
[1]

www.allitebooks.com

http://www.allitebooks.org

Modular Programming with
Python

Introducing modular techniques for building
sophisticated programs using Python

Erik Westra

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Modular Programming with Python

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1200516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-448-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Erik Westra

Reviewer
Mike Driscoll

Commissioning Editor
Priya Singh

Acquisition Editor
Dharmesh Parmar

Content Development Editor
Arun Nadar

Technical Editor
Rupali Shrawane

Copy Editor
Sonia Cheema

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Erik Westra has been a professional software developer for over 25 years, and
has worked almost exclusively in Python for the past decade. Erik's early interest in
graphical user interface design led to the development of one of the most advanced
urgent courier dispatch systems used by messenger and courier companies
worldwide. In recent years, Erik has been involved in the design and implementation
of systems matching seekers and providers of goods and services across a range of
geographical areas, as well as real-time messaging and payments systems. This work
has included the creation of real-time geocoders and map-based views of constantly
changing data. Erik is based in New Zealand, and works for companies worldwide.

Erik is also the author of the Packt titles Python Geospatial Development, Python
Geospatial Analysis, and Building Mapping Applications with QGIS.

I would like to thank Ruth for being so awesome, and my
children for their patience. Without you, none of this would
have been possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Mike Driscoll has been programming in Python since 2006. He enjoys writing
about Python on his blog at http://www.blog.pythonlibrary.org/. He
co-authored the Core Python Refcard for DZone. Mike has also been a technical
reviewer for Python 3 Object Oriented Programming, Python 2.6 Graphics Cookbook,
Tkinter GUI Application Development Hotshot, and several others. He recently wrote
the book Python 101, and is working on his next book.

I would like to thank my beautiful wife, Evangeline, for always
supporting me. I would also like to thank friends and family for all
that they do to help me. And I would like to thank Jesus Christ for
saving me.

www.allitebooks.com

http://www.blog.pythonlibrary.org/
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Introducing Modular Programming	 1

Introducing Python modules	 2
Introducing Python packages	 4
Using modules and packages to organize a program	 6
Why use modular programming techniques?	 8
Programming as a process	 10
The Python Standard Library	 14
Creating your first module	 15

Caching	 15
Writing a cache module	 17
Using the cache	 20

Summary	 22
Chapter 2: Writing Your First Modular Program	 23

The inventory control system	 24
Designing the inventory control system	 25

The data storage module	 26
The user interface module	 30
The report generator module	 32
The main program	 33

Implementing the inventory control system	 34
Implementing the data storage module	 34
Implementing the user interface module	 37
Implementing the report generator module	 40
Implementing the main program	 42

Summary	 46

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Using Modules and Packages	 47
Modules and packages	 47
Packages within packages	 49
Initializing a module	 50

Initialization functions	 51
Initializing a package	 52
How to import anything	 54

What does the import statement actually do?	 54
Using the import statement	 56
Relative imports	 58

Controlling what gets imported	 61
Circular dependencies	 63
Running modules from the command line	 64
Summary	 66

Chapter 4: Using Modules for Real-World Programming	 69
Introducing Charter	 70
Designing Charter	 70
Implementing Charter	 74

Implementing the chart.py module	 76
Implementing the generator.py module	 77

The Pillow library	 77
Renderers	 78
Testing the code	 81
Rendering the title	 81
Rendering the x axis	 82
The remaining renderers	 84
Testing Charter	 87

The fly in the ointment – changing requirements	 87
Redesigning Charter	 89
Refactoring the code	 91

Implementing the PDF renderer modules	 94
Testing the code	 99

Lessons learned	 100
Summary	 101

Chapter 5: Working with Module Patterns	 103
Divide and conquer	 103
Abstraction	 104
Encapsulation	 107
Wrappers	 114
Extensible modules	 124

Dynamic imports	 124

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Plugins	 126
Hooks	 127

Summary	 129
Chapter 6: Creating Reusable Modules	 131

Using modules and packages to share your code	 131
What makes a module reusable?	 134

Functioning as a standalone unit	 134
Using relative imports	 136
Noting external dependencies	 137

What makes a good reusable module?	 137
Solving a general problem	 138
Following standard conventions	 139
Having clear documentation	 140

Examples of reusable modules	 143
requests	 143
python-dateutil	 144
lxml	 145

Designing a reusable package	 146
Implementing a reusable package	 149
Testing our reusable package	 158
Summary	 160

Chapter 7: Advanced Module Techniques	 161
Optional imports	 161
Local imports	 163
Tweaking imports using sys.path	 164
Import gotchas	 167

Using an existing name for your module or package	 167
Naming a Python script after a module or package	 169
Adding package directories to sys.path	 170
Executing and importing the same module	 172

Using modules and packages with the Python interactive interpreter	 173
Dealing with global variables	 177
Package configuration	 179
Package data	 181
Summary	 182

Chapter 8: Testing and Deploying Modules	 183
Testing modules and packages	 183

Testing with the unittest Standard Library module	 185
Designing your unit tests	 187
Code coverage	 187

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Test-driven development	 189
Mocking	 189
Writing unit tests for your modules and packages	 189

Preparing a module or package for publication	 191
Uploading your work to GitHub	 192
Submitting to the Python Package Index	 201
Using pip to download and install modules and packages	 204
Summary	 207

Chapter 9: Modular Programming as a Foundation for
Good Programming Technique	 209

The process of programming	 210
The inevitable changes	 215
Change management	 218

Dealing with complexity	 221
Being an effective programmer	 221
Summary	 223

Index	 225

[v]

Preface
Modular programming is a way of organizing your program's source code. By
organizing your code into modules (Python source files) and packages (collections
of modules), and then importing those modules and packages into your program,
you can keep your programs logically organized and keep potential problems to
a minimum.

As your program grows and changes, you will often have to rewrite or expand
certain parts of your code. Modular programming techniques help to manage these
changes, minimizing side-effects, and keeping your code under control.

As you work with modular programming techniques, you will learn a number of
common patterns for using modules and packages, including the divide and conquer
approach to programming, the use of abstraction and encapsulation, and the idea of
writing extensible modules.

Modular programming techniques are also a great way of sharing your code, either
by making it available for other people to use or by reusing your code in another
program. Using popular tools such as GitHub and the Python Package Index, you
will learn how to publish your code, as well as use code written by other people.

Putting all these techniques together, you will learn how apply "modular thinking"
to create better programs. You will see how modules can be used to deal with
complexity and change in a large program and how modular programming really is
the foundation of good programming technique.

By the end of the book, you will have an excellent understanding of how modules
and packages work in Python and how to use them to create high-quality and robust
software that can be shared with others.

Preface

[vi]

What this book covers
Chapter 1, Introducing Modular Programming, looks at the ways you can use Python
modules and packages to help organize your programs, why it is important to use
modular techniques, and how modular programming helps you to deal with the
ongoing process of programming.

Chapter 2, Writing Your First Modular Program, introduces the divide and conquer
approach to programming and applies this technique to the process of building an
inventory control system based on modular programming principles.

Chapter 3, Using Modules and Packages, covers the nuts and bolts of modular
programming using Python, including nested packages, package and module
initialization techniques, relative imports, choosing what gets imported, and how to
deal with circular references.

Chapter 4, Using Modules for Real-World Programming, uses the implementation of a
chart-generation library to show how modular techniques help to deal with changing
requirements in the best possible way.

Chapter 5, Working with Module Patterns, looks at a number of standard patterns for
working with modules and packages, including the divide and conquer technique,
abstraction, encapsulation, wrappers, and how to write extensible modules using
dynamic imports, plugins, and hooks.

Chapter 6, Creating Reusable Modules, shows how to design and create modules and
packages that are intended to be shared with other people.

Chapter 7, Advanced Module Techniques, looks at some of the more distinctive
aspects of modular programming in Python, including optional and local imports,
tweaking the module search path, "gotchas" to be aware of, how to use modules and
packages for rapid application development, working with package globals, package
configuration, and package data files.

Chapter 8, Testing and Deploying Modules, examines the concept of unit testing, how
to prepare your modules and packages for publication, how to upload and publish
your work, and how to make use of modules and packages written by other people.

Chapter 9, Modular Programming as a Foundation for Good Programming Technique,
shows how modular techniques help to deal with the ongoing process of
programming by dealing with change and managing complexity, and how modular
programming techniques help you to be a more effective programmer.

Preface

[vii]

What you need for this book
All you need to follow through the examples in this book is a computer running any
recent version of Python. While the examples all use Python 3, they can easily be
adapted to work with Python 2 only a few changes.

Who this book is for
This book is aimed at the beginner to intermediate level Python programmer who
wishes to use modular programming techniques to create high-quality and well
organized programs. While the reader must know the basics of Python, no prior
knowledge of modular programming is required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
This one-line program would be saved in a file on disk, typically named something
like hello.py "

A block of code is set as follows:

def init():
 global _stats
 _stats = {}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

Preface

[viii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Modular-Programming-with-Python. We also have other
code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Modular-Programming-with-Python
https://github.com/PacktPublishing/Modular-Programming-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introducing Modular
Programming

Modular programming is an essential tool for the modern developer. Gone are the
days when you could just throw something together and hope that it works. To build
robust systems that last, you need to understand how to organize your programs so
that they can grow and evolve over time. Spaghetti coding is not an option. Modular
programming techniques, and in particular the use of Python modules and packages,
will give you the tools you need to succeed as a professional in the fast changing
programming landscape.

In this chapter, we will:

•	 Look at the fundamental aspects of modular programming
•	 See how Python modules and packages can be used to organize your code
•	 Discover what happens when modular programming techniques are not used
•	 Learn how modular programming helps you stay on top of the

development process
•	 Take a look at the Python standard library as an example of modular

programming
•	 Create a simple program, built using modular techniques, to see how it

works in practice

Let's get started by learning about modules and how they work.

Introducing Modular Programming

[2]

Introducing Python modules
For most beginner programmers, their first Python program is some version of the
famous Hello World program. This program would look something like this:

print("Hello World!")

This one-line program would be saved in a file on disk, typically named something
like hello.py, and it would be executed by typing the following command into a
terminal or command-line window:

python hello.py

The Python interpreter would then dutifully print out the message you have asked
it to:

Hello World!

This hello.py file is called a Python source file. When you are first starting out,
putting all your program code into a single source file is a great way of organizing
your program. You can define functions and classes, and put instructions at the
bottom which start your program when you run it using the Python interpreter.
Storing your program code inside a Python source file saves you from having to
retype it each time you want to tell the Python interpreter what to do.

As your programs get more complicated, however, you'll find that it becomes
harder and harder to keep track of all the various functions and classes that you
define. You'll forget where you put a particular piece of code and find it increasingly
difficult to remember how all the various pieces fit together.

Modular programming is a way of organizing programs as they become more
complicated. You can create a Python module, a source file that contains Python
source code to do something useful, and then import this module into your program
so that you can use it. For example, your program might need to keep track of
various statistics about events that take place while the program is running. At the
end, you might want to know how many events of each type have occurred. To
achieve this, you might create a Python source file named stats.py which contains
the following Python code:

def init():
 global _stats
 _stats = {}

def event_occurred(event):
 global _stats
 try:

Chapter 1

[3]

 _stats[event] = _stats[event] + 1
 except KeyError:
 _stats[event] = 1

def get_stats():
 global _stats
 return sorted(_stats.items())

The stats.py Python source file defines a module named stats—as you can see,
the name of the module is simply the name of the source file without the .py suffix.
Your main program can make use of this module by importing it and then calling the
various functions that you have defined as they are needed. The following frivolous
example shows how you might use the stats module to collect and display statistics
about events:

import stats

stats.init()
stats.event_occurred("meal_eaten")
stats.event_occurred("snack_eaten")
stats.event_occurred("meal_eaten")
stats.event_occurred("snack_eaten")
stats.event_occurred("meal_eaten")
stats.event_occurred("diet_started")
stats.event_occurred("meal_eaten")
stats.event_occurred("meal_eaten")
stats.event_occurred("meal_eaten")
stats.event_occurred("diet_abandoned")
stats.event_occurred("snack_eaten")

for event,num_times in stats.get_stats():
 print("{} occurred {} times".format(event, num_times))

We're not interested in recording meals and snacks, of course—this is just an
example—but the important thing to notice here is how the stats module gets
imported, and then how the various functions you defined within the stats.py file
get used. For example, consider the following line of code:

stats.event_occurred("snack_eaten")

Because the event_occurred() function is defined within the stats module, you
need to include the name of the module whenever you refer to this function.

Introducing Modular Programming

[4]

There are ways in which you can import modules so you don't need
to include the name of the module each time. We'll take a look at this
in Chapter 3, Using Modules and Packages, when we look at namespaces
and how the import command works in more detail.

As you can see, the import statement is used to load a module, and any time you see
the module name followed by a period, you can tell that the program is referring to
something (for example, a function or class) that is defined within that module.

Introducing Python packages
In the same way that Python modules allow you to organize your functions and
classes into separate Python source files, Python packages allow you to group
multiple modules together.

A Python package is a directory with certain characteristics. For example, consider
the following directory of Python source files:

Chapter 1

[5]

This Python package, called animals, contains five Python modules: cat, cow,
dog, horse, and sheep. There is also a special file with the rather unusual name
__init__.py. This file is called a package initialization file; the presence of this
file tells the Python system that this directory contains a package. The package
initialization file can also be used to initialize the package (hence the name) and can
also be used to make importing the package easier.

Starting with Python version 3.3, packages don't always need to include
an initialization file. However, packages without an initialization file
(called namespace packages) are still quite uncommon and are only used
in very specific circumstances. To keep things simple, we will be using
regular packages (with the __init__.py file) throughout this book.

Just like we used the module name when calling a function within a module, we
use the package name when referring to a module within a package. For example,
consider the following code:

import animals.cow
animals.cow.speak()

In this example, the speak() function is defined within the cow.py module, which
itself is part of the animals package.

Packages are a great way of organizing more complicated Python programs. You
can use them to group related modules together, and you can even define packages
inside packages (called nested packages) to keep your program super-organized.

Note that the import statement (and the related from...import statement) can be
used in a variety of ways to load packages and modules into your program. We have
only scratched the surface here, showing you what modules and packages look like
in Python so that you can recognize them when you see them in a program. We will
be looking at the way modules and packages can be defined and imported in much
more depth in Chapter 3, Using Modules and Packages.

Downloading the example code
The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Modular-Programming-
with-Python. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Modular-Programming-with-Python
https://github.com/PacktPublishing/Modular-Programming-with-Python
https://github.com/PacktPublishing/Modular-Programming-with-Python

Introducing Modular Programming

[6]

Using modules and packages to organize
a program
Modules and packages aren't just there to spread your Python code across multiple
source files and directories—they allow you to organize your code to reflect the
logical structure of what your program is trying to do. For example, imagine that
you have been asked to create a web application to store and report on university
examination results. Thinking about the business requirements that you have been
given, you come up with the following overall structure for your application:

The program is broken into two main parts: a web interface, which interacts with the
user (and with other computer programs via an API), and a backend, which handles
the internal logic of storing information in a database, generating reports, and
e-mailing results to students. As you can see, the web interface itself has been broken
down into four parts:

•	 A user authentication section, which handles user sign-up, sign-in,
and sign-out

•	 A web interface to view and enter exam results
•	 A web interface to generate reports
•	 An API, which allows other systems to retrieve exam results on request

Chapter 1

[7]

As you consider each logical component of your application (that is, each of
the boxes in the preceding illustration), you are also starting to think about the
functionality that each component will provide. As you do this, you are already
thinking in modular terms. Indeed, each of the logical components of your
application can be directly implemented as a Python module or package. For
example, you might choose to break your program into two main packages named
web and backend, where:

•	 The web package has modules named authentication, results, reports,
and api

•	 The backend package has modules named database, reportgenerator,
and emailer

As you can see, each shaded box in the preceding illustration becomes a Python
module, and each of the groupings of boxes becomes a Python package.

Once you have decided on the collection of packages and modules that you want to
define, you can start to implement each component by writing the appropriate set of
functions within each module. For example, the backend.database module might
have a function named get_students_results(), which returns a single student's
exam results for a given subject and year.

In a real web application, your modular structure may actually
be somewhat different. This is because you typically create a web
application using a web application framework such as Django, which
imposes its own structure on your program. However, in this example
we are keeping the modular structure as simple as possible to show how
business functionality translates directly into packages and modules.

Obviously, this example is fictitious, but it shows how you can think about a
complex program in modular terms, breaking it down into individual components
and then using Python modules and packages to implement each of these
components in turn.

Introducing Modular Programming

[8]

Why use modular programming
techniques?
One of the great things about using modular design techniques, as opposed to just
leaping in and writing code, is that they force you to think about the way your
program should be structured and let you define a structure that will grow as
your program evolves. Your program will be robust, easy to understand, easy to
restructure as the scope of the program expands, and easy for others to work with too.

Woodworkers have a motto that equally applies to modular programming:
there's a place for everything, and everything should be in its place. This is one
of the hallmarks of high quality code, just as it's a hallmark of a well-organized
woodworker's workshop.

To see why modular programming is such an important skill, imagine what would
happen if you didn't apply modular techniques when writing a program. If you put
all your Python code into a single source file, didn't try to logically arrange your
functions and classes, and just randomly added new code to the end of the file, you
would end up with a terrible mess of incomprehensible code. The following is an
example of a program written without any sort of modular organization:

import configparser

def load_config():
 config = configparser.ConfigParser()
 config.read("config.ini")
 return config['config']

def get_data_from_user():
 config = load_config()
 data = []
 for n in range(config.getint('num_data_points')):
 value = input("Data point {}: ".format(n+1))
 data.append(value)
 return data

def print_results(results):
 for value,num_times in results:
 print("{} = {}".format(value, num_times))

def analyze_data():

Chapter 1

[9]

 data = get_data_from_user()
 results = {}
 config = load_config()
 for value in data:
 if config.getboolean('allow_duplicates'):
 try:
 results[value] = results[value] + 1
 except KeyError:
 results[value] = 1
 else:
 results[value] = 1
 return results

def sort_results(results):
 sorted_results = []
 for value in results.keys():
 sorted_results.append((value, results[value]))
 sorted_results.sort()
 return sorted_results

if __name__ == "__main__":
 results = analyze_data()
 sorted_results = sort_results(results)
 print_results(sorted_results)

This program is intended to prompt the user for a number of data points and count
how often each data point occurs. It does work, and the function and variable names
do help to explain what each part of the program does—but it is still a mess. Just
looking at the source code, it is hard to figure out what this program does. Functions
were just added to the end of the file as the author decided to implement them, and
even for a relatively small program, it is difficult to keep track of the various pieces.
Imagine trying to debug or maintain a program like this if it was 10,000 lines long!

Introducing Modular Programming

[10]

This program is an example of spaghetti coding—programming where everything
is jumbled together and there is no overall organization to the source code.
Unfortunately, spaghetti coding is often combined with other programming habits
that make a program even harder to understand. Some of the more common
problems include:

•	 Poorly chosen variable and function names that don't hint at what each
variable or function is for. A typical example of this is a program that uses
variable names such as a, b, c, and d.

•	 A complete lack of any documentation explaining what the code is supposed
to do.

•	 Functions that have unexpected side effects. For example, imagine if the
print_results() function in our example program modified the results
array as it was being printed. If you wanted to print the results twice or use
the results after they had been printed, your program would fail in a most
mysterious way.

While modular programming won't cure all these ills, the fact that it forces you to
think about the logical organization of your program will help you to avoid them.
Organizing your code into logical pieces will help you structure your program so
that you know where each part belongs. Thinking about the packages and modules,
and what each module contains, will encourage you to choose clear and appropriate
names for the various parts of your program. Using modules and packages also
makes it natural to include docstrings to explain the functionality of each part of
your program as you go along. Finally, using a logical structure encourages each
part of your program to perform one particular task, reducing the likelihood of side
effects creeping into your code.

Of course, like any programming technique, modular programming can be abused,
but if it is used well it will vastly improve the quality of the programs you write.

Programming as a process
Imagine that you are writing a program to calculate the price of overseas purchases.
Your company is based in England, and you need to calculate the local price of
something purchased in US dollars. Someone else has already written a Python
module which downloads the exchange rate, so your program starts out looking
something like the following:

def calc_local_price(us_dollar_amount):
 exchange_rate = get_exchange_rate("USD", "EUR")
 local_amount = us_dollar_amount * exchange_rate
 return local_amount

Chapter 1

[11]

So far so good. Your program is included in your company's online ordering system
and the code goes into production. However, two months later, your company starts
ordering products not just from the US, but from China, Germany, and Australia as
well. You scramble to update your program to support these alternative currencies,
and write something like the following:

def calc_local_price(foreign_amount, from_country):
 if from_country == "United States":
 exchange_rate = get_exchange_rate("USD", "EUR")
 elif from_country == "China":
 exchange_rate = get_exchange_rate("CHN", "EUR")
 elif from_country == "Germany":
 exchange_rate = get_exchange_rate("EUR", "EUR")
 elif from_country = "Australia":
 exchange_rate = get_exchange_rate("AUS", "EUR")
 else:
 raise RuntimeError("Unsupported country: " + from_country)
 local_amount = us_dollar_amount * exchange_rate
 return local_amount

Once again, this program goes into production. Six months later, another 14
countries are added, and the project manager also decides to add a new feature,
where the user can see how the price of a product has changed over time. As the
programmer responsible for this code, you now have to add support for those 14
countries, and also add support for historical exchange rates going back in time.

This is a contrived example, of course, but it does show how programs typically
evolve. Program code isn't something you write once and then leave forever. Your
program is constantly changing and evolving in response to new requirements,
newly discovered bugs, and unexpected consequences. Sometimes, a change that
seems simple can be anything but. For example, consider the poor programmer
who wrote the get_exchange_rate() function in our previous example. This
function now has to support not only the current exchange rate for any given pair of
currencies, it also has to return historical exchange rates going back to any desired
point in time. If this function is obtaining its information from a source that doesn't
support historical exchange rates, then the whole function may need to be rewritten
from scratch to support an alternative data source.

Sometimes, programmers and IT managers try to suppress change, for example by
writing detailed specifications and then implementing one part of the program at
a time (the so-called waterfall method of programming). But change is an integral
part of programming, and trying to suppress it is like trying to stop the wind from
blowing—it's much better to just accept that your program will change, and learn
how to manage the process as well as you can.

Introducing Modular Programming

[12]

Modular techniques are an excellent way of managing change in your programs. For
example, as your program grows and evolves, you may find that a particular change
requires the addition of a new module to your program:

You can then import and use that module in the other parts of your program that
need to use this new functionality.

Alternatively, you might find that a new feature only requires you to change the
contents of a module:

This is one of the major benefits of modular programming—since the details of how
a particular feature is implemented is inside a module, you can often change the
internals of a module without affecting any other parts of your program. The rest
of your program continues to import and use the module as it did before—only the
internal implementation of the module has changed.

Chapter 1

[13]

Finally, you might find that you need to refactor your program. This is where you
have to change the modular organization of your code to improve the way the
program works:

Refactoring may involve moving code between modules as well as creating new
modules, removing old ones, and changing the way modules work. In essence,
refactoring is the process of rethinking the program so that it works better.

In all of these changes, the use of modules and packages help you to manage
the changes you make. Because the various modules and packages each perform
a well-defined task, you know exactly which parts of your program need to be
changed, and you can limit the effects of your changes to only the affected modules
and the parts of the system that use them.

Modular programming won't make change go away, but it will help you to deal with
change—and the ongoing process of programming—in the best possible way.

www.allitebooks.com

http://www.allitebooks.org

Introducing Modular Programming

[14]

The Python Standard Library
One of the buzzwords used to describe Python is that it is a batteries included
language, that is, it comes with a rich collection of built-in modules and packages
called the Python Standard Library. If you've written any non-trivial Python
program, you've almost certainly used modules from the Python Standard Library
to do so. To get an idea of how vast the Python Standard Library is, here are a few
example modules from this library:

Module Description
datetime Defines classes to store and perform calculations using date and time

values
tempfile Defines a range of functions to work with temporary files and directories
csv Supports reading and writing of CSV format files
hashlib Implements cryptographically secure hashes
logging Allows you to write log messages and manage log files
threading Supports multi-threaded programming
html A collection of modules (that is, a package) used to parse and generate

HTML documents
unittest A framework for creating and running unit tests
urllib A collection of modules to read data from URLs

These are just a few of the over 300 modules available in the Python Standard
Library. As you can see, there is a vast range of functionality provided, and all
of this is built in to every Python distribution.

Because of the huge range of functionality provided, the Python Standard
Library is an excellent example of modular programming. For example, the math
standard library module provides a range of mathematical functions that make it
easier to work with integer and floating-point numbers. If you look through the
documentation for this module (http://docs.python.org/3/library/math.html),
you will find a large collection of functions and constants, all defined within the math
module, that perform almost any mathematical operation you could imagine. In this
example, the various functions and constants are all defined within a single module,
making it easy to refer to them when you need to.

http://docs.python.org/3/library/math.html

Chapter 1

[15]

In contrast, the xmlrpc package allows you to make and respond to remote
procedure calls that use the XML protocol to send and receive data. The xmlrpc
package is made up of two modules: xmlrpc.server and xmlrpc.client, where the
server module allows you to create an XML-RPC server, and the client module
includes code to access and use an XML-RPC server. This is an example of where
a hierarchy of modules is used to logically group related functionality together (in
this case, within the xmlrpc package), while using sub-modules to separate out the
particular parts of the package.

If you haven't already done so, it is worth spending some time to review
the documentation for the Python Standard Library. This can be found at
https://docs.python.org/3/library/. It is worth studying this documentation
to see how Python has organized such a vast collection of features into modules
and packages.

The Python Standard Library is not perfect, but it has been improved over time, and
the library as it is today makes a great example of modular programming techniques
applied to a comprehensive library, covering a wide range of features and functions.

Creating your first module
Now that we've seen what modules are and how they can be used, let's implement
our first real Python module. While this module is simple, you may find it a useful
addition to the programs you write.

Caching
In computer programming, a cache is a way of storing previously calculated results
so that they can be retrieved more quickly. For example, imagine that your program
had to calculate shipping costs based on three parameters:

•	 The weight of the ordered item
•	 The dimensions of the ordered item
•	 The customer's location

Calculating the shipping cost based on the customer's location might be quite
involved. For example, you may have a fixed charge for deliveries within your city
but charge a premium for out-of-town orders based on how far away the customer
is. You may even need to send a query to a freight company's API to see how much it
will charge to ship the given item.

https://docs.python.org/3/library/

Introducing Modular Programming

[16]

Since the process of calculating the shipping cost can be quite complex and time
consuming, it makes sense to use a cache to store the previously calculated results.
This allows you to use the previously calculated results rather than having to
recalculate the shipping cost each time. To do this, you would need to structure your
calc_shipping_cost() function to look something like the following:

def calc_shipping_cost(params):
 if params in cache:
 shipping_cost = cache[params]
 else:
 ...calculate the shipping cost.
 cache[params] = shipping_cost
 return shipping_cost

As you can see, we take the supplied parameters (in this case, the weight, dimensions,
and the customer's location) and check whether there is already an entry in the
cache for those parameters. If so, we retrieve the previously-calculated shipping cost
from the cache. Otherwise, we go through the possibly time-consuming process of
calculating the shipping cost, storing this in the cache using the supplied parameters,
and then returning the shipping cost back to the caller.

Notice how the cache variable in the preceding pseudo code looks very much like a
Python dictionary—you can store entries in the dictionary based on a given key and
then retrieve the entry using this key. There is, however, a crucial difference between
a dictionary and a cache: a cache typically has a limit on the number of entries that
it can contain, while the dictionary has no such limit. This means that a dictionary
will continue to grow forever, possibly taking up all the computer's memory if the
program runs for a long time, while a cache will never take too much memory, as the
number of entries is limited.

Once the cache reaches its maximum size, an existing entry has to be removed each
time a new entry is added so that the cache doesn't continue to grow:

Chapter 1

[17]

While there are various ways of choosing the entry to remove, the most common
way is to remove the least recently used entry, that is, the entry that hasn't been
used for the longest period of time.

Caches are very commonly used in computer programs. In fact, even if you haven't
yet used a cache in the programs you write, you've almost certainly encountered
them before. Has someone ever suggested that you clear your browser's cache to solve
a problem with your web browser? Yes, web browsers use a cache to hold previously
downloaded images and web pages so that they don't have to be retrieved again, and
clearing the contents of the browser cache is a common way of fixing a misbehaving
web browser.

Writing a cache module
Let's now write our own Python module to implement a cache. Before we write it,
let's think about the functionality that our cache module will require:

•	 We're going to limit the size of our cache to 100 entries.
•	 We will need an init() function to initialize the cache.
•	 We will have a set(key, value) function to store an entry in the cache.
•	 A get(key) function will retrieve an entry from the cache. If there is no entry

for that key, this function should return None.
•	 We'll also need a contains(key) function to check whether a given entry is

in the cache.
•	 Finally, we'll implement a size() function which returns the number of

entries in the cache.

We are deliberately keeping the implementation of this module quite
simple. A real cache would make use of a Cache class to allow you to
use multiple caches at once. It would also allow the size of the cache to
be configured as necessary. To keep things simple, however, we will
implement these functions directly within a module, as we want to
concentrate on modular programming rather than combining it with
object-oriented programming and other techniques.

Go ahead and create a new Python source file named cache.py. This file will hold
the Python source code for our new module. At the top of this module, enter the
following Python code:

import datetime

MAX_CACHE_SIZE = 100

Introducing Modular Programming

[18]

We will be using the datetime Standard Library module to calculate the least
recently used entry in the cache. The second statement, defining MAX_CACHE_SIZE,
sets the maximum size for our cache.

Note that we are following the standard Python convention
of defining constants using uppercase letters. This makes
them easier to see in your source code.

We now want to implement the init() function for our cache. To do this, add the
following to the end of your module:

def init():
 global _cache
 _cache = {} # Maps key to (datetime, value) tuple.

As you can see, we have created a new function named init(). The first statement
in this function, global _cache, defines a new variable named _cache. The global
statement makes this variable available as a module-level global variable, that is, this
variable can be shared by all parts of the cache.py module.

Notice the underscore character at the start of the variable name. In Python, a leading
underscore is a convention indicating that a name is private. In other words, the
_cache global is intended to be used as an internal part of the cache.py module—
the underscore tells you that you shouldn't need to use this variable outside of the
cache.py module itself.

The second statement in the init() function sets the _cache global to an empty
dictionary. Notice that we've added a comment explaining how the dictionary will
be used; it's good practice to add notes like this to your code so others (and you,
when you look at this code after a long time working on something else) can easily
see what this variable is used for.

In summary, calling the init() function has the effect of creating a private _cache
variable within the module and setting it to an empty dictionary. Let's now write the
set() function, which will use this variable to store an entry in the cache.

Add the following to the end of your module:

def set(key, value):
 global _cache
 if key not in _cache and len(_cache) >= MAX_CACHE_SIZE:
 _remove_oldest_entry()
 _cache[key] = [datetime.datetime.now(), value]

Chapter 1

[19]

Once again, the set() function starts with a global _cache statement. This makes
the _cache module-level global variable available for the function to use.

The if statement checks to see whether the cache is going to exceed the maximum
allowed size. If so, we call a new function, named _remove_oldest_entry(), to
remove the oldest entry from the cache. Notice how this function name also starts
with an underscore—once again, this indicates that this function is private and
should only be used by code within the module itself.

Finally, we store the entry in the _cache dictionary. Notice that we store the current
date and time as well as the value in the cache; this will let us know when the cache
entry was last used, which is important when we have to remove the oldest entry.

Let's now implement the get() function. Add the following to the end of your
module:

def get(key):
 global _cache
 if key in _cache:
 _cache[key][0] = datetime.datetime.now()
 return _cache[key][1]
 else:
 return None

You should be able to figure out what this code does. The only interesting part to
note is that we update the date and time for the cache entry before returning the
associated value. This lets us know when the cache entry was last used.

With these functions implemented, the remaining two functions should also be easy
to understand. Add the following to the end of your module:

def contains(key):
 global _cache
 return key in _cache

def size():
 global _cache
 return len(_cache)

There shouldn't be any surprises here.

There's only one more function left to implement: our private _remove_oldest_entry()
function. Add the following to the end of your module:

def _remove_oldest_entry():
 global _cache
 oldest = None

Introducing Modular Programming

[20]

 for key in _cache.keys():
 if oldest == None:
 oldest = key
 elif _cache[key][0] < _cache[oldest][0]:
 oldest = key
 if oldest != None:
 del _cache[oldest]

This completes the implementation of our cache.py module itself, with the five main
functions we described earlier, as well as one private function and one private global
variable which are used internally to help implement our public functions.

Using the cache
Let's now write a simple test program to use this cache module and verify that it's
working properly. Create a new Python source file, which we'll call test_cache.py,
and add the following to this file:

import random
import string
import cache

def random_string(length):
 s = ''
 for i in range(length):
 s = s + random.choice(string.ascii_letters)
 return s

cache.init()

for n in range(1000):
 while True:
 key = random_string(20)
 if cache.contains(key):
 continue
 else:
 break
 value = random_string(20)
 cache.set(key, value)
 print("After {} iterations, cache has {} entries".format(n+1,
cache.size()))

Chapter 1

[21]

This program starts by importing three modules: two from the Python Standard
Library, and the cache module we have just written. We then define a utility
function named random_string(), which generates a string of random letters of a
given length. After this, we initialize the cache by calling cache.init() and then
generate 1,000 random entries to add to the cache. After adding each cache entry, we
print out the number of entries we have added as well as the current cache size.

If you run this program, you can see that it's working as expected:

$ python test_cache.py

After 1 iterations, cache has 1 entries

After 2 iterations, cache has 2 entries

After 3 iterations, cache has 3 entries

...

After 98 iterations, cache has 98 entries

After 99 iterations, cache has 99 entries

After 100 iterations, cache has 100 entries

After 101 iterations, cache has 100 entries

After 102 iterations, cache has 100 entries

...

After 998 iterations, cache has 100 entries

After 999 iterations, cache has 100 entries

After 1000 iterations, cache has 100 entries

The cache continues to grow until it reaches 100 entries, at which point the oldest
entry is removed to make room for a new one. This ensures that the cache stays the
same size, no matter how many new entries are added.

While there is a lot more we could do with our cache.py module, this is enough to
demonstrate how to create a useful Python module and then use it within another
program. Of course, you aren't just limited to importing modules within a main
program—modules can import other modules as well.

Introducing Modular Programming

[22]

Summary
In this chapter, we introduced the concept of Python modules and saw how Python
modules are simply Python source files, which are imported and used by another
source file. We then took a look at Python packages and saw that these are collections
of modules identified by a package initialization file named __init__.py.

We explored how modules and packages can be used to organize your program's
source code and why the use of these modular techniques is so important for the
development of large systems. We also explored what spaghetti code looks like and
discovered some of the other pitfalls that can occur if you don't modularize your
programs.

Next, we looked at programming as a process of constant change and evolution
and how modular programming can help deal with a changing codebase in the
best possible way. We then learned that the Python Standard Library is an excellent
example of a large collection of modules and packages, and finished by creating
our own simple Python module that demonstrates effective modular programming
techniques. In implementing this module, we learned how a module can use leading
underscores in variable and function names to mark them as private to the module,
while making the remaining functions and other definitions available for other parts
of the system to use.

In the next chapter, we will apply modular techniques to the development of a more
sophisticated program consisting of several modules working together to solve a
more complex programming problem.

[23]

Writing Your First
Modular Program

In this chapter, we will use modular programming techniques to implement a non-
trivial program. Along the way, we will:

•	 Learn about the divide and conquer approach to program design
•	 Examine the tasks our program needs to perform
•	 Look at the information our program will need to store
•	 Apply modular techniques to break our program down into individual parts
•	 Figure out how each part can be implemented as a separate Python module
•	 See how the various modules work together to implement our program's

functionality
•	 Follow this process to implement a simple but complete inventory

control system
•	 See how modular techniques allow you to add functionality to your program

while minimizing the changes that need to be made

Writing Your First Modular Program

[24]

The inventory control system
Imagine that you have been asked to write a program that allows the user to keep
track of the company's inventory—that is, the various items the company has
available for sale. For each inventory item, you have been asked to keep track of the
product code and the item's current location. New items will be added as they are
received, and existing items will be removed once they have been sold. Your program
will also need to generate two types of reports: a report listing the company's current
inventory, including how many of each type of item there are in each location, and a
report that is used to re-order inventory items once they have been sold.

Looking at these requirements, it is clear that there are three different types of
information that we will need to store:

1.	 A list of the different types of products that the company has for sale. For
each product type, we will need to know the product code (sometimes called
an SKU number), a description, and the desired number of items that the
company should have in its inventory for that type of product.

2.	 A list of the locations where inventory items can be held. These locations
might be individual shops, warehouses, or storerooms. Alternatively, a
location might identify a particular shelf or aisle within a shop. For each
location, we need to have a location code and a description identifying
that location.

3.	 Finally, a list of the inventory items that the company currently holds. Each
inventory item has a product code and a location code; these identify the
type of product and where the item is currently held.

