the three sliders that we added in the beginning of the chapter
(see Listing 12-9).

 Listing 12-9. Setting the Brightness, the Saturation, and the Contrast Values

 @IBAction func brightnessValueChanged(sender: UISlider) {
 //Change the brightness:
 colorFilter!.setValue(sender.value, forKey:"inputBrightness")
 //Apply the filter and show the result:
 applyFilter()
 }

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

269

 @IBAction func contrastValueChanged(sender: UISlider) {
 //Change the contrast:
 colorFilter!.setValue(sender.value, forKey:"inputContrast")
 //Apply the filter and show the result:
 applyFilter()
 }

 @IBAction func saturationValueChanged(sender: UISlider) {
 //Change the saturation:
 colorFilter!.setValue(sender.value, forKey:"inputSaturation")
 //Apply the filter and show the result:
 applyFilter()
 }

 Now run the app, pick an image from the gallery or take one with the camera and move the sliders. You
will see how the filter is applied in real time (Figure 12-4).

 Figure 12-4. Editing an image

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

270

 One last thing before the end of the chapter: I promised you that we would save the edited image back
to the gallery. Let us do that now. In ViewController.swift find the saveToGallery method and add the
following lines of code to it (Listing 12-10):

 Listing 12-10. saveToGallery Implementation

 @IBAction func saveToGallery(sender: AnyObject) {

 //Check if there is an image to save
 guard let origImg = originalImage else {
 //If there is no image exit this function
 return
 }

 //Show the activity indicator
 savingImageVC = displaySavingImageActivity()

 //Set the original image as an input image to the filter
 colorFilter!.setValue(CIImage(image:origImg), forKey:kCIInputImageKey)

 applyFilter()

 //Save the filtered result to the gallery
 UIImageWriteToSavedPhotosAlbum(imageView.image!, self,
 #selector(ViewController.image(_:didFinishSavingWithError:contextInfo:)), nil)
 }

 When the user decides to save the image, the changes will be applied to the original file, instead of just
to the preview copy of it. As this is a potentially lengthy operation, we first call displaySavingImageActivity
to show an activity indicator and inform the user that the app is busy filtering a large image. You can see its
implementation in Listing 12-12 .

 The function that saves the filtered image to the photo gallery is UIImageWriteToSavedPhotosAlbum .
It can notify us about whether saving was successful in a callback function, which is passed as a parameter.
Listing 12-11 shows the implementation of the callback. The first thing we do when the callback is executed
is to hide the activity view controller. Then we set the preview image as the input of the filter again, so the
user can continue to play safely with the sliders.

 Listing 12-11. Finish Image Saving Handler

 func image(image: UIImage, didFinishSavingWithError error: NSError?,
 contextInfo:UnsafePointer<Void>) {
 //Hide the activity indicator
 savingImageVC!.dismissViewControllerAnimated(true, completion: nil)

 //Set back the preview image as an input image to the filter
 colorFilter!.setValue(CIImage(image:previewImage!), forKey:kCIInputImageKey)
 }

 The last function to implement is the one that shows the activity indicator when the image
is being saved. Inside we create an instance of the UIAlertController class, where we put an
 UIActivityIndicatorView and animate it (Listing 12-12).

CHAPTER 12 ■ WORKING WITH THE CAMERA AND IMAGES

271

 Listing 12-12. Creating an Alert Controller with Activity Indicator

 func displaySavingImageActivity() -> UIAlertController {
 //Create an alert controller
 let alertController = UIAlertController(title: "Saving image", message: nil,
 preferredStyle: .Alert)

 //Create an activity indicator
 let indicator = UIActivityIndicatorView(frame: alertController.view.bounds)
 indicator.color = UIColor.blackColor()
 indicator.autoresizingMask = [.FlexibleWidth, .FlexibleHeight]

 //Add the activity indicator as a subview of the alert controller's view
 alertController.view.addSubview(indicator)
 indicator.userInteractionEnabled = false
 indicator.startAnimating()

 //Show the alertController on the screen
 presentViewController(alertController, animated: true, completion: nil)

 return alertController
 }

 With this our image-editing application is ready and we can call it a day. Congratulations.

 Summary
 In this chapter you saw how to use the built-in iOS functionality for taking photos, browsing the gallery,
and editing images. You learned about the Photos and CoreImage frameworks and implemented a simple
photo-editing app.

 In the next chapter you will see how to build an app to persist data to files on the device and how to
store and retrieve data remotely from the cloud.

273© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_13

 CHAPTER 13

 Working with Data

 Working with data is a big part of app development. Anything from storing user preferences and
achievements to providing larger storage for the users’ artistic creations requires that you know how to work
with data, how to store it locally, and how to offer your users the option to back it up in the cloud.

 This chapter is split into two parts. In the first part we explore different ways of persisting local data on a
device. The second part introduces iCloud—Apple’s cloud solution. We will see how to set up an account for
it and use it to store data remotely.

 Reading and Writing Data Locally
 The iOS SDK offers several different ways of persisting data locally on the device’s file system. The examples
that follow will help explore them: we will save and read arbitrary data from a text file, then we will see how
to serialize objects into files and into a key-value database.

 The iOS File System
 Let us first have a look at how iOS manages files internally. As there can be lots of applications installed on
a device and trying to read and write data to it, there are restrictions on which parts of the file system an
application can access.

 Every application has its own sandbox, which defines the disc locations that are available to it and is
not accessible to other apps. The two directories where an app can store files and manage folders are called
 Documents and tmp . The Documents directory is where user-generated content goes—it persists between
launches of the app. The contents of this folder can be made available to the user through file sharing and
are backed up by iTunes. The tmp folder is used, as its name suggests, for storing temporary information that
doesn’t need to be kept between application launches.

 There are three important classes that the iOS SDK offers for working with files and folders:

• NSFileManager is used to perform basic file and folder operations such as creating,
moving, writing, and reading. It can be queried for the current working folder and
offers folder management: creating and deleting folders and enumerating their
contents.

• NSFileHandle is helpful with low-level file operations such as seeking a position in a
file, appending new data, or reading and writing specific chunks of data from a file.

• NSData is used as a storage buffer: for example, it can store the contents of a file in
memory.

CHAPTER 13 ■ WORKING WITH DATA

274

 ■ Note Path names in iOS use the standard UNIX convention, where each path component is separated with
a forward slash /.

 The applications you develop are installed in /private/var/mobile/Containers/Data/Application/
YourAppUniqueIDString.

 In the next section we will use the three classes we mentioned previously to create an application which
stores a text file in the Documents folder and reads it back.

 Preparation: Setting Up the App
 Our app will initially save a text file, which it will then read back. Later on in the chapter we will add more
advanced functionality to it.

 Start by creating a new Single View Application project in Xcode (File ➤ New ➤ Project… , then iOS
➤ Application ➤ Single View Application), named LocalStorageDemo . The app will have a very simple
user interface (UI), consisting of a UITextView and two buttons: find these in the Object library and drag
them onto the storyboard in Main.storyboard to make it look as shown on Figure 13-1 . Change the button
captions to read Open and Save and leave the text in the text view as it is.

 Figure 13-1. LocalStorageDemo Application user interface

 Ctrl+drag the text view into the ViewController class definition in the ViewController.swift file to
create an outlet for it, named m_textView . Then Ctrl+drag each of the buttons into ViewController to add
handlers for their Touch Up Inside actions: name the actions openTextFile and saveTextFile , respectively.

 ■ Tip See Chapter 2 if you need a reminder for how to create UI outlets and event handlers.

 After the outlet and the two event handlers have been generated, the code in ViewController.swift
should look like that in Listing 13-1 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 13 ■ WORKING WITH DATA

275

 Listing 13-1. ViewController.swift with an Outlet and Event Handlers for the UI

 import UIKit
 class ViewController: UIViewController {

 //Outlet for accessing the label and the date picker in Main.storyboard:
 @IBOutlet weak var textView: UITextView!

 @IBAction func openTextFile(sender: AnyObject) {
 //This method is called when the Open button is touched
 }

 @IBAction func saveTextFile(sender: AnyObject) {
 //This method is called when the Save button is touched
 }

 //The rest of the code goes here

 }

 Hit the run button to make sure that the app compiles and executes, although it doesn’t do much at this
point.

 Working with File Paths
 We will use the NSFileManager class from the iOS SDK to help with the reading and the writing of files.
For that purpose we need a reference to it in ViewController : declare a property of the ViewController
class, named fileManager , and initialize it with the default file manager by calling the defaultManager
method of the NSFileManager class. Then add a property of type String? to ViewController and name it
 localFilePath . We will use it to store the path to the file we write to and read from (Listing 13-2).

 Listing 13-2. Obtaining a Reference of NSFileManager

 //Obtain a reference of NSFileManager
 let fileManager : NSFileManager = NSFileManager.defaultManager()

 //A property to store the path to the file in the file system
 var localFilePath : String?

 The reading and writing will happen in a text file, called test.txt : let us initialize localFilePath with
the path to test.txt right after the view has been shown on screen (in the viewDidLoad method of the
 ViewController class). We will store test.txt in the tmp folder of our application, but we don’t need to
remember or hard-code the full path to it: the NSTemporaryDirectory global function will help us with that.
The NSURL class from the iOS SDK can then help us construct the full path to our file.

 You can see this done on Listing 13-3 : we create a constant, named tmpDirPath , of type NSURL and
initialize it with the result from NSTemporaryDirectory . The next constant we create, fileURL , contains the
full path to test.txt . Calling fileURL.path gives us the path to our file as a String .

CHAPTER 13 ■ WORKING WITH DATA

276

 Listing 13-3. Set the Path to the test.txt File

 override func viewDidLoad() {
 super.viewDidLoad()

 //Get a URL path to the Application's tmp directory
 let tmpDirPath = NSURL(fileURLWithPath: NSTemporaryDirectory())

 //Append a file name to the path
 let fileURL = tmpDirPath.URLByAppendingPathComponent("test.txt")

 //Get the file path as string
 localFilePath = fileURL.path

 //Output the resulting path to the console
 print(localFilePath)
 }

 Saving a Text File
 We will add code to the saveTextFile action handler (see Listing 13-4) , which will be executed when
we tap the Save button. It will save the contents of the text view to test.txt . We will use the reference to
 NSFileManager we created earlier to do the file writing operation by calling its createFileAtPath method.
This method kills two birds with one stone: it creates the file and writes bytes to it. There are a couple of
things to note about createFileAtPath :

• It takes data in the form of NSData : this is another iOS SDK class, which serves as a
byte buffer. In order to read and write text to it we will use UTF8 encoding.

• It returns a Boolean result, which indicates whether writing to the file was successful.
This is quite useful, as a lot of things can go wrong during a file-write operation: we
can run out of disc space, the path to the file might be incorrect, and so on. We will
check the result of createFileAtPath and will show it to the user in an alert: this is
done in the showMessage method we will implement later.

 Listing 13-4. Save a Text File

 @IBAction func saveTextFile(sender: AnyObject) {

 //Get the text from the text view
 //and encode it as NSData with UTF8 encoding
 let fileData : NSData! =
 (textView.text as String).dataUsingEncoding(NSUTF8StringEncoding)

 //Try to create test.txt and add to it the contents of fileData
 let isOk = fileManager.createFileAtPath(localFilePath!,
 contents: fileData, attributes: nil)

 //Test if file creation was successful and show an alert
 if isOk {
 showMessage(message: "File creation successful!")
 }

CHAPTER 13 ■ WORKING WITH DATA

277

 else {
 showMessage(message: "File creation unsuccessful!")
 }

 //Print to the console for convenience
 print(isOk)
 }

 Next comes the implementation of the showMessage method (see Listing 13-5): it may look familiar from
the example in Chapter 5 .

 Listing 13-5. Implementation of the showMessage Method

 func showMessage(message message: String) {
 //Instantiate an allert controller
 let alertController = UIAlertController(title: "Local Storage Demo",
 message: message, preferredStyle: UIAlertControllerStyle.Alert)

 //Add a "Dismiss" button to the alert
 alertController.addAction(UIAlertAction(title: "Dismiss",
 style: UIAlertActionStyle.Default,handler: nil))

 //Show the alert on the screen
 self.presentViewController(alertController, animated: true,
 completion: nil)
 }

 Run the app, edit the text in the text view, and tap Save. You should see the “File creation successful!”
alert. Next, we will read the file back.

 Reading a Text File
 We will implement the file reading in the openTextFile action handler we added when we started the
chapter: it will be called when the user taps the Open button. Listing 13-6 shows the implementation: we
start clean by removing the current text from the text view: this way we can be confident that what we write
to it next is the content of the file on disc and not what was previously in the view. Next we make sure that the
file exists by calling NSFileManager ’s fileExistsAtPath method. If test.txt is where we expect it to be, we
can proceed with the reading: another method of NSFileManager helps us with that— contentsAtPath . You
may remember that to write it to the file, we had to convert the String from the text view into NSData (similar
to ByteArray in ActionScript). Here we will do the reverse and convert the NSData obtained from calling
 contentsAtPath back to String before displaying it in the text view.

 Listing 13-6. Reading from a Text File

 @IBAction func openTextFile(sender: AnyObject) {
 //Clear the text view content for convenience
 textView.text = ""

 //Check if the file exists
 if fileManager.fileExistsAtPath(localFilePath!) {
 //Read the contents of the file as NSData
 let dataBuffer = fileManager.contentsAtPath(localFilePath!)

http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 13 ■ WORKING WITH DATA

278

 //Decode from UTF8 NSData back to NSString
 let dataString = NSString(data: dataBuffer!,
 encoding: NSUTF8StringEncoding)

 //Put the decoded string in the text view
 textView.text = dataString as! String
 }
 else {
 showMessage(message: "File does not exist!")
 }
 }

 This was easy, wasn’t it? You now have an app that utilizes NSFileManager to read and write files. There
aren’t many limits to the contents of files on iOS: you can store text, images, binary blobs, and so on—anything
that can be converted to bytes and put into NSData .

 Serializing Objects with NSCoder
 One of the types of data you may want to store is the current state of your app: serializing the objects that
are in play at a given moment is a convenient way of doing it. The NSCoding protocol form the iOS SDK can
help with this: it allows classes to serialize and deserialize themselves into data, which can be stored on the
device or transferred across a network.

 ACTIONSCRIPT ANALOGY

 Adobe’s JSON class helps with serializing ActionScript objects into JSON (Java Script Object Notation)
format.

 To try this out we will add a new class to the app we just made and have it conform to the NSCoding
protocol. From Xcode’s main menu select File ➤ New ➤ File and click Swift file to add a new file to the
project. Name the file UserSettings.swift and click its name in Project navigator to open it. Add the
 UserSettings class definition from Listing 13-7 to the file. UserSettings will hold some user information:
their name, their age, do they like pizza, and a list of school nicknames—never miss an opportunity for
embarrassment.

 Listing 13-7. UserSettings Class

 class UserSettings : NSObject, NSCoding {
 var userName : String
 var lovesPizza : Bool
 var age: Int
 var nickNames: [String]

 // Memberwise initializer
 init(userName: String, lovesPizza: Bool, age: Int, nickNames: [String]) {
 self.userName = userName
 self.lovesPizza = lovesPizza

CHAPTER 13 ■ WORKING WITH DATA

279

 self.age = age
 self.nickNames = nickNames
 }

 //Print all properties of the class to a string
 override var description: String {
 return "UserSettings: \(userName), \(lovesPizza),
 \(age), \(nickNames)"
 }

 // MARK: NSCoding
 }

 You will see that we have defined UserSettings to conform to the NSCoding protocol. For that purpose
it will need to implement two methods, initWithCoder and encodeWithCoder , which will be called when we
want to serialize or deserialize instances of UserSettings . Let us add their implementations below the //
MARK : NSCoding line.

 encodeWithCoder takes an instance of NSCoder : this class offers convenience methods for serializing
different types of data and their names as key-value pairs. You can see it in use for storing the user’s age as an
integer, the user’s love for pizza as a Bool , and his or her name and the array of nicknames as generic objects.
Copy the implementation from Listing 13-8 to the UserSettings file.

 Listing 13-8. Serializing of the UserSettings Class

 func encodeWithCoder(coder: NSCoder) {
 coder.encodeObject(self.userName, forKey: "userName")
 coder.encodeBool(self.lovesPizza, forKey: "lovesPizza")
 coder.encodeInt(Int32(self.age), forKey: "age")
 coder.encodeObject(self.nickNames, forKey: "nickNames")
 }

 The deserialization of UserSettings will be done in an initializer method: it too takes an NSCoder
instance as an argument. To read the data back, we will call NSCoder ’s decodeObjectForKey method. Note
that this method returns an NSObject instance, which we will need to convert to the type we expect a given
piece of data to be. You can see the implementation of the initializer in Listing 13-9 .

 Listing 13-9. Deserializing of the UserSettings class

 required convenience init?(coder decoder: NSCoder) {
 guard let userName = decoder.decodeObjectForKey("userName") as? String
 else {
 return nil
 }

 let lovesPizza = decoder.decodeBoolForKey("lovesPizza");

 let age = decoder.decodeIntegerForKey("age");

 guard let nickNames = decoder.decodeObjectForKey("nickNames") as?
 [String] else {
 return nil
 }

CHAPTER 13 ■ WORKING WITH DATA

280

 self.init(
 userName: userName,
 lovesPizza: lovesPizza,
 age: age,
 nickNames: nickNames
)
 }

 To test serializing and deserializing UserSettings (see Listing 13-10), let us create an instance of
it in the viewDidLoad method of the ViewController class in ViewController.swift . We will store the
instance’s state in an XML file, called userSettings.xml and located in the app’s tmp folder: this utilizes the
 NSKeyedArchiver class from the iOS SDK: it is a descendant of NSCoder and has convenience methods for
storing and retrieving key-value pairs of information.

 We will use NSKeyedArchiver for reading back the serialized object, after which we will output what we
read into Xcode’s console. Note that NSKeyedUnarchiver.unarchiveObjectWithFile: returns an NSObject ,
which we will need to cast to UserSettings .

 Listing 13-10. Serializing and Deserializing of a UserSettings Instance

 override func viewDidLoad() {
 ...
 //The rest of the method's implementation
 ...

 //Create an instance of the UserSettings class
 let userSettings = UserSettings(userName: "Julius Marx",
 lovesPizza: true,
 age: 32,
 nickNames: ["Groucho"])

 //A file path and name where the userSettings state will be stored
 let archivePath =
 (tmpDirPath.URLByAppendingPathComponent("userSettings.xml")).path

 //Archive userSettings to a file
 NSKeyedArchiver.archiveRootObject(userSettings, toFile: archivePath!)

 //Unarchive the user settings from the file
 let unarchivedSettings : UserSettings =
 NSKeyedUnarchiver.unarchiveObjectWithFile(archivePath!) as! UserSettings

 print(unarchivedSettings)
 }

 If you now run the app in debug mode you should see the following string printed in the console output
window:

 Julius Marx, true, 32, ["Groucho"]

CHAPTER 13 ■ WORKING WITH DATA

281

 Persisting Data with NSUserDefaults
 As usual in programming there is more than one way to skin a cat. Each iOS app has its own key-value
database for storing simple data such as user preferences. The access to this database is managed by the
 NSUserDefaults class.

 Listing 13-11 shows a modification of the code we added to viewDidLoad in ViewController : instead
of writing to an XML file, it persists the state of the UserSettings object into the app’s database. We get hold
of the database by calling NSUserDefaults.standardUserDefaults and store the data under a key, which
we will name my_userSettings . Storing data for a given key is achieved by calling one of the convenience
methods: objectForKey , integerForKey , stringForKey , and so on. Reading data back can be done with one
of the set*:forKey methods: setObject:forKey , setInteger:forKey , and so forth.

 Listing 13-11. Working with the User Defaults Database

 //Create an instance of the UserSettings class
 let userSettings = UserSettings(userName: "Julius Marx",
 lovesPizza: true,
 age: 32,
 nickNames: ["Groucho"])

 //Serialize userSettings to NSData constant
 let settingsData = NSKeyedArchiver.archivedDataWithRootObject(userSettings)

 //Put data in the User Defaults database under the key "my_userSettings"
 NSUserDefaults.standardUserDefaults().setObject(settingsData,
 forKey: "my_userSettings")

 //Retrieve data from the User Defaults database
 //associated with "my_userSettings" key
 if let unarchivedData =
 NSUserDefaults.standardUserDefaults().objectForKey("my_userSettings") as?
 NSData {
 let unarchivedSettings =
 NSKeyedUnarchiver.unarchiveObjectWithData(unarchivedData)
 print(unarchivedSettings)
 }

 Dealing with Larger Data: A Word About CoreData
 This chapter will not be complete if we do not mention CoreData . It is an object graph persistence
framework, which is so powerful that it deserves a book of its own.

 Why and where might you find CoreData useful? If you are working on a massive project with many
sources of data and complex class hierarchies, CoreData gives you the ability to model relationships between
data entities, manage their life cycles, persist them to XML files, and even do SQL queries on them.

CHAPTER 13 ■ WORKING WITH DATA

282

 Working with the Cloud
 Storing data in the cloud gives great power to developers. You can have your data available on multiple
devices anywhere around the globe without the need to write a single line of server code.

 To help developers embrace cloud technology Apple introduced CloudKit , a framework that directly
interacts with Apple’s iCloud servers. CloudKit provides a flexible application programming interface (API)
and a dashboard that offers developers access to the data stored on Apple’s iCloud servers. Over the next few
pages we will discuss the basics of the CloudKit framework and will make a shopping list app that stores its
data in the cloud.

 ■ Note Using iCloud requires that you enroll in Apple’s iOS Development Program (https://goo.gl/iDkemP).
This is a paid membership program, which you can add to your account on Apple’s web site.

 CloudKit Basics
 Let us first observe how the CloudKit framework is organized by looking at the most important classes for
managing data in the cloud. There are several key concepts: Containers , Records , Relationships , and Assets .
We will introduce each of them in turn, starting with Containers .

 Containers —How Data Access Is Organized
 The data management and data access in iCloud have a similar feel to how we access data locally on the
device in that each application has its own sandbox in the cloud. This sandbox is called a Container and
contains the data that an app might need to store in the cloud. One significant difference, however, is that,
unlike with local storage, several apps can share a storage container in the cloud, as long as they are all
associated with the same development account.

 Programmatically containers are represented by the CKContainer class, which is part of the CloudKit
framework. Every app that uses iCloud has a designated default container object, which you can obtain by
calling CKContainer.defaultContainer() (Listing 13-12).

 Listing 13-12. Obtaining a Reference to the Default Container

 let container = CKContainer.defaultContainer()

 Figure 13-2 illustrates the structure of a container. It consists of several databases: a public one and
multiple private ones. The public database is application-centric and is available to all users of the app,
whereas each private database is associated with only one user and is only accessible to that user.

https://goo.gl/iDkemP

CHAPTER 13 ■ WORKING WITH DATA

283

 When an app is installed on a user’s device, it can only see and access two databases: the public one
and the private database for the user. CKContainer has helper methods, which allow us to talk to each
database: publicCloudDatabase and privateCloudDatabase . Each of these methods returns a reference to a
 CKDatabase object (Listing 13-13).

 Listing 13-13. Obtaining References to the Public and the Private Database

 let publicDatabase = container.publicCloudDatabase
 let privateDatabase = container. privateCloudDatabase

 ■ Note There is a certain amount of data storage and data transfer available for free from Apple; going over
that requires a paid subscription plan. As a rule of thumb, data stored in the public database counts toward the
application’s quota and data stored in the private database counts toward the user’s quota. It’s a good idea to
try to minimize the amount of data you store in the user’s private database to avoid forcing users to purchase
additional storage space.

 Be aware that you cannot delete a container. Once a container is created it will stay in iCloud forever, or
at least until Apple decides to change how its cloud works. In other words, do not run around and create new
containers without a good reason.

 Next we will have a look at how data is represented inside a container’s database.

 Records —How Data Is Represented
 Data in the CloudKit databases is organized as records. A record is very similar to a key-value pair, where the
value can take a variety of types: number, array, date, and time; location; binary blob; and many more. The
key part of the pair is of type String , which consists of alphanumeric characters and starts with a letter.

 Figure 13-2. CloudKit Container structure

CHAPTER 13 ■ WORKING WITH DATA

284

 The class that helps you work with records is called CKRecord. CKRecord instances have a property,
called recordType , which serves as metadata: it holds a string with a custom description of the record’s
data. This gives us a way of querying iCloud for records that match this description. This is helpful if we want
to query iCloud for certain record types only. You can give any valid string name as a record type. When a
record is created in the cloud it automatically gets some additional metadata fields that store information
about when the record was created, which user created it, when it was last updated, and who made the
update. You can use this metadata to narrow your searches in the database.

 Let us see how we can create a record and fill it in with data Listing 13-14). An instance of the CKRecord
class is created by calling its default initializer and passing a string to describe the record type. To add a key-
value pair we call the setObject(_:forKey:) method of the instance. The listing also shows you a shortcut
alternative: instead of calling setObject(_:forKey:) you can put the key name in square brackets, [], and
use the assignment operator.

 ■ Note There are two important rules to follow when naming your keys: you can’t use spaces and a key
name must not match the name of any of the properties of the CKRecord class.

 Listing 13-14. Creating a CKRecord Instance and Populating It with Data

 let record = CKRecord(recordType: "Person")
 record.setObject("Julius Marx", forKey: "name")
 record["age"] = 30
 record["nickname"] = "Groucho"

 Each record has a unique ID, which is automatically assigned to it by the CloudKit framework at the
time of initialization. You can set an ID yourself by using the initWithRecordType:recordID: initializer of
the CKRecord class. When a record is received by the iCloud server its ID gets checked for uniqueness and if
it is not unique the server throws an error.

 Records can be organized in groups, called zones , which are represented by the CKRecordZone class. Every
container has a default zone, which is used if you don’t explicitly define one. Grouping records lets you define
custom business logic and perform transactional operations on records in a zone. We won’t use zones in this
tutorial, but it’s good to be aware of them, as they can be invaluable when it comes to segmenting big data.

 Defining Relationships Between Records
 Imagine we have to create a music player application that will help users play their favorite songs of their
favorite bands. We can design the underlying data model as records, which will represent a band, an album,
or a song. In other words, each CKRecord in our model will have its recordType set to Bands , Albums , or
 Songs . If we had the record for a song, it would be useful to be able to work out what album it was released
on and which band recorded it. To do that we will need to set relationships between the song, album, and
band records.

 In CloudKit relationships between records are managed by instances of the CKReference class. A
 CKReference object creates a many-to-one relationship between records in CloudKit’s database. Records
that refer to another record, which we will call the target record , need to contain a reference object, which in
turn contains information about the target. Both the target and the referring records need to be in the same
zone of the same database.

CHAPTER 13 ■ WORKING WITH DATA

285

 Listing 13-15 illustrates how references between records are created, using the example from the start of
this section: we see how to create references from a song record to its respective band and album records.

 Listing 13-15. Creating a Reference Between Two CKRecords

 let band = CKRecord(recordType: "Bands")
 band["name"] = "Scorpions"

 let album = CKRecord(recordType: "Albums")
 album["name"] = "Crazy World"

 let song = CKRecord(recordType: "Songs")
 song["name"] = "Wind of Change"

 let referenceBand = CKReference(recordID: band.recordID,
 action: .DeleteSelf)
 let referenceAlbum = CKReference(recordID: album.recordID,
 action: .DeleteSelf)

 song["inAlbum"] = referenceAlbum
 song["byBand"] = referenceBand

 You probably noticed a parameter called action , which we set when initializing CKReference . This
is a property of the CKReference class, which defines what action needs to be taken when the target of the
reference is deleted. We can choose between these two:

• CKReferenceActionDeleteSelf —deleting the target record deletes any records that
contain that reference in one of their fields.

• CKReferenceActionNone —no action is taken.

 Assets—Storing Unstructured Data
 Storing strings and numbers in the cloud is good, but how do we go about storing a large document like an
image or a video file? To create such a record in the database, its value needs to be of type CKAsset . This class
represents data stored in, typically, large files.

 Listing 13-16 builds on the band-album example we used earlier and stores the album cover as an asset.

 Listing 13-16. Creating an Asset from an Image File

 let albumCoverAsset = CKAsset(fileURL: coverImageURL)
 album["coverImageAsset"] = albumCoverAsset

 ■ Note Even though we initialized the CKAsset class with a URL (uniform resource file) to a file, the URL
itself is not stored in the cloud. Only the asset’s data gets uploaded to the cloud.

CHAPTER 13 ■ WORKING WITH DATA

286

 Saving and Deleting Records from the Cloud
 CKRecord instances live in the application’s memory and get deleted when the app closes. To persist a record
to iCloud, we need to ask the database to which it belongs to save it on the server. For that purpose CKDatabase
has a convenience method, called saveRecord(_:completionHandler:) . Have a look at Listing 13-17 for how
to use it. saveRecord ’s first argument is the record we want to persist and its second argument is a callback,
also known as completion handler, which will be executed when the saving operation finishes. The callback’s
signature is (CKRecord?, NSError?) : in it we get passed the record we tried to persist and an error object,
which is set to nil if the saving was successful or contains information on what went wrong otherwise.

 Listing 13-17. Save a CKRecord in the Server’s Database

 let privateDatabase = CKContainer.defaultContainer().privateCloudDatabase
 let band = CKRecord(recordType: "Bands")
 band["name"] = "Scorpions"

 privateDatabase.saveRecord(band) { (record, error) -> Void in
 //Handle success or error response from the server
 }

 saveRecord(_:completionHandler:) is used for updating existing records in the database, as well as
for persisting them for the first time.

 To delete a record from the server we call CKDatabase ’s deleteRecordWithID(_:completionHandler:)
method, which looks very similar to the method we used for saving: we pass in the record we want to delete
and a callback function as arguments. The callback gets executed when the deletion is complete; it receives a
reference to the record that we tried to delete and optional error information. We can see this in Listing 13-18 .

 Listing 13-18. Deleting a Record from the Cloud

 privateDatabase.deleteRecordWithID(band.recordID)
 {(recordID, error) -> Void in }

 Note that saving and deleting are performed asynchronously over the network. As it is not in our control
how long a response from the server may take, it is usually a good idea to notify the user with an activity
indicator that a potentially lengthy operation is taking place.

 Retrieving Records from the Cloud
 To get records from the cloud we need to perform a query, using CKQuery —another helper class from the
CloudKit framework. Initializing a CKQuery instance takes the already familiar recordType and an instance
of NSPredicate. NSPredicate is a powerful class that helps us specify how data should be retrieved from the
database. It has its own query language, similar to using the WHERE clause in the structured query language
(SQL) for those of you familiar with SQL.

 Apart from narrowing down and filtering the data we fetch from the database, we can have the retrieved
records sorted, using CKQuery ’s property sortDescriptors , which is an array of NSSortDescriptor objects.

 Performing a query on the server is an asynchronous operation and, like the rest of the server-side calls
we have made so far, requires that we implement a completion handler function that will be called once the
query returns a result. We pass this completion handler to CKDatabase ’s performQuery(_:inZoneWithID:com
pletionHandler:) method.

CHAPTER 13 ■ WORKING WITH DATA

287

 In Listing 13-19 you can see an example of a query that retrieves all records of type Bands from the
server and sorts them by their name in ascending order. The result comes as an array of CKRecord objects,
which is the first parameter of the completion handler closure we pass to privateDatabase.performQuery .

 Listing 13-19. Retrieve a List of Records from the Server

 let fetchQuery = CKQuery(recordType: "Bands",
 predicate: NSPredicate(format: "TRUEPREDICATE"))

 fetchQuery.sortDescriptors = [NSSortDescriptor(key: "name",
 ascending: true)]

 privateDatabase.performQuery(fetchQuery, inZoneWithID: nil) {
 (records, error) -> Void in }

 Common Error Messages
 As you can see, all network operations we have done so far return their results in callback functions, which
take optional NSError parameters. It’s a good idea always to check if the error passed to the callback is
 nil and if it isn’t, to inspect its error code. You can find a complete list of error codes in the definition of
 CKErrorCode . Following are some of the most common ones with suggestions about how to deal with them:

• .BadContainer or . MissingEntitlement . Check if you have specified a container in
the iCloud entitlements section of your app matching the CKContainer object. Make
sure that the container exists on the CloudKit Dashboard web site.

• .NotAuthenticated or . PermissionFailure . You might not have entered your iCloud
credentials in the settings of your device yet. Go to device Settings > iCloud and
see if an account has been assigned. Another reason to get one of these errors could
be that iCloud is disabled on the device. Enable it in Settings ➤ iCloud .

• .UnknownItem . This usually means that you have requested a record type that
doesn’t exist on the server. Make sure you haven’t made a typo when specifying the
string for recordType and check the CloudKit Dashboard web site to make sure the
string matches the records that are there.

 I keep mentioning the CloudKit Dashboard but haven’t told you what it is yet. This is a web-based
admin panel that helps you manage data on the iCloud server. The rest of this chapter provides a more
in-depth look at it.

 Building a CloudKit-Powered Application
 At this point you should be familiar with the basic concepts in the CloudKit framework. Now let us put all of
them into practice by building an app.

 The app will maintain a simple shopping list, which the user will create by adding or deleting items
from it. The app will persist this shopping list to the user’s iCloud private account and will take care of
synchronizing the user’s local copy with the one in the cloud. When the app is run for the first time, it will be
the user who creates the shopping list. After that, every time we start the application, it will retrieve the list
stored on the server and show it to the user for modification.

CHAPTER 13 ■ WORKING WITH DATA

288

 I have divided the app implementation into three parts:

• Setup : we will set up the prerequisites necessary to enable an app to work with
iCloud;

• Data management : this will require us to write some code for communicating with
the iCloud;

• User interface : we will see how we can present data to the user.

 ■ Note To be able to test the code in this tutorial you will need an Apple ID that’s a member of the iOS
Development Program.

 Preparation: Setting Up the App
 First things first. Before we start coding, we need to perform several mandatory steps to enable CloudKit in
our application.

 Start by creating a new Single View Application project in Xcode and name it CloudKitDemo . Select the
project in the Project Navigator and select the app from the list of targets. Open the General tab and set Team
to the correct iOS development account (Figure 13-3).

 Figure 13-3. Select an account in Team: it will need to be a member of Apple’s iOS Development Program

 Next, open the Capabilities tab and find the iCloud setting. Toggle the switch to enable iCloud
(Figure 13-4). This will add all the necessary entitlements to your application. It may take a few minutes
for Xcode to create an app ID and authorize it to use iCloud. Note that this step will generate an error if the
team/Apple ID you selected in the previous step is not a member of Apple’s iOS Development Program.

CHAPTER 13 ■ WORKING WITH DATA

289

 Figure 13-4. Enable iCloud usage for the app target

 Figure 13-5. The applciation's iCloud settings

 Tick the Key-value storage and CloudKit checkboxes (Figure 13-5). In this tutorial we will not share
database containers with other apps, so leave the Use default container option checked.

 At the bottom of the settings you will see a button that says CloudKit Dashboard. Click it to go to the
CloudKit Dashboard admin web page—it will load in a browser. Log in with your Apple ID.

 ■ Note If your Apple ID is a member of multiple teams, you will need to first make sure that you are already
logged into developer.apple.com and have chosen the right team. Otherwise you will see an error indicating that
nothing has been set up yet.

CHAPTER 13 ■ WORKING WITH DATA

290

 CloudKit Dashboard —Registering Record Type
 The CloudKit Dashboard is the place where you can administer the app’s back end in the cloud. It lets
you manage database containers, zones, and record types; monitor data usage and data traffic; and get
information about users.

 Before we can store and fetch records from iCloud we need to create a new Record Type. Open the
 CloudKit Dashboard page and select Record Type s from the menu on the left as shown on Figure 13-6 . Create
a new record type by clicking the + button at the top of the page. Name the new record type ShoppingItem .
Next you need to add fields to the record and specify their data type. Let us add a field of type String and
name it “name.” Finally, click the Save button at the bottom of the page to persist the changes.

 Figure 13-6. Create a new Record Type

 Linking the Device with an iCloud Account
 For our users to be able to use this application they should be logged in with their iCloud account on the
device. You have to do the same in order to test the app whether on a device or in a simulator.

 On your iOS device open Settings ➤ iCloud and make sure iCloud Drive is turned on (Figure 13-7).
Then, if the account field is empty, fill in your or your Apple ID credentials to log in to iCloud.

CHAPTER 13 ■ WORKING WITH DATA

291

 Figure 13-7. Log in to iCloud on a device or in a simulator

 Using the CloudKit Framework: Making a Cloud Data Manager
 With the project and the new record type set up, it is time to start coding with the CloudKit framework. For
clarity we will split the application’s code into two layers. One layer will manage shopping list items and will
communicate with the iCloud back end and other layer will take care of the user interface.

 In this section we will create a class which will be responsible for

• storing all shopping list items and providing access to their names.

• adding an item to the list and sending it to the cloud.

• deleting an item from the list and syncing with the cloud.

• notifying the UI of the application whenever a response from the server arrives.

 From Xcode’s main menu select File ➤ New ➤ File and click Swift fil e to add a new source code file
to the project. Name the file CloudDataManager.swift and click on its name in Project navigator to open it.
Listing 13-20 shows the CloudDataManager class definition with all the methods stubbed out. We will add
functionality to them in a minute. Note that in order to use CloudKit’s API, we need to import the CloudKit
framework at the top of the file.

CHAPTER 13 ■ WORKING WITH DATA

292

 Listing 13-20. CloudDataManager Class

 import Foundation
 import CloudKit

 class CloudDataManager {
 //Shopping list items array
 var dataItems : [CKRecord]

 //Record Type of the items
 let recordType = "ShoppingItem"

 //Default initializer
 init() {
 //Create an empty array of shopping items
 dataItems = []
 }

 //Get item's name at a given index in the items array
 func getItemName(atIndex index : Int) -> String {
 return dataItems[index]["name"] as! String
 }

 //Get the number of shopping items
 func getItemsCount() -> Int {
 return dataItems.count
 }

 //Get all ShoppingItem records from the server and load them into the list
 func fetchCloudItems(callback callback: (NSError?) -> Void) {
 //Code of the method goes here
 }

 //Add a new shopping item to the list and sync with iCloud
 func addItem(itemName item : String, callback: (NSError?) -> Void) {
 //Code of the method goes here
 }

 //Remove an existing shopping item from the list and sync with iCloud
 func removeItem(atIndex index : Int, callback: (NSError?) -> Void) {
 //Code of the method goes here
 }
 }

 In this class dataItems property is an array that stores the local cache for the shopping list items. There
are two sets of methods in the class. The first set includes getItemName(:atIndex) and getItemsCount() ,
which act as a façade for dataItems . They are used to query the local cache and do not perform any network
operations, so they are fast and synchronous.

CHAPTER 13 ■ WORKING WITH DATA

293

 The next three methods, fetchCloudItems(:callback) , addItem(:itemName:callback) , and
 removeItem(:atIndex:callback) perform asynchronous network operations and are potentially slow.
Because of this, each of the methods takes a callback function as an argument, which is executed when the
respective network operation is complete. We will later implement these callbacks to update the app’s user
interface.

 We have the skeleton of the CloudDataManager class. Let us now focus on implementing its logic in each
of the methods’ stubs (Listing 13-21).

 We will start with fetchCloudItems(:callback) . This method is called when the app launches: its
purpose is to get all previously entered shopping items from the server if there are any. For that purpose
we will create a query for retrieving all records of type ShoppingItem : this will be done with the help of an
 NSPredicate instance. In Listing 13-21 we set the NSPredicate ’s filter to TRUEPREDICATE , which means
“iterate through all records and fetch each one.” The next step is to get the records sorted. Sorting will be
performed on the records’ “name” field in ascending order. The result of the query is returned in the records
argument of the completion handler, implemented as a closure in this case.

 ■ Note For details on how closures work in Swift, see Chapter 22 .

 In the completion handler we are going to update the local cache and signal the UI to show the updated
shopping list. The logic of the code inside the closure is fairly simple: if the result contains any records, they
are copied into the local list of items. Finally, the code calls the callback argument to communicate the
changes with the UI. This is a pattern we will follow when implementing the rest of the methods that involve
waiting for a response from the server.

 Listing 13-21. Implementation of fetchCloudItems Method

 func fetchCloudItems(callback callback: (NSError?) -> Void) {
 //Get a reference of the user's iCloud database
 let privateDatabase = CKContainer.defaultContainer().privateCloudDatabase

 //Construct a query to get all the records of type "ShoppingItem"
 let fetchQuery = CKQuery(recordType: self.recordType,
 predicate: NSPredicate(format: "TRUEPREDICATE"))

 //Sort fetched records by their name in ascending order
 fetchQuery.sortDescriptors = [NSSortDescriptor(key: "name",
 ascending: true)]

 //Send the query to iCloud
 privateDatabase.performQuery(fetchQuery, inZoneWithID: nil) {
 (records, error) -> Void in
 //Move the result records into the dataItems array
 if records!.count > 0 {
 for record in records! {
 self.dataItems.append(record)
 }
 }

 //Tell the UI to update itself
 callback(error)
 }
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 13 ■ WORKING WITH DATA

294

 Next to implement is the addItem(:itemName:callback) method (Listing 13-22). This method is called
every time the user adds an item to the shopping list and a new CKRecord instance needs to be created
for it. Once this is done the new record is persisted to the cloud by the saveRecord call. We only add the
new record to the local cache if saving it to the server was successful—we are notified about this in the
completion handler we supply to saveRecord .

 Listing 13-22. Implementation of addItem Method

 func addItem(itemName item : String, callback: (NSError?) -> Void) {
 //Get a reference of the user's iCloud database
 let privateDatabase = CKContainer.defaultContainer().privateCloudDatabase

 //Create a record of of type "ShoppingItem" and set its name
 let localRecord = CKRecord(recordType: self.recordType)
 localRecord["name"] = item

 //Ask iCloud to store the record
 privateDatabase.saveRecord(localRecord) { (record, error) -> Void in
 //If the response is ok add this record to the local list
 if let record = record {
 self.dataItems.append(record)
 }

 //Tell the UI to update itself
 callback(error)
 }
 }

 We will complete the CloudDataManager class with the implementation of the
 removeItem(:atIndex:callback) method (Listing 13-23). We ask the server to delete a record by calling
 deleteRecordWithID and passing the record’s unique ID, which we can work out from the record’s recordID
property. The completion handler we supply follows a familiar pattern: if the deletion is successful, the local
cache is updated and changes are reflected in the user interface.

 Listing 13-23. Implementation of removeItemAtIndex Method

 func removeItem(atIndex index : Int, callback: (NSError?) -> Void) {
 //Get a reference of the user's iCloud database
 let privateDatabase = CKContainer.defaultContainer().privateCloudDatabase

 //Get a record by its index in the local list
 let record = dataItems[index]

 privateDatabase.deleteRecordWithID(record.recordID) {
 (recordID, error) -> Void in
 //Get the local index of the record that should be removed
 let recordIndex = self.dataItems.indexOf(record)
 //Remove the underlying record
 self.dataItems.removeAtIndex(recordIndex!)

CHAPTER 13 ■ WORKING WITH DATA

295

 Figure 13-8. CloudKitDemo application user interface

 //Tell the UI to update itself
 callback(error)
 }
 }

 Preparing the User Interface
 We will use a Table View component to display the shopping list on the screen and two buttons that will let
the user add and delete items.

 In Xcode open the Main.storyboard file and make it look like the screenshot in Figure 13-8 : first find a
Navigation bar component in the Object library and drag it to the top of the scene. Then drag two Bar Button
item components on top of it—place one on the left and one on the right. Select the left button and in the
Attributes inspector select Edit from the System Item drop-down. This will change the caption of the button
to Edit . Set System Item for the right button to Add and its caption will change into a big plus sign. These two
buttons will let the user add and delete items from the list.

 To finish building the UI drag and drop a Table view component under the Navigation and add
constraints to it to take the remaining portion of the screen. Create a prototype cell and set its Identifier
property to ShoppingItemCell .

 ■ Note For more info about table views, prototype cells, cell reusing, and identifiers, see Chapter 6 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_6

CHAPTER 13 ■ WORKING WITH DATA

296

 Drag the table view into the definition of the ViewController class in ViewController.swift to create
an outlet. Name the outlet tableView (Listing 13-24).

 Listing 13-24. Create an Outlet for the Table View

 @IBOutlet weak var tableView: UITableView!

 Creating Table View Data Source and Delegate
 The table view needs to get its data from an object that conforms to the UITableViewDataSource protocol. To
keep things simple, we will make the ViewController class our data source. To talk to the table view, we will
also make it conform to the UITableViewDelegate protocol (Listing 13-25).

 Listing 13-25. Conform to UITableViewDelegate and UITableViewDataSource Protocols

 class ViewController: UIViewController, UITableViewDelegate,
 UITableViewDataSource {

 //The rest of the code goes here
 }

 Conforming to these two protocols requires implementation of these two methods in the ViewController
class: tableView(_:numberOfRowsInSection:) and tableView(_:cellForRowAtIndexPath) . We will just stub
them out as shown in Listing 13-26 .

 Listing 13-26. Implement UITableViewDelegate and UITableViewDataSource Protocols' Methods

 class ViewController: UIViewController, UITableViewDelegate,
 UITableViewDataSource {

 //The rest of the code goes here

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 0
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 return UITableViewCell()
 }
 }

 Populating the Table View with Data
 We are finally ready to fill the table view with data. First we need an instance of the CloudDataManager
class, which will provide shopping items data: we will make this a property of the ViewController class,
called cloudDataManager . The next step is to set the table view’s data source and delegate properties to the
 ViewController class instance. We will do this in the viewDidLoad() method of ViewController
(Listing 13-27).

CHAPTER 13 ■ WORKING WITH DATA

297

 Listing 13-27. Instantiate CloudDataManager and Fetch Shopping Items from the Server

 class ViewController: UIViewController, UITableViewDelegate,
 UITableViewDataSource {

 //Reference to the table view
 @IBOutlet weak var tableView: UITableView!

 //A reference to the data manager class
 let cloudDataManager = CloudDataManager()

 override func viewDidLoad() {
 super.viewDidLoad()

 //Set table view datasource and delegate
 tableView.delegate = self
 tableView.dataSource = self

 //Get all shopping list items from the server
 cloudDataManager.fetchCloudItems(callback: dataChanged)
 }

 //The rest of the code goes here
 }

 There is a method called dataChanged , which we haven’t implemented yet. This method will be used as
a callback for the CloudDataManager methods and will notify the UI to update itself when there is a response
from the server.

 Its implementation is pretty straightforward : if there was an error, we will print out information about in
Xcode’s console; otherwise we will update the table view (Listing 13-28). In iOS we are allowed to access the
UI only on the main thread and we need do make sure the all related calls happen there. To execute a code
block on the main thread we wrap it in a dispatch_async(dispatch_get_main_queue(),{() -> Void})
call. This function tells iOS to execute the code block nested inside on a specific thread of the app. dispatch_
get_main_queue makes sure that the chosen thread is the main one.

 Listing 13-28. Update the Table View Using a Callback Method

 func dataChanged(error : NSError?) {
 if let error = error {
 //If there is an error message print it in the console
 print(error)
 }
 else {
 //When there is a response do the logic in the main thread
 dispatch_async(dispatch_get_main_queue(), { å
 [weak self] () -> Void in
 //Refresh data in the table view
 self!.tableView.reloadData();
 })
 }
 }

CHAPTER 13 ■ WORKING WITH DATA

298

 ■ Note There are a couple of interesting things to note in the code in Listing 13-28 . First, we make a call
to dispatch_async , which causes code to be executed on a particular queue. The code we pass will update
the UI, so we select the main queue. We covered queues in Chapter 7 —have another look if you need a
reminder. The block of code that we want executed on the main queue is passed in as the second parameter
to dispatch_async in the form of a closure—you can see it wrapped in curly brackets. Chapter 22 presents
closures in detail. The last thing that may look strange at first is the reference to [weak self] , where self
refers to the current instance of ViewController . As controversial as this looks, it is not a judgment on our
class’s character but has to do with memory management. As closures are independent objects, they retain
strong references; that is, they obtain ownership of the objects they reference. To prevent that, we mark the
reference as weak . You can read more on weak references and memory management in Chapter 21

 Now let us populate the shopping items in the table view. First we need to provide the number of items
so the table can ask the data source to construct the appropriate number of rows in the table. The number of
rows is set in the tableView(_:numberOfRowsInSection:) method (Listing 13-29).

 Listing 13-29. Set Table View Rows Number

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int
 {
 //Return shopping items number
 return cloudDataManager.getItemsCount()
 }

 The tableView(_:cellForRowAtIndexPath:) call gives us access to update a single cell in the table: we
will fill in the new cells with the names of the items in the shopping list, as shown in Listing 13-30 .

