
www.allitebooks.com

http://www.allitebooks.org

Modular Programming with
PHP 7

Utilize the power of modular programming to improve
code readability, maintainability, and testability

Branko Ajzele

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Modular Programming with PHP 7

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1020916

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-295-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Branko Ajzele

Reviewer
Tomislav Sudmak

Commissioning Editor
Kunal Parikh

Acquisition Editor
Chaitanya Nair

Content Development Editor
Priyanka Mehta

Technical Editor
Ravikiran Pise

Copy Editor
Safis Editing

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Branko Ajzele was born in January 1983 and lives in Osijek, Croatia. He is a
husband, father of two, book author, and software developer. He holds a faculty
degree in electrical engineering. He loves all things digital and makes a living out
of software development.

Branko has years of hands-on experience in full-time software development and
team management and specializes in e-commerce platforms. He has worked with
Magento since 2008, knee-deep since its very first beta version. He is regularly in
touch with modern software development technologies.

He has strong technical knowledge and is able to communicate technicalities clearly
with strong direction. He feels comfortable proposing alternatives to demands
that he feels can be improved, even when this means pulling a late shift to meet
deadlines.

Branko holds several IT certifications such as Zend Certified Engineer (ZCE PHP),
Magento Certified Developer (MCD), Magento Certified Developer Plus (MCD+),
and Magento Certified Solution Specialist (MCSS).

Instant E-Commerce with Magento: Build a Shop by Packt Publishing was his first
Magento-related book oriented toward Magento newcomers, after which he decided
to write Getting Started with Magento Extension Development for developers. His
third book, Magento 2 Developer's Guide, covers Magento 2 e-commerce platform
development.

He currently works as a full-time contractor for Lab Lateral Ltd.—an award-winning
team of innovative thinkers, artists, and developers, specializing in customer-centric
websites, digital consultancy, and marketing—as the lead Magento developer and
head of the Lab's Croatia office.

Branko was crowned E-commerce Developer of the Year by Digital Entrepreneur
Awards in October 2014 for his excellent knowledge and expertise in e-commerce
development. His work is second to none, and is truly dedicated to helping the Lab
Lateral Ltd. team and fellow developers across the world.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Tomislav Sudmak is a software developer with an interest in all things digital. He
developed an interest in programming during his college life while participating at
the Start Up Academy, and he has been in love with various software technologies
since then.

He has a master's degree in electrical engineering. Through his education, he crafted
his skills with PHP and the Laravel framework, after which he became interested in
e-commerce and Magento. He has also worked with Symfony, WordPress, Drupal,
and other PHP-related frameworks.

During and after college, he worked as a freelancer on various web-related projects.

He has years of hands-on experience with full-time software development related
with PHP, which is his main programming language.

Currently, he works as a backend developer in an award-winning digital agency,
Lab Lateral Ltd.

During his free time and when he is not doing anything related to IT, Tomislav
enjoys going to the gym, riding his bike, and visiting places he has never been to.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Ecosystem Overview 1

Getting ready for PHP 7 2
Scalar type hints 3
Return type hints 4
Anonymous classes 5
The Closure::call() method 8
Generator delegation 9
Generator return expressions 10
The null coalesce operator 12
The Spaceship operator 13
Throwables 14
The \ParseError 16
Level support for the dirname() function 16
The integer division function 17
Constant arrays 18
Uniform variable syntax 18
Secure random number generator 20
Filtered unserialize() 21
Context sensitive lexer 22
Group use declarations 23
Unicode enhancements 24
Assertions 26
Changes to the list() construct 27
Session options 28
Deprecated features 28

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Frameworks 30
Laravel framework 31
Symfony 32
Zend Framework 33
CodeIgniter 34
CakePHP 35
Slim 36
Yii 37
Phalcon 38

Summary 39
Chapter 2: GoF Design Patterns 41

Creational patterns 42
Abstract factory pattern 42
Builder pattern 43
Factory method pattern 46
Prototype pattern 47
Singleton pattern 48

Structural patterns 49
Adapter pattern 49
Bridge pattern 51
Composite pattern 52
Decorator pattern 54
Facade pattern 55
Flyweight pattern 57
Proxy pattern 58

Behavioral patterns 60
Chain of responsibility pattern 60
Command pattern 62
Interpreter pattern 63
Iterator pattern 65
Mediator pattern 67
Memento pattern 69
Observer pattern 70
State pattern 72
Strategy pattern 73
Template pattern 74
Visitor pattern 76

Summary 78
Chapter 3: SOLID Design Principles 79

Single responsibility principle 80
Open/closed principle 83
Liskov substitution principle 86

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Interface Segregation Principle 89
Dependency inversion principle 90
Summary 91

Chapter 4: Requirement Specification for a Modular
Web Shop App 93

Defining application requirements 94
Wireframing 95
Defining a technology stack 107

The Symfony framework 107
Foundation framework 109

Summary 110
Chapter 5: Symfony at a Glance 111

Installing Symfony 111
Creating a blank project 113
Using Symfony console 115
Controller 121
Routing 122
Templates 124
Forms 127
Configuring Symfony 130
The bundle system 132
Databases and Doctrine 135
Testing 137
Validation 139
Summary 141

Chapter 6: Building the Core Module 143
Requirements 143
Dependencies 144
Implementation 144

Configuring application-wide security 157
Unit testing 160
Functional testing 160
Summary 164

Chapter 7: Building the Catalog Module 165
Requirements 165
Dependencies 166
Implementation 166

Creating entities 169
Managing image uploads 174

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Overriding core module services 177
Setting up a Category page 180
Setting up a Product page 183

Unit testing 185
Functional testing 186
Summary 188

Chapter 8: Building the Customer Module 189
Requirements 189
Dependencies 190
Implementation 190

Creating a customer entity 192
Modifying the security configuration 194
Extending the customer entity 196
Creating the orders service 197
Creating the customer menu service 198
Implementing the register process 201
Implementing the login process 202
Implementing the logout process 207
Managing forgotten passwords 207

Unit testing 209
Functional testing 211
Summary 214

Chapter 9: Building the Payment Module 215
Requirements 215
Dependencies 216
Implementation 217

Creating a card entity 218
Creating a card payment service 219

Creating a card payment controller and routes 221
Creating a check money payment service 222
Creating a check money payment controller and routes 224

Unit testing 225
Functional testing 228
Summary 231

Chapter 10: Building the Shipment Module 233
Requirements 233
Dependencies 234
Implementation 235

Creating a flat rate shipment service 236
Creating a flat rate shipment controller and routes 237

Table of Contents

[v]

Creating a dynamic rate payment service 238
Creating a dynamic rate shipment controller and routes 240

Unit testing 241
Functional testing 245
Summary 247

Chapter 11: Building the Sales Module 249
Requirements 249
Dependencies 251
Implementation 251

Creating a Cart entity 253
Creating the cart item entity 254
Creating an Order entity 256
Creating a SalesOrderItem entity 259
Overriding the add_to_cart_url service 262
Overriding the checkout_menu service 266
Overriding the customer orders service 268
Overriding the bestsellers service 273
Creating the Cart page 275
Creating the Payment service 278
Creating the Shipment service 279
Creating the Checkout page 280
Creating the order success page 288
Creating a store manager dashboard 289

Unit testing 291
Functional testing 292
Summary 295

Chapter 12: Integrating and Distributing Modules 297
Understanding Git 297
Understanding GitHub 298
Understanding Composer 301
Understanding Packagist 302
Summary 307

Index 309

[vii]

Preface
Building modular applications is a challenging task. It involves a wide spectrum of
knowledge, ranging from design patterns and principles to the ins and outs of the
chosen technology stack. The PHP ecosystem has quite a selection of tools, libraries,
frameworks, and platforms to assist us with our goal of modular application
development.

PHP 7 brings a lot of improvements that can further assist achieving that goal. We
will start our journey by looking into some of these improvements. By the end of
this book, our final delivery will be a modular web shop application built by the
Symfony framework.

What this book covers
Chapter 1, Ecosystem Overview, gives a gentle introduction to the current state of the
PHP ecosystem. It looks into the latest features of PHP 7, some of which open a
door to the new concepts of use in modular development. Furthermore, this chapter
glosses over the popular PHP frameworks.

Chapter 2, GoF Design Patterns, describes recurring solutions to common problems in
software design. Practical PHP examples are given for each of the following patterns:
creation pattern types, structural patterns, and behavioral patterns.

Chapter 3, SOLID Design Principles, dives into the five basic principles of object-
oriented programming and design under the acronym SOLID (single responsibility,
open-closed, Liskov substitution, Interface Segregation, and dependency inversion).
It gives practical examples and explains the importance of these principles in
modular development.

Preface

[viii]

Chapter 4, Requirement Specification for a Modular Web Shop App, guides a reader
through the process of defining overall application requirements. It starts by defining
actual application feature requirements and progresses all the way to the technology
stack selection.

Chapter 5, Symfony at a Glance, gives a high-level overview of Symfony as a
framework, a set of tools, and a development methodology. It focuses on the
building blocks that we will need to build our modular application.

Chapter 6, Building the Core Module, guides you through setting up a core module
based on the Symfony bundle. The core module is then used to set the structure
and dependencies for other modules to use.

Chapter 7, Building the Catalog Module, guides us through building a self-sufficient
module that matches the web shop catalog-only feature set. It shows us how to set
up entities relevant to the module functionality and how to manage those entities
and their interactions using the existing framework.

Chapter 8, Building the Customer Module, guides us through building a self-sufficient
module that matches the web shop customer-related feature set. It shows us how
to set up entities relevant to the module's functionality and how to manage those
entities and their interactions using the existing framework. It further shows us
how to create a register and login systems.

Chapter 9, Building the Payment Module, guides us through building a self-sufficient
module that matches the web shop payment-related feature set. It shows us how to
integrate with a third-party payment provider. It further shows us how to expose
a payment provider as service for other modules to use.

Chapter 10, Building the Shipment Module, guides us through building a self-sufficient
module that matches the web shop shipment-related feature set. It shows us how to
define several flat methods that yield different shipment pricing based on various
cart product attributes. It further shows us how to expose a shipment method as
service for other modules to use.

Chapter 11, Building the Sales Module, guides us through building a self-sufficient
module that matches the web shop sales-only feature set. It shows us how to set up
cart, cart item, order, and order item entities relevant to the module functionality and
how to manage those entities and their interactions using the existing framework.

Chapter 12, Integrating and Distributing Modules, integrates all the modules built in
the preceding chapters into a single functioning application. Moving on, it guides
us through the modern PHP module distribution techniques. These include Git and
Composer, which in turn indirectly include GitHub and Packagist.

Preface

[ix]

What you need for this book
In order to successfully run all the examples provided in this book, you will need
either your own web server or a third-party web-hosting solution. The high-level
technology stack includes PHP 7.0 or greater, Apache/Nginx, and MySQL.

The Symfony framework itself comes with a detailed list of system requirements that
can be found at http://symfony.com/doc/current/reference/requirements.
html.

This book assumes that the reader is familiar with setting up the complete
development environment.

Who this book is for
This book is primarily intended for intermediate-level PHP developers, with
little to no knowledge of modular programming who want to understand design
patterns and principles in order to better utilize the existing framework for modular
application development.

The modular web-shop application developed as a part of this book uses the
Symfony framework. However, no previous knowledge of the Symfony framework
is assumed or required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

function hint (int $A, float $B, string $C, bool $D)
{
 var_dump($A, $B, $C, $D);
}

http://symfony.com/doc/current/reference/requirements.html
http://symfony.com/doc/current/reference/requirements.html

Preface

[x]

Any command-line input or output is written as follows:

sudo curl -LsS https://symfony.com/installer -o /usr/local/bin/
 symfony

sudo chmod a+x /usr/local/bin/symfony

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Modular-Programming-with-PHP7. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/ModularProgrammingwithPHP7_
ColorImages.pdf.

https://github.com/PacktPublishing/Modular-Programming-with-PHP7
https://github.com/PacktPublishing/Modular-Programming-with-PHP7
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ModularProgrammingwithPHP7_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ModularProgrammingwithPHP7_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ModularProgrammingwithPHP7_ColorImages.pdf

Preface

[xii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Ecosystem Overview
It has been more than two decades now since the birth of PHP. Originally created by
Rasmus Lerdorf in 1994, the PHP acronym initially stood for Personal Home Page.
Back then, PHP was merely a few Common Gateway Interface (CGI) programs in C,
used to power a simple web page.

Though PHP was not intended to be a new programming language, the idea caught
on. During the late nineties Zeev Suraski and Andi Gutmans, co-founders of Zend
Technologies, continued the work on PHP by rewriting its entire parser, giving
birth to PHP 3. The PHP language name acronym now stood for PHP: Hypertext
Preprocessor.

PHP positions itself among the top ten programming languages in the world.
According to TIOBE, the software quality company, it currently holds sixth place.
For the last decade, especially since the release of PHP 5 in July 2004, PHP has been
recognized as the popular solution for building web applications.

Though PHP still presents itself as a scripting language, it's safe to say that as of
PHP 5 it is far more than that. Some of the world web's most popular platforms
like WordPress, Drupal, Magento, and PrestaShop are built in PHP. It is projects
like these that played a role in further raising the popularity of PHP. Some of them
stretch the boundaries of PHP by implementing complex OOP (Object Oriented
Programming) design patterns found in other programming languages like Java,
C#, and their frameworks.

Even though PHP 5 had decent OOP support, lots of things were still left to be
dreamed of. Work on PHP 6 was planned to give more support for the PHP Unicode
strings. Sadly, its development came to a halt and PHP 6 was canceled in 2010.

Ecosystem Overview

[2]

That same year, Facebook announced its HipHop compiler. Their compiler was
converting PHP code into C++ code. The C++ code was further compiled into
native machine code via a C++ compiler. This concept brought major performance
improvements for PHP. However, this approach was not very practical, because it
took too long to compile PHP scripts all the way to native machine code.

Shortly after, Dmitry Stogov, Zend Technologies Chief Performance Engineer,
announced a project called PHPNG, which became the basis for the next PHP
version, PHP 7.

In Dec 2015, PHP 7 was released, bringing numerous improvements and new
features:

• New version of the Zend Engine
• Improved performance (twice as fast as PHP 5.6)
• Significantly reduced memory usage
• Abstract Syntax Tree
• Consistent 64-bit support
• Improved exception hierarchy
• Many fatal errors converted to exceptions
• Secure random number generator
• Removed old and unsupported SAPIs and extensions
• The null coalescing operator
• Return and Scalar type declarations
• Anonymous classes
• Zero cost asserts

In this chapter, we will look at the following topics:

• Getting ready for PHP 7
• Frameworks

Getting ready for PHP 7
PHP 7 comes with quite a big list of changes. These changes affect both the PHP
interpreter and the various extensions and libraries. Though most of the PHP 5 code
will continue to operate normally on the PHP 7 interpreter, it is worth getting up to
speed with the newly available features.

Moving forward, we will look into some of these features and the benefits they
provide.

Chapter 1

[3]

Scalar type hints
Scalar type hints are not an entirely new feature in PHP. With the introduction
of PHP 5.0 we were given the ability to type hint classes and interfaces. PHP 5.1
extended this by introducing array type hinting. Later on, with PHP 5.4, we were
additionally given the ability to type hint callable. Finally, PHP 7 introduced scalar
type hints. Extending the type hints to scalars makes this probably one of the most
exciting features added to PHP 7.

The following scalar type hints are now available:

• string: Strings (for example, hello, foo, and bar)
• int: Integer numbers (for example, 1, 2, and 3)
• float: Floating point numbers (for example, 1.2, 2.4, and 5.6)
• bool: Boolean values (for example, true or false)

By default, PHP 7 works in weak type-checking mode, and will attempt to convert
to the specified type without complaint. We can control this mode using the
strict_typesdeclare() directive.

The declare(strict_types=1); directive must be the first statement in a file, or
else it will generate a compiler error. It only affects the specific file it is used in, and
does not affect other included files. The directive is entirely compile-time and cannot
be controlled at runtime:

declare(strict_types=0); //weak type-checking
declare(strict_types=1); // strict type-checking

Let's assume the following simple function that accepts hinted scalar types.

function hint (int $A, float $B, string $C, bool $D)
{
 var_dump($A, $B, $C, $D);
}

The weak type-checking rules for the new scalar type declarations are mostly the
same as those of extensions and built-in PHP functions. Because of this automated
conversion we might unknowingly lose data when passing it into a function. One
simple example is passing a float into a function that requires an int; in which case
conversion would simply strip away decimals.

Ecosystem Overview

[4]

Assuming the weak type-checking is on, as by default, the following can be
observed:

hint(2, 4.6, 'false', true);
/* int(2) float(4.6) string(5) "false" bool(true) */

hint(2.4, 4, true, 8);
/* int(2) float(4) string(1) "1" bool(true) */

We can see that the first function call passes on parameters as they are hinted. The
second function call does not pass the exact types of parameters but still the function
manages to execute as parameters go through conversion.

Assuming the weak type-checking is off, by using the declare(strict_types=1);
directive, the following can be observed:

hint(2.4, 4, true, 8);

Fatal error: Uncaught TypeError: Argument 1 passed to hint() must
be of the type integer, float given, called in php7.php on
line 16 and defined in php7.php:8 Stack trace: #0 php7.php(16):
hint(2.4, 4, true, 8) #1 {main} thrown in php7.php on line 8

The function call broke on the first argument resulting in the \TypeError exception.
The strict_types=1 directive does not allow any type juggling. The parameter has
to be of the same type, as hinted by the function definition.

Return type hints
In addition to type hinting, we can also type hint the return values. All of the type
hints that can be applied to function parameters can be applied to function return
values. This also implies to the weak type-checking rules.

To add a return type hint, simply follow the parameter list with a colon and the
return type, as shown in the following example:

function divide(int $A, int $B) : int
{
 return $A / $B;
}

The preceding function definition says that the divide function expects two
parameters of the int type, and is supposed to return a parameter of the int type.

Chapter 1

[5]

Assuming the weak type-checking is on, as by default, the following can be observed:

var_dump(divide(10, 2)); // int(5)
var_dump(divide(10, 3)); // int(3)

Though the actual result of divide(10, 3)should be a float, the return type hint
triggers conversion into an integer.

Assuming the weak type-checking is off, by using the declare(strict_types=1);
directive, the following can be observed:

int(5)
Fatal error: Uncaught TypeError: Return value of divide() must be
of the type integer, float returned in php7.php:10 Stack trace:
#0php7.php(14): divide(10, 3) #1 {main} thrown in php7.php on
line 10

With the strict_types=1 directive in place, the divide(10, 3) fails with the
\TypeError exception.

Using scalar type hints and return type hints can improve our code
readability as well as auto-complete features of IDE editors like NetBeans
and PhpStorm.

Anonymous classes
With the addition of anonymous classes, PHP objects gained closure-like capabilities.
We can now instantiate objects through nameless classes, which brings us closer
to object literal syntax found in other languages. Let's take a look at the following
simple example:

$object = new class {
 public function hello($message) {
 return "Hello $message";
 }
};

echo$object->hello('PHP');

The preceding example shows an $object variable storing a reference to an instance
of an anonymous class. The more likely usage would be to directly pass the new
class to a function parameter, without storing it as a variable, as shown here:

$helper->sayHello(new class {
 public function hello($message) {

Ecosystem Overview

[6]

 return "Hello $message";
 }
});

Similar to any normal class, anonymous classes can pass arguments through to their
constructors, extend other classes, implement interfaces, and use traits:

class TheClass {}
interface TheInterface {}
trait TheTrait {}

$object = new class('A', 'B', 'C') extends TheClass implements
 TheInterface {

 use TheTrait;

 public $A;
 private $B;
 protected $C;

 public function __construct($A, $B, $C)
 {
 $this->A = $A;
 $this->B = $B;
 $this->C = $C;
 }
};

var_dump($object);

The above example would output:

object(class@anonymous)#1 (3) { ["A"]=> string(1) "A"
["B":"class@anonymous":private]=> string(1) "B"
["C":protected]=> string(1) "C" }

The internal name of an anonymous class is generated with a unique reference based
on its address.

There is no definitive answer as to when to use anonymous classes. It depends
almost entirely on the application we are building, and the objects, depending on
their perspective and usage.

Chapter 1

[7]

Some of the benefits of using anonymous classes are as follows:

• Mocking application tests becomes trivial. We can create on-the-fly
implementations for interfaces, avoiding using complex mocking APIs.

• Avoid invoking the autoloader every so often for simpler implementations.
• Makes it clear to anyone reading the code that this class is used here and

nowhere else.

Anonymous classes, or rather objects instantiated from anonymous classes, cannot be
serialized. Trying to serialize them results in a fatal error as follows:

Fatal error: Uncaught Exception: Serialization of
 'class@anonymous' is not allowed in php7.php:29 Stack trace: #0
 php7.php(29): serialize(Object(class@anonymous)) #1 {main}
 thrown in php7.php on line 29

Nesting an anonymous class does not give it access to private or protected methods
and properties of the outer class. In order to use the outer class protected methods
and properties, the anonymous class can extend the outer class. Ignoring methods,
private or protected properties of the outer class can be used in the anonymous class
if passed through its constructor:

class Outer
{
 private $prop = 1;
 protected $prop2 = 2;

 protected function outerFunc1()
 {
 return 3;
 }

 public function outerFunc2()
 {
 return new class($this->prop) extends Outer
 {
 private $prop3;

 public function __construct($prop)
 {
 $this->prop3 = $prop;
 }

 public function innerFunc1()
 {

Ecosystem Overview

[8]

 return $this->prop2 + $this->prop3 + $this
 ->outerFunc1();
 }
 };
 }
}

echo (new Outer)->outerFunc2()->innerFunc1(); //6

Though we labeled them as anonymous classes, they are not really anonymous
in terms of the internal name the PHP engine assigns to objects instantiated from
these classes. The internal name of an anonymous class is generated with a unique
reference based on its address.

The statement get_class(new class{}); would result in something like
class@anonymous/php7.php0x7f33c22381c8, where 0x7f33c22381c8 is the
internal address. If we were to define the exact same anonymous class elsewhere
in the code, its class name would be different as it would have a different memory
address assigned. The resulting object in that case might have the same property
values, which means they will be equal (==) but not identical (===).

The Closure::call() method
PHP introduced the Closure class in the 5.3 version. Closure class is used to
represent anonymous functions. Anonymous functions, implemented in PHP 5.3,
yield objects of this type. As of PHP 5.4, the Closure class got several methods (bind,
bindTo) that allow further control of the anonymous function after it has been
created. These methods basically duplicate the Closure with a specific bound object
and class scope. PHP 7 introduced the call method on a Closure class. The call
method does not duplicate the closure, it temporarily binds the closure to new this
($newThis), and calls it with any given parameters. It then returns the return value
of the closure.

The call function signature looks like the following:

function call ($newThis, ...$parameters) {}

$newThis is the object to bind the closure for the duration of the call. The
parameters, which will be given as $parameters to the closure are optional,
meaning zero or more.

Chapter 1

[9]

Let's take a look at the following example of a simple Customer class and a
$greeting closure:

class Customer {
 private $firstname;
 private $lastname;

 public function __construct($firstname, $lastname)
 {
 $this->firstname = $firstname;
 $this->lastname = $lastname;
 }
}

$customer = new Customer('John', 'Doe');

$greeting = function ($message) {
 return "$message $this->firstname $this->lastname!";
};

echo $greeting->call($customer, 'Hello');

Within the actual $greeting closure, there is no $this, it does not exist until the
actual binding occurs. We could easily confirm this by directly calling a closure
like $greeting('Hello');. However, we assume $this will come in to existence
when we bind the closure to a given object instance via its call function. In which
case, $this within the closure becomes $this of the customer object instance. The
preceding example shows binding of $customer to the closure using a call method
call. The resulting output displays Hello John Doe!

Generator delegation
Generators provide a simple way to implement iterators without the overhead of
implementing a class that implements the Iterator interface. They allow us to write
code which uses foreach to iterate over a set of data without needing to build an
array in memory. This eliminates the exceeds memory limit errors. They were not
new to PHP, as they were added in PHP 5.5.

However, PHP 7 brings several new improvements to generators, one of which is
generator delegation.

Generator delegation allows a generator to yield other generators, arrays, or objects
that implement the Traversable interface. In another words, we might say that
generator delegation is yielding subgenerators.

Ecosystem Overview

[10]

Let's take a look at the following example with three generator type functions:

function gen1() {
 yield '1';
 yield '2';
 yield '3';
}

function gen2() {
 yield '4';
 yield '5';
 yield '6';
}

function gen3() {
 yield '7';
 yield '8';
 yield from gen1();
 yield '9';
 yield from gen2();
 yield '10';
}

// output of the below code: 123
foreach (gen1() as $number) {
echo $number;
}

//output of the below code: 78123945610
foreach (gen3() as $number) {
 echo $number;
}

Yielding other generators requires using the yield from <expression> syntax.

Generator return expressions
Prior to PHP 7, generator functions were not able to return expressions. The
inability of generator functions to specify return values limited their usefulness for
multitasking in co-routine contexts.

Chapter 1

[11]

PHP 7 made it possible for generators to return expressions. We can now call
$generator->getReturn() to retrieve the return expression. Calling $generator-
>getReturn() when the generator has not yet returned, or has thrown an uncaught
exception, will throw an exception.

If the generator has no return expression defined and has completed yielding, null is
returned.

Let's take a look at the following example:

function gen() {
 yield 'A';
 yield 'B';
 yield 'C';

 return 'gen-return';
}

$generator = gen();

//output of the below code: object(Generator)#1 (0) { }
var_dump($generator);

// output of the below code: Fatal error
// var_dump($generator->getReturn());

// output of the below code: ABC
foreach ($generator as $letter) {
 echo $letter;
}

// string(10) "gen-return"
var_dump($generator->getReturn());

Looking at the gen() function definition and its return expression, one might
expect the value of the $generator variable to be equal to the gen-return string.
However, this is not the case, as the $generator variable becomes the instance of the
\Generator class. Calling the getReturn() method on the generator while it is still
open (not iterated over) will result in a fatal error.

If the code is structured in such a way that it is not obvious if the generator has been
closed, we can use the valid method to check, before fetching the return value:

if ($generator->valid() === false) {
 var_dump($generator->getReturn());
}

www.allitebooks.com

http://www.allitebooks.org

Ecosystem Overview

[12]

The null coalesce operator
In PHP 5 we had the ternary operator which tests a value and then returns the
second element if that value is true, or third element if that value is false,
as shown in the following code block:

$check = (5 > 3) ? 'Correct!' : 'Faulty!'; // Correct!
$check = (5 < 3) ? 'Correct!' : 'Faulty!'; // Faulty!

While processing user-provided data in web-centered languages such as PHP, it is
common to check for variable existence. If a variable doesn't exist, then set it to some
default value. A ternary operator makes this easy for us, as shown here:

$role = isset($_GET['role']) ? $_GET['role'] : 'guest';

However, easy is not always quick or elegant. With that in mind, PHP 7 set out to
resolve one of the most common usage patterns, by introducing the null coalesce
operator(??).

The null coalesce operator enables us to write even shorter expressions, as in the
following code block:

$role = $_GET['role'] ??'guest';

The coalesce operator(??) is added right after the $_GET['role'] variable, which
returns the result of its first operand if it exists and is not NULL, or else its second
operand. This means the $_GET['role'] ?? 'guest' is completely safe and will
not raise an E_NOTICE.

We can also nest the coalesce operator:

$A = null; // or not set
$B = 10;

echo $A ?? 20; // 20
echo $A ?? $B ?? 30; // 10

Reading from left to right, the first value which exists and is not null is the value that
will be returned. The benefit of this construct is that it enables a clean and effective
way to achieve safe fallback to the desired value.

The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Modular-Programming-with-
PHP7. We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/.
Check them out!

https://github.com/PacktPublishing/Modular-Programming-with-PHP7
https://github.com/PacktPublishing/Modular-Programming-with-PHP7
https://github.com/PacktPublishing/Modular-Programming-with-PHP7
https://github.com/PacktPublishing/

Chapter 1

[13]

The Spaceship operator
The three-way comparison operator, also known as the Spaceship operator, was
introduced in PHP 7. Its syntax goes as follows:

(expr) <=> (expr)

The operator returns 0 if both operands are equal, 1 if the left is greater, and -1 if the
right is greater.

It uses the same comparison rules as other existing comparison operators: <, <=, ==,
>=, and >:

operator<=> equivalent
$a < $b($a <=> $b) === -1
$a <= $b($a <=> $b) === -1 || ($a <=> $b) === 0
$a == $b($a <=> $b) === 0
$a != $b($a <=> $b) !== 0
$a >= $b($a <=> $b) === 1 || ($a <=> $b) === 0
$a > $b($a <=> $b) === 1

The following are some examples of Spaceship operator behavior:

// Floats
echo 1.5 <=> 1.5; // 0
echo 1.5 <=> 2.5; // -1
echo 2.5 <=> 1.5; // 1

// Strings
echo "a"<=>"a"; // 0
echo "a"<=>"b"; // -1
echo "b"<=>"a"; // 1

echo "a"<=>"aa"; // -1
echo "zz"<=>"aa"; // 1

// Arrays
echo [] <=> []; // 0
echo [1, 2, 3] <=> [1, 2, 3]; // 0
echo [1, 2, 3] <=> []; // 1
echo [1, 2, 3] <=> [1, 2, 1]; // 1
echo [1, 2, 3] <=> [1, 2, 4]; // -1

// Objects
$a = (object) ["a" =>"b"];
$b = (object) ["a" =>"b"];

Ecosystem Overview

[14]

echo $a <=> $b; // 0

$a = (object) ["a" =>"b"];
$b = (object) ["a" =>"c"];
echo $a <=> $b; // -1

$a = (object) ["a" =>"c"];
$b = (object) ["a" =>"b"];
echo $a <=> $b; // 1

// only values are compared
$a = (object) ["a" =>"b"];
$b = (object) ["b" =>"b"];
echo $a <=> $b; // 0

One practical use case for this operator is for writing callbacks used in sorting
functions like usort, uasort, and uksort:

$letters = ['D', 'B', 'A', 'C', 'E'];

usort($letters, function($a, $b) {
return $a <=> $b;
});

var_dump($letters);

// array(5) { [0]=> string(1) "A" [1]=> string(1) "B" [2]=>
 string(1) "C" [3]=> string(1) "D" [4]=> string(1) "E" }

Throwables
Though PHP 5 introduced the exception model, overall errors and error handling
remained somewhat unpolished. Basically PHP had two error handling systems.
Traditional errors still popped out and were not handled by try…catch blocks.

Take the following E_RECOVERABLE_ERROR as an example:

class Address
{
 private $customer;
 public function __construct(Customer $customer)
 {
 $this->customer = $customer;
 }
}

Chapter 1

[15]

$customer = new stdClass();

try {
 $address = new Address($customer);
} catch (\Exception $e) {
 echo 'handling';
} finally {
echo 'cleanup';
}

The try…catch block has no effect here, as the error is not interpreted as an
exception, rather a catchable fatal error:

Catchable fatal error: Argument 1 passed to Address::__construct()
must be an instance of Customer, instance of stdClass given,
called in script.php on line 15 and defined in script.php on
line 6.

A possible workaround involves setting a user-defined error handler by using the
set_error_handler function as follows:

set_error_handler(function($code, $message) {
 throw new \Exception($message, $code);
});

The error handler, as written above, would now transform every error into an
exception, therefore making it catchable with try…catch blocks.

PHP 7 made fatal and catchable fatal errors part of engine exceptions, therefore
catchable with try…catch blocks. This excludes warnings and notices which
still do not pass through the exception system, which makes sense for backward
compatibility reasons.

It also introduced a new exception hierarchy via the \Throwable interface.
\Exception and \Error implement the \Throwable interface.

Standard PHP fatal and catchable fatal are now thrown as \Error exceptions, though
they will continue to trigger traditional fatal error if they are uncaught.

Throughout our application we must use \Exception and \Error, as we cannot
implement the \Throwable interface directly. We could, however, use the following
block to catch all errors, regardless of whether it is the \Exception or \Error type:

try {
// statements
} catch (\Throwable $t) {
 // handling

Ecosystem Overview

[16]

} finally {
// cleanup
}

The \ParseError
The ParseError is a nice PHP 7 addition to error handling. We can now handle
parse errors triggered by eval(), include and require statements, as well as those
thrown by \ParseError exceptions. It extends \Error, which in turn implements
a \Throwable interface.

The following is an example of a broken PHP file, because of a missing "," inbetween
between array items:

<?php

$config = [
'host' =>'localhost'
'user' =>'john'
];

return $config;

The following is an example of a file including config.php:

<?php

try {
include 'config.php';
} catch (\ParseError $e) {
// handle broken file case
}

We can now safely catch possible parse errors.

Level support for the dirname() function
The dirname function has been with us since PHP 4. It's probably one of the most
often used functions in PHP. Up until PHP 7, this function only accepted the path
parameter. With PHP 7, the new levels parameter was added.

Chapter 1

[17]

Let's take a look at the following example:

// would echo '/var/www/html/app/etc'
echo dirname('/var/www/html/app/etc/config/');

// would echo '/var/www/html/app/etc'
echo dirname('/var/www/html/app/etc/config.php');

// would echo '/var/www/html/app'
echo dirname('/var/www/html/app/etc/config.php', 2);

// would echo '/var/www/html'
echo dirname('/var/www/html/app/etc/config.php', 3);

By assigning the levels value, we indicate how many levels to go up from the
assigned path value. Though small, the addition of the levels parameter will
certainly make it easier to write some of the code that deals with paths.

The integer division function
The intdiv is a new integer division function introduced in PHP 7. The function
accepts dividend and divisor as parameters and returns the integer quotient of their
division, as shown here by the function description:

int intdiv(int $dividend, int $divisor)

Let's take a look at the following few examples:

intdiv(5, 3); // int(1)
intdiv(-5, 3); // int(-1)
intdiv(5, -2); // int(-2)
intdiv(-5, -2); // int(2)
intdiv(PHP_INT_MAX, PHP_INT_MAX); // int(1)
intdiv(PHP_INT_MIN, PHP_INT_MIN); // int(1)

// following two throw error
intdiv(PHP_INT_MIN, -1); // ArithmeticError
intdiv(1, 0); // DivisionByZeroError

If the dividend is PHP_INT_MIN and the divisor is -1, then an ArithmeticError
exception is thrown. If the divisor is 0, then the DivisionByZeroError exception
is thrown.

Ecosystem Overview

[18]

Constant arrays
Prior to PHP 7, constants defined with define() could only contain scalar
expressions, but not arrays. As of PHP 5.6, it is possible to define an array constant
by using const keywords, and as of PHP 7, array constants can also be defined using
define():

// the define() example
define('FRAMEWORK', [
'version' => 1.2,
'licence' =>'enterprise'
]);

echo FRAMEWORK['version']; // 1.2
echo FRAMEWORK['licence']; // enterprise

// the class const example
class App {
 const FRAMEWORK = [
'version' => 1.2,
'licence' =>'enterprise'
];
}

echo App::FRAMEWORK['version']; // 1.2
echo App::FRAMEWORK['licence']; // enterprise

Constants may not be redefined or undefined once they have been set.

Uniform variable syntax
To make PHP's parser more complete for various variable dereferences, PHP 7
introduced a uniform variable syntax. With uniform variable syntax all variables
are evaluated from left to right.

Unlike various functions, keywords, or settings being removed, changes in semantics
like this one can be quite impacting for the existing code base. The following code
demonstrates the syntax, its old meaning and new:

// Syntax
$$foo['bar']['baz']
// PHP 5.x:
// Using a multidimensional array value as variable name
${$foo['bar']['baz']}
// PHP 7:

Chapter 1

[19]

// Accessing a multidimensional array within a variable-variable
($$foo)['bar']['baz']

// Syntax
$foo->$bar['baz']
// PHP 5.x:
// Using an array value as a property name
$foo->{$bar['baz']}
// PHP 7:
// Accessing an array within a variable-property
($foo->$bar)['baz']

// Syntax
$foo->$bar['baz']()
// PHP 5.x:
// Using an array value as a method name
$foo->{$bar['baz']}()
// PHP 7:
// Calling a closure within an array in a variable-property
($foo->$bar)['baz']()

// Syntax
Foo::$bar['baz']()
// PHP 5.x:
// Using an array value as a static method name
Foo::{$bar['baz']}()
// PHP 7:
// Calling a closure within an array in a static variable
(Foo::$bar)['baz']()

Aside from previously rewritten examples of old-to-new syntax, there are now a few
newly supported syntax combinations.

PHP 7 now supports nested double colons,::, and following is an example of it:

// Access a static property on a string class name
// or object inside an array
$foo['bar']::$baz;
// Access a static property on a string class name or object
// returned by a static method call on a string class name
// or object
$foo::bar()::$baz;
// Call a static method on a string class or object returned by
// an instance method call
$foo->bar()::baz();

Ecosystem Overview

[20]

We can also nest methods and function calls—or any callables—by doubling up on
parentheses as shown in the following code examples:

// Call a callable returned by a function
foo()();
// Call a callable returned by an instance method
$foo->bar()();
// Call a callable returned by a static method
Foo::bar()();
// Call a callable return another callable
$foo()();

Furthermore, we can now dereference any valid expression enclosed with
parentheses:

// Access an array key
(expression)['foo'];
// Access a property
(expression)->foo;
// Call a method
(expression)->foo();
// Access a static property
(expression)::$foo;
// Call a static method
(expression)::foo();
// Call a callable
(expression)();
// Access a character
(expression){0};

Secure random number generator
PHP 7 introduced two new CSPRNG functions. CSPRNG is an acronym for
cryptographically secure pseudo-random number generator.

The first, random_bytes, generates an arbitrary length string of cryptographic
random bytes that are suitable for cryptographic use, such as when generating salts,
keys, or initialization vectors. The function accepts only one (length) parameter,
representing the length of the random string that should be returned in bytes.
It returns a string containing the requested number of cryptographically secure
random bytes, or, optionally, it throws an exception if an appropriate source of
randomness cannot be found.

Chapter 1

[21]

The following is an example of random_bytes usage:

$bytes = random_bytes(5);

The second, random_int, generates cryptographic random integers that are suitable
for use where unbiased results are critical, such as when shuffling a deck of cards
for a poker game. The function accepts two (min, max) parameters, representing
the lowest value to be returned (must be PHP_INT_MIN or higher) and the highest
value to be returned (must be less than or equal to PHP_INT_MAX). It returns a
cryptographically secure random integer in the range min to max (inclusive).

The following is an example of random_int usage:

$int = random_int(1, 10);
$int = random_int(PHP_INT_MIN, 500);
$int = random_int(20, PHP_INT_MAX);
$int = random_int(PHP_INT_MIN, PHP_INT_MAX);

Filtered unserialize()
Serialized data can include objects. These objects can further include functions
like destructors, __toString, and __call. In order to increase security when
unserializing objects on unstructured data, PHP 7 introduced the optional options
parameter to the existing unserialize function.

The options parameter is of type array that currently only accepts the
allowed_classes key.

The allowed_classes can have one of three values:

• true: This is a default value and allows all objects just as before
• false: Here no objects allowed
• array of allowed class names, lists the allowed classes for unserialized objects

The following is an example of using the allowed_classes option:

class Customer{
 public function __construct(){
 echo '__construct';
 }

 public function __destruct(){
 echo '__destruct';
 }

Ecosystem Overview

[22]

 public function __toString(){
 echo '__toString';
 return '__toString';
 }

 public function __call($name, $arguments) {
 echo '__call';
 }
}

$customer = new Customer();

$s = serialize($customer); // triggers: __construct, __destruct

$u = unserialize($s); // triggers: __destruct
echo get_class($u); // Customer

$u = unserialize($s, ['allowed_classes'=>false]); // does not
 trigger anything
echo get_class($u); // __PHP_Incomplete_Class

We can see that the object of that class which is not accepted is instantiated as
__PHP_Incomplete_Class.

Context sensitive lexer
According to the http://php.net/manual/en/reserved.keywords.php list, PHP
has over 60 reserved keywords. These make up for language constructs, like names
for properties, methods, constants within classes, interfaces, and traits.

Sometimes these reserved words end up clashing with user defined API declarations.

To resolve the issue, PHP 7.0 introduced the context sensitive lexer. With the context
sensitive lexer, we may now use keywords for property, function, and constant
names within our code.

The following are a few practical examples related to the impact of context sensitive
lexer:

class ReportPool {
 public function include(Report $report) {
//
 }
}

http://php.net/manual/en/reserved.keywords.php

Chapter 1

[23]

$reportPool = new ReportPool();
$reportPool->include(new Report());

class Collection extends \ArrayAccess, \Countable,
 \IteratorAggregate {

 public function forEach(callable $callback) {
//
 }

 public function list() {
//
 }

 public static function new(array $items) {
 return new self($items);
 }
}

Collection::new(['var1', 'var2'])
->forEach(function($index, $item){ /* ... */ })
->list();

The only exception being the class keyword, which remains reserved in class
constant context, as shown here:

class Customer {
 const class = 'Retail'; // Fatal error
}

Group use declarations
The group use declarations are introduced in PHP 7 as a way to cut verbosities when
importing multiple classes from a common namespace. They enable shorthand
syntax as follows:

use Library\Group1\Group2\{ ClassA, ClassB, ClassC as Classy };

Let's take a look at the following examples where class names within the same
namespace are group used:

// Current use syntax
use Doctrine\Common\Collections\Expr\Comparison;
use Doctrine\Common\Collections\Expr\Value;
use Doctrine\Common\Collections\Expr\CompositeExpression;

Ecosystem Overview

[24]

// Group use syntax
use Doctrine\Common\Collections\Expr\{ Comparison, Value,
 CompositeExpression };

We can also use the group use declarations on part of namespaces, as shown in the
following example:

// Current use syntax
use Symfony\Component\Console\Helper\Table;
use Symfony\Component\Console\Input\ArrayInput;
use Symfony\Component\Console\Output\NullOutput;
use Symfony\Component\Console\Question\Question;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use Symfony\Component\Console\Question\ChoiceQuestion as Choice;
use Symfony\Component\Console\Question\ConfirmationQuestion;

// Group use syntax
use Symfony\Component\Console\{
 Helper\Table,
 Input\ArrayInput,
 Input\InputInterface,
 Output\NullOutput,
 Output\OutputInterface,
 Question\Question,
 Question\ChoiceQuestion as Choice,
 Question\ConfirmationQuestion,
};

We can further use group use for importing functions and constants as shown in the
following lines of code:

use Framework\Component\{
SubComponent\ClassA,
function OtherComponent\someFunction,
const OtherComponent\SOME_CONSTANT
};

Unicode enhancements
Unicode, and UTF-8 in particular, have grown increasingly popular in PHP
applications.

Chapter 1

[25]

PHP 7 adds the new escape sequence for double-quoted strings and heredocs, with the
syntax as follows:

\u{code-point}

It produces the UTF-8 encoding of a Unicode code point, specified with hexadecimal
digits. It is worth noting that the length of the code-point within curly braces is
arbitrary. This means that we can use \u{FF} or the more traditional \u{00FF}.

The following is a simple listing of the four most traded currencies, their symbols,
and their UTF-8 code points:

Euro€U+20AC
Japanese Yen¥U+00A5
Pound sterling£U+00A3
Australian dollar$U+0024

Some of these symbols usually exist directly on a keyboard, so it's easy to write them
down as shown here:

echo "the € currency";
echo "the ¥ currency";
echo "the £ currency";
echo "the $ currency";

However, the majority of other symbols are not as easily accessible via the keyboard
as single keystrokes, and therefore need to be written in the form of code-points,
shown as follows:

echo "the \u{1F632} face";
echo "the \u{1F609} face";
echo "the \u{1F60F} face";

In older versions of PHP, the resulting output of preceding statements would
be the following:

the \u{1F632} face
the \u{1F609} face
the \u{1F60F} face

This obviously did not parse code-points, as it was outputting them literally.

PHP 7 introduced Unicode code-point escape sequence syntax to string
literals, making previous statements result in the following output:

the 😉 face
the 😉 face
the 😉 face

Ecosystem Overview

[26]

Assertions
Assertions is a debug feature, used to check the given assertion and take appropriate
action if its result is false. They have been part of PHP for years, ever since PHP 4.

Assertions differ from error handling in a way that assertions cover for impossible
cases, whereas errors are possible and need to be handled.