When running the program, the end user should be able to perform the following
actions:

•	 Add a new item to the inventory
•	 Remove an item from the inventory
•	 Generate a report of the current inventory items
•	 Generate a report of the inventory items that need to be re-ordered
•	 Quit the program

While this program is not too complicated, there are enough features here to benefit
from a modular design, while still keeping our discussion relatively brief. Now that
we have taken a look at what our program needs to do and the information we need
to store, let's start applying modular programming techniques to the design of our
system.

Chapter 2

[25]

Designing the inventory control system
If you step back and review our inventory control program's functionality, you
can see that there are three fundamental types of activity that this program needs
to support:

•	 Storing information
•	 Interacting with the user
•	 Generating reports

While this is very general, this breakdown is helpful because it suggests a possible
way of organizing our program code. For example, the part of the system responsible
for storing information could store the lists of products, locations, and inventory
items and make this information available as required. Similarly, the part of the
system responsible for interacting with the user could prompt the user to choose an
action to perform, ask them to select a product code, and so on. Finally, the area of
the system responsible for generating reports would be able to generate each of the
desired types of report.

Thinking about the system in this way, it becomes clear that each of these three parts
of the system could be implemented as a separate module:

•	 The part of the system responsible for storing information could be called the
data storage module

•	 The part of the system responsible for interacting with the user could be
called the user interface module

•	 The part of the system responsible for generating reports could be called the
report generator module

As the names suggest, each of these modules perform a particular purpose. In
addition to these special-purpose modules, we are going to need one more part
to our system: a Python source file that the user executes to start up and run the
inventory control system. Because this is the part the user actually runs, we will call
this the main program, which is often stored in a Python source file named main.py.

Writing Your First Modular Program

[26]

We now have four parts to our system: three modules plus a main program. Each of
these parts will have a particular job to do, and the various parts will often interact
to perform a particular function. For example, the report generator module will need
to obtain a list of the available product codes from the data storage module. These
various interactions are represented by arrows in the following diagram:

Now that we have an idea of the overall structure for our program, let's take a closer
look at each of these four parts to see how they will work.

The data storage module
This module will be responsible for storing all of our program's data. We already
know that we'll need to store three types of information: a list of products, a list of
locations, and a list of inventory items.

To keep our program as simple as possible, we will make two major design decisions
regarding the data storage module:

•	 The lists of products and locations will be hardwired into our program
•	 We will hold the list of inventory items in memory and save it to disk

whenever the list changes

A more sophisticated implementation of our inventory control system would
store this information in a database and allow the user to view and edit the lists of
product codes and locations. In our case, however, we are more interested in the
overall structure of our program, so we want to keep the implementation as simple
as possible.

Chapter 2

[27]

While the list of product codes will be hardwired, we don't necessarily want to build
this list into the data storage module itself. The data storage module is responsible
for storing and retrieving information—it isn't the data storage module's job to define
the list of product codes. Because of this, we are going to need a function within the
data storage module that can be called to set the list of product codes. This function
will look like the following:

def set_products(products):
 ...

We've already decided that for each product, we want to store the product code, a
description, and the desired number of items that the user wants to keep in their
inventory for that type of product. To support this, we're going to define the list of
products (as supplied in the products parameter to our set_products() function)
as a list of (code, description, desired_number) tuples. For example, our list of
products might look something like this:

[("CODE01", "Product 1", 10),
 ("CODE02", "Product 2", 200), ...
]

Once the list of products have been defined, we can provide a function to return this
list as needed:

def products():
 ...

This would simply return the list of products, allowing your code to work with
this list as needed. For example, you can scan through the list of products using the
following Python code:

for code,description,desired_number in products():
 ...

These two functions allow us to define the (hardwired) list of products and retrieve
this list whenever we need it. Let's now define the equivalent two functions for the
list of locations.

First, we need a function to set the hardwired list of locations:

def set_locations(locations):
 ...

Each item in the locations list will be a (code, description) tuple, where code is
the code for a location and description is a string describing the location so that the
user knows where it is.

Writing Your First Modular Program

[28]

We then need a function to retrieve this list of locations as needed:

def locations():
 ...

Once again, this returns the list of locations, allowing us to work with these locations
as required.

We now need to decide on how the data storage module will allow the user to store
and retrieve the list of inventory items. An inventory item is defined as a product
code plus a location code. In other words, an inventory item is a particular type of
product at a particular location.

To retrieve the list of inventory items, we'll use the following function:

def items():
 ...

Following the design we used for the products() and locations() functions, the
items() function will return a list of the inventory items, where each inventory item
is a (product_code, location_code) tuple.

Unlike the lists of products and locations, however, the list of inventory items will
not be hardwired: the user will be able to add and remove inventory items. To
support this, we're going to need two more functions:

def add_item(product_code, location_code):
 ...

def remove_item(product_code, location_code):
 ...

There is only one more part of our data storage module that we need to design: since
we know that we'll be storing the list of inventory items in memory and saving them
to disk as required, we're going to need some way of loading the inventory items
from disk into memory when the program starts. To support this, we're going to
define an initialization function for our module:

def init():
 ...

Chapter 2

[29]

We've now decided on a total of eight functions for the data storage module.
These eight functions make up the public interface for our module. In other
words, the other parts of the system will only interact with our module using
these eight functions:

Notice the process we went through here: we started by looking at what our module
needed to do (in this case, storing and retrieving information) and then designed the
module's public interface based on those requirements. For the first seven functions,
we used our business requirements to help us design the interface, while for the final
function, init(), we used our knowledge of how the module will work internally
to change the interface so that the module can do its job. This is a common way of
working: both the business requirements and the technical requirements will help
shape the module's interface and how it interacts with the rest of the system.

Now that we've designed our data storage module, let's repeat the process for the
other modules in our system.

Writing Your First Modular Program

[30]

The user interface module
The user interface module will be responsible for interacting with the user. This
includes asking the user for information, as well as displaying information on the
screen. To keep things simple, we will use a simple text-based interface for our
inventory control system, using print() statements to display information and
input() to ask the user to enter something.

A more sophisticated implementation of our inventory control system would use a
graphical user interface with windows, menus, and dialog boxes. Doing this would
make the inventory control system much more complicated and is well beyond
the scope of what we are trying to achieve here. However, because of the modular
design of the system, if we were to rewrite the user interface to use menus, windows,
and the like, we would only be changing this one module—the rest of the system
would be unaffected.

This is actually a slight oversimplification. Replacing a text-based
interface with a GUI requires many changes to the system, and would
probably require us to change the module's public functions slightly,
just like we had to add an init() function to the data storage
module to allow for the way it worked internally. However, because
of the modular way we're designing our system, the other modules
would not be affected if we rewrote the user interface module to use
a GUI.

Let's think about the various tasks our inventory control system needs to perform
from the point of view of the user's interaction with the system:

1.	 The user needs to be able to select an action to perform.
2.	 When the user wants to add a new inventory item, we need to prompt the

user for the details of the new item.
3.	 When the user wants to remove an inventory item, we need to prompt the

user for the details of the inventory item to remove.
4.	 When the user wishes to generate a report, we need to be able to display the

contents of the report to the user.

Chapter 2

[31]

Let's work through these interactions one at a time:

1.	 To select an action to perform, we'll have a prompt_for_action() function
which returns a string identifying the action that the user wishes to perform.
Let's define the codes that this function can return for the various actions the
user can perform:

Action Action code
Add an inventory item ADD

Remove an inventory item REMOVE

Generate a report of the current inventory
items

INVENTORY_REPORT

Generate a report of the inventory items that
need to be re-ordered

REORDER_REPORT

Quit the program QUIT

2.	 To add an inventory item, the user will need to be prompted for the details
of the new item. Because an inventory item is defined as a given product
at a given location, we actually need to prompt the user to choose both the
product and the location for the new item. To prompt the user to select a
product, we will use the following function:
def prompt_for_product():
 ...

The user will be shown a list of the available products and then choose an
item from the list. If they cancel, prompt_for_product() will return None.
Otherwise, it will return the product code for the selected product.
Similarly, to prompt the user to select a location, we will define the following
function:
def prompt_for_location():
 ...

Once again, this displays a list of the available locations, and the user can
choose a location from the list. If they cancel, we return None. Otherwise, we
return the location code for the selected location.
Using these two functions, we can ask the user to identify a new inventory
item, and then we use the data storage module's add_item() function to add
it to the list.

Writing Your First Modular Program

[32]

3.	 Because we are implementing this as a simple text-based system, the process
of removing an inventory item is almost identical to the process used to add
an item: the user will be prompted for the product and location, and the
inventory item at that location will be removed. Because of this, we won't
need any additional functions to implement this feature.

4.	 To generate a report, we will simply call the report generator module to do
the work, and then we display the resulting report to the user. To keep things
simple, our reports won't take any parameters, and the resulting report will
be displayed in plain-text format. Because of this, the only user interface
function that we will need is a function to display the plain-text contents of
the report:
def show_report(report):
 ...

The report parameter will simply be a list of strings containing the
generated report. All the show_report() function needs to do is print out
these strings, one at a time, to show the contents of the report to the user.

This completes our design for the user interface module. There are a total of four
public functions which we will need to implement for this module.

The report generator module
The report generator module is responsible for generating reports. Since there are
two types of report that we need to be able to generate, we are simply going to have
two public functions in the report generator module, one for each type of report:

def generate_inventory_report():
 ...

def generate_reorder_report():
 ...

Each of these functions will generate a report of the given type, returning the report's
contents as a list of strings. Note that there are no parameters to these functions;
because we are keeping things as simple as possible, the reports won't use any
parameters to control how they are to be generated.

Chapter 2

[33]

The main program
The main program isn't a module. Instead, it is a standard Python source file that the
user runs to start the system. The main program will import the various modules it
needs, and call the functions we have defined to do all the work. In a sense, our main
program is the glue that binds together all the other parts of the system.

In Python, when a source file is intended to be run (as opposed to being imported
and used by other modules or from the Python command line), it is common to use
the following structure for the source file:

def main():
 ...

if __name__ == "__main__":
 main()

All of the program's logic is written inside the main() function, which is then called
by the final two lines in the file. The if __name__ == "__main__" line is a piece of
Python magic that basically means if this program is being run. In other words, if the
user is running this program, call the main() function to do all the work.

We could put all the program's logic beneath the if __name__ ==
"__main__" statement, but there are some advantages to putting our
program's logic in a separate function. By using a separate function,
we can simply return from this function when we want to exit. It also
makes error handling easier, and the code is better organized because
our main program code is separate from the code that checks whether
we are actually running the program.

We are going to use this design for our main program, putting all the actual
functionality within a single function called main().

Our main() function is going to do the following:

1.	 Call the init() function for the various modules which need to be initialized.
2.	 Provide the hardwired lists of products and locations.
3.	 Ask the user interface module to prompt the user for a command.
4.	 Respond to the command entered by the user.

Steps 3 and 4 will be repeated indefinitely until the user quits.

www.allitebooks.com

http://www.allitebooks.org

Writing Your First Modular Program

[34]

Implementing the inventory control
system
Now that we have a good idea of the overall structure for our system, what our
various modules will be, and what functionality they will provide, it's time for
us to start implementing the system. Let's start with the data storage module.

Implementing the data storage module
Create a directory somewhere convenient where you can store the source
code for the inventory control system. You might want to call this directory
inventoryControl or something similar.

Inside this directory, we will place our various modules and files. Start by creating a
new, empty Python source file named datastorage.py. This Python source file will
hold our data storage module.

When selecting the name for our modules, we are following the Python
convention of using all lowercase letters. You might find this a bit
awkward at first, but it soon becomes easy to read. Please refer to
https://www.python.org/dev/peps/pep-0008/#package-and-
module-names for more information about these naming conventions.

We already know that we are going to need eight different functions to make up the
public interface to this module, so go ahead and add the following Python code to
this module:

def init():
 pass

def items():
 pass

def products():
 pass

def locations():
 pass

def add_item(product_code, location_code):
 pass

def remove_item(product_code, location_code):

https://www.python.org/dev/peps/pep-0008/#package-and-module-names
https://www.python.org/dev/peps/pep-0008/#package-and-module-names

Chapter 2

[35]

 pass

def set_products(products):
 pass

def set_locations(locations):
 pass

The pass statements allow us to leave the functions empty—these are just
placeholders for the code we are going to write.

Let's now implement the init() function. This initializes the data storage module
when the system is run. Because we are holding the list of inventory items in
memory and saving them to disk when they change, our init() function is going to
have to load the inventory items from a file on disk back into memory so that they
will be available when we need them. To do this, we'll define a private function,
which we'll call _load_items(), and call this from our init() function.

Remember that a leading underscore means that something is
private. This means that the _load_items() function won't
be part of the public interface for our module.

Change your definition of the init() function to look like the following:

def init():
 _load_items()

The _load_items() function is going to load the list of inventory items from a file
on disk into a private global variable, which we'll call _items. Let's go ahead and
implement this function now, by adding the following to the end of the module:

def _load_items():
 global _items
 if os.path.exists("items.json"):
 f = open("items.json", "r")
 _items = json.loads(f.read())
 f.close()
 else:
 _items = []

Notice that we store the list of inventory items in a file named items.json, and
that we are using the json module to convert the _items list from a text file into a
Python list.

Writing Your First Modular Program

[36]

JSON is an excellent way of saving and loading Python data
structures, and the resulting text file is easy to read. Since the
json module is built into the Python Standard Library, we
might as well make use of it.

Because we are now using some modules from the Python Standard Library, you'll
need to add the following import statements to the top of your module:

import json
import os.path

While we're at it, let's write a function to save the list of inventory items to disk. Add
the following to the end of your module:

def _save_items():
 global _items
 f = open("items.json", "w")
 f.write(json.dumps(_items))
 f.close()

Since we have loaded the list of inventory items into a private global variable named
_items, we can now implement the items() function to make this data available.
Edit your definition of the items() function to look like the following:

def items():
 global _items
 return _items

Let's now implement the add_item() and remove_item() functions to let the rest of
the system manipulate our list of inventory items. Edit these functions so they look
like the following:

def add_item(product_code, location_code):
 global _items
 _items.append((product_code, location_code))
 _save_items()

def remove_item(product_code, location_code):
 global _items
 for i in range(len(_items)):
 prod_code,loc_code = _items[i]
 if prod_code == product_code and loc_code == location_code:
 del _items[i]
 _save_items()
 return True
 return False

Chapter 2

[37]

Notice that the remove_item() function returns True if the item was successfully
removed and False otherwise; this tells the rest of the system if an attempt to
remove an inventory item was successful or not.

We've now implemented all the functions within the datastorage module that
relate to inventory items. Next, we'll implement the product-related functions.

Since we know we're going to hardwire the list of products, the set_products()
function is going to be trivial:

def set_products(products):
 global _products
 _products = products

We simply store the list of products in a private global variable named _products.
We can then make this list available via the products() function:

def products():
 global _products
 return _products

Similarly, we can now implement the set_locations() function to set the
hardwired list of locations:

def set_locations(locations):
 global _locations
 _locations = locations

Finally, we can implement the locations() function to make this information
available:

def locations():
 global _locations
 return _locations

This completes our implementation of the datastorage module.

Implementing the user interface module
As mentioned earlier, the user interface module is going to be kept as simple as
possible, using print() and input() statements to interact with the user. In a
more comprehensive implementation of this system, we would use a graphical user
interface (GUI) to display and ask the user for information, but we want to keep our
code as simple as we can.

Writing Your First Modular Program

[38]

With this in mind, let's go ahead and implement the first of our user interface
module functions. Create a new Python source file named userinterface.py to
hold our user interface module, and add the following to this file:

def prompt_for_action():
 while True:
 print()
 print("What would you like to do?")
 print()
 print(" A = add an item to the inventory.")
 print(" R = remove an item from the inventory.")
 print(" C = generate a report of the current inventory
levels.")
 print(" O = generate a report of the inventory items to re-
order.")
 print(" Q = quit.")
 print()
 action = input("> ").strip().upper()
 if action == "A": return "ADD"
 elif action == "R": return "REMOVE"
 elif action == "C": return "INVENTORY_REPORT"
 elif action == "O": return "REORDER_REPORT"
 elif action == "Q": return "QUIT"
 else:
 print("Unknown action!")

As you can see, we prompt the user to type a letter corresponding to each action,
displaying the list of available actions and returning a string which identifies the
action the user selected. This is not a great way of implementing a user interface,
but it works.

The next function we want to implement is prompt_for_product(), which asks
the user to select a product from the list of available product codes. To do this, we
are going to have to ask the data storage module for the list of products. Add the
following code to the end of your userinterface.py module:

def prompt_for_product():
 while True:
 print()
 print("Select a product:")
 print()
 n = 1
 for code,description,desired_number in datastorage.products():
 print(" {}. {} - {}".format(n, code, description))

Chapter 2

[39]

 n = n + 1

 s = input("> ").strip()
 if s == "": return None

 try:
 n = int(s)
 except ValueError:
 n = -1

 if n < 1 or n > len(datastorage.products()):
 print("Invalid option: {}".format(s))
 continue

 product_code = datastorage.products()[n-1][0]
 return product_code

In this function, we display a list of the products along with a number beside each
product. The user then enters the number for the desired product, and we return the
product code to the caller. If the user didn't enter anything, we return None—this lets
the user press the Enter key without entering anything if they don't want to proceed.

While we're at it, let's implement the equivalent function which asks the user to
identify a location:

def prompt_for_location():
 while True:
 print()
 print("Select a location:")
 print()
 n = 1
 for code,description in datastorage.locations():
 print(" {}. {} - {}".format(n, code, description))
 n = n + 1

 s = input("> ").strip()
 if s == "": return None

 try:
 n = int(s)
 except ValueError:
 n = -1

 if n < 1 or n > len(datastorage.locations()):

Writing Your First Modular Program

[40]

 print("Invalid option: {}".format(s))
 continue

 location_code = datastorage.locations()[n-1][0]
 return location_code

Once again, this function displays a number beside each location and asks the user
to enter the number for the desired location. We then return the location code for the
selected location, or None if the user cancelled.

Since these two functions make use of the data storage module, we're going to have
to add the following import statement to the top of our module:

import datastorage

There is only one more function we need to implement: the show_report() function.
Let's do this now:

def show_report(report):
 print()
 for line in report:
 print(line)
 print()

Since we are implementing this using a text interface, this function is almost
ludicrously simple. It does serve an important purpose though: by implementing
the process of showing a report as a separate function, we can re-implement this
function to show the report in a more useful way (for example, displaying it in a
window within a GUI) without affecting the rest of the system.

Implementing the report generator module
The report generator module is going to have two public functions, one to generate
each type of report. Without further ado, let's implement this module, which we will
store in a Python source file named reportgenerator.py. Create this file, and enter
the following into it:

import datastorage

def generate_inventory_report():
 product_names = {}
 for product_code,name,desired_number in datastorage.products():
 product_names[product_code] = name

 location_names = {}

Chapter 2

[41]

 for location_code,name in datastorage.locations():
 location_names[location_code] = name

 grouped_items = {}
 for product_code,location_code in datastorage.items():
 if product_code not in grouped_items:
 grouped_items[product_code] = {}

 if location_code not in grouped_items[product_code]:
 grouped_items[product_code][location_code] = 1
 else:
 grouped_items[product_code][location_code] += 1

 report = []
 report.append("INVENTORY REPORT")
 report.append("")

 for product_code in sorted(grouped_items.keys()):
 product_name = product_names[product_code]
 report.append("Inventory for product: {} - {}"
 .format(product_code, product_name))
 report.append("")

 for location_code in sorted(grouped_items[product_code].
keys()):
 location_name = location_names[location_code]
 num_items = grouped_items[product_code][location_code]
 report.append(" {} at {} - {}"
 .format(num_items,
 location_code,
 location_name))
 report.append("")

 return report

def generate_reorder_report():
 product_names = {}
 desired_numbers = {}

 for product_code,name,desired_number in datastorage.products():
 product_names[product_code] = name

Writing Your First Modular Program

[42]

 desired_numbers[product_code] = desired_number

 num_in_inventory = {}
 for product_code,location_code in datastorage.items():
 if product_code in num_in_inventory:
 num_in_inventory[product_code] += 1
 else:
 num_in_inventory[product_code] = 1

 report = []
 report.append("RE-ORDER REPORT")
 report.append("")

 for product_code in sorted(product_names.keys()):
 desired_number = desired_numbers[product_code]
 current_number = num_in_inventory.get(product_code, 0)
 if current_number < desired_number:
 product_name = product_names[product_code]
 num_to_reorder = desired_number - current_number
 report.append(" Re-order {} of {} - {}"
 .format(num_to_reorder,
 product_code,
 product_name))
 report.append("")

 return report

Don't worry too much about the details of these functions. As you can see, we take
the list of inventory items, the list of products, and the list of locations from the data
storage module, and generate a simple text-based report based on the contents of
these lists.

Implementing the main program
The final part of the system we need to implement is our main program. Create
another Python source file named main.py, and enter the following into this file:

import datastorage
import userinterface
import reportgenerator

def main():

Chapter 2

[43]

 pass

if __name__ == "__main__":
 main()

This is just the overall template for our main program: we import the various
modules we created, define a main() function where all the work will be done,
and call it when the program is run. We now need to write our main() function.

Our first task is to initialize the other modules and define the hardwired lists of
products and locations. Let's do this now, by rewriting our main() function to look
like the following:

def main():
 datastorage.init()

 datastorage.set_products([
 ("SKU123", "4 mm flat-head wood screw", 50),
 ("SKU145", "6 mm flat-head wood screw", 50),
 ("SKU167", "4 mm countersunk head wood screw", 10),
 ("SKU169", "6 mm countersunk head wood screw", 10),
 ("SKU172", "4 mm metal self-tapping screw", 20),
 ("SKU185", "8 mm metal self-tapping screw", 20),
])

 datastorage.set_locations([
 ("S1A1", "Shelf 1, Aisle 1"),
 ("S2A1", "Shelf 2, Aisle 1"),
 ("S3A1", "Shelf 3, Aisle 1"),
 ("S1A2", "Shelf 1, Aisle 2"),
 ("S2A2", "Shelf 2, Aisle 2"),
 ("S3A2", "Shelf 3, Aisle 2"),
 ("BIN1", "Storage Bin 1"),
 ("BIN2", "Storage Bin 2"),
])

Next, we need to ask the user for the action they wish to perform, and then respond
appropriately. We'll start by asking the user for the action, using a while statement
so that this can be done repeatedly:

 while True:
 action = userinterface.prompt_for_action()

Writing Your First Modular Program

[44]

We next need to respond to the action that the user selected. Obviously, we need to
do this for each possible action. Let's start with the QUIT action:

 if action == "QUIT":
 break

The break statement will exit the while True statement, which has the effect of
leaving the main() function and shutting down the program.

Next, we want to implement the ADD action:

 elif action == "ADD":
 product = userinterface.prompt_for_product()
 if product != None:
 location = userinterface.prompt_for_location()
 if location != None:
 datastorage.add_item(product, location)

Notice that we call the user interface functions to prompt the user for a product and
then a location code, only proceeding if the function didn't return None. This means
we only prompt for a location or add the item if the user didn't cancel.

We can now implement the equivalent function for the REMOVE action:

 elif action == "REMOVE":
 product = userinterface.prompt_for_product()
 if product != None:
 location = userinterface.prompt_for_location()
 if location != None:
 if not datastorage.remove_item(product,
 location):
 pass # What to do?

This is almost identical to the logic for adding an item, with one exception: the
datastorage.remove_item() function can fail (by returning False) if there is no
inventory item for that product and location code. As the comment beside the pass
statement suggests, we are going to have to do something when this happens.

We have now reached a very common point in the modular programming process:
we designed all the functionality that we thought we needed, but then discovered
that we missed something. When the user attempts to remove a non-existent
inventory item, we will want to display an error message so the user knows what
went wrong. Because all user interaction takes place within the userinterface.py
module, we will want to add this functionality to that module.

Chapter 2

[45]

Let's do that now. Go back and edit the userinterface.py module, and add the
following function to the end:

def show_error(err_msg):
 print()
 print(err_msg)
 print()

Once again, this is an embarrassingly simple function, but it lets us keep all user
interaction within the userinterface module (and allows for the possibility of
rewriting our program later on to use a GUI). Let's now replace that pass statement
within our main.py program with some appropriate error-handling code:

 ...
 if not datastorage.remove_item(product,
 location):
 userinterface.show_error(
 "There is no product with " +
 "that code at that location!")

Having to go back and change the functionality for a module is extremely common.
Fortunately, modular programming makes this process much more self-contained,
so you're less likely to get side-effects and other errors when you do this.

Now that the user can add and remove inventory items, there are just two more
actions we need to implement: the INVENTORY_REPORT action, and the REORDER_
REPORT action. For both of these actions, all we need to do is call the appropriate
report generator function to generate the report, followed by the user interface
module's show_report() function to display the results. Let's do this now, by
adding the following code to the end of our main() function:

 elif action == "INVENTORY_REPORT":
 report = reportgenerator.generate_inventory_report()
 userinterface.show_report(report)
 elif action == "REORDER_REPORT":
 report = reportgenerator.generate_reorder_report()
 userinterface.show_report(report)

This completes the implementation of our main() function, and indeed the
implementation of our entire inventory control system. Go ahead and run it. Try
entering a few inventory items, removing an inventory item or two, and generating
both types of report. If you have entered the code as presented in this book or
downloaded the example code for this chapter, the program should work, giving you
a simple but complete inventory control system—but more importantly, showing
you how to implement a program using modular programming techniques.

Writing Your First Modular Program

[46]

Summary
In this chapter, we designed and implemented a non-trivial program to keep track
of a company's inventory. Using the divide-and-conquer approach, we split the
program into individual modules and then looked at the functionality that each
module would need to provide. This led us to a more detailed design of the functions
within each module, and we were then able to implement the overall system one step
at a time. We discovered that some functionality had been overlooked and had to be
added after the design was complete, and saw how modular programming makes it
less likely for these types of changes to break your system. Finally, we had a quick
play with the inventory control system to make sure it works.

In the next chapter, we will learn more about the nuts and bolts of how modules and
packages work within Python.

[47]

Using Modules and Packages
To be able to use modules and packages within your Python programs, you need to
understand how they work. In this chapter, we will examine the nuts and bolts of
how modules and packages are defined and used in Python. In particular, we will:

•	 Review how Python modules and packages are defined
•	 See how packages can be created inside other packages
•	 Discover how modules and packages can be initialized
•	 Learn more about the import process
•	 Explore the notion of relative imports
•	 Learn how to control what gets imported
•	 Find out how to deal with circular dependencies
•	 See how a module can be run directly from the command line, and why this

can be useful

Modules and packages
By now, you should be fairly comfortable with organizing your Python code
into modules and then importing and using these modules in other modules and
programs. This is only a taste of what can be done, however. Let's briefly review
what Python modules and packages are before looking closer at how they work.

As we have seen, a module is simply a Python source file. You can import the
module using the import statement:

import my_module

Using Modules and Packages

[48]

Once this is done, you can refer to any functions, classes, variables, and other
definitions within the module by prepending the module name to the item,
for example:

my_module.do_something()
print(my_module.variable)

In Chapter 1, Introducing Modular Programming, we learned that a Python package is
a directory containing a special file named __init__.py. This is called the package
initialization file and identifies the directory as a Python package. The package also
typically contains one or more Python modules, for example:

To import the modules within this package, you add the package name to the start of
the module name. For example:

import my_package.my_module
my_package.my_module.do_something()

You can also use an alternative version of the import statement to make your code
easier to read:

from my_package import my_module
my_module.do_something()

We will look at the various ways in which you can use the
import statement in the section How to Import Anything
later in this chapter.

Chapter 3

[49]

Packages within packages
Just like you can have directories within directories, you can have packages within
other packages. For example, imagine that our my_package directory contained
another directory called my_sub_package, which itself had an __init__.py file:

As you might expect, you import the modules within a sub-package by prepending
the names of the packages that contain it:

from my_package.my_sub_package import my_module
my_module.do_something()

There is no limit to how deeply you can nest packages, though in practice it becomes
a bit unwieldy if you have too many levels of packages-within-packages. More
interestingly, the various packages and sub-packages form a tree-like structure
which allows you to organize even the most complex program. For example, a
sophisticated business system might be arranged like this:

Using Modules and Packages

[50]

As you can see, this is called a tree-like structure because the packages-within-
packages look like the spreading branches of a tree. A tree-like structure like this
allows you to group logically-related parts of your program together, while ensuring
that everything can be found when you need it. For example, using the structure
described by the preceding illustration, you would access your customer data using
the program.logic.data.customers package, and the various menus in your
program would be defined by the program.gui.widgets.menus package.

Obviously, this is an extreme example. Most programs—even very complex ones—
won't be this complicated. But you can see how Python packages allow you to keep
your program well organized, no matter how big and elaborate it becomes.

Initializing a module
When a module is imported, any top-level code within that module is executed.
This has the effect of making the various functions, variables, and classes you
defined in your module available for the caller to use. To see how this works,
create a new Python source file named test_module.py, and enter the following
code into this module:

def foo():
 print("in foo")

def bar():
 print("in bar")

my_var = 0

print("importing test module")

Now, open up a terminal window, cd into the directory where your test_module.
py file is stored, and type python to start up the Python interpreter. Then try typing
the following:

% import test_module

When you do this, the Python interpreter prints the following message:

importing test module

Chapter 3

[51]

It does this because all the top-level Python statements in the module—including
the def statements and our print statement—are executed when the module is
imported. You can then call the foo and bar functions, and access the my_var global,
by prefixing the names with my_module:

% my_module.foo()
in foo
% my_module.bar()
in bar
% print(my_module.my_var)
0
% my_module.my_var = 1
% print(my_module.my_var)
1

Because all the top-level Python statements are executed when a module is imported,
you can initialize a module by directly including the initialization statements in the
module itself, just like the statement in our test module which sets my_var to zero.
This means that the module will be automatically initialized when the module is
imported.

Note that a module is only imported once. If two modules import
the same module, the second import statement will simply return
a reference to the already-imported module, so you won't get the
same module imported (and initialized) twice.

Initialization functions
This implicit initialization works, but it isn't necessarily a good practice. One of the
guidelines promoted by the designers of the Python language is that explicit is better
than implicit. In other words, having a module automatically initialize itself isn't
always good coding practice, as it isn't always clear from reading the code exactly
what gets initialized and what doesn't.

To avoid this confusion, and in order to follow the Python guidelines, it is
often a good idea to explicitly initialize your modules. By convention, this is
done by defining a top-level function called init() which performs all of the
initialization for your module. For example, in our test_module, we could replace
the my_var = 0 statement with the following:

def init():
 global my_var
 my_var = 0

Using Modules and Packages

[52]

This is a bit more verbose, but it makes the initialization explicit. Of course, you also
have to remember to call test_module.init() before you use the module, usually
from within your main program.

One of the main advantages of explicit module initialization is that you can control the
order in which your various modules get initialized. For example, if the initialization
for module A includes calling a function in module B, and this function requires
module B to have been initialized, the program will crash if the two modules are
imported in the wrong order. This can get particularly difficult when modules import
other modules, as the order in which modules are imported can be quite confusing. To
avoid this, it's better to use explicit module initialization and have your main program
call B.init() before it calls A.init(). This is a perfect example of why it's generally
better to use explicit initialization functions for your modules.

Initializing a package
To initialize a package, you place the Python code inside the package's __init__.py
file. This code is then executed when the package is imported. For example, imagine
that you have a package named test_package, which contains an __init__.py file
and one module named test_module.py:

You can place whatever code you like inside the __init__.py file, and when the
package (or a module within the package) is imported for the first time, that code
will be executed.

You might be wondering why you might want to do this. Initializing a module
makes sense as a module contains various functions that might need to be initialized
before they are used (for example, by setting global variables to an initial value). But
why initialize a package, rather than just a module within that package?

The answer lies in what happens when you import a package. When you do this,
anything you define in the package's __init__.py file becomes available at the
package level. For example, imagine that your __init__.py file contained the
following Python code:

def say_hello():
 print("hello")

Chapter 3

[53]

Then you could access this function from your main program in the following way:

import my_package
my_package.say_hello()

You don't need to define the say_hello() function inside a module within the
package for it to be easily accessed.

As a general principle, however, adding code to the __init__.py file isn't a
great idea. It works, but people looking through your package's source code will
expect the package's code to be defined inside modules rather than in the package
initialization file. Also, there is only one __init__.py file for the whole package,
which makes organizing your code within the package more difficult.

A better way of using package initialization files is to write your code in modules
within the package, and then use the __init__.py file to import this code so that it is
available at the package level. For example, you might implement the say_hello()
function within the test_module module, and then include the following in the
package's __init__.py file:

from test_package.test_module import say_hello

Programs using your package would still call the say_hello() function in exactly
the same way. The only difference is that this function is now implemented as part of
the test_module module, rather than being lumped inside the __init__.py file for
the entire package.

This is a very useful technique, especially as your packages get more complicated
and you have lots of functions, classes, and other definitions which you want to
make available. By adding import statements to your package initialization file,
you can write the parts of your package in whatever modules make the most sense
to you, and then choose which functions, classes, and so on to make available at the
package level.

One of the nice things about using __init__.py files in this way is that the various
import statements tell the users of your package which functions and classes they
should be using; if you haven't included a module or function in your package
initialization file, then it's probably excluded for a reason.

Using import statements in a package initialization file also tells the users of
your package where the various parts of a complex package are located—the
__init__.py file acts as a kind of index into the package's source code.

To summarize, while you can include any Python code you like within a package's
__init__.py file, it's probably best if you limit yourself to import statements, and
keep your real package code elsewhere.

Using Modules and Packages

[54]

How to import anything
So far, we have used two different versions of the import statement:

•	 Importing a module and then using the module name to access something
defined within that module. For example:
import math
print(math.pi)

•	 Importing something from a module and then using that thing directly.
For example:
from math import pi
print(pi)

The import statement is very powerful, however, and we can do all sorts of
interesting things with it. In this section, we will look at the different ways in which
you can use the import statement to import modules and packages, and their
contents, into your program.

What does the import statement actually do?
Whenever you create a global variable or function, the Python interpreter adds the
name of that variable or function to what is called the global namespace. The global
namespace holds all the names that you have defined at the global level. To see how
this works, enter the following command into the Python interpreter:

>>> print(globals())

The globals() built-in function returns a dictionary with the current contents of the
global namespace:

{'__package__': None, '__doc__': None, '__name__': '__main__', '__
builtins__': <module 'builtins' (built-in)>, '__loader__': <class '_
frozen_importlib.BuiltinImporter'>}

Don't worry about the various oddly named globals
such as __package__; these are used internally by
the Python interpreter.

Chapter 3

[55]

Now, let's define a new top-level function:

>>> def test():

... print("Hello")

...

>>>

If we now print out the dictionary of global names, our test() function will be
included:

>>> print(globals())

{...'test': <function test at 0x1028225f0>...}

There are several other entries in the globals() dictionary,
but from now on we'll only show the items that interest us so
that these examples aren't too confusing.

As you can see, the name test has been added to our global namespace.

Once again, don't worry about the value associated with
the test name; this is Python's internal way of storing the
functions that you define.

When something is in the global namespace, you can access it by name from
anywhere in your program:

>>> test()

Hello

Note that there's a second namespace, called the local namespace,
that holds variables and other things defined within the current
function. While the local namespace is important when it comes to
variable scope, we're going to ignore it as it isn't generally involved
in importing modules.

Now, when you use the import statement, you are adding entries to the global
namespace:

>>> import string

>>> print(globals())

{...'string': <module 'string' from '/Library/Frameworks/Python.
framework/Versions/3.3/lib/python3.3/string.py'>...}

Using Modules and Packages

[56]

As you can see, the module that you imported has been added to the global
namespace, allowing you to access that module by name, for example like this:

>>> print(string.capwords("this is a test"))

This Is A Test

In the same way, if you used the from...import version of the import statement,
the item you've imported will be added directly to the global namespace:

>>> from string import capwords

>>> print(globals())

{...'capwords': <function capwords at 0x1020fb7a0>...}

So now you know what the import statement does: it adds what you're importing to
the global namespace so that you can access it.

Using the import statement
Now that we've seen what the import statement does, let's take a look at the
different versions of the import statement that Python provides.

We've already seen the two most common forms of the import statement:

•	 import <something>

•	 from <somewhere> import <something>

With the first form, you aren't limited to importing modules one at a time. If you
want, you can import multiple modules at once, like this:

import string, math, datetime, random

Similarly, you can import multiple things at once from a module or package:

from math import pi, radians, sin

If you have more items to import than will fit on one line, you can either use line
continuation characters (\) to spread the import across multiple lines, or surround
the list of items that you want to import with parentheses. For example:

from math import pi, degrees, radians, sin, cos, \
 tan, hypot, asin, acos, atan, atan2

from math import (pi, degrees, radians, sin, cos,
 tan, hypot, asin, acos, atan, atan2)

Chapter 3

[57]

When you import something, you can also change the name of the imported item:

import math as math_ops

In this case, you are importing the math module under the name math_ops. The math
module will be added to your global namespace using the name math_ops, and you
can access the math module's contents using the math_ops name:

print(math_ops.pi)

There are two reasons why you might want to use the import...as statement to
change the name of something when you import it:

1.	 To make a long or unwieldy name easier to type.
2.	 To avoid naming conflicts. For example, if you are using two packages that

both define a module named utils, you might want to use the import...as
statement so that the names are different. For example:
from package1 import utils as utils1
from package2 import utils as utils2

Note that you should probably use the import...as statement
sparingly. Every time you change the name of something, you
(and anyone reading your code) will have to remember that X
is another name for Y, which adds complexity and means that
you have more things to remember as you write your program.
There are certainly legitimate uses for the import...as
statement, but don't overuse it.