 Listing 13-30. Create a Cell and Set Its Label

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 //Create a new table cell for the row
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ShoppingItemCell", forIndexPath: indexPath)

 //Set the cell's label to be the name of the corresponding shopping item
 cell.textLabel?.text = cloudDataManager.getItemName(
 atIndex: indexPath.row)

 return cell
 }

 Run the app and you will see an empty table (Figure 13-9). In the next section we will implement how
items are added, so we can create our first shopping list.

http://dx.doi.org/10.1007/978-1-4842-1666-8_7
http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 13 ■ WORKING WITH DATA

299

 Figure 13-9. Empty table view

 Adding New Items
 Open Main.storyboard and ViewController.swift in the Assistant editor and create an Action handler for
the plus button. Name this Action didTapAdd (Listing 13-31).

 Listing 13-31. Add an Action Handler for Adding New Items

 @IBAction func didTapAdd(sender: UIBarButtonItem) {
 }

 We will show an alert dialog to the user to type the new item’s name. Listing 13-32 shows you how to
create an alert dialog with a text field and two buttons: Cancel and Add .

CHAPTER 13 ■ WORKING WITH DATA

300

 Listing 13-32. Add Item Dialog Implementation

 @IBAction func didTapAdd(sender: UIBarButtonItem) {
 //Create an allert controller dialog for adding new item
 let alertController = UIAlertController(title: "New Item",
 message: "Tap in new item", preferredStyle: UIAlertControllerStyle.Alert)

 //Add a text field component to the dialog
 alertController.addTextFieldWithConfigurationHandler {
 (UITextField) -> Void in }

 //Add a Cancel button to dismiss the dialog
 alertController.addAction(UIAlertAction(title: "Cancel",
 style: UIAlertActionStyle.Default, handler: {
 (action : UIAlertAction) -> Void in
 }))

 //Add an Add button to add new item
 alertController.addAction(UIAlertAction(title: "Add",
 style: UIAlertActionStyle.Default, handler: {
 (action : UIAlertAction) -> Void in

 //Get the item's name from dialog's text field
 let itemName = (alertController.textFields![0] as UITextField).text

 //Ask data manager to create new shopping item with the given name
 self.cloudDataManager.addItem(itemName: itemName!,
 callback: self.dataChanged)
 }))

 //Show this dialog on the screen
 self.presentViewController(alertController, animated: true,
 completion: nil)
 }

 Run the application and tap the + button. You should see the dialog prompting you to create a new item
(Figure 13-10).

CHAPTER 13 ■ WORKING WITH DATA

301

 Figure 13-10. Add new item dialog

 Deleting Items from the Table View
 While adding a new item required us to write only one new method, deleting an item will require more work.
We will add several new methods, but they will all be one-liners, I promise.

 First create an Action handler for the Edit button in ViewController.swift . Name the Action didTapEdit .
Inside this method we will toggle the tableView.editing property to true or false (Listing 13-33). Changing
this property notifies the table that we want to edit its rows and causes each row to show a delete button.

 Listing 13-33. Edit Button Action

 @IBAction func didTapEdit(sender: UIBarButtonItem) {
 //Toggle table view edit mode
 tableView.editing = !tableView.editing
 }

 When the table view is in edit mode it will ask the data source to verify if a given row can be edited. This
would require implementing a method called UITableViewDataSource tableView(_:canEditRowAtIndexPath).
Since all of our shopping items can be deleted we will always return true (Listing 13-34).

CHAPTER 13 ■ WORKING WITH DATA

302

 Listing 13-34. A Method That Checks If a Given Row in the Table Can Be Edited

 func tableView(tableView: UITableView,
 canEditRowAtIndexPath indexPath: NSIndexPath) -> Bool {

 //We can edit all the rows
 return true
 }

 When the user taps the delete button next to a row, the table view asks the data source to commit the
deletion of the row. This is done inside the tableView(_: commitEditingStyle: forRowAtIndexPath)
method (Listing 13-35). This method is used for committing any editing operations, so before proceeding
further we will need to make sure that we are committing a deletion: the value of the editingStyle
argument needs to be .Delete . Finally, we ask cloudDataManager to delete the corresponding shopping
item.

 Listing 13-35. A Method for Deleting a Row

 func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {

 if UITableViewCellEditingStyle.Delete == editingStyle {
 //Ask the data manager to delete the coresponding shopping item
 cloudDataManager.removeItem(atIndex: indexPath.row,
 callback: dataChanged)
 }
 }

 The app is now complete. Run it, tap Edit, and delete a row to see it vanish from the table view and from
the iCloud servers (Figure 13-11).

CHAPTER 13 ■ WORKING WITH DATA

303

 Figure 13-11. Deleting an item from the list

 Summary
 This chapter gave you the tools for working with files on the local device as well as storing and retrieving data
from Apple’s iCloud service. You saw a few different ways to persist data: as a binary blob, via serialization,
and even via using the application’s settings database.

 With this knowledge we are ready to head off to the land of networking operations. See you there.

305© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_14

 CHAPTER 14

 Networking

 Today most mobile applications are part of an ecosystem of different channels for presenting information
to the user. Whether you are reading your e-mail or checking the weather forecast in a web browser, in a
desktop client, or in a mobile app all the information and devices are connected via the invisible meta-space
called Internet. In this chapter we will focus on how to connect to and retrieve information from a web
service and load it into your app.

 In this chapter you will do the following:

• Learn how to request and retrieve data from a web service.

• Learn how to create a network session and initiate a download task.

• Learn how to work with JSON (Java Script Object Notation) and how to convert it to
Swift objects.

• Learn how to download an image from a URL (uniform resource locator) and how to
display the image in a table view.

• Build an app that does all of the above.

 When you are done, you will have an app that gets a weather forecast for a chosen place around the
world. The forecast will be retrieved from an open online weather service using the network communication
capabilities of iOS.

 Setting Up the App and Designing the UI
 The app we are about to develop will let the user read the weather forecast for any known city around the
world. The app will present the information as a five-day forecast, and the data for each day will be sampled
every three hours. It will include the expected temperature and an icon to depict the weather conditions.

 Start by creating a Single View iOS Application project (File ➤ New ➤ Project… , then iOS ➤ Application
➤ Single View Application) and naming it WeatherApp . We will design the user interface (UI) of the
application as part of the setup, so we can focus on code in the rest of the chapter.

 Figure 14-1 shows you what the UI will look like: on the left there is a mock-up with the UI elements you
will need to place in the view on the storyboard and on the right is a screenshot of the storyboard with the
elements already positioned on it.

CHAPTER 14 ■ NETWORKING

306

 As you can see in Figure 14-1 , at the top of the screen there is a text field, which will be used to input the
name of the city, for which we want to see a forecast, and a button to start a data search for it. The forecast
results will be displayed in a table view, where each row will contain a piece of forecast information: the
expected temperature, the day and the time, and an image that represents the weather conditions.

 Open Main.storyboard and arrange the UI as shown in Figure 14-1 by adding a text field, a button, and
a table view. Do not forget to add constraints, so that the app adapts its look to whatever device it runs on. If
you need a reminder for how to set constraints and make adaptive UI, have a look at Chapter 5 .

 Next, open ViewController.swift and create two outlets, one for the city text field and another for the
table view. Then create an action for the Search button’s Touch Up Inside event. (See Chapter 2 for how to
create outlets and actions.) Your code should look like that in Listing 14-1 .

 Listing 14-1. Adding an Outlet and an Action to the ViewController Class

 import UIKit

 class ViewController: UIViewController {

 @IBOutlet weak var cityTextField: UITextField!
 @IBOutlet weak var tableView: UITableView!

 //The rest of the code goes here

 @IBAction func searchForCity(sender: AnyObject) {
 }

 }

 Figure 14-1. The app’s user interface

http://dx.doi.org/10.1007/978-1-4842-1666-8_5
http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 14 ■ NETWORKING

307

 Next we will set up the app to connect to a web service. With iOS 9, Apple introduced a feature called
App Transport Security (ATS). It forces apps to use the more secure HTTPS protocol by blocking less secure
connections that use HTTP. This, on the one hand, is great, as it improves the security and privacy for your
users’ data. If you have control at the server end, you can help your app support ATS by setting up the server
to use Secure Sockets Layer (SSL). This enables it to send and receive encrypted information. On the other
hand, if your app needs to connect to a third-party service, which may or may not support SSL, you may
want to bypass ATS.

 To do this, open project’s Info.plist file and add new key with name App Transport Security
Settings , then add a subkey named Allow Arbitrary Loads and set its value to YES (Figure 14-2). This
instructs the app to allow any network connections, including insecure ones.

 Figure 14-2. Disable App Transport Security

 Note that ATS also allows you to configure behavior for individual domains and only allow non-SSL
communications for certain ones (see https://goo.gl/neuUz9 for more details).

 With the app set up, let us have a look at the weather web service, which we will query for data.

 The Weather Forecast Web Service
 The app will get its data from a public weather web service . There are a few of these available on the Internet.
For this tutorial we will use OpenWeatherMap. We chose it because it

• has a free account option.

• offers plain and simple URL structure.

• returns data in JSON format.

• has an easy authorization policy: it uses only an application programming interface
(API) key at the end of each request.

 Before we can use OpenWeatherMap we have to create an account. Every account is given a unique
application programming interface (API) key, which is used to authorize any apps you create that send
queries to the server.

 To create your free account open your favorite web browser and navigate to this URL: https://home.
openweathermap.org/users/sign_up . The web site will ask you to enter a username, an e-mail address, and
a password (Figure 14-3).

https://goo.gl/neuUz9
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up

CHAPTER 14 ■ NETWORKING

308

 Once your account has been created, you will be redirected to the account settings page. Here you
can copy your API key (Figure 14-4). We will use the key later for authorizing the app’s requests to the
web service.

 Figure 14-3. OpenWeatherMap’s account registration page

CHAPTER 14 ■ NETWORKING

309

 OpenWeatherMap offers an API that you can explore if you navigate to http://openweathermap.org/ap i
in a web browser. The web site has a detailed manual, which explains how to connect to the service and retrieve
weather information. In this tutorial we will focus on how to get the 5-day/3-hour forecast (i.e., a forecast for five
days with data every three hours (see http://openweathermap.org/forecast5 for more details).

 According to the manual, to get a forecast for a given city using only its name, we need to send a request
that has the following format:

 api.openweathermap.org/data/2.5/forecast?q={city_name}&units=metric&APPID={api_key}

 Let us dissect the request:

• api.openweathermap.org/data/2.5/forecast is the entry point URL for the
5-day/3-hour forecast service.

• The q parameter instructs the weather service that we want to search for a city by its
name. The value of the parameter is the name of the city.

 Figure 14-4. Get an OpenWeatherMap API key

http://openweathermap.org/api
http://openweathermap.org/forecast5

CHAPTER 14 ■ NETWORKING

310

• The units parameter specifies the units for the data. If we omit this parameter, we
will get temperature data in Kelvins. To use Celsius, set units to metric .

• The APPID parameter expects the unique API key from your account. This parameter
needs to be appended to every request to OpenWeatherMap made by the app. If it is
missing, the server will respond with an error string.

 The response to this request will come in JSON format. JSON is a text format for describing objects with
the help of key-value pair hierarchies. Listing 14-2 shows a typical response from the weather service in
 JSON format.

 Listing 14-2. JSON Weather Forecast Response

 {
 "city":{
 "id":1851632,
 "name":"Shuzenji",
 "coord":{
 "lon":138.933334,
 "lat":34.966671
 },
 "country":"JP",
 "cod":"200",
 "message":0.0045,
 "cnt":38,
 "list":[
 {
 "dt":1406106000,
 "main":{
 "temp":298.77,
 "temp_min":298.77,
 "temp_max":298.774,
 "pressure":1005.93,
 "sea_level":1018.18,
 "grnd_level":1005.93,
 "humidity":87,
 "temp_kf":0.26
 },
 "weather":[
 {
 "id":804,
 "main":"Clouds",
 "description":"overcast clouds",
 "icon":"04d"
 }
],
 "clouds":{
 "all":88
 },
 "wind":{
 "speed":5.71,
 "deg":229.501
 },

CHAPTER 14 ■ NETWORKING

311

 "sys":{
 "pod":"d"
 },
 "dt_txt":"2014-07-23 09:00:00"
 }
]
 }
 }

 JSON distinguishes the following data types: number, string, Boolean, object, and array. In Listing 14-2
an example of an object is the value following the city key. The weather forecast data is stored in the list
array. Every object in the list describes a weather forecast for a certain time of the day.

 To get the forecast, we need to read the values of the following keys from the JSON response:

• temp —the temperature of the air, measured in the units we specified in the request.

• icon —a string identifier, which contains an icon name. This name can later be used
to download a weather icon.

• dt_txt —a timestamp in a string format.

 In the next section we will create a data model class to contain the data, which we extract from the JSON
server response.

 Preparing the Forecast Data Model
 Following the Model-View-Controller (MVC) paradigm , we will create a model to store and work with the
forecast data. For a reminder about MVC, see Chapter 5 .

 We will create two Swift classes to implement the data model. The first one will represent a single forecast
item with all of its data properties. The second one will store a collection of forecast items and will provide
helper functions to access those items. We will host both of the classes inside the same swift source file.

 In Xcode add a new file to your project, name it ForecastModel.swift , and open it for editing.
 Let us start with the first class, ForecastItem . You can see its definition in Listing 14-3 . Each forecast

item has several properties of type String : a temperature measurement, a day and time for the forecast, and
an identifier for the weather image icon.

 There is one more property, named uiImageCache of type UIImage. UIImage is a class from the UIKit
framework, which stores image data and provides a number of helper functions for loading and displaying
data from various formats, such as PNG or JPEG. We will use uiImageCache to store an icon for the forecast.

 ForecastItem contains a helper method, which stores image data in uiImageCache : addImageCache .
As we will see later, the image data we download comes in an NSData object. You can think of NSData as
analogous to ActionScript’s ByteArray. addImageCache uses NSData to construct a UIImage instance and
store it in uiImageCache .

 Listing 14-3. ForecastItem Class Implementation

 import UIKit

 public class ForecastItem {
 //Forecast temperature stored as String
 public var temparature : String
 //Forecast date and time entry
 public var dayAndTime : String

http://dx.doi.org/10.1007/978-1-4842-1666-8_5

CHAPTER 14 ■ NETWORKING

312

 //Weather icon name
 public var imageID : String
 //Cached weather image
 public var uiImageCache : UIImage?

 init(temperature: String, dayAndTime : String, imageID : String) {
 self.temparature = temperature
 self.dayAndTime = dayAndTime
 self.imageID = imageID
 self.uiImageCache = nil
 }

 //Load image from data and cache it
 public func addImageCache(fromData data : NSData) {
 //Create UIImage from NSData
 uiImageCache = UIImage(data: data)
 }
 }

 Our app will show the weather forecast for five days and the data for each day will be sampled every
three hours. This makes 8 forecast items per day or 40 items for the whole five-day period. The next class we
are going to implement, ForecastModel , will be responsible for storing these items and for providing access
to them to the other parts of the application. The class has four methods:

• getItem: atIndex , which returns a forecast data item from the list by its index.

• removeAll() , which removes all previously stored forecast items from the model.

• appendItem: newItem , which is used to populate the forecast list with new items.

• getItemCount() , which returns the number of the forecast items in the list.

 You can see the implementation of ForecastModel in Listing 14-4 .

 Listing 14-4. The ForecastModel Class

 public class ForecastModel {

 //An array of forecast items
 private var forecastData : [ForecastItem]

 init() {
 forecastData = []
 }

 //Remove all forecast items
 func removeAll() -> Void {
 forecastData.removeAll()
 }

 //Get a forecast item at a given index in the forecastData array
 func getItem(atIndex index : Int) -> ForecastItem {
 return forecastData[index]
 }

CHAPTER 14 ■ NETWORKING

313

 //Add a new forecast item to the list
 func appendItem(newItem newItem : ForecastItem) {
 forecastData.append(newItem)
 }

 //Get the number of forecast items
 func getItemCount() -> Int {
 return forecastData.count
 }
 }

 Writing the Network Communication Logic
 We will create another class that will be responsible for connecting to the remote server, getting data, and
parsing it for the forecast model. This will help with keeping all network communication code in one place.

 Add a new source code file to the project and name it WeatherForecastService.swift . Listing 14-5
shows the WeatherForecastService class definition with all the methods stubbed out. We will add
functionality to them in a minute.

 Listing 14-5. WeatherForecastService Class

 public class WeatherForecastService {

 //Path to the API entry point
 private let apiBasePath : String =
 "http://api.openweathermap.org/data/2.5/"

 //Unique key to access the OpenWeatherMap service
 private let apiKey : String = "739c23f0ecc3b86bf0545471b*******"

 //An aray of data tasks
 var dataTasks = [NSURLSessionTask]()

 //Unique error domain of the app
 let errorDomain = "com.diadraw.WeatherApp.WeatherForecastService"

 //Enum of possible error conditions
 enum ErrorCode {
 case noForecastData(Int)
 case urlFormatError(Int)
 case serverError(Int, String)
 case jsonParsingError(Int, String)
 }

 //Get a forecast from OpenWeatherMap service
 //and populate the forecast model
 public func getForecast(forecastModel forecastModel : ForecastModel,
 forCity city: String, completionHandler: (NSError?) -> Void) {
 //The body of the method goes here
 }

CHAPTER 14 ■ NETWORKING

314

 //Request data from the server and decode it into an NSDictionary
 private func requestToServer(apiEndpoint url : NSURL,
 completionHandler: (NSDictionary?, NSError?) -> Void) {
 //The body of the method goes here
 }

 //Download a forecast PNG icon and cache it in the forecastItem
 public func downloadForecastImage(forecastItem forecastItem :
 ForecastItem , completionHandler: (NSError?) -> Void) {
 //The body of the method goes here
 }

 //Transforms ErrorCode to NSError
 func getNSError(fromCode errorCode:ErrorCode) -> NSError {
 //The body of the method goes here
 }

 deinit {
 //The body of the method goes here
 }
 }

 The class has two constants that are used to build a connection string to the weather service.
 apiBasePath holds the entry point of the API. The apiKey property, as its name implies, holds the unique
API key that we must use to connect to OpenWeatherMap.

 For communicating with the weather service we will create several asynchronous tasks to retrieve data
from the server. We will keep track of them in an array called dataTasks . This gives us control over safely
stopping tasks that may still be running when the app is closed.

 Retrieving remote data is not entirely in our control, however. During this process a number of errors
may occur. We will use an enumeration for the error states that can happen during data retrieval and
decoding.

 There are five methods in the WeatherForecastService class.

• getForecast(:forCity:) initiates a request to the forecast API of the weather
service and populates the forecast model with the data that comes back.

• downloadForecastImage(:) is called when we need to download an icon to depict
the weather conditions.

• requestToServer(apiEndpoint:completionHandler) serves as a generic function
that sends request to the web service API, waits for a response, and converts JSON
into equivalent Swift objects.

• getNSError:fromCode transforms an error code into an NSError instance that will be
used by other parts of the application to inform the user that something went wrong
inside the WeatherForecastService class.

• deinit is the place where all open connections to the server and unfinished jobs will
be closed.

CHAPTER 14 ■ NETWORKING

315

 Downloading Images from a URL
 We will start the implementation with downloadForecastImage(forecastItem: completionHandler) . The
purpose of this method is to download one of OpenWeatherMap’s weather icons and to store the result into
a forecast item. You can see the method implementation in Listing 14-6 .

 OpenWeatherMap offers a set of weather icons that can be used to visually illustrate forecast
conditions: from clear sunny sky to heavy rain clouds. Weather images are stored in PNG format and can
be accessed on the OpenWeatherMap server with the following URL scheme: http://openweathermap.
org/img/w/{icon_file_name}.png , where weather_icon_file name comes from the imageID property
of the ForecastItem class.

 To download an image from the server we will use the NSURLSession class from the iOS SDK. It has
methods, which can request and download data from URLs via various protocols like FTP, HTTP, HTTPS,
and so on.

 From a developer’s point of view NSURLSession opens a session to a remote server in which we
can create series of so-called tasks . Each task is responsible for performing a request to the server and
asynchronously downloading the response data.

 There are two ways to use NSURLSession . The first way is to create an instance and configure the session
properties manually. The second way is to use a reference to a shared session that comes configured with
default settings. What is the difference between the two ways and which one should we use? Creating and
configuring a session manually could be a tedious process, but it gives us control. We can set a specific
timeout for the request or specify if we want the session to stay alive even when the app is not running.
A shared session, on the other hand, comes with predefined parameters and without the ability for
background downloads, but it is a perfect choice if you just want to grab data from a URL without the need to
manage configurations.

 In our app we will go with the default shared session. To obtain a reference to a shared session just call
the static sharedSession() method of the NSURLSession class.

 We will create a data task constant of type NSURLSessionDataTask named downloadImageTask by calling
the dataTaskWithURL(url:completionHandler) method of the session reference. The role of the data task
will be to download data from a URL and to call a completion handler function when it is done.

 There are three types of session tasks: data, upload, and download tasks. The main difference between
them is where and how they store their end results. For example, a data task returns the server’s response as
an NSData object stored in memory, while a download task could save the data in a disc file.

 We will use a closure as the completion handler, which will be called when there is a response from the
server. (For more details on how closures work in Swift see Chapter 22 .) Inside the closure we first check
if there were any errors during the execution of the task. Then if there were no errors we pass the received
data to forecastItem.addImageCache(:) , which will convert the PNG information into a UIImage instance.
Finally, we call completionHandler(:) (which is the second argument of the downloadForecastImage
method) to signal to the other parts of the app that the download of the weather image has finished.

 Now there is only one thing left to do: add the task to the task list and start it. To start a task, call its
 resume() method. The name of the method may sound a bit weird, but it does the job.

 Listing 14-6. Implementation of downloadForecastImage Method

 //Download a forecast PNG icon and cache it in the forecastItem
 public func downloadForecastImage(forecastItem forecastItem : ForecastItem ,
 completionHandler: (NSError?) -> Void) {
 //Get a URL to the weather image from the imageID string
 let url = NSURL(string:
 "http://openweathermap.org/img/w/\(forecastItem.imageID).png")

http://openweathermap.org/img/w/{icon_file_name}.png
http://openweathermap.org/img/w/{icon_file_name}.png
http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 14 ■ NETWORKING

316

 //Get a shared session instance and start a task
 //to download the image data from the url
 let downloadImageTask = NSURLSession.sharedSession().dataTaskWithURL(url!) {
 (data, response, error) in

 if error == nil {
 print("Download Finished")

 //Get a UIImage from the returned data and cache it
 forecastItem.addImageCache(fromData: data!)
 }

 //The task is complete, call the completion handler
 completionHandler(error)
 }

 // Add the task to the tasks list
 dataTasks.append(downloadImageTask)

 //Start the download task
 downloadImageTask.resume()
 }

 Requesting JSON from a Server
 Next to implement is requestToServer(apiEndpoint:completionHandler) . This method is marked as
 private for the WeatherForecastService class and is called internally by the getForecast(:) method. Its
purpose is to get JSON-encoded forecast data from the server and to convert it into an NSDictionary object,
which will be used by getForecast to extract the forecast data.

 In Listing 14-7 you can see the implementation of requestToServer . The function takes
two parameters: an apiEndpoint , which is a URL referring to a specific API entry point, and a
 completionHandler to call when the request is complete. The result of the response and any error
information are returned as parameters of the completion handler.

 This function follows the logic that we used to implement downloadForecastImage : obtain a shared
session, create a data task to download the response as NSData , and start the task. The interesting part is how
we convert the JSON-formatted data to a dictionary object that we can use in Swift.

 To convert JSON to a Swift object we use the NSJSONSerialization helper class from the iOS SDK.
In fact, this class can also convert Swift objects to JSON-formatted strings. The function that performs the
conversion is called JSONObjectWithData:data:options . As the first parameter to the function we pass
the NSData object, returned from the server, which contains JSON data. The second parameter is of type
 NSJSONReadingOptions and allows us to configure how the internal JSON parser will process the input data.
In this example we set its value to AllowFragments, which instructs the JSON parser to work even if the
root-level data is not wrapped in an object or an array.

 If there are any errors during the parsing JSONObjectWithData:data:options will throw an error, so we
must wrap the call in a do-catch statement. You can find more information about the do-catch statements
in Chapter 17 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

CHAPTER 14 ■ NETWORKING

317

 Inside the body of the function there are several points of interest.

• First we must check the task completion handler’s error parameter.

• Then we check if there is any data in the server’s response.

• Next there is a check for whether the JSON object can be parsed and then we ensure
that the result from the parser is of type NSDictionary .

• The last check is a precaution. From OpenWeatherMap API’s documentation we
know that the top-level item in the JSON that its server produces is expected to be
an object, which corresponds to an NSDictionary object in Swift. If the result of the
parsing is of some other type, then the JSON response probably has different format
from what we expected.

 In all those cases we call the getNSError:FromCode method to create an NSError instance, in which we
describe the problem and call the requestToServer completion handler to notify the caller.

 Listing 14-7. Implementation of requestToServer Method

 //Request data from the server and decode it into an NSDictionary
 private func requestToServer(apiEndpoint url : NSURL,
 completionHandler: (NSDictionary?, NSError?) -> Void) {

 //Get a shared session instance and define a task
 let task = NSURLSession.sharedSession().dataTaskWithURL(url) {
 (data:NSData?, response:NSURLResponse?, error:NSError?) -> Void in

 guard error==nil else {
 //There was an error returned from the server
 completionHandler(nil, error)
 return
 }

 // Check for JSON serialization errors
 guard let unwrappedData = data else {
 completionHandler(nil, self.getNSError(
 fromCode: ErrorCode.jsonParsingError(50,
 "Unexpected data format.")))
 return
 }

 var jsonObject : AnyObject? = nil

 do {
 //Deserialize JSON data to a dictionary
 jsonObject = try
 NSJSONSerialization.JSONObjectWithData(unwrappedData,
 options: .AllowFragments)

CHAPTER 14 ■ NETWORKING

318

 //Check if the resulting object from the serialization
 //is a dictionary
 guard let deserializedDictionary = jsonObject as? NSDictionary
 else {

 //We expected dictionary, but some other
 //object was returned. Return error.
 completionHandler(nil, self.getNSError(
 fromCode: ErrorCode.jsonParsingError(50,
 "Unexpected format.")))

 return
 }

 completionHandler(deserializedDictionary, nil)
 }
 //There was an error with JSON deserialization
 catch {
 completionHandler(nil, self.getNSError(
 fromCode: ErrorCode.jsonParsingError(50,
 "There was an error with JSON deserialization.")))
 }
 }

 // Add the task to the tasks list
 dataTasks.append(task)

 //Start the task
 task.resume()
 }

 Populating the Data Model
 We will complete the WeatherForecastService class with the implementation of the
 getForecast(:forCity:) method (Listing 14-8). The method is responsible for connecting to the server and
populating the forecast model with the data that comes back.

 Listing 14-8. Implementation of getForecast Method

 //Get a forecast from OpenWeatherMap service
 //and populate the forecast model
 public func getForecast(forecastModel forecastModel : ForecastModel,
 forCity city: String, completionHandler: (NSError?) -> Void) {

 //Clean all previeously entered items from the model
 forecastModel.removeAll()

 //Set the forecast API entry point
 let urlString =
 "\(apiBasePath)forecast?q=\(city)&units=metric&APPID=\(apiKey)"

CHAPTER 14 ■ NETWORKING

319

 //Encrypt the URL string to use percent characters instead of blank spaces
 let encodedUrlString =
 urlString.stringByAddingPercentEncodingWithAllowedCharacters(
 NSCharacterSet.URLQueryAllowedCharacterSet())

 //Try to create a NSURL instance from the encoded URL string
 guard let url = NSURL(string:encodedUrlString!) else {
 completionHandler(self.getNSError(
 fromCode: ErrorCode.urlFormatError(50)))
 return
 }

 //Connect to the web service and get data as dictionary
 requestToServer(apiEndpoint: url) {
 (json:NSDictionary?, error:NSError?) -> Void in

 guard error==nil else {
 //Signal that the operation has finished with an error
 completionHandler(error)
 return
 }

 //Check if there is a list of forecast data
 guard let forecastList = json!["list"] as? NSArray else {

 //Check if the server responded with a
 //valid JSON but with error code inside
 if let errorCode = json!["cod"] as? String {

 //Get the server's error message
 let errorMesage : String? = json!["message"] as? String

 //Construct en error message
 let serverError = self.getNSError(
 fromCode: ErrorCode.serverError(Int(errorCode) ?? 50,
 errorMesage ?? "unknown error"))

 //Signal with server error
 completionHandler(serverError)
 return
 }
 else {
 //Signal with error: there is no valid forecast data
 completionHandler(self.getNSError(
 fromCode: ErrorCode.noForecastData(50)))
 return
 }
 }

CHAPTER 14 ■ NETWORKING

320

 for entry in forecastList
 {
 //Check if all needed forecast properties
 //are present in the dictionary
 guard let forecastTempDegrees =
 entry["main"]!!["temp"] as? Double,
 rawDateTime = entry["dt_txt"] as? String,
 forecastIcon = entry["weather"]!![0]!["icon"] as? String

 else {
 //Signal with error that there is no forecast data
 completionHandler(self.getNSError(
 fromCode: ErrorCode.noForecastData(50)))
 return
 }

 //Hydrate the forecast model with data
 forecastModel.appendItem(
 newItem: ForecastItem(temperature: "\(forecastTempDegrees)",
 dayAndTime: "\(rawDateTime)",
 imageID: forecastIcon)
)
 }
 //Signal that the operation has finished
 completionHandler(nil)
 }
 }

 To retrieve data from the server, this method calls requestToServer(apiEndpoint:
completionHandler) , which requests a JSON-formatted forecast. Note that before constructing an NSURL
instance for the desired endpoint we first encode the endpoint string to ensure it is in a valid URL format. We
use the stringByAddingPercentEncodingWithAllowedCharacters method of the String class to convert
any blank spaces and Unicode characters into a valid URL.

 After the data is received and converted to NSDictionary it is getForecast ’s responsibility to be aware
of the forecast data format and its conversion to match the forecast model. In other words, it needs to check
if all of the values we require are present and have corresponding keys in the dictionary.

 We will use them to create a new instance of ForecastItem and add it to the forecast model. If there are
any errors from a previous operation or not all the data can be found, we signal the caller with an error.

 Note that there is a case when the server can return a valid JSON response that contains an error
message. At the end of the function you will find a code block, which performs a check if the response
contains an error message.

 Creating Error Messages
 We will complete the WeatherForecastService class with the implementation of the getNSError:FromCode
method (Listing 14-9). Inside we use a switch to determine the type of error and to create a NSError instance
with a corresponding error message that will mean something to the user.

CHAPTER 14 ■ NETWORKING

321

 Listing 14-9. getNSError Method Implementation

 //Transforms ErrorCode to NSError
 func getNSError(fromCode errorCode:ErrorCode) -> NSError {
 switch errorCode {
 case .noForecastData(let code):
 return NSError(domain:errorDomain, code:code, userInfo:
 [NSLocalizedDescriptionKey:"There is no forecast data."])
 case .urlFormatError(let code):
 return NSError(domain:errorDomain, code:code, userInfo:
 [NSLocalizedDescriptionKey:"URL format error."])
 case .serverError(let code, let message):
 return NSError(domain:errorDomain, code:code, userInfo:
 [NSLocalizedDescriptionKey:"Server error: \(message)"])
 case .jsonParsingError(let code, let message):
 return NSError(domain:errorDomain, code:code, userInfo:
 [NSLocalizedDescriptionKey:"JSON parsing error: \(message)"])
 }
 }

 Showing the Forecast in a Table View
 Finally, we are ready to show the forecast to the user. We will display every forecast item on a separate row of the
table view we added in the beginning of the chapter. Open ViewController. swift file and get ready to code.

 As we saw in Chapter 6 , the table view needs to get its data from an object, which conforms to the
 UITableViewDataSource protocol. We will modify the ViewController class to work as a data source and
conform to the protocol by first adding the protocol name to ViewController ’s inheritance list:

 class ViewController: UIViewController, UITableViewDataSource

 Then we will add two of the protocol’s methods: tableView(_:numberOfRowsInSection:) and tableView
(_:cellForRowAtIndexPath) . For now let us just stub them out as shown in Listing 14-10 .

 Listing 14-10. Implement UITableViewDataSource Protocol’s Methods

 class ViewController: UIViewController, UITableViewDataSource {

 //The rest of the code goes here

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 0
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 return UITableViewCell()
 }

 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_6

CHAPTER 14 ■ NETWORKING

322

 Let us override UIViewController ’s viewDidLoad method and set up ViewController as the data
source for the table view in it (Listing 14-11).

 Listing 14-11. Set Up the Data Source for the Table View

 class ViewController: UIViewController, UITableViewDataSource {
 override func viewDidLoad() {
 super.viewDidLoad()
 tableView.dataSource = self
 }

 //The rest of the code goes here
 }

 Next, we will add two properties to ViewController to work with data: an instance of ForecastModel to
keep the data and an instance of WeatherForecastService to fetch it from the server (Listing 14-12).

 Listing 14-12. Instantiate the WeatherForecastService and ForecastModel Classes

 class ViewController: UIViewController, UITableViewDataSource {
 //The rest of the code goes here

 let weatherService = WeatherForecastService()
 let forecastModel = ForecastModel()

 //The rest of the code goes here
 }

 Let us now add implementation to the two methods we stubbed out earlier, so that the forecast items
can appear in the table view. First we will have tableView(_:numberOfRowsInSection:) work out and return
the number of items in the forecast model, which corresponds to the number of rows we need in the table
(Listing 14-13).

 Listing 14-13. Work Out the Number of Rows in the Table

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 //Return forecast items number
 return self.forecastModel.getItemCount()
 }

 The tableView(_:cellForRowAtIndexPath:) method is called when the table view needs to populate a
given cell with data and this is what we will implement it to do (Listing 14-14).

 Listing 14-14. Populate a Cell in the Table with Data

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 //Create new table cell for the row
 let cell = UITableViewCell()

 //Get a forecast item corresponding to the row number
 let forecastItem = self.forecastModel.getItem(atIndex: indexPath.row)

CHAPTER 14 ■ NETWORKING

323

 //Set the cell's text label to the forecast item’s
 //temperature, date and time
 cell.textLabel?.text =
 "\(forecastItem.temparature)° C | \(forecastItem.dayAndTime)"

 if forecastItem.uiImageCache == nil {
 weatherService.downloadForecastImage(forecastItem) { (error) in

 dispatch_async(dispatch_get_main_queue(), {[weak self] in
 if let error = error {
 //If there is an error message print it
 print(error)
 }
 else {
 //Assign the cached image to the cell's image view
 cell.imageView?.image = forecastItem.uiImageCache

 //Refresh data in the row
 self!.tableView.reloadRowsAtIndexPaths([indexPath],
 withRowAnimation: .None)
 }
 })
 }
 }
 else {
 //Assign the cached image to the cell's image view
 cell.imageView?.image = forecastItem.uiImageCache
 }

 return cell
 }

 In the code in Listing 14-14 we first get a forecast item from the model that matches the row of the cell
that has been requested. Then we set the cell’s textLabel property to display the temperature and the date.
The interesting part is how we load a weather image in the cell.

 The UITableViewCell class comes with a property called imageView , which we use to display a weather
image. If the uiImageCache property of the forecast item is not empty, we can assign its value directly to the
 cell.imageView.image property. Otherwise we have to download the image first and do the assignment
once the download is complete. Thus we call the downloadForecastImage method with a closure
completion handler, in which the cell’s image view can be updated.

 Note the dispatch_async(dispatch_get_main_queue(),{() -> Void}) call in the completion
handler. It ensures that the image view update happens on the main thread, as this is the only thread that is
allowed to access the user interface in iOS, while our completion handler is most likely to be called on the
thread where the download happened.

 ■ Note To keep things simple and the focus on network operation, we have taken the approach of creating
a new cell every time we provide cell data in Listing 14-14 . Apple strongly discourages this practice. Instead,
 UITableView offers a memory-efficient mechanism for cell reusing. See Chapter 6 for details.

http://dx.doi.org/10.1007/978-1-4842-1666-8_6

CHAPTER 14 ■ NETWORKING

324

 The last bit of code in the app will be the implementation of the Search button action that queries the
server and populates the model with forecast items. Do you remember the @IBAction searchForCity stub
we created earlier? This is where we will add the implementation (Listing 14-15).

 To populate the model we just need to call weatherService.getForecast and hand a model reference
to it. It takes a completion handler, which we will implement as a closure. In it we ask the table view to reload
its data if there were no errors while fetching the forecast. Again, we make sure that any UI update happens
on the main thread.

 Listing 14-15. Implementation of the searchForCity Action

 @IBAction func searchForCity(sender: AnyObject) {
 weatherService.getForecast(forecastModel:forecastModel,
 forCity: cityTextField.text!){ (error : NSError?) -> Void in

 if let error = error {
 //If there is an error message print it
 print(error)
 }
 else {
 dispatch_async(dispatch_get_main_queue() , {[weak self] in
 //Refresh data in the table view
 self!.tableView.reloadData();
 })
 }
 }
 }

 ■ Note The format of the code in Listing 14-15 may already look familiar from the iCloud tutorial we did in
Chapter 13 . In case you are not doing the tutorials in order, however (why should you?!), here is a quick note
on some of the syntax that may look unfamiliar. When a response has come from the server and there is no
error, we update the user interface to load the new data by calling self!.tableView.reloadData() . This
call is made in a closure—a block of code that can be passed around. You can see the closure using the self
keyword to reference the current instance of our ViewController class. Closures are independent objects (i.e.,
although this closure can access ViewController via self , it is not itself part of the ViewController class).
In order for it not to retain the reference that will count toward the ViewController instance’s reference count,
we use the weak keyword. For more details on weak and strong references see Chapter 21 .

 And this is it. Run the app and type the name of the place you live in to see if the weather service can
find it. If it does, you will get the weather forecast for the next five days (Figure 14-5).

http://dx.doi.org/10.1007/978-1-4842-1666-8_13
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 14 ■ NETWORKING

325

 Let us see what the weather in London, UK, will be like. Hard to believe! There are some sunny days
ahead.

 Summary
 In this chapter you saw how to create a network session to a remote web service, download images, and
work with JSON-formatted data. You built a weather forecast application that retrieves data from the
OpenWeatherMap service using the HTTP API the service provides.

 In the next chapter we will explore the power of push notifications and Apple’s advertisement channel
as a way to monetize your apps.

 Figure 14-5. Our weather forecast app running in a simulator

327© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_15

 CHAPTER 15

 Adverts and Push Notifications

 Let’s be frank: making apps is fun, but it is also a business undertaking. And with the App Store flooded
with beautifully crafted and free apps, a professional app developer faces the dilemma of how to balance
providing value for users and keeping app prices competitive. In this chapter we address two aspects of the
business of making apps: monetization and keeping in touch with users.

 Using advertisements in your app is a popular business model: it allows you to get paid for your work
while keeping your app free for end users. Apple has provided an integrated ad platform to help implement
this, and over the next few pages you will see how to include it in your app in a matter of minutes.

 Next comes keeping in touch with your customers: after all, the business transaction does not stop
with the user downloading your app. Push notifications give you a way of keeping your users up to date with
news, updates, and other relevant information.

 In this chapter you will do the following:

• Explore the most popular ways to monetize your app and to stay connected with
your users.

• Learn how to use the iAd framework to show adverts in your app.

• Build an app that exploits different ad formats, such as banner and interstitial ads.

• Learn about remote notifications and how to use them to keep your users up to date.

• Build an app that receives push notifications and a server-side script that sends
them.

 When you are done, you will have two apps: one that uses Apple’s iAd adverts channel and another one
that incorporates push notifications for keeping in touch with your users.

 ■ Note Provisioning your app to handle push notifications requires that you enroll in Apple’s iOS Development
Program. This is a paid membership program, which you can add to your account on Apple’s web site.

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

328

 Adverts
 There are a few ways to get revenue from your app: sell the app, offer in-app purchases, or show
advertisements. 1 Apple’s mobile advertisement platform iAd provides help with the last one. It is quite
powerful and gives iOS developers an easy way to embed advertisements in their applications. iAd has been
around for a while now and has had a chance to mature enough to let you turn your app into an ad-eating
monster in less than ten minutes. Don’t believe me? Grab a timer and let’s get on with the tutorial.

 Setting Up the App
 Let us start by creating a Single View Application project in Xcode. Name the project DemoSwiftiAds .

 To start with, we need to import the iAd framework. Find ViewController.swift in Project navigator
and add the line shown in Listing 15-1 to the import section of the file (where import UIKit is).

 Listing 15-1. Import the iAd Framework in ViewController.swift

 import iAd

 There are a couple of different ad formats that your application can integrate, depending on how they
are shown on the screen: banner ads use a strip of your app’s screen space to display an advert, whereas
interstitial ads take the whole screen. We will have a go at both kinds.

 Banner Ads
 As a next step we will add a banner ad view to our view controller. In the ViewController.swift file add a
member of type ADBannerView! to the ViewController class, as shown in Listing 15-2 .

 Listing 15-2. Add a Banner View Member to the ViewController Class

 class ViewController: UIViewController {
 // Add this line:
 var rectAdView: ADBannerView!

 // Leave the rest of the code as it is
 // ...

 }

 ■ Note According to Apple’s guidelines, you should create only one instance of ADBannerView and share it
across multiple views. Another must from Apple is that you should hide the banner view if no ads are showing
at the moment.

 We will initialize the rectAdView member inside the viewDidLoad method of the ViewController class.
Find the method in the ViewController.swift file and change it as shown in Listing 15-3 .

 1 Another common case for developers is to release a free app with ads and to offer an in-app purchase option to turn off ads.

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

329

 Listing 15-3. Change viewDidLoad to Start Using Ads

 override func viewDidLoad() {
 super.viewDidLoad()

 // This line is enough for a banner to appear
 // at the bottom of the view:
 canDisplayBannerAds = true;

 // Initialize the rectangle ad view:
 rectAdView = ADBannerView(adType: .MediumRectangle)

 // Set ViewController as the delegate of the rectangle ad,
 // so it receives notifications from it:
 rectAdView.delegate = self
 }

 Instances of UIViewController , which is what our ViewController class is, have a property named
 canDisplayBannerAds . Setting it to true is enough for a banner to automatically appear at the bottom of our
view. We do not need to worry about whether the banner is loading or when it should appear; the iAd will
create the required subview and will populate it with the right content.

 We will use the rectAdView to demonstrate how to control ads’ showing and siding. The next line in the
code above takes control of how ads will be shown: rectAdView is instantiated and initialized with ad type
 ADAdType.MediumRectangle , which would occupy a rectangle area of the view.

 We will receive communication from the banner ad via a delegate, which will be notified when an
ad is ready to be shown or when there is an error in the ad delivery process. To make our ViewController
instance a delegate for rectAdView , we need to do two things: first, assign it to the banner view’s delegate
property and, second, make ViewController conform to the ADBannerViewDelegate protocol by adding it to
the class definition as shown in Listing 15-4 .

 Listing 15-4. Change ViewController to Conform to the ADBannerViewDelegate Protocol

 // Add ADBannerViewDelegate to the list of superclasses and protocols
 // that ViewController inherits and conforms to:
 class ViewController: UIViewController, ADBannerViewDelegate {
 ...
 }

 If you hit the Run button at this point, the app should compile and run on your device or in the iOS
simulator, but you should not see any ads yet. For the rectangle ad to appear, ViewController needs to
provide implementations for two methods of the ADBannerViewDelegate protocol. The first one is named
 bannerViewDidLoad and is called when we receive an advert. The second one, rectAdView , gets called if
there has been an error with the delivery of the ad content. Listing 15-5 shows the implementations you
need to add to the ViewController class in ViewController.swift .

 Listing 15-5. Add Implementations of ADBannerViewDelegate’s Methods to ViewController

 func bannerViewDidLoadAd(banner: ADBannerView!) {
 // Add the rectangle ad view to the screen when an Ad is loaded:
 self.view.addSubview(banner)
 self.view.layoutIfNeeded()
 }

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

330

 func bannerView(
 banner: ADBannerView!, didFailToReceiveAdWithError error: NSError!) {
 // There was an error with the ad content, so remove the banner:
 banner.removeFromSuperview()
 self.view.layoutIfNeeded()
 }

 What these two functions do is to add the banner view as a child to the controller’s view if there is an ad
ready to be shown and remove the banner if something went wrong.

 Figure 15-1. Showing a banner and rectangular ads

 If you run the app now, you will see the banner view at the bottom of the screen as shown on Figure 15-1 .
 Next we will have a look at another important type of advertisement.

 Interstitial Ads
 Interstitial ads cover the entire user interface (UI) of an application. They are typically used at transition
points in the app (e.g., when moving between screens). To demonstrate this we will add a second screen to
the app and implement a transition to it.

 In Project navigator find the Main.storyboard file and click to open it. Drag a new View Controller
instance from the Object library and place it to the right of the view controller that is already there, as shown
in Figure 15-2 .

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

331

 Now let’s add a button to our main view controller (the one on the left), which will trigger a transition
from it to the second view controller. Find a Button view in the Object Library panel and drag it into the
upper left corner of the main view controller. Ctrl-click the button and drag the line that appears toward the
second view controller. Release the mouse button and select ActionSegue ➤ Show from the pop-up menu
as shown in Figure 15-3 .

 Figure 15-2. Add a second View Controller to Main. storyboard

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

332

 Next, we will override a method that handles the transition between the views, called prepareForSegue ,
to enable automatic interstitial ads for the transition between the two views of the app. Add the
implementation in Listing 15-6 to the ViewController class.

 Listing 15-6. Override the prepareForSegue Method in ViewController to Display an Interstitial Ad

 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?)
 {
 let destination = segue.destinationViewController as UIViewController
 destination.interstitialPresentationPolicy = å
 ADInterstitialPresentationPolicy.Automatic
 }

 Interstitial ads are not part of the segue, but they are injected automatically during the segue and before
the view transition begins. And one last thing about the interstitial ads: if you are building an app with more
than one screen to transition to, you might want to control in which transitions to show an interstitial ad.
To do that you should check the value of the destinationViewController property of the segue first before
setting the interstitial ad policy.

 Displaying an ad involves downloading assets from the iAds server, so there can be a significant delay
between the start of the view transition and when the ad content is delivered. To avoid this, we can ask the
 ViewController class to request iAds earlier than when they are needed. UIViewController has a method,
called prepareInterstitialAds , which will prefetch assets from the server. Let’s add that at the end of
 ViewController ’s viewDidLoad method (see Listing 15-7).

 Figure 15-3. Add a button to switch between the two view controllers

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

333

 Listing 15-7. Prefetch Interstitial Ad Content

 override func viewDidLoad()
 {
 // Leave the rest of the code as it is
 // ...

 // Add this line to the end of the viewDidLoad method:
 UIViewController.prepareInterstitialAds()
 }

 Run the app and when it starts, press the button you added to start transitioning to the second view.
At that point an interstitial ad should appear like that in Figure 15-4 .

 Figure 15-4. Interstitial ad view

 Configuring iAds Test Settings
 So far so good: our app works and displays different kinds of ads. But what happens if there is a problem like
a missing Internet connection or Apple could not provide the type of ad you requested? It is important for an
app to be able to handle such issues. Fortunately Apple has provided a mechanism for simulating situations
like that during development.

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

334

 Open Settings on your device or in the iOS simulator, scroll down, tap on Developer settings to open
them, and find the IAD DEVELOPER APP TESTING group —it should look like the one in Figure 15-5 .

 Figure 15-5. Configure iAd test settings

 This is where you can simulate different situations, in order to stress-test how your app handles
advertisements. Use Fill Rate to simulate what percent of the time ads will be available to your app: you can
set this from 0%—Always Error to 100%—Always Provide Ad. Ad Refresh Rate lets you specify how often the
ads should change. Highlight Clipped Banners shows you areas of the ads that might be covered by other UI
and thus be invisible or not available for tapping on: if the banner view is highlighted green, the banner is all
in view, a red highlight means that there are dodgy areas. When turned on, Unlimited Ad Presentation lets
you set the gaps between ads to zero during development.

 ■ Note The advertisements that you see during development are fake test ones. In order to enable live
adverts and start monetizing their use in your app, you will need to enable iAd in your Apple account.

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

335

 And this is it! Did you manage to go through this tutorial in less than ten minutes? Nice job!
 Now take a quick break and roll up your sleeves for the second part of this chapter: keeping in touch

with your customers via remote notifications.

 Remote Notifications
 Remote notifications are an excellent way to keep your users informed about what is new in your app. These
notifications come in the form of text messages displayed on the home screen of the device any time you
decide to send them. You can use them to announce updates, news, sale offers, and so on. They are also a
great way to bring users back to your app and increase engagement. You can target specific groups of users
with push notifications. Just don’t be too “pushy,” as this may backfire: choose carefully how often you send
messages to users and what you say in them.

 ■ Note There are two types of notifications on iOS: local and remote. They share the same purpose: to
enable an app to notify its users when there is something new. The difference between them is where they
come from: local notifications are scheduled and delivered by an app on the same device it is installed on, while
remote notifications are sent by a server to the Apple Push Notification service, which then routes or pushes the
notifications to selected devices. Remote notifications are also known as push notifications.

 Remote Notifications Overview
 There are three participants in the process of sending and receiving a push notification:

• a notification provider , which generates and sends out notifications for a specific
device or a group of devices;

• the Apple Push Notification service (APNs) , which routes the notifications to the
correct devices; and

• your app, which sits on the device that receives the notification and processes it on
receipt.