Using assertions as a general-purpose error handling mechanism should be avoided.
Assertions do not allow for recovery from errors. Assertion failure will normally halt
the execution of a program.

With modern debugging tools like Xdebug, not many developers use assertions
for debugging.

Assertions can be easily enabled and disabled using the assert_options function or
the assert.active INI setting.

To use assertions, we pass in either an expression or a string as shown in the
following function signature:

// PHP 5
bool assert (mixed $assertion [, string $description])

// PHP 7
bool assert (mixed $assertion [, Throwable $exception])

These two signatures differ in the second parameter. PHP 7 can accept either string
$description or $exception.

If the expression result or the result of evaluating the string evaluates to false,
then a warning is raised. If the second parameter is passed as $exception, then an
exception will be thrown instead of failure.

In regards to php.ini configuration options, the assert function has been expanded
to allow for so-called zero-cost assertions:

zend.assertions = 1 // Enable
zend.assertions = 0 // Disable
zend.assertions = -1 // Zero-cost

With zero-cost settings, assertions have zero impact on performance and execution
as they are not compiled.

Finally, the Boolean assert.exception option was added to the INI setting.
Setting it to true, results in AssertionError exceptions for the failed assertions.

Chapter 1

[27]

Changes to the list() construct
In PHP 5, list() assigns the values starting with the right-most parameter. In PHP
7, list() starts with the left-most parameter. Basically, values are now assigned to
variables in the order they are defined.

However, this only affects the case where list() is being used in conjunction with
the array [] operator, as discussed in the following code block:

<?php

list($color1, $color2, $color3) = ['green', 'yellow', 'blue'];
var_dump($color1, $color2, $color3);

list($colors[], $colors[], $colors[]) = ['green', 'yellow',
 'blue'];
var_dump($colors);

Output of the preceding code in PHP 5 would result in the following:

string(5) "green"
string(6) "yellow"
string(4) "blue"

array(3) {
[0]=> string(5) "blue"
[1]=> string(6) "yellow"
[2]=> string(4) "green"
}

Output of the preceding code in PHP 7 would result in the following:

string(5) "green"
string(6) "yellow"
string(4) "blue"

array(3) {
[0]=> string(5) "green"
[1]=> string(6) "yellow"
[2]=> string(4) "blue"
}

The order of assignment might change again in the future, so we should not rely
heavily on it.

Ecosystem Overview

[28]

Session options
Prior to PHP 7, the session_start() function did not directly accept any
configuration options. Any configuration options we wanted to set on the session,
needed to come from php.ini:

// PHP 5
ini_set('session.name', 'THEAPP');
ini_set('session.cookie_lifetime', 3600);
ini_set('session.cookie_httponly', 1);
session_start();

// PHP 7
session_start([
'name' =>'THEAPP',
'cookie_lifetime' => 3600,
'cookie_httponly' => 1
]);

Driven by the goal of performance optimization, a new lazy_write runtime
configuration was added in PHP 7. When lazy_write is set to 1, the session
data is only rewritten if it changes. This is the default behavior:

session_start([
'name' =>'THEAPP',
'cookie_lifetime' => 3600,
'cookie_httponly' => 1,
'lazy_write' => 1
]);

While changes listed here might not look impressive at first, being able to override
session options directly via the session_start function gives certain flexibility to
our code.

Deprecated features
Globally accepted, major versions of software have the luxury of breaking backward
compatibility. Ideally, not much, but in order to keep the software moving forward,
some old ideas need to be left behind. These changes don't come overnight. Certain
features are first flagged as deprecated to warn developers that it will be removed in
future versions of the language. Sometimes this period of deprecation takes years.

Throughout PHP 5.x, a number of features have been marked as deprecated, and in
PHP 7.0, they have all been removed.

Chapter 1

[29]

The POSIX-compatible regular expressions have been deprecated in PHP 5.3, and
now completely removed in PHP 7.

The following functions are no longer available for use:

• ereg_replace

• ereg

• eregi_replace

• eregi

• split

• spliti

• sql_regcase

We should instead use Perl Compatible Regular Expressions (PCRE). The http://
php.net/manual/en/book.pcre.php is a great source of documentation for these
functions.

The mysql extension, which had been deprecated in PHP 5.5, has now been removed.
None of the mysql_* functions are available anymore. We should instead use the
mysqli extension. The good thing is that moving from mysql to mysqli functions is
mostly simple, as when adding i to our code, the mysql_* function calls and passes
the database handle (returned by mysqli_connect) as the first parameter. The
http://php.net/manual/en/book.mysqli.php is a great source of documentation
for these functions.

The PHP script and ASP tags are no longer available:

<!-- PHP script tag example -->
<script language="php">
// Code here
</script>

<!-- PHP ASP tag example -->
<%
// Code here
%>
<%=$varToEcho; %>

http://php.net/manual/en/book.pcre.php
http://php.net/manual/en/book.pcre.php
http://php.net/manual/en/book.mysqli.php

Ecosystem Overview

[30]

Frameworks
Application frameworks are a collection of functions, classes, configurations, and
conventions all designed to support the development of web applications, services,
and APIs. Some applications are embracing an API first approach, whereas server-
side REST and SOAP APIs are built via PHP, and client side in other technologies
like JavaScript.

When building a web application, we usually have three obvious choices:

• We can build everything ourselves, from scratch. This way, our development
process might be slow, but we can achieve architecture built entirely per our
standards. Needless to say, this is a highly unproductive approach.

• We can use one of the existing frameworks. This way, our development
process is fast, but we need to be happy that our application is built on
top of other things.

• We can use one of the existing frameworks but also try to abstract it to the
level where our application looks independent of it. This is a painful and
slow approach, to say the least. It involves writing numerous adapters,
wrappers, interfaces, and so on.

In a nutshell, frameworks are here to make it easier and quicker for us to build
our software. A great deal of programming languages out there have popular
frameworks. PHP is no exception to this.

Given the popularity of PHP as a go-to web programming language, it is no surprise
that dozens of frameworks have sprouted over the years. Choosing the "right"
framework is a daunting task, even so more for fresh starters. What is right for
one project or a team might not be right for another.

However, there are some general, high level segments each modern framework
should encompass. These account for:

• Modular: It supports modular application development, allowing us to
neatly separate our code into functional building blocks, whereas it is
built in a modular manner.

• Secure: It provides various cryptographic and other security tooling expected
of a modern web application. Provides seamless support for things like
authentication, authorization, and data encryption.

• Extensible: Manages to easily adopt our application needs, allowing us to
extend it according to our application needs.

• Community: It is actively developed and supported by a vibrant and active
community.

Chapter 1

[31]

• High performing: Built with performance in mind. Many frameworks brag
about performance, but there are many variables to it. We need to be specific
as to what we are evaluating here. Measuring cached performance against
raw performance is often the misleading evaluation, as caching proxies can
be put in front of many frameworks.

• Enterprise ready: Depending on the type of project at hand, most likely we
would want to target a framework which flags itself as enterprise ready.
Making us confident enough of running critical and high-usage business
applications on top of it.

While it's perfectly alright to code an entire web application in pure PHP without
using any framework, the majority of today's projects do use frameworks.

The benefits of using frameworks outweigh the purity of doing it all from scratch.
Frameworks are usually well supported and documented, which makes it easier for
teams to catch up with libraries, project structure, conventions, and other things.

When it comes to PHP frameworks, it is worth pointing out a few popular ones:

• Laravel: https://laravel.com
• Symfony: http://symfony.com
• Zend Framework: http://framework.zend.com
• CodeIgniter: https://www.codeigniter.com
• CakePHP: http://cakephp.org
• Slim: http://www.slimframework.com
• Yii: http://www.yiiframework.com
• Phalcon: https://phalconphp.com

This is by no means a complete or even a popularity sorted list.

Laravel framework
Laravel is released under an MIT license, and can be downloaded from
https://laravel.com/.

Aside from the usual routing, controllers, requests, responses, views, and (blade)
templates, out of the box Laravel provides a large amount of additional services
such as authentication, cache, events, localization, and many others.

Another neat feature of Laravel, is Artisan, the command line tool, that provides
a number of useful commands that we can use during development. Artisan can
further be extended by writing our own console commands.

www.allitebooks.com

https://laravel.com
http://symfony.com
http://framework.zend.com
https://www.codeigniter.com
http://cakephp.org
http://www.slimframework.com
http://www.yiiframework.com
https://phalconphp.com
https://laravel.com/
http://www.allitebooks.org

Ecosystem Overview

[32]

Laravel has a pretty active and vibrant community. Its documentation is simple
and clear, which makes it easy for newcomers to get started. Furthermore, there
is also https://laracasts.com, which extends out beyond Laravel in terms of
documentation and other content. Laracasts is a web service providing a series
of expert screencasts, some of which are free.

All of these features make Laravel a choice worth evaluating when it comes to the
selection of a framework.

Symfony
Symfony is released under an MIT license, and can be downloaded from
http://symfony.com.

Over time, Symfony introduced the concept of Long-term Support(LTS) releases.
This release process has been adopted as of Symfony 2.2, and strictly followed as
of Symfony 2.4. The standard version of Symfony is maintained for eight months.
Long-term Support versions are supported for three years.

One other interesting thing about new releases is the time-based release model.
All of the new versions of Symfony releases come out every six months: one in
May and one in November.

Symfony has great community support via mailing lists, IRC, and StackOverflow.
Furthermore, SensioLabs professional support provides a full range of solutions
from consulting, training, coaching, to certification.

Lots of Symfony components are used in other web applications and frameworks,
such as Laravel, Silex, Drupal 8, Sylius, and others.

What made Symfony such a popular framework is its interoperability. The idea
of "Don't lock yourself up within Symfony!" made it popular with developers as
it allowed for building applications that precisely meet our needs.

By embracing the "don't reinvent the wheel" philosophy, Symfony itself makes heavy
use of existing PHP open-source projects as part of the framework, including:

• Doctrine (or Propel): Object-relational mapping layer
• PDO database abstraction layer (Doctrine or Propel)
• PHPUnit: A unit testing framework
• Twig: A templating engine
• Swift Mailer: An e-mail library

https://laracasts.com
http://symfony.com

Chapter 1

[33]

Depending on our project needs, we can choose to use a full-stack Symfony
framework, the Silex micro-framework, or simply some of the components
individually.

Out of the box, Symfony provides a lot of structural ground for new web
applications. It does so via its bundle system. Bundles are sort of like micro-
applications inside our main application. Within them, the entire app is nicely
structured into models, controllers, templates, configuration files, and other building
blocks. Being able to fully separate logic from different domains helps us to keep
a clean separation of concerns and autonomously develop every single feature of
our domain.

Symfony is one of the PHP pioneers when it comes to embracing the dependency
injection across the framework, allowing it to achieve decoupled components and
to keep high flexibility of code.

Documented, modular, highly flexible, performant, supported, those are the
attributes that make Symfony a choice worth evaluating.

Zend Framework
Zend Framework is released under a new BSD license, and can be downloaded from
http://framework.zend.com.

Zend Framework features include:

• Fully object-oriented PHP components
• Loosely coupled components
• Extensible MVC supporting layouts and templates
• Support for multiple database systems MySQL, Oracle, MS SQL, and so on
• E-mail handling via mbox, Maildir, POP3, and IMAP4
• Flexible caching system

Aside from a free Zend Framework, Zend Technologies Ltd provides its own
commercial version of a PHP stack called Zend Server, and Zend Studio IDE that
includes features specifically to integrate with Zend Framework. While Zend
Framework is perfectly fine running on any PHP stack, Zend Server is advertised
as an optimized solution for running Zend Framework applications.

http://framework.zend.com

Ecosystem Overview

[34]

By its architectural design, Zend Framework is merely a collection of classes. There
is no strictly imposed structure our application needs to follow. This is one of the
features that makes it so appealing to a certain range of developers. We could either
utilize Zend MVC components to create a fully-functional Zend Framework project,
or we can simply load the components we need.

The so called full-stack frameworks impose structure, ORM implementations,
code-generation, and other fixed things onto your projects. Zend Framework, on the
other hand, with its decoupled nature, classifies for a glue type of framework. We
can easily glue it to an existing application, or use it to build a new one.

The latest versions of Zend Framework follow the SOLID object oriented design
principle. The so called "use-at-will" design allows developers to use whichever
components they want.

Though the main driving force behind Zend Framework is Zend Technologies, many
other companies have contributed significant features to the framework.

Furthermore, Zend Technologies provides excellent Zend Certified PHP Engineer
certifications. Quality community, official company support, education, hosting,
and development tools make the Zend Framework choice worth evaluating.

CodeIgniter
CodeIgniter is released under an MIT license, and can be downloaded from
https://www.codeigniter.com.

CodeIgniter prides itself in being lightweight. The core system requires only a
handful of small libraries, which is not always the case with other frameworks.

The framework uses the simple Model-View-Control approach, allowing for
clean separation between logic and presentation. The View layer does not impose
any special template language, so it uses native PHP out of the box.

Here are some of the outstanding features of CodeIgniter:

• Model-View-Control-based system
• Extremely light weight
• Full featured database classes with support for several platforms
• Query builder database support
• Form and data validation
• Security and XSS filtering
• Localization

https://www.codeigniter.com

Chapter 1

[35]

• Data encryption
• Full page caching
• Unit testing class
• Search-engine friendly URLs
• Flexible URI routing
• Support for hooks and class extensions
• Large library of helper functions

CodeIgniter has an active community gathered around http://forum.
codeigniter.com.

Small footprint, flexibility, exceptional performance, near-zero configuration, and
thorough documentation are what makes this framework choice worth evaluating.

CakePHP
CakePHP is released under an MIT license, and can be downloaded from
http://cakephp.org.

The CakePHP framework was greatly inspired by Ruby on Rails, using many of its
concepts. It values conventions over configuration.

It comes with "batteries included". Most of the things we need for modern web
applications are already built-in. Translations, database access, caching, validation,
authentication, and much more are all built-in.

Security is another big part of the CakePHP philosophy. CakePHP comes with
built-in tools for input validation, CSRF protection, form tampering protection, SQL
injection prevention, and XSS prevention, helping us to secure our application.

CakePHP supports a variety of database storage engines, such as MySQL,
PostgreSQL, Microsoft SQL Server, and SQLite. The built-in CRUD feature is very
handy for database interaction.

It counts on a big community behind it. It also has a big list of plugins, available at
http://plugins.cakephp.org.

CakePHP provides a certification exam, whereby developers are tested in their
knowledge of the CakePHP framework, MVC principles, and standards used
within CakePHP. Certification is geared towards real world scenarios and intimate
CakePHP specifics.

http://forum.codeigniter.com
http://forum.codeigniter.com
http://cakephp.org
http://plugins.cakephp.org

Ecosystem Overview

[36]

Commercial support, consultation, code review, performance analysis, security
audits, and even development services are provided by the Cake Development
Corporation http://www.cakedc.com. The Cake Development Corporation is the
commercial entity behind the framework, established in 2007 by Larry Masters, a
founder of CakePHP.

Slim
Slim is released under an MIT license, and can be downloaded from http://www.
slimframework.com.

While frameworks with the "batteries included" mindset provide robust libraries,
directory structures, and configurations, micro frameworks get us started with
a few lines of code.

Micro frameworks usually lack even the basic framework features such as:

• Authentication and authorization
• ORM database abstraction
• Input validation and sanitation
• Template engine

This limits their use, but also makes them a great tool for rapid prototyping.

Slim supports any PSR-7 HTTP message implementation. An HTTP message is
either a request from a client to a server or a response from a server to a client. Slim
functions like a dispatcher that receives an HTTP request, invokes an appropriate
callback routine, and returns an HTTP response.

The good thing about Slim is that it plays nicely with middleware. The middleware
is basically a callable that accepts three arguments:

• \Psr\Http\Message\ServerRequestInterface: The PSR7 request object
• \Psr\Http\Message\ResponseInterface: The PSR7 response object
• callable: The next middleware callable

Middlewares are free to manipulate request and response objects, as long as they
return an instance of \Psr\Http\Message\ResponseInterface. Furthermore,
each middleware needs to invoke the next middleware and pass it to request and
response objects as arguments.

This simple concept gives Slim the power of extensibility, through various possible
third party middlewares.

http://www.cakedc.com
http://www.slimframework.com
http://www.slimframework.com

Chapter 1

[37]

Even though Slim provides good documentation, a vibrant community, and the
project is being actively developed to date, its usage is limited. Micro frameworks
are hardly a choice for robust enterprise applications. Still, they have their place in
development.

Yii
Yii is released under a BSD License, and can be downloaded from http://www.
yiiframework.com.

Yii's focus on performance optimization makes it a perfect choice for almost any type
of project, including the enterprise type of applications.

Some of the outstanding Yii features include:

• The MVC design pattern
• Automatic generation of complex service WSDL
• Translation, localization, locale-sensitive formatting of dates, time, and

numbers
• Data caching, fragment caching, page caching, and HTTP caching
• Error handler that displays errors based on the nature of the errors and the

mode the application runs in
• Security measures to help prevent SQL injection, Cross-site scripting (XSS),

Cross-site request forgery (CSRF), and cookie tampering
• Unit and functional testing based on PHPUnit and Selenium

One of the neat features of Yii is a tool called Gii. It's an extension that provides a
web-based code generator. We can use Gii's graphical interface to quickly set up
generate models, forms, modules, CRUD, and so on. There is also a command line
version of Gii for those who prefer consoles over GUI.

Yii's architecture allows it to play nicely with third-party code, like PEAR libraries,
Zend Framework, and the like. It adopts the MVC architecture, allowing for clean
separation of concerns.

Yii provides an impressive library of extensions available at http://www.
yiiframework.com/extensions. The majority of extensions are distributed as
composer packages. They empower us with accelerated development. We can easily
package our code as extensions and share it with others. This makes Yii even more
interesting for modular application development.

http://www.yiiframework.com
http://www.yiiframework.com
http://www.yiiframework.com/extensions
http://www.yiiframework.com/extensions

Ecosystem Overview

[38]

Official documentation is quite comprehensive. There are also several
books available.

Rich documentation, a vibrant community, active releases, performance
optimization, security emphasis, feature richness, and flexibility make Yii
a choice worth evaluating.

Phalcon
Phalcon is released under a BSD License, and can be downloaded from
https://phalconphp.com.

Phalcon was originally released in 2012, by Andres Gutierrez and collaborators.
The goal of the project was to find a new approach to traditional web application
frameworks written in PHP. This new approach came in the form of C language
extensions. The entire Phalcon framework is developed as a C extension.

The benefits of C-based frameworks lies in the fact that an entire PHP extension is
loaded during runtime. This greatly reduces I/O operations massively since there
is no need to load .php files any more. Furthermore, compiled C language code
executes faster than PHP bytecode. Since C extensions are loaded together with
PHP one time during the web server daemon start process, their memory footprint
is small. The downside of C-based frameworks is that the code is compiled, so we
cannot easily debug it and patch it as we would with PHP classes.

Low-level architecture and optimizations make Phalcon one of the lowest overheads
for MVC-based applications.

Phalcon is a full-stack, loosely coupled framework. While it does provide full MVC
structure to our application, it also allows us to use its objects as glue components
based on the needs of our application. We can choose if we want to create a full blown
MVC application, or the minimal style micro application. Micro applications are
suitable to implement small applications, APIs, and prototypes in a practical way.

All of the frameworks we mentioned so far enable some form of extensions, where
we can add new libraries or entire packages to a framework. Since Phalcon is a
C-code framework, contributions to the framework doesn't come in the form of PHP
code. On the other hand, writing and compiling C language code can be somewhat
challenging for an average PHP developer.

Zephir project http://zephir-lang.com addresses these challenges by
introducing high-level Zephir language. Zephir is designed to ease the creation and
maintainability of C extensions for PHP with a focus on type and memory safety.

https://phalconphp.com
http://zephir-lang.com

Chapter 1

[39]

When communicating with databases, Phalcon uses Phalcon Query Language,
PhalconQL, or simply PHQL for short. PHQL is a high-level, object-oriented SQL
dialect that allows us to write queries using SQL-like language that works with
objects instead of tables.

View templates are handled by Volt, Phalcon's own templating engine. It is
highly integrated with other components, and can be used independently in
our applications.

Phalcon is pretty easy to pick up. Its documentation covers both the MVC and micro
applications style of using a framework, with practical examples. The framework
itself is rich enough to support the structure and libraries we need for most of today's
applications. On top of that, there is an official Phalcon website called Phalconist
https://phalconist.com which provides additional resources to framework.

Though there is no official company behind it, no certifications, no commercial
support, and similar enterprise looking things, Phalcon does a great job of
positioning itself as a choice worth evaluating even with a robust enterprise
application development.

Summary
Looking back on the release of PHP 5 and its support to OOP programming, we can
see the enormous positive impact it had on the PHP ecosystem. A large number of
frameworks and libraries have sprawled out, offering enterprise level solutions to
web application development.

The release of PHP 7 is likely to be another leap forward for the PHP ecosystem.
Though none of the new features are revolutionary as such, as they can be found in
other programming languages from years ago, they impact PHP greatly. We are
yet to see how its new features will reshape existing and future frameworks and
the way we write applications.

The introduction of more advanced errors to exceptions handling, scalar type
hints, and function return type hints will surely bring much awaited stability to
applications and frameworks using them. The speed improvements compared to
PHP 5.6 are significant enough to cut down the hosting costs for higher load sites.
Thankfully, the PHP development team minimized backward incomparability
changes, so they should not stand in the way of swift PHP 7 adoption.

Choosing the right framework is all but an easy task. What classifies a framework as
an enterprise class framework is more than just collection of classes. It has an entire
ecosystem around it.

https://phalconist.com

Ecosystem Overview

[40]

One should never be driven by hype when evaluating a framework for a project.
Questions like the following should be taken into consideration:

• Is it company or community driven?
• Does it provide quality documentation?
• Does it have a stable and frequent release cycle?
• Does it provide some official form of certification?
• Does it provide free and commercial support?
• Does it have occasional seminars we can attend?
• Is it open towards community involvement, so we can submit

functionalities and patches?
• Is it a full-stack or glue type of framework?
• Is it convention or configuration driven?
• Does it provide enough libraries to get you started (security, validation,

templating, database abstractions, ORMs, routing, internationalization,
and so on)?

• Can the core framework be extended and overridden enough to make it
more future proof with possible changes?

There are a number of established PHP frameworks and libraries out there, so the
choice is all but easy. Most of these frameworks and libraries are still to fully catch
up with the latest features added in PHP 7.

Moving forward, in the next chapter, we will look into common design patterns and
how to integrate them in PHP.

[41]

GoF Design Patterns
There are a handful of things that make a great software developer. Knowledge and
usage of design patterns is one of them. Design patterns empower developers to
communicate using well-known names for various software interactions. Whether
someone is a PHP, Python, C#, Ruby, or any other language developer, design
patterns provide language agnostic solutions for frequently occurring software
problems.

The concept of design patterns emerged in 1994 as part of the Elements of Reusable
Object-Oriented Software book. Detailing 23 different design patterns, the book was
written by four authors Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. The authors are often referred to as the Gang of Four (GoF), and the
presented design patterns are sometimes referred to as GoF design patterns. In
Today, more than two decades later, designing software that is extensible, reusable,
maintainable, and adaptable is near to impossible without embracing design patterns
as part of implementation.

There are three types of design patterns which we will cover in this chapter:

• Creational
• Structural
• Behavioral

Throughout this chapter we will not go deep into the theory of each of them, as that
alone is an entire book's worth of material. Moving forward, we will focus more on
simple PHP implementation examples for each of the patterns, just so we get a more
visual sense of things.

GoF Design Patterns

[42]

Creational patterns
Creational patterns, as the name suggests, create objects for us, so we do not have
to instantiate them directly. Implementing creation patterns gives our application a
level of flexibility, where the application itself can decide what objects to instantiate
at a given time. The following is a list of patterns we categorize as creational
patterns:

• Abstract factory pattern
• Builder pattern
• Factory method pattern
• Prototype pattern
• Singleton pattern

See https://en.wikipedia.org/wiki/Creational_pattern for
more information about creational design patterns.

Abstract factory pattern
Building portable applications requires a great level of dependencies encapsulation.
The abstract factory facilitates this by abstracting the creation of families of related or
dependent objects. Clients never create these platform objects directly, the factory does
it for them, making it possible to interchange concrete implementations without
changing the code that uses them, even at runtime.

The following is an example of possible abstract factory pattern implementation:

interface Button {
 public function render();
}

interface GUIFactory {
 public function createButton();
}

class SubmitButton implements Button {
 public function render() {
 echo 'Render Submit Button';
 }
}

https://en.wikipedia.org/wiki/Creational_pattern

Chapter 2

[43]

class ResetButton implements Button {
 public function render() {
 echo 'Render Reset Button';
 }
}

class SubmitFactory implements GUIFactory {
 public function createButton() {
 return new SubmitButton();
 }
}

class ResetFactory implements GUIFactory {
 public function createButton() {
 return new ResetButton();
 }
}

// Client
$submitFactory = new SubmitFactory();
$button = $submitFactory->createButton();
$button->render();

$resetFactory = new ResetFactory();
$button = $resetFactory->createButton();
$button->render();

We started off by creating an interface Button, which is later implemented by our
SubmitButton and ResetButton concrete classes. GUIFactory and ResetFactory
implement the GUIFactory interface, which specifies the createButton method. The
client then simply instantiates factories and calls for createButton, which returns a
proper button instance that we call the render method.

Builder pattern
The builder pattern separates the construction of a complex object from its
representation, making it possible for the same construction process to create
different representations. While some creational patterns construct a product
in one call, builder pattern does it step by step under the control of the director.

GoF Design Patterns

[44]

The following is an example of builder pattern implementation:

class Car {
 public function getWheels() {
 /* implementation... */
 }

 public function setWheels($wheels) {
 /* implementation... */
 }

 public function getColour($colour) {
 /* implementation... */
 }

 public function setColour() {
 /* implementation... */
 }
}

interface CarBuilderInterface {
 public function setColour($colour);
 public function setWheels($wheels);
 public function getResult();
}

class CarBuilder implements CarBuilderInterface {
 private $car;

 public function __construct() {
 $this->car = new Car();
 }

 public function setColour($colour) {
 $this->car->setColour($colour);
 return $this;
 }

 public function setWheels($wheels) {
 $this->car->setWheels($wheels);
 return $this;
 }

Chapter 2

[45]

 public function getResult() {
 return $this->car;
 }
}

class CarBuildDirector {
 private $builder;

 public function __construct(CarBuilder $builder) {
 $this->builder = $builder;
 }

 public function build() {
 $this->builder->setColour('Red');
 $this->builder->setWheels(4);

 return $this;
 }

 public function getCar() {
 return $this->builder->getResult();
 }
}

// Client
$carBuilder = new CarBuilder();
$carBuildDirector = new CarBuildDirector($carBuilder);
$car = $carBuildDirector->build()->getCar();

We started off by creating a concrete Car class with several methods defining some
base characteristics of a car. We then created a CarBuilderInterface that will
control some of those characteristics and get the final result (car). The concrete class
CarBuilder then implemented the CarBuilderInterface, followed by the concrete
CarBuildDirector class, which defined build and the getCar method. The client
then simply instantiated a new instance of CarBuilder, passing it as a constructor
parameter to a new instance of CarBuildDirector. Finally, we called the build and
getCar methods of CarBuildDirector to get the actual car Car instance.

GoF Design Patterns

[46]

Factory method pattern
The factory method pattern deals with the problem of creating objects without
having to specify the exact class of the object that will be created.

The following is an example of factory method pattern implementation:

interface Product {
 public function getType();
}

interface ProductFactory {
 public function makeProduct();
}

class SimpleProduct implements Product {
 public function getType() {
 return 'SimpleProduct';
 }
}

class SimpleProductFactory implements ProductFactory {
 public function makeProduct() {
 return new SimpleProduct();
 }
}

/* Client */
$factory = new SimpleProductFactory();
$product = $factory->makeProduct();
echo $product->getType(); //outputs: SimpleProduct

We started off by creating a ProductFactory and Product interfaces. The
SimpleProductFactory implements the ProductFactory and returns the
new product instance via its makeProduct method. The SimpleProduct class
implements Product, and returns the product type. Finally, the client creates the
instance of SimpleProductFactory, calling the makeProduct method on it. The
makeProduct returns the instance of the Product, whose getType method returns
the SimpleProduct string.

Chapter 2

[47]

Prototype pattern
The prototype pattern replicates other objects by use of cloning. What this means
is that we are not using the new keyword to instantiate new objects. PHP provides
a clone keyword which makes a shallow copy of an object, thus providing pretty
much straight forward prototype pattern implementation. Shallow copy does not
copy references, only values to the new object. We can further utilize the magic
__clone method on our class in order to implement more robust clone behavior.

The following is an example of prototype pattern implementation:

class User {
 public $name;
 public $email;
}

class Employee extends User {
 public function __construct() {
 $this->name = 'Johhn Doe';
 $this->email = 'john.doe@fake.mail';
 }

 public function info() {
 return sprintf('%s, %s', $this->name, $this->email);
 }

 public function __clone() {
 /* additional changes for (after)clone behavior? */
 }
}

$employee = new Employee();
echo $employee->info();

$director = clone $employee;
$director->name = 'Jane Doe';
$director->email = 'jane.doe@fake.mail';
echo $director->info(); //outputs: Jane Doe, jane.doe@fake.mail

We started off by creating a simple User class. The Employee then extends the
User, while setting name and email in its constructor. The client then instantiates
the Employee via the new keyword, and clones it into the director variable. The
$director variable is now a new instance, one made not by the new keyword, but
with cloning, using the clone keyword. Changing name and email on $director,
does not affect $employee.

GoF Design Patterns

[48]

Singleton pattern
The purpose of singleton pattern is to restrict instantiation of class to a single object. It
is implemented by creating a method within the class that creates a new instance of
that class if one does not exist. If an object instance already exists, the method simply
returns a reference to an existing object.

The following is an example of singleton pattern implementation:

class Logger {
 private static $instance;

 public static function getInstance() {
 if (!isset(self::$instance)) {
 self::$instance = new self;
 }

 return self::$instance;
 }

 public function logNotice($msg) {
 return 'logNotice: ' . $msg;
 }

 public function logWarning($msg) {
 return 'logWarning: ' . $msg;
 }

 public function logError($msg) {
 return 'logError: ' . $msg;
 }
}

// Client
echo Logger::getInstance()->logNotice('test-notice');
echo Logger::getInstance()->logWarning('test-warning');
echo Logger::getInstance()->logError('test-error');
// Outputs:
// logNotice: test-notice
// logWarning: test-warning
// logError: test-error

Chapter 2

[49]

We started off by creating a Logger class with a static $instance member, and the
getInstance method that always returns a single instance of the class. Then we
added a few sample methods to demonstrate the client executing various methods
on a single instance.

Structural patterns
Structural patterns deal with class and object composition. Using interfaces or
abstract classes and methods, they define ways to compose objects, which in
turn obtain new functionality. The following is a list of patterns we categorize
as structural patterns:

• Adapter
• Bridge
• Composite
• Decorator
• Facade
• Flyweight
• Proxy

See https://en.wikipedia.org/wiki/Structural_pattern for
more information about structural design patterns.

Adapter pattern
The adapter pattern allows the interface of an existing class to be used from another
interface, basically, helping two incompatible interfaces to work together by
converting the interface of one class into an interface expected by another class.

The following is an example of adapter pattern implementation:

class Stripe {
 public function capturePayment($amount) {
 /* Implementation... */
 }

 public function authorizeOnlyPayment($amount) {
 /* Implementation... */
 }

https://en.wikipedia.org/wiki/Structural_pattern

GoF Design Patterns

[50]

 public function cancelAmount($amount) {
 /* Implementation... */
 }
}

interface PaymentService {
 public function capture($amount);
 public function authorize($amount);
 public function cancel($amount);
}

class StripePaymentServiceAdapter implements PaymentService {
 private $stripe;

 public function __construct(Stripe $stripe) {
 $this->stripe = $stripe;
 }

 public function capture($amount) {
 $this->stripe->capturePayment($amount);
 }

 public function authorize($amount) {
 $this->stripe->authorizeOnlyPayment($amount);
 }

 public function cancel($amount) {
 $this->stripe->cancelAmount($amount);
 }
}

// Client
$stripe = new StripePaymentServiceAdapter(new Stripe());
$stripe->authorize(49.99);
$stripe->capture(19.99);
$stripe->cancel(9.99);

We started off by creating a concrete Stripe class. We then defined the
PaymentService interface with some basic payment handling methods. The
StripePaymentServiceAdapter implements the PaymentService interface,
providing concrete implementation of payment handling methods. Finally, the
client instantiates the StripePaymentServiceAdapter and executes the payment
handling methods.

Chapter 2

[51]

Bridge pattern
The bridge pattern is used when we want to decouple a class or abstraction from its
implementation, allowing them both to change independently. This is useful when
the class and its implementation vary often.

The following is an example of bridge pattern implementation:

interface MailerInterface {
 public function setSender(MessagingInterface $sender);
 public function send($body);
}

abstract class Mailer implements MailerInterface {
 protected $sender;

 public function setSender(MessagingInterface $sender) {
 $this->sender = $sender;
 }
}

class PHPMailer extends Mailer {
 public function send($body) {
 $body .= "\n\n Sent from a phpmailer.";
 return $this->sender->send($body);
 }
}

class SwiftMailer extends Mailer {
 public function send($body) {
 $body .= "\n\n Sent from a SwiftMailer.";
 return $this->sender->send($body);
 }
}

interface MessagingInterface {
 public function send($body);
}

class TextMessage implements MessagingInterface {
 public function send($body) {
 echo 'TextMessage > send > $body: ' . $body;
 }
}

GoF Design Patterns

[52]

class HtmlMessage implements MessagingInterface {
 public function send($body) {
 echo 'HtmlMessage > send > $body: ' . $body;
 }
}

// Client
$phpmailer = new PHPMailer();
$phpmailer->setSender(new TextMessage());
$phpmailer->send('Hi!');

$swiftMailer = new SwiftMailer();
$swiftMailer->setSender(new HtmlMessage());
$swiftMailer->send('Hello!');

We started off by creating a MailerInterface. The concrete Mailer class then
implements the MailerInterface, providing a base class for PHPMailer and
SwiftMailer. We then define the MessagingInterface, which gets implemented by
the TextMessage and HtmlMessage classes. Finally, the client instantiates PHPMailer
and SwiftMailer, passing on instances of TextMessage and HtmlMessage prior to
calling the send method.

Composite pattern
The composite pattern is about treating the hierarchy of objects as a single object,
through a common interface. Where the objects are composed into three structures
and the client is oblivious to changes in the underlying structure because it only
consumes the common interface.

The following is an example of composite pattern implementation:

interface Graphic {
 public function draw();
}

class CompositeGraphic implements Graphic {
 private $graphics = array();

 public function add($graphic) {
 $objId = spl_object_hash($graphic);
 $this->graphics[$objId] = $graphic;
 }

Chapter 2

[53]

 public function remove($graphic) {
 $objId = spl_object_hash($graphic);
 unset($this->graphics[$objId]);
 }

 public function draw() {
 foreach ($this->graphics as $graphic) {
 $graphic->draw();
 }
 }
}

class Circle implements Graphic {
 public function draw()
 {
 echo 'draw-circle';
 }
}

class Square implements Graphic {
 public function draw() {
 echo 'draw-square';
 }
}

class Triangle implements Graphic {
 public function draw() {
 echo 'draw-triangle';
 }
}

$circle = new Circle();
$square = new Square();
$triangle = new Triangle();

$compositeObj1 = new CompositeGraphic();
$compositeObj1->add($circle);
$compositeObj1->add($triangle);
$compositeObj1->draw();

$compositeObj2 = new CompositeGraphic();
$compositeObj2->add($circle);
$compositeObj2->add($square);
$compositeObj2->add($triangle);
$compositeObj2->remove($circle);
$compositeObj2->draw();

GoF Design Patterns

[54]

We started off by creating a Graphic interface. We then created the
CompositeGraphic, Circle, Square, and Triangle, all of which implement the
Graphic interface. Aside from just implementing the draw method from the Graphic
interface, the CompositeGraphic adds two more methods, used to track internal
collection of graphics added to it. The client then instantiates all of these Graphic
classes, adding them all to the CompositeGraphic, which then calls the draw method.

Decorator pattern
The decorator pattern allows behavior to be added to an individual object instance,
without affecting the behavior of other instances of the same class. We can define
multiple decorators, where each adds new functionality.

The following is an example of decorator pattern implementation:

interface LoggerInterface {
 public function log($message);
}

class Logger implements LoggerInterface {
 public function log($message) {
 file_put_contents('app.log', $message, FILE_APPEND);
 }
}

abstract class LoggerDecorator implements LoggerInterface {
 protected $logger;

 public function __construct(Logger $logger) {
 $this->logger = $logger;
 }

 abstract public function log($message);
}

class ErrorLoggerDecorator extends LoggerDecorator {
 public function log($message) {
 $this->logger->log('ERROR: ' . $message);
 }

}

class WarningLoggerDecorator extends LoggerDecorator {
 public function log($message) {

Chapter 2

[55]

 $this->logger->log('WARNING: ' . $message);
 }
}

class NoticeLoggerDecorator extends LoggerDecorator {
 public function log($message) {
 $this->logger->log('NOTICE: ' . $message);
 }
}

$logger = new Logger();
$logger->log('Resource not found.');

$logger = new Logger();
$logger = new ErrorLoggerDecorator($logger);
$logger->log('Invalid user role.');

$logger = new Logger();
$logger = new WarningLoggerDecorator($logger);
$logger->log('Missing address parameters.');

$logger = new Logger();
$logger = new NoticeLoggerDecorator($logger);
$logger->log('Incorrect type provided.');

We started off by creating a LoggerInterface, with a simple log method.
We then defined Logger and LoggerDecorator, both of which implement the
LoggerInterface. Followed by ErrorLoggerDecorator, WarningLoggerDecorator,
and NoticeLoggerDecorator which implement the LoggerDecorator. Finally, the
client part instantiates the logger three times, passing it different decorators.

Facade pattern
The facade pattern is used when we want to simplify the complexities of large
systems through a simpler interface. It does so by providing convenient methods
for most common tasks, through a single wrapper class used by a client.

The following is an example of facade pattern implementation:

class Product {
 public function getQty() {
 // Implementation
 }
}

GoF Design Patterns

[56]

class QuickOrderFacade {
 private $product = null;
 private $orderQty = null;

 public function __construct($product, $orderQty) {
 $this->product = $product;
 $this->orderQty = $orderQty;
 }

 public function generateOrder() {
 if ($this->qtyCheck()) {
 $this->addToCart();
 $this->calculateShipping();
 $this->applyDiscount();
 $this->placeOrder();
 }
 }

 private function addToCart() {
 // Implementation...
 }

 private function qtyCheck() {
 if ($this->product->getQty() > $this->orderQty) {
 return true;
 } else {
 return true;
 }
 }

 private function calculateShipping() {
 // Implementation...
 }

 private function applyDiscount() {
 // Implementation...
 }

 private function placeOrder() {
 // Implementation...
 }
}

// Client
$order = new QuickOrderFacade(new Product(), $qty);
$order->generateOrder();

Chapter 2

[57]

We started off by creating a Product class, with a single getQty method. We then
created a QuickOrderFacade class that accepts product instance and quantity via a
constructor and further provides the generateOrder method that aggregates all
of the order generating actions. Finally, the client instantiates the product, which it
passes onto the instance of QuickOrderFacade, calling the generateOrder on it.

Flyweight pattern
The flyweight pattern is about performance and resource reduction, sharing as much
data as possible between similar objects. What this means is that instances of a class
which are identical are shared in an implementation. This works best when a large
number of same class instances are expected to be created.

The following is an example of flyweight pattern implementation:

interface Shape {
 public function draw();
}

class Circle implements Shape {
 private $colour;
 private $radius;

 public function __construct($colour) {
 $this->colour = $colour;
 }

 public function draw() {
 echo sprintf('Colour %s, radius %s.', $this->colour,
 $this->radius);
 }

 public function setRadius($radius) {
 $this->radius = $radius;
 }
}

class ShapeFactory {
 private $circleMap;

 public function getCircle($colour) {
 if (!isset($this->circleMap[$colour])) {
 $circle = new Circle($colour);
 $this->circleMap[$colour] = $circle;

GoF Design Patterns

[58]

 }

 return $this->circleMap[$colour];
 }
}

// Client
$shapeFactory = new ShapeFactory();
$circle = $shapeFactory->getCircle('yellow');
$circle->setRadius(10);
$circle->draw();

$shapeFactory = new ShapeFactory();
$circle = $shapeFactory->getCircle('orange');
$circle->setRadius(15);
$circle->draw();

$shapeFactory = new ShapeFactory();
$circle = $shapeFactory->getCircle('yellow');
$circle->setRadius(20);
$circle->draw();

We started off by creating a Shape interface, with a single draw method. We
then defined the Circle class implementing the Shape interface, followed by the
ShapeFactory class. Within the ShapeFactory, the getCircle method returns
an instance of a new Circle, based on the color option. Finally, the client
instantiates several ShapeFactory objects, passing in different colors to the
getCircle method call.

Proxy pattern
The proxy design pattern functions as an interface to an original object behind
the scenes. It can act as a simple forwarding wrapper or even provide additional
functionality around the object it wraps. Examples of extra added functionality
might be lazy loading or caching that might compensate for resource intense
operations of an original object.

The following is an example of proxy pattern implementation:

interface ImageInterface {
 public function draw();
}

Chapter 2

[59]

class Image implements ImageInterface {
 private $file;

 public function __construct($file) {
 $this->file = $file;
 sleep(5); // Imagine resource intensive image load
 }

 public function draw() {
 echo 'image: ' . $this->file;
 }
}

class ProxyImage implements ImageInterface {
 private $image = null;
 private $file;

 public function __construct($file) {
 $this->file = $file;
 }

 public function draw() {
 if (is_null($this->image)) {
 $this->image = new Image($this->file);
 }

 $this->image->draw();
 }
}

// Client
$image = new Image('image.png'); // 5 seconds
$image->draw();

$image = new ProxyImage('image.png'); // 0 seconds
$image->draw();

We started off by creating an ImageInterface, with a single draw method.
We then defined the Image and ProxyImage classes, both of which extend the
ImageInterface. Within the __construct of the Image class, we simulated
the resource intense operation with the sleep method call. Finally, the client
instantiates both Image and ProxyImage, showing the execution time difference
between the two.

GoF Design Patterns

[60]

Behavioral patterns
Behavioral patterns tackle the challenge of communication between various
objects. They describe how different objects and classes send messages to each
other to make things happen. The following is a list of patterns we categorize as
behavioral patterns:

• Chain of responsibility
• Command
• Interpreter
• Iterator
• Mediator
• Memento
• Observer
• State
• Strategy
• Template method
• Visitor

Chain of responsibility pattern
The chain of responsibility pattern decouples the sender of a request from its
receiver, by enabling more than one object to handle requests, in a chain manner.
Various types of handling objects can be added dynamically to the chain. Using a
recursive composition chain allows for an unlimited number of handling objects.

The following is an example of chain of responsibility pattern implementation:

abstract class SocialNotifier {
 private $notifyNext = null;

 public function notifyNext(SocialNotifier $notifier) {
 $this->notifyNext = $notifier;
 return $this->notifyNext;
 }

 final public function push($message) {
 $this->publish($message);

 if ($this->notifyNext !== null) {
 $this->notifyNext->push($message);

Chapter 2

[61]

 }
 }

 abstract protected function publish($message);
}

class TwitterSocialNotifier extends SocialNotifier {
 public function publish($message) {
 // Implementation...
 }
}

class FacebookSocialNotifier extends SocialNotifier {
 protected function publish($message) {
 // Implementation...
 }
}

class PinterestSocialNotifier extends SocialNotifier {
 protected function publish($message) {
 // Implementation...
 }
}

// Client
$notifier = new TwitterSocialNotifier();

$notifier->notifyNext(new FacebookSocialNotifier())
 ->notifyNext(new PinterestSocialNotifier());

$notifier->push('Awesome new product available!');

We started off by creating an abstract SocialNotifier class with the abstract
method publish, notifyNext, and push method implementations. We
then defined TwitterSocialNotifier, FacebookSocialNotifier, and
PinterestSocialNotifier, all of which extend the abstract SocialNotifier.
The client starts by instantiating the TwitterSocialNotifier, followed by two
notifyNext calls, passing it instances of two other notifier types before it calls
the final push method.