You can, of course, combine the from...import statement with import...as:

from reports import customers as customer_report
from database import customers as customer_data

Finally, you can use a wildcard import to import everything from a module or
package in one fell swoop:

from math import *

This adds all the items defined in the math module into the current global namespace.
If you are importing from a package, then all the items defined in the package's
__init__.py file will be imported.

Using Modules and Packages

[58]

By default, everything in the module (or package) that doesn't start with an
underscore character will be imported by a wildcard import. This ensures that
private variables and functions won't be imported. If you want, however, you can
change what gets included in a wildcard import by using the __all__ variable; this
will be discussed in the Controlling what gets imported section later in this chapter.

Relative imports
So far, whenever we've imported something, we've used the full name of the module
or package that we want to import from. For simple imports such as from math
import pi, this is sufficient. There are times, however, when this type of importing
can be quite cumbersome.

Consider, for example, the complex tree of packages that we looked at in the Packages
within packages section earlier in this chapter. Imagine that we want to import a
module named slider.py from within the program.gui.widgets.editor package:

You could import this module using the following Python statement:

from program.gui.widgets.editor import slider

The program.gui.widgets.editor part of the import statement identifies the
package where the slider module can be found.

Chapter 3

[59]

While this works, it can be quite unwieldy, especially if you have a lot of modules to
import or if one part of a package needs to import several other modules from within
the same package.

To handle this type of situation, Python supports the concept of relative imports.
Using relative imports, you identify what you want to import relative to the current
module's position within the tree of packages. For example, imagine that the slider
module wanted to import another module within the program.gui.widgets.editor
package:

To do this, you replace the package name with a . character:

from . import slider

The . character is a shorthand for the current package.

In a similar way, imagine that you have a module within the program.gui.widgets
package that wants to import the slider module from the editor sub-package:

Using Modules and Packages

[60]

In this case, your import statement would look like the following:

from .editor import slider

The . character still refers to the current location, and editor is the name of the
package relative to this current location. In other words, you are telling Python
to look for a package named editor in the current location, and then import the
module named slider within this package.

Let's consider the opposite situation. Imagine that the slider module wants to
import a module from the widgets directory:

In this case, you can use two . characters to mean go up one level:

from .. import controls

As you might imagine, you can use three . characters to mean go up two levels and so
on. You can also combine these techniques to move through the package hierarchy in
any way you like. For example, imagine that the slider module wants to import a
module named errDialog from the gui.dialogs.errors package:

Chapter 3

[61]

Using relative imports, the slider module could import the errDialog module in
the following way:

from ...dialogs.errors import errDialog

As you can see, you can use these techniques to select any module or package
anywhere in the tree of packages, relative to your current position in the tree.

There are two main reasons for using relative imports:

1.	 They're a great way of making your import statements shorter and easier to
read. Instead of having to type from program.gui.widgets.editor import
utils in the slider module, you can simply type from . import utils.

2.	 When you write a package for others to use, you can have different modules
within your package refer to each other without having to worry about
where the user installed the package. For example, I might take a package
you've written and place it inside another package; using relative imports,
your package will continue to work without having to change all the import
statements to reflect the new package structure.

Like anything, relative imports can be overused. Because the meaning of the import
statement depends on the position of the current module, relative imports tend to
violate the explicit is better than implicit principle. You can also get into trouble if you
attempt to run a module from the command line, as described in the Running modules
from the command line section later in this chapter. For these reasons, you should use
relative imports sparingly, and stick to fully listing out the entire package hierarchy
in your import statements unless you have a good reason not to.

Controlling what gets imported
When you import a module or package, or when you use a wildcard import such
as from my_module import *, the Python interpreter loads the contents of the
given module or package into your global namespace. If you are importing from a
module, all of the top-level functions, constants, classes, and other definitions will be
imported. When importing from a package, all of the top-level functions, constants,
and so on defined in the package's __init__.py file will be imported.

By default, these imports load everything from the given module or package. The
only exception is that a wildcard import will automatically skip any function,
constant, class, or other definition starting with an underscore—this has the effect of
excluding private definitions from the wildcard import.

Using Modules and Packages

[62]

While this default behavior generally works well, there are times when you may
want more control over what gets imported. To do this, you can use a special
variable named __all__.

To see how the __all__ variable works, take a look at the following module:

A = 1
B = 2
C = 3
__all__ = ["A", "B"]

If you imported this module, only A and B would be imported. While the module
defines the variable C, this definition would be skipped because it isn't included in
the __all__ list.

Within a package, the __all__ variable behaves in the same way, with one
important difference: you can also include the name of modules and sub-packages
that you want to include when the package is imported. For example, a package's
__init__.py file might contain only the following:

__all__ = ["module_1", "module_2", "sub_package"]

In this case, the __all__ variable controls which modules and packages to include;
when you import this package, the two modules and the sub-package will be
imported automatically.

Note that the preceding __init.py__ file is equivalent to the following:
import module1
import module2
import sub_package

Both versions of the __init__.py file would have the effect of including
the two modules and the sub-package within the package.

While you don't need to use it, the __all__ variable gives you complete control
over your imports. The __all__ variable can also be a useful way of indicating to
users of your modules and packages which parts of your code they should be using:
if something isn't included in the __all__ list, then it's not intended to be used by
external code.

Chapter 3

[63]

Circular dependencies
One of the annoying problems that you are likely to face while working with
modules is what is known as circular dependencies. To understand what these
are, consider the following two modules:

module_1.py

from module_2 import calc_markup

def calc_total(items):
 total = 0
 for item in items:
 total = total + item['price']
 total = total + calc_markup(total)
 return total

module_2.py

from module_1 import calc_total

def calc_markup(total):
 return total * 0.1

def make_sale(items):
 total_price = calc_total(items)
 ...

While this is a contrived example, you can see that module_1 imports something
from module_2, and module_2 imports something from module_1. If you tried to run
a program containing these two modules, you would see the following error when
module_1 is imported:

ImportError: cannot import name calc_total

If you tried to import module_2 instead, you would get a similar error. With the code
organized in this way, you're stuck: you can't import either module as both depend
on the other.

To get around this, you would have to restructure your modules so that they don't
depend on each other. In this example, you could create a third module, named
module_3, and move the calc_markup() function to that module. This would make
module_1 dependent on module_3, rather than module_2, which breaks the circular
dependency.

Using Modules and Packages

[64]

There are other tricks you can perform to avoid circular dependency
errors, for example by moving the import statement inside a
function. In general, however, a circular dependency means that
your code is badly designed, and you should refactor your code to
remove the circular dependency entirely.

Running modules from the command line
In Chapter 2, Writing Your First Modular Program, we saw your system's main
program is often named main.py and typically has the following structure:

def main():
 ...

if __name__ == "__main__":
 main()

The __name__ global variable will be set to the value "__main__" by the Python
interpreter when the user runs your program. This has the effect of calling your
main() function when the program is run.

There is nothing special about the main.py program, however; it's just another
Python source file. You can take advantage of this to make your Python modules
executable from the command line.

Consider, for example, the following module, which we will call double.py:

def double(n):
 return n * 2

if __name__ == "__main__":
 print("double(3) =", double(3))

This module defines some functionality, in this case a function named double(),
and then uses the if __name__ == "__main__" trick to demonstrate and test the
module's functionality when it is run from the command line. Let's try running this
module to see how it works:

% python double.py

double(3) = 6

Chapter 3

[65]

Another common use for a runnable module is to allow the end user to directly
access the module's functionality from the command line. To see how this works,
create a new module named funkycase.py, and enter the following into this file:

def funky_case(s):
 letters = []
 capitalize = False
 for letter in s:
 if capitalize:
 letters.append(letter.upper())
 else:
 letters.append(letter.lower())
 capitalize = not capitalize
 return "".join(letters)

The funky_case() function takes a string and capitalizes every second letter. If you
wanted to, you could import this module and then access this function from within
your program:

from funkycase import funky_case
s = funky_case("Test String")

While this is useful, we also want to let the user run the funkycase.py module as
a standalone program, directly converting the supplied string to funky-case and
printing it out to the user can see it. To do this, we can use the if __name__ ==
"__main__" trick along with sys.argv to extract the string supplied by the user.
We can then call the funky_case() function to convert this string to funky-case and
print it out. To do this, add the following code to the end of your funkycase.py
module:

if __name__ == "__main__":
 if len(sys.argv) != 2:
 print("You must supply exactly one string!")
 else:
 s = sys.argv[1]
 print(funky_case(s))

Also, add the following to the top of your module:

import sys

You can now run this module directly as if it was a standalone program:

% python funkycase.py "The quick brown fox"

tHe qUiCk bRoWn fOx

Using Modules and Packages

[66]

In this way, funkycase.py acts as a kind of chameleon module. To other Python
source files, it appears as just another module that can be imported and used,
while to the end user it looks like a standalone program that can be run from
the command line.

Note that if you want to make a module executable from the command
line, you aren't limited to just using sys.argv to accept and process
the arguments supplied by the user. The excellent argparse module in
the Python Standard Library allows you to write Python programs (and
modules) that accept a wide range of inputs and options from the user.
If you haven't used this module before, do check it out.

There is one issue to be aware of when you create a module that can be run from the
command line: if your module uses relative imports, your imports will fail with an
attempted relative import of non-package error when you run it directly using the Python
interpreter. This error occurs because a module forgets about its position within the
package hierarchy when it is run from the command line. As long as your module
doesn't use any command-line arguments, you can get around this problem by using
Python's -m command-line option, like this:

python -m my_module.py

However, if your module does accept command-line arguments, then you will
need to replace your relative imports so that this problem doesn't occur. There are
workarounds, but they are kludgy and not recommended for general use.

Summary
In this chapter, we looked at the details of how Python modules and packages work.
We saw that modules are simply Python source files that get imported using an
import statement, and that packages are directories of Python source files identified
by a package initialization file named __init__.py. We learned that packages can
be defined inside other packages to form a tree-like structure of nested packages.
We looked at how modules and packages can be initialized, and how the import
statement can be used in various ways to import modules and packages, and their
contents, into your programs.

Chapter 3

[67]

We then saw how relative imports can be used to import modules relative to your
current position in the package hierarchy and how the __all__ variable can be used
to control what gets included in an import.

We then learned about circular dependencies and how to avoid them, and we
finished by learning about chameleon modules, which can act as both importable
modules and as standalone programs that can be run from the command line.

In the next chapter, we will apply what we have learned to the design and
implementation of a more complicated program, and we will see how a good
understanding of these techniques will let us build a system that is robust and
can be updated to meet changing requirements.

[69]

Using Modules for
Real-World Programming

In this chapter, we are going to use modular programming techniques to implement
a useful real-world system. In particular, we will:

•	 Design and implement a Python package for generating charts
•	 See how changing requirements can be the downfall of a successful system
•	 Discover the ways in which modular programming techniques can help you

to deal with changing requirements in the best possible way
•	 Learn that changing requirements can be good, because they give you

the opportunity to re-think your program, resulting in more robust and
well-designed code

Let's start by looking at the Python chart-generating package we are going to
implement, which we will call Charter.

Using Modules for Real-World Programming

[70]

Introducing Charter
Charter will be a Python library for generating charts. Developers will be able to use
Charter to convert raw numbers into good-looking line and bar charts, which can
then be saved as image files. The following is an example of the sort of chart that the
Charter library will be able to generate:

The Charter library will support line and bar charts. While we will keep Charter
relatively simple by only supporting two types of charts, the package will be
designed so that you can easily add more chart types and other charting options if
you wish.

Designing Charter
When you look at a chart like the one shown in the previous section, you can identify
a number of standard elements that are used by all types of charts. These elements
include a title, the x and y axes, and one or more data series:

Chapter 4

[71]

To use the Charter package, a programmer would create a new chart and set the
title, the x and y axes, and the data series to be displayed. The programmer would
then ask Charter to generate the chart, saving the result as an image file on disk.
By combining and configuring the various elements in this way, a programmer can
create any chart that they may wish to generate.

A more sophisticated charting library would allow for additional
elements, such as a y axis on the right-hand side, axis labels,
a legend, and multiple overlapping data series. For Charter,
however, we want to keep the code simple, so we will ignore
these more complicated elements.

Let's take a closer look at how a programmer might interact with the Charter library,
and then start to think about how it might be implemented.

We would like the programmer to be able to interact with Charter simply by
importing the charter package and then calling various functions to work with
charts. For example:

import charter
chart = charter.new_chart()

To set the title for the chart, the programmer would call the set_title() function:

charter.set_title(chart, "Wild Parrot Deaths per Year")

Note that our Charter library does not use object-oriented programming
techniques. Using object-oriented techniques, the chart title would be set
using a statement such as chart.set_title("Wild Parrot Deaths
per Year"). However, object-oriented techniques are beyond the scope
of this book, and so we will use a simpler procedural programming style
for the Charter library.

To set the x and y axes for a chart, the programmer would have to supply enough
information so that Charter can generate the chart and display these axes. To
understand how this might work, let's think about what an axis looks like.

For some charts, an axis might represent a range of values:

Using Modules for Real-World Programming

[72]

In this case, a data point would be displayed by calculating the position of the point
along the axis. For example, a data point with x = 35 would be displayed halfway
between the 30 and 40 points on this axis.

We are going to call this type of axis a continuous axis. Notice how, for this type of
axis, the labels are positioned below the tick marks. Compare this with the following
axis, which is divided up into a number of discrete "buckets":

In this case, each data point corresponds to a single bucket, and the label would
appear in the space between the tick marks. This type of axis will be called a
discrete axis.

Notice that for continuous axes, the labels are displayed on the tick marks, while for
discrete axes the labels are displayed between the tick marks. Also, the values for a
discrete axis can be anything (in this case, month names), while for continuous axes,
the values must be numbers.

For the Charter library, we are going to make the x axis a discrete axis, while the y
axis will be continuous. In theory, you could use either type of axis for both the x and
y axes, but we are keeping this simple to make the library easier to implement.

Knowing this, we can now look at how the various axes can be defined when
creating a chart.

To define the x axis, the programmer will call the set_x_axis() function with a list
of labels to use for each bucket within the discrete axis:

charter.set_x_axis(chart,
 ["2009", "2010", "2011", "2012", "2013",
 "2014", "2015"])

Each entry in the list corresponds to a single bucket within the axis.

For the y axis, we need to define both the range of values that will be displayed
and how these will be labeled. To do this, we're going to need to supply minimum,
maximum, and label values to the set_y_axis() function:

charter.set_y_axis(chart, minimum=0, maximum=700,
 labels=[0, 100, 200, 300, 400, 500, 600, 700])

Chapter 4

[73]

To keep things simple, we will assume that the y axis uses a linear
scale. We could potentially support other types of scaling, for
example to implement a logarithmic axis, but we're going to ignore
this as it would make the Charter library more complicated.

Now that we know how the axes will be defined, we can look at how the data series
will be specified. Firstly, we need the programmer to tell Charter what type of data
series to display:

charter.set_series_type(chart, "bar")

As mentioned earlier, we will support both line and bar charts.

The programmer then needs to specify the contents of the data series. Since our
x axis is discrete while the y axis is continuous, we can define a data series as a
list of y axis values, one for each discrete x axis value:

charter.set_series(chart, [250, 270, 510, 420, 680, 580, 450])

This completes the definition of a chart. Once it has been defined, the programmer
can ask the Charter library to generate the chart:

charter.generate_chart(chart, "chart.png")

Putting all this together, here is a complete program that generates the bar chart
shown at the start of this chapter:

import charter
chart = charter.new_chart()
charter.set_title(chart, "Wild Parrot Deaths per Year")
charter.set_x_axis(chart,
 ["2009", "2010", "2011", "2012", "2013",
 "2014", "2015"])
charter.set_y_axis(chart, minimum=0, maximum=700,
 labels=[0, 100, 200, 300, 400, 500, 600, 700])
charter.set_series(chart, [250, 270, 510, 420, 680, 580, 450])
charter.set_series_type(chart, "bar")
charter.generate_chart(chart, "chart.png")

Because Charter is a library intended to be used by programmers, this code gives
a fairly complete specification for the Charter library's API. It's clear from this
example program what is supposed to happen. Let's now look at how this can be
implemented.

Using Modules for Real-World Programming

[74]

Implementing Charter
We know that the Charter library's public interface will consist of a number of
functions accessed at the package level, for example charter.new_chart().
However, using the techniques covered in the previous chapter, we know that
we don't have to define our library's API in the package initialization file to make
these functions available at the package level. Instead, we can define the functions
elsewhere, and import them into the __init__.py file so that they are available for
others to use.

Let's start by creating a directory to hold our charter package. Create a new
directory named charter, and create within it an empty package initialization file,
__init__.py. This gives us the basic framework within which to write our library:

Based on our design, we know that the process of generating a chart will involve the
following three steps:

1.	 Create a new chart by calling the new_chart() function.
2.	 Define the contents and appearance of the chart by calling the various

set_XXX() functions.
3.	 Generate the chart and save it as an image file by calling the

generate_chart() function.

To keep our code nicely organized, we're going to separate the process of generating
a chart from the process of creating and defining a chart. To do this, we'll have
a module named chart, which handles the chart creation and definition, and a
separate module named generator which handles the chart generation.

Go ahead and create these two new empty modules, placing them inside the
charter package:

Chapter 4

[75]

Now that we have an overall structure for our package, let's create some
placeholders for the various functions that we know we're going to have to
implement. Edit the chart.py module, and enter the following into this file:

def new_chart():
 pass

def set_title(chart, title):
 pass

def set_x_axis(chart, x_axis):
 pass

def set_y_axis(chart, minimum, maximum, labels):
 pass

def set_series_type(chart, series_type):
 pass

def set_series(chart, series):
 pass

Similarly, edit the generator.py module, and enter the following into it:

def generate_chart(chart, filename):
 pass

These are all the functions that we know we'll need to implement for the Charter
library. However, they're not in the correct place yet—we want the user to be able to
call charter.new_chart(), not charter.chart.new_chart(). To get around this,
edit the __init__.py file, and enter the following into this file:

from .chart import *
from .generator import *

As you can see, we're using relative imports to load all the functions from these
modules into the main charter package's namespace.

Our Charter library is starting to take shape! Let's now work on each of the two
modules in turn.

Using Modules for Real-World Programming

[76]

Implementing the chart.py module
Since we're eschewing the use of object-oriented programming techniques in our
implementation of the Charter library, we can't use an object to store the information
about a chart. Instead, the new_chart() function is going to return a chart value, and
the various set_XXX() functions will take that chart and add information to it.

The easiest way to store information about a chart is to use a Python dictionary.
This makes the implementation of our new_chart() function very simple; edit the
chart.py module and replace the placeholder for new_chart() with the following:

def new_chart():
 return {}

Once we have a dictionary that will hold the chart's data, it's easy to store the
various values we want into this dictionary. For example, edit the definition for
the set_title() function so that it looks like the following:

def set_title(chart, title):
 chart['title'] = title

In a similar way, we can implement the rest of the set_XXX() functions:

def set_x_axis(chart, x_axis):
 chart['x_axis'] = x_axis

def set_y_axis(chart, minimum, maximum, labels):
 chart['y_min'] = minimum
 chart['y_max'] = maximum
 chart['y_labels'] = labels

def set_series_type(chart, series_type):
 chart['series_type'] = series_type

def set_series(chart, series):
 chart['series'] = series

This completes the implementation for our chart.py module.

Chapter 4

[77]

Implementing the generator.py module
Unfortunately, the generate_chart() function is going to be more difficult to
implement, which is why we moved this function into a separate module. The
process of generating a chart will involve the following steps:

1.	 Create an empty image to hold the generated chart.
2.	 Draw the chart's title.
3.	 Draw the x axis.
4.	 Draw the y axis.
5.	 Draw the data series.
6.	 Save the resulting image file to disk.

Because the process of generating a chart requires us to work with images, we're
going to need to find a library that allows us to generate image files. Let's grab
one now.

The Pillow library
The Python Imaging Library (PIL) is a venerable library used to generate images.
Unfortunately, PIL is no longer being actively developed. There is, however, a newer
version of PIL, named Pillow, that continues to be supported and will allow us to
create and save image files.

The main web site for the Pillow library can be found at http://python-pillow.
org/, and the documentation is available at http://pillow.readthedocs.org/.

Let's go ahead and install Pillow. The easiest way to do this is to use pip install
pillow, although the installation guide (http://pillow.readthedocs.org/
en/3.0.x/installation.html) gives you a variety of options if this won't
work for you.

Looking through the Pillow documentation, it appears that we can create an empty
image using the following code:

from PIL import Image
image = Image.new("RGB", (CHART_WIDTH, CHART_HEIGHT), "#7f00ff")

This creates a new RGB (red, green, blue) image with the given width and height,
filled with the given color.

http://python-pillow.org/
http://python-pillow.org/
http://pillow.readthedocs.org/
http://pillow.readthedocs.org/en/3.0.x/installation.html
http://pillow.readthedocs.org/en/3.0.x/installation.html

Using Modules for Real-World Programming

[78]

#7f00ff is a hexadecimal color code for purple. Each pair of
hexadecimal digits represents a color value: 7f for red, 00 for
green, and ff for blue.

To draw into this image, we will use the ImageDraw module. For example:

from PIL import ImageDraw
drawer = ImageDraw.Draw(image)
drawer.line(50, 50, 150, 200, fill="#ff8010", width=2)

Once the chart has been drawn, we can save the image to disk in the following way:

image.save("image.png", format="png")

This brief introduction to the Pillow library tells us how to implement steps 1 and 6
of the chart-generation process we described earlier. It also tells us that for steps 2 to
5, we are going to use the ImageDraw module to draw the various chart elements.

Renderers
When we draw the chart, we want to be able to choose the elements to draw. For
example, we might select between the "bar" and "line" elements depending on the
type of data series the user wants to display. A very simple way of doing this would
be to structure our drawing code like this:

if chart['series_type'] == "bar":
 ...draw the data series using bars
elif chart['series_type'] == "line":
 ...draw the data series using lines

However, this isn't very expandable and would quickly get hard to read if the
drawing logic gets complicated, or if we added more charting options to the library.
To make the Charter library more modular, and to support enhancing it down the
track, we will make use of renderer modules to do the actual drawing for us.

In computer graphics, a renderer is a part of a program that draws something. The
idea is that you can select the appropriate renderer and ask it to draw the element you
want without having to worry about the details of how that element will be drawn.

Chapter 4

[79]

Using renderer modules, our drawing logic would look something like the following:

from renderers import bar_series, line_series

if chart['series_type'] == "bar":
 bar_series.draw(chart, drawer)
elif chart['series_type'] == "line":
 line_series.draw(chart, drawer)

This means that we can leave the actual details of how each element is drawn to the
renderer module itself and not clutter up our generate_chart() function with lots
of detailed drawing code.

To keep track of our renderer modules, we're going to create a sub-package named
renderers, and place all our renderer modules inside this sub-package. Let's create
this sub-package now.

Create a new directory named renderers within the main charter directory,
and create a new file inside it called __init__.py to act as the package initialization
file. This file can be empty as we don't need to do anything special to initialize this
sub-package.

We are going to need a total of five different renderer modules for the Charter library:

•	 title.py

•	 x_axis.py

•	 y_axis.py

•	 bar_series.py

•	 line_series.py

Go ahead and create these five files within the charter.renderers directory, and
enter the following placeholder text into each one:

def draw(chart, drawer):
 pass

This gives us the overall structure for our renderer modules. Let's now use these
renderers to implement our generate_chart() function.

Edit the generate.py module, and replace the placeholder definition for the
generate_chart() function with the following:

def generate_chart(chart, filename):
 image = Image.new("RGB", (CHART_WIDTH, CHART_HEIGHT),
 "#ffffff")

Using Modules for Real-World Programming

[80]

 drawer = ImageDraw.Draw(image)

 title.draw(chart, drawer)
 x_axis.draw(chart, drawer)
 y_axis.draw(chart, drawer)
 if chart['series_type'] == "bar":
 bar_series.draw(chart, drawer)
 elif chart['series_type'] == "line":
 line_series.draw(chart, drawer)

 image.save(filename, format="png")

As you can see, we create an Image object to hold our generated chart, initializing it
to white using the hex color code #ffffff. We then use the ImageDraw module to
define a drawer object to draw into the chart and call the various renderer modules
to do all the work. Finally, we call image.save() to save the image file to disk.

For this function to work, we need to add a few import statements to the top of our
generator.py module:

from PIL import Image, ImageDraw
from .renderers import (title, x_axis, y_axis,
 bar_series, line_series)

There's one more thing that we haven't dealt with yet: when we create the image, we
make use of two constants which tell Pillow the dimensions of the image to create:

 image = Image.new("RGB", (CHART_WIDTH, CHART_HEIGHT),
 "#ffffff")

We need to define these two constants somewhere.

As it turns out, we are going to need to define several more constants and use them
throughout the Charter library. To allow for this, we'll create a special module just to
hold our various constants.

Create a new file named constants.py within the top-level charter directory.
Inside this module, add the following values:

CHART_WIDTH = 600
CHART_HEIGHT = 400

Then, add the following import statement to your generator.py module:

from .constants import *

Chapter 4

[81]

Testing the code
While we haven't implemented any of our renderers, we have enough code in place
to start testing. To do this, create an empty file named test_charter.py, and place
it in the directory containing the charter package. Then, enter the following into
this file:

import charter
chart = charter.new_chart()
charter.set_title(chart, "Wild Parrot Deaths per Year")
charter.set_x_axis(chart,
 ["2009", "2010", "2011", "2012", "2013",
 "2014", "2015"])
charter.set_y_axis(chart, minimum=0, maximum=700,
 labels=[0, 100, 200, 300, 400, 500, 600, 700])
charter.set_series(chart, [250, 270, 510, 420, 680, 580, 450])
charter.set_series_type(chart, "bar")
charter.generate_chart(chart, "chart.png")

This is just a copy of the example code we saw earlier. This script will allow you to
test the Charter library; open up a terminal or command-line window, cd into the
directory containing the test_charter.py file, and type the following:

python test_charter.py

All going well, the program should finish without any errors. You can then look
at the chart.png file, which should be an empty image file filled with a white
background.

Rendering the title
We next need to implement our various renderer modules, starting with the chart's
title. Edit the renderers/title.py file, and replace your placeholder definition of
the draw() function with the following:

def draw(chart, drawer):
 font = ImageFont.truetype("Helvetica", 24)
 text_width,text_height = font.getsize(chart['title'])

 left = CHART_WIDTH/2 - text_width/2
 top = TITLE_HEIGHT/2 - text_height/2

 drawer.text((left, top), chart['title'], "#4040a0", font)

Using Modules for Real-World Programming

[82]

This renderer starts by obtaining a font to use when drawing the title. It then
calculates the size (in pixels) of the title text and the position to use for the label
so that it is nicely centered on the chart. Notice that we use a constant named
TITLE_HEIGHT to specify the amount of space to use for the chart's title.

The final line in this function draws the title onto the chart using the specified
position and font. The string #4040a0 is the hexadecimal color code to use for the
text—this is a dark blue color.

Because this module uses the ImageFont module to load the font, as well as some
constants from our constants.py module, we need to add the following import
statements to the top of our module:

from PIL import ImageFont
from ..constants import *

Note that we use .. to import the constants module from our parent package.

Finally, we need to add the TITLE_HEIGHT constant to our constants.py module:

TITLE_HEIGHT = 50

If you now run your test_charter.py script, you should see the chart's title appear
in the generated image:

Rendering the x axis
If you remember, the x axis is a discrete axis with labels displayed between each
tick mark. To draw this, we are going to have to calculate the width of each "bucket"
on the axis, and then draw lines to represent the axis and the tick marks, as well as
drawing the label for each bucket.

Chapter 4

[83]

Start by editing the renderers/x_axis.py file, and replace your placeholder draw()
function with the following:

def draw(chart, drawer):
 font = ImageFont.truetype("Helvetica", 12)
 label_height = font.getsize("Test")[1]

 avail_width = CHART_WIDTH - Y_AXIS_WIDTH - MARGIN
 bucket_width = avail_width / len(chart['x_axis'])

 axis_top = CHART_HEIGHT - X_AXIS_HEIGHT
 drawer.line([(Y_AXIS_WIDTH, axis_top),
 (CHART_WIDTH - MARGIN, axis_top)],
 "#4040a0", 2) # Draw main axis line.

 left = Y_AXIS_WIDTH
 for bucket_num in range(len(chart['x_axis'])):
 drawer.line([(left, axis_top),
 (left, axis_top + TICKMARK_HEIGHT)],
 "#4040a0", 1) # Draw tickmark.

 label_width = font.getsize(chart['x_axis'][bucket_num])[0]
 label_left = max(left,
 left + bucket_width/2 - label_width/2)
 label_top = axis_top + TICKMARK_HEIGHT + 4

 drawer.text((label_left, label_top),
 chart['x_axis'][bucket_num], "#000000", font)

 left = left + bucket_width

 drawer.line([(left, axis_top),
 (left, axis_top + TICKMARK_HEIGHT)],
 "#4040a0", 1) # Draw final tickmark.

You'll also need to add the following import statements at the top of your module:

from PIL import ImageFont
from ..constants import *

Finally, you should add the following definitions to your constants.py module:

X_AXIS_HEIGHT = 50
Y_AXIS_WIDTH = 50
MARGIN = 20
TICKMARK_HEIGHT = 8

www.allitebooks.com

http://www.allitebooks.org

Using Modules for Real-World Programming

[84]

These define the sizes of the fixed elements within the chart.

If you now run your test_charter.py script, you should see the x axis displayed
along the bottom of the chart:

The remaining renderers
As you can see, the generated image is starting to look more chart-like. Since the
purpose of this package is to show how to structure your code, rather than the details
of how these modules are implemented, let's skip ahead and add the remaining
renderers without further discussion.

Start by editing your renderers/y_axis.py file to look like the following:

from PIL import ImageFont

from ..constants import *

def draw(chart, drawer):
 font = ImageFont.truetype("Helvetica", 12)
 label_height = font.getsize("Test")[1]

 axis_top = TITLE_HEIGHT
 axis_bottom = CHART_HEIGHT - X_AXIS_HEIGHT
 axis_height = axis_bottom - axis_top

Chapter 4

[85]

 drawer.line([(Y_AXIS_WIDTH, axis_top),
 (Y_AXIS_WIDTH, axis_bottom)],
 "#4040a0", 2) # Draw main axis line.

 for y_value in chart['y_labels']:
 y = ((y_value - chart['y_min']) /
 (chart['y_max']-chart['y_min']))

 y_pos = axis_top + (axis_height - int(y * axis_height))

 drawer.line([(Y_AXIS_WIDTH - TICKMARK_HEIGHT, y_pos),
 (Y_AXIS_WIDTH, y_pos)],
 "#4040a0", 1) # Draw tickmark.

 label_width,label_height = font.getsize(str(y_value))
 label_left = Y_AXIS_WIDTH-TICKMARK_HEIGHT-label_width-4
 label_top = y_pos - label_height / 2

 drawer.text((label_left, label_top), str(y_value),
 "#000000", font)

Next, edit renderers/bar_series.py to look like this:

from PIL import ImageFont
from ..constants import *

def draw(chart, drawer):
 avail_width = CHART_WIDTH - Y_AXIS_WIDTH - MARGIN
 bucket_width = avail_width / len(chart['x_axis'])

 max_top = TITLE_HEIGHT
 bottom = CHART_HEIGHT - X_AXIS_HEIGHT
 avail_height = bottom - max_top

 left = Y_AXIS_WIDTH
 for y_value in chart['series']:

 bar_left = left + MARGIN / 2
 bar_right = left + bucket_width - MARGIN / 2

 y = ((y_value - chart['y_min']) /
 (chart['y_max'] - chart['y_min']))

 bar_top = max_top + (avail_height - int(y * avail_height))

Using Modules for Real-World Programming

[86]

 drawer.rectangle([(bar_left, bar_top),
 (bar_right + 1,
 bottom)],
 fill="#e8e8f4", outline="#4040a0")

 left = left + bucket_width

Finally, edit renderers.line_series.py to look like the following:

from PIL import ImageFont
from ..constants import *

def draw(chart, drawer):
 avail_width = CHART_WIDTH - Y_AXIS_WIDTH - MARGIN
 bucket_width = avail_width / len(chart['x_axis'])

 max_top = TITLE_HEIGHT
 bottom = CHART_HEIGHT - X_AXIS_HEIGHT
 avail_height = bottom - max_top

 left = Y_AXIS_WIDTH
 prev_y = None
 for y_value in chart['series']:
 y = ((y_value - chart['y_min']) /
 (chart['y_max'] - chart['y_min']))

 cur_y = max_top + (avail_height - int(y * avail_height))

 if prev_y != None:
 drawer.line([(left - bucket_width / 2, prev_y),
 (left + bucket_width / 2), cur_y],
 fill="#4040a0", width=1)
 prev_y = cur_y
 left = left + bucket_width

This completes our implementation of the Charter library.

Chapter 4

[87]

Testing Charter
If you run the test_charter.py script, you should see a complete bar chart:

There is obviously a lot more that we could do with the Charter library, but even in
its current state, it works well. If you want, you can use it to generate line and bar
charts for all sorts of data. For our purposes, we can declare the Charter library to be
complete, and start using it as part of our production system.

The fly in the ointment – changing
requirements
Of course, nothing is ever really finished. Let's pretend that you wrote the Charter
library and have been busily extending it for several months, adding more data
series types and lots of options. The library is being used in several big projects for
your company, the output looks fantastic, and everyone seems to be very happy with
it—until the day that your boss comes in and says, "It's too fuzzy. Can you take the
fuzziness away?"

Using Modules for Real-World Programming

[88]

You ask what he means, and he says that he's been printing the charts out on a
high-resolution laser printer. The results aren't good enough for him to use in his
company reports. He takes a printout and points to the heading. Looking closely,
you can see what he means:

Sure enough, the text is pixelated, and even the lines look a bit jagged when printed
at high resolution. You try increasing the size of the generated chart, but it still
doesn't look good enough—and when you try increasing the size to match the 1,200
dots per inch of the company's high-resolution laser printer, your program crashes.

"But the program was never designed for that," you complain. "We wrote it to show
charts on-screen."

"I don't care," says your boss. "I want you to generate the output in vector format.
That always prints fine, and isn't fuzzy at all."

Just in case you haven't encountered this before, there are two
fundamentally different ways of storing image data: bitmapped
images, which are made up of pixels, and vector images, where the
individual drawing instructions (for example, "write some text",
"draw a line," "fill a rectangle," and so on) are saved, and then these
instructions are followed each time the image is to be displayed.
Bitmapped images suffer from pixelation or "fuzziness," while vector
images look great even when enlarged or printed at a high resolution.

You do a quick Google search, and confirm that the Pillow library can't save
vector-format images; it only works with bitmapped data. Your boss isn't
sympathetic, "Just make it work in vector format, saving to PDF as well
as PNG for those people already using it."

With a sinking heart, you wonder how you could possibly meet these new
requirements. The whole Charter library has been built from the ground up to
generate bitmapped PNG images. Won't you have to rewrite the whole thing
from scratch?

Chapter 4

[89]

Redesigning Charter
As the Charter library now needs to optionally save the chart as a vector-format
PDF file, we need to find an alternative to the Python Imaging Library that supports
writing to PDF files. There is one obvious candidate for this: ReportLab.

ReportLab is a commercial PDF generator, which is also released under an open
source license. You can find out more about the ReportLab toolkit at http://
www.reportlab.com/opensource/. The easiest way to install ReportLab is to use
pip install reportlab. If this doesn't work for you, check out the installation
instructions at https://bitbucket.org/rptlab/reportlab for more details.
Documentation for the ReportLab toolkit can be found at http://www.reportlab.
com/docs/reportlab-userguide.pdf.

In many ways, ReportLab works in the same way as the Python Imaging Library:
you initialize a document (called a canvas in ReportLab), call various methods to
draw the elements onto the canvas, and then use the save() method to save the
PDF file to disk.

There is one additional step, however: because the PDF file format supports multiple
pages, you need to call the showPage() function to render the current page before
saving the document. While we don't need multiple pages for the Charter library, we
could create multi-page PDF documents by calling showPage() after drawing each
page, and then call save() to save the file to disk when we are finished.

Now that we have a tool that allows us to generate PDF files, let's take a look at how
we can restructure the Charter package to support rendering in either PNG or PDF
file format.