 APNs uses device tokens to identify the devices that are registered to receive notifications from a
specific provider. A device token is a long unique list of numbers. It is usually requested by your app and
generated by APNs when the app launches. Figure 15-6 illustrates the process.

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

336

 On application launch,

 1. The app registers itself with APNs for notifications by requesting a device token.

 2. APNs generates a device token and send it back to the app.

 3. The app informs the notification provider that it is now registered to receive
notifications by giving it its device token.

 When a notification is sent,

 1. The notification provider sends the notification message to APNs and gives it a
list of devices (identified with their device tokens) that it should be sent to.

 2. APNs routes the notification to the chosen devices.

 3. The notification arrives on the device and the app processes it.

 Your app is responsible for obtaining a device token and for processing notifications when it receives
them. APNs handles the generation of unique device tokens and routes them to the correct devices, based
on these tokens. The notification provider’s responsibility is to generate notifications and to tell APNs
which devices to route them to. This notification provider is usually a program that sits on a server and is
your responsibility: you can develop one yourself or you can use a third-party service instead. Don’t worry,
though, a provider can be as simple as a few lines of PHP code, and this is what we will use in this tutorial.

 ■ Caution Apple warns that delivery of remote notifications is not guaranteed. So you should not use the
notification payload to deliver critical data that cannot be retrieved by other means.

 Figure 15-6. The steps involved in registering for and receiving push notifications

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

337

 Setting Up the App
 Start by creating an empty Single View Application Swift project. Name the project
 DemoSwiftPushNotifications . We will use this name later, when we set up the application bundle, so if
you choose a different name for your project, make sure to replace DemoSwiftPushNotifications with it
wherever it appears in the rest of the tutorial.

 Select your project in Project navigator and then select the app target to modify its settings. On the
 Capabilities tab scroll down to find Push Notifications and turn the switch on to enable them, as shown on
Figure 15-7 . Xcode might ask you which developer profile to use for enabling the notifications.

 Figure 15-7. Enable push notifications for the project

 ■ Note The Push Notifications feature cannot be tested in the simulator, so before you continue, make sure
you have an iOS device handy and plugged in your computer.

 At this point Xcode should create a provisioning profile for your app, but it may also need a bit of help to
do that. With your app target still selected, go to the General tab in the editor and have a look at the Identity
➤ Team setting. You may need to select an Apple account as the Team setting if it’s empty. If a warning
appears under Team , telling you “No matching provisioning files found,” let Xcode sort this out by clicking
 Fix Issue (Figure 15-8) .

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

338

 Requesting a Device Token
 Now it’s time to get the app to ask permission and register itself for push notifications. In Project navigator
find and open the AppDelegate.swift file and replace the default application(_:didFinishLaunchingWith
Options:) method with the methods from Listing 15-8 .

 Listing 15-8. Implement Callbacks in the App for Handling Remote Notifications

 func application(
 application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
 -> Bool {
 // Request a device token from APNs
 application.registerForRemoteNotifications()

 // Ask the user permission to send notifications
 application.registerUserNotificationSettings(
 UIUserNotificationSettings(forTypes: .Alert, categories: nil))

 return true
 }

 func application(application: UIApplication,
 didRegisterForRemoteNotificationsWithDeviceToken deviceToken: NSData) {
 // This method is called if the device token request succeeds.

 Figure 15-8. Fixing the “No mathing provisioning files found” issue

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

339

 //Get a pointer to the deviceToken data as if it is an array of characters
 let tokenChars = UnsafePointer<CChar>(deviceToken.bytes)
 //The token string will be buld in here
 var tokenString = ""

 for i in 0..<deviceToken.length {
 //Convert each character to a hex string equivalent
 tokenString += String(format: "%02.2hhx", arguments: [tokenChars[i]])
 }

 // Copy the device token from Xcode's terminal –
 // we will need to give that to the notification provider.
 print("Registered for remote notifications. Device token: \(tokenString)")

 func application(
 application: UIApplication,
 didFailToRegisterForRemoteNotificationsWithError error: NSError) {
 // This method is called if the device token request fails.
 print("Could not register for remote notifications: \(error)")
 }

 func application(application: UIApplication,
 didReceiveRemoteNotification userInfo: [NSObject : AnyObject]) {
 // This method is called when a notification arrives.
 // For now just print out the notification content in Xcode's console:
 print("Received remote notification: \(userInfo)")
 }

 Let us take a minute to dissect the code in Listing 15-8 .

• application(_:didFinishLaunchingWithOptions:) is called when the application
starts. This is the moment to do the preparation steps:

• Request a device token from APNs ; application(_:registerForRemoteNotif
ications:) initiates the registration process with APNs. According to Apple’s
manual, the device token can change at any time, so you need to call this
method every time the app is launched.

• Ask the user permission for sending notifications by calling application(_:re
gisterUserNotificationSettings:). This method shows a dialog, which asks
the user if he or she wants to receive notifications from your app. When the user
gives permission for that, the choice is remembered by iOS, so next time this
method is called the remembered response is used to determine the types of
notifications the app may or may not use.

 The next three methods are in effect callbacks. The first two listen for a response to the device token
request from APNs. The last one is called when a notification arrives. For now let’s have all three callbacks
print out their information in Xcode’s console. We will see how to show an arriving notification in an alert
box at the end of the chapter.

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

340

• application(_:didFailToRegisterForRemoteNotificationsWithError:) is called
if there is a problem with the registration process. The NSError object contains
information about why registration failed.

• application(_:didRegisterForRemoteNotificationsWithDeviceToken:) if the
registration succeeds, this method is called back and its parameter, deviceToken ,
contains the obtained device token.

• application(_:didReceiveRemoteNotification:) is called when the app receives
a notification from APNs. The userInfo parameter contains the notification
information in the form of a dictionary. This may include an allert message, alert
sound, badge number, identifier, and custom data.

 Now run the app on your device in debug mode. After the app has started, a modal dialog like the one in
Figure 15-9 will pop up asking if you would like to accept notifications from the app. Tap OK.

 Figure 15-9. When the app is first run, it asks the user for permission to use notifications

 ■ Note Notifications can also be enabled or disabled for your app from the device’s settings.

 If the app managed to register itself with APNs successfully, you should see the device token printed out
in the Xcode’s console, as shown in Figure 15-10 .

 Figure 15-10. The device token, printed out in Xcode’s console

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

341

 Figure 15-11. Certificate Signing Request (CSR) dialog

 Make a note of the token somewhere, as we will need to use it when we set up the notification provider:
copy and paste it, but get rid of the brackets and the whitespaces. The code we wrote so far should be
enough for the app to be able to handle remote notifications. In order to do a test, however, we have a bit
more work to do.

 Creating Certificates for Push Notifications
 Sending and receiving remote notifications will require communication with APNs via a Secure Socket Layer
(SSL)-encrypted connection. For that to work, we will need a certificate that is linked to our App ID and
which we will use when we set up a notification provider. The following sections will guide you through the
process.

 Create a Certificate Signing Request
 Launch the Keychain Access app on your computer. From the main menu select Keychain Access ➤
Certificate Assistant ➤ Request a Certificate from a Certificate Authority to show the Certificate Assistant
dialog (Figure 15-11).

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

342

 In the dialog enter your e-mail address and a name for your private key and tick the Save to disk radio
button. Click Continue and save the CSR file on your machine. We will use this file in the next step of the
process.

 Create a Certificate for Push Notifications for Your App
 Open a browser and navigate to Apple’s Developer Member Center . Log in with your iOS development
account and go to Certificates, Identifiers & Profiles ➤ iOS Apps Identifiers . In the list of app IDs find
the one that Xcode has created for you: it should contain DemoSwiftPushNotifications , unless you gave a
different name to your project (Figure 15-12).

 Figure 15-12. Configure the Push Notifications service for your app

 Click the app id to open it and scroll down to find the Push Notifications service. The Development
column next to it should say Configurable . Click Edit button to open the settings for Push Notifications as in
Figure 15-13 .

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

343

 Figure 15-13. Create an SSL Certificate for Push Notifications

 Make sure the checkbox next to Push Notifications is ticked and click Create Certificate in the
 Development SSL Certificate panel. A dialog will appear that will prompt you to upload the CSR file you
created on your machine in the previous step. Click Generate : this will create a certificate, named aps_
development.cer , which you can then download.

 Create a .p12 Certificate
 Double-click the aps_development.cer , which was generated for you in the last step. This should import it
in your computer’s Keychain Access app. Inside Keychain Access find the imported certificate under login ➤
My Certificates and right-click it. You should see a pop-up menu like the one shown on Figure 15-14 .

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

344

 Select the Export option and export the certificate into .p12 format: the .p12 file contains the certificate
and the private key together. Name the exported file PNKey.p12 and choose a password for it (the password I
will be using for the rest of this tutorial is PassKey) as shown on Figure 15-15 .

 Figure 15-14. Export the .cer file into .p12

 Figure 15-15. Enter a password for the .p12 file

 Now you should have two certificate files on your machine: aps_development.cer and PNKey.p12 .

 Generate a Certificate for the Notification Provider
 The PHP script we will use as our notification provider needs a TLS certificate to be able to send requests to
APNs. We will use the certificates we obtained so far to generate one. Open the Terminal on your Mac and
navigate to the folder where you saved aps_development.cer and PNKey.p12 .

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

345

 Run the following command to generate a certificate for the provider:

 openssl x509 -in aps_development.cer -inform der -out PNCertificate.pem

 This should make a file named PNCertificate.pem appear in the same folder.
 Next, run the following command, which will generate a .pem key:

 openssl pkcs12 -nocerts -in PNKey.p12 -out PNKey.pem

 When you are asked to Enter Import Password , type the password you set for the .p12 file earlier
(PassKey if you used the same one as I did). You should see MAC verified OK in the console (Figure 15-16).

 Figure 15-16. Generating PNKey.pem result

 Figure 15-17. Test connection result

 You will then be asked to enter a PEM pass phrase—this is a new password that you need to make
up. Make a note of it—we will need it when we set up the PHP script later on. The password I will use is
 PEMPassKey .

 The next command (Listing 15-11) will test if the certificate and the key file we just generated work for
connecting to APNs’s sandbox:

 openssl s_client -connect gateway.sandbox.push.apple.com:2195 -cert
 PNCertificate.pem -key PNKey.pem

 You can see the result of the execution of this command in Figure 15-17 .

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

346

 The PHP script we are about to write will need the .pem certificate and key to be in the same file. The
final command will do this for us and combine the two files into PNCertificateAndKey.pem:

 cat PNCertificate.pem PNKey.pem > PNCertificateAndKey. pem

 Setting Up the Provider
 Below is a PHP script (Listing 15-9), which will act as a notification provider and send messages to the
APNs’s sandbox. Create a file, named testAPNS.php in the same folder as PNCertificateAndKey.pem and
copy the following code into it.

 Listing 15-9. testAPNS.php: The PHP Script, Which Will Send Notifications to Our App

 <?php
 //Replace the device token with the one you copied from Xcode's console:
 $deviceToken =
 '8cccee83f03a788686bda17793441c8ce279ebf519b890de8b6b41a2e9b42d6e';

 //Replace this with the PEM pass phrase you set when creating PNKey.pem
 $keyPassword = 'PEMPassKey';

 //Replace this with the name and path
 //to the file you combined the .pem certificate and key in:
 $pemCertFile = 'PNCertificateAndKey.pem';

 //Put your push notification message here:
 $message = "Hello, app! I am a PHP script.";

 //APNs sandbox url
 $sandboxAddress = 'ssl://gateway.sandbox.push.apple.com:2195';
 //Set up the connection
 $stream = stream_context_create();
 stream_context_set_option($stream,'ssl','passphrase',$keyPassword);
 stream_context_set_option($stream,'ssl','local_cert',$pemCertFile);
 $connectionTimeout = 30;
 $connectionType = STREAM_CLIENT_CONNECT | STREAM_CLIENT_PERSISTENT;
 $connection =
 stream_socket_client($sandboxAddress,
 $errorNumber,
 $errorString,
 $connectionTimeout,
 $connectionType,
 $stream);

 //Quit if we can't connect to the APNs service
 if (!$connection)
 {
 echo "Connection failed. Error = $errorString
";
 exit;
 }

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

347

 else
 {
 echo "Connection succeeded.
";
 }

 //Create the remote notification and send it
 $messageData['aps'] =
 array('alert' => $message, 'sound' => 'default','badge' => 1);

 $payloadData = json_encode($messageData);
 $notification = chr(0) . pack('n', 32) . pack('H*', $deviceToken) .
 pack('n', strlen($payloadData)) . $payloadData;
 $sendResult = fwrite($connection, $notification, strlen($notification));

 if (!$sendResult)
 {
 echo "Could not send push notification.
";
 }
 else
 {
 echo "Successfully sent a push notification to device with token
 $deviceToken
";
 }

 fclose($connection);
 ?>

 Let us take a moment and examine the internals of the script. Even if you don’t have any previous
experience with PHP it will be easy to read and understand the basic idea behind it.

 The first four lines declare a few variables, the values of which you will need to replace with your own:

• $ deviceToken : assign it the device token APNs sends to your app. If you haven’t run
your app yet, run it: the device token will be printed out in Xcode’s console when ap
plication(_:didRegisterForRemoteNotificationsWithDeviceToken:) gets called.
Delete the brackets and the whitespaces from the token string.

• $keyPassword : this should contain the PEM pass phrase you chose when you created
 PMKey.pem .

• $pemCertFile should have the path to the file in which you combined the PEM
certificate and key.

• $message contains the message you would like your notification to display.

 The script initiates a secure socket connection to the APNs server and prepares a notification message.
A $messageData array is created with a single item in it, named aps . This item contains the notification
properties. Notifications are transported as a JSON-formatted string. The final notification message is packed
in the $notification variable, which is then sent to the APNs.

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

348

 Sending a Notification
 With the PHP script from the previous step customized, it is time to test it and send a notification to your
app. To execute the PHP script, you need a server and a PHP interpreter. If you are using OSX Maverics or
newer, you will have your PHP environment already set up for you and nothing extra to do. If you are on an
older OSX version, you can download a MAMP solution stack, which comes with all the tools you need to
run a PHP server on your machine.

 To start the PHP server, in the Mac Terminal navigate to the folder where you saved testAPNS.php and
run the following command:

 php -S localhost:8000

 You can now test the sending and receiving of push notifications. To make sure your app receives the
notification, run it on your device through the Xcode debugger. Then, on your Mac, open your favorite web
browser and execute the PHP script by navigating to http://localhost:8000/testAPNS.php . If all goes
according to plan, you should see the notification message printed out in Xcode’s console (Figure 15-18).

 Figure 15-18. Notification message received—watch Xcode’s console

 Bonus Step: Display the Notification on the Device
 The setup and code you have so far is enough as a proof of concept and covers the basics you need in order
to send and receive push notifications. It would be nice, however, to know how to display the notifications
on the device, rather than look for them in Xcode’s console. In your project in Xcode open the AppDelegate.
swift file and modify the implementation of the application(_:didReceiveRemoteNotification:)
method as shown in Listing 15-10 .

 Listing 15-10. Add an Alert Dialog to Display the Notification

 func application(
 application: UIApplication,
 didReceiveRemoteNotification userInfo: [NSObject : AnyObject]) {
 print("Received remote notification: \(userInfo)")

 // Check if the message is in the expected format:
 if let notification = userInfo["aps"] as? NSDictionary,
 let alert = notification["alert"] as? String {
 // Create an alert controller to display the received message:
 let alertCtrl =

CHAPTER 15 ■ ADVERTS AND PUSH NOTIFICATIONS

349

 Figure 15-19. Notification alert

 UIAlertController(title: "Notification",
 message: alert as String, preferredStyle: UIAlertControllerStyle.Alert)

 // Add an OK button, which will close the alert:
 alertCtrl.addAction(
 UIAlertAction(title: "OK",
 style: UIAlertActionStyle.Default, handler: nil))

 // Find the root view controller of the app:
 var presentedVC = self.window?.rootViewController

 // Walk the view controller's hierarchy
 // until a presented view controller is found:
 while let presented = presentedVC?.presentedViewController {
 presentedVC = presented
 }

 // Show the alert's view controller in the currently presented VC:
 presentedVC?.presentViewController(
 alertCtrl, animated: true, completion: nil)
 }
 }

 Recompile and run the app on your device. Then refresh the browser where you loaded the path to the
PHP script to execute it again. When the notification is received, you should see this alert box (Figure 15-19):

 And that’s it! You have a fully working app that can receive push notifications and a provider, which is
set up to send them.

 Summary
 You are now familiar with two of the most used tools for mobile app monetization and user retention.
Using iAd makes you a part of Apple’s mobile advertisement network and gives you a share from a rapidly
expanding market. You have set up and used two different kinds of ads and know how to test them: banner
and interstitial ads. To keep the users of your app in the loop we have also implemented the full circle of
push notification services, from the notification provider to the app itself.

 And if you are still hungry to learn new frameworks, put on your seatbelt and get ready for the next
chapter, where we will play with graphics APIs.

351© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_16

 CHAPTER 16

 Using the High-End Graphics APIs

 The ability to play games was an amazing addition to the world of mobile devices. It unleashed developers’
imaginations and allowed users to solve puzzles, create and defend kingdoms, or relieve stress by throwing
some really angry birds around.

 When developing a game, it is always more fun to focus on the gameplay and the game mechanics,
rather than worry about things like rendering speed, user interface (UI) elements, or layout. In recognition
of that, Apple introduced two frameworks: SpriteKit , which focuses on building 2D games, and SceneKit ,
which helps create and manage 3D content.

 In this chapter you will do the following:

• Learn about the SpriteKit and the SceneKit frameworks.

• Learn how to create a game scene, animate objects on the screen, and work with
cameras, geometry, materials, and lights.

• See how to use Xcode as a game scene editor.

• Build a 2D app with SpriteKit in which a spaceship chases your finger on the
screen.

• Build an app with SceneKit and learn how to let the user move objects in 3D.

 When you are done, you will have two mobile app projects with basic elements of iOS game
development in 2D and 3D.

 Creating 2D Games with SpriteKit
 SpriteKit is Apple’s framework, which helps developers create 2D games. You can think of it as a fully
equipped game engine, as it comes with

• a built-in scene hierarchy manager;

• an animation engine;

• a sound engine;

• a physics engine;

• a collision detector; and

• graphics support for lighting and shader effects. 1

 1 A shader is a small program which is executed by the GPU. Shaders are used mainly for color calculation, geometry
altering, and tessellation. For example, we can define a new material by writing a shader that computes how light is
reflected from a given point on a surface and thus defines what color it should be.

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

352

 Not only that, but Xcode also has a dedicated SpriteKit editor, which helps you visually build your
game.

 The framework makes use of the graphics processing unit (GPU) , in order to achieve fast scene
rendering. As you could guess by its name, the SpriteKit framework is intended to render sprites on the
screen. As a Flash developer, you are already familiar with sprites—they are textured images. Before we set
up a SpriteKit app, let us briefly go over the framework’s architecture.

 Learning the Structure of the SpriteKit
 SpriteKit provides a custom view component of type SKView , in which the game content is rendered.
 SKView is a subclass of UIView —the base class for every UI element on iOS. This means that we can
transparently include an SKView and any other element from SpriteKit in the UI of any application for iOS.

 Game scenes are presented inside SKView . Every game in SpriteKit is composed of one or more scenes
of type SKScene . A scene is the canvas, where all graphic elements of your game are hosted and rendered.
You can have multiple scenes for different areas of the game. For example, you could use one scene for the
main menu, another scene for the game levels, and a third scene for the scores and ranking. Dividing a
game into scenes helps you manage your code and assets by providing a scene container for the different
functional areas in your game.

 The building blocks of a scene are called nodes . A node is represented by the SKNode base class and
serves as a container for the game objects and their properties. Nodes can be composed in a parent-child
hierarchy. 2 Instead of directly with SKNode we work with its subclasses. For example, to show an image we
need an instance of the SKSpriteNode class; to show text we use the SKLabelNode class. There are nodes
for displaying shapes, playing audio, simulating a camera, emitting particles, and many more. Nodes are
responsible for storing the visual representation, position, and rotation of the game objects in the scene. You
can further define a node by attaching objects to it.

 One of the objects you can attach to a node is a physics body. It is represented by the SKPhysycsBody
class and describes a node’s physical characteristics like mass, shape, and friction. SpriteKit ’s physics
simulator, SKPhysicsWorld , uses physics bodies to calculate the position and rotation of nodes. This
simulator is quite powerful and lets you define gravity fields, apply forces to nodes, calculate collision, and
connect bodies with joints.

 We use actions to manipulate the state of a node. An action is represented by the SKAction class : it
modifies the properties of the game objects, in order to create an animation. Each action has a duration
interval, measured in seconds. The most common use for an action is to change a node’s position. Several
actions can be composed in sequences or groups to create complex animations.

 To display a scene on the screen SpriteKit uses a rendering loop very similar to the one used by
the ActionScript virtual machine. It iterates through all nodes in a scene at the beginning of each frame,
evaluates any actions associated with them, simulates physics, and then renders the scene on the screen.

 This is how SpriteKit works in a nutshell. Now we will explore the framework by making our first
 SpriteKit application.

 Setting Up a SpriteKit App
 The app we are about to develop will display a spaceship sprite on the screen. The spaceship will follow the
user’s finger—we will animate it to move to the coordinates of each screen touch.

 Instead of starting with an empty project we will create the app using Xcode’s SpriteKit project
template and modify its code.

 In Xcode create a Game application project (File ➤ New ➤ Project… , then iOS ➤ Application ➤ Game)
as shown in Figure 16-1 .

 2 In fact, SKScene is a subclass of SKNode , so any SKNode instance you add directly to it becomes a child of this root node.

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

353

 Set the project’s name to SpriteKitDemo and set Game Technology to SpriteKit (Figure 16-2).

 Figure 16-1. Creating a Game project in Xcode

 Figure 16-2. Setting up the project to use the SpriteKit

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

354

 Well, that was easy. Now you have a fully configured project, which uses the SpriteKit framework and
probably looks familiar, as we used the same template in Chapter 4 . The project comes set up with a default
scene and an image of a spaceship. Run it in a simulator or on a device and you will initially see a gray screen
with a “Hello, World!” label. When you tap the screen, a rotating spaceship will appear where you tapped
(Figure 16-3).

 Figure 16-3. Running the SpriteKitDemo project for the first time

 Try tapping the screen a few times to see how many sprites your device can handle before the frame rate
deteriorates. Try not to get carried away, though, as it is time to focus on the interesting part of the project:
the source code.

 Dissecting the Project
 If you look at the Project navigator, you will notice that the structure closely resembles that of a regular iOS
project. However, there are some new additions.

http://dx.doi.org/10.1007/978-1-4842-1666-8_4

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

355

 Let us have a look at the new files in the project tree:

• GameViewController.swift . This file contains the definition of
 GameViewController —a UIViewController subclass, which is responsible for
creating a scene and presenting it on an SKView . The view itself can be found and
configured in the Main.storyboard file.

• GameScene.swift . This file defines the game loop logic for the scene. It does gesture
handling and takes care of the creation of nodes and scene updates. Nodes are the
building blocks of a scene.

• GameScene.sks . This is SpriteKit ’s equivalent of a storyboard. When you open
this file, you will see a visual editor, which helps you build a scene by dragging and
dropping game nodes on it. This is the scene’s resource archive.

 Now we are going to look inside these files and see how the game is built.
 Open GameViewController.swift and locate the viewDidLoad method (Listing 16-1). Inside it, first

an instance of the GameScene class is initialized using the GameScene resource archive. Then a constant is
created, named skView , to keep a reference to the view controller’s view (SKView). Setting the showsFPS and
 showsNodeCount properties to true instructs the SpriteKit to display the corresponding debug information.

 The scene is shown on the screen by calling SKView ’s presentScene method. When you have more than
one scene in your game, you could use animation for the transition between scenes.

 Listing 16-1. Scene-Creating Routines

 override func viewDidLoad() {
 super.viewDidLoad()

 if let scene = GameScene(fileNamed:"GameScene") {
 // Configure the view.
 let skView = self.view as! SKView
 skView.showsFPS = true
 skView.showsNodeCount = true

 /* Sprite Kit applies additional optimizations to improve rendering performance */
 skView.ignoresSiblingOrder = true

 /* Set the scale mode to scale to fit the window */
 scene.scaleMode = .AspectFill

 skView.presentScene(scene)
 }
 }

 Let us now open the GameScene.swift file. It contains the implementation of the GameScene class,
which is responsible for controlling the objects in the current scene. The class inherits SKScene and
overrides three of its methods:

• The didMoveToView method is called after the scene is presented on the screen by a
 SKView instance. This method is used to create the scene’s contents.

• The touchesBegan method is called when the user taps inside the view. Here we will
add the logic that will make the spaceship follow users’ taps on the screen.

• The third method, update , is called by the game loop in the beginning of every frame
and is used as an entry point for any necessary updates to the scene.

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

356

 We will replace the default implementation of these methods with our own, so delete the bodies of all
three. The GameScene class should now look like that in Listing 16-2 .

 Listing 16-2. Removing the Default Implementation of the GameScene Class

 class GameScene: SKScene {

 override func didMoveToView(view: SKView) {
 }

 override func touchesBegan(touches: Set<UITouch>, withEvent event: UIEvent?) {
 }

 override func update(currentTime: CFTimeInterval) {
 }
 }

 In the next section we will add a spaceship sprite to the scene and make it move as we tap the screen.

 Moving the Sprite Around
 Start by adding a constant called playerSprite of type SKSpriteNode as a member of the GameScene class.
Initialize it with the default Spaceship image resource created by Xcode:

 let playerSprite = SKSpriteNode(imageNamed:"Spaceship")

 This line creates a node and assigns an image to it. The node, however, is not part of the scene yet. To
show a node on the screen we need to add it to the scene’s tree by calling addChild . We want this to happen
before the scene becomes visible, so we will put the code inside the didMoveToView function.

 Let us do a small adjustment before showing the node on the screen. The original spaceship image is
too large, so we will scale it down to a third of its original size by changing its xScale and yScale properties.
You can see the code in Listing 16-3 .

 Listing 16-3. Adding a Sprite Node to the Scene

 override func didMoveToView(view: SKView) {

 //Scale down the sprite to 30%
 playerSprite.xScale = 0.3
 playerSprite.yScale = 0.3

 //Add the playerSprite to the scene
 self.addChild(playerSprite)
 }

 Now that we have added the sprite, let us make it move. When the user touches the screen we want
the spaceship to move from its current position to the coordinates of the touch event. First we will get
the location of the touch event in scene coordinates and then we will create an action to animate the
movement of the sprite towards its new position. We will implement the logic inside touchesBegan
(Listing 16-4).

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

357

 The touchesBegan function supports multitouch (i.e., the user tapping the screen with more than one
finger). In our case we will take only one of these touch sites into account and ignore the others. To get the
touch location in scene coordinates we call SKNode ’s helper function named locationInNode .

 For the spaceship animation to look realistic we need not only to move the sprite but also to rotate it, so
that it faces the direction of the movement. To calculate the angle of rotation we use simple trigonometry:
first we construct a vector, which starts at the player’s current position and ends at the destination point by
subtracting the two points. Then we compute the angle between the vector and the positive x-axis with the
help of the atan2 function. atan2 returns the angle in radians, which is a good thing, because SpriteKit
prefers angles in radians too. One last thing: the rotation angle is calculated relative to the x axis, but the
spaceship’s nose is facing the y axis. For that we need to offset the angle by ninety degrees, that is, add p

2

(approximately 1.56) radians to it.
 We create an action for moving and an action for rotating the sprite in order to animate it. To play

the actions one after another we create an action sequence in the form of an array. Calling runAction and
passing it that array at the end of touchesBegan runs the sequence and creates the animation.

 Listing 16-4. Animating the Player Node to Follow Touch Coordinates

 override func touchesBegan(touches: Set<UITouch>, withEvent event: UIEvent?) {

 //Get the scene coordinates of the touch event
 let location = touches.first!.locationInNode(self)

 //Calculate the angle, at which we need to rotate the sprite,
 // in order to face the direction of movement:
 let angle = atan2(location.y - playerSprite.position.y,
 location.x - playerSprite.position.x) - 1.56

 //Create an action to move the sprite to the touch location coordinates
 let moveAction = SKAction.moveTo(location, duration: 0.5)
 //Create an action to rotate the sprite to face the direction of movement
 let rotateAction = SKAction.rotateToAngle(angle, duration: 0.1)

 //Animate the sprite executing actions sequentially
 playerSprite.runAction(SKAction.sequence([rotateAction, moveAction]))
 }

 Run the application, tap the screen, and you will see the spaceship sprite fly toward the point where you
tapped. Touch the screen again and the spaceship will rotate itself and chase your finger (Figure 16-4).

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

358

 Using the SpriteKit Scene Editor
 Xcode comes with an integrated SpriteKit scene editor, which helps you visually compose scenes for
your game. It allows you to drag and drop and arrange and edit nodes inside the integrated development
environment (IDE) instead of doing it programmatically.

 To open the editor select the GameScene.sks file in the Project navigator. You should see an empty scene
like the one in Figure 16-5 .

 Figure 16-4. Running the game

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

359

 Xcode’s Scene editor looks a lot like its Storyboard editor. On the left there is the Attributes inspector,
where you set nodes’ parameters and the Object library with nodes you can drag and drop on the scene.

 Let us add a label node to the scene. Find a label in the Object library and drag it toward the yellow
rectangle shown in Figure 16-6 . With the label node selected go to the Attributes inspector and set Text to
 This game is awesome!

 Figure 16-5. Xcode SpriteKit scene editor interface

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

360

 Run the game and you will see the label in the middle of the screen (Figure 16-7).

 Figure 16-6. Adding a label node to the scene

 Figure 16-7. The scene with the newly added label

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

361

 Note that, although the scene editor can save us a lot of time composing content, we still need to
initialize sprite instances and program the gameplay by hand.

 Developing 3D Apps with SceneKit
 The SceneKit framework is similar to SpriteKit but deals with three-dimensional space. SceneKit is a
bit more general and can be used not just for games but also for business-oriented apps that need to show
3D content. For example, you could use it to build an e-book reader, which shows an embedded 3D view
alongside the text.

 Before SceneKit was released, iOS developers had to use low-level graphic application programming
interfaces (APIs) like OpenGL to render 3D objects in their apps. OpenGL is a powerful graphic library, but it
forces you to think in terms of triangles, vertex buffers, and color buffers, in order to show something on the
screen. SceneKit hides these technical details behind a higher-level framework and allows you to work with
objects like geometry, lights, materials, shaders, and cameras.

 Learning the Structure of SceneKit
 SceneKit renders its content in a SCNView , which is a standard UI element. All content that will be rendered
in SCNView is stored in a scene, represented by the SCNScene class.

 A scene is structured as a hierarchical tree of nodes, much like a scene in SpriteKit . All nodes in
the tree are linked together with parent-child relationships. This tree of nodes is also known as a scene
graph . A node is represented by the SCNNode class and has properties describing its position, rotation,
and scale relative to its parent node. Basically, nodes are used as placeholders for objects to keep the
scene structured. To visualize an object we need to attach it to a node. We can use the following types of
 objects :

• Geometry. Represents a 3D object. SceneKit comes with built-in geometry
objects like boxes, spheres, cones, and planes. You can also create geometry
programmatically or load it from a file. SceneKit supports COLLADA files, an
industry-standard file format, which can be exported from many 3D modeling
programs.

• Camera. Represents the viewer of the scene.

• Light . Represents objects that can cast light onto the scene. Lights are parameterized
and can simulate a variety of light sources from a light bulb to the sun.

• Physics body. You can simulate physical effects such as gravity or collisions by
creating a physical body and attaching it to a node.

• Material. Defines how geometry will be visualized. You can specify how a surface
reacts to light and what texture or color to be used to imitate a real-world material.

 You can animate all objects on the screen by either changing their properties or manipulating their
geometry. SpriteKit allows you to import a rigged 3 model with skeletal animation that can be used to
change a model’s geometry. Skeletal animation is commonly used for animating characters. The rigged
objects have a skinner object , 4 which is used to control individual bones in the skeletal hierarchy.

 Another way to create animation is to use actions like we did in the SpriteKit framework tutorial.

 3 Rigging is the process of adding a skeleton to a 3D model, which helps with the animation of movement.
 4 A skinner object helps with animating 3D objects by providing access to their skeleton.

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

362

 When you click Next , Xcode will generate a simple project with one view and a SCNView inside. The
default scene has one geometry node, which contains a 3D model of a spaceship, two light nodes, and a
camera node. If you run the project, you will see a rotating spaceship on a black background (Figure 16-9).

 Speaking of SpriteKit , there is another similarity between the two frameworks: the game loop.
 SceneKit goes through the same steps in the game loop to prepare and render the scene graph on the
screen. First the scene graph is updated, next all actions and animations are applied, then physics is
simulated, and finally the scene is rendered on the screen.

 This is the end of our brief overview of SceneKit ’s structure. Now is time to use it in an app.

 Setting Up the App
 Let us create a project using Xcode’s SceneKit project template. We will go through the project’s code and
see how a 3D scene is created and populated with objects first.

 In Xcode create a Game application project (File ➤ New ➤ Project… , then iOS ➤ Application ➤
 Game), name it SceneKitDemo and set Game Technology to SceneKit (Figure 16-8).

 Figure 16-8. Creating a SceneKit project

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

363

 Figure 16-9. Running the SceneKitDemo project

 Let us examine the source files that Xcode has generated for us.

 Examining the SceneKit Project’s Structure
 The project strongly resembles a typical iOS app project structure. There is a storyboard with one view
inside, a view controller, and an assets group.

 The only difference with the iOS app templates we have been using so far in the book is that here the
root view element in the storyboard is of type SCNView . This makes the game cover the whole available
screen space. If your application only needs to render 3D scenes in a smaller portion of the screen, SCNView
can be used in a layout with other UI elements and be put in a container, for example. You can easily show a
scene view in a table or in another container.

 In the Project navigator there is a group called art.scnassets . Inside you will find a file called ship.scn
and an image: texture.png . The PNG image is used as a texture that will cover the spaceship geometry model.
Here textures are used as skins on top of 3D models. This allows us to show visual detail without necessarily
creating complex 3D geometry. For example, instead of constructing every element of the spaceship’s cockpit
in 3D and thus adding more triangles to its geometry, we show these elements in a 2D texture.

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

364

 The ship.scn file contains a ready-made scene graph. Click it to open Xcode’s visual 3D scene editor.
In it you can compose scenes by dragging and dropping nodes, geometry, lights, cameras, and many more
scene elements.

 And now let us look at the most interesting part of this project: the GameViewController.swift file.
Inside is the source code responsible for scene creation, animation, and the rest of the game’s logic. Open
the file and search for the viewDidLoad() function ; it contains the code for setting up the scene.

 Adding a Scene
 The default SceneKit workflow starts with creating a scene, configuring it, and assigning it to a SceneKit
View to be rendered on the screen (Listing 16-5).

 You can create an empty scene or to load one from an .scn file by calling the SCNScene(named:) class
initializer. To visualize a scene, you need to assign it to the scene property of a SceneKit view instance. You can
create multiple scenes and choose which one is visible at any given time by assigning it to the SceneKit view.

 Listing 16-5. Adding a Scene

 // create a new scene
 let scene = SCNScene(named: "art.scnassets/ship.scn")!

 // retrieve the SCNView
 let scnView = self.view as! SCNView

 // assign the scene to the view
 scnView.scene = scene

 Adding a Camera
 As a next step we will add a camera to the scene. You can think of the camera as the eye of the observer of the
scene. What the camera sees is what the user will see. To move the user’s view point in the scene we change
camera’s position, angle, field of view, and other parameters. Listing 16-6 shows you how to create and
configure a camera.

 First we create an SCNNode instance, which will “host” the camera in the node tree. Next, we initialize a
 SCNCamera instance and attach it to the node by assigning it to its camera property. Then we add the camera
node as a child node of the scene graph. The final step is to set the camera’s position in 3D space with the
help of a class, which represents three-dimensional vectors: SCNVector3 . With this we move the camera by
15 units 5 backward from the center of the scene.

 Listing 16-6. Adding a Camera

 // create and add a camera to the scene
 let cameraNode = SCNNode()
 cameraNode.camera = SCNCamera()
 scene.rootNode.addChildNode(cameraNode)

 // position the camera
 cameraNode.position = SCNVector3(x: 0, y: 0, z: 15)

 5 SceneKit uses meters as a default unit measurement.

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

365

 Adding Light
 If you go inside the viewDidLoad() function, comment these two lines of code,

 scene.rootNode.addChildNode(lightNode)
 scene.rootNode.addChildNode(ambientLightNode)

 and run the app, you will notice that the spaceship does not look very three-dimensional but, rather, like a
collection of flat-colored objects. To add depth to the scene, we need light.

 We can choose between four types of light sources in SceneKit :

• Omni. Also known as point light , it emits light equally in all directions. It can be used
to simulate a light bulb.

• Ambient. Ambient light illuminates all objects in the scene from all directions. It
is used to approximate the light bouncing between objects the way it happens in
nature, and prevent our scene from getting too dark.

• Directional . Directional light simulates a distant light source, which emits light in a
given direction. It is often used to simulate the sun.

• Spot. This one represents a cone-shaped light source like the floodlights used in
stadiums and theaters.

 You can see how an omni light source is added to the scene in Listing 16-7 . First a container node for the
light object is created. Then an instance of the SCNLight class is assigned to the light property of the node.
The SCNLight class represents a general light object; setting its type property to SNLightTypeOmni makes it
an omni light. We set the position of the light as a SCNVector3 .

 Listing 16-7. Adding an Omni Light

 // create and add a light to the scene
 let lightNode = SCNNode()
 lightNode.light = SCNLight()
 lightNode.light!.type = SCNLightTypeOmni
 lightNode.position = SCNVector3(x: 0, y: 10, z: 10)
 scene.rootNode.addChildNode(lightNode)

 This omni light will be the main light source in the scene, but if we use it as the only light source, most of
the scene will appear dark. A directional light source illuminates only surfaces that face it and leaves the rest
of the surfaces in shadow.

 In order to fill the scene with light, we will add an ambient light source too—you can see this done
in Listing 16-8 . This looks similar to how we created the omni light, but without setting a position for it.
Ambient sources cast light from all directions in the scene.

 Listing 16-8. Adding an Ambient Light

 // create and add an ambient light to the scene
 let ambientLightNode = SCNNode()
 ambientLightNode.light = SCNLight()
 ambientLightNode.light!.type = SCNLightTypeAmbient
 ambientLightNode.light!.color = UIColor.darkGrayColor()
 scene.rootNode.addChildNode(ambientLightNode)

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

366

 Animating the Spaceship
 Next, we will animate the spaceship model to rotate infinitely around the y axis, as if on a turntable.

 In order to assign animation to the spaceship node, we will locate it by its name in the scene graph by
calling childNodeWithName(name:recursively:) . This function iterates through all child nodes of a given
node and looks for a name match. Setting the recursively parameter to true will make it iterate through the
subtrees coming out of the node’s children too.

 Once we have located the spaceship node, we will attach an SCNAction instance to it to do the rotation
and repeat it forever (Listing 16-9).

 Listing 16-9. Animating the Spaceship

 // retrieve the ship node
 let ship = scene.rootNode.childNodeWithName("ship", recursively: true)!

 // animate the 3d object
 ship.runAction(SCNAction.repeatActionForever(SCNAction.rotateByX(0, y: 2, z: 0, duration: 1)))

 Selecting an Object
 Making the 3D scene interactive involves letting the user select an object by tapping it. In general this
requires quite a lot of calculations, in order to determine which of the objects in the scene lies underneath
a certain point in the 2D space, which is available to the user for tapping. SceneKit makes our job easier by
handling a lot of these calculations. With the next few listings we will implement object selection (picking) in
our demo project.

 We start by adding a tap gesture recognizer handler to the SceneKit view (Listing 16-10).

 Listing 16-10. Add a Handler for the Tap Gesture

 // add a tap gesture recognizer
 let tapGesture = UITapGestureRecognizer(target: self, action: "handleTap:")
 scnView.addGestureRecognizer(tapGesture)

 The actual object picking happens in the handleTap(:) function, shown in Listing 16-11 .

 Listing 16-11. Implementing Object Picking and Highlighting

 func handleTap(gestureRecognize: UIGestureRecognizer) {
 // retrieve the SCNView
 let scnView = self.view as! SCNView

 // check what nodes are tapped
 let p = gestureRecognize.locationInView(scnView)
 let hitResults = scnView.hitTest(p, options: nil)
 // check that we clicked on at least one object
 if hitResults.count > 0 {
 // retrieved the first clicked object
 let result: AnyObject! = hitResults[0]

 // get its material
 let material = result.node!.geometry!.firstMaterial!

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

367

 // highlight it
 SCNTransaction.begin()
 SCNTransaction.setAnimationDuration(0.5)

 // on completion - unhighlight
 SCNTransaction.setCompletionBlock {
 SCNTransaction.begin()
 SCNTransaction.setAnimationDuration(0.5)

 material.emission.contents = UIColor.blackColor()

 SCNTransaction.commit()
 }

 material.emission.contents = UIColor.redColor()

 SCNTransaction.commit()
 }
 }

 On the first line of code in this function we get a reference to the scene view that generated the touch
event. Then we use it to get the coordinates of the point of the touch event with the locationInView
function. Calling the view’s hitTest method gives us the objects, which fall under the finger. hitTest returns
an array of SCNHitTestResult objects that match the hit test. An instance of SCNHitTestResult contains the
scene graph node of a matching object, as well as the 3D coordinates (in world space) of the touch event’s
projection onto the object.

 When we get the array of matching objects, we first check if it contains anything (i.e., if there were
objects the tap gesture managed to hit). If there were any, we take the first one and highlight it with red by
modifying the emission property of its material and creating a little animation that will make it glow in red.
Note the line where the material of the object is obtained:

 let material = result.node!.geometry!.firstMaterial!

 This line relies on several assumptions to be true:

• We have hit a node in the scene tree.

• The node has a geometry mesh attached.

• The geometry has at least one material.

 This line of code can be dangerous and can cause a runtime error if we execute it on an arbitrary scene.
We know it will work in our current project, because the spaceship model satisfies all of these assumptions.

 To animate the glow effect an SCNTransaction is used. This class controls in a transactional manner all
properties of the scene that can be animated. We first create a transaction to be executed for half a second
and slowly change the emission color of the object’s material to red. When the first transaction is over, inside
the setCompletionBlock closure we create another transaction to unhighlight the object by changing the
emission color to black. If you run the project and tap the spaceship, you will see how the model flashes in
red for a fraction of a second (Figure 16-10).

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

368

 The SCNTransaction class can also be used as a mechanism to wrap multiple modifications of the scene
in one atomic transaction.

 We touched on using materials in this section. In the next one we will add a bit more detail about how
 SceneKit represent materials.

 Applying Materials
 The material of an object defines what this object will look like when rendered on the screen. In physics an
object’s material describes how the object surface reflects incoming light. In programming terms a material
is usually a function, which computes the color of every visible point of the object.

 Materials in SceneKit have many properties. You can imitate plastic, wood, aluminum, and many other
real-world materials by combining and configuring these properties. The most important ones are

• Diffuse. This property defines the base color of the object. A texture is often used
as a diffuse color source. To simulate a wood surface, for example, you could use a
brownish diffuse texture with rings and knots.

 Figure 16-10. Picking a 3D model from the scene

CHAPTER 16 ■ USING THE HIGH-END GRAPHICS APIS

369

• Specular. This property defines the specular reflection of light for the material. If
we added a finishing layer to the wood surface material, we would use its specular
property to set how shiny it would be.

• Emission. This property defines how much light is emitted from an object’s surface.
Note that this does not make the object a light source, however, and the emitted
light will only be visible to the observer (i.e., it will not illuminate and be reflected by
other objects in the scene).

• Normal. A normal is a line or a vector, which is perpendicular to a given surface and
thus defines the surface’s orientation. Normals are used for lighting calculations both
for diffuse and specular light. When we add a material to a surface, we can define
different normals in various points of the surface (using a normal map 6) and thus
cause light to be reflected differently at each point, even if the whole surface is flat.
This trick allows imitating unevenness and adding detail without having to change
and complicate the geometry of the surface.

• Ambient. Defines how this material should appear in the presence of an ambient
light.

 Materials in SceneKit are represented by the SCNMaterial class and their properties—by the
 SCNMaterialProperty class. SCNMaterialProperty has a property named contents , which can contain
information of different types: color, texture, a SCNScene instance, and so on.

 To apply a material to an object you add it to the object’s geometry. The SCNGeometry class has a
property named materials , which is an array of SCNMaterial elements. The fact that the materials property
is an array means that a geometry object can have multiple materials applied. If a geometry is composed
of multiple elements, traditionally triangles, you can assign a separate material to each element. In other
words, we could have a cube geometry, each side of it rendered using a different material.

 The SCNMaterial class is designed to help you imitate the appearance of a vast majority of real-world
materials. In addition, SceneKit allows you to write your own shaders. For that you can use the OpenGL
Shading Language (GLSL) .

 The SceneKit and SpriteKit frameworks are so powerful that they would each merit a separate
book. The scope of a single chapter is too narrow to cover topics like adding physics, enhancing the built-
in renderer, using external assets, scene-lighting techniques, and many more. As you are reaching the
end of this chapter, however, ideally you have the foundation, on which you can build your 2D and 3D
programming techniques for iOS with Swift.

 Summary
 In this chapter you saw how to use the SpriteKit framework to build 2D games and the SceneKit
framework to present 3D scenes in your app.

 This chapter marks the end of Part III . In Part IV we go deeper with Swift and look at the language in
detail.

 6 A normal map is a texture. Instead of color information, each of its pixels contains data about the normal at a given point.

 PART IV

 Language Migration

373© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_17

 CHAPTER 17

 Swift Language Basics

 The first impression Flash developers usually share with us about Swift is “Oh, it’s almost ActionScript, isn’t
it!” What they refer to is how readable syntax-wise a piece of Swift code is, compared to Objective-C, which
used to be the typical choice when switching to native iOS programming. And they have a point: in contrast
to transitioning to Objective-C, moving to Swift from ActionScript has a much lower entry point. Swift offers
a lot more than that and in this chapter we will start unpacking its bag of goodies.

 We will start with why you might want to move on to Swift in the first place and how your ActionScript
experience can soften the learning curve. Then we will set up a playground, where you can quickly run code
snippets, and will cover a few basic points, which you will need before moving on to the next chapters. You
will see how to declare variables, constants, and functions and how to control access to your code, and you
will become familiar with basic error handling.

 What Swift encourages You to Do
 You will discover that a lot of concepts you have been using in ActionScript are not only present in Swift but
with added power. This adds richness and expressiveness to the language.

 What I personally most like about Swift, however, is the fact that it encourages good programming
habits. Or enforces them, as may be the case. It gives you the option and the incentive to be concise
with your code, but at the same time it forces you to state your intentions clearly. Swift’s compiler is
complicit in this: it will guide your hand and occasionally slap it, making it hard for you to write bad code
unintentionally.

 Be Concise
 The first thing I noticed about Swift was the lack of semicolons. I must admit that at that point I wrinkled my
nose at it and thought “But, but, but . . . Why?!”

 The thing is, Swift doesn’t stop you from using semicolons. But it doesn’t require you to use them either,
unless you put separate statements on the same line. This underpins part of Swift’s philosophy: you can
write code as verbose as you need it, but you also have the option to be as concise as humanly possible.

 I say “humanly possible,” because the trouble with conciseness is not a compiler’s problem: if a shortcut
is legal, the compiler will understand it. However, both writing code that is too verbose and writing code that
is too brief can interfere with human readability, so exercise your judgment.

 Here is an example: the two pieces of code in Listing 17-1 and Listing 17-2 are both valid Swift and both
do exactly the same: they define an array of integers and obtain a sorted copy of it.

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

374

 Listing 17-1. Sorting an Integer Array: Verbose

 let arrayOfInts: Array<Int> = [6, 3, 4];
 let sortedArray: Array<Int> = arrayOfInts.sort(
 { (item1: Int, item2: Int) -> Bool in return item1 < item2 });

 Listing 17-2. Sorting an Integer Array: Concise

 let arrayOfInts = [6, 3, 4]
 let sortedArray = arrayOfInts.sort(<)

 The rest of the chapters in Part IV will explain what is going on with the code in Listings 17-1 and
 17-2 . For the missing type declarations in Listing 17-2 see the section “Type safety and Type Inference” in
 Chapter 19 . For the syntax in the function within the brackets in the first example and how it got reduced to
a single operator in the second example see the section “Closures” in Chapter 22 . To find out what the let
keyword means see the section “Declaring Variables and Constants,” later in this chapter. As for the missing
semicolons . . . get over it. That’s how it is in Swift.