GoF Design Patterns

[62]

Command pattern
The command pattern decouples the object that executes certain operations from
objects that know how to use it. It does so by encapsulating all of the relevant
information needed for later execution of a certain action. This implies information
about object, method name, and method parameters.

The following is an example of command pattern implementation:

interface LightBulbCommand {
 public function execute();
}

class LightBulbControl {
 public function turnOn() {
 echo 'LightBulb turnOn';
 }

 public function turnOff() {
 echo 'LightBulb turnOff';
 }
}

class TurnOnLightBulb implements LightBulbCommand {
 private $lightBulbControl;

 public function __construct(LightBulbControl
 $lightBulbControl) {
 $this->lightBulbControl = $lightBulbControl;
 }

 public function execute() {
 $this->lightBulbControl->turnOn();
 }
}

class TurnOffLightBulb implements LightBulbCommand {
 private $lightBulbControl;

 public function __construct(LightBulbControl
 $lightBulbControl) {
 $this->lightBulbControl = $lightBulbControl;
 }

Chapter 2

[63]

 public function execute() {
 $this->lightBulbControl->turnOff();
 }
}

// Client
$command = new TurnOffLightBulb(new LightBulbControl());
$command->execute();

We started off by creating a LightBulbCommand interface. We then defined the
LightBulbControl class that provides two simple turnOn / turnOff methods.
Then we defined the TurnOnLightBulb and TurnOffLightBulb classes which
implement the LightBulbCommand interface. Finally, the client is instantiating the
TurnOffLightBulb object with an instance of LightBulbControl, and calling the
execute method on it.

Interpreter pattern
The interpreter pattern specifies how to evaluate language grammar or expressions.
We define a representation for language grammar along with an interpreter.
Representation of language grammar uses composite class hierarchy, where rules
are mapped to classes. The interpreter then uses the representation to interpret
expressions in the language.

The following is an example of interpreter pattern implementation:

interface MathExpression
{
 public function interpret(array $values);
}

class Variable implements MathExpression {
 private $char;

 public function __construct($char) {
 $this->char = $char;
 }

 public function interpret(array $values) {
 return $values[$this->char];
 }
}

GoF Design Patterns

[64]

class Literal implements MathExpression {
 private $value;

 public function __construct($value) {
 $this->value = $value;
 }

 public function interpret(array $values) {
 return $this->value;
 }
}

class Sum implements MathExpression {
 private $x;
 private $y;

 public function __construct(MathExpression $x, MathExpression
 $y) {
 $this->x = $x;
 $this->y = $y;
 }

 public function interpret(array $values) {
 return $this->x->interpret($values) + $this->y->
 interpret($values);
 }
}

class Product implements MathExpression {
 private $x;
 private $y;

 public function __construct(MathExpression $x, MathExpression
 $y) {
 $this->x = $x;
 $this->y = $y;
 }

 public function interpret(array $values) {
 return $this->x->interpret($values) * $this->y->
 interpret($values);
 }
}

Chapter 2

[65]

// Client
$expression = new Product(
 new Literal(5),
 new Sum(
 new Variable('c'),
 new Literal(2)
)
);

echo $expression->interpret(array('c' => 3)); // 25

We started off by creating a MathExpression interface, with a single interpret
method. We then add Variable, Literal, Sum, and Product classes, all of which
implement the MathExpression interface. The client then instantiates from the
Product class, passing it instances of Literal and Sum, finishing with an interpret
method call.

Iterator pattern
The iterator pattern is used to traverse a container and access its elements. In
other words, one class becomes able to traverse the elements of another class.
The PHP has a native support for the iterator as part of built in \Iterator and
\IteratorAggregate interfaces.

The following is an example of iterator pattern implementation:

class ProductIterator implements \Iterator {
 private $position = 0;
 private $productsCollection;

 public function __construct(ProductCollection
 $productsCollection) {
 $this->productsCollection = $productsCollection;
 }

 public function current() {
 return $this->productsCollection->getProduct($this->
 position);
 }

 public function key() {
 return $this->position;
 }

GoF Design Patterns

[66]

 public function next() {
 $this->position++;
 }

 public function rewind() {
 $this->position = 0;
 }

 public function valid() {
 return !is_null($this->productsCollection->
 getProduct($this->position));
 }
}

class ProductCollection implements \IteratorAggregate {
 private $products = array();

 public function getIterator() {
 return new ProductIterator($this);
 }

 public function addProduct($string) {
 $this->products[] = $string;
 }

 public function getProduct($key) {
 if (isset($this->products[$key])) {
 return $this->products[$key];
 }
 return null;
 }

 public function isEmpty() {
 return empty($products);
 }
}

$products = new ProductCollection();
$products->addProduct('T-Shirt Red');
$products->addProduct('T-Shirt Blue');
$products->addProduct('T-Shirt Green');
$products->addProduct('T-Shirt Yellow');

Chapter 2

[67]

foreach ($products as $product) {
 var_dump($product);
}

We started off by creating a ProductIterator which implements the standard PHP
\Iterator interface. We then added the ProductCollection which implements
the standard PHP \IteratorAggregate interface. The client creates an instance of
ProductCollection, stacking values into it via the addProduct method call and
loops through the entire collection.

Mediator pattern
The more classes we have in our software, the more complex their communication
becomes. The mediator pattern addresses this complexity by encapsulating it into
a mediator object. Objects no longer communicate directly, but rather through a
mediator object, therefore lowering the overall coupling.

The following is an example of mediator pattern implementation:

interface MediatorInterface {
 public function fight();
 public function talk();
 public function registerA(ColleagueA $a);
 public function registerB(ColleagueB $b);
}

class ConcreteMediator implements MediatorInterface {
 protected $talk; // ColleagueA
 protected $fight; // ColleagueB

 public function registerA(ColleagueA $a) {
 $this->talk = $a;
 }

 public function registerB(ColleagueB $b) {
 $this->fight = $b;
 }

 public function fight() {
 echo 'fighting...';
 }

GoF Design Patterns

[68]

 public function talk() {
 echo 'talking...';
 }
}

abstract class Colleague {
 protected $mediator; // MediatorInterface
 public abstract function doSomething();
}

class ColleagueA extends Colleague {

 public function __construct(MediatorInterface $mediator) {
 $this->mediator = $mediator;
 $this->mediator->registerA($this);
 }

public function doSomething() {
 $this->mediator->talk();
}
}

class ColleagueB extends Colleague {

 public function __construct(MediatorInterface $mediator) {
 $this->mediator = $mediator;
 $this->mediator->registerB($this);
 }

 public function doSomething() {
 $this->mediator->fight();
 }
}

// Client
$mediator = new ConcreteMediator();
$talkColleague = new ColleagueA($mediator);
$fightColleague = new ColleagueB($mediator);

$talkColleague->doSomething();
$fightColleague->doSomething();

Chapter 2

[69]

We started off by creating a MediatorInterface with several methods,
implemented by the ConcreteMediator class. We then defined the abstract class
Colleague to force the doSomething method implementation on the following
ColleagueA and ColleagueB classes. The client instantiates the ConcreteMediator
first, and passes its instance to the instances of ColleagueA and ColleagueB, upon
which it calls the doSomething method.

Memento pattern
The memento pattern provides the object restore functionality. Implementation is
done through three different objects; originator, caretaker, and a memento, where
the originator is the one preserving the internal state required for a later restore.

The following is an example of memento pattern implementation:

class Memento {
 private $state;

 public function __construct($state) {
 $this->state = $state;
 }

 public function getState() {
 return $this->state;
 }
}

class Originator {
 private $state;

 public function setState($state) {
 return $this->state = $state;
 }

 public function getState() {
 return $this->state;
 }

 public function saveToMemento() {
 return new Memento($this->state);
 }

GoF Design Patterns

[70]

 public function restoreFromMemento(Memento $memento) {
 $this->state = $memento->getState();
 }
}

// Client - Caretaker
$savedStates = array();

$originator = new Originator();
$originator->setState('new');
$originator->setState('pending');
$savedStates[] = $originator->saveToMemento();
$originator->setState('processing');
$savedStates[] = $originator->saveToMemento();
$originator->setState('complete');
$originator->restoreFromMemento($savedStates[1]);
echo $originator->getState(); // processing

We started off by creating a Memento class, which will provide the a current state
of the object through the getState method. We then defined the Originator class
that pushed the state to Memento. Finally, the client takes the role of caretaker by
instantiating Originator, juggling among its few states, saving and restoring them
from memento.

Observer pattern
The observer pattern implements a one-too-many dependency between objects. The
object that holds the list of dependencies is called subject, while the dependents are
called observers. When the subject object changes state, all of the dependents are
notified and updated automatically.

The following is an example of observer pattern implementation:

class Customer implements \SplSubject {
 protected $data = array();
 protected $observers = array();

 public function attach(\SplObserver $observer) {
 $this->observers[] = $observer;
 }

 public function detach(\SplObserver $observer) {
 $index = array_search($observer, $this->observers);

Chapter 2

[71]

 if ($index !== false) {
 unset($this->observers[$index]);
 }
 }

 public function notify() {
 foreach ($this->observers as $observer) {
 $observer->update($this);
 echo 'observer updated';
 }
 }

 public function __set($name, $value) {
 $this->data[$name] = $value;

 // notify the observers, that user has been updated
 $this->notify();
 }
}

class CustomerObserver implements \SplObserver {
 public function update(\SplSubject $subject) {
 /* Implementation... */
 }
}

// Client
$user = new Customer();
$customerObserver = new CustomerObserver();
$user->attach($customerObserver);

$user->name = 'John Doe';
$user->email = 'john.doe@fake.mail';

We started off by creating a Customer class which implements the standard PHP
\SplSubject interface. We then defined the CustomerObserver class which
implements the standard PHP \SplObserver interface. Finally, the client instantiates
the Customer and CustomerObserver objects and attaches the CustomerObserver
objects to Customer. Any changes to name and email properties are then caught by
the observer.

GoF Design Patterns

[72]

State pattern
The state pattern encapsulates the varying behavior for the same object based on its
internal state, making an object appear as if it has changed its class.

The following is an example of state pattern implementation:

interface Statelike {
 public function writeName(StateContext $context, $name);
}

class StateLowerCase implements Statelike {
 public function writeName(StateContext $context, $name) {
 echo strtolower($name);
 $context->setState(new StateMultipleUpperCase());
 }
}

class StateMultipleUpperCase implements Statelike {
 private $count = 0;

 public function writeName(StateContext $context, $name) {
 $this->count++;
 echo strtoupper($name);
 /* Change state after two invocations */
 if ($this->count > 1) {
 $context->setState(new StateLowerCase());
 }
 }
}

class StateContext {
 private $state;

 public function setState(Statelike $state) {
 $this->state = $state;
 }

 public function writeName($name) {
 $this->state->writeName($this, $name);
 }
}

Chapter 2

[73]

// Client
$stateContext = new StateContext();
$stateContext->setState(new StateLowerCase());
$stateContext->writeName('Monday');
$stateContext->writeName('Tuesday');
$stateContext->writeName('Wednesday');
$stateContext->writeName('Thursday');
$stateContext->writeName('Friday');
$stateContext->writeName('Saturday');
$stateContext->writeName('Sunday');

We started off by creating a Statelike interface, followed by StateLowerCase
and StateMultipleUpperCase which implement that interface. The
StateMultipleUpperCase has a bit of counting logic added to its writeName, so
it kicks off the new state after two invocations. We then defined the StateContext
class, which we will use to switch contexts. Finally, the client instantiates the
StateContext, and passes an instance of StateLowerCase to it through the
setState method, followed by several writeName methods.

Strategy pattern
The strategy pattern defines a family of algorithms, each of which is encapsulated
and made interchangeable with other members within that family.

The following is an example of strategy pattern implementation:

interface PaymentStrategy {
 public function pay($amount);
}

class StripePayment implements PaymentStrategy {
 public function pay($amount) {
 echo 'StripePayment...';
 }

}

class PayPalPayment implements PaymentStrategy {
 public function pay($amount) {
 echo 'PayPalPayment...';
 }
}

GoF Design Patterns

[74]

class Checkout {
 private $amount = 0;

 public function __construct($amount = 0) {
 $this->amount = $amount;
 }

 public function capturePayment() {
 if ($this->amount > 99.99) {
 $payment = new PayPalPayment();
 } else {
 $payment = new StripePayment();
 }

 $payment->pay($this->amount);
 }
}

$checkout = new Checkout(49.99);
$checkout->capturePayment(); // StripePayment...

$checkout = new Checkout(199.99);
$checkout->capturePayment(); // PayPalPayment...

We started off by creating a PaymentStrategy interface followed with concrete
classes StripePayment and PayPalPayment which implement it. We then defined
the Checkout class with a bit of decision making logic within the capturePayment
method. Finally, the client instantiates the Checkout, passing a certain amount
through its constructor. Based on the amount, the Checkout internally triggers
one or another payment when capturePayment is called.

Template pattern
The template design pattern defines the program skeleton of an algorithm in a
method. It lets us, via use of class overriding, redefine certain steps of an algorithm
without really changing the algorithm's structure.

The following is an example of template pattern implementation:

abstract class Game {
 private $playersCount;

 abstract function initializeGame();
 abstract function makePlay($player);

Chapter 2

[75]

 abstract function endOfGame();
 abstract function printWinner();

 public function playOneGame($playersCount)
 {
 $this->playersCount = $playersCount;
 $this->initializeGame();
 $j = 0;
 while (!$this->endOfGame()) {
 $this->makePlay($j);
 $j = ($j + 1) % $playersCount;
 }
 $this->printWinner();
 }
}

class Monopoly extends Game {
 public function initializeGame() {
 // Implementation...
 }

 public function makePlay($player) {
 // Implementation...
 }

 public function endOfGame() {
 // Implementation...
 }

 public function printWinner() {
 // Implementation...
 }
}

class Chess extends Game {
 public function initializeGame() {
 // Implementation...
 }

 public function makePlay($player) {
 // Implementation...
 }

GoF Design Patterns

[76]

 public function endOfGame() {
 // Implementation...
 }

 public function printWinner() {
 // Implementation...
 }
}

$game = new Chess();
$game->playOneGame(2);

$game = new Monopoly();
$game->playOneGame(4);

We started off by creating an abstract Game class that provides all of the actual
abstract methods encapsulating the game-play. We then defined the Monopoly and
Chess classes, both of which extend from the Game class, implementing game specific
method game-play for each. The client simply instantiates the Monopoly and Chess
objects, calling the playOneGame method on each.

Visitor pattern
The visitor design pattern is a way of separating an algorithm from an object
structure on which it operates. As a result, we are able to add new operations to
existing object structures without actually modifying those structures.

The following is an example of visitor pattern implementation:

interface RoleVisitorInterface {
 public function visitUser(User $role);
 public function visitGroup(Group $role);
}

class RolePrintVisitor implements RoleVisitorInterface {
 public function visitGroup(Group $role) {
 echo 'Role: ' . $role->getName();
 }

 public function visitUser(User $role) {
 echo 'Role: ' . $role->getName();
 }
}

Chapter 2

[77]

abstract class Role {
 public function accept(RoleVisitorInterface $visitor) {
 $klass = get_called_class();
 preg_match('#([^\\\\]+)$#', $klass, $extract);
 $visitingMethod = 'visit' . $extract[1];

 if (!method_exists(__NAMESPACE__ .
 '\RoleVisitorInterface', $visitingMethod)) {
 throw new \InvalidArgumentException("The visitor you
 provide cannot visit a $klass instance");
 }

 call_user_func(array($visitor, $visitingMethod), $this);
 }
}

class User extends Role {
 protected $name;

 public function __construct($name) {
 $this->name = (string)$name;
 }

 public function getName() {
 return 'User ' . $this->name;
 }
}

class Group extends Role {
 protected $name;

 public function __construct($name) {
 $this->name = (string)$name;
 }

 public function getName() {
 return 'Group: ' . $this->name;
 }
}

$group = new Group('my group');
$user = new User('my user');

GoF Design Patterns

[78]

$visitor = new RolePrintVisitor;

$group->accept($visitor);
$user->accept($visitor);

We started off by creating a RoleVisitorInterface, followed by
RolePrintVisitor which implements the RoleVisitorInterface itself.
We then defined the abstract class Role, with an accept method taking in the
RoleVisitorInterface parameter type. We further defined the concrete User and
Group classes, both of which extend from Role. The client instantiates User, Group,
and the RolePrintVisitor; passing in the visitor to the accept method call of
User and Group instances.

Summary
Design patterns are a common, high-level language for developers. They enable
a short-hand way of communicating application design among team members.
Understanding how to recognize and implement design patterns shifts our focus to
business requirement solving, rather than tinkering with how to glue our solution
together on a code level.

Coding, like most hand-crafted disciplines, is one of those where you get what
you pay for. While implementing a number of design patterns takes a certain
amount of time, lack of doing so on a larger project will likely catch up with us
in the future, one way or another. Similar to the "use a framework or not" debate,
implementing the right design patterns affects extensibility, re-usability, adaptability,
and maintainability of our code. Therefore, making it more future proof.

Moving forward, in the next chapter, we will look into the SOLID design principles
and the role they play in software development processes.

[79]

SOLID Design Principles
Building modular software requires strong knowledge of the class design. There are
numerous guidelines out there, addressing the way we name our classes, number
of variables they should have, what the size of methods should be, and so on. The
PHP ecosystem managed to pack these into official PSR standard, more precisely
PSR-1: Basic Coding Standard and PSR-2: Coding Style Guide. These are all
general programming guidelines that keep our code readable, understandable,
and maintainable.

Aside from programming guidelines, there are more specific design principles that
we can apply during the class design. Ones that address the notions of low coupling,
high cohesion, and strong encapsulation. We call them SOLID design principles,
a term coined by Robert Cecil Martin in the early 2000s.

SOLID is an acronym for the following five principles:

• S: Single responsibility principle (SRP)
• O: Open/closed principle (OCP)
• L: Liskov substitution principle (LSP)
• I: Interface Segregation Principle (ISP)
• D: Dependency inversion principle (DIP)

Over a decade old, the idea of SOLID principles is far from obsolete, as they are
at the heart of good class design. Throughout this chapter, we will look into each
of these principles, getting to understand them by observing some of the obvious
violations that break them.

SOLID Design Principles

[80]

In this chapter, we will be covering the following topics:

• Single responsibility principle
• Open/closed principle
• Liskov substitution principle
• Interface Segregation Principle
• Dependency inversion principle

Single responsibility principle
The single responsibility principle deals with classes that try to do too much.
The responsibility in this context refers to reason to change. As per the Robert C.
Martin definition:

"A class should have only one reason to change."

The following is an example of a class that violates the SRP:

class Ticket {
 const SEVERITY_LOW = 'low';
 const SEVERITY_HIGH = 'high';
 // ...
 protected $title;
 protected $severity;
 protected $status;
 protected $conn;

 public function __construct(\PDO $conn) {
 $this->conn = $conn;
 }

 public function setTitle($title) {
 $this->title = $title;
 }

 public function setSeverity($severity) {
 $this->severity = $severity;
 }

 public function setStatus($status) {
 $this->status = $status;
 }

Chapter 3

[81]

 private function validate() {
 // Implementation...
 }

 public function save() {
 if ($this->validate()) {
 // Implementation...
 }
 }

}

// Client
$conn = new PDO(/* ... */);
$ticket = new Ticket($conn);
$ticket->setTitle('Checkout not working!');
$ticket->setStatus(Ticket::STATUS_OPEN);
$ticket->setSeverity(Ticket::SEVERITY_HIGH);
$ticket->save();

The Ticket class deals with validation and saving of the ticket entity to the
database. These two responsibilities are its two reasons to change. Whenever the
requirements change regarding the ticket validation, or regarding the saving of the
ticket, the Ticket class will have to be modified. To address the SRP violation here,
we can use the assisting classes and interfaces to split the responsibilities.

The following is an example of refactored implementation, which complies with SRP:

interface KeyValuePersistentMembers {
 public function toArray();
}

class Ticket implements KeyValuePersistentMembers {
 const STATUS_OPEN = 'open';
 const SEVERITY_HIGH = 'high';
 //...
 protected $title;
 protected $severity;
 protected $status;

 public function setTitle($title) {
 $this->title = $title;
 }

www.allitebooks.com

http://www.allitebooks.org

SOLID Design Principles

[82]

 public function setSeverity($severity) {
 $this->severity = $severity;
 }

 public function setStatus($status) {
 $this->status = $status;
 }

 public function toArray() {
 // Implementation...
 }
}

class EntityManager {
 protected $conn;

 public function __construct(\PDO $conn) {
 $this->conn = $conn;
 }

 public function save(KeyValuePersistentMembers $entity)
 {
 // Implementation...
 }
}

class Validator {
 public function validate(KeyValuePersistentMembers $entity) {
 // Implementation...
 }
}

// Client
$conn = new PDO(/* ... */);

$ticket = new Ticket();
$ticket->setTitle('Payment not working!');
$ticket->setStatus(Ticket::STATUS_OPEN);
$ticket->setSeverity(Ticket::SEVERITY_HIGH);

$validator = new Validator();

Chapter 3

[83]

if ($validator->validate($ticket)) {
 $entityManager = new EntityManager($conn);
 $entityManager->save($ticket);
}

Here we introduced a simple KeyValuePersistentMembers interface with a single
toArray method, which is then used with both EntityManager and Validator
classes, both of which take on a single responsibility now. The Ticket class became
a simple data holding model, whereas client now controls instantiation, validation,
and save as three different steps. While this is certainly no universal formula of how
to separate responsibilities, it does provide a simple and clear example of how to
approach it.

Designing with the single responsibilities principle in mind yields smaller classes
with greater readability and easier to test code.

Open/closed principle
The open/closed principle states that a class should be open for extension but closed
for modification, as per the definition found on Wikipedia:

"software entities (classes, modules, functions, etc.) should be open for extension,
but closed for modification"

The open for extension part means that we should design our classes so that new
functionality can be added if needed. The closed for modification part means that
this new functionality should fit in without modifying the original class. The class
should only be modified in case of a bug fix, not for adding new functionality.

The following is an example of a class that violates the open/closed principle:

class CsvExporter {
 public function export($data) {
 // Implementation...
 }
}

class XmlExporter {
 public function export($data) {
 // Implementation...
 }
}

SOLID Design Principles

[84]

class GenericExporter {
 public function exportToFormat($data, $format) {
 if ('csv' === $format) {
 $exporter = new CsvExporter();
 } elseif ('xml' === $format) {
 $exporter = new XmlExporter();
 } else {
 throw new \Exception('Unknown export format!');
 }
 return $exporter->export($data);
 }
}

Here we have two concrete classes, CsvExporter and XmlExporter, each with a
single responsibility. Then we have a GenericExporter with its exportToFormat
method that actually triggers the export function on a proper instance type. The
problem here is that we cannot add a new type of exporter to the mix without
modifying the GenericExporter class. To put it in other words, GenericExporter
is not open for extension and closed for modification.

The following is an example of refactored implementation, which complies
with OCP:

interface ExporterFactoryInterface {
 public function buildForFormat($format);
}

interface ExporterInterface {
 public function export($data);
}

class CsvExporter implements ExporterInterface {
 public function export($data) {
 // Implementation...
 }
}

class XmlExporter implements ExporterInterface {
 public function export($data) {
 // Implementation...
 }
}

Chapter 3

[85]

class ExporterFactory implements ExporterFactoryInterface {
 private $factories = array();

 public function addExporterFactory($format, callable $factory)
 {
 $this->factories[$format] = $factory;
 }

 public function buildForFormat($format) {
 $factory = $this->factories[$format];
 $exporter = $factory(); // the factory is a callable

 return $exporter;
 }
}

class GenericExporter {
 private $exporterFactory;

 public function __construct
 (ExporterFactoryInterface $exporterFactory) {
 $this->exporterFactory = $exporterFactory;
 }

 public function exportToFormat($data, $format) {
 $exporter = $this->exporterFactory->
 buildForFormat($format);
 return $exporter->export($data);
 }
}

// Client
$exporterFactory = new ExporterFactory();

$exporterFactory->addExporterFactory(
'xml',
 function () {
 return new XmlExporter();
 }
);

$exporterFactory->addExporterFactory(
'csv',
 function () {

SOLID Design Principles

[86]

 return new CsvExporter();
 }
);

$data = array(/* ... some export data ... */);
$genericExporter = new GenericExporter($exporterFactory);
$csvEncodedData = $genericExporter->exportToFormat($data, 'csv');

Here we added two interfaces, ExporterFactoryInterface and
ExporterInterface. We then modified the CsvExporter and XmlExporter to
implement that interface. The ExporterFactory was added, implementing the
ExporterFactoryInterface. Its main role is defined by the buildForFormat
method, which returns the exporter as a callback function. Finally, the
GenericExporter was rewritten to accept the ExporterFactoryInterface via its
constructor, and its exportToFormat method now builds the exporter by use of an
exporter factory and calls the execute method on it.

The client itself has taken a more robust role now, by first instantiating the
ExporterFactory and adding two exporters to it, which it then passed onto
GenericExporter. Adding a new export format to GenericExporter now, no
longer requires modifying it, therefore making it open for extension and closed for
modification. Again, this is by no means a universal formula, rather a concept of
possible approach towards satisfying the OCP.

Liskov substitution principle
The Liskov substitution principle talks about inheritance. It specifies how we
should design our classes so that client dependencies can be replaced by subclasses
without the client seeing the difference, as per the definition found on Wikipedia:

"objects in a program should be replaceable with instances of their subtypes
without altering the correctness of that program"

While there might be some specific functionality added to the subclass, it has to
conform to the same behavior as its base class. Otherwise the Liskov principle
is violated.

When it comes to PHP and sub-classing, we have to look beyond simple concrete
classes and differentiate: concrete class, abstract class, and interface. Each of the three
can be put in the context of a base class, while everything extending or implementing
it can be looked at as a derived class.

Chapter 3

[87]

The following is an example of LSP violation, where the derived class does not have
an implementation for all methods:

interface User {
 public function getEmail();
 public function getName();
 public function getAge();
}

class Employee implements User {
 public function getEmail() {
 // Implementation...
 }

 public function getAge() {
 // Implementation...
 }
}

Here we see an employee class which does not implement the getName method
enforced by the interface. We could have easily used an abstract class instead of the
interface and abstract method type for the getName method, the effect would have
been the same. Luckily, the PHP would throw an error in this case, warning us that
we haven't really implemented the interface fully.

The following is an example of Liskov principle violation, where different derived
classes return things of different types:

class UsersCollection implements \Iterator {
 // Implementation...
}

interface UserList {
 public function getUsers();
}

class Emloyees implements UserList {
 public function getUsers() {
 $users = new UsersCollection();
 //...
 return $users;
 }
}

SOLID Design Principles

[88]

class Directors implements UserList {
 public function getUsers() {
 $users = array();
 //...
 return $users;
 }
}

Here we see a simple example of an edge case. Calling getUsers on both derived
classes will return a result we can loop through. However, PHP developers tend to
use the count method often on array structures, and using it on Employees instances
the getUsers result will not work. This is because the Employees class returns
UsersCollection which implements Iterator, not the actual array structure. Since
UsersCollection does not implement Countable, we cannot use count on it, which
leads to potential bugs down the line.

We can further spot LSP violations in cases where the derived class behaves less
permissively with regard to method arguments. These can usually be spotted by
use of the instance of type operator, as shown in the following example:

interface LoggerProcessor {
 public function log(LoggerInterface $logger);
}

class XmlLogger implements LoggerInterface {
 // Implementation...
}

class JsonLogger implements LoggerInterface {
 // Implementation...
}

class FileLogger implements LoggerInterface {
 // Implementation...
}

class Processor implements LoggerProcessor {
 public function log(LoggerInterface $logger) {
 if ($logger instanceof XmlLogger) {
 throw new \Exception('This processor does not work
 with XmlLogger');
 } else {
 // Implementation...
 }
 }
}

Chapter 3

[89]

Here, the derived class Processor puts restrictions on method arguments,
while it should accept everything conforming to the LoggerInterface. By
being less permissive, it alters the behavior implied by the base class, in this
case LoggerInterface.

The outlined examples are merely a fragment of what constitutes a violation
of LSP. To satisfy the principle, we need to make sure that derived classes do not,
in any way, alter the behavior imposed by the base class.

Interface Segregation Principle
The Interface Segregation Principle states that clients should only implement
interfaces they actually use. They should not be forced to implement interfaces
they do not use. As per the definition found on Wikipedia:

"many client-specific interfaces are better than one general-purpose interface"

What this means is that we should split large and fat interfaces into several small and
lighter ones, segregating it so that smaller interfaces are based on groups of methods,
each serving one specific functionality.

Let's take a look at the following leaky abstraction that violates the ISP:

interface Appliance {
 public function powerOn();
 public function powerOff();
 public function bake();
 public function mix();
 public function wash();

}

class Oven implements Appliance {
 public function powerOn() { /* Implement ... */ }
 public function powerOff() { /* Implement ... */ }
 public function bake() { /* Implement... */ }
 public function mix() { /* Nothing to implement ... */ }
 public function wash() { /* Cannot implement... */ }
}

class Mixer implements Appliance {
 public function powerOn() { /* Implement... */ }
 public function powerOff() { /* Implement... */ }
 public function bake() { /* Cannot implement... */ }

SOLID Design Principles

[90]

 public function mix() { /* Implement... */ }
 public function wash() { /* Cannot implement... */ }
}

class WashingMachine implements Appliance {
 public function powerOn() { /* Implement... */ }
 public function powerOff() { /* Implement... */ }
 public function bake() { /* Cannot implement... */ }
 public function mix() { /* Cannot implement... */ }
 public function wash() { /* Implement... */ }
}

Here we have an interface setting requirements for several appliance related
methods. Then we have several classes implementing that interface. The problem is
quite obvious; not all appliances can be squeezed into the same interface. It makes no
sense for a washing machine to be forced to implement bake and mix methods. These
methods need to be split each into its own interface. That way concrete appliance
classes get to implement only the methods that actually make sense.

Dependency inversion principle
The dependency inversion principle states that entities should depend on
abstractions and not on concretions. That is, a high level module should not
depend on a low level module, rather the abstraction. As per the definition
found on Wikipedia:

"One should depend upon abstractions. Do not depend upon concretions."

This principle is important as it plays a major role in decoupling our software.

The following is an example of a class that violates the DIP:

class Mailer {
 // Implementation...
}

class NotifySubscriber {
 public function notify($emailTo) {
 $mailer = new Mailer();
 $mailer->send('Thank you for...', $emailTo);
 }
}

Chapter 3

[91]

Here we can see a notify method within the NotifySubscriber class coding in a
dependency towards the Mailer class. This makes for tightly coupled code, which
is what we are trying to avoid. To rectify the problem, we can pass the dependency
through the class constructor, or possibly via some other method. Furthermore, we
should move away from concrete class dependency towards an abstracted one,
as shown in the rectified example shown here:

interface MailerInterface {
 // Implementation...
}

class Mailer implements MailerInterface {
 // Implementation...
}

class NotifySubscriber {
 private $mailer;

 public function __construct(MailerInterface $mailer) {
 $this->mailer = $mailer;
 }

 public function notify($emailTo) {
 $this->mailer->send('Thank you for...', $emailTo);
 }
}

Here we see a dependency being injected through the constructor. The injection is
abstracted by a type hinting interface, and the actual concrete class. This makes our
code loosely coupled. The DIP can be used anytime a class needs to call a method of
another class, or shall we say send a message to it.

Summary
When it comes to modular development, extensibility is something to constantly
think about. Writing a code that locks itself in will likely result in a future failure
to integrate it with other projects or libraries. While SOLID design principles might
look like an overreach for some of the parts, actively applying these principles is
likely to result in components that are easy to maintain and extend over time.

Embracing the SOLID principles for class design prepares our code for future
changes. It does so by localizing and minimizing these changes within our classes,
so any integration using it does not feel the significant impact of the change.

Moving forward, in the next chapter, we will look into defining our application
specification which we will build across all other chapters.

[93]

Requirement Specification for
a Modular Web Shop App

Building a software application from the ground up requires diverse skills, as it
involves more than just writing down a code. Writing down functional requirements
and sketching out a wireframe are often among the first steps in the process,
especially if we are working on a client project. These steps are usually done by
someone other than the developer, as they require certain insight into client business
case, user behavior, and the like. Being part of a larger development team means
that we, as developers, usually get requirements, designs, and wireframes then start
coding against them. Delivering projects by oneself, makes it tempting to skip these
steps and get our hands started with code alone. More often than not, this is an
unproductive approach. Laying down functional requirements and a few wireframes
is a skill worth knowing and following, even if one is just a developer.

Later in this chapter, we will go over a high-level application requirement, alongside
a rough wireframe.

In this chapter, we will be covering the following topics:

• Defining application requirements
• Wireframing
• Defining technology stack:

 ° Symfony framework
 ° Foundation framework

Requirement Specification for a Modular Web Shop App

[94]

Defining application requirements
We need to build a simple, but responsive web shop application. In order to do
so, we need to lay out some basic requirements. The types of requirements we
are interested in at the moment are those that touch upon interactions between a
user and a system. The two most common techniques to specify requirements in
regards to user usage are use case and user story. The user stories are a less formal
yet descriptive enough way to outline these requirements. Using user stories, we
encapsulate the customer and store manager actions as mentioned here.

A customer should be able to do the following:

• Browse through static info pages (about us, customer service)
• Reach out to the store owner via a contact form
• Browse the shop categories
• See product details (price, description)
• See the product image with a large view (zoom)
• See items on sale
• See best sellers
• Add the product to the shopping cart
• Create a customer account
• Update customer account info
• Retrieve a lost password
• Check out
• See the total order cost
• Choose among several payment methods
• Choose among several shipment methods
• Get an email notification after an order has been placed
• Check order status
• Cancel an order
• See order history

Chapter 4

[95]

A store manager should be able to do the following:

• Create a product (with the minimum following attributes: title, price, sku,
url-key, description, qty, category, and image)

• Upload a picture of the product
• Update and delete a product
• Create a category (with the minimum following attributes: title, url-key,

description, and image)
• Upload a picture to a category
• Update and delete a category
• Be notified if a new sales order has been created
• Be notified if a new sales order has been canceled
• See existing sales orders by their statuses
• Update the status of the order
• Disable a customer account
• Delete a customer account

User stories are a convenient high-level way of writing down application
requirements. Especially useful as an agile mode of development.

Wireframing
With user stories laid out, let's shift our focus to actual wireframing. For reasons we
will get into later on, our wireframing efforts will be focused around the customer
perspective.

There are numerous wireframing tools out there, both free and commercial. Some
commercial tools like https://ninjamock.com, which we will use for our examples,
still provide a free plan. This can be very handy for personal projects, as it saves us
a lot of time.

https://ninjamock.com

Requirement Specification for a Modular Web Shop App

[96]

The starting point of every web application is its home page. The following
wireframe illustrates our web shop app's homepage:

Here we can see a few sections determining the page structure. The header is
comprised of a logo, category menu, and user menu. The requirements don't say
anything about category structure, and we are building a simple web shop app, so
we are going to stick to a flat category structure, without any sub-categories. The
user menu will initially show Register and Login links, until the user is actually
logged in, in which case the menu will change as shown in following wireframes.
The content area is filled with best sellers and on sale items, each of which have an
image, title, price, and Add to Cart button defined. The footer area contains links to
mostly static content pages, and a Contact Us page.

Chapter 4

[97]

The following wireframe illustrates our web shop app's category page:

The header and footer areas remain conceptually the same across the entire site. The
content area has now changed to list products within any given category. Individual
product areas are rendered in the same manner as it is on the home page. Category
names and images are rendered above the product list. The width of a category
image gives some hints as to what type of images we should be preparing and
uploading onto our categories.

Requirement Specification for a Modular Web Shop App

[98]

The following wireframe illustrates our web shop app's product page:

The content area here now changes to list individual product information. We can
see a large image placeholder, title, sku, stock status, price, quantity field, Add to
Cart button, and product description being rendered. The IN STOCK message is
to be displayed when an item is available for purchase and OUT OF STOCK when
an item is no longer available. This is to be related to the product quantity attribute.
We also need to keep in mind the "See the product image with a big view (zoom)"
requirement, where clicking on an image would zoom into it.

Chapter 4

[99]

The following wireframe illustrates our web shop app's register page:

The content area here now changes to render a registration form. There are many
ways that we can implement the registration system. More often than not, the
minimal amount of information is asked on a registration screen, as we want to get
the user in as quickly as possible. However, let's proceed as if we are trying to get
more complete user information right here on the registration screen. We ask not
just for an e-mail and password, but for entire address information as well.

Requirement Specification for a Modular Web Shop App

[100]

The following wireframe illustrates our web shop app's login page:

The content area here now changes to render a customer login and forgotten
password form. We provide the user with Email and Password fields in case
of login, or just an Email field in case of a password reset action.

Chapter 4

[101]

The following wireframe illustrates our web shop app's customer account page:

The content area here now changes to render the customer account area, visible only
to logged in customers. Here we see a screen with two main pieces of information.
The customer information being one, and order history being the other. The
customer can change their e-mail, password, and other address information from this
screen. Furthermore, the customer can view, cancel, and print all of their previous
orders. The My Orders table lists orders top to bottom, from newest to oldest.
Though not specified by the user stories, the order cancelation should work only on
pending orders. This is something that we will touch upon in more detail later on.

This is also the first screen that shows the state of the user menu when the user is
logged in. We can see a dropdown showing the user's full name, My Account, and
Sign Out links. Right next to it, we have the Cart (%s) link, which is to list exact
quantities in a cart.

Requirement Specification for a Modular Web Shop App

[102]

The following wireframe illustrates our web shop app's checkout cart page:

The content area here now changes to render the cart in its current state. If the
customer has added any products to the cart, they are to be listed here. Each item
should list the product title, individual price, quantity added, and subtotal. The
customer should be able to change quantities and press the Update Cart button to
update the state of the cart. If 0 is provided as the quantity, clicking the Update
Cart button will remove such an item from the cart. Cart quantities should at all
time reflect the state of the header menu Cart (%s) link. The right-hand side of a
screen shows a quick summary of current order total value, alongside a big, clear
Go to Checkout button.

Chapter 4

[103]

The following wireframe illustrates our web shop app's checkout cart shipping page:

The content area here now changes to render the first step of a checkout process,
the shipping information collection. This screen should not be accessible for non-
logged in customers. The customer can provide us with their address details here,
alongside a shipping method selection. The shipping method area lists several
shipping methods. On the right hand side, the collapsible order summary section is
shown, listing current items in the cart. Below it, we have the cart subtotal value and
a big clear Next button. The Next button should trigger only when all of the required
information is provided, in which case it should take us to payment information on
the checkout cart payment page.

Requirement Specification for a Modular Web Shop App

[104]

The following wireframe illustrates our web shop app's checkout cart payment page:

The content area here now changes to render the second step of a checkout process,
the payment information collection. This screen should not be accessible for non-
logged in customers. The customer is presented with a list of available payment
methods. For the simplicity of the application, we will focus only on flat/fixed
payments, nothing robust such as PayPal or Stripe. On the right-hand side of the
screen, we can see a collapsible Order summary section, listing current items in the
cart. Below it, we have the order totals section, individually listing Cart Subtotal,
Standard Delivery, Order Total, and a big clear Place Order button. The Place
Order button should trigger only when all of the required information is provided,
in which case it should take us to the checkout success page.

Chapter 4

[105]

The following wireframe illustrates our web shop app's checkout success page:

The content area here now changes to output the checkout successful message.
Clearly this page is only visible to logged in customers that just finished the checkout
process. The order number is clickable and links to the My Account area, focusing on
the exact order. By reaching this screen, both the customer and store manager should
receive a notification email, as per the Get email notification after order has been placed
and Be notified if the new sales order has been created requirements.

With this, we conclude our customer facing wireframes.

Requirement Specification for a Modular Web Shop App

[106]

In regards to store manager user story requirements, we will simply define a landing
administration interface for now, as shown in the following screenshot:

Using the framework later on, we will get a complete auto-generated CRUD interface
for the multiple Add New and List & Manage links. The access to this interface and
its links will be controlled by the framework's security component, since this user
will not be a customer or any user in the database as such.

Furthermore, throughout the following chapters, we will split our application into
several modules. In such a setup, each module will take ownership of individual
functionalities, taking care of customer, catalog, checkout, and other requirements.

Chapter 4

[107]

Defining a technology stack
Once the requirements and wireframes are set, we can focus our attention to
the selection of a technology stack. In Chapter 1, Ecosystem Overview we glossed
over several of the most popular PHP frameworks, pointing out their strengths.
Choosing the right one in this case, is more of a matter of preference, as application
requirements for the most part can be easily met by be met any one of those
frameworks. Our choice, however, falls to Symfony. Aside from PHP frameworks,
we still need a CSS framework to deliver some structure, styling, and responsiveness
within the browser on the client side. Since the focus of this book is on PHP
technologies, let's just say we chose the Foundation CSS framework for that task.

The Symfony framework
The Symfony framework makes a nice choice for our application. It is an enterprise
level framework that has been around for years, and is extremely well documented
and supported. It can be downloaded from the official http://symfony.com page as
shown here:

http://symfony.com

Requirement Specification for a Modular Web Shop App

[108]

The benefits of using Symfony as part of our technology stack are numerous. The
framework provides robust and well documented:

• Controllers
• Routing
• ORM (via Doctrine)
• Forms
• Validation
• Security

These are essential features required by our application. The ORM in particular,
plays a major role in rapid application development. Having to worry less about
coding, every aspect of CRUD can boost the speed of development by a factor or
two. The great thing about Symfony in this regard is that it allows for automatic
generation of entities and CRUD actions around them by executing two simple
commands such as the following:

php bin/console doctrine:generate:entity
php app/console generate:doctrine:crud

By doing so, Symfony generates entity models and necessary controllers that
empower us to perform the following operations:

• List all records
• Show one given record identified by its primary key
• Create a new record
• Edit an existing record
• Delete an existing record

Basically, we get a minimal store manager interface for free. This alone covers most
of the CRUD related requirements set for the store manager role. We can then easily
modify the generated templates to further integrate the remaining functionality.

On top of that, security components provide authentication and authorization that
we can use to satisfy the customer and store manager logins. So a store manager
will be a fixed, pre-created user attached to Symfony's firewall, the only one having
access to CRUD controller actions.

Chapter 4

[109]

Foundation framework
Backed by the company Zurb, the Foundation framework makes a great choice
for a modern responsive web application. We might say it is an enterprise level
framework, providing a collection of HTML, CSS, and JavaScript that we can build
upon. It can be downloaded from the official http://foundation.zurb.com page
as shown here:

Foundation comes in three flavors:

• Foundation for sites
• Foundation for e-mail
• Foundation for apps

We are interested in the sites version. Aside from general styling, Foundation for
sites provides a great deal of controls, navigational elements, containers, media
elements, and plugins. These will be particularly useful in our application, for things
like header menus, category product listings, responsive cart tables, and so on.

Foundation is built as a mobile-first framework, where we code for small screens first
and larger screens then inherit those styles. Its default 12-column grid system enables
us to create powerful multi-device layouts quickly and easily.

http://foundation.zurb.com

Requirement Specification for a Modular Web Shop App

[110]

We will use Foundation simply to provide structure, some basic styling, and
responsiveness to our application, without writing a single line of CSS on our own.
This alone should make our application visually pleasing enough to work with both
on mobile and desktop screens, while still focusing the majority of our coding skills
around backend things.

Aside from providing robust functionality, the company behind Foundation also
provides premium technical support. Though we will not need it as part of this book,
these sorts of things establish confidence when choosing application frameworks.

Summary
Creating web applications can be a tedious and time consuming task, web shops
probably being one of the most robust and intensive type of application out there,
as they encompass a great deal of features. There are many components involved
in delivering the final product; from database, server side (PHP) code to client side
(HTML, CSS, and JavaScript) code. In this chapter, we started off by defining some
basic user stories which in turn defined high-level application requirements for our
small web shop. Adding wireframes to the mix helped us to visualize the customer
facing interface, while the store manager interface is to be provided out of the box by
the framework.