The generate_chart() function seems to be the logical point at which the user
should be able to choose the output format. In fact, we can detect the format
automatically based on the file name—if the filename parameter ends with .pdf,
then we should generate the chart in PDF format, while if the filename ends with
.png, then we should generate the file in PNG format.

More generally, though, we have a problem with our renderers: they're all designed
to work with the Python Imaging Library, and use the ImageDraw module to draw
each chart as a bitmapped image.

Because of this, and the complexity of the code inside each renderer module,
it makes sense to leave these renderers alone and write new renderers that use
ReportLab to generate the chart's elements in PDF format. To do this, we are
going to need to refactor our rendering code.

http://www.reportlab.com/opensource/
http://www.reportlab.com/opensource/
https://bitbucket.org/rptlab/reportlab
http://www.reportlab.com/docs/reportlab-userguide.pdf
http://www.reportlab.com/docs/reportlab-userguide.pdf

Using Modules for Real-World Programming

[90]

Before we leap in and start making changes, let's think about what we want to
achieve. We'll need to have two separate versions of each renderer—one to generate
the element in PNG format and the other to generate the same element in PDF format:

Since all of these modules do the same thing—draw an element onto the chart—it
would be good to have a single function that calls the appropriate renderer module's
draw() function to draw a given chart element in the desired output format. This
way, the rest of our code will only need to call one function, rather than choose
between ten different draw() functions depending on the desired element and format.

To do this, we'll add a new module called renderer.py within the renderers
package, and leave calling the individual renderers to that module. This will simplify
our design immensely.

Finally, our generate_chart() function is going to have to create a ReportLab
canvas to generate the chart in PDF format, and then save this canvas when the chart
has been generated, just like it does at the moment for the bitmapped image.

All this means that, while we have some work to do implementing new versions
of our renderer modules, creating a new renderer.py module and updating the
generate_chart() function, the rest of the system will remain exactly the same.
We don't need to rewrite everything from scratch, and the rest of our modules—in
particular, the existing renderers—don't have to be changed at all. Whew!

Chapter 4

[91]

Refactoring the code
We'll start our refactoring by moving the existing PNG renderers into a new
sub-package called renderers.png. Create a new directory named png within
the renderers directory, and move the title.py, x_axis.py, y_axis.py,
bar_series.py and line_series.py modules into this directory. Then, create
an empty package initialization file, __init__.py, inside the png directory so
that Python will recognize it as a package.

There is one minor change we are going to have to make to our existing PNG
renderers: because each renderer module imports the constants.py module using
a relative import, we will need to update these modules so that they can still find
the constants module from their new position. To do this, edit each PNG renderer
module in turn, and find the line that looks like the following:

from ..constants import *

Add an extra . to each of these lines so that they look like this:

from ...constants import *

Our next task is to create a package to hold our PDF-format renderers. Create a
sub-directory named pdf in the renderers directory, and create an empty package
initialization file in that directory to make it a Python package.

We next want to implement the renderer.py module we talked about earlier so that
our generate_chart() function can concentrate on drawing chart elements rather
than worrying about which module each element is defined in. Create a new file
named renderer.py inside the renderers directory, and add the following code to
this file:

from .png import title as title_png
from .png import x_axis as x_axis_png
from .png import y_axis as y_axis_png
from .png import bar_series as bar_series_png
from .png import line_series as line_series_png

renderers = {
 'png' : {
 'title' : title_png,
 'x_axis' : x_axis_png,
 'y_axis' : y_axis_png,
 'bar_series' : bar_series_png,
 'line_series' : line_series_png
 },
}

def draw(format, element, chart, output):
 renderers[format][element].draw(chart, output)

Using Modules for Real-World Programming

[92]

This module is doing something tricky, which you may not have encountered before:
after importing each PNG-format renderer module using import...as, we then
treat the imported modules as if they were Python variables, storing a reference
to each module in the renderers dictionary. Our draw() function then selects the
appropriate module from that dictionary using renderers[format][element], and
calls the draw() function within that module to do the actual drawing.

This Python trick saves us a lot of coding—without it, we would have had to write
a whole series of if...then statements to call the appropriate module's draw()
function based on the desired element and format. Using a dictionary in this way
saves us a lot of typing and makes the code much easier to read and debug.

We could have also used the Python Standard Library's importlib
module to load a renderer module by name. This would have made
our renderer module even shorter but would have made it harder
to understand the code. Using import...as and a dictionary to
select the desired module is a good trade-off between complexity
and comprehensibility.

We next need to update our generate_report() function. As discussed in the
previous section, we want to choose the output format based on the file extension
for the file being generated. We also need to update this function to use our new
renderer.draw() function, rather than importing and calling the renderer
modules directly.

Edit the generator.py module, and replace the contents of this module with the
following code:

from PIL import Image, ImageDraw
from reportlab.pdfgen.canvas import Canvas

from .constants import *
from .renderers import renderer

def generate_chart(chart, filename):

 # Select the output format.

 if filename.lower().endswith(".pdf"):
 format = "pdf"
 elif filename.lower().endswith(".png"):
 format = "png"
 else:
 print("Unsupported file format: " + filename)

Chapter 4

[93]

 return

 # Prepare the output file based on the file format.

 if format == "pdf":
 output = Canvas(filename)
 elif format == "png":
 image = Image.new("RGB", (CHART_WIDTH, CHART_HEIGHT),
 "#ffffff")
 output = ImageDraw.Draw(image)

 # Draw the various chart elements.

 renderer.draw(format, "title", chart, output)
 renderer.draw(format, "x_axis", chart, output)
 renderer.draw(format, "y_axis", chart, output)
 if chart['series_type'] == "bar":
 renderer.draw(format, "bar_series", chart, output)
 elif chart['series_type'] == "line":
 renderer.draw(format, "line_series", chart, output)

 # Finally, save the output to disk.

 if format == "pdf":
 output.showPage()
 output.save()
 elif format == "png":
 image.save(filename, format="png")

There's a lot of code in this module, but the comments should help to explain what
is going on. As you can see, we use the supplied file name to set the format variable
to "pdf" or "png" as appropriate. We then prepare the output variable to hold the
generated image or PDF file. Next, we call renderer.draw() to draw each chart
element in turn, passing in the format and output variables so that the renderer can
do its job. Finally, we save the output to disk so that the chart will be saved to the
appropriate PDF or PNG format file.

With these changes in place, you should be able to use the updated Charter package
to generate a PNG-format file. PDF files won't work yet because we haven't written
the PDF renderers, but PNG format output should be working. Go ahead and test
this by running the test_charter.py script, just to make sure you haven't made any
typos entering the code.

Now that we've finished refactoring our existing code, let's add our PDF renderers.

Using Modules for Real-World Programming

[94]

Implementing the PDF renderer modules
We will work through the various renderer modules one at a time. Start by creating
the titles.py module inside the pdf directory, and enter the following code into
this file:

from ...constants import *

def draw(chart, canvas):
 text_width = canvas.stringWidth(chart['title'],
 "Helvetica", 24)
 text_height = 24 * 1.2

 left = CHART_WIDTH/2 - text_width/2
 bottom = CHART_HEIGHT - TITLE_HEIGHT/2 + text_height/2

 canvas.setFont("Helvetica", 24)
 canvas.setFillColorRGB(0.25, 0.25, 0.625)
 canvas.drawString(left, bottom, chart['title'])

In some ways, this code is quite similar to the PNG version of this renderer: we
calculate the width and height of the text and use this to calculate the position on the
chart where the title should be drawn. We then draw the title in 24-point Helvetica
font, in a dark blue color.

There are, however, some important differences:

•	 The way we calculate the width and the height of the text is different. For the
width, we call the canvas's stringWidth() function, while for the height, we
multiply the font size of the text by 1.2. By default, ReportLab leaves a gap of
20% of the font size between lines of text, so multiplying the font size by 1.2
is an accurate way of calculating the height of a line of text.

•	 The units used to calculate the position of elements on the page are different.
ReportLab measures all positions and sizes using points rather than pixels.
A point is roughly 1/72nd of an inch. Fortunately, one point is fairly close to
the size of a pixel on a typical computer screen; this allows us to ignore the
different measurement systems and have the PDF output still look good.

•	 PDF files use a different coordinate system to PNG files. In a PNG-format
file, the top of the image has a y value of zero, while for PDF files y=0 is at the
bottom of the image. This means that all our positions on the page have to be
calculated relative to the bottom of the page, rather than the top of the image
as was done with the PNG renderers.

Chapter 4

[95]

•	 The colors are specified using RGB color values, where each component of
the color is given as a number between zero and one. For example, a color
value of (0.25,0.25,0.625) is equivalent to the hex color code #4040a0.

Without further ado, let's implement the remaining PDF renderer modules. The
x_axis.py module should look like the following:

def draw(chart, canvas):
 label_height = 12 * 1.2

 avail_width = CHART_WIDTH - Y_AXIS_WIDTH - MARGIN
 bucket_width = avail_width / len(chart['x_axis'])

 axis_top = X_AXIS_HEIGHT
 canvas.setStrokeColorRGB(0.25, 0.25, 0.625)
 canvas.setLineWidth(2)
 canvas.line(Y_AXIS_WIDTH, axis_top,
 CHART_WIDTH - MARGIN, axis_top)

 left = Y_AXIS_WIDTH
 for bucket_num in range(len(chart['x_axis'])):
 canvas.setLineWidth(1)
 canvas.line(left, axis_top,
 left, axis_top - TICKMARK_HEIGHT)

 label_width = canvas.stringWidth(
 chart['x_axis'][bucket_num],
 "Helvetica", 12)
 label_left = max(left,
 left + bucket_width/2 - label_width/2)
 label_bottom = axis_top - TICKMARK_HEIGHT-4-label_height

 canvas.setFont("Helvetica", 12)
 canvas.setFillColorRGB(0.0, 0.0, 0.0)
 canvas.drawString(label_left, label_bottom,
 chart['x_axis'][bucket_num])

 left = left + bucket_width

 canvas.setStrokeColorRGB(0.25, 0.25, 0.625)
 canvas.setLineWidth(1)
 canvas.line(left, axis_top, left, axis_top - TICKMARK_HEIGHT)

Using Modules for Real-World Programming

[96]

Similarly, the y_axis.py module should be implemented as follows:

from ...constants import *

def draw(chart, canvas):
 label_height = 12 * 1.2

 axis_top = CHART_HEIGHT - TITLE_HEIGHT
 axis_bottom = X_AXIS_HEIGHT
 axis_height = axis_top - axis_bottom

 canvas.setStrokeColorRGB(0.25, 0.25, 0.625)
 canvas.setLineWidth(2)
 canvas.line(Y_AXIS_WIDTH, axis_top, Y_AXIS_WIDTH, axis_bottom)

 for y_value in chart['y_labels']:
 y = ((y_value - chart['y_min']) /
 (chart['y_max'] - chart['y_min']))

 y_pos = axis_bottom + int(y * axis_height)

 canvas.setLineWidth(1)
 canvas.line(Y_AXIS_WIDTH - TICKMARK_HEIGHT, y_pos,
 Y_AXIS_WIDTH, y_pos)

 label_width = canvas.stringWidth(str(y_value),
 "Helvetica", 12)
 label_left = Y_AXIS_WIDTH - TICKMARK_HEIGHT-label_width-4
 label_bottom = y_pos - label_height/4

 canvas.setFont("Helvetica", 12)
 canvas.setFillColorRGB(0.0, 0.0, 0.0)
 canvas.drawString(label_left, label_bottom, str(y_value))

For the bar_series.py module, enter the following:

from ...constants import *

def draw(chart, canvas):
 avail_width = CHART_WIDTH - Y_AXIS_WIDTH - MARGIN
 bucket_width = avail_width / len(chart['x_axis'])

 bottom = X_AXIS_HEIGHT
 max_top = CHART_HEIGHT - TITLE_HEIGHT

Chapter 4

[97]

 avail_height = max_top - bottom

 left = Y_AXIS_WIDTH
 for y_value in chart['series']:
 bar_left = left + MARGIN / 2
 bar_width = bucket_width - MARGIN

 y = ((y_value - chart['y_min']) /
 (chart['y_max'] - chart['y_min']))

 bar_height = int(y * avail_height)

 canvas.setStrokeColorRGB(0.25, 0.25, 0.625)
 canvas.setFillColorRGB(0.906, 0.906, 0.953)
 canvas.rect(bar_left, bottom, bar_width, bar_height,
 stroke=True, fill=True)

 left = left + bucket_width

Finally, the line_series.py module should look like the following:

from ...constants import *

def draw(chart, canvas):
 avail_width = CHART_WIDTH - Y_AXIS_WIDTH - MARGIN
 bucket_width = avail_width / len(chart['x_axis'])

 bottom = X_AXIS_HEIGHT
 max_top = CHART_HEIGHT - TITLE_HEIGHT
 avail_height = max_top - bottom

 left = Y_AXIS_WIDTH
 prev_y = None
 for y_value in chart['series']:
 y = ((y_value - chart['y_min']) /
 (chart['y_max'] - chart['y_min']))

 cur_y = bottom + int(y * avail_height)

 if prev_y != None:
 canvas.setStrokeColorRGB(0.25, 0.25, 0.625)
 canvas.setLineWidth(1)

Using Modules for Real-World Programming

[98]

 canvas.line(left - bucket_width / 2, prev_y,
 left + bucket_width / 2, cur_y)

 prev_y = cur_y
 left = left + bucket_width

As you can see, these modules look very similar to their PNG versions. Anything we
can do with the Python Imaging Library can also be done with ReportLab, as long as
we allow for the differences in the ways these two libraries work.

This leaves us with just one more change we have to make to complete our new
implementation of the Charter library: we need to update the renderer.py module
to make these new PDF renderer modules available. To do this, add the following
import statements to the top of this module:

from .pdf import title as title_pdf
from .pdf import x_axis as x_axis_pdf
from .pdf import y_axis as y_axis_pdf
from .pdf import bar_series as bar_series_pdf
from .pdf import line_series as line_series_pdf

Then, in the part of this module where we define the renderers dictionary, create
a new pdf entry to the dictionary by adding the following highlighted lines to
your code:

renderers = {
 ...
 'pdf' : {
 'title' : title_pdf,
 'x_axis' : x_axis_pdf,
 'y_axis' : y_axis_pdf,
 'bar_series' : bar_series_pdf,
 'line_series' : line_series_pdf
 }
}

Once this is done, you've finished refactoring and reimplementing the Charter
module. Assuming you haven't made any mistakes, your library should now
be able to generate charts in both PNG and PDF format.

Chapter 4

[99]

Testing the code
To make sure your program works, edit your test_charter.py program and
change the name of the output file from chart.png to chart.pdf. If you then run
this program, you should end up with a PDF file that contains a high-quality version
of your chart:

Using Modules for Real-World Programming

[100]

Notice that the chart appears at the bottom of the page, rather
than the top. This is because PDF files have their y=0 position at
the bottom of the page. You could easily move the chart to the
top of the page by calculating the height of the page (in points)
and adding an appropriate offset. Feel free to implement this if
you want, but for now our task is complete.

If you zoom in, you'll see that the chart's text still looks good:

This is because we're now generating a vector-format PDF file rather than a
bitmapped image. This file can be printed on a high-quality laser printer without any
pixelation. Even better, existing users of your library will still be able to request PNG
versions of the charts and they won't notice any changes at all.

Congratulations—you did it!

Lessons learned
While the Charter library is just an example of modular Python programming, and
you don't really have a boss who insists you generate charts in PDF format, these
examples were selected because the problem is anything but trivial, and the changes
you needed to make were also very challenging. Looking back over what we have
achieved, there are several things you may notice:

•	 When faced with a major change in requirements, our first reaction is usually
a negative one: "Oh no! How could I possibly do that?,"a "It'll never work,"
and so on.

•	 Rather than jumping in and starting to tinker with the code, it is generally
better to step back and think about the structure of the existing code base
and what might need to be changed to meet the new requirements.

•	 Where the new requirement involves a library or tool you haven't used
before, it is worth spending some time researching the possible options, and
possibly writing a simple example program to check that the library will do
what you want, before you start updating your code.

Chapter 4

[101]

•	 Through the judicious use of modules and packages, the changes needed to
your existing code can be kept to a minimum. In Charter, we could make use
of all our existing renderer modules, with only a minor change to the source
code. We only had to rewrite one function (the generate_chart() function),
and add a new renderer module to simplify access to our renderers, before
writing a new PDF version of each renderer. In this way, the use of modular
programming techniques helped to isolate the changes to just the affected
parts of the program.

•	 As often happens, the resulting system is better than the one we started with.
Rather than turning our program into spaghetti code, the requirement to
support PDF generation resulted in a more modular and better structured
library. In particular, the renderer module dealt with the complexity of
rendering the various chart elements in various formats, allowing the rest
of the system to simply call renderer.draw() to do the work rather than
having to import and use lots of modules directly. Because of this change, we
can easily add more chart elements, or more output formats, with minimal
further changes to our code.

The overall lesson here is clear: rather than resist changes to your requirements,
embrace them. The end result is a better system—more robust, more expandable,
and often better organized. Provided, of course, that you do it right.

Summary
In this chapter, we used modular programming techniques to implement a
hypothetical chart-generation package called Charter. We saw how charts are made
up of standard elements, and how this organization can be translated into program
code. After successfully creating a working chart-generation library that renders
charts as bitmapped images, we saw how a fundamental change in requirements can
seem to be a problem at first, but is actually an opportunity to refactor and improve
your code.

Following through with this hypothetical example, we refactored the Charter
library to handle PDF formatted charts. In doing so, we learned that using modular
techniques to respond to a major change in requirements can help to isolate the
changes that need to be made, and that refactoring our code often results in a system
that is better organized, more expandable and more robust than what we started with.

In the next chapter, we will learn how to use standard modular programming
"patterns" to deal with a range of programming challenges.

[103]

Working with
Module Patterns

In the previous chapters, we have looked in detail at how Python modules and
packages work, and learned how you can use them in your programs. When using
modular programming techniques, you will find that the ways in which modules
and packages are used tend to follow standard patterns. In this chapter, we will
examine a number of these common patterns for using modules and packages to
deal with a range of programming challenges. In particular, we will:

•	 Learn how the divide and conquer technique helps you to solve
programming problems

•	 See how the principle of abstraction helps you to separate what you want to
do from how you do it

•	 Discover how encapsulation allows you to hide the details of how
information is represented from the rest of your system

•	 See that wrappers are modules that call other modules to simplify or alter the
way a module is used

•	 Learn how to create extensible modules

Let's start by looking at the principle of divide and conquer.

Divide and conquer
Divide and conquer is the process of breaking a problem down into smaller parts.
You might not know how to solve a particular problem, but by breaking it down
into smaller parts, you can then solve each part in turn, which then solves the
original problem.

Working with Module Patterns

[104]

This is a very general technique, of course, and doesn't just apply to the use of
modules and packages. However, modular programming helps you work through
the divide and conquer process: as you break your problem down, you discover that
you'll need a part of your program which performs a given task or range of tasks,
and Python modules (and packages) are the perfect way of organizing those tasks.

We have done this several times already in this book. For example, when faced with
the challenge of creating a chart-generation library, we used the divide and conquer
technique to come up with the notion of a renderer that could draw a single chart
element. We then realized that we would need several different renderers, which
translated perfectly to the renderers package containing a separate module for
each renderer.

The divide and conquer approach doesn't just suggest a possible modular structure
for your code, it works the other way around too. As you think about the design for
your program, you may come up with the notion of a module or package that does
something related to the problem you're trying to solve. You might even map out
the individual functions that each module and package provides. Even though you
don't yet know how to solve the whole problem, this modular design helps you to
clarify your thinking about the problem, which in turn makes it easier to use the
divide-and-conquer approach to solve the remainder of the problem. In other words,
modules and packages help you to clarify your thinking as you work through the
divide and conquer process.

Abstraction
Abstraction is another very general programming pattern that applies to more
than just modular programming. Abstraction is essentially the process of hiding
complexity: separating what you want to do from how to do it.

Abstraction is absolutely fundamental to all computer programming. Imagine, for
example, that you had to write a program that calculates two averages and then
figures out the difference between the two. A simplistic implementation of this
program might look something like the following:

values_1 = [...]
values_2 = [...]

total_1 = 0
for value in values_1:
 total = total + value
average_1 = total / len(values_1)

total_2 = 0

Chapter 5

[105]

for value in values_2:
 total = total + value
average_2 = total / len(values_2)

difference = abs(total_1 - total-2)
print(difference)

As you can see, the code that calculates the average of a list of numbers is repeated
twice. This is inefficient, so you would normally write a function to avoid repeating
yourself. This can be done in the following way:

values_1 = [...]
values_2 = [...]

def average(values):
 total = 0
 for value in values:
 total = total + value
 return = total / len(values)

average_1 = average(values_1)
average_2 = average(values_2)
difference = abs(total_1 - total-2)
print(difference)

Of course, you do this sort of thing every time you program, but it is actually quite an
important process. When you create a function like this, the code inside the function
deals with how to do something, while the code that calls that function simply knows
what has to be done—and that the function will do it. In other words, the function
hides the complexity of how the task is performed, allowing other parts of your
program to simply call that function whenever they want that task to be performed.

This type of process is called abstraction. Using this pattern, you abstract away the
details of how something is done so that the rest of your program doesn't need to
worry about it.

Working with Module Patterns

[106]

Abstraction doesn't just apply to writing functions. The general principle of hiding
complexity applies to groups of functions as well—and the module is a perfect way
of grouping functions together. For example, your program might need to work with
colors, and so you write a module named colors which contains various functions
that allow you to create and work with color values. The various functions in the
colors module know about color values and how to use them, so the rest of your
program doesn't need to worry about it. Using this module, you could do all sorts of
interesting things with colors. For example:

purple = colors.new_color(1.0, 0.0, 1.0)
yellow = colors.new_color(1.0, 1.0, 0.0)
dark_purple = colors.darken(purple, 0.3)
color_range = colors.blend(yellow, dark_purple, num_steps=20)
dimmed_yellow = colors.desaturate(yellow, 0.8)

Outside of this module, your code can simply concentrate on what it wants to do,
without the slightest idea of how these various tasks are performed. By doing this,
you are using the abstraction pattern to hide away the complexity of these color
calculations from the rest of your program.

Abstraction is a fundamental technique for designing and writing modules and
packages. For example, the Pillow library we used in the previous chapter provides a
wide range of modules that allow you to load, manipulate, create, and save images.
We can use this library without having any idea how these various operations
are performed. For example, we could call drawer.line((x1, y1), (x2, y2),
color, width) and not have to worry about the details of setting individual pixels
within the image.

One of the great things about applying the abstraction pattern is that you often don't
know just how complex something will be when you first start implementing your
code. For example, imagine that you are writing a point-of-sale system for a hotel
bar. Part of your system will need to calculate the price to charge a customer for
the drinks they order. There are various formulae we can use to calculate this price,
based on the quantity, the type of liquor used, and so on. But one of the challenging
features is the need to support happy hour, that is, a period of time during which
drinks will be offered at a discounted rate.

At first, you are told that happy hour is between five and six each evening. So, using
good modular techniques, you add the following function to your code:

def is_happy_hour():
 if datetime.datetime.now().hour == 17: # 5pm.
 return True
 else:
 return False

Chapter 5

[107]

You can then use this function to separate how happy hour is calculated from what
happens during happy hour. For example:

if is_happy_hour():
 price = price * 0.5

So far this is pretty simple, and you might be tempted to bypass the creation of the
is_happy_hour() function completely. However, this function soon becomes more
complicated when you discover that happy hour doesn't apply on Sundays. So, you
have to modify the is_happy_hour() function to support this:

def is_happy_hour():
 if datetime.date.today().weekday() == 6: # Sunday.
 return False
 elif datetime.datetime.now().hour == 17: # 5pm.
 return True
 else:
 return False

But you then discover that happy hour doesn't apply on Christmas day or on Good
Friday. While Christmas day is easy enough to calculate, the logic used to calculate
when Easter is on a given year is much more complicated. If you're interested, the
example code for this chapter includes an implementation of the is_happy_hour()
function which includes support for Christmas day and Good Friday. Needless to
say, the implementation is rather complex.

Notice that our is_happy_hour() function becomes more and more complicated as
we go along—we thought it would be quite simple at first but added requirements
made it much more complicated. Fortunately, because we've abstracted away the
details of how happy hour is calculated from the code that needs to know whether
it is currently happy hour or not, only that one function needs to be updated to
support this increased complexity.

Encapsulation
Encapsulation is another programming pattern that often applies to modules and
packages. Using encapsulation, you have a thing—for example, a color, a customer,
or a currency—that you need to store data about, but you hide the representation of
this data from the rest of your system. Rather than make the thing available directly,
you provide functions for setting, retrieving, and manipulating the thing's data.

Working with Module Patterns

[108]

To see how this works, let's look back at a module we wrote in the previous chapter.
Our chart.py module lets the user define a chart and set the various pieces of
information about it. Here is a copy of the code that we wrote for this module:

def new_chart():
 return {}

def set_title(chart, title):
 chart['title'] = title

def set_x_axis(chart, x_axis):
 chart['x_axis'] = x_axis

def set_y_axis(chart, minimum, maximum, labels):
 chart['y_min'] = minimum
 chart['y_max'] = maximum
 chart['y_labels'] = labels

def set_series_type(chart, series_type):
 chart['series_type'] = series_type

def set_series(chart, series):
 chart['series'] = series

As you can see, the new_chart() function creates a new "chart" without making it
clear to the rest of the system how the information about a chart is to be stored—
we're using a dictionary here, but we could just as easily have used an object, a
base64-encoded string, or whatever. The rest of the system doesn't care as it simply
calls the various functions within the chart.py module to set the various values for
a chart.

Unfortunately, this isn't quite a perfect example of encapsulation. Our various
set_XXX() functions act as setters—they let us set the various values for a chart—
but we just assume that our chart-generation functions can access the information
about a chart directly from the chart's dictionary. If this was going to be a pure
example of encapsulation, we would also write the equivalent getter functions,
for example:

def get_title(chart):
 return chart['title']

def get_x_axis(chart):
 return chart['x_axis']

def get_y_axis(chart):

Chapter 5

[109]

 return (chart['y_min'], chart['y_max'], chart['y_labels'])

def get_series_type(chart):
 return chart['series_type']

def get_series(chart):
 return chart['series']

With these getter functions added to our module, we now have a fully encapsulated
module that allows us to store and retrieve information about a chart. The other
parts of the charter package that want to use a chart would then call the getter
functions to retrieve that chart's data, rather than accessing it directly.

These examples of writing setter and getter functions in a
module are slightly contrived; encapsulation is usually done
using object-oriented programming techniques. However, as you
can see, it is perfectly possible to use encapsulation when writing
code that uses only modular programming techniques.

You might be wondering why on earth anyone would want to use encapsulation.
Instead of writing charts.get_title(chart), why not simply write
chart['title']? The second version is shorter. It also avoids calling a function and
so would be infinitesimally faster. Why bother with encapsulation at all?

There are two reasons why you should use encapsulation in your programs. Firstly,
by using getter and setter functions, you hide the details of how your information
is stored. This allows you to change the internal representation without affecting
any other part of your program—and the one thing you can pretty much guarantee
as you write your program is that you're going to be adding more information and
features as you go along. This means that the internal representation of your data
will change. By separating what you are storing from how it is stored, your system
becomes more robust, and you can make changes without having to rewrite a lot of
code. This is the hallmark of a good modular design.

The second major reason for using encapsulation is to allow your code to do
something when the user sets a particular value. For example, if the user changes
the quantity of an order, you can immediately recalculate the total price for that
order. Another thing that setters often do is save the updated value to disk or into a
database. You can also add error-checking and other logic to your setters in order to
catch bugs that might otherwise be hard to track down.

Working with Module Patterns

[110]

Let's take a detailed look at a Python module that uses the encapsulation pattern. For
this example, let's pretend that we are writing a program for storing recipes. The user
can create a database of favorite recipes and display these recipes when they want to
use them.

Let's create a Python module to encapsulate the concept of a recipe. For this example,
we'll store the recipe in memory to keep things simple. For each recipe, we will store
the name, the number of servings the recipe produces, a list of ingredients, and a list
of instructions the user needs to follow when making the recipe.

Create a new Python source file, named recipes.py, and enter the following into
this file:

def new():
 return {'name' : None,
 'num_servings' : 1,
 'instructions' : [],
 'ingredients' : []}

def set_name(recipe, name):
 recipe['name'] = name

def get_name(recipe):
 return recipe['name']

def set_num_servings(recipe, num_servings):
 recipe['num_servings'] = num_servings

def get_num_servings(recipe):
 return recipe['num_servings']

def set_ingredients(recipe, ingredients):
 recipe['ingredients'] = ingredients

def get_ingredients(recipe):
 return recipe['ingredients']

def set_instructions(recipe, instructions):
 recipe['instructions'] = instructions

def get_instructions(recipe):
 return recipe['instructions']

def add_instruction(recipe, instruction):

Chapter 5

[111]

 recipe['instructions'].append(instruction)

def add_ingredient(recipe, ingredient, amount, units):
 recipe['ingredients'].append({'ingredient' : ingredient,
 'amount' : amount,
 'units' : units})

As you can see, we are once again using a Python dictionary to store our
information. We could use a Python class or a namedtuple from the Python Standard
Library. Alternatively, we could store our information in a database. For this
example, however, we want to keep our code as simple as possible, and a dictionary
is the easiest solution.

After creating a new recipe, the user can call the various setter and getter functions
to store and retrieve information about the recipe. We also have some helpful
functions that let us add the instructions and ingredients one at a time, which is more
convenient for the program we are writing.

Notice that when adding an ingredient to the recipe, the caller needs to supply three
pieces of information: the name of the ingredient, the required quantity, and the
units in which this quantity is measured. For example:

recipes.add_ingredient(recipe, "Milk", 1, "cup")

So far, we have encapsulated the concept of a recipe, allowing us to store the
information we need and retrieve it when required. Because our module followed
the encapsulation principle, we could change the way recipes are stored, add more
information, and new behavior to our module without affecting the rest of the program.

Let's add one more useful function to our recipe:

def to_string(recipe, num_servings):
 multiplier = num_servings / recipe['num_servings']
 s = []
 s.append("Recipe for {}, {} servings:".format(recipe['name'],
 num_servings))
 s.append("")
 s.append("Ingredients:")
 s.append("")
 for ingredient in recipe['ingredients']:
 s.append(" {} - {} {}".format(
 ingredient['ingredient'],
 ingredient['amount'] * multiplier,
 ingredient['units']))
 s.append("")

Working with Module Patterns

[112]

 s.append("Instructions:")
 s.append("")
 for i,instruction in enumerate(recipe['instructions']):
 s.append("{}. {}".format(i+1, instruction))

 return s

This function returns a list of strings which can be printed out to summarize
the recipe. Notice the num_servings parameter: this allows us to customize the
recipe for a different number of servings. For example, if the user creates a recipe for
three servings and wants to double it, the to_string() function can be called with
a num_servings value of 6, and the correct quantities will be included in the list of
returned strings.

Let's take a look at how this module works. Open up a terminal or command-line
window, use the cd command to go to the directory where you created your
recipes.py file, and type python to start the Python interpreter. Then, try
typing the following to create a recipe for pizza dough:

import recipes

recipe = recipes.new("Pizza Dough", num_servings=1)

recipes.add_ingredient(recipe, "Greek Yogurt", 1, "cup")

recipes.add_ingredient(recipe, "Self-Raising Flour", 1.5, "cups")

recipes.add_instruction(recipe, "Combine yogurt and 2/3 of the flour in a
bowl and mix with a beater until combined")

recipes.add_instruction(recipe, "Slowly add additional flour until it
forms a stiff dough")

recipes.add_instruction(recipe, "Turn out onto a floured surface and
knead until dough is tacky")

recipes.add_instruction(recipe, "Roll out into a circle of the desired
thickness and place on a greased and lined baking tray")

So far so good. Let's now use the to_string() function to print out the details of the
recipe, doubling it to two servings:

for s in recipes.to_string(recipe, num_servings=2):

 print s

Chapter 5

[113]

All going well, the recipe should be printed out for you:

Recipe for Pizza Dough, 2 servings:

Ingredients:

 Greek Yogurt - 2 cup

 Self-rising Flour - 3.0 cups

Instructions:

1. Combine yogurt and 2/3 of the flour in a bowl and mix with a beater
until combined

2. Slowly add additional flour until it forms a stiff dough

3. Turn out onto a floured surface and knead until dough is tacky

4. Roll out into a circle of the desired thickness and place on a greased
and lined baking tray

As you can see, there are a few minor formatting issues. For example, the required
quantity of Greek yogurt is listed as 2 cup rather than 2 cups. You can fix this
easily enough if you want—but the important thing to notice is that the recipes.py
module has encapsulated the idea of a recipe, allowing you (and other programs you
write) to work with recipes without having to worry about the details.

As an exercise, you might like to try fixing the display of quantities in the
to_string() function. You could also try writing a new function that creates a
shopping list from a list of recipes, automatically combining quantities when two
or more recipes use the same ingredient. If you work through these exercises, you'll
soon notice that the implementation can get quite complicated, but by encapsulating
the details in a module, you can hide these details from the rest of your program.

Working with Module Patterns

[114]

Wrappers
A wrapper is essentially a group of functions that call other functions to do the work:

Wrappers are used to simplify an interface, to make a confusing or badly designed
API easier to use, to convert data formats into something more convenient, and to
implement cross-language compatibility. Wrappers are also sometimes used to add
testing and error-checking code to an existing API.

Let's take a look at a real-world application of a wrapper module. Imagine that
you work for a large bank and have been asked to write a program to analyze fund
transfers to help identify possible fraud. Your program receives information, in real
time, about every inter-bank funds transfer that takes place. For each transfer, you
are given:

•	 The amount of the transfer
•	 The ID of the branch in which the transfer took place
•	 The identification code for the bank the funds are being sent to

Your task is to analyze the transfers over time to identify unusual patterns of activity.
To do this, you need to calculate, for each of the last eight days, the total value of all
transfers for each branch and destination bank. You can then compare the current
day's totals against the average for the previous seven days, and flag any daily totals
that are more than 50% above the average.

Chapter 5

[115]

You start by deciding how to represent the total transfers for a day. Because you
need to keep track of this for each branch and destination bank, it makes sense to
store these totals in a two-dimensional array:

In Python, this type of two-dimensional array is represented as a list of lists:

totals = [[0, 307512, 1612, 0, 43902, 5602918],
 [79400, 3416710, 75, 23508, 60912, 5806],
 ...
]

You can then keep a separate list of the branch ID for each row and another list
holding the destination bank code for each column:

branch_ids = [125000249, 125000252, 125000371, ...]
bank_codes = ["AMERUS33", "CERYUS33", "EQTYUS44", ...]

Working with Module Patterns

[116]

Using these lists, you can calculate the totals for a given day by processing the
transfers that took place on that particular day:

totals = []
for branch in branch_ids:
 branch_totals = []
 for bank in bank_codes:
 branch_totals.append(0)
 totals.append(branch_totals)

for transfer in transfers_for_day:
 branch_index = branch_ids.index(transfer['branch'])
 bank_index = bank_codes.index(transfer['dest_bank'])
 totals[branch_index][bank_index] += transfer['amount']

So far so good. Once you have these totals for each day, you can then calculate the
average and compare it against the current day's totals to identify the entries that are
higher than 150% of the average.

Let's imagine that you've written this program and managed to get it working. When
you start using it, though, you immediately discover a problem: your bank has over
5,000 branches, and there are more than 15,000 banks worldwide that your bank can
transfer funds to—that's a total of 75 million combinations that you need to keep
totals for, and as a result, your program is taking far too long to calculate the totals.

To make your program faster, you need to find a better way of handling large arrays
of numbers. Fortunately, there's a library designed to do just this: NumPy.

NumPy is an excellent array-handling library. You can create huge arrays
and perform sophisticated operations on an array with a single function call.
Unfortunately, NumPy is also a dense and impenetrable library. It was designed and
written for people with a deep understanding of mathematics. While there are many
tutorials available and you can generally figure out how to use it, the code that uses
NumPy is often hard to comprehend. For example, to calculate the average across
multiple matrices would involve the following:

daily_totals = []
for totals in totals_to_average:
 daily_totals.append(totals)
average = numpy.mean(numpy.array(daily_totals), axis=0)

Figuring out what that last line does would require a trip to the NumPy
documentation. Because of the complexity of the code that uses NumPy, this is a
perfect example of a situation where a wrapper module can be used: the wrapper
module can provide an easier-to-use interface to NumPy, so your code can use it
without being cluttered with complex and confusing function calls.

Chapter 5

[117]

To work through this example, we'll start by installing the NumPy library. NumPy
(http://www.numpy.org) runs on Mac OS X, Windows, and Linux machines. How
you install it depends on which operating system you are using:

•	 For Mac OS X, you can download an installer from http://www.kyngchaos.
com/software/python.

•	 For MS Windows, you can download a Python "wheel" file for NumPy from
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy. Choose the pre-
built version of NumPy that matches your operating system and the desired
version of Python. To use the wheel file, use the pip install command, for
example, pip install numpy-1.10.4+mkl-cp34-none-win32.whl.