 Be Explicit
 One of the dangers of getting carried away with conciseness is ambiguity: you may end up writing code
that is syntactically valid but doesn’t actually do what you meant it to do. For example, in most other
languages it is too easy to swap two arguments of the same type by mistake: the code will compile, it will look
convincing to the human eye and the mistake will only come to bite you as a bug later on, maybe even after
you have shipped the code. (To see how Swift can help with this issue, see the section “Defining and Calling
Functions” later in this chapter.)

 To say that Swift encourages you to be explicit would be an understatement. It’s more like your
grandmother who lovingly, but with some force, nudged you to say “please” and “thank you” to her
neighbors. The Swift compiler nudges you in a similar way to state your intentions with every line of code
you write.

 For example, the ActionScript equivalent of the code in Listing 17-3 would result in all three print
calls being executed, because I didn’t put a break statement after each case . In Swift this is not the default
behavior: to get execution to continue to the next case statement whether there is a break or not, even if a
match has been found, I would need to use the fallthrough keyword.

 In fact, the code in Listing 17-3 will not compile. While in other languages you may not even get a
warning if you omit the default clause in a switch statement , in Swift this causes a compilation error. For
details on what else switch statements can do for you (there is a lot!) see Chapter 20 .

 Listing 17-3. Spot the Missing Statement. Hint: It Is Not a break

 let direction = 3

 switch direction {
 case 1: print("Go South")
 case 2: print("Go North")
 case 3: print("Go East")
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_20

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

375

 The effect of having to be explicit is twofold:

• You are less likely to suffer from bugs caused by accident and which, unfortunately,
make for lexically valid code. For example, in Swift you can’t unintentionally put the
assignment operator (=) where you meant to use the equality operator (==) (more on
this in Chapter 18).

• By writing code that explicitly states what you mean, you end up with self-
documented code and less need for comments that are (a) never read and (b) by
definition out of date with the code they explain.

 Take Advantage of the Compiler
 In his invaluable work, 1 Steve Maguire talks about a hypothetical compiler, which would catch bugs for
you. His book helps C developers get as close possible to this dream by teaching techniques that help
the compiler help you (among other things) by adopting certain coding habits—for example, putting the
(more) constant value on the left of the equals operator (==), so that the compiler can shout at you if you
accidentally used the assignment operator (=).

 Although a lot of bugs you will encounter are not possible to catch at compile time, Swift’s compiler
comes close to Steve Maguire’s dream 2 and makes it almost impossible to default to bad habits.

 A lot of what would be compiler warnings show up as errors in Swift. As likely as this is to irritate you
initially, 3 you will probably be grateful in the long run, as you will have adopted good coding habits and the
maintenance of your apps costs you a lot less for lack of easily preventable bugs.

 Coming from ActionScript: Advantages and Surprises
 Having experience with ActionScript, you will find yourself at an advantage when you transition to
native development with Swift. This section provides a brief overview of the main areas where your prior
knowledge will come in handy: syntax, programming concepts, and memory management. I have also
included a few differences in Swift, which you may want to be aware of.

 Syntax
 If you grew up speaking Objective-C, you were probably used to its bulky syntax and it didn’t bother you very
much. Transitioning to it from a language like ActionScript, however, was initially an exercise in learning
how to read. In contrast, Swift does read a lot like ActionScript in how you define or access things.

 With that said, Swift is not ActionScript and there are a couple of things that might seem obscure at first:

• The Optional type : you have likely noticed a lot of exclamation and question marks
in Swift tutorials and in the examples in the other parts of this book. Chapter 19
demystifies their use and shows you how optionals can make your life easier.

• Conciseness , whose praises we sang earlier, can be a double-edged sword. It is a
wonderful thing to be able to keep your statements short and clutter-free, but for a
newcomer the second line, shown in Listing 17-2 , may seem like a syntax error at
first. Practice will help you with this: as Swift doesn’t force you to be brief, you can
initially opt for the long syntax and gradually transition to omitting bits of code that
the compiler can infer and that you can too.

 1 Steve Maguire, Writing Solid Code (Microsoft Press, 1993).
 2 Or this is my take on it. Mr. Maguire might, in fact, be running away in disgust.
 3 Try to leave an uninitialized class member, for example More on that in Chapter 21 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_18
http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

376

 Programming Concepts
 Swift uses most of the programming concepts with which you are already familiar, including the object-
oriented programming paradigm. A big part of your transition from ActionScript will be in the spirit of
“Right. How do I bend a spoon in Swift?,” rather than having to first bend your mind around the thought that
“There is no spoon,” 4 as you might do if you were migrating to, say, a functional language.

 If Swift were exactly the same as ActionScript, though, it would probably have been called ActionScript
and not Swift, so be prepared for corners where we will need to shed light. Some of these are explained in
context:

• Operator overloading in Chapter 18

• Optionals and tuples in Chapter 19

• Using labels in Chapter 20

• Deinitialization for classes in Chapter 21

• Structures in Chapter 21

 To a few ideas, which might need a deeper looking into, we have dedicated a separate chapter (Chapter 22).

 Memory Management
 ActionScript uses both garbage collection (GC) and automatic reference counting (ARC) to manage
memory, though the latter is not spoken of very much. A garbage collector may do a good job of finding
cyclic references and freeing up memory that otherwise may have leaked, but you are not in control of when
it kicks in and this can hurt performance. Over time, ActionScript developers have come up with hacks and
workarounds to get some control over when GC is performed.

 Swift classes use ARC , so you should be on familiar ground there. Moreover, as this is not a garbage-
collected language, you will have control over when instances are deallocated. And, unlike moving to
Objective-C, you will not have to get your head around pointers.

 Swift also helps you be more mindful about how you use memory, as it distinguishes between reference
types and value types (more on that in Chapter 21).

 How to Use the Code Examples: Playgrounds
 This part of the book presents the Swift language with the help of a lot of little snippets of code. To try them
out, you don’t need to set up and deploy a big project. Instead, you can take advantage of another goodie
that the Xcode has: Playgrounds .

 A playground allows you to experiment with code and even create prototypes very quickly. Instead
of having to build and install your code on a device or on one of the iOS simulators, you can see it being
evaluated and run as you type. Ah, I am so excited about what you can do in a playground: animations,
interactive UI, sleek-looking documentation in line with your code. Too bad that for our purposes we will
only need the more mundane features: typing code and seeing it run will do.

 Apart from being able to run examples unburdened by a big project, using a playground also means that
you can dip in and out of the following chapters when you need to understand a specific bit of the language
while doing the tutorials in the rest of the book.

 4 In case you were too young to see The Matrix movie when it first came out, type “there is no spoon” in YouTube—the
scene is worth a thousand words.

http://dx.doi.org/10.1007/978-1-4842-1666-8_18
http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_20
http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

377

 Let us set up your first playground. You can use the same playground for all of the examples in this part
of the book or you can create a new one as you start each chapter. When you accumulate a lot of lines of code
in the same playground you may find Xcode getting slower, as it runs and evaluates all of the code on each
keystroke, so you might find keeping separate playgrounds more practical.

 From Xcode’s main menu select File ➤ New ➤ Playground , give your playground a name (I named
mine Swift Test Playground) and let the wizard create it for you. Upon first opening you will see an Editor
displaying the code in Listing 17-4 .

 Listing 17-4. Code in a Fresh Playground

 //: Playground - noun: a place where people can play

 import UIKit

 var str = "Hello, playground"

 To dip your toe in, add a call to print out the value of str and let us have a brief exploration of the
workspace (Listing 17-5).

 Listing 17-5. Add a Line to the Playground Code

 print(str)

 The playground looks a lot like what you are used to when creating iOS projects, only trimmed down
(Figure 17-1). You have the Editor in the middle: here it has an inspection area on the right, where you can
see your expressions evaluated at runtime. There is also a Debug area, where you can output information
with print . This is also where you can see compilation and runtime error messages. On the left is the
familiar Navigation area, which you can toggle to see the structure of your playground (you can add source
and resource files to it), inspect symbols, do textual searches, or explore issues found by the compiler.

 Figure 17-1. Set up a playground in Xcode

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

378

 With your first playground set up, let our journey through Swift begin. We will start with a few basic
things before we go deeper in the next chapters.

 First Things About Swift
 The rest of this chapter will lay some groundwork and housekeeping rules. You can use the playground we
set up in the previous section to try out some of the snippets of code.

 Declaring Variables and Constants
 The first thing you are likely to ask when faced with the blank page, all right, screen, is: how do I declare a
variable? Use the var keyword to declare a variable and the let keyword to declare a constant (Listing 17-6).

 Listing 17-6. Declaring Variables and Constants

 var anIntegerVariable = 10
 let aStringConstant = "I am a string. And I am constant."

 A nice thing about the Swift compiler is that it encourages you to use constants instead of variables
wherever possible: if you declare a variable, but never change its value, you will get a warning like the one in
Figure 17-2 suggesting that you change it to a constant by replacing var with let .

 Figure 17-2. The compiler encourages the use of let wherever possible

 Listing 17-6 shows you how to declare variables and constants in the spirit of conciseness: you can see
that I have omitted the type declarations of anIntegerVariable and aStringContant . You can include them
as you do in ActionScript, following a colon after the name of the variable, as in Listing 17-7 .

 Listing 17-7. Explicitly adding type declarations

 var anIntegerVariable: Int = 10
 let aStringConstant: String = "I am a string. And I am constant."

 In the spirit of explicitness, however, Swift will not let you use the line in Listing 17-8 , which is possible
in ActionScript.

 Listing 17-8. This Line Will Compile in ActionScript, But Not in Swift

 var aVariable;

 The Swift compiler is clever, but it will not tolerate not knowing the type of aVariable . For it to work it
out you need to either state it explicitly or assign a value, from which the type can be inferred.

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

379

 Making Comments
 You add comments in Swift the same way you do in ActionScript. Use two forward slashes to prefix single-
line comments:

 // This is a single-line comment.

 Put multiline comments inside the familiar forward-slash-plus-asterisk and asterisk-plus-forward-slash
combination:

 /* This is a comment,
 which spans multiple lines. */

 Printing in the Console
 In Swift you can print diagnostic information in Xcode’s console with the print function, much like you do
with trace in ActionScript. You can use print with any expression: to print it out as part of a string literal,
put the expression in parentheses inside the string quotes and prefix it with a backslash (\) as shown in
Listing 17-9 :

 Listing 17-9. Printing Out a Value in the Console

 print(anIntegerVariable)
 // output: 10

 print("The value of anIntegerVariable is \(anIntegerVariable).")
 // output: The value of anIntegerVariable is 10.

 For more details on inserting values in string literals and using escape sequences see the section
“Strings” in Chapter 19 .

 Defining and Calling Functions
 To define a function, use the func keyword, followed by the name of the function, followed by a comma-
separated argument list in parentheses and, if the function returns a result, add a return arrow (->), followed
by the type of the result (Listing 17-10). If your function does not return a result, you don’t need to add
anything after the closing parenthesis of the argument list. For functions that don’t take arguments you still
need the parentheses after the function name, though their argument list will be empty.

 Listing 17-10. Defining Functions in Swift

 func divide(a: Double, b: Double) -> Double {
 return a / b
 }

 func printAQuote(quote: String, byAuthor: String) {
 print("'\(quote)' \n\(byAuthor)")
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

380

 Naming Arguments
 The code in Listing 17-10 could almost be ActionScript, couldn’t it? You will notice a difference when making
a call to a function, however. The difference is not big, but it is important: in Swift function arguments
have what is known as local and external names . A local name is the name that will be used to refer to the
argument inside the function body and an external name is what the caller of a function will use to label the
argument. There are a few rules about local and external names:

• To provide external names for your arguments explicitly, put them before the
internal names (Listing 17-11).

 Listing 17-11. Providing External Argument Names

 // Add explicit external argument names
 func divide(dividend a: Double, divisor b: Double) -> Double {
 return a / b
 }

 // Label your arguments with their external names when making a call:
 divide(dividend: 1, divisor: 0)

 Now a and b are the names, which the divide function can use locally, but when you call divide you
need to label its arguments dividend and divisor , respectively.

 Remember what we said earlier about accidentally swapping arguments of the same type? The external
argument names (which are actually an Objective-C legacy) help avoid that: they will not make the compiler
complain if you swapped 1 and 0 in the example above, 5 but having to label your arguments makes it harder
for you to swap them without noticing.

• Local and external names can be the same. If you don’t explicitly provide an external
name for one of your parameters, its name will serve both as a local and as an
external name. The first argument in the list is an exception, which will be explained
in the next rule.

 For example, calling the second function we defined in Listing 17-10 would look like this (Listing 17-12):

 Listing 17-12. Calling a Function with External Argument Name

 printAQuote("Life is too short to remove USB safely.",
 fromAuthor: "Anonymous")

 Notice how the second argument has a label, although we did not explicitly set an external name for it
in the function definition.

 All arguments of a function, but the first one, get both a local and an external name by default. If you
want the first argument to be referred to by an external name too, you need to provide it explicitly. Apple
encourages a naming convention, in which the external name of the first argument is implied by the name of
the function. For example in printAQuote you would expect to provide a quote as an argument.

 There is an exception to this rule too: if the function is an initializer method , all of its arguments get
external names by default (see Chapter 21 on initializers).

 5 If you call this function with the divisor set to zero, you will see another Swift feature demonstrated. Instead of throwing
a “division by zero” error, it returns infinity (inf).

http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

381

 ■ Note Swift 3 introduces a change, in order to establish consistent label behavior across all parameters,
including first labels. This means that the first argument too will get a default external name if you do
not provide one explicitly. When you call the printAQuote function, you will need to provide both labels:
 printAQuote(quote: "...", fromAuthor: "...") .

• You can opt out of external names for your arguments. Once again, you need to state this
explicitly by putting an underscore where the external name would be (Listing 17-13):

 Listing 17-13. Ignoring External Argument Names

 // Put an underscore in place of the external name:
 func printAQuote(quote: String, _ fromAuthor: String) {
 print("'\(quote)' \n\(fromAuthor)")
 }

 // Now you don't have to label the arguments when making a call:
 printAQuote("Programs must be written for people to read,
 and only incidentally for machines to execute.", "Hal Abelson")

 Function Parameters
 Let us have a look at how function parameters are treated in Swift and what your options are.

 Parameters Are Constant by Default

 By default all parameters of a function are constants and you can’t make changes to them inside the body of
the function.

 In-Out and Variable Parameters

 You can opt for non-constant behavior by prepending a parameter name with the inout keyword. An in-out
parameter is passed by reference . In other words, a function that takes an in-out parameter will access the
original variable that you passed in, rather than a copy of it and any changes you make to that variable inside
the function will persist after the function returns. Listing 17-14 shows an example of a function, which
takes a string and modifies it. Note that at the point of calling the function we need to prepend the in-out
parameter with an ampersand (&).

 Listing 17-14. Using In-Out Parameters

 func modifyMyString(inout str: String) {
 str = "Ha! I can override you!"
 print(str)
 }

 var myStr = "I am the boss."
 modifyMyString(&myStr)
 // Output: "Ha! I can override you!"

 print(myStr)
 // Output: "Ha! I can override you!"

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

382

 ■ Note Swift 3 comes with a different syntax for using the inout keyword: it needs to be on the right side of
the colon: func modifyMyString(str: inout String) .

 If you do not need a modified parameter value to persist after the return of the function you passed it in,
you can use the var keyword. Note that making changes a var argument will create a copy of it, which serves
as a local variable inside the function (Listing 17-15).

 Listing 17-15. Using Variable Parameters

 func modifyMyString(var str: String) {
 str = "Ha! I can override you!"
 print(str)
 }

 var myStr = "I am the boss."
 modifyMyString(myStr)
 // Output: “Ha! I can override you!”

 print(myStr)
 // Output: "I am the boss."

 ■ Note In Swift 3 the var keyword is deprecated. Instead of using a var parameter you can declare a local
variable and assign the value of the parameter to it. This achieves the exact same behavior but makes it a lot
more obvious: a copy of the value is made, which you can modify, but you cannot access the modified value
once the function returns.

 Variadic Parameters

 A function can be defined to take parameters that vary in number by using a variadic parameter . This
parameter takes one or more values of the same type and is defined by adding three dots at the end of its
declaration. Inside the function you can iterate through the values of the parameter and query their number
by calling parameterName.count . Something to keep in mind is that you can define only one variadic
parameter per function.

 The example in Listing 17-16 uses a variadic parameter, called numbers , to find the maximum in a list of
integer numbers:

 Listing 17-16. Iterating Through a Variadic Parameter

 func findMaximum(numbers: Int...) -> Int {
 var maxNum = Int.min
 for number in numbers {
 if number > maxNum {
 maxNum = number
 }
 }

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

383

 return maxNum
 }

 findMaximum(300, 4, 99) // returns 300

 Providing Default Values

 As in ActionScript, you can provide default values for function arguments. You can do this for constant and
for variable parameters but not for in-out parameters.

 Listing 17-17 shows the printAQuote function, which we used earlier, this time defined to set the
 byAuthor parameter to "Anonymous" by default. Note that now the call to the function does not have to
include a second parameter.

 Listing 17-17. Providing Default Parameter Values

 func printAQuote(quote: String, byAuthor: String = "Anonymous") {
 print("'\(quote)' \n\(byAuthor)")
 }

 // You can skip the byAuthor argument, as it has a default value:
 printAQuote("Sm;)e")

 Function Overloading
 Here is something that ActionScript does not let you do. You can define several functions with the same
name and the same scope: as long as they have a different number or different types of parameters, the
compiler will make sure that the correct one is selected when you make a call.

 The example in Listing 17-18 illustrates that: we have defined three functions called printInfo , all of
which print out their parameters into the console.

 Listing 17-18. Overloading Functions

 func printInfo(i: Int) {
 print("Here is an integer: \(i)")
 }

 func printInfo(s: String) {
 print("Here is a string: '\(s)'")
 }

 func printInfo(i: Int, s: String) {
 print("Here is an integer: \(i) and a string: '\(s)'")
 }

 printInfo(3) // Calls the first function
 printInfo("Ta-da!") // Calls the second function
 printInfo(40, s: "Ali Baba's thieves") // Calls the third function

 You can also overload methods (see Chapter 21) and subscripts (see Chapter 22).

http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

384

 Access Control Rules
 You have already seen from the tutorials in this book how you can structure your projects and that Swift
code goes into .swift files. These files and the modules they form are the basis of defining how code is
accessed. Here module is meant as a bunch of files you build and ship together as an application or as a
framework.

 There are three levels of access, which determine the visibility of a piece of code:

• private entities are only visible to code in the same file where they were defined.

• internal bits of code are accessible from source files inside the same module.

• public entities are accessible everywhere within the same module, as well as to code
that uses it. They define the interface to the module.

 In the previous definitions I use entities as a substitute for “almost anything you can define”: global
variables, constants, and functions; classes, structures, and enumerations, as well as their members; and
also protocols. The access modifiers can be applied to all these. The members of a protocol are an exception:
you can define a private protocol but you cannot define its members as private .

 The default access level is internal and is applied if you don’t explicitly provide an access modifier
when you declare an entity.

 If you are wondering “How about protected ?,” the answer is that it doesn’t exist in Swift. To find out
why see Chapter 21 . This is also where we you can find information on structures and protocols , which were
mentioned previously. For enumerations , see Chapter 22 .

 Handling Errors
 To handle error conditions in ActionScript we have the Error class at our disposal. We can return Error
instances as function results or throw them in cases, which requires interrupting the flow of execution, when
it doesn’t make sense to continue an operation if a certain error condition arises, for example. We can also
subclass Error , in order to customize it and add information.

 The situation in Swift is similar, but with some subtle differences. Instead of an error base class,
there is a protocol , called ErrorType . To use an error type, you need to define it yourself and have it
conform to the ErrorType protocol : using an enumeration for that is usually quite a good idea.
You can read more on protocols and conforming to them in Chapter 21 and on enumerations—in
 Chapter 22 .

 If you write a function that throws an error, you need to put the throws keyword in its definition: it goes
after the argument list and before the return type of the function: func iMayThrowAnError() throws ->
String .

 To catch an error that may be thrown by a function you call, use a do- try-catch statement .
 In some cases you will want a certain piece of code to be executed at the end of a function

(to clean up resources, for example) irrespective of whether the function’s execution was interrupted
by a thrown error. Such code you can put inside a defer statement: this is similar to using finally in
ActionScript.

 Table 17-1 provides a comparison between the skeleton of a try-catch-finally statement in
ActionScript and a do-try-catch statement with a defer clause in Swift.

http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_21
http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

385

 A quick note on defer : you are not limited to using it only in situations in which you need to handle
errors. For example, you can put a block of code inside defer to ensure that it is always executed in a
function with multiple returns (and save on code repetition before every return statement). You can also
use it inside loops or do statements. Note that when you have multiple defer statements within the same
scope, they get executed in reverse order of how they appear in the code.

 Let us see all of this in action with an example. Say we are creating an app that allows users to
watch TV online and choose a TV channel by typing its name. We will define a couple of functions:
 channelNameEntered will take a channel name as an argument and will be called when the user types it in.
A second function, switchToChannel , will be called by channelNameEntered to do the actual work for finding
and switching to the selected channel. switchToChannel will alert its caller about possible error conditions
that make it impossible to activate the given channel: the channel doesn’t exist, it’s under parental control,
or subscription to it has expired.

 The enumeration in Listing 17-19 will represent the error conditions. For the moment you can think of
an enumeration as a way of keeping a set of names together: in this case it will help us define a set of names
for the different errors we may encounter. (See Chapter 22 for an in-depth introduction to enumerations.)

 Listing 17-19. Defining an Error Type

 enum ChannelChangeError: ErrorType {
 case InvalidChannelName
 case ParentalControlOn
 case SubscriptionExpired
 }

 The function that changes the channels checks if there is any reason not to proceed with the change
and if it finds one, it throws one of the error names defined in ChanelChangeError . Note that throw takes the
code execution out of the function, much like a return 6 — (see the example in Listing 17-20).

 Listing 17-20. Throwing an Error

 func switchToChannel(name: String) throws {
 if !channelExists(name) {
 throw ChannelChangeError.InvalidChannelName
 }

 Table 17-1. Comparison Between Try-Catch Statements in ActionScript and in Swift

 ActionScript Swift

 try {
 statements;
 } catch (e:Error) {
 statements;
 } finally {
 statements;
 }

 do {
 try expression
 statement
 } catch ErrorType {
 statements
 }
 defer {
 statements
 }

 6 Apple’s manual says that a throw in Swift is like a return when it comes to performance too, as no stack unwinding is
done when an error is thrown, in contrast to what typically happens in other languages.

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

386

 if isParentalControlOn(name) {
 throw ChannelChangeError.ParentalControlOn
 }

 if !inSubscriptionList(name) {
 throw ChannelChangeError.SubscriptionExpired
 }

 // Proceed to change the channel
 }

 Finally, the function that calls switchToChannel needs to handle the different types of errors that may
be thrown at it. For that purpose we put the call to switchToChannel inside a do-try statement as shown on
Listing 17-21 , followed by two catch statements to catch two of the error conditions: ChannelChangeError.
InvalidChannelName and ChannelChangeError.ParentalControlOn . The third catch statement is a blanket
one: it will catch any other error that is thrown and was not caught by the catch statements above it. Note
how one of the catch statements rethrows the error, instead of handling it: this way the error is propagated
up the call stack to be handled by the caller of channelNameEntered .

 The code in the defer statement will be called before the execution of channelNameEntered finishes.
This code will run whether an error was caught inside the function or not.

 Listing 17-21. Catching, Handling, and Rethrowing Errors

 func channelNameEntered(name: String) throws {
 do {
 try switchToChannel("Cartoons 24/7")
 } catch ChannelChangeError.InvalidChannelName {
 // Rethrow the error to be handled
 // by the caller of channelNameEntered:
 throw ChannelChangeError.InvalidChannelName
 } catch ChannelChangeError.ParentalControlOn {
 // Handle the error here and don't propagate it up:
 // Update the screen to show a cheeky picture of a parent.
 } catch {
 // This is a blanket error handler for any errors
 // that were not caught by the previous catch statements.
 }
 defer {
 // The code after the defer statement
 // will be executed before the execution leaves this function,
 // no matter whether any error was thrown.

 // Save the chanel name in the browsing history,
 // even if switching to it was not possible.
 // ... possibly to alert parents.
 }
 }

 You can find even more subtle ways of using and catching errors in Apple’s online book The Swift
Programming Language .

CHAPTER 17 ■ SWIFT LANGUAGE BASICS

387

 Summary
 This chapter paved the way to learning Swift by covering a few essential points: how to declare variables,
constants, and functions; how to print out diagnostic information; and the basics of error handling. You are
set up with a playground, where you can quickly test code snippets and explore Swift’s features.

 I hope it also made you excited about learning a new language, which, among other things is designed
in a way to encourage good programming habits. The main thing to keep in mind about Swift, however, is
that it will not stop you from shooting yourself in the foot: you have all the means and tools to do it. But you
really need to mean to shoot yourself in the foot. And explicitly tell the Swift compiler that you do mean it. 7

 With this disclaimer out of the way we can move on to having a closer look at Swift. The next chapter
introduces Swift’s operators and what surprises they may have for an ActionScript developer.

 7 Or, as my husband put it: using Swift is like taking legal advice from a lawyer. He can make it hard for you to do the
wrong thing, but he will not stop you from doing it. And in the end, the one person you cannot blame if things go wrong
is the lawyer.

389© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_18

 CHAPTER 18

 Operators

 We start our exploration of the Swift language with a look at the operators it offers. You will find that
your ActionScript experience has prepared you for most of what’s to come in this chapter. The majority
of operators look the same and follow the same syntax and rules for associativity and precedence you
would expect.

 The first part of the chapter lists operators that both Swift and ActionScript share. We then move on to
a few operators that will be new to an ActionScript developer. At the end of the chapter we will see how you
can define your own operator implementations or even create custom operators using operator overloading .

 Operators You (Almost) Know from ActionScript
 In all fairness, even among the operators you are familiar with you will find the occasional subtle difference
between Swift and ActionScript. The list points these out in order to minimize surprises when you code.

 Comparison Operators
 Most of the comparison operators look and behave the way you would expect them to.

• Equal to operator: (a == b)

• Not equal to operator: (a != b)

• Greater than: (a > b)

• Less than: (a < b)

• Greater than or equal to: (a >= b)

• Less than or equal to: (a <= b)

 The following two operators however have a slight difference, although they look the same in both
languages:

• Identity operators: (a === b) and (a !=== b)

 The ActionScript counterparts of the identity operators are called strict equality/inequality and let
you compare object references as well as primitive values. In Swift, however, they only serve to compare
references: you can check if two constants or variables refer to the same object, but not if two integers or
strings have the same value.

CHAPTER 18 ■ OPERATORS

390

 Assignment Operator (a = b)
 Just like in ActionScript, the assignment operator , well, assigns a value to a variable. And there is a subtle
nuance in its behavior: unlike in ActionScript, the operator does not return a Boolean result. It does not
return a result at all.

 In other words, the code in Listing 18-1 will have different consequences in each language: in
ActionScript, the if (a = 3) check will return true , causing the code after the if statement to always be
run; in Swift this expression will simply not compile. 1

 Listing 18-1. In Swift the Assignment Operator Does Not Return a Result

 if (a = 3) {
 // The code after the if statement will always execute in ActionScript,
 // but won't even compile in Swift.
 }

 Compound Assignment Operators
 These look and feel the same in both languages:

• Addition assignment: (a += b)

• Subtraction assignment: (a -= b)

• Multiplication assignment: (a *= b)

• Division assignment: (a /= b)

• Remainder assignment: (a %= b)

• Left shift assignment: (a <<= b)

• Right shift assignment: (a >>= b)

• Bitwise AND assignment: (a &= b)

• Bitwise XOR assignment: (a ^= b)

• Bitwise OR assignment: (a |= b)

• Logical AND assignment: (a &&= b)

• Logical OR assignment: (a ||= b)

 Arithmetic Operators
 A new thing here is that the arithmetic operators will not allow overflow or underflow in their result. If either
of these occurs, you get a runtime exception EXC_BAD_INSTRUCTION thrown. A bit disturbing at first, but quite
handy for catching overflow or underflow errors as close to the crime scene as possible, instead of wasting
ages debugging weird behavior down the line.

 1 Why is it significant that the assignment operator does not return a result in Swift? More often than not statements like if
(a = 3) are a result of a typo, where the intention was to write if (a == 3) . So in languages like ActionScript it’s a good
habit to put the constant, or the more constant of the two operands, to the left of the comparison operator: if (3 == a) .
That is, if one of your operands is nice enough to be constant. Why? The ActionScript compiler will let you know that you
have made a typo if you mistakenly wrote if (3 = a) . The Swift compiler spares you the need to trick it and will instead
issue a compiler error if you ever tried to check the result of an assignment operation by mistake or intentionally.

CHAPTER 18 ■ OPERATORS

391

 If you want to enable overflow behavior, you need to explicitly use the overflow versions of the addition,
subtraction, and multiplication operators: the section “Overflow Operators,” later in this chapter, shows you
what they look like.

• Addition: (a + b). Adds expressions. Note that you can use it to concatenate strings
and arrays, as well as numbers.

• Subtraction: (a - b). Subtracts numeric expressions.

• Multiplication: (a * b). Multiplies numeric expressions.

• Division: (a / b). Subtracts numeric expressions.

• Remainder: (a % b). The remainder operator has the same specifics both in
ActionScript and in Swift, including support for floating-point operations and how it
handles signed operands.

• Unary minus and plus operators: (-a) and (+a). These are fancy names for the
minus and plus sign you put in front of numeric values and variables and do exactly
what you would expect them to: the minus sign toggles the sign of the operand and
the plus sign returns its operand as it is without changing it. No difference between
Swift and ActionScript.

 A word about two pairs of operators that you may (or may not) miss in Swift: the increment and
decrement operators : (a++) , (++a) , (a --) and (--a) . Despite being initially part of the language,
they have been voted out of Swift 3, in order to keep code simple and easy to read. As you know from
ActionScript, when you use these operators you need to keep in mind the difference between their
prefix (++a) and postfix (a++) versions: the prefix version increments/decrements its operand and
returns the modified value, while the postfix version returns the operand and then modifies it. The
relative conciseness that you get from using these operators was deemed not worth this complexity
when reading and maintaining code or when learning how to program from scratch with Swift as the
first language.

 Logical Operators
 Following are the three logical operators you can use in Swift:

• Logical NOT: (!a)

• Logical AND: (a && b)

• Logical OR: (a || b)

 There are no surprises here if you are used to how these work in ActionScript. This includes how logical
operators are combined in compound expressions and the use of lazy evaluation .

 What Is Lazy Evaluation?
 Here is a brief reminder of how it works. If the first operand in a logical OR statement evaluates to true , the
rest of the expression after the OR will not be evaluated, as the result will always be true . The same thing
happens if the first operand of a logical AND statement evaluates to false : the result of the whole expression
is then assumed to be false and no further evaluation is done.

 This makes code like that in Listing 18-2 and Listing 18-3 , if not a good habit, at least safe to write.

CHAPTER 18 ■ OPERATORS

392

 Listing 18-2. Lazy Evaluation in ActionScript

 // ActionScript code
 var s : String = null;
 if (null != s && 0 != s.length)

 Listing 18-3. Lazy Evaluation in Swift

 // Swift code
 var s : String? // s is nil
 if nil != s && 0 != s!.characters.count

 Without lazy evaluation we would expect to get a runtime exception from both if statements, as the
operands to the right of the logical AND (&&) try to access properties of null / nil objects. The rules of lazy
evaluation, however, mean that both the ActionScript and the Swift compilers will stop after evaluating the
first operand: null != s and nil != s , respectively. Because this results in false , the rest of the logical
AND expression will be discarded, its final result will be assumed to be false , and the problematic code will
not be run, thereby sidestepping the potential exception.

 Bitwise Operators
 Bitwise operators let you deal with data on the level of individual bits.

• Bitwise NOT: (~a)

• Bitwise: AND (a & b)

• Bitwise OR: (a | b)

• Bitwise XOR: (a ^ b)

• Bitwise left and right shift: (a << b) and (a >> b)

 Although all of these look the same in both languages, there are a couple of differences worth noting.
First, unlike ActionScript, Swift doesn’t convert the operands of the bitwise operators to 32-bit signed
integers before performing the operation. And second, where ActionScript has a separate operator to
deal with right shift for unsigned integers (>>> and its compound version >>>=), Swift does not. Instead it
changes behavior depending on the type of operands you pass to the shift operators.

 Ternary Conditional Operator
 The name of this operator probably sounds new, but it’s just another name for your old friend, known simply
as conditional in ActionScript. It looks like this:

 condition ? result1 : result 2

 This is shorthand for

 if condition { result1 } else { result2 }

 New Operators in Swift
 Here we leave the common ground and explore a handful of operators without parallels in ActionScript.

CHAPTER 18 ■ OPERATORS

393

 Nil Coalescing Operator
 The nil coalescing operator is the epitome of conciseness in Swift. This is what it looks like:

 var c = a ?? b

 It is shorthand for: c = (a != nil) ? a : b .
 Or, in English: unwrap a ; if a is not nil , assign its value to c , otherwise assign the value of b to c . This has

implications on the types of the two operands: a needs to be optional, but b cannot be. Instead, b needs to
match the type that the optional a operand stores.

 ■ Tip For details on value unwrapping have a look at the section “Optionals” in Chapter 19 .

 Range Operators
 Range operators let you define an interval or a range of values and thus are useful tools for for loops,
pattern-matching if and case statements (more on these in Chapter 20), and working with subsets of
strings and arrays. You can choose between two range operators, depending on whether you need to include
one or both boundaries of the range:

• Closed range operator: (a..b)

• Half-open range operator: (a..<b)

 The closed range operator defines an interval from a to b , including both a and b . As the example in
Listing 18-6 shows, the value of the lower end of the interval is expected to be no greater than the upper
value, otherwise you get a runtime error (Listing 18-4).

 Listing 18-4. Closed Range Operator Syntax

 // this prints out the numbers from 1 to 3:
 for i in 1...3 { print ("i = \(i)") }

 // this results in a runtime error:
 for i in 3...1 { print ("i = \(i)") }

 In contrast, the half-open range operator defines an interval from a to b , including a , but not b . The
same rule applies here, as we saw with the closed range operator: the value of a should be no greater than
the value of b (Listing 18-5). Writing (a..<a) defines an empty range .

 Listing 18-5. Half-Open Range Operator

 // this prints out the numbers from 1 to 2:
 for i in 1..<3 { print ("i = \(i)") }

 Pattern-Matching Operator (~=)
 The pattern-matching operator works with ranges and tells you if a value is in a given range. The following
line evaluates to true if row has a value between 0 and 2, including 0 and 2:

 0...2 ~= row

http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_20

CHAPTER 18 ■ OPERATORS

394

 Overflow Operators
 The overflow operators behave just like normal arithmetic operators, which allow value overflow or
underflow. As you saw earlier in the section “Arithmetic Operators,” the default versions of the addition,
subtraction and multiplication operators in Swift will throw an exception if their result over- or underflows.
To opt out of this behavior you need to explicitly use these versions of the operators:

• Overflow addition: (a &+ b)

• Overflow subtraction: (a &- b)

• Overflow multiplication: (a &* b)

 Like in ActionScript, when a value is too big for the number of bits that its type can hold, the extra bits
get truncated, causing the value to wrap around from the minimum value to the maximum or vice versa.

 Operator Overloading
 Function or operator overloading is not part of ActionScript. In many other languages, including Swift,
you can have multiple functions with the same name but different signatures: the functions may differ in
the number or types of arguments they take and/or in the type of the result they return. These namesake
functions are called overloads . The compiler decides which overload should be executed based on how
you call it.

 In the context of operators, it is convenient to be able to apply an operator to any type, including your
custom types that the operator in question may not support. Providing your implementation (overload) of
the subtraction operator, for example, lets you use the more concise and expressive a – b , instead of an
equivalent function call: myCustomSubtractionFunction(a, b) , where a and b are instances of a type you
have defined.

 Like using salt in cooking, operator overloading is helpful in carefully considered amounts. Just because
you can make + or == do whatever you want, it doesn’t mean you should. Providing a dramatically different
behavior for an operator would be at best confusing for your fellow programmers and at worst might break
its relationships with other operators and lead to strange results in your code.

 Operators differ in how many operands they take and how operands are positioned with respect to
the operator: on its left, on its right, on both sides, and so on. This leads to difference in the syntax for
overloading each sort of operator.

 To demonstrate this, we will go through a simple example. Let us declare an enumeration, called
 WeekDay , which represents the days of the week (Listing 18-9). Each member of the enumeration has a raw
value assigned to it, starting with 0 for Monday.

 Listing 18-6. An Enumeration, Which Represents the Days of the Week

 enum WeekDay : UInt {
 case Monday = 0, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
 }

 ■ Note Chapter 22 covers enumerations in detail.

 Overloading an Infix Operator
 Infix operators are put in between their operands (e.g., the addition operator: a + b).

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 18 ■ OPERATORS

395

 If you tried to use the addition operator to add a number to a WeekDay instance at this point, the
compiler would issue an error. You need to define a version of the global addition operator that will make
sense to the Swift compiler (Listing 18-7).

 Listing 18-7. Overloading the Global Addition Operator to Work with WeekDay Instances

 func + (left: WeekDay, right: UInt) -> WeekDay {
 // This ensures that we don't go over the values allowed by WeekDay, so:
 // Tueday + 6 should return Monday
 let dayNumber = (left.rawValue + right) % (WeekDay.Sunday.rawValue + 1)
 assert(WeekDay.Monday.rawValue ... WeekDay.Sunday.rawValue ~= dayNumber)

 return WeekDay(rawValue: dayNumber)!
 }

 // This allows you to do the following:
 let weekDay = WeekDay.Tuesday
 let newWeekDay = weekDay + 6 // newWeekDay is WeekDay.Monday

 Overloading a Compound Assignment Operator
 The operator overload in Listing 18-8 allows you to do this: weekDay += 4 . The operand on the left of the
operator—in this case the first argument of the operator function—is the one that will be modified. This is
why it’s declared inout .

 Listing 18-8. Overloading the Compound Assignment Operator

 func += (inout left: WeekDay, right: UInt) {
 // We sneakily take advantage of the addition operator
 // that was overloaded in the previous example:
 left = left + right
 }

 ■ Note The Swift 3 syntax for this function declaration is func += (left: inout WeekDay, right: UInt)
{/*...*/} . See Chapter 17 for details on inout parameters.

 Overloading a Prefix or a Postfix Operator
 Building on the same example , let us have a look at how you can make this work: ++weekDay . The syntax for
defining an overload to a prefix operator is similar to what you saw with infix operators, but it includes the
keyword prefix (Listing 18-9).

 Listing 18-9. Overloading the Prefix Increment Operator

 prefix func ++ (inout weekDay: WeekDay) -> WeekDay {
 weekDay += 1 // Making use of the += overload
 return weekDay
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

CHAPTER 18 ■ OPERATORS

396

 This function is global too, instead of being a method of WeekDay , as it provides an overload to the global
prefix increment operator.

 Note the inout keyword in front of the argument in the function signature. As its name suggests, it
means that the weekDay argument is to be treated both as an input and an output parameter: its value is
taken by the function, modified, and, when the function exits, replaces the original value of flight .

 Overloading a postfix operator has the same syntax, except that it uses the postfix keyword instead.
Also, when overloading a postfix operator you must remember to return the value that the operand has
 before it gets modified.

 ■ Caution The increment (++) and decrement (--) operators are no longer part of the language since Swift 3.

 Providing a Custom Operator
 Finally, in Swift you can define your own custom operators. The rules are as follows:

• You are allowed to use some ASCII characters that are employed for conventional
operators (/, =, -, +, !, *, %, <, >, &, |, ^, ?, ~) and some Unicode characters.

• There are certain characters and tokens that are reserved and you can’t use, for
example: =, ->, //, /*, */, ., the prefix operators <, &, and ?, the infix operator ?, and the
postfix operators >, !, and ?

• You must first provide a declaration of your custom operator, using the operator
keyword and then define an overload for that operator.

 ■ Tip For a complete list of the symbols you can use in a custom operator, as well as how to ensure
consistent precedence and associativity for your custom operators, see the “Basic Operators” and “Advanced
Operators” chapters in Apple’s The Swift Programming Language (https://goo.gl/Xj8aef).

 This last example declares and overloads a custom operator that will reset a WeekDay instance to 0
(Monday). Let us say that we want the operator to be postfix and to be used like this: weekDay^^
(Listing 18-10).

 Listing 18-10. Defining a Custom Operator

 // First, declare the operator
 postfix operator ^^ {}

 // Then overload it to handle WeekDay
 postfix func ^^(inout weekDay: WeekDay) -> WeekDay {
 // Store the original value of the operand:
 let originalWeekDay = weekDay

 // Then modify the operand:
 weekDay = WeekDay(rawValue: 0)!

https://goo.gl/Xj8aef

CHAPTER 18 ■ OPERATORS

397

 // Finally, return the original value,
 // as we are defining a postfix operator:
 return originalWeekDay
 }

 ■ Note The Swift 3 syntax for this function declaration is postfix func ^^(weekDay: inout WeekDay) ->
WeekDay {/*...*/} . See Chapter 17 for details on inout parameters.

 Again, excercise your judgment when you define custom operators. Keeping code readable and easy to
grasp at first glance is often worth more than making it short.

 Summary
 This chapter showed you how similar operators in ActionScript and Swift are and highlighted the subtle
differences that Swift has here and there. It also introduced you to operators that are new in Swift and
showed you ways of defining operators for your own custom types.

 The next chapter will focus specifically on types and type safety in Swift.

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

399© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_19

 CHAPTER 19

 Types

 Prepare for a relatively fast pace in this chapter. We will speed through topics related to types in Swift and
delve in more detail into those that are likely to be less familiar to an ActionScript developer. The chapter
starts with an overview of Swift’s type policy and goes briefly over some of its primitive types. Then we go
a little deeper and explore optional types. Expect weird syntax there. Moving on, we see how to query an
object’s type and how to type cast. We finish with a few useful references to container types, tuples, and
function types. Seatbelt ready?

 Type Safety and Type Inference
 Swift is a type- safe language: its compiler performs type checks and lets you know if there are any
mismatched types. Making sure to provide a type for everything you declare has two advantages: your code
and intentions become self-documented and you have more confidence at compile time that your code will
do what you intend it to. It, however, has a couple of disadvantages too: having to add types everywhere can
become a chore, and if you have complicated types the result is rather verbose code.

 In order to help with this, the Swift compiler can infer types from values assigned to variables and
constants. This applies to literal values, as well as values that result from expressions. Thus you have a choice
regarding when to explicitly add types to your declarations and can afford conciseness.

 A good guideline for when to rely on the compiler and when to be explicit is to write code for humans 1 : omit
the type declarations when they are obvious and add them when they provide useful information to the reader.

 In order to understand what the compiler will do when a literal is assigned to a type-inferred variable,
it is good to know the types of literals. For example, literal integer values are inferred to be Int , rather than
 UInt , and floating-point values are inferred to be Double by default, rather than Float (Listing 19-1).

 Listing 19-1. Inferring Types from Literal Values: The Compiler Defaults to Int and Double

 var age = 64 // age is inferred to be Int, rather than UInt
 var height = 1.75 // height is inferred to be Double, rather than Float

 Primitive Types
 As you come from an ActionScript programming background, primitive types in Swift will be familiar in how
they behave for the most part. And, as with most things in Swift, the devil is in the detail: you will find some
subtle, but in some cases quite important, differences. Curious? Read on.

 1 To quote Martin Fowler, author of books on refactoring and UML (Unified Modeling Language) among other valuable
topics: “Any fool can write code that a computer can understand. Good programmers write code that humans can
understand.”

CHAPTER 19 ■ TYPES

400

 Integers
 You have at your disposal various flavors of signed and unsigned integer types, each conveniently having
a self-explanatory name: Uint8 stands for “unsigned 8-bit integer,” Int32 for “signed 32-bit integer,” for
example. Unless you need a specific size for your integer data, most of the time it is prudent to use the Int
and UInt type aliases, which have the same size as the platform’s native word. You can find the valid range
for any integer type by calling its min and max properties—for example, let maxInt = Int.max .

 When you work with integer literals you can use decimal, binary, octal, or hexadecimal notation, as
Listing 19-2 demonstrates. All notations, except the decimal one, require a prefix: 0b for binary, 0o for octal,
and 0x for hexadecimal.

 Listing 19-2. Integer Literals in Different Notations

 // Representations of the number 42 in different notations:
 let decimalInt = 42 // no prefix required
 let binaryInt = 0b101010 // uses the 0b prefix
 let octalInt = 0o52 // uses the 0o prefix
 let hexadecimalInt = 0x2A // uses the 0x prefix

 Floating-Point Types
 With floating-point values you have a choice between Double , which takes 64 bits, and Float , which takes 32
bits. It is worth noting that as with a lot of things in Swift, you are expected to be explicit:

• A floating-point literal will be inferred to be of type Double , unless you explicitly cast
it to Float.

• You can’t omit the zero in a floating-point literal. If you do, the compiler issues an
error: .5 is not a valid floating point literal; it must be written '0.5' .

• You can’t mix numbers of different types in mathematical operations: Swift doesn’t
do type coercion behind the scenes. This applies to all numeric types.

 Listing 19-3 illustrates these points with a few examples.

 Listing 19-3. You Need to Be Explicit with Swift Types

 // Using .5 instead of 0.5 generates a compiler error:
 let doubleNumber = 0.5

 // floatNumber is inferred to be of type Double by default,
 // unless you explicitly cast it to Float:
 let floatNumber = 0.2 as Float

 // This line does not compile,
 // unless you explicitly convert floatNumber to Double:
 let difference = doubleNumber - Double(floatNumber)

 Booleans
 The Boolean type in Swift is named Bool and the constant values it takes are true and false , just as in
ActionScript. Unlike in ActionScript, however, other types can’t masquerade as Booleans—all in the name of
being explicit, as we saw with the numeric types above. For example, the if statement in Listing 19-4 will not
compile: the literal Int value provided in place of the condition will not be automatically coerced to Bool .

CHAPTER 19 ■ TYPES

401

 Listing 19-4. If Statements Take Only Bool Conditions

 if 1 {
 print("Gotcha!")
 }
 // error: type 'Int' does not conform to protocol 'BooleanType'

 Characters
 Swift has a special type, called Character , which represents a single human-readable symbol. You can
initialize a Character with a literal symbol in double quotes. Note, however, that such literals are of type
 String . So, in order to create a Character instance, you need to either provide a type explicitly or type cast
the literal, as the example in Listing 19-5 shows.

 Listing 19-5. Creating and Initializing a Character

 There are a couple of details worth noting about Character instances in Swift:

• They don’t always take the same amount of memory.

• The same symbol can be represented in more than one way behind the scenes.

 Why is that? Characters in Swift are Unicode-compliant and are represented by Extended Grapheme
Clusters . These are clusters of Unicode codes, called Unicode Scalars , each of which stands for a character
or for a character modifier. When you want to output a letter with the umlaut modifier, for example ä, you
have a couple of options for how it will be stored in memory: it can be represented by a single Unicode
Scalar that stands for a with umlaut (U+E4) or by a combination of the code for a (U+61) and the code
for umlaut (U+308). Listing 19-6 shows how you can explicitly initialize a Character with an Extended
Grapheme Cluster.

 Listing 19-6. Initializing Characters with Extended Grapheme Clusters

 let aWithUmlaut : Character = "\u{E4}"
 print(aWithUmlaut)
 // output: ä

 let aWithUmlautModifier : Character = "\u{61}\u{308}"
 print(aWithUmlautModifier)
 // output: ä

CHAPTER 19 ■ TYPES

402

 These two facts (characters’ sizes in memory can vary, and there can be more than one way of encoding
the same symbol) are very important and have the following implications :

• When you compare two characters for equality, using the == or the != operator, the
comparison is not done on the Unicode Scalars that they store but on the symbols
that the Unicode Scalars result in. In other words, the two constants in Listing 19-6 ,
 aWithUmlaut and aWithUmlautModifier , will be considered equal, although they
look different in memory.

• Finding out the length of a character array or a string is not a matter of dividing the
number of bytes in the array or string by the size of a character. Instead an iteration
is done over the whole array or string to find out and add up the variable sizes of its
 characters.

• The characters in a string can’t be indexed using numbers. That is, you can’t do
 myString[0] or myString.charAt(0) to get to the first character of the string.
Instead, you need to iterate over the characters from the start or from the end of the
string to get to the one you need to access.

 Strings
 Strings in Swift consist of zero or more Unicode-compliant characters. In the next subsection we will see how
strings are instantiated, initialized, and modified and will mention some pitfalls it is a good idea to be aware of.

 Initializing Strings
 You can use a string literal enclosed in double quotes, or you can provide an array of Character instances, in
order to initialize a String (see Listing 19-7).

 Listing 19-7. Ways of Creating and Initializing a String

 You can also use combinations of other String and Character variables or constants to create a new
 String . Listing 19-8 uses the String and Character constants from the previous example to show you a
couple of different ways of concatenating strings and characters: using the + or the += operators and the
 append method of the String class.