We further glossed over two of the most popular frameworks that support modular
application design. We turned our attention to Symfony as server side technology
and Foundation as a client side responsive framework.

Moving forward, in the next chapter, we will take a more in-depth look into
Symfony. As well as being a set of reusable components, Symfony is also one of the
most robust and popular full-stack PHP frameworks. Therefore, it is an interesting
choice for rapid web application development.

[111]

Symfony at a Glance
Full-stack frameworks like Symfony help ease the process of building modular
applications by providing all of the necessary components, from user interface to
data store. This enables a much rapid cycle of delivering individual bits and pieces
of application as it grows. We will experience this later on by segmenting our
application in several smaller modules, or bundles in Symfony terminology.

Moving forward we will install Symfony, create a blank project, and start looking
into individual framework features essential for building modular application:

• Controller
• Routing
• Templates
• Forms
• The bundle system
• Databases and Doctrine
• Testing
• Validation

Installing Symfony
Installing Symfony is pretty straightforward. We can use the following command to
install Symfony on Linux or Mac OS X:

sudo curl -LsS https://symfony.com/installer -o /usr/local/bin/
 symfony

sudo chmod a+x /usr/local/bin/symfony

Symfony at a Glance

[112]

We can use the following command to install Symfony on Windows:

c:\> php -r "file_put_contents('symfony', file_get_contents
 ('https://symfony.com/installer'));"

Once the command is executed, we can simply move the newly created symfony
file to our project directory and execute it further as symfony, or php symfony
in Windows.

This should trigger an output shown as follows:

Preceding response indicates we have successfully setup Symfony and are now
ready to start creating new projects.

Chapter 5

[113]

Creating a blank project
Now that we have a Symfony installer all setup, let's go ahead and create a new
blank project. We do so by simply executing a symfony new test-app command,
as shown in the following command line instance:

Here we are creating a new project, called test-app. We can see that the Symfony
installer is downloading the latest Symfony framework from the internet, alongside
outputting a brief instruction on how to run the built in PHP server via Symfony
console application. The whole process might take up to a few minutes.

The structure of newly created test-app directory occurs similar to the following
one:

Symfony at a Glance

[114]

There are numerous files and directories created here for us. Our interest, however,
is focused on app and src directories. The app directory is where the site wide
application configuration resides. Here we can find configuration for database,
routing, security, and other services. Also, this is where default layout and template
file reside, as shown in the following screenshot:

The src directory on the other hand contains already modularized code in form
of the base AppBundle module, as in the following screenshot:

We are going to speak about the role of these files in more details later as we
progress. For now, its worth nothing that pointing our browser to this project
would make DefaultController.php the one to actually render the output.

Chapter 5

[115]

Using Symfony console
Symfony framework comes with a built-in console tool that we can trigger by simply
executing the following command within our project root directory:

php bin/console

By doing so, an extensive list of available commands is shown on screen, sectioned
into the following groups:

• assets

• cache

• config

• debug

• doctrine

• generate

• lint

• orm

• router

• security

• server

• swiftmailer

• translation

These empower us with various functionalities. Our special interest moving forward
is going to be around doctrine and generate commands. The doctrine command,
more specifically doctrine:generate:crud, generates a CRUD based on an existing
Doctrine entity. Furthermore, the doctrine:generate:entity command generates
a new Doctrine entity inside an existing bundle. These can be extremely handy for
cases where we want a quick and easy entity creation, alongside the entire CRUD
around it. Similarly, generate:doctrine:entity and generate:doctrine:crud
do the same thing.

Before we go ahead and test these commands, we need to make sure we have our
database configuration parameters in place so that Symfony can see and talk to our
database. To do so, we need to set appropriate values in app/config/parameters.
yml file.

Symfony at a Glance

[116]

For the purpose of this section, let's go ahead and create a simple Customer entity
within the default AppBundle bundle, with entire CRUD around it, assuming the
following properties on Customer entity: firstname, lastname, and e-mail. We
start by running the php bin/console generate:doctrine:entity command
from within the project root directory, which results in the following output:

Here we first provided AppBundle:Customer as entity name and confirmed the use
of annotations as configuration format.

Finally, we are asked to start adding the fields to our entity. Typing in the first name
and hitting enter moves us through a series of short questions about our field type,
length, nullable, and unique states, as shown in the following screenshot:

Chapter 5

[117]

We should now have two classes generated for our Customer entity. Via the help of
Symfony and Doctrine, these classes are put in context of Object Relational Mapper
(ORM), as they link the Customer entity with the proper database table. However,
we haven't yet instructed Symfony to actually create the table for our entity. To do
so, we execute the following command:

php bin/console doctrine:schema:update --force

This should produce the output as shown in the following screenshot:

If we now take a look at the database, we should see a customer table with all the
proper columns created with SQL create dsyntax as follows:

CREATE TABLE `customer` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `firstname` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

 `lastname` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

 `email` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

 PRIMARY KEY (`id`),

Symfony at a Glance

[118]

 UNIQUE KEY `UNIQ_81398E09E7927C74` (`email`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

At this point, we still do not have an actual CRUD functionality in place. We simply
have an ORM empowered Customer entity class and appropriate database table
behind it. The following command will generate the actual CRUD controllers and
templates for us:

php bin/console generate:doctrine:crud

This should produce the following interactive output:

By providing the fully classified entity name AppBundle:Customer, generator
proceeds with a series of additional inputs, from generating write actions, type
of configuration to read, to prefix of route, as shown in the following screenshot:

Chapter 5

[119]

Once done, we should be able to access our Customer CRUD actions by simply
opening a URL like http://test.app/customer/ (assuming test.app is the
host we set for our example) as shown:

If we click on the Create a new entry link, we will be redirected to the /customer/
new/ URL, as shown in the following screenshot:

Here we can enter the actual values for our Customer entity and click Create button
in order to persist it into the database customer table. After adding a few entities,
the initial /customer/ URL is now able to list them all, as shown in the following
screenshot:

Symfony at a Glance

[120]

Here we see links to show and edit actions. The show action is what we might
consider the customer facing action, whereas the edit action is the administrator
facing action. Clicking on the edit action, takes us to the URL of the form
/customer/1/edit/, whereas number 1 in this case is the ID of customer entity
in database:

Here we can change the property values and click Edit to persist them back into the
database, or we can click on the Delete button to remove the entity from the database.

If we were to create a new entity with an already existing e-mail, which is flagged
as a unique field, the system would throw a generic error as such the following one:

This is merely default system behavior, and as we progress further we will look into
making this more user friendly. By now, we have seen how powerful Symfony's
console is. With a few simple commands, we were able to create our entity and its
entire CRUD actions. There is plenty more the console is capable of. We can even
create our own console commands as we can implement any type of logic. However,
for the purpose of our needs, current implementation will suffice for a moment.

Chapter 5

[121]

Controller
Controllers play a major role in web applications by being at the forefront of any
application output. They are the endpoints, the code that executes behind each URL.
In a more technical manner, we can say the controller is any callable (a function,
method on an object, or a closure) that takes the HTTP request and returns an HTTP
response. The response is not bound to a single format like HTML, it can be anything
from XML, JSON, CSV, image, redirect, error, and so on.

Let's take a look at the previously created (partial) src/AppBundle/Controller/
CustomerController.php file, more precisely its newAction method:

/**
 * Creates a new Customer entity.
 *
 * @Route("/new", name="customer_new")
 * @Method({"GET", "POST"})
 */
public function newAction(Request $request)
{
 //...

 return $this->render('customer/new.html.twig', array(
 'customer' => $customer,
 'form' => $form->createView(),
));
}

If we ignore the actual data retrieval part (//…), there are three important things to
note in this little example:

• @Route: this is the Symfony's annotation way of specifying HTTP endpoint,
the URL we will use to access this. The first "/new" parameter states the
actual endpoint, the second name="customer_new" parameter sets the name
for this route that we can then use as an alias in URL generation functions in
templates and so on. It is worth noting, that this builds upon the @Route("/
customer") annotation set on the actual CustomerController class where
the method is defined, thus making for the full URL to be something like
http://test.app/customer/new.

• @Method: This takes the name of one or more HTTP methods. This means
that the newAction method will trigger only if the HTTP requests match
the previously defined @Route and are of one or more HTTP method types
defined in @Method.

Symfony at a Glance

[122]

• $this->render: This returns the Response object. The $this->render
calls the render function of the Symfony\Bundle\FrameworkBundle\
Controller\Controller class, which instantiates new Response(),
sets its content, and returns the whole instance of that object.

Now let's take a look at the editAction method within our controller, as partially
shown in the following code block:

/**
 * Displays a form to edit an existing Customer entity.
 *
 * @Route("/{id}/edit", name="customer_edit")
 * @Method({"GET", "POST"})
 */
public function editAction(Request $request, Customer $customer)
{
 //...
}

Here we see a route that accepts a singe ID, marked as {id} within the first @Route
annotation parameter. The body of the method (excluded here), does not contain
any direct reference to fetching the id parameter. We can see that the editAction
function accepts two parameters, one being Request, the other being Customer.
But how does the method know to accept the Customer object? This is where
Symfony's @ParamConverter annotation comes into play. It calls converters to
convert the request parameters to objects.

The great thing about @ParamConverter annotation is that we can use it explicitly
or implicitly. That is, if we do not add @ParamConverter annotation but add type
hinting to the method parameter, Symfony is going to try and load the object for us.
This is the exact case we have in our example above, as we did not explicitly type
the @ParamConverter annotation.

Terminology wise, controllers are often exchanged for routing. However, they are
not the same thing.

Routing
In the shortest terms, routing is about linking the controllers with URLs entered in
browser. Todays modern web applications need nice URLs. This means moving
away from URLs like /index.php?product_id=23 to something like /catalog/
product/t-shirt. This is where routing comes in to play.

Chapter 5

[123]

Symfony has a powerful routing mechanism that enables us to do the following:

• Create complex routes which map to controllers
• Generate URLs inside templates
• Generate URLs inside controllers
• Load routing resources from various locations

The way routing works in Symfony is that all of the requests come through app.
php. Then, the Symfony core asks the router to inspect the request. The router then
matches the incoming URL to a specific route and returns information about the
route. This information, among other things, includes the controller that should
be executed. Finally, the Symfony kernel executes the controller, which returns a
response object.

All of the application routes are loaded from a single routing configuration file,
usually app/config/routing.yml file, as shown by our test app:

app:
 resource: "@AppBundle/Controller/"
 type: annotation

The app is simply one of many possible entries. Its resource value points to
AppBundle controller directory, and type is set to annotation which means
that the class annotations will be read to specify exact routes.

We can define a route with several variations. One of them is shown in the
following block:

// Basic Route Configuration
/**
 * @Route("/")
 */
public function homeAction()
{
 // ...
}

// Routing with Placeholders
/**
 * @Route("/catalog/product/{sku}")
 */
public function showAction($sku)
{
 // ...
}

Symfony at a Glance

[124]

// >>Required<< and Optional Placeholders
/**
 * @Route("/catalog/product/{id}")
 */
public function indexAction($id)
{
 // ...
}
// Required and >>Optional<< Placeholders
/**
 * @Route("/catalog/product/{id}", defaults={"id" = 1})
 */
public function indexAction($id)
{
 // ...
}

The preceding examples show several ways we can define our route. The interesting
one is the case with required and optional parameter. If we think about it, removing ID
from the latest example will match the example before it with sku. The Symfony router
will always choose the first matching route it finds. We can solve the problem by
adding regular expression requirements attributed on @Route annotation as follows:

@Route(
 "/catalog/product/{id}",
 defaults={"id": 1},
 requirements={"id": "\d+"}
)

There is more to be said about controllers and routing, as we will see once we start
building our application.

Templates
Previously we said that controllers accept request and return response. The response,
however, can often be any content type. The production of actual content is
something controllers delegate to the templating engine. The templating engine then
has the capability to turn the response into HTML, JSON, XML, CSV, LaTeX, or any
other text-based content type.

In the old days, programmers mixed PHP with HTML into the so called PHP
templates (.php and .phtml). Though still used with some platforms, this kind of
approach is considered insecure and lacking in many aspects. One of which was
cramming business logic into template files.

Chapter 5

[125]

To address these shortcomings, Symfony packs its own templating language called
Twig. Unlike PHP, Twig is meant to strictly express presentation and not to thinker
about program logic. We cannot execute any of the PHP code within the Twig. And
the Twig code is nothing more than an HTML with a few special syntax types.

Twig defines three types of special syntax:

• {{ ... }}: This outputs variable or the result of an expression to the
template.

• {% ... %}: This tag controls the logic of the template (if and for loops,
and others).

• {# ... #}: It is the equivalent of the PHP /* comment */ syntax. The
Comments content isn't included in the rendered page.

Filters are another nice feature of Twig. They act like chained method calls upon a
variable value, modifying the content before it is outputted, as follows:

<h1>{{ title|upper }}</h1>

{{ filter upper }}
<h1>{{ title }}</h1>
{% endfilter %}

<h1>{{ title|lower|escape }}</h1>

{% filter lower|escape %}
<h1>{{ title }}</h1>
{% endfilter %}

It also supports functions listed as follows:

{{ random(['phone', 'tablet', 'laptop']) }}

The preceding random function call would return one random value from within the
array. With all the built-in list of filters and functions, Twig also allows for writing
our own if needed.

Similar to PHP class inheritance, Twig also supports template and layout inheritance.
Let's take a quick look back at the the app/Resources/views/customer/index.
html.twig file as follows:

{% extends 'base.html.twig' %}

{% block body %}
<h1>Customer list</h1>
…
{% endblock %}

Symfony at a Glance

[126]

Here we see a customer index.html.twig template using the extends tag to extend
a template from another one, in this case base.html.twig found in app/Resources/
views/ directory with content as follows:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>{% block title %}Welcome!{% endblock %}</title>
 {% block stylesheets%}{% endblock %}
 <link rel="icon" type="image/x-icon"href="{{
 asset('favicon.ico') }}" />
 </head>
 <body>
 {% block body %}{% endblock %}
 {% block javascripts%}{% endblock %}
 </body>
</html>

Here we see several block tags: title, stylesheets, body, and javascripts. We
can declare as many blocks as we want here and name them any way we like. This
makes the extend tag a key to template inheritance. It tells the Twig to first evaluate
the base template, which sets the layout and defines blocks, after which the child
template like customer/index.html.twig fills in the content of these blocks.

Templates live in two locations:

• app/Resources/views/

• bundle-directory/Resources/views/

What this means is in order to render/extend app/Resources/views/base.
html.twig we would use base.html.twig within our template file, and to render/
extend app/Resources/views/customer/index.html.twig we would use the
customer/index.html.twig path.

When used with templates that reside in bundles, we have to reference them
slightly differently. In this case, the bundle:directory:filename string syntax is
used. Take the FoggylineCatalogBundle:Product:index.html.twig path for
example. This would be a full path to use one of the bundles template file. Here
the FoggylineCatalogBundle is a bundle name, Product is a name of a directory
within that bundle Resources/views directory, and index.html.twig is the name
of the actual template within the Product directory.

Chapter 5

[127]

Each template filename has two extensions that first specify the format and then
the engine for that template; such as *.html.twig, *.html.php, and*.css.twig.

We will get into more details regarding these templates once we move onto building
our app.

Forms
Sign up, sign in, add to cart, checkout, all of these and more are actions that make
use of HTML forms in web shop applications and beyond. Building forms is one of
the most common tasks for developers. One that often takes time to do it right.

Symfony has a form component through which we can build HTML forms in
an OO way. The component itself is also a standalone library that can be used
independently of Symfony.

Let's take a look at the content of the src/AppBundle/Entity/Customer.php file, our
Customer entity class that was auto-generated for us when we defined it via console:

class Customer {
 private $id;
 private $firstname;
 private $lastname;
 private $email;

 public function getId() {
 return $this->id;
 }

 public function setFirstname($firstname) {
 $this->firstname = $firstname;
 return $this;
 }

 public function getFirstname() {
 return $this->firstname;
 }

 public function setLastname($lastname) {
 $this->lastname = $lastname;
 return $this;
 }

 public function getLastname() {

Symfony at a Glance

[128]

 return $this->lastname;
 }

 public function setEmail($email) {
 $this->email = $email;
 return $this;
 }

 public function getEmail() {
 return $this->email;
 }
}

Here we have a plain PHP class, which does not extend anything nor is in any other
way linked to Symfony. It represents a single customer entity, for which it sets and
gets the data. With the entity class in place, we would like to render a form that will
pick up all of the relevant data used by our class. This is where the Form component
comes in place.

When we used the CRUD generator via console earlier, it created the Form class for
our Customer entity within the src/AppBundle/Form/CustomerType.php file with
content as follows:

namespace AppBundle\Form;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;

class CustomerType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array
 $options) {
 $builder
 ->add('firstname')
 ->add('lastname')
 ->add('email')
 ;
 }

 public function configureOptions(OptionsResolver $resolver) {
 $resolver->setDefaults(array(
 'data_class' =>'AppBundle\Entity\Customer'
));
 }
}

Chapter 5

[129]

We can see the simplicity behind the form component comes down to the following:

• Extend form type: We extend from Symfony\Component\Form\
AbstractType class

• Implement buildForm method: This is where we add actual fields we want
to show on the form

• Implement configureOptions: This specifies at least the data_class
configuration which points to our Customer entity.

The form builder object is the one doing the heavy lifting here. It does not take much
for it to create a form. With the form class in place, let's take a look at the controller
action in charge of feeding the template with the form. In this case, we will focus on
newAction within the src/AppBundle/Controller/CustomerController.php file,
with content shown as follows:

$customer = new Customer();
$form = $this->createForm('AppBundle\Form\CustomerType',
 $customer);
$form->handleRequest($request);

if ($form->isSubmitted() && $form->isValid()) {
 $em = $this->getDoctrine()->getManager();
 $em->persist($customer);
 $em->flush();

 return $this->redirectToRoute('customer_show', array('id' =>
 $customer->getId()));
}

return $this->render('customer/new.html.twig', array(
 'customer' => $customer,
 'form' => $form->createView(),
));

The preceding code first instantiates the Customer entity class. The $this-
>createForm(…) is actually calling $this->container->get('form.factory')-
>create(…), passing it our form class name and instance of customer object. We
then have the isSubmitted and isValid check, to see if this is a GET or valid POST
request. Based on that check, the code either returns to customer listing or sets the
form and customer instance to be used with the template customer/new.html.
twig. We will speak more about the actual validation later on.

Symfony at a Glance

[130]

Finally, lets take a look at the actual template found in the app/Resources/views/
customer/new.html.twig file:

{% extends 'base.html.twig' %}

{% block body %}
<h1>Customer creation</h1>

{{ form_start(form) }}
{{ form_widget(form) }}
<input type="submit" value="Create" />
{{ form_end(form) }}

 Back to the list

{% endblock %}

Here we see extends and block tags, alongside some form of related functions.
Symfony adds several form rendering function to Twig as follows:

• form(view, variables)

• form_start(view, variables)

• form_end(view, variables)

• form_label(view, label, variables)

• form_errors(view)

• form_widget(view, variables)

• form_row(view, variables)

• form_rest(view, variables)

Most of our application forms will be auto-generated like this one, so we are
able to get a fully functional CRUD without going too deep into the rest of form
functionality.

Configuring Symfony
In order to keep up with modern demands, today's frameworks and applications
require a flexible configuration system. Symfony fulfils this role nicely through its
robust configuration files and environments concept.

Chapter 5

[131]

The default Symfony configuration file config.yml is located under the app/config/
directory, with (partial) content sectioned as follows:

imports:
 - { resource: parameters.yml }
 - { resource: security.yml }
 - { resource: services.yml }

framework:
…

Twig Configuration
twig:
…

Doctrine Configuration
doctrine:
…

Swiftmailer Configuration
swiftmailer:
…

The top-level entries like framework, twig, doctrine, and swiftmailer define the
configuration of an individual bundle.

Optionally, the configuration file can be of XML or PHP format (config.xml or
config.php). While YAML is simple and readable, XML is more powerful, whereas
PHP is powerful but less readable.

We can use the console tool to dump the entire configuration as shown here:

php bin/console config:dump-reference FrameworkBundle

The preceding example lists the config file for core FrameworkBundle. We can use
the same command to show possible configurations for any bundle that implements
container extension, something we will look into later on.

Symfony has a nice implementation of environment concept. Looking into the
app/config directory, we can see that default Symfony project actually starts
with three different environments:

• config_dev.yml

• config_prod.yml

• config_test.yml

Symfony at a Glance

[132]

Each application can run in various environments. Each environment shares the
same code, but different configuration. Whereas dev environment might make use
of extensive logging, a prod environment might make use of extensive caching.

The way these environments get triggered is via the front controller file, as in the
following partial examples:

web/app.php
…
$kernel = new AppKernel('prod', false);
…

web/app_dev.php
…
$kernel = new AppKernel('dev', true);
…

The test environment is missing here, as it is used only when running automated
tests and cannot be accessed directly via a browser.

The app/AppKernel.php file is the one that actually loads the configuration, whether
it is YAML, XML, or PHP as shown in the following code fragment:

public function registerContainerConfiguration(LoaderInterface
 $loader)
{
 $loader->load($this->getRootDir().'/config/config_'.
 $this->getEnvironment().'.yml');
}

The environments follow the same concept, whereas each environment imports the
base configuration file and then modifies its values to suit the needs of the specific
environment.

The bundle system
Most of the popular frameworks and platforms support some form of modules,
plugins, extensions or bundles. For most of the time, the difference really lies just
in the naming, while the concept of extensibility and modularity is the same. With
Symfony, these modular blocks are called bundles.

Bundles are a first-class citizen in Symfony, as they support all of the operations
available to other components. Everything in Symfony is a bundle, even the core
framework. Bundles enable us to build modularized applications, whereas the
entire code for a given feature is contained within a single directory.

Chapter 5

[133]

A single bundle holds all its PHP files, templates, style sheets, JavaScript files, tests,
and anything else in one root directory.

When we first setup our test app, it created an AppBundle for us, under the src
directory. As we moved forward with the auto-generated CRUD, we saw our
bundle getting all sorts of directories and files.

For a bundle to be noticed by Symfony, it needs to be added to the app/AppKernel.
php file, with the registerBundles method as shown here:

public function registerBundles()
{
 $bundles = [
 new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
 new Symfony\Bundle\SecurityBundle\SecurityBundle(),
 new Symfony\Bundle\TwigBundle\TwigBundle(),
 new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),
 new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),
 //…
 new AppBundle\AppBundle(),
];

 //…

 return $bundles;
}

Creating a new bundle is as simple as creating a single PHP file. Let's go ahead and
create an src/TestBundle/TestBundle.php file with content that looks like:

namespace TestBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class TestBundle extends Bundle
{
 …

}

Once the file is in place, all we need to do is to register it via the registerBundles
method of the app/AppKernel.php file as shown here:

class AppKernel extends Kernel {
//…
 public function registerBundles() {

Symfony at a Glance

[134]

 $bundles = [
 // …
 new TestBundle\TestBundle(),
 // …
];
 return $bundles;
 }
 //…
}

An even easier way to create a bundle would be to just run a console command
as follows:

php bin/console generate:bundle --namespace=Foggyline/TestBundle

This would trigger a series of questions about bundle that in the end results in
bundle creation that looks like the following screenshot:

Chapter 5

[135]

Once the process is complete, a new bundle with several directories and files is
created as shown in the following screenshot:

Bundle generator was kind enough to create controller, dependency injection
extension extension, routing, prepare services configuration, templates, and even
tests. Since we chose to share our bundle, Symfony opted for XML as default
configuration format. The dependency extension simply means we can access our
bundle configuration by using foggyline_test as the root element in Symfony's
main config.yml. The actual foggyline_test element is defined within the
DependencyInjection/Configuration.php file.

Databases and Doctrine
Databases are the backbone of almost every web application. Every time we need
to store or retrieve data, we do so with the help of databases. The challenge in the
modern OOP world is to abstract the database so that our PHP code is database
agnostic. MySQL is probably the most known database in the PHP world. PHP
itself has a great support for working with MySQL, whether it is via the mysqli_*
extension or via PDO. However, both approaches are MySQL specific, to o close
to database. Doctrine solves this problem by introducing a level of abstraction,
enabling us to work with PHP objects that represent tables, rows, and their
relations in MySQL.

Symfony at a Glance

[136]

Doctrine is completely decoupled from Symfony, so using it is completely optional.
The great thing about it, however, is that the Symfony console provides great
auto-generated CRUD based on Doctrine ORM, as we saw in previous examples
when creating Customer entity.

As soon as we created the project, Symfony provided us with an auto-generated
app/config/parameters.yml file. This is the file in which we, among other things,
provide database access information as shown in the following example:

parameters:
database_host: 127.0.0.1
database_port: null
database_name: symfony
database_user: root
database_password: mysql

Once we configure proper parameters, we can use console generation features.

It is worth noting that parameters within this file are merely a convention, as
app/config/config.yml is pulling them under doctrine dbal configuration
like the one shown here:

doctrine:
dbal:
 driver: pdo_mysql
 host: "%database_host%"
 port: "%database_port%"
 dbname: "%database_name%"
 user: "%database_user%"
 password: "%database_password%"
 charset: UTF8

The Symfony console tool allows us to drop and create a database based on this config,
which comes in handy during development, as shown in the following code block:

php bin/console doctrine:database:drop --force
php bin/console doctrine:database:create

We saw previously how the console tool enables us to create entities and their
mapping into database tables. This will suffice for our needs throughout this book.
Once we have them created, we need to be able to perform CRUD operations on them.
If we gloss over the auto-generated CRUD controller src/AppBundle/Controller/
CustomerController.php file, we can the CRUD related code as follows:

// Fetch all entities
$customers = $em->getRepository('AppBundle:Customer')->findAll();

Chapter 5

[137]

// Persist single entity (existing or new)
$em = $this->getDoctrine()->getManager();
$em->persist($customer);
$em->flush();

// Delete single entity
$em = $this->getDoctrine()->getManager();
$em->remove($customer);
$em->flush();

There is a lot more to be said about Doctrine, which is far out of the scope of this
book. More information can be found at the official page (http://www.doctrine-
project.org).

Testing
Nowadays testing has become an integral part of every modern web application.
Usually the term testing implies unit and functional testing. Unit testing is about
testing our PHP classes. Every single PHP class is considered to be a unit, thus
the name unit test. Functional tests on the other hand test various layers of our
application, usually concentrated on testing the functionality overall, like the
sign in or sign up process.

The PHP ecosystem has a great unit testing framework called PHPUnit, available
for download at https://phpunit.de. It enables us to write primarily unit, but also
functional type tests. The great thing about Symfony is that it comes with built in
support for PHPUnit.

Before we can start running Symfony's tests, we need to make sure we have PHPUnit
installed and available as console command. When executed, PHPUnit automatically
tries to pick up and read testing configuration from phpunit.xml or phpunit.xml.
dist within the current working directory, if available. By default Symfony comes
with a phpunit.xml.dist file in its root folder, thus making it possible for the
phpunit command to pick up its test configuration.

The following is a partial example of a default phpunit.xml.dist file:

<phpunit … >
 <php>
 <ini name="error_reporting" value="-1" />
 <server name="KERNEL_DIR" value="app/" />
 </php>

 <testsuites>

http://www.doctrine-project.org
http://www.doctrine-project.org
https://phpunit.de

Symfony at a Glance

[138]

 <testsuite name="Project Test Suite">
 <directory>tests</directory>
 </testsuite>
 </testsuites>

 <filter>
 <whitelist>
 <directory>src</directory>
 <exclude>
 <directory>src/*Bundle/Resources</directory>
 <directory>src/*/*Bundle/Resources</directory>
 <directory>src/*/Bundle/*Bundle/Resources</directory>
 </exclude>
 </whitelist>
 </filter>
</phpunit>

The testsuites element defines the directory tests, in which all of our tests are
located. The filter element with its children is used to configure the whitelist for
the code coverage reporting. The php element with its children is used to configure
PHP settings, constants, and global variables.

Running a phpunit command against a default project like ours would result in
output like the following:

Note that bundle tests are not automatically picked up. Our src/AppBundle/
Tests/Controller/CustomerControllerTest.php file, which was created for us
automatically when we used auto-generated CRUD, was not executed. Not because
its content is commented out by default, but because the bundle test directory isn't
visible to phpunit. To make it execute, we need to extend the phpunit.xml.dist file
by adding to directory testsuite as follows:

<testsuites>
 <testsuite name="Project Test Suite">
 <directory>tests</directory>
 <directory>src/AppBundle/Tests</directory>
 </testsuite>
</testsuites>

Chapter 5

[139]

Depending on how we build our application, we might want to add all of
our bundles to the testsuite list, even if we plan on distributing bundles
independently.

There is plenty more to be said about testing. We will do so bit by bit as we progress
through further chapters and cover the needs of individual bundles. For the moment,
it is suffice to know how to trigger tests and how to add new locations to testing
configuration.

Validation
Validation plays an essential role in modern applications. When talking about web
applications, we can say we differentiate between two main types of validation; form
data and persisted data validation. Taking input from a user via a web form should
be validated, the same as any persisting data that goes into a database.

Symfony excels here by providing a Validation component based on JSR 303 Bean
Validation drafted and available at http://beanvalidation.org/1.0/spec/. If
we look back at our app/config/config.yml, under the framework root element,
we can see that the validation service is turned on by default:

framework:
 validation:{ enable_annotations: true }

We can access the validation service from any controller class by simply calling it
via the $this->get('validator') expression, as shown in the following example:

$customer = new Customer();

$validator = $this->get('validator');

$errors = $validator->validate($customer);

if (count($errors) > 0) {
 // Handle error state
}

// Handle valid state

http://beanvalidation.org/1.0/spec/

Symfony at a Glance

[140]

The problem with the example above is that validation would never return any
errors. The reason for this is that we do not have any assertions set on our class. The
console auto-generated CRUD did not really define any constraints on our Customer
class. We can confirm that by trying to add a new customer and typing in any text in
the e-mail field, as we can see the e-mail wont be validated.

Let's go ahead and edit the src/AppBundle/Entity/Customer.php file by adding
the @Assert\Email function to the $email property like the one shown here:

//…
use Symfony\Component\Validator\Constraints as Assert;
//…
class Customer
{
 //…
 /**
 * @var string
 *
 * @ORM\Column(name="email", type="string", length=255, unique=true)
 * @Assert\Email(
 * checkMX = true,
 * message = "Email '{{ value }}' is invalid.",
 *)
 */
 private $email;
 //…
}

The great thing about assertions constraints is that they accept parameters just as
functions. We can therefore fine-tune individual constraints to our specific needs.
If we now try to skip or add a faulty e-mail address, we would get a message like
Email "john@gmail.test" is invalid.

There are numerous constraints available, for the full list we can consult the
http://symfony.com/doc/current/book/validation.html page.

Constraints can be applied to a class property or a public getter method. While the
property constraints are most common and easy to use, the getter method constraints
allow us to specify more complex validation rules.

http://symfony.com/doc/current/book/validation.html

Chapter 5

[141]

Let's take look at the newAction method of an src/AppBundle/Controller/
CustomerController.php file as follows:

$customer = new Customer();
$form = $this->createForm('AppBundle\Form\CustomerType',
 $customer);
$form->handleRequest($request);

if ($form->isSubmitted() && $form->isValid()) {
// …

Here we see an instance of a CustomerType form being bind to the Customer
instance. The actual GET or POST request data is passed to an instance of a form via
the handleRequest method. The form is now able to understand entity validation
constraints and respond properly via its isValid method call. What this means is
that we do not have to manually validate by using the validation service ourselves,
the forms can do it for us.

We will continue to expand on validation features as we progress through
individual bundles.

Summary
Throughout this chapter we touched on some important functionality, which makes
Symfony so great. Controllers, templates, Doctrine, ORM, forms, and validation
make for a complete solution from data presentation and persistence. We have seen
the flexibility and power behind each of the components. The bundle system takes it
a step further by wrapping these into individual mini applications, or modules. We
are now able to take full control of incoming HTTP requests, manipulate the data
store, and present data to the user, all of this within a single bundle.

Moving forward, in the next chapter, we will utilize the insights and knowledge
gained throughout the previous chapters to finally start building our modular
application according to the requirements.

[143]

Building the Core Module
Up until now we have familiarized ourselves with the latest changes in PHP 7,
design patterns, design principles, and popular PHP frameworks. We also took
a more detailed look into Symfony as our framework of choice moving forward.
We have now finally reached a point where we can start building our modular
application. Building modular applications with Symfony is done via the bundles
mechanism. Terminology-wise, from this point on, we will consider bundle and
module to be the same thing.

In this chapter we will be covering the following topics with respect to the core
module:

• Requirements
• Dependencies
• Implementation
• Unit testing
• Functional testing

Requirements
Looking back in Chapter 4, Requirement Specification for Modular Web Shop App, and the
wireframes presented there, we can outline some of the requirements this module
will have. The core module is going to be used to set general, application-wide
features, as follows:

• Include Foundation CSS for sites to the project
• Build a home page
• Build other static pages

Building the Core Module

[144]

• Build a Contact Us page
• Setup a basic firewall, where admin users can manage all the auto-generated

CRUD from other modules later on

Dependencies
The core module on its own does not have any specific dependencies on other
modules that we are going to write as part of this book, or any other third-party
module outside of standard Symfony installation.

Implementation
We start by creating an entirely new Symfony project, running the following console
command:

symfony new shop

This creates a new shop directory with all of the required files needed to run our
application in the browser. Among these files and directories is the src/AppBundle
directory, which is actually our core module. Before we can run our application in
the browser, we need to map the newly created shop directory to a hostname, let's
say shop.app, so we can access it in the browser via http://shop.app URL. Once
this is done, if we open http://shop.app, we should see Welcome to Symfony 3.1.0
screen as shown here:

Though we have no need for the database just yet, other modules we will develop
later on will assume database connection, so it's worth setting it up right from the
start. We do so by configuring app/config/parameters.yml with proper database
connection parameters.

Chapter 6

[145]

We then download Foundation for Sites from http://foundation.zurb.com/
sites.html. Once downloaded, we need to unpack it and copy over the /js
and /css directories into the Symfony /web directory as shown in the following
screenshot:

It is worth noting that this is a simplified setup of Foundation
that we are using with our module, where we simply use CSS
and JavaScript files without setting up anything relating to Sass.

With Foundation CSS and JavaScript files in place, we edit the app/Resources/
views/base.html.twig file as follows:

<!doctype html>
<html class="no-js"lang="en">
 <head>
 <meta charset="utf-8"/>
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <meta name="viewport" content="width=device-width, initial-
 scale=1.0"/>
 <title>{% block title %}Welcome!{% endblock %}</title>
 <link rel="stylesheet"href="{{ asset('css/foundation.css')
 }}"/>
 {% block stylesheets%}{% endblock %}
 </head>
 <body>
 <!-- START BODY -->

http://foundation.zurb.com/sites.html
http://foundation.zurb.com/sites.html

Building the Core Module

[146]

 <!-- TOP-MENU -->
 <!-- SYSTEM-WIDE-MESSAGES -->
 <!-- PER-PAGE-BODY -->
 <!-- FOOTER -->
 <!-- START BODY -->
 <script src="{{ asset('js/vendor/jquery.js') }}"></script>
 <script src="{{ asset('js/vendor/what-input.js')
 }}"></script>
 <script src="{{ asset('js/vendor/foundation.js')
 }}"></script>
 <script>
 $(document).foundation();
 </script>
 {% block javascripts%}{% endblock %}
 </body>
</html>

Here we are setting the entire head and before body end areas, with all the necessary
CSS and JavaScript loading. The Twigs asset tag helps us with building URL paths,
where we simply pass on the URL path itself and it builds a complete URL for us. In
regard to the actual body of the page, there are several things to consider here. How
are we going to build category, customer, and checkout menus? At this point we do
not have any of these modules, and neither do we want to make them mandatory for
our core module. So how do we solve the challenge of accounting for something that
is not there yet?

What we can do for category, customer, and checkout menus is to define global
Twig variables for each of those menu items that will then be used to render the
menu. These variables will be filed via proper services. Since the core bundle is not
aware of future catalog, customer, and checkout modules, we will initially create a
few dummy services and hook them to global Twig variables. Later on, when we
develop catalog, customer, and checkout modules, those modules will override the
appropriate services, thus providing the right values for into menus.

This approach might not fit ideally with the notion of modular application, but it will
suffice for our needs, as we are not hard-coding any dependencies as such.

We start off by adding the following entry into the app/config/config.yml file:

twig:
...
globals:
category_menu: '@category_menu'
customer_menu: '@customer_menu'
checkout_menu: '@checkout_menu'

Chapter 6

[147]

products_bestsellers: '@bestsellers'
products_onsale: '@onsale'

The category_menu_items, customer_menu_items, checkout_menu_items,
products_bestsellers, and products_onsale variables become global Twig
variables that we can use in any Twig template as shown in the following example:

 {% for category in category_menu.getItems() %}
 {{ category.name }}
 {% endfor %}

The @ character in the Twig global variable config is used to denote a beginning
of the service name. This is the service that will provide a value object for our Twig
variable. Next, we go ahead and create the actual category_menu, customer_menu,
checkout_menu, bestsellers, and onsale services by modifying app/config/
services.yml as follows:

services:
category_menu:
 class: AppBundle\Service\Menu\Category
customer_menu:
 class: AppBundle\Service\Menu\Customer
checkout_menu:
 class: AppBundle\Service\Menu\Checkout
bestsellers:
 class: AppBundle\Service\Menu\BestSellers
onsale:
 class: AppBundle\Service\Menu\OnSale

Furthermore, we create each of the listed service classes under the src/AppBundle/
Service/Menu/ directory. We start with the src/AppBundle/Service/Menu/
Bestsellers.php file with the following content:

namespace AppBundle\Service\Menu;

class BestSellers {
 public function getItems() {
 // Note, this can be arranged as per some "Product"
 interface, so to know what dummy data to return
 return array(
 ay('path' =>'iphone', 'name' =>'iPhone', 'img' =>
 '/img/missing-image.png', 'price' => 49.99,
 'add_to_cart_url' =>'#'),
 array('path' =>'lg', 'name' =>'LG', 'img' =>

Building the Core Module

[148]

 '/img/missing-image.png', 'price' => 19.99,
 'add_to_cart_url' =>'#'),
 array('path' =>'samsung', 'name' =>'Samsung', 'img'
 =>'/img/missing-image.png', 'price' => 29.99,
 'add_to_cart_url' =>'#'),
 array('path' =>'lumia', 'name' =>'Lumia', 'img' =>
 '/img/missing-image.png', 'price' => 19.99,
 'add_to_cart_url' =>'#'),
 array('path' =>'edge', 'name' =>'Edge', 'img' =>
 '/img/missing-image.png', 'price' => 39.99,
 'add_to_cart_url' =>'#'),
);
 }
}

We then add the src/AppBundle/Service/Menu/Category.php file with content
as follows:

class Category {
 public function getItems() {
 return array(
 array('path' =>'women', 'label' =>'Women'),
 array('path' =>'men', 'label' =>'Men'),
 array('path' =>'sport', 'label' =>'Sport'),
);
 }
}

Following this, we add the src/AppBundle/Service/Menu/Checkout.php file with
content as shown here:

class Checkout
{
 public function getItems()
 {
 // Initial dummy menu
 return array(
 array('path' =>'cart', 'label' =>'Cart (3)'),
 array('path' =>'checkout', 'label' =>'Checkout'),
);
 }
}

Chapter 6

[149]

Once this is done, we will go on and add the following content to the
src/AppBundle/Service/Menu/Customer.php file:

class Customer
{
 public function getItems()
 {
 // Initial dummy menu
 return array(
 array('path' =>'account', 'label' =>'John Doe'),
 array('path' =>'logout', 'label' =>'Logout'),
);
 }
}

We then add the src/AppBundle/Service/Menu/OnSale.php file with
the following content:

class OnSale
{
 public function getItems()
 {
 // Note, this can be arranged as per some "Product" interface,
 so to know what dummy data to return
 return array(
 array('path' =>'iphone', 'name' =>'iPhone', 'img' =>
 '/img/missing-image.png', 'price' => 19.99,
 'add_to_cart_url' =>'#'),
 array('path' =>'lg', 'name' =>'LG', 'img' =>
 '/img/missing-image.png', 'price' => 29.99,
 'add_to_cart_url' =>'#'),
 array('path' =>'samsung', 'name' =>'Samsung', 'img'
 =>'/img/missing-image.png', 'price' => 39.99,
 'add_to_cart_url' =>'#'),
 array('path' =>'lumia', 'name' =>'Lumia', 'img' =>
 '/img/missing-image.png', 'price' => 49.99,
 'add_to_cart_url' =>'#'),
 array('path' =>'edge', 'name' =>'Edge', 'img' =>
 '/img/missing-image.png', 'price' => 69.99,
 'add_to_cart_url' =>'#'),
 ;
 }
}

Building the Core Module

[150]

We have now defined five global Twig variables that will be used to build our
application menus. Even though variables are now hooked to a dummy service
that returns nothing more than a dummy array, we have effectively decoupled
menu items into other soon-to-be built modules. When we get to building our
category, customer, and checkout modules later on, we will simply write a service
override and properly fill the menu items array with real items. This would be the
ideal situation.

Ideally we would want our services to return data as per a
certain interface, to make sure whoever overrides it or
extends it does so by interface. Since we are trying to keep our
application at a minimum, we will proceed with simple arrays.

We can now go back to our app/Resources/views/base.html.twig file and
replace <!-- TOP-MENU --> from the preceding code with the following:

<div class="title-bar" data-responsive-toggle="appMenu" data-hide-
 for="medium">
 <button class="menu-icon" type="button" data-toggle></button>
 <div class="title-bar-title">Menu</div>
</div>

<div class="top-bar" id="appMenu">
 <div class="top-bar-left">
 {# category_menu is global twig var filled from service,
 and later overriden by another module service #}
 <ul class="menu">
 HOME
 {% block category_menu %}
 {% for link in category_menu.getItems() %}
 {{ link.label }}
 {% endfor %}
 {% endblock %}

 </div>
 <div class="top-bar-right">
 <ul class="menu">
 {# customer_menu is global twig var filled from
 service, and later overriden by another module
 service #}
 {% block customer_menu %}
 {% for link in customer_menu.getItems() %}
 {{ link.label }}
 {% endfor %}

Chapter 6

[151]

 {% endblock %}
 {# checkout_menu is global twig var filled from
 service, and later overriden by another module service #}
 {% block checkout_menu %}
 {% for link in checkout_menu.getItems() %}
 {{ link.label }}
 {% endfor %}
 {% endblock %}

 </div>
</div>

We can then replace <!-- SYSTEM-WIDE-MESSAGES --> with the following:

<div class="row column">
 {% for flash_message in app.session.flashBag.get('alert') %}
 <div class="alert callout">
 {{ flash_message }}
 </div>
 {% endfor %}
 {% for flash_message in app.session.flashBag.get('warning') %}
 <div class="warning callout">
 {{ flash_message }}
 </div>
 {% endfor %}
 {% for flash_message in app.session.flashBag.get('success') %}
 <div class="success callout">
 {{ flash_message }}
 </div>
 {% endfor %}
</div>

We replace <!-- PER-PAGE-BODY --> with the following:

<div class="row column">
 {% block body %}{% endblock %}
</div>

We replace <!-- FOOTER --> with the following:

<div class="row column">
 <ul class="menu">
 About Us
 Customer
 Service
 Privacy and

Building the Core Module

[152]

 Cookie Policy
 Orders and
 Returns
 Contact Us

</div>

Now we can go ahead and edit the src/AppBundle/Controller/
DefaultController.php file and add the following code to it:

/**
 * @Route("/", name="homepage")
 */
public function indexAction(Request $request)
{
 return $this->render('AppBundle:default:index.html.twig');
}

/**
 * @Route("/about", name="about")
 */
public function aboutAction()
{
 return $this->render('AppBundle:default:about.html.twig');
}

/**
 * @Route("/customer-service", name="customer_service")
 */
public function customerServiceAction()
{
 return $this->render('AppBundle:default:
customer-service.html.twig');
}

/**
 * @Route("/orders-and-returns", name="orders_returns")
 */
public function ordersAndReturnsAction()
{
 return $this->render('AppBundle:default:orders-
returns.html.twig');
}

/**

Chapter 6

[153]

 * @Route("/privacy-and-cookie-policy", name="privacy_cookie")
 */
public function privacyAndCookiePolicyAction()
{
 return $this->render('AppBundle:default:privacy-
 cookie.html.twig');
}

All of the used template files (about.html.twig, customer-service.html.twig,
orders-returns.html.twig, privacy-cookie.html.twig) residing within the
src/AppBundle/Resources/views/default directory can be similarly defined
as follows:

{% extends 'base.html.twig' %}

{% block body %}
<div class="row">
 <h1>About Us</h1>
</div>
<div class="row">
 <p>Loremipsum dolor sit amet, consecteturadipiscingelit...</p>
</div>
{% endblock %}

Here we are merely wrapping header and content into the div elements with the
row class, just to give it some structure. The result should be pages similar to those
shown here:

The Contact Us page requires a different approach as it will contain a form.
To build a form we use Symfony's Form component by adding the following
to the src/AppBundle/Controller/DefaultController.php file:

/**
 * @Route("/contact", name="contact")
 */
public function contactAction(Request $request) {

 // Build a form, with validation rules in place
 $form = $this->createFormBuilder()

Building the Core Module

[154]

 ->add('name', TextType::class, array(
 'constraints' => new NotBlank()
))
 ->add('email', EmailType::class, array(
 'constraints' => new Email()
))
 ->add('message', TextareaType::class, array(
 'constraints' => new Length(array('min' => 3))
))
 ->add('save', SubmitType::class, array(
 'label' =>'Reach Out!',
 'attr' => array('class' =>'button'),
))
 ->getForm();

 // Check if this is a POST type request and if so, handle form
 if ($request->isMethod('POST')) {
 $form->handleRequest($request);

 if ($form->isSubmitted() && $form->isValid()) {
 $this->addFlash(
 'success',
 'Your form has been submitted. Thank you.'
);

 // todo: Send an email out...

 return $this->redirect($this->generateUrl('contact'));
 }
 }

 // Render "contact us" page
 return $this->render('AppBundle:default:contact.html.twig',
 array(
 'form' => $form->createView()
));
}

Here we started off by building a form via form builder. The add methods accept
both field definitions and field constraints upon which validation can be based. We
then added a check for the HTTP POST method, in case of which we feed the form
with request parameters and run validation against it.