For more information about installing Python wheels,
refer to https://pip.pypa.io/en/latest/user_
guide/#installing-from-wheels.

•	 If your computer runs Linux, you can use your Linux package manager to
install NumPy. Alternatively, you can download and build NumPy in source
code form.

To ensure that NumPy is working, fire up your Python interpreter and enter
the following:

import numpy
a = numpy.array([[1, 2], [3, 4]])
print(a)

All going well, you should see a 2 x 2 matrix displayed:

[[1 2]

 [3 4]]

Now that we have NumPy installed, let's start working on our wrapper module.
Create a new Python source file, named numpy_wrapper.py, and enter the following
into this file:

import numpy

That's all for now; we'll add functions to this wrapper module as we need them.

http://www.numpy.org
http://www.kyngchaos.com/software/python
http://www.kyngchaos.com/software/python
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
https://pip.pypa.io/en/latest/user_guide/#installing-from-wheels
https://pip.pypa.io/en/latest/user_guide/#installing-from-wheels

Working with Module Patterns

[118]

Next, create another Python source file, named detect_unusual_transfers.py,
and enter the following into this file:

import random
import numpy_wrapper as npw

BANK_CODES = ["AMERUS33", "CERYUS33", "EQTYUS44",
 "LOYDUS33", "SYNEUS44", "WFBIUS6S"]

BRANCH_IDS = ["125000249", "125000252", "125000371",
 "125000402", "125000596", "125001067"]

As you can see, we are hardwiring the bank and branch codes for our example; in
a real program, these values would be loaded from somewhere, such as a file or a
database. Since we don't have any available data, we will use the random module to
create some. We are also changing the name of the numpy_wrapper module to make
it easier to access from our code.

Let's now create some funds transfer data to process, using the random module:

days = [1, 2, 3, 4, 5, 6, 7, 8]
transfers = []

for i in range(10000):
 day = random.choice(days)
 bank_code = random.choice(BANK_CODES)
 branch_id = random.choice(BRANCH_IDS)
 amount = random.randint(1000, 1000000)

 transfers.append((day, bank_code, branch_id, amount))

Here, we randomly select a day, a bank code, a branch ID, and an amount, storing
these values in the transfers list.

Chapter 5

[119]

Our next task is to collate this information into a series of arrays. This allows us to
calculate the total value of the transfers for each day, grouped by the branch ID and
destination bank. To do this, we'll create a NumPy array for each day, where the
rows in each array represent branches and the columns represent destination banks.
We'll then go through the list of transfers, processing them one by one. The following
illustration summarizes how we process each transfer in turn:

First, we select the array for the day on which the transfer occurred, and then we
select the appropriate row and column based on the destination bank and the branch
ID. Finally, we add the amount of the transfer to that item within the day's array.

Let's implement this logic. Our first task is to create a series of NumPy arrays, one for
each day. Here, we immediately hit a snag: NumPy has many different options for
creating arrays; in this case, we want to create an array that holds integer values and
has its contents initialized to zero. If we used NumPy directly, our code would look
like the following:

array = numpy.zeros((num_rows, num_cols), dtype=numpy.int32)

Working with Module Patterns

[120]

This is not exactly easy to understand, so we're going to move this logic into our
NumPy wrapper module. Edit the numpy_wrapper.py file, and add the following to
the end of this module:

def new(num_rows, num_cols):
 return numpy.zeros((num_rows, num_cols), dtype=numpy.int32)

Now, we can create a new array by calling our wrapper function (npw.new()) and
not have to worry about the details of how NumPy works at all. We have simplified
the interface to this particular aspect of NumPy:

Let's now use our wrapper function to create the eight arrays that we will need, one
for each day. Add the following to the end of the detect_unusual_transfers.py
file:

transfers_by_day = {}
for day in days:
 transfers_by_day[day] = npw.new(num_rows=len(BANK_CODES),
 num_cols=len(BRANCH_IDS))

Now that we have our NumPy arrays, we can use them as if they were nested
Python lists. For example:

array[row][col] = array[row][col] + amount

Chapter 5

[121]

We just need to choose the appropriate array, and calculate the row and column
numbers to use. Here is the necessary code, which you should add to the end
of your detect_unusual_transfers.py script:

for day,bank_code,branch_id,amount in transfers:
 array = transfers_by_day[day]
 row = BRANCH_IDS.index(branch_id)
 col = BANK_CODES.index(bank_code)
 array[row][col] = array[row][col] + amount

Now that we've collated the transfers into eight NumPy arrays, we want to use all
this data to detect any unusual activity. For each combination of branch ID and
destination bank code, we will need to do the following:

1.	 Calculate the average of the first seven days' activity.
2.	 Multiply the calculated average by 1.5.
3.	 If the activity on the eighth day is greater than the average multiplied by 1.5,

then we consider this activity to be unusual.

Of course, we need to do this for every row and column in our arrays, which would
be very slow; this is why we're using NumPy. So, we need to calculate the average
for multiple arrays of numbers, then multiply the array of averages by 1.5, and
finally, compare the values within the multiplied array against the array for the
eighth day of data. Fortunately, these are all things that NumPy can do for us.

We'll start by collecting together the seven arrays we need to average, as well as the
array for the eighth day. To do this, add the following to the end of your program:

latest_day = max(days)

transfers_to_average = []
for day in days:
 if day != latest_day:
 transfers_to_average.append(transfers_by_day[day])

current = transfers_by_day[latest_day]

To calculate the average of a list of arrays, NumPy requires us to use the following
function call:

average = numpy.mean(numpy.array(arrays_to_average), axis=0)

Working with Module Patterns

[122]

Since this is confusing, we will move this function into our wrapper. Add the
following code to the end of the numpy_wrapper.py module:

def average(arrays_to_average):
 return numpy.mean(numpy.array(arrays_to_average), axis=0)

This lets us calculate the average of the seven day's activity using a single
call to our wrapper function. To do this, add the following to the end of your
detect_unusual_transfers.py script:

average = npw.average(transfers_to_average)

As you can see, using the wrapper makes our code much easier to understand.

Our next task is to multiply the array of calculated averages by 1.5, and compare the
result against the current day's totals. Fortunately, NumPy makes this easy:

unusual_transfers = current > average * 1.5

Because this code is so clear, there's no advantage in creating a wrapper function for
it. The resulting array, unusual_transfers, will be the same size as our current
and average arrays, where each entry in the array is either True or False:

We're almost done; our final task is to identify the array entries with a value of True,
and tell the user about the unusual activity. While we could scan through every row
and column to find the True entries, using NumPy is much faster. The following
NumPy code will give us a list containing the row and column numbers for the True
entries in the array:

indices = numpy.transpose(array.nonzero())

Chapter 5

[123]

True to form, though, this code is hard to understand, so it's a perfect candidate for
another wrapper function. Go back to your numpy_wrapper.py module, and add the
following to the end of the file:

def get_indices(array):
 return numpy.transpose(array.nonzero())

This function returns a list (actually an array) of (row,col) values for all the True
entries in the array. Back in our detect_unusual_activity.py file, we can use this
function to quickly identify the unusual activity:

 for row,col in npw.get_indices(unusual_transfers):
 branch_id = BRANCH_IDS[row]
 bank_code = BANK_CODES[col]
 average_amt = int(average[row][col])
 current_amt = current[row][col]

 print("Branch {} transferred ${:,d}".format(branch_id,
 current_amt) +
 " to bank {}, average = ${:,d}".format(bank_code,
 average_amt))

As you can see, we use the BRANCH_IDS and BANK_CODES lists to convert from the
row and column number back to the relevant branch ID and bank code. We also
retrieve the average and current amounts for the suspicious activity. Finally,
we print out this information to warn the user about the unusual activity.

If you run your program, you should see an output that looks something like this:

Branch 125000371 transferred $24,729,847 to bank WFBIUS6S, average =
$14,954,617

Branch 125000402 transferred $26,818,710 to bank CERYUS33, average =
$16,338,043

Branch 125001067 transferred $27,081,511 to bank EQTYUS44, average =
$17,763,644

Because we are using random numbers for our financial data, the output will be
random too. Try running the program a few times; you may not get any output
at all if none of the randomly-generated values are suspicious.

Of course, we are not really interested in detecting suspicious financial activity—this
example is just an excuse for working with NumPy. What is far more interesting is
the wrapper module that we created, hiding the complexity of the NumPy interface
so that the rest of our program can concentrate on the job to be done.

Working with Module Patterns

[124]

If we were to continue developing our unusual activity detector, we would no doubt
add more functionality to our numpy_wrapper.py module as we found more NumPy
functions that we wanted to wrap.

This is just one example of a wrapper module. As we mentioned earlier, simplifying
a complex and confusing API is just one use for a wrapper module; they can also
be used to convert data from one format to another, add testing and error-checking
code to an existing API, and call functions that are written in a different language.

Note that, by definition, a wrapper is always thin—while there might be code in a
wrapper (for example, to convert a parameter from an object into a dictionary), the
wrapper function always ends up calling another function to do the actual work.

Extensible modules
Most of the time, the functionality provided by a module is known in advance. The
module's source code implements a well-defined set of behavior, and that is all
the module does. In some situations, however, you may need a module where the
behavior of the module is not completely defined at the time you write it. Other parts
of your system can extend the behavior of the module in various ways. Modules that
are designed to be extended are called extensible modules.

One of the great things about Python is that it is a dynamic language. You don't need
to define and compile all your code before it will run. This makes it easy to create
extensible modules using Python.

In this section, we will look at three different ways in which a module can be made
extensible: through the use of dynamic imports, by writing plugins, and using hooks.

Dynamic imports
In the previous chapter, we created a module called renderers.py which selected an
appropriate renderer module to draw a chart element using a given output format.
The following is an abbreviated copy of this module's source code:

from .png import title as title_png
from .png import x_axis as x_axis_png

from .pdf import title as title_pdf
from .pdf import x_axis as x_axis_pdf

renderers = {
 'png' : {
 'title' : title_png,

Chapter 5

[125]

 'x_axis' : x_axis_png,
 },
 'pdf' : {
 'title' : title_pdf,
 'x_axis' : x_axis_pdf,
 }
}

def draw(format, element, chart, output):
 renderers[format][element].draw(chart, output)

This module is interesting because it implements, in a limited way, the concept of
extensibility. Notice that the renderer.draw() function calls a draw() function
within another module to do the actual work; which module is used depends on the
desired chart format and the element to be drawn.

This module is not truly extensible because the list of possible modules is determined
by the import statements at the top of the module. However, it is possible to turn
this into a fully extensible module by making use of importlib. This is a module in
the Python Standard Library that gives a developer access to the internal mechanism
used to import modules; using importlib, you can import modules dynamically.

To understand how this works, let's look at an example. Create a new directory
to hold your source code, and in this directory, create a new module named
module_a.py. Enter the following code into this module:

def say_hello():
 print("Hello from module_a")

Now, create a copy of this module, named module_b.py, and edit the say_hello()
function to print Hello from module_b. Then, repeat the process to create module_c.py.

We now have three modules that all implement a function named say_hello().
Now, create another Python source file in the same directory, and name it
load_module.py. Then, enter the following into this file:

import importlib

module_name = input("Load module: ")
if module_name != "":
 module = importlib.import_module(module_name)
 module.say_hello()

This program prompts the user to enter a string using the input() statement. We
then call importlib.import_module() to import the module with that name, and
call that module's say_hello() function.

Working with Module Patterns

[126]

Try running this program, and when prompted, type in module_a. You should see
the following message displayed:

Hello from module_a

Try repeating this process with the other modules. If you type in the name of a
non-existent module, you'll get an ImportError.

Of course, importlib isn't limited to importing modules in the same directory as the
current module; you can include package names if you want. For example:

module = importlib.import_module("package.sub_package.module")

Using importlib, you can import a module dynamically—you don't need to know
the name of the module at the time you write your program. We could use this
to rewrite the renderer.py module from the previous chapter to make it fully
extensible:

from importlib import import_module

def draw(format, element, chart, output):
 renderer = import_module("{}.{}.{}".format(__package__,
 format,
 element))
 renderer.draw(chart, output)

Notice the use of the special __package__ variable. This holds
the name of the package enclosing the current module; using
this allows us to import a module relative to the package that
the renderer.py module is part of.

The great thing about dynamic imports is that you don't need to know what all the
modules are at the time you create your program. Using the renderer.py example,
you could add new chart formats or elements by creating new renderer modules,
and the system will import them when requested, without having to make any
changes at all to your renderer.py module.

Plugins
Plugins are modules that the user (or another developer) writes and "plugs in"
to your program. Plugins are popular in many large systems such as WordPress,
JQuery, Google Chrome, and Adobe Photoshop. Plugins are used to extend the
functionality of an existing program.

Chapter 5

[127]

In Python, it is easy to implement plugins using the same dynamic import
mechanism we discussed in the previous section. The only difference is that
instead of importing modules that are already part of your program's source
code, you set up a separate directory where the user can place the plugins they
want to add to your program. This could be as simple as creating a plugins
directory at the top level of your program, or you could store your plugins in a
directory outside of your program's source code, and modify sys.path so that the
Python interpreter can find the modules in that directory. Either way, your program
will use importlib.import_module() to load the desired plugin, and then access
the functions and other definitions within the plugin just like you would access
functions and other definitions in any other Python module.

The sample code available for this chapter includes a simple plugin loader which
shows how this mechanism works.

Hooks
A hook is a way of allowing external code to be called at particular points in your
program. A hook is usually a function—your program checks to see if a hook
function has been defined, and if so, it calls this function at an appropriate time.

Let's look at a concrete example. Imagine that you have a program that includes
the ability to log a user in and out. Part of your program may include the following
module, which we will call login_module.py:

cur_user = None

def login(username, password):
 if is_password_correct(username, password):
 cur_user = username
 return True
 else:
 return False

def logout():
 cur_user = None

Now, imagine that you want to add a hook that gets called whenever the user
logs in. Adding this to your program would involve the following changes to
this module:

cur_user = None
login_hook = None

def set_login_hook(hook):

Working with Module Patterns

[128]

 login_hook = hook

def login(username, password):
 if is_password_correct(username, password):
 cur_user = username
 if login_hook != None:
 login_hook(username)
 return True
 else:
 return False

def logout():
 cur_user = None

With this code in place, other parts of your system can hook into your login process
by setting their own login hook function, which does something whenever the user
logs in. For example:

def my_login_hook(username):
 if user_has_messages(username):
 show_messages(username)

login_module.set_login_hook(my_login_hook)

By implementing this login hook, you have extended the behavior of the login
process without altering the login module itself.

There are a couple of things to be aware of with hooks:

•	 Depending on the behavior you are implementing a hook for, the value
returned by the hook function might be used to alter the behavior of your
code. For example, if the login hook returned False, the user might be
blocked from logging in. This doesn't apply to every hook, but it can be a
very useful way of giving a hook function more control over what happens
in your program.

•	 In this example, we only allow a single hook function to be defined for each
hook. Another way of implementing this would be to have a list of registered
hook functions, and let your program add or remove hook functions as
required. In this way, you could have several hook functions, which get
called one after the other whenever something happens.

Hooks are an excellent way of adding specific points of extensibility to your
modules. They are easy to implement and use, and unlike dynamic imports and
plugins, they don't require you to put your code into a separate module. This means
that hooks are an ideal way of extending your modules in a very fine-grained way.

Chapter 5

[129]

Summary
In this chapter, we saw that the ways in which modules and packages are used tend
to follow standard patterns. We examined the divide-and-conquer pattern, which
is the process of breaking a problem down into smaller parts, and saw how this
technique both helps to structure your programs and clarify your thinking about the
problem you are trying to solve.

We next looked at the abstraction pattern, which is the process of hiding complexity
by separating what you want to do from how to do it. We then examined the notion
of encapsulation, which is where you store data about something but hide the details
of how that data is represented from the rest of the system, and use getter and setter
functions to provide access to that data.

We then turned to the concept of wrappers, and saw how wrappers can be used
to simplify the interface to a complex or confusing API, to convert data formats, to
implement cross-language compatibility, and to add testing and error-checking code
to an existing API.

Finally, we learned about extensible modules, and saw how we can use the
techniques of dynamic module imports, plugins, and hooks to create a module that
does more than you designed it to do. We saw that the dynamic nature of Python
makes it ideally suited to the creation of extensible modules where the behavior of
your modules is not completely defined at the time you write them.

In the next chapter, we will learn how to design and implement modules that can be
shared and reused in other programs.

[131]

Creating Reusable Modules
As well as being a good technique for writing programs for your own use,
modular programming is also an excellent way of writing programs that can be
used by other programmers. In this chapter, we will look at how to design and
implement modules and packages that can be shared and reused in other programs.
In particular, we will:

•	 See how modules and packages can be used as a way of sharing the code that
you write

•	 See how writing a module for reuse differs from writing a module for use as
part of just one program

•	 Discover what makes a module suitable for reuse
•	 Look at examples of successful reusable modules
•	 Design a package to be reusable
•	 Implement a reusable package

Let's start by taking a look at how you can use modules and packages to share your
code with other people.

Using modules and packages to share
your code
Whenever you write some Python source code, the code you create will perform a
task of some sort. Maybe your code analyzes some data, stores some information into
a file, or prompts the user to choose an item from a list. It doesn't matter what your
code is—ultimately, your code does something.

Creating Reusable Modules

[132]

Often, this something is very specific. For example, you might have a function that
calculates compound interest, generates a Venn diagram, or displays a warning
message to the user. Once you've written this code, you can then use it wherever you
want in your own program. This is the simply abstraction pattern that was described
in the previous chapter: you separate what you want to do from how you do it.

Once you've written your function, you can then call it whenever you want to
perform that task. For example, you can call your display_warning() function
whenever you want to display a warning to the user, without worrying about the
details of how the warning is displayed.

However, this hypothetical display_warning() function isn't just useful in the
program you are currently writing. Other programs may want to perform the same
task—both programs that you write in the future and programs that other people
may write. Rather than reinvent the wheel each time, it often makes sense to reuse
your code.

To reuse your code, you have to share it. Sometimes, you might share your code
with yourself so that you can use it within a different program. At other times,
you might share your code with other developers so that they can use it within
their own programs.

Of course, you don't just share code with others for philanthropic reasons. In a larger
organization, you are often required to share code to improve the productivity
of your peers. Even if you work by yourself, you will benefit by using code other
people have shared and, by sharing your own code, other people can help find bugs
and fix problems that you're not able to fix yourself.

Regardless of whether you share your code with yourself (in other projects) or with
others (within your organization or in the wider development community), the basic
process is the same. There are three main ways in which you can share your code:

1.	 You can create a code snippet that is then copied and pasted into the new
program. The code snippet might be stored in an application called a Code
Snippet Manager or a folder of text files, or even published as part of a blog.

2.	 You can place the code you want to share into a module or package, and
then import this module or package into the new program. The module or
package can be physically copied into the new program's source code, it can
be placed in your Python installation's site-packages directory, or you can
modify sys.path to include the directory where the module or package can
be found.

3.	 Alternatively, you can turn your code into a standalone program, and then
call this program from other code using os.system().

Chapter 6

[133]

While all these options work, not all of them are ideal. Let's take a closer look at
each one:

•	 Code snippets are great for short pieces of code that form just part of a
function. They're terrible, however, at keeping track of where that code ends
up. Because you've copied and pasted the code into the middle of a new
program, it is very easy to modify it as there's no easy way of distinguishing
the pasted code from the rest of the program you've written. Also, if the
original snippet needs to be modified, for example, to fix a bug, you'll have to
find where you've used the snippet in your program and update it to match.
All of this is rather messy and prone to errors.

•	 The technique of importing modules or packages has the advantage of
working well with larger chunks of code. The code you are sharing can
include multiple functions and even be split across multiple source files
using a Python package. You are also much less likely to accidentally modify
an imported module as the source code is stored in a separate file.
If you have copied the source module or package across to your new
program, then you will need to manually update it if the original is changed.
This is not ideal, but since you're replacing whole files, this isn't too difficult.
On the other hand, if your new program uses a module stored elsewhere,
then there's nothing to update—any changes made to the original module
will immediately apply to any programs which use that module.

•	 Finally, organizing your code into a standalone program means that your
new program has to execute it. This can be done in the following way:
status = os.system("python other_program.py <params>")
if status != 0:
 print("The other_program failed!")

As you can see, it is possible to run another Python program, wait for it to
finish, and then check the returned status code to ensure that the program
ran successfully. You can also pass parameters to the running program if you
wish. However, the information you can pass to the program and receive
back is extremely limited. This approach will work, for example, if you have
a program that parses an XML file and saves a summary of this file into a
different file on disk, but you can't directly pass Python data structures to
another program for processing, and you can't receive Python data structures
back again.

Actually, you can transmit Python data structures between
running programs, but the process involved is so complicated
that it isn't worth considering.

Creating Reusable Modules

[134]

As you can see, snippets, module/package imports, and standalone programs form
a kind of continuum: snippets are very small and fine-grained, module and package
imports support larger chunks of code while still being easy to use and update, and
standalone programs are large but limited in the way you can interact with them.

Of these three, using module and package imports to share code appears to hit the
sweet spot: they can be used for large amounts of code, are easy to use and interact
with, and are trivially easy to update when necessary. This makes modules and
packages the ideal mechanism for sharing your Python source code—both with
yourself, for use in future projects, and with other people.

What makes a module reusable?
In order for a module or package to be reusable, it has to meet the following
requirements:

•	 It must function as a standalone unit
•	 If your package is intended to be included as part of the source code for

another system, you must use relative imports to load the other modules
within your package

•	 Any external dependencies must be clearly noted

If a module or package does not meet these three requirements, it would be very
hard, if not impossible, to reuse it in other programs. Let's now take a closer look at
each of these requirements in turn.

Functioning as a standalone unit
Imagine that you decide to share a module named encryption, which performs text
encryption using public/private key pairs. Another programmer then copies this
module into their program. When they try to use it, however, their program crashes
with the following error message:

ImportError: No module named 'hash_utils'

Chapter 6

[135]

The encryption module may have been shared, but it was dependent on another
module within the original program (hash_utils.py) that wasn't shared, and so the
encryption module by itself is useless.

The solution to this problem is to combine the module you want to share with any
other modules it may depend upon, putting the modules together into a package.
You then share the package, rather than the individual module. The following
illustration shows how this might be done:

In this example, we have created a new package named encryptionlib and moved
both the encryption.py and hash_utils.py files into this package. Of course, this
requires you to refactor the rest of your program to allow for the new position of
these modules, but it does then allow you to reuse your encryption logic in other
programs.

While it can be a nuisance having to refactor your program in this
way, the result is almost always an improvement on your original
program. Putting dependent modules together into a package
helps to improve the overall organization of your code.

Creating Reusable Modules

[136]

Using relative imports
Continuing with the example from the previous section, imagine that you want to
use your new encryptionlib package as part of another program, but don't want
to make it publically available as a separate package. In this case, you can simply
include the entire encryptionlib directory as part of your new system's source
code. When you do this, however, you can run into problems if your modules don't
use relative imports. For example, if your encryption module is dependent on the
hash_utils module, then the encryption module is going to include an import
statement referring to the hash_utils module. However, the resulting package
cannot be reused if the encryption module imports hash_utils in any of the
following ways:

import hash_utils
from my_program.lib import hash_utils
from hash_utils import *

All of these import statements will fail because they assume that the hash_utils.py
file is at a particular fixed point in your program's source code. Any assumption
about the position of a dependent module within the program's source code will
limit the reusability of the package as you can't then move the package to a different
place and expect it to work. Given the requirements of the new project, you will
often have to store packages and modules in a different place from where they were
originally developed. For example, perhaps the encryptionlib package needs to
be installed in a thirdparty package along with all the other reused libraries. Using
absolute imports, your package will fail because the location of the modules within it
will have changed.

This doesn't apply if you publish your package and then install it
into your Python site-packages directory. However, there are
many situations where you don't want to install a reusable package
inside the site-packages directory, and so you will need to be
careful about relative imports.

To solve this problem, make sure that any import statements within a package that
refer to other modules within the same package always use a relative import. For
example:

from . import hash_utils

This will allow your package to work no matter where in the Python source tree the
package has been placed.

Chapter 6

[137]

Noting external dependencies
Imagine that our new encryptionlib package makes use of the NumPy library we
encountered in the previous chapter. Perhaps hash_utils imports some functions
from NumPy and uses them to quickly calculate a binary hash of a list of numbers.
Even though NumPy was installed as part of the original program, you can't assume
that the same is true of the new program: if you were to install the encryptionlib
package into a new program and run it, it would eventually fail with the following
error:

ImportError: No module named 'numpy'

To prevent this from happening, it is important that anyone wanting to reuse your
module is aware of the dependency on a third-party module and knows exactly
what needs to be installed for your module or package to function. An ideal place to
include this information is in the README file or other documentation for the module
or package you are sharing.

If you are using an automated deployment system such as
setuptools or pip, these tools have their own way of identifying
your package's requirements. It is still a good idea, though, to
list the requirements in your documentation so your users will
be aware of them before the package is installed.

What makes a good reusable module?
In the previous section, we looked at the minimum requirements for a reusable
module. Let's now examine the ideal requirements for reusability. What would a
perfect reusable module look like?

There are three things that distinguish an excellent reusable module from a poor one:

•	 It attempts to solve a general problem (or range of problems), rather than just
performing a specific task

•	 It follows standard conventions that make it easier to use the module
elsewhere

•	 The module is clearly documented so that other people can easily understand
and use it

Let's take a closer look at each of these points.

Creating Reusable Modules

[138]

Solving a general problem
Often when you are programming, you will find that you need a specific task
performed, and so you write a function to perform this task. For example, consider
the following:

•	 You need to convert from inches into centimeters, so you write an
inch_to_cm() function to perform this task.

•	 You need to read a list of place names from a text file, which uses vertical bar
characters (|) as delimiters between the fields:
FEATURE_ID|FEATURE_NAME|FEATURE_CLASS|...
1397658|Ester|Populated Place|...
1397926|Afognak|Populated Place|...

To do this, you create a load_placenames() function that reads data from
this file.

•	 You need to display the number of customers to a user:
1 customer
8 customers

Whether the message uses the word customer or customers depends on
the number supplied. To handle this, you create a pluralize_customers()
function that returns the appropriately pluralized version of the message
depending on the number provided.

In all of these examples, you are solving a specific problem. Quite frequently,
functions like this will end up as part of a module, which you may want to
reuse or share with others. However, these three functions, inch_to_cm(),
load_placenames(), and pluralize_customers(), are all very specific to the
problem you were trying to solve and so have limited applicability to new programs.
All three are crying out to be made more general:

•	 Instead of the inch_to_cm() function, write a function that converts any
imperial distance into metric, and then create another function that does the
opposite.

•	 Instead of writing a function that just loads place names, implement a
load_delimited_text() function which works for any sort of delimited text
file and doesn't assume particular column names or that the delimiter is a
vertical bar character.

Chapter 6

[139]

•	 Instead of pluralizing just customer names, write a more general
pluralize() function that will pluralize the complete range of names you
might need in your program. Because of the vagaries of the English language,
you can't just assume that all names can be pluralized by adding an s to the
end; you'll need a dictionary of exceptions such as person/people, axis/axes,
and series/series, so that this function can handle the various sorts of names
you might want to pluralize. To make this function even more useful, you
can have it optionally accept the plural version of the name if it doesn't know
about the type of units you are pluralizing:
def pluralize(n, singular_name, plural_name=None):

While these are just three specific examples, you can see that, by generalizing the
code that you are sharing, you can make it apply to a much wider range of tasks.
Often, there's very little more work involved in generalizing a function, but the result
will be hugely appreciated by the people who use the code that you create.

Following standard conventions
While you can write code any way you like, if you want to share your code with
others it makes sense to follow standard coding conventions. This makes it easier for
others to use your code without having to remember your library's particular style.

To use a real-world example, consider the following snippet of code:

shapefile = ogr.Open("...")
layer = shapefile.GetLayer(0)
for i in range(layer.GetFeatureCount()):
 feature = layer.GetFeature(i)
 shape = shapely.loads(feature.GetGeometryRef().ExportToWkt())
 if shape.contains(target_zone):
 ...

This snippet of code makes use of two libraries: the Shapely library, which performs
computational geometry, and the OGR library, which reads and writes geospatial
data. The Shapely library follows the standard Python conventions of using
lowercase letters for function and method names:

shapely.loads(...)
shape.contains(...)

Creating Reusable Modules

[140]

While the details of these libraries are rather complex, the naming of these functions
and methods is easy to remember and use. Compare this with the OGR library,
however, which capitalizes the first letter of each function and method name:

ogr.Open(...)
layer.GetFeatureCount()

Using these two libraries together, you have to constantly remember that OGR
capitalizes the first letter of each function and method name, while Shapely does not.
This makes using OGR more awkward than it needs to be and leads to quite a few
errors in the resulting code that then need to be fixed.

All of this could have been avoided if the OGR library had simply followed the same
naming conventions as Shapely.

Fortunately, for Python there is a document called the Python Style Guide
(https://www.python.org/dev/peps/pep-0008/) that provides a clear set of
recommendations for how to format and style your code. The use of lowercase letters
for function and method names comes from this guide, as does a whole raft of other
recommendations which most Python code also follows. Everything from how to
name your variables to when to place whitespace around a parenthesis is described
in this document.

While coding conventions are a matter of personal preference, and you certainly
aren't required to slavishly follow the instructions in the Python Style Guide, doing
so (at least in so far as it affects the users of your code) will make your reusable
modules and packages easier for others to use—just like with the example of the
OGR library, you don't want users to have to constantly remember an unusual
naming style whenever someone wants to import and use your code.

Having clear documentation
Even if you wrote the perfect module, solving a range of generalized problems
and faithfully adhering to the Python Style Guide, your module would be useless
if nobody knew how to use it. Unfortunately, as programmers, we are often too
close to our code: it's obvious to us how our code works, and so we fall into the
trap of assuming it must be obvious to others, too. On top of this, programmers
often hate writing documentation—we'd much rather write a thousand lines of
well-crafted Python code than one paragraph describing how it works. As a result,
documentation for the code we share is often written reluctantly, if at all.

The thing is, a high-quality reusable module or package will always include
documentation. This documentation will both explain what the module does and
how it works, and include examples so that readers can immediately see how to use
this module or package within their own programs.

https://www.python.org/dev/peps/pep-0008/

Chapter 6

[141]

For an example of an excellently documented Python module or package, we
need look no further than the Python Standard Library (https://docs.python.
org/3/library/). Every module is clearly documented, with detailed information
and examples to help guide the programmer. For example, the following is an
abbreviated version of the documentation for the datetime.timedelta class:

Every module, class, function, and method is clearly documented, with examples
and detailed notes to help the user of this module.

As the developer of a reusable module, you aren't expected to quite reach these
heights. The Python Standard Library is a huge, collaborative effort, and no one
person wrote all this documentation. But this is a good example of the type of
documentation that you should be aiming for: comprehensive documentation with
plenty of examples.

https://docs.python.org/3/library/
https://docs.python.org/3/library/

Creating Reusable Modules

[142]

While you can create documentation in a word processor, or using a sophisticated
documentation-generation system such as the Sphinx system used to build the Python
documentation, there are two very easy ways in which you can write documentation
with a minimum of fuss: by creating a README file, or by using docstrings.

A README file is simply a text file that gets included with the various source files
which make up your module or package. It would typically be named README.txt,
and it is just an ordinary text file. You can create this file using the same editor that
you use to edit your Python source code.

A README file can be as extensive or minimal as you want. It is often helpful to
include information on how to install and use the module, any licensing issues, a few
usage examples, and acknowledgements if your module or package includes code
from someone else.

A docstring is a Python string that gets attached to a module or function. This is used
specifically for documentation purposes, and there is a very special Python syntax
for creating docstrings:

""" my_module.py

 This is the documentation for the my_module module.
"""
def my_function():
 """ This is the documentation for the my_function() function.

 As you can see, the documentation can span more than
 one line.
 """
 ...

In Python, you can use three quote characters to mark a string that goes across
more than one line of the Python source file. These triple-quoted strings can be
used in various places, including docstrings. If a module starts with a triple-quoted
string, then this string is used as the documentation for the module as a whole.
Similarly, if any function starts with a triple-quoted string, then this string is used as
documentation for that function.

The same applies to other definitions in Python, such as
classes, methods, and so on.

Chapter 6

[143]

Docstrings are typically used to describe what a module or function does, the
parameters that are needed, and what information is returned. Any noteworthy
aspects of the module or function should also be included, for example unexpected
side effects, usage examples, and so on.

Docstrings (and README files) don't have to be very extensive. You don't want to
spend hours writing documentation on some obscure function within a module that
only three people are ever likely to use. But well-written docstrings and README
files are a sign of an excellent and easy-to-use module or package.

Writing documentation is a skill; like all skills, you get better at it with practice.
To create high-quality modules and packages that can be shared, you should get
into the habit of creating docstrings and README files as well as following coding
conventions and generalizing your code as much as possible, as we described in
previous sections of this chapter. If you aim to produce high-quality reusable code
from the outset, you'll find that it isn't that hard.

Examples of reusable modules
You don't have to look very far to find examples of reusable modules; the Python
Package Index (https://pypi.python.org/pypi) provides a huge repository of
shared modules and packages. You can search for a package by name or keyword,
or you can browse through the repository by topic, license, intended audience,
development status, and so on.

While the Python Package Index is huge, it is also extremely useful: all of the most
successful packages and modules are included. Let's look more closely at some of
these more popular reusable packages.

requests
The requests library (http://docs.python-requests.org/en/master/) is a
Python package that makes it easy to send HTTP requests to remote servers and
process the response. While the urllib2 package included in the Python Standard
Library does allow you to make HTTP requests, it is often difficult to use and fails in
unexpected ways. The requests package is far easier to use and more reliable; as a
result, it has become extremely popular.

https://pypi.python.org/pypi
http://docs.python-requests.org/en/master/

Creating Reusable Modules

[144]

The following example code shows how the requests library allows you to send a
complex HTTP request and easily process the response:

import requests

response = requests.post("http://server.com/api/login",
 {'username' : username,
 'password' : password})
if response.status_code == 200: # OK
 user = response.json()
 if user['logged_in']:
 ...

The requests library automatically encodes the parameters that you want to send to
the server, gracefully handles timeouts, and makes it easy to retrieve a JSON-format
response.

The requests library is very easy to install (in most cases, you can simply use
pip install requests). It has excellent documentation, including a user's guide, a
community guide, and detailed API documentation, and it fully conforms with the
Python Style Guide. It also provides a very general set of features, handling all sorts
of communication with external web sites and systems via the HTTP protocol. With
all these things going for it, it's no wonder that requests is the third most popular
package in the entire Python Package Index.

python-dateutil
The dateutil package (https://github.com/dateutil/dateutil) extends the
datetime package included in the Python Standard Library, adding support for
recurring dates, time zones, complex relative dates, and more.

The following example code calculates the date of Easter Friday in a much easier
form than we used for the happy hour calculation in the previous chapter:

from dateutil.easter import easter
easter_friday = easter(today.year) - datetime.timedelta(days=2)

dateutil provides excellent documentation with plenty of examples, is easy to
install using pip install python-dateutil, follows the Python Style guide, and is
extremely useful for solving a range of date- and time-related challenges. It is another
example of a successful and popular package within the Python Package Index.

https://github.com/dateutil/dateutil

Chapter 6

[145]

lxml
The lxml toolkit (http://lxml.de) is an example of a highly successful Python
package that acts as a wrapper for two existing C libraries. As the well-written web
site says, lxml takes the pain out of reading and writing XML- and HTML-formatted
documents. It has been modeled after an existing library in the Python Standard
Library (ElementTree) but is much faster, has more features, and won't crash in
unexpected ways.

The following example code shows how lxml can be used to quickly generate
XML-format data:

from lxml import etree

movies = etree.Element("movie")
movie = etree.SubElement(movies, "movie")
movie.text = "The Wizard of Oz"
movie.set("year", "1939")

movie = etree.SubElement(movies, "movie")
movie.text = "Mary Poppins"
movie.set("year", "1964")

movie = etree.SubElement(movies, "movie")
movie.text = "Chinatown"
movie.set("year", "1974")

print(etree.tostring(movies, pretty_print=True))

This will print out an XML-formatted document with information about three
classic movies:

<movie>

 <movie year="1939">The Wizard of Oz</movie>

 <movie year="1964">Mary Poppins</movie>

 <movie year="1974">Chinatown</movie>

</movie>

Of course, lxml can do much more than this simple example shows. It can be used to
parse documents as well as programmatically generate huge and complex XML files.