CHAPTER 19 ■ TYPES

403

 Listing 19-8. Concatenating Strings

 Note that helloDialog in the listing is declared as a variable, rather than a constant. This allows you to
modify both its length and its contents.

 You can compare strings with the equality (==) and the inequality (!=) operator or by using one of the
flavors of the String class compare method. Bear in mind that string comparison is a potentially resource-
heavy operation, as we discussed earlier in the section “Characters.”

 The characters method of the String class gives you access to the characters of the String as an array.
Listing 19-9 shows a situation you might find a bit surprising: you can call methods even on literals.

 Listing 19-9. Enumerating the Characters in a String

 for ch in "Strange syntax or what?!".characters {
 print(ch)
 }

 // output:
 //S
 //t
 //r
 //a
 //n
 //g
 //e
 //
 //s
 //y
 //n
 //t
 //a
 //x
 //
 //o
 //r
 //
 //w
 //h

CHAPTER 19 ■ TYPES

404

 //a
 //t
 //?
 //!

 Inserting Values into Strings
 Something that you will probably find yourself doing a lot is string interpolation : inserting values of
constants or variables into strings, also known as string templating . To insert a value into a string, wrap it
with parentheses and prefix it with a backslash: \(value) . Listing 19-10 demonstrates how to insert string
and numeric values into a string literal. It also shows how you can convert an integer to its hexadecimal
string representation and uses an escape sequence to insert a new line (\n) in the middle of the printed
sentence. In Swift you can use all escape sequences you are familiar with from ActionScript; the only
exception is the sequence for escaping a Unicode Scalar, which has a slightly different syntax, as you saw
earlier in Listing 19-6 , when we discussed characters.

 Listing 19-10. Interpolating Values in Strings

 // Get the UnicodeScalar for the symbol ä:
 let aWithUmlautCode = UnicodeScalar("ä")

 // Next, get the UnicodeScalar integer value
 // and store its hexadecimal representation into a String:
 let hexCode = String(aWithUmlautCode.value, radix: 16)

 // Last, print it out, inserting a new line (\n) in the middle of the sentence:
 print("The Unicode Scalar for \(aWithUmlautCode) is \(hexCode), \n
 or \(aWithUmlautCode.value) in decimal notation.")

 // output:
 // The Unicode Scalar for ä is e4,
 // or 228 in decimal notation.

 Inadvertently Copying Strings
 Let us close the topic on strings with a word of caution. Unlike in ActionScript, where String instances are
passed by reference 2 when assigned to other strings or passed to functions, in Swift their default behavior is
to be passed by value. In other words, a String instance that is assigned to another variable or passed as an
argument to a function might 3 end up being copied multiple times, which can be costly.

 Optionals
 If you have tried pretty much any Swift tutorial, you may have wondered what all those question marks and
exclamation marks are all about. At first glance it almost reads like the script of a five o’clock soap opera! See
what we did there with the exclamation mark? This part of the Swift syntax is potentially the most confusing
to a newcomer, so if you want it demystified, you have come to the right place.

 2 Not 100% true, actually. . . . In ActionScript strings are made to behave as if they are passed by value and copies of them
are created only if you modify the String instance via one of its references.
 3 Swift does copy-on-write for value types, so actual copying will happen only if you modify the instance you have
assigned or passed as an argument to a function (inout function arguments are an exception—see Chapter 21).

http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 19 ■ TYPES

405

 What Is an Optional Type?
 Let us start revealing what optionals are by looking at how Swift deals with “normal” types. Consider the
example in Listing 19-11 , which declares an integer and attempts to print it out.

 Listing 19-11. Declaring a Variable of Non-optional Type

 var age: Int
 print("Person's age = \(age)")

 // This generates a compiler error:
 // variable 'age' used before being initialized

 These two lines generate a compiler error: error: variable 'age' used before being
initialized. ActionScript defaults to automatically setting to null or to zero variables that you don’t
explicitly initialize. Other languages are less merciful and will leave whatever junk is in the memory
the variable in question happens to point at. If we had a penny for every hour we have spent in the past
chasing a mysterious crash only to trace it down to an uninitialized variable. . . . 4 This bitter experience
makes us grateful that the Swift compiler can be of some help: catching situations like this at compile time
is invaluable.

 Next, let us see what happens if you try to initialize the age variable by assigning nil to it like we can do
by assigning null in ActionScript (see Listing 19-12).

 Listing 19-12. Initializing a Non-optional Type of Variable with Nil

 var age: Int = nil
 print("Person's age = \(age)")
 // error: nil cannot initialize specified type 'Int'

 This change begets a different compiler error: error: nil cannot initialize specified type
'Int' . In Swift you can’t assign nil to just any variable. You need to explicitly tell the Swift compiler that this
variable can take nil as a value. This could be useful if age was assigned the result of a third-party function,
which may return nil , for example. Listing 19-13 shows you how to let the compiler know that the age
variable can take nil .

 Listing 19-13. Declaring a Variable of Optional Type and Initializing It with Nil

 var age: Int? // the question mark tells the compiler that age can be nil
 // This declaration also automatically initializes age with nil.

 The question mark after the type signals to the Swift compiler that age can accept the nil value. In other
words, having an actual integer value is optional: age can contain an integer or it can contain nil .

 Note that the declaration above also initializes age with nil (i.e., it is shorthand for var age: Int? = nil) .
In other words, if you don’t provide a value for your optional variable, it is automatically set to nil .

 Why Use Optionals?
 Let us have another look at the age variable from the last two examples. Suppose you have a database query,
which takes a person’s name and tells you how old they are (see Listing 19-14).

 4 A crime always committed by another colleague, never by us. Honest!

CHAPTER 19 ■ TYPES

406

 Listing 19-14. Assigning a Function Result to a Non-optional Variable

 func getAgeFromName(name: String) -> Int {
 // query a database and return a result
 }

 var age: Int = getAgeFromName("John Smith")

 An important question is: how do you deal with results for names that are not found in the database?
Return 0? Return -1? Zero is less suitable of the two, as it is a valid age, but it may be your only choice if you
were forced to use UInt , instead of Int . In either case you would need to add comments to document your
intentions about which value should be interpreted as “no information about this person’s age.”

 How about returning something that is neither Int nor UInt ? Having getAgeFromName return nil to
indicate missing information has two merits: it’s consistent and self-documented. 5 Listing 19-15 shows this
subtle change.

 Listing 19-15. Assigning a Function Result to an Optional Variable

 func getAgeFromName(name: String) -> Int? {
 // Query a database and return a result.
 // The result can now be nil.
 }

 let age: Int? = getAgeFromName("John Smith")
 // If age contains any integer value, you know that “John Smith”
 // was found in the database. A nil result on the other hand tells you
 // that either the name was not found or age information was missing for it.

 Note that in both listings you can omit the type from the declaration of age , as the compiler will infer it
from the function result you assign to it:

 let age = getAgeFromName("John Smith").

 Unwrapping an Optional
 Unwrapping is fancy speak for accessing the value of an optional variable or constant. For this to make
complete sense it might be a good idea to peek behind the scenes first. In Swift Optional is actually a
separate type, which looks like Listing 19-16 .

 Listing 19-16. The Optional Type in Swift

 public enum Optional<Wrapped> : _Reflectable, NilLiteralConvertible {
 case None
 case Some(Wrapped)

 // Initializers and methods follow...
 }

 5 Plus, it requires that the caller unwrap the result, so your colleagues can’t claim they didn’t know nil was a possibility.
We will see what unwrapping is in the next section.

CHAPTER 19 ■ TYPES

407

 Unless you skip to Chapter 22 , some of the syntax above, namely, enum and <Wrapped> , may look
unfamiliar. For the moment you can think of the code in Listing 19-16 like this: it declares a type, named
 Optional , which can have two states: None , which means “no value” and Some , which means “some value
of type Wrapped .” Here Wrapped is not an actual type but a type placeholder. You can declare an Optional
variable that can hold an Int value: Optional<Int> or a String value: Optional<String> or whatever value
type you decide to plug in place of Wrapped .

 The ? suffix after an optional-type declaration is syntactic shortcut for Optional<YourTypeHere> , so the
following two declarations in Listing 19-17 are the same.

 Listing 19-17. Two Different Ways of Declaring an Optional Variable

 // These two lines declare the same thing:
 var age: Int?
 var age: Optional<Int>

 ■ Tip Optional<Wrapped> is a generic enumerated type. You can find information and examples on
enumerations and generics in Chapter 22 .

 So when you declare an optional Int variable, this effectively means you are not declaring an Int
that might be nil but an Optional that may or may not contain an Int value. Getting this value out of the
 Optional variable is called unwrapping .

 You can access the value of an Optional in one of two ways:

• by assigning its value to a temporary constant or variable, called optional binding ;
and

• by using forced unwrapping .

 You can also use a third way, which requires a slightly different kind of optional, called implicitly
unwrapped optional . We will have a brief look at each of these choices in the next few subsections.

 Optional Binding
 You bind an optional’s value by assigning it to a temporary constant or a variable. This allows you to perform
a check for whether a value is available or whether the optional contains nil .

 Listing 19-18 shows an example that extracts the value of the optional age variable into the constant
 tempAge . The code following the if statement will only be run if a non- nil value is assigned to tempAge .

 Listing 19-18. Optional Binding

 var age: Int? = 64
 if let tempAge = age {
 // Use tempAge
 }

 Forced Unwrapping
 Force-unwrapping an optional is a bit dramatic. First, you need to be confident that what you unwrap has a
non- nil value. Second, you use the exclamation mark suffix to do the unwrapping (see Listing 19-19). What
could declare confidence better than that?

http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 19 ■ TYPES

408

 Listing 19-19. Forced Unwrapping of an Optional

 var sureAge = age! // The exclamation mark unwraps age's value

 This line effectively says “I am sure that there is a non- nil value inside this variable and am not afraid to
use it.”. The consequence of overconfidence is a runtime error:

 fatal error: unexpectedly found nil while unwrapping an Optional value.

 Implicitly Unwrapped Optionals
 Instead of using the exclamation mark to unwrap an optional every time you need its value, you can declare an
optional variable in a way that makes sure its value is unwrapped when you access it. Such a variable is called
 implicitly unwrapped and you can create one by adding an exclamation mark after its type (see Listing 19-20).

 Listing 19-20. Declaring an Implicitly Unwrapped Optional

 var implicitlyUnwrappedAge: Int! = 64

 ■ Note Here is some behind-the-scenes information. In Swift 2 implicitly unwrapped optionals have a type
of their own: ImplicitlyUnwrappedOptional<Wrapped> . In other words, the declaration in Listing 19-20 is a
shortcut for

 var implicitlyUnwrappedAge: ImplicitlyUnwrappedOptional<Int> = 64

 Swift 3 keeps the syntax for declaring implicitly unwrapped optionals but treats the exclamation mark as a type
attribute. So, implicitlyUnwrappedAge from the last example would no longer be of type ImplicitlyUnwrapped
Optional<Int> , but of type Optional<Int> with a value that may be implicitly forced.

 As is the case with optionals, if you do not provide an initial value when you declare an implicitly
unwrapped optional, it is automatically initialized with nil . You can think of an implicitly unwrapped
optional as a hybrid between an optional and a non-optional variable or constant: it has the option of
containing nil , but can also be used as your usual variable or constant without the need to unwrap its value
every time (Listing 19-21).

 Listing 19-21. Accessing the Value of an Implicitly Unwrapped Optional

 let sureAge = implicitlyUnwrappedAge // no need for an exclamation mark

 Using implicitly unwrapped optionals has its pros and cons. On the one hand, it unclutters your code
from exclamation marks. On the other hand, a variable which contains nil when it shouldn’t makes your
code more likely to break and, at the same time, makes it less obvious why it broke. For instance, if we did
not initialize implicitlyUnwrappedAge and then tried to print it out, this would result in a runtime error
(Listing 19-22).

CHAPTER 19 ■ TYPES

409

 Listing 19-22. Accessing an Implicitly Unwrapped Optional, Which Has Been Initialized with Nil

 var implicitlyUnwrappedAge: Int! // The variable is is initialized with nil.
 print(implicitlyUnwrappedAge) // This results in a runtime error.

 ACTIONSCRIPT ANALOGY

 The behavior of implicitly unwrapped optionals is pretty much how typical ActionScript variables and
constants behave:

• They can contain a value or null ;

• They don’t require a special syntax for accessing that value;

• They are initialized with null by default unless you provide a value explicitly; and

• Accessing a variable or a constant that contains null results in a runtime error.

 Optional Chaining
 Optional chaining saves you the need to check if an optional variable or constant is nil before you access its
properties or call one of its methods. What you get as a result of that access, instead of a slap on the wrist, is
another optional value.

 Let us illustrate this with an example. The code in Listing 19-23 declares two classes: Person and
 PersonalInformation. PersonalInformation contains a single property: age of type Int. Person contains
a single property too, personalInfo , of type PersonalInformation? , which may optionally contain an
instance of PersonalInformation or may contain nil .

 Listing 19-23. Declaring a Class with an Optional Property

 class PersonalInformation {
 var age = 20
 }

 class Person {
 var personalInfo: PersonalInformation?
 }

 In Listing 19-24 the first line instantiates cookieMonster of type Person . Because no initial value is given
to its property personalInfo , it is automatically assigned nil . So what’s going on on the second line, where
 cookieMonster.personalInfo? is accessed and why doesn’t it result in an exception?

 Listing 19-24. Accessing a Property Through Optional Chaining

 var cookieMonster = Person()
 var monstersAge = cookieMonster.personalInfo?.age
 print(monstersAge)

 // output: nil

CHAPTER 19 ■ TYPES

410

 Accessing a property (or calling a method or subscript) on an optional variable that may be nil and
getting away with it is what optional chaining affords you. The way the compiler does it is: if cookieMonster.
personalInfo? is nil , then the result of cookieMonster.personalInfo?.age is inferred to be an optional,
which contains nil . The compiler then infers the same type for monstersAge , which gets assigned that result.

 What’s Your Type?
 When coding, you can have situations where you either need to check if an object is of a certain type or to
find out what type it is. In this section we see how you can do these checks.

 Using the is Operator
 You check if an object is of a certain type with the is operator (see Listing 19-25). It takes an instance and a
type and returns true if the instance is of that type or descends from it, false otherwise.

 Listing 19-25. Using the is Operator for Type Checking

 var randomInt = 42
 var amIString = randomInt is String // returns false
 var amIInt = randomInt is Int // returns true

 ACTIONSCRIPT ANALOGY

 If this looks familiar, it’s because it is. ActionScript has an is operator, which functions in the same way.

 Type Queries
 You can query an instance’s runtime type with obj.dynamicType , as in Listing 19-26 .

 Listing 19-26. Querying an Object’s Type

 var instanceOfInt = 66
 print("\(instanceOfInt.dynamicType)") // prints Int

 ■ Note In Swift 3 dynamicType is no longer a property of the type but an operator. In other words, instead of
calling obj.dynamicType , you will need to call dynamicType(obj) .

 You can obtain the type of a class or a protocol as a value with the postfix expression self . Listing 19-27
shows you a couple of examples.

 Listing 19-27. Querying the Type of a Class and a Protocol

 print("\(MyClass.self)") // prints MyClass
 print("\(MyProtocol.self)") // prints MyProtocol

CHAPTER 19 ■ TYPES

411

 ACTIONSCRIPT ANALOGY

 In ActionScript you have a few ways of getting dynamic type information, which work differently than
 dynamicType in Swift:

• getQualifiedClassName and getQualifiedSuperclassName give you type
information as a string.

• describeType returns a very detailed report about an object’s type and its
characteristics in XML format.

• typeof distinguishes between six compile-time types: String , MovieClip , Object ,
 Function , Number, and Boolean and gives you type information in string format.

 Type Casting
 Like ActionScript, Swift offers you the as operator for type casting . Unlike the ActionScript version, it comes
in two flavors: as? and as! If you have read the previous section on optionals, this syntax will look familiar.

 The as? version of the operator returns an optional value, which is set to nil if the cast is unsuccessful.
The as! , otherwise known as the forced form of the operator, does not give you the option of checking but
throws a runtime error when the type casting is not possible. Use it when you feel confident in your type
 casting . Or not at all.

 The examples that follow illustrate the two scenarios. Listing 19-28 declares an Int instance, tries to cast
it as a String , and, if the cast succeeds, assigns the result to a temporary constant, named stringVersion .
Note how the declaration of stringVersion uses optional binding, which we covered earlier in the section
“Optionals.”

 Listing 19-28. Using the as? Operator for Type Casting

 var instanceOfInt = 42

 if let stringVersion = instanceOfInt as? String {
 print("Casting an Int to a String succeeded: \(stringVersion)")
 }
 else {
 print("The cast did not succeed.")
 }

 // output: "The cast did not succeed."

 Using the same integer instance, instanceOfInt , Listing 19-29 casts it to a String and force-unwraps
the result, which leads to a runtime error.

 Listing 19-29. Using the as! Operator for Type Casting

 print("Casting an Int to a String: \(instanceOfInt as! String)")
 // throws a runtime error

 If you try these examples at home, you will notice that the compiler very gracefully issues a warning at
the line of type casting, telling you that Cast from 'Int' to unrelated type 'String' always fails .

CHAPTER 19 ■ TYPES

412

 ACTIONSCRIPT ANALOGY

 The as operator will be familiar to you from ActionScript, where it behaves like Swift’s optional form:
 as? and returns null if the cast is unsuccessful.

 Nested Types
 In Swift a type can be defined within the context of another type. The example in Listing 19-30 defines the
class HostClass , which contains two levels of hosted classes: FirstNestedClass and SecondNestedClass .
This demonstrates the syntax for nested types: the definition of the nested type must be put within the curly
brackets of its host. It also shows you that you can use more than one level of nesting.

 Listing 19-30. Defining Nested Types

 class HostClass {
 class FirstNestedClass {
 class SecondNestedClass {
 let secondNestedClassField = "I am three levels deep."
 }
 }
 }

 The purpose of nesting types within one another usually is to keep a type within the context in which
it is needed: for example, if HostClass is the only class that uses FirstNestedClass , it would make sense to
keep FirstNestedClass ’s definition within the scope of HostClass . However, if you need to access a nested
type outside its host, you can do that by prefixing its name with the name of its enclosing type(s) as shown in
Listing 19-31 .

 Listing 19-31. Accessing a Nested Type Outside Its Containing Type

 let secondNestedInstance = HostClass.FirstNestedClass.SecondNestedClass()
 print("\(secondNestedInstance.secondNestedClassField)")

 Some Types Worth Getting to Know
 We will now have a look at a few types you are likely to use quite a lot when you program with Swift:
containers, tuples, and function types.

 Container Types: Array, Set, Dictionary
 The container types in Swift are implemented as generic classes. We will go over generics in Chapter 22 in
detail. For now, you can think of a generic class like this: Array<String> stands for “an array of String items
and nothing else” and Array<Int> stands for “an array of Int items and nothing else.” By “nothing else” here
we mean that an Array , or a Set in Swift contain items of the same type: you can have an array of String s or
an array of Int s, but you can’t have an array that contains a String and an Int .

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 19 ■ TYPES

413

 ACTIONSCRIPT ANALOGY

 You will find the Swift container classes: Array , Set (a set being a special kind of array) and
 Dictionary very close to how their ActionScript counterparts operate, but there is a subtle difference.
With the exception of vector<T> , in ActionScript you can have items of various types in the same
container, while in a Swift container items are always of the same type.

 Array
 Let us see how we can manipulate arrays in Swift: from creating and initializing them to iterating through
their items and making modifications.

 Ways of Creating and Initializing an Array

 Following are some typical ways you may use to create an Array and give it initial values. The first example
(Listing 19-32) shows you how to create an empty array of String items. The square brackets tell the Swift
compiler that you are declaring an array and the type between them is the type of the items it will contain.

 Listing 19-32. Creating an Empty Array

 var theThreeMusketeers = [String]()

 Note that this is shorthand for writing var theThreeMusketeers : Array<String> = [] .

 ■ Tip If Array<String> looks strange, have a look at the section on generics in Chapter 22 .

 Listing 19-33 shows you how to declare an array with an initial size and an initial value for its items.

 Listing 19-33. Creating Array of a Given Size and Initializing Its Members with a Certain Value

 var theThreeMusketeers = [String](count: 3, repeatedValue: "")

 You can also create an array using an array literal: the syntax in the Listing 19-34 will look familiar from
ActionScript. Note how once you provide literal values the compiler is able to infer their type, so you can be
concise in your declaration and omit the type declaration part.

 Listing 19-34. Initializing an Array with an Array Literal

 var theThreeMusketeers = ["Athos", "Porthos", "Aramis"]
 var extraMusketeers = ["D'Artagnan"]

 Finally, you can combine the arrays you declared previously and create a third one, as in Listing 19-35 ,
using the + operator.

 Listing 19-35. Creating an Array by Combining Two Other Arrays

 var theFourMusketeers = theThreeMusketeers + extraMusketeers

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 19 ■ TYPES

414

 How to Iterate over an Array

 You can use a for-in loop to iterate over the items in an array. For example, see Listing 19-36 .

 Listing 19-36. Iterating over an Array Using a for-in Loop

 for musketeer in theFourMusketeers {
 print("Musketeer's name: \(musketeer)")
 }

 Here is a neat trick, shown in Listing 19-37 : the Array class has a method, called enumerate , which
allows you to iterate not only over the items in the array but also over their indices. Neat, huh?

 Listing 19-37. Iterating over an Array by Calling Its Enumerate Method

 for (index, value) in theFourMusketeers.enumerate() {
 print("\(index + 1). Musketeer's name: \(value)")
 }

 ■ Tip We will go over the specifics of the for-in loops in Swift in Chapter 20 .

 Working with the Items of an Array

 You can query the number of items in an array by calling its count method. The isEmpty method lets you
check whether the array has any items in it. The next couple of examples in Listing 19-38 and Listing 19-39
show you how to add items to an array and how to modify them. Some of the ways will look familiar to you
from ActionScript. Others may be new (e.g., replacing a range of array items with a new array), as shown on
the third line of code of Listing 19-39 .

 Listing 19-38. Adding Items at the End of an Array

 var theThreeMusketeers = [String]()

 // adds "Athos" to the end of the array:
 theThreeMusketeers.append("Athos")
 // the array contains [“Athos”]

 // concatenates theThreeMusketeers with the array ["Porthos", "Aramis"]
 theThreeMusketeers += ["Porthos", "Aramis"]
 // the array now contains ["Athos", "Porthos", "Aramis"]

 Listing 19-39. Modifying the Values of Array Items

 // creates an array of four Strings and initializes them with an empty string:
 var theFourMusketeers = [String](count: 4, repeatedValue: "")
 // the array contains ["", "", "", ""]

 // replaces the first string in the array with "D'Artagnan":
 theFourMusketeers[0] = "D'Artagnan"
 // the array now contains ["D'Artagnan", "", "", ""]

http://dx.doi.org/10.1007/978-1-4842-1666-8_20

CHAPTER 19 ■ TYPES

415

 // replaces the range of items 1, 2 and 3 with new values:
 theFourMusketeers[1...3] = ["Athos", "Porthos", "Aramis"]
 // the array now contains ["D'Artagnan”, "Athos", "Porthos", "Aramis"]

 Inserting and removing an item at a specific index is done with the insert(_:atIndex:) and the
 removeAtIndex(_:) methods—very similar to the insertAt and removeAt methods of the ActionScript Array .

 Set
 A Set in Swift represents a collection of unique items. You can think of it as an Array , which can only contain
the same value once. Like an Array , a Set collection is unordered. All of the functionality for working with
arrays applies to sets too, except that there is no shorthand form for declaring a Set (Listing 19-40).

 Listing 19-40. Creating a Set and Initializing It with an Array Literal

 var fireflyCharacters: Set<String> = ["Mal", "Inara"]

 You can perform logical set operations, using the union(_:) , subtract(_:) , intersect(_:) , and
 exclusiveOr(_:) methods of the Set class. All of these create a new set and return it as a result. For
example, the code in Listing 19-41 finds the intersection between two sets.

 Listing 19-41. Finding the Intersection Between Two Sets

 var fireflyCharacters: Set<String> = ["Mal", "Inara"]
 var serenityCharacters: Set<String> = ["Mal", "Inara", "Kaylee", "Simon"]

 var commonCharacters = fireflyCharacters.intersect(serenityCharacters)
 // commonCharacters contains ["Mal", "Inara"]

 Swift gives you the ability to compare sets and determine if they are equal by using the equals
operator (==). You can also check if one set contains another set by using the isSubsetOf(_:)/
isStrictSubsetOf(_:) and isSupersetOf(_:)/isStrictSupersetOf(_:) methods. The
 isDisjointWith(_:) method returns true if two sets have no items in common.

 Dictionary
 If you use dictionaries in ActionScript, you won’t have much of a learning curve with the Swift Dictionary
type. Like its ActionScript cousin, it stores a collection of associated key-value pairs. The next few
subsections show ways of creating and initializing a Swift Dictionary .

 Ways of Creating and Initializing a Dictionary

 The example in Listing 19-42 creates an empty dictionary, in this case with keys of type String and values of
type Double .

 Listing 19-42. Creating an Empty Dictionary

 // creates an empty dictionary with keys of type String and Double values:
 var macOsXVersions = [String: Double]()

CHAPTER 19 ■ TYPES

416

 The line in Listing 19-42 creates an empty dictionary with keys of type Double and values of type String .
Note that this is the shorthand notation for

 var macOsXVersions : Dictionary<String, Double> = [:] .

 ■ Tip For a detailed explanation of the angle brackets syntax go to the section on generics in Chapter 22 .

 Listing 19-43 shows you how to create a dictionary and initialize it with a dictionary literal. You can see
the Swift type inference in action here: you don’t need to explicitly specify the key-value types: the compiler
guesses them from the literals you provide.

 Listing 19-43. Initializing a Dictionary with a Dictionary Literal

 // creates a dictionary with keys of type String and values of type Double:
 var macOsXVersions = ["Cheetah" : 10.0, "Puma" : 10.1, "Jaguar" : 10.2]

 Iterating over a Dictionary

 The for-in loop is your friend here too. With dictionaries you have an option to iterate over keys and values
together (Listing 19-44) or separately (Listing 19-45).

 Listing 19-44. Iterating over a Dictionary’s Keys and Values

 for (versionName, versionCode) in macOsXVersions {
 print("\(versionName) \(versionCode)")
 }

 Listing 19-45. Iterating over a Dictionary’s Keys and Values Separately

 // Iterating through the keys only
 for versionName in macOsXVersions.keys {
 print("Mac OS X version name: \(versionName)")
 }

 // Iterating through the values only
 for versionCode in macOsXVersions.values {
 print("Mac OS X version code: \(versionCode)")
 }

 Accessing and Modifying Keys and Values

 The next few examples in Listing 19-46 , Listing 19-47 , and Listing 19-48 show you how to add, modify, and
remove items from a dictionary.

 Listing 19-46. Adding a New Key-Value Pair to a Dictionary

 macOsXVersions["Panther"] = 0.0
 // macOsXVersions now contains
 // ["Cheetah" : 10.0, "Puma" : 10.1, "Jaguar" : 10.2, "Panther" : 0.0]

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 19 ■ TYPES

417

 When you need to modify an existing value for a given key, you can do that by accesing the value
directly, using a subscript , represented by the square brackets surrounding the key (more on subscripts in
 Chapter 22). You can also call the updateValue method of the Dictionary class, which gives you a chance to
retain the old value of the key after you have replaced it with a new one (Listing 19-47).

 Listing 19-47. Modifying the Value for a Given Key

 // You can update a value using subscript
 macOsXVersions["Panther"] = 0.3
 // macOsXVersions now contains
 // ["Cheetah" : 10.0, "Puma" : 10.1, "Jaguar" : 10.2, "Panther" : 0.3]

 // ... or you can call the updateValue(_:forKey:) method
 if let oldValue = macOsXVersions.updateValue(10.3, forKey: "Panther") {
 print("The old value for Mac OS X 10.3 was \(oldValue).")
 }
 // macOsXVersions now contains
 // ["Cheetah" : 10.0, "Puma" : 10.1, "Jaguar" : 10.2, "Panther" : 10.3]

 To remove a key-value pair from a Dictionary you simply replace the value with nil , as shown in
Listing 19-48 .

 Listing 19-48. Removing a Key-Value Pair from a Dictionary

 macOsXVersions[“Panther”] = nil
 // macOsXVersions now contains
 // ["Cheetah" : 10.0, "Puma" : 10.1, "Jaguar" : 10.2]

 Tuples
 Tuples are useful for temporarily keeping a group of values together. “Temporarily” here means as a way
of returning multiple values from a function, for example. To keep values together that will have a longer
lifespan than that, you would normally be better off keeping them in a class or a structure.

 You define a tuple as a comma-separated list of types, enclosed in parentheses. Listing 19-49 declares
a tuple, weatherStats , which contains two values: wind speed in miles per hour and wind direction. This
means that the tuple’s type is (Int, String) .

 Listing 19-49. Defining a Tuple

 let weatherStats = (7, "North") // Tuple of type (Int, String)

 You can read the values in a tuple by assigning them to a temporary constant. The next few examples
show you how to do that and how to read or ignore values selectively.

 The code in Listing 19-50 assigns the values of the tuple we just declared to two temporary constants:
 windSpeed and windDirection .

 Listing 19-50. Accessing Individual Values in a Tuple

 let (windSpeedMph, windDirection) = weatherStats
 print("wind speed: \(windSpeedMph) mph, direction: \(windDirection)")

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 19 ■ TYPES

418

 You don’t have to define constants for all of the tuple’s values if you are not interested in all of them. Use
underscore to ignore values that you don’t need to access (Listing 19-51).

 Listing 19-51. Selectively Accessing Individual Values in a Tuple

 let (_, windDirection) = weatherStats
 print("wind direction: \(windDirection)")

 Each of the tuple’s values has an index which you can access by putting a dot, followed by the index’s
number after the name of the tuple. Calling weatherStats.0 gives you access to the first member of the
tuple, weatherStats.1 —to the second, and so on, as shown in Listing 19-52 .

 Listing 19-52. Using an Index to Access a Tuple’s Member

 print("wind speed: \(weatherStats.0) mph, direction: \(weatherStats.1)")

 As an alternative to using indices, you can name each tuple member and use its name to access it.
Listing 19-53 defines the tuple weatherStats with two named elements— windSpeed and windDirection —
and then accesses their values as weatherStats.windSpeed and weatherStats.windDirection .

 ■ Note To use names, a tuple must have at least two elements.

 Listing 19-53. Using Names for Tuple Elements

 let weatherStats = (windSpeed: 7, windDirection: "North")
 print("wind speed: \(weatherStats.windSpeed) mph,
 direction: \(weatherStats.windDirection)")

 The example in Listing 19-54 shows you a function, which returns a tuple.

 Listing 19-54. A Function, Which Returns a Tuple as a Result

 func getWeatherStats() -> (Int, String) {
 return (7, "North")
 }

 ACTIONSCRIPT ANALOGY

 Tuples are similar to using dynamic objects in ActionScript—see if the code in Listing 19-55 looks
familiar.

 The code in Listing 19-55 shows the ActionScript analogue of the tuple we defined in Listing 19-53 .

 Listing 19-55. Using Dynamic Objects in ActionScript Is Close in Syntax to Swift’s Tuples

 // ActionScript code:
 var weatherStats : Object = {windSpeed: 7, windDirection: "North"};
 trace("wind speed: " + weatherStats.windSpeed + "mph,
 direction: " + weatherStats.windDirection);

CHAPTER 19 ■ TYPES

419

 Function Types
 In Swift the type of a function is its signature. Listing 19-56 , for example, declares a function of type (String)
-> String . This means that the function takes one argument of type String and returns a String result.

 Listing 19-56. Declaring a Function of Type (String) -> String

 func capitalize(str: String) -> String {
 return str.uppercaseString
 }

 When you know a function’s type, you can assign it to a variable, as shown in Listing 19-57 . You define
the type of the variable as (functionArguments) -> functionReturnType .

 Listing 19-57. Assigning a Function to a Variable

 // the next line declares a variable
 // and assigns a function of type (String)->String to it:
 let capitalizeFunction: (String) -> String = capitalize

 // accessing the variable and giving it an argument
 // results in the function being called:
 print("capitalization: \(capitalizeFunction("fallaciloquence"))")

 You can also pass a function type as an argument to another function. Again, you use the function’s
signature as the type of the argument, so capitalizationFunction ’s type in Listing 19-58 is (String) ->
String .

 Listing 19-58. Using a Function Type as a Parameter to Another Function

 // This function takes another function as an argument:
 func printCapitalizedString(capitalizationFunction: (String) -> String,
 str: String) {
 let capitalizeFunction: (String) -> String = capitalize
 print("capitalization: \(capitalizeFunction("fallaciloquence"))")
 }

 Or, you can have a function that returns another function as a result. A bit weird, but only syntax-wise.
The first arrow in Listing 19-59 is put before the return type of getCapitalizationFunction . The second
arrow is part of its return type: (String) -> String .

 Listing 19-59. Returning a Function Type as a Result of Another Function

 func getCapitalizationFunction() -> (String) -> String {
 return capitalizeFunction
 }

 ACTIONSCRIPT ANALOGY

 Swift’s function types are very similar to ActionScript’s Function type.

CHAPTER 19 ■ TYPES

420

 Type Aliases
 Finally, you can name any existing type on a whim using the typealias keyword. Say you are writing an app
that takes payments and want a more meaningful name for the type you would use to store prices. Using
 Price as an alias to UInt makes it obvious not only that it allows only non-negative values but also why
(Listing 19-60).

 Listing 19-60. Defining a Type Alias

 public typealias Price = UInt

 Summary
 You are now familiar with the basics of the types in Swift and know how to take advantage of the compiler’s
type inference, how to query an instance’s type, and how to type cast it. This chapter has also, it is hoped,
demystified Swift’s syntax weirdness around optional types and now you are comfortable with all of the
question marks and exclamation marks in the code. Add to that some essential information on a bunch of
important types and you are set to go!

421© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_20

 CHAPTER 20

 Control Flow

 We have so far covered types and operators in Swift and you know how to declare variables and constants.
Now is time to go over how you can control the execution of your code. It’s all about loops, conditional
statements, keywords for changing the course of action, and Christmas carols . . .

 Loops
 It is Christmas as I am writing this and the shops and cafés around me are playing the obligatory Christmas
carols in a loop. One in particular strikes me as an example I could steal to play with and show you how
loops work in Swift. It’s called The Twelve Days of Christmas and goes like this:

 On the first day of Christmas my true love sent to me

 a partridge in a pear tree.

 On the second day of Christmas my true love sent to me

 two turtle doves

 and a partridge in a pear tree.

 On the third day of Christmas my true love sent to me

 three French hens,

 two turtle doves

 and a partridge in a pear tree.

 . . . and so on until we collect a whole menagerie on day 12. 1 The song has a simple structure, which iterates
through a set of days, 12 to be precise. Each iteration follows the same pattern: a day is enumerated, a gift is
associated with it, and then another iteration is done, this time backward, through all of the accumulated
gifts thus far.

 The examples I am going to run you through will try to build the lyrics of the song, using for or while
loops. For that purpose, let us declare all the Christmas gifts in an array first. We will then iterate over
that array in various different ways. Listing 20-1 declares a constant array, called christmasGifts , which
contains the description of the gifts for each day. We will also declare another constant: christmasDays to
keep the number of days to iterate through, which equals the number of items in the christmasGifts array.

 1 Speaking of menagerie, you might like Frank Kelly’s version of the text. Go on, look it up on YouTube, you know you
want to.

CHAPTER 20 ■ CONTROL FLOW

422

 Listing 20-1. Declaring an Array of Christmas Gifts, Which We Will Use in the Next Examples

 // An array of Christmas gifts
 let christmasGifts = ["a partridge in a pear tree",
 "two turtle doves",
 "three french hens",
 "four calling birds",
 "five gold rings",
 "six geese a-laying",
 "seven swans a-swimming",
 "eight maids a-milking",
 "nine ladies dancing",
 "ten lords a-leaping",
 "eleven pipers piping",
 "twelve drummers drumming"]

 let christmasDays = christmasGifts.count

 for
 We will introduce loops with something that will look familiar from ActionScript but is on its way out in
Swift: the straightforward for loop. It works and almost looks like its ActionScript counterpart, except that
you do not need to enclose the definitions after the if statement, the so-called initialization , condition , and
 afterthought , in parentheses. Listing 20-2 demonstrates the syntax. This example declares a variable, called
 day , which is initialized with a value of 1 and keeps incrementing after each execution of the loop until it
reaches the value of christmasDays . In the body of the loop day is used to print out the day and what gift was
received on it. The corresponding gift is effectively the value of christmasGifts[day - 1] , as Swift arrays,
like their ActionScript cousins, have indices starting at 0 .

 Listing 20-2. A for loop with a Counter

 // Define a counter, named day
 // and use it to iterate over the christmasGifts array:
 for var day = 1; day <= christmasDays; day += 1 {
 print("On the \(day) day of Christmas my true love sent to me")

 // Like in ActionScript, arrays in Swift are indexed from zero.
 print("\(christmasGifts[day - 1])\n")
 }

 // output:

 //On the 1 day of Christmas my true love sent to me
 //a partridge in a pear tree

 //On the 2 day of Christmas my true love sent to me
 //two turtle doves

 //On the 3 day of Christmas my true love sent to me
 //three french hens

 // ...

CHAPTER 20 ■ CONTROL FLOW

423

 The output of this loop leaves a few things to be desired. First, the verses are not quite right: we are
missing the iteration through the accumulated gifts. Second, it would be nice if we had “1 st ” instead of “1”,
“2 nd ” instead of “2,” and “3 rd ,” instead of “3” when we enumerate the days of Christmas. We will tackle both of
these shortcomings in the course of the chapter.

 ■ Caution This form of the for loop is deprecated in Swift 2.2 and will not be part of Swift 3. Its substitute,
the for-in loop is better suited for most situations where you will need to loop through items: iterating through
collections or going through a range of values. More on that in the next section.

 for-in
 The for-in flavor of the for loop is a bit more versatile than its ActionScript for..in and for each .. in
counterparts and offers you more ways of counting or iterating through items.

 Let us start with an exact equivalent of the loop in the last example, but using more concise syntax.
Instead of for initialization ; condition ; afterthought the code in Listing 20-3 declares a loop with
the following anatomy: for counter in range , where range goes from 1 to the value of christmasDays and
 counter loops through that range. Note that the bounds of the range don’t have to be constants. Both this
loop and the for loop in Listing 20-2 produce the same result.

 ■ Note The range declaration in the example below uses the closed range operator , which we covered in
Chapter 18 .

 Listing 20-3. A for-in Loop, Which Counts Within a Range

 for day in 1...christmasDays {
 print("On the \(day) day of Christmas my true love sent to me")
 print("\(christmasGifts[day - 1]) \n")
 }

 // output:

 //On the 1 day of Christmas my true love sent to me
 //a partridge in a pear tree

 //On the 2 day of Christmas my true love sent to me
 //two turtle doves

 //On the 3 day of Christmas my true love sent to me
 //three french hens

 // ...

http://dx.doi.org/10.1007/978-1-4842-1666-8_18

CHAPTER 20 ■ CONTROL FLOW

424

 Ignoring the Counter
 Instead of the full version of the syntax, for counter in range , you can use for _ in range . The underscore
tells the compiler that you don’t care for the values of the counter variable and want to ignore them. The
next example illustrates that, if not in the most efficient way. It ignores the values that the for-in loop
provides and instead uses a variable outside the loop, named day , which gets incremented with each
iteration. The numberOfGifts variable accumulates the values that day goes through and in the end contains
the total number of Christmas gifts in the song (Listing 20-4).

 Listing 20-4. You Can Ignore the Counter in a for-in Loop

 var numberOfGifts = 0
 var day = 1

 // Ignore the counter
 for _ in 1...christmasDays {
 day += 1
 numberOfGifts += day
 }
 print("I received \(numberOfGifts) gifts for Christmas.")

 // output: I received 78 gifts for Christmas.

 Iterating Through Items in an Array
 Straying from our mission to build that Christmas carol for a just bit longer (don’t worry, we’ll get there), let me
show you how you can enumerate the items in an array, using a for-in loop. The code in Listing 20-5 prints out
a bullet list of the items in the christmasGifts array. Does that look familiar? It should: bar a couple of extra
parentheses, you would do exactly the same thing in ActionScript, using a for each ... in loop.

 Listing 20-5. A for-in Loop That Enumerates the Items in an Array

 print("I received a whole menagery for Christmas:")
 for gift in christmasGifts {
 print("• \(gift)")
 }

 // output:

 //I received a whole menagery for Christmas:
 //• a partridge in a pear tree
 //• two turtle doves
 //• three french hens
 //• four calling birds
 //• five gold rings
 //• six geese a-laying
 //• seven swans a-swimming
 //• eight maids a-milking
 //• nine ladies dancing
 //• ten lords a-leaping
 //• eleven pipers piping
 //• twelve drummers drumming

CHAPTER 20 ■ CONTROL FLOW

425

 Looping Backward Through a Range
 Let us go back to what we set out to do in the beginning of this chapter, which was to have the lyrics of The
Twelve Days of Christmas printed out by a loop in Swift. What we achieved so far in Listing 20-2 and Listing 20-3
was to have the beginning of each verse printed out by a for or a for-in loop. The next step is to add the missing
lines to the verses: every verse will be a line longer than the previous one and will enumerate backward the gifts
received so far.

 To build a backward-iterating loop , we will take advantage of a method that you can call on integer
types in Swift. 2 The method is called stride(to: end_value, by: step) and produces a sequence of values
ranging from the value of the number you call the method on to end_value , spaced by step (Listing 20-6).

 Listing 20-6. Producing a Backward-Counting for-in Loop

 // The stride(to:_, by:_) method
 // lets you count backwards from the current value of day
 for dayBackwards in day.stride(to: 0, by: -1) {
 // compose verse here
 }

 To get the verses of the song composed properly, we need to nest this loop inside the loop, which
enumerates each day from 1 to the value of christmasDays : the outer loop will go through the days and the
inner loop through the gifts that have been accumulated on each day.

 Before we do that, however, let us take care of some extra business: when gifts are enumerated, each line
describing a gift requires different punctuation, depending on which verse it appears in and what gift is being
described. For example, we want to add a full stop to the last line of each verse: “a partridge in a pear tree.” On the
days after day one this last line will also have an extra “and” at the start and will appear as “and a partridge in a pear
tree.” In addition, we want the lines about the gifts to be separated by commas, except the last two because of that
extra “and” between them. Listing 20-8 takes care of all this in a function that we will call composeVerseLine . It takes
the index of the day the verse is about (day), a gift description (gift), and a Boolean parameter (needsPrefix),
whose job is to help us decide whether the line being composed needs an “and” prepended to it (Listing 20-7).

 Listing 20-7. Taking Care of the Punctuation in the Verse Lines

 // This function composes a song line, which describes a gift.
 func composeVerseLine
 (day: Int, gift: String, needsPrefix : Bool = true) -> String {
 // From the second day onwards, we want to prepend "and"
 // at the start of the last verse, in order to get
 // "and a partridge in a pear tree".
 let versePrefix = (1 == day && needsPrefix) ? "and " : ""

 // We want every line that describes a gift,
 // but the last two, to end with a comma.
 // The penultimate line doesn't need punctuation
 // and the last one needs a fullstop.
 let versePostfix = 1 == day ? "." : (2 == day ? "" : ",")

 // Finally, ready to assemble the line:
 return "\(versePrefix)\(gift)\(versePostfix)"
 }

 2 Integers, as well as all the other primitive types in Swift, are implemented as structures behind the scenes and thus can
have properties and methods. You can read about structures in Chapter 21 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 20 ■ CONTROL FLOW

426

 ■ Tip The assignments to versePrefix and versePostfix use the ternary conditional operator (a ? b : c).
For details on it and how it compares to its ActionScript counterpart see Chapter 18 .

 We can now put the two loops together and have them output the lyrics of the song (Listing 20-8).

 Listing 20-8. Two Nested for-in Loops

 for day in 1...christmasDays {
 print("\nOn the \(day) day of Christmas my true love sent to me")

 // Enumerate the days backwards, starting with the current day:
 for dayBackwards in day.stride(to: 0, by: -1) {
 // Call the function we defined that adds punctuation to each line:
 let verseLine =
 composeVerseLine(dayBackwards,
 gift: christmasGifts[dayBackwards - 1], needsPrefix: day > 1)
 print("\(verseLine)")
 }
 }

 // output:

 //On the 1 day of Christmas my true love sent to me
 //a partridge in a pear tree.

 //On the 2 of day Christmas my true love sent to me
 //two turtle doves
 //and a partridge in a pear tree.

 //On the 3 of day Christmas my true love sent to me
 //three french hens,
 //two turtle doves
 //and a partridge in a pear tree.

 // ...

 Now that’s more like it: the song lyrics look almost exactly as we would expect to see them. Except for
the annoying “On the 1 day,” “On the 2 day,”. . . We will take care of these in due course.

 ACTIONSCRIPT ANALOGY

 The ActionScript for..in and for each .. in loops both let you iterate through the elements of an
array: one gives you access to the arrays’ indices and the other to the values of the items in the array.
This just about covers their similarities with the for-in loop in Swift. They don’t let you define ranges
but can loop through the dynamic properties of an object.

http://dx.doi.org/10.1007/978-1-4842-1666-8_18

CHAPTER 20 ■ CONTROL FLOW

427

 while
 The while loop in Swift will be like an old friend to you if you are used to while loops in ActionScript. And if
you have avoided them altogether, I can’t blame you: it is usually easier to go into an infinite loop with while
than with for , although with perseverance you can achieve anything. The syntax you use in Swift looks like
this: while condition { statements } . The loop will repeat the statements in the curly brackets as long as
 condition evaluates to true .

 Listing 20-9 continues the Christmas theme we started when we went over for loops. This time we will
be printing the verses backward, starting from the twelfth day of Christmas and going down to the first.

 Listing 20-9. Printing Out Verses with a while Loop

 // Redefine christmasGifts as a variable, so we can change its size:
 var christmasGifts = ["a partridge in a pear tree",
 "two turtle doves",
 "three french hens",
 "four calling birds",
 "five gold rings",
 "six geese a-laying",
 "seven swans a-swimming",
 "eight maids a-milking",
 "nine ladies dancing",
 "ten lords a-leaping",
 "eleven pipers piping",
 "twelve drummers drumming"]

 while 0 < christmasGifts.count {
 // The number of gifts left in christmasGifts
 // will tell us which day we are singing about:
 let day = christmasGifts.count

 // The last gift in the array gets extracted:
 let lastGift = christmasGifts.popLast()

 print("\nOn the \(day) day of Christmas my true love sent to me")
 print("\(lastGift!)")
 }

 // output:

 //On the 12 of day Christmas my true love sent to me
 //twelve drummers drumming

 //On the 11 of day Christmas my true love sent to me
 //eleven pipers piping

 //On the 10 of day Christmas my true love sent to me
 //ten lords a-leaping

 // ...

CHAPTER 20 ■ CONTROL FLOW

428

 Each iteration of the loop extracts a gift description from the end of the christmasGifts array and prints out
the start of the verse that introduces that gift. The loop runs while there are items in the array. In order to be able
to modify the size of the christmasGifts array, we need to make it mutable (i.e., define it as a variable rather than
a constant). Chapter 19 introduced arrays: have a look if you need more details on how to work with them.

 ACTIONSCRIPT ANALOGY

 ActionScript’s while loop only differs in syntax from its Swift cousin in that in ActionScript you must
put condition in brackets: while (condition) { statements } , whereas in Swift the parentheses are
optional.

 repeat-while
 A repeat-while loop has the following syntax in Swift: repeat { statements } while condition . It first
runs the statements inside the curly brackets and then checks if condition is true or false . If it is true , the
 statements are run again and again until condition evaluates to false . This way the statements in the body
of the loop are guaranteed to run at least once, whatever condition evaluates to initially.

 Let us rewrite the while loop from the previous example into a repeat-while loop. As you can see in
Listing 20-10 , the two loops are almost identical. With the repeat-while version it becomes necessary to
ensure that there is a string in the array to extract before we use it, because the loop will run once before
we get a chance to check if the array had items in it. The if let lastGift = christmasGifts.popLast()
statement does that.

 Listing 20-10. Printing Out Verses with a repeat-while Loop

 repeat {
 // The loop will execute at least once
 // The number of gifts left in christmasGifts
 // will tell us which day we are singing about:
 var day = christmasGifts.count

 // An attempt to extract the last item from the christmasGifts array.
 // If we have already run out of items,
 // the code in the if statement's body won't execute.
 if let lastGift = christmasGifts.popLast(){
 print("\nOn the \(day) of Christmas my true love sent to me")
 let verseLine =
 composeVerseLine(day, gift: lastGift, needsPrefix: false)
 print("\(verseLine)")
 }

 // the loop repeats until there are no items left in the array
 } while christmasGifts.count > 0

 // output:
 //On the 12 of Christmas my true love sent to me
 //twelve drummers drumming,

 //On the 11 of Christmas my true love sent to me
 //eleven pipers piping,

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 20 ■ CONTROL FLOW

429

 //On the 10 of Christmas my true love sent to me
 //ten lords a-leaping,

 //...