Chapter 6

[155]

With the contactAction method in place, we still need a template file to actually
render the form. We do so by adding the src/AppBundle/Resources/views/
default/contact.html.twig file with content that follows:

{% extends 'base.html.twig' %}

{% block body %}

<div class="row">
 <h1>Contact Us</h1>
</div>

<div class="row">
 {{ form_start(form) }}
 {{ form_widget(form) }}
 {{ form_end(form) }}
</div>
{% endblock %}

Based on these few tags, Twig handles the form rendering for us. The resulting
browser output is a page as shown in the following:

We are almost there with getting all of our pages ready. One thing is missing,
though, the body area of our home page. Unlike other pages with static content,
this one is actually dynamic, as it lists bestsellers and products on sale. This data is
expected to come from other modules, which are not available yet. Still, this does
not mean we cannot prepare dummy placeholders for them. Let's go ahead and edit
the app/Resources/views/default/index.html.twig file as follows:

{% extends 'base.html.twig' %}
{% block body %}
<!--products_bestsellers -->

Building the Core Module

[156]

<!--products_onsale -->
{% endblock %}

Now we need to replace <!-- products_bestsellers --> with the following:

{% if products_bestsellers %}
<h2 class="text-center">Best Sellers</h2>
<div class="row products_bestsellers text-center small-up-1
 medium-up-3 large-up-5" data-equalizer data-equalize-by-
 row="true">
 {% for product in products_bestsellers.getItems() %}
 <div class="column product">

 {{ product.name }}
 <div>${{ product.price }}</div>
 <div><a class="small button"href="{{ product.add_to_cart_url
 }}">Add to Cart</div>
 </div>
 {% endfor %}
</div>
{% endif %}

Now we need to replace <!-- products_onsale -->with the following:

{% if products_onsale %}
<h2 class="text-center">On Sale</h2>
<div class="row products_onsale text-center small-up-1 medium-up-3
 large-up-5" data-equalizer data-equalize-by-row="true">
 {% for product in products_onsale.getItems() %}
 <div class="column product">

 {{ product.name }}
 <div>${{ product.price }}</div>
 <div><a class="small button"
 href="{{ product.add_to_cart_url }}"
 >Add to Cart</div>
 </div>
 {% endfor %}
</div>
{% endif %}

The http://dummyimage.com enables us
to create a placeholder images for our app.

http://dummyimage.com

Chapter 6

[157]

At this point we should be seeing the home page as shown here:

Configuring application-wide security
What we are trying to achieve as part of our applicationwide security is to set some
basic protection against future customers or any other user being able to access
and use future auto-generated CRUD controllers. We do so by modifying the app/
config/security.yml file. There are several components to the security.yml file
we need to address: Firewalls, access control, providers, and encoders. If we observe
the auto-generated CRUD from the previous test app, it becomes clear that we need
to protect the following from customer access:

• GET|POST /new

• GET|POST /{id}/edit

• DELETE /{id}

Building the Core Module

[158]

In another words, everything that has /new and /edit in the URL, and everything
that is of DELETE method, needs to be protected from the customer. With that in
mind, we will use Symfony security features to create an in-memory user of role
ROLE_ADMIN. We will then create an access control list that allows only ROLE_ADMIN
to access the resources we just mentioned, and a firewall that triggers an HTTP basic
authentication login form when we try to access these resources.

Using an in-memory provider means hard-coding users in our security.yml file.
For purposes of our application, we will do so for the admin type of users. The
actual password, however, does not need to be hard-coded. Assuming we will use
1L6lllW9zXg0 for the password, let's jump to the console and type in the following
command:

php bin/console security:encode-password

This will produce an output as follows.

We can now edit security.yml by adding an in-memory provider and copy-paste
the generated encoded password into it, as shown here:

security:
 providers:
 in_memory:
 memory:
 users:
 john:
 password:
 $2y$12$DFozWehwPkp14sVXr7.IbusW8ugvmZs9dQMExlggtyEa/TxZUStnO
 roles: 'ROLE_ADMIN'

Here we defined a user john of role ROLE_ADMIN with an encoded 1L6lllW9zXg0
password.

Chapter 6

[159]

Once we have the providers in place, we can go ahead and add encoders to our
security.yml file. Otherwise Symfony would not know what to make of the
current password assigned to john user:

security:
 encoders:
 Symfony\Component\Security\Core\User\User:
 algorithm: bcrypt
 cost: 12

Then we add the firewall as follows:

security:
 firewalls:
 guard_new_edit:
 pattern: /(new)|(edit)
 methods: [GET, POST]
 anonymous: ~
 http_basic: ~
 guard_delete:
 pattern: /
 methods: [DELETE]
 anonymous: ~
 http_basic: ~

The guard_new_edit and guard_delete names are freely given names to our two
application firewalls. The guard_new_edit firewall will be intercepting all GET
and POST requests to any route containing the /new or /edit string in its URL. The
guard_delete firewall will be intercepting any HTTP DELETE method on any URL.
Once these firewalls kick in, they will show an HTTP basic authentication form, and
only allow access if the user is logged in.

Then we add the access control list as follows:

security:
 access_control:
 # protect any possible auto-generated CRUD actions from
 everyone's access
 - { path: /new, roles: ROLE_ADMIN }
 - { path: /edit, roles: ROLE_ADMIN }
 - { path: /, roles: ROLE_ADMIN, methods: [DELETE] }

Building the Core Module

[160]

With these entries in place, an one who tries to access any URL with any
of the patterns defined under access_control will be presented with the
browser login as shown here:

The only user that can login is john with the password 1L6lllW9zXg0. Once
authenticated, the user can access all the CRUD links. This should be enough
for our simple application.

Unit testing
Our current module has no specific classes other than the controller class and the
dummy service class. Therefore, we won't bother ourselves with unit tests here.

Functional testing
Before we start writing our functional tests, we need to edit the phpunit.xml.dist
file by adding our bundle Tests directory to the testsuite paths, as follows:

<testsuites>
 <testsuite name="Project Test Suite">
 <-- ... other elements ... -->
 <directory>src/AppBundle/Tests</directory>
 <-- ... other elements ... -->
 </testsuite>
</testsuites>

Our functional tests will cover only one controller, since we have no other. We start
off by creating a src/AppBundle/Tests/Controller/DefaultControllerTest.
php file with content as follows:

namespace AppBundle\Tests\Controller;

Chapter 6

[161]

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class DefaultControllerTest extends WebTestCase
{
//…
}

The next step is to test each and every one of our controller actions. At the very least
we should test if the page content is being outputted properly.

To get an auto-complete in our IDE we can download the
PHPUnitphar file from the official site here https://phpunit.de.
Once downloaded, we can simply add it to the root of our project, so
that IDE, like PHPStorm, picks it up. This makes it easy to follow
up on all those $this->assert method calls and their parameters.

The first thing we want to test is our home page. We do so by adding the following
to the body of the DefaultControllerTest class.

public function testHomepage()
{
 // @var \Symfony\Bundle\FrameworkBundle\Client
 $client = static::createClient();
 /** @var \Symfony\Component\DomCrawler\Crawler */
 $crawler = $client->request('GET', '/');

 // Check if homepage loads OK
 $this->assertEquals(200, $client->getResponse()
 ->getStatusCode());

 // Check if top bar left menu is present
 $this->assertNotEmpty($crawler->filter('.top-bar-left li')
 ->count());

 // Check if top bar right menu is present
 $this->assertNotEmpty($crawler->filter('.top-bar-right li')
 ->count());

 // Check if footer is present
 $this->assertNotEmpty($crawler->filter('.footer li')
 ->children()->count());
}

https://phpunit.de

Building the Core Module

[162]

Here we are checking several things at once. We are checking with the page loads
OK, with HTTP 200 status. Then we are grabbing the left and right menu and
counting their the items to see if they have any. If all of the individual checks pass,
the testHomepage test is considered to have passed.

We further test all of the static pages by adding the following to the
DefaultControllerTest class:

public function testStaticPages()
{
 // @var \Symfony\Bundle\FrameworkBundle\Client
 $client = static::createClient();
 /** @var \Symfony\Component\DomCrawler\Crawler */

 // Test About Us page
 $crawler = $client->request('GET', '/about');
 $this->assertEquals(200, $client->getResponse()
 ->getStatusCode());
 $this->assertContains('About Us', $crawler->filter('h1')
 ->text());

 // Test Customer Service page
 $crawler = $client->request('GET', '/customer-service');
 $this->assertEquals(200, $client->getResponse()
 ->getStatusCode());
 $this->assertContains('Customer Service', $crawler
 ->filter('h1')->text());

 // Test Privacy and Cookie Policy page
 $crawler = $client->request('GET', '/privacy-and-cookie-
 policy');
 $this->assertEquals(200, $client->getResponse()
 ->getStatusCode());
 $this->assertContains('Privacy and Cookie Policy', $crawler
 ->filter('h1')->text());

 // Test Orders and Returns page
 $crawler = $client->request('GET', '/orders-and-returns');
 $this->assertEquals(200, $client->getResponse()
 ->getStatusCode());
 $this->assertContains('Orders and Returns', $crawler
 ->filter('h1')->text());

 // Test Contact Us page
 $crawler = $client->request('GET', '/contact');

Chapter 6

[163]

 $this->assertEquals(200, $client->getResponse()
 ->getStatusCode());
 $this->assertContains('Contact Us', $crawler->filter('h1')
 ->text());
}

Here we are running the same assertEquals and assertContains functions for all
of our pages. We are merely trying to confirm that each page is loaded with HTTP
200, and that the proper value is returned for the page title, that is to say, the h1
element.

Finally, we address the form submission test which we perform by adding the
following into the DefaultControllerTest class:

public function testContactFormSubmit()
{
 // @var \Symfony\Bundle\FrameworkBundle\Client
 $client = static::createClient();
 /** @var \Symfony\Component\DomCrawler\Crawler */
 $crawler = $client->request('GET', '/contact');

 // Find a button labeled as "Reach Out!"
 $form = $crawler->selectButton('Reach Out!')->form();

 // Note this does not validate form, it merely tests against
 submission and response page
 $crawler = $client->submit($form);
 $this->assertEquals(200, $client->getResponse()
 ->getStatusCode());
}

Here we are grabbing the form element through its Reach Out! submit button.
Once the form is fetched, we trigger the submit method on the client passing it the
instance from element. It is worth noting that the actual form validation is not being
tested here. Even so, the submitted form should result in an HTTP 200 status.

These tests are conclusive. We can write them to be much more robust if we wanted
to, as there are numerous elements we can test against.

Building the Core Module

[164]

Summary
In this chapter we have built our first module, or bundle in Symfony terminology.
The module itself is not really loosely coupled, as it relies on some of the things
within the app directory, such as the app/Resources/views/base.html.twig
layout template. We can get away with this when it comes to core modules, as they
are merely a foundation we are setting up for rest of the modules.

Moving forward, in the next chapter, we will build a catalog module. This will be the
basis of our web shop application.

[165]

Building the Catalog Module
The catalog module is an essential part of every web shop application. At the very
basic level, it is responsible for the management and display of categories and
products. It is a foundation for later modules, such as checkout, that add the
actual sales capabilities to our web shop application.

The more robust catalog features might include mass product imports, product
exports, multi-warehouse inventory management, private members categories,
and so on. These however, are out of the scope of this chapter.

In this chapter, we will be covering following topics:

• Requirements
• Dependencies
• Implementation
• Unit testing
• Functional testing

Requirements
Following the high level application requirements, defined in Chapter 4, Requirement
Specification for Modular Web Shop App, our module will have several entities and
other specific features implemented.

Following is a list of required module entities:

• Category
• Product

Building the Catalog Module

[166]

The Category entity includes the following properties and their data types:

• id: integer, auto-increment
• title: string
• url_key: string, unique
• description: text
• image: string

The Product entity includes the following properties:

• id: integer, auto-increment
• category_id: integer, foreign key that references the category table ID column
• title: string
• price: decimal
• sku: string, unique
• url_key: string, unique
• description: text
• qty: integer
• image: string
• onsale: boolean

Aside from just adding these entities and their CRUD pages, we also need to override
the core module services responsible for building the category menu and on sale
items.

Dependencies
The module has no firm dependencies on any other module. The Symfony
framework service layer enables us to code modules in such a way that, most of
the time, there is no need for a dependency between them. While the module does
override a service defined in the core module, the module itself is not dependent
on it, as nothing will break if the overriding service is missing.

Implementation
We start off by creating a new module called Foggyline\CatalogBundle. We do so
with the help of the console, by running the command as follows:

php bin/console generate:bundle --namespace=Foggyline/CatalogBundle

Chapter 7

[167]

The command triggers an interactive process that asks us several questions along the
way, as shown in the following screenshot:

Building the Catalog Module

[168]

Once done, the following structure is generated for us:

If we now take a look at the app/AppKernel.php file, we would see the following
line under the registerBundles method:

new Foggyline\CatalogBundle\FoggylineCatalogBundle()

Similarly, the app/config/routing.yml has the following route definition added
to it:

foggyline_catalog:
 resource: "@FoggylineCatalogBundle/
 Resources/config/routing.xml"
 prefix: /

Here we need to change prefix: / into prefix: /catalog/, so we don't collide
with core module routes. Leaving it as prefix: / would simply overrun our core
AppBundle and output Hello World! from the src/Foggyline/CatalogBundle/
Resources/views/Default/index.html.twig template to the browser at this point.
We want to keep things nice and separated. What this means is that the module does
not define the root route for itself.

Chapter 7

[169]

Creating entities
Let's go ahead and create a Category entity. We do so by using the console, as
shown here:

php bin/console generate:doctrine:entity

Building the Catalog Module

[170]

This creates the Entity/Category.php and Repository/CategoryRepository.
php files within the src/Foggyline/CatalogBundle/ directory. After this, we need
to update the database, so it pulls in the Category entity, as shown in the following
command line instance:

php bin/console doctrine:schema:update --force

This results in a screen that looks similar to the following screenshot:

With entity in place, we are ready to generate its CRUD. We do so by using the
following command:

php bin/console generate:doctrine:crud

This results with interactive output as shown here:

Chapter 7

[171]

This results in src/Foggyline/CatalogBundle/Controller/
CategoryController.php being created. It also adds an entry to our app/config/
routing.yml file as follows:

foggyline_catalog_category:
 resource: "@FoggylineCatalogBundle/Controller/
 CategoryController.php"
 type: annotation

Furthermore, the view files are created under the app/Resources/views/
category/ directory, which is not what we might expect. We want them under our
module src/Foggyline/CatalogBundle/Resources/views/Default/category/
directory, so we need to copy them over. Additionally, we need to modify all
of the $this->render calls within our CategoryController by appending the
FoggylineCatalogBundle:default: string to each of the template paths.

Next, we go ahead and create the Product entity by using the interactive generator
as discussed earlier:

php bin/console generate:doctrine:entity

We follow the interactive generator, respecting the minimum of the following
attributes: title, price, sku, url_key, description, qty, category, and image.
Aside from price and qty, which are of types decimal and integer, all other
attributes are of type string. Furthermore, sku and url_key are flagged as unique.
This creates the Entity/Product.php and Repository/ProductRepository.php
files within the src/Foggyline/CatalogBundle/ directory.

Similar to what we have done for the Category view templates, we need to do for
the Product view templates. That is, copy them over from the app/Resources/
views/product/ directory to src/Foggyline/CatalogBundle/Resources/
views/Default/product/ and update all of the $this->render calls within our
ProductController by appending the FoggylineCatalogBundle:default:
string to each of the template paths.

At this point, we won't rush updating the schema, as we want to add proper
relations to our code. Each product should be able to have a relation to a single
Category entity. To achieve this, we need to edit Category.php and Product.php
from within the src/Foggyline/CatalogBundle/Entity/ directory, as follows:

// src/Foggyline/CatalogBundle/Entity/Category.php

/**
 * @ORM\OneToMany(targetEntity="Product", mappedBy="category")
 */

Building the Catalog Module

[172]

private $products;

public function __construct()
{
 $this->products = new \Doctrine\Common\Collections\
ArrayCollection();
}

// src/Foggyline/CatalogBundle/Entity/Product.php

/**
 * @ORM\ManyToOne(targetEntity="Category", inversedBy="products")
 * @ORM\JoinColumn(name="category_id", referencedColumnName="id")
 */
private $category;

We further need to edit the Category.php file by adding the __toString method
implementation to it, as follows:

public function __toString()
{
 return $this->getTitle();
}

The reason we are doing so is that, later on, our Product-editing form would know
what labels to list under the Category selection, otherwise the system would throw
the following error:

Catchable Fatal Error: Object of class
 Foggyline\CatalogBundle\Entity\Category could not be converted
 to string

With the above changes in place, we can now run the schema update, as follows:

php bin/console doctrine:schema:update --force

If we now take a look at our database, the CREATE command syntax for our product
table looks like the following:

CREATE TABLE `product` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `category_id` int(11) DEFAULT NULL,
 `title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `price` decimal(10,2) NOT NULL,
 `sku` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `url_key` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `description` longtext COLLATE utf8_unicode_ci,

Chapter 7

[173]

 `qty` int(11) NOT NULL,
 `image` varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `UNIQ_D34A04ADF9038C4` (`sku`),
 UNIQUE KEY `UNIQ_D34A04ADDFAB7B3B` (`url_key`),
 KEY `IDX_D34A04AD12469DE2` (`category_id`),
 CONSTRAINT `FK_D34A04AD12469DE2` FOREIGN KEY (`category_id`)
 REFERENCES `category` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

We can see two unique keys and one foreign key restraint defined, as per the entries
provided to our interactive entity generator. Now we are ready to generate the
CRUD for our Product entity. To do so, we run the generate:doctrine:crud
command and follow the interactive generator as shown here:

Building the Catalog Module

[174]

Managing image uploads
At this point, if we access either /category/new/ or /product/new/ URL, the
image field is just a simple input text field, not the actual image upload we would
like. To make it into an image upload field, we need to edit the $image property of
Category.php and Product.php as follows:

//…
use Symfony\Component\Validator\Constraints as Assert;
//…
class [Category|Product]
{
 //…
 /**
 * @var string
 *
 * @ORM\Column(name="image", type="string", length=255,
 nullable=true)
 * @Assert\File(mimeTypes={ "image/png", "image/jpeg" },
 mimeTypesMessage="Please upload the PNG or JPEG image
 file.")
 */
 private $image;
 //…
}

As soon as we do so, the input fields turn into the file upload fields, as shown here:

Next, we will go ahead and implement the upload functionality into the forms.

We do so by first defining the service that will handle the actual upload. Service is
defined by adding the following entry into the src/Foggyline/CatalogBundle/
Resources/config/services.xml file, under the services element:

<service id="foggyline_catalog.image_uploader"
 class="Foggyline\CatalogBundle\Service\ImageUploader">
 <argument>%foggyline_catalog_images_directory%</argument>
</service>

The %foggyline_catalog_images_directory% argument value is the name of a
parameter the we will soon define.

Chapter 7

[175]

We then create the src/Foggyline/CatalogBundle/Service/ImageUploader.php
file with content as follows:

namespace Foggyline\CatalogBundle\Service;

use Symfony\Component\HttpFoundation\File\UploadedFile;

class ImageUploader
{
 private $targetDir;

 public function __construct($targetDir)
 {
 $this->targetDir = $targetDir;
 }

 public function upload(UploadedFile $file)
 {
 $fileName = md5(uniqid()) . '.' . $file->guessExtension();
 $file->move($this->targetDir, $fileName);
 return $fileName;
 }
}

We then create our own parameters.yml file within the src/Foggyline/
CatalogBundle/Resources/config directory with content as follows:

parameters:
 foggyline_catalog_images_directory: "%kernel.root_dir%/../
 web/uploads/foggyline_catalog_images"

This is the parameter our service expects to find. It can easily be overridden with the
same entry under app/config/parameters.yml if needed.

In order for our bundle to see the parameters.yml file, we still need to edit the
FoggylineCatalogExtension.php file within the src/Foggyline/CatalogBundle/
DependencyInjection/ directory, by adding the following loader to the end of
the load method:

$loader = new Loader\YamlFileLoader($container, new
 FileLocator(__DIR__.'/../Resources/config'));
$loader->load('parameters.yml');

Building the Catalog Module

[176]

At this point, our Symfony module is able to read its parameters.yml, thus making
it possible for the defined service to pickup the proper value for its argument. All
that is left is to adjust the code for our new and edit forms, attaching the upload
functionality to them. Since both forms are the same, the following is a Category
example that equally applies to the Product form as well:

public function newAction(Request $request) {
 // ...

 if ($form->isSubmitted() && $form->isValid()) {
 /* @var $image \Symfony\Component\
 HttpFoundation\File\UploadedFile */
 if ($image = $category->getImage()) {
 $name = $this->get('foggyline_catalog.image_uploader')
 ->upload($image);
 $category->setImage($name);
 }

 $em = $this->getDoctrine()->getManager();
 // ...
 }

 // ...
}

public function editAction(Request $request, Category $category) {
 $existingImage = $category->getImage();
 if ($existingImage) {
 $category->setImage(
 new File($this->getParameter
 ('foggyline_catalog_images_directory') . '/' .
 $existingImage)
);
 }

 $deleteForm = $this->createDeleteForm($category);
 // ...

 if ($editForm->isSubmitted() && $editForm->isValid()) {
 /* @var $image \Symfony\Component\HttpFoundation\
 File\UploadedFile */
 if ($image = $category->getImage()) {
 $name = $this->get('foggyline_catalog.image_uploader')
 ->upload($image);
 $category->setImage($name);

Chapter 7

[177]

 } elseif ($existingImage) {
 $category->setImage($existingImage);
 }

 $em = $this->getDoctrine()->getManager();
 // ...
 }

 // ...
}

Both the new and edit forms should now be able to handle file uploads.

Overriding core module services
Now let's go ahead and address the category menu and the on-sale items. Back
when we were building the core module, we defined the global variables under
the twig:global section of the app/config/config.yml file. These variables were
pointing to services defined in the app/config/services.yml file. In order for us to
change the content of the category menu and the on sale items, we need to override
those services.

We start off by adding the following two service definitions under the src/
Foggyline/CatalogBundle/Resources/config/services.xml file:

<service id="foggyline_catalog.category_menu"
 class="Foggyline\CatalogBundle\Service\Menu\Category">
 <argument type="service" id="doctrine.orm.entity_manager" />
 <argument type="service" id="router" />
</service>

<service id="foggyline_catalog.onsale"
 class="Foggyline\CatalogBundle\Service\Menu\OnSale">
 <argument type="service" id="doctrine.orm.entity_manager" />
 <argument type="service" id="router" />
</service>

Both of the services accept the Doctrine ORM entity manager and router service
arguments, as we will need to use those internally.

We then create the actual Category and OnSale service classes within the src/
Foggyline/CatalogBundle/Service/Menu/ directory as follows:

//Category.php

namespace Foggyline\CatalogBundle\Service\Menu;

Building the Catalog Module

[178]

class Category
{
 private $em;
 private $router;

 public function __construct(
 \Doctrine\ORM\EntityManager $entityManager,
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->em = $entityManager;
 $this->router = $router;
 }

 public function getItems()
 {
 $categories = array();
 $_categories = $this->em->getRepository
 ('FoggylineCatalogBundle:Category')->findAll();

 foreach ($_categories as $_category) {
 /* @var $_category \Foggyline\CatalogBundle\
 Entity\Category */
 $categories[] = array(
 'path' => $this->router->generate('category_show',
 array('id' => $_category->getId())),
 'label' => $_category->getTitle(),
);
 }

 return $categories;
 }
}
 //OnSale.php

namespace Foggyline\CatalogBundle\Service\Menu;

class OnSale
{
 private $em;
 private $router;

 public function __construct(\Doctrine\ORM\
 EntityManager $entityManager, $router)
 {

Chapter 7

[179]

 $this->em = $entityManager;
 $this->router = $router;
 }

 public function getItems()
 {
 $products = array();
 $_products = $this->em->getRepository
 ('FoggylineCatalogBundle:Product')->findBy(
 array('onsale' => true),
 null,
 5
);

 foreach ($_products as $_product) {
 /* @var $_product \Foggyline\CatalogBundle\
 Entity\Product */
 $products[] = array(
 'path' => $this->router->generate('product_show',
 array('id' => $_product->getId())),
 'name' => $_product->getTitle(),
 'image' => $_product->getImage(),
 'price' => $_product->getPrice(),
 'id' => $_product->getId(),
);
 }

 return $products;
 }
}

This alone won't trigger the override of the core module services. Within the src/
Foggyline/CatalogBundle/DependencyInjection/Compiler/ directory we
need to create an OverrideServiceCompilerPass class that implements the
CompilerPassInterface. Within its process method, we can then change the
definition of the service, as follows:

namespace Foggyline\CatalogBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\
 CompilerPassInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class OverrideServiceCompilerPass implements CompilerPassInterface
{

Building the Catalog Module

[180]

 public function process(ContainerBuilder $container)
 {
 // Override the core module 'category_menu' service
 $container->removeDefinition('category_menu');
 $container->setDefinition('category_menu',
 $container->getDefinition
 ('foggyline_catalog.category_menu'));

 // Override the core module 'onsale' service
 $container->removeDefinition('onsale');
 $container->setDefinition('onsale',
 $container->getDefinition('foggyline_catalog.onsale'));
 }
}

Finally, we need to edit the build method of the src/Foggyline/CatalogBundle/
FoggylineCatalogBundle.php file in order to add this compiler pass as shown here:

public function build(ContainerBuilder $container)
{
 parent::build($container);
 $container->addCompilerPass(new \Foggyline\CatalogBundle\
 DependencyInjection\Compiler\OverrideServiceCompilerPass());
}

Now our Category and OnSale services should override the ones defined in the core
module, thus providing the right values for the header Category menu and On Sale
section of the homepage.

Setting up a Category page
The auto-generated CRUD made a Category page for us with the layout as follows:

Chapter 7

[181]

This is significantly different from the Category page defined under Chapter 4,
Requirement Specification for Modular Web Shop App. We therefore need to make amends
to our Category Show page, by modifying the show.html.twig file within the src/
Foggyline/CatalogBundle/Resources/views/Default/category/ directory. We
do so by replacing the entire content of body block with code as follows:

<div class="row">
 <div class="small-12 large-12 columns text-center">
 <h1>{{ category.title }}</h1>
 <p>{{ category.description }}</p>
 </div>
</div>

<div class="row">
 <img src="{{ asset('uploads/foggyline_catalog_images/' ~
 category.image) }}"/>
</div>

{% set products = category.getProducts() %}
{% if products %}
<div class="row products_onsale text-center small-up-1
 medium-up-3 large-up-5" data-equalizer
 data-equalize-by-row="true">
{% for product in products %}
<div class="column product">

Building the Catalog Module

[182]

 <img src="{{ asset('uploads/
 foggyline_catalog_images/' ~ product.image) }}"
 alt="missing image"/>
 <a href="{{ path('product_show', {'id':
 product.id}) }}">{{ product.title }}

 <div>${{ product.price }}</div>
 <div><a class="small button" href="{{
 path('product_show', {'id': product.id})
 }}">View</div>
 </div>
 {% endfor %}
</div>
{% else %}
<div class="row">
 <p>There are no products assigned to this category.</p>
</div>
{% endif %}

{% if is_granted('ROLE_ADMIN') %}

 <a href="{{ path('category_edit', { 'id': category.id
 }) }}">Edit

 {{ form_start(delete_form) }}
 <input type="submit" value="Delete">
 form_end(delete_form) }}

{% endif %}

The body is now sectioned into three areas. First, we are addressing the category
title and description output. We are then fetching and looping through the list of
products assigned to category, rendering each individual product. Finally, we are
using the is_granted Twig extension to check if the current user role is ROLE_ADMIN,
in which case we show the Edit and Delete links for the category.

Chapter 7

[183]

Setting up a Product page
The auto-generated CRUD made a Product page for us with the layout as follows:

This differs from the Product page defined under Chapter 4, Requirement Specification
for Modular Web Shop App. To rectify the problem, we need to make amends to
our Product Show page, by modifying the show.html.twig file within the src/
Foggyline/CatalogBundle/Resources/views/Default/product/ directory. We
do so by replacing entire content of body block with code as follows:

<div class="row">
 <div class="small-12 large-6 columns">
 <img class="thumbnail" src="{{ asset('uploads/
 foggyline_catalog_images/' ~ product.image) }}"/>
 </div>
 <div class="small-12 large-6 columns">
 <h1>{{ product.title }}</h1>
 <div>SKU: {{ product.sku }}</div>
 {% if product.qty %}
 <div>IN STOCK</div>
 {% else %}
 <div>OUT OF STOCK</div>
 {% endif %}
 <div>$ {{ product.price }}</div>
 <form action="{{ add_to_cart_url.getAddToCartUrl

Building the Catalog Module

[184]

 (product.id) }}" method="get">
 <div class="input-group">
 Qty
 <input class="input-group-field" type="number">
 <div class="input-group-button">
 <input type="submit" class="button" value=
 "Add to Cart">
 </div>
 </div>
 </form>
 </div>
</div>

<div class="row">
 <p>{{ product.description }}</p>
</div>

{% if is_granted('ROLE_ADMIN') %}

 <a href="{{ path('product_edit', { 'id': product.id })
 }}">Edit

 {{ form_start(delete_form) }}
 <input type="submit" value="Delete">
 {{ form_end(delete_form) }}

{% endif %}

The body is now sectioned into two main areas. First, we are addressing the product
image, title, stock status, and add to cart output. The add to cart form uses the
add_to_cart_url service to provide the right link. This service is defined under the
core module and, at this point, only provides a dummy link. Later on, when we get
to the checkout module, we will implement an override for this service and inject
the right add to cart link. We then output the description section. Finally, we use the
is_granted Twig extension, like we did on the Category example, to determine if
the user can access the Edit and Delete links for a product.

Chapter 7

[185]

Unit testing
We now have several class files that are not related to the controllers, meaning we
can run unit tests against them. Still, we won't be going after a full code coverage as
part of this book, rather focus on some of the little-big things, like using containers
within our test classes.

We start of by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/CatalogBundle/Tests</directory>

With that in place, running the phpunit command from the root of our shop should
pick up any test we have defined under the src/Foggyline/CatalogBundle/
Tests/ directory.

Now let's go ahead and create a test for our Category service menu. We do so by
creating an src/Foggyline/CatalogBundle/Tests/Service/Menu/CategoryTest.
php file with the following content:

namespace Foggyline\CatalogBundle\Tests\Service\Menu;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;
use Foggyline\CatalogBundle\Service\Menu\Category;

class CategoryTest extends KernelTestCase
{
 private $container;
 private $em;
 private $router;

 public function setUp()
 {
 static::bootKernel();
 $this->container = static::$kernel->getContainer();
 $this->em = $this->container->get
 ('doctrine.orm.entity_manager');
 $this->router = $this->container->get('router');
 }

 public function testGetItems()
 {
 $service = new Category($this->em, $this->router);
 $this->assertNotEmpty($service->getItems());
 }

Building the Catalog Module

[186]

 protected function tearDown()
 {
 $this->em->close();
 unset($this->em, $this->router);
 }
}

The preceding example shows the usage of the setUp and tearDown method calls,
which are analogous in behavior to the PHP's __construct and __destruct
methods. We use the setUp method to set the entity manager and router service that
we can use through out the rest of the class. The tearDown method is merely a clean
up. Now if we run the phpunit command, we should see our test being picked up
and executed alongside other tests.

We can even target this class specifically by executing a phpunit command with the
full class path, as shown here:

phpunit src/Foggyline/CatalogBundle/Tests/Service/
 Menu/CategoryTest.php

Similarly to what we did for CategoryTest, we can go ahead and create
OnSaleTest; the only difference between the two being the class name.

Functional testing
The great thing about the auto-generate CRUD tool is that it generates even
the functional tests for us. More specifically, in this case, it generated the
CategoryControllerTest.php and ProductControllerTest.php files
within the src/Foggyline/CatalogBundle/Tests/Controller/ directory.

Auto-generated functional tests have a commented out
methods within class body. This throws an error during
the phpunit run. We need to at least define a dummy
test method in them to allow phpunit to overlook
them.

If we look into these two files, we can see that they both have a single
testCompleteScenario method defined, which is entirely commented out. Let's go
ahead and change the CategoryControllerTest.php content as follows:

// Create a new client to browse the application
$client = static::createClient(
 array(), array(
 'PHP_AUTH_USER' => 'john',
 'PHP_AUTH_PW' => '1L6lllW9zXg0',

Chapter 7

[187]

)
);

// Create a new entry in the database
$crawler = $client->request('GET', '/category/');
$this->assertEquals(200, $client->getResponse()->getStatusCode(),
 "Unexpected HTTP status code for GET /product/");
$crawler = $client->click($crawler->selectLink('Create a new
 entry')->link());

// Fill in the form and submit it
$form = $crawler->selectButton('Create')->form(array(
 'category[title]' => 'Test',
 'category[urlKey]' => 'Test urlKey',
 'category[description]' => 'Test description',
));

$client->submit($form);
$crawler = $client->followRedirect();

// Check data in the show view
$this->assertGreaterThan(0, $crawler
 ->filter('h1:contains("Test")')->count(),
 'Missing element h1:contains("Test")');

// Edit the entity
$crawler = $client->click($crawler->selectLink('Edit')->link());

$form = $crawler->selectButton('Edit')->form(array(
 'category[title]' => 'Foo',
 'category[urlKey]' => 'Foo urlKey',
 'category[description]' => 'Foo description',
));

$client->submit($form);
$crawler = $client->followRedirect();

// Check the element contains an attribute with value equals "Foo"
$this->assertGreaterThan(0, $crawler->filter('[value="Foo"]')
 ->count(), 'Missing element [value="Foo"]');

// Delete the entity
$client->submit($crawler->selectButton('Delete')->form());
$crawler = $client->followRedirect();

Building the Catalog Module

[188]

// Check the entity has been delete on the list
$this->assertNotRegExp('/Foo title/', $client->getResponse()
 ->getContent());

We started off by setting PHP_AUTH_USER and PHP_AUTH_PW as parameters for the
createClient method. This is because our /new and /edit routes are protected
by the core module security. These settings allow us to pass the basic HTTP
authentication along the request. We then tested if the category listing page can be
accessed and if its Create a new entry link can be clicked. Furthermore, both the
create and edit forms were tested, along with their results.

All that remains is to repeat the approach we just used for
CategoryControllerTest.php with ProductControllerTest.php.
We simply need to change a few labels within the ProductControllerTest
class file to match the product routes and expected results.

Running the phpunit command now should successfully execute our tests.

Summary
Throughout this chapter we have built a miniature, but functional, catalog module.
It allowed us to create, edit, and delete categories and products. By adding a few
custom lines of code on top of the auto-generated CRUD, we were able to achieve
image upload functionality for both categories and products. We also saw how
to override the core module service, by simply removing the existing service
definition and providing a new one. In regard to tests, we saw how we can pass
the authentication along our requests to test for protected routes.

Moving forward, in the next chapter, we will build a customer module.

[189]

Building the
Customer Module

The customer module provides a basis for further sales functionality of our web
shop. At the very basic level, it is responsible for register, login, management and
display of relevant customer information. It is a requirement for the later sales
module, that adds the actual sales capabilities to our web shop application.

In this chapter we will be covering following topics:

• Requirements
• Dependencies
• Implementation
• Unit testing
• Functional testing

Requirements
Following the high level application requirements, defined under Chapter 4,
Requirement Specification for Modular Web Shop App, our module will have a
single Customer entity defined.

The Customer entity includes the following properties:

• id: integer, auto-increment
• email: string, unique
• username: string, unique, needed for login system
• password: string

Building the Customer Module

[190]

• first_name: string
• last_name: string
• company: string
• phone_number: string
• country: string
• state: string
• city: string
• postcode: string
• street: string

Throughout this chapter, aside from just adding the Customer entity and its CRUD
pages, we also need to address the creation of login, register, forgot your password
pages, as well as override a core module service responsible for building a customer
menu.

Dependencies
The module has no firm dependencies on any other module. While it does
override a service defined in core module, the module itself is not dependent on
it. Furthermore, some security config will need to be provided as part of the core
application, as we will see later on.

Implementation
We start of by creating a new module called Foggyline\CustomerBundle. We do so
with the help of console, by running the command as follows:

php bin/console generate:bundle --namespace=Foggyline/CustomerBundle

Chapter 8

[191]

The command triggers an interactive process asking us several questions along the
way, as shown in the following screenshot:

Building the Customer Module

[192]

Once done, the following structure is generated for us:

If we now take a look at the app/AppKernel.php file, we would see the following
line under the registerBundles method:

new Foggyline\CustomerBundle\FoggylineCustomerBundle()

Similarly, the app/config/routing.yml directory has the following route definition
added to it:

foggyline_customer:
 resource: "@FoggylineCustomerBundle/
 Resources/config/routing.xml"
 prefix: /

Here we need to change prefix: / into prefix: /customer/, so we don't collide
with core module routes. Leaving it as prefix: / would simply overrun our core
AppBundle and output Hello World! from the src/Foggyline/CustomerBundle/
Resources/views/Default/index.html.twig template to the browser at this point.
We want to keep things nice and separated. What this means is that the module does
not define root route for itself.

Creating a customer entity
Let's go ahead and create a Customer entity. We do so by using the console, as
shown here:

php bin/console generate:doctrine:entity

Chapter 8

[193]

This command triggers the interactive generator, where we need to provide
entity properties. Once done, the generator creates the Entity/Customer.php
and Repository/CustomerRepository.php files within the src/Foggyline/
CustomerBundle/ directory. After this, we need to update the database, so it
pulls in the Customer entity, by running the following command:

php bin/console doctrine:schema:update --force

This results in a screen as shown in the following screenshot:

With entity in place, we are ready to generate its CRUD. We do so by using the
following command:

php bin/console generate:doctrine:crud

This results in an interactive output as shown here:

Building the Customer Module

[194]

This results in the src/Foggyline/CustomerBundle/Controller/
CustomerController.php directory being created. It also adds an entry to our
app/config/routing.yml file as follows:

foggyline_customer_customer:
 resource:
 "@FoggylineCustomerBundle/Controller/CustomerController.php"
 type: annotation

Again, the view files were created under the app/Resources/views/customer/
directory, which is not what we might expect. We want them under our module
src/Foggyline/CustomerBundle/Resources/views/Default/customer/
directory, so we need to copy them over. Additionally, we need to modify all of the
$this->render calls within our CustomerController by appending the Foggyline
CustomerBundle:default: string to each of the template path.

Modifying the security configuration
Before we proceed further with the actual changes within our module, let's imagine
our module requirements mandate a certain security configuration in order to make
it work. These requirements state that we need to apply several changes to the app
/config/security.yml file. We first edit the providers element by adding to it the
following entry:

foggyline_customer:
 entity:
 class: FoggylineCustomerBundle:Customer
 property: username

This effectively defines our Customer class as a security provider, whereas the
username element is the property storing user identity.

We then define the encoder type under the encoders element, as follows:

Foggyline\CustomerBundle\Entity\Customer:
 algorithm: bcrypt
 cost: 12

This tells Symfony to use the bcrypt algorithm with a value of 12 for algorithmic
cost while encrypting our password. This way our passwords won't end up in clear
text when saved in the database.

We then go ahead and define a new firewall entry under the firewalls element,
as follows:

foggyline_customer:
 anonymous: ~

Chapter 8

[195]

 provider: foggyline_customer
 form_login:
 login_path: foggyline_customer_login
 check_path: foggyline_customer_login
 default_target_path: customer_account
 logout:
 path: /customer/logout
 target: /

There is quite a lot going on here. Our firewall uses the anonymous: ~ definition
to denote that it does not really need a user to be logged in to see certain pages.
By default, all Symfony users are authenticated as anonymous, as shown in the
following screenshot, on the Developer toolbar:

The form_login definition takes three properties. The login_path and the
check_path point to our custom route foggyline_customer_login. When the
security system initiates the authentication process, it will redirect the user to
the foggyline_customer_login route, where we will soon implement needed
controller logic and view templates in order to handle the login form. Once logged
in, the default_target_path determines where the user will be redirected to.

Finally, we reuse the Symfony anonymous user feature in order to exclude certain
pages from being forbidden. We want our non-authenticated customer to be able to
access login, register, and forgotten password pages. To make that possible, we add
the following entries under the access_control element:

- { path: customer/login, roles: IS_AUTHENTICATED_ANONYMOUSLY }
- { path: customer/register, roles: IS_AUTHENTICATED_ANONYMOUSLY }
- { path: customer/forgotten_password, roles:
 IS_AUTHENTICATED_ANONYMOUSLY }
- { path: customer/account, roles: ROLE_USER }
- { path: customer/logout, roles: ROLE_USER }
- { path: customer/, roles: ROLE_ADMIN }

It is worth noting that this approach to handling security between module and
base application is by far the ideal one. This is merely one possible example of
how we can achieve what is needed for this module to make it functional.

Building the Customer Module

[196]

Extending the customer entity
With the preceding security.yml additions in place, we are now ready to actually
start implementing the registration process. First we edit the Customer entity within
the src/Foggyline/CustomerBundle/Entity/ directory, by making it implement
the Symfony\Component\Security\Core\User\UserInterface, \Serializable.
This implies implementation of the following methods:

public function getSalt()
{
 return null;
}

public function getRoles()
{
 return array('ROLE_USER');
}

public function eraseCredentials()
{
}

public function serialize()
{
 return serialize(array(
 $this->id,
 $this->username,
 $this->password
));
}

public function unserialize($serialized)
{
 list (
 $this->id,
 $this->username,
 $this->password,
) = unserialize($serialized);
}

Chapter 8

[197]

Even though all of the passwords need to be hashed with salt, the getSalt function
in this case is irrelevant since bcrypt does this internally. The getRoles function is
the important bit. We can return one or more roles that individual customers will
have. To make things simple, we will only assign one ROLE_USER role to each of
our customers. But this can easily be made much more robust, so that the roles are
stored in the database as well. The eraseCredentials function is merely a cleanup
method, which we left blank.

Since the user object is first unserialized, serialized, and saved to a session per each
request, we implement the \Serializable interface. The actual implementation of
serialize and unserialize can include only a fraction of customer properties, as we do
not need to store everything in the session.