The lxml web site includes excellent documentation, including tutorials, information
on how to install the package, and a complete API reference. For the particular tasks
that it solves, lxml is extremely inviting and easy to use. It is no wonder that this is a
highly popular package within the Python Package Index.

http://lxml.de

Creating Reusable Modules

[146]

Designing a reusable package
Let's now take what we've learned and apply it to the design and implementation
of a useful Python package. In the previous chapter, we looked at the concept of
encapsulating a recipe using a Python module. Part of each recipe is the notion
of an ingredient, which has three parts:

•	 The name of the ingredient
•	 How much of the ingredient is needed
•	 The units in which the ingredient is measured

If we want to work with ingredients, we need to be able to handle units properly. For
example, adding 1.5 kilograms to 750 grams involves more than adding the numbers
1.5 and 750—you have to know how to convert these values from one unit to another.

In the case of recipes, there are a number of rather unusual conversions that you
need to support. For example, did you know that three teaspoons of sugar equals
one tablespoon of sugar? To handle these types of conversions, let's write a unit
conversion library.

Our unit converter will have to be aware of all the standard units used in cooking.
These include cups, tablespoons, teaspoons, grams, ounces, pounds, and so on. Our
unit converter will need some way of representing a quantity, such as 1.5 kilograms,
and of converting quantities from one unit to another.

As well as representing and converting quantities, we would like our library to be
able to display quantities, automatically using the singular or plural version of the
unit name as appropriate, for example, 6 cups, 1 gallon, 150 grams, and so on.

Since we're displaying quantities, it would also be helpful if our library could parse
quantities. This way, the user could enter a value such as 3 tbsp and our library
would know that the user entered a quantity of three tablespoons.

The more we think about this library, the more it seems like a useful tool in its own
right. We thought of this in connection with our recipe-handling program, but it
seems that this could be an ideal candidate for a reusable module or package.

Following the guidelines we looked at earlier, let's consider how we can generalize
our library as much as possible to make it more useful in other programs and to
other programmers.

Rather than just thinking about the sorts of quantities you might find in a recipe,
let's change the scope of our library to handle any type of quantity. It could handle
weights, lengths, areas, volumes, and possibly even units of time, force, speed, and
the like.

Chapter 6

[147]

Thinking of it like this, our library isn't so much a unit converter as a library that
works with quantities. A quantity is a number and its associated units, for example,
150 millimeters, 1.5 ounces, or 5 acres. Our library, which we will call Quantities,
will be a tool for parsing, displaying, and creating quantities, as well as converting
quantities from one unit to another. As you can see, our initial concept for the library
is now just one of the things that the library will be able to do.

Let's now design our Quantities library in more detail. We'd like the user of our
library to be able to create a new quantity very easily. For example:

q = quantities.new(5, "kilograms")

We also want to be able to parse a string into a quantity value, like this:

q = quantities.parse("3 tbsp")

We then want to be able to display a quantity in the following manner:

print(q)

We also want to be able to tell what kind of value a quantity is representing,
for example:

>>> print(quantities.kind(q))

weight

This will let us tell whether a quantity represents a weight, a length, or a distance,
among others.

We can also retrieve the value and units for a quantity:

>>> print(quantities.value(q))

3

>>> print(quantities.units(q))

tablespoon

We also need the ability to convert a quantity into a different unit. For example:

>>> q = quantities.new(2.5, "cups")

>>> print(quantities.convert(q, "liter"))

0.59147059125 liters

Finally, we would like to be able to get a list of all the kinds of units that our library
supports and the individual units of each kind:

>>> for kind in quantities.supported_kinds():

>>> for unit in quantities.supported_units(kind):

Creating Reusable Modules

[148]

>>> print(kind, unit)

weight gram

weight kilogram

weight ounce

weight pound

length millimeter

...

There is one final feature that our Quantities library will need to support: the ability
to localize units and quantities. Unfortunately, the conversion values for certain
quantities will vary depending on whether you are in the United States or elsewhere.
For example, in the U.S. a teaspoon has a volume of approximately 4.93 cubic
centimeters, while in the rest of the world a teaspoon is considered to have a volume
of 5 cubic centimeters. There are also naming conventions to deal with: in the U.S.
the base unit of length in the metric system is referred to as a meter, while in the rest
of the world the same unit is spelled metre. Our unit will have to handle both the
different conversion values and the different naming conventions.

To do this, we will need to support the notion of a locale. When our library is
initialized, the caller will specify the locale under which our module should operate:

quantities.init("international")

This will affect the conversion values and spelling used by the library:

Given the complexity of our Quantities library, it doesn't make sense to try and
squeeze all this into a single module. Instead, we'll break our library up into three
separate modules: a units module which defines all the different type of units that
we support, an interface module which implements the various public functions
for our package, and a quantity module which encapsulates the concept of a
quantity being a value and its associated unit.

These three modules will be combined into a single Python package, which we will
call quantities.

Note that we deliberately used the term library to refer to the system
as we were designing it; this ensured that we didn't pre-empt our
design by thinking of it as a single module or as a package. Only
now is it clear that we are going to write a Python package. Often,
something that you think of as a module will end up growing into
a package. Occasionally the opposite happens. It's important to be
flexible about this.

Chapter 6

[149]

Now that we have a good design for our Quantities library, what it will do, and how
we'd like to structure it, let's start writing some code.

Implementing a reusable package
This section includes a lot of source code. Remember that you
don't have to type it all in by hand; a complete copy of the
quantities package is provided as part of the sample code
that can be downloaded for this chapter.

Start by creating the directory named quantities to hold our new package. Inside
this directory, create a new file named quantity.py. This module will hold our
implementation of a quantity—that is, a value together with its associated units.

While you don't need to understand object-oriented programming techniques to
work through this book, this is the one place where we need to use object-oriented
programming. This is because we want the user to be able to print a quantity
directly, and the only way to do that in Python is to use objects. Don't worry,
though—this code is very straightforward, and we'll take it one step at a time.

In the quantity.py module, enter the following Python code:

class Quantity(object):
 def __init__(self, value, units):
 self.value = value
 self.units = units

What we are doing here is defining a new type of object called a Quantity. The
second line looks very much like a function definition, only we are defining a special
type of function, called a method, and giving it a special name, __init__. This
method is used to initialize a new object when it is created. The self parameter
refers to the object that is being created; as you can see, our __init__ function takes
two additional parameters named value and units, and stores these two values into
self.value and self.units.

With our new Quantity object defined, we can create new objects and retrieve their
values. For example:

q = Quantity(1, "inch")
print(q.value, q.units)

Creating Reusable Modules

[150]

The first line creates a new object using the Quantity class, passing 1 for the value
parameter and "inch" for the units parameter. The __init__ method then stores
these within the value and units attributes within the object. As you can see in the
second line, it's easy to retrieve these attributes when we need them.

We've almost completed our implementation of the quantity.py module. There's
just one more thing to do: in order to be able to print a Quantity value, we need to
add another method to our Quantity class; this one will be called __str__ and will
be used whenever we need to print a quantity. To do this, add the following Python
code to the end of your quantity.py module:

 def __str__(self):
 return "{} {}".format(self.value, self.units)

Make sure that the def statement is indented to the same level as the def __init__()
statement earlier so that it's part of the class we're creating. This will allow us to do
things such as the following:

>>> q = Quantity(1, "inch")

>>> print(q)

1 inch

The Python print() function calls the specially named __str__ method to get the
text to display for a quantity. Our __str__ method returns the value and the units,
separated by a single space, which makes for a nicely formatted summary of the
quantity.

This completes our quantity.py module. As you can see, working with objects
wasn't as difficult as it might seem.

Our next task is to collect all the information we need to store about the various units
that our package will support. Because there is a lot of information here, we'll put
this into a module by itself, which we will call units.py.

Create the units.py module within your quantities package, and start by entering
the following into this file:

UNITS = {}

The UNITS dictionary will map the kind of unit to a list of the units defined for that
kind. For example, all units of length would go into the UNITS['length'] list.

Chapter 6

[151]

For each unit, we will store the information about that unit in the form of a
dictionary with the following entries:

Dictionary entry Description
name The name for this unit, for example, inch.
abbreviation The official abbreviation for this unit, for example, in.
plural The plural name for this unit. This is the name to use when there is

more than one of this unit, for example, inches.
num_units The number of units needed to convert between these units and

others of the same type. For example, if the centimeter unit
had a num_units value of 1, then the inch unit would have a
num_units value of 2.54 because 1 inch equals 2.54 centimeters.

As we discussed in the previous section, we need to be able to localize our various
units and quantities. To allow for this, all of these dictionary entries can either have
a single value or a dictionary mapping each locale to a value. For example, the liter
unit might be defined using the following Python dictionary:

{'name' : {'us' : "liter",
 'international' : "litre"},
 'plural' : {'us' : "liters",
 'international' : "litres"},
 'abbreviation' : "l",
 'num_units' : 1000}

This allows us to have a different spelling for the word liter in different locales.
Other units might have different numbers of units or different abbreviations,
depending on the locale selected.

Now that we know how we're going to store our various unit definitions, let's
implement the next part of our units.py module. To avoid having to repetitively
type lots of unit dictionaries, we're going to create a few helper functions. Add the
following to the end of your module:

def by_locale(value_for_us, value_for_international):
 return {"us" : value_for_us,
 "international" : value_for_international}

This function will return a dictionary mapping the us and international locales to
the given values, making it easier to create a locale-specific dictionary entry.

Creating Reusable Modules

[152]

Next, add the following function to your module:

def unit(*args):
 if len(args) == 3:
 abbreviation = args[0]
 name = args[1]

 if isinstance(name, dict):
 plural = {}
 for key,value in name.items():
 plural[key] = value + "s"
 else:
 plural = name + "s"

 num_units = args[2]
 elif len(args) == 4:
 abbreviation = args[0]
 name = args[1]
 plural = args[2]
 num_units = args[3]
 else:
 raise RuntimeError("Bad arguments to unit(): {}".format(args))

 return {'abbreviation' : abbreviation,
 'name' : name,
 'plural' : plural,
 'num_units' : num_units}

This complex-looking function creates the dictionary entry for a single unit. It uses
the special *args parameter form to accept a variable number of parameters; the
caller can provide either an abbreviation, a name, and the number of units, or else
the abbreviation, the name, the plural name, and the number of units. If the plural
name is not provided, it is calculated automatically by adding s to the end of the
unit's singular name.

Note that the logic here allows for the possibility of the name being a dictionary
of locale-specific names; if the name is localized, then the plural name will also be
calculated on a locale-by-locale basis.

Chapter 6

[153]

Finally, we define a simple helper function that makes it easier to define a list of units
all at once:

def units(kind, *units_to_add):
 if kind not in UNITS:
 UNITS[kind] = []

 for unit in units_to_add:
 UNITS[kind].append(unit)

With all these helper functions in place, it will be quite easy for us to add our various
units to the UNITS dictionary. Add the following code to the end of your module; this
defines the various weight-based units that our package will support:

units("weight",
 unit("g", "gram", 1),
 unit("kg", "kilogram", 1000))
 unit("oz", "ounce", 28.349523125),
 unit("lb", "pound", 453.59237))

Next, add some length-based units:

units("length",
 unit("cm", by_locale("centimeter", "centimetre"), 1),
 unit("m", by_locale("meter", "metre", 100),
 unit("in", "inch", "inches", 2.54)
 unit("ft", "foot", "feet", 30.48))

As you can see, we've use the by_locale() function to create different versions of
the unit name and plural name based on the user's current locale. We also supply the
plural name for the inch and foot units as these can't be calculated by adding an s
to the singular version of the name.

Let's now add some area-based units:

units("area",
 unit("sq m", by_locale("square meter", "square metre"), 1),
 unit("ha", "hectare", 10000),
 unit("a", "acre", 4046.8564224))

Finally, we'll define some volume-based units:

units("volume",
 unit("l", by_locale("liter", "litre"), 1000),
 unit("ml", by_locale("milliliter", "millilitre"), 1),
 unit("c", "cup", localize(236.5882365, 250)))

Creating Reusable Modules

[154]

For the "cup" unit, we are localizing the number of units rather than the name. This
is because in the US a cup is considered to be 236.588 mls, while elsewhere in the
world a cup is measured as 250 mls.

These unit listings have been abbreviated to keep the code listing to a
reasonable size. The version of the quantities package included in
the sample code for this chapter has a more comprehensive list of units.

This completes our unit definitions. To make it easy for our code to use these various
units, we're going to add two extra functions to the end of our units.py module.
First off is a function to choose the appropriate localized version of a value from a
unit's dictionary:

def localize(value, locale):
 if isinstance(value, dict):
 return value.get(locale)
 else:
 return value

As you can see, we check to see if value is a dictionary; if so, we return the entry
within that dictionary for the supplied locale. Otherwise, we return value
directly. We'll use this function whenever we need to retrieve a name, plural name,
abbreviation, or value from a unit's dictionary.

The second function we are going to need is a function to search through the various
units stored in the UNITS global variable. We want to be able to find a unit based
on its singular or plural name, or its abbreviation, allowing for the spelling specific
to the current locale. To do this, add the following code to the end of the units.py
module:

def find_unit(s, locale):
 s = s.lower()
 for kind in UNITS.keys():
 for unit in UNITS[kind]:
 if (s == localize(unit['abbreviation'],
 locale).lower() or
 s == localize(unit['name'],
 locale).lower() or
 s == localize(unit['plural'],
 locale).lower()):
 # Success!
 return (kind, unit)

 return (None, None) # Not found.

Chapter 6

[155]

Notice that we use s.lower() to convert the string to lowercase before checking
it. This ensures that we find the inch unit, for example, even if the user spelled it
as Inch or INCH. Upon completion, our find_units() function returns the kind
of unit and the unit dictionary for the found unit, or (None, None) if the unit
can't be found.

This completes the units.py module. Let's now create the interface.py module,
which will hold the public interface to our quantities package.

We could put all this code directly in the package initialization file,
__init__.py, but this can be a bit confusing as many programmers
don't expect to find code within an __init__.py file. Instead, we'll
define all our public functions in the interface.py module, and
import the contents of this module into __init__.py.

Create the interface.py module, placing it into the quantities package
directory alongside units.py and quantities.py. Then, add the following
import statements to the top of this module:

from .units import UNITS, localize, find_unit
from .quantity import Quantity

As you can see, we are using a relative import statement to load the UNITS global
variable and the localize() and find_unit() functions from our units.py
module. We then use another relative import to load the Quantity class which we
defined in our quantity.py module. This makes these important functions, classes,
and variables available for our code to use.

We now need to implement the various functions we identified in the previous
section of this chapter. We'll start with init(), which initializes the entire quantities
package. Add the following to the end of your interface.py module:

def init(locale):
 global _locale
 _locale = locale

The caller will provide the name of a locale (which should be a string containing
either us or international as these are the two locales we are supporting), which
we store into a private global variable named _locale.

Creating Reusable Modules

[156]

The next function we want to implement is new(). This lets the user define a new
quantity by supplying a value and the name of the desired units. We'll use the
find_unit() function to make sure the unit exists, and then create and return a new
Quantity object with the supplied value and units:

def new(value, units):
 global _locale
 kind,unit = find_unit(units, _locale)
 if kind == None:
 raise ValueError("Unknown unit: {}".format(units))

 return Quantity(value, localize(unit['name'], _locale))

Because the name of the unit can vary depending on the locale, we use the _locale
private global variable to help find the unit with the supplied name, plural name,
or abbreviation. Once a unit has been found, we use the official name of that unit to
create a new Quantity object, which we then return to the caller.

As well as creating a new quantity by supplying the value and units, we also need to
implement a parse() function that converts a string into a Quantity object. Let's do
this now:

def parse(s):
 global _locale

 sValue,sUnits = s.split(" ", maxsplit=1)
 value = float(sValue)

 kind,unit = find_unit(sUnits, _locale)
 if kind == None:
 raise ValueError("Unknown unit: {}".format(sUnits))

 return Quantity(value, localize(unit['name'], _locale))

We split the string at the first space, converting the first part into a floating-point
number and searching for a unit with a name or abbreviation equal to the second
part of the string.

Next up, we need to write some functions to return information about a quantity.
Let's just go ahead and implement these functions by adding the following code to
the end of your interface.py module:

def kind(q):
 global _locale
 kind,unit = find_unit(q.units, _locale)

Chapter 6

[157]

 return kind

def value(q):
 return q.value

def units(q):
 return q.units

These functions allow the user of our package to identify the kind of units associated
with a given quantity (for example, length, weight, or volume), and to retrieve a
quantity's value and units.

Note that the user could also retrieve these last two values by
accessing the attributes within the Quantity object directly, for
example, print(q.value). We can't stop the user from doing
this but, because we're not implementing this as an object-oriented
package, we don't want to encourage it.

We are almost there. Our next function will convert a quantity from one unit
to another, returning a ValueError if the conversion is impossible. Here is the
necessary code to do this:

def convert(q, units):
 global _locale

 src_kind,src_units = find_unit(q.units, _locale)
 dst_kind,dst_units = find_unit(units, _locale)

 if src_kind == None:
 raise ValueError("Unknown units: {}".format(q.units))
 if dst_kind == None:
 raise ValueError("Unknown units: {}".format(units))

 if src_kind != dst_kind:
 raise ValueError(
 "It's impossible to convert {} into {}!".format(
 localize(src_units['plural'], _locale),
 localize(dst_units['plural'], _locale)))

 num_units = (q.value * src_units['num_units'] /
 dst_units['num_units'])
 return Quantity(num_units, localize(dst_units['name'],
 _locale))

Creating Reusable Modules

[158]

The final two functions we need to implement return a list of the different kinds of
unit we support and a list of the individual units of a given kind. Here are the final
two functions for our interface.py module:

def supported_kinds():
 return list(UNITS.keys())

def supported_units(kind):
 global _locale

 units = []
 for unit in UNITS.get(kind, []):
 units.append(localize(unit['name'], _locale))
 return units

Now that we've finished implementing the interface.py module, there is only one
last thing to do: create the package initialization file for our quantities package,
__init__.py, and enter the following into this file:

from .interface import *

This makes all of the functions we defined in the interface.py module available to
users of our package.

Testing our reusable package
Now that we've written the code (or alternatively, downloaded it), let's take a look at
how this package works. In a terminal window, set the current directory to the folder
containing your quantities package directory, and type python to start the Python
interpreter. Then, type the following:

>>> import quantities

If you haven't made any mistakes in typing in the source code, the interpreter should
come back without any errors. If you have made any typos, you'll need to fix them
before you can proceed.

Next, we have to initialize our quantities package by supplying the locale we want
to use:

>>> quantities.init("international")

If you are in the United States, feel free to replace the value international with us
so that you get localized spelling and units for your country.

Chapter 6

[159]

Let's create a simple quantity, and then ask the Python interpreter to display it:

>>> q = quantities.new(24, "km")

>>>> print(q)

24 kilometre

As you can see, the international spelling for the word kilometer is automatically
used.

Let's try converting this unit into inches:

>>> print(quantities.convert(q, "inch"))

944881.8897637795 inch

There are other functions we haven't tested yet, but already we can see that our
quantities package solves a very general problem, conforms to the Python Style
guide, and is easy to use. It isn't quite an ideal reusable module, but it's close. Here
are a few things we could do to improve it:

•	 Restructure our package to be more object-oriented. For example, instead
of calling quantities.convert(q, "inch"), users could simply say
q.convert("inch").

•	 Improve the implementation of the __str__() function so that the unit name
is displayed as a plural if the value is greater than one. Also, change the code
to avoid floating-point rounding issues, which can produce odd results when
printing out certain quantity values.

•	 Add functions (or methods) to add, subtract, multiply, and divide quantities.
•	 Add docstrings to our package source code, and then use a tool such as

Sphinx (http://www.sphinx-doc.org) to convert the docstrings into API
documentation for our package.

•	 Upload the source code for the quantities package to GitHub
(https://github.com) to make it easier to obtain.

•	 Create a web site (possibly as a simple README file within the GitHub
repository) so that people can find out more about this package.

•	 Submit the package to the PyPI so that people can find it.

Feel free to extend the quantities package and submit it if you want; this is only
an example for this book, but it certainly has potential as a general-purpose (and
popular) reusable Python package.

http://www.sphinx-doc.org
https://github.com

Creating Reusable Modules

[160]

Summary
In this chapter, we looked at the concept of a reusable module or package. We saw
how reusable packages and modules can be used to share code with other people.
We learned that a reusable module or package needs to function as a standalone
unit, should ideally use relative imports, and should note any external dependencies
it may have. Ideally, a reusable package or module will also solve a general problem
rather than a specific one, follow standard Python coding conventions, and have
good documentation. We then looked at some examples of good reusable modules,
before writing one of our own.

In the next chapter, we will look at some of the more advanced aspects of working
with modules and packages in Python.

[161]

Advanced Module
Techniques

In this chapter, we will look at a number of more advanced techniques for working
with modules and packages. In particular, we will:

•	 Examine the more unusual ways in which the import statement can be
used, including optional imports, local imports, and how to tweak the way
importing works by changing sys.path

•	 Briefly examine a number of "gotchas" relating to importing modules
and packages

•	 Take a look at how you can use the Python interactive interpreter to help
develop your modules and packages more quickly

•	 Learn how to work with global variables within a module or package
•	 See how to configure a package
•	 Discover how to include data files as part of your Python package.

Optional imports
Try opening the Python interactive interpreter and entering the following command:

import nonexistent_module

The interpreter will return the following error message:

ImportError: No module named 'nonexistent_module'

This shouldn't be a surprise to you; you may have even seen this error in your own
programs if you made a typo within an import statement.

Advanced Module Techniques

[162]

The interesting thing about this error is that it doesn't just apply where you've
made a typo. You can also use this to test if a module or package is available
on this particular computer, for example:

try:
 import numpy
 has_numpy = True
except ImportError:
 has_numpy = False

You can then use this to have your program take advantage of the module if it is
present, or do something else if the module or package isn't available, like this:

if has_numpy:
 array = numpy.zeros((num_rows, num_cols), dtype=numpy.int32)
else:
 array = []
 for row in num_rows:
 array.append([])

In this example, we check to see if the numpy library was installed, and if so, use
numpy.zeros() to create a two-dimensional array. Otherwise, we use a list of lists
instead. This allows your program to take advantage of the speed of the NumPy
library if it was installed, while still working (albeit more slowly) if this library
isn't available.

Note that this example is just made up; you probably wouldn't be
able to use a list of lists directly instead of a NumPy array and have
the rest of your program work without any change. But the concept
of doing one thing if a module is present, and something else if it is
not, remains the same.

Using optional imports like this is a great way of having your module or package
take advantage of other libraries, while still working if they aren't installed. Of
course, you should always mention these optional imports in the documentation
for your package so that your users will know what will happen if these optional
modules or packages are installed.

Chapter 7

[163]

Local imports
In Chapter 3, Using Modules and Packages, we introduced the concept of a global
namespace, and showed how the import statement adds the name of the imported
module or package into the global namespace. This description was actually a slight
oversimplification. In fact, the import statement adds the imported module or
package to the current namespace, which may or may not be the global namespace.

In Python, there are two namespaces: the global namespace and the local namespace.
The global namespace is where all the top-level definitions in your source file are
stored. For example, consider the following Python module:

import random
import string

def set_length(length):
 global _length
 _length = length

def make_name():
 global _length

 letters = []
 for i in range(length):
 letters.append(random.choice(string.letters))
 return "".join(letters)

When you import this Python module, you will have added four entries to the global
namespace: random, string, set_length, and make_name.

There are several other entries in the global namespace,
automatically added by the Python interpreter. We'll ignore
these for now.

If you then call the set_length() function, the global statement at the top of this
function will add another entry to the module's global namespace, called _length.
The make_name() function also includes a global statement, allowing it to refer to
the global _length value while generating a random name.

So far so good. The thing that may not be so obvious is that, within each function,
there is a second namespace called the local namespace, that holds all variables and
other definitions that aren't global. In the make_name() function, the letters list, as
well as the variable i used by the for statement, are local variables—they only exist
within the local namespace, and their values are lost when the function exits.

Advanced Module Techniques

[164]

The local namespace isn't just for local variables: you can use it for local imports, too.
For example, consider the following function:

def delete_backups(dir):
 import os
 import os.path
 for filename in os.listdir(dir):
 if filename.endswith(".bak"):
 remove(os.path.join(dir, filename))

Notice how the os and os.path modules are imported within the function, rather
than at the top of a module or other source file. Because these modules are imported
within the function, the os and os.path names are added to the local namespace
rather than the global namespace.

In most cases, you should avoid using local imports: having all your import
statements near the top of the source file (and so making all your import statements
global) makes it easier to see at a glance which modules your source file depends
upon. There are, however, two situations where local imports can be useful:

1.	 If the module or package you are importing is particularly large or is slow
to initialize itself, your module will be quicker to import if you use a local
import rather than a global one. The delay when importing the module will
only show up when your function is called. This can be particularly useful if
the function is only called in certain circumstances.

2.	 Local imports are a great way of avoiding circular dependencies. If module
A depends on module B and module B depends on module A, then your
program will crash if both sets of imports are global. However, changing one
set of imports to be a local import will break the co-dependency since the
import won't take place until your function is called.

As a general rule you should stick to global imports, though local imports can be
very useful in these special situations.

Tweaking imports using sys.path
When you use the import command, the Python interpreter has to search for the
module or package you want to import. It does this by looking through the module
search path, which is a list of the various directories where modules or packages can
be found. The module search path is stored in sys.path, and the Python interpreter
will check the directories in this list one after another until the desired module or
package is found.

Chapter 7

[165]

When the Python interpreter starts, it initializes the module search path with the
following directories:

•	 The directory containing the currently-executing script, or the current
directory if you are running the Python interactive interpreter in a
terminal window

•	 Any directories listed in the PYTHONPATH environment variable
•	 The contents of the interpreter's site-packages directory, including any

modules referred to by path configuration files within the site-packages
directory

The site-packages directory is used to hold the various third-party
modules and packages that you install. For example, if you use the
Python Package Manager, pip, to install a Python module or package,
that module or package would normally be placed within the
site-packages directory.

•	 A number of directories containing the various modules and packages that
make up the Python Standard Library

The order in which these directories appear in sys.path is important because the
search stops as soon as a module or package with the desired name is found.

You can print out the contents of your module search path if you wish, though
the list is likely to be long and rather hard to understand as there are often many
directories containing the various parts of the Python Standard Library as well as
other directories used by any third-party packages you may have installed:

>>> import sys

>>> print(sys.path)

['', '/usr/local/lib/python3.3/site-packages', '/Library/Frameworks/
SQLite3.framework/Versions/B/Python/3.3', '/Library/Python/3.3/site-
packages/numpy-override', '/Library/Python/3.3/site-packages/pip-1.5.6-
py3.3.egg', '/usr/local/lib/python3.3.zip', '/usr/local/lib/python3.3',
'/usr/local/lib/python3.3/plat-darwin', '/usr/local/lib/python3.3/
lib-dynload', '/Library/Frameworks/Python.framework/Versions/3.3/lib/
python3.3', '/Library/Frameworks/Python.framework/Versions/3.3/lib/
python3.3/plat-darwin']

The important thing to remember is that this list is searched in sequence until a
match is found. As soon as a module or package is found with the desired name,
the search stops.

Advanced Module Techniques

[166]

Now, sys.path is not just a read-only list. If you alter this list, for example by
adding a new directory, you will change the places where the Python interpreter
searches for modules.

There are actually a few modules that are built in to the Python
interpreter; these are always imported directly, ignoring the module
search path. To see which modules have been built in to your Python
interpreter, you can execute the following commands:

import sys
print(sys.builtin_module_names)

If you try to import one of these modules, the built-in version will
always be used, regardless of what you do to the module search path.

While you can make any changes you like to sys.path, for instance by
removing or rearranging the contents of this list, the most common use is to add
entries to the list. For example, you might want to store the various modules and
packages that you create in a special directory, which you can then access from any
Python program that needs it. For example, imagine that you have a directory at
/usr/local/shared-python-libs which contains several modules and packages
you've written that you want to use within a number of different Python programs.
Within that directory, imagine that you have a module named utils.py and a
package named approxnums that you wish to use in your program. While a simple
import utils would fail with an ImportError, you can make the contents of your
shared-python-libs directory available to your program in the following manner:

import sys
sys.path.append("/usr/local/shared-python-libs")
import utils, approxnums

You might be wondering why you can't just store your shared
modules and packages within the site-packages directory.
There are two reasons for this: first, because the site-packages
directory is often protected and can only be written to by an
administrator, which makes it hard to create and modify files stored
in this directory. The second reason is that you might want to keep
your own shared modules separate from other third-party modules
that you've installed.

Chapter 7

[167]

In the previous example, we modified sys.path by appending our shared-python-
libs directory to the end of this list. While this works, remember that the module
search path is searched in sequence. If there was any other module in any directory
on the module search path named utils.py, that module would be imported rather
than the one in your shared-python-libs directory. For this reason, rather than
appending, you would normally modify sys.path in the following way:

sys.path.insert(1, "/usr/local/shared-python-libs")

Notice that we use insert(1, ...) rather than insert(0, ...). This has the effect
of adding the new directory as the second entry in sys.path. Since the first entry in
the module search path is normally the directory containing the currently executing
script, adding the new directory as the second entry means that the program's
directory will be searched first. This helps to avoid confusing errors where you
define a module within your program's directory and find that a different module
with the same name is being imported instead. For this reason, it is good practice to
use insert(1, ...) when adding a directory to sys.path.

Note that, like any other technique, modifying sys.path can be abused. If your
reusable module or package modifies sys.path, users of your code may be confused
by subtle bugs that show up because you've changed the module search path. As a
general rule, you should only ever change the module search path in a main program
rather than a reusable module and always clearly document what you've done so
that there are no surprises.

Import gotchas
While modules and packages are extremely useful, there are times when Python's
import machinery can leave you with subtle problems that can take a long time to
figure out. In this section, we will discuss some of the more common problems that
you are likely to encounter while working with modules and packages.

Using an existing name for your module or
package
Imagine that you're writing a program that makes use of the Python Standard
Library. For example, you might make use of the random module to do the following:

import random
print(random.choice(["yes", "no"]))

Advanced Module Techniques

[168]

Your program is working correctly until you decide that it has too many
mathematical functions in the main script, and you refactor it to move these
functions into a separate module. You decide to call this module math.py, and store
it in your main program's directory. As soon as you do this, the previous code will
crash with the following error:

Traceback (most recent call last):

 File "main.py", line 5, in <module>

 import random

 File "/Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/
random.py", line 41, in <module>

 from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil
as _ceil

ImportError: cannot import name log

What on earth is going on here? Code that was working perfectly now crashes, even
though you haven't changed it. To make matters worse, the traceback shows that
it's crashing at the point where your program imports a module from the Python
Standard Library!

To understand what is going on here, you need to remember that the module search
path by default includes the current program's directory as the first entry—ahead
of other entries which point to the various parts of the Python Standard Library.
By creating a new module named math.py as part of your program, you've made it
impossible for the Python interpreter to load the math.py module from the Python
Standard Library. This applies not just to the code you write but to any module or
package on the module search path that may try to load this module from the Python
Standard Library. In this example, it was the random module that failed, but it could
have been any module that depended on the math library.

This is known as name masking, and is a particularly insidious problem. To avoid
it, you should always be careful when choosing the names for the top-level modules
and packages in your program to make sure they don't mask a module in the Python
Standard Library, regardless of whether you use that module or not.

An easy way to avoid name masking is to make use of a package to organize the
modules and packages you write within your program. For example, you might
create a top-level package named lib, and create your various modules and
packages within the lib package. Since there's no module or package named lib
in the Python Standard Library, there's no risk of you masking a Standard Library
module, no matter what name you choose for the modules and packages you place
inside the lib package.

Chapter 7

[169]

Naming a Python script after a module or
package
A more subtle example of name masking can occur when you have a Python script
that has the same name as a module in the Python Standard Library. For example,
imagine that you're trying to figure out how the re module (https://docs.
python.org/3.3/library/re.html) works. This module can be a bit confusing if
you haven't worked with regular expressions before, so you might decide to write
a simple test script to discover how it works. This test script might include the
following code:

import re

pattern = input("Regular Expression: ")
s = input("String: ")

results = re.search(pattern, s)

print(results.group(), results.span())

This program might help you to figure out what the re module does, but if you save
this script under the name re.py, you'll get a mysterious error when you run your
program:

$ python re.py

Regular Expression: [0-9]+

String: test123abc

Traceback (most recent call last):

...

File "./re.py", line 9, in <module>

 results = re.search(pattern, s)

AttributeError: 'module' object has no attribute 'search'

Can you figure out what's going on here? The answer lies, once again, in the module
search path. The name of your script, re.py, is masking the re module in the
Python Standard Library, so when your program attempts to import the re module,
it actually loads itself instead. You're seeing an AttributeError here because
the script successfully loaded itself as a module but that module doesn't have the
search() function you were expecting.

https://docs.python.org/3.3/library/re.html
https://docs.python.org/3.3/library/re.html

Advanced Module Techniques

[170]

Having a script import itself as a module can also cause unexpected
problems; we'll look at this shortly.

The solution to this problem is simple: never use the name of a Python Standard
Library module for a script. Instead, call your test script something like re_test.py.

Adding package directories to sys.path
A common trap to fall into is adding a package directory to sys.path. Let's take a
look at what happens when you do this.

Create a directory to hold a test program, and create a sub-directory named
package within this main directory. Then, create an empty package initialization
(__init__.py) file within the package directory. Also, create a module, named
module.py, within the same directory. Then, add the following to the module.py file:

print("### Initializing module.py ###")

This prints out a message when the module is imported. Next, create a Python source
file named good_imports.py in your top-most directory, and enter the following
Python code into this file:

print("Calling import package.module...")
import package.module
print("Calling import package.module as module...")
import package.module as module
print("Calling from package import module...")
from package import module

After saving this file, open a terminal or command-line window and use the
cd command to set the current directory to your outermost directory (the one
containing your good_imports.py script), and type python good_imports.py to
run this program. You should see the following output:

$ python good_imports.py

Calling import package.module...

Initializing module.py

Calling import package.module as module...

Calling from package import module...

Chapter 7

[171]

As you can see, the first import statement loaded the module, which caused the
Initializing module.py ### message to be printed out. For the subsequent
import statements, no initialization took place—instead, the already-imported copy
of the module was used. This is the behavior we want as it ensures that we only
ever have one copy of each module. This is important for those modules that keep
information in global variables as having different copies of a module with different
values in their global variables can lead to all sorts of strange and confusing behavior.

Unfortunately, that's exactly what we can end up with if we add a package, or a
sub-directory of a package, to sys.path. To see this problem in action, create a new
top-level script named bad_imports.py, and enter the following into this file:

import os.path
import sys

cur_dir = os.path.abspath(os.path.dirname(__file__))
package_dir = os.path.join(cur_dir, "package")

sys.path.insert(1, package_dir)

print("Calling import package.module as module...")
import package.module as module
print("Calling import module...")
import module

This program sets package_dir to the full directory path to the package directory
and then adds this directory to sys.path. It then makes two separate import
statements, one to import module from the package named package and the other
to import module directly. Both import statements will work as the module can be
accessed in both ways. However, the results are not what you might expect:

$ python bad_imports.py

Calling import package.module as module...

Initializing module.py

Calling import module...

Initializing module.py

As you can see, the module is imported twice, once as package.module and again
as module. You end up with two separate copies of the module, both of which are
initialized and appear as two distinct modules to the Python system.

Having two copies of a module can lead to all sorts of subtle bugs and problems.
This is why you should never add a Python package, or a sub-directory of a Python
package, directly to sys.path.

Advanced Module Techniques

[172]

Of course, it's fine to add a directory containing a package to
sys.path; just don't add the package directory itself.

Executing and importing the same module
Another more subtle example of the double-import problem can occur if you execute
a Python source file and then import that same file as if it were a module. To see
how this works, create a directory to hold a new example program, and create a new
Python source file in this directory named test.py. Then, enter the following into
this file:

import helpers

def do_something(n):
 return n * 2

if __name__ == "__main__":
 helpers.run_test()

When this file is run as a script, it calls the helpers.run_test() function to start
running a test. This file also defines a function, do_something(), that performs some
useful functionality. Now, create a second Python source file in the same directory
named helpers.py, and enter the following into this file:

import test

def run_test():
 print(test.do_something(10))

As you can see, the helpers.py module is importing test.py as a module and then
calling the do_something() function as part of running the test. In other words,
even though test.py is executed as a script, it is also being imported (indirectly) as a
module as part of the execution of that script.

Let's see what happens when you run this program:

$ python test.py

20

So far so good. The program is running and, despite the convoluted module imports,
it seems to be working. But let's take a closer look; add the following statement to the
top of your test.py script:

print("Initializing test.py")

Chapter 7

[173]

As in our previous example, we are using a print() statement to show when the
module is being loaded. This gives the module the opportunity to initialize itself, and
we would expect to only see the initialization happen once as there should only ever
be one copy of each module in memory.

In this case, however, that's not what happens. Try running the program again:

$ python test.py

Initializing test.py

Initializing test.py

20

As you can see, the module is being initialized twice—once when it's run as a script
and again when the module is imported by helpers.py.

To avoid this problem, make sure that any scripts you write are only used as scripts.
Keep any other code (such as the do_something() function from our previous
example) out of your scripts so that you'll never need to import them.