 Now, just for fun, we could combine a repeat-while and a while loop to print out the complete verses
of the song. Listing 20-11 uses the repeat-while loop we just put together and nests inside it a while loop,
which counts down the remaining items in the array (without removing them) and prints out the gifts for
the days preceding the current one. As a result, the song gets printed out, but starting from the last verse and
continuing to the first one.

 Listing 20-11. A Nested Pair of repeat-while and while Loops, Which Print the Song Verses Backward

 repeat // The loop will execute at least once {
 // The number of gifts left in christmasGifts
 // will tell us which day we are singing about:
 var day = christmasGifts.count

 // An attempt to extract the last item from the christmasGifts array.
 // If we have already run out of items,
 // the code in the if statement's body won't execute.
 if let lastGift = christmasGifts.popLast()
 {
 print("\nOn the \(day) day of Christmas my true love sent to me")
 let verseLine =
 composeVerseLine(day, gift: lastGift, needsPrefix: false)
 print("\(verseLine)")

 // Now count down the previous days
 // and list the accumulated gifts.
 // Note that the prefix – operator
 // decrements day before its value is checked.
 while --day > 0
 {
 let verseLine =
 composeVerseLine(day, gift: christmasGifts[day - 1])
 print("\(verseLine)")
 }
 }

 // The loop repeats until there are no items left in the array.
 } while christmasGifts.count > 0

 // output:

 //On the 12 day of Christmas my true love sent to me
 //twelve drummers drumming,
 //eleven pipers piping,
 //ten lords a-leaping,
 //nine ladies dancing,
 //eight maids a-milking,
 //seven swans a-swimming,

CHAPTER 20 ■ CONTROL FLOW

430

 //six geese a-laying,
 //five gold rings,
 //four calling birds,
 //three french hens,
 //two turtle doves
 //and a partridge in a pear tree.

 //On the 11 day of Christmas my true love sent to me
 //eleven pipers piping,
 //ten lords a-leaping,
 //...

 //...

 //On the 1 of Christmas my true love sent to me
 //a partridge in a pear tree.

 ACTIONSCRIPT ANALOGY

 In ActionScript the the do..while loop provides repeat-while functionality.

 Conditional Statements
 Time to talk about choice. You have several conditional statements at your disposal: if , which helps
you make a choice based on a condition of type Bool , guard to ensure certain conditions are met before
execution can proceed, and switch , which takes care of the more complicated decisions.

 if
 You have already met with the if statement on many occasions in Swift. The last one was in Listing 20-11
where we checked whether an item could be extracted from the array of Christmas gift descriptions. Here it
is again in Listing 20-12 :

 Listing 20-12. An if Statement, Which Does Optional Binding

 // The last gift in the array gets extracted:
 if let lastGift = christmasGifts.popLast() {
 // ...
 }

 ACTIONSCRIPT ANALOGY

 The if statement in Swift is very similar to what you are used to in ActionScript: it does what it says on
the tin and you can branch out with else and if-else statements. In terms of syntax in Swift you have
the option to put parentheses around the statement’s condition or not.

CHAPTER 20 ■ CONTROL FLOW

431

 Following are a few more differences between if statements in ActionScript and in Swift, which are
worth noting:

• You can’t use anything else but a Bool literal or an expression that evaluates to Bool
as the condition of an if statement. Numbers, for example, will not be automatically
cast to Bool , so a line like this will not compile: if 1 {} . Similarly, checking if a
variable contains nil needs to be explicit. Listing 20-13 demonstrates that the first if
statement in it generates a compiler error: optional type 'Int?' cannot be used
as a boolean; test for '!= nil' instead .

 Listing 20-13. Checking If a Variable or a Constant Is Nil in an if Statement Needs to Be Explicit

 var intVar: Int?

 // This line will not compile:
 if intVar { /*...*/ }

 // But this line will:
 if nil != intVar { /*...*/ }

 // And so will this line, which uses optional binding:
 if let _ = intVar { /*...*/ }

 ■ Tip intVar in the example above has been declared as an optional. You can check if an optional instance
contains a value or nil by doing if let _ = intVar —this will evaluate to true if intVar is not nil . More on
optionals in Chapter 19 .

• The condition after the if statement you see in Listing 20-12 does what is called
 optional binding : let lastGift = christmasGifts.popLast() .

 This simple one-liner does quite a lot of work: it declares the temporary constant
 lastGift , extracts the last element of the christmasGifts array and assigns it to
 lastGift . This temporary constant is inferred to be of type Optional with two
possible values: an instance of whatever type the christmasGifts array holds
(String in this case) or nil . The whole line evaluates to false if lastGift contains
 nil and to true if it holds a String instance. Put simpler: the body of the if
statement will be executed only if lastGift is not nil and indeed contains the last
element of the christmasGifts array.

 The last line in Listing 20-13 , if let _ = intVar , also uses optional binding
but omits the assignment step by providing an undeerscore instead of declaring
a temporary constant: you can use this when you only care whether an optional
instance contains a value but do not need to know what the value is.

• Optional binding is the only case, in which you can use the assignment operator (=)
as part of the condition in an if statement. An if statement’s condition is expected
to evaluate to Bool and, as we saw in Chapter 18 , the assignment operator (=) in
Swift does not return a Bool result.

 ■ Tip You can read more on optional binding in Chapter 19 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_18
http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 20 ■ CONTROL FLOW

432

 guard
 The guard statement makes sure that a given condition is met before execution can proceed. Its syntax is as
follows:

 guard booleanCondition else { /* Transfer control elsewhere */ }

 Functionally guard works the same way as an if-else statement. It is however more concise than if-else
and documents your intentions better in cases where control flow should be transferred elsewhere—out of a
loop or back to the caller of a function—unless a condition is met. Note that, unlike if , guard always requires
an else clause.

 Let us see how we could use guard . In Listing 20-10 we used an if statement with conditional binding
in order to extract the last item from the christmasGifts array and use it to compose a song line like this:

 if let lastGift = christmasGifts.popLast(){/* Compose and print song line... */}

 In Listing 20-14 we replace this with a guard statement. It checks if there are items in the array and if the
array is empty, breaks out of the repeat-while loop.

 Listing 20-14. Using a guard Statement to Check Conditions

 guard christmasGifts.count > 0 else {
 break
 }

 // The next lines will only be executed if christmasGifts.count is not zero:
 let lastGift = christmasGifts.popLast()
 // Compose and print song line...

 The Mightier Switch
 You are already familiar with the concept of a switch statement from ActionScript: it lets you check an
expression against a number of discreet values and choose a course of action, depending on whether the
expression matches one of these values. The switch statement in Swift uses the same principle but might
also surprise you with how much more powerful and foolproof it is. We will go through its superpowers one
by one.

 Superpower 1: It Won’t Let You Miss a Case
 The clauses in a switch statement in Swift must cover all possible scenarios. Depending on the type you
are switching on, you have two choices for how to achieve this. You can provide case clauses that cover
every value the type might take: this may make sense for types that have a finite set of values, like enums ,
for example (more on enums in Chapter 22). Or, if the type doesn’t allow that, you must provide a default
clause, which would handle any value not explicitly covered by a case clause.

 The example in Listing 20-15 uses a switch statement to print the name of the month, given a number.
Its case statements cover the numbers from 1 to 12 and its default statement deals with any other input.

 Listing 20-15. A switch Statement in Swift Must Be Exhaustive

 let month = 3

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 20 ■ CONTROL FLOW

433

 switch month {
 case 1: print("January")
 case 2: print("February")
 case 3: print("March")
 case 4: print("April")
 case 5: print("May")
 case 6: print("June")
 case 7: print("July")
 case 8: print("August")
 case 9: print("September")
 case 10: print("October")
 case 11: print("November")
 case 12: print("December")

 default: print("Can't match month name to \(month)")
 }

 // output: March

 The last example shows you the syntax of a basic switch statement. What you might notice as a contrast
to ActionScript syntax is:

• If you don’t add the default clause at the end, this code won’t compile. The
compiler issues an error: Switch must be exhaustive, consider adding a
default clause . Brilliantly foolproof.

• An example of making a switch statement exhaustive without the need for a default
clause would be using enumerations . An enumeration defines a finite set of what
you can think of as named constants, so when you use them in the case clauses of a
 switch statement, the compiler will make sure that you either have a case for every
possible value of the enumeration or that you include a default clause instead. You
can see examples of that in Chapter 22 , where we delve into enumerations in detail.

• You don’t need parentheses around the expression after the switch statement. By
now you are probably not surprised by this typical Swift syntax.

• There are no break clauses—more on that in the next section.

 Superpower 2: It Won’t Let You Fall Through by Mistake
 So, why are those break s missing? We will explain by contrasting case clauses in ActionScript and in Swift.

 ACTIONSCRIPT ANALOGY

 If you don’t put a break at the end of a case clause in ActionScript and it matches the expression
you are switching on, the body of that case will be executed, as well as the body of whatever comes
next: another case or a default clause. This is called fallthrough. Fallthrough is sometimes a desired
behavior, but more often than not, a missing break is missing by mistake. Moreover, for someone
reading your code it’s not likely to be obvious which one it is: whether you omitted the break on purpose
or forgot to add it. Write code for humans, remember?

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 20 ■ CONTROL FLOW

434

 In Swift a case clause will not implicitly fall through to the next clause whether you provide a break or not.
In fact, you need to explicitly state it if you want fallthrough behavior by using the keyword fallthrough . In
addition, you can provide multiple matches in a case clause: you do that by separating them with commas.

 Listing 20-16 uses a switch statement, which takes a month and prints out the seasons it spans in some
parts of the Northern hemisphere. You can see how several of its case statements use multiple matches: for
example, input of either 1 (January) or 2 (February) will result in “winter” being printed out. You can also see
the use of the fallthrough keyword, which causes an input of 3 (March) to result in “spans winter and spring”.

 Listing 20-16. Special Syntax for Providing Multiple Matches

 let month = 3

 switch month {
 case 1, 2: print("winter")
 case 3: print("spans winter and")
 fallthrough

 case 4, 5: print("spring")
 case 6, 7, 8: print("summer")
 case 9: print("spans summer and")
 fallthrough

 case 10, 11: print("autumn")
 case 12: print("spans autumn and winter")

 default: print("Hmm, not sure about month \(month)...
 Which calendar did you have in mind?")
 }

 // output:

 //spans winter and
 // spring

 Superpower 3: You Can Switch Between Ranges of Values
 The previous example can be made even more concise with another superpower of Swift’s switch
statement: matching ranges. In place of case 6, 7, 8: it is perfectly acceptable to put case 6...8: , using
the closed range operator (Listing 20-17).

 Listing 20-17. Range Matching

 let month = 7

 switch month {
 case 1...2: print("winter")
 case 3: print("spans winter and"); fallthrough
 case 4...5: print("spring")
 case 6...8: print("summer")

CHAPTER 20 ■ CONTROL FLOW

435

 case 9: print("spans summer and"); fallthrough
 case 10...11: print("autumn")
 case 12: print("spans autumn and winter")

 default: print("Hmm, not sure about month \(month)...
 Which calendar did you have in mind?")
 }

 // output: summer

 Note how this time we put the fallthrough keyword on the same line as the print statement and
separated the two with a semicolon. As we mentioned in Chapter 17 , you can use semicolons at the end of
statements in Swift but are not required to, unless you need to separate statements on the same line.

 ■ Tip The closed range operator a...b defines a range of values between a and b, including a and b. You
can read about it in more detail in Chapter 18 .

 Superpower 4: You Can Have Overlapping Case Statements
 Swift will also let your case statements overlap. Admittedly it’s debatable whether this is more of an
Achilles’s heel or a superpower in earnest, as you can easily shoot yourself in the foot: when you provide
overlapping values or ranges of values in your case statements, the first one found to be a match is the one
that is executed.

 Listing 20-18 modifies the last example by allowing the ranges to overlap, so for an input of 3 or 9 you
have two matching case statements each. It’s important to note that we still need the fallthrough keyword,
in order to have an input of 3 print out “spans winter and spring,” otherwise only the body of the first
matching case will be executed resulting in “spans winter and.”

 Listing 20-18. Overlapping Case Statements

 let month = 3

 switch month {
 case 1...2: print("winter")

 // Note that we still need the fallthrough keyword,
 // inspite of the overlapping cases:
 case 3: print("spans winter and"); fallthrough
 case 3...5: print("spring")
 case 6...8: print("summer")

 // Note that we still need the fallthrough keyword,
 // inspite of the overlapping cases:
 case 9: print("spans summer and"); fallthrough
 case 9...11: print("autumn")
 case 12: print("spans autumn and winter")

http://dx.doi.org/10.1007/978-1-4842-1666-8_17
http://dx.doi.org/10.1007/978-1-4842-1666-8_18

CHAPTER 20 ■ CONTROL FLOW

436

 default: print("Hmm, not sure about month \(month)...
 Which calendar did you have in mind?")
 }

 // output:

 //spans winter and
 // spring

 Superpower 5: You Can Switch Between Different Types of Values
 Swift doesn’t limit you to only matching integer values in your switch statements. The next three examples
showcase switch statements that use Double , String and Tuple values.

 The first example in Listing 20-19 defines a range, which helps round a double number up or down to
its nearest integer. Note that the range this time is defined by the open range operator a..<b .

 Listing 20-19. Matching Double Values

 let doubleNumber = 17.5
 let fraction = doubleNumber - Double(Int(doubleNumber))

 switch fraction {
 case 0.0..<0.5: print("The nearest integer is \(Int(doubleNumber))")
 default: print("The nearest integer is \(Int(doubleNumber) + 1)")
 }

 // output: The nearest integer is 18

 ■ Tip The open range operator a..<b defines a range of values between a and b, including a, but not b. You
can find out more in Chapter 18 .

 Listing 20-20 uses a string as criteria for switching:

 Listing 20-20. String Matching

 let monthName = "April"

 switch monthName {
 case "December", "January", "February": print("winter")
 case "March", "April", "May": print("spring")
 case "June", "July", "August": print("summer")
 case "September", "October", "November": print("autumn")

 default: print("Can't mstch a season to \(monthName)")
 }

 // output: spring

http://dx.doi.org/10.1007/978-1-4842-1666-8_18

CHAPTER 20 ■ CONTROL FLOW

437

 The next example in Listing 20-21 is a bit more elaborate. It starts with defining an enumeration for
the days of the week (see Chapter 22 for details on enumerations). For the purposes of this example you
can think of an enum as providing a set of named values, where WeekDay.Monday has a value of 1, WeekDay.
Tuesday has a value of 2, and so on. The timeAndDay constant is a tuple (a type, which holds two or more
values together), which has a time and a day for shopping. The switch statement that follows checks the
time and the day and decides whether these fall inside the local stores’ opening times: 9 a.m. to 5 p.m.
Monday to Saturday. Each case statement checks two values: the time and the day.

 Listing 20-21. Tuples

 // An enumeration of week days (see Chapter 22 for details on enums)
 enum WeekDay : Int {
 case Monday = 1, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
 }

 let timeAndDay = (13, WeekDay.Saturday)

 // Check if the stores are open at the given time
 switch timeAndDay {
 case (_, WeekDay.Sunday): print("The stores are closed all day on Sunday.")
 case (9...17, _): print("The stores are open.")

 default: print("The stores are closed.")
 }

 // output: The stores are open.

 ■ Tip Enumerations are shown off in their glory in Chapter 22 and you can read more on tuples in Chapter 19 .

 You have probably noticed some weirdness in the syntax of the case statements above in the lurking
underscores. This leads us to another superpower . . .

 Superpower 6: Using Any Value
 Putting an underscore in place of one of the values inside a case clause, as shown in Listing 20-21 , is
construed as “any value.” So, for example, case (_, WeekDay.Sunday) should be read as “any time on
Sunday” and case (9...17, _) as “Between 9 a.m. and 5 p.m. on any day of the week.” The switch
statement in the Listing 20-21 first checks if the day in the time tuple is Sunday. If it is, then it ignores the
time and prints out “The stores are closed all day on Sunday.” If time is on a different day, then the switch
doesn’t care which day it is: as long as the time is between 9 a.m. and 5 p.m., the stores are opened. The
 default clause takes care of the values not covered by the two case clauses: when the day is between
Monday and Saturday and the time—outside the 9 a.m.- 5 p.m. interval.

 Superpower 7: Value Binding
 Value binding allows you to assign values to temporary variables or constants in the case clauses, in order
to access these values. Listing 20-22 shows a modification of the switch statement in Listing 20-21 . The first
 case clause in it defines a temporary constant called time and assigns the first element of the timeAndDay
tuple to it. The value of time is then passed to the print function.

http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_22
http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 20 ■ CONTROL FLOW

438

 Listing 20-22. Value Binding

 switch timeAndDay {
 // Create a temporary constant, called time
 // and assign the first element of the tuple to it:
 case (let time, WeekDay.Sunday):
 print("The stores are closed on Sunday at \(time).")

 case (9...17, _): print("The stores are open.")

 default: print("The stores are closed")
 }

 // output: The stores are open.

 Superpower 8: You Can Provide Nuance with where Clauses
 We are getting to the end of the list of superpowers. This last one, however, is extra special. You can make the
checks in the case clauses even more elaborate by adding conditions to them, using a where clause. In this
last modification of the store opening times example, shown in Listing 20-23 , the last case clause is a different
way of expressing “any day of the week between 9 a.m. and 5 p.m.” with a where clause (given we have already
filtered Sunday out). It also defines two temporary constants and binds timeAndDay ’s two values to them.

 Listing 20-23. Where Clauses

 switch timeAndDay {
 // Create a temporary constant, called time
 // and assign the first element of the tuple to it:
 case (let time, WeekDay.Sunday):
 print("The store is closed on Sunday at \(time)")

 case let (time, dayOfWeek) where time >= 9 && time <= 17:
 print("The store is open on \(dayOfWeek) at \(time)")

 default: print("The store is closed")
 }

 Jumping Around: Control Transfer
 We will finish this chapter with a few words on control transfer statements, all of which you have encountered
so far either by using their ActionScript counterparts or when you did the previous examples in this chapter.

 continue
 As in ActionScript, you use continue to interrupt the current iteration of a loop and to start the next one.

 break
 You can use break to stop the execution of a loop or to exit out of a case in a switch statement. As we saw
earlier when we were delving into the superpowers of switch , break statements are optional.

CHAPTER 20 ■ CONTROL FLOW

439

 fallthrough
 This is your new friend when you work with switch statements. Instead of making sure you don’t forget
to put break at the end of each case , omit all the breaks, and use fallthrough when you intend execution
to continue into the next case or default clause. See Listing 20-16 in the section “Superpower 2” for an
example implementation.

 return
 As you would expect, return transfers the control out of the current function or method. Nothing to add to
what you already know from your ActionScript experience. I, however, have a little something for you: just
as you thought I had forgotten my promise to polish The Twelve Days of Christmas example . . . Listing 20-24
shows a function that will help us print out the day names with their proper suffixes: it uses a simple switch
statement, which abruptly interrupts the execution of the function and returns a result as soon as it finds a
match.

 Listing 20-24. Using return

 func getNumberSuffix(number : Int) -> String {
 switch number {
 case 11...13: return "th"

 default:
 switch number % 10 {
 case 1: return "st"
 case 2: return "nd"
 case 3: return "rd"

 default: return "th"
 }
 }
 }

 Labels
 When you have nested loops or switch statements, you can use labels in order to distinguish them. A label is
a name that you come up with, followed by a colon that you put at the start of your loop or switch statement.
Then, when you use the break and continue statements, you can be explicit about which loop or switch you
want to continue or break out of.

 The final example in this chapter completes the mission of printing out the lyrics of The Twelve Days of
Christmas . It uses the function getNumberSuffix we defined in Listing 20-24 and prints out the names of the
days as ordinal numbers.

 In order to demonstrate the use of labels, I have allowed myself a perversion. See if you can spot it in
Listing 20-25 .

 Listing 20-25. Using Labels in Loops

 // Label the outer loop:
 outerLoop: for day in 1...christmasDays {
 print("\nOn the \(day)\(getNumberSuffix(day))
 day of Christmas my true love sent to me")

CHAPTER 20 ■ CONTROL FLOW

440

 var previousDay = day

 // Label the inner loop:
 innerLoop: while true // Don't do this at home! {
 if --previousDay < 0
 {
 // Transfer control back to the for loop
 // and continue with its next iteration:
 continue outerLoop
 }

 let verseLine =
 composeVerseLine(previousDay,
 gift: christmasGifts[previousDay],
 needsPrefix: day > 1)
 print("\(verseLine)")
 }
 }

 Did you see my misdemeanor? I made the inner while loop infinite, in order to show you how to use
labels. When the loop’s condition (--previousDay < 0) evaluates to true , we call continue outerLoop ,
which transfers control to the next iteration of the outer for loop. At last, this code outputs the song lyrics
almost as we would expect to see them:

 On the 1st day of Christmas my true love sent to me
 a partridge in a pear tree,

 On the 2nd day of Christmas my true love sent to me
 and two turtle doves.
 a partridge in a pear tree,

 On the 3rd day of Christmas my true love sent to me
 three french hens
 and two turtle doves.
 a partridge in a pear tree,

 On the 4th day of Christmas...

 . . . almost, as you would normally expect to see the days of Christmas spelled out as “first,” “second,”
and so on, instead of “1 st ,” “2 nd ,” and so on. Let me guess . . . You are reading this in June, aren’t you?

 Summary
 This chapter gave you the tools for understanding and controlling the flow of execution in your code. We
saw how loops work and especially how they might surprise you if you are coming from an ActionScript
background. The different flavors of the for and while loops almost look and feel the same as their
ActionScript counterparts, but they hide some subtle differences. We also uncovered the superpowers
of Swift’s switch statement: from its safety mechanisms to its versatility with different types and ways of
defining conditions.

 With this much ground covered, we are ready to move on to object-oriented programming topics. I’ll
meet you at the next chapter.

441© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_21

 CHAPTER 21

 Object-Oriented Programming
Topics

 In this chapter we will go over the object-oriented side of Swift. Having experience with ActionScript, you
are already familiar with the object-oriented programming (OOP) paradigm. It treats a piece of software as a
system, which is broken down into objects . Each object is responsible for a part of the system and looks after
its own state.

 Swift uses four main OOP entities:

• Classes

• Structures

• Enumerations

• Protocols

 Each of these entities defines a type (classes, structures, and enumerations) or part of a type (protocols).
 Classes in Swift are very similar to classes in ActionScript. A lot of the techniques that you will need to know
when you define and use classes apply to structures and enumerations too. Protocols serve similar purpose
as interfaces do in ActionScript: they define a way of communicating with a set of types by requiring each of
those types to conform to a set of requirements. Implementing these requirements is called conforming and
is typically left to the types that adopt the protocol.

 We will have a detailed look at how classes work first. Then we will highlight what makes structures
different from classes and when it is preferable to use one or the other. We will also see how protocols are
defined and adopted.

 Enumerations only get a mention in this chapter. As they may be new to an ActionScript developer,
enumerations have a dedicated in-depth section in Chapter 22 , which deals with new and different
concepts.

 Classes
 A class provides a mold, from which objects (class instances) are made. This is true for structures and
enumerations too: each of these entities defines placeholders for data (properties) and logic for working
with data (methods and subscripts). Most of the ideas and techniques that will help you define and use
classes in Swift are valid for structures and enumerations. To avoid duplicating information, we will present
classes in detail and will point out the similarities and the differences that you need to be aware of when
using structures and enumerations. Where something applies to all three entities, we will refer to them as
 types for conciseness.

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

442

 Syntax for Defining a Class
 The way you define a class in Swift is very similar to how it is done in ActionScript: you use the class
keyword, followed by the name of the class, followed by the definitions of the class’s members in curly
brackets: properties, methods, and subscripts. Let us define a class, called File , which we will add to later to
make a very simplistic representation of an iOS file (Listing 21-1).

 Listing 21-1. Class Declaration Syntax

 class File {
 // add class members here
 }

 Access and Visibility
 In ActionScript we are used to putting each class in its own file with a matching name and to defining
packages for accessing classes. For example, to access a class called MyClass , which has been defined as
 public or internal in the com.diadraw package, you need either to import com.diadraw in the files where
you want to use MyClass or to access it as com.diadraw.MyClass .

 In Swift you don’t have to define classes in separate files and you are not forced to name source files
after your classes. As we saw in the section “Access Control” in Chapter 17 , visibility is defined in terms of
source files and modules , where a module is a collection of source files that you build and ship together
either as an application or as a framework. The control modifiers we introduced— public , internal , and
 private —can be used to control access to whole classes, structures, enumerations, and protocols, as well as
to their individual members:

• An entity marked as private is only visible to code in the same source file.

• The default level is internal and makes an entity visible within the same module.
You don’t have to use the internal modifier explicitly: unless you put another
modifier, internal is assumed.

• Mark your entities as public to make them visible to external code that may use your
module.

 Access modifiers go before the class definition, as shown in Listing 21-2 .

 Listing 21-2. Declaring a Private Class

 private class MyPrivateClass {
 // add class members here
 }

 Note that to make a class or a structure public , you need to define at least one public initializer for it or,
in ActionScript words, it needs to have a public constructor . More on initializers later.

 Adding Properties
 Properties are defined in the body of the type (i.e., inside the curly brackets), a syntax that should look
familiar from ActionScript.

 Like ActionScript, Swift lets you define type properties , marked with the static keyword and instance
properties . A member marked static is part of the type, rather than of an instance of the type, and there will
be only one copy of it, no matter how many instances you create.

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

443

 For class members there is another keyword, class , which is used to declare type properties in a
very specific situation: when you want a computed property to be overridden in subclasses, you need
to mark it with the class keyword, instead of with static . We will see what computed properties
are later.

 In terms of how property values are retrieved, Swift distinguishes between three kinds of properties:
 stored , computed, and lazy . We will look at each of these in detail.

 Stored Properties
 Stored properties have their values kept for immediate retrieval in variables or constants: you declare
a variable property with the var keyword and a constant property with the let keyword, like we saw in
 Chapter 17 . You can provide an initial value for a stored property as part of its declaration: this is its
 default value .

 Let us add a couple of stored properties to the class File we declared earlier: we will have a
Boolean property, called isOpen to indicate whether the file is currently open and a type property:
 numberOfOpenFiles , of type Int , which will keep track of how many files are currently open in the file
system. It will have the same value for every instance of File (see Listing 21-3).

 Listing 21-3. Adding Stored Properties

 class File {
 // The instance property isOpen
 // has a different value for every instance of File:
 var isOpen = false

 // The type property numberOfOpenFiles
 // has the same value for every instance of File:
 private static var numberOfOpenFiles = 0
 }

 Note that the type inference we talked about in Chapter 19 applies here too: if you provide default
values for your stored properties, the property types will be inferred from these values. Thus, instead of
defining var isOpen: Boolean = false , we do just var isOpen = false .

 Computed Properties
 Computed properties are not necessarily backed up with a constant or a variable, but provide getter functions ,
which work out the property’s value at runtime. They can also have optional setter functions . Because you
don’t supply default values for computed properties, their types are not automatically inferred and you need
to explicitly state the type in the property declaration.

 To see what this looks like, we will first add another stored property to the File class: let us call this
 location and have it store the full path to the file as an NSURL object. The NSURL class is part of the iOS SDK.
It stores locations of resources or paths to local files and is handy for parsing these paths. It has similarities
with the URLRequest and File classes in ActionScript.

 Next we will define a property name , which will be computed at runtime, using the value of location
and will let us read or change only the file name. A computed property is declared as a variable followed by
curly brackets: inside the curly brackets we define a getter and an optional setter. Because the getter and the
setter functions are defined within the definition of the property, they don’t need elaborate signatures: the
type of the value they return or receive is inferred from the type of name .

http://dx.doi.org/10.1007/978-1-4842-1666-8_17
http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

444

 I will confess in advance that the code in Listing 21-4 will not compile at this stage: the Swift compiler
comes with the wonderful 1 feature of not letting you leave anything uninitialized, and if you look at the
 location property, you will notice that we have not provided an initial value for it. More on initialization later.

 Listing 21-4. Adding Computed Properties

 class File {
 // The rest of the class definition stays the same

 // This property stores the full path and file name:
 var location: NSURL

 // The file name is computed at runtime
 var name: String {
 get {
 return (location.lastPathComponent)!
 }

 set (newFileName) {
 let newUrl = location.URLByDeletingLastPathComponent
 location = newUrl!.URLByAppendingPathComponent(newFileName)
 }
 }
 }

 We can make the setter function even more concise: if we omit its parameter name, the parameter will
not disappear but will be available to us with the implied name of newValue . So we can rewrite the setter like
the example in Listing 21-5 shows.

 Listing 21-5. Using the Implied Parameter newValue from a Setter Function

 set {
 let newUrl = location.URLByDeletingLastPathComponent
 location = newUrl!.URLByAppendingPathComponent(newValue)
 }

 Lazy Properties
 Lazy properties are variable properties, which are marked with the lazy keyword. They are similar to stored
properties in that they store their values. The initial value of a lazy property is usually the result of a function
call, which is only made when the property is accessed for the first time.

 Declaring a property as lazy can save unnecessary overhead, if the property’s initial value requires heavy
computation and there is a chance that it will never be needed, for example. The flipside of this is that you are
not in control of when initialization happens and it can potentially hurt performance at an inopportune time.
This also leads to a couple of formalities that the compiler will remind you of, if you forget.

• A lazy property can only be a variable and not a constant, so you must declare it with
the var keyword.

• You must provide a default value : this will typically be a call to a function or an
initializer that will provide an initial value for the property.

 1 . . . also mildly irritating—but mostly wonderful, trust me.

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

445

 Let us add a property to the File class that will give us access to its contents. As this might require
loading of a lot of data and may never be needed in the lifespan of a File instance, it is a good candidate for
a lazy property. We will also add a function, called loadContent that will load a file’s contents, given its path
(Listing 21-6).

 Listing 21-6. Adding Computed Properties

 func loadContent(fromPath path: NSURL?) -> String? {
 // Potentially lenghty operation
 // ...
 }

 class File {
 // The rest of the class definition stays the same

 lazy var contentAsString: String? = self.loadContent(fromPath: self.location)
 }

 Getting Notified About Changes: Property Observers
 When a property is set, it is useful to be able to react to the potential change. In Swift you have a couple
of options for how and when to do that: you can declare a property setter, like we saw with computed
properties earlier, or you can add property observers , which will fire just before and just after the property
value is set. The observers are functions, called willSet and didSet , which you define in curly brackets after
the declaration of the property you need to observe.

 ACTIONSCRIPT ANALOGY

 The idea of property observers is similar to using the [Bindable] metadata keyword in Flex. When you
mark a property as [Bindable] , an event is dispatched whenever the property value changes.

 The similarities, however, stop here. Following are some differences, which emphasize the main ideas
behind property observers in Swift:

• [Bindable] only dispatches an event if the observed value has changed. willSet
and didSet get called when a property is set, even if the new value and the old value
are the same. They are in a way alarms that scream “Someone is about to touch your
property!” and “Someone just touched your property!”

• [Bindable] dispatches an event only after the fact, whereas Swift’s property observers
give you a chance to react at two different moments: willSet is called just before the
property is set and didSet just after; both give you access to the old and to the new
value of the property.

• [Bindable] binds properties, which live in different classes or packages: one is
considered to be the source and the other the destination. Whenever the source
changes, the changes are copied over to the destination. In contrast, property observers
in Swift are not accessible outside the type they are defined in. Instead, they give that
type the option to control its internal state.

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

446

 Here is something to keep in mind: you can’t define property observers for just any property in Swift.
The observed property needs to be stored, non-lazy and variable, rather than constant. Following are the
reasons:

• Constant properties do not allow their values to be set, except inside an initializer
method (constructor) or at the point where they are defined: at both points the
containing type has full control over how the value is set, so firing observers would
be unnecessary.

• Lazy properties behave as if their initial values are set at the moment you request
them to be set, but the actual setting may happen at a later point or not at all (see the
start of the section “Properties,” on how lazy properties work).

• You can define setter methods on computed properties: these give you control over
the value of a property at the same points when willSet and didSet would fire.

 Let us add observers to the isOpen property of our File class in order to see how they are defined.
Listing 21-7 defines willSet and didSet functions inside curly brackets following the declaration of
 isOpen . In the willSet observer we will simply print what isOpen is about to be set to and in didSet we will
increment or decrement the total number of open files.

 Both willSet and didSet have implied parameters, called newValue and oldValue , respectively, which
give you access to the value the property is about to be set to or the value it had before it was set. Instead of
using newValue and oldValue , you can give the parameters custom names, which you put in brackets after
the name of the observer (e.g., willSet(toValue)) ; the type of the parameter is inferred.

 Listing 21-7. Adding Property Observers

 class File {
 // The rest of the class definition stays the same

 var isOpen = false {
 willSet {
 print("About to set isOpen to \(newValue)")
 }

 didSet {
 // If the value hasn't changed, we don't want to do anything:
 if oldValue == isOpen
 {
 return
 }

 // If the file was just open,
 // increment the total number of open files.
 // If the file was closed, decrement the total number.
 if isOpen {
 File.numberOfOpenFiles += 1
 }
 else {
 File.numberOfOpenFiles -= 1
 }
 }
 }
 }

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

447

 Accessing Properties
 You access properties using the familiar dot syntax, prefixing a property with a name of an instance
for instance properties (file.isOpen = true), or with the name of a type for static properties (File.
numberOfOpenFiles = 12).

 The rules for access control we saw in Chapter 17 apply to properties too: unless you specify an access
modifier explicitly (public , internal , or private), properties are declared internal by default.

 The Self Property
 Every class, structure, or enumeration has a property, called self . It is implicit and you don’t have to declare
it yourself. You can only access the self property of a type from inside one of its methods:

• When accessed from an instance method, self gives you access to the instance. In
value types like structures and enumerations you can make assignments to self —we
will see how that works when we look at structures later on.

• When accessed from a type method (marked as static), self refers to the type and
can give you access to the type’s other properties and methods.

 ACTIONSCRIPT ANALOGY

 Swift’s self property corresponds to the implied property this in ActionScript: self and this help
disambiguate names. For example, we could rewrite the didSet observer of the isOpen property of
 File like this:

 class File {
 // The rest of the class definition stays the same

 var isOpen = false {
 didSet (isOpen) {
 // self.isOpen is the property, while isOpen is the parameter:
 if isOpen == self.isOpen {
 return
 }

 // ...
 }
 }
 }

 In the example above the didSet observer receives a parameter, called isOpen , which has the same
name as the property we observe. Using self.isOpen inside the observer to refer to the property
avoids the ambiguity and shows the compiler which variable we mean in which case.

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

448

 Adding Methods
 In Swift you can add methods to classes, structures, and enumerations in a similar way you do in
ActionScript: you define the method within the curly brackets of the type definition.

 Differentiating between instance and type methods will also be familiar to you: to define a type method,
you mark it with the static keyword. A method marked static will only have access to properties of the
type marked as static or class and not to instance properties.

 Let us add a few methods to the File class to demonstrate the syntax for method definition. Listing 21-8
defines two instance methods: these simply mark a file as open or closed. There is also a type method, which
resets the total number of open files.

 Listing 21-8. Adding Methods to a Class

 class File {
 func open() {
 isOpen = true;
 }

 func close() {
 isOpen = false;
 }

 static func resetNumberOfOpenFiles() {
 numberOfOpenFiles = 0;
 }

 // The rest of the class definition comes here.
 }

 Overloading Methods
 You can overload methods (i.e., provide several methods with the same name), but with different types or
number of parameters, the way you can overload any function. Flip back to the introductory Chapter 17 to
see examples.

 Initializer and Deinitializer Methods
 Initializer methods in Swift are the equivalent of what you know as constructors in ActionScript. Instead of
being named after the type they initialize, however, the syntax for defining an initializer is as follows: you
use the keyword init , followed by zero or more arguments wrapped in parentheses, followed by curly
brackets where the body of the method goes. Initializers can be overloaded: you can define several initializer
methods, which have a different number or different types of parameters.

 Deinitializer methods only apply to classes in Swift and do not have an ActionScript analogue. Although
they are technically methods, you can’t call them directly. Instead, they are called automatically just before an
instance of a class gets deallocated. This gives you a chance to clean up any resources that the instance might
be using: close an open file, for example. To define a deinitializer, use the keyword deinit , followed by curly
brackets, between which you write the logic of the method. Note that you don’t need parentheses after deinit .

 Listing 21-9 adds an initializer and a deinitializer to the File class we defined at the start of this chapter.
The initializer takes a single parameter, location , which provides an initial value for the location property
of the class. Remember how we could not compile the code before? This initializer will make the compiler
happy: now we do not have any uninitialized properties.

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

449

 The deinitializer makes sure that a file we might have opened is closed before the instance of File gets
deallocated.

 Listing 21-9. Defining Initializers and a Deinitializer

 class File {
 init(location: NSURL) {
 self.location = location
 }

 deinit {
 close()
 }

 // The rest of the class definition comes here.
 }

 Invoking Initializers

 An initializer will be called at the point where you create an instance of a type. You have two options: you can
call an initializer directly by prefixing it with the type name and a dot, like you would call any other method,
for example:

 File.init("Documents\\textFile.txt")

 You can also just use the type name, followed by parentheses, and pass in any arguments your chosen
initializer takes, for example:

 File ("Documents\\textFile.txt")

 Rules for Initialization

 As we pointed out in the opening Chapter of 17 and have seen time and time again, Swift is all about being
explicit but concise at the same time, and about taking maximum advantage of the compiler to protect you
from unintentionally omitting or defining things badly. This is especially true for initialization.

 There are rules you need to follow when you initialize your types, which we will mention in passing
here. You can find the complete set of rules in The Swift Programming Language manual on Apple’s
web site. You do not have to worry about remembering all of them: keeping in mind the goal behind
the rules and letting the compiler guide you through what is allowed and what isn’t should stand you in
good stead.

 Initialization in Swift is designed so that no part of an instance is left in an undefined state. This
means that all of the stored properties of that instance need to have an initial value by the time the
instance has finished initializing. For class instances this includes stored properties that are inherited
from base classes.

 As in ActionScript you have two options for when a stored property is initialized. You can provide a
default value at the point where you declare the property, as we saw in the section “Properties”: this is phase
one of the initialization. You can also assign it an initial value in an initializer function: this is phase two of
the initialization. Or you can do both.

 Phase one and phase two of the initialization process are the only times when you are allowed to set the
value of a constant stored property.

http://dx.doi.org/10.1007/978-1-4842-1666-8_17

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

450

 Following are a few main points to keep in mind:

• All stored properties must have an initial value when an instance of a class, structure,
or enumeration is created.

• You can assign default values to stored properties where you declare them, but you
don’t have to: any property without a default value must be assigned an initial value
in an initializer function.

• If all of the stored properties of an instance have default values, you don’t need
to declare an initializer explicitly: a default initializer without parameters will be
defined for you by the compiler behind the scenes.

• You can define multiple initializers.

• Initializers can call other initializers.

• You can call a base class initializer from within a child class initializer by using
 super.init(/*parameters go here*/) .

• If you define an initializer that has the same signature as a superclass initializer, you
are effectively overriding the superclass initializer, so you must prefix the child class
one with the override keyword.

• The Swift compiler distinguishes between two types of initializers, depending on
whether they fully initialize an instance:

• Designated initializers make sure that every stored property has an initial value.

• Convenience initializers do not need to fully initialize an instance. Being able to
write a convenience initializer means that you need not duplicate initialization
code. However, in the spirit of making sure that the instance is fully initialized,
a convenience initializer needs to call other initializers that will fill in the
gaps. The rule is: in the chain of initializer calls there should be at least one
designated initializer. You mark convenience initializers with the convenience
keyword.

 Listing 21-10 defines a class Directory with two stored properties— name , which is a String without
a default value, and parentDirectory, which is an optional Directory with a default value of nil . Any
initialization path we define will need to make sure that name receives an initial value.

 Let us add two initializers: the first one takes no parameters and sets a new directory’s name to
“unnamed directory.” The second one takes a reference to another Directory instance, with which it
initializes the parentDirectory property. Since it does not assign a value to the name property, we need to
mark this initializer with the convenience keyword and make it call the designated initializer method to
make sure that all properties have initial values.

 Listing 21-10. Designated and Convenience Intializers

 class Directory {
 var name: String
 var parentDirectory: Directory?

 init() {
 name = "unnamed directory"
 }

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

451

 convenience init(parentDirectory: Directory) {
 self.init()
 self.parentDirectory = parentDirectory
 }
 }

 When Things Fail

 You may remember from the section “Optionals” section in Chapter 19 that you need to tell the Swift
compiler explicitly if a variable is allowed to have a value of nil by declaring it as an optional type . Similarly,
when you have an initializer, which may fail to initialize an instance for any reason, you need to signal the
compiler by declaring it as failable . You do this by adding a question mark after the init keyword: this will
make the initializer create an optional type and return nil to fail.

 When can initialization fail? Say one of the properties of your type needs to get its initial value from
data, which you request over a network connection. The network connection falling apart, for example,
would be a scenario you need to provide for.

 To demonstrate this, let us modify the example from Listing 21-10 and make the second initializer in
 Directory check if the directory we are about to assign to parentDirectory exists and fail the initialization
if it doesn’t. The modified initializer is marked as fallible by adding a question mark after init and by
returning nil when conditions for initialization are not met (Listing 21-11).

 Listing 21-11. Designated and Convenience Intializers

 class Directory {
 var name: String
 var parentDirectory: Directory?

 func exists() -> Bool {
 // check if the directory exists
 }

 init() {
 name = "unnamed directory"
 }

 convenience init?(parentDirectory: Directory) {
 guard parentDirectory.exists() else {
 return nil
 }

 self.init()
 self.parentDirectory = parentDirectory
 }
 }

 ■ Note Listing 21-11 uses a guard statement to ensure that conditions are met (a parent directory exists)
before execution can proceed. We covered guard in Chapter 20 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_19
http://dx.doi.org/10.1007/978-1-4842-1666-8_20

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

452

 Adding Subscripts
 Subscripts are the third kind of member you can add to Swift types. A subscript lets you access a type’s
data with an index, a key, or even a list of keys in square brackets, much like you would query an array or a
dictionary. For example, file[10..100] could be made to retrieve a range of bytes from a file. Subscripts get
their own detailed section: for how to define and use them see Chapter 22 .

 Memory Management for Classes: ARC
 Unlike in ActionScript, where all types are passed by reference, in Swift there are different memory
management rules for classes, structures, and enumerations. In this section we will go over the rules that
apply to classes and later, when we introduce structures and enumerations, we will see the differences in
memory management for these types.

 Reference types
 Classes in Swift are reference types . In other words, if you create an instance of an object, assign it to a
variable (or a constant) and then assign that variable to a second variable, instead of two copies of the same
instance, you end up with one instance and two references to it: one in each variable. When you make
changes to the object using one reference, the same changes will be accessible via the second reference.

 Listing 21-12 shows this in practice: it has a definition of a class with a single property name of type
 String . We create an instance of this class and assign it to a variable named originalReference , after which
we assign originalReference to a variable of the same type, named secondReference . Now, if we change
the name property of one of the references, we would expect to see the name property of the other reference
change too.

 Listing 21-12. Assigning Reference Type Instances

 class SitcomCharacter {
 var name: String

 init (name: String) {
 self.name = name
 }
 }

 // We create a new instance of SitcomCharacter,
 // which originalReference refers to:
 var originalReference = SitcomCharacter(name: "Lister")

 // secondReference refers tot he same instance as originalReference:
 var secondReference = originalReference

 // Changing a property via one of the references changes the instance:
 secondReference.name = "David Lister"

 // We can see the change reflected in the gamePlayerB reference:
 print(originalReference.name) // prints out "David Lister"

 The same thing happens when you pass a class instance as an argument to a function: the function
argument creates another reference to the same instance, instead of another copy of it.

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

453

 ■ Note This only applies to classes in Swift. Structures and enumerations obey different rules—read on to
find out.

 To manage the memory taken by class instances, Swift uses Automatic Reference Counting (ARC) . This
means keeping track of the number of references a given instance has and automatically deallocating the
memory it occupies once that count goes down to zero. For you as a developer, this means that you do not
need to worry about manually freeing memory. Instead, what you need to pay attention to is the scope of
each reference you declare and make sure references live long enough to serve their purpose, but no longer,
so that they do not hog valuable memory.

 Memory Leaks from Strong Reference Cycles
 If you think that hogging memory for too long is hard to achieve with ARC, think again. Let us look at an
example of two classes: Country and Capital , defined in Listing 21-13 . Country has a property of type
 Capital? and Capital has a property of type Country? . The question marks in the declarations make both
of these properties optional and also causes them to be initialized to nil , as we have not provided default
values for them. We learned how optionals work in Swift in Chapter 19 ; flip back to it if you need a reminder.

 Listing 21-13. Defining Types That Hold References to One Another

 class Country {
 var name: String?

 // Country holds a reference to Capital:
 var capital: Capital?

 init(name: String) {
 self.name = name
 }

 deinit {
 print("Instance of Country is being deallocated.")
 }
 }

 class Capital {
 var name: String?

 // Capital holds a reference to Country:
 var country: Country?

 init(name: String) {
 self.name = name
 }

 deinit {
 print("Instance of Capital is being deallocated.")
 }
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

454

 Next, let us create an instance of each class and assign the Country instance to the Capital ’s country
property and vice versa, as shown in Listing 21-14 .

 Listing 21-14. Creating a Strong Reference Cycle

 var bulgaria: Country? = Country(name: "Bulgaria")
 var sofia: Capital? = Capital(name: "Sofia")

 bulgaria!.capital = sofia
 sofia!.country = bulgaria

 Now bulgaria.capital holds a reference to sofia and sofia.country holds a reference to bulgaria .
As diligent programmers we want each of these instances to be deallocated when we are done with it, so we
assign nil to each of the original references we declared (Listing 21-15).

 Listing 21-15. Setting the Original References to Nil to Decrease the Reference Count

 bulgaria = nil
 sofia = nil

 This is where we get into a chicken-and-egg situation. Each of our instances has two variables
referencing it (i.e., two references): the variable we declared when creating the instance (bulgaria
and sofia) and a property in the other class’s instance (sofia.country and bulgaria.capital) (see
Figure 21-1). The line bulgaria = nil removes one reference from the reference count of the Country
instance and we are left with one reference, held by sofia.country . The same thing happens to the
 Capital instance when we do sofia = nil . After these two lines we are left with an instance of Country
and an instance of Capital and no way of accessing them in order to have the memory deallocated, hence
a memory leak. You can verify this by executing the lines above and checking if anything gets printed in
the console: if the Capital instance gets deallocated, for example, we would expect the print call we put
in its deinitializer to get executed.

 Figure 21-1. A strong reference cycle

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

455

 The problem we just saw is known as a strong reference cycle and Swift offers a couple of options for
avoiding it. In order for a reference not to affect the reference count of an instance, you can mark it as weak or
 unowned . Following is a summary of the types of references you can use:

• Strong. This is the default type of reference that you create. It doesn’t need any
keywords and causes a reference to be counted toward the reference count of an
instance. The instance will be deallocated when its strong reference count goes
down to zero.

• Weak . A weak reference is marked with the weak keyword and doesn’t count
toward the references that ARC keeps track of. Weak references must be declared
as optional types , as they are allowed to have no value (i.e., they can contain nil).
ARC will automatically set a weak reference to nil when the instance it refers to gets
deallocated. Because a week reference is allowed to change value (it will when it is
automatically set to nil), you can’t use it with constants.

• Unowned . An unowned reference is marked with the unowned keyword and it too
will not keep an instance alive when its strong reference count goes to zero. Unlike
weak references, unowned ones cannot be optional types. This means that they can’t
contain nil and will not automatically be set to nil when the instance they refer to
gets deallocated.

 Listing 21-16 shows the Capital class, now redefined to keep a weak reference to Country . This is
enough to avoid the strong reference cycle we created earlier and to have both instances deallocated when
you execute the lines from Listing 21-15 .

 Listing 21-16. Declaring a Weak Reference

 class Capital {
 var name: String?

 // Capital holds a reference to Country:
 weak var country: Country?

 init(name: String) {
 self.name = name
 }

 deinit {
 print("Instance of Capital is being deallocated.")
 }
 }

 Comparing References
 Swift distinguishes between comparison of class instances and comparison of references to class instances.

 To be able to compare instances of the same class, the equality (==) and the inequality operator (!=)
must be defined for that class: for example, they could do member-wise comparison of the two instances
and declare them equal if all properties in both instances have the same value.

 Comparing references is a different matter: when two variables refer to the same instance of a class,
they are said to be identical . You can check if two references are identical with the identity operators: ===
and !==.

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

456

 Extending Functionality
 One of the principles of OOP is that entities should be “open for extension, but closed for modification.” In
most other OOP languages this means that you can only extend a class or another entity’s functionality by
inheriting it. Swift seemingly breaks the open-closed principle, though in a clever way: it allows you to add
to existing entities, including SDK or third-party classes, structures, and so on, by writing extensions. 2 We will
see how this is done later in this section.