Before we go ahead and start implementing the register, login, forgot your password,
and other bits, let's go ahead and define the needed services we are going to use
later on.

Creating the orders service
We will create an orders service which will be used to fill in the data available under
the My Account page. Later on, other modules can override this service and inject
real customer orders. To define an orders service, we edit the src/Foggyline/
CustomerBundle/Resources/config/services.xml file by adding the following
under the services element:

<service id="foggyline_customer.customer_orders"
 class="Foggyline\CustomerBundle\Service\CustomerOrders">
</service>

Then, we go ahead and create the src/Foggyline/CustomerBundle/Service/
CustomerOrders.php directory with content as follows:

namespace Foggyline\CustomerBundle\Service;

class CustomerOrders
{
 public function getOrders()
 {
 return array(
 array(
 'id' => '0000000001',
 'date' => '23/06/2016 18:45',
 'ship_to' => 'John Doe',
 'order_total' => 49.99,
 'status' => 'Processing',
 'actions' => array(

Building the Customer Module

[198]

 array(
 'label' => 'Cancel',
 'path' => '#'
),
 array(
 'label' => 'Print',
 'path' => '#'
)
)
),
);
 }
}

The getOrders method simply returns some dummy data here. We can easily make
it return an empty array. Ideally, we would want this to return a collection of certain
types of element that conform to some specific interface.

Creating the customer menu service
In the previous module we defined a customer service that filled in the Customer
menu with some dummy data. Now we will create an overriding service that fills the
menu with actual customer data, depending on customer login status. To define a
customer menu service, we edit the src/Foggyline/CustomerBundle/Resources/
config/services.xml file by adding the following under the services element:

<service id="foggyline_customer.customer_menu"
 class="Foggyline\CustomerBundle\Service\Menu\CustomerMenu">
 <argument type="service" id="security.token_storage"/>
 <argument type="service" id="router"/>
</service>

Here we are injecting the token_storage and router objects into our service, as we
will need them to construct the menu based on the login state of a customer.

We then go ahead and create the src/Foggyline/CustomerBundle/Service/Menu/
CustomerMenu.php directory with content as follows:

namespace Foggyline\CustomerBundle\Service\Menu;

class CustomerMenu
{
 private $token;
 private $router;

 public function __construct(

Chapter 8

[199]

 $tokenStorage,
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->token = $tokenStorage->getToken();
 $this->router = $router;
 }

 public function getItems()
 {
 $items = array();
 $user = $this->token->getUser();

 if ($user instanceof \Foggyline\CustomerBundle\
 Entity\Customer) {
 // customer authentication
 $items[] = array(
 'path' => $this->router->
 generate('customer_account'),
 'label' => $user->getFirstName() . ' ' . $user->
 getLastName(),
);
 $items[] = array(
 'path' => $this->router->
 generate('customer_logout'),
 'label' => 'Logout',
);
 } else {
 $items[] = array(
 'path' => $this->router->
 generate('foggyline_customer_login'),
 'label' => 'Login',
);
 $items[] = array(
 'path' => $this->router->
 generate('foggyline_customer_register'),
 'label' => 'Register',
);
 }

 return $items;
 }
}

Building the Customer Module

[200]

Here we see a menu being constructed based on user login state. This way a
customer gets to see the Logout link when logged in, or Login when not logged in.

We then add the src/Foggyline/CustomerBundle/DependencyInjection/
Compiler/OverrideServiceCompilerPass.php directory with content as follows:

namespace Foggyline\CustomerBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\
 CompilerPassInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class OverrideServiceCompilerPass implements CompilerPassInterface
{
 public function process(ContainerBuilder $container)
 {
 // Override the core module 'onsale' service
 $container->removeDefinition('customer_menu');
 $container->setDefinition('customer_menu', $container->
 getDefinition('foggyline_customer.customer_menu'));
 }
}

Here we are doing the actual customer_menu service override. However,
this won't kick in until we edit the src/Foggyline/CustomerBundle/
FoggylineCustomerBundle.php directory, by adding the build method
to it as follows:

namespace Foggyline\CustomerBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Foggyline\CustomerBundle\DependencyInjection\
 Compiler\OverrideServiceCompilerPass;

class FoggylineCustomerBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);;
 $container->addCompilerPass(new
 OverrideServiceCompilerPass());
 }
}

The addCompilerPass method call accepts the instance of our
OverrideServiceCompilerPass, ensuring our service override will kick in.

Chapter 8

[201]

Implementing the register process
To implement a register page, we first modify the src/Foggyline/
CustomerBundle/Controller/CustomerController.php file as follows:

/**
 * @Route("/register", name="foggyline_customer_register")
 */
public function registerAction(Request $request)
{
 // 1) build the form
 $user = new Customer();
 $form = $this->createForm(CustomerType::class, $user);

 // 2) handle the submit (will only happen on POST)
 $form->handleRequest($request);
 if ($form->isSubmitted() && $form->isValid()) {

 // 3) Encode the password (you could also do this via Doctrine
listener)
 $password = $this->get('security.password_encoder')
 ->encodePassword($user, $user->getPlainPassword());
 $user->setPassword($password);

 // 4) save the User!
 $em = $this->getDoctrine()->getManager();
 $em->persist($user);
 $em->flush();

 // ... do any other work - like sending them an email, etc
 // maybe set a "flash" success message for the user

 return $this->redirectToRoute('customer_account');
 }

 return $this->render(
 'FoggylineCustomerBundle:default:
 customer/register.html.twig',
 array('form' => $form->createView())
);
}

Building the Customer Module

[202]

The register page uses a standard auto-generated Customer CRUD form, simply
pointing it to the src/Foggyline/CustomerBundle/Resources/views/Default/
customer/register.html.twig template file with content as follows:

{% extends 'base.html.twig' %}
{% block body %}
 {{ form_start(form) }}
 {{ form_widget(form) }}
 <button type="submit">Register!</button>
 {{ form_end(form) }}
{% endblock %}

Once these two files are in place, our register functionality should be working.

Implementing the login process
We will implement the login page on its own /customer/login URL, thus we edit
the CustomerController.php file by adding the loginAction function as follows:

/**
 * Creates a new Customer entity.
 *
 * @Route("/login", name="foggyline_customer_login")
 */
public function loginAction(Request $request)
{
 $authenticationUtils = $this->
 get('security.authentication_utils');

 // get the login error if there is one
 $error = $authenticationUtils->getLastAuthenticationError();

 // last username entered by the user
 $lastUsername = $authenticationUtils->getLastUsername();

 return $this->render(
 'FoggylineCustomerBundle:default:
 customer/login.html.twig',
 array(
 // last username entered by the user
 'last_username' => $lastUsername,
 'error' => $error,
)
);
}

Chapter 8

[203]

Here we are simply checking if the user already tried to login, and if it did we are
passing that info to the template, along with the potential errors. We then edit the
src/Foggyline/CustomerBundle/Resources/views/Default/customer/login.
html.twig file with content as follows:

{% extends 'base.html.twig' %}
{% block body %}
{% if error %}
<div>{{ error.messageKey|trans(error.messageData,
 'security') }}</div>
{% endif %}

<form action="{{ path('foggyline_customer_login') }}"
 method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username"
 value="{{ last_username }}"/>
 <label for="password">Password:</label>
 <input type="password" id="password" name="_password"/>
 <button type="submit">login</button>
</form>

<div class="row">
 Forgot
 your password?
</div>
{% endblock %}

Once logged in, the user will be redirected to the /customer/account page. We
create this page by adding the accountAction method to the CustomerController.
php file as follows:

/**
 * Finds and displays a Customer entity.
 *
 * @Route("/account", name="customer_account")
 * @Method({"GET", "POST"})
 */
public function accountAction(Request $request)
{
 if (!$this->get('security.authorization_checker')->
 isGranted('ROLE_USER')) {
 throw $this->createAccessDeniedException();
 }

Building the Customer Module

[204]

 if ($customer = $this->getUser()) {

 $editForm = $this->createForm('Foggyline\CustomerBundle\
 Form\CustomerType', $customer, array
 ('action' => $this->generateUrl('customer_account')));
 $editForm->handleRequest($request);

 if ($editForm->isSubmitted() && $editForm->isValid()) {
 $em = $this->getDoctrine()->getManager();
 $em->persist($customer);
 $em->flush();

 $this->addFlash('success', 'Account updated.');
 return $this->redirectToRoute('customer_account');
 }

 return $this->render('FoggylineCustomerBundle:default:
 customer/account.html.twig', array(
 'customer' => $customer,
 'form' => $editForm->createView(),
 'customer_orders' => $this->
 get('foggyline_customer.customer_orders')->
 getOrders()
));
 } else {
 $this->addFlash('notice', 'Only logged in customers can
 access account page.');
 return $this->redirectToRoute('foggyline_customer_login');
 }
}

Using $this->getUser() we are checking if logged in user is set, and if so, passing
its info to the template. We then edit the src/Foggyline/CustomerBundle/
Resources/views/Default/customer/account.html.twig file with content
as follows:

{% extends 'base.html.twig' %}
{% block body %}
<h1>My Account</h1>
{{ form_start(form) }}
<div class="row">
 <div class="medium-6 columns">
 {{ form_row(form.email) }}
 {{ form_row(form.username) }}
 {{ form_row(form.plainPassword.first) }}

Chapter 8

[205]

 {{ form_row(form.plainPassword.second) }}
 {{ form_row(form.firstName) }}
 {{ form_row(form.lastName) }}
 {{ form_row(form.company) }}
 {{ form_row(form.phoneNumber) }}
 </div>
 <div class="medium-6 columns">
 {{ form_row(form.country) }}
 {{ form_row(form.state) }}
 {{ form_row(form.city) }}
 {{ form_row(form.postcode) }}
 {{ form_row(form.street) }}
 <button type="submit">Save</button>
 </div>
</div>
{{ form_end(form) }}
<!-- customer_orders -->
{% endblock %}

With this we address the actual customer information section of the My Account
page. In its current state, this page should render an Edit form as shown in the
following screenshot, enabling us to edit all of our customer information:

Building the Customer Module

[206]

We then address the <!-- customer_orders -->, by replacing it with the
following bits:

{% block customer_orders %}
<h2>My Orders</h2>
<div class="row">
 <table>
 <thead>
 <tr>
 <th width="200">Order Id</th>
 <th>Date</th>
 <th width="150">Ship To</th>
 <th width="150">Order Total</th>
 <th width="150">Status</th>
 <th width="150">Actions</th>
 </tr>
 </thead>
 <tbody>
 {% for order in customer_orders %}
 <tr>
 <td>{{ order.id }}</td>
 <td>{{ order.date }}</td>
 <td>{{ order.ship_to }}</td>
 <td>{{ order.order_total }}</td>
 <td>{{ order.status }}</td>
 <td>
 <div class="small button-group">
 {% for action in order.actions %}
 <a class="button" href="{{
 action.path }}">{{ action.label
 }}
 {% endfor %}
 </div>
 </td>
 </tr>
 {% endfor %}
 /tbody>
 </table>
</div>
{% endblock %}

Chapter 8

[207]

This should now render the My Orders section of the My Account page as
shown here:

This is just dummy data coming from service defined in a src/Foggyline/
CustomerBundle/Resources/config/services.xml. In a later chapter, when we
get to the sales module, we will make sure it overrides the foggyline_customer.
customer_orders service in order to insert real customer data here.

Implementing the logout process
One of the changes we did to security.yml when defining our firewall, was
configuring the logout path, which we pointed to /customer/logout. The
implementation of that path is done within the CustomerController.php file
as follows:

/**
 * @Route("/logout", name="customer_logout")
 */
public function logoutAction()
{

}

Note, the logoutAction method is actually empty. There is no implementation as
such. Implementation is not needed, as Symfony intercepts the request and processes
the logout for us. We did, however, need to define this route as we referenced it from
our system.xml file.

Managing forgotten passwords
The forgotten password feature is going to be implemented as a separate page. We
edit the CustomerController.php file by adding the forgottenPasswordAction
function to it as follows:

/**
 * @Route("/forgotten_password", name="customer_forgotten_password")
 * @Method({"GET", "POST"})
 */

Building the Customer Module

[208]

public function forgottenPasswordAction(Request $request)
{

 // Build a form, with validation rules in place
 $form = $this->createFormBuilder()
 ->add('email', EmailType::class, array(
 'constraints' => new Email()
))
 ->add('save', SubmitType::class, array(
 'label' => 'Reset!',
 'attr' => array('class' => 'button'),
))
 ->getForm();

 // Check if this is a POST type request and if so, handle form
 if ($request->isMethod('POST')) {
 $form->handleRequest($request);

 if ($form->isSubmitted() && $form->isValid()) {
 $this->addFlash('success', 'Please check your email
 for reset password.');

 // todo: Send an email out to website admin or
 something...

 return $this->redirect($this->
 generateUrl('foggyline_customer_login'));
 }
 }

 // Render "contact us" page
 return $this->
 render('FoggylineCustomerBundle:default:customer/
 forgotten_password.html.twig', array(
 'form' => $form->createView()
));
}

Here we merely check if the HTTP request is GET or POST, then either send
an e-mail or load the template. For the sake of simplicity, we haven't really
implemented the actual e-mail sending. This is something that needs to be tackled
outside of this book. The rendered template is pointing to the src/Foggyline/
CustomerBundle/Resources/views/Default/customer/ forgotten_password.
html.twig file with content as follows:

{% extends 'base.html.twig' %}
{% block body %}

Chapter 8

[209]

<div class="row">
 <h1>Forgotten Password</h1>
</div>

<div class="row">
 {{ form_start(form) }}
 {{ form_widget(form) }}
 {{ form_end(form) }}
</div>
{% endblock %}

Unit testing
Aside from the auto-generated Customer entity and its CRUD controller, there are
only two custom service classes that we created as part of this module. Since we
are not going after full code coverage, we will merely cover CustomerOrders and
CustomerMenu service classes as part of the unit testing.

We start off by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/CustomerBundle/Tests</directory>

With that in place, running the phpunit command from the root of our shop should
pick up any test we have defined under the src/Foggyline/CustomerBundle/
Tests/ directory.

Now let's go ahead and create a test for our CustomerOrders service. We do so by
creating a src/Foggyline/CustomerBundle/Tests/Service/CustomerOrders.php
file with content as follows:

namespace Foggyline\CustomerBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class CustomerOrders extends KernelTestCase
{
 private $container;

 public function setUp()
 {
 static::bootKernel();
 $this->container = static::$kernel->getContainer();

Building the Customer Module

[210]

 }

 public function testGetItemsViaService()
 {
 $orders = $this->container->
 get('foggyline_customer.customer_orders');
 $this->assertNotEmpty($orders->getOrders());
 }

 public function testGetItemsViaClass()
 {
 $orders = new \Foggyline\CustomerBundle\
 Service\CustomerOrders();
 $this->assertNotEmpty($orders->getOrders());
 }
}

Here we have two tests in total, one instantiating the class through the service and
the other directly. We are using the setUp method merely to set the container
property which we then reuse in the testGetItemsViaService method.

Next, we create the CustomerMenu test within the directory as follows:

namespace Foggyline\CustomerBundle\Tests\Service\Menu;
use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class CustomerMenu extends KernelTestCase
{
 private $container;
 private $tokenStorage;
 private $router;

 public function setUp()
 {
 static::bootKernel();
 $this->container = static::$kernel->getContainer();
 $this->tokenStorage = $this->container->
 get('security.token_storage');
 $this->router = $this->container->get('router');
 }

 public function testGetItemsViaService()
 {
 $menu = $this->container->
 get('foggyline_customer.customer_menu');

Chapter 8

[211]

 $this->assertNotEmpty($menu->getItems());
 }

 public function testGetItemsViaClass()
 {
 $menu = new \Foggyline\CustomerBundle\
 Service\Menu\CustomerMenu(
 $this->tokenStorage,
 $this->router
);

 $this->assertNotEmpty($menu->getItems());
 }
}

Now, if we run the phpunit command, we should see our test being picked up and
executed alongside other tests. We can even target these two tests specifically by
executing a phpunit command with full class path, as shown here:

phpunit src/Foggyline/CustomerBundle/Tests/Service/CustomerOrders.php

phpunit src/Foggyline/CustomerBundle/Tests/Service/Menu/
 CustomerMenu.php

Functional testing
The auto-generate CRUD tool generated the CustomerControllerTest.php file for
us within the src/Foggyline/CustomerBundle/Tests/Controller/ directory.
In the previous chapter we showed how to pass an authentication parameter to
static::createClient in order to make it simulate user logging. However, that
is not the same login as our customers will be using. We are no longer using a basic
HTTP authentication, rather a full blown login form.

In order to address the login form testing, let's go ahead and edit the src/
Foggyline/CustomerBundle/Tests/Controller/CustomerControllerTest.php
file as follows:

namespace Foggyline\CustomerBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
use Symfony\Component\BrowserKit\Cookie;
use Symfony\Component\Security\Core\Authentication\Token
 \UsernamePasswordToken;

class CustomerControllerTest extends WebTestCase
{

Building the Customer Module

[212]

 private $client = null;

 public function setUp()
 {
 $this->client = static::createClient();
 }

 public function testMyAccountAccess()
 {
 $this->logIn();
 $crawler = $this->client->request('GET', '/customer/
 account');

 $this->assertTrue($this->client->getResponse()->
 isSuccessful());
 $this->assertGreaterThan(0, $crawler->
 filter('html:contains("My Account")')->count());
 }

 private function logIn()
 {
 $session = $this->client->getContainer()->get('session');
 $firewall = 'foggyline_customer'; // firewall name
 $em = $this->client->getContainer()->get('doctrine')->
 getManager();
 $user = $em->getRepository('FoggylineCustomerBundle:
 Customer')->findOneByUsername('john@test.loc');
 $token = new UsernamePasswordToken($user, null, $firewall,
 array('ROLE_USER'));
 $session->set('_security_' . $firewall, serialize
 ($token));
 $session->save();
 $cookie = new Cookie($session->getName(), $session->
 getId());
 $this->client->getCookieJar()->set($cookie);
 }
}

Here we first created the logIn method, whose purpose is to simulate the login, by
setting up the proper token value into the session, and passing on that session ID to
the client via a cookie. We then created the testMyAccountAccess method, which
first calls the logIn method and then checks if the crawler was able to access the My
Account page. The great thing about this approach is that we did not have to code in
the user password, only its username.

Chapter 8

[213]

Now, let's go ahead and address the customer registration form, by adding the
following to the CustomerControllerTest:

public function testRegisterForm()
{
 $crawler = $this->client->request('GET', '/customer/
 register');
 $uniqid = uniqid();
 $form = $crawler->selectButton('Register!')->form(array(
 'customer[email]' => 'john_' . $uniqid . '@test.loc',
 'customer[username]' => 'john_' . $uniqid,
 'customer[plainPassword][first]' => 'pass123',
 'customer[plainPassword][second]' => 'pass123',
 'customer[firstName]' => 'John',
 'customer[lastName]' => 'Doe',
 'customer[company]' => 'Foggyline',
 'customer[phoneNumber]' => '00 385 111 222 333',
 'customer[country]' => 'HR',
 'customer[state]' => 'Osijek',
 'customer[city]' => 'Osijek',
 'customer[postcode]' => '31000',
 'customer[street]' => 'The Yellow Street',
));

 $this->client->submit($form);
 $crawler = $this->client->followRedirect();
 //var_dump($this->client->getResponse()->getContent());
 $this->assertGreaterThan(0, $crawler->
 filter('html:contains("customer/login")')->count());
}

We have already seen a test similar to this one in the previous chapter. Here we are
merely opening a customer/register page, then finding a button with Register! label,
so we can fetch the entire form through it. We then set all of the required form data,
and simulate the form submit. If successful, we observe for the redirect body and
assert against value expected in it.

Running the phpunit command now should successfully execute our tests.

Building the Customer Module

[214]

Summary
Throughout this chapter we built a miniature but functional customer module. The
module assumed a certain level of setup done on our security.yml file, which
can be covered as part of module documentation if we were to redistribute it.
These changes included defining our own custom firewall, with a custom security
provider. The security provider pointed to our customer class, which in turn was
built in a way that complies to the Symfony UserInterface. We then built a register,
login, and forgot your password form. Though each comes with a minimal set of
functionalities, we saw how simple it is to build a fully custom register and login
system.

Furthermore, we applied some forward thinking, by using the specially defined
service to set up the My Orders section under the My Account page. This is by
far the ideal way of doing it, and it serves a purpose, as we will later override
this service cleanly from the sales module.

Moving forward, in the next chapter, we will build a payment module.

[215]

Building the Payment Module
The payment module provides a basis for further sales functionality in our web
shop. It will enable us to actually choose a payment method when we reach the
checkout process of the upcoming sales module. The payment methods can generally
be of various types. Some can be static, like Check Money and Cash on Delivery,
while others can be regular credit cards like Visa, MasterCard, American Express,
Discover, and Switch/Solo. Throughout this chapter we will address both types.

In this chapter, we will be looking into the following topics:

• Requirements
• Dependencies
• Implementation
• Unit testing
• Functional testing

Requirements
Our application requirements, defined under Chapter 4, Requirement Specification for
Modular Web Shop App, do not really say anything about the type of payment method
we need to implement. Thus, for the purpose of this chapter, we will develop two
payment methods: a card payment and a check money payment. In regards to the
credit card payment, we will not be connecting to a real payment processor, but
everything else will be done as if we are working with a credit card.

Ideally, we want this done by an interface, similar to the following:

namespace Foggyline\SalesBundle\Interface;

interface Payment
{

Building the Payment Module

[216]

 function authorize();
 function capture();
 function cancel();
}

This would then impose the requirement of having the SalesBundle module, which
we still haven't developed. We will therefore proceed with our payment methods
using a simple Symfony controller class that provides its own way to address the
following features:

• function authorize();
• function capture();
• function cancel();

The authorize method is used for cases where we merely want to authorize the
transaction, without actually executing it. The result is a transaction ID that our
future SalesBundle module can store and reuse for further capture and cancel
actions. The capture method takes us a step further by first executing the authorize
action and then capturing the funds. The cancel method performs the cancelation
based on a previously stored authorization token.

We will expose our payment methods through tagged Symfony services. The tagging
of a service is a nice feature which enables us to view the container and all of the
services tagged with the same tag, which is something we can use to fetch all of the
paymentmethod services. The tag naming has to follow a certain pattern, which we
impose on ourselves as application creators. With that in mind, we will tag each
payment service with a name,payment_method.

Later on, the SalesBundle module will fetch and use all of the services tagged with
payment_method and then use them internally to generate a list of available payment
methods that you can work with.

Dependencies
The module has no firm dependencies on any other module. However, it might have
been more convenient to build the SalesBundle module first and then expose a few
interfaces that the payment module might use.

Chapter 9

[217]

Implementation
We start off by creating a new module called Foggyline\PaymentBundle. We do so
with the help of the console by running the following command:

php bin/console generate:bundle --namespace=Foggyline/PaymentBundle

The command triggers an interactive process which asks us several questions along
the way, shown as follows:

Building the Payment Module

[218]

Once done, files app/AppKernel.php and app/config/routing.yml are modified
automatically. The registerBundles method of an AppKernel class has been added
to the following line under the $bundles array:

new Foggyline\PaymentBundle\FoggylinePaymentBundle(),

The routing.yml has been updated with the following entry:

foggyline_payment:
 resource:
 "@FoggylinePaymentBundle/Resources/config/routing.xml"
 prefix: /

In order to avoid colliding with the core application code, we need to change the
prefix: / to prefix: /payment/.

Creating a card entity
Even though we won't be storing any credit cards in our database as part of this
chapter, we want to reuse the Symfony auto-generate CRUD feature in order for it
to provide us with a credit card model and form. Let's go ahead and create a Card
entity. We will do so by using the console, shown as follows:

php bin/console generate:doctrine:entity

The command triggers the interactive generator, providing it with
FoggylinePaymentBundle:Card for an entity shortcut, where we also need
to provide entity properties. We want to model our Card entity with the
following fields:

• card_type: string
• card_number: string
• expiry_date: date
• security_code: string

Once done, the generator creates Entity/Card.php and Repository/
CardRepository.php within the src/Foggyline/PaymentBundle/ directory.
We can now update the database so it pulls in the Card entity, shown as follows:

php bin/console doctrine:schema:update --force

With the entity in place, we are ready to generate its CRUD. We will do so by using
the following command:

php bin/console generate:doctrine:crud

Chapter 9

[219]

This results in a src/Foggyline/PaymentBundle/Controller/CardController.
php file being created. It also adds an entry to our app/config/routing.yml file,
as follows:

foggyline_payment_card:
 resource:
 "@FoggylinePaymentBundle/Controller/CardController.php"
 type: annotation

Again, the view files were created under the app/Resources/views/card/
directory. Since we won't actually be doing any CRUD related actions around cards
as such, we can go ahead and delete all of the generated view files, as well as the
entire body of the CardController class. At this point, we should have our Card
entity, CardType form, and empty CardController class.

Creating a card payment service
The card payment service is going to provide the relevant information our future
sales module will need for its checkout process. Its role is to provide the payment
method label, code, and processing URLs of an order, such as authorize, capture,
and cancel.

We will start by defining the following service under the services element of the
src/Foggyline/PaymentBundle/Resources/config/services.xml file:

<service id="foggyline_payment.card_payment"
 class="Foggyline\PaymentBundle\Service\CardPayment">
 <argument type="service" id="form.factory"/>
 <argument type="service" id="router"/>
 <tag name="payment_method"/>
</service>

This service accepts two arguments: one being form.factory and the other being
router. form.factory that will be used within service to create a form view for the
CardType form. The tag is a crucial element here, as our SalesBundle module will
be looking for payment methods based on the payment_method tag assigned to the
service.

We now need to create the actual service class within the src/Foggyline/
PaymentBundle/Service/CardPayment.php file as follows:

namespace Foggyline\PaymentBundle\Service;

use Foggyline\PaymentBundle\Entity\Card;

class CardPayment

Building the Payment Module

[220]

{
 private $formFactory;
 private $router;

 public function __construct(
 $formFactory,
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->formFactory = $formFactory;
 $this->router = $router;
 }

 public function getInfo()
 {
 $card = new Card();
 $form = $this->formFactory->create('Foggyline\
 PaymentBundle\Form\CardType', $card);

 return array(
 'payment' => array(
 'title' =>'Foggyline Card Payment',
 'code' =>'card_payment',
 'url_authorize' => $this->router->generate
 ('foggyline_payment_card_authorize'),
 'url_capture' => $this->router->generate
 ('foggyline_payment_card_capture'),
 'url_cancel' => $this->router->generate
 ('foggyline_payment_card_cancel'),
 'form' => $form->createView()
)
);
 }
}

The getInfo method is what's going to provide the necessary information to our
future SalesBundle module in order for it to construct the payment step of the
checkout process. We are passing on three different types of URLs here: authorize,
capture, and cancel. These routes do not exist just yet, as we will create them soon.
The idea is that we will shift the payment actions and process to the actual payment
method. Our future SalesBundle module will merely be doing an AJAX POST to
these payment URLs, and will expect either a success or error JSON response. A
success response should yield some sort of transaction ID and an error response
should yield a label message to show to the user.

Chapter 9

[221]

Creating a card payment controller and routes
We will edit the src/Foggyline/PaymentBundle/Resources/config/routing.xml
file by adding the following route definitions to it:

<route id="foggyline_payment_card_authorize" path="/card/
 authorize">
 <default key="_controller">FoggylinePaymentBundle:
 Card:authorize</default>
</route>

<route id="foggyline_payment_card_capture" path="/card/capture">
 <default key="_controller">FoggylinePaymentBundle
 :Card:capture</default>
</route>

<route id="foggyline_payment_card_cancel" path="/card/cancel">
 <default key="_controller">FoggylinePaymentBundle
 :Card:cancel</default>
</route>

We will then edit the body of the CardController class by adding the following to
it:

public function authorizeAction(Request $request)
{
 $transaction = md5(time() . uniqid()); // Just a dummy string,
 simulating some transaction id, if any

 if ($transaction) {
 return new JsonResponse(array(
 'success' => $transaction
));
 }

 return new JsonResponse(array(
 'error' =>'Error occurred while processing Card payment.'
));
}

public function captureAction(Request $request)
{
 $transaction = md5(time() . uniqid()); // Just a dummy string,
simulating some transaction id, if any

 if ($transaction) {

Building the Payment Module

[222]

 return new JsonResponse(array(
 'success' => $transaction
));
 }

 return new JsonResponse(array(
 'error' =>'Error occurred while processing Card payment.'
));
}

public function cancelAction(Request $request)
{
 $transaction = md5(time() . uniqid()); // Just a dummy string,
 simulating some transaction id, if any

 if ($transaction) {
 return new JsonResponse(array(
 'success' => $transaction
));
 }

 return new JsonResponse(array(
 'error' =>'Error occurred while processing Card payment.'
));
}

We should now be able to access URLs like /app_dev.php/payment/card/
authorize and see the output of authorizeAction. Implementations given here are
dummy ones. For the purpose of this chapter ,we are not going to connect to a real
payment processing API. What is important for us to know is that the sales module
will, during its checkout process, render any possible form view pushed through
the ['payment']['form'] key of the getInfo method of a payment_method tagged
service. Meaning, the checkout process should show a credit card form under card
payment. The behavior of checking out will be coded such that if payment with
a form is selected and the Place Order button is clicked, that payment form will
prevent the checkout process from proceeding until the payment form is submitted
to either authorize or capture the URL defined in the payment itself. We will touch
upon this some more when we get to the SalesBundle module.

Creating a check money payment service
Aside from the credit card payment method, let's go ahead and define one more
static payment, called Check Money.

Chapter 9

[223]

We will start by defining the following service under the services element of the
src/Foggyline/PaymentBundle/Resources/config/services.xml file:

<service id="foggyline_payment.check_money"
 class="Foggyline\PaymentBundle\Service\CheckMoneyPayment">
 <argument type="service" id="router"/>
 <tag name="payment_method"/>
</service>

The service defined here accepts only one router argument. The tag name is the
same as with the card payment service.

We will then create the src/Foggyline/PaymentBundle/Service/
CheckMoneyPayment.php file, with content as follows:

namespace Foggyline\PaymentBundle\Service;

class CheckMoneyPayment
{
 private $router;

 public function __construct(
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->router = $router;
 }

 public function getInfo()
 {
 return array(
 'payment' => array(
 'title' =>'Foggyline Check Money Payment',
 'code' =>'check_money',
 'url_authorize' => $this->router->generate
 ('foggyline_payment_check_money_authorize'),
 'url_capture' => $this->router->generate
 ('foggyline_payment_check_money_capture'),
 'url_cancel' => $this->router->generate
 ('foggyline_payment_check_money_cancel'),
 //'form' =>''
)
);
 }
}

Building the Payment Module

[224]

Unlike a card payment, the check money payment has no form key defined under
the getInfo method. This is because there are no credit card entries for it to define.
It is just going to be a static payment method. However, we still need to define the
authorize, capture, and cancel URLs, even though their implementation might be
nothing more than just a simple JSON response with success or error keys.

Creating a check money payment controller
and routes
Once the check money payment service is in place, we can go ahead and create the
necessary routes for it. We will start by adding the following route definitions to the
src/Foggyline/PaymentBundle/Resources/config/routing.xml file:

<route id="foggyline_payment_check_money_authorize"
 path="/check_money/authorize">
 <default key="_controller">
 FoggylinePaymentBundle:CheckMoney:authorize</default>
</route>

<route id="foggyline_payment_check_money_capture"
 path="/check_money/capture">
 <default key="_controller">
 FoggylinePaymentBundle:CheckMoney:capture</default>
</route>

<route id="foggyline_payment_check_money_cancel"
 path="/check_money/cancel">
 <default key="_controller">
 FoggylinePaymentBundle:CheckMoney:cancel</default>
</route>

We will then create the src/Foggyline/PaymentBundle/Controller/
CheckMoneyController.php file, with content as follows:

namespace Foggyline\PaymentBundle\Controller;

use Symfony\Component\HttpFoundation\JsonResponse;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class CheckMoneyController extends Controller
{
 public function authorizeAction(Request $request)
 {

Chapter 9

[225]

 $transaction = md5(time() . uniqid());
 return new JsonResponse(array(
 'success' => $transaction
));
 }

 public function captureAction(Request $request)
 {
 $transaction = md5(time() . uniqid());
 return new JsonResponse(array(
 'success' => $transaction
));
 }

 public function cancelAction(Request $request)
 {
 $transaction = md5(time() . uniqid());
 return new JsonResponse(array(
 'success' => $transaction
));
 }
}

Similar to a card payment, here we added a simple dummy implementation of the
authorize, capture, and cancel methods. The method responses will feed into the
SalesBundle module later on. We can easily implement more robust functionality
from within these methods, but that is out of the scope of this chapter.

Unit testing
Our FoggylinePaymentBundle module is really simple. It provides only two payment
methods: card and check money. It does so via two simple service classes. Since we
are not going after full code coverage tests, we will only cover the CardPayment and
CheckMoneyPayment service classes as part of unit testing.

We will start off by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/PaymentBundle/Tests</directory>

With that in place, running the phpunit command from the root of our shop should
pick up any test we have defined under the src/Foggyline/PaymentBundle/
Tests/ directory.

Building the Payment Module

[226]

Now, let's go ahead and create a test for our CardPayment service. We will do so by
creating a src/Foggyline/PaymentBundle/Tests/Service/CardPaymentTest.php
file, with content as follows:

namespace Foggyline\PaymentBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class CardPaymentTest extends KernelTestCase
{
 private $container;
 private $formFactory;
 private $router;

 public function setUp()
 {
 static::bootKernel();
 $this->container = static::$kernel->getContainer();
 $this->formFactory = $this->container->get
 ('form.factory');
 $this->router = $this->container->get('router');
 }

 public function testGetInfoViaService()
 {
 $payment = $this->container->get
 ('foggyline_payment.card_payment');
 $info = $payment->getInfo();
 $this->assertNotEmpty($info);
 $this->assertNotEmpty($info['payment']['form']);
 }

 public function testGetInfoViaClass()
 {
 $payment = new \Foggyline\PaymentBundle\
 Service\CardPayment(
 $this->formFactory,
 $this->router
);

 $info = $payment->getInfo();
 $this->assertNotEmpty($info);
 $this->assertNotEmpty($info['payment']['form']);
 }
}

Chapter 9

[227]

Here, we are running two simple tests to see if we can instantiate a service, either via
a container or directly, and simply call its getInfo method. The method is expected
to return a response that contains the ['payment']['form'] key.

Now, let's go ahead and create a test for our CheckMoneyPayment service. We
will do so by creating a src/Foggyline/PaymentBundle/Tests/Service/
CheckMoneyPaymentTest.php file, with content as follows:

namespace Foggyline\PaymentBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class CheckMoneyPaymentTest extends KernelTestCase
{
 private $container;
 private $router;

 public function setUp()
 {
 static::bootKernel();
 $this->container = static::$kernel->getContainer();
 $this->router = $this->container->get('router');
 }

 public function testGetInfoViaService()
 {
 $payment = $this->container->get
 ('foggyline_payment.check_money');
 $info = $payment->getInfo();
 $this->assertNotEmpty($info);
 }

 public function testGetInfoViaClass()
 {
 $payment = new \Foggyline\PaymentBundle\
 Service\CheckMoneyPayment(
 $this->router
);

 $info = $payment->getInfo();
 $this->assertNotEmpty($info);
 }
}

Building the Payment Module

[228]

Similarly, here we also have two simple tests: one fetching the payment method via
a container, and the other directly via a class. The difference being that we are not
checking for the presence of a form key under the getInfo method response.

Functional testing
Our module has two controller classes that we want to test for responses. We
want to make sure that the authorize, capture, and cancel methods of the
CardController and CheckMoneyController classes are working.

We first create asrc/Foggyline/PaymentBundle/Tests/Controller/
CardControllerTest.php file, with content as follows:

namespace Foggyline\PaymentBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class CardControllerTest extends WebTestCase
{
 private $client;
 private $router;

 public function setUp()
 {
 $this->client = static::createClient();
 $this->router = $this->client->getContainer()->get
 ('router');
 }

 public function testAuthorizeAction()
 {
 $this->client->request('GET', $this->router->generate
 ('foggyline_payment_card_authorize'));
 $this->assertTests();
 }

 public function testCaptureAction()
 {
 $this->client->request('GET', $this->router->generate
 ('foggyline_payment_card_capture'));
 $this->assertTests();
 }

Chapter 9

[229]

 public function testCancelAction()
 {
 $this->client->request('GET', $this->router->generate
 ('foggyline_payment_card_cancel'));
 $this->assertTests();
 }

 private function assertTests()
 {
 $this->assertSame(200, $this->client->getResponse()->
 getStatusCode());
 $this->assertSame('application/json', $this->client->
 getResponse()->headers->get('Content-Type'));
 $this->assertContains('success', $this->client->
 getResponse()->getContent());
 $this->assertNotEmpty($this->client->getResponse()->
 getContent());
 }
}

We then create src/Foggyline/PaymentBundle/Tests/Controller/
CheckMoneyControllerTest.php, with content as follows:

namespace Foggyline\PaymentBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class CheckMoneyControllerTest extends WebTestCase
{
 private $client;
 private $router;

 public function setUp()
 {
 $this->client = static::createClient();
 $this->router = $this->client->getContainer()->
 get('router');
 }

 public function testAuthorizeAction()
 {
 $this->client->request('GET', $this->router->
 generate('foggyline_payment_check_money_authorize'));
 $this->assertTests();
 }

Building the Payment Module

[230]

 public function testCaptureAction()
 {
 $this->client->request('GET', $this->router->
 generate('foggyline_payment_check_money_capture'));
 $this->assertTests();
 }

 public function testCancelAction()
 {
 $this->client->request('GET', $this->router->
 generate('foggyline_payment_check_money_cancel'));
 $this->assertTests();
 }

 private function assertTests()
 {
 $this->assertSame(200, $this->client->getResponse()->
 getStatusCode());
 $this->assertSame('application/json', $this->client->
 getResponse()->headers->get('Content-Type'));
 $this->assertContains('success', $this->client->
 getResponse()->getContent());
 $this->assertNotEmpty($this->client->getResponse()->
 getContent());
 }
}

Both tests are nearly identical. They contain a test for each of the authorize,
capture, and cancel methods. Since our methods are implemented with a fixed
success JSON response, there are no surprises here. However, we can easily play
around with it by extending our payment methods into something more robust.

Chapter 9

[231]

Summary
Throughout this chapter we have built a payment module with two payment
methods. The card payment method is made so that it is simulating payment with
the credit cards involved. For that reason, it includes a form as part of its getInfo
method. The check money payment, on the other hand, is simulating a static
payment method - one that does not include any form of credit card. Both methods
are implemented as dummy methods, meaning they are not actually communicating
to any external payment processor.

The idea was to create a minimal structure that showcases how one can develop
a simple payment module for further customization. We did so by exposing each
payment method via a tagged service. Using the payment_method tag was a matter
of consensus, since we are the ones building the full application so we get to choose
how we will implement this in the sales module.By using the same tag name for
each payment method, we effectively created conditions for the future sales module
to pick all of the payments methods and render them under its checkout process.

Moving forward, in the next chapter we will build a shipment module.

[233]

Building the Shipment
Module

The shipment module, alongside the payment module, provides a basis for further
sales functionality in our web shop. It will enable us to choose the shipment method
when we reach the checkout process of the upcoming sales module. Similar to
payment, shipment can be sort of static and dynamic. Whereas static might imply
a fixed pricing value, or even a calculated one by some simple conditions, dynamic
usually implies a connection to external API services.

Throughout this chapter, we will touch base with both types and see how we can set
up a basic structure for implementing the shipment module.

In this chapter, we will be covering the following topics of the shipment module:

• Requirements
• Dependencies
• Implementation
• Unit testing
• Functional testing

Requirements
Application requirements, defined under Chapter 4, Requirement Specification for
Modular Web Shop App, do not give us any specifics as to what type of shipment
we need to implement. Thus, for the purpose of this chapter, we will develop two
shipment methods: dynamic rate shipment and flat rate shipment. Dynamic rate
shipment is used as a way of connecting the shipment method to a real shipment
processor, such as UPS, FedEx, and so on. It will not, however, actually connect to
any of the external APIs.

Building the Shipment Module

[234]

Ideally, we want this done by an interface similar to the following:

namespace Foggyline\SalesBundle\Interface;

interface Shipment
{
 function getInfo($street, $city, $country, $postcode, $amount,
 $qty);
 function process($street, $city, $country, $postcode, $amount,
 $qty);
}

The getInfo method can then be used to fetch the available delivery options for the
given order information, while the process method would then process the selected
delivery option. For example, we might have an API return "same day delivery
($9.99)",= and "standard delivery ($4.99)" as delivery options under the dynamic
rate shipment method.

Having such a shipment interface would then impose the requirement of having the
SalesBundle module, which we still haven't developed. We will therefore proceed
with our shipment methods, using a Symfony controller for handling the process
method and a service for handling the getInfo method.

Similarly, as we did with the payment method in the previous chapter, we will
expose our getInfo method through tagged Symfony services. The tag we will be
using for shipment methods is shipment_method. Later on, during the checkout
process, the SalesBundle module will fetch all of the services tagged with
shipment_method and use them internally for a list of available shipment methods
to work with.

Dependencies
We are building the module the other way round. That is, we are building it before
we know anything about the SalesBundle module, which is the only module that
will be using it. With that in mind, the shipment module has no firm dependencies
on any other module. However, it might have been more convenient to build the
SalesBundle module first and then expose a few interfaces that the shipment
module might use.

Chapter 10

[235]

Implementation
We will start off by creating a new module called Foggyline\ShipmentBundle. We
will do so with the help of the console by running the following command:

php bin/console generate:bundle --namespace=Foggyline/ShipmentBundle

The command triggers an interactive process, which asks us several questions along
the way, shown as follows:

Once done, files app/AppKernel.php and app/config/routing.yml are modified
automatically. The registerBundles method of an AppKernel class has been added
to the following line under the $bundles array:

new Foggyline\PaymentBundle\FoggylineShipmentBundle(),

Building the Shipment Module

[236]

The routing.yml file has been updated with the following entry:

foggyline_payment:
 resource: "@FoggylineShipmentBundle/Resources/
 config/routing.xml"
 prefix: /

In order to avoid colliding with the core application code, we need to change
prefix: /into prefix: /shipment/.

Creating a flat rate shipment service
The flat rate shipment service is going to provide the fixed shipment method that
our sales module is going to use for its checkout process. Its role is to provide the
shipment method labels, code, delivery options, and processing URLs.

We will start by defining the following service under the services element of the
src/Foggyline/ShipmentBundle/Resources/config/services.xml file:

<service id="foggyline_shipment.dynamicrate_shipment"
 class="Foggyline\ShipmentBundle\Service\DynamicRateShipment">
 <argument type="service" id="router"/>
 <tag name="shipment_method"/>
</service>

This service accepts only one argument: the router. The tagname value is set
to shipment_method, as our SalesBundle module will be looking for shipment
methods based on the shipment_method tag assigned to the service.

We will now create the actual service class, within the src/Foggyline/
ShipmentBundle/Service/FlatRateShipment.php file as follows:

namespace Foggyline\ShipmentBundle\Service;
class FlatRateShipment
{
 private $router;

 public function __construct(
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->router = $router;
 }

Chapter 10

[237]

 public function getInfo($street, $city, $country, $postcode,
 $amount, $qty)
 {
 return array(
 'shipment' => array(
 'title' =>'Foggyline FlatRate Shipment',
 'code' =>'flat_rate',
 'delivery_options' => array(
 'title' =>'Fixed',
 'code' =>'fixed',
 'price' => 9.99
),
 'url_process' => $this->router->
 generate('foggyline_shipment_flat_rate_process'),
)
 ;
 }
}

The getInfo method is what's going to provide the necessary information to our
future SalesBundle module in order for it to construct the shipment step of the
checkout process. It accepts a series of arguments:$street, $city, $country,
$postcode, $amount, and $qty. We can consider these to be part of some unified
shipment interface. delivery_options in this case returns a single, fixed value.
url_process is the URL to which we will be inserting our selected shipment
method. Our future SalesBundle module will then merely be doing an AJAX POST
to this URL, expecting either a success or error JSON response, which is quite similar
to what we imagined doing with payment methods.