Note that this doesn't mean that you can't have chameleon
modules that act as both a module and as a script, as described in
Chapter 3, Using Modules and Packages. Just be careful that the script
you execute only uses functions defined within the module itself.
If you start importing other modules from the same package, you
should probably move all the functionality into a different module,
which you then import into your script, rather than having them
both together in the same file.

Using modules and packages with the
Python interactive interpreter
As well as calling modules and packages from a Python script, it is often useful
to call them directly from the Python interactive interpreter. This is a great way
of employing the rapid application development (RAD) technique for Python
programming: you make a change of some sort to a Python module or package and
immediately see the results of your change by calling that module or package from
the Python interactive interpreter.

There are, however, a few limitations and issues to be aware of. Let's take a closer
look at how you can use the interactive interpreter to speed up your development
of modules and packages; we'll also see where a different approach might suit
you better.

Advanced Module Techniques

[174]

Start by creating a new Python module named stringutils.py, and enter the
following code into this file:

import re

def extract_numbers(s):
 pattern = r'[+-]?\d+(?:\.\d+)?'
 numbers = []
 for match in re.finditer(pattern, s):
 number = s[match.start:match.end+1]
 numbers.append(number)
 return numbers

This module represents our first attempt at writing a function to extract all the
numbers from a string. Note that it is not working yet—the extract_numbers()
function will crash if you try to use it. It's also not particularly efficient (a much
easier approach would be to use the re.findall() function). But we're using
this code deliberately to show how you can apply rapid application development
techniques to your Python modules, so bear with us.

This function uses the re (regular expression) module to find the parts of the string
that match the given expression pattern. The complicated pattern string is used to
match a number, including an optional + or - at the front, any number of digits, and
an optional fractional part at the end.

Using the re.finditer() function, we find the parts of the string that match our
regular expression pattern. We then extract each matching part of the string and
append the results to the numbers list, which we then return back to the caller.

So much for what our function is supposed to do. Let's test it out.

Open a terminal or command-line window, and use the cd command to switch to
the directory holding the stringutils.py module. Then, type python to start up
the Python interactive interpreter. When the Python command prompt appears, try
entering the following:

>>> import stringutils

>>> print(stringutils.extract_numbers("Tes1t 123.543 -10.6 5"))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "./stringutils.py", line 7, in extract_numbers

 number = s[match.start:match.end+1]

TypeError: unsupported operand type(s) for +: 'builtin_function_or_
method' and 'int'

Chapter 7

[175]

As you can see, our module doesn't work yet—we have a bug in it. Looking closer,
we can see that the problem is on line 7 of our stringutils.py module:

 number = s[match.start:match.end+1]

The error message suggests that you are trying to add a built-in function (in this case,
match.end) to a number (1), which of course doesn't work. The match.start and
match.end values were supposed to be the indices into the string for the start and
end of the number, but a quick look at the documentation for the re module shows
that match.start and match.end are functions, not simple numbers, and so we
need to call these functions to get the values we want. Doing this is easy; simply edit
line 7 of your file to look like the following:

 number = s[match.start():match.end()+1]

Now that we've changed our module, let's take a look at what happens. We'll start by
re-executing the print() statement to see if that works:

>>> print(stringutils.extract_numbers("Tes1t 123.543 -10.6 5"))

Did you know that you can press the up arrow and down arrow keys
on your keyboard to move through the history of commands that
you've typed previously into the Python interactive interpreter? This
saves you from having to retype a command; simply use the arrow
keys to select the command you want, and press Return to execute it.

You'll immediately see the same error message you saw previously—nothing has
changed. This is because you imported the module into the Python interpreter; once
a module or package has been imported, it is held in memory and the source file(s)
on disk are ignored.

To have your changes take effect, you need to reload the module. To do this, type the
following into your Python interpreter:

import importlib

importlib.reload(stringutils)

If you are using Python 2.x, you can't use the importlib module.
Instead, simply type reload(stringutils). If you are using
Python version 3.3, use imp rather than importlib.

Advanced Module Techniques

[176]

Now try re-executing that print() statement:

>>> stringutils.extract_numbers("Hell1o 123.543 -10.6 5 there")

['1o', '123.543 ', '-10.6 ', '5 ']

That's much better—our program now runs without crashing. There is, however,
one more problem we need to fix: when we extract the characters that make up a
number, we're extracting one character too many, so the number 1 is being returned
as 1o and so on. To fix this, remove the +1 from line 7 of your source file:

 number = s[match.start():match.end()]

Then, reload the module again and re-execute your print() statement. You should
see the following:

['1', '123.543', '-10.6', '5']

Perfect! If you wanted to, you could use the float() function to convert these strings
into floating-point numbers, but for our purposes this module is now finished.

Let's take a step back and review what we've done. We had a module with mistakes
in it, and used the Python interactive interpreter to help identify and fix these
problems. We repeatedly tested our program, noticed a mistake, and fixed it, using a
RAD approach to quickly find and correct the bugs in our module.

When developing your modules and packages, it's often helpful to test them in the
interactive interpreter to find and fix problems as you go along. You just have to
remember that every time you make a change to a Python source file, you'll need to
call importlib.reload() to reload the affected module or package.

Using the Python interactive interpreter in this way also means that you have the
complete Python system available for your testing. For example, you could use the
pprint module in the Python Standard Library to pretty-print a complex dictionary
or list so that you can easily view the information being returned by one of your
functions.

There are some limitations, however, in the importlib.reload() process:

•	 Imagine that you have two modules, A and B. Module A uses the from
B import... statement to load functionality from module B. If you then
change module B, the changed functionality won't be used by module A
unless you reload that module too.

Chapter 7

[177]

•	 If your module crashes while initializing itself, it can end up in a strange
state. For example, imagine that your module includes the following
top-level code, which is supposed to initialize a list of customers:
customers = []
customers.append("Mike Wallis")
cusotmers.append("John Smith")

This module will be imported, but because of the misspelled variable name
it will raise an exception during initialization. If this happens, you will need
to firstly use the import command in the Python interactive interpreter to
make the module available, and then use imp.reload() to load the updated
source code.

•	 Because you have to either type the commands yourself or select a command
from the Python command history, it can get tedious to run the same code
over and over, especially if your test involves more than a couple of steps. It's
also very easy to miss a step when using the interactive interpreter.

For these reasons, it is best to use the interactive interpreter to fix specific problems
or to help you rapidly develop a particular small piece of code. Custom written
scripts work better when the tests get complicated or if you have to work with
multiple modules.

Dealing with global variables
We have already seen how to use global variables to share information between
different functions within a module. We've seen how to define globals as top-level
variables within a module, causing them to be initialized the first time the module is
imported, and we have also seen how to use the global statement within a function
to allow that function to access and change the value of a global variable.

In this section, we will build on this knowledge to learn how to share global variables
between modules. When creating a package, you often need to define variables that
can be accessed or changed by any module within that package. Sometimes, you also
need to make a variable available to Python code outside your package. Let's take a
look at how this can be done.

Create a new directory named globtest, and create an empty package initialization
file inside this directory to make it a Python package. Then, create a file inside this
directory named globals.py, and enter the following into this file:

language = None
currency = None

Advanced Module Techniques

[178]

In this module, we have defined two global variables that we want to use in our
package, and given each variable a default value of None. Let's now use these globals
in another module.

Create another file in the globtest directory named test.py, and enter the
following into this file:

from . import globals

def test():
 globals.language = "EN"
 globals.currency = "USD"
 print(globals.language, globals.currency)

To test your program, open a terminal or command-line window, use the cd
command to move to the directory that contains your globtest package, and
type python to start up the Python interactive interpreter. Then, try entering the
following:

>>> from globtest import test

>>> test.test()

EN USD

As you can see, we have successfully set the value of the language and currency
globals, which are stored in our globals module, and then retrieved these values
again to print them out. Because we are storing these globals in a separate module,
you can retrieve or change these globals anywhere within the current package or
even in other code that imports your package. Using a separate module to hold your
package's global variables is an excellent way of managing globals within a package.

There is, however, one thing to be aware of: for a global variable to be shared
between modules, you must import the module that contains that global variable, not
the variable itself. For example, the following won't work:

from .test import language

What this statement does is import a copy of the language variable into your current
module's global namespace, not the original global. This means that the global
variable won't be shared with other modules. For a variable to be shared between
modules, you need to import the globals module, not the variables within it.

Chapter 7

[179]

Package configuration
As you develop more sophisticated modules and packages, you will often find that
your code needs to be configured in some way before it can be used. For example,
imagine that you're writing a package that uses a database. To do this, your package
needs to know which database engine to use, the name of the database, and the
username and password to use to access that database.

You could hardwire this information into your program's source code, but doing this
is a very bad idea, for two reasons:

•	 Different computers and different operating systems will use different
database setups. Since the information used to access the database will vary
from one computer to another, anyone wanting to use your package would
have to edit the source code directly to enter the correct database details
before the package can be run.

•	 The username and password used to access a database is highly sensitive
information. If you share your package with other people, or even just store
a copy of your package's source code on a public repository such as GitHub,
then other people can discover your database access credentials. This is a
huge security risk.

These database access credentials are an example of package configuration—
information that your package needs before it can run but which you don't want to
build into your package's source code.

If you are building an application rather than a standalone module or package,
your configuration task is much simpler. There are modules in the Python Standard
Library that can help with configuration, for example, configparser, shlex, and
json. Using these modules, you can store configuration settings in a file on disk,
which the end user can edit. When your program starts, you load those settings into
memory and access them as needed. Because the configuration settings are stored
externally to your application, users won't have to edit your source code to configure
the program, and you won't be exposing sensitive information if your source code is
published or shared.

When writing modules and packages, however, the file-based approach to
configuration is much less convenient. There's no obvious place to store a package's
configuration file, and requiring configuration files at a particular location is going to
make your module or package harder to reuse as part of a different program.

Advanced Module Techniques

[180]

Instead, configuration for a module or package is usually done by supplying
parameters to your module or package's initialization function. We saw an example
of this in the previous chapter, where the quantities package required you to
supply a locale value when initializing the package:

quantities.init("us")

This passes the job of configuration back to the surrounding application; the
application can make use of a configuration file, or any other configuration scheme it
likes, and it is the application that supplies the package's configuration settings when
the package is initialized:

This makes things easier for the package developer as all the package needs to do is
remember the settings it has been given.

While the quantities package only used a single configuration setting (the name of
the locale), it is common for packages to use many settings. A very convenient way
of supplying the configuration settings for a package is to use a Python dictionary.
For example:

mypackage.init({'log_errors' : True,
 'db_password' : "test123",
 ...})

Using a dictionary in this way makes it easy to support default values for your
package's configuration settings. The following Python snippet shows how a
package's init() function can accept configuration settings, supply default values,
and store the settings in a global variable so that it can be accessed when needed:

def init(settings):
 global config

 config = {}
 config['log_errors'] = settings.get("log_errors", False)
 config['db_password'] = settings.get("db_password", "")
 ...

Chapter 7

[181]

Using dict.get() in this way, you retrieve the setting if one has been supplied,
while providing a default value to use if the setting isn't specified. This is an ideal
way of handling configuration within a Python module or package, making it simple
for users of your module or package to configure it as required, while still leaving the
details of how and where the configuration settings are stored up to the application.

Package data
A package might contain more than just Python source files. Sometimes, you might
need to include other types of files as well. For example, a package may include one
or more image files, a large text file containing a list of all the ZIP codes in the USA,
or any other type of data you may need. If you can store something in a file, you can
include this file as part of your Python package.

Normally, you would place your package data in a separate sub-directory within
the package directory. To access these files, your package needs to know where to
find this sub-directory. While you could hardwire the location of this directory into
your package, this won't work if your package is to be reused or moved. It's also not
necessary as you can easily find the directory in which a module resides by using the
following code:

cur_dir = os.path.abspath(os.path.dirname(__file__))

This gives you the complete path to the directory containing the current module.
Using the os.path.join() function, you can then get access to the sub-directory
that holds your data files and open them in the usual way:

phone_numbers = []
cur_dir = os.path.abspath(os.path.dirname(__file__))
file = open(os.path.join(cur_dir, "data", "phone_numbers.txt"))
for line in file:
 phone_numbers.append(line.strip())
file.close()

The great thing about including data files inside your package is that the data files
are effectively part of your package's source code. When you share your package or
upload it to a source code repository such as GitHub, the data files are automatically
included along with the rest of your package. This makes it much easier to keep track
of the data files used by your package.

Advanced Module Techniques

[182]

Summary
In this chapter, we looked at a number of the more advanced aspects of working
with modules and packages in Python. We saw how a try..except statement
can be used to implement optional imports, and how an import statement can be
placed inside a function so that the module only gets imported when that function is
executed. We then learned about the module search path and how you can modify
sys.path to change the way the Python interpreter looks for modules and packages.

We then looked at some of the gotchas related to the use of modules and packages.
We learned about name masking, where you define a module or package with the
same name as a module or package in the Python Standard Library, which can lead
to unexpected failures. We looked at how giving a Python script the same name as a
Standard Library module can also cause name masking problems, and how adding
a package directory or sub-directory to sys.path can cause a module to be loaded
twice, leading to subtle problems with global variables within that module. We
saw how executing a module and then importing it also leads to that module being
loaded twice, which can again lead to problems.

We next looked at how you can use the Python interactive interpreter as a type of
rapid application development (RAD) tool to quickly find and fix problems within
your modules and packages, and how the importib.reload() command allows
you to reload a module after you have changed the underlying source code

We finished our survey of advanced module techniques by learning how to define
global variables that are used throughout a package, how to handle package
configuration, and how to store and access data files within a package.

In the next chapter, we will look at some of the ways in which you can test, deploy,
and share your Python modules and packages.

[183]

Testing and Deploying
Modules

In this chapter, we will delve further into the concept of sharing modules. Before
you can share a module or package, you need to test it to ensure that it is working
properly. You also need to prepare your code and know how to deploy it. To learn
these things, we will cover the following topics:

•	 See how unit tests can be used to ensure that your module or package is
working properly

•	 Learn how to prepare a module or package for publication
•	 Find out how GitHub can be used to share your code with others
•	 Examine the steps involved in submitting your code to the Python

Package Index
•	 Discover how to use pip to install and use packages written by other people

Testing modules and packages
Testing is a normal part of programming: you test your code to verify that it works
and identify any bugs or other problems, which you can then fix. Then, you test
some more, until you are happy that your code is working correctly.

All too often, however, programmers just do ad hoc testing: they fire up the Python
interactive interpreter, import their module or package, and make various calls to see
what happens. In the previous chapter, we looked at a form of ad hoc testing using
the importlib.reload() function to support RAD development of your code.

Testing and Deploying Modules

[184]

Ad hoc testing is useful, but it isn't the only form of testing. If you are sharing
your modules and packages with others, you will want your code to be bug-free, and
ad-hoc testing can't guarantee this. A much better and more systematic approach
is to create a series of unit tests for your module or package. Unit tests are snippets
of Python code which test various aspects of your code. Because the testing is done
by a Python program, you can simply run the program whenever you want to test
your code, and you can be sure that everything is being tested each time you run
the test. Unit tests are a great way of making sure bugs don't creep into your code as
you make changes, and you can run them whenever you want to share your code to
make sure it's working as you expect.

Unit tests aren't the only sort of programmatic testing you can do.
Integration tests combine various modules and systems to make sure
they work together correctly, and GUI tests are used to ensure that a
program's user interface is working as it should.Unit tests are, however,
the most useful for testing modules and packages, and this is the type of
testing we will focus on in this chapter.

The following is a very simple example of a unit test:

import math
assert math.floor(2.6197) == 2

The assert statement checks the expression that follows it. If this expression does
not evaluate to True, then an AssertionError will be raised. This makes it easy
for you to check that a given function is returning the results you expect; in this
example, we are checking that the math.floor() function is correctly returning
the largest integer less than or equal to the given floating-point number.

Because a module or package is ultimately just a collection of Python functions (or
methods, which are just functions grouped into classes), it is quite possible to write
a series of assert statements that call your functions and check that the returned
values are what you would expect.

Of course, this is a simplification: often the results of calling one function will affect
the output of another function, and your functions can sometimes perform quite
complex actions such as communicating with a remote API or storing data into a
file on disk. In many cases, though, you can still use a series of assert statements to
verify that your modules and packages are working the way you would expect.

Chapter 8

[185]

Testing with the unittest Standard Library
module
While you could put your assert statements into a Python script and run them, a
better approach is to use the unittest module from the Python Standard Library.
This module allows you to group your unit tests into test cases, run additional code
before and after the tests are run, and access a whole raft of different types of assert
statements to make your testing easier.

Let's see how we can use the unittest module to implement a series of unit tests
for the quantities package we implemented in Chapter 6, Creating Reusable Modules.
Place a copy of this package into a convenient directory and create a new Python
source file named test_quantities.py in the same directory. Then, add the
following code to this file:

import unittest
import quantities

class TestQuantities(unittest.TestCase):
 def setUp(self):
 quantities.init("us")

 def test_new(self):
 q = quantities.new(12, "km")
 self.assertEqual(quantities.value(q), 12)
 self.assertEqual(quantities.units(q), "kilometer")

 def test_convert(self):
 q1 = quantities.new(12, "km")
 q2 = quantities.convert(q1, "m")
 self.assertEqual(quantities.value(q2), 12000)
 self.assertEqual(quantities.units(q2), "meter")

if __name__ == "__main__":
 unittest.main()

Remember that you don't need to type this program in by
hand. All of these source files, including a complete copy of the
quantities package, are available as part of the sample code
which can be downloaded for this chapter.

Testing and Deploying Modules

[186]

Let's take a closer look at what this code does. First off, the TestQuantities class is
used to hold a number of related unit tests. You would normally define a separate
unittest.TestCase subclass for each of the major groups of unit tests that you need
to perform. Within our TestQuantities class, we define a setUp() method which
contains code that needs to be executed before our tests are run. If we wanted to, we
could also define a tearDown() method that would be executed after the tests have
been completed.

We then define two unit tests, which we have called test_new() and
test_convert(). These test the quantities.new() and quantities.convert()
functions, respectively. You would typically have a separate unit test for each piece
of functionality that you need to test. You can call your unit tests anything you like,
so long as the method name starts with test.

Within our test_new() unit test, we create a new quantity and then call the
self.assertEqual() method to ensure that the expected quantity was created.
As you can see, we're not just limited to using the built-in assert statement; there
are dozens of different assertXXX() methods that you can call to test your code in
various ways. All of these will raise an AssertionError if the assertion fails.

The last part of our testing script calls unittest.main() when the script is executed.
This function looks for any unittest.TestCase sub-classes that you have defined
and runs each test case in turn. For each test case, the setUp() method is called if
it exists, followed by the various testXXX() methods that you have defined, and
finally, the teardown() method is called if it exists.

Let's try running our unit test. Open up a terminal or command-line window,
use the cd command to set the current directory to the directory holding your
test_quantities.py script, and try typing the following:

python test_quantities.py

All going well, you should see the following output:

..

Ran 2 tests in 0.000s

OK

Chapter 8

[187]

By default, the unittest module doesn't show you much about the tests that have
been run, other than that it ran your unit tests without any problems. If you want
more detail, you can increase the verbosity of your tests, for example by adding a
parameter to the unittest.main() statement in your test script:

 unittest.main(verbosity=2)

Alternatively, you can use the -v command-line option to achieve the same result:

python test_quantities.py -v

Designing your unit tests
The aim of unit testing is to check that your code is working. A good rule of thumb is
to have a separate test case for each publicly accessible module within your package
and a separate unit test for each feature provided by that module. The unit test code
should aim to test at least the usual operation of the feature to make sure it works. If
you wish, you can also choose to write additional testing code within your unit tests,
or even additional unit tests, to check for particular edge cases in your code.

To use a concrete example, in the test_convert() method we wrote in the previous
section, you might want to add code to check that a suitable exception is raised if the
user tries to convert a distance into a weight. For example:

q = quantities.new(12, "km")
with self.assertRaises(ValueError):
 quantities.convert(q, "kg")

The question is: how many edge cases should you test for? There are potentially
hundreds of different ways in which someone can use your module incorrectly.
Should you write unit tests for each of these?

In general, no. It isn't worth your while trying to test every possible edge case.
Certainly, you may wish to test a few of the main possibilities, just to make sure your
module is able to handle the most obvious errors, but beyond this, writing additional
tests probably isn't worth the effort.

Code coverage
Coverage is a measure of how much of your code is being tested by your unit tests.
To understand how this works, consider the following Python function:

[1] def calc_score(x, y):
[2] if x == 1:
[3] score = y * 10
[4] elif x == 2:

Testing and Deploying Modules

[188]

[5] score = 25 + y
[6] else:
[7] score = y
[8]
[9] return score

We have added line numbers to the start of each line to help
us calculate the code coverage.

Now, imagine that we create the following unit test code for our calc_score()
function:

assert calc_score(1, 5) == 50
assert calc_score(2, 10) == 35

How much of the calc_score() function has our unit test covered? Our first
assert statement is calling calc_score() with x as 1 and y as 5. If you follow the
line numbers, you'll see that calling this function with this set of parameters will
cause lines 1, 2, 3, and 9 to be executed. Similarly, the second assert statement calls
calc_score() with x as 2 and y as 10, causing lines 1, 4, 5, and 9 to be executed.

In total, these two assert statements caused lines 1, 2, 3, 4, 5, and 9 to be executed.
Ignoring the blank line, our test did not include lines 6 and 7. Thus, our unit test
has covered six of the eight lines in our function, giving us a code coverage value
of 6/8 = 75%.

We are looking at statement coverage here. There are other, more
complicated, ways of measuring code coverage which we won't
get into here.

Obviously, you won't calculate code coverage by hand. There are some excellent
tools that will calculate code coverage for your Python testing code. Take a look, for
example, at the coverage package (https://pypi.python.org/pypi/coverage).

The basic concept of code coverage is that you want your tests to cover all your
code. Whether or not you use a tool such as coverage to measure code coverage,
it's a good idea to write your unit tests to include as close to 100% of your code
as possible.

https://pypi.python.org/pypi/coverage

Chapter 8

[189]

Test-driven development
While we are looking at the idea of testing Python code, it is worth mentioning
the concept of test-driven development. Using test-driven development, you first
choose what you want your module or package to do, and then you write unit tests
to ensure that the module or package works the way you want it to—before you write
it. In this way, the unit tests act as a kind of specification for the module or package;
they tell you what your code should do, and your task is then to write the code so
that it passes all the tests.

Test-driven development can be a useful way of implementing your modules and
packages. Whether or not you use it, of course, is up to you—but if you have the
discipline to write the unit tests first, test-driven development can be a great way of
making sure you've implemented your code correctly, and your modules continue to
do what you expect them to as your code grows and changes over time.

Mocking
If your module or package calls an external API or performs some other
complex, expensive, or time-consuming operation, you may want to investigate the
unittest.mock package in the Python Standard Library. Mocking is the process
of replacing some functionality in your program with a dummy function that
immediately returns suitable data for testing.

Mocking is a complicated process, and it can take some doing to get it right, but
the technique is absolutely worthwhile if you want to run unit tests over code
that would otherwise be too slow, cost money each time you ran it, or depends on
external systems to operate.

Writing unit tests for your modules and
packages
Now that we have been introduced to the concept of unit testing, taken a look at
how the unittest standard library module works, and looked at some of the more
complicated but important aspects of writing unit tests, let's now see how unit
tests can be used to assist with the development and testing of your modules
and packages.

First off, you should aim to write unit tests for at least the main functions defined by
your module or package. Start by testing the most important functions, and add tests
for the more obvious error conditions to make sure errors are being handled correctly.
You can always add extra tests for the more obscure parts of your code later.

Testing and Deploying Modules

[190]

If you are writing unit tests for a single module, you should place your test code in
a separate Python script, named, for example, tests.py, and place this in the same
directory as your module. The following image shows a good way of organizing
your code when writing a single module:

If you have multiple modules in the same directory, you can either combine the unit
tests for all the modules into the tests.py script, or else rename it to something like
test_my_module.py to make it clear which module is being tested.

For a package, make sure you place the tests.py script in the directory that contains
the package, not inside the package itself:

Chapter 8

[191]

If you place the test.py script inside the package directory, you are likely to
encounter problems when your unit tests attempt to import the package.

Your tests.py script should define a unittest.TestCase object for each publicly
accessible module in your package, and each of these objects should have a
testXXX() method for each function or major piece of functionality defined within
the module.

Doing this allows you to test your module or package simply by executing the
following command:

python test.py

You should run your unit tests whenever you want to check that your module is
working, and in particular before uploading or sharing your module or package with
other people.

Preparing a module or package for
publication
In Chapter 6, Creating Reusable Modules, we looked at a number of things that make a
module or package suitable for reuse:

•	 It must function as a standalone unit
•	 A package should ideally use relative imports
•	 Any external dependencies in your module or package must be clearly noted

We also identified three things that help to create an excellent reusable module
 or package:

•	 It should solve a general problem
•	 Your code should follow standard coding conventions
•	 Your module or package should be clearly documented

The first step in preparing your module or package for publication is to ensure
that you've followed at least the first three of these, and, ideally, all six of these
guidelines.

The second step is to make sure that you've written at least a few unit tests and your
module or package passes all of these. Finally, you will need to decide how you want
to publish your code.

Testing and Deploying Modules

[192]

If you want to share your code with friends or work colleagues or write a blog post
along with a link to your code, then the easiest way to do so is to upload it to a
source code repository such as GitHub. We will take a look at how this is done in the
next section. Unless you make it private, your code can be accessed by anyone who
has the correct link. People can view your source code (including the documentation)
online, download your module or package for use in their own programs, and "fork"
your code, creating their own private copy which they
can then modify.

If you want to share your code with a wider audience, the best approach is to
submit it to the Python Package Index (PyPI). This will mean that others can find
your module or package by searching through the PyPI index and anyone can
install it using pip, the Python Package Manager. Later sections of this chapter will
describe how to submit your module or package to PyPI and how pip can be used to
download and work with modules and packages.

Uploading your work to GitHub
GitHub (https://github.com/) is a popular web-based system for storing and
managing source code. While there are several alternatives, GitHub is particularly
popular with people writing and sharing open source Python code, and this is the
source code management system that we will use in this book.

Before delving into the specifics of GitHub, let's start by looking at how source code
management systems work in general and why you might want to use one.

Imagine that you are writing a complex module and have opened your module in
a text editor to make a few changes. While making these changes, you accidentally
select 100 lines of code and press the Delete key. Before you realize what you've done,
you save and close the file. Too late: those 100 lines of text are gone.

Of course, you might (and hopefully will) have a backup system in place which
keeps regular backups of your source files. But if you had made changes to some of
the missing code in the past few minutes, you are likely to have lost those changes.

Now consider a situation where you've shared a module or package with a
colleague, and they decide to make a few changes. Perhaps there's a bug that needed
fixing or a new feature they wanted to add. They change your code and send it back
to you with a note describing what they've done. Unfortunately, unless you compare
each line in the original and modified versions of your source files, you can't be sure
exactly what your colleague has done to your files.

https://github.com/

Chapter 8

[193]

A source code management system solves these types of problems. Instead of just
having a copy of your module or package sitting in a directory on your hard disk,
you create a repository within a source code management system such as GitHub,
and commit your source code to this repository. Then, as you make changes to your
files, fixing bugs and adding features, you commit each change that you make back
to the repository. The source code repository keeps track of every change you have
made, allowing you to see exactly what has been changed over time and, where
necessary, undoing changes that were made previously.

You aren't limited to having just one person work on a module or package. People
can fork your source code repository, creating their own private copy of it, and then
use this private copy to fix bugs and add new features. Once they've done this, they
can send you a pull request which includes the changes they have made. You can
then decide whether or not to merge those changes into your project.

Don't worry too much about these details, though—source code management is a
complex topic, and there are lots of sophisticated tricks you can perform using tools
such as GitHub to manage your source code. The important thing to remember is
that you create a repository to hold the master copy of the source code for your
module or package, commit your code into this repository, and then continue to
commit each time you fix a bug or add a new feature. The following illustration
summarizes this process:

Testing and Deploying Modules

[194]

The trick with a source management system is to commit regularly—every time you
add a new feature or fix a bug, you should immediately commit your changes. This
way, the difference between one version and the next in the repository is only the
code which adds that one feature or fixes that one problem. If you make a number of
changes to your source code before committing, the repository will be a lot less useful.

Now that we've seen how source code management systems work, let's implement a
real example to see how to use GitHub for managing your source code. First off, go
to the main GitHub site (https://github.com/). If you don't have an account with
GitHub, you will need to sign up, choosing a unique username, as well as supplying
a contact e-mail address and password. If you have used GitHub before, you can
sign in with the username and password you have already set up.

Note that it's free to sign up and use GitHub; the only limitation is that every
repository you create will be public, so anyone who wishes to can see your source
code. You can set up private repositories if you want, but these do incur a monthly
charge. However, since we are using GitHub to share our code with others, having
a private repository doesn't make any sense. You'd only need a private (paid)
repository if you wanted to share your code with a select group of people while
preventing anyone else from accessing it. If you're in the position of having to do
this, though, paying for a private repository is the least of your concerns.

Once you have signed in to GitHub, your next task is to install the command-line tools
for Git. Git is the underlying source code management toolkit used by GitHub; you'll
use the git command to work with your GitHub repository from the command line.

To install the required software, go to https://git-scm.com/downloads and
download an installer for your particular operating system. Once this has finished
downloading, run the installer and follow the instructions as it installs the git
command-line tools. When this is finished, open a terminal or command-line
window, and try typing the following command:

git --version

All going well, you should see the version number of the git command-line tools
you have installed.

https://github.com/
https://git-scm.com/downloads

Chapter 8

[195]

With these prerequisites out of the way, let's use GitHub to create an example
repository. Go back to the https://github.com/ web page and click on the + New
Repository button highlighted in green. You will be asked to enter the details of the
repository you want to create:

To set up your repository, enter test-package for the repository's name, and choose
Python from the Add .gitignore drop-down menu. A .gitignore file is used to
exclude certain files from the repository; using a .gitignore file for Python means
that the temporary files Python creates won't be included in the repository.

Finally, click on the Create repository button to create the new repository.

Make sure you don't select the Initialize this repository with a
README option. You don't want a README file created at this
stage; the reason for this will become clear shortly.

https://github.com/

Testing and Deploying Modules

[196]

Now that the repository has been created on GitHub, our next task is to clone a
copy of that repository onto your computer's hard disk. To do this, create a new
directory named test-package to hold your local copy of the repository, open up a
terminal or command-line window, and use the cd command to move to your new
test-package directory. Then, type the following command:

git clone https://<username>@github.com/<username>/test-package.git .

Make sure you replace both instances of <username> in the preceding command
with your GitHub username. You will be prompted to enter your GitHub password
to authenticate yourself, and a copy of the repository will be saved into your new
directory.

Because the repository is currently empty, you won't see anything in your directory.
However, there are some hidden files that git uses to keep track of your local copy
of the repository. To see these hidden files, you can use the ls command from a
terminal window:

$ ls -al

drwxr-xr-x@ 7 erik staff 238 19 Feb 21:28 .

drwxr-xr-x@ 7 erik staff 238 19 Feb 14:35 ..

drwxr-xr-x@ 14 erik staff 476 19 Feb 21:28 .git

-rw-r--r--@ 1 erik staff 844 19 Feb 15:09 .gitignore

The .git directory holds information about your new GitHub repository, while
the .gitignore file contains the instructions you asked GitHub to set up for you to
ignore the Python temporary files.

Now that we have an (initially empty) repository, let's create some files in it. The first
thing we need to do is choose a unique name for our package. Because our package
is going to be submitted to the Python Package Index, the name must be truly
unique. To achieve this, we'll use your GitHub username as the basis for our package
name, like this:

<username>-test-package

For example, since my GitHub username is "erikwestra", the name I would use for
this package would be erikwestra-test-package. Make sure you select a name
based on your GitHub username, to make sure that the package name is truly unique.

Chapter 8

[197]

Now that we have a name for our package, let's create a README file describing this
package. Create a new text file named README.rst in your test-package directory,
and place the following into this file:

<username>-test-package

This is a simple test package. To use it, type::

 from <username>_test_package import test
 test.run()

Make sure you replace each occurrence of <username> with your GitHub username.
This text file is in reStructuredText format. reStructuredText is a formatting
language used by PyPI to display formatted text.

While GitHub can support reStructuredText, by default it uses a different
text format called Markdown. Markdown and reStructuredText are two
competing formats, and unfortunately, PyPI requires reStructuredText,
while GitHub by default uses Markdown. This is why we told GitHub
not to create a README file when we set up the repository; if we had
done this, it would have been in the wrong format.

When the user views your repository on GitHub, they will see the contents of this file
neatly formatted according to the reStructuredText rules:

If you want to learn more about reStructuredText, you can read all about it at
http://docutils.sourceforge.net/rst.html.

http://docutils.sourceforge.net/rst.html

Testing and Deploying Modules

[198]

Now that we have set up the README file for our package, let's create the package
itself. Create another directory inside test-package named <username>_test_
package, replacing <username> with your GitHub username, and place an empty
package initialization file (__init__.py) inside this directory. Then, create another
file inside the <username>_test_package directory named test.py, and enter the
following into this file:

import string
import random

def random_name():
 chars = []
 for i in range(random.randrange(3, 10)):
 chars.append(random.choice(string.ascii_letters))
 return "".join(chars)

def run():
 for i in range(10):
 print(random_name())

This is just an example, of course. Calling the test.run() function will cause ten
random names to be displayed. More interesting is the fact that we have now defined
the initial contents for our test package. However, all we've done is created some
files on our local computer; this doesn't affect GitHub at all, and if you reload your
repository page in GitHub, none of your new files will show up.

To have our changes take effect, we need to commit our changes to the repository.
We'll start by taking a look at how our local copy differs from the one in the
repository. To do this, go back to your terminal window, cd into the test-package
directory, and type the following command:

git status

You should see the following output:

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

README.rst

<username>_test_package/

nothing added to commit but untracked files present (use "git add" to
track)

Chapter 8

[199]

The description can be a bit confusing, but it's not too tricky. Basically, GitHub
is telling you that there's a new file, README.rst, and a new directory, named
<username>_test_package, which it doesn't know about (or, in GitHub parlance, is
"untracked"). Let's add these new entries to our repository:

git add README.rst

git add <username>_test_package

Make sure you replace <username> with your GitHub username. If you now type
git status, you'll see that the files we created have been added to our local copy of
the repository:

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: README.rst

new file: <username>_test_package/__init__.py

new file: <username>_test_package/test.py

Whenever you add a new directory or file to your project, you will need to use
the git add command to add it to the repository. At any time, you can see if
you've missed any files by typing the git status command and looking for
"untracked" files.

Now that we've included our new files, let's commit our changes to the repository.
Type the following command:

git commit -a -m 'Initial commit.'

This commits a new change to your local copy of the repository. The -a option tells
GitHub to automatically include any changed files, and the -m option lets you enter
a brief message, describing the changes you have made. In this case, our commit
message is set to the value "Initial commit.".

Now that we've committed our change, we need to upload from our local computer
to the GitHub repository. To do this, type the following command:

git push

You will be prompted to enter your GitHub password to authenticate yourself, and
the changes you have committed will be stored into your repository on GitHub.

Testing and Deploying Modules

[200]

GitHub separates the commit command from the push command
because you might need to make several commits as you make changes to
your program, without necessarily being online at the time. For example,
if you are on a long plane trip, you could work on your code locally,
committing each change as you went along and then pushing all your
changes at once when you land and have Internet access again.

Now that your changes have been pushed to the server, you can reload the page on
GitHub, and your newly created package will appear in the repository:

You will also see the contents of your README.rst file displayed below the list of
files, describing your new package and how to use it.

Whenever you make changes to your package, make sure you run through the
following steps to save your changes into the repository:

1.	 Use the git status command to see what's changed. If you've added any
files that need to be included in the repository, use git add to add them.

2.	 Use the git commit -a -m '<commit message>' command to commit
your changes to your local copy of the GitHub repository. Make sure you
enter a suitable commit message to describe the change you have made.

3.	 When you are ready to do so, use the git push command to send your
committed changes to GitHub.

There's a lot more to using GitHub, of course, and a great many commands and
options that you will no doubt want to explore once you get into it—but this is
enough to get you started.

Once you've set up a GitHub repository for your Python module or package, it will
be easy to share your code with someone else. All you need to do is share a link to
your GitHub repository, and the other person can download the files they want.

Chapter 8

[201]

To make this process even easier and make your packages searchable so that they
can be found by a wider audience, you should consider submitting your package to
the Python Package Index. We'll look at the steps involved in doing this next.

Submitting to the Python Package Index
To submit your Python package to the Python Package Index, you first have to sign
up for a free account at https://pypi.python.org/pypi. Click on the Register link
in the box in the upper-right hand corner of the page:

You will need to choose a username and password, as well as supply an e-mail
address. Remember the username and password you enter as you'll need it shortly.
When you submit the form, you'll be sent an e-mail with a link which you need to
click on to complete your registration.

There are two files you will need to add to your project before you can submit it
to PyPI, a setup.py script, which is used to bundle and upload your package, and
a LICENSE.txt file, which describes the license under which your package can be
used. Let's add these two files now.