 Subclassing and Inheritance
 Most of what you are used to when inheriting classes in ActionScript is true in Swift. Here we will point out a
few things that are worth paying attention to, because they either work differently in Swift or build on ideas
that ActionScript does not have.

 ■ Note Subclassing only applies to classes. Structures and enumerations can’t inherit other structures or
enumerations.

 Following are the main guidelines for using inheritance in Swift:

• To declare a subclass, put a colon after the class name and then add the name of the
base class. What comes after the colon is called inheritance list . Note that Swift does
not support multiple inheritance. Instead, the inheritance list can contain one base
class name and one or more protocol names, which the class conforms to. More on
protocols at the end of this chapter.

• To override a method in a subclass, use the override keyword.

• To access a parent entity’s method, property or subscript, use the super keyword,
followed by a dot and the name of the member.

• A subclass can access properties of superclasses in the hierarchy but has no
way of knowing which properties are stored and which ones are computed. As a
consequence, you can define property observers for any base class property in a
subclass. The only condition is that the property you need to observe is accessible for
modification (i.e., it’s not a stored constant or a computed read-only property).

• In a subclass you can define custom getters and setters for properties of a base class
either by overriding existing ones or by writing them from scratch for a stored property.
You can even provide a setter for a read-only base class property and thus make it read-
write. You can’t do the opposite and make a read-write property read-only, though.

• Overriding a property setter and providing a property observer for a base class
property are mutually exclusive: you can do one or the other, but not both at the
same time.

• You can prevent members of a class from being overridden in descendant classes by
marking them with the final keyword.

• You can use the final keyword to stop a whole class from being inherited.

 2 Extensions are not a new concept that appeared with Swift. You will find the same idea in Objective-C, where it is called
 categories .

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

457

 Let us illustrate how subclassing works with an example. Listing 21-17 redefines the File class we have
been working with throughout this chapter and defines another class, which inherits from it: TextClass.
TextClass adds custom observers for the name property of the File class. It also overrides File ‘s default
initializer to customize the value of name .

 Listing 21-17. Inheriting a Base Class

 // File is a base class:
 class File {
 var name: String

 init() {
 name = "unnamed file"
 }
 }

 // TextFile is a subclass of File:
 class TextFile: File {
 // Declare property observers
 // for a base class property:
 override var name: String {
 willSet {
 print("About to change the file name to \(newValue)")
 }

 didSet {
 print("The file name was changed from \(oldValue) to
 \(super.name)")
 }
 }

 // Override the default initializer:
 override init() {
 // Call the superclass initializer:
 super.init()

 // Override the
 name = String("\(name).txt")
 }
 }

 ACTIONSCRIPT ANALOGY

 There are a couple of nuances in how inheritance works in Swift that you need to be aware of if you
come from an ActionScript background:

• Common base classes . This is more of an ActionScript contrast, rather than an
analogy. While in ActionScript all types inherit from the SDK’s Object class, classes in
Swift do not have a common base class. As a consequence, whereas in ActionScript
you can call toString() on any type, for example, a Swift class does not automatically
inherit functionality, unless you explicitly derive it from another class.

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

458

• Access control and inheritance . In addition to marking instances and types as
 public , internal , and private ActionScript offers another level of access, which
is missing from Swift: protected . In ActionScript, as well as other languages, this
modifier links access control with inheritance: a protected property of a class,
for example, is accessible only to that class and its descendants. When Swift was
designed, it was decided that access control should be kept simpler and consistent
throughout the language, without having to consider whether we are in a class
hierarchy situation or not; hence, you will not find protected members here.

 Extensions
 Instead of inheriting an existing type in order to add functionality to it, you can extend it and add properties
or methods to it after it has been defined. This applies to types you have written, as well as to SDK or other
third-party types, whose implementation source code you can’t access.

 To provide an extension for an existing entity, you use the extension keyword, followed by the name of
the entity, followed by curly brackets in which you add the extending functionality. There are two things out
of bounds to extensions:

• You can only provide new functionality and can’t override existing methods,
properties, or subscripts. This is in line with the open-closed principle we saw earlier.

• You can add stored type properties but not stored instance properties. Anything you
add to an extension is available to all instances of it, even if they were defined before
the extension. Adding a stored property would change the memory footprint of an
instance, which in Swift can’t be done at runtime.

 We will see how this works by writing an extension to Swift’s String type (see Listing 21-18). To get the
reverse of a String instance in Swift you need to call the reverse method on its characters property, which
returns a new copy of the string’s character view. We will provide a method as a shortcut for that, which
makes it look as if the string’s contents were reversed in place.

 Listing 21-18. Adding a Method to the String Type

 extension String {
 public mutating func reverse() {
 self = String(self.characters.reverse())
 }
 }

 A quick note: see the mutating keyword and the assignment to self inside the method we added?
These aren’t relevant to providing an extension, but they are an important parts of Swift: we will see why
later when we talk about structures .

 You can now call the reverse method on an instance of String , as if the method was always part of the
type (see Listing 21-19).

 Listing 21-19. Calling an Extension Method

 var palindrome = "Rats at a bar grab at a star."
 print("Palindrome: \(palindrome)")
 palindrome.reverse()
 print("Reversed palindrome: \(palindrome)")

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

459

 // output:
 // Palindrome: Rats at a bar grab at a star.
 // Reversed palindrome: .rats a ta barg rab a ta staR

 See Chapter 22 for another example of extending the String type by adding a subscript to it, which lets
us access individual characters in a string using a numeric index (e.g., myStr[2]).

 Structures
 Structures are a concept that doesn’t have a direct parallel in ActionScript, so let us introduce them by
comparing and contrasting them with classes.

 Like classes, structures keep together data in the form of properties and provide functionality in the
form of methods and subscripts. You access a structure’s properties, methods, and subscripts using the same
dot syntax you use with classes. A structure can also conform to protocols, which translated to ActionScript
roughly means “to implement interfaces.” The syntax for declaring a structure looks very much like declaring
a class, except that you use the struct keyword, instead of the class keyword.

 Now, onto the differences between classes and structures .

• Structures have a completely different way of managing memory —more on this
below.

• There is no subclassing: structures can’t inherit classes or other structures.

• Structures don’t have deinitializer methods.

• Structure methods are not allowed to make changes to the structure, unless you
mark them as mutating .

• You get an additional initializer automatically generated for you if you don’t provide
initializers explicitly and ensure all stored properties of the structure have initial
values. Read on to find out what these automatically generated initalizers look like.

 The example in Listing 21-20 shows a structure definition, which holds the x and y coordinate of a point
and has a Boolean method, which checks whether the point is at the origin of the coordinate system.

 Listing 21-20. Defining a Structure

 struct Position2D {
 var x: Int = 0
 var y: Int = 0

 func isAtOrigin() -> Bool {
 return 0 == x && 0 == y
 }
 }

 Instantiating a Structure
 The rules for instantiating classes and defining initializers apply to structures too. For classes that provide
default values for all of their stored properties, the compiler defines a default initializer without parameters
behind the scenes. Structures get the same treatment and more: they also get a member-wise initializer
automatically, which takes parameter values for every stored property.

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

460

 This means that without adding any more code to the Position2D structure from the last example, we
can create instances of it using one of the two automatically generated initializers, as shown in Listing 21-21 .

 Listing 21-21. Instantiating a Structure

 // Uses the default initializer:
 let origin = Position2D()

 // Uses the memberwise initializer:
 let randomPoint = Position2D(x: 10, y: 10)

 Memory Management for Structures and Enumerations
 Unlike classes, which use references, structures and enumerations are value types . In other words, when you
instantiate a structure and assign it to a variable and then assign this variable to another variable and try to
modify it, the second variable gets a copy of the structure and you end up with two structure instances. This is
known as copy on write . The same thing happens when you pass a structure or an enumeration as an argument
to a function: the value of the structure or enumeration gets copied over if there is an attempt to write to it.

 Here is an example to illustrate that: we will try the same experiment we did with classes in Listing 21-12
to see the difference. The example in Listing 21-22 declares a variable pointA and initializes it with an instance
of the Position2D structure we defined in Listing 21-20 . It then declares a second variable, pointB , and assigns
 pointA to it. Now, if we change one of the properties of Position2D via pointB , we will see that the changes do
not appear in pointA : pointA and pointB each has separate instances of Position2D .

 Listing 21-22. Structures as Value Types

 // pointA contains an instance of Position2D:
 var pointA = Position2D(x: 5, y: 10)

 // pointB gets a copy of this instance:
 var pointB = pointA

 // If pointB changes, this doesn't affect pointA:
 pointB.x = 0
 print(pointA.x) // prints out 5
 print(pointB.x) // prints out 0

 It’s worth being aware that most of the primitive types in Swift are implemented as structures behind the
scenes: this includes all numeric types, the String type, and also the collection types Array and Dictionary .

 Working with value types on the one hand means that you need to be careful when passing them
around or doing assignments and to be aware of both the memory and performance overhead this might
have. Having copies created every time there is an assignment takes additional memory and also takes time
for initialization. On the other hand, Apple’s manual points out that things are optimized behind the scenes,
so that actual value copying only takes place “when it is absolutely necessary” and that a programmer
doesn’t necessarily need to go out of her way to avoid assignment of value types.

 ACTIONSCRIPT ANALOGY

 All ActionScript types are reference types . Basic types like String and Number , however, are made to
behave as if they are value types and create instance copies when you try to modify an instance via
multiple references.

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

461

 Mutating Methods
 One of the rules for working with value types is that you cannot modify their properties from within instance
methods. In order to enable a method to change the properties of a structure or an enumeration, you need to
mark it as mutating .

 Listing 21-23 adds two mutating methods to the Position2D structure: one of them changes the x and y
properties; the second changes the whole structure by making an assignment to its implied self property.

 Listing 21-23. Changing the Properties of a Structure Instance from Within a Mutating Method

 struct Position2D {
 var x: Int = 0
 var y: Int = 0

 func isAtOrigin() -> Bool {
 return 0 == x && 0 == y
 }

 mutating func moveTo(x x: Int, y y: Int) {
 self.x = x
 self.y = y
 }

 mutating func moveTo(position newPosition: Position2D {
 self = newPosition
 }
 }

 When to Prefer Structures
 Structures don’t use inheritance and are always passed by value. In other words, you can’t take advantage of
a structure hierarchy to create sophisticated logic and you need to be careful with the memory footprint of
your structures and the price you pay when new instances are automatically created. This makes structures
best suited for encapsulating and keeping pieces of data together: the fewer, the better. Use classes when you
require more complicated logic and need to take advantage of inheritance.

 Enumerations
 An enumeration or enum is a type that you declare to define a set of names. Like classes and structures,
enumerations can have properties and methods and conform to protocols. Like structures, they are value
types . Chapter 22 spends time delving into the subtleties of enumerations.

 Protocols
 A protocol defines how an entity should be interacted with: what properties and methods other entities
can use to access it. We will start by comparing and contrasting protocols with their ActionScript analogue:
 interfaces . Then we will depart as far away from ActionScript as we can.

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

462

 ACTIONSCRIPT ANALOGY

 Protocols in Swift are related to ActionScript interfaces: they define a way of interacting with types by
setting requirements that a conforming type must implement.

 Now, let us see how protocols and interfaces are different:

• Interfaces only set requirements for what methods a type needs to implement.
Protocols can set requirements for methods, properties, subscripts, and even
initializers.

• Interfaces leave the implementation entirely to the types that adopt them. Protocols
also typically leave the implementation to the conforming types but can also provide a
default implementation.

• An interface can only be marked as public or internal . A protocol can be public ,
 internal , or private .

 Defining a Protocol
 You define a protocol with the protocol keyword, followed by curly brackets. Inside the curly brackets is
where the definition of the protocol’s requirement goes. This is much like defining a class or a structure,
except that method, subscript, and property definitions have a slightly different syntax in a protocol.

 Following is a protocol we will define as an example. It is called Countable and offers a way for a type,
which contains a collection, to report the number of items in the collection and the unit for that number
(Listing 21-24).

 Listing 21-24. Defining a Protocol

 protocol Countable {
 static var unit: String { get }
 func count() -> Int
 }

 Let us look at the requirements set by Countable .
 The first one is that any conforming type should have a readable type property , called unit , which is

of type String . The fact that the property is readable is expressed by the get keyword inside curly brackets
after the property definition. Note that this requirement can be satisfied by a stored property, as well as a
computed property with a getter. For a property that’s required to be readable and writeable, the definition
would contain { get set } .

 The second requirement defined by the protocol is that conforming types should implement a method,
called count , which returns an integer. The protocol defines only the signature of the method, without an
implementation, hence the lack of curly brackets.

 Conforming to a Protocol
 Now let us see how a type might conform to this protocol. We will redefine the Directory class that we used
earlier in the chapter for that purpose (see Listing 21-25).

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

463

 Listing 21-25. Conforming to a Protocol

 class Directory: Countable {
 // Property, required by the Countable protocol:
 static var unit = "Files and folders"

 var files: [File] = []
 var directories: [Directory] = []

 // Method, required by the Countable protocol:
 func count() -> Int {
 return files.count + directories.count
 }
 }

 You can see that the protocol name appears in the declaration the same way you would put the name of
a base class: after the type name, separated by a colon. The rule is: a type can conform to multiple protocols,
which you list, separated by commas. If there is a base class the type inherits apart from the protocols, it
should appear first in the list.

 The definition of the property and the method, required by the Countable protocol, comes inside the
definition of the Directory class like any other property or method. In this case an instance of Directory
will return the number of files and directories it contains.

 Facts About Protocols
 We could easily dedicate a whole chapter to the power of protocols. However, for the scope of this book it is
more important that you are aware of the things protocols can do for you and explore them in depth when
you need to. Apple’s The Swift Programming Languag e online manual is a very good source.

• Protocols can be adopted by classes, structures, and enumerations.

• A protocol can set a restriction that it is only adoptable by classes by putting the
keyword class in its inheritance list , for example:

 protocol Countable: class /*Any inherited protocols come after 'class'.*/ {}

• Protocol methods that may need to change the internals of a type instance must
be marked as mutating , in case the protocol is adopted by a structure or an
enumeration.

• Protocols can inherit each other and form hierarchies.

• They can set requirements for initializers. When such an initializer is implemented
in a conforming class, it is marked with the required modifier, unless the class has
been defined as final . The required modifier signals to any subclasses that may
inherit the conforming class that they need to provide an implementation for the
initializer in order to conform to the protocol. This is illustrated with the example in
Listing 21-26 . It declares a protocol, named MyProtocol and a class that conforms
to it, called MyBaseClass . The protocol defines an initializer (a default initializer
without parameters in this case), which any conforming class needs to implement.
When we define this initializer in MyBaseClass , we need to include the required
keyword: this makes the initializer compulsory in MyDerivedClass , which we have
declared as a subclass of MyBaseClass .

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

464

 Listing 21-26. Making a Type Conform to a Protocol Through an Extension

 protocol MyProtocol {
 init()
 }

 class MyBaseClass: MyProtocol {
 // The keyword required makes sure
 // that any subclasses of MyBaseClass
 // will also implement this initializer:
 required init() {
 // The body of the initializer
 }
 }

 class MyDerivedClass: MyBaseClass {
 // MyDerivedClass needs to implement this initializer
 // and include the keyword required, in case it has subclasses:
 required init() {
 super.init()
 }
 }

• You can define extensions to protocols like you do for other types.

• You can make a type conform to a protocol via an extension. As an example let’s
play with Swift’s String type again to make it conform to the Countable protocol we
defined earlier and have it report the number of characters it contains (Listing 21-27).

 Listing 21-27. Making a Type Conform to a Protocol Through an Extension

 extension String: Countable {
 static var unit: String {
 get {
 return String(Character.self)
 }
 }

 func count() -> Int {
 return self.characters.count
 }
 }

 You will see that String implements the required unit property differently. Instead of a stored property,
 unit is defined as a calculated property and returns the type name of Character as a String .

 Let’s test the extension by calling count on a String instance, as shown in Listing 21-28 .

 Listing 21-28. Testing Protocol Conformance

 let s = "Ready, fire, aim!"
 print("'\(s)' has \(s.count()) instances of \(String.unit).")

 // output:
 // 'Ready, fire, aim!' has 17 instances of Character.

CHAPTER 21 ■ OBJECT-ORIENTED PROGRAMMING TOPICS

465

 The Merit of Protocols
 Protocols can be used as types in their own right. For example, if you declare a function that takes a
parameter of type Countable , you can then call that function and pass it a String instance or a Directory
instance. This way protocols let structures and enumerations take advantage of polymorphism, even if they
can’t use inheritance.

 The main advantage of protocols, however, will be revealed when we look at generics in Chapter 22 .
Generic programming allows you to write code that can be applied to many different types of data. Protocols
help add constraints to that and make generic types really powerful.

 Summary
 In this chapter we covered the tools and techniques that Swift provides for Object-Oriented Programing. In
particular we saw the differences between classes and structures, the variety of ways that Swift can handle
properties, and how we can extend types without modifying them. Finally we covered the basis of protocols,
the power of which we will see in the next chapter, as we cover Swift’s support for generics. Stay tuned . . .

http://dx.doi.org/10.1007/978-1-4842-1666-8_22

467© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_22

 CHAPTER 22

 New and Different Concepts

 In this chapter we open the door to four topics that either have no counterpart in ActionScript or that Swift
redefines in a way that can make them seem new to an ActionScript developer. Enumerations and generics
fall under the first category. Subscripts and closures , although present in ActionScript, are taken to a whole
new level in terms of functionality and expressiveness. Curious? I was . . .

 Enumerations
 An enumeration or enum is a type that you declare to define a set of names, which can also have values
attached to them.

 ACTIONSCRIPT ANALOGY

 Although there is no equivalent to enumerations in ActionScript, online forums abound in clever ways
of “faking” them: from using named constants to writing sophisticated classes that simulate an
enumerated type and maintain its consistency.

 Why Use Enumerations?
 Let us consider the alternative. Suppose one part of your app sends images to a server and generates a code
that tells you whether the upload succeeded. You may want to write a function that processes this code and
returns something more meaningful that you can either show on the screen or add to a log file. Let us say
that you have three codes to consider:

• 0 means that the upload was successful;

• 1 means that the upload failed because of a server error;

• 2 means that the upload failed because the user canceled it.

 Listing 22-1 shows what your processing function might look like.

 Listing 22-1. Making a Choice Without Using Enumerations

 func getMessageFromCode(resultCode : Int) -> String {
 switch errCode {
 case 0: // Success
 return "The file was sent successfully."

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

468

 case 1: // Server error
 return "The server responded with an error."

 case 2: // The user cancelled sending
 return "The user aborted the operation."

 default:
 return "Unknown error code"
 }
 }

 This function does the job, but there are a couple of things that can be improved upon.

• You need to keep track of an arbitrary mapping between result codes and their
meaning. If you add new codes to the part of your app that deals with the uploads,
you must remember to add them to geMessageFromCode too.

• The function doesn’t give you the flexibility for additional information: for example,
finding out the reason for the server failure based on an error code that might have
come from the server.

 Using an enum with Raw Values to Handle Value Mapping
 Using named constants instead of 0, 1, and 2 would partially solve the problem with the arbitrary mapping
between return codes and their meaning. Using an enumeration can give you that and more: it lets you
define a set of names and (optionally) attach constant values to them. It also keeps the set’s integrity: unlike
with named constants, in an enumeration you don’t have to worry about two constants having the same
value by accident.

 To declare an enumeration you use the keyword enum , the name of the enumeration and list the set of
names in curly brackets (see Listing 22-2).

 Listing 22-2. Declaring an enum of Integers

 enum FileUploadResult : Int {
 case Success = 0
 case ServerError = 1
 case UserCancelled = 2
 }

 Having declared this, you can use FileUploadResult.Success (or simply .Success) where you need 0,
. ServerError where you need 1, and so on. Let us rewrite getMessageFromCode to take advantage of this, as
shown in Listing 22-3 .

 Listing 22-3. Replacing Hard-Coded Integers with Names from an enum

 func getMessageFromCode(resultCode: FileUploadResult) -> String {
 switch errCode {
 case .Success: return "The file was sent successfully."
 case .ServerError: return "The server responded with an error."
 case .UserCancelled: return "The user aborted operation."
 }
 }

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

469

 There are a few things that are worth noting in this improved version of getMessageFromCode :

• The integers we assigned to the enum members are called raw values in Swift.

• The code is now self-documented and does not need comments.

• FileUploadResult is a new type, which defines a closed set of integers. As a result
the resultCode argument can now make use of this type and have its possible values
limited to the only three that have meaning in this context.

• You don’t need a default statement any more. As you saw in Chapter 20 , the Swift
compiler insists that a switch statement be exhaustive: it either needs to provide
a case statement for every possible value of the type it handles or have a default
clause to cover values that do not have case statements. The case statements here
cover every possible value of the FileUploadResult type.

• A side effect of omitting the default clause is that you don’t have to remember to
add new case statements if you create new return codes: the compiler will let you
know if you fall short on case statements.

• The .Success , .ServerError , etc. syntax is short for FileUploadResult.Success ,
 FileUploadResult.ServerError , and so on.

 More Facts About Raw Values
 Here are a few more things that are good to know about raw values in enumerations:

• Raw values are optional. You can define an enum of names without values attached
to them. The code in Listing 22-4 shows you an enum without raw values and another
valid syntax, where you list names on the same line:

 Listing 22-4. Enum Without Raw Values

 enum FileUploadResult {
 case Success, ServerError, UserCancelled
 }

• Integer raw values can auto increment. If you define an enum with integer raw
values but only assign a value to one of its members, all members that come after
it will assume raw values that autoincrement from the assigned one. For example,
in Listing 22-5 the declaration of FileUploadResult .ServerError automatically
assumes a raw value of 1 and . UserCancelled a raw value of 2.

 Listing 22-5. Autoincremented Raw Values

 enum FileUploadResult: Int {
 case Success = 0, ServerError, UserCancelled
 }

• Raw values can be strings, characters, and integer or floating-point numbers.

http://dx.doi.org/10.1007/978-1-4842-1666-8_20

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

470

• Raw values are constant and have the same type for all members of an enum.
Once assigned, raw values cannot be changed and are a characteristic of the enum
type you have declared: each instance of the enum will have the same raw values
assigned to its members. When you want to use raw values, you need to tell the
compiler what type they will be by declaring your enum to be of that type (an Int or a
 String , for example). Each member of the enum is then considered to be of the same
type, whether it has a raw value assigned to it or not.

• To read a raw value, use the rawValue property:

 Listing 22-6. Accessing a Raw Value

 let returnCode = FileUploadResult.Success.rawValue

 Adding Associated Values to Handle Variable Information
 When it comes to enumerations most programming languages stop at what you saw in the last example: an
 enum allows you to use named integers. And this is usually good enough.

 Swift, on the other hand, offers more. Instead of a raw value , a member of an enum type can have
another kind of value mapped to it, called associated value . You can think of an associated value as an
additional property of the enum member. It can be of any type, it can store custom information, and you can
change the value of that information from one line of code to the next.

 In the file upload result example the enum passed to getMessageFromCode could have more detailed
information attached to its members. For example, FileUploadResult.ServerError could have an Int and
a String that indicate an error code and a message from the server; FileUploadResult.UserCancelled
could have an additional String that explains how the user canceled the upload. In Swift you express that by
providing a list of associated value types in brackets after an enum member’s name (see Listing 22-7).

 Listing 22-7. Syntax for Associated Values in enums

 enum FileUploadResult {
 case Success // doesn’t need an associated value
 case ServerError (Int, String) // (server error code, server message)
 case UserCancelled (String) // (how the user cancelled the upload)
 }

 Note how this declaration specifies only types associated with two of the members without assigning
values to them. This is like declaring variables that can be attached to .ServerError and .UserCancelled
that you populate once you create an instance of FileUploadResult , as shown in Listing 22-8 .

 Listing 22-8. Assigning Associated Values

 var returnCode = FileUploadResult.ServerError(400, "Bad request")

 // You can later change the associated values in returnCode
 // by doing another assignment:
 returnCode = FileUploadResult.ServerError(404, "Not found")

 Listing 22-9 shows a version of getMessageFromCode , which makes use of the enum ’s associated values.

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

471

 Listing 22-9. Using associated values

 func getMessageFromCode(resultCode : FileUploadResult) -> String {
 switch resultCode {
 case .Success:
 return "The file was sent successfully."

 case .ServerError (let serverErrorCode, let serverMessage):
 return "The server responded with error:
 \(serverErrorCode), \(serverMessage)."

 case .UserCancelled (let additionalInfo):
 return "The user aborted operation.
 Additional information: \(additionalInfo)"
 }
 }

 Well, this looks like a handful. For the sake of simplicity let us dissect just one of those case statements
(see Listing 22-10).

 Listing 22-10. Reading Associated Values

 case .UserCancelled (let additionalInfo):
 return "The user aborted operation.
 Additional information: \(additionalInfo)"

 The code in the brackets inside the case statement declares a local constant called additionalInfo
and assigns the associated value of .UserCancelled to it. The next line then uses that variable to build a
string and return it as the function’s result. This solves the second issue we had with the very first version of
 getMessageFromCode : its argument can now carry additional information.

 It is worth noting that the values you read in the code in Listing 22-10 are part of the resultCode
 instance of FileUploadResult , not part of the FileUploadResult type or .UserCancelled . In other words, if
you declare another FileUploadResult instance and add associated values to it, they can be different from
those in resultCode .

 More Facts About Enumerations
 Some of the rules that apply to enumerations might surprise you, for example:

• Raw and associated values are mutually exclusive. Currently the Swift compiler
will not let you declare an enum that has both raw and associated values attached to
its members.

• An enum is like a class. It can be extended, can conform to protocols, and can have
instance methods and initializers defined for it.

 Subscripts
 Subscripts do have a counterpart in ActionScript. Swift, however, puts a new spin on this concept, which we
will focus on here.

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

472

 ACTIONSCRIPT ANALOGY

 Whenever you access an element of a container by its index or an Object’s property by its name in
square brackets, you use a subscript. In ActionScript a subscript is called the array access operator [] .

 // ActionScript code
 var dictionaryElement : String = dictionary[3];
 var objProperty : Number = object["propertyName"];

 Defining a Subscript
 In Swift you can use subscripts in similar situations and, unlike in ActionScript, you can also define them. In
other words, you can decide what happens when dictionary[3] is called.

 I will illustrate this with an example. In Swift you can access the individual characters in a String by
providing an instance of a class called Index , but you can’t simply ask for str[3] . Let us extend the String
class and define a subscript that takes integers to make this possible.

 You declare a subscript like you would a method, but use the subscript keyword, instead of func , as in
Listing 22-11 .

 Listing 22-11. Defining a Subscript in Swift

 extension String
 {
 public subscript (i: Int) -> Character
 {
 let index = self.startIndex.advancedBy(i)
 return self[index]
 }
 }

 Now you can access the characters of a given String with an integer literal in square brackets
(see Listing 22-12).

 Listing 22-12. Using a Subscript

 let str: String = "I swear by my pretty floral bonnet..."
 let ch: Character = str[3] // returns 'w'

 Subscript Overloading
 You were acquainted with the concept of overloading operators in Chapter 18 and saw how to overload
methods in Chapter 21 . Subscripts, being just another type of function, can be overloaded too. The only
condition is that the subscript methods defined for a given type all have different signatures.

 In fact, what we provided in the last example was a subscript overload to the already existing String
subscript that takes an Index instance and returns a character.

 Subscript Varieties
 In Swift you can define subscripts that take ranges, multiple dimensions, or indices that are not numbers.

http://dx.doi.org/10.1007/978-1-4842-1666-8_18
http://dx.doi.org/10.1007/978-1-4842-1666-8_21

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

473

 Using a Range
 The example in Listing 22-13 defines another subscript for the String type, which takes a range, a lower index
and an upper index, and returns the substring of characters that fall between (and including) these indices.

 Listing 22-13. Defining a Subscript That Uses a Range

 extension String {
 subscript(characterRange: Range<Int>) -> String {
 let start = self.startIndex.advancedBy(characterRange.startIndex)
 let end = self.startIndex.advancedBy(characterRange.endIndex)
 let range = start..<end
 return self[range]
 }
 }

 // You can now get a subset of the string's characters like this:
 let str: String = "I swear by my pretty floral bonnet..."
 let chSubset = str[3…6] // returns 'wear'

 Using Multiple Dimensions
 Subscripts can be multidimensional too. The code in Listing 22-14 defines a structure that represents a Tic-
tac-toe board and can tell you what’s in a given cell of the board, defined by a row and a column.

 Listing 22-14. Defining and using a multidimensional subscript

 struct TicTacToeBoard {
 // Create the tic-tac-toe grid and initialize it with spaces:
 var mGrid: [[Character]] =
 [[" ", " ", " "], [" ", " ", " "], [" ", " ", " "]]

 func areIndicesValid(row: Int, column: Int) -> Bool {
 return 0…2 ~= row && 0…2 ~= column
 }

 subscript (row: Int, column: Int) -> Character {
 // Ensure that we are operating with valid indices:
 assert(areIndicesValid(row, column: column))
 return mGrid[row][column]
 }
 }

 // Call the two-dimensional subscript like this:
 var ticTacToe: TicTacToeBoard = TicTacToeBoard()
 let centreCell = ticTacToe[1, 1] // Returns " "

 Using Non-numeric Indices
 The indices you use in a subscript don’t have to be integers. For example, the two lines of code in Listing 22-15
initialize a Dictionary of String-Int key-value pairs and then use a String as the subscript index to access a
value in the Dictionary :

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

474

 Listing 22-15. Using String as the Subscript Index

 let starWarsFilms =
 ["Star Wars": 1977, "The Empire Strikes Back": 1980,
 "Return of the Jedi": 1983]
 let firstStarWarsFilmRelease = starWarsFilms["Star Wars"]! // returns 1977

 Closures
 Closures are not an entirely new concept for an ActionScript 3 developer. As with a lot of old tricks, however,
you will find that Swift has reinvented this one too to offer more expressiveness. And this is what merits
including closures in this chapter.

 ACTIONSCRIPT ANALOGY

 Whenever you use a nested function or a Function object in ActionScript, you use a closure.

 Closures in Swift Can Be Very Concise
 Very. So concise indeed that some of the closure syntax can be baffling at first. We will ease into it with an
example, which will first show you a familiar ActionScript closure and then its Swift counterparts, each of
which will optimize some part of the syntax.

 An ActionScript Example
 Let us start with something familiar. In ActionScript 3 you can filter an array by calling the Array class’s
 filter function, which is defined thus:

 function filter(callback: Function, thisObject:* = null): Array

 Here the callback parameter is a closure : a function that you supply and that will be run on each
element of the array. The manual page for filter tells us that callback is expected to have the following
signature:

 function filter(callback: Function, thisObject:* = null): Array

 If you want to filter an array of integers and leave only the ones that are larger than three, this is what
you might do. First, implement a filter callback function, then use it as an argument in the Array’s filter
function (see Listing 22-16).

 Listing 22-16. Closure Implementation and Use in ActionScript

 // ActionScript code
 // First, implement a callback function for filtering array elements:
 function filterCallback(item : Object, index : int, array : Array) : Boolean {
 return item > 3;
 }

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

475

 // Then use the callback to filter an array:
 var initialArray : Array = [1, 2, 5];
 var filteredArray: Array = initialArray.filter(filterCallback);

 After this is run, filteredArray should contain just [5].

 Literal Translation to Swift
 The Array container type in Swift happens to have the same method, called filter . How convenient. It takes
a closure, which applies criteria to an element of the array and returns true if the element passes the criteria
and false otherwise (Listing 22-17).

 Listing 22-17. Defining a Closure and Using It in Swift

 // Implement the closure function, which is run on each array element:
 func includeElement(item : Int) -> Bool {
 return item > 3
 }

 // Then use the closure to filter an array:
 let initialArray = [1, 2, 5]
 let filteredArray = initialArray.filter(includeElement)

 Optimization 1: Inlining a Closure Expression
 Instead of defining a closure as a separate function, you can inline it where it is needed, as shown in
Listing 22-18 .

 Listing 22-18. An Inline a Closure in Swift

 let filteredArray = initialArray.filter(
 {(item: Int) -> Bool in return item > 3})

 Note the following:

• The closure is now anonymous (i.e., doesn’t have a name). The Swift SDK calls
‘unnamed closures written in a lightweight syntax that can capture values from their
surrounding context’ closure expressions .

• The full syntax for a closure expression looks like this: the whole expression is put in
curly brackets and starts with the closure parameters in parentheses, followed by the
closure return type, the keyword in , and the closure body:

 { (parameters) -> return type in closure body }

 It is also worth noting that with this optimization we haven’t waded in deep Swift waters yet, as
ActionScript allows you to define inline closures too.

 Optimization 2: Letting the Compiler Infer Types from Context
 The closure expression in Optimization 1 can be made even shorter by omitting the types of the argument
and the result, as the Swift compiler will infer them from the context (Listing 22-19).

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

476

 Listing 22-19. Closure Expression with Argument and Return Type Inferred

 let filteredArray = initialArray.filter({item in return item > 3})

 Optimization 3: Using an Implicit Return
 If you look at the body of our closure expression : item > 3 , you will notice a couple of things about it:

• It’s a single expression.

• Its result matches the return type of the closure, Bool .

 The Swift compiler is quite happy for you to omit the return statement in cases of single-expression
closures , which shortens code even further, as you can see in Listing 22-20 . 1

 Listing 22-20. Using Implicit Return in Single-Closure Expressions

 let filteredArray = initialArray.filter({item in item > 3})

 Optimization 4: Using Shorthand Names for Parameters
 Arguments passed to a closure can be referred to with what is called shorthand names in Swift. A shorthand
name is a symbol that represents an argument, based on where in the list of arguments it is. The convention
is: $0 refers to the first argument in the list, $1 refers to the second argument in the list, and so on.

 If you apply this convention the inline closure will look like Listing 22-21 .

 Listing 22-21. Using Shorthand Names in Closures

 let filteredArray = initialArray.filter({$0 > 3})

 Note that this also spares you the need to provide the list of arguments before the body of the closure
and gets rid of the in keyword.

 Optimization 5: Using an Operator Function
 Think {$0 > 3} is short? How about getting rid of the curly brackets altogether and cutting this down to a
single symbol?

 To illustrate how this works, let us take a different example. Calling an Array ’s sort function in Swift
takes a closure with two arguments. The two arguments are elements of the array and the closure returns
 true if the first argument should be placed closer to the top of the array and false if the second argument
should be placed closer to the top. Listing 22-22 is the long inline version of that closure, which helps sort the
array in ascending order.

 1 All this cutting down on syntax because of the cleverness of the compiler reminds me of an old, old joke from Gabrovo
(Bulgaria), whose citizens are known to be a bit financially conservative…
 A merchant goes to a distant town to sell wheat. Before heading back he walks into a post office and writes the following
telegram to send to his wife: “Dear Ana, I sold the wheat profitably. Coming back tomorrow. Yours, Ivan.” He counts
the words and decides to lower the cost of the telegram by skipping the first part, as his wife is obviously dear to him. So
he shortens the telegram to: “Sold the wheat profitably. Coming back tomorrow. Yours, Ivan.” He looks at the text and
thinks “But she knows I always sell with profit . . .” and shortens the telegram further: “Coming back tomorrow. Yours,
Ivan.” Eager to lower his expenses, he reasons that of course his wife knows he is coming back shortly, why wouldn’t
he?! And the text becomes: “Yours, Ivan.” The merchant looks at this final version, scratches his head, and says to
himself, “Well, I am hers and she knows that.” Then he tears the telegram form and walks out of the post office.

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

477

 Listing 22-22. Using a Closure to Sort an Array

 let sortedArray = initialArray.sort(
 { (item1: Int, item2: Int) -> Bool in return item1 < item2 })

 If you apply Optimization 4 to this, the closure will simply read {$0 < $1} . Turns out that in this case
you can again rely on the ingenuity of the compiler to infer what you are trying to do and simply leave the less
than operator to stand for the whole closure (see Listing 22-23).

 Listing 22-23. The Sorting Closure Reduced to a Single Operator

 let sortedArray = initialArray.sort(<)

 Neat? Weird? Definitely.

 More Facts About Closures
 There are a couple more things to mention about closures. The first one provides an addition to our “strange
syntax” collection:

• Trailing closures. When you don’t have the luxury of a single-expression closure and
instead have more work to do in the closure body, you can use what Swift calls a
 trailing closure . The only condition: the closure needs to be the last argument that is
passed to a function. This is a call to the filter function we have been playing with,
this time with a trailing closure . Note in Listing 22-24 how the closure comes in curly
brackets after the argument list of the function. The parentheses after filter are
optional if the closure is the only argument that you need to pass.

 Listing 22-24. Using a Trailing Closure

 let filteredArray = initialArray.filter() {
 $0 > 3
 }

 //You can even omit the parentheses after the function name in this case:
 filteredArray = initialArray.filter{$0 > 3}

• Closures have access to constants and variables defined outside them. Like a nested
function in ActionScript, a Swift closure can access and modify the values of variables
and constants in its surrounding context. For example, take a look at Listing 22-25 .

 Listing 22-25. Accessing Variables and Constants from the Surrounding Context

 func sumArrayElements(arr: Array< Int >) -> Int {
 var arrayTotal: Int = 0;

 func addArrayElement(item: Int) {
 arrayTotal += item
 }

 for (element) in arr { addArrayElement(element) }

 return arrayTotal
 }

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

478

 The function in this snippet takes an array of integers and returns the sum of the array’s elements.
The nested closure defined inside it, addArrayElement , can read and modify arrayTotal , which lives in the
context of the enclosing function, sumArrayElements .

 Generics
 Generic programming , also known as template metaprogramming in other parts of the programming world,
allows you to write code that can be parameterized not just on the values it handles but also on the types it
can work with. Sound too abstract? Read on.

 A Generic Function in Swift
 What would a function look like that takes types, as well as values, as parameters? 2

 Let us begin by declaring a function, called isContained , that takes an array and an object and returns
 true if the object is contained in the array, false otherwise. 3 If you were to write the body of this function,
it would probably do the following: iterate through the array elements until it finds a match with the given
object or until it runs out of array elements. The function’s insides would be the same if you wanted it to look
for a string in an array of strings, a number in an array of numbers, and so on. You can imagine the amount
of duplicated code you would end up with if you were to provide an implementation of this function for
every single type you need it to handle.

 Swift spares you that need and instead delegates the job of providing type-specific implementations to
the compiler, when you declare your function as in Listing 22-26 .

 Listing 22-26. Generic Function Syntax

 func isContained<T>(arr : Array<T>, obj : T) -> Bool

 Translated into English, this reads: isContained is a function that takes an array of any type and an
object of the same type. In the declaration of the function that type will be called T. In order to stop the
compiler from complaining it doesn’t know what T is, we need to tell it that T is a type parameter (alias): this
is what <T> after the name of the function stands for. It is conventional to use one-letter aliases such as T , but
you can use any name you like, as long as it’s not an existing type or a reserved keyword.

 Calling a Generic Function
 How would you make a call to isContained ? In many other languages you would need to explicitly
provide the type you want to use in place of T at the time of the call. Due to the powers of the Swift
compiler to infer types from context, however, you wouldn’t know you were calling a generic function
(Listing 22-27).

 Listing 22-27. Calling a Generic Function

 let intArray = [45, 2, 6]
 let objFound = isContained(intArray, obj: 2) // returns true

 2 It would be fair to say that the parameter analogy only goes so far: a conventional parameter to a function gets it value at
runtime, while a type parameter must be resolved at compile time.
 3 And let us pretend for a moment that array.indexOf() does not exist in Swift.

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

479

 The Compiler Does the Dirty Work
 What happens when you call a generic function is that the compiler creates code for you behind the scenes,
which is compiled with the rest of your code. So, if you called isContained once with Int and once with
 String , the compiler would generate two implementations of isContained : one for handling each type. The
code will only be generated at compile time and will not appear in your source files.

 ACTIONSCRIPT ANALOGY

 There is no direct analogue to generics in ActionScript. A similar effect, at least from the point of view
of writing code that works with arbitrary types, is achieved by using polymorphism: you can declare a
function to take parameters of type Object or the star type (*).

 // ActionScript code
 function isContained(arr : Array, obj : Object) : Boolean

 This allows you to use any ActionScript type for the elements of arr and for obj, which looks very
similar to how we made a call to the same function in Swift in the previous example. There are some
significant differences between the two approaches, however. I will take a bit of a detour to outline them
in the next section.

 Generic Programming and Polymorphism
 Both generic programming and polymorphism are tools and each tool has its time and place where it is a
better choice than others. It is like having a flat-head and a cross-head screwdriver in your toolbox: none of
them is better than the other in general, but you would prefer one or the other depending on what you want
to achieve. Following are some of the situations in which you might prefer generics to polymorphism. And
hope that polymorphism doesn’t take it personally.

• When you need to be able to plug in unrelated types. <T> can be used as an alias
for any type, while requiring an Object as a parameter means that what you pass in a
function needs to descend from Object . 4

• When you need to enforce type safety across unrelated types. The ActionScript
function declared in the last example can take an array of strings and look for an
integer in it. No errors will be thrown, but using isContained like this would be
somewhat wasteful. The generic declaration of isContained in Swift makes it
clear that both the array and the object will need to be of the same type, whatever
that type may be and the compiler will enforce that. This has the added benefit of
documenting your intentions.

• When you want to take advantage of compile-time error checking for unrelated
types. A compiler or a linker error is worth about a hundred runtime errors. If inside
the body of your generic function you tried to use a type-aliased argument in a way
that its type doesn’t allow, the Swift compiler will let you know about it. Using an
Object in ActionScript, on the other hand, allows you to do all sorts of things that
may only turn out to be a problem at runtime.

 4 This is, admittedly, the case for all types in ActionScript.

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

480

• When speed is important. With polymorphism, you can resolve which override
method to call at runtime. And that’s one of the great things about polymorphism.
When you don’t need polymorphic behavior, however, and just code that will run
with types that are totally unrelated to one another, you are better off with generics
speed-wise. As we saw earlier, the compiler expands generic functions for you, so
a specific version of your function will be called without the need to work it out at
runtime.

 A Generic Type in Swift
 In Swift, in addition to generic functions, you can define and use generic structures, classes, or
enumerations. Listing 22-28 shows an example of a generic structure, called SimpleCollection . It has a
member, mCollectables , which is an Array that can hold any type.

 Listing 22-28. Declaring a Generic Type

 struct SimpleCollection<T> {
 var mCollectables = [T]()

 mutating func collect(item: T) {
 mCollectables.append(item)
 }
 }

 You Use Generics in Swift Whether You Know It or Not
 The container types in Swift, Array , Dictionary and Set , which you saw in Chapter 19 , are all generic types.
This allows you to create collections of any type you need to.

 In addition, the first version of Swift offered a number of global generic functions, such as sorted ,
which would sort the elements of a container. Most of these have been moved to methods of the container
classes in Swift

 Setting Constraints
 Writing generic code for any type is quite flexible. Often, however, you want to restrict the types that a
generic function or type allows because of what you need to do with them.

 We will go back to our generic function example to illustrate this. This time let us add the function body
(see Listing 22-29).

 Listing 22-29. Generic Function Body

 func isContained<T>(arr : Array<T>, obj : T) -> Bool {
 for arrElement in arr {
 if arrElement == obj { return true }
 }

 return false
 }

http://dx.doi.org/10.1007/978-1-4842-1666-8_19

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

481

 This line— if arrElement == obj —looks simple enough, but it has a glitch: not every type is
guaranteed to have the equals operator (==) defined for it. Indeed, if you try to compile this code, the
compiler will helpfully tell you that “ Binary operator ‘==’ cannot be applied to two T operands .”

 The way to ensure that only types that support the equals operator can be used with this function is to
put a constraint on the type placeholder T and force it to conform to the Equatable protocol. This changes
the signature of the function as shown in Listing 22-30 .

 Listing 22-30. Generic Function with a Constraint

 func isContained<T: Equatable>(arr : Array<T>, obj : T) -> Bool

 More facts About Generics
 We will close the section on generics with a brief list of points that are worth knowing:

• You can have more than one type alias or placeholder (e.g., see Listing 22-31).

 Listing 22-31. Using More Than One Type Alias

 func mapTwoTypes<T, U>(instanceOfT: T, instanceOfU: U)

• Type placeholders can be used in protocols too. In that case they are called
 associated types and are specified with the keyword typealias . This is what a
protocol for our SimpleCollection structure might look like Listing 22-32 .

 Listing 22-32. Using an Associated Type with a Protocol

 protocol SimpleCollectionProtocol {
 typealias T
 mutating func collect(item: T)
 }

• Generic types (classes, structures, protocols, enumerations) can be extended.

• There are even more elaborate ways of constraining type placeholders. You can
constrain a type placeholder to conform to protocols or inherit certain classes, as in
Listing 22-33 .

 Listing 22-33. Constraining Type Placeholders

 func mapTwoTypes<T: CertainClass, U: CertainProtocol>
 (instanceOfT: T, instanceOfU: U)

 You can define even more specific constraints by using the where clause. Here is an example of that:
let us define a protocol to use for collections and define an associated type in it, called ItemType . A generic
function that compares two collections can then impose the following constraints on its arguments:

• The two collections can be of different types (an Array and a Set , for example), but
the items they contain must be of the same type.

• The items in the collections must conform to the Equatable protocol, so that they
can be compared.

CHAPTER 22 ■ NEW AND DIFFERENT CONCEPTS

482

 The code in Listing 22-34 shows all this expressed in Swift

 Listing 22-34. Constraining Type Aliases with the where Clause

 protocol Collection { typealias ItemType }

 func compareCollections
 <T: Collection, U: Collection
 where T.ItemType == U.ItemType, T.ItemType : Equatable>()
 (collection1: T, collection2: U) -> Int {
 // implementation goes here }

 Summary
 The new and different concepts presented in this chapter included the following:

• Enumerations. A concept that ActionScript doesn’t have, but which comes in handy
when you prefer to use sets of names, instead of hard-coded values.

• Subscripts. You have been using subscripts (the array access operator []) your whole
ActionScript life, but did you know you could define them too? You can in Swift.

• Closures. Closures probably also looked familiar at the start. That is, until their
syntax got weirder and weirder when we started taking advantage of the compiler’s
ability to infer things from context.

• Generics. Generics help you write code that takes not only different values as
parameters but also different types. Not entirely possible in ActionScript.

 This concludes our overview of the Swift programming language. Our hope is that it has offered you
enough to not only kick-start your transition to it but also to give you the confidence that you know what
happens behind the scenes of your code. In moments of doubt you can always return to this part of the book
and use it as a reference or delve even deeper with Apple’s comprehensive manual, The Swift Programming
Language .

 In the last chapter we will talk business and cover Apple’s process for enrolling in a developer program
and submitting apps to the App Store.

483© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8_23

 CHAPTER 23

 Releasing Your App in the App Store

 A book on iOS development would not be complete without an overview of the process of releasing your
app. Being able to share it with users is the main goal of developing a mobile app, after all. Apple’s release
process evolves and changes all the time, so it is important to keep in mind that by the time you read this
some of the screens we show may have changed. The main ideas behind this multistep process come from
the desire to ensure quality and security for the apps that make it into the App Store and this is what we
would like you to take away.

 In this chapter you will do the following:

• Learn about the App Store submission process.

• Create a distribution provisioning profile.

• Archive your app for submission.

• Learn how to manage your apps via iTunes Connect.

• Submit your app for review by Apple.

 When you are done you will have an understanding of the application submission process and the tools
that can help you with it.

 Understanding the App Store Submission Process
 It is a great feeling when you declare a piece of code ready for release. You rub your hands together and
prepare to show your creation to the world. But wait, where is the Upload button? If only things were as
simple as that. . . . Publishing your app in Apple’s App Store involves several steps and some work on your
part. Here is why.

 Apple is known for its obsession with quality and security. This extends to third-party apps that run
on Apple hardware and operating systems. Before an app can reach its end users it goes through a rigorous
review process. We will briefly list the stages a typical app release goes through, so you can arm yourself with
patience and stay calm to the very end.

 1. Enrolling in the iOS Development program. This is a prerequisite step. We have
mentioned this program a few times already in previous chapters. This is a paid
subscription program, which gives you access to early releases and lets you use
advanced SDK features and distribute your apps worldwide.

 2. Obtaining a distribution provisioning profile. You will need one for each app
you want to release. We saw what provisioning an app means in Chapter 2 .

http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

484

 3. Creating an app archive. You need to make a release build of your app and
 archive it for submission. An archive is a container for the app’s binaries, symbol
information, and metadata.

 4. Creating a record for your app via iTunes Connect. iTunes Connect is Apple’s
web-based tool for managing your apps in the App Store, including updating
binaries, dealing with banking and tax information, generating promo codes,
reviewing sales reports, and so on. Creating a record for your app involves
providing a description, screenshots, a price tag, and keywords and other
information that applies to the app.

 5. Uploading your app archive to iTunes Connect. Note that although you use
iTunes Connect to manage your apps in the App Store, you cannot use it to
upload an app archive. Instead, either you do the upload directly from Xcode
or you can use the Application Loader tool. Both of them perform automated
checks to ensure that your app archive meets certain criteria like not containing
malicious code or making calls into private frameworks, for example.