Creating a flat rate shipment controller and
routes
We edit the src/Foggyline/ShipmentBundle/Resources/config/routing.xml
file by adding the following route definitions to it:

<route id="foggyline_shipment_flat_rate_process"
 path="/flat_rate/process">
 <default key="_controller">
 FoggylineShipmentBundle:FlatRate:process
 </default>
</route>

Building the Shipment Module

[238]

We then create a src/Foggyline/ShipmentBundle/Controller/
FlatRateController.php. file with content as follows:

namespace Foggyline\ShipmentBundle\Controller;

use Symfony\Component\HttpFoundation\JsonResponse;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class FlatRateController extends Controller
{
 public function processAction(Request $request)
 {
 // Simulating some transaction id, if any
 $transaction = md5(time() . uniqid());

 return new JsonResponse(array(
 'success' => $transaction
));
 }
}

We should now be able to access a URL, like /app_dev.php/shipment/flat_rate/
process, and see the output of processAction. Implementations given here are
dummy ones. What is important for us to know is that the sales module will,
during its checkout process, render any possible delivery_options pushed through
the getInfo method of a shipment_method tagged service. Meaning, the checkout
process should show flat rate shipment as an option. The behavior of checking out
will be coded such that if a shipment method is not selected, it will prevent the
checkout process from going any further. We will touch upon this some more
when we get to the SalesBundle module.

Creating a dynamic rate payment service
Aside from the flat rate shipment method, let's go ahead and define one more
dynamic shipment, called Dynamic Rate.

We will start by defining the following service under the services element of the
src/Foggyline/ShipmentBundle/Resources/config/services.xml file:

<service id="foggyline_shipment.dynamicrate_shipment"
 class="Foggyline\ShipmentBundle\Service\DynamicRateShipment">
 <argument type="service" id="router"/>
 <tag name="shipment_method"/>
</service>

Chapter 10

[239]

The service defined here accepts only one router argument. The tag name
property is the same as with the flat rate shipment service.

We will then create the src/Foggyline/ShipmentBundle/Service/
DynamicRateShipment.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Service;

class DynamicRateShipment
{
 private $router;

 public function __construct(
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->router = $router;
 }

 public function getInfo($street, $city, $country, $postcode,
 $amount, $qty)
 {
 return array(
 'shipment' => array(
 'title' =>'Foggyline DynamicRate Shipment',
 'code' =>'dynamic_rate_shipment',
 'delivery_options' => $this->getDeliveryOptions
 ($street, $city, $country, $postcode, $amount, $qty),
 'url_process' => $this->router->
 generate('foggyline_shipment_dynamic_rate_process'),
)
);
 }

 public function getDeliveryOptions($street, $city, $country,
 $postcode, $amount, $qty)
 {
 // Imagine we are hitting the API with: $street, $city,
$country, $postcode, $amount, $qty
 return array(
 array(
 'title' =>'Same day delivery',
 'code' =>'dynamic_rate_sdd',
 'price' => 9.99
),

Building the Shipment Module

[240]

 array(
 'title' =>'Standard delivery',
 'code' =>'dynamic_rate_sd',
 'price' => 4.99
),
);
 }
}

Unlike the flat rate shipment, here the delivery_options key of the getInfo
method is constructed with the response of the getDeliveryOptions method. The
method is internal to the service and is not imagined as exposed or to be looked at as
part of an interface. We can easily imagine doing some API calls within it, in order to
fetch calculated rates for our dynamic shipment method.

Creating a dynamic rate shipment controller
and routes
Once the dynamic rates shipment service is in place, we can go ahead and create the
necessary route for it. We will start by adding the following route definition to the
src/Foggyline/ShipmentBundle/Resources/config/routing.xml file:

<route id="foggyline_shipment_dynamic_rate_process" path=
 "/dynamic_rate/process">
 <default key="_controller">FoggylineShipmentBundle:
DynamicRate:process
 </default>
</route>

We will then create the src/Foggyline/ShipmentBundle/Controller/
DynamicRateController.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Controller;

use Foggyline\ShipmentBundle\Entity\DynamicRate;
use Symfony\Component\HttpFoundation\JsonResponse;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Form\Extension\Core\Type\ChoiceType;

class DynamicRateController extends Controller
{
 public function processAction(Request $request)
 {

Chapter 10

[241]

 // Just a dummy string, simulating some transaction id
 $transaction = md5(time() . uniqid());

 if ($transaction) {
 return new JsonResponse(array(
'success' => $transaction
));
 }

 return new JsonResponse(array(
 'error' =>'Error occurred while processing
 DynamicRate shipment.'
));
 }
}

Similar to the flat rate shipment, here we have added a simple dummy implementation
of the process and method. The incoming $request should contain the same info
as the service getInfo method, meaning, it should have the following arguments
available: $street, $city, $country, $postcode, $amount, and $qty. The method
responses will feed into the SalesBundle module later on. We can easily implement
more robust functionality from within these methods, but that is out of the scope of
this chapter.

Unit testing
The FoggylineShipmentBundle module is quite simple. By providing only two
simple services and two simple controllers, it's easy to test.

We will start off by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/ShipmentBundle/Tests</directory>

With that in place, running the phpunit command from root of our shop should pick
up any test we have defined under the src/Foggyline/ShipmentBundle/Tests/
directory.

Now, let's go ahead and create a test for our FlatRateShipment service. We
will do so by creating a src/Foggyline/ShipmentBundle/Tests/Service/
FlatRateShipmentTest.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

Building the Shipment Module

[242]

class FlatRateShipmentTest extends KernelTestCase
{
 private $container;
 private $router;

 private $street = 'Masonic Hill Road';
 private $city = 'Little Rock';
 private $country = 'US';
 private $postcode = 'AR 72201';
 private $amount = 199.99;
 private $qty = 7;

 public function setUp()
 {
 static::bootKernel();
 $this->container = static::$kernel->getContainer();
 $this->router = $this->container->get('router');
 }

 public function testGetInfoViaService()
 {
 $shipment = $this->container->get
 ('foggyline_shipment.flat_rate');

 $info = $shipment->getInfo(
 $this->street, $this->city, $this->country, $this->
 postcode, $this->amount, $this->qty
);

 $this->validateGetInfoResponse($info);
 }

 public function testGetInfoViaClass()
 {
 $shipment = new \Foggyline\ShipmentBundle\Service\
 FlatRateShipment($this->router);

 $info = $shipment->getInfo(
 $this->street, $this->city, $this->country, $this->
 postcode, $this->amount, $this->qty
);

 $this->validateGetInfoResponse($info);
 }

Chapter 10

[243]

 public function validateGetInfoResponse($info)
 {
 $this->assertNotEmpty($info);
 $this->assertNotEmpty($info['shipment']['title']);
 $this->assertNotEmpty($info['shipment']['code']);
 $this->assertNotEmpty
 ($info['shipment']['delivery_options']);
 $this->assertNotEmpty($info['shipment']['url_process']);
 }
}

Two simple tests are being run here. One checks if we can instantiate a service
via a container, and the other checks if we can do so directly. Once instantiated,
we simply call the getInfo method of a service, passing it a dummy address and
order information. Although we are not actually using this data within the getInfo
method, we need to pass something along otherwise the test will fail. The method
is expected to return a response that contains several keys under the shipment key,
most notably title, code, delivery_options, and url_process.

Now, let's go ahead and create a test for our DynamicRateShipment service. We
will do so by creating a src/Foggyline/ShipmentBundle/Tests/Service/
DynamicRateShipmentTest.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;
class DynamicRateShipmentTest extends KernelTestCase
{
 private $container;
 private $router;

 private $street = 'Masonic Hill Road';
 private $city = 'Little Rock';
 private $country = 'US';
 private $postcode = 'AR 72201';
 private $amount = 199.99;
 private $qty = 7;

 public function setUp()
 {
 static::bootKernel();
 $this->container = static::$kernel->getContainer();
 $this->router = $this->container->get('router');
 }

Building the Shipment Module

[244]

 public function testGetInfoViaService()
 {
 $shipment = $this->container->
 get('foggyline_shipment.dynamicrate_shipment');
 $info = $shipment->getInfo(
 $this->street, $this->city, $this->country, $this->
 postcode, $this->amount, $this->qty
);
 $this->validateGetInfoResponse($info);
 }

 public function testGetInfoViaClass()
 {
 $shipment = new \Foggyline\ShipmentBundle\Service\
 DynamicRateShipment($this->router);
 $info = $shipment->getInfo(
 $this->street, $this->city, $this->country, $this->
 postcode, $this->amount, $this->qty
);

 $this->validateGetInfoResponse($info);
 }

 public function validateGetInfoResponse($info)
 {
 $this->assertNotEmpty($info);
 $this->assertNotEmpty($info['shipment']['title']);
 $this->assertNotEmpty($info['shipment']['code']);

 // Could happen that dynamic rate has none?!
 //$this->assertNotEmpty($info['shipment']
 ['delivery_options']);

 $this->assertNotEmpty($info['shipment']['url_process']);
 }
}

This test is nearly identical to that of the FlatRateShipment service. Here, we also
have two simple tests: one fetching the payment method via a container, and the
other directly via a class. The difference being that we are no longer asserting the
presence of delivery_options not being empty. This is because a real API request
might not return any options for delivery, depending on the given address and
order information.

Chapter 10

[245]

Functional testing
Our entire module has only two controller classes that we want to test for responses.
We want to make sure that the process method of the FlatRateController and
DynamicRateController classes are accessible and working.

We will first create an src/Foggyline/ShipmentBundle/Tests/Controller/
FlatRateControllerTest.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
class FlatRateControllerTest extends WebTestCase
{
 private $client;
 private $router;

 public function setUp()
 {
 $this->client = static::createClient();
 $this->router = $this->client->getContainer()->
 get('router');
 }

 public function testProcessAction()
 {
 $this->client->request('GET', $this->router->
 generate('foggyline_shipment_flat_rate_process'));
 $this->assertSame(200, $this->client->getResponse()->
 getStatusCode());
 $this->assertSame('application/json', $this->client->
 getResponse()->headers->get('Content-Type'));
 $this->assertContains('success', $this->client->
 getResponse()->getContent());
 $this->assertNotEmpty($this->client->getResponse()->
 getContent());
 }
}

We will then create a src/Foggyline/ShipmentBundle/Tests/Controller/
DynamicRateControllerTest.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

Building the Shipment Module

[246]

class DynamicRateControllerTest extends WebTestCase
{
 private $client;
 private $router;

 public function setUp()
 {
 $this->client = static::createClient();
 $this->router = $this->client->getContainer()->get('router');
 }

 public function testProcessAction()
 {
 $this->client->request('GET', $this->router->generate
 ('foggyline_shipment_dynamic_rate_process'));
 $this->assertSame(200,
 $this->client->getResponse()->getStatusCode());
 $this->assertSame('application/json',
 $this->client->getResponse()->headers->get('Content-Type'));
 $this->assertContains('success',
 $this->client->getResponse()->getContent());
 $this->assertNotEmpty(
 $this->client->getResponse()->getContent());
 }
}

Both tests are nearly identical. They contain a test for a single process action method.
As it is coded now, the controller process action simply returns a fixed success JSON
response. We can easily extend it to return more than just a fixed response and can
accompany that change with a more robust functional test.

Chapter 10

[247]

Summary
Throughout this chapter we have built a shipment module with two shipment
methods. Each shipment method provided the available delivery options. The flat
rate shipment method has only one fixed value under its delivery options, whereas
the dynamic rate method gets its values from the getDeliveryOptions method. We
can easily embed a real shipping API as part of getDeliveryOptions in order to
provide truly dynamic shipping options.

Obviously, we lack the official interfaces here, as we did with payment methods.
However, this is something we can always come back to and refactor in our
application as we finalize the final module.

Similar to the payment methods, the idea here was to create a minimal structure
that showcases how one can develop a simple shipment module for further
customization. Using the shipment_methodservice tag, we effectively exposed
the shipment methods for the future sales module.

Moving forward, in the next chapter, we will build a sales module, which will
finally make use of our payment and shipment modules.

[249]

Building the Sales Module
The Sales module is the final one in the series of modules we will build in order to
deliver a simple yet functional web shop application. We will do so by adding the
cart and the checkout features on top of the catalog. The checkout itself will finally
make use of the shipping and payment services defined throughout the previous
chapters. The overall focus here will be on absolute basics, since the real shopping
cart application would take a far more robust approach. However, understanding
how to tie it all together in a simple way is the first step toward opening up a door
for more robust web shop application implementations later on.

In this chapter, we will be covering the following topics of the Sales module:

• Requirements
• Dependencies
• Implementation
• Unit testing
• Functional testing

Requirements
Application requirements, defined in Chapter 4, Requirement Specification for Modular
Web Shop App, give us some wireframes relating to the cart and checkout. Based on
these wireframes, we can speculate about what type of entities we need to create in
order to deliver on functionality.

The following is a list of required module entities:

• Cart
• Cart Item

Building the Sales Module

[250]

• Order
• Order Item

The Cart entity includes the following properties and their data types:

• id: integer, auto-increment
• customer_id: string
• created_at: datetime
• modified_at: datetime

The Cart Item entity includes the following properties:

• id: integer, auto-increment
• cart_id: integer, foreign key that references the category table id column
• product_id: integer, foreign key that references product table id column
• qty: string
• unit_price: decimal
• created_at: datetime
• modified_at: datetime

The Order entity includes the following properties:

• id: integer, auto-increment
• customer_id: integer, foreign key that references the customer table id

column
• items_price: decimal
• shipment_price: decimal
• total_price: decimal
• status: string
• customer_email: string
• customer_first_name: string
• customer_last_name: string
• address_first_name: string
• address_last_name: string
• address_country: string
• address_state: string
• address_city: string

Chapter 11

[251]

• address_postcode: string
• address_street: string
• address_telephone: string
• payment_method: string
• shipment_method: string
• created_at: datetime
• modified_at: datetime

The Order Item entity includes the following properties:

• id: integer, auto-increment
• sales_order_id: integer, foreign key that references the order table

id column
• product_id: integer, foreign key that references product table id column
• title: string
• qty: int
• unit_price: decimal
• total_price: decimal
• created_at: datetime
• modified_at: datetime

Aside from just adding these entities and their CRUD pages, we also need to
override a core module service responsible for building the category menu
and on-sale items.

Dependencies
The Sales module will have several dependencies across the code.
These dependencies are directed toward customer and catalog modules.

Implementation
We start by creating a new module called Foggyline\SalesBundle. We do so with
the help of the console, by running the command as follows:

php bin/console generate:bundle --namespace=Foggyline/SalesBundle

Building the Sales Module

[252]

The command triggers an interactive process, asking us several questions along the
way, as shown here:

Once done, the app/AppKernel.php and app/config/routing.yml files get
modified automatically. The registerBundles method of an AppKernel class
has been added to the following line under the $bundles array:

new Foggyline\PaymentBundle\FoggylineSalesBundle(),

The routing.yml file has been updated with the following entry:

foggyline_payment:
 resource: "@FoggylineSalesBundle/Resources/config/routing.xml"
 prefix: /

In order to avoid collision with the core application code, we need to change
prefix: / into prefix: /sales/.

Chapter 11

[253]

Creating a Cart entity
Let's go ahead and create a Cart entity. We do so by using the console, as shown
here:

php bin/console generate:doctrine:entity

This triggers the interactive generator as shown in the following sreenshot:

This creates the Entity/Cart.php and Repository/CartRepository.php files
within the src/Foggyline/SalesBundle/ directory. After this, we need to update
the database, so it pulls in the Cart entity, by running the following command:

php bin/console doctrine:schema:update --force

With the Cart entity in place, we can go ahead and generate the CartItem entity.

Building the Sales Module

[254]

Creating the cart item entity
Let's go ahead and create a CartItem entity. We do so by using the now well-known
console command:

php bin/console generate:doctrine:entity

This triggers the interactive generator as shown in the following screenshot:

Chapter 11

[255]

This creates Entity/CartItem.php and Repository/CartItemRepository.php
within the src/Foggyline/SalesBundle/ directory. Once the auto generate has
done its work, we need to go back and edit the CartItem entity to update the cart
field relation as follows:

/**
 * @ORM\ManyToOne(targetEntity="Cart", inversedBy="items")
 * @ORM\JoinColumn(name="cart_id", referencedColumnName="id")
 */
private $cart;

Here, we have defined the so-called bidirectional one-to-many association. The foreign
key in a one-to-many association is being defined on the many side, which in this
case is the CartItem entity. The bidirectional mapping requires the mappedBy
attribute on the OneToMany association and the inversedBy attribute on the
ManyToOne association. The OneToMany side in this case is the Cart entity, so we
go back to the src/Foggyline/SalesBundle/Entity/Cart.php file and add the
following to it:

/**
 * @ORM\OneToMany(targetEntity="CartItem", mappedBy="cart")
 */
private $items;

public function __construct() {
 $this->items = new \Doctrine\Common\Collections\ArrayCollection();
}

We then need to update the database, so it pulls in the CartItem entity, by running
the following command:

php bin/console doctrine:schema:update --force

With the CartItem entity in place, we can go ahead and generate the Order entity.

Building the Sales Module

[256]

Creating an Order entity
Let's go ahead and create an Order entity. We do so by using the console, as
shown here:

php bin/console generate:doctrine:entity

If we tried to provide FoggylineSalesBundle:Order as an entity shortcut name,
the generated output would throw an error as shown in the following screenshot:

Instead, we will use SensioGeneratorBundle:SalesOrder for the entity shortcut
name, and follow the generator through as shown here:

Chapter 11

[257]

Building the Sales Module

[258]

This is followed by the rest of the customer-information-related fields. To get a better
idea, look at the following screenshot:

This is followed by the rest of the order-address-related fields as shown here:

Chapter 11

[259]

It is worth noting that normally we would like to extract the address information in
its own table, that is make it its own entity. However, to keep things simple, we will
proceed by keeping it as part of the SalesOrder entity.

Once done, this creates Entity/SalesOrder.php and Repository/
SalesOrderRepository.php files within the src/Foggyline/SalesBundle/
directory. After this, we need to update the database, so it pulls in the SalesOrder
entity, by running the following command:

php bin/console doctrine:schema:update --force

With the SalesOrder entity in place, we can go ahead and generate the
SalesOrderItem entity.

Creating a SalesOrderItem entity
Let's go ahead and create a SalesOrderItem entity. We start the code generator by
using the following console command:

php bin/console generate:doctrine:entity

Building the Sales Module

[260]

When asked for the entity shortcut name, we provide FoggylineSalesBundle:
SalesOrderItem, and then follow the generator field definitions as shown in the
following screenshot:

Chapter 11

[261]

This creates Entity/SalesOrderItem.php and Repository/
SalesOrderItemRepository.php files within the src/Foggyline/SalesBundle/
directory. Once the auto-generate has done its work, we need to go back and edit the
SalesOrderItem entity to update the SalesOrder field relation as follows:

/**
 * @ORM\ManyToOne(targetEntity="SalesOrder", inversedBy="items")
 * @ORM\JoinColumn(name="sales_order_id",
 referencedColumnName="id")
 */
private $salesOrder;

/**
 * @ORM\OneToOne(targetEntity="Foggyline\CatalogBundle\Entity\
Product")
 * @ORM\JoinColumn(name="product_id", referencedColumnName="id")
 */
private $product;

Here, we have defined two types of relations. The first one, relating to $salesOrder,
is the bidirectional one-to-many association, which we saw in the Cart and
CartItem entities. The second one, relating to $product, is the unidirectional one-
to-one association. The reference is said to be unidirectional because CartItem
references Product, while Product won't be referencing CartItem, as we do not
want to change something that is part of another module.

We still need to go back to the src/Foggyline/SalesBundle/Entity/SalesOrder.
php file and add the following to it:

/**
 * @ORM\OneToMany(targetEntity="SalesOrderItem",
mappedBy="salesOrder")
 */
private $items;

public function __construct() {
 $this->items = new \Doctrine\Common\Collections\ArrayCollection();
}

We then need to update the database, so it pulls in the SalesOrderItem entity, by
running the following command:

php bin/console doctrine:schema:update --force

With the SalesOrderItem entity in place, we can go ahead and start building the
cart and checkout pages.

Building the Sales Module

[262]

Overriding the add_to_cart_url service
The add_to_cart_url service was originally declared in
FoggylineCustomerBundle with dummy data. This is because we needed a way to
build Add to Cart URLs on products before sales functionality was available. While
certainly not ideal, it is one possible way of doing it.

Now we are going to override that service with the one declared in our Sales module
in order to provide correct Add to Cart URLs. We start off by defining the service
within src/Foggyline/SalesBundle/Resources/config/services.xml, by
adding the following service element under the services as follows:

<service id="foggyline_sales.add_to_cart_url"
 class="Foggyline\SalesBundle\Service\AddToCartUrl">
 <argument type="service" id="doctrine.orm.entity_manager"/>
 <argument type="service" id="router"/>
</service>

We then create src/Foggyline/SalesBundle/Service/AddToCartUrl.php with
content as follows:

namespace Foggyline\SalesBundle\Service;

class AddToCartUrl
{
 private $em;
 private $router;

 public function __construct(
 \Doctrine\ORM\EntityManager $entityManager,
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->em = $entityManager;
 $this->router = $router;
 }

 public function getAddToCartUrl($productId)
 {
 return $this->router->generate('foggyline_sales_cart_add',
 array('id' => $productId));
 }
}

Chapter 11

[263]

The router service here expects the route named foggyline_sales_cart_add,
which still does not exist. We create the route by adding the following entry under
the routes element of the src/Foggyline/SalesBundle/Resources/config/
routing.xml file as follows:

<route id="foggyline_sales_cart_add" path="/cart/add/{id}">
 <default key="_controller">FoggylineSalesBundle:Cart:add</default>
</route>

Route definition expects to find the addAction function within the cart controller in
the src/Foggyline/SalesBundle/Controller/CartController.php file, which
we define as follows:

namespace Foggyline\SalesBundle\Controller;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class CartController extends Controller
{
 public function addAction($id)
 {
 if ($customer = $this->getUser()) {
 $em = $this->getDoctrine()->getManager();
 $now = new \DateTime();

 $product = $em->getRepository
 ('FoggylineCatalogBundle:Product')->find($id);

 // Grab the cart for current user
 $cart = $em->getRepository
 ('FoggylineSalesBundle:Cart')->findOneBy
 (array('customer' => $customer));

 // If there is no cart, create one
 if (!$cart) {
 $cart = new \Foggyline\SalesBundle\Entity\Cart();
 $cart->setCustomer($customer);
 $cart->setCreatedAt($now);
 $cart->setModifiedAt($now);
 } else {
 $cart->setModifiedAt($now);
 }

Building the Sales Module

[264]

 $em->persist($cart);
 $em->flush();

 // Grab the possibly existing cart item
 // But, lets find it directly
 $cartItem = $em->getRepository
 ('FoggylineSalesBundle:CartItem')->findOneBy
 (array('cart' => $cart, 'product' => $product));

 if ($cartItem) {
 // Cart item exists, update it
 $cartItem->setQty($cartItem->getQty() + 1);
 $cartItem->setModifiedAt($now);
 } else {
 // Cart item does not exist, add new one
 $cartItem = new
 \Foggyline\SalesBundle\Entity\CartItem();
 $cartItem->setCart($cart);
 $cartItem->setProduct($product);
 $cartItem->setQty(1);
 $cartItem->setUnitPrice($product->getPrice());
 $cartItem->setCreatedAt($now);
 $cartItem->setModifiedAt($now);
 }

 $em->persist($cartItem);
 $em->flush();

 $this->addFlash('success', sprintf('%s successfully
 added to cart', $product->getTitle()));

 return $this->redirectToRoute('foggyline_sales_cart');
 } else {
 $this->addFlash('warning', 'Only logged in users can
 add to cart.');
 return $this->redirect('/');
 }
 }
}

There is quite a bit of logic going on here in the addAction method. We are first
checking whether the current user already has a cart entry in the database; if not,
we create a new one. We then add or update the existing cart item.

Chapter 11

[265]

In order for our new add_to_cart service to actually override the one from
the Customermodule, we still need to add a compiler. We do so by defining
the src/Foggyline/SalesBundle/DependencyInjection/Compiler/
OverrideServiceCompilerPass.phpfile with content as follows:

namespace Foggyline\SalesBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\
 CompilerPassInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Definition;

class OverrideServiceCompilerPass implements CompilerPassInterface
{
 public function process(ContainerBuilder $container)
 {
 // Override 'add_to_cart_url' service
 $container->removeDefinition('add_to_cart_url');
 $container->setDefinition('add_to_cart_url', $container->
 getDefinition('foggyline_sales.add_to_cart_url'));

 // Override 'checkout_menu' service
 // Override 'foggyline_customer.customer_orders' service
 // Override 'bestsellers' service
 // Pickup/parse 'shipment_method' services
 // Pickup/parse 'payment_method' services
 }
}

Later on, we will add the rest of the overrides to this file. In order to tie things up for
the moment, and make the add_to_cart service override kick in, we need to register
the compiler pass within the build method of our src/Foggyline/SalesBundle/
FoggylineSalesBundle.php file as follows:

public function build(ContainerBuilder $container)
{
 parent::build($container);;
 $container->addCompilerPass(new
OverrideServiceCompilerPass());
}

The override should now be in effect, and our Sales module should now be
providing valid Add to Cart links.

Building the Sales Module

[266]

Overriding the checkout_menu service
The checkout menu service defined in the Customer module has a simple purpose
which is to provide a link to the cart and the first step of the checkout process.
Since the Sales module was unknown at the time, the Customer module provided
a dummy link, which we will now override.

We start by adding the following service entry under the services element of the
src/Foggyline/SalesBundle/Resources/config/services.xml file as follows:

<service id="foggyline_sales.checkout_menu" class="Foggyline\
SalesBundle\Service\CheckoutMenu">
<argument type="service" id="doctrine.orm.entity_manager"/>
<argument type="service" id="security.token_storage"/>
<argument type="service" id="router"/>
</service>

We then add the src/Foggyline/SalesBundle/Service/CheckoutMenu.php file
with content as follows:

namespace Foggyline\SalesBundle\Service;

class CheckoutMenu
{
 private $em;
 private $token;
 private $router;

 public function __construct(
 \Doctrine\ORM\EntityManager $entityManager,
 $tokenStorage,
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->em = $entityManager;
 $this->token = $tokenStorage->getToken();
 $this->router = $router;
 }

 public function getItems()
 {
 if ($this->token
 && $this->token->getUser() instanceof
 \Foggyline\CustomerBundle\Entity\Customer
) {
 $customer = $this->token->getUser();

Chapter 11

[267]

 $cart = $this->em->getRepository
 ('FoggylineSalesBundle:Cart')->findOneBy
 (array('customer' => $customer));

 if ($cart) {
 return array(
 array('path' => $this->router->generate
 ('foggyline_sales_cart'), 'label' =>
 sprintf('Cart (%s)', count($cart->
 getItems()))),
 array('path' => $this->router->
 generate('foggyline_sales_checkout'),
 'label' =>'Checkout'),
);
 }
 }

 return array();
 }
}

The service expects two routes, foggyline_sales_cart and foggyline_sales_
checkout, so we need to amend the src/Foggyline/SalesBundle/Resources/
config/routing.xml by file adding the following route definitions to it:

<route id="foggyline_sales_cart" path="/cart/">
 <default key="_controller">
 FoggylineSalesBundle:Cart:index</default>
</route>

<route id="foggyline_sales_checkout" path="/checkout/">
 <default key="_controller">FoggylineSalesBundle:Checkout:index</
default>
</route>

The newly added routes expect the cart and checkout controller. The cart
controller is already in place, so we just need to add the indexAction to it.
At this point, let's just add an empty one as follows:

public function indexAction(Request $request)
{
}

Building the Sales Module

[268]

Similarly, let's create a src/Foggyline/SalesBundle/Controller/
CheckoutController.php file with content as follows:

namespace Foggyline\SalesBundle\Controller;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\Extension\Core\Type\CountryType;

class CheckoutController extends Controller
{
 public function indexAction()
 {
 }
}

Later on, we will revert back to these two indexAction methods and add proper
method body implementations.

To conclude the service override, we now amend the previously created
src/Foggyline/SalesBundle/DependencyInjection/Compiler/
OverrideServiceCompilerPass.php file, by replacing the // Override
'checkout_menu' service comment with the following:

$container->removeDefinition('checkout_menu');
$container->setDefinition('checkout_menu', $container->
 getDefinition('foggyline_sales.checkout_menu'));

Our newly defined service should now override the one defined in the Customer
module, thus providing the right checkout and cart (with items in the cart count)
URL.

Overriding the customer orders service
The foggyline_customer.customer_orders service was to provide a collection
of previously created orders for currently logged-in customers. The Customer
module defined a dummy service for this purpose, just so we can move forward
with building up the My Orders section under My Account page. We now need to
override this service, making it return proper orders.

Chapter 11

[269]

We start by adding the following service element under the services of the
src/Foggyline/SalesBundle/Resources/config/services.xml file as follows:

<service id="foggyline_sales.customer_orders"
 class="Foggyline\SalesBundle\Service\CustomerOrders">
 <argument type="service" id="doctrine.orm.entity_manager"/>
 <argument type="service" id="security.token_storage"/>
 <argument type="service" id="router"/>
</service>

We then add the src/Foggyline/SalesBundle/Service/CustomerOrders.php file
with content as follows:

namespace Foggyline\SalesBundle\Service;

class CustomerOrders
{
 private $em;
 private $token;
 private $router;

 public function __construct(
 \Doctrine\ORM\EntityManager $entityManager,
 $tokenStorage,
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->em = $entityManager;
 $this->token = $tokenStorage->getToken();
 $this->router = $router;
 }

 public function getOrders()
 {
 $orders = array();

 if ($this->token
 && $this->token->getUser() instanceof
 \Foggyline\CustomerBundle\Entity\Customer
) {
 $salesOrders = $this->em->
 getRepository('FoggylineSalesBundle:SalesOrder')
 ->findBy(array('customer' => $this->token->
 getUser()));

Building the Sales Module

[270]

 foreach ($salesOrders as $salesOrder) {
 $orders[] = array(
 'id' => $salesOrder->getId(),
 'date' => $salesOrder->getCreatedAt()->
 format('d/m/Y H:i:s'),
 'ship_to' => $salesOrder->
 getAddressFirstName() . '' . $salesOrder->
 getAddressLastName(),
' 'order_total' => $salesOrder->getTotalPrice(),
 'status' => $salesOrder->getStatus(),
 'actions' => array(
 array(
 'label' =>'Cancel',
 'path' => $this->router->generate
 ('foggyline_sales_order_cancel',
 array('id' => $salesOrder->getId()))
),
 array(
 'label' =>'Print',
 'path' => $this->router->generate
 ('foggyline_sales_order_print',
 array('id' => $salesOrder->getId()))
)
)
);
 }
 }
 return $orders;
 }
}

The route generate method expects to find two routes, foggyline_sales_order_
cancel and foggyline_sales_order_print, which are not yet created.

Let's go ahead and create them by adding the following under the route element of
the src/Foggyline/SalesBundle/Resources/config/routing.xml file:

<route id="foggyline_sales_order_cancel"
 path="/order/cancel/{id}">
 <default key="_controller">FoggylineSalesBundle:SalesOrder:
 cancel</default>
</route>

<route id="foggyline_sales_order_print" path="/order/print/{id}">
 <default key="_controller">FoggylineSalesBundle:SalesOrder:
 print</default>
</route>

Chapter 11

[271]

The routes definition, in turn, expects SalesOrderController to be defined. Since
our application will require an admin user to be able to list and edit the orders, we
will use the following Symfony command to auto-generate the CRUD for our Sales
Orderentity:

php bin/console generate:doctrine:crud

When asked for the entity shortcut name, we simply provide
FoggylineSalesBundle:SalesOrder and proceed, allowing for creation of write
actions. At this point, several files have been created for us, as well as a few entries
outside of the Sales bundle. One of these entries is the route definition within the
app/config/routing.yml file, as follows:

foggyline_sales_sales_order:
 resource: "@FoggylineSalesBundle/Controller/SalesOrderController.
php"
 type: annotation

We should already have a foggyline_sales entry in there as well. The difference
being that foggyline_sales points to our router.xml file and the newly
created foggyline_sales_sales_order points to the exact newly created
SalesOrderController. For the sake of simplicity, we can keep them both.

The auto-generator also created a salesorder directory under the app/Resources/
views/ directory, which we need to move over into our bundle as the src/
Foggyline/SalesBundle/Resources/views/Default/salesorder/ directory.

We can now address our print and cancel actions by adding the following into the
src/Foggyline/SalesBundle/Controller/SalesOrderController.php file as
follows:

public function cancelAction($id)
{
 if ($customer = $this->getUser()) {
 $em = $this->getDoctrine()->getManager();
 $salesOrder = $em->getRepository
 ('FoggylineSalesBundle:SalesOrder')
 ->findOneBy(array('customer' => $customer,
 'id' => $id));

 if ($salesOrder->getStatus() != \Foggyline\SalesBundle
 \Entity\SalesOrder::STATUS_COMPLETE) {
 $salesOrder->setStatus(\Foggyline\SalesBundle\
 Entity\SalesOrder::STATUS_CANCELED);
 $em->persist($salesOrder);
 $em->flush();

Building the Sales Module

[272]

 }
 }

 return $this->redirectToRoute('customer_account');
}

public function printAction($id)
{
 if ($customer = $this->getUser()) {
 $em = $this->getDoctrine()->getManager();
 $salesOrder = $em->getRepository
 ('FoggylineSalesBundle:SalesOrder')
 ->findOneBy(array('customer' => $customer, 'id' =>
 $id));

 return $this->render('FoggylineSalesBundle:default:
 salesorder/print.html.twig', array(
 'salesOrder' => $salesOrder,
 'customer' => $customer
));
 }

 return $this->redirectToRoute('customer_account');
}

The cancelAction method merely checks whether the order in question belongs
to the currently logged-in customer; if so, a change of order status is allowed. The
printAction method merely loads the order if it belongs to the currently logged-in
customer, and passes it on to a print.html.twig template.

We then create the src/Foggyline/SalesBundle/Resources/views/Default/
salesorder/print.html.twig template with content as follows:

{% block body %}
<h1>Printing Order #{{ salesOrder.id }}</h1>
 {#<p>Just a dummy Twig dump of entire variable</p>#}
 {{ dump(salesOrder) }}
{% endblock %}

Obviously, this is just a simplified output, which we can further customize to our
needs. The important bit is that we have passed along the order object to our
template, and can now extract any piece of information needed from it.

Chapter 11

[273]

Finally, we replace the // Override 'foggyline_customer.customer_orders'
service comment within the src/Foggyline/SalesBundle/DependencyInjection/
Compiler/OverrideServiceCompilerPass.php file with code as follows:

$container->removeDefinition
 ('foggyline_customer.customer_orders');
$container->setDefinition('foggyline_customer.customer_orders',
 $container->getDefinition('foggyline_sales.customer_orders'));

This will make the service override kick in, and pull in all of the changes
we just made.

Overriding the bestsellers service
The bestsellers service defined in the Customer module was supposed to provide
dummy data for the bestsellers feature shown on the homepage. The idea is to
showcase five of the bestselling products in the store. The Sales module now needs
to override this service in order to provide the right implementation, where actual
sold product quantities will affect the content of the bestsellers shown.

We start off by adding the following definition under the service element of the
src/Foggyline/SalesBundle/Resources/config/services.xml file:

<service id="foggyline_sales.bestsellers"
 class="Foggyline\SalesBundle\Service\BestSellers">
 <argument type="service" id="doctrine.orm.entity_manager"/>
 <argument type="service" id="router"/>
</service>

We then define the src/Foggyline/SalesBundle/Service/BestSellers.php file
with content as follows:

namespace Foggyline\SalesBundle\Service;

class BestSellers
{
 private $em;
 private $router;

 public function __construct(
 \Doctrine\ORM\EntityManager $entityManager,
 \Symfony\Bundle\FrameworkBundle\Routing\Router $router
)
 {
 $this->em = $entityManager;

Building the Sales Module

[274]

 $this->router = $router;
 }

 public function getItems()
 {
 $products = array();
 $salesOrderItem = $this->em->getRepository
 ('FoggylineSalesBundle:SalesOrderItem');
 $_products = $salesOrderItem->getBestsellers();

 foreach ($_products as $_product) {
 $products[] = array(
 'path' => $this->router->generate('product_show',
 array('id' => $_product->getId())),
 'name' => $_product->getTitle(),
 'img' => $_product->getImage(),
 'price' => $_product->getPrice(),
 'id' => $_product->getId(),
);
 }
 return $products;
 }
}

Here, we are fetching the instance of the SalesOrderItemRepository class and
calling the getBestsellers method on it. This method still has not been defined.
We do so by adding it to file src/Foggyline/SalesBundle/Repository/
SalesOrderItemRepository.php file as follows:

public function getBestsellers()
{
 $products = array();

 $query = $this->_em->createQuery('SELECT IDENTITY(t.product),
 SUM(t.qty) AS HIDDEN q
 FROM Foggyline\SalesBundle\Entity
 \SalesOrderItem t
 GROUP BY t.product ORDER BY q DESC')
 ->setMaxResults(5);

 $_products = $query->getResult();

 foreach ($_products as $_product) {

Chapter 11

[275]

 $products[] = $this->_em->getRepository
 ('FoggylineCatalogBundle:Product')
 ->find(current($_product));
 }

 return $products;
}

Here, we are using Doctrine Query Language (DQL) in order to build a list
of the five bestselling products. Finally, we need to replace the // Override
'bestsellers' service comment from within the src/Foggyline/SalesBundle/
DependencyInjection/Compiler/OverrideServiceCompilerPass.php file with
code as follows:

$container->removeDefinition('bestsellers');
$container->setDefinition('bestsellers', $container->
 getDefinition('foggyline_sales.bestsellers'));

By overriding the bestsellers service, we are exposing the actual sales-based list of
bestselling products for other modules to fetch.

Creating the Cart page
The cart page is where the customer gets to see a list of products added to the cart
via Add to Cart buttons, from either the homepage, a category page, or a product
page. We previously created CartController and an empty indexAction function.
Now let's go ahead and edit the indexAction function as follows:

public function indexAction()
{
 if ($customer = $this->getUser()) {
 $em = $this->getDoctrine()->getManager();

 $cart = $em->getRepository('FoggylineSalesBundle:Cart')->
 findOneBy(array('customer' => $customer));
 $items = $cart->getItems();
 $total = null;

 foreach ($items as $item) {
 $total += floatval($item->getQty() * $item->
 getUnitPrice());
 }

 return $this->render('FoggylineSalesBundle:default:
 cart/index.html.twig', array(

Building the Sales Module

[276]

 'customer' => $customer,
 'items' => $items,
 'total' => $total,
));
 } else {
 $this->addFlash('warning', 'Only logged in customers can
 access cart page.');
 return $this->redirectToRoute('foggyline_customer_login');
 }
}

Here, we are checking whether the user is logged in; if they are, we are showing
them the cart with all their items. The non-logged-in user is redirected to a
customer login URL. The indexAction function is expecting the src/Foggyline/
SalesBundle/Resources/views/Default/cart/index.html.twig file, whose
content we define as follows:

{% extends 'base.html.twig' %}
{% block body %}
<h1>Shopping Cart</h1>
<div class="row">
 <div class="large-8 columns">
 <form action="{{ path('foggyline_sales_cart_update') }}"
 method="post">
 <table>
 <thead>
 <tr>
 <th>Item</th>
 <th>Price</th>
 <th>Qty</th>
 <th>Subtotal</th>
 </tr>
 </thead>
 <tbody>
 {% for item in items %}
 <tr>
 <td>{{ item.product.title }}</td>
 <td>{{ item.unitPrice }}</td>
 <td><input name="item[{{ item.id }}]" value="{{ item.qty
 }}"/></td>
 <td>{{ item.qty * item.unitPrice }}</td>
 </tr>
 {% endfor %}
 </tbody>

Chapter 11

[277]

 </table>
 <button type="submit" class="button">Update Cart</button>
 </form>
</div>
<div class="large-4 columns">
 <div>Order Total: {{ total }}</div>
 <div><a href="{{ path('foggyline_sales_checkout') }}"
 class="button">Go to Checkout</div>
 </div>
</div>
{% endblock %}

When rendered, the template will show quantity input elements under each added
product, alongside the Update Cart button. The Update Cart button submits the
form, whose action is pointing to the foggyline_sales_cart_update route.

Let's go ahead and create foggyline_sales_cart_update, by adding the following
entry under the route element of the src/Foggyline/SalesBundle/Resources/
config/routing.xml file as follows:

<route id="foggyline_sales_cart_update" path="/cart/update">
 <default key="_controller">FoggylineSalesBundle:Cart:update
 </default>
</route>

The newly defined route expects to find an updateAction function under the src/
Foggyline/SalesBundle/Controller/CartController.php file, which we add as
follows:

public function updateAction(Request $request)
{
 $items = $request->get('item');

 $em = $this->getDoctrine()->getManager();
 foreach ($items as $_id => $_qty) {
 $cartItem = $em->getRepository
 ('FoggylineSalesBundle:CartItem')->find($_id);
 if (intval($_qty) > 0) {
 $cartItem->setQty($_qty);
 $em->persist($cartItem);
 } else {
 $em->remove($cartItem);
 }
 }
 // Persist to database

Building the Sales Module

[278]

 $em->flush();

 $this->addFlash('success', 'Cart updated.');

 return $this->redirectToRoute('foggyline_sales_cart');
}

To remove a product from the cart, we simply insert 0 as the quantity value and click
the Update Cart button. This completes our simple cart page.

Creating the Payment service
In order to move from cart to checkout, we need to sort out payment and shipment
services. The previous Payment and Shipment modules exposed some of their
Payment and Shipment services, which we now need to aggregate into a single
Payment and Shipment service that our checkout process will use.

We start by replacing the previously added // Pickup/parse 'payment_method'
services comment under the src/Foggyline/SalesBundle/DependencyInjection/
Compiler/OverrideServiceCompilerPass.php file with code as follows:

$container->getDefinition('foggyline_sales.payment')
 ->addArgument(
 array_keys($container->findTaggedServiceIds
 ('payment_method'))
);

The findTaggedServiceIds method returns a key-value list of all the services
tagged with payment_method, which we then pass on as argument to our
foggyline_sales.payment service. This is the only way to fetch the list of services
in Symfony during the compilation time.

We then edit the src/Foggyline/SalesBundle/Resources/config/services.xml
file by adding the following under the service element:

<service id="foggyline_sales.payment"
 class="Foggyline\SalesBundle\Service\Payment">
 <argument type="service" id="service_container"/>
</service>

Finally, we create the Payment class under the src/Foggyline/SalesBundle/
Service/Payment.php file as follows:

namespace Foggyline\SalesBundle\Service;

class Payment

Chapter 11

[279]

{
 private $container;
 private $methods;

 public function __construct($container, $methods)
 {
 $this->container = $container;
 $this->methods = $methods;
 }

 public function getAvailableMethods()
 {
 $methods = array();

 foreach ($this->methods as $_method) {
 $methods[] = $this->container->get($_method);
 }

 return $methods;
 }
}

In compliance with the service definition in the services.xml file, our service
accepts two parameters, one being $container and the second one being $methods.
The $methods argument is passed during compilation time, where we are able to
fetch a list of all the payment_method tagged services. This effectively means our
getAvailableMethods is now capable of returning all payment_method tagged
services, from any module.

Creating the Shipment service
The Shipment service is implemented much like the Payment service. The overall
idea is similar, with merely a few differences along the way. We start by replacing
the previously added // Pickup/parse shipment_method' services comment
under the src/Foggyline/SalesBundle/DependencyInjection/Compiler/
OverrideServiceCompilerPass.php file with code as follows:

$container->getDefinition('foggyline_sales.shipment')
 ->addArgument(
 array_keys($container->findTaggedServiceIds
 ('shipment_method'))
);

Building the Sales Module

[280]

We then edit the src/Foggyline/SalesBundle/Resources/config/services.xml
file by adding the following under the service element:

<service id="foggyline_sales.shipment"
 class="Foggyline\SalesBundle\Service\Payment">
 <argument type="service" id="service_container"/>
</service>

Finally, we create the Shipment class under the src/Foggyline/SalesBundle/
Service/Shipment.php file as follows:

namespace Foggyline\SalesBundle\Service;

class Shipment
{
 private $container;
 private $methods;

 public function __construct($container, $methods)
 {
 $this->container = $container;
 $this->methods = $methods;
 }

 public function getAvailableMethods()
 {
 $methods = array();
 foreach ($this->methods as $_method) {
 $methods[] = $this->container->get($_method);
 }

 return $methods;
 }
}

We are now able to fetch all the Payment and Shipment services via our unified
Payment and Shipment service, thus making the checkout process easy.