Create a file inside your test-package directory named setup.py, and enter the
following into this file:

from distutils.core import setup

setup(name="<username>-test-package",
 packages=["<username>_test_package"],
 version="1.0",
 description="Test Package",
 author="<your name>",
 author_email="<your email address>",
 url="https://github.com/<username>/test-package",
 download_url="https://github.com/<username>/test-package/
tarball/1.0",
 keywords=["test", "python"],
 classifiers=[])

https://pypi.python.org/pypi

Testing and Deploying Modules

[202]

Make sure you replace each occurrence of <username> with your GitHub username,
and also replace <your name> and <your email address> with the relevant values.
Because this is just a test, we are using the name <username>-test-package for this
package; for a real project, we would use a much more meaningful (but still unique)
name for our package.

Notice that this version of the setup.py script is using the Distutils
package. Distutils is part of the Python Standard Library and is a
straightforward way of creating and distributing your code. There is
an alternative library called Setuptools, which many people prefer as
it is a more modern library with more features and is often seen as the
successor to Distutils. However, Setuptools is not currently part of the
Python Standard Library. Since it is easier to use and has all the features
we need, we are using Distutils here to keep this process as simple as
possible. If you are familiar with using it, feel free to use Setuptools
instead of Distutils as the two are identical for what we are doing here.

Finally, we need to create a new text file named LICENSE.txt. This file will hold
the software license under which you are releasing your package. It is important to
include a license so that people know exactly what they can and can't do with your
code; you can't submit a package without supplying a license.

While you can put anything you like into the LICENSE.txt file, you should generally
use one of the existing software licenses. For example, you might like to use the MIT
license available at https://opensource.org/licenses/MIT—this license makes
your code available for others to use for any purpose, while ensuring that you can't
be held liable for any problems that may occur from its use.

With these two files in place, you can finally submit your new package to the Python
Package Index. To do this, type the following command into your terminal or
command-line window:

python setup.py register

This command will attempt to register your new package with the Python Package
Index. You'll be asked to enter your PyPI username and password, and given the
opportunity to store these so you don't have to re-enter them each time. Once the
package has been successfully registered, you can upload the package contents by
typing the following command:

python setup.py sdist upload

https://opensource.org/licenses/MIT

Chapter 8

[203]

You will see a couple of warnings, which you can safely ignore, before your package
is uploaded to PyPI. If you then go to the PyPI web site, you will see your new
package listed:

As you can see, the Home Page link points to your project's page on GitHub, and
there is a direct download link for version 1.0 of your package. Unfortunately,
however, this download link doesn't work yet because you haven't told GitHub
what version 1.0 of your package looks like. To do this, you have to create a tag in
GitHub which corresponds to version 1.0 of your system; GitHub will then create a
downloadable version of your package that matches that tag.

Before you create your 1.0 release, you should commit the changes you have made
to the repository. This is good practice anyway, so let's see how this is done: start
by typing git status to see which files have been added or changed, then use git
add to add each of the untracked files in turn. Once this has been done, type git
commit -a -m 'Preparing for PyPI submission' to commit your changes to the
repository. Finally, type git push to send your committed changes to GitHub.

Once all this has been done, you can create the tag that corresponds to version 1.0 of
your package by typing the following command:

git tag 1.0 -m 'Version 1.0 of the <username>_test_package.'

Testing and Deploying Modules

[204]

Make sure you replace <username> with your GitHub username so that the package
name is correct. Finally, use the following variant of the git push command to copy
the newly-created tag to the GitHub server:

git push --tags

Once again, you will be asked to enter your GitHub password. When this command
finishes, you will have a version 1.0 release of your package available for download
at https://github.com/<username>/test-package/tarball/1.0, where
<username> is your GitHub username. If you now go to PyPI and look for your test
package, you will be able to click on the Download URL link to download a copy of
your 1.0 package.

If your new package appears in the Python Package Index, and you can successfully
download the 1.0 version of your package by following the Download link, then you
deserve a pat on the back. Congratulations! This is a complex process, but one that
will give you the largest audience possible for your reusable modules and packages.

Using pip to download and install
modules and packages
In chapters 4 and 5 of this book, we used pip, the Python Package Manager, to install
various libraries that we wanted to work with. As we learned in Chapter 7, Advanced
Module Techniques, pip normally installs a package into Python's site-packages
directory. Since this directory is listed in the module search path, your newly
installed module or package can then be imported and used in your code.

Let's now use pip to install the test package we created in the previous section. Since
we know that our package has been given the name <username>_test_package,
where <username> is your GitHub username, you can install this package directly
into your site-packages directory by typing the following command into a
terminal or command-line window:

pip install <username>_test_package

Make sure you replace <username> with your GitHub username. Note that if you do
not have permission to write to your Python installation's site-packages directory,
you may need to add sudo to the start of this command:

sudo pip install <username>_test_package

If you do this, you will be prompted to enter your administrator password before the
pip command is run.

Chapter 8

[205]

All going well, you should see various commands being run as your newly created
package is downloaded and installed. Assuming this works successfully, you can
then start your Python interpreter and access your new package just as if it were part
of the Python Standard Library. For example:

>>> from <username>_test_package import test

>>> test.run()

IFIbH

AAchwnW

qVtRUuSyb

UPF

zXkY

TMJEAZm

wRJCqgomV

oMzmv

LaDeVg

RDfMqScM

Of course, it's not just you who can do this. Other Python developers can also
access your new package in exactly the same way. This makes it extremely easy for
developers to download and use your package.

With a few exceptions, you can use pip to install any package you want from the
Python Package Index. By default, pip will install the latest available version of a
package; to specify a particular version, you can supply a version number when
you install the package, like this:

pip install <username>_test_package == 1.0

This will install version 1.0 of your test package. If you have already installed a
package and a newer version becomes available, you can upgrade your package to
the newer version using the --upgrade command-line option:

pip install --upgrade <username>_test_package

You can also obtain a list of the packages you have installed using the list
command:

pip list

Testing and Deploying Modules

[206]

There is one more feature of pip that you should be aware of. Instead of installing
each package individually, you can create a requirements file that lists all the
packages you want, and have them installed all at once. A typical requirements file
would look something like the following:

Django==1.8.2
Pillow==3.0.0
reportlab==3.2.0

The requirements file lists the various packages you want to have installed and their
associated version number.

By convention, a requirements file is named requirements.txt, and is placed in
your project's top-level directory. Requirements files are extremely useful because
they make it easy to recreate a Python development environment, including all the
packages that your program depends upon, with just a single command. This is done
in the following way:

pip install -r requirements.txt

Since the requirements file is stored alongside the program's source code, you
would normally include the requirements.txt file in your source code repository.
This means you can clone your repository to a new computer and, with a single
command, reinstall all the modules and packages your program depends upon.

While you can create a requirements file by hand, you would normally use pip to
create this file for you. After installing the required modules and packages, you can
use the following command to create the requirements.txt file:

pip freeze > requirements.txt

The wonderful thing about this command is that you can re-run it any time your
requirements change. If you find that your program needs to use a new module
or package, you use pip install to install the new module or package, and then
immediately call pip freeze to create an updated requirements file which includes
the new dependency.

There is one more thing to be aware of when installing and working with modules
and packages: sometimes, you will need to have different versions of a module or
package installed. For example, perhaps you want to run a particular program that
requires version 1.6 of the Django package but you only have version 1.4 installed. If
you update your copy of Django to version 1.6, you may break other programs that
depend upon it.

Chapter 8

[207]

To avoid this situation, you may find it useful to set up a virtual environment on
your computer. A virtual environment is like a separate Python installation with
its own set of installed modules and packages. You can create a separate virtual
environment for each project that you work on so that each project can have its own
set of dependencies without interfering with the requirements of other projects you
might install on your computer.

When you want to use a particular virtual environment, you have to activate it.
You can then use pip install to install the various packages you need into that
environment, and run your program using the packages you have installed. When
you want to finish working with that environment, you deactivate it. This lets you
swap between virtual environments as necessary to work on your different projects.

Virtual environments are a very powerful tool for working on projects with different,
and possibly incompatible, package requirements. You can find out more about
virtual environments at http://docs.python-guide.org/en/latest/dev/
virtualenvs/.

Summary
In this chapter, we learned about the various ways in which you can test
your Python modules and packages. We learned about unit testing and how the
unittest package in the Python Standard Library makes it easier to write and use
unit tests for the modules and packages that you develop. We saw how unit tests
use the assert statement (or the various assertXXX() methods if you are using the
unittest.TestCase class) to raise an AssertionError if a particular condition has
not been met. By writing various unit tests, you can ensure that your modules and
packages are working the way you expect them to.

We then looked at the process of preparing a module or package for publication,
and saw how GitHub provides an excellent repository for storing and managing the
source code for your modules and packages.

After creating our own test package, we worked through the process of submitting
this package to the Python Package Index. Finally, we learned how to use pip,
the Python Package Manager, to install a package from PyPI into your system's
site-packages directory, before looking at the ways in which a requirements file
or a virtual environment can be used to help manage your program's dependencies.

In the final chapter of this book, we will see how modular programming acts more
generally as the foundation for good programming techniques.

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

[209]

Modular Programming as
a Foundation for Good

Programming Technique
We have come a long way in this book. From learning how modules and packages
work in Python, and how to use them to better organize your code, we have
discovered many of the common practices used to apply modular patterns to solve a
range of programming problems. We have seen how modular programming allows
us to deal with changing requirements in a real-world system in the best possible
way, and learned what makes a module or package a suitable candidate for reuse in
new projects. We have seen many of the more advanced techniques for working with
modules and packages in Python, as well as ways of avoiding the pitfalls that you
may encounter along the way.

Finally, we looked at ways of testing your code, how to use a source code
management system to keep track of the changes you make to your code over time,
and how to submit your module or package to the Python Package Index (PyPI) so
that others can find and use it.

Using what we have learned thus far, you will be able to competently apply modular
techniques to your Python programming efforts, creating robust and well-written
code that can be reused in a variety of programs. You can also share your code
with others, both inside your organization and within the wider Python developer
community.

Modular Programming as a Foundation for Good Programming Technique

[210]

In this final chapter, we will use a practical example to show how modules and
packages do far more than just organize your code: they help to deal with the process
of programming more effectively. We will see how modules are vital to the design
and development of any large system, and demonstrate how the use of modular
techniques to create robust, useful and well-written modules is an essential part of
being a good programmer.

The process of programming
All too often as programmers, we focus on the technical details of a program. That
is, we focus on the product rather than the process of programming. The difficulties
of solving a particular programming problem are so great that we forget that the
problem itself will change over time. No matter how much we try to avoid it, change
is inevitable: changing markets, changing requirements, and changing technologies.
As programmers, we need to be able to effectively cope with this change just as
much as we need to be able to implement, test, and debug our code.

Back in Chapter 4, Using Modules for Real-World Programming, we looked at an
example program that faced the challenge of changing requirements. We saw how a
modular design allowed us to minimize the amount of code that had to be rewritten
when the scope of the program increased well beyond what was first envisaged.

Now that we have learned more about modular programming and the related
technologies that can help to make it more effective, let's work through this
exercise again. This time, we'll choose a simple package for counting the number of
occurrences of some event or object. For example, imagine that you need to keep a
count of the number of animals of each type you see while walking across a farm. As
you see each type of animal, you record its presence by passing it to the counter, and
at the end, the counter will tell you how many animals of each type you have seen.
For example:

>>> counter.reset()

>>> counter.add("sheep")

>>> counter.add("cow")

>>> counter.add("sheep")

>>> counter.add("rabbit")

>>> counter.add("cow")

>>> print(counter.totals())

[("cow", 2), ("rabbit", 1), ("sheep", 2)]

Chapter 9

[211]

This is a simple package, but it gives us a good target for applying some of the more
useful techniques we have learned in the previous chapters. In particular, we will
make use of docstrings to document what each function in our package does, and
we will write a series of unit tests to ensure that our package is working the way we
expect it to.

Let's start by creating a directory to hold our new project, which we will call
Counter. Create a directory named counter somewhere convenient, and then add a
new file named README.rst to this directory. Since we expect to eventually upload
this package to the Python Package Index, we will use reStructuredText format for
our README file. Enter the following into this file:

About the ``counter`` package

``counter`` is a package designed to make it easy to keep track of the
number of times some event or object occurs. Using this package, you
reset the counter, **add** the various values to the counter, and
then retrieve the calculated **totals** to see how often each value
occurred.

Let's take a closer look at how this package might be used. Imagine that you wanted
to keep a count of the number of cars of each color which were observed in a given
timeframe. You would start by making the following call:

 counter.reset()

Then when you identify a car of a given color, you would make the following call:

 counter.add(color)

Finally, once the time period is over, you would obtain the various colors and how
often they occurred in the following way:

 for color,num_occurrences in counter.totals():
 print(color, num_occurrences)

The counter can then be reset to start counting another set of values.

Let's now implement this package. Inside our counter directory, create another
directory named counter to hold our package's source code, and create a package
initialization file (__init__.py) inside this innermost counter directory. We'll
follow the pattern we used earlier and define our package's public functions in a
module named interface.py, which we will then import into the __init__.py
file to make the various functions available at the package level. To do this, edit the
__init__.py file and enter the following into this file:

from .interface import *

Modular Programming as a Foundation for Good Programming Technique

[212]

Our next task is to implement the interface module. Create the interface.py file
inside the counter package directory, and enter the following into this file:

def reset():
 pass

def add(value):
 pass

def totals():
 pass

These are just placeholders for our counter package's public functions; we'll
implement these one at a time, starting with the reset() function.

Following the recommended practice of documenting each function using a
docstring, let's start by describing what this function does. Edit the existing definition
for your reset() function so that it looks like the following:

def reset():
 """ Reset our counter.

 This should be called before we start counting.
 """
 pass

Remember that a docstring is a triple-quoted string (a string that spans multiple
lines) which is "attached" to a function. A docstring typically starts with a one line
description of what the function does. If more information is required, this will be
followed by a single blank line, followed by one or more lines describing the function
in more detail. As you can see, our docstring consists of a one-line description and
one additional line providing more information about our function.

We now need to implement this function. Since our counter package needs to
keep track of the number of times each unique value has occurred, it makes sense
to store this information in a dictionary mapping unique values to the number
of occurrences. We can store this dictionary as a private global variable which is
initialized by our reset() function. Knowing this, we can go ahead and implement
the remainder of our reset() function:

def reset():
 """ Reset our counter.

 This should be called before we start counting.
 """
 global _counts
 _counts = {} # Maps value to number of occurrences.

Chapter 9

[213]

With the private _counts global defined, we can now implement the add() function.
This function records the occurrence of a given value, storing the results into the
_counts dictionary. Replace your placeholder implementation of the add() function
with the following code:

def add(value):
 """ Add the given value to our counter.
 """
 global _counts

 try:
 _counts[value] += 1
 except KeyError:
 _counts[value] = 1

There shouldn't be any surprises here. Our final function, totals(), returns the
values which were added to the _counts dictionary, along with how often each
value occurred. Here is the necessary code, which should replace your existing
placeholder for the totals() function:

def totals():
 """ Return the number of times each value has occurred.

 We return a list of (value, num_occurrences) tuples, one
 for each unique value included in the count.
 """
 global _counts

 results = []
 for value in sorted(_counts.keys()):
 results.append((value, _counts[value]))
 return results

This completes our first implementation of the counter package. We'll try it out
using the ad hoc testing techniques we learned about in the previous chapter: open
a terminal or command-line window and use the cd command to set the current
directory to the outermost counter directory. Then, type python to start the Python
interactive interpreter, and try entering the following commands:

import counter

counter.reset()

counter.add(1)

counter.add(2)

counter.add(1)

print(counter.totals())

Modular Programming as a Foundation for Good Programming Technique

[214]

All going well, you should see the following output:

[(1, 2), (2, 1)]

This tells you that the value 1 occurred twice and the value 2 occurred once—which
is exactly what your calls to the add() function indicated.

Now that our package appears to be working, let's create some unit tests so that we
can test our package more systematically. Create a new file named tests.py in the
outermost counter directory and enter the following code into this file:

import unittest
import counter

class CounterTestCase(unittest.TestCase):
 """ Unit tests for the ``counter`` package.
 """
 def test_counter_totals(self):
 counter.reset()
 counter.add(1)
 counter.add(2)
 counter.add(3)
 counter.add(1)
 self.assertEqual(counter.totals(),
 [(1, 2), (2, 1), (3, 1)])

 def test_counter_reset(self):
 counter.reset()
 counter.add(1)
 counter.reset()
 counter.add(2)
 self.assertEqual(counter.totals(), [(2, 1)])

if __name__ == "__main__":
 unittest.main()

As you can see, we have written two unit tests: one to check that the values we
added are reflected in the counter's totals, and a second test to ensure that the
reset() function is correctly resetting the counter, discarding any values that
were added before reset() was called.

To run these tests, exit the Python interactive interpreter by pressing Control + D, and
then type the following into the command line:

python tests.py

Chapter 9

[215]

All going well, you should see the following output, indicating that both of your unit
tests ran without any errors:

..

Ran 2 tests in 0.000s

OK

The inevitable changes
At this stage, we now have a properly working counter package with good
documentation and unit tests. Imagine, however, that the requirements for your
package now changes, causing major problems for your design: instead of keeping
a simple count of the number of unique values, you now need to support ranges of
values. For example, the user of your package might define ranges of values from
0 to 5, 5 to 10, and 10 to 15; values within each range are grouped together for the
purposes of counting. The following illustration shows how this is done:

Modular Programming as a Foundation for Good Programming Technique

[216]

To allow your package to support ranges, you will need to change the interface to
the reset() function to accept an optional list of range values. For example, to count
values between 0 and 5, 5 and 10, and 10 and 15, the reset() function can be called
with the following parameter:

counter.reset([0, 5, 10, 15])

If no parameter is passed to counter.reset(), then the entire package should
continue to work as it does at present, recording unique values rather than ranges.

Let's implement this new feature. First off, edit the reset() function so that it looks
like the following:

def reset(ranges=None):
 """ Reset our counter.

 If 'ranges' is supplied, the given list of values will be
 used as the start and end of each range of values. In
 this case, the totals will be calculated based on a range
 of values rather than individual values.

 This should be called before we start counting.
 """
 global _ranges
 global _counts

 _ranges = ranges
 _counts = {} # If _ranges is None, maps value to number of
 # occurrences. Otherwise, maps (min_value,
 # max_value) to number of occurrences.

The only difference here, other than changing the documentation, is that we now
accept an optional ranges parameter and store this into the private _ranges global.

Let's now update the add() function to support ranges. Change your source code so
that this function looks like the following:

def add(value):
 """ Add the given value to our counter.
 """
 global _ranges
 global _counts

 if _ranges == None:
 key = value
 else:

Chapter 9

[217]

 for i in range(len(_ranges)-1):
 if value >= _ranges[i] and value < _ranges[i+1]:
 key = (_ranges[i], _ranges[i+1])
 break

 try:
 _counts[key] += 1
 except KeyError:
 _counts[key] = 1

There's no change to the interface for this function; the only difference is behind the
scenes, where we now check to see whether we are calculating totals for the ranges
of values, and if so, we set the key into the _counts dictionary to be a (min_value,
max_value) tuple identifying the range. This code is a little messy, but it works,
nicely hiding this complexity from the code using this function.

The final function we need to update is the totals() function. The behavior of this
function will change if we are using ranges. Edit your copy of the interface module
so that the totals() function looks like the following:

def totals():
 """ Return the number of times each value has occurred.

 If we are currently counting ranges of values, we return a
 list of (min_value, max_value, num_occurrences) tuples,
 one for each range. Otherwise, we return a list of
 (value, num_occurrences) tuples, one for each unique value
 included in the count.
 """
 global _ranges
 global _counts

 if _ranges != None:
 results = []
 for i in range(len(_ranges)-1):
 min_value = _ranges[i]
 max_value = _ranges[i+1]
 num_occurrences = _counts.get((min_value, max_value),
 0)
 results.append((min_value, max_value,
 num_occurrences))
 return results

Modular Programming as a Foundation for Good Programming Technique

[218]

 else:
 results = []
 for value in sorted(_counts.keys()):
 results.append((value, _counts[value]))
 return results

This code is a bit complicated, but we have updated our function's docstring to
describe the new behavior. Let's now test our code; fire up the Python interpreter
and try entering the following instructions:

import counter
counter.reset([0, 5, 10, 15])
counter.add(5.7)
counter.add(4.6)
counter.add(14.2)
counter.add(0.3)
counter.add(7.1)
counter.add(2.6)
print(counter.totals())

All going well, you should see the following output:

[(0, 5, 3), (5, 10, 2), (10, 15, 1)]

This corresponds to the three ranges you have defined, and shows that there are
three values falling into the first range, two falling into the second range, and just
one value falling into the third range.

Change management
At this stage, it seems that your updated package is a success. Just like the
example we saw in Chapter 6, Creating Reusable Modules, we were able to use
modular programming techniques to limit the number of changes that were needed
to support a major new feature within our package. We have performed some tests,
and the updated package seems to be working as it should.

However, we won't stop there. Since we added a major new feature to our package,
we should add some unit tests to ensure that this feature is working as it should.
Edit your tests.py script and add the following new test case to this module:

class RangeCounterTestCase(unittest.TestCase):
 """ Unit tests for the range-based features of the
 ``counter`` package.
 """
 def test_range_totals(self):

Chapter 9

[219]

 counter.reset([0, 5, 10, 15])
 counter.add(3)
 counter.add(9)
 counter.add(4.5)
 counter.add(12)
 counter.add(19.1)
 counter.add(14.2)
 counter.add(8)
 self.assertEqual(counter.totals(),
 [(0, 5, 2), (5, 10, 2), (10, 15, 2)])

This is very similar to the code we used for our ad hoc testing. After saving the
updated tests.py script, run it. This should reveal something very interesting: your
new package suddenly crashes:

ERROR: test_range_totals (__main__.RangeCounterTestCase)

Traceback (most recent call last):
 File "tests.py", line 35, in test_range_totals
 counter.add(19.1)
 File "/Users/erik/Project Support/Work/Packt/PythonModularProg/First
Draft/Chapter 9/code/counter-ranges/counter/interface.py", line 36, in
add
 _counts[key] += 1
UnboundLocalError: local variable 'key' referenced before assignment

Our test_range_totals() unit test is failing because our package crashes with an
UnboundLocalError when we try to add the value 19.1 to our ranged counter. A
moment's reflection will show what is wrong here: we have defined three ranges,
0-5, 5-10, and 10-15, but we are now trying to add the value 19.1 to our counter.
Since 19.1 is outside of the ranges we have set up, our package can't assign a range
to this value, so our add() function is crashing.

It's easy enough to fix this problem; add the following highlighted lines to your
add() function:

def add(value):
 """ Add the given value to our counter.
 """
 global _ranges
 global _counts

 if _ranges == None:
 key = value
 else:

Modular Programming as a Foundation for Good Programming Technique

[220]

 key = None
 for i in range(len(_ranges)-1):
 if value >= _ranges[i] and value < _ranges[i+1]:
 key = (_ranges[i], _ranges[i+1])
 break
 if key == None:
 raise RuntimeError("Value out of range: {}".format(value))

 try:
 _counts[key] += 1
 except KeyError:
 _counts[key] = 1

This causes our package to return a RuntimeError if the user attempts to add a value
that falls outside of the ranges that we have set up.

Unfortunately, our unit test is still crashing, only now it fails with a RuntimeError.
To fix this, remove the counter.add(19.1) line from the test_range_totals()
unit test. We still want to test for this error condition, but we'll do so in a separate
unit test. Add the following to the end of your RangeCounterTestCase class:

 def test_out_of_range(self):
 counter.reset([0, 5, 10, 15])
 with self.assertRaises(RuntimeError):
 counter.add(19.1)

This unit test checks specifically for the error condition we found earlier, and ensures
that the package is correctly returning a RuntimeError if the supplied value is
outside of the requested ranges.

Notice that we now have four separate unit tests defined for our package. We are
still testing the package to make sure it runs without ranges, as well as testing all our
range-based code. Because we have implemented (and are starting to flesh out) a
range of unit tests for our package, we can be confident that any changes we made to
support ranges won't break any existing code that doesn't use the new range-based
features.

As you can see, the modular programming techniques we have used help us minimize
the changes required to our code, and the unit tests we have written help to ensure
that the updated code continues to work as we expect it to. In this way, the use of
modular programming techniques allow us to deal with changing requirements and
the ongoing process of programming in the most effective way possible.

Chapter 9

[221]

Dealing with complexity
There is no escaping the fact that computer programs are complicated. In fact, as
the requirements for a package changes, this complexity only seems to increase over
time—programs rarely become simpler as you go along. Modular programming
techniques are an excellent way of dealing with this complexity. Through the
application of modular techniques and technologies, you can:

•	 Use modules and packages to keep your code well organized no matter how
complicated it becomes

•	 Use the standard patterns for modular design, including the divide-and-
conquer technique, abstraction, and encapsulation, to keep this complexity to
a minimum

•	 Apply unit testing techniques to ensure that your code continues to work as
it should as you change and expand the scope of your module or package

•	 Write module- and function-level docstrings to clearly describe what each
part of your code does so that you can keep track of everything as your
program grows and changes.

To get a sense of just how vital these modular techniques and technologies are,
just think for a moment how much of a mess you would end up with if you do
not use them while developing a large, complex, and changing system. Without
modular design techniques and the application of standard patterns such as
divide-and-conquer, abstraction, and encapsulation, you would find yourself writing
disorganized spaghetti code with many unexpected side-effects and with new
features and changes spread throughout your source code. Without unit testing, you
would have no way of ensuring that your code continues to work as it should as
you make changes to it. Finally, the lack of embedded documentation would make it
very hard to keep track of all the various pieces of your system, leading to bugs and
poorly-thought-out changes as you continue to develop and expand your code.

For all these reasons, it is clear that modular programming techniques are vital to
the design and development of any large system, because they help you to deal with
complexity in the best way possible.

Being an effective programmer
Now that you have seen just how useful modular programming techniques are,
you might wonder why anyone would not want to use them. Other than a lack of
understanding, why would a programmer eschew modular principles and techniques?

Modular Programming as a Foundation for Good Programming Technique

[222]

The Python language has been designed from the ground up to support good
modular programming techniques, and with the addition of excellent tools such
as the Python Standard Library, unit tests, and docstrings, it encourages you to
apply these techniques to your everyday programming practice. Similarly, the use
of indentation to define the structure of your code automatically encourages you
to write well-formatted source code where the indentation of your code reflects
the logical organization of your program. These are not random choices: Python
encourages good programming practices every step of the way.

Of course, just like you can write poorly structured and incomprehensible spaghetti
code using Python, it is possible to avoid using modular techniques and practices
while developing your programs. But why would you want to?

Programmers sometimes take shortcuts when writing programs that they consider
to be "throwaway" code. For example, perhaps you're writing a tiny program that
you expect to only use once, and then never need to use again. Why take the extra
time to apply the recommended modular programming practices to this throwaway
program?

The thing is, throwaway code has a funny habit of becoming permanent and
growing into something much larger. Often, what begins as throwaway code
becomes the basis for a large and complex system. Code you wrote six months ago
can be found and reused in a new program. In the end, you never know what is
throwaway code and what isn't.

For these reasons, it is a good idea to always apply modular programming practices to
your code, no matter how large or small it might be. While you won't want to spend a
lot of time writing extensive docstrings and unit tests for a simple throwaway script,
you can still apply basic modular techniques to help keep your code organized. Don't
just save modular programming techniques for your "big" projects.

Fortunately, the way Python has implemented modular programming makes it
extremely easy to use, and after a while, you begin to think in modular terms before
you even start writing a single line of code. I believe this is a good thing, because
modular programming techniques are an essential part of being a good programmer,
and you should practice these techniques whenever you sit down to program.

Chapter 9

[223]

Summary
In this chapter, and indeed in this entire book, we have looked at how the application
of modular programming techniques help you deal with the process of programming
in the most effective way possible. Rather than avoiding change, you are able to
manage it so that your code continues to work and is improved over time by the new
requirements that are thrown at it.

We have looked at another example of a program that needed to be changed to meet
an expanding set of requirements, and have seen how modular techniques, including
the use of docstrings and unit tests, help to write robust and easy to understand code
that improves as it continues to be developed and changed.

We have seen how the application of modular techniques is a vital part of dealing
with the complexity of a program, and that this complexity only increases over time.
We have learned that, because of this, the use of modular programming techniques
is an essential part of what it means to be a good programmer. Finally, we have seen
that modular techniques are something that can be used every time you sit down to
program, even for simple throwaway scripts, and not something to be saved for your
"big" projects.

I hope you have found this introduction to the world of modular programming
useful, and are now starting to apply modular techniques and patterns to your own
programming. I encourage you to continue to learn as much as you can about the
various tools that surround good modular programming practice, such as the use of
docstrings and the Sphinx library to auto-generate documentation for your packages,
and the use of virtualenv to set up and use virtual environments to manage your
program's package dependencies. The more you continue to use modular practices
and techniques, the easier it will become—and the more effective you will be as a
programmer. Happy coding!

[225]

Index
A
abstraction 104-107
ad-hoc testing 183
advanced module techniques

global variables, dealing with 177, 178
gotchas, importing 167
imports, tweaking with sys.path 164-167
local imports 163, 164
modules and packages, using with Python

interactive interpreter 173-176
optional imports 161, 162
package configuration 179, 180
package data 181

B
backend 6

C
cache

about 15
using 20, 21

Charter
about 70
chart.py module, implementing 76
code, refactoring 91-93
designing 70-73
generator.py module, implementing 77
implementing 74, 75
redesigning 89, 90
requirements, changing 87, 88
testing 87

circular dependencies 63

code, Charter
PDF renderer modules,

implementing 94-98
refactoring 91-93
testing 99, 100

complexity
dealing with 221

continuous axis 72
coverage 187
coverage package

reference 188

D
data storage module 25
dateutil package

about 144
reference 144

discrete axis 72
Distutils package

submitting to 202
divide and conquer approach 104
docstrings 10, 211
dynamic imports 124-126

E
edge cases 187
effective programmer 221
encapsulation 107-113
examples, reusable modules

about 143
dateutil package 144
lxml toolkit 145
requests library 143, 144

[226]

extensible modules
about 124
dynamic imports 124-126
hooks 124-128
plugins 124-126

F
first modular program

writing 23
first module

cache module, writing 17-19
caching 15, 17
creating 15

fork 193

G
generator.py module

code, testing 81
implementing 77
Pillow library 77, 78
remaining renderers 84-86
renderers 78-80
title, rendering 81, 82
x axis, rendering 82, 83

getter functions 108
git 194
GitHub

about 192
URL 192
work, uploading to 192-201

global namespace 54, 163
global variables

dealing with 177, 178
gotchas, importing

about 167
existing name, using for

module or package 167, 168
package directories, adding

to sys.path 170, 171
Python script, naming 169, 170
same module, executing 172, 173
same module, importing 172, 173

GUI tests 184

H
hooks 127, 128

I
import

controlling 61, 62
performing 54
relative imports 58-61
tweaking, sys.path used 164-167

import statement
about 56
functioning 54, 55
using 56-58

integration tests 184
inventory control system

about 24
designing 25
implementing 34

inventory control system, designing
about 25
data storage module 26-29
main program 33
report generator module 32
user interface module 30-32

inventory control system, implementing
about 34
data storage module, implementing 34-37
main program, implementing 42-45
report generator module,

implementing 40-42
user interface module,

implementing 37-40

L
locale 148
local imports 163, 164
local namespace 55, 163
lxml toolkit

about 145
reference 145

M
main program 25

[227]

Markdown format 197
method 149
MIT license

reference 202
mocking 189
modular programming 1
modular programming techniques

benefits 8-10
using 8

module
about 47, 48
downloading, pip used 204, 206
initialization functions 51, 52
initializing 50, 51
installing, pip used 204-207
making reusable 134
preparing, for publication 191, 192
running, from command line 64-66
used, for sharing code 131-134

module patterns
divide and conquer approach 103, 104
working with 103

modules and packages, testing
code coverage 187, 188
mocking 189
test-driven development 189
testing 184
unit tests, designing 187
unittest Standard Library module,

used 185, 186
unit tests, writing for 189-191

module search path 164

N
name masking 168
NumPy

about 116
URL 117

O
optional imports 161, 162

P
package

about 47, 48

downloading, pip used 204-206
initializing 52, 53
installing, pip used 204-207
preparing, for publication 191, 192
used, for sharing code 132-134
within packages 49, 50

package configuration 179, 180
package data 181
package initialization file 5, 48
Pillow library

about 77, 78
references 77

pip
about 192
used, for downloading modules and

packages 204-207
used, for installing modules and

packages 204-206
plugins 127
process

programming 10-13
programming process

about 210-214
change management 218-220
inevitable changes 215-218

pull request 193
Python Imaging Library (PIL) 77
Python modules

about 2-4
using, for organizing program 6, 7

Python Package Index (PyPI)
about 192
reference 143
submitting to 201-203
URL 201

Python packages
about 4, 5, 48
using, for organizing program 6, 7

Python source file 2
Python Standard Library

about 14
example modules 14
reference 15, 141
reference, for documentation 14

Python Style Guide
URL 140

[228]

Q
quantities 147

R
rapid application development (RAD)

technique 173
refactor 13
relative imports 58-61
renderer 78
report generator module 25
ReportLab

about 89
references 89

repository 193
requests library

about 143, 144
reference 143

requirements file 206
requisites, reusable module

external dependencies, noting 137
functioning, as standalone unit 134, 135
relative imports, using 136

reStructuredText format
about 197
reference 197

reusable module
about 137
clear documentation 140-143
examples 143
general problem, solving 138, 139
requisites 134
standard conventions, following 139, 140

reusable package
designing 146-149
implementing 149-158
testing 158, 159

S
setters 108
Setuptools 202
Sphinx

URL 159
statement coverage 188

T
test cases 185
test-driven development 189
testing 183

U
unit tests 184, 211
user interface module 25

V
verbosity 187
virtual environment 207

W
web interface 6
wildcard import 57
wrapper 114-124

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Modular Programming
	Introducing Python modules
	Introducing Python packages
	Using modules and packages to organize a program
	Why use modular programming techniques?
	Programming as a process
	The Python Standard Library
	Creating your first module
	Caching
	Writing a cache module
	Using the cache

	Summary

	Chapter 2: Writing Your First
Modular Program
	The inventory control system
	Designing the inventory control system
	The data storage module
	The user interface module
	The report generator module
	The main program

	Implementing the inventory control system
	Implementing the data storage module
	Implementing the user interface module
	Implementing the report generator module
	Implementing the main program

	Summary

	Chapter 3: Using Modules and Packages
	Modules and packages
	Packages within packages
	Initializing a module
	Initialization functions

	Initializing a package
	How to import anything
	What does the import statement actually do?
	Using the import statement
	Relative imports

	Controlling what gets imported
	Circular dependencies
	Running modules from the command line
	Summary

	Chapter 4: Using Modules for
Real-World Programming
	Introducing Charter
	Designing Charter
	Implementing Charter
	Implementing the chart.py module
	Implementing the generator.py module
	The Pillow library
	Renderers
	Testing the code
	Rendering the title
	Rendering the x axis
	The remaining renderers
	Testing Charter

	The fly in the ointment – changing requirements
	Redesigning Charter
	Refactoring the code
	Implementing the PDF renderer modules
	Testing the code

	Lessons learned
	Summary

	Chapter 5: Working with
Module Patterns
	Divide and conquer
	Abstraction
	Encapsulation
	Wrappers
	Extensible modules
	Dynamic imports
	Plugins
	Hooks

	Summary

	Chapter 6: Creating Reusable Modules
	Using modules and packages to share your code
	What makes a module reusable?
	Functioning as a standalone unit
	Using relative imports
	Noting external dependencies

	What makes a good reusable module?
	Solving a general problem
	Following standard conventions
	Having clear documentation

	Examples of reusable modules
	requests
	python-dateutil
	lxml

	Designing a reusable package
	Implementing a reusable package
	Testing our reusable package
	Summary

	Chapter 7: Advanced Module Techniques
	Optional imports
	Local imports
	Tweaking imports using sys.path
	Import gotchas
	Using an existing name for your module or package
	Naming a Python script after a module or package
	Adding package directories to sys.path
	Executing and importing the same module

	Using modules and packages with the Python interactive interpreter
	Dealing with global variables
	Package configuration
	Package data
	Summary

	Chapter 8: Testing and Deploying Modules
	Testing modules and packages
	Testing with the unittest Standard Library module
	Designing your unit tests
	Code coverage
	Test-driven development
	Mocking
	Writing unit tests for your modules and packages

	Preparing a module or package for publication
	Uploading your work to GitHub
	Submitting to the Python Package Index
	Using pip to download and install modules and packages
	Summary

	Chapter 9: Modular Programming as a Foundation for Good Programming Technique
	The process of programming
	The inevitable changes
	Change management

	Dealing with complexity
	Being an effective programmer
	Summary

	Index