 6. Waiting for your app to be reviewed. After an app has been uploaded, it is
reviewed by Apple’s staff. A reviewer typically runs your app to see what it looks
like, to see whether it runs smoothly, and to ensure that it does not crash. The
reviewer also makes sure that the app is appropriate for the App Store audience.
For example, an app containing offensive or pornographic content will be
rejected. Apple has published guidelines that you must follow for your app to
pass the review. You can find them at https://developer.apple.com/app-
store/review/guidelines/ . This part of the process may take days; this is where
your daily meditation practice can come in handy. 1 Also bear in mind that any
change you make to your app’s archive, even if it is a typo in the comments to
its code, means that the app needs to be submitted for another review and that
sends it to the back of the queue.

 7. Promoting and maintaining your app. When your app has been accepted, it
is your responsibility to let the world know that it exists, communicate with its
users, fix bugs, update its content, and so forth. iTunes Connect can help at the
maintenance stage: it has a dashboard, where you can manage updates and
monitor your earnings.

 Submitting an App: A Step-by-Step Guide
 On the following pages we will go through the whole process of preparing and submitting your app for
review. First, here are the steps in a nutshell:

 1. Registering an App ID.

 2. Creating a distribution provisioning profile.

 3. Archiving the app.

 4. Creating a record for the app in iTunes Connect.

 5. Uploading the app’s archive with Xcode or Application Loader.

 6. Monitoring the progress of the submission while waiting for Apple’s verdict.

 1 I know . . . who in the world has time for that before a release?! Well, waiting for Apple’s verdict on your app can be a
good excuse to start.

https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

485

 Let us start with the first step on our list, registering an App ID.

 Registering an App ID
 To demonstrate the submission process we will use the SpriteKitDemo project from Chapter 16 . If you have
not done that tutorial yet, you can go through it really quickly. It is fun too, as it demonstrates one of Xcode’s
game project templates. When you are done, open SpriteKitDemo.xcodeproj in Xcode.

 In order to be published in the App Store, an app needs to have a unique identifier, also known as
 App ID. Unique here implies that the app cannot have an identifier that has already been registered either
by you or by any other iOS developer. This includes IDs of apps still in development that have not been
released yet.

 We will create an App ID in Apple’s Developer portal. Before that let us make a note of the app’s
 bundle identifier : this is the identifier you specified when you created the project. To find it, select the
 SpriteKitDemo project in the Project navigator and then select the SpriteKitDemo target in the Editor. Open
the General tab and locate Identity ➤ Bundle Identifier (Figure 23-1).

 Figure 23-1. Finding the app’s bundle identifier

 ■ Note The App ID and bundle identifier we use in this tutorial are for demonstration purposes only. When
you submit an app to the App Store, you will need to use your own unique identifiers.

 Next, in a browser navigate to http://developer.apple.com and log in with your Apple ID. After you
log in, click on Certificates, Identifiers & Profiles to go to the provisioning portal (Figure 23-2).

http://dx.doi.org/10.1007/978-1-4842-1666-8_16
http://developer.apple.com/

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

486

 Once you are in the provisioning portal, go to Identifiers ➤ App IDs and click the plus button to add a
new App ID (Figure 23-3).

 Figure 23-2. Click Certificates, Identifiers & Profiles to go to the provisioning portal

 Figure 23-3. Registering a new App ID

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

487

 Give your app a name. The name can be any string that does not contain special characters. Make sure
that the Explicit App ID radio button is selected and set Bundle ID to the bundle identifier you gave your
app in Xcode (Figure 23-4).

 Figure 23-4. Filling in the Bundle ID

 Leave the App Services section on the Registration page as it is; normally here you need to specify any
services your app uses, such as Push Notifications or iCloud. Click Continue and then Register to proceed
with creating the App ID.

 Generating a Distribution Certificate
 Back in Chapter 1 we helped Xcode create a signing identity for you, which is used to sign your apps to
ascertain that they were developed and built by you. In Chapter 2 we saw what app provisioning is and used
your development signing identity to provision an app for running on physical devices. Provisioning an
app for distribution requires a distribution certificate and signing identity, which you need to create in the
provisioning portal. This is what we will do in this section.

 On the Certificates, Identifiers & Profiles page, select Certificates ➤ Production . Unless you have
packaged apps for distribution before, there will be no certificates listed in this section. If this is the case,
click the + sign to create a new certificate. Select Production ➤ App Store and Ad Hoc for the type of
certificate as shown in Figure 23-5 and click Continue at the bottom of the page.

http://dx.doi.org/10.1007/978-1-4842-1666-8_1
http://dx.doi.org/10.1007/978-1-4842-1666-8_2

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

488

 The next step will guide you through creating and uploading a Certificate Signing Request (CSR): a
file that is generated by the Keychain Access app on your Mac. This file is used to generate the distribution
certificate. Once you have supplied the CSR, your distribution certificate should be ready for download
(Figure 23-6).

 Figure 23-5. Creating a certificate for distribution

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

489

 Download the file and double-click to install it on your Mac. This should make it appear under login ➤
 My Certificates in your Keychain Assistant app as shown in Figure 23-7 .

 Figure 23-6. Downloading the new distribution certificate

 Figure 23-7. The distribution certificate after installation in Keychain Assistant

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

490

 Note that you do not need to create a separate distribution certificate for every app you want to release
in the app store. This certificate is used to put your signature on an app as a developer.

 Generating a Distribution Provisioning Profile
 Next comes the distribution provisioning profile that the app will need. Back in the provisioning portal
in your browser, on the Certificates, Identifiers and Profiles page, select Provisioning Profiles ➤
 Distribution and click the + button to create a new profile. Set the profile type to Distribution ➤ App Store
and click Continue (Figure 23-8).

 Figure 23-8. Creating a distribution provisioning profile

 At the next step locate the App ID you created earlier and select it. After that you will need to select
a distribution certificate with which to link the new provisioning profile. Select the one we created in the
previous step as shown in Figure 23-9 .

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

491

 Finally, name your provisioning profile. Its name will be useful for locating it among all the other
profiles that you or Xcode have created, so it is best to name it after the app with which you will use it. Click
 Continue : here you may need to wait a few minutes for the profile to be generated. When the profile is ready,
download it and double-click the downloaded file to install it on your development machine (Figure 23-10).

 Figure 23-9. Linking the provisioning profile with a certificate

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

492

 Configuring the App and Building an Archive
 Let us set up our app to use the distribution provisioning profile we just created. Open the SpriteKitDemo
project in Xcode. Select the project file in the Project navigator to load its settings in the Editor.

 Apple recommends letting Xcode choose the appropriate signing identity and provisioning profile for
you by opting for automatic code signing. Let us configure our project to take advantage of that:

 1. First, we will set the project’s code signing build settings to their defaults. In the
Editor select the SpriteKitDemo project and go to the Build Settings tab. Locate
the Code Signing section and set Code Signing Identity to iOS Developer for all
build configurations. Then set Provisioning Profile to Automatic (Figure 23-11).

 Figure 23-10. Downloading the provisioning profile

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

493

 2. Next, select the app target and on the General tab set Team to None. This is a
temporary change that will allow us to modify the target’s code signing settings.

 3. On the Build Settings tab replicate the settings we applied to the project’s
Code Signing section. Set Code Signing Identity to iOS Developer for all build
configurations and Provisioning Profile to Automatic.

 4. Back on the General tab set Team to your development team (or your Apple ID).

 5. Restart Xcode.

 ■ Note You can also manually configure the app target’s code signing settings by setting Code Signing
Identity > Release to iOS Distribution and Provisioning Profil e to the profile we created earlier.

 We need to ensure that our app has a full set of icons before we build it for release. In the Project
navigator select the Assets.xcassets file and let Xcode guide you through setting up the required icon sizes,
as shown in Figure 23-12 .

 Figure 23-11. Configuring the project to use automatic code signing

 Figure 23-12. Add an icon set to your app project

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

494

 Now let us create a release build of the app, which we will later submit to the App Store. This process
is called archiving . To archive an app, we first need to ensure that the project’s Deployment Target is set to
Generic iOS Device (Figure 23-13).

 Figure 23-13. Setting the Deployment Target to Generic iOS Device

 Figure 23-14. The archive in the Organizer window

 Then, from Xcode’s the main menu select Product ➤ Archive . This starts a build in Xcode. When it
finishes, the Organizer window pops up to show you the archive (Figure 23-14).

 This archive is now ready to be uploaded. Before we do that, however, we need to create a record for our
app, into which we can upload its archive.

 Creating a Record for the App in iTunes Connect
 When you eventually upload your app archive for submission, you will be able to see and manage it through
the iTunes Connect platform. It offers a web-based dashboard for managing your applications, monitoring
downloads and sales, signing contracts, setting up banking information, and obtaining finance reports.

 In this section we will go through the steps required to create a record for our app in iTunes Connect,
where we can later upload the app archive.

 Your iOS Development Program account automatically gives you access to iTunes Connect. In a web
browser navigate to https://itunesconnect.apple.com and login with your Apple ID. Once inside iTunes
Connect, on the dashboard select My Apps (Figure 23-15).

https://itunesconnect.apple.com/

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

495

 If you have previously submitted applications for release, you will be able to see them here. Click the +
button and select New App from the menu, in order to create a record for the app (Figure 23-16).

 Figure 23-15. The iTunes Connect dashboard

 Figure 23-16. Creating a new app record

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

496

 In the dialog that appears you will need to fill in the following (Figure 23-17):

• Platforms . Specify the platforms, on which the app will run; iOS in our case.

• Primary Language . This is the language of the app’s user interface, which in our
case is English.

• Bundle ID . This requires the Bundle ID, of which we made a note earlier, when we
provisioned the app.

• SKU . If your app corresponds to a physical product, this Stock Keeping Unit (SKU)
serves as a link between the two. It is just for your reference and will not show up in
the App Store.

 After you fill in the required information, you will see the app shown on the applications dashboard.
Click it to open the App Information page. Here you will see several tabs.

• App Store . On this tab you can edit the information you filled in to create the app
record. There is also a bit more information you will be required to fill in: screenshots
from the app, contact information, and so on. More on that later.

• Features . Allows you to manage features like in-app purchases and encryption. Here
you can also generate promotion codes, with which users will be able to download
your app for free—a really useful marketing tool.

 Figure 23-17. Adding new app information

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

497

• TestFlight . TestFlight is an Apple service that lets you create and manage a group
of beta testers for your app and get useful feedback before you release it in the App
Store.

• Activity . This is where you will find a log of all submitted versions of your app, see
the app’s current state in the review process, and read user reviews.

 Go to the App Store tab, select App Information and fill in the required fields, such as the app’s
category (Figure 23-18).

 Figure 23-18. Application information page

 Still on the App Store tab, open the Pricing and Availability page to set up a price for the app and to
select in which parts of the world it will be sold. Note that, unless you decide to distribute your app for free,
you will need to sign a distribution contract on the Tax and Banking page in iTunes Connect.

 Next, go to the iOS APP ➤ 1.0 Prepare for Submission page, in order to set up how your app’s record
will appear in the App Store. The first thing to notice is the App Preview and Screenshots area. Inside you
need to add screenshots or videos from your app. Their sizes must match Apple’s requirements, which you
can find at https://goo.gl/Pv8srF .

 iTunes lets you create separate screenshot galleries for each of the devices and screen sizes your app
supports. Figure 23-19 shows the gallery of our demo app with a screenshot for the 4.7-inch iPhone 6 in it.

https://goo.gl/Pv8srF

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

498

 Below the gallery you will find a field, where you can put the description of the app as you want it to
appear in the App Store. The contents of this description will be checked by Apple’s staff during the review
process. The same applies to the keywords you provide for your app. Here you are limited to 100 characters,
including the comma separator, so focus only on the most relevant keywords that will help the users find
your app. Further down the page is where you upload an icon for your app and fill in your seller information.

 The General App Information section of the Prepare for Submission page allows you to leave a note
for the app reviewer. Use it to make it easy for Apple’s staff to test your app: provide instructions for testing
and a demo account if your app requires a login.

 The Version Release section lets you decide when your app will become visible in the App Store after it
gets approved. You can choose to automatically release it once it has passed the review, to schedule a release
on a specific date, or to do it manually.

 When you have filled in all the required information, click the Save button at the top right-hand corner
of the page. This completes the app’s iTunes record and we can move on to uploading the app archive.

 Uploading the App to iTunes Connect
 There are currently two options for uploading the app archive to iTunes Connect: you can do it directly from
Xcode or you can use the Application Loader tool. In this section we will walk through the steps involved in
uploading an app from Xcode and will add a few words about Application Loader at the end.

 Figure 23-19. Create a screenshot gallery for every device and screen size the app supports

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

499

 Uploading an App Archive from Xcode
 In Xcode select Window ➤ Organizer from the main menu. On the Archives tab inside Organizer select the
app archive that we created earlier and click the Upload to App Store… button (Figure 23-20).

 Figure 23-20. Select an archive to upload

 Figure 23-21. App upload validation dialog

 Xcode starts a validation process, in which it checks your app’s binary and entitlements. You can
monitor its progress in the dialog that appears. On the same dialog there is an Upload button, which
becomes enabled if no errors are found (Figure 23-21).

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

500

 At the bottom of the upload dialog there is a checkbox, titled Include bitcode . Selecting it will instruct
Xcode to upload not only the binary for your app but also an intermediate LLVM presentation of the code.
This can be used by Apple to automatically recompile your app for newly released hardware and save you
time manually updating your app if a new iPhone with a better graphics chip comes out, for example, so it is
a good idea to check the box.

 Click Upload and once the process completes, you should be able to see the uploaded archive in iTunes
Connect.

 In iTunes Connect the new app archive is listed as “(Processing)” on the Activity ➤ All Builds page
(Figure 23-22). Once the processing completes, you will receive an e-mail from Apple that the archive can be
used for submission.

 Figure 23-22. The new app archive in iTunes Connect

 Uploading the App Archive with Application Loader
 You can launch Apple’s Application Loader tool from Xcode’s main menu: Xcode ➤ Open Developer Tool
➤ Application Loader . Note that, unlike Xcode’s Organizer, which works with .xcarchive files, Application
Loader expects your app to be in an .ipa archive. You can export one from the Organizer window by
selecting your app archive and clicking the Export button. You can then select the .ipa file from Application
Loader and let the tool analyze and upload it to iTunes Connect.

 Submitting Your App for Review
 With your app archive uploaded, you can submit the app for review. Go to iTunes Connect ➤ App Store ➤
 iOS APP and click Select a build before you submit your app . This will show you a dialog with a list of app
builds available for submission—in our case there is just one (Figure 23-23).

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

501

 Select the build and click Done to dismiss the dialog. Back on the main page click Save and then
 Submit for Review . At this point iTunes Connect will let you know if any information about your app is
missing and will prompt you to fill it in. When you are done, the label at the top left of the page, next to the
yellow dot, should change from “Prepare for Submission” to “Waiting for Review.”

 ■ Note When you upload your app to the App Store, it goes to an Apple server in the United States. This
makes it a US export product, regardless of which part of the world you intend to distribute it, so it needs to
be compliant with US export laws. In particular, if your app uses encryption, you will be required to provide
documentation for it, such as an Encryption Registration approval. iTunes Connect’s submission process has a
step that asks you questions about cryptography. It is worth getting familiar with Apple’s guidelines on the topic,
which can be found in the section “Cryptography and U.S. Export Compliance” at https://goo.gl/37TLra .

 The next step is crossing your fingers and waiting for Apple’s verdict on your app.
 Once your app is in the queue to be reviewed, the App Store Versions page shows you a log of the

stages the app goes through during the review process, so you can monitor it (Figure 23-24).

 Figure 23-23. Selecting an app build for submission

https://goo.gl/37TLra

CHAPTER 23 ■ RELEASING YOUR APP IN THE APP STORE

502

 If your app is rejected, do not worry. You will receive an e-mail from Apple with information about why
your app did not pass the review and what you could change to fix that. Read the e-mail, modify the app, and
submit it again.

 If your app is approved, then congratulations, your first app is ready for publishing in the App Store!

 Summary
 This chapter added one of the most important pieces to your iOS development workflow: publishing an app
in Apple’s App Store. It is a multistep process, which takes some time and is not necessarily intuitive. But
you now know how to complete it or where to find out details about each step if any of Apple’s requirements
change.

 With this chapter your training is over, my young Jedi. We look forward to seeing your apps in the App
Store. Let us know when you publish your first one or have questions during any stage of the development
process. We will be happy to hear from you on radoslava.leseva@diadraw.com and hristo.lesev@
diadraw.com .

 May the Swift source be with you!

 Figure 23-24. Monitoring the review process

https://radoslava.leseva@diadraw.com
https://hristo.lesev@diadraw.com
https://hristo.lesev@diadraw.com

503© Radoslava Leseva Adams and Hristo Lesev 2016
R. L. Adams and H. Lesev, Migrating to Swift from Flash and ActionScript,
DOI 10.1007/978-1-4842-1666-8

 A
 Access control , 213, 384, 458
 ActionScript , 108
 Address book , 229–232
 Adverts

 app set up , 328
 banner ad view , 328
 DBannerViewDelegate protocol , 329
 iAds test settings , 333–335
 interstitial ads , 330–333
 rectAdView , 329

 App Store submission process
 adding icon set , 493
 app confi guration , 493
 App ID register , 485–486
 archive , 494
 distribution certifi cate , 487–489
 distribution provisioning profi le , 490–492
 iTunes Connect platform

 adding app information , 496
 application information page , 497
 iTunes Connect dashboard , 495
 record creation , 495
 screenshot gallery , 498
 uploading , 499–500

 stages , 483–484
 uploading

 review process monitor , 502
 submission for review , 501

 Array , 413–414
 Attributes inspector , 112, 114, 154
 Automatic code signing , 493
 Automatic reference counting (ARC) , 376, 453

 B
 Booleans , 400
 BoolForKey , 157

 C
 Call stack , 206–207
 Call tree and CPU usage , 62–63
 Camera and images

 action sheet , 261–262
 editing

 alert controller , 271
 applyFilter function , 268–269
 CGSizeApplyAffi neTransform , 267
 CIColorControls fi lter , 266
 fi lter , 266
 image saving handler , 270
 saveToGallery , 270

 openCameraVC and openGalleryVC
function , 261

 picking image, gallery , 263–264
 showing image on screen , 263
 taking photos , 265
 UIGraphicsBeginImageContextWith

Options , 267
 UIGraphicsEndImageContext , 267
 UIImagePickerController , 260
 UIImagePickerControllerDelegate , 260
 user interface design , 257–259

 Certifi cate signing request (CSR) , 341
 Characters , 401–402
 Classes

 access and visibility , 442
 accessing properties , 447
 adding methods , 448
 computed properties , 443–444
 deinitializer and initializer methods , 448
 extending functionality , 456
 initializer , 449–451
 lazy properties , 444
 memory management , 452
 overload method , 448
 properties , 442

 Index

■ INDEX

504

 property observers , 445–446
 reference types , 452–453
 self properties , 447
 stored properties , 443
 subscripts addition , 452
 syntax , 442

 Closures
 ActionScript , 474
 implicit return , 476
 inline , 475
 literal translation , 475
 operator function , 477
 shorthand name , 476
 Swift , 474
 trailing , 477

 Cloud
 CloudKit (see CloudKit)
 error messages , 287–288
 records retrival , 287
 saving and deleting records , 286

 Cloud data manager
 addItem method , 294
 callback function , 293
 class defi nition , 292
 fetchCloudItems method , 294
 removeItemAtIndex method , 295

 CloudKit
 asset , 285
 container , 282–283
 relationships between records , 284, 285
 shopping list app

 account selection , 288
 adding new items , 300–302
 cloud data manager , 292–294, 296
 dashboard , 290–291
 deleting items , 302–303
 iCloud account , 291–292
 iCloud settings , 289
 iCloud usage , 289
 set up , 289
 table view , 297–299
 UITableViewDataSource , 297
 UITableViewDelegate , 296–297
 user interface , 295–296

 Comments making , 379
 Common base classes , 458
 Compiler , 375, 394
 Conditional statements

 guard , 432
 if , 430–431
 switch

 case statements overlap , 435, 436
 double , 436
 multiple matches , 434
 range matches , 434

 string , 436–437
 syntax , 432–433
 tuples , 437
 value binding , 437
 where clauses , 438

 Constraints , 25–26, 481
 Containers , 282, 284
 Control transfer

 break , 438
 continue , 438
 fallthrough , 439
 labels , 439–440
 return , 439

 CoreData , 282
 CreateViewController

 array , 161
 choiceTextFields array , 162
 data model , 166–167
 declaring CreateViewController , 161
 deleting text fi elds , 162
 designing , 160
 elements , 160
 MARK , 163
 outlets and actions , 161
 tab bar controller , 163–164
 text fi elds , 161–162, 164

 Creating certifi cates
 CSR , 342
 notifi cation provider , 344–345
 p12 certifi cate , 343–344
 push notifi cations , 342–343

 Custom operator , 396–397
 Custom view controller , 109

 D
 Date Picker controller , 22–23
 Debug

 breakpoint , 45–46
 change value at runtime , 47
 console , 45–46
 getDayOfWeek , 42–43
 HelloXcode App , 39
 label , 41–42
 memory view , 48–49
 print , 44–45
 updateDayOfWeek method , 47
 Value Changed event , 40–41
 variables , 46
 variables view , 45

 Debug gauges , 192–194
 Debugging

 breakpoints , 194, 196
 concurrent code

 call stack , 206–208
 deadlock situation , 203, 205

Classes (cont.)

■ INDEX

505

 dispatch queues , 206
 fi nding waiting code , 210
 semaphores , 206

 debug gauges , 192–194
 debugger controls , 198
 LLDB command , 196–197
 memory view , 200–202
 symbol types , 199

 Defi ning and calling functions , 379
 Deinitializer methods , 448
 Delegation design pattern , 72, 224
 dequeueReusableCellWithIdentifi er

method , 121
 Development tools

 application loader , 68
 fi le merge , 68
 instruments , 60–61, 65
 internationalization , 68
 organizer , 68
 VCS (see Version control system (VCS))

 Dictionary , 415–417
 Disable App Transport Security , 307
 Distribution certifi cate , 487, 489

 E
 E-mail

 canSendMail method , 223
 composing , 223–224
 delegation , 224
 sending , 225

 Enumeration / enum , 462
 associated value , 470–471
 autoincremented raw values , 469
 integer raw values , 469
 integers declaration , 468
 making choice , 467
 raw values , 469
 rules , 471

 Errors handling
 ActionScript , 384
 catching, handling, and rethrowing , 386
 error type, defi ning , 385
 Swift , 384
 throwing error , 385
 try-catch statement , 384–385

 Extended detail , 63
 Extensions , 458–459

 F
 Facebook post

 isAvailableForServiceType(_\:) , 237
 message posting , 238–239
 setup , 237–238
 viewing post on timeline , 240

 FibonacciSpaceships project , 60
 Filter , 266, 475
 fi ndFibonacciNumber , 64
 FindPrimeNumbers app , 191–192
 Floating-point types , 400
 Forecast data model , 311–312
 Function parameters

 in-out and variable parameters , 381–382
 providing default values , 383
 variadic parameter , 382

 Function types , 419

 G
 Garbage collection (GC) , 376
 General app information , 498
 Generic function

 calling , 479
 constraints , 481–482
 declaring , 480
 and polymorphism , 479–480
 Swift , 478
 syntax , 478

 getDayOfWeek , 42–43
 getMessageFromCode , 469–470
 Graphics processing unit (GPU) , 352

 H
 HelloXcode app , 39
 Horizontal stack view , 112

 I
 Inheritance , 456–458
 Initializer methods , 106, 448
 Instrument templates , 61
 IntegerForKey , 157
 Integers , 400
 iOS app

 AppDelegate.swift , 72
 asset , 74–75
 Assets.xcassets , 74
 Info.plist , 74
 LaunchScreen.storyboard , 73
 Main.storyboard , 73
 MVC (see Model-View-Controller (MVC))
 Outlets creation , 79–80
 project and project group , 72
 target-action pattern , 80–81
 ViewController.swift , 73

 iOS appication project
 creation , 15–17
 IDE

 editor area , 19–20
 navigator area , 20–21

■ INDEX

506

 toolbar area , 18–19
 utilities area , 21

 iOS simulator , 29–30
 Is operator , 410
 iTunes Connect platform

 adding app information , 496
 application information page , 497
 iTunes Connect dashboard , 495
 record creation , 495
 screenshot gallery , 498
 uploading

 App Archive , 499
 application loader , 500
 new app archive , 500
 review process monitor , 502
 submission for review , 501
 validation dialog , 499

 J
 Jump bar , 116

 K
 Key Path , 114

 L
 Label , 23, 41–42
 LaunchScreen.storyboard , 124
 layer.cornerRadius , 114
 LoadSettings , 157
 Loop

 backward-iterating loop , 425–426
 for , 422–423
 for-in , 423

 array , 424
 ignoring counter , 424

 repeat-while , 428–430
 while , 427–428

 M
 Main.storyboard , 21–22
 Making phone call , 228–229
 Managing devices , 65–67
 Maps and location

 adding map capabilities , 250
 location manager and delegate , 252
 permission , 253
 receiving location updates , 254
 running location app , 255
 storyboard , 251

 maxChoicesChanged , 154, 156
 maxOptionsLabel , 154
 maxOptionsStepper , 154
 Memory management , 376
 Memory view , 48–49, 200–202
 MessageUI framework , 223
 Model-View-Controller (MVC) , 120

 controller group , 83
 fi le group , 82–83
 layers , 82
 setting up, controller , 84–85
 view creation , 85–87

 Module , 213
 Motion sensors

 accelerometer , 245
 creation , 246
 gyroscope , 245
 magnetometer , 245
 manager , 248–249
 motion data representation , 246
 project storyboard , 246–247

 N
 Naming arguments , 380–381
 Nested types , 412
 Network communication logic

 downloading images , 315
 error messages , 320–321
 getForecast Method , 318–320
 JSON request , 316–318
 NSURLSession , 315
 WeatherForecastService

Class , 313–314
 Networking

 Disable App Transport Security , 307
 forecast data model , 311–312
 forecast in table view , 321–323, 325
 user interface design , 305–306
 weather forecast web service , 307–311

 NSCoder , 278–281
 NSNotifi cationCenter , 167
 NSUserDefaults class , 156

 O
 Object library , 152
 OpenGL , 361
 OpenGL Shading Language (GLSL) , 369
 Open Main.storyboard , 154
 Open VoteViewController.swift , 131
 Operator overloading

 compound assignment operator , 395
 enumeration , 394

iOS appication project (cont.)

■ INDEX

507

 infi x operator , 394–395
 prefi x/postfi x operator , 395–396

 Operators
 arithmetic , 390–391
 assignment , 390
 bitwise , 392
 comparison , 389
 compound assignment , 390
 custom operators , 396
 logical , 391
 nil coalescing , 393
 overfl ow , 394
 pattern-matching , 393
 range , 393
 ternary conditional , 392

 Optionals
 assigning function , 406
 binding , 407
 chaining , 409
 declaring variable

 non-optional type , 405
 optional type , 405

 forced unwrapping , 407
 implicitly unwrapping , 408
 unwrapping , 407

 Organizer window , 218
 Outlet , 79–80

 defi nition , 27
 ViewController class , 27

 Overloading functions , 383

 P
 Persisting local data

 app, set up , 274–275
 Cloud (see CloudKit)
 CoreData , 282
 fi le paths , 275–276
 iOS fi le system , 273–274
 NSCoder , 278–281
 NSUserDefaults , 281
 reading text fi le , 277–278
 saving text fi le , 276–277
 serializing and

deserializing , 280
 showMessage method , 277

 Primitive types
 boolean , 400
 character , 401–402
 fl oating-point , 400
 integers , 400
 strings , 402–404

 Printing , 379
 Programming concepts , 376

 Protocol , 462
 conformation , 463
 defi ning , 462
 extension , 464–465

 Provisioning
 criteria , 31
 defi nition , 30
 entitlements , 31

 Q
 Queries , 410

 R
 Records , 284
 References

 comparison , 455
 strong , 454
 types , 452–453
 types defi nition , 453–454
 unowned , 455
 weak , 455

 Remote notifi cations , 335
 creating certifi cates

 CSR , 342
 notifi cation provider , 344–346
 p12 certifi cate , 343–344
 push notifi cations , 342–343

 device token request , 338–341
 display notifi cation , 348–349
 issues fi xing , 338
 notifi cation provider , 346–347
 participants , 335
 push notifi cations , 337
 registration steps , 336
 sending notifi cation , 348

 ResetVotes method , 108
 resultsAsPercentSwitch , 154
 ResultsViewController , 129, 135–136, 158–159
 ResultsViewController class , 123
 ResultsViewController.swift , 126, 148
 Running App

 Apple ID selection , 32
 connecting iOS device , 33–35
 signing identity , 33, 36

 S
 Sampling , 65
 Semaphores , 206
 Set , 415
 setInteger—another method , 156
 SettingsViewController , 154–157

■ INDEX

508

 SettingsViewController.swift , 154
 setUpCell method , 122
 Signing identity , 11–13
 SimpleVote project , 133
 Single View Application project , 106
 Size classes , 99–100
 SMS, composing and sending , 225–227
 Social media framework

 accounts confi guration , 235
 Facebook , 236
 Twitter , 236

 facebook post
 isAvailableForServiceType(_\:) , 237
 message posting , 238–239
 setup , 237–238
 viewing post on timeline , 239–240

 SLRequest class , 244
 Twitter message

 composing , 240–241
 message posting , 244
 posting , 242–243

 user interface design , 233–235
 Sorting, integer array , 374
 SpriteKit, 2D games

 GameScene class , 356
 GameScene.sks , 355
 GameScene.swift , 355
 GameViewController.swift , 355
 GPU , 352
 moving, sprite around , 356–358
 nodes , 352
 Scene-Creating Routines , 355
 scene editor , 358–360
 set up , 352–354
 SKAction class , 352
 SKPhysycsBody class , 352
 SKView , 352

 SpriteKit, 3D apps
 applying materials , 368–369
 camera , 364
 light , 365
 object selection , 366–368
 objects types , 361
 OpenGL , 361
 project creation , 362–363
 scene , 364
 spaceship model, animating , 366
 structure , 363–364

 SpriteKit scene editor , 358–360
 Storyboard

 elements , 77
 Image View , 78
 label view , 79
 scenes , 76

 Strings
 creation and initialization , 402–404
 inadvertently copying , 404
 values insertion , 404

 Structures
 memory management , 460
 mutating methods , 461
 vs. classes , 459

 Subscripts
 defi ning , 472
 multidimensional , 473
 non-numeric indices , 474
 overloading , 472
 range , 473
 varieties , 473

 Switch statement , 374
 Symbolic breakpoint , 194–195
 Syntax , 375

 T
 tableView(_\:cellForRowAtIndexPath\:) , 121
 tableView(_\:numberOfRowsInSection\:) , 121
 Target-Action pattern , 80–81
 TestFlight , 218
 Testing

 benefi ts , 210–211
 code coverage , 217–218
 FindPrimeNumbersTests , 213
 functional unit test , 214–215
 performance test , 216
 project navigator , 212
 types , 211
 unit tests , 211
 user interface tests , 211–212

 Time Profi ler , 61, 65
 Tuples , 417–418
 Twitter message

 composing , 240–241
 posting , 242–244

 Type aliases , 420
 Type casting , 411
 Types

 casting , 411
 nested types , 412
 primitive (see Primitive types)
 queries , 410
 safety and inference , 399

 U
 UIAlertActionStyle , 151
 UIAlertControllerStyle.ActionSheet. , 150
 UIAlertControllerStyle.Alert , 150

■ INDEX

509

 UIButton inherits , 114
 UIImagePickerController , 260
 UI layout techniques

 auto layout
 constraints , 90
 image view , 91
 label view , 92
 preview window , 89–90
 size inspector , 94
 sizes and positions , 88
 text fi eld view , 93
 trailing edge constraint , 97
 width multiplier , 95

 resolving layout issues , 101–102
 size layout , 98–100

 UIPickerView , 118
 UISegmentedControl , 118
 UITableViewDataSource , 120–121
 UITableViewDataSource Protocol , 121, 133
 UIViewController’s viewDidLoad method , 120
 UIViewController’s viewWillAppear method , 124
 Unique identifi er (UI) , 39
 unwindToVoting , 132
 Update Frames , 26
 updateMaxChoicesLabel , 156
 Use Auto Layout , 24
 User Defi ned Runtime Attributes , 114
 User interfaces (UIs)

 attributes inspector , 112
 boilerplate Single View Application project , 106
 buttons with borders , 115
 cell, table view , 120
 custom view controller , 108–110
 data model , 106–108
 data, table view , 120–121
 design, cells , 119
 displaying data , 132–133
 editor area , 19–20
 elements , 112
 horizontal stack view , 112
 launch screen , 124–125
 layer.cornerRadius , 114
 navigation view controller , 137–138, 140–141
 navigator area , 20–21
 placeholders, data model , 122
 segues , 130–132, 135–136
 sending notifi cations , 167–170
 storyboard , 113
 table

 Helper methods , 122
 ResultsViewController , 124
 storyboard , 123
 Text View , 123
 Vertical Stack View , 123

 View Controller Class , 123
 Vote View Controller , 123

 table view , 118
 toolbar area , 18–19
 trigger transitions , 127–129
 UIButton’s layer member , 114
 User Defi ned Runtime Attributes , 114
 user preferences

 constraints , 153
 design, settings view , 153
 loading , 156–159
 maxChoicesChanged , 154
 outlets , 154
 SettingsViewController , 154
 stepper control , 154
 storing , 155–156
 view controller , 152

 utilities area , 21
 vertical stack view , 111–112
 view controller , 116–118
 VoteLite project , 125–127
 Vote View Controller , 111
 vote view, runtime , 114
 voting , 134

 User interface (UI) design , 221–222
 Use Size Classes , 24

 V
 Variables and constants, declaration , 378
 Version control system (VCS) , 51

 commit window , 58
 fi ndFibonacciNumber , 57–58
 game project creation , 52, 54
 GameScene properties , 56–57
 Git and subversion , 52
 GIT repository , 55
 repository , 59–60
 revisions , 58
 types , 51

 Version Release , 498
 Vertical stack view , 111–112
 View Controller Class , 123
 ViewController.swift , 27, 73, 108
 viewWillAppear method , 147
 viewWillAppear Method , 118
 VoteData , 107
 VotePro Project

 alerts
 helper methods , 151
 showAbsentVoteAlert , 150
 style , 150–151
 UIAlertControllerStyle.ActionSheet. , 150
 UIAlertControllerStyle.Alert , 150

■ INDEX

510

 Vote button , 152
 VoteViewController , 150

 container view controllers , 141
 project navigator , 142
 SimpleVote project , 141
 Single View Application project , 141
 tab bar

 Results View Controller , 145
 ResultsViewController.swift , 148–149
 Table View, VoteViewController , 147
 tabManager , 147
 UIViewController , 145
 View controllers/Containers group , 145
 viewWillAppear method , 147
 vote and abstain actions , 148
 VoteTabBarController class , 146
 VoteTabBarController , 146–147
 Vote View Controller , 145

 tab bar controller , 142–145
 VoteTabBarController , 155, 157, 167
 VoteTabBarController class , 146
 VoteViewController , 109, 111, 137–138
 VoteViewController class , 116
 VoteViewController.swift , 126, 136

 W
 Weather forecast web service

 OpenWeatherMap , 307
 API key , 309
 JSON format , 310–311
 registration page , 308

 X, Y, Z
 Xcode

 defi nition , 3–4
 download

 offi cial release , 5
 Xcode beta , 5–6

 playground set up , 377
 running Xcode

 documentation
settings , 10

 installation folder , 8
 iOS SDK , 8
 location settings , 8
 license agreement , 6–7
 location settings , 9

 signing identity , 11–13

VotePro Project (cont.)

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Tool Migration
	Chapter 1: Setting Up Your Environment
	What Is Xcode?
	Before You Begin
	Step 1: Download Xcode
	Option A: Get the Official Release
	Option B: Get the Latest Beta

	Step 2: Run Xcode
	Running Xcode for the First Time
	Where Does It All Go?
	The Xcode Installation Folder
	The iOS SDK
	Location Settings
	Documentation Settings

	Step 3: Tell Xcode Who You Are
	Summary

	Chapter 2: Hello, Xcode!
	Creating an Xcode Project
	The Xcode Interface
	The Toolbar Area
	The Editor Area
	The Navigator Area
	The Utilities Area

	Getting Your Fingertips Dirty
	Running Your App in the Simulator
	Running Your App on a Device, Using Free Provisioning
	Provisioning
	What Is Provisioning?
	Where Does Free Provisioning Come In?
	Free Lunch?

	Running Your App
	Connecting Your iOS Device
	The device doesn’t appear on the toolbar?
	The device appears grayed out?

	Seeing Your App Running
	App won’t launch?

	Summary

	Chapter 3: Introducing the Xcode Debugger
	Preparation: Write Code to Debug
	Starting Point: The HelloXcode App
	Adding Action
	Updating the Label
	Working Out the Day of the Week

	Getting Debug Information
	Using Print to Output to the Console
	Stepping Through Your Code
	Watching Variables
	Executing Commands in the Console
	Changing a Value at Runtime
	Inspecting Memory

	Summary

	Chapter 4: Additional Development Tools
	Keeping Track of Changes
	Measuring Performance
	Managing Devices
	More Development Tools
	Summary

	Part II: Workflow Migration
	Chapter 5: “Hello, Swift!”—A Tutorial for Building an iOS App
	Developing a Project for the iOS
	Xcode mobile project anatomy
	iOSProject
	iOSProject Group
	AppDelegate.swift
	ViewController.swift
	Main.storyboard
	LaunchScreen.storyboard
	Assets.xcassets
	Info.plist

	Using Assets
	Working with the Storyboard
	Creating Outlets
	Using the Target-Action Pattern

	Model-View-Controller Design Pattern
	MVC in Theory
	Creating a Model
	Setting Up the Controller
	Creating a View

	UI Layout Techniques
	Auto Layout
	Size Classes
	Resolving Layout Issues

	Summary

	Chapter 6: Adding a More Complex UI
	Setting Up the App
	Defining a Data Model
	Adding a Custom View Controller
	Designing the Vote View UI
	Linking the UI with the View Controller
	Handling Choices with a Table View
	Designing the Cells
	How Cells Work in a Table View
	Displaying data in the table view
	Adding Placeholders for Querying the Data Model
	Clearing the Selection in the Table

	Adding a Second View
	Working with the Launch Screen

	Developing VoteLite
	Setting up the VoteLite Project
	Adding Buttons to Trigger Transitions
	Transitioning between views with segues
	Displaying Data
	Taking Votes
	Using Segues to Pass Data Between View Controllers
	Using a Navigation View Controller

	Developing VotePro
	Setting Up the VotePro Project
	Adding a Tab Bar Controller
	Passing Data Between Tabs
	Showing Alerts
	Working with User Preferences
	Storing User Preferences
	Loading User Preferences

	Creating and Managing UI Programmatically
	Creating and Removing UI Elements at Runtime
	Managing the Text Fields
	Updating the Data Model
	Sending Notifications

	Summary

	Chapter 7: Concurrency
	Understanding Concurrency
	Benefits of Concurrency
	Challenges of Concurrency
	A few words on multithreading

	Setting Up the App
	Nonconcurrent Implementation
	Concurrent Implementation with GCD
	Performing a Search in the Background
	Displaying Progress
	Controlling Access to Shared Resources with Dispatch Barriers
	Cancelling Lengthy Tasks

	If You Do Need to Use Threads
	Measure, Measure, Measure
	Summary

	Chapter 8: Debugging and Testing Your App
	Preparing the Project
	Making the Best of the Debugger
	Inspecting the Debug Gauges
	Setting up breakpoints
	Communicating with the Debugger
	Checking the Type of a Symbol
	Inspecting Memory—A Workaround
	Debugging Concurrent Code

	Testing Your Code
	Adding a Functional Unit Test
	Adding a Performance Test
	Tracking Code Coverage

	Diagnosing Release Builds
	Summary

	Part III: Making Apps with Swift—Applied Examples
	Chapter 9: Communicating: E-mail, Text Messages, and Calls
	Setting Up the App and Designing the UI
	Composing and Sending E-mail
	Composing and Sending SMS
	Making a Call
	Using the Address Book
	Summary

	Chapter 10: Getting Social: Posting to Facebook and Twitter
	Setting Up the App and Designing the UI
	Configuring Your Social Media Accounts on a Device
	Composing and Posting a Facebook Post
	Composing and Posting a Twitter Message
	Other Types of Interaction with the Social Medias
	Summary

	Chapter 11: Knowing Your Location
	Motion Sensors
	Setting Up the App
	Motion Manager

	Maps and Location
	Setting Up the App
	Location Manager and Location Manager Delegate
	Permissions
	Receiving Location Updates

	Summary

	Chapter 12: Working with the Camera and Images
	Setting Up the App and Designing the UI
	Taking Pictures and Browsing the Gallery
	Editing an Image by Applying a Filter
	Summary

	Chapter 13: Working with Data
	Reading and Writing Data Locally
	The iOS File System
	Preparation: Setting Up the App
	Working with File Paths
	Saving a Text File
	Reading a Text File
	Serializing Objects with NSCoder
	Persisting Data with NSUserDefaults
	Dealing with Larger Data: A Word About CoreData

	Working with the Cloud
	CloudKit Basics
	Containers—How Data Access Is Organized
	Records—How Data Is Represented
	Defining Relationships Between Records
	Assets—Storing Unstructured Data
	Saving and Deleting Records from the Cloud
	Retrieving Records from the Cloud
	Common Error Messages

	Building a CloudKit-Powered Application
	Preparation: Setting Up the App
	CloudKit Dashboard—Registering Record Type
	Linking the Device with an iCloud Account
	Using the CloudKit Framework: Making a Cloud Data Manager
	Preparing the User Interface
	Creating Table View Data Source and Delegate
	Populating the Table View with Data
	Adding New Items
	Deleting Items from the Table View

	Summary

	Chapter 14: Networking
	Setting Up the App and Designing the UI
	The Weather Forecast Web Service
	Preparing the Forecast Data Model
	Writing the Network Communication Logic
	Downloading Images from a URL
	Requesting JSON from a Server
	Populating the Data Model
	Creating Error Messages

	Showing the Forecast in a Table View
	Summary

	Chapter 15: Adverts and Push Notifications
	Adverts
	Setting Up the App
	Banner Ads
	Interstitial Ads
	Configuring iAds Test Settings

	Remote Notifications
	Remote Notifications Overview
	Setting Up the App
	Requesting a Device Token
	Creating Certificates for Push Notifications
	Create a Certificate Signing Request
	Create a Certificate for Push Notifications for Your App
	Create a .p12 Certificate
	Generate a Certificate for the Notification Provider

	Setting Up the Provider
	Sending a Notification
	Bonus Step: Display the Notification on the Device

	Summary

	Chapter 16: Using the High-End Graphics APIs
	Creating 2D Games with SpriteKit
	Learning the Structure of the SpriteKit
	Setting Up a SpriteKit App
	Dissecting the Project
	Moving the Sprite Around
	Using the SpriteKit Scene Editor

	Developing 3D Apps with SceneKit
	Learning the Structure of SceneKit
	Setting Up the App
	Examining the SceneKit Project’s Structure
	Adding a Scene
	Adding a Camera
	Adding Light
	Animating the Spaceship
	Selecting an Object
	Applying Materials

	Summary

	Part IV: Language Migration
	Chapter 17: Swift Language Basics
	What Swift encourages You to Do
	Be Concise
	Be Explicit
	Take Advantage of the Compiler

	Coming from ActionScript: Advantages and Surprises
	Syntax
	Programming Concepts
	Memory Management

	How to Use the Code Examples: Playgrounds
	First Things About Swift
	Declaring Variables and Constants
	Making Comments
	Printing in the Console
	Defining and Calling Functions
	Naming Arguments
	Function Parameters
	Parameters Are Constant by Default
	In-Out and Variable Parameters
	Variadic Parameters
	Providing Default Values

	Function Overloading

	Access Control Rules

	Handling Errors
	Summary

	Chapter 18: Operators
	Operators You (Almost) Know from ActionScript
	Comparison Operators
	Assignment Operator (a = b)
	Compound Assignment Operators
	Arithmetic Operators
	Logical Operators
	What Is Lazy Evaluation?

	Bitwise Operators
	Ternary Conditional Operator

	New Operators in Swift
	Nil Coalescing Operator
	Range Operators
	Pattern-Matching Operator (~=)
	Overflow Operators

	Operator Overloading
	Overloading an Infix Operator
	Overloading a Compound Assignment Operator
	Overloading a Prefix or a Postfix Operator
	Providing a Custom Operator

	Summary

	Chapter 19: Types
	Type Safety and Type Inference
	Primitive Types
	Integers
	Floating-Point Types
	Booleans
	Characters
	Strings
	Initializing Strings
	Inserting Values into Strings
	Inadvertently Copying Strings

	Optionals
	What Is an Optional Type?
	Why Use Optionals?
	Unwrapping an Optional
	Optional Binding
	Forced Unwrapping
	Implicitly Unwrapped Optionals
	Optional Chaining

	What’s Your Type?
	Using the is Operator
	Type Queries

	Type Casting
	Nested Types
	Some Types Worth Getting to Know
	Container Types: Array, Set, Dictionary
	Array
	Ways of Creating and Initializing an Array
	How to Iterate over an Array
	Working with the Items of an Array

	Set
	Dictionary
	Ways of Creating and Initializing a Dictionary
	Iterating over a Dictionary
	Accessing and Modifying Keys and Values

	Tuples
	Function Types
	Type Aliases

	Summary

	Chapter 20: Control Flow
	Loops
	for
	for-in
	Ignoring the Counter
	Iterating Through Items in an Array
	Looping Backward Through a Range

	while
	repeat-while

	Conditional Statements
	if
	guard
	The Mightier Switch
	Superpower 1: It Won’t Let You Miss a Case
	Superpower 2: It Won’t Let You Fall Through by Mistake
	Superpower 3: You Can Switch Between Ranges of Values
	Superpower 4: You Can Have Overlapping Case Statements
	Superpower 5: You Can Switch Between Different Types of Values
	Superpower 6: Using Any Value
	Superpower 7: Value Binding
	Superpower 8: You Can Provide Nuance with where Clauses

	Jumping Around: Control Transfer
	continue
	break
	fallthrough
	return
	Labels

	Summary

	Chapter 21: Object-Oriented Programming Topics
	Classes
	Syntax for Defining a Class
	Access and Visibility
	Adding Properties
	Stored Properties
	Computed Properties
	Lazy Properties

	Getting Notified About Changes: Property Observers
	Accessing Properties
	The Self Property
	Adding Methods
	Overloading Methods
	Initializer and Deinitializer Methods
	Invoking Initializers
	Rules for Initialization
	When Things Fail

	Adding Subscripts
	Memory Management for Classes: ARC
	Reference types
	Memory Leaks from Strong Reference Cycles

	Comparing References
	Extending Functionality
	Subclassing and Inheritance
	Extensions

	Structures
	Instantiating a Structure
	Memory Management for Structures and Enumerations
	Mutating Methods
	When to Prefer Structures

	Enumerations
	Protocols
	Defining a Protocol
	Conforming to a Protocol
	Facts About Protocols
	The Merit of Protocols

	Summary

	Chapter 22: New and Different Concepts
	Enumerations
	Why Use Enumerations?
	Using an enum with Raw Values to Handle Value Mapping
	More Facts About Raw Values
	Adding Associated Values to Handle Variable Information
	More Facts About Enumerations

	Subscripts
	Defining a Subscript
	Subscript Overloading
	Subscript Varieties
	Using a Range
	Using Multiple Dimensions
	Using Non-numeric Indices

	Closures
	Closures in Swift Can Be Very Concise
	An ActionScript Example
	Literal Translation to Swift
	Optimization 1: Inlining a Closure Expression
	Optimization 2: Letting the Compiler Infer Types from Context
	Optimization 3: Using an Implicit Return
	Optimization 4: Using Shorthand Names for Parameters
	Optimization 5: Using an Operator Function
	More Facts About Closures

	Generics
	A Generic Function in Swift
	Calling a Generic Function
	The Compiler Does the Dirty Work
	Generic Programming and Polymorphism

	A Generic Type in Swift
	You Use Generics in Swift Whether You Know It or Not
	Setting Constraints
	More facts About Generics

	Summary

	Chapter 23: Releasing Your App in the App Store
	Understanding the App Store Submission Process
	Submitting an App: A Step-by-Step Guide
	Registering an App ID
	Generating a Distribution Certificate
	Generating a Distribution Provisioning Profile
	Configuring the App and Building an Archive
	Creating a Record for the App in iTunes Connect
	Uploading the App to iTunes Connect
	Uploading an App Archive from Xcode
	Uploading the App Archive with Application Loader

	Submitting Your App for Review

	Summary

	Index