Creating the Checkout page
The checkout page will be constructed out of two checkout steps, the first one being
shipment information gathering, and the second one being payment information
gathering.

Chapter 11

[281]

We start off with a shipment step, by changing our src/Foggyline/SalesBundle/
Controller/CheckoutController.php file and its indexAction as follows:

public function indexAction()
{
 if ($customer = $this->getUser()) {

 $form = $this->getAddressForm();

 $em = $this->getDoctrine()->getManager();
 $cart = $em->getRepository('FoggylineSalesBundle:Cart')
 ->findOneBy(array('customer' => $customer));
 $items = $cart->getItems();
 $total = null;

 foreach ($items as $item) {
 $total += floatval($item->getQty() * $item->getUnitPrice());
 }

 return $this->render
 ('FoggylineSalesBundle:default:checkout/index.html.twig',
 array(
 'customer' => $customer,
 'items' => $items,
 'cart_subtotal' => $total,
 'shipping_address_form' => $form->createView(),
 'shipping_methods' => $this->get
 ('foggyline_sales.shipment')->getAvailableMethods()
));
 } else {
 $this->addFlash('warning', 'Only logged in customers can
 access checkout page.');
 return $this->redirectToRoute('foggyline_customer_login');
 }
}
private function getAddressForm()
{
 return $this->createFormBuilder()
 ->add('address_first_name', TextType::class)
 ->add('address_last_name', TextType::class)
 ->add('company', TextType::class)
 ->add('address_telephone', TextType::class)
 ->add('address_country', CountryType::class)
 ->add('address_state', TextType::class)
 ->add('address_city', TextType::class)

Building the Sales Module

[282]

 ->add('address_postcode', TextType::class)
 ->add('address_street', TextType::class)
 ->getForm();
}

Here, we are fetching the currently logged-in customer cart and passing it onto a
checkout/index.html.twig template, alongside several other variables needed for
the shipment step. The getAddressForm method simply builds an address form for
us. There is also a call toward our newly created the foggyline_sales.shipment
service, which enables us to fetch a list of all available shipment methods.

We then create src/Foggyline/SalesBundle/Resources/views/Default/
checkout/index.html.twig with content as follows:

{% extends 'base.html.twig' %}
{% block body %}
<h1>Checkout</h1>

<div class="row">
 <div class="large-8 columns">
 <form action="{{ path('foggyline_sales_checkout_payment') }}"
 method="post" id="shipping_form">
 <fieldset>
 <legend>Shipping Address</legend>
 {{ form_widget(shipping_address_form) }}
 </fieldset>

 <fieldset>
 <legend>Shipping Methods</legend>

 {% for method in shipping_methods %}
 {% set shipment = method.getInfo('street', 'city',
 'country', 'postcode', 'amount', 'qty')['shipment'] %}

 <label>{{ shipment.title }}</label>

 {% for delivery_option in shipment.delivery_options %}

 <input type="radio" name="shipment_method"
 value="{{ shipment.code }}____
 {{ delivery_option.code }}____
 {{ delivery_option.price }}">
 {{ delivery_option.title }}
 ({{ delivery_option.price }})

Chapter 11

[283]

 {% endfor %}

 {% endfor %}

 </fieldset>
 </form>
 </div>
 <div class="large-4 columns">
 {% include
 'FoggylineSalesBundle:default:checkout/order_sumarry.html.twig'
 %}
 <div>Cart Subtotal: {{ cart_subtotal }}</div>
 <div><a id="shipping_form_submit" href="#"
 class="button">Next
 </div>
 </div>
</div>

<script type="text/javascript">
 var form = document.getElementById('shipping_form');
 document.getElementById('shipping_form_submit')
 .addEventListener('click', function () {
 form.submit();
 });
</script>
{% endblock %}

The template lists all of the address-related form fields, alongside available shipment
methods. The JavaScript part handles the Next button click, which basically submits
the form to the foggyline_sales_checkout_payment route.

We then define the foggyline_sales_checkout_payment route by adding the
following entry under the routes element of the src/Foggyline/SalesBundle/
Resources/config/routing.xml file:

<route id="foggyline_sales_checkout_payment"
 path="/checkout/payment">
 <default
 key="_controller">FoggylineSalesBundle:Checkout:payment</default>
</route>

Building the Sales Module

[284]

The route entry expects to find a paymentAction within CheckoutController,
which we define as follows:

public function paymentAction(Request $request)
{
 $addressForm = $this->getAddressForm();
 $addressForm->handleRequest($request);

 if ($addressForm->isSubmitted() && $addressForm->isValid() &&
 $customer = $this->getUser()) {

 $em = $this->getDoctrine()->getManager();
 $cart = $em->getRepository('FoggylineSalesBundle:Cart')->
 findOneBy(array('customer' => $customer));
 $items = $cart->getItems();
 $cartSubtotal = null;

 foreach ($items as $item) {
 $cartSubtotal += floatval($item->getQty() * $item->
 getUnitPrice());
 }

 $shipmentMethod = $_POST['shipment_method'];
 $shipmentMethod = explode('____', $shipmentMethod);
 $shipmentMethodCode = $shipmentMethod[0];
 $shipmentMethodDeliveryCode = $shipmentMethod[1];
 $shipmentMethodDeliveryPrice = $shipmentMethod[2];

 // Store relevant info into session
 $checkoutInfo = $addressForm->getData();
 $checkoutInfo['shipment_method'] = $shipmentMethodCode .
 '____' . $shipmentMethodDeliveryCode;
 $checkoutInfo['shipment_price'] =
 $shipmentMethodDeliveryPrice;
 $checkoutInfo['items_price'] = $cartSubtotal;
 $checkoutInfo['total_price'] = $cartSubtotal +
 $shipmentMethodDeliveryPrice;
 $this->get('session')->set('checkoutInfo', $checkoutInfo);

 return $this->render('FoggylineSalesBundle:default:
 checkout/payment.html.twig', array(
 'customer' => $customer,
 'items' => $items,
 'cart_subtotal' => $cartSubtotal,

Chapter 11

[285]

 'delivery_subtotal' => $shipmentMethodDeliveryPrice,
 'delivery_label' =>'Delivery Label Here',
 'order_total' => $cartSubtotal +
 $shipmentMethodDeliveryPrice,
 'payment_methods' => $this->get
 ('foggyline_sales.payment')->getAvailableMethods()
));
 } else {
 $this->addFlash('warning', 'Only logged in customers can
 access checkout page.');
 return $this->redirectToRoute('foggyline_customer_login');
 }
}

The preceding code fetches the submission made from the shipment step of the
checkout process, stores the relevant values into the session, fetches the variables
required for the payment step and renders back the checkout/payment.html.twig
template.

We define the src/Foggyline/SalesBundle/Resources/views/Default/
checkout/payment.html.twig file with content as follows:

{% extends 'base.html.twig' %}
{% block body %}
<h1>Checkout</h1>
<div class="row">
 <div class="large-8 columns">
 <form action="{{ path('foggyline_sales_checkout_process') }}"
 method="post" id="payment_form">
 <fieldset>
 <legend>Payment Methods</legend>

 {% for method in payment_methods %}
 {% set payment = method.getInfo()['payment'] %}

 <input type="radio" name="payment_method"
 value="{{ payment.code }}"> {{ payment.title }}
 {% if payment['form'] is defined %}
 <div id="{{ payment.code }}_form">
 {{ form_widget(payment['form']) }}
 </div>
 {% endif %}

 {% endfor %}

Building the Sales Module

[286]

 </fieldset>
 </form>
 </div>
 <div class="large-4 columns">
 {% include 'FoggylineSalesBundle:default:checkout/
 order_sumarry.html.twig' %}
 <div>Cart Subtotal: {{ cart_subtotal }}</div>
 <div>{{ delivery_label }}: {{ delivery_subtotal }}</div>
 <div>Order Total: {{ order_total }}</div>
 <div>Place
 Order
 </div>
 </div>
</div>
<script type="text/javascript">
 var form = document.getElementById('payment_form');
 document.getElementById('payment_form_submit').
 addEventListener('click', function () {
 form.submit();
 });
</script>
{% endblock %}

Similar to the shipment step, we have a rendering of available payment methods
here, alongside a Place Order button which is handled by JavaScript as the button
is located outside of the submission form. Once an order is placed, the POST
submission is made onto the foggyline_sales_checkout_process route, which
we defined under the routes element of the src/Foggyline/SalesBundle/
Resources/config/routing.xml file as follows:

<route id="foggyline_sales_checkout_process"
 path="/checkout/process">
 <default
 key="_controller">FoggylineSalesBundle:Checkout:process</default>
</route>

The route points to the processAction function within CheckoutController, which
we define as follows:

public function processAction()
{
 if ($customer = $this->getUser()) {

 $em = $this->getDoctrine()->getManager();
 // Merge all the checkout info, for SalesOrder

Chapter 11

[287]

 $checkoutInfo = $this->get('session')->get
 ('checkoutInfo');
 $now = new \DateTime();

 // Create Sales Order
 $salesOrder = new \Foggyline\SalesBundle\Entity
 \SalesOrder();
 $salesOrder->setCustomer($customer);
 $salesOrder->setItemsPrice($checkoutInfo['items_price']);
 $salesOrder->setShipmentPrice
 ($checkoutInfo['shipment_price']);
 $salesOrder->setTotalPrice($checkoutInfo['total_price']);
 $salesOrder->setPaymentMethod($_POST['payment_method']);
 $salesOrder->setShipmentMethod
 ($checkoutInfo['shipment_method']);
 $salesOrder->setCreatedAt($now);
 $salesOrder->setModifiedAt($now);
 $salesOrder->setCustomerEmail($customer->getEmail());
 $salesOrder->setCustomerFirstName
 ($customer->getFirstName());
 $salesOrder->setCustomerLastName
 ($customer->getLastName());
 $salesOrder->setAddressFirstName
 ($checkoutInfo['address_first_name']);
 $salesOrder->setAddressLastName
 ($checkoutInfo['address_last_name']);
 $salesOrder->setAddressCountry
 ($checkoutInfo['address_country']);
 $salesOrder->setAddressState
 ($checkoutInfo['address_state']);
 $salesOrder->setAddressCity
 ($checkoutInfo['address_city']);
 $salesOrder->setAddressPostcode
 ($checkoutInfo['address_postcode']);
 $salesOrder->setAddressStreet
 ($checkoutInfo['address_street']);
 $salesOrder->setAddressTelephone
 ($checkoutInfo['address_telephone']);
 $salesOrder->setStatus(\Foggyline\SalesBundle\Entity\
 SalesOrder::STATUS_PROCESSING);

 $em->persist($salesOrder);
 $em->flush();

 // Foreach cart item, create order item, and delete cart
 item

Building the Sales Module

[288]

 $cart = $em->getRepository('FoggylineSalesBundle:Cart')->
 findOneBy(array('customer' => $customer));
 $items = $cart->getItems();

 foreach ($items as $item) {
 $orderItem = new \Foggyline\SalesBundle\Entity
 \SalesOrderItem();

 $orderItem->setSalesOrder($salesOrder);
 $orderItem->setTitle($item->getProduct()->getTitle());
 $orderItem->setQty($item->getQty());
 $orderItem->setUnitPrice($item->getUnitPrice());
 $orderItem->setTotalPrice($item->getQty() * $item-
>getUnitPrice());
 $orderItem->setModifiedAt($now);
 $orderItem->setCreatedAt($now);
 $orderItem->setProduct($item->getProduct());

 $em->persist($orderItem);
 $em->remove($item);
 }

 $em->remove($cart);
 $em->flush();

 $this->get('session')->set('last_order', $salesOrder->
getId());
 return $this->redirectToRoute
 ('foggyline_sales_checkout_success');
 } else {
 $this->addFlash('warning', 'Only logged in customers can
 access checkout page.');
 return $this->redirectToRoute('foggyline_customer_login');
 }
}

Once the POST submission hits the controller, a new order with all of the related
items gets created. At the same time, the cart and cart items are cleared. Finally, the
customer is redirected to the order success page.

Creating the order success page
The order success page has an important role in full-blown web shop applications. This
is where we get to thank the customer for their purchase and possibly present some
more related or cross-related shopping options, alongside some optional discounts.
Though our application is simple, it's worth building a simple order success page.

Chapter 11

[289]

We start by adding the following route definition under the routes element of the
src/Foggyline/SalesBundle/Resources/config/routing.xml file:

<route id="foggyline_sales_checkout_success"
 path="/checkout/success">
 <default
 key="_controller">FoggylineSalesBundle:Checkout:success</default>
</route>

The route points to a successAction function within CheckoutController, which
we define as follows:

public function successAction()
{

 return $this->render('FoggylineSalesBundle:default:
 checkout/success.html.twig', array(
 'last_order' => $this->get('session')->get('last_order')
));
}

Here, we are simply fetching the last created order ID for the currently logged-in
customer and passing the full order object to the src/Foggyline/SalesBundle/
Resources/views/Default/checkout/success.html.twig template as follows:

{% extends 'base.html.twig' %}
{% block body %}
<h1>Checkout Success</h1>
<div class="row">
 <p>Thank you for placing your order #{{ last_order }}.</p>
 <p>You can see order details <a href="{{
 path('customer_account') }}">here.</p>
</div>
{% endblock %}

With this, we finalize the entire checkout process for our web shop. Though it is an
absolutely simplistic one, it sets the foundation for more robust implementations.

Creating a store manager dashboard
Now that we have finalized the checkout Sales module, let's revert quickly to our
core module, AppBundle. As per our application requirements, let's go ahead and
create a simple store manager dashboard.

Building the Sales Module

[290]

We start by adding the src/AppBundle/Controller/StoreManagerController.
php file with content as follows:

namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class StoreManagerController extends Controller
{
 /**
 * @Route("/store_manager", name="store_manager")
 */
 public function indexAction()
 {
 return $this->render
 ('AppBundle:default:store_manager.html.twig');
 }
}

The indexAction function simply returns the src/AppBundle/Resources/views/
default/store_manager.html.twig file, whose content we define as follows:

{% extends 'base.html.twig' %}
{% block body %}
<h1>Store Manager</h1>
<div class="row">
 <div class="large-6 columns">
 <div class="stacked button-group">
 Add new
 Category
 Add new
 Product
 Add new
 Customer
 </div>
 </div>
 <div class="large-6 columns">
 <div class="stacked button-group">
 List &
 Manage Categories
 List &
 Manage Products
 List &
 Manage Customers

Chapter 11

[291]

 List
 & Manage Orders
 </div>
 </div>
</div>
{% endblock %}

The template merely renders the category, product, customer, and order
management links. The actual access to these links is controlled by the firewall,
as explained in previous chapters.

Unit testing
The Sales module is far more robust than any of the previous modules. There are
several things we can unit test. However, we won't be covering full unit testing as
part of this chapter. We will simply turn our attention to a single unit test, the one
for the CustomerOrders service.

We start off by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/SalesBundle/Tests</directory>

With that in place, running the phpunit command from the root of our shop should
pick up any test we have defined under the src/Foggyline/SalesBundle/Tests/
directory.

Now, let's go ahead and create a test for our CustomerOrders service. We do so by
defining the src/Foggyline/SalesBundle/Tests/Service/CustomerOrdersTest.
php file with content as follows:

namespace Foggyline\SalesBundle\Test\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;
use Symfony\Component\Security\Core\Authentication\
 Token\UsernamePasswordToken;

class CustomerOrdersTest extends KernelTestCase
{
 private $container;

 public function setUp()
 {
 static::bootKernel();
 $this->container = static::$kernel->getContainer();

Building the Sales Module

[292]

 }

 public function testGetOrders()
 {
 $firewall = 'foggyline_customer';

 $em = $this->container->get
 ('doctrine.orm.entity_manager');

 $user = $em->getRepository
 ('FoggylineCustomerBundle:Customer')->findOneByUsername
 ('ajzele@gmail.com');
 $token = new UsernamePasswordToken($user, null, $firewall,
 array('ROLE_USER'));

 $tokenStorage = $this->container->get
 ('security.token_storage');
 $tokenStorage->setToken($token);

 $orders = new \Foggyline\SalesBundle\Service
 \CustomerOrders(
 $em,
 $tokenStorage,
 $this->container->get('router')
);

 $this->assertNotEmpty($orders->getOrders());
 }
}

Here, we are using the UsernamePasswordToken function in order to simulate a
customer login. The password token is then passed on to the CustomerOrders
service. The CustomerOrders service then internally checks whether token storage
has a token assigned, flagging it as a logged-in user and returning the list of its
orders. Being able to simulate customer login is essential for any other tests we
might be writing for our sales module.

Functional testing
Similar to unit testing, we will only focus on a single functional test, as doing
anything more robust would be out of the scope of this chapter. We will write a
simple code that adds a product to the cart and accesses the checkout page. In order
to add an item to the cart, here we also need to simulate the user login.

Chapter 11

[293]

We write the src/Foggyline/SalesBundle/Tests/Controller/
CartControllerTest.php test as follows:

namespace Foggyline\SalesBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
use Symfony\Component\BrowserKit\Cookie;
use Symfony\Component\Security\Core\Authentication\
Token\UsernamePasswordToken;

class CartControllerTest extends WebTestCase
{
 private $client = null;

 public function setUp()
 {
 $this->client = static::createClient();
 }

 public function testAddToCartAndAccessCheckout()
 {
 $this->logIn();

 $crawler = $this->client->request('GET', '/');
 $crawler = $this->client->click($crawler->selectLink('Add
 to Cart')->link());
 $crawler = $this->client->followRedirect();

 $this->assertTrue($this->client->getResponse()->
 isSuccessful());
 $this->assertGreaterThan(0, $crawler->filter
 ('html:contains("added to cart")')->count());

 $crawler = $this->client->request('GET', '/sales/cart/');
 $crawler = $this->client->click($crawler->selectLink('Go
 to Checkout')->link());

 $this->assertTrue($this->client->getResponse()->
 isSuccessful());
 $this->assertGreaterThan(0, $crawler->filter
 ('html:contains("Checkout")')->count());
 }

Building the Sales Module

[294]

 private function logIn()
 {
 $session = $this->client->getContainer()->get('session');
 $firewall = 'foggyline_customer'; // firewall name
 $em = $this->client->getContainer()->get('doctrine')->
 getManager();
 $user = $em->getRepository
 ('FoggylineCustomerBundle:Customer')->findOneByUsername
 ('ajzele@gmail.com');

 $token = new UsernamePasswordToken($user, null, $firewall,
 array('ROLE_USER'));
 $session->set('_security_' . $firewall,
 serialize($token));
 $session->save();

 $cookie = new Cookie($session->getName(), $session->
 getId());
 $this->client->getCookieJar()->set($cookie);
 }
}

Once run, the test will simulate the customer login, add an item to the cart, and try
to access the checkout page. Depending on the actual customers we have in our
database, we might need to change the customer e-mail provided in the preceding
test.

Running the phpunit command now should successfully execute our tests.

Chapter 11

[295]

Summary
In this chapter, we built a simple yet functional Sales module. With just four
simple entities (Cart, CartItem, SalesOrder, and SalesOrderItem), we managed
to implement simple cart and checkout features. By doing so, we empowered
customers to actually make a purchase, instead of just browsing the product catalog.
The sales module made use of the payment and shipment services defined in
previous chapters. While the payment and shipment services are implemented as
imaginary, dummy ones, they do provide a basic skeleton that we can use for real
payment and shipment API implementations.

Furthermore, in this chapter, we addressed the admin dashboard, by making a
simple interface that merely aggregates a few of the existing CRUD interfaces. Access
to the dashboard and the management links is protected by entries in app/config/
security.yml, and allowed only for ROLE_ADMIN.

Together, the modules written so far make up a simplified application. Writing
robust web shop applications would normally include tens of other features found in
modern e-commerce platforms such as Magento. These include multiple language,
currency, and website support; robust category, product, and product inventory
management; shopping cart and catalog sales rules; and many others. Modularizing
our application makes development and maintenance processes easier.

Moving forward, in the final chapter, we will look into distributing our modules.

[297]

Integrating and
Distributing Modules

Throughout a few of the previous chapters, we built a simple web shop application
in a modular manner. Each of the modules play a special role in handling individual
bits and pieces, which add to the overall application. The application itself, though
written in modular, was kept in a Git single version control repository. It would be
a far cleaner separation if each of the modules was provided in its own repository.
This way, we will be able to keep the different module developments as completely
different projects while still being able to use them together. As we move forward, we
will see how we can achieve this via GIT and Composer in two different manners.

In this chapter, we will cover the following tools and services:

• Understanding Git
• Understanding GitHub
• Understanding Composer
• Understanding Packagist

Understanding Git
Originally started by Linus Torvalds, Git version control is currently one of the most
popular version control systems. Overall speed and efficiency with large projects,
alongside a great branching system, has made it popular among developers.

Learning about Git version control itself is out of the scope of this book, for which
recommended reading is the Pro Git book.

Integrating and Distributing Modules

[298]

The Pro Git book, written by Scott Chacon and Ben Straub, and
published by Apress, is available for free at https://git-scm.
com/book/en/v2.

One neat feature of Git, which we are interested in as part of this chapter, is its
submodules. They enable us to slice larger modular projects, such as our web shop
app, into a series of smaller submodules, whereas each submodule is a Git repository
on its own.

Understanding GitHub
Within three years of Git's appearance, GitHub emerged. GitHub is basically a
web service built on top of the Git version control system. It enables developers to
easily post their code online, where others can simply clone their repository and
use their code. Creating an account on GitHub is free and can be done by following
instructions on their official homepage (https://github.com).

Currently, our application is structured as per the following image:

What we want to do is to split it into six different Git repositories, as follows:

• core

• catalog

• customer

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://github.com

Chapter 12

[299]

• payment

• sales

• shipment

The core repository is to contain everything except the content of the
src/Foggyline directory.

Assuming we created an empty core repository on GitHub, and our local all-in-one
app is currently held in the shop directory, we initialize the following commands on
our computer:

cp -R shop core-repository

rm -Rfcore-repository/.git/

rm -Rfcore-repository/src/Foggyline/*

touch core-repository/src/Foggyline/.gitkeep

cd core-repository

git init

git remote add origin git@github.com:<user>/<core-repository>.git

git add --all

git commit -m "Initial commit of core application"

git push origin master

At this point, we merely pushed the core application part of our all-in-one web shop
app into the core repository on GitHub. The src/Foggyline/ directory does not
contain any modules in it.

Now, let's go back to GitHub and create an appropriate empty repository for each
of the five modules, that is, catalog, customer, payment, sales, and shipment. We
can now execute a set of console commands for each of the modules, as shown in the
following CatalogBundle example:

cp -R shop/src/Foggyline/CatalogBundle catalog-repository

cd catalog-repository

git init

git remote add origin git@github.com:<user>/<catalog-repository>.git

git add --all

git commit -m "Initial commit of catalog module"

git push origin master

Integrating and Distributing Modules

[300]

Once all of the five modules are pushed to a repository, we can finally treat them as
submodules, as shown here:

cd core-repository

git submodule add git@github.com:<user>/<catalog-repository>.git
src/Foggyline/CatalogBundle

git submodule add git@github.com:<user>/<customer-repository>.git
src/Foggyline/CustomerBundle

git submodule add git@github.com:<user>/<payment-repository>.git
src/Foggyline/PaymentBundle

git submodule add git@github.com:<user>/<sales-repository>.git
src/Foggyline/SalesBundle

git submodule add git@github.com:<user>/<shipment-repository>.git
src/Foggyline/ShipmentBundle

If we were to run the ls-al command within the core repository directory now, we
should be able to see a .gitmodules file in there with the following content:

[submodule "src/Foggyline/CatalogBundle"]

 path = src/Foggyline/CatalogBundle

url = git@github.com:<user>/<catalog-repository>.git

[submodule "src/Foggyline/CustomerBundle"]

 path = src/Foggyline/CustomerBundle

url = git@github.com:<user>/<customer-repository>.git

[submodule "src/Foggyline/PaymentBundle"]

 path = src/Foggyline/PaymentBundle

url = git@github.com:<user>/<payment-repository>.git

[submodule "src/Foggyline/SalesBundle"]

 path = src/Foggyline/SalesBundle

url = git@github.com:<user>/<sales-repository>.git

[submodule "src/Foggyline/ShipmentBundle"]

 path = src/Foggyline/ShipmentBundle

 url = git@github.com:<user>/<shipment-repository>.git

Chapter 12

[301]

The .gitmodules file, basically, contains the list of all of the submodules added to
our core project, that is, core application. We should commit and push this file to
the core repository now. Assuming that the .gitmodules file is pushed to the core
repository, we can easily delete all directories created so far and initiate the project
with one simple command, as follows:

git clone --recursive git@github.com:<user>/<core-repository>.git

The --recursive argument to the git clone command automatically initializes
and updates each submodule in the repository based on the .gitmodules file.

Understanding Composer
Composer is a dependency management tool for PHP. By default, it does not install
anything global but rather on a per-project basis. We can use it to redistribute
our project in order to define which libraries and packages it needs for it to be
successfully executed. Using Composer is quite simple. All it creating is to create
a composer.json file in the root directory of our project with similar content, as
follows:

{
"require": {
"twig/twig": "~1.0"
 }
}

If we were to create the preceding composer.json file in some empty directory and
execute the composer install command within that directory, Composer will
pickup the composer.json file and install the defined dependencies for our project.
The actual install action implies on downloading the required code from a remote
repository to our machine. In doing so, the install command creates the composer.
lock file, which writes a list of the exact versions of dependencies installed.

We can also simply execute the command twig/twig:~1.0 that a Composer
requires, which does the same thing but with a different approach. It does not
require us to write a composer.json file, and if one exists, it will update it.

Learning about Composer itself is out of the scope of this book, for which the
recommended official documentation is available at https://getcomposer.org/
doc.

Composer allows packaging and formal dependency management, making it a great
choice to slice our all-in-one modular application into a series of Composer packages.
These packages need a repository.

https://getcomposer.org/doc
https://getcomposer.org/doc

Integrating and Distributing Modules

[302]

Understanding Packagist
The main repository, when it comes to Composer packages, is Packagist (https://
packagist.org). It is a web service that we can access through our browser, open an
account on for free, and start submitting our packages to the repository. We can also
use it to search through already existing packages.

Packagist is generally used for free open source packages, though we can attach
privateGitHub and BitBucket repositories to it in the same manner, the only
difference being that the private repositories require SSH keys in order to work.

There are more convenient commercial installations of the Composer packager,
such as Toran Proxy (https://toranproxy.com). This allows easier hosting of
private packages, higher bandwidth for faster package installations, and commercial
support.

Up to this point, we sliced our applications into six different Git repositories, one
for core application and the remaining five for each module (catalog, customer,
payment, sales, and shipment) individually. Now, let's take the final step and see
how we can move away from the Git submodules to the Composer packages.

Assuming we created an account on https://packagist.org and successfully
logged in, we will start by clicking on the Submit button, which should land us
on a screen similar to the following screenshot:

https://packagist.org
https://packagist.org
https://toranproxy.com
https://packagist.org

Chapter 12

[303]

Here, we need to provide a link to our existing Git, SVN, or Mercurial (HG) repository.
The preceding example provides a link (https://github.com/ajzele/B05460_
CatalogBundle) to the Git repository. Before we press the Check button, we will
need to make sure that our repository has a composer.json file defined in its root,
otherwise an error similar to the one shown in the following screenshot will be thrown.

We will then create the composer.json file for our CatalogBundle with the
following content:

{
"name": "foggyline/catalogbundle",
"version" : "1.0.0",
"type": "library",
"description": "Just a test module for web shop application.",
"keywords": [
"catalog"
],
"homepage": "https://github.com/ajzele/B05460_CatalogBundle",
"license": "MIT",
"authors": [
 {
"name": "Branko Ajzele",
"email": "ajzele@gmail.com",
"homepage": "http://foggyline.net",
"role": "Developer"
 }
],
"minimum-stability": "dev",
"prefer-stable": true,
"autoload": {
"psr-0": {
"Foggyline\\CatalogBundle\\": ""
 }
 },
"target-dir": "Foggyline/CatalogBundle"
}

https://github.com/ajzele/B05460_CatalogBundle
https://github.com/ajzele/B05460_CatalogBundle

Integrating and Distributing Modules

[304]

There are quite a lot of attributes here, all of which are fully documented over on the
https://getcomposer.org/doc/04-schema.md page.

With the preceding composer.json file in place, running the composer
install command on console will pull in the code under the vendor/
foggyline/catalogbundle directory, making for a full path of our bundle
file under vendor/foggyline/catalogbundle/Foggyline/CatalogBundle/
FoggylineCatalogBundle.php.

Once we add the preceding composer.json file to our Git repository, we can go back
to Packagist and proceed with clicking the Check button, which should result in a
screen similar to the following screenshot:

Finally, when we click the Submit button, a screen similar to the following
screenshot should appear:

https://getcomposer.org/doc/04-schema.md

Chapter 12

[305]

Our package is now added to Packagist, and running the following command on
console will install it to into the project:

composer require foggyline/catalogbundle:dev-master

Similarly, we can just add the proper entry to the existing project's composer.json
file, as shown in the following code block:

{
"require": {
"foggyline/catalogbundle": "dev-master"
 },
}

Integrating and Distributing Modules

[306]

Now that we know how to slice out the application across several Git repositories
and Composer packages, we need to do the same for the remaining modules within
the src/Foggyline/ directory, as only those modules will be registered as the
Composer packages.

During the sales module development, we noticed that it depends on several other
modules, such as catalog and customer. We can use the require attribute of the
composer.json file to outline this dependency.

Once all of the Git repositories for the src/Foggyline/ modules are updated with
the proper composer.json definitions, we can go back to our core application
repository and update the require attribute in its composer.json file, as follows:

{
"require": {
// ...
"foggyline/catalogbundle": "dev-master"
"foggyline/customerbundle": "dev-master"
"foggyline/paymentbundle": "dev-master"
"foggyline/salesbundle": "dev-master"
"foggyline/shipmentbundle": "dev-master"
 // ...
 },
}

The difference between using submodules and packages might not be that obvious at
this point. However, packages, unlike submodules, allow versioning. Though all of
our packages are pulled in from dev-master, we could have easily targeted specific
versions of packages, if any.

Chapter 12

[307]

Summary
Throughout this chapter, we took a quick look at Git and Composer and how we can
integrate and distribute our modules via GitHub and Packagist as their respectful
services. Publishing packages under Packagist has been shown to be a pretty
straightforward and easy process. All it took was a public link to the version control
system repository and a composer.json file definition within the root of our project.

Writing our own applications from ground up does not necessarily mean we need to
use the Git submodules or the Composer packages, as presented in this chapter. The
Symfony application, on its own, is structured modularly via bundles. The version
control system, when used on a Symfony project, is supposed to save only our code,
which means all of the Symfony libraries and other dependencies are to be pulled
in via Composer when the project is being set. The examples shown in this chapter
merely show what can be accomplished if we are after writing modular components
that are to be shared with others. As an example, if we were really working on a
robust catalog module, others interested in coding their own web shop might
find it interesting to require and use it in their project.

This book started by looking into the current state of the PHP ecosystem. We then
touched upon design patterns and principles, as a foundation of professional
programming. Then we moved onto writing a brief, more visual, specification for our
web shop application. Finally, we split our application into core and several other
smaller modules, which we then coded following the specification. Along the way, we
familiarized ourselves with some of the most commonly used Symfony features. The
overall application we wrote is far from being robust. It is a web shop in its simplest
form, which leaves much to be desired on a feature side. However, the concepts
applied showcase how easy and quick it can be to write modular applications in PHP.

[309]

Index
A
abstract factory pattern 42, 43
adapter pattern 49, 50
AJAX POST 220
allowed_classes 21
anonymous classes 5-8
application frameworks

about 30, 31
CakePHP 35
CodeIgniter 34
community 30
enterprise ready 31
extensible 30
high performing 31
Laravel framework 31
modular 30
Phalcon 38, 39
secure 30
Slim 36
Symfony 32, 33
Yii 37
Zend Framework 33, 34

application-wide security
configuring 157-160

Artisan 31
assertions 26

B
behavioral patterns

about 60
chain of responsibility pattern 60, 61
command pattern 62, 63
interpreter pattern 63-65
iterator pattern 65-67

mediator pattern 67-69
memento pattern 69, 70
observer pattern 70, 71
state pattern 72, 73
strategy pattern 73, 74
template pattern 74-76
visitor pattern 76-78

BitBucket 302
blank project

creating 113, 114
bridge pattern 51, 52
builder pattern 43-45
bundle system 132-135

C
CakePHP

about 35
reference 35

CakePHP, plugins
reference 35

catalog module
about 165
dependencies 166
functional testing 186-188
implementation 166-168
requisites 165, 166
unit testing 185, 186

chain of responsibility pattern 60, 61
Closure::call() method 8
CodeIgniter

about 34
features 34
references 34

command pattern 62, 63
Common Gateway Interface (CGI) 1

[310]

Composer
about 301
reference 301

composite pattern 52-54
constant arrays 18
context sensitive lexer

about 22, 23
example 22

controller 121, 122
core module

dependencies 144
functional testing 160-163
implementation 144-157
requisites 143
unit testing 160

creational patterns
about 42
abstract factory pattern 42, 43
builder pattern 43-45
factory method pattern 46
prototype pattern 47
reference 42
singleton pattern 48, 49

Cross-site request forgery (CSRF) 37
Cross-site scripting (XSS) 37
cryptographically secure pseudo-random

number generator (CSPRNG) 20
customer module

about 189
dependencies 190
functional testing 211-213
implementation 190-192
requisites 189, 190
unit testing 209-211

D
databases 135
decorator pattern 54, 55
dependencies, core module 144
dependency inversion principle 90, 91
deprecated features 28, 29
design patterns

about 41
behavioral patterns 60
creational patterns 42
structural patterns 49

dirname() function 17
Doctrine

about 136
reference link 137

Doctrine Query Language (DQL) 275

F
facade pattern 55-57
factory method pattern 46
filtered unserialize() 21, 22
flyweight pattern 57, 58
forms 127-130
Foundation for Sites

download link 145
Foundation framework 109
functional testing 160-163

G
Gang of Four (GoF) 41
generator delegation 9
generator return expressions

about 10, 11
example 11

Gii 37
Git 297
GitHub

about 298-301
reference 298

group use declarations
about 23, 24
example 23

I
implementation, catalog module

about 166-168
Category page, setting up 180-182
core module services, overriding 177-180
entities, creating 169-173
image uploads, managing 174-177
Product page, setting up 183, 184

implementation, customer module
customer entity, creating 192-194
customer entity, extending 196, 197
customer menu service, creating 198-200
forgotten password, managing 207, 208

[311]

login process 202-207
logout 207
orders service, creating 197, 198
register process 201, 202
security configuration, modifying 194, 195

implementation, payment module
card entity, creating 218
card payment controller and routes,

creating 221, 222
card payment service, creating 219, 220
check money payment controller and

routes, creating 224, 225
check money payment service,

creating 222-224
implementation, Sales module

about 251, 252
add_to_cart_url service, overriding 262-265
bestsellers service, overriding 273, 274
Cart entity, creating 253
cart item entity, creating 254, 255
Cart page, creating 275-278
checkout_menu service, overriding 266-268
Checkout page, creating 280-288
foggyline_customer.customer_orders

service, overriding 268-272
Order entity, creating 256-259
order success page, creating 288
Payment service, creating 278, 279
SalesOrderItem entity, creating 259-261
Shipment service, creating 279, 280
store manager dashboard, creating 289-291

implementation, shipment module
dynamic rate payment service,

creating 238-240
dynamic rate shipment controller and

routes, creating 240, 241
flat rate shipment controller and routes,

creating 237, 238
flat rate shipment service, creating 236, 237

integer division function 17
Interface Segregation Principle 89, 90
interpreter pattern 63, 65
Iterator interface 9
iterator pattern 65-67

L
Laracasts

reference link 32
Laravel framework

about 31
reference link 31

Liskov substitution principle 86-89
list() construct 27
Long-term Support(LTS) 32

M
mediator pattern 67-69
memento pattern 69, 70
Model-View-Control approach 34
mysqli

reference link 29

N
nested double colons

example 19
null coalesce operator 12

O
Object Relational Mapper (ORM) 117
observer pattern 70, 71
observers 70
open/closed principle 83-86

P
Packagist

about 302-306
reference 302

ParseError
about 16
example 16

payment module
about 215
dependencies 216
functional testing 228-230
implementation 217, 218
requisites 215, 216
unit testing 225-228

[312]

Perl Compatible Regular Expressions
(PCRE) 29

Personal Home Page 1
Phalcon 38
Phalconist 39
PhalconQL 39
Phalcon Query Language 39
PHP 7

application frameworks 30, 31
planning 2

PHP 7, features
anonymous classes 5-8
assertions 26
changes, to list() construct 27
Closure::call() method 8
constant arrays 18
context sensitive lexer 22, 23
deprecated features 28, 29
filtered unserialize() 21, 22
generator delegation 9
generator return expressions 10, 11
group use declarations 23, 24
integer division function 17
level support, for dirname() function 16
null coalesce operator 12
ParseError 16
return type hints 4
scalar type hints 3, 4
secure random number generator 20, 21
session options 28
Spaceship operator 13, 14
Throwables 14, 15
Unicode enhancements 24
uniform variable syntax 18-20

PHP: Hypertext Preprocessor 1
PHPNG 2
PHPStorm 161
PHPUnit

about 37, 137
download link 137

PHPUnitphar file
reference link 161

PHQL 39
placeholder images

reference link 156
POSIX-compatible 29
privateGitHub 302

prototype pattern 47
proxy pattern 58, 59
PSR-1: Basic Coding Standard 79
PSR-2: Basic Coding Standard 79

R
random_int

example 21
reserved keywords

reference link 22
resource intense operation 59
return type hints 4
routing 122-124
Ruby on Rails 35

S
Sales module

about 249
dependencies 251
functional testing 292-294
implementation 251, 252
requisites 249-251
unit testing 291, 292

scalar type hints
about 3, 4
bool 3
float 3
int 3
string 3

secure random number generator 20, 21
Selenium 37
session options 28
shipment module

about 233
dependencies 234
functional testing 245, 246
implementation 235
requisites 233, 234
unit testing 241-244

single responsibility principle 80-83
singleton pattern 48, 49
Slim

about 36
features 36
reference link 36

SOLID object oriented design 34

[313]

SOLID principles
about 79
dependency inversion principle 90, 91
Interface Segregation Principle 89, 90
Liskov substitution principle 86-89
open/closed principle 83-86
single responsibility principle 80-83

Spaceship operator 13, 14
state pattern 72, 73
strategy pattern 73, 74
structural patterns

about 49
adapter pattern 49, 50
bridge pattern 51, 52
composite pattern 52-54
decorator pattern 54, 55
facade pattern 55-57
flyweight pattern 57, 58
proxy pattern 58, 59
reference 49

subgenerators 9
subject 70
Symfony

about 32, 33, 111
configuring 130, 132
installing 111, 112
reference link 32

Symfony console
using 115-120

Symfony framework
about 107, 108
benefits 108
reference 107

T
technology stack

defining 107
template pattern 74-76
templates 124-127
testing 137, 138
Throwables 14, 15
Toran Proxy

reference 302
Traversable interface 9

U
Unicode enhancements 24
uniform variable syntax 18-20

V
validation 139-141
Validation component, JSR 303 Bean

reference 139
visitor pattern 76-78

W
web shop application

account page 101
category page 97
checkout cart page 102
checkout cart payment page 104, 105
checkout cart shipping page 103
homepage 96
login page 100
product page 98
register page 99
requisites, defining 94, 95

wireframing 95

Y
Yii

about 37
features 37
references 37

Z
Zend Framework

about 33, 34
features 33
reference link 33

Zend Server 33
Zend Studio IDE 33
Zephir

about 38
reference link 38

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Ecosystem Overview
	Getting ready for PHP 7
	Scalar type hints
	Return type hints
	Anonymous classes
	The Closure::call() method
	Generator delegation
	Generator return expressions
	The null coalesce operator
	The Spaceship operator
	Throwables
	The \ParseError
	Level support for the dirname() function
	The integer division function
	Constant arrays
	Uniform variable syntax
	Secure random number generator
	Filtered unserialize()
	Context sensitive lexer
	Group use declarations
	Unicode enhancements
	Assertions
	Changes to the list() construct
	Session options
	Deprecated features
	Frameworks
	Laravel framework
	Symfony
	Zend Framework
	CodeIgniter
	CakePHP
	Slim
	Yii
	Phalcon

	Summary

	Chapter 2: GoF Design Patterns
	Creational patterns
	Abstract factory pattern
	Builder pattern
	Factory method pattern
	Prototype pattern
	Singleton pattern

	Structural patterns
	Adapter pattern
	Bridge pattern
	Composite pattern
	Decorator pattern
	Facade pattern
	Flyweight pattern
	Proxy pattern

	Behavioral patterns
	Chain of responsibility pattern
	Command pattern
	Interpreter pattern
	Iterator pattern
	Mediator pattern
	Memento pattern
	Observer pattern
	State pattern
	Strategy pattern
	Template pattern
	Visitor pattern

	Summary

	Chapter 3: SOLID Design Principles
	Single responsibility principle
	Open/closed principle
	Liskov substitution principle
	Interface Segregation Principle
	Dependency inversion principle
	Summary

	Chapter 4: Requirement Specification for a Modular Web Shop App
	Defining application requirements
	Wireframing
	Defining a technology stack
	The Symfony framework
	Foundation framework

	Summary

	Chapter 5: Symfony at a Glance
	Installing Symfony
	Creating a blank project
	Using Symfony console
	Controller
	Routing
	Templates
	Forms
	Configuring Symfony
	The bundle system
	Databases and Doctrine
	Testing
	Validation
	Summary

	Chapter 6: Building the Core Module
	Requirements
	Dependencies
	Implementation
	Configuring application-wide security

	Unit testing
	Functional testing
	Summary

	Chapter 7: Building the Catalog Module
	Requirements
	Dependencies
	Implementation
	Creating entities
	Managing image uploads
	Overriding core module services
	Setting up a Category page
	Setting up a Product page

	Unit testing
	Functional testing
	Summary

	Chapter 8: Building the
Customer Module
	Requirements
	Dependencies
	Implementation
	Creating a customer entity
	Modifying the security configuration
	Extending the customer entity
	Creating the orders service
	Creating the customer menu service
	Implementing the register process
	Implementing the login process
	Implementing the logout
	Managing forgotten passwords

	Unit testing
	Functional testing
	Summary

	Chapter 9: Building the Payment Module
	Requirements
	Dependencies
	Implementation
	Creating a card entity
	Creating a card payment service

	Creating a card payment controller and routes
	Creating a check money payment service
	Creating a check money payment controller and routes

	Unit testing
	Functional testing
	Summary

	Chapter 10: Building the Shipment Module
	Requirements
	Dependencies
	Implementation
	Creating a flat rate shipment service
	Creating a flat rate shipment controller and routes
	Creating a dynamic rate payment service
	Creating a dynamic rate shipment controller and routes

	Unit testing
	Functional testing
	Summary

	Chapter 11: Building the Sales Module
	Requirements
	Dependencies
	Implementation
	Creating a Cart entity
	Creating the cart item entity
	Creating an Order entity
	Creating a SalesOrderItem entity
	Overriding the add_to_cart_url service
	Overriding the checkout_menu service
	Overriding the customer orders service
	Overriding the bestsellers service
	Creating the cart page
	Creating the Payment service
	Creating the Shipment service
	Creating the checkout page
	Creating the order success page
	Creating a store manager dashboard

	Unit testing
	Functional testing
	Summary

	Chapter 12: Integrating and
Distributing Modules
	Understanding Git
	Understanding GitHub
	Understanding Composer
	Understanding Packagist
	Summary

	Index

